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Abstract

A modern practitioner of machine learning must often consider trade-offs between accuracy and
complexity when selecting from available machine learning algorithms. Prediction tasks can range
from requiring real-time performance to being largely unconstrained in their use of computational
resources. In each setting, an ideal algorithm utilizes as much of the available computation as
possible to provide the most accurate result.

This issue is further complicated by applications where the computational constraints are not fixed
in advance. In many applications predictions are often needed in time to allow for adaptive be-
haviors which respond to real-time events. Such constraints often rely on a number of factors at
prediction time, making it difficult to select a fixed prediction algorithm a priori. In these situ-
ations, an ideal approach is to use an anytime prediction algorithm. Such an algorithm rapidly
produces an initial prediction and then continues to refine the result as time allows, producing final
results which dynamically improve to fit any computational budget.

Our approach uses a greedy, cost-aware extension of boosting which fuses the disparate areas of
functional gradient descent and greedy sparse approximation algorithms. By using a cost-greedy
selection procedure our algorithms provide an intuitive and effective way to trade-off computa-
tional cost and accuracy for any computational budget. This approach learns a sequence of predic-
tors to apply as time progresses, using each new result to update and improve the current prediction
as time allows. Furthermore, we present theoretical work in the different areas we have brought
together, and show that our anytime approach is guaranteed to achieve near-optimal performance
with respect to unknown prediction time budgets. We also present the results of applying our al-
gorithms to a number of problem domains such as classification and object detection that indicate
that our approach to anytime prediction is more efficient than trying to adapt a number of existing
methods to the anytime prediction problem.

We also present a number of contributions in areas related to our primary focus. In the functional
gradient descent domain, we present convergence results for smooth objectives, and show that for
non-smooth objectives the widely used approach fails both in theory and in practice. To rectify
this we present new algorithms and corresponding convergence results for this domain. We also
present novel, time-based versions of a number of greedy feature selection algorithms and give
corresponding approximation guarantees for the performance of these algorithms.
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Chapter 1

Introduction

When analyzing the performance of any machine learning approach, there are often two critical
factors considered: the predictive accuracy of the algorithm and the cost or strain on resources of
using a given algorithm. Furthermore, these two metrics of accuracy and cost are typically opposed
to each other. Increasing the accuracy of an algorithm often requires increasing the complexity of
the underlying model, which comes with an increase in cost, and vice versa. This trade-off between
cost and accuracy is an inherently difficult problem and is the focus of this work.

1.1 Motivation
The number of machine learning applications which involve real time and latency sensitive pre-
dictions is growing rapidly. In areas such as robotics, decisions must be made on the fly and in
time to allow for adaptive behaviors which respond to real-time events. In computer vision, pre-
diction algorithms must often keep up with high resolution streams of live video from multiple
sources without sacrificing accuracy. Finally, prediction tasks in web applications must be carried
out with response to incoming data or user input without significantly increasing latency, and the
computational costs associated with hosting a service are often critical to its viability. For such
applications, the decision to use a larger, more complex predictor with higher accuracy or a less
accurate, but significantly faster predictor can be difficult.

To this end, we will focus on the prediction or test-time cost of a model in this work, and the
problem of trading-off between prediction cost and accuracy. While the cost of building a model
is an important consideration, the advent of cloud computing and a large increase in the general
computing power available means that the resources available at training time are often much less
constrained than the prediction time requirements. When balancing training costs, concerns such
as scalability and tractability are often more important, as opposed to factors such as latency which
are more directly related to the complexity of the model.

The problem of trading-off prediction cost and accuracy is considered throughout the litera-
ture, both explicitly and implicitly. Implicitly, reduced model complexity, in the form of reduced
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2 CHAPTER 1. INTRODUCTION

memory or computational requirements, is a feature often used to justify reduced accuracy when
comparing to previous work. In other settings, entirely new algorithms are developed when models
are too costly for a given application.

Explicitly, there are is a wide array of approaches for generating models of various complexity
and comparing their predictive performance. We will now discuss some of the existing approaches
to this problem.

Varying Model Complexity Directly
In many settings, model complexity can often be tuned directly. In tuning these parameters and
comparing performance, the cost and accuracy trade-off is presented directly, and the practicioner
is able to choose from among these points directly in an ad-hoc way, typically selecting the highest
accuracy model which fits within their computational constraints. This approach is closest to the
implicit approach of discussing cost and accuracy trade-offs, where the trade-off is considered
external to the learning problem itself.

Examples include:

• Tuning the number and structure of hidden units in a neural network.

• Tuning the number of exemplars used in an exemplar-based method.

• Tuning the number of weak learners used in an ensemble method.

• Manually selecting different sets of features or feature transformations to train the model on.

Constraining the Model
Related to the previous approach, another way to trade-off cost and accuracy is to specify some
kind of constraint on the cost of the model. In constrast to the previous approach, the constraint is
usually made explicit at training time, and the learning algorithm optimizes the accuracy directly
with knowledge of the constraint.

Under this regime, the constraint can be related to the complexity of the model, but is often
more directly related to the prediction cost of interest. Since these constraints are not directly re-
lated to the complexity of the model, they often require new algorithms and methods for optimizing
the model subject to such a constraint.

Examples of this method include:

• Assuming that each feature used by a model has some computational cost and using some
kind of budgeted feature selection approach. In this setting, a model can have a high com-
plexity and still have low cost, as the feature computation time is the dominant factor.

• Using a dimensionality reduction or sparse coding technique to otherwise reduce the dimen-
sionality of inputs and eventual computational cost.
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Regularizing the Model
Under this approach, one augments the accuracy objective being optimized with a cost term, and
then optimizes the model to fit this single combined objective. By adjusting the importance of the
cost and accuracy factors in the objective, the model will select some specific point on the spectrum
of possible trade-offs.

While regularization is often used to reduce the complexity of a model to improve accuracy,
e.g. eliminating error due to overfitting, it can also be used to reduce the complexity of the model
to handle a scarcity of prediction time resources.

Examples include:

• Using a regularized version of the constraint used in the budgeted feature selection problem
and optimizing the model using in this constraint.

• Using a heavily regularized objective to increase the sparsity of a model and hence the pro-
cessor and memory usage of that model.

Generating Approximate Predictions
One final approach that is substantially different from the previous ones is to use some fixed, po-
tentially expensive, model, but improve the cost of obtaining predictions from that model directly.
This can be achieved by computing approximations of the predictions the model would generate
if given increased computational resources. This can either be done by generating an approximate
version of the model for use in prediction, or using some faster but less accurate algorithm for
prediction.

Examples include:

• Using an approximate inference technique in a graphical model.

• Searching only a portion of the available space in a search-based or exemplar based method.

• Using techniques such as cascades or early-exits to improve the computation time of ensem-
ble predictions.

Almost all the techniques described above are best utilized when the computation constraints
are well understood at training time, however. With the exception of a few algorithms which fall in
to the approximate prediction category, each method requires the practitioner to make descisions at
training time which will affect the resulting trade-off of cost and accuracy made by the model. This
is a significant drawback, as it requires the practitioner to understand the cost accuracy trade-off at
some level and understand it a priori.

In practice, making this trade-off at training time can have adverse effects on the accuracy
of future predictions. In many settings, such as cloud computing, the available computational
resources may change significantly over time. For instance, prices for provisioning machines may
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vary significantly depending on the time of day, or idle machines may be able to be utilized in an
on demand manner to improve predictions.

In other settings, the resources may change due to the nature of the problem or environment.
For example, an autonomous agent may want to use a reasonably fast method for predicting object
locations as a first attempt when performing some task, but would like a slower, more accurate
method of last resort should the first attempt fail.

As a final example, consider the problem of generating batch predictions on a large set of test
examples. For example, in the object detection domain a large number of examples are generated
from a single input image, corresponding to each of the locations in the image. Some of these
examples, such as cluttered areas of the image, may be inherently more difficult to classify than
other examples, such as a patch of open sky. In this setting our computational constraint is actually
on the prediction cost of the batch of examples as a whole and not on each single example. To
obtain high accuracy at low cost, any prediction method would ideally focus its efforts on the more
difficult examples in the batch. Using any one of the fixed methods above, we would spend the
same amount of time on each example in the batch, resulting in less efficient use of resources.

1.2 Approach

To handle many of the failure situations described above, it would be useful to work with prediction
algorithms capable of initially giving crude but rapid estimates and then refining the results as time
allows. For situations where the computational resources are not known apriori, or where we would
like to dynamically adapt the resources used, such an algorithm can automatically adjust to fill any
allocated budget at test-time.

For example, in a robotics application such as autonomous navigation, it may sometimes be
the case that the robot can rapidly respond with predictions about nearby obstacles, but can spend
more time reasoning about distant ones to generate more accurate predictions.

As first studied by Zilberstein [1996], anytime algorithms exhibit exactly this property of pro-
viding increasingly better results given more computation time. Through this previous work, Zil-
berstein has identified a number of desirable properties for an anytime algorithm to possess. In
terms of predictions these properties are:

• Interruptability: a prediction can be generated at any time.

• Monotonicity: prediction quality is non-decreasing over time.

• Diminishing Returns: prediction quality improves fastest at early stages.

An algorithm meeting these specifications will be able to dynamically adjust its predictions to fit
within any test-time budget, avoiding the need to make reason about computational constraints at
training time.
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Thesis Statement: As it is often difficult to make decisions which trade off final cost
and accuracy a priori, we should instead seek to train predictors which dynamically
adjust the computations performed at prediction time to meet any computational bud-
get. The algorithms for generating these predictors should further be able to reason
about the cost and benefit of each element of a prediction computation to automati-
cally select those which improve accuracy most efficiently, and should do so without
knowing the test-time budget apriori.

Our work targets these specific properties using a hybrid approach. To obtain the incremental,
interruptable behavior we would like for updating predictions over time we will learn an additive
ensemble of weaker predictors. This work will build off the previous work in this area of boosted
ensemble learning [Schapire, 2002], specifically the functional gradient descent approach [Mason
et al., 1999, Friedman, 2000] for generalizing the behavior of boosting to arbitrary objectives and
weak predictors. In these approaches we learn a predictor which is simply the linear combination of
a sequence of weak predictors. This final predictor can easily be made interruptable by evaluating
the weak predictors in sequence and computing the linear combination of the outputs whenever a
prediction is desired.

We will augment the standard functional gradient approach with ideas taken from greedy se-
lection algorithms [Tropp, 2004, Streeter and Golovin, 2008, Das and Kempe, 2011] typically used
in the submodular optimization and sparse approximation domains. We will use a cost-greedy ver-
sion of functional gradient methods which select the next weak predictor based on an improvement
in accuracy scaled by the cost of the weak learner. This cost-greedy approach ensures that the we
select sequences of weak predictors that increase accuracy as efficiently as possible, satisfying the
last two properties.

As we will show later, this relatively simple framework can be applied to a wide range of
problems. Furthermore, we provide theoretical results that show that this method is guaranteed
to achieve near-optimal performance as the budget increases, without knowing the specific budget
apriori, and observe that this near-optimality holds in a number of experimental applications.

1.3 Related Work

We now detail a number of approaches and previous work that are related both to the focus of this
work, and the disparate areas we fuse together in our methods and analysis.

Boosting and Functional Gradient Methods

Boosting is a versatile meta-algorithm for combining together multiple simple hypotheses, or weak
predictors, to form a single complex hypothesis with superior performance. The power of this
meta-algorithm lies in its ability to craft hypotheses which can achieve arbitrary performance on
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training data using only weak learners that perform marginally better than random. Schapire [2002]
give a very good overview of general boosting techniques and applications.

To date, much of the work on boosting has focused on optimizing the performance of this
meta-algorithm with respect to specific loss functions and problem settings. The AdaBoost algo-
rithm [Freund and Schapire, 1997] is perhaps the most well known and most successful of these.
AdaBoost focuses specifically on the task of classification via the minimization of the exponen-
tial loss by boosting weak binary classifiers together, and can be shown to be near optimal in this
setting. Looking to extend upon the success of AdaBoost, related algorithms have been developed
for other domains, such as RankBoost [Freund et al., 2003] and mutliclass extensions to AdaBoost
[Mukherjee and Schapire, 2010]. Each of these algorithms provides both strong theoretical and
experimental results for their specific domain, including corresponding weak to strong learning
guarantees, but extending boosting to these and other new settings is non-trivial.

Recent attempts have been successful at generalizing the boosting approach to certain broader
classes of problems, but their focus is also relatively restricted. Mukherjee and Schapire [2010]
present a general theory of boosting for multiclass classification problems, but their analysis is
restricted to the multiclass setting. Zheng et al. [2007] give a boosting method which utilizes the
second-order Taylor approximation of the objective to optimize smooth, convex losses. Unfortu-
nately, the corresponding convergence result for their algorithm does not exhibit the typical weak
to strong guarantee seen in boosting analyses and their results apply only to weak learners which
solve the weighted squared regression problem.

Other previous work on providing general algorithms for boosting has shown that an intuitive
link between algorithms like AdaBoost and gradient descent exists [Mason et al., 1999, Friedman,
2000], and that many existing boosting algorithms can be reformulated to fit within this gradient
boosting framework. Under this view, boosting algorithms are seen as performing a modified
gradient descent through the space of all hypotheses, where the gradient is calculated and then
used to find the weak hypothesis which will provide the best descent direction.

In the case of smooth convex functionals, Mason et al. [1999] give a proof of eventual conver-
gence for the functional gradient method. This result is similar to the classical convergence result
given in Zoutendijk’s Theorem [Zoutendijk, 1970], which gaurantees convergence for a variety of
descent-based optimization algorithms, as long as the search direction at every iteration is suffi-
ciently close to the gradient of the function. Additionally, convergence rates of these algorithms
have been analyzed for the case of smooth convex functionals [Rätsch et al., 2002] and for spe-
cific potential functions used in classification [Duffy and Helmbold, 2000] under the traditional
PAC weak learning setting. Our result [Grubb and Bagnell, 2011] extends these results for smooth
losses, and also introduces new results and algorithms for non-smooth losses.

Submodular Maximization

In our analysis of the cost-greedy approaches in this document, we will make heavy use of the
submodular set function maximization framework. A good overview of this domain is given in the
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survey of submodular function maximization work by Krause and Golovin [2012].
Most relevant to our work are the approaches for the budgeted or knapsack constrained sub-

modular maximization problem. In this setting each element is assigned a cost and the constraint
is on the sum of costs of elements in the selected set, similar to the knapsack problem [Mathews,
1897], which is the modular complement to this setting.

In this domain the original greedy algorithm for submodular function maximization with a car-
dinality constraint [Nemhauser et al., 1978] can be extended using a cost-greedy approach [Khuller
et al., 1999].

A number of results from previous work [Khuller et al., 1999, Krause and Guestrin, 2005,
Leskovec et al., 2007, Lin and Bilmes, 2010] have given variations on the cost-greedy algorithm
which do have approximation bounds with factors of 1

2
(1− 1

e
) and (1− 1

e
). Unfortunately, these al-

gorithms all require apriori knowledge of the budget in order to achieve the approximation bounds,
and cannot generate single, budget agnostic sequences with approximation bounds for all budgets.

Unfortunately as Khuller et al. [1999] show, the standard approximation results do not hold di-
rectly for the cost-greedy algorithm. As we show in Chapter 4, in general there is no single budget
agnostic algorithm which can achieve a similar approximation guarantee, but we can achieve ap-
proximation guarantees for certain budgets. Most directly related to out work, we will build off of
the cost-greedy analysis of Streeter and Golovin [2008], which gives an approximation guarantee
for certain budgets dependent on the problem.

Finally, our work will build off of previous work analyzing functions that are approximately
submodular. Das and Kempe [2011] give a multiplicative version of approximate submodularity
called the submodularity ratio. Similarly, Krause and Cehver [2010] give a version of submodu-
larity that includes an additive error term. This additive error term is similar to the additive error
terms utilized in analyzing online submodular maximization approaches [Krause and Guestrin,
2005, Streeter and Golovin, 2008, Ross et al., 2013]. Our work later in this document combines
both additive and multiplicative relaxations of the standard submodularity definition.

Sparse Approximation

A common framework for controlling the complexity of a model is the sparse approximation prob-
lem, also referred to as subset selection, sparse decomposition, and feature selection. In this setting
we are given a target signal or vector, and a set of basis vectors to use to reconstruct the target.
These basis vectors are often referred to as atoms, bases, dictionary elements, and, when taken as
a whole, a dictionary or design matrix. The goal is to select a sparse set of these vectors that best
approximates the target, subject to some sparsity constraint. An equivalent formuation is to select
a sparse weight vector with which to combine the basis vectors.

We will later use the sparse approximation framework to analyze our anytime approach. In
general it can be shown that this problem is NP hard Natarajan [1995], but a number of practical
approaches with approximation and regret bounds have been developed in previous work.

Most relevant to this work are the works on analyzing greedy feature selection algorithms
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[Krause and Cehver, 2010, Das and Kempe, 2011] which build off of submodular maximization
techniques. Krause and Cehver [2010] give an analysis of the dictionary selection problem, a
variant of the subset selection problem where the goal is to select a larger subset or dictionary of
which smaller subsets can be used to approximate a large set of different targets. Their analysis
relies on the incoherency of the dictionary elements, a geometric property which captures the
non-orthogonality of the dictionary. Das and Kempe [2011] give a similar analysis for the subset
selection and dictionary selection problems, but use spectral properties of the dictionary elements
which also captures the degree of orthogonality.

Greedy approaches to solving this problem include Forward-Stepwise Regression or simply
Forward Regression [Miller, 2002], Matching Pursuit [Mallat and Zhang, 1993] also known as
Forward-Stagewise Regression, and Orthogonal Matching Pursuit [Pati et al., 1993]. Forward
Regression greedily selects elements which maximially improve reconstruction error when added
to the set of bases, while the matching pursuit approaches select elements based on their correlation
with the residual error remaining in the target at each iteration. Tropp [2004] gives a good analysis
of the Orthogonal Matching Pursuit algorithm which uses the same incoherency parameter used
by Krause and Cehver [2010], to show near-optimal reconstruction of the target.

Another popular approach to the sparse approximation problem is to use a convex relaxation of
the sparsity constraint as a regularizer, and optimize the regularized objective directly. Examples
include the Lasso algorithm [Tibshirani, 1996], Basis Pursuit [Chen et al., 2001], and Least-Angle
Regression [Efron et al., 2004]. All of these algorithms optimize the L1 relaxation of the sparsity
constraint using different methods.

For the L1-based regularization approaches, there are two main focuses for proving the algo-
rithms are successful. One [Geer and Buhlmann, 2009] shows that the near-orthogonality of the
vectors being selected implies that the proper subset is selected with high probability. This analy-
sis relies on the RIP, or Restricted Isometry Property. The other [Juditsky and Nemirovski, 2000]
approach derives regret bounds with respect to a sparse, L1 bounded linear combination of the
variables, and shows that magnitude of sparse vector used for combination is the key factor for the
bound.

We will follow a similar tack as the weight-based analysis of Juditsky and Nemirovski [2000] in
our work here. The existing bounds discussed above for greedy sparse approximation approaches
all use geometric properties, similar to the RIP property. In our work we would instead like to
focus on bounds derived using other properties which depend on the magnitude of the combining
weights being small, and not the underlying features being nearly orthogonal.

One final piece of the related literature that is related to our area of study is the work that
has been done on the simultaneous sparse approximation problem. This problem is similar to the
dictionary selection problem of Krause and Cehver [2010], in that we want to select a subset of
bases that reconstruct a set of multiple target vectors well. The key difference between these two
problems is that dictionary selection allows for the selection of a larger set of elements than is used
to reconstruct any one target, while the simultaneous sparse approximation problem uses the same
subset for every single target.
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There exist both greedy and regularization approaches to solving this problem. Simultaneous
Orthogonal Matching Pursuit [Cotter et al., 2005, Chen and Huo, 2006, Tropp et al., 2006] is a
greedy method for solving this problem, based on the single target OMP approach. In the regu-
larization or relaxation approaches, the corresponding relaxation of the sparsity constraint uses an
Lp - Lq mixed norm, typically an L1 norm of another, non-sparsity inducing norm, such as the L2

or L∞ norm. The approaches for solving this problem are called Group Lasso [Meier et al., 2008,
Rakotomamonjy, 2011] algorithms, and select weight matrices that are sparse across features or
basis vectors, but dense across the target vectors, giving the desired sparse set of selected bases.

Budgeted Prediction

Our primary focus in this work is on the trade-off between prediction cost and accuracy. Particu-
larly for functional gradient methods and related ensemble approaches, there have been a number
of previous approaches that attempt to tackle the prediction cost and accuracy trade-off.

This focus in the budgeted prediction setting, also called budgeted learning, test-time cost-
sensitive learning, and resource efficient machine learning, is to try and automatically make this
trade-off in ways that improve the cost of achieving good predictions.

Similar to our work, a number of approaches have considered methods for improving the pre-
diction costs of functional gradient methods. Chen et al. [2012] and Xu et al. [2012] give reg-
ularization based methods for augmenting the functional gradient approach to account for cost.
Their focus is on optimizing the feature computation time of a model, and attempts to select weak
learners which use cheap or already computed features. The first approach [Chen et al., 2012]
does this by optimizing the ordering and composition of a boosted ensemble after learning using
a traditional functional gradient approach. The second method directly augments the weak learner
training procedure (specifically, regression trees) with a cost-aware regularizer. This work has also
been extended to include a variant which uses a branching, tree-based structure [Xu et al., 2013b],
and a variant suitable for anytime prediction [Xu et al., 2013a] following the interest in this domain.
This latter work uses a network of functional gradient modules, and backpropagates a functional
gradient through the network, in a manner similar to Grubb and Bagnell [2010].

Another approach for augmenting the functional gradient approach is the sampling-based ap-
proach of Reyzin [2011], which uses randomized sampling at prediction time weighted by cost to
select which weak hypotheses to evaluate.

An early canonical approach for improving the prediction time performance of these additive
functional models is to use a cascade [Viola and Jones, 2001, 2004]. A cascade uses a sequence
of increasingly complex classifiers to sequentially select and eliminate examples for which the
predictor has high confidence in the current prediction, and then continues improving predictions
on the low confidence examples. The original formulation focuses on eliminating negative exam-
ples, for settings where positive examples are very rare such as face detection, but extensions that
eliminate both classes [Sochman and Matas, 2005] exist.

Many other variations on building and optimizing cascades exist [Saberian and Vasconcelos,
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2010, Brubaker et al., 2008], and Cambazoglu et al. [2010] give a version of functional gradient
methods which use an early-exit strategy, similar to the cascade approach, which generates predic-
tions early if the model is confident enough in the current prediction. All these methods typically
target final performance of the learned predictor, however. Furthermore, due to the decision mak-
ing structure of these cascades and the permanent nature of prediction decisions, these models
must be very conservative in making early decisions and are unable to recover from early errors.
All of these factors combine to make cascades poor anytime predictors.

Another, orthogonal approach to the functional gradient based ones detailed so far are to treat
the problem as a policy learning one. In this approach, we have states corresponding to which
predictions have been generated so far, and actions correspond to generating new predictions or
outputting final predictions. Examples of this include the value-of-information approach of Gao
and Koller [2011], the work on learning a predictor skipping policy of Busa-Fekete et al. [2012],
the dynamic predictor re-ordering policy of He et al. [2013], and the object recognition work of
Karayev et al. [2012]. In these approaches the policy for selecting which predictions to generate
and which features to use is typically generated by modeling the problem as a Markov Decision
Process and using some kind of reinforcement learning technique to learn a policy which selects
which weak hypotheses or features to compute next.

In the structured setting, Jiang et al. [2012] proposed a technique for reinforcement learn-
ing that incorporates a user specified speed/accuracy trade-off distribution, and Weiss and Taskar
[2010] proposed a cascaded analog for structured prediction where the solution space is iteratively
refined/pruned over time. In contrast, our structured prediction work later in this document is fo-
cused on learning a structured predictor with interruptible, anytime properties which is also trained
to balance both the structural and feature computation times during the inference procedure. Re-
cent work in computer vision and robotics [Sturgess et al., 2012, de Nijs et al., 2012] has similarly
investigated techniques for making approximate inference in graphical models more efficient via a
cascaded procedure that iteratively prunes subregions in the scene to analyze.

Previous approaches to the anytime prediction problem have focused on instance-based learn-
ing algorithms, such as nearest neighbor classification [Ueno et al., 2006] and novelty detection
[Sofman et al., 2010]. These approaches use intelligent instance selection and ordering to acheive
rapid performance improvements on common cases, and then typically use the extra time for
searching through the ‘long tail’ of the data distribution and improving result for rare examples. In
the case of the latter, the training instances are even dynamically re-ordered based on the distribu-
tion of the inputs to the prediction algorithm, further improving performance. As mentioned above,
a more recent anytime approach was given by [Xu et al., 2013a], and uses a functional gradient
method similar to our initial work in this area [Grubb and Bagnell, 2012].

1.4 Contributions
We now detail the structure of the rest of the document, and outline a number of important contri-
butions made in the various areas related to our anytime prediction approach.
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• In Chapter 2 we extend previous work on functional gradient methods and boosting with
a framework for analyzing arbitrary convex losses and arbitrary weak learners, as opposed
to the classifiers and single output regressors discussed previously. We also analyze the
convergence of functional gradient methods for smooth functions, extending previous results
and generalizing the notion of weak-to-strong learning to arbitrary weak learners. Finally,
we show that the widely used traditional functional gradient approaches fail to converge for
non-smooth objective functions, and give algorithms and convergence results that work in
the non-smooth setting.

• In Chapter 3 we introduce two extensions to the functional gradient approach detailed in
Chapter 2. The first extends functional gradient methods from simple supervised approaches
to structured prediction problems using an additive, iterative decoding approach. The second
addresses overfitting issues that arise when previous predictions are used as inputs to later
predictors in the functional gradient setting, and adapts the method of stacking to this domain
to reduce this overfitting.

• In Chapter 4 we detail our analysis of greedy algorithms for the budgeted monotone sub-
modular maximization problem, and derive approximation bounds that demonstrate the near-
optimal performance of these greedy approaches. We also extend previous work from the
literature with a characterization of approximately submodular functions, and analyze the
behvior of algorithms which are approximately greedy as well. Finally, we introduce a mod-
ified greedy approach that can achieve good performance for any budget constraint without
knowing the budget apriori.

• In Chapter 5 we analyze regularized variants of the sparse approximation problem, and show
that this problem is equivalent to the budgeted, approximately submodular setting detailed
in Chapter 4. Using these results we derive bounds that show that novel, budgeted or time-
aware versions of popular algorithms for this domain are near-optimal as well. In this analy-
sis, we also extend previous algorithms and results for the sparse approximation problem to
variants for arbitrary smooth losses and simultaneous targets.

• In Chapter 6 we introduce our cost-greedy, functional gradient approach for solving the any-
time prediction. Building on the results in previous chapters, we also show that variants of
this anytime prediction approach are guaranteed to have near-optimal performance. Finally,
we demonstrate how to extend our anytime prediction approach to a number of applications.

• In Chapter 7 we combine this anytime prediction approach (Chapter 6) with the structured
prediction extensions of functional gradient methods (Chapter 3) to obtain an anytime struc-
tured prediction algorithm. We then demonstrate this algorithm on the scene understanding
domain.
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Part I

Functional Gradient Methods
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Chapter 2

Functional Gradient Methods

In this chapter we detail our framework for analyzing functional gradient methods, and present
convergence results for the general functional gradient approach. Using this new framework we
generalize the notion of weak-to-strong learning from the boosting domain to arbitrary weak learn-
ers and loss functions. We also extend existing results that give weak-to-strong convergence for
smooth losses, and show that for non-smooth losses the widely used standard approach fails, both
theoretically and experimentally. To counter this, we develop new algorithms and accompanying
convergence results for the non-smooth setting.

2.1 Background

In the functional gradient setting we want to learn a prediction function f which minimizes some
objective functionalR:

min
f
R[f ]. (2.1)

We will also assume that f is a linear combination of simpler functions h ∈ H

f(x) =
∑
t

αtht(x), (2.2)

where αt ∈ R. In the boosting literature, these functions h ∈ H are typically referred to as weak
predictors or weak classifiers and are some set of functions generated by another learning algorithm
which we can easily optimize, known as a weak learner. By generating a linear combination of
these simpler functions, we hope to obtain better overall performance than any single one of the
weak learners h could obtain.

We will now discuss the specific properties of the function space that the functions f and h
are drawn from that we will utilize for our analysis, along with various properties of the objective
functionalR.

15
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Previous work [Mason et al., 1999, Friedman, 2000] has presented the theory underlying func-
tion space gradient descent in a variety of ways, but never in a form which is convenient for
convergence analysis. Recently, Ratliff [Ratliff, 2009] proposed the L2 function space as a natural
match for this setting. This representation as a vector space is particularly convenient as it dove-
tails nicely with the analysis of gradient descent based algorithms. We will present here the Hilbert
space of functions most relevant to functional gradient boosting.

2.1.1 L2 Function Space
Given a measurable input set X , a complete vector space V of outputs, and measure µ over X , the
function space L2(X ,V , µ) is the set of all equivalence classes of functions f : X → V such that
the Lebesgue integral ∫

X
‖f(x)‖2

V dµ (2.3)

is finite. In the special case where µ is a probability measure P with density function p(x), Equa-
tion (2.3) is simply equivalent to EP [‖f(x)‖2].

This Hilbert space has a natural inner product and norm:

〈f, g〉µ =

∫
X
〈f(x), g(x)〉V dµ

‖f‖2
µ = 〈f, f〉µ

=

∫
X
‖f(x)‖2

V dµ,

which simplifies as one would expect for the probability measure case:

〈f, g〉P = EP [〈f(x), g(x)〉V ]

‖f‖2
P = EP [‖f(x)‖2

V ].

We parameterize these operations by µ to denote their reliance on the underlying measure. For
a given input space X and output space V , different underlying measures can produce a number of
spaces over functions f : X → V . The underlying measure will also change the elements of the
space, which are the equivalence classes for the relation ∼:

f ∼ g ⇐⇒ ‖f − g‖2
µ = 0.

The elements of L2(X ,V , µ) are required to be equivalence classes to ensure that the space is a
vector space.

In practice, we will often work with the empirical probability distribution P̂ for an observed
set of points {xn}Nn=1. This just causes the vector space operations above to reduce to the empirical
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expected values. The inner product becomes

〈f, g〉P̂ =
1

N

N∑
n=1

〈f(xn), g(xn)〉V ,

and the norm is correspondingly

‖f‖P̂ =
1

N

N∑
n=1

‖f(xn)‖2
V .

For the sake of brevity, we will omit the measure µ unless otherwise necessary, as most state-
ments will hold for all measures. When talking about practical implementation, the measure used
is assumed to be the empirical probability P̂ .

2.1.2 Functionals and Convexity
Consider a function space F = L2(X ,V , µ). We will be analyzing the behavior of functionals
R : F → R over these spaces. A typical example of a functional is the point-wise loss:

RP [f ] = EP [`(f(x))]. (2.4)

To analyze the convergence of functional gradient algorithms across these functionals, we need
to rely on a few assumptions. A functionalR[f ] is convex if for all f, g ∈ F there exists a function
∇R[f ] such that

R[g] ≥ R[f ] + 〈∇R[f ], g − f〉. (2.5)

We say that∇R[f ] is a subgradient of the functionalR at f . We will write the set of all subgradi-
ents, or the subdifferential, of a functionalR at function f as

∂R[f ] = {∇R[f ] | ∇R[f ] satisfies Equation (2.5) ∀g} . (2.6)

As an example subgradient, consider the pointwise risk functional given in Equation (2.4). The
corresponding subgradient over L2(X ,V , P )

∂RP [f ] = {∇ | ∇(x) ∈ ∂`(f(x)) ∀x ∈ supp(P )} (2.7)

where ∂`(f(x)) is the set of subgradients of the pointwise loss ` with respect to the output f(x).
For differentiable `, this is just the partial derivative of ` with respect to input f(x). Additionally,
supp(P ) is the support of measure P , that is, the subset X such that every open neighborhood of
every element x ∈ supp(P ) has positive measure. This is only necessary to formalize the fact that
the subgradient function∇ need only be defined over elements with positive measure.

To verify this fact, observe that the definition of the subdifferential ∂`(f(x)) implies that

`(g(x)) ≥ `(f(x)) + 〈∇(x), g(x)− f(x)〉V ,
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for all x with positive measure. Integrating over X gives∫
X
`(g(x))p(x)dx ≥

∫
X
`(f(x))p(x)dx+

∫
X
〈∇(x), g(x)− f(x)〉Vp(x)dx,

which is exactly the requirement for a subgradient

RP [g] ≥ RP [f ] + 〈∇R[f ], g − f〉P

As a special case, we find that the subgradient of the empirical riskRP̂ [f ] is simply

∂RP̂ [f ] = {∇ | ∇(xn) ∈ ∂`(f(xn)), n = 1, . . . , N} .

This function, defined only over the training points xn, is simply the gradient of the loss ` for that
point, with respect to the current output f(xn) at that point.

These subgradients are only valid for the L2 space corresponding to the particular probability
distribution P . In fact, the functional gradient of a risk functional evaluated over a measure P will
not always have a defined subgradient in spaces defined using another measure P ′. For example
no subgradient for the expected loss RP [f ] exists in the space derived from P̂ . Similarly, no
subgradient of the empirical loss RP̂ [f ] exists in the L2 space derived from the true probability
distribution P .

In addition to the simpler notion of convexity, we say that a functionalR is m-strongly convex
if for all f, g ∈ F :

R[g] ≥ R[f ] + 〈∇R[f ], g − f〉 +
m

2
‖g − f‖2 (2.8)

for some m > 0, and M -strongly smooth if

R[g] ≤ R[f ] + 〈∇R[f ], g − f〉 +
M

2
‖g − f‖2 (2.9)

for some M > 0.

2.2 Functional Gradient Descent
We now outline the functional gradient-based view of boosting [Mason et al., 1999, Friedman,
2000] and how it relates to other views of boosting. In contrast to the standard gradient descent
algorithm, the functional gradient formulation of boosting contains one extra step, where the gra-
dient is not followed directly, but is instead replaced by another vector or function, drawn from the
pool of weak predictorsH.

From a practical standpoint, a projection step is necessary when optimizing over function space
because the functions representing the gradient directly are computationally difficult to manipulate
and do not generalize to new inputs well. In terms of the connection to boosting, the allowable
search directionsH correspond directly to the set of hypotheses generated by a weak learner.
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The functional gradient descent algorithm is given in Algorithm 2.1. Our work in this area
addresses two key questions that arise from this view of boosting. First: what are appropriate ways
to implement the projection operation? Second: how do we quantify the performance of a given
set of weak learners, in general, and how does this performance affect the final performance of the
learned function ft? Conveniently, the function space formalization detailed above gives simple
geometric answers to these concerns.

Algorithm 2.1 Functional Gradient Descent
Given: starting point f0, objectiveR
for t = 1, . . . , T do

Compute a subgradient∇t ∈ ∂R[ft−1].
Project∇t onto hypothesis spaceH: h∗ = Proj (∇,H)
Select a step size αt.
Update f : ft = ft−1 + αth

∗.
end for

Basic Gradient Projection 

(a)

Projection via Maximum Inner Product 

(b)

Projection via Minimum Distance 

(c)

Figure 2.1: Figure demonstrating the geometric intuition underlying (a) the basic gradient projection op-
eration and (b-c) the two methods for optimizing this projection operation over a set of functions H. The
inner product formulization (b) minimizes the effective angle between the gradient∇ and h, while the norm
formulization (c) minimizes the effective distance between the two in function space.

For a given a (sub)gradient∇ and candidate weak learner h, the closest point h′ along h can be
found using vector projection:

h′ =
〈∇, h〉
‖h‖2 h (2.10)

Now, given a set of weak learners H the vector h∗ which minimizes the error of the projection
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in Equation (2.10) also maximizes the projected length:

h∗ = Proj (∇,H)

= arg max
h∈H

〈∇, h〉
‖h‖

.
(2.11)

This is a generalization of the projection operation in Mason et al. [1999] to functions other than
classifiers.

For the special case when H is closed under scalar multiplication, one can instead find h∗ by
directly minimizing the distance between∇ and h∗,

h∗ = Proj (∇,H)

= arg min
h∈H

‖∇ − h‖2 (2.12)

thereby reducing the final projected distance found using Equation (2.10). This projection opera-
tion is equivalent to the one given by Friedman [2000], and is suitable for function classes H that
behave like regressors.

A depiction of the geometric intuition behind these projection operations is given in Figure 2.1.
These two projection methods provide relatively simple ways to search over any set of allowable
directions for the ‘best’ descent direction. We can also use these same geometric notions to quan-
tify the performance of any given set of weak learners. This guarantee on the performance of each
projection step, typically referred to in the traditional boosting literature as the edge of a given
weak learner set is crucial to our convergence analysis of functional gradient algorithms.

For the projection which maximizes the inner product as in Equation (2.11), we can use the
generalized geometric notion of angle to bound performance by requiring that

〈∇, h∗〉 ≥ (cos θ)‖∇‖‖h∗‖,

while the equivalent requirement for the norm-based projection in (2.12) is

‖∇ − h∗‖2 ≤ (1− (cos θ)2)‖∇‖2.

It can be seen that this requirement implies the first requirement for arbitrary setsH. In the special
case whenH is closed under scalar multiplication, these two requirements are equivalent.

Parameterizing by cos θ, we can now concisely define the performance potential of a set of
weak learners, which will prove useful in later analysis.

Definition 2.2.1. A set H has edge γ for a given projected gradient ∇ if there exists a vector
h∗ ∈ H such that either 〈∇, h∗〉 ≥ γ‖∇‖‖h∗‖ or ‖∇ − h∗‖2 ≤ (1− γ2)‖∇‖2.

This definition of edge is parameterized by γ ∈ [0, 1], with larger values of edge corresponding
to lower projection error and faster algorithm convergence. Historically the edge corresponds to
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an increase in performance over some baseline. For instance, in traditional classification problems,
the edge corresponds to the edge in performance over random guessing. In our framework, the
baseline performer can be thought of as the predictor h(x) = 0. The definition of edge given above
smoothly interpolates between having no edge over the zero predictor (γ = 0) and having perfect
reconstruction of the projected gradient (γ = 1).

2.2.1 Relationship to Previous Boosting Work
Though these projection operations apply to any Hilbert space and setH, they also have convenient
interpretations when it comes to specific function classes traditionally used as weak learners in
boosting.

For a classification-based weak learner with outputs in {−1,+1} and an optimization over
single output functions f : X → R, projecting as in Equation (2.11) is equivalent to solving the
weighted classification problem

arg max
h∈H

1

N

N∑
n=1

|∇(xn)|1 (h(xn) = sgn(∇(xn))) , (2.13)

over the training examples xn, with labels sgn(∇(xn)) and weights |∇(xn)|.
For arbitrary real-valued outputs, the projection via norm minimization in Equation (2.12) is

equivalent to solving the regression problem

arg min
h∈H

1

N

N∑
n=1

‖∇(xn)− f(xn)‖2

again over the training examples xn with regression targets∇(xn).
Similarly, our notion of weak learner performance in Definition 2.2.1 can be related to previous

work. Like our measure of edge, which quantifies performance over the trivial hypothesis h(x) =
0, previous work has used similar quantities which capture the advantage over baseline hypotheses.

For weak learners which are binary classifiers, as is the case in AdaBoost [Freund and Schapire,
1997], there is an equivalent notion of edge which refers to the improvement in performance over
predicting randomly in the weighted multiclass projection given above. We can show that Defini-
tion 2.2.1 is an equivalent measure.

Theorem 2.2.2. For a weak classifier set H with outputs in {−1,+1} and some gradient ∇,
the following statements are equivalent: (1) H has edge γ for some γ > 0, and (2) for any
non-negative weights wn over training data xn, there is a classifier h ∈ H which achieves an
error of at most (1

2
− δ

2
)
∑

nwn on the weighted classification problem given in Equation (2.13),
for some δ > 0.
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Proof. To relate the weighted classification setting and our inner product formulation, let weights
wn = |∇(xn)| and labels yn = sgn(∇(xn)). We examine classifiers h with outputs in {−1,+1}.

Consider the AdaBoost weak learner requirement re-written as a sum over the correct exam-
ples: ∑

n,h(xn)=yn

wn ≥ (
1

2
+
δ

2
)
∑
n

wn.

Breaking the sum over weights into the sum of correct and incorrect weights:

1

2
(
∑

n,h(xn)=yn

wn −
∑

n,h(xn)6=yn

wn) ≥ δ

2

∑
n

wn.

The left hand side of this inequality is just N times the inner product 〈∇, h〉, and the right
hand side can be re-written as the 1-norm of the weight vector w, giving:

N〈∇, h〉 ≥ δ‖w‖1

≥ δ‖w‖2

Finally, using ‖h‖ = 1 and ‖∇‖2 = 1
N
‖w‖2

2:

〈∇, h〉 ≥ δ√
N
‖∇‖‖h‖

showing that the AdaBoost requirement implies our requirement for edge γ > δ√
N
> 0.

We can show the converse by starting with our weak learner requirement and expanding:

〈∇, h〉 ≥ γ‖∇‖‖h‖
1

N
(
∑

n,h(xn)=yn

wn −
∑

n,h(xn) 6=yn

wn) ≥ γ‖∇‖

Then, because ‖∇‖2 = 1
N
‖w‖2

2 and ‖w‖2 ≥
1√
N
‖w‖1 we get:

∑
n,h(xn)=yn

wn −
∑

n,h(xn)6=yn

wn ≥ γ
1

N
‖w‖1

≥ γ
∑
n

wn∑
n,h(xn)=yn

wn ≥ (
1

2
+
γ

2
)
∑
n

wn,
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giving the final AdaBoost edge requirement. �

In the first part of the previous proof, the scaling of 1√
N

shows that our implied edge weakens
as the number of data points increases in relation to the AdaBoost style edge requirement, an un-
fortunate but necessary feature. This weakening is necessary because our notion of strong learning
is much more general than the previous definitions tailored directly to classification problems and
specific loss functions. In those settings, strong learning only guarantees that any dataset can be
classified with 0 training error, while our strong learning guarantee gives optimal performance on
any convex loss function.

A similar result can be shown for more recent work which generalizes AdaBoost to multiclass
classification using multiclass weak learners [Mukherjee and Schapire, 2010]. The notion of edge
here uses a cost-sensitive multiclass learning problem as the projection operation, and again the
edge is used to compare the performance of the weak learners to that of random guessing. For
more details we refer the reader to the work of Mukherjee and Schapire [2010].

In this setting the weak learners h are multiclass classifiers over K outputs, while the compara-
ble weak learners in our functional gradient setting are defined over multiple outputs, h′ : X → Rk.

Theorem 2.2.3. For a weak multiclass classifier setH with outputs in {1, . . . , K}, let the modi-
fied hypothesis spaceH′ contain a hypothesis h′ : X → RK for each h ∈ H such that h′(x)k = 1
if h(x) = k and h′(x) = − 1

K−1
otherwise. Then, for a given gradient function ∇, the following

statements are equivalent: (1) H′ has edge γ for some γ > 0, and (2) H satisfies the perfor-
mance over baseline requirements detailed in Theorem 1 of [Mukherjee and Schapire, 2010].

Proof. In this section we consider the multiclass extension of the previous setting. Instead of
a weight vector we now have a matrix of weights w where wnk is the weight or reward for
classifying example xn as class k. We can simply let weights wnk = ∇(xnk) and use the
same weak learning approach as in [Mukherjee and Schapire, 2010]. Given classifiers h(x)
which output a label in {1, . . . , K}, we convert to an appropriate weak learner for our setting
by building a function h′(x) which outputs a vector y ∈ RK such that yk = 1 if h(x) = k and
yk = − 1

K−1
otherwise.

The equivalent AdaBoost style requirement uses costs cnk = −wnk and minimizes instead
of maximizing, but here we state the weight or reward version of the requirement. More details
on this setting can be found in [Mukherjee and Schapire, 2010]. We also make the additional
assumption that

∑
k wnk = 0,∀n without loss of generality. This assumption is fine as we can

take a given weight matrix w and modify each row so it has 0 mean, and still have a valid classi-
fication matrix as per [Mukherjee and Schapire, 2010]. Furthermore, this modification does not
affect the edge over random performance of a multiclass classifier under their framework.

Again consider the multiclass AdaBoost weak learner requirement re-written as a sum of the
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weights over the predicted class for each example:∑
n

wnh(xn) ≥ (
1

K
− δ

K
)
∑
n,k

wnk + δ
∑
n

wnyn

we can then convert the sum over correct labels to the max-norm on weights and multiply
through by K

K−1
:

∑
n

wnh(xn) ≥
1

K

∑
n,k

wnk −
δ

K

∑
n,k

wnk + δ
∑
n

wnyn

K

K − 1

∑
n

wnh(xn) ≥
1

K − 1

∑
n,k

wnk +
K

K − 1
(δ
∑
n

‖wn‖∞ −
δ

K

∑
n,k

wnk)

K

K − 1

∑
n

wnh(xn) −
1

K − 1

∑
n,k

wnk ≥
K

K − 1
(δ
∑
n

‖wn‖∞ −
δ

K

∑
n,k

wnk)

by the fact that the correct label yn = arg maxk wnk.
The left hand side of this inequality is just the function space inner product:

N〈∇, h′〉 ≥ K

K − 1
(δ
∑
n

‖wn‖∞ −
δ

K

∑
n,k

wnk).

Using the fact that
∑

k wnk = 0 along with ‖∇‖ ≤ 1√
N

∑
n ‖wn‖2 and ‖h′‖ =

√
K
K−1

we
can now bound the right hand side:

N〈∇, h′〉 ≥ K

K − 1
δ
∑
n

‖wn‖∞

≥ K

K − 1
δ
∑
n

‖wn‖2

≥ K

K − 1
δ
√
N‖∇‖

≥
√

K

K − 1
δ
√
N‖∇‖‖h′‖

〈∇, h〉 ≥
√

K

K − 1
δ

1√
N
‖∇‖‖h′‖

For K ≥ 2 we get γ ≥ δ√
N

, showing that the existence of the AdaBoost style edge implies
the existence of ours. Again, while the requirements are equivalent for some fixed dataset, we
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see a weakening of the implication as the dataset grows large, an unfortunate consequence of
our broader strong learning goals.

Now to show the other direction, start with the inner product formulation:

〈∇, h′〉 ≥ δ‖∇‖‖h′‖
1

N
(
∑
n

wnh(xn) −
1

K − 1

∑
n,k 6=h(xn)

wnk) ≥ δ‖∇‖‖h′‖

1

N
(

K

K − 1

∑
n

wnh(xn) −
1

K − 1

∑
n,k

wnk) ≥ δ‖∇‖‖h′‖

Using ‖h′‖ =
√

K
K−1

and ‖∇‖ ≥ 1
N

∑
n ‖wn‖2 we can show:

K

K − 1

∑
n

wnh(xn) −
1

K − 1

∑
n,k

wnk ≥ δ
∑
n

‖wn‖2

√
K

K − 1
.

Rearranging we get:

K

K − 1

∑
n

wnh(xn) ≥
1

K − 1

∑
n,k

wnk + δ
∑
n

‖wn‖2

√
K

K − 1∑
n

wnh(xn) ≥
1

K

∑
n,k

wnk +
K − 1

K

√
K

K − 1
δ
∑
n

‖wn‖2

∑
n

wnh(xn) ≥
1

K

∑
n,k

wnk +

√
K

K − 1
δ(
∑
n

‖wn‖2 −
1

K

∑
n

‖wn‖2)

Next, bound the 2-norms using ‖wn‖2 ≥
1√
K
‖wn‖1 and ‖wn‖2 ≥ ‖wn‖∞ and then rewrite

as sums of corresponding weights to show the multiclass AdaBoost requirement holds:

∑
n

wnh(xn) ≥ (
1

K
− δ√

K − 1K
)
∑
n,k

wnk +

√
K

K − 1
δ
∑
n

‖wn‖∞

∑
n

wnh(xn) ≥ (
1

K
− δ

K
)
∑
n,k

wnk + δ
∑
n

wnyn

�
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2.3 Restricted Gradient Descent

We will now focus on using the machinery developed above to analyze the behavior of variants of
the functional gradient boosting method on problems of the form:

min
f∈F
R[f ],

where f is a sum of weak learners taken from some setH ⊂ F .
In line with previous boosting work, we will specifically consider cases where the edge require-

ment in Definition 2.2.1 is met for some γ at every iteration, and seek convergence results where
the empirical riskRP̂ [ft] approaches the optimal training performance minf∈F RP̂ [f ]. For the rest
of the work it is assumed that function space operations and functionals are evaluated with respect
to the empirical distribution P̂ . This work does not attempt to analyze the convergence of the true
risk, or generalization error,RP [f ].

Algorithm 2.2 Basic Gradient Projection Algorithm

Given: starting point f0, objectiveR, step size schedule {ηt}Tt=1

for t = 1, . . . , T do
Compute a subgradient∇t ∈ ∂R[ft−1].
Compute h∗ = Proj (∇,H).
Update f : ft = ft−1 − ηt 〈h

∗,∇t〉
‖h∗‖2 h

∗.
end for

In order to complete this analysis, we will consider a general version of the functional gradi-
ent boosting procedure given in Algorithm 2.1 which we call restricted gradient descent. While
we will continue to use the notation of L2 function spaces specifically, the convergence analysis
presented can be applied generally to any Hilbert space.

Let F be a Hilbert space and H ⊂ F be a set of allowable search directions, or restriction set.
This set, which in traditional boosting is the set of weak learners, can also be though of as a basis
for the subset of F that we are actually searching over.

In the restricted gradient descent setting we want to perform a gradient descent-like procedure,
while only every taking steps along search directions drawn from H. To do this, we will project
each gradient on to the set H as in functional gradient boosting. Algorithm 2.2 gives the basic
algorithm for projecting the gradients and taking steps. The main difference between this algorithm
and the previous functional gradient one is the extra term in the actual (projected) gradient step
which depends on 〈∇, h∗〉. Otherwise this algorithm is functionally the same as the functional
gradient boosting method.

Now, using the definition of edge given in Definition 2.2.1, we will first analyze the perfor-
mance of this restricted gradient descent algorithm on smooth functionals.
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2.4 Smooth Convergence Results
With respect to the functional gradient boosting literature, an earlier result showing O((1 − 1

C
)T )

convergence of the objective to optimality for smooth functionals is given by Rätsch et al. [2002]
using results from the optimization literature on coordinate descent. Alternatively, this gives a
O(log(1

ε
)) result for the number of iterations required to achieve error ε. Similar to our result, this

work relies on the smoothness of the objective as well as the weak learner performance, but uses
the more restrictive notion of edge from previous boosting literature specifically tailored to PAC
weak learners (classifiers). This previous result also has an additional dependence on the number
of weak learners and number of training examples.

We will now give a generalization of the result in Rätsch et al. [2002] which uses our more
general definition of weak learner edge. This result also relates to the previous work of Mason
et al. [1999]. In that work, a similar convergence analysis is given, but the analysis only states that,
under similar conditions, the gradient boosting procedure will eventually converge. Our analysis,
however, considers the speed of convergence and the impact that our definition of weak learner
edge has on the convergence.

Recall the strong smoothness and strong convexity properties given earlier in Equations (2.9)
and (2.8). Using these two properties, we can now derive a convergence result for unconstrained
optimization over smooth functions.

Theorem 2.4.1 (Generalization of Theorem 4 in [Rätsch et al., 2002]). Let R be a m-strongly
convex and M -strongly smooth functional over F . Let H ⊂ F be a restriction set with edge γ
for every gradient ∇t that is projected on to H. Let f ∗ = arg minf∈FR[f ]. Given a starting
point f0 and step size ηt = 1

M
, after T iterations of Algorithm 2.2 we have:

R[fT ]−R[f ∗] ≤ (1− γ2m

M
)T (R[f0]−R[f ∗]).

Proof. Starting with the definition of strong smoothness, and examining the objective value at
time t+ 1 we have:

R[ft+1] ≤ R[ft] + 〈∇R[ft], ft+1 − ft〉 +
M

2
‖ft+1 − ft‖2

Then, using ft+1 = ft + 1
M

〈∇R[ft],ht〉
‖ht‖2

ht we get:

R[ft+1] ≤ R[ft]−
1

2M

〈∇R[ft], ht〉2

‖ht‖2
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Subtracting the optimal value from both sides and applying the edge requirement we get:

R[ft+1]−R[f ∗] ≤ R[ft]−R[f ∗]− γ2

2M
‖∇R[ft]‖2

From the definition of strong convexity we know ‖∇R[ft]‖2 ≥ 2m(R[ft] − R[f ∗]) where
f ∗ is the minimum point. Rearranging we can conclude that:

R[ft+1]−R[f ∗] ≤ (R[ft]−R[f ∗])(1− γ2m

M
)

Recursively applying the above bound starting at t = 0 gives the final bound on R[fT ] −
R[f0]. �

The result above holds for the fixed step size 1
M

as well as for step sizes found using a line
search along the descent direction, as they will only improve the convergence rate, because we are
considering the convergence at each iteration independently in the above proof.

Theorem 2.4.1 gives, for strongly smooth objective functionals, a convergence rate of O((1 −
γ2m
M

)T ). This is very similar to theO((1−4γ2)
T
2 ) convergence of AdaBoost [Freund and Schapire,

1997], or O((1 − 1
C

)T ) convergence rate given by Rätsch et al. [2002], as all require O(log(1
ε
))

iterations to get performance within ε of the optimal result.
While the AdaBoost result generally provides tighter bounds, this relatively naive method of

gradient projection is able to obtain reasonably competitive convergence results while being ap-
plicable to a much wider range of problems. This is expected, as the proposed method derives
no benefit from loss-specific optimizations and can use a much broader class of weak learners.
This comparison is a common scenario within optimization: while highly specialized algorithms
can often perform better on specific problems, general solutions often obtain equally impressive
results, albeit less efficiently, while requiring much less effort to implement.

2.4.1 Non-smooth Degeneration
Unfortunately, the naive approach to restricted gradient descent breaks down quickly in more gen-
eral cases such as non-smooth objectives. Consider the following example objective (also depicted
in Figure 2.2 over two points x1, x2: R[f ] = 2|f(x1)|+ |f(x2)|. For this problem, a valid subgra-
dient is∇ such that∇(x1) = 2 sgn(x1) and∇(x2) = sgn(x2). We will assume that sgn(0) = 1, to
give us a unique subgradient for the x1 = 0 or x2 = 0 case.

Now consider the hypothesis set h ∈ H such that either h(x1) ∈ {−1,+1} and h(x2) = 0, or
h(x1) = 0 and h(x2) ∈ {−1,+1}. The algorithm will always select h∗ such that h∗(x2) = 0 when
projecting gradients from the example objective, and the set H will always have reasonably large
edge with respect to∇.

This procedure, however, gives a final function with perfect performance on x1 and arbitrarily
poor unchanged performance on x2, depending on choice of starting function f0. Even if the loss
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h1

h2

-h1

-h2

f ∗

(a)

f0fT

f ∗

Error

(b)

∇

h ∗

(c)

∇

h ∗

(d)

Figure 2.2: A demonstration of a non-smooth objective for which the basic restricted gradient descent
algorithm fails. The possible weak predictors and optimal value f∗ are depicted in (a), while (b) gives the
result of running the basic restricted gradient algorithm on this problem for an example starting point f0 and
demonstrates the optimality gap. This gap is due to the fact that the algorithm will only ever select h1 or
−h1 as possible descent directions, as depicted in (c) and (d).

on training point x2 is substantial due to a bad starting location, naively applying the basic gradient
projection algorithm will not correct it.

An algorithm which greedily projects subgradients of R, such as Algorithm 2.2, will not be
able to obtain strong performance results for cases like these. The algorithms in the next section
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overcome this obstacle by projecting modified versions of the subgradients of the objective at each
iteration.

2.5 General Convex Convergence Results
For the convergence analysis of general convex functions we now switch to analyzing the average
optimality gap:

1

T

T∑
t=1

[R[ft]−R[f ∗]],

where f ∗ = arg min
f∈F

∑T
t=1R[f ] is the fixed hypothesis which minimizes loss.

By showing that the average optimality gap approaches 0 as T grows large, for decreasing step
sizes, it can be shown that the optimality gapR[ft]−R[f ∗] also approaches 0.

This analysis is similar to the standard no-regret online learning approach, but we restrict our
analysis to the case whenRt = R. This is because the true online setting typically involves receiv-
ing a new dataset at every time t, and hence a different data distribution P̂t, effectively changing the
underlying L2 function space of operations such as gradient projection at every time step, making
comparison of quantities at different time steps difficult in the analysis. The convergence analysis
for the online case is beyond the scope of our work and is not presented here.

The convergence results to follow are similar to previous convergence results for the standard
gradient descent setting [Zinkevich, 2003, Hazan et al., 2006], but with a number of additional error
terms due to the gradient projection step. Sutskever [2009] has previously studied the convergence
of gradient descent with gradient projection errors using an algorithm similar to Algorithm 2.2, but
the analysis does not focus on the weak to strong learning guarantee we seek. 1 In order to obtain
this guarantee we now present two new algorithms.

Our first general convex solution, shown in Algorithm 2.3, overcomes this issue by using a
meta-boosting strategy. At each iteration t instead of projecting the gradient ∇t onto a single
hypothesis h∗, we use the naive algorithm to construct h∗ out of a small number of restricted steps,
optimizing over the distance ‖∇t − h∗‖2. By increasing the number of weak learners trained at
each iteration over time, we effectively decrease the gradient projection error at each iteration. As
the average projection error approaches 0, the performance of the combined hypothesis approaches
optimal. We can now prove convergence results for this algorithm for both strongly convex and
convex functionals.

Theorem 2.5.1. Let R be a m-strongly convex functional over F . Let H ⊂ F be a re-

1In fact, Sutskever’s convergence results can be used to show that the bound on training error for the basic gradient
projection algorithm asymptotically approaches the average error of the weak learners, only indicating that you are
guaranteed to find a hypothesis which does no worse than any individual weak learner, despite its increased complexity.
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Algorithm 2.3 Repeated Gradient Projection Algorithm

Given: starting point f0, objectiveR, step size schedule {ηt}Tt=1

for t = 1, . . . , T do
Compute subgradient∇t ∈ ∂R[ft−1].
Let ∇′ = ∇t, h∗ = 0.
for k = 1, . . . , t do

Compute h∗k = Proj (∇′,H).

h∗ ← h∗ +
〈h∗k,∇′〉
‖h∗k‖

2 h∗k.

∇′ ← ∇′ − h∗k.
end for
Update f : ft = ft−1 − ηth∗.

end for

striction set with edge γ for every ∇′ that is projected on to H. Let ‖∇R[f ]‖ ≤ G. Let
f ∗ = arg minf∈FR[f ]. Given a starting point f0 and step size ηt = 5

4mt
, after T iterations of

Algorithm 2.3 we have:

1

T

T∑
t=1

[R[ft]−R[f ∗]] ≤ 5G2

2mT
(1 + lnT +

1− γ2

γ2
).

Proof. First, we start by bounding the potential ‖ft − f ∗‖2, similar to the potential function
arguments of Zinkevich [2003] and Hazan et al. [2006], but with a different descent step:

‖ft+1 − f ∗‖2 ≤ ‖ft − ηt+1(ht)− f ∗‖2

= ‖ft − f ∗‖2 + η2
t+1‖ht‖

2 − 2ηt+1〈ft − f ∗, ht −∇t〉 − 2ηt+1〈ft − f ∗,∇t〉

〈f ∗ − ft,∇t〉 ≥
1

2ηt+1

‖ft+1 − f ∗‖2 − 1

2ηt+1

‖ft − f ∗‖2 − ηt+1

2
‖ht‖2 − 〈f ∗ − ft, ht −∇t〉
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Using the definition of strong convexity and summing:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft] +
T∑
t=1

〈f ∗ − ft,∇t〉 +
T∑
t=1

m

2
‖f ∗ − ft‖2

≥
T∑
t=1

R[ft] +
T∑
t=1

1

2
‖ft − f ∗‖2(

1

ηt
− 1

ηt+1

+m)

−
T∑
t=1

ηt+1

2
‖ht‖2 −

T∑
t=1

〈f ∗ − ft, ht −∇t〉

Setting ηt = 5
4mt

and use bound ‖ht‖ ≤ 2‖∇t‖ ≤ 2G :

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft] +
T∑
t=1

m

2

1

5
‖ft − f ∗‖2 −

T∑
t=1

5

8mt
‖ht‖2 −

T∑
t=1

〈f ∗ − ft, ht −∇t〉

≥
T∑
t=1

R[ft]−
5G2

2m

T∑
t=1

1

t
−

T∑
t=1

[
〈f ∗ − ft, ht −∇t〉)−

m

2

1

5
‖f ∗ − ft‖2

]

≥
T∑
t=1

R[ft]−
5G2

2m
(1 + lnT )−

T∑
t=1

[
〈f ∗ − ft, ht −∇t〉)−

m

2

1

5
‖f ∗ − ft‖2

]
Next we bound the remaining term by using a variant of the Polarization identity. First we

expand
1

2

∥∥∥∥√cA− 1√
c
B

∥∥∥∥2

=
c

2
‖A‖2 +

1

2c
‖B‖2 − 〈A,B〉.

Then, using the fact that
∥∥∥√cA− 1√

c
B
∥∥∥2

≥ 0, we can bound:

1

2c
‖B‖2 ≥ 〈A,B〉 − c

2
‖A‖2.
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Using that bound and the result from Theorem 2.4.1 we can bound the error at each step t:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]−
5G2

2m
(1 + lnT )−

T∑
t=1

5

2m
‖ht −∇t‖2

≥
T∑
t=1

R[ft]−
5G2

2m
(1 + lnT )− 5G2

2m

T∑
t=1

(1− γ2)t

≥
T∑
t=1

R[ft]−
5G2

2m
(1 + lnT )− 5G2

2m

1− γ2

γ2

giving the final bound.
This bound can be improved slightly by instead using the step size ηt = λ

mt
, in which case

the final bound will be

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]−
2G2λ

m
(1 + lnT )− G2

2m

λ

λ− 1

1− γ2

γ2

Minimizing this over λ gives the optimal value step of

λ =

√
1−γ2
γ2

4(1 + lnT )
+ 1.

�

The proof relies on the fact that as the number of iterations increases, our gradient projection
error approaches 0 at the rate given in Theorem 2.4.1, causing the behavior of Algorithm 2.3 to
approach the standard gradient descent algorithm. The additional error term in the result is a bound
on the geometric series describing the errors introduced at each time step.

Theorem 2.5.2. LetR be a convex functional over F . LetH ⊂ F be a restriction set with edge
γ for every ∇′ that is projected on to H. Let ‖∇R[f ]‖ ≤ G and ‖f‖ ≤ F for all f ∈ F . Let
f ∗ = arg minf∈FR[f ]. Given a starting point f0 and step size ηt = 1√

t
, after T iterations of

Algorithm 2.3 we have:

1

T

T∑
t=1

[R[ft]−R[f ∗]] ≤ F 2

√
T

+
2G2

√
T

+ 2FG
1− γ2

γ2T
.

Proof. Like the last proof, we start with the altered potential and sum over the definition of
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convexity:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft] +
T∑
t=1

1

2
‖ft − f ∗‖2(

1

ηt
− 1

ηt+1

+m)

−
T∑
t=1

ηt+1

2
‖ht‖2 −

T∑
t=1

〈f ∗ − ft, ht −∇t〉

Setting ηt = 1√
t

and using bound ‖ht‖ ≤ 2‖∇t‖ ≤ 2G and the result from Theorem 2.4.1
we can bound the error at each step t:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]−
1

ηT
‖fT − f ∗‖2 − 2G2

T∑
t=1

1√
t
−

T∑
t=1

〈f ∗ − ft, ht −∇t〉

≥
T∑
t=1

R[ft]− F 2
√
T − 2G2

√
T − FG

T∑
t=1

√
(1− γ2)t

≥
T∑
t=1

R[ft]− F 2
√
T − 2G2

√
T − 2FG

1− γ2

γ2

giving the final bound. �

Again, the result is similar to the standard gradient descent result, with an added error term
dependent on the edge γ.

In practice, the large number of weak learners trained using this method could become pro-
hibitive, and the performance of this algorithm in practice is often much better than that given by
the derived bounds above.

In this case, an alternative version of the repeated projection algorithm allows for a variable
number of weak learners to be trained at each iteration. An accuracy threshold for each gradient
projection could be derived given a desired accuracy for the final hypothesis, and this threshold can
be used to train weak learners at each iteration until the desired accuracy is reached. In practice,
this would allow for only the number of weak learners required to reach a given accuracy target to
be trained, reducing the total number of weak learners.

Algorithm 2.4 gives another approach for optimizing over convex objectives which may also
address this issue of the increasingly large number of weak learners. Like the previous approach,
the projection error at each time step is used again in projection, but a new step is not taken
immediately to decrease the projection error. Instead, this approach keeps track of the residual
error left over after projection and includes this error in the next projection step. This forces the
projection steps to eventually account for past errors, preventing the possibility of systematic error
being adversarially introduced through the weak learner set.

As with Algorithm 2.3, we can derive similar convergence results for strongly-convex and
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Algorithm 2.4 Residual Gradient Projection Algorithm

Given: starting point f0, objectiveR, step size schedule {ηt}Tt=1

Let ∆ = 0.
for t = 1, . . . , T do

Compute subgradient∇t ∈ ∂R[ft−1].
∆ = ∆ +∇t.
Compute h∗ = Proj (∆,H).
Update f : ft = ft−1 − ηt 〈h

∗,∆〉
‖h∗‖2 h

∗.

Update residual: ∆ = ∆− 〈h
∗,∆〉
‖h∗‖2 h

∗

end for

general convex functionals for this new residual-based algorithm.

Theorem 2.5.3. Let R be a m-strongly convex functional over F . Let H ⊂ F be a re-
striction set with edge γ for every ∆ that is projected on to H. Let ‖∇R[f ]‖ ≤ G. Let
f ∗ = arg minf∈FR[f ]. Let c = 2

γ2
. Given a starting point f0 and step size ηt = 1

mt
, after

T iterations of Algorithm 2.4 we have:

1

T

T∑
t=1

[R[ft]−R[f ∗]] ≤ 2c2G2

mT
(1 + lnT +

2

T
).

Proof. Like the proof of Theorem 2.5.1, we again use a potential function and sum over the
definition of convexity:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft] +
T∑
t=1

1

2
‖ft − f ∗‖2(

1

ηt
− 1

ηt+1

+m)−

T∑
t=1

ηt+1

2
‖ht‖2 −

T∑
t=1

〈f ∗ − ft, ht − (∆t +∇t)〉 −
T−1∑
t=0

〈f ∗ − ft+1,∆t+1〉

≥
T∑
t=1

R[ft] +
T∑
t=1

1

2
‖ft − f ∗‖2(

1

ηt
− 1

ηt+1

+m)−

T∑
t=1

ηt+1

2
‖ht‖2 −

T∑
t=1

〈f ∗ − ft, ht − (∆t +∇t)〉 −
T−1∑
t=0

〈f ∗ − ft,∆t+1〉 −
T−1∑
t=0

〈ηt+1ht,∆t+1〉

where ht is the augmented step taken in Algorithm 2.4.
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Setting ηt = 1
γt

and use bound ‖ht‖ ≤ ‖∇t‖ ≤ G, along with ∆t+1 = (∆t +∇t)− ht:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]
T∑
t=1

ηt+1

2
‖ht‖2 − (〈f ∗ − fT+1,∆t+1〉 −

mT

2
‖f ∗ − fT+1‖2)−

T∑
t=1

〈ηtht,∆t+1〉

We can bound the norm of ∆t by considering that (a) it start at 0 and (b) at each time step
it increases by at most ∇t and is multiplied by 1 − γ2. This implies that ‖∆t‖ ≤ cG where

c =

√
1−γ2

1−
√

1−γ2
< 2

γ2
.

From here we can get a final bound:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]−
c2G2

m
(1 + lnT )− 2c2G2

mT
− c2G2

m
(1 + lnT )

�

Theorem 2.5.4. LetR be a convex functional over F . LetH ⊂ F be a restriction set with edge
γ for every ∆ that is projected on to H. Let ‖∇R[f ]‖ ≤ G and ‖f‖ ≤ F for all f ∈ F . Let
f ∗ = arg minf∈FR[f ]. Let c = 2

γ2
. Given a starting point f0 and step size ηt = 1√

t
, after T

iterations of Algorithm 2.4 we have:

1

T

T∑
t=1

[R[ft]−R[f ∗]] ≤ F 2

2
√
T

+
c2G2

√
T

+
c2G2

2T
3
2

.

Proof. Similar to the last few proofs, we get a result similar to the standard gradient version,
with the error term from the last proof:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft] +
T∑
t=1

1

2
‖ft − f ∗‖2(

1

ηt
− 1

ηt+1

)−

T∑
t=1

ηt+1

2
‖ht‖2 − (〈f ∗ − fT+1,∆t+1〉 −

√
T

2
‖f ∗ − fT+1‖2)−

T∑
t=1

〈ηt+1ht,∆t+1〉

Using the bound on ‖∆t‖ ≤ c from above and setting ηt = 1√
t
:

T∑
t=1

R[f ∗] ≥
T∑
t=1

R[ft]−
F 2
√
T

2
− c2G2

√
T − c2G2

2
√
T
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giving the final bound. �

Again, the results are similar bounds to those from the non-restricted case. Like the previous
proof, the extra terms in the bound come from the penalty paid in projection errors at each time
step, but here the residual serves as a mechanism for pushing the error back to later projections.
The analysis relies on a bound on the norm of the residual ∆, derived by observing that it is
increased by at most the norm of the gradient and then multiplicatively decreased in projection due
to the edge requirement. This bound on the size of the residual presents itself in the c term present
in the bound.

In terms of efficiency, these two algorithms are similarly matched. For the strongly convex
case, the repeated projection algorithm uses O(T 2) weak learners to obtain an average regret of
O( lnT

T
+ 1
γ2T

), while the residual algorithm usesO(T ) weak learners and has average regretO( lnT
γ4T

).
The major difference lies in frequency of the gradient evaluation, where the repeated projection
algorithm evaluates the gradient much less often than the than the residual algorithm.

Figure 2.3: Test set loss vs number of weak learners used for a maximum margin structured imitation
learning problem for all three restricted gradient algorithms. The algorithms shown are the naive use of the
basic projection (black dashed line), repeated projection steps (red solid line), and the residual projection
algorithm (blue long dashed line).

2.6 Experiments
We now present experimental results for these new algorithms on three tasks: an imitation learning
problem, a ranking problem and a set of sample classification tasks.
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Figure 2.4: Test set disagreement (fraction of violated constraints) vs number of weak learners used for
the MSLR-WEB10K ranking dataset for all three restricted gradient algorithms. The algorithms shown are
the naive use of the basic projection (black dashed line), repeated projection steps (red solid line), and the
residual projection algorithm (blue long dashed line).

The first experimental setup is an optimization problem which results from the Maximum Mar-
gin Planning [Ratliff et al., 2009] approach to imitation learning. In this setting, a demonstrated
policy is provided as example behavior and the goal is to learn a cost function over features of the
environment which produce policies with similar behavior.

Previous attempts in the literature have been made to adapt boosting to this setting [Ratliff
et al., 2009, Bradley, 2009], similar to the naive algorithm presented here, but no convergence
results for this settings are known.

Figure 2.3 shows the results of naively applying the basic projected gradient algorithm, as well
as running the two new algorithms presented here on a sample planning dataset from this domain.
The weak learners used were neural networks with 5 hidden units each.

The second experimental setting is a ranking task from the Microsoft Learning to Rank Datasets,
specifically MSLR-WEB10K [Microsoft, 2010], using the ranking version of the hinge loss and
decision stumps as weak learners. Figure 2.4 shows the test set disagreement (the percentage of
violated ranking constraints) plotted against the number of weak learners.

As a final test, we ran our boosting algorithms on several multiclass classification tasks from
the UCI Machine Learning Repository [Frank and Asuncion, 2010], using the ‘connect4’, ‘letter’,
‘pendigits’ and ‘satimage’ datasets. All experiments used the multiclass extension to the hinge loss
[Crammer and Singer, 2002], along with multiclass decision stumps for the weak learners. Results
are given in Figure 2.5.

Of particular interest are the experiments where the naive approach to restricted gradient de-



2.6. EXPERIMENTS 39

Figure 2.5: Test set classification error on multiclass classification experiments over the UCI ‘connect4’,
‘letter’, ‘pendigits’ and ‘satimage’ datasets. The algorithms shown are the naive use of the basic projection
(black dashed line), repeated projection steps (red solid line), and the residual projection algorithm (blue
long dashed line).

scent clearly fails to converge (‘connect4’ and ‘letter’). In line with the presented convergence
results, both non-smooth algorithms approach optimal training performance at relatively similar
rates, while the naive approach cannot overcome the particular conditions of these datasets and
fails to achieve strong performance. In these cases, the naive approach repeatedly cycles through
the same weak learners, impeding further optimization progress.
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Chapter 3

Functional Gradient Extensions

In this chapter we detail two extensions to the functional gradient techniques described in Chap-
ter 2. The first extension covers the structured prediction setting, where each example has a corre-
sponding structured output we wish to generate, consisting of a number of individual predictions
over the relevant structural features of the problem. For example, the structured output might be
a label for every word in a sentence, or every pixel in an image. Most notably different from the
previous chapter, in this domain we will learn boosted learners that rely on the values of previous
predictions at each iteration of boosting, so the learned function can account between relationships
between structurally related predictions.

This change introduces a unique type of overfitting which often results in a cascade of failures
in practice, due to the reliance on potentially overfit previous predictions at training time. To
address this, we introduce a second extension which is a stacked version of functional gradient
methods. This algorithm improves robustness to the overfitting that occurs when predictions from
the early weak learners in are reused as input features to later weak learners.

3.1 Structured Boosting

3.1.1 Background
In the structured prediction setting, we are given inputs x ∈ X and associated structured outputs
y ∈ Y . The goal is to learn a function f : X → Y that minimizes some risk R[f ], typically
evaluated pointwise over the inputs:

R[f ] = EX [`(f(x))], (3.1)

similar to the pointwise loss discussed in the previous chapter in Equation (2.4).
We will further assume that each input and output pair has some underlying structure, such

as the graph structure of graphical models, that can be utilized to predict portions of the output
locally. Let j index these structural elements. We then assume that a final structured output y can
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be represented as a variable length vector (y1, . . . , yJ), where each element yj lies in some vector
space yj ∈ Y ′. For example, these outputs could be the probability distribution over class labels
for each pixel in an image, or distributions of part-of-speech labels for each word in a sentence.
Similarly we can compute some features xj representing the portion of the input which corresponds
to a given output, such as features computed over a neighborhood around a pixel in an input image.

As another example, consider labeling tasks such as part-of-speech tagging. In this domain, we
are given a set of input sentences X , and for each word j in a given sentence, we want to output a
vector ŷj ∈ RK containing the scores with respect to each of the K possible part-of-speech labels
for that word. This sequence of vectors for each word is the complete structured prediction ŷ. An
example loss function for this domain would be the multiclass log-loss, averaged over words, with
respect to the ground truth parts-of-speech.

Along with the encoding of the problem, we also assume that the structure can be used to
reduce the scope of the prediction problem, as in graphical models. One common approach to
generating predictions on these structures is to use a policy-based or iterative decoding approach
[Cohen and Carvalho, 2005, Daume III et al., 2009, Tu and Bai, 2010, Socher et al., 2011, Ross
et al., 2011], instead of probabilistic inference over a graphical model. In order to model the con-
textual relationships among the outputs, these iterative approaches commonly perform a sequence
of predictions, where each update relies on previous predictions made across the structure of the
problem.

Let N(j) represent the locally connected elements of j, such as the locally connected factors
of a node j in a typical graphical model. For a given node j, the predictions over the neighboring
nodes ŷN(j) can then be used to update the prediction for that node. For example, in the character
recognition task, the predictions for neighboring characters can influence the prediction for a given
character, and be used to update and improve the accuracy of that prediction.

In the iterative decoding approach a predictor φ is iteratively used to update different elements
ŷj of the final structured output:

ŷj = φ(xj, ŷN(j)), (3.2)

using both the features xj of that element and current predictions ŷN(j) of the neighboring elements.
In the message passing analogy, these current predictions are the messages that are passed between
nodes, and used for updating the current prediction at that node.

A complete policy then consists of a strategy for selecting which elements of the structured
output to update, coupled with the predictor for updating the given outputs. Typical approaches
include randomly selecting elements to update, iterating over the structure in a fixed ordering, or
simultaneously updating all predictions at all iterations. As shown by Ross et al. [2011], this itera-
tive decoding approach can is equivalent to message passing approaches used to perform inference
over graphical models, where each update encodes a single set of messages passed to one node
in the graphical model. For example, the message passing behavior of Loopy Belief Propagation
[Pearl, 1988] can be described by this iterative decoding approach [Ross et al., 2011].
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3.1.2 Weak Structured Predictors
We now adapt the functional gradient methods discussed in Chapter 2 to the structured prediction
setting by detailing an additive structured predictor. To accomplish this, we will adapt the policy-
based iterative decoding approach discussed in Section 3.1.1 to use an additive policy instead of
one which replaces previous predictions.

In the iterative decoding described previously, recall that we have two components, one for
selecting which elements to update, and another for updating the predictions of the given elements.
Let St be the set of components selected for updating at iteration t. For current predictions yt we
can re-write the policy for computing the predictions at the next iteration of the iterative decoding
procedure as:

ŷt+1
j =

{
φ(xj, ŷ

t
N(j)) if j ∈ St

ŷtj otherwise
. (3.3)

The additive version of this policy instead uses weak predictors h, each of which maps both
the input data and previous structured output to a more refined structured output, h : X ×Y → Y:

ŷt+1 = ŷt + h(x, ŷt). (3.4)

Note that, unlike in Chapter 2, we are now augmenting each weak learner h to also take as input
the current prediction, ŷ.

We can build a weak predictor h which performs the same actions as the previous replacement
policy by considering weak predictors with two parts: a function hS which selects which struc-
tural elements to update, and a predictor hP which runs on the selected elements and updates the
respective pieces of the structured output.

The selection function hS takes in an input x and previous prediction ŷ and outputs a set of
structural nodes S = {j1, j2, . . .} to update. For each structural element selected by hS, the predic-
tor hP takes the place of φ in the previous policy, taking (xj, ŷN(j)) and computing an update for
the prediction ŷj .

Returning to the part-of-speech tagging example, possible selection functions would select dif-
ferent chunks of the sentence, either individual words or multi-word phrases using some selection
criteria. Given the set of selected elements, a prediction function would take each selected word
or phrase and update the predicted distribution over the part-of-speech labels using the features for
that word or phrase.

Using these elements we can write the weak predictor h, which produces a structured output
(h(·)1, . . . , h(·)J), as

h(x, ŷt)j =

{
hP(xj, ŷ

t
N(j)) if j ∈ hS(x, ŷ)

0 otherwise
, (3.5)

or alternatively we can write this using an indicator function:

h(x, ŷt)j = 1(j ∈ hS(x, ŷt))hP(xj, ŷ
t
N(j)). (3.6)
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3.1.3 Functional Gradient Projection
In order to use the functional gradient framework discussed in the previous chapter, we need to be
able to complete the projection operation over the H given in Equations (2.11-2.12). We assume
that we are given a fixed set of possible selection functions,HS, and a set of L learning algorithms,
{Al}Ll=1, where A : D → HP generates a predictor given a training set D.

In practice, these algorithms may be different methods for generating regressors, classifiers,
or other weak learners tailored to the specific problem. The reason for this distinction between
the selection and prediction functions is that, in practice, the selection functions are often problem
specific and cannot be trained to target a given gradient, like weak learners often are. Instead,
we will use an enumeration strategy to find the best selection function, and train the prediction
functions to target a given functional gradient.

Consider the loss function given in Equation (3.1). This function is actually a function of the
vector of outputs (ŷ1, . . .). Recall from the previous chapter and Equation (2.7) that the gradient∇
at each input x will simply be the gradient of the loss ` at the current output,

∇(x) = ∇f(x)`(f(x)).

In the structured prediction setting, we are actually concerned with each individual component
of the gradient∇(x)j , corresponding to output yj . This gradient component is simply

∇(x)j =
∂`(f(x))

∂f(x)j
, (3.7)

or, the gradient of the loss with respect to the partial structured prediction ŷj = f(x)j .
Given a fixed selection function hS and current predictions ŷ, we can build a dataset appro-

priate for training weak predictors hP as follows. In order to minimize the projection error in
Equation (2.12) for a predictor h of the form in Equation (3.6), we only need to find the prediction
function hP that minimizes

h∗P = arg min
hP∈HP

EX

 ∑
j∈hS(x,ŷ)

∥∥∇(x)j − hP(xj, ŷN(j))
∥∥2

 . (3.8)

This optimization problem is equivalent to minimizing weighted least squares error over the
dataset

D =
⋃
x

⋃
j∈hS(x,ŷ)

{(ψj,∇(x)j)},

= gradient(f, hS),

(3.9)

where ψj = ψ(xj, ŷN(j)) is a feature descriptor for the given structural node, and ∇(x)j is its
target. In order to model contextual information, ψ is drawn from both the raw features xj for the
given element and the previous locally neighboring predictions ŷN(j).
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Now, we can use this modified weak learner and projection operation in the functional gradient
descent framework from Chapter 2. In order to complete gradient projection operation over all
weak learners in the set defined by Equation (3.6), we simply enumerate all selection strategies hS.
Then, for each selection strategy and each learning algorithm {Al}Ll=1, we can use Equation (3.8),
via the dataset in Equation (3.9) to generate a candidate weak prediction function hP for that se-
lector, algorithm pair. The pair hS, hP can be used to define a structured weak learner h as in
Equation (3.6), and the best overall weak learner can be selected as the projected gradient.

Algorithm 3.1 Structured Functional Gradient Descent

Given: objectiveR, set of selection functionsHS, set of L learning algorithms {Al}Ll=1, number
of iterations T , initial function f0.
for t = 1, . . . , T do
H∗ = ∅
for hS ∈ HS do

Create dataset D = gradient(ft−1, hS) using Equation (3.9).
for A ∈ {A1, . . . ,AL} do

Train hP = A(D)
Define h from hS and hP using Equation (3.6).
H∗ = H∗ ∪ {h}

end for
end for
Let ∇(x) = ∇f(x)`(f(x)) for all x.
ht = arg minh∈H∗ Ex[‖∇(x)− h(x)‖2]
Select a step size αt.
ft = ft−1 + αtht

end for

Algorithm 3.1 summarizes the structured version of functional gradient descent. It enumerates
the candidate selection functions, hS, creates the training dataset defined by Equation (3.9), and
then generates a candidate prediction function hP using each weak learning algorithm.

We will make use of this algorithm in Chapter 7, when we examine an anytime structured pre-
diction approach. For more details on applications of this structured functional gradient approach
and practical implementation concerns, see Chapter 7.

3.2 Stacked Boosting
When training models that incorporate previous predictions, such as the structured prediction ap-
proach discussed in Section 3.1, the risk of overfitting is typically of large concern. In this section,
we examine the use of stacking, a method for training multiple simultaneous predictors in order to
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simulate the overfitting in early predictions, and show how to use this approach to reduce overfit-
ting in functional gradient methods which re-use previous predictions.

Originally from a different domain, the concept of stacking Wolpert [1992], Cohen and Car-
valho [2005] is an approach for reducing the overfitting in a model due to the re-use of previous
predictions. Essentially this method trains multiple copies of a given predictor while holding out
portions of the dataset, in a manner similar to cross-validation. Each predictor is then run on the
held-out data to generate “unbiased” predictions for use as inputs to later predictors, mitigating the
impact of overfitting on those predictions. This approach has proven to be useful in structured pre-
diction settings Cohen and Carvalho [2005], Munoz et al. [2010] such as computer vision, where
it is common to build sequential predictors which use neighboring and previous predictions as
contextual information to improve overall performance.

It is this stacking approach which we will now examine and extend to the functional gradient
setting.

3.2.1 Background

The stacking method is originally a method for training feed-forward networks, or sequences of
predictors which re-use previous predictions as inputs at each point in the sequence. In stacked for-
ward training, a set of predictors is trained using a sequential approach that trains each successive
predictor iteratively using the outputs from previously trained ones. This approach is common in
structured prediction tasks such as vision where iterated predictions are used allow for smoothing
of neighboring regions or when the structure of lower level features is selected apriori and trained
independently of later, more complex feature representations.

Assume we are given a dataset D0 of examples and labels {(xn, yn)}Nn=0. We model the feed-
forward ensemble of K learners as a sequence of predictors f 1, . . . , fK , with the output of predic-
tor k given as

xkn = fk(xk−1
n ),

with the initial input x0
n = xn.

Assume that for each iteration k, there is a learning algorithm Ak(D) for generating the pre-
dictor fk for that iteration, using predictions from the previous iterations xk−1

n and labels yn. That
is, having trained the previous functions f 1, . . . , fk−1, the next predictor is trained by building a
dataset

Sk = {(xk−1
n , yn}Nn=0,

and then training the current layer
fk = Ak(Sk). (3.10)

This method is not robust to overfitting, however, as errors in early predictors are re-used for
training later predictors, while unseen test data will likely generate less accurate predictions or low
level features. If early predictors in the sequence overfit to the training set, later predictors will be
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trained to rely on these overfit inputs, potentially overfitting further to the training set and leading
to a cascade of failures.

The stacking method Cohen and Carvalho [2005] is a method for reducing the overall gener-
alization error of a sequence of trained predictors, by attempting to generate an unbiased set of
previous predictions for use in training each successive predictor. This is done by training multiple
copies of each predictor on different portions of the data, in a manner similar to cross-validation,
and using these copies to predict on unseen parts of the data set.

More formally, we split the dataset Sk in to J equal portions Sk1 , . . . ,SkJ , and for each predictor
fk train an additional J copies fkj . Each copy is trained on the dataset excluding the corresponding
fold, as in J-fold cross-validation:

fkj = Ak(Sk \ Skj ). (3.11)

Each of the copies is then used to generate predictions on the held-out portion of the data which
are used to continue the training by building a dataset of the held-out predictions:

Sk+1 = ∪Jj=1

{
(fkj (x), y) | (x, y) ∈ Skj

}
. (3.12)

The predictor fk for the final sequence is still trained on the whole dataset Sk, as in (3.10)
and returned in the final model. The stacked copies are only used to generate the predictions for
training the rest of the sequence, and are then discarded.

A complete description of stacked forward training is given in Algorithm 3.2.

Algorithm 3.2 Stacked Forward Training

Given: initial dataset S0, training algorithms Ak, number of stacking folds J .
for k = 1, . . . , K do

Let fk = Ak(Sk).
Split Sk into equal parts Sk1 , . . . ,SkJ .
For j = 1, . . . , J let fkj = Ak(S \ Skj ).
Let Sk+1 = ∪Jj=1

{
(fkj (x), y) | (x, y) ∈ Skj

}
.

end for
return

(
f 1, . . . , fK

)
.

3.2.2 Stacked Functional Gradient Methods

Now we want to adapt this stacking method to the domain of functional gradient methods. One
key difference between the stacking approach used in Section 3.2.1 and the functional gradient
approach is that stacking was originally developed for networks of predictors which use only pre-
vious predictions as inputs at each layer, while in the functional gradient method, we still want to
retain the example x as an input in addition to previous predictions.
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Algorithm 3.3 Stacked Functional Gradient Descent

Given: starting point f0, step size schedule {ηt}Tt=1, number of stacking folds K.
Split training data X into equal parts X1, . . . ,XK .
Let fk,0 = f0.
for t = 1, . . . , T do

for k = 1, . . . , K do
Let X {k = X \ Xk.
Let Ŷ{k = {fk,t−1(x) | x ∈ X {k }.
Let Ŷk = {fk,t−1(x) | x ∈ Xk}.
Compute a subgradient∇k,t ∈ ∂R[fk,t−1] over only points in X {k .
Compute h∗k = Proj (∇k,t,H), again only over points in X {k and using Ŷ{k as previous
predictions.
Update fk: fk,t = fk,t−1 − ηth∗k.

end for
Let Ŷ =

⋃
k Ŷk.

Compute a subgradient∇t ∈ ∂R[ft−1] over all points in X .
Compute h∗ = Proj (∇,H) over all points in X and using Ŷ as previous predictions.
Update f : ft = ft−1 − ηth∗.

end for

Consider the following weak learner h which takes both example and previous predictions as
inputs:

h(x, ŷ) : X × Y → Y .

One example is the structured weak learner discussed in Section 3.1, and given in Equation 3.6.
We can define the final output of a boosted ensemble of such weak learners as

f(x) =
∑
t

ht(x, ŷt),

where ŷt is given as the prediction up to weak learner t:

ŷt =
t∑
i=1

ht(x, ŷi).

We want to use the stacking method to generate held-out version of the predictions for use as
input when computing new weak learners. To do this, we will follow the same general procedure
as outlined above for feed-forward stacking.

We will maintain the real boosted predictor f , along with copies fk for each of K folds of
the training data. At training time, each copy fk is trained on all data except fold k, and using
its own predictions as previous predictions. The true predictor f is trained using all the data, but
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the previous predictions are drawn from the outputs of each copy fk, run on its respective fold of
the data Xk which it was not previously trained on. At test time, only the predictor f which was
trained on all data will be used for prediction.

Algorithm 3.3 gives the stacked version of functional gradient descent. This method can be
combined with other functional gradient methods fairly easily, such as the structured functional
gradient approach detailed earlier, by simply following the same strategy of maintaining K copies
of boosted predictor and using each copy to compute held-out predictions. Later, in Chapter 7, we
will combined both of these approaches to build a stacked, structured functional gradient learner.
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Part II

Greedy Optimization
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Chapter 4

Budgeted Submodular Function
Maximization

In this chapter we analyze the performance of greedy and approximately greedy algorithms for
budgeted, approximate submodular maximization. We will be using a version of approximate
submodularity which includes both a multiplicative and additive relaxation from the standard def-
inition of submodularity. For this setting, we show that greedy approaches achieve approximation
bounds with respect to a subset of all arbitrary budgets corresponding to the costs of each succes-
sive subsequence selected. Finally, we show that, if an approximation bound is desired for any
arbitrary budget, a modification of the greedy algorithm can achieve a bi-criteria approximation in
both value and time for arbitrary budgets.

4.1 Background
In this chapter we will be analyzing approaches for maximizing positive set functions F : 2X → R,
F (S) > 0 over elementsX , where 2X is the power set ofX . We will be building off of a large body
of work focusing on submodular functions. A function F is submodular if, for all A ⊆ B ⊆ X

F ({x} ∪ A)− F (A) ≥ F ({x} ∪ B)− F (B).

An equivalent definition, which we will build off of later relates the gain in the value of F when
adding a whole set to the gain when adding each element individually. A function F is submodular
for all S,A ⊂ X

F (S ∪ A)− F (A) ≤
∑
x∈S

F (A ∪ {x})− F (A). (4.1)

We will further restrict our analysis to monotone submodular functions, that is, functions F
such that F (A) ≤ F (B) if A ⊆ B.

In the budgeted setting, every element in X is associated with a positive cost c : X → R,
c(x) > 0. The cost of a set of elements S is the modular function c(S) =

∑
x∈S c(x).
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The budgeted monotone submodular maximization problem is then to maximize a set function
F subject to a constraint B on the total cost of the set:

arg max
S

F (S) (4.2)

c(S) ≤ B.

When performing our analysis, we will be working both with sequences of elements, e.g. the
sequence of selection made by a given algorithm, and sets of elements corresponding to particular
points in said sequences. Given a sequence S = s1, . . . and a given budget C, we can define the
resulting set at that budget to be S〈C〉 = {s1, . . . , sk} such that

∑k
i=1 c(si) ≤ C. Similarly, define

the set Sk to be {s1, . . . , sk}, and S0 = ∅.
As discussed in the discussion of related work in Section 1.3, previous work [Khuller et al.,

1999, Krause and Guestrin, 2005, Leskovec et al., 2007, Lin and Bilmes, 2010] has included a
number of algorithms and corresponding approximation bounds for this setting. These approaches
range from variations on the cost-greedy algorithm to much more complex strategies, and have ap-
proximation bounds with factors of 1

2
(1− 1

e
) and (1− 1

e
), extending the original result of Nemhauser

et al. [1978] for the unit-cost, or cardinality constrained case.
The key difference between our analysis here and these previous results is that these results all

require that the budget be known apriori. For example, one of the results of Krause and Guestrin
[2005] which achieves a 1

2
(1 − 1

e
) approximation uses a modified greedy algorithm which selects

either the result of the cost-greedy algorithm, or the single largest element with cost less than the
budget.

Unfortunately, for our purposes we want a single, budget-agnostic algorithm which produces
a sequence of elements with good performance at any budget. Approaches such as the previous
example both target a fixed budget and do not produce a single sequence for all budgets. If the
budget is increased, the selected set may change completely, whereas we want a method such that
increasing the budget only adds elements to the currently selected set.

As we will discuss in Section 4.4, in general it is impossible to have a budget-agnostic algo-
rithm which achieves approximation bounds for all budgets, but a small tweak to the cost-greedy
algorithm does produce a sequence which achieves a bi-criteria approximation, which approxi-
mates the optimal set in both value and in cost.

4.2 Approximate Submodularity
Unliked the submodular functions which we discussed in Section 4.1, we want to analyze the
performance of greedy algorithms on functions which behave like submodular functions to some
degree, but are not strictly submodular. Building off of the requirement given in Equation (4.1),
Das and Kempe [2011] give a definition of approximate submodularity which uses a multiplicative
ratio γ ∈ [0, 1] which they call the submodularity ratio. In this work, we extend this definition of
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approximate submodularity to also allow for an additive error term δ, similar to the approximate
submodularity definition utilized by Krause and Cehver [2010].

Definition 4.2.1 (Approximate Submodularity). A function F is (γ, δ)-approximately submod-
ular if:

γ [F (A ∪ S)− F (A)]− δ ≤
∑
x∈S

[F (A ∪ {x})− F (A)] ,

for all S,A ⊆ X .

As expected, this notion of approximate submodularity also extends the traditional definition of
submodularity given in Equation (4.1), with any submodular function being (1, 0)-approximately
submodular. Further, for δ = 0 this definition reduces to the one given by Das and Kempe [2011].

4.2.1 Greedy Algorithm Analysis

Algorithm 4.1 Greedy Algorithm
Given: objective function F , elements X
Let G0 = ∅.
for j = 1, . . . do

Let gj = arg maxx∈X
F (Gj−1∪{x})−F (Gj−1)

c(x)
.

Let Gj = Gj−1 ∪ {gj}.
end for

We will now analyze the standard greedy algorithm (given in Algorithm 4.1) for the budgeted
submodular maximization problem, operating on a set function F that is approximately submodu-
lar according to Definition 4.2.1.

As shown in Algorithm 4.1, the cost-greedy algorithm iteratively selects a sequence G =
(g1, . . .) using:

gj = arg max
x∈X

[
F (Gj−1 ∪ {x})− F (Gj−1)

c(x)

]
. (4.3)

We now present a bound that shows that the cost-greedy algorithm is nearly optimal for approx-
imately submodular functions. The analysis is a combination of the cost-based greedy analysis of
Streeter and Golovin [2008], generalized to handle the approximate submodular case as in Das and
Kempe [2011]. Similar to Krause and Golovin [2012], we also handle the case where the greedy
list and optimal list are selected using different budgets.

First, we need to adapt the approximate submodularity definition given in Definition 4.2.1 to a
bound that also relates the costs of the elements and combined set.
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Lemma 4.2.2. If a function F is γ, δ-approximately submodular then for any A,S ⊆ V:

γ [F (A ∪ S)− F (A)]− δ
c(S)

≤ max
x∈S

[
F (A ∪ {x})− F (A)

c(x)

]
.

Proof. By Definition 4.2.1, we have:

γ [F (A ∪ S)− F (A)]− δ ≤
∑
x∈S

[F (A ∪ {x})− F (A)]

≤
∑
x∈S

max
x′∈S

[
F (A ∪ {x′})− F (A)

c(x′)

]
c(x)

≤
(

max
x∈S

[
F (A ∪ {x})− F (A)

c(x)

])(∑
x∈S

c(x)

)
.

Dividing boths sides by c(S) =
∑

x∈S c(x) completes the proof. �

Now, we can use this result to bound the gap between the optimal set and the set selected by
the greedy algorithm at each iteration.

Lemma 4.2.3. Let sj be the value of the maximum in Equation (4.3) evaluated by the greedy
algorithm at iteration j. Then for all sequences S and total costs C:

F (S〈C〉) ≤ F (Gj−1) +
Csj + δ

γ
.

Proof. By Lemma 4.2.2 we have:

γ
[
F (Gj−1 ∪ S〈C〉)− F (Gj−1)

]
− δ

c(S〈C〉)
≤ max

x∈S〈C〉

[
F (Gj−1 ∪ {x})− F (Gj−1)

c(x)

]
≤ sj

By monotonicity we have F (S〈C〉) ≤ F (Gj−1∪S〈C〉), and by definition c(S〈C〉) ≤ C giving:

F (S〈C〉) ≤ F (Gj−1) +
Csj + δ

γ
.

�
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Now, using Lemma 4.2.3, we can derive the actual approximation bound for the greedy al-
gorithm. Like previous results [Das and Kempe, 2011], for a (γ, δ)-approximately submodular
function, this bound includes the multiplicative term γ in the multplicative approximation term,
but has an additional additive term dependent on the additive term δ.

Theorem 4.2.4. Let G = (g1, . . .) be the sequence selected by the cost-greedy algorithm. Fix
some K > 0. Let B =

∑K
i=1 c(gi). Let F be (γ, δ)-approximately submodular as in Defini-

tion 4.2.1. For any sequence S and total cost C,

F (G〈B〉) >
(

1− e−γ
B
C

)(
F (S〈C〉)−

δ

γ

)
.

Or more loosely:

F (G〈B〉) >
(

1− e−γ
B
C

)
F (S〈C〉)− δ

B

C
.

Proof. Define ∆j = F (S〈C〉) − F (Gj) − δ
γ

. By Lemma 4.2.3, F (S〈C〉) ≤ F (Gj) +
Csj+1

γ
+ δ

γ
.

By definition of sj+1:

∆j ≤
Csj+1

γ
=
C

γ

(
∆j −∆j+1

c(gj)

)
.

Rearranging we get ∆j+1 ≤ ∆j(1− c(gj+1)γ

C
). Unroll to get

∆K ≤ ∆0

(
K∏
j=1

1− c(gj)γ

C

)
.

Given that B =
∑K

i=1 c(gj), this is maximized at c(gj) = B
K

. Substituting in and using the
fact that

(
1− z

K

)K
< e−z:(
F (S〈C〉)−

δ

γ

)
− F (GK) = ∆K ≤ ∆0

(
1− γB

C

1

K

)K
<

(
F (S〈C〉)−

δ

γ

)
e−γ

B
C ,

or F (G〈B〉) >
(

1− e−γ B
C

)(
F (S〈C〉)− δ

γ

)
.
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Since
(

1− e−γ B
C

)
1
γ
< B

C
, we can also write this as

F (G〈B〉) > (1− e−γ
B
C )
(
F (S〈C〉)

)
− δB

C
.

�

4.3 Approximate Greedy Maximization
In many cases, it is desirable to use an algorithm that does not actually implement the greedy
strategy, but instead is approximately greedy. That is, the algorithm attempts to select an element
that will significantly improve the value of the selected sequence, but does not always select the
item that maximizes the greedy gain given in Equation (4.3).

For example, this type of algorithm is useful when searching over the entire set X for the
maximum gain is prohibitively expensive, but a reasonably good element can be selected much
more efficiently. Other examples include settings where the submodular function F is only able to
be evaluated at training time, and a predictor is trained using contextual features to approximate
F for use at test time [Streeter and Golovin, 2008, Ross et al., 2013]. A final example is the
Orthogonal Matching Pursuit algorithm which we will examine in Chapter 5.

We now give a specific characterization of what it means to be approximately greedy so we can
further analyze these algorithms.

Definition 4.3.1 (Approximately Greedy). Let G ′j−1 be the set of elements selected by some
algorithm A through j − 1 iterations. Given a set function F , we say that A is approximately
greedy if for all j there exists constants αj ∈ [0, 1] and βj ≥ 0 such that g′j , the element selected
by A at iteration j, satisfies:

F (G ′j−1 ∪ {g′j})− F (G ′j−1)

c(g′j)
≥ max

x∈X

αj
[
F (G ′j−1 ∪ {x})− F (G ′j−1)

]
− βj

c(x)
.

For the special case when there exists α ≤ αj and β ≥ βj for all j for some psuedo-greedy
algorithm A, we say that A is (α, β)-approximately greedy.

Extending the previous approximation result for the greedy algorithm, we can get a similar
bound for approximately greedy algorithms applied to approximately submodular function opti-
mization. We first need to generalize Lemma 4.2.3 to also include the additive and multiplicative
error introduced by the approximately greedy algorithm.
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Lemma 4.3.2. Let s′j be the value

F (G ′j−1 ∪ {g′j})− F (G ′j−1)

c(g′j)
,

for element g′j selected by an approximately greedy algorithm according to Definition 4.3.1.
Then for all sequences S and total costs C:

F (S〈C〉) ≤ F (G ′j−1) +
Cs′j
αjγ

+
βj
αjγ

+
δ

γ
.

Proof. By Lemma 4.2.2 we have:

αj
γ
[
F (G ′j−1 ∪ S〈C〉)− F (G ′j−1)

]
− δ

c(S〈C〉)
− βj
C
≤ αj max

x∈S〈C〉

[
F (G ′j−1 ∪ {x})− F (G ′j−1)

c(x)

]
− βj
C

≤ max
x∈S〈C〉

αj
[
F (G ′j−1 ∪ {x})− F (G ′j−1)

]
− βj

c(x)

≤ s′j

By monotonicity we have F (S〈C〉) ≤ F (Gj−1∪S〈C〉), and by definition c(S〈C〉) ≤ C giving:

F (S〈C〉) ≤ F (G ′j−1) +
Cs′j
αjγ

+
βj
αjγ

+
δ

γ
.

�

Now, we can reproduce the same argument as used for analyzing the greedy algorithm, but
with the previous lemma as a starting point.

Theorem 4.3.3. Let G′ = (g′1, . . .) be the sequence selected by an (α, β)-approximately greedy
algorithm as in Definition 4.3.1. Fix some K > 0. Let B =

∑K
i=1 c(g

′
i). Let F be (γ, δ)-

approximately submodular as in Definition 4.2.1. For any sequence S and total cost C,

F (G〈B〉) > (1− e−αγ
B
C )
(
F (S〈C〉)

)
− βB

C
− αδB

C
.

Proof. Define ∆j = F (S〈C〉)−F (Gj). By Lemma 4.3.2, F (S〈C〉) ≤ F (Gj)+
Csj+1

αj+1γ
+

βj+1

αj+1γ
+ δ

γ
.
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By definition of sj+1:

∆j ≤
Csj+1

αj+1γ
+

βj+1

αj+1γ
+
δ

γ
=

C

αj+1γ

(
∆j −∆j+1

c(gj)

)
+

βj+1

αj+1γ
+
δ

γ
.

Rearranging we get ∆j+1 ≤ ∆j(1− c(gj+1)αj+1γ

C
) +

βj+1c(gj+1)

C
+

αj+1δc(gj+1)

C
. Unroll to get

∆K ≤ ∆0

(
K∏
j=1

1− c(gj)αjγ

C

)
+

K∑
j=1

(
K∏

i=j+1

1− c(gi)αiγ

C

)(
βjc(gj)

C
+
αjδc(gj)

C

)
.

Using 1− c(gj)αjγ

C
< 1,

∆K ≤

(
∆0 +

K∑
j=1

βjc(gj)

C
+

K∑
j=1

αjδc(gj)

C

)(
K∏
j=1

1− c(gj)αjγ

C

)
.

Let α < αj . Given that B =
∑K

i=1 c(gj), this is maximized at c(gj) = B
K

. Substituting in
and using the fact that

(
1− z

K

)K
< e−z:

F (S〈C〉)− F (GK) = ∆K ≤

(
∆0 +

K∑
j=1

βj
c(gj)

C
+ αδ

B

C

)(
1− αγB

C

1

K

)K

<

(
F (S〈C〉) +

K∑
j=1

βj
c(gj)

C
+ αδ

B

C

)
e−αγ

B
C ,

or F (G〈B〉) >
(

1− e−αγ B
C

)(
F (S〈C〉)−

∑K
j=1 βj

c(gj)

C
− αδB

C

)
.

Since
(

1− e−αγ B
C

)
< 1, we can also write this as

F (G〈B〉) > (1− e−αγ
B
C )
(
F (S〈C〉)

)
−

K∑
j=1

βj
c(gj)

C
− αδB

C
.

Now, if β > βj for all j,

F (G〈B〉) > (1− e−αγ
B
C )
(
F (S〈C〉)

)
− βB

C
− αδB

C
.

�

As expected from the greedy algorithm analysis, the multiplicative and additive terms (α, β) get
incorporated in the same manner as the respective (γ, δ) terms from the approximate submodularity
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bound.
This bound incorporates a number of features of previous results as well. For example, the

corresponding bound from the work of Das and Kempe [2011] for the Orthogonal Matching Pursuit
algorithm in the unit-cost case has the same αγ term.

Other work on no-regret learning of approximators for the submodular function F [Streeter
and Golovin, 2008, Ross et al., 2013] incorporates the additive term

J∑
j=1

βj
c(gj)

C

where βj is the error made by the no-regret learner at each iteration. This same term is seen in the
previous proof, and is only simplified using β < βj . The same analysis above could be used to
extend similar no-regret analyses to the approximately submodular setting, in the same manner as
this previous work.

4.4 Bi-criteria Approximation Bounds for Arbitrary Budgets
In the previous sections, we derived bounds that hold only for the budgets B which correspond
to the budgets at which the algorithm adds a new element to the sequence. In many settings, this
guarantee can be poor for the list selected by the greedy algorithm in practice. For example, if the
algorithm selects a single, high-cost, high-value item at the first iteration, then the smallest budget
the guarantee holds for is the cost of that item.

As discussed in Section 4.1, there are many approaches that can obtain guarantees for any ar-
bitrary budget B, but unfortunately these algorithms do not generate a single common sequence
for all budgets. Because we ultimately want anytime or anybudget behavior, we would like similar
guarantees for a budget agnostic algorithm. Unfortunately, as we will show shortly, a guarantee
that has the same form as previous ones is not possible for arbitrary submodular functions. In-
stead, in this section we will develop an algorithm and corresponding bound that gives a bi-criteria
approximation in both value and budget. Such a bound will have the form

F (G〈B〉) > (1− c1)F (S〈 B
c2
〉)− . . . . (4.4)

Here we have the standard (1 − c1)-approximation in value when compared to any arbitrary se-
quence S, but we also have a c2-approximation in budget, that is, in order to be competitive with a
given sequence we need to incur c2 additional cost.

We will now show the inherent difficulty in obtaining good performance from a budget agnos-
tic algorithm which generates a single sequence, and demonstrate the necessity of the bi-criteria
approximation given above. Consider the following budgeted maximization problem:

X = {1, 2, . . .}, c(x) = x

F (S) =
∑
x∈S

ex. (4.5)
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We can use this problem to illustrate the inherent difficulty in generating single sequences that
are competitive at arbitrary budgets B. This problem is in fact a modular optimization, and fur-
thermore, has a very simple optimal solution of always selecting the single largest element that
fits within a given budget. As the next result shows, however, even achieving a bound derived for
submodular functions is difficult unless the cost approximation is fairly loose.

Theorem 4.4.1. Let A be any algorithm for selecting sequences A = (a1, . . .). The best bi-
criteria approximationA can satisfy must be at least a 4-approximation in cost for the sequence
described in Equation (4.5). That is, there does not exist a C < 4 such that, for all B > cmin and
all sequences S,

F (A〈B〉) >
(

1− 1

e

)
F (S〈B

C
〉)

Proof. First, by construction of the problem, it is clear that the optimal set for a given (integral)
budget B′ is to select the largest element x < B′ for a value of eB′ . Furthermore, because∑B′−1

x=1 ex

eB′
≤ 1

e− 1
,

the only way to be a (1 − 1
e
)-approximation in value for all sets S〈B′〉 is to have selected an

element x ≥ B′.
Consider the sequence A at some element j. Let the cost c(Aj) = b. Let the largest element

in Aj be some function of b, f(b) with value ef(b).
Now consider the next element aj+1. To maintain the property that A is a C-approximation

in cost, c(Aj+1) is at most Cf(b), which implies that c(aj+1) ≤ Cf(b) − b. In order for the
sequence to continue extending itself to arbitrary large budgets, the ratio between the cost of the
sequence and the largest element in the sequence must be increasing, giving

b

f(b)
≤ Cf(b)

Cf(b)− b
.

Rearranging and using the fact that all terms are positive gives

b2 − Cbf(b) + Cf(b)2 ≥ 0.

The above inqeuality only holds when
√
C ≥ 2, or C ≥ 4, proving the theorem. �

As an aside, the argument in the proof above also shows that the optimal single sequence A,
i.e.the sequence for which the argument above is tightest, will output elements aj with cumulative
cost c(Aj) = b such that c(aj) = f(b) = b√

C
. In the case of the tightest achievable bound when

C = 4, this corresponds to selecting an element at every iteration that roughly doubles the current
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cost of the list. We will examine an algorithm (Algorithm 4.2) which demonstrates exactly this
doubling behavior.

Now that we have an upper bound on the best cost-approximation any single sequence algo-
rithm can obtain, we now present an algorithm which does satisfy the bi-criteria approximation in
Equation (4.4), with a cost approximation factor of 6. 1

Algorithm 4.2 presents a doubling strategy for selecting a sequence of elements by effectively
doubling the space of elements that can be added at each iteration. At the first iteration, the al-
gorithm selects elements less than some minimum cost cmin. For every following iteration, the
algorithm selects from all elements with cost less than the total cost of the items selected so far, at
most doubling the total cost of the sequence.

Algorithm 4.2 Doubling Algorithm
Given: objective function F , elements X , minimum cost cmin.
Let G1 = arg max

x∈X , c(x)≤cmin

F ({x})
c(x)

.

Let G1 = {g1}.
for j = 2, . . . do

Let gj = arg max
x∈X\Gj−1, c(x)≤c(Gj−1)

F (Gj−1∪{x})−F (Gj−1)

c(x)
.

Let Gj = Gj−1 ∪ {gj}.
end for

This algorithm allows for a bi-criteria approximation for arbitrary approximately submodu-
lar maximization problems, as long as the doubling algorithm doesn’t get stuck at any iteration.
The following definition just outlines the conditions that allow the doubling algorithm to suceed,
namely that the algorithm can always continue to select new elements at every iteration.

Definition 4.4.2. Let G = (g1, . . .) be the sequence selected by the doubling algorithm. The set
X and function F are doubling capable if, at every iteration j, the set

{x | x ∈ X \ Gj−1, c(x) ≤ c(Gj−1)}

is non-empty.

We will assume that this definition holds for the rest of the analysis. In order to prove the
bi-criteria approximation, we first need the following lemma, describing the behavior of the total
cost of the subsets selected by the doubling algorithm.

1We conjecture that the cost approximation factor for Algorithm 4.2 is actually 4, but are not able to prove it
directly using the analysis here.
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Lemma 4.4.3. Let G = (g1, . . .) be the sequence selected by the doubling algorithm. Fix some
B such that cmin < B < c(X ). There exists some K such that B

2
≤
∑K

i=1 c(gi) ≤ B.

Proof. Consider the largest K such that
∑K

i=1 c(gi) ≤ B. Examine the just element, gK+1.
Both gK and gK+1 must exist because X is doubling capable according to Definition 4.4.2. By
construction,

K+1∑
i=1

c(gi) ≥ B.

Because c(gK+1) ≤ c(GK) we know that

2
K∑
i=1

c(gi) ≥
K+1∑
i=1

c(gi) ≥ B,

completing the proof. �

Using the above lemma, we can now give the bi-criteria approximation bound for Algorithm 4.2
for any given budget. The bound gives a 6 approximation in cost and the same approximation in
value as the previous greedy result in Theorem 4.2.4.

Theorem 4.4.4. Let G = (g1, . . .) be the sequence selected by the doubling algorithm (Algo-
rithm 4.2). Fix someB > cmin. Let F be (γ, δ)-approximately submodular as in Definition 4.2.1.
For any sequence S,

F (G〈B〉) >
(
1− e−γ

)
F (S〈B

6
〉)− δ.

Proof. Clearly, if B ≥ c(X ), the theorem trivially holds for G〈B〉 = X .
If B ≤ c(X ), using Lemma 4.4.3, we know that there must be some K such that B

2
≤∑K

i=1 c(gi) ≤ B. Similiarly there must exist some k such that B
6
≤
∑k

i=1 c(gi) ≤
B
3

.
Consider the sequence G′ = (gk+1, . . . , gK). Let G ′j = Gk ∪ {gk+1, . . . , gj}. We can derive a

modified version of the bound in Lemma 4.2.3 that gives:

F (S〈B
6
〉) ≤ F (G ′j−1) +

Cs′j + δ

γ
,

where s′j is the maximum gain at iteration j+k of Algorithm 4.2. This holds because c(Gk) ≥ B
6

,
implying that the maximum at iteration k + j used to calculate s′j is over a superset of the
elements in S〈B

6
〉.

Now, using that modified version of Lemma 4.2.3, we can re-apply the same argument from
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Theorem 4.2.4 and show that(
F (S〈B

6
〉)−

δ

γ

)
− F (GK) ≤

(
F (S〈B

6
〉)−

δ

γ

)( K∏
j=k

1− 6c(gj)γ

B

)

By construction of k and K,
∑K

j=k c(gj) ≥
B
6

, so we can simplify this to(
F (S〈B

6
〉)−

δ

γ

)
− F (GK) ≤

(
F (S〈B

6
〉)−

δ

γ

)(
1− γ 1

K

)K
,

after which bounding the (1− γ
K

)K term and rearranging gives the final bound:

F (G〈B〉) > (1− e−γ)
(
F (S〈B

6
〉)
)
− δ.

�

The same basic arguments as above can be also be used to show that an approximately greedy
algorithm, when modified with the selection strategy of the doubling algorithm, will also give a
bi-criteria approximation for any budget. The cost approximation will still be a factor of 6, and the
value approximation will be the same as in Theorem 4.3.3.
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Chapter 5

Sparse Approximation

In this chapter we will examine the sparse approximation or subset selection problem. We will
show that the greedy and approximately greedy algorithm analysis of the previous chapter can be
applied here, and will derive corresponding approximation results for this setting. In constrast to
previous work on similar analyses, we derive bounds that depend primarily on factors which place
small weights on the optimal subset of features, as opposed to previous work, where the approxi-
mation bounds depend primarily on factors related to the geometry, or orhogonality, of the features.
We also present novel, time-based versions of classic feature or subset selection algorithms, and
show that for the budgeted feature selection problem, these approaches significantly outperform
approaches which do not consider feature cost.

5.1 Background
Given a set of variables or features Xi ∈ X and a target variable Y , the sparse approximation
problem is to select a subset of the variables D ⊂ X that minimizes the reconstruction error

min
w

E[
1

2
(Y − wTXD)2],

where XS = [Xi|Xi ∈ S]. Typically the selection is done with respect to some constraint on the
selected D, such as a cardinality constraint |D| ≤ B.

This problem is commonly framed in the literature as a constrained loss minimization problem
of the loss function

f(w) = E[(Y − wTX)2], (5.1)

where the constaint is designed to induce sparsity on the weight vector w.
The sparse approximation problem can then be written as a loss minimization with respect to a

constraint on the number of non-zero entries in w:
min
w
f(w)

‖w‖0 ≤ B
, (5.2)

67
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Algorithm 5.1 Forward Regression
Given: elements X , target Y
Define F as in Equation (5.3)
Let D0 = ∅.
for j = 1, . . . do

Let x∗ = arg maxx∈X
F (Dj−1∪{x})−F (Dj−1)

c(x)
.

Let Dj = Dj−1 ∪ {x∗}.
end for

where ‖‖0 is the “0-norm”, or number of non-empty elements in w. The selected elements in
D then simply correspond to the non-zero indices selected in the optimal solution to the above
constrained problem.

Another way to re-write the sparse approximation objective is as a set function F (S):

F (S) =
1

2
E[Y 2]− min

w∈R|S|

1

2
E[(Y − wTXS)2] (5.3)

= max
w∈R|S|

bTSw −
1

2
wTCSw, (5.4)

where b is a vector of covariances such that bi = Cov(Xi, Y ) and C is the covariance matrix of
the variables Xi, with Cij = Cov(Xi, Xj). Furthermore, CS is the subset of rows and columns of
C corresponding to the variables selected in S and bS is the equivalent over vector indices of the
vector b.

The sparse approximation problem is then the same as the monotone maximization problem
over the set function F given in Equation (4.2), as studied in the previous chapter. Extending
this problem to the budgeted setting from the previous chapter as well, each feature also has an
associated cost c(Xi) and the goal is to select a subset D such that c(D) =

∑
x∈D c(x) < B. For

the coordinate-based version of the problem in Equation (5.2), this can be replaced with a weighted
equivalent of the zero-norm.

For our analysis, we will stick to the set function maximization setting analyzed in Chapter 4,
but these representations are all equivalent.

5.1.1 Algorithms
Two approaches to solving this problem which we will analyze here are two cost-greedy ver-

sions of the existing the Forward Regression [Miller, 2002] and Orthogonal Matching Pursuit Pati
et al. [1993] algorithms. The cost-aware Forward Regression algorithm, given in Algorithm 5.1
simply selects the next variable x which maximizes the gain in objective F , divided by the cost
c(x). This is equivalent to the standard cost-greedy algorithm (Algorithm 4.1) for maximizing the
set function F given in Equation (5.3).
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Algorithm 5.2 Orthogonal Matching Pursuit
Given: elements X , target Y
Define F as in Equation (5.3)
Let D0 = ∅.
for j = 1, . . . do

Let w∗ = arg minw E[(Y − wTXDj−1
)2]

Let x∗ = arg maxx∈X
E[(Y−w∗TXDj−1

)T x]2

c(x)
.

Let Dj = Dj−1 ∪ {x∗}.
end for

The Orthogonal Matching Pursuit (OMP) algorithm [Pati et al., 1993], modified to handle
feature costs, given in Algorithm 5.2 is a more specialized algorithm for optimizing set functions
F that correspond to an underlying loss optimization. The classic OMP algorithm for optimizing
a loss function first computes a gradient of the loss function given the currently selected variables,
then selects the next variable which maximizes the inner product with the computed gradient. In the
sparse approximation setting, this corresponds to computing the current residual Z = Y −w∗TXD
given the currently selected elements D, and then selecting Xi which maximizes (Cov(Xi, Z))2,
or E[(Y − w∗TXDj−1

)TXi]
2. To make this algorithm cost-aware, we simply augment the greedy

maximization of the gradient term to be discounted by the feature cost.
For the coordinate-based version of the sparse approximation problem (Equation (5.2)), this can

also be viewed as performing a coordinate descent over the weight vector w, as the maximization

x∗ = arg max
x∈X

|E[(Y − w∗TXDj−1
)x]|

c(x)

is equivalent to selecting the dimension of w with the corresponding steepest gradient.
In previous work [Das and Kempe, 2011], these algorithms, applied to the sparse approxi-

mation problem, have been analyzed in the context of the submodular optimization setting. This
previous work has shown that the sparse approximation problem is in fact approximately submod-
ular (Definition 4.2.1), and that the submodular optimization analysis shown in the last chapter can
be directly applied to these algorithms and the sparse approximation problem.

Specifically, they show that the sparse approximation problem is (λmin(C), 0)-approximately
submodular, where λmin is the minimum eigenvalue of the covariance matrix C, which captures
the degree to which the variables Xi are non-orthogonal. Additionally, they show that the OMP
algorithm is also (λmin(C), 0)-approximately greedy in this setting.

Let D〈B〉 be the set selected by forward regression for some budget B, and S〈C〉 be the optimal
set of features for some other budget C. Using the results in Theorem 4.2.4 this previous work
gives a bound of

F (D〈B〉) >
(

1− e−λmin(C)B
C

)
F (S〈C〉)
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on the performance of the forward algorithm compared to optimal performance. Similarly for the
OMP algorithm we find an approximation factor of(

1− e−λmin(C)2 B
C

)
.
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Figure 5.1: (a) Non-submodularity in features– that is when the sum is better then the parts– occurs when
two correlated features can be combined to reach a target that each poorly represents on their own. This
occurs often in practice; however, it takes very large weights for the combination of features to be better
then the features taken alone, which is disallowed by regularization. (b) Illustration of the approximation
guarantee for a simple problem with two highly correlated features, as a function of the correlation, or angle,
between the two features. We illustrate the bound for the completely spectral case [Das and Kempe, 2011],
and for the same problem with regularization of λ = 0.5 using the bound presented.

In many settings, however, these geometric factors can approach their worst case bounds. Just
two highly correlated features can cause the minimum eigenvalue of C to be extremely small. For
example, in future chapters, we will be applying this same analysis to sets of “features” Xi that are
the outputs of a set of weak predictors, for example the outputs of all decision trees defined over a
set of training points. In this setting the bounds are extremely weak, as minor changes to a given
weak predictor will produce another highly correlated “feature” in the set X .

Intuitively, the geometric factors that previous bounds have relied on are needed for analysis
because as the variables involved diverge from orthogonality and become more dependent, the
performance of multiple vectors combined together can vastly outperform the performance of each
vector in isolation. This gap between the combined gain and individual gain for a set of elements
makes greedy selection perform arbitrarily poorly compared to combinatorial enumeration, as the
bounds in Chapter 4 and previous results [Krause and Cehver, 2010, Das and Kempe, 2011] show.
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The inherent difficulty in the subset selection problem when the variables are highly dependent
is due to a simple fact that can be illustrated geometrically: when two vectors are nearly parallel,
combining them together with large weights can produce new vectors that are nearly orthogonal
to either of the two original vectors. This in turn can cause two variables to have small individual
gains, while still having large combined gains and in turn weakening the approximate submodu-
larity guarantees of the problem.

These problems with non-orthogonality only arise in the presence of large weighted combina-
tions of the underlying variables. To analyze the impact that the magnitude of the weights has on
the resulting approximation bounds, we will now analyze two regularized variants of the sparse
approximation problem. Using regularization we can reduce the impact that large weight vectors
can have on the gain of any given subset, thereby improving the approximate submodularity-based
bounds.

Furthermore, it is typically beneficial in practice to use some amount of regularization, to
avoid overfitting and increase the robustness of a selected set. In the abscence of exponentially
large amounts of training data, a small amount of regularization would be warranted anyway, so
any improvement in the theoretical guarantees of the algorithm is just another added benefit.

5.2 Regularized Sparse Approximation

The first approach to regularization we will analyze is a Tikhonov regularized version of the prob-
lem which will directly penalize the gain of large weight vectors. This regularized version of the
sparse approximation problem is given as

F (S) =
1

2
E[Y 2]− min

w∈R|S|

1

2
E[(Y − wTXS)2 + λwTw] (5.5)

= max
w∈R|S|

bTSw −
1

2
wT (CS + λI)w, (5.6)

where b and C are the covariance vector and matrix as defined previously.
Just as in previous work [Das and Kempe, 2011] for the unregularized case, we can show that

this regularized version of the sparse approximation problem is approximately submodular as given
in Definition 4.2.1.

To do this, we will first need to consider a few lemmas which allow us to relate our result to
the spectral properties used in previous work [Das and Kempe, 2011].

Let CAS be the covariance matrix of the residual components of the set S with respect to the
set A. Specifically, if we define Res(Xi,A) to be the portion of Xi orthogonal to the variables
selected in A, then CAS is the covariance matrix of the variables X ′i = Res(Xi,A) for i ∈ S.
The first lemma relates the eigenvalues of the covariance matrix of residuals, CAS to the equivalent
matrix that will appear in the analysis of the regularized problem.
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Lemma 5.2.1. Given sets of variables S andA, let CAS be the covariance matrix for the residual
components of S with respect to A, and CAS

′ such that

CAS = CS − CSAC−1
A CAS

CAS
′
= CS − CSA (CA + λI)−1CAS ,

for some λ. Then
λmin(C

A
S
′
) ≥ λmin(C

A
S )

where λmin(C) is the minimum eigenvalue of C.

Proof. For all vectors x, we have that

xTCSA (CA + λI)−1CASx ≤ xTCSAC
−1
A CASx,

which implies that
xTCAS

′
x ≥ xTCAS x

for all x.
Given that λmin(C) = minxT x=1 x

TCx, we have that

λmin(C
A
S
′
) = min

xT x=1
xTCAS

′
x ≥ min

xT x=1
xTCAS x = λmin(C

A
S ),

completing the proof. �

The next lemma is taken directly from previous work, and bounds the smallest eigenvalue of
CAS in terms of that of the whole covariance matrix C. For more details on the proof of this lemma,
we refer the reader to the previous work.

Lemma 5.2.2 (Lemmas 2.5 and 2.6 from [Das and Kempe, 2011]). Given sets of variables S
and A, let CAS be the covariance matrix for the residual components of S with respect to A, i.e.

CAS = CS − CSAC−1
A CAS .

Then
λmin(C

A
S ) ≥ λmin(C)

where λmin(C) is the minimum eigenvalue of C. �

Finally, the last spectral lemma we need is simply a bound on the relationship between the
quadratic form bTQ−1b and the norm bT b.
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Lemma 5.2.3. Let b be an arbitrary vector and Q a positive definite matrix. Then

bTQ−1b ≤ bT b

λmin(Q)
.

Proof. Adapting the argument from Das and Kempe [2011], we have:

bTQ−1b

bT b
≤ max

v

vTQ−1v

vTv
= λmax(Q) =

1

λmin(Q)
.

�

Now, to analyze the actual regularized sparse approximation problem, we can first derive an
expression for the gain F (A ∪ S)− F (A), to be used in proving the later theorems.

Lemma 5.2.4. For some Xi and Y , Let F be as given in Equation (5.5) with regularization
parameter λ. Then

F (A ∪ S)− F (A) =
1

2
bAS
′T

(CAS
′
+ λI)−1bAS

′
,

where

bAS
′
= bS − CSA (CA + λI)−1 bA

CAS
′
= CS − CSA (CA + λI)−1CAS

Proof. Starting with the definition of F from Equation (5.5), we have

max
w

[
bTA∪Sw −

1

2
wT (CA∪S + λI)w

]
−max

v

[
bTAv −

1

2
vT (CA + λI) v

]
.

If we break the matrix CA∪S up in to blocks:

CA∪S =

[
CA CAS
CSA CS

]
,
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and similarly break up bA∪S , we can rewrite as:

F (A ∪ S)− F (A)

= max
wS ,wA

[
bTSwS + 2bAwA −

1

2
wTS (CS + λI)wS − wTACASwS −

1

2
wTA (CA + λI)wA

]
−max

v

[
bTAv −

1

2
vT (CA + λI) v

]
= max

wS

[
bTSwS −

1

2
wTS (CS + λI)wS + max

wA

[
(bA − CASwS)T wA −

1

2
wTA (CA + λI)wA

]
−max

v

[
bTAv −

1

2
vT (CA + λI) v

]]
.

Solving for the optimizations over A directly gives

= max
wS

[
bTSwS −

1

2
wTS (CS + λI)wS +

1

2
(bA − CASwS)T (CA + λI)−1 (bA − CASwS)

− 1

2
bTA (CA + λI)−1 bA

]
= max

wS

[
bTSwS −

1

2
wTS (CS + λI)wS +

1

2
wTSCSA (CA + λI)−1CASwS

−
(
CSA (CA + λI)−1 bA

)T
wS

+
1

2
bTA (CA + λI)−1 bA −

1

2
bTA (CA + λI)−1 bA

]
= max

wS

[
bAS
′T
wS −

1

2
wTS

(
CAS
′
+ λI

)
wS

]
,

where

bAS
′
= bS − CSA (CA + λI)−1 bA

CAS
′
= CS − CSA (CA + λI)−1CAS .

Solving this completes the proof:

max
wS

[
bAS
′T
wS −

1

2
wTS

(
CAS
′
+ λI

)
wS

]
=

1

2
bAS
′T

(CAS
′
+ λI)−1bAS

′
.

As an aside, tying back to the unregularized case [Das and Kempe, 2011], the correspond-
ing result is equivalent to setting λ = 0, where the b and C matrices are simply the residual
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covariance vector and matrix for the set S, with respect to the set A:

bAS = bS − CSAC−1
A bA

CAS = CS − CSAC−1
A CAS ,

so the regularized form subsumes the previous result as one would expect. �

We can now derive the approximate submodularity bound for the Tikhonov regularized version
of the problem, using the above lemmas.

Theorem 5.2.5. Let variables Xi be zero mean, unit variance random variables and Y be a
target variable. Let λmin(C) be the minimum eigenvalue of the covariance matrix of the vari-
ables Xi. Then F , as given in Equation (5.5) with regularization parameter λ is approximately
submodular for all γ ≤ λmin(C)+λ

1+λ
≤ λ

1+λ
, and δ = 0.

Proof. From Definition 4.2.1, we need to show that the following holds:

γ [F (A ∪ S)− F (A)]− δ ≤
∑
x∈S

[F (A ∪ {x})− F (A)] .

By Lemma 5.2.4, the left hand side can be simplified to

F (A ∪ S)− F (A) =
1

2
bAS
′T

(CAS
′
+ λI)−1bAS

′
.

We can do the same thing to the right hand side and get∑
x∈S

F (A ∪ S)− F (A) =
∑
x∈S

1

2
bA{x}

′T
(CA{x}

′
+ λI)−1bA{x}

′

=
1

2
bAS
′T

diag(CAS
′
+ λI)−1bAS

′
.

We can lower bound the right hand side further using the variance bound on the variables
Xi, giving Cx ≤ 1 and the fact that CxA (CA + λI)−1CAx ≥ 0, to find

1

2
bAS
′T

diag(CAS
′
+ λI)−1bAS

′ ≥ 1

2

bAS
′T
bAS
′

1 + λ
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Thus it suffices to find γ and δ such that

γ

(
1

2
bAS
′T

(CAS
′
+ λI)−1bAS

′
)
− δ ≤ 1

2

bAS
′T
bAS
′

1 + λ
.

Using Lemma 5.2.3, we know that

λmin(C
A
S
′
+ λI)

(
bAS
′T

(CAS
′
+ λI)−1bAS

′
)
≤ bAS

′T
bAS
′
,

so the bound holds for γ ≤ λmin(CAS
′
+λI)

1+λ
=

λmin(CAS
′
)+λ

1+λ
and δ = 0.

Using Lemma 5.2.1 and Lemma 5.2.2, we know that

λmin(C
A
S
′
) ≥ λmin(C

A
S ) ≥ λmin(C),

giving the final bound:

γ ≤ λmin(C) + λ

1 + λ
≤ λ

1 + λ
.

�

This result subsumes the previous result given by Das and Kempe [2011], and is identical
for the unregularized, λ = 0 case. Additionally, it indicates that if the optimal weight vector
is small and not substantially affected by strong regularization, the constants in the approximate
submodularity bound are stronger than those given in the previous result, especially when the
spectral bound λmin(C) is small.

We can also derive a similar bound for the approximation error introduced by using the Or-
thogonal Matching Pursuit algorithm on this problem.

Theorem 5.2.6. Let variables Xi be zero mean, unit variance random variables and Y be a
target variable. Let λmin(C) be the minimum eigenvalue of the covariance matrix of the variables
Xi. The OMP algorithm applied to F as given in Equation (5.5) with regularization parameter
λ is (α, 0)-approximately greedy as given in Definition 4.3.1, with α =

λmin(C)+λ

1+λ
.

Proof. The OMP algorithm (Algorithm 5.2) at iteration j + 1 selects the element x∗ which
maximizes

x∗ = arg max
x∈X

E[(Y − w∗TXDj−1
)Tx]2

c(x)
,

where
w∗ = arg min

w
E[(Y − wTXDj−1

)2].
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We can compute w∗ using the covariance vector b and matrix C directly to be

w∗ =
(
CDj

+ λI
)−1

bDj
.

So OMP selects the element which maximizes:

E[(Y −
((
CDj

+ λI
)−1

bDj

)T
XDj−1

)x]2

c(x)

=

(
bx −

((
CDj

+ λI
)−1

bDj

)T
E[XDj−1

x]

)2

c(x)

=

(
bx −

((
CDj

+ λI
)−1

bDj

)T
CDjx

)2

c(x)

=

(
b
Dj
x

′)2

c(x)
,

where
bDj
x

′
= bx − CxDj

(
CDj

+ λI
)−1

bDj
.

This implies that

b
Dj

x∗
′T
b
Dj

x∗
′

c(x∗)
≥ max

x

b
Dj
x

′T
b
Dj
x

′

c(x)

By Lemma 5.2.4, the gain for a single element x at iteration j + 1 is

F (Dj ∪ {x})− F (Dj) =
1

2
bDj
x

′T
(
CDj
x

′
+ λI

)−1

bDj
x

′
.

Using Lemma 5.2.1 through Lemma 5.2.3, in a similar argument to the previous proof, we
find that, for all x

bDj
x

′T
bDj
x

′ ≥ (λmin(C) + λ) bDj
x

′T
(
CDj
x

′
+ λI

)−1

bDj
x

′
.
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Using this, along with the fact that CDj

x∗
′
< 1, gives

F (Dj ∪ {x∗})− F (Dj)
c(x∗)

=
b
Dj

x∗
′T (

C
Dj

x∗
′
+ λI

)−1

b
Dj

x∗
′

c(x∗)

≥ 1

1 + λ

b
Dj

x∗
′T
b
Dj

x∗
′

c(x∗)

≥ 1

1 + λ
max
x

b
Dj
x

′T
b
Dj
x

′

c(x)

≥ max
x

λmin(C) + λ

1 + λ

b
Dj
x

′T (
C
Dj
x

′
+ λI

)−1

b
Dj
x

′

c(x)

= max
x

λmin(C) + λ

1 + λ

F (Dj ∪ {x})− F (Dj)
c(x)

completing the proof. �

This result also subsumes the previous corresponding OMP result for the unregularized version
of the problem [Das and Kempe, 2011]. Combined with the previous theorem and the submodu-
lar optimization analyses in Chapter 4 we can now directly derive approximation bounds for the
regularized sparse approximation problem.

Corollary 5.2.7. Let γ =
λmin(C)+λ

1+λ
. Let F be the regularized sparse approxmation objective

given in Equation (5.5). Let S = (s1, . . .) be any sequence. Let D = (d1, . . .) be the sequence
selected by the greedy Forward Regression algorithm. Fix some K > 0. Let B =

∑K
i=1 c(di).

Then
F (D〈B〉) > (1− e−γ

B
C )F (S〈C〉).

Similarly let D′ = (d′1, . . .) be the sequence selected by the Orthogonal Matching Pursuit
algorithm and B′ =

∑K
i=1 c(d

′
i). Then

F (D′〈B′〉) > (1− e−γ2
B′
C )F (S〈C〉).

5.3 Constrained Sparse Approximation

An alternative problem to consider that also addresses the concern of large weights is the Ivanov
regularized, or constrained variant of the sparse approximation problem. Under this approach we
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constrain the weight vectors applied to the selected subset to lie within some ε-ball:

F (S) =
1

2
E[Y 2]− min

w∈R|S|,‖w‖2≤ε

1

2
E[(Y − wTXS)2] (5.7)

= max
w∈R|S|,‖w‖2≤ε

bTSw −
1

2
wTCSw. (5.8)

This constrained version of the problem allows for approximation gaurantees in terms of a
bound directly on the weight vector used in the optimal solution. By directly constraining the
allowable weights, we restrict the impact that large weights could have on the approximate sub-
modularity of the problem. Unlike the previous regularization approach, however, a constrained
approach does not change the optimal solution to the problem, as long as the constraint is suffi-
ciently large.

We can now detail the same approximate submodularity and approximately greedy bounds for
the constrained case. We can first derive a similar result to Lemma 5.2.4 which simplifies the gain
F (A ∪ S)− F (A) for the constrained problem.

Lemma 5.3.1. For some variables Xi, and Y , let F be defined as in Equation (5.7) with con-
straint ε. Letw∗ = arg min‖w‖2≤ε E[(Y −wTXA)2] be the weight vector which maximizes F (A).
Then

F (A ∪ S)− F (A) = max
‖w+w∗A∪S‖2≤ε

(
bA∪S − CA∪Sw∗A∪S

)T
w − 1

2
wTCA∪Sw,

where

w∗A∪S =

[
w∗

0S

]
.

Proof. Starting with the definition of F from Equation (5.7), we have

F (A ∪ S)− F (A) = max
‖w‖2≤ε

[
bTA∪Sw −

1

2
wTCA∪Sw

]
−max

v

[
bTAv −

1

2
vTCAv

]
.

Let w∗A∪S be w∗ extended to the dimension of A ∪ S with zeros:

w∗A∪S =

[
w∗

0S

]
.
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Re-writing using the definition of w∗ gives

F (A ∪ S)− F (A)

= max
‖w‖2≤ε

[
bTA∪S (w + w∗A∪S)− 1

2
(w + w∗A∪S)TCA∪S(w + w∗A∪S)

]
− bTAw∗ +

1

2
w∗TCAw

∗.

Expanding out terms and cancelling completes the proof:

= max
‖w+w∗A∪S‖2≤ε

[
bTA∪Sw

∗
A∪S + bTA∪Sw −

1

2
wTCA∪Sw − w∗A∪S

TCA∪Sw

− 1

2
w∗A∪S

TCA∪Sw
∗
A∪S

]
− bTAw∗ +

1

2
w∗TCAw

∗

= max
‖w+w∗A∪S‖2≤ε

[
bTAw

∗ + bTA∪Sw −
1

2
wTCA∪Sw − w∗A∪S

TCA∪Sw

− 1

2
w∗TCAw

∗
]
− bTAw∗ +

1

2
w∗TCAw

∗

= max
‖w+w∗A∪S‖2≤ε

[
(bA∪S − CA∪Sw∗A∪S)T w − 1

2
wTCA∪Sw

]
.

�

Unfortunately in the constrained setting there is no analytic closed-form solution, as there was
in the previous case. The resulting expression for the gain is essentially a simplified maximiation
problem with a modified constraint.

Now, to derive the desired result we want to eventually bound the term for the combined gain
in terms of the individual gains. Unfortunately a complete proof of this bound is still an open
problem. We are able to prove the bound for a number of special cases.

The difficulty in getting a complete proof for this problem is the lack of closed form solution
when dealing with the constrained version of the problem, in particular when analyzing the gain
for a set S, F (S ∪ A) − F (A). In the analysis of the Tikhonov regularized and unregularized
versions of the sparse approximation, the convenient closed form solutions are used to show that
this difference of two quadratic optimizations is equivalent to a single quadratic optimization over
only the variables in S.

Conjecture 5.3.2. Let variables Xi be zero mean, unit variance random variables and Y be a
target variable, and b and C the appropriate covariance vector and matrix. Let S andA be sets
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of the variables Xi. Let w∗ = arg min‖w‖2≤ε E[(Y − wTXA)2]. Then, for all γ

γ

(
max

‖w+w∗A∪S‖2≤ε
(bA∪S − CA∪Sw∗A∪S)T w − 1

2
wTCA∪Sw

)
− γ2ε2

2

≤
∑
x∈S

max∥∥∥w+w∗A∪{x}

∥∥∥
2
≤ε

(
bA∪{x} − CA∪{x}w∗A∪{x}

)T
w − 1

2
wTCA∪{x}w,

where

w∗A∪S =

[
w∗

0S

]
.

Proof. This conjecture is the critical failure point in our current understanding of the constrained
sparse approximation problem. We do not currently have a proof of the complete statement, but
we can prove it for certain special cases.

Specifically, we now detail a proof of the case when A = ∅. From numerical experiments
and other exploration of the problem, we believe that this case is the tightest case for the bound.

Eliminating the terms that depend on A, we can reduce the left and right hand side of the
problem such that we need to find γ and δ such that:

γ

(
max
‖w‖2≤ε

bTSw −
1

2
wTCSw

)
− δ ≤

∑
x∈S

max
‖w‖2≤ε

bT{x}w −
1

2
wTC{x}w.

Using the fact that CS is positive semi-definite and Cauchy-Schwarz we can upper bound
the left hand side:

γ

(
max
‖w‖2≤ε

bTSw −
1

2
wTCSw

)
− δ ≤ γ‖bS‖2ε− δ

Similarly we can reduce the right hand side to a single optimization and bound:∑
x∈S

max
‖w‖2≤ε

bT{x}w −
1

2
wTC{x}w = max

‖w‖∞≤ε
bTSw −

1

2
wTw

≥ max
‖w‖2≤ε

bTSw −
1

2
wTw.

Thus it suffices to find γ and δ such that

γ‖bS‖2ε− δ ≤ max
‖w‖2≤ε

bTSw −
1

2
wTw.
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When ‖bS‖2 ≥ ε, the right hand side is maximized at w = εbS
‖bS‖2

, and thus we want γ and δ
such that

γ‖bS‖2ε− δ ≤ ‖bS‖2ε−
1

2
ε2

which holds true for any γ ≤ 1 and δ ≥ (γ − 1
2
)ε2.

When ‖bS‖2 ≤ ε, the right hand side is maximized at w = bS , giving:

γ‖bS‖2ε− δ ≤
1

2
‖bS‖2

2

which holds for any γ ≤ 1 and δ ≥ γ2ε2

2
. Since 1

2
γ2 > (γ − 1

2
) for γ ≤ 1, the second set of

constraints satisfies both cases. �

Using this (conjectured) result, we can derive the corresponding approximate submodularity
and approximately greedy bounds. For the remainder of this document, and bounds related to the
constrained setting rely on the previous conjecture, and as a result are also conjectured results. We
will also note this for each conjectured result.

Theorem 5.3.3 (a). Let variables Xi be zero mean, unit variance random variables and Y
be a target variable. Then F , as defined in Equation (5.7) with constraint ε is approximately
submodular for all γ ∈ [0, 1] and δ ≥ γ2ε2

2
.

aThis theorem requires that Conjecture 5.3.2 hold in general.

Proof. Let w∗ = arg min‖w‖2≤ε E[(Y − wTXA)2], and

w∗A∪S =

[
w∗

0S

]
.

By Lemma 5.3.1 the left hand side gain can be re-written as

F (A ∪ S)− F (A) = max
‖w+w∗A∪S‖2≤ε

(bA∪S − CA∪Sw∗A∪S)T w − 1

2
wTCA∪Sw.

Similarly, the right hand side gain can be re-written as∑
x∈S

F (A ∪ {x})− F (A) =
∑
x∈S

max
‖w+w∗A∪x‖2≤ε

(
bA∪{x} − CA∪{x}w∗A∪{x}

)T
w − 1

2
wTCA∪{x}w.
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By Conjecture 5.3.2, the following holds:

γ

(
max

‖w+w∗A∪S‖2≤ε
(bA∪S − CA∪Sw∗A∪S)T w − 1

2
wTCA∪Sw

)
− γ2ε2

2

≤
∑
x∈S

max∥∥∥w+w∗A∪{x}

∥∥∥
2
≤ε

(
bA∪{x} − CA∪{x}w∗A∪{x}

)T
w − 1

2
wTCA∪{x}w,

which implies that the theorem holds for γ ∈ [0, 1] and δ ≥ γ2ε2

2
. �

In this particular case, the bound holds for any γ, with larger γ improving the multiplicative
approximation, but also weakening the additive bound.

The matching approximation error bound for the OMP algorithm applied to the constrained
problem is also an open problem, but analysis of special cases leads us to believe that, as in the
other sparse approximation problems, the bound matches the approximate submodularity bound.

Theorem 5.3.4 (a). Let variables Xi be zero mean, unit variance random variables and Y be
a target variable. Then the OMP algorithm appplied to F , as defined in Equation (5.7) with
constraint ε is (α, β)-approximately greedy as given in Definition 4.3.1, for all α ∈ [0, 1] and
β ≥ α2ε2

2
.

aThis theorem is based on Conjecture 5.3.2 ultimately being true.

Proof. Let w∗ = arg min‖w‖2≤ε E[(Y − wTXDj
)2] and

w∗Dj∪S =

[
w∗

0S

]
.

The OMP algorithm (Algorithm 5.2) at iteration j + 1 selects the element x∗ which maxi-
mizes

x∗ = arg max
x∈X

E[(Y − w∗TXDj
)Tx]2

c(x)
.

So OMP selects the element which maximizes:

E[(Y − w∗TXDj−1
)Tx]2

c(x)
=

(
bx − w∗TCDjx

)2

c(x)

=

(
b
Dj
x

′)2

c(x)
,
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where
bDj
x

′
= bx − CxDj

w∗.

This implies that

b
Dj

x∗
′T
b
Dj

x∗
′

c(x∗)
≥ max

x

b
Dj
x

′T
b
Dj
x

′

c(x)

By Lemma 5.3.1, the gain for a single element x at iteration j + 1 is

(F (Dj ∪ {x})− F (D)j) = max∥∥∥∥w+w∗Dj∪{x}

∥∥∥∥
2

≤ε

(
bD|∪{x} − CDj∪{x}w

∗
Dj∪{x}

)T
w − 1

2
wTCDj∪{x}w.

Note that the portion of bD|∪{x} which corresponds to x is exactly the bDj
x

′
term maximized

by OMP.
We hypothesize that the same argument which could prove Conjecture 5.3.1 should be able

to prove the rest of this theorem as well. Namely, we hypothesize that we should be able to

bound the gain of the selected element as some function of bDj

x∗
′T
b
Dj

x∗
′
. Then, using the OMP

maximization criteria we can bound that in terms of bDj
x

′T
b
Dj
x

′
.

Using a proof of Conjecture 5.3.2, we should be able to show that that function of bDj
x

′T
b
Dj
x

′

is bounded by γ(F (Dj ∪ {x})− F (D)j)− γ2ε2

2
, completing the proof. �

Assuming that these conjectures are true gives a set of corresponding approximation bounds
for greedy approaches to the constrained sparse approximation problem.

Corollary 5.3.5 (a). Let γ ∈ [0, 1]. Let F be the constrained sparse approxmation objective
given in Equation (5.7) with constraint ε. Let S = (s1, . . .) be any sequence. Let D = (d1, . . .)
be the sequence selected by the greedy Forward Regression algorithm. Fix some K > 0. Let
B =

∑K
i=1 c(di). Then

F (D〈B〉) > (1− e−γ
B
C )F (S〈C〉)−

γ2ε2

2

B

C
.

Similarly let D′ = (d′1, . . .) be the sequence selected by the Orthogonal Matching Pursuit
algorithm and B′ =

∑K
i=1 c(d

′
i). Then

F (D′〈B′〉) > (1− e−γ2
B′
C )F (S〈C〉)−

1 + γ

2
γ2ε2

B′

C
.

aThis theorem is based on Conjecture 5.3.2 ultimately being true.



5.4. GENERALIZATION TO SMOOTH LOSSES 85

5.4 Generalization to Smooth Losses
The results in previous sections are all for the sparse approximation problem which directly opti-
mizes the squared reconstruction error with respect to some target Y . In many domains we would
like to use the same basic subset selection strategy, but with a different loss function to optimize. In
this section we extend the previous results to arbitrary smooth losses, using the previous analysis
as a starting point.

Recall that a loss function ` is m-strongly convex if for all x, x′:

`(x′) ≥ `(x) + 〈∇`(x), x′ − x〉 +
m

2
‖x′ − x‖2 (5.9)

for some m > 0, and M -strongly smooth if

`(x′) ≤ `(x) + 〈∇`(x), x′ − x〉 +
M

2
‖x′ − x‖2 (5.10)

for some M > 0.
The sparse approximation for arbitrary losses simply replaces the squared error with a smooth

loss `. The equivalent problem to the squared loss problem in coordinate space given in Equa-
tion (5.1) is

f(w) = E[`(wTXS)]. (5.11)

We can turn this in to a monotonic, positive set function by subtracting that value from the
starting loss, giving the equivalent set function for the smooth case:

F (S) = E[`(0)]− min
w∈R|S|

E[`(wTXS)]. (5.12)

To continue our analysis above, we can also generalize the Tikhonov regularized version of the
problem. The function to optimize in coordinate space is

f(w) = E[`(wTXS) +
λ

2
wTw], (5.13)

and the equivalent set function is

F (S) = E[`(0)]− min
w∈R|S|

E[`(wTXS) +
λ

2
wTw], (5.14)

where the E[`(0)] term is included to transform the problem in to a positive set function maximiza-
tion.

We can now analyze the approximate submodularity and approximate greedy behavior of the
regularized, smooth loss version of the problem. First, we need to develop upper and lower bounds
of the gain terms, using the strong smoothness and strong convexity of the loss `. Unlike the
squared loss case, we don’t get an exact expression for the gain terms, only quadratic upper and
lower bounds.

We first give the lower bound for the gain terms, utilizing the strong smoothness of the loss.
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Lemma 5.4.1. Let F be as given in Equation (5.14) for `, an M -strongly smooth loss as in
Equation (5.10). Letw∗ = arg minw E[`(wTXA)+λ

2
wTw] be the weight vector which maximizes

F (A), and Z = w∗XA. Then

F (A ∪ S)− F (A) ≥ 1

2
bAS
′T

(MCAS
′
+ λI)−1bAS

′
,

where

bAS
′
= −E[∇`(Z)XS ]

CAS
′
= CS − CSA

(
CA +

λ

M
I

)−1

CAS

Proof. Starting with the definition of F from Equation (5.14), we have

F (A ∪ S)− F (A) = min
w

E[`(wTXA) +
λ

2
wTw]−min

w
E[`(wTXA∪S) +

λ

2
wTw].

Let w∗A∪S be w∗ extended to the dimension of A ∪ S with zeros:

w∗A∪S =

[
w∗

0S

]
.

Using w∗ and Z, and expanding using the strong smoothness requirement around Z:

F (A ∪ S)− F (A)

= E[`(Z) +
λ

2
w∗Tw∗]−min

w
E[`(Z + wTXA∪S) +

λ

2
(w + wA∪S)T (w + wA∪S)]

≥ E[`(Z) +
λ

2
w∗Tw∗]−min

w
E[`(Z) +

〈
∇`(Z), wTXA∪S

〉
+
M

2

∥∥wTXA∪S∥∥2

+
λ

2
(w + w∗A∪S)T (w + w∗A∪S)]

= max
w

E[−
〈
∇`(Z), wTXA∪S

〉
− M

2

∥∥wTXA∪S∥∥2 − λ

2
wTw − λwTw∗A∪S ]

= max
w

E[(−∇`(Z)XA∪S − λw∗A∪S)Tw]− 1

2
wT (MCA∪S + λI)w

Let b′A∪S = E[−∇`(Z)XA∪S − λw∗A∪S ]. The astute reader will notice that this is effectively
the negative gradient of the coordinate loss given in Equation (5.13) evaluated at w∗A∪S :

b′A∪S = −∇w∗A∪S
f(w∗A∪S),
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or the gradient in weight-space of the function we are trying to maximize, at the current solution.
By definition of w∗, this is must be some vector:

b′A∪S =

[
0A
bAS
′

]
,

which is 0 across all dimensions corresponding to A.
Because b′A∪S is zero for all dimensions of A, we can simplify the gain by solving directly

and using the formula for block matrix inversion on MCA∪S + λI:

F (A ∪ S)− F (A)

≥ 1

2
b′A∪S

T
(MCA∪S + λI)−1b′A∪S

=
1

2
bAS
′T

(MCAS
′
+ λI)−1bAS

′
,

where
CAS
′
= CS − CSA(CA +

λ

M
I)−1CAS

�

A similar argument can be used to show the corresponding strong convexity bound. We will
omit the proof here because it is largely identical, except for the use of the strong convexity lower
bound instead of strong smoothness upper bound on the loss `.

Lemma 5.4.2. Let F be as given in Equation (5.14) for `, an m-strongly convex loss as in
Equation (5.10). Letw∗ = arg minw E[`(wTXA)+λ

2
wTw] be the weight vector which maximizes

F (A), and Z = w∗XA. Then

F (A ∪ S)− F (A) ≤ 1

2
bAS
′T

(mCAS
′
+ λI)−1bAS

′
,

where

bAS
′
= −E[∇`(Z)XS ]

CAS
′
= CS − CSA

(
CA +

λ

m
I

)−1

CAS

�

Using these bounds, we can bound the approximate submodularity of the smooth sparse ap-
proximation problem.
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Theorem 5.4.3. Let variables Xi be zero mean, unit variance random variables, and ` be an
m-strongly convex and M -strongly smooth loss function as given in Equations (5.9-5.10). Let
λmin(C) be the minimum eigenvalue of the covariance matrix of the variables Xi. Then F , as
given in Equation (5.14) with regularization parameter λ is approximately submodular for all
γ ≤ mλmin(C)+λ

M+λ
≤ λ

M+λ
, and δ = 0.

Proof. Recall that for approximate submodularity to hold we need to show that there exists γ, δ
such that

γ (F (A ∪ S)− F (A))− δ ≤ (F (A ∪ {x})− F (A)) .

Let bAS
′
= −E[∇`(Z)XS ]. Using Lemma 5.4.1

F (A ∪ {x})− F (A) ≥ 1

2
bAx
′T

(MCAx
′
+ λI)−1bAx

′
,

where

CAx
′
= Cx − CxA

(
CA +

λ

m
I

)−1

CAx.

Similarly to the proof of Theorem 5.2.5, using Cx = 1 and CxA
(
CA + λ

m
I
)−1

CAx ≥ 0, we
can show that

bAx
′T

(MCAx
′
+ λI)−1bAx

′ ≥ bAx
′T
bAx
′

M + λ
.

Considering the sum over S we have

∑
x∈S

F (A ∪ {x})− F (A) ≥ bAS
′T
bAS
′

M + λ

for a bound on the right-hand side.
For the combined gain we have:

F (A ∪ S)− F (A) ≤ 1

2
bAS
′T

(mCAS
′
+ λI)−1bAS

′
,

where

CAS
′
= CS − CSA

(
CA +

λ

m
I

)−1

CAS .
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By Lemma 5.2.3,

bAS
′T

(mCAS
′
+ λI)−1bAS

′ ≤ bAS
′T
bAS
′

λmin(mCAS
′
+ λI)

.

We can now bound the λmin term:

λmin(mC
A
S
′
+ λI) = mλmin(C

A
S
′
) + λ ≥ mλmin(C

A
S ) + λ ≥ mλmin(C) + λ

using the definition of CAS
′ in the second step, Lemma 5.2.1 in the third step and Lemma 5.2.2

in the final step.
So now, setting γ = mλmin(C)+λ

M+λ
and δ = 0 we have

mλmin(C) + λ

M + λ
(F (A ∪ S)− F (A))

≤ 1

2

mλmin(C) + λ

M + λ
bAS
′T

(mCAS
′
+ λI)−1bAS

′

≤ 1

2

bAS
′T
bAS
′

M + λ

≤
∑
x∈S

(F (A ∪ {x})− F (A)) ,

completing the proof. �

This result extends the squared loss case to all losses bounded by quadratics. One thing to note
is that, in the case where λmin(C) is small, the mλmin(C) term contributes negligibly to the bound,
and so we can drop the requirement that ` is strongly convex. Instead, in this case we only require
that ` is convex (or equivalently, that ` is 0-strongly convex).

These bounds also similarly extend to the OMP algorithm applied to the smooth sparse ap-
proximation setting. In the smooth loss setting, the only change to the OMP algorithm given in
Algorithm 5.2 is the gradient-based selection step. In the squared loss case, we implicitly stated
the gradient for the squared loss in the selection criteria. Given a currently selected set Dj−1, the
smooth loss equivalent of the OMP algorithm is to first find w∗ using

w∗ = arg min
w

E[`(wTXDj−1
)].

The next element is then selected using

x∗ = arg max
x∈X

E[−∇`(w∗TXDj−1
)Tx]2

c(x)
,

where∇` is the gradient of the chosen smooth loss function.
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We now extend the approximately greedy bound to this setting, getting the same multiplicative
constant as the one derived in the approximately submodularity bound, as expected.

Theorem 5.4.4. Let variables Xi be zero mean, and ` be an m-strongly convex and M -strongly
smooth loss function as given in Equations (5.9-5.10). Let λmin(C) be the minimum eigenvalue
of the covariance matrix of the variables Xi. Then the OMP algorithm applied to F as given in
Equation (5.14) with regularization parameter λ is approximately greedy for α ≤ mλmin(C)+λ

M+λ
≤

λ
M+λ

, and β = 0.

Proof. Like previous cases, the proof is similar to the proof of approximate submodularity in
Theorem 5.4.3.

Let w∗ = arg minw E[`(wTXDj
) + λ

2
wTw] be the weight vector which maximizes F (Dj),

and Z = w∗XDj
.

Let bDj

S
′

= −E[∇`(Z)XS ]. The OMP algorithm (Algorithm 5.2) at iteration j + 1 selects
the element x∗ which maximizes

x∗ = arg max
x∈X

E[−∇`(Z)x]2

c(x)
,

which implies that

b
Dj

x∗
′T
b
Dj

x∗
′

c(x∗)
≥ max

x

b
Dj
x

′T
b
Dj
x

′

c(x)

Now, to lower bound the gain of the element x∗, using Lemma 5.4.1 and the same technique
from the proof of Theorem 5.4.3:

F (A ∪ {x∗})− F (A) ≥ 1

2

bA{x∗}
′T
bA{x∗}

′

M + λ
.

We can similarly upper bound the maximum gain:

max
x

F (A ∪ {x})− F (A) ≤ 1

2
bAx
′T

(mCAx
′
+ λI)−1bAx

′
,

where

CAS
′
= CS − CSA

(
CA +

λ

m
I

)−1

CAS .
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Using the same eigenvalue bounds as the previous proof:

bAS
′T

(mCAS
′
+ λI)−1bAS

′ ≤ bAS
′T
bAS
′

mλmin(C) + λ
.

So now, setting α = mλmin(C)+λ
M+λ

and β = 0 we have

F (Dj−1 ∪ {x∗})− F (D|−∞)

c∗

≥ 1

2

1

M + λ

bA{x∗}
′T
bA{x∗}

′

c(x∗)

≥ max
x

1

2

1

M + λ

bAx
′T
bAx
′

c(x)

≥ max
x

mλmin(C) + λ

M + λ

F (A ∪ {x})− F (A)

c(x)
,

completing the proof. �

Just as in the previous approximate submodularity proof, we can drop the strong convexity
requirement and still obtain an approximately greedy bound.

The previous two theorems give the following overall approximation results, when combined
with the analysis in Chapter 4.

Corollary 5.4.5. Let ` be an m-strongly convex and M -strongly smooth loss function. Let
γ =

mλmin(C)+λ

M+λ
. Let F be the regularized, smooth sparse approxmation objective given in Equa-

tion (5.14). Let S = (s1, . . .) be any sequence. Let D = (d1, . . .) be the sequence selected by
the greedy Forward Regression algorithm. Fix some K > 0. Let B =

∑K
i=1 c(di). Then

F (D〈B〉) > (1− e−γ
B
C )F (S〈C〉).

Similarly let D′ = (d′1, . . .) be the sequence selected by the Orthogonal Matching Pursuit
algorithm and B′ =

∑K
i=1 c(d

′
i). Then

F (D′〈B′〉) > (1− e−γ2
B′
C )F (S〈C〉).

We can also analyze the same smooth loss version of the constrained, or Ivanov regularized
approach.

The smooth, constrained version of the problem, as a set function, is

F (S) = E[`(0)]− min
w∈R|S|,‖w‖2≤ε

E[`(wTXS)]. (5.15)
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We also hypothesize that we should be able to derive similar bounds for the smooth, constrained
case as in the constrained case for squared loss.

We can derive the corresponding lemmas that upper and lower bound the gain, as in the regu-
larized smooth loss case.

Lemma 5.4.6. Let F be as given in Equation (5.15) for `, an M -strongly smooth loss as in
Equation (5.10). Let w∗ = arg min‖w‖2≤ε E[`(wTXA)] be the weight vector which maximizes
F (A), and Z = w∗XA. Then

F (A ∪ S)− F (A) ≥ max
‖w+w∗A∪S‖2≤ε

b′S∪A −
M

2
wTCA∪Sw

where

bS∪A
′ = −E[(∇`(Z)XA∪S)]

Proof. Starting with the definition of F from Equation (5.15), we have

F (A ∪ S)− F (A) = min
‖w‖2≤ε

E[`(wTXA)]− min
‖w‖2≤ε

E[`(wTXA∪S)].

Let w∗A∪S be w∗ extended to the dimension of A ∪ S with zeros:

w∗A∪S =

[
w∗

0S

]
.

Using w∗ and Z, and expanding using the strong smoothness requirement around Z:

F (A ∪ S)− F (A)

= E[`(Z)]− min
‖w+w∗A∪S‖2≤ε

E[`(Z + wTXA∪S)]

≥ E[`(Z)]− min
‖w+w∗A∪S‖2≤ε

E[`(Z) +
〈
∇`(Z), wTXA∪S

〉
+
M

2

∥∥wTXA∪S∥∥2
]

= max
‖w+w∗A∪S‖2≤ε

E[−
〈
∇`(Z), wTXA∪S

〉
− M

2

∥∥wTXA∪S∥∥2
]

= max
‖w+w∗A∪S‖2≤ε

E[(−∇`(Z)XA∪S)]− M

2
wTCA∪Sw

Let b′A∪S = E[−∇`(Z)XA∪S ].
This completes the proof.
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Just as in the regularized case, this is effectively the negative gradient of the coordinate loss
given in Equation (5.11) evaluated at the current optimal weight vector w∗A∪S :

b′A∪S = −∇w∗A∪S
f(w∗A∪S),

or the gradient in weight-space of the function we are trying to maximize, at the current solution.
�

Using the same argument, but expanding using the definition of strong convexity yields the
corresponding upper bound.

Lemma 5.4.7. Let F be as given in Equation (5.15) for `, an m-strongly convex loss as in
Equation (5.9). Let w∗ = arg min‖w‖2≤ε E[`(wTXA)] be the weight vector which maximizes
F (A), and Z = w∗XA. Then

F (A ∪ S)− F (A) ≤ max
‖w+w∗A∪S‖2≤ε

b′S∪A −
m

2
wTCA∪Sw

where

bS∪A
′ = −E[(∇`(Z)XA∪S)]

�

Using these bounds, and the conjectures in Section 5.3, we also hypothesize that we should be
able to derive corresponding approximate submodularity and approximately greedy bounds for the
smooth, constrained case. We will not present proofs here, but just state the conjectured results.
The proofs for the case when the exsisting set A = ∅ are relatively straightfoward, as in the
conjectured proof of Conjecture 5.3.1.

Theorem 5.4.8 (a). Let variables Xi be zero mean, unit variance random variables, and ` be an
M -strongly smooth loss function as given in Equation (5.10), with M ≥ 1. Then F , as given in
Equation (5.15) with constraint ε is approximately submodular for all γ ≤ 1 and all δ ≥ Mγ2ε2

2
.

aThis theorem requires that Conjecture 5.3.2 hold in general.

Theorem 5.4.9 (a). Let variables Xi be zero mean, unit variance random variables, and ` an
M -strongly smooth loss function as given in Equation (5.10), with M ≥ 1. Then the OMP
algorithm applied to F as given in Equation (5.15) with constraint ε is approximately greedy for
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α ≤ 1 and all β ≥ Mγ2ε2

2
.

aThis theorem requires that Conjecture 5.3.2 hold in general.

We can now combine these (conjectured) results with the corresponding greedy optimizations
from the previous bound and achieve the following (conjectured) approximation bounds.

Corollary 5.4.10 (a). Let ` be an M -strongly smooth loss function. Let γ ∈ [0, 1]. Let F be the
constrained, smooth sparse approxmation objective given in Equation (5.15) with constraint ε.
Let S = (s1, . . .) be any sequence. Let D = (d1, . . .) be the sequence selected by the greedy
Forward Regression algorithm. Fix some K > 0. Let B =

∑K
i=1 c(di). Then

F (D〈B〉) > (1− e−γ
B
C )F (S〈C〉)−

Mγ2ε2

2

B

C
.

Similarly let D′ = (d′1, . . .) be the sequence selected by the Orthogonal Matching Pursuit
algorithm and B′ =

∑K
i=1 c(d

′
i). Then

F (D′〈B′〉) > (1− e−γ2
B′
C )F (S〈C〉)−

1 + γ

2
Mγ2ε2

B′

C
.

aThis theorem requires that Conjecture 5.3.2 hold in general.

5.5 Simultaneous Sparse Approximation
We will now examine a common extension of the sparse approximation problem, the simultaneous
sparse approximation problem. In this problem we want to select a subset of the variables Xi

that best reconstruct multiple target signals Yk simultaneously or optimize multiple smooth losses
simultaneously. In this setting the same set of variables is selected to reconstruct all signals, but
the linear combination of the variables selected is allowed to vary arbitrarily for each signal. More
formally, given some set of problems Fk, the objective for this problem is just the sum of these set
functions. For example, in the smooth, regularized case from Equation (5.14), the simultaneous
version of the loss is

F (S) =
∑
k

Fk(S) (5.16)

=
∑
k

E[`k(0)]− min
w∈R|S|

E[`k(w
TXS) +

λk
2
wTw]. (5.17)

One example of a problem that fits in this setting is the multiclass setting where a one-vs-all
approach is used in combination with a smooth loss. Each of the resulting smooth loss problems
corresponds to one of the set function Fk. Other examples include reconstructing multiple targets
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Yk in multi-output regression, or other settings where we want to select the same subset of features
to simultaneously minimize multiple loss functions.

The corresponding Forward Regression algorithm for the simultaneous setting is very straight-
forward. We simply select the element that maximizes the per-unit-cost gain of the complete
objective:

F (A ∪ {x})− F (A)

c(x)
.

This is equivalent to just summing the gains for each individual sparse approximation problem and
then dividing by the cost of the element. It is relatively easy to show that this simultenous Forward
Regression algorithm has the same guarantees as in the individual setting.

Theorem 5.5.1. For k = (1, . . . , K), let Fk(S) be (γk, δk)-approximately submodular. Let
F (S) =

∑
k Fk(S). Let γ ≤ γk for all k and δ =

∑K
k=1 δk. Then F ((S)) is (γ, δ)-approximately

submodular.

Proof. By the definition of approximate submodularity we know that, for k = (1, . . . , K)

γk (Fk(A ∪ S)− Fk(A))− δk ≤
∑
x∈S

Fk(A ∪ {x})− Fk(A).

Summing over k we have that

K∑
k=1

γk (Fk(A ∪ S)− F (A))− δk ≤
K∑
k=1

∑
x∈S

Fk(A ∪ {x})− F (A).

Now using γ ≤ γk and δ =
∑K

k=1 δk we have

γ (F (A ∪ S)− F (A))− δ

= γ

(
K∑
k=1

γkFk(A ∪ S)− Fk(A)

)
− δ

≤
K∑
k=1

γk (Fk(A ∪ S)− Fk(A))− δk

≤
K∑
k=1

∑
x∈S

Fk(A ∪ {x})− Fk(A)

=
∑
x∈S

F (A ∪ {x})− F (A).
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Algorithm 5.3 Simultaneous Orthogonal Matching Pursuit
Given: elements X , target Y
Define F as in Equation (5.3)
Let D0 = ∅.
for j = 1, . . . do

for all k do
Let w∗k = arg minw E[(Yk − wTXDj−1

)2]
end for
Let x∗ = arg maxx∈X

∑
k

E[(Yk−w∗k
TXDj−1

)T x]2

c(x)
.

Let Dj = Dj−1 ∪ {x∗}.
end for

�

This result shows that, given a simultaneous sparse approximation problem, it is approximately
submodular with the same multiplicative constant as the loosest one of each of the corresponding
individual sparse approximation problems, and the sum of the additive constants.

The adaptation of the OMP algorithm is also intuitive. Whereas before the OMP algorithm
selected the element which maximized the squared gradient

x∗ = arg max
x∈X

E[∇Tx]2

c(x)
,

we now select the element which maximizes the sum of squared gradients with respect to each
individual sparse approximation problem

x∗ = arg max
x∈X

∑
k

E[∇T
k x]2

c(x)
.

A complete version of the Simultaneous OMP [Cotter et al., 2005, Chen and Huo, 2006] algo-
rithm is given in Algorithm 5.3, for the squared loss sparse approximation problem. The equivalent
selection criteria for the smooth loss case is

x∗ = arg max
x∈X

∑
k

E[−∇`k(w∗kTXDj−1
)Tx]2

c(x)
.

In a manner similiar to the OMP approximation results previously shown, we can derive similar
bounds for the SOMP algorithm applied to those settings. The analysis is not as straightforward as
the analysis of the Forward Regression approach, and must be done individually for each different
sparse approximation setting. We present here the smooth, regularized version of the proof.
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Theorem 5.5.2. For k = (1, . . . , K), let Fk(S) be the regularized sparse approximation prob-
lem for an m-strongly convex and M -strongly smooth loss `k, and regularization parameter λ
as in Equation (5.14). Let F (S) =

∑K
k=1 Fk(S). Then the SOMP algorithm applied to F ((S))

is (α, 0)-approximately greedy, for α = mλmin(C)+λ
M+λ

.

Proof. This proof very similar to the proof for regular OMP applied to the regularized, smooth-
loss version of the sparse approximation problem in Theorem 5.4.4.

Let w∗k = arg minw E[`k(w
TXDj

) + λ
2
wTw] be the weight vector which maximizes F (Dj),

and Zk = w∗kXDj
.

Let bDj

S
′
k = −E[∇`k(Zk)XS ]. The OMP algorithm (Algorithm 5.2) at iteration j + 1 selects

the element x∗ which maximizes

x∗ = arg max
x∈X

K∑
k=1

E[∇`k(Zk)x]2

c(x)
,

which implies that
K∑
k=1

b
Dj

x∗
′
k

T

b
Dj

x∗
′
k

c(x∗)
≥ max

x

K∑
k=1

b
Dj
x

′
k

T

b
Dj
x

′
k

c(x)

Now, to lower bound the gain of the element x∗, using Lemma 5.4.1 and the same technique
from the proof of Theorem 5.4.4:

K∑
k=1

Fk(A ∪ {x∗})− Fk(A) ≥
K∑
k=1

1

2

bA{x∗}
′
k

T
bA{x∗}

′
k

M + λ
.

We can similarly upper bound the gain of an arbitrary element:

K∑
k=1

Fk(A ∪ {x})− Fk(A) ≤
K∑
k=1

1

2
bAx
′
k

T
(mCAx

′
+ λI)−1bAx

′
k,

where

CAS
′
= CS − CSA

(
CA +

λ

m
I

)−1

CAS .

Again using the eigenvalue bound from Lemmas 5.2.1-5.2.3, we know that

bAS
′
k

T
(mCAS

′
+ λI)−1bAS

′
k ≤

bAS
′
k

T
bAS
′
k

mλmin(C) + λ
.



98 CHAPTER 5. SPARSE APPROXIMATION

Algorithm 5.4 Grouped Forward Regression
Given: elements X , groups Γ, target Y
Define F as in Equation (5.3)
Let D0 = ∅.
for j = 1, . . . do

Let G∗ = arg maxG∈Γ
F (Dj−1∪G)−F (Dj−1)

c(G)
.

Let Dj = Dj−1 ∪ G∗.
end for

So now, setting α = mλmin(C)+λ
M+λ

and β = 0 we have

F (Dj−1 ∪ {x∗})− F (D|−∞)

c∗

=
K∑
k=1

Fk(Dj−1 ∪ {x∗})− Fk(D|−∞)

c∗

≥
K∑
k=1

1

2

1

M + λ

bA{x∗}
′
k

T
bA{x∗}

′
k

c(x∗)

≥ max
x

K∑
k=1

1

2

1

M + λ

bAx
′
k

T
bAx
′
k

c(x)

≥ max
x

mλmin(C) + λ

M + λ

K∑
k=1

Fk(A ∪ {x})− Fk(A)

c(x)

= max
x

mλmin(C) + λ

M + λ

F (A ∪ {x})− F (A)

c(x)

completing the proof. �

These two results together show that, for a given set of sparse approximation problems with
identical approximation guarantees, such as a set of problems all with the same regularization
parameters and variables, the resulting simultaneous sparse approximation problem has identical
approximation guarantees to each individual problem as well.

5.6 Grouped Features
One final extension of the standard sparse approximation problem that we will examine is the

grouped version of the problem. In this variant, each feature belongs to some group G, and the
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Algorithm 5.5 Grouped Orthogonal Matching Pursuit
Given: elements X , groups Γ, target Y
Define F as in Equation (5.3)
Let D0 = ∅.
for j = 1, . . . do

Let w∗ = arg minw E[(Y − wTXDj−1
)2]

Let bDj−1
x = E[(Y − w∗TXDj−1

)Tx].

Let G∗ = arg maxG∈Γ
b
Dj−1
G

T
(CG+λI)−1b

Dj−1
G

c(G)
.

Let Dj = Dj−1 ∪ G∗.
end for

budget and costs c(G) are defined over the groups selected, not the individual features. Selecting
any one feature within the group is effectively equivalent to selecting the entire group. This sce-
nario typically arises when features are computed using some common process or derived from
some base feature.

Formally, we are given some set of groups Γ = {G1,G2, . . .} such that each group contains
some set of the features G ⊆ X . We additionally assume that the sets form a partition of the set X ,
so that G ∩ G ′ = ∅ for all G,G ′ ∈ Γ and G 6= G ′.

Let F ′ be the grouped set function maximization, or equivalently, the corresponding set func-
tion over the raw variables in the selected groups:

F ′(Σ) = F (S(Σ)) (5.18)

S(Σ) =
⋃
G∈Σ

G. (5.19)

One typical solution to solving this problem in practice is to use the standard Forward Regres-
sion and Orthogonal Matching Pursuit algorithms adapted to the group setting. In this approach the
same greedy criteria over single features is used, but the entire group corresponding to the selected
feature is used as the selected group. Effectively this approach greedily selects groups by using the
max, or L∞ norm of some criteria over the features in the group. Another obvious variant of the
OMP algorithm is to use the L2 norm of the OMP criteria evaluated over the features in the group.

To be concrete, the standard OMP criteria maximizes the gradient term:

bDj−1
x = E[(Y − w∗TXDj−1

)Tx],

specifically the squared term:
bDj−1
x

T
bDj−1
x .

The single feature version of the grouped OMP approach selects the group G which maximizes:∥∥∥bDj−1

G

∥∥∥2

∞
,
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while the other OMP variant maximizes ∥∥∥bDj−1

G

∥∥∥2

2
.

There are simple counter-examples that show where both of these approaches fail. For the L∞
approach, the algorithm will pick groups that have one single good feature, while other groups may
contain arbitrarily many good, but slightly worse, features. The L2 approach fails in an opposite
fashion. Given a group with many identical copies of the same feature, the L2 criteria will be very
high, when the group may in fact have very little benefit.

We propose two group-based variants of the FR and OMP algorithms, given in Algorithm 5.4
and Algorithm 5.5 to fix these problems. The FR variant of the algorithm is a very natural greedy
strategy evaluated over the groups instead of the individual features. The OMP approach uses
a method similar to the L2 criteria proposed above, but modifies this by instead computing the
quadratic form

b
Dj−1

G
T

(CG + λI)−1 b
Dj−1

G .

An alternative way to view this OMP variant is that it is identical to the L2 approach, but with
the added caveat that the data is whitened within each group prior to running the algorithm.

We do not present approximation guarantees here, but we propose that similar approximation
guarantees to the OMP and FR algorithms in the standard sparse approximation setting can likely
be extended to this setting as well.

5.7 Experimental Results
We now present a number of results on practical applications. In out results we will compare
the optimal feature set for a given budget (OPT), Forward Regression (FR), Orthogonal Matching
Pursuit (OMP), and Lasso (L1). For FR and OMP, we use the cost-greedy variants presented here,
as well as comparisons against the original implementations for uniform feature costs [Pati et al.,
1993, Miller, 2002].

For the Lasso approach, we utilize two different approaches. For strictly regression settings we
use Least Angle Regression [Efron et al., 2004] as implemented by the lars R package [Hastie
and Efron, 2013]. For the multiclass experiments that will follow, we utlize the L1 regularization
feature of Vowpal Wabbit [Langford, 2013] to generate the Lasso regularization path. Finally, in
the Lasso approaches, we take the set of variables given by the L1 regularization path, and retrain
the model without the L1 constraint to obtain the optimal performance for a given budget.

For datasets, we use the UCI Machine Learning Repository [Frank and Asuncion, 2010],
specifically the ‘housing’ and ‘wine quality’ datasets for regression problems and the ‘pendigits’
and ‘letter’ datasets for multiclass classification problems.

For all problems we normalize the features to unit variance and zero mean, and for regression
problems we normalize the target as well. The ‘housing’ dataset uses d = 13 features, while the
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Figure 5.2: Performance of optimal (OPT), Forward Regression (FR), Orthogonal Matching Pursuit (OMP)
and Lasso (L1) algorithms on the UCI ‘housing’ dataset, for various parameterizations of the regularized
(left) and constrained (right) sparse approximation problems.

‘wine quality’ dataset has d = 11 features. For the multiclass problems, ‘pendigits’ has d = 16
features and k = 10 classes, while ‘letter’ has d = 16 features and k = 26 classes.

Figure 5.2 shows the results for all algorithms on the ‘housing’ dataset using uniform costs,
while varying the regularization and constraint parameters λ and ε for the regularized and con-
strained sparse approximation problems. We use λ ∈ {0, 0.1, 0.25, 0.5} and ε ∈ {1, 0.5, 0.4, 0.3}
here. As predicted by our bounds, we see the greedy algorithms converge to optimal performance
as the constraint or regularization increasingly penalizes larger weights. We also observe that
the Lasso algorithm converges as the weight vector is increasingly penalized, but is consistently
outperformed by the greedy approaches.

Figure 5.3 demonstrates the performance of all algorithms for the two regression datasets on
the budgeted sparse approximation problem. Here we use synthetic costs, as no costs are provided
with the datasets used. The costs are sampled from a gamma distribution with parameters k =
2, θ = 2.0, to ensure that there are a mix of expensive and cheap costs. All results are average over
20 different sets of sampled costs.

To obtain a cost-based or budgeted version of the Lasso algorithm, we scale each feature x by
the inverse of the cost c(x), effectively scaling the weight which is penalized in the L1 term by
c(x), giving a cost-scaled version of the L1 norm. This approach requires that you ensure that the
Lasso implementation used is not re-normalizing the features at any point, which we have done.

We see the same behavior here that we saw in the first comparison and in our theoretical bounds.
Namely, that Forward Regression is the closest to optimal performance, followed by Orthogonal
Matching Pursuit, with the Lasso approach typically giving the worst performance.

For the smooth and simultaneous sparse approximation settings, Figure 5.4 demonstrates cost-
greedy algorithms as well as their uniform cost counterparts on two multiclass datasets. Here we
use the one-vs-all approach to multiclass classification, using the logistic loss for each of the k
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Figure 5.3: Performance of optimal (OPT), Forward Regression (FR), Orthogonal Matching Pursuit (OMP)
and Lasso (L1) algorithms on the UCI ‘housing’ and ‘wine quality’ datasets, for the budgeted sparse approx-
imation problem using synthetic costs. Results are averaged over 20 sets of sampled synthetic costs.

resulting binary classification problems. This gives an overall sparse approximation problem with
k simultaneous smooth losses with strong smoothness parameter M = 1.

For feature costs, we use the same synthetic cost sampling procedure described above, also
averaged over 20 different sets of costs. In this problem we see the same behavior observed in
Figure 5.3 with Forward Regression giving the best overall trade-off of cost and accuracy, followed
by Orthogonal Matching Pursuit and then Lasso. We do not compare to optimal performance for
these experiments because it is significantly more expensive to train a logistic regressor than a
regular least squares fit for all subsets of the the features.

Additionally, these results show that using the cost-greedy variant of each algorithm is critical
to obtaining good performance on the budgeted problem. The variants intended for use in the
uniform cost case significantly underperform in this setting. Although we do not know of any
analysis for the budgeted setting, our results also indicate that a version of the Lasso algorithm
which uses a weighted L1 norm significantly outperforms the traditional unweighted approach
when dealing with budgeted feature selection problems.

As another example of a budgeted feature selection problem, we use the Yahoo! Learning
to Rank Challenge dataset augmented with feature costs [Xu et al., 2012]. Though this is a
ranking problem, we use the regression version of the problem. Each document in the dataset
is paired with a relevance ranking in {0, 1, 2, 3, 4}, and we use the normalized vector of rele-
vances as the regression target Y . The dataset consists of 519 features, with costs drawn from
{1, 5, 10, 20, 50, 100, 150, 200}. The full training dataset contains 473134 examples, but we use
only the first 200000 as the Lasso implementation used in these experiments required the full
dataset to be stored in memory, and our test machine did not have enough memory for the com-
plete dataset.

Figure 5.5 gives the results of both cost-greedy and uniform variants of all algorithms on this
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Figure 5.4: Performance of cost-greedy and uniform cost variants of Forward Regression (FR), Orthogonal
Matching Pursuit (OMP) and Lasso (L1) algorithms on the UCI ‘letter’ and ‘pendigits’ datasets, for the
budgeted sparse approximation problem using synthetic costs. Results are averaged over 20 sets of sampled
synthetic costs.

dataset. Here we see the same basic behavior as all previous datasets, with a slightly less pro-
nounced advantage to the cost-greedy variants over the uniform cost algorithms. Figure 5.6 gives a
comparison of the training time required for all algorithms, as a function of the number of features
selected. Note that in the regression case, all algorithms first compute the covariance matrix C and
vector b, and then operate on this reduced (d = 519 dimensions) space, so the training time should
not scale with the number of training examples, except for the initial fixed cost (here 14.41s) of
computing these quantities. Overall we observe that the OMP and L1 algorithms are fairly effi-
cient, even for large numbers of features, while the FR algorithm is nearly two orders of magnitude
more expensive.

Finally, we present experimental results for the grouped feature setting. In this setting we
contrast the proposed grouped FR (Algorithm 5.4) and grouped OMP (Algorithm 5.5) algorithms,
the optimal group selections, the single feature versions of the FR and OMP algorithms (the L∞
approach described in Section 5.6) and the L2 version of OMP, which is equivalent to the proposed
algorithm with the added assumption that the data is already whitened within groups.

For the first dataset we use the same Yahoo Learning to Rank data from the previous results, but
with randomly generated groups (Figure 5.7). We randomly distribute the d = 519 features evenly
among 17 groups of approximately 30 features each. All results are averaged over 20 randomly
sampled sets of groups. The second dataset used is synthetically sampled data (Figure 5.8). We
generate d = 160 features for 100 examples randomly, such that the features have moderately high
correlations of 0.6, in a manner similar to Das and Kempe [2011]. The groups are also randomly
sampled with 16 groups of 10 features each. We then randomly sample half of the groups (8) and
use uniform weights over the features in those groups to construct the target vector, along with
added noise (σ = 0.1).
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Figure 5.5: Performance of cost-greedy and uniform cost variants of Forward Regression (FR), Orthogonal
Matching Pursuit (OMP) and Lasso (L1) algorithms on the budgeted version of the Yahoo! Learning to
Rank dataset.

In these experiments we see that the grouped version of the FR algorithm clearly dominates
and is closest to optimal, while the grouped version of the OMP algorithm is slightly worse. The
L2 variant, or non-whitened version of the grouped OMP approach is substantially worse than all
algorithms. The L∞ or single feature versions are significantly sub-optimal for small numbers of
selected groups, due to their inability to measure the overall benefit of the groups, but can some-
times (synthetic data) outperform the grouped approaches for larger numbers of selected groups.
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Figure 5.6: A comparison of the training time required for various numbers of selected features for Forward
Regression (FR), Orthogonal Matching Pursuit (OMP) and Lasso (L1) algorithms on the Yahoo! Learning
to Rank dataset. Note the log-scale of training time.
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Figure 5.7: Comparison of group selection approaches for the grouped feature selection problem with
randomly sampled groups for the Yahoo! Learning to Rank data (left) along with a zoomed portion of the
results (right). Algorithms compared are the grouped FR and OMP variants, single feature or L∞ versions,
and the un-whitened or L2 variant of the OMP approach.
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Figure 5.8: Comparison of group selection approaches for the grouped feature selection problem with
synthetic data. Algorithms compared are the grouped FR and OMP variants, single feature or L∞ versions,
and the un-whitened or L2 variant of the OMP approach.
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Chapter 6

SPEEDBOOST: Anytime Prediction
Algorithms

In this chapter we will now combine the algorithms and analysis from the previous chapters to
tackle the anytime prediction problem we originally set out to study. Specifically, we will combine
the widely applicable framework of functional gradient methods with the cost-greedy algorithms
and theoretical guarantees from our analysis of sparse approximation methods, to obtain methods
for building ensemble predictors with similar near-optimal guarantees.

6.1 Background
Recall the desirable properties for anytime algorithms given by Zilberstein [1996]:

• Interruptability: a prediction can be generated at any time.

• Monotonicity: the quality of a prediction is non-decreasing over time.

• Diminishing Returns: prediction quality improves fastest at early stages.

To accomplish these goals we will rely heavily on the two major areas examined in the earlier
parts of this work. To obtain the incremental, interruptable behavior we would like for updating
predictions over time we will learn an additive ensemble of weaker predictors. This aspect of
our anytime approach is based on the functional gradient framework detailed in Chapter 2. By
learning a sequence of weak predictors, represented as a linear combination of functions h, we
naturally have an interruptable predictor. We simply evaluate the weak predictors in sequence
and compute the linear combination of the outputs whenever a prediction is desired, allowing for
predictions to be updated over time.

Building on that foundation, we will then introduce the cost-greedy strategies studied in Chap-
ters 4 and 5. This augmented cost-greedy version of functional gradient methods is simply an

109
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extension of the sparse approximation setting discussed in the previous chapter, with each weak
predictor representing a variable to be selected. As we have shown previously, using a cost-greedy
approach ensures that we select sequences of weak predictors that behave near-optimally and in-
crease accuracy as efficiently as possible, satisfying the last two properties.

We will now develop similar algorithms to the Forward Regression (FR) and Orthogonal
Matching Pursuit (OMP) algorithms discussed in Chapter 5 specifically for the functional gradient
domain, which will generate sequences of weak predictors h that obtain good anytime performance
across a range of computational budgets. Specifically, we will show in Section 6.4 that the theoret-
ical results for sparse approximation studied in Chapter 5 all generalize to certain variants of our
anytime approach.

6.2 Anytime Prediction Framework
Building from the functional gradient framework discussed in Chapter 2, we will base our frame-
work for anytime prediction around the additive, incremental predictors discussed there. In the
anytime setting, as in the functional gradient setting, we consider predictors f : X → V which
compute some prediction f(x) ∈ V for inputs x ∈ X

To obtain the incremental improvement in performance we desire for our anytime learner, we
use the additive predictors f from functional gradient methods, which are a weighted combination
of weaker predictors h ∈ H

f(x) =
∑
i

αihi(x), (6.1)

where αi ∈ R and hi : X → V .
We will use the same loss function optimization setting as functional gradient methods as well.

Recall that we wish to minimize some objective functionalR:

min
f
R[f ].

Typically,R is some pointwise loss, evaluated over training data

R[f ] =
N∑
n=1

`(f(xn)), (6.2)

but as discussed in Chapter 2, a number of other objective functionals are possible.
We will model the time budget portion of the anytime setting as a budget constraint, in the

same manner as the budgeted maximization problems discussed in Chapter 4 and Chapter 5. We
assume that each weak predictor h has an associated measure of complexity, or cost, τ(h) where
τ : H → R. This measure of complexity allows for weak predictors which trade accuracy for
computational efficiency and vice versa.
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For the case where each predictor h can have variable computational cost per example, such as
a decision tree, we use the expected computation time. Let τx(h) be the cost of evaluating h on
example x. Then:

τ(h) = EX [τx(h)].

We further assume that calculating the sum of the predictor outputs weighted by αt takes neg-
ligible computation, so that the total computation time is dominated by the computation time of
each predictor. Using this complexity measure we can describe the predictions generated at a given
time T as

f〈T 〉 =
i∗∑
i=1

αihi(x), i∗ = max

{
i′

∣∣∣∣∣
i′∑
i=1

τ(hi) < T

}
.

In the anytime setting, we will then attempt to optimize the performanceR[f〈T 〉] for all budgets T .

6.3 SPEEDBOOST

We now consider learning algorithms for generating anytime predictors. Formally, given a set of
weak predictors H we want to find a sequence of weights and predictors {αi, hi}∞i=1 such that
the predictor f constructed in Equation (6.1) achieves good performance R[f〈T 〉] at all possible
stopping times T .

Recall the properties of interruptability, monotonicity, and diminishing returns that are desir-
able in the anytime setting. An ensemble predictor as formulated in Section 6.2 naturally satisfies
the interruptability property, by evaluating the weak predictors in sequence and stopping when
necessary to output the final prediction.

Algorithm 6.1 SPEEDBOOST

Given: starting point f0, objectiveR
for i = 1, . . . do

Let hi, αi = arg maxh∈H,α∈R
[R[fi−1]−R[fi−1+αh]]

τ(h)
.

Let fi = fi−1 + αihi.
end for
return Predictor ({(hi, αi)}i)

To learn predictors which satisfy the last two properties, we present SPEEDBOOST (Algorithm
6.1), a natural greedy selection approach for selecting weak predictors. This algorithm uses a cost-
greedy selection procedure to select the weak learner h which gives the largest gain in objectiveR
per unit-cost:

arg max
h∈H,α∈R

[R[fi−1]−R[fi−1 + αh]]

τ(h)
. (6.3)
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It can be shown that the non-cost based version of this optimization,

arg max
h∈H,α∈R

[R[fi−1]−R[fi−1 + αh]] , (6.4)

is the same optimization performed by many boosting algorithms implicitly. In many functional
gradient methods, we select the predictor which maximizes

arg max
h∈H

〈∇, h〉
‖h‖

,

as per the discussion in Chapter 2. This optimization is equivalent to minimizing Equation (6.4)
for many losses. For example, in squared error regression, or in the exponential loss optimization
of AdaBoost [Freund and Schapire, 1997], the two are equivalent.

As we will discuss later in Section 6.4, this algorithm is very similar to the Forward Regression
algorithm discussed in the previous chapter (Algorithm 5.1), with one exception. In this algorithm,
the weight is optimized only over the newly added element hi, while in Forward Regression, the
weights are re-optimized over all selected variables.

SPEEDBOOST will select a sequence of feature functions h that greedily maximize the im-
provement in the algorithm’s prediction per unit time. By using a large set H of different types
of weak predictors with varying time complexity, this algorithm provides a simple way to trade
computation time with improvement in prediction accuracy. Unfortunately, for many classes of
functions where H is very large, Algorithm 6.1 can be impractical. Furthermore, unlike in regular
boosting, where the projection operation can be implemented as an efficient learning algorithm,
the cost-greedy selection criteria in Equation (6.3) is not so easily optimizable.

To address this issue, we use the weak learner selection methods of functional gradient descent
and other boosting methods. As shown in Chapter 2, we can implement an efficient gradient
projection operation to select good candidate weak predictors.

Recall from Section 2.2 that, given a function ∇ representing the functional gradient (Sec-
tion 2.1.2), the projection of ∇ on to a set of weak predictors H is defined using the functional
inner product,

Proj (∇,H) = arg max
h∈H

〈∇, h〉
‖h‖

= arg max
h∈H

∑N
n=1∇(xn)h(xn)∑N

n=1 h(xn)2
.

(6.5)

For classifiers with outputs in h(x) ∈ {−1,+1}, Equation (6.5) is simply a weighted classifica-
tion problem. Equivalently, when H is closed under scalar multiplication, the projection rule can
minimize the norm in function space,

Proj (∇,H) = arg min
h∈H

‖∇ − h‖2

= arg min
h∈H

N∑
n=1

(h(xn)−∇(xn))2,
(6.6)
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which corresponds directly to solving the least squares regression problem.

Algorithm 6.2 SPEEDBOOST.Proj
Given: starting point f0, objectiveR
for i = 1, . . . do

Compute gradient∇i = ∇R[fi−1].
LetH∗ =

{
h∗j
∣∣ h∗j = Proj (∇i,Hj)

}
.

Let hi, αi = arg maxh∈H∗,α∈R
[R[fi−1]−R[fi−1+αh]]

τ(h)

Let fi = fi−1 + αihi.
end for
return Predictor ({(hi, αi)}i)

Algorithm 6.2 gives a more tractable version of SPEEDBOOST for learning anytime predictors
based on the projection strategy of functional gradient descent. Here we assume that there exist a
relatively small number of weak learning algorithms, {H1,H2, . . .} representing classes of func-
tions with similar complexity. For example, the classes may represent decision trees of varying
depths or kernel-based learners of varying complexity. The algorithm first projects the functional
gradient onto each individual class as in gradient boosting, and then uses the best result from each
class to perform the greedy selection process described previously.

Algorithm 6.3 SPEEDBOOST.MP
Given: starting point f0, objectiveR
for i = 1, . . . do

Compute gradient∇i = ∇R[fi−1].
LetH∗ =

{
h∗j
∣∣ h∗j = Proj (∇i,Hj)

}
.

Let hi = arg maxh∈H∗
〈∇i,h〉2

τ(h)
.

Let αi = arg minα∈RR[fi−1 + αhi]
Let fi = fi−1 + αihi.

end for
return Predictor ({(hi, αi)}i)

This modification to the greedy algorithm is closely related to another greedy feature selection
algorithm. Algorithm 6.3 gives a complexity-weighted version of Matching Pursuit [Mallat and
Zhang, 1993], adapted to function spaces. In this algorithm, we use the selection criteria

arg max
h∈H∗

〈∇i, h〉2

τ(h)
,

to select the next weak predictor at each iteration. This selection criteria is equivalent to the criteria
used in Orthogonal Matching Pursuit [Pati et al., 1993], discussed in Chapter 5, but the algorithm
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only fits the weight αi, instead of refitting the weights on all of the weak learners. In the next
section we will discuss the OMP equivalent for this algorithm, and the theoretical guarantees that
can be derived for that algorithm (Algorithm 6.5).

In practice we use Algorithm 6.2 in favor of Algorithm 6.3 because the linesearch and loss
evaluation required for that selection criteria is typically not significantly more expensive than the
Matching Pursuit selection criteria. In the SPEEDBOOST.MP variant, we will require a linesearch
anyway after the next weak predictor is selected, so computing it for each complexity class is
not a problem. Furthermore, the projection of the gradient on to each complexity class Hj is
typically much more expensive than the linesearch required to optimize the selection criteria in
SPEEDBOOST.Proj, so that portion of the optimization does not contribute significantly to the
training time.

6.4 Theoretical Guarantees

Algorithm 6.4 SPEEDBOOST.FR
Given: starting point f0, objectiveR
for i = 1, . . . do

Let hi,αi = arg max
h∈H,α∈Ri

[R[fi−1]−R[
∑i−1

j=1 αjhj+αih]]
τ(h)

.

Let fi =
∑i

j=1 αijhj .
end for
return Predictor ({(hi,αi)}i=1)

Algorithm 6.5 SPEEDBOOST.OMP
Given: starting point f0, objectiveR
for i = 1, . . . do

Compute gradient∇i = ∇R[fi−1].
LetH∗ =

{
h∗j
∣∣ h∗j = Proj (∇i,Hj)

}
.

Let hi = arg max
h∈H∗

〈∇i,h〉2

τ(h)
.

Let αi = arg min
α∈Ri

R[
∑i−1

j=1 αjhj + αihi].

Let fi =
∑i

j=1 αijhj .
end for
return Predictor ({(hi,αi)}i=1)

We will now analyze a variant of the SPEEDBOOST algorithm and prove that the predictor
produced by this algorithm is near optimal with respect to any sequence of weak predictors that
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Figure 6.1: Test set error as a function of complexity for the UCI ‘pendigits’ dataset, comparing SPEED-
BOOST.MP (Algorithm 6.3) (black dashed line) to SPEEDBOOST.OMP (Algorithm 6.5) (solid red line).

could be computed in the same amount of time, for a common set of loss functions and certain
classes of weak predictors.

For analysis, one can interpret Algorithm 6.3, and to some degree Algorithm 6.2, as a time-
based version of Matching Pursuit [Mallat and Zhang, 1993]. Unfortunately, the sequence of weak
predictors selected by matching pursuit can perform poorly with respect to the optimal sequence
for some fixed time budget T when faced with highly correlated weak predictors [Pati et al., 1993].
A modification of the Matching Pursuit algorithm called Orthogonal Matching Pursuit [Pati et al.,
1993] addresses this flaw.

As discussed previously, the main different between the MP and OMP approach is the behavior
of the weight fitting at each iteration. In SPEEDBOOST.MP we fit the only the weight αi on weak
predictor hi at each iteration. In the OMP approach and in SPEEDBOOST.OMP, we refit all the
weights α on each weak predictor at each iteration. Similarly, the basic SPEEDBOOST algorithm
(Algorithm 6.1) differs only from Forward Regression in this same weight refitting aspect.

To that end, we present SPEEDBOOST.FR (Algorithm 6.4) and SPEEDBOOST.OMP (Algo-
rithm 6.5) which are modifications of the SPEEDBOOST (Algorithm 6.1) and SPEEDBOOST.MP
(Algorithm 6.3), respectively. The key difference between these algorithms is the refitting of the
weights on every weak predictor selected so far at every iteration of the algorithm.

The key disadvantage of using this algorithm in practice is that the output of all previous weak
predictors must be maintained and the linear combination re-computed whenever a final prediction
is desired.

In practice, we found that SPEEDBOOST and SPEEDBOOST.MP performed nearly as well as
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Algorithm 6.5 in terms of improvement in the objective function, while being significantly cheaper
to implement. We did not test SPEEDBOOST.FR, because it is intractable in practice for the boost-
ing setting. To properly implement it would require enumerating all possible weak predictors in
a given set and running a full weight optimization over all previous weak learners for each one,
which would be prohibitively expensive.

Figure 6.1 shows a comparison of the test error on the UCI ‘covertype’ dataset for SPEED-
BOOST.MP and SPEEDBOOST.OMP. In this case, while the training objective performances were
nearly indistinguishable (not shown), Algorithm 6.5 overfit to the training data much more rapidly.

6.4.1 Uniformly Anytime Near-Optimality

Now that we have these function space equivalents of the FR and OMP algorithms, we can use the
results in Chapter 5 to obtain approximation guarantees on them.

Assume that R is the pointwise loss given in Equation (6.2). Let S be a set of selected weak
predictors S ⊂ H, and let fS be the linear combination of those selected weak predictors which
minimizesR:

fS =
∑
i∈S

α∗ihi

α∗ = arg min
α

R[
∑
i∈S

αihi].
(6.7)

Then, we can define a set function equivalent of minimizing the objectiveR as

FR(S) = EX [`(0)]− min
α∈R|S|

EX [`(
∑
i∈S

αihi(x))]

= R[0]−R[fS ].

We have now reduced the anytime framework and SPEEDBOOST approach described above
to the sparse approximation problem analyzed in Chapter 5. It can further be shown that SPEED-
BOOST.FR (Algorithm 6.4) and SPEEDBOOST.OMP (Algorithm 6.5) are exactly equivalent to
the Forward Regression and Orthogonal Matching Pursuit algorithms previously analyzed for the
sparse approximation problem.

Using this reduction, we can apply all the results derived in Chapter 4 and Chapter 5 to our
anytime prediction setting and boosting framework. For example, consider the regularized variant
of the sparse approximation reduction given above:

FR(S) = EX [`(0)]− min
α∈R|S|

EX [`(
∑
i∈S

αihi(x)) +
λ

2
αTα]. (6.8)

This is equivalent to using a modified optimization problem where the weights on the weak
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learners are regularized:

min
f
R[f ] +

λ

2
αTα

f =
∑
i

αihi.

We can now apply the bounds for the regularized, smooth sparse approximation problem to this
setting and get a guarantee for the performance of our SPEEDBOOST variants.

Theorem 6.4.1 (Uniformly Anytime Approximation Guarantee). Let FR be the regularized ver-
sion of the anytime problem given in Equation (6.8), with regularization parameter λ. Assume
that the weak predictors in H all have bounded norm ‖h‖ ≤ 1. Let loss ` be an M -strongly
smooth functional. Let S be any sequence of elements inH. Let γ = λ

M+λ
. Algorithm 6.4 selects

a sequence of weak predictors G = {hi | hi ∈ H}i such that for any time T =
∑i′

i=1 τ(hi),

FR(G〈T 〉) >
(
1− e−γ

)
FR(S〈T 〉),

and Algorithm 6.5 selects a sequence of weak predictors G′ = {h′i | h′i ∈ H}i such that for any
time T ′ =

∑i′

i=1 τ(h′i),

FR(G ′〈T ′〉) >
(

1− e−γ2
)
FR(S〈T ′〉).

�

The proof is a direct application of the bounds in the previous chapters to the sparse approxi-
mation reduction we’ve detailed above.

Theorem 6.4.1 states that, for all times T that correspond to the computation times that weak
learners selected by SPEEDBOOST.FR and SPEEDBOOST.OMP update their prediction, the re-
sulting improvement in loss R is approximately as large as any other sequence of weak learners
that could have been computed up to that point. This means that the anytime predictor generated
by those algorithms is competitive even with sequences specifically targeting fixed time budgets,
uniformly across all times at which the anytime predictor computes new predictions.

Other results from previous chapters could also be easily extended to this setting using the
above sparse approximation reduction. For example, the doubling algorithm discussed in Sec-
tion 4.4 for obtaining a bi-criteria approximation with respect to any arbitrary budget T could be
adapted to SPEEDBOOST and its variants to obtain the same bi-criteria approximation guarantees
for arbitrary time budgets.
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6.5 Experimental Results

6.5.1 Classification

Our first application is a set of classification problems from the UCI Machine Learning Repository
[Frank and Asuncion, 2010]. We use the multiclass extension [Mukherjee and Schapire, 2010] to
the exponential loss

`n(f(xn)) =
∑
k 6=yn

exp(f(xn)k − f(xn)yn).

For weak predictors we use decision trees of varying depth up to 20 nodes deep. We use
Algorithm 6.2 and the weighted classification form of gradient projection to select the sequence of
trees for our anytime prediction algorithm.

Figure 6.2: Test set error as a function of prediction time for the UCI ‘pendigits’ (top) and ‘covertype’
(bottom) dataset. The algorithms shown are SPEEDBOOST.Proj (black dashed line), and AdaBoost.MM
[Mukherjee and Schapire, 2010] (red solid line).

As a point of comparison we use the AdaBoost.MM [Mukherjee and Schapire, 2010] imple-
mentation of multiclass boosting on the same set of trees. AdaBoost, when used in this manner
to generate an anytime predictor, is effectively a variant on the greedy selection algorithm (Algo-
rithm 6.1) which does not consider the computation time τ(h) of the individual hypotheses.

Figure 6.2 shows the performance of our algorithm and AdaBoost as a function of the average
number of features accessed per example. On these problems, the SPEEDBOOST generated predic-
tor finds a reasonable prediction using fewer features than the AdaBoost alternative and remains
competitive with AdaBoost as time progresses.
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6.5.2 Object Detection
Our second application is a vehicle detection problem using images from onboard cameras on a
vehicle on public roads and highways under a variety of weather and time-of-day conditions. The
positive class includes all vehicle types, e.g., cars, trucks, and vans. Negative examples are drawn
from non-vehicle regions of images taken from the onboard cameras.

Prediction on Batch Data

In the previous application we consider weak predictors which will run for roughly the same
amount of time on each example x and care about the performance of the learned predictor over
time on a single example. In many settings, however, we often care about the computational re-
quirements of a predictor on a batch of examples as a whole. For example, in ranking we care about
the computation time required to get an accurate ranking on a set of items, and in computer vision
applications many examples from a video or image are often processed simultaneously. Another
way to view this problem is as a simplified version of the structured prediction problem where the
goal is to make predictions on all pixels in an image simultaneously.

In these settings, it is often beneficial to allocate more computational resources to the diffi-
cult examples than the easy examples in a batch, so extra resources are not wasted improving
predictions on examples that the algorithm already has high confidence in. In computer vision,
in particular, cascades [Viola and Jones, 2001] are a popular approach to improving batch pre-
diction performance. These prediction algorithms decrease the overall complexity of a predictor
by periodically filtering out and making final predictions on examples, removing them from later
prediction stages in the algorithm.

We can use our anytime framework and algorithms to consider running each weak predictor on
subsets of the data instead of every example. Given a set of weak predictors H to optimize over,
we can create a new set of predictorsH′ by introducing a set of filter functions φ ∈ Φ:

φ : X → {0, 1},

and considering the pairing of every filter function and weak predictor

H′ = Φ×H
h′(x) = φ(x)h(x).

These filters φ represent the decision to either run the weak predictor h on example x or not. Unlike
cascades, these decisions are not permanent and apply only to the current stage. This property very
nicely allows the anytime predictor to quickly focus on difficult examples and gradually revisit the
lower margin examples, whereas the cascade predictor must be highly-confident that an example
is correct before halting prediction on that example.

Assuming that the filter function is relatively inexpensive to compute compared to the compu-
tation time of the predictor, the new complexity measure for predictors h′ is

τ(h′) = EX [φ(x)τx(h)] ,
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or the expected computation time of the original predictor, only on image patches which are not
filtered out by the filter function φ.

Implementation

Figure 6.3: Test set error for the vehicle detection problem as a function of the average number of features
evaluated on each image patch.

Similar to previous work in object detection, we use Haar-like features computed over image
patches for weak predictors. We search over margin-based filter functions φ, such that the filters at
stage i are

φi(x) = 1(|fi−1(x)| < θ),

leveraging the property that examples far away from the margin are (with high probability) already
correcly classified.

Computing these filters at test-time can be made relatively efficient in two ways. First, by
storing examples in a priority queue sorted by current margin, the updates and filtering at each
stage can be made relatively cheap. Second, after learning the anytime predictor using Algorithm
6.2, all future filters are known at each stage, and so the predictor can quickly determine the next
stage an example will require computation in and handle the example accordingly.

We compare against a cascade implementation for this detection dataset which uses the stan-
dard AdaBoost algorithm for an inner loop learning algorithm. Figure 6.3 gives the error on a test
dataset of 10000 positive and 50000 negative examples as a function of computation time. In this
setting the cascade is at a significant disadvantage because it must solidly rule out any negative
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Figure 6.4: Fraction of data updated by each iteration for the cascade (dashed blue line) and anytime
predictor (solid red line).

examples before classifying them as such, while the AdaBoost and anytime predictors can initially
declare all examples negative and proceed to adjust prediction on positive examples.

To further illustrate the large benefit to being able to ignore examples early on and revisit them
later, Figure 6.4 gives a per iteration plot of the fraction of test data updated by each corresponding
feature. This demonstrates the large culling early on of examples that allows the anytime predic-
tor to improve performance much more rapidly. Finally, Figure 6.5 displays the ROC curve for
the anytime predictor at various complexity thresholds against the ROC curve generated by the
final cascade predictions and Figure 6.6 shows the visual evolution of the cascade and anytime
predictions on a single test image.

6.5.3 Budgeted Feature Selection

Our final application for the anytime prediction framework is in the feature selection domain. In
this setting, we assume that the examples x do not have precomputed features, and that the total
prediction time T is dominated by the computation time of the features of x required by our
predictor. The goal, therefore, is to select a sequence of weak predictors h which only use a subset
of the features for a given example x. At any given point we want to have selected the most efficient
subset of features to obtain good anytime performance.

This is the same budgeted feature selection setting as Xu et al. [2012] and Xu et al. [2013a].
To handle this setting, we will have to slightly augment our cost model, to allow the cost of a weak
predictor to be dependent on previously selected ones.
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Figure 6.5: ROC curves for the final cascade predictions and anytime algorithm predictions at various
computation thresholds. Computation is measured using the average number of features computed on each
patch.

Dependent Weak Learner Costs

In the anytime prediction framework we presented in Section 6.2 we made the assumption that
weak predictors have some fixed cost τ(h). However, in the budgeted feature selection model,
features only incur computation costs the first time they are used. This implies that the cost of a
new weak predictor is dependent on which features have been selected so far, and hence which
predictors have been selected so far.

To handle this case, we now introduce a weak predictor cost which is conditioned on the pre-
viously selected weak predictors. When evaluating the cost of a weak predictor after selecting t
weak predictors already, the cost would be

τ(h|h1, . . . , ht),

and the total predictor cost would be

τ(f) =
∑
t

τ(ht|h1, . . . , ht−1).

In the budgeted feature selection setting we are given a set of features φ ∈ Φ and we assume
each feature has some computation or acquisition cost cφ. We also assume that there is some
small fixed cost for each predictor used, which represents the computational cost of evaluating that
predictor, after all features have been computed. For example, this might be the cost of evaluating
a decision tree once all features are known. We represent this fixed cost as ch for predictor h.



6.5. EXPERIMENTAL RESULTS 123

Using the notation φ ∈ f to represent that feature φ is used by predictor f , we can write the
conditional cost for the budgeted feature selection problem as

τ(h|h1, . . . , ht) = ch +
∑
φ∈Φ

cφ1(φ ∈ h)
∏
t

1(φ /∈ ht).

As desired, this definition of cost only incurs a penalty for the first time a feature is computed.
After that, the use of a feature is free, except for any fixed costs incurred in computing the predictor,
captured by the cost ch.

The total computation time of a predictor f then reduces exactly as we’d expect to

τ(f) =
∑
t

cht +
∑
φ

cφ1(φ ∈ f).

To modify our anytime prediction algorithms for this setting we simply augment the greedy
selection step in each algorithm to use the conditional cost instead of a fixed cost. This conditional
cost requirement breaks the assumptions required for the theoretical guarantees in Section 6.4, but
in practice the performance appears to be similar to the results we see when examining settings
with fixed costs.

Cost-Regularized Regression Trees

In this domain we want to generate weak predictors h that incur a variety of costs, by using different
mixtures of already computed and new features. Ideally, the weak predictors would also use new
features with a variety of costs, to explore the possibilities of using cheap and expensive features.

To achieve this, we use the weak predictor proposed by Xu et al. [2012] in their Greedy Miser
algorithm. Their weak predictor is based on a regression tree framework, but modifies the regres-
sion tree split function, also known as the impurity function, with a cost-based regularizer. Assume
we are at iteration t+ 1, and have already learned a predictor ft. The Greedy Miser weak predictor
selects node splits using an impurity function g which optimizes the cost-regularized squared error

g(h) =
1

2

N∑
n=1

‖∇(xn)− h(xn)‖2 + λτ(h|ft),

where λ is a regularization parameter which trades cost and accuracy of the learned predictor.
In the Greedy Miser approach, a fixed λ is chosen for all weak predictors, and functional

gradient boosting proceeds as normal, using the cost-regularized weak learning algorithm. Using
different values of λ produces different points on the cost and accuracy trade-off spectrum. In
our approach, we will use SPEEDBOOST to optimize simultaneously over weak predictors learned
with all the different values of λ. Specifically, we will use SPEEDBOOST.Proj (Algorithm 6.2) to
generate the best regression tree for each value of λ in a pre-selected set of possible values, and
then select from among these candidate trees using the cost-greedy SPEEDBOOST criteria.
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Experiments

Our first problem in this domain is the Yahoo! Learning to Rank Challenge data, augmented with
feature computation costs [Xu et al., 2012]. The dataset consists of a set of documents paired with
relevance scores in {0, 1, 2, 3, 4}, with 0 representing a completely irrelevant result and a score of 4
indicating high relevance. The document, relevance pairs are then grouped by query, representing
the groups within which the results are to be ranked. The dataset consists of 473134 training
documents, along with 71083 and 165660 validation and testing documents.

The features for the data are drawn from a variety of sources, with costs drawn from the set
cφ ∈ {1, 5, 10, 20, 50, 100, 150, 200}. We additionally use a fixed cost ch = 1 for each tree in this
problem.

For learning purposes we model the problem as a regression problem using squared error with
the relevance scores for targets. In practice, the Normalized Discounted Cumulative Gain (NDCG)
[Järvelin and Kekäläinen, 2002] is used to measure actual ranking performance, but we cannot
optimize this metric directly.

We compare to the Greedy Miser approach [Xu et al., 2012] for a variety of values of λ ∈
{0, 0.5, 1, 2, 4, 10}. We use the same set of λ values and the regularized regression tree training
detailed above to generate candidate weak predictors for the SPEEDBOOST.Proj algorithm. Ad-
ditionally, for λ = 0, Greedy Miser is equivalent to the standard functional gradient approach.
Although Greedy Miser is not an anytime approach per se, we can treat the predictor produced for
a given fixed value of λ as an anytime predictor in the same way we treat the sequences generated
by SPEEDBOOST.

Figure 6.7 gives the training performance, in the form of mean squared error, and test set accu-
racy , in the form of NDCG @ 5, for the Yahoo! Learning to Rank data. The anytime performance
of each individual Greedy Miser sequence is plotted, along with the single sequence trained by
SPEEDBOOST.

Looking at the training performance, we see that the SPEEDBOOST approach is very close to
the optimal performance at any given computational budget with respect to the training objective
of mean squared error. For test set performance, the NDCG @ 5 on test data is also nearly optimal,
but here we observe a small increase in the overfitting of the cost-greedy SPEEDBOOST approach
as compared with the Greedy Miser approach. We postulate that this is due to the cost-greedy
algorithm’s tendency to re-use features in order to get smaller gains, due to their very low cost as
compared to computing new features. This repeated re-use of cheap features can lead to increased
overfitting, particular for the regression trees used here.

The second application we consider is the Scene-15 scene categorization dataset. This dataset
consists of 4485 images grouped in to 15 classes describing the contents of the scene. Example
classes include: highway, office, forest and coast. Since this is a multiclass classification task, we
use the softmax, or cross-entropy loss, which is the mutliclass generalization of the logistic loss.

We utilize the same features and training procedure as Xu et al. [2012]. A total of 1500 images
are sampled (100 from each class) and used as training data, 300 are used as validation and the
remaining 2685 are used as test data. For each image, 184 different feature descriptors are com-
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puted using a variety of methods, such as Local Binary Patterns and spatial HOG features. Each
separate descriptor is then used to train 15 one-vs-all SVMs on 30% of the training data. Finally,
the predictions of the trained SVMs are used as input features for the anytime learner, with the
remaining 70% of the training data being used for training the anytime predictor. The end result
is a set of 1050 training examples and 184 × 15 = 2070 input features for the functional gradient
training procedure.

The feature costs in this case are derived from the cost of evaluating the underlying feature
descriptor. Each feature corresponds to a specific one-vs-all SVM computed on one particular
feature descriptor with a particular computational cost, represented as the time to compute that
descriptor for the average image. In this particular case, because multiple SVMs are trained on
each feature descriptor, we actually have costs for groups of features. That is, a weak predictor h
only incurs cost for feature φ if no features φ′ that are in the same group as φ have been computed
yet. Computing a feature in a group makes all the other features have an effective cost of 0, because
the computational cost is fixed for the entire descriptor and all features derived from it.

In this setting there are significantly more features than training examples (2070 vs. 1050). This
makes it highly likely that the regression trees used as weak learners will overfit to the training data,
even when using a small subset of the features. In practice we observe that, when using the standard
SPEEDBOOST approach, the algorithm significantly overestimates the cost-greedy gain on training
data. To increase robustness in this setting, we use a sampling approach similar to Stochastic
Gradient Boosting [Friedman, 1999]. At each iteration, we sample 90% of the training data without
replacement and use this training data for gradient projection, i.e. training weak predictors. We
then evaluate the cost-greedy gain used to select the optimal weak predictor in SPEEDBOOST on
the remaining 10% of the data that was held out. By evaluating the cost-greedy gain on held out
data, we compute an estimate of the true cost-greedy gain that is much closer to the behavior on
test data.

Figure 6.8 gives the same comparison of training objective and test accuracy for different com-
putational budgets on the Scene-15 dataset. For this dataset we see similar behavior as the Yahoo
LTR application. Though there are certain budgets for which the best fixed Greedy Miser predictor
outperforms the SPEEDBOOST predictor, overall the SPEEDBOOST approach is nearly as good as
the best performing predictor for a given budget. Furthermore, in this setting the fixed predictors
show very little change in features selected over time and largely target a single set of features and
hence a single budget. The SPEEDBOOST predictor, in constrast, initially uses cheaper features
and then switches to expensive features when doing so maximally increases the gain. Also note
that, while the training objective can continue to be decreased using only cheap features, as the
Greedy Miser predictor for λ = 4 shows, the sampling strategy ensures that the predictor switches
to using expensive features when doing so is beneficial on validation data.
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(a)

(b)

Figure 6.6: Images displaying the performance on a test image for the anytime predictor produced by
SPEEDBOOST (top) and the cascade (bottom). Displayed on the top of each image are the activations, or
classification probabilities, for that algorithm. In the middle is a heat map of the number of features evaluated
by that predictor for each pixel, along with a 3D visualization of this same statistic along the bottom. Images
are arranged left to right through time, at intervals of 7 average feature evaluations per pixel. Note that, at
this scale, the cascade still has most of its effort spread over the entire image, and so the heatmap and 3D
visualization are largely flat.
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Figure 6.7: Training objective (left) and test set accuracy (right) vs. computational cost for the budgeted
version Yahoo! Learning to Rank Challenge problem. Provided for comparison are the SPEEDBOOST.Proj
algorithm along with Greedy Miser [Xu et al., 2012] for a variety of regularization parameters λ. For λ = 0,
the Greedy Miser approach is equivalent to standard functional gradient boosting.
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Figure 6.8: Training objective (left) and test set accuracy (right) vs. computational cost for the Scene-
15 scene categorization dataset. Provided for comparison are the SPEEDBOOST.Proj algorithm along with
Greedy Miser [Xu et al., 2012] for a variety of regularization parameters λ. For λ = 0, the Greedy Miser
approach is equivalent to standard functional gradient boosting.
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Chapter 7

STRUCTUREDSPEEDBOOST: Anytime
Structured Prediction

In this chapter we will demonstrate another application of our anytime predicition framework to
the structured prediction setting, specifically to the scene understanding domain. To do so, we
will combined the cost-greedy SPEEDBOOST approach detailed in the previous chapter with the
structured prediction extensions of functional gradient methods which we detailed in Chapter 3.

7.1 Background
We will first briefly review the structured functional gradient previously detailed in Chapter 3,
specifically Section 3.1. For more details on the structured prediction approach, we refer the reader
to that chapter.

Recall the structured prediction setting previously discussed in Section 3.1. In this setting we
are given some inputs x ∈ X and associated structured outputs y ∈ Y . The goal is to learn a
function f : X → Y that minimizes some riskR[f ], typically evaluated pointwise over the inputs:

R[f ] = EX [`(f(x))]. (7.1)

We also assume the structured outputs are representable as a variable length vector (y1, . . . , yJ),
where the output yj represents the output for some structural element of the total output y. For
example, the structural elements may be the probability distribution over class labels for a pixel in
an image or the current prediction for a node in a graphical model.

We also assume that each output j has associated with it some set N(j) which represents the
locally connected elements of the structure of the problem, such as the locally connected factors
of a node j in a typical graphical model. For a given node j, the predictions over the neighboring
nodes ŷN(j) and other features of the local structure N(j) can then be used to update the prediction
for the node j, in a manner similar to the message passing approach commonly used for graphical
model prediction [Pearl, 1988].

129
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As we did before, to approach such a structured prediction problem we will be using an ad-
ditive, functional gradient version of the iterative decoding approach [Cohen and Carvalho, 2005,
Daume III et al., 2009, Tu and Bai, 2010, Socher et al., 2011, Ross et al., 2011]. In this approach,
we are going to learn an additive structured predictor,

h(x, ŷt)j = 1(j ∈ hS(x, ŷt))hP(xj, ŷ
t
N(j)), (7.2)

that consists of two main components. The first, a selection function hS, which selects some subset
of the structural elements to update at each iteration, and a predictor hP which runs on the selected
elements and updates the respective pieces of the structured output.

To complete the structured prediction extension, we need a method for selecting weak pre-
dictors h as specified in Equation (7.2). Following the functional gradient approach detailed in
Chapter 2, and extended to structured prediction setting as in Section 3.1, we will use projected
functional gradients for this purpose.

There is typically no efficient way to train a selection function and predictor simultaneously,
so we will instead choose selector, predictor pairs by first enumerating selection functions hS and
then using functional gradient methods to select the optimal hP for the chosen selector.

We can compute a functional gradient with respect to each element of the structured output,

∇(x)j =
∂`(f(x))

∂f(x)j
.

Given a fixed selection function hS and current predictions ŷ, the functional gradient projection for
finding the optimal weak predictors hP is as follows. In order to minimize the projection error in
Equation (2.12) for a predictor h of the form in Equation (7.2), we only need to find the prediction
function hP that minimizes

h∗P = arg min
hP∈HP

EX

 ∑
j∈hS(x,ŷ)

∥∥∇(x)j − hP(xj, ŷN(j))
∥∥2

 . (7.3)

This optimization problem is equivalent to minimizing weighted least squares error over the
dataset

D =
⋃
x

⋃
j∈hS(x,ŷ)

{(ψj,∇(x)j)},

= gradient(f, hS),

(7.4)

where ψj = ψ(xj, ŷN(j)) is a feature descriptor for the given structural node, and ∇(x)j is its
target. In order to model contextual information, ψ is drawn from both the raw features xj for the
given element and the previous locally neighboring predictions ŷN(j).

The functional gradient algorithm for learning these additive structured predictors was given
previously in Algorithm 3.1.
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7.2 Anytime Structured Prediction
We now combine the structured functional gradient methods developed in Chapter 3 with the any-
time prediction techniques developed in Chapter 6.

Recall that in the anytime setting we have a cost c(h) for each weak predictor h, and that the
SPEEDBOOST approach (Section 6.3) we use a cost-greedy criteria for selecting predictors h:

ht, αt = arg max
h∈H,α∈R

R [ft−1]−R [ft−1 + αh]

c(h)
. (7.5)

The adapted cost model for the additive weak predictor (Equation (7.2)) is then simply the sum
of the cost of evaluating both the selection function and the prediction function,

c(h) = c(hS) + c(hP). (7.6)

Algorithm 7.1 summarizes the STRUCTUREDSPEEDBOOST algorithm for anytime structured
prediction. It is based off of the structured functional gradient algorithm (Algorithm 3.1), modified
with the cost-greedy SPEEDBOOST criteria from Chapter 6 to select the most cost efficient pair of
selection and prediction functions.

It enumerates the candidate selection functions, hS, creates the training dataset defined by
Equation (7.4), and then generates a candidate prediction function hP using each weak learning
algorithm. For all the pairs of candidates, it uses Equation (7.5) for picking the best pair, instead
of the non-anytime version, which simply optimizes the regular functional gradient criteria.

Algorithm 7.1 STRUCTUREDSPEEDBOOST

Given: objectiveR, set of selection functionsHS, set of L learning algorithms {Al}Ll=1, number
of iterations T , initial function f0.
for t = 1, . . . , T do
H∗ = ∅
for hS ∈ HS do

Create dataset D = gradient(ft−1, hS) using Equation (3.9).
for A ∈ {A1, . . . ,AL} do

Train hP = A(D)
Define h from hS and hP using Equation (3.6).
H∗ = H∗ ∪ {h}

end for
end for
ht, αt = arg maxh∈H∗,α∈R

R[ft−1]−R[ft−1+αh]
τ(h)

ft = ft−1 + αtht
end for
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(a) (b)

Figure 7.1: Hierarchical Inference Machines [Munoz et al., 2010]. (a) Input image. (b) The image is
segmented multiple times; predictions are made and passed between levels. Images courtesy of the authors’
ECCV 2010 presentation.

7.3 Anytime Scene Understanding

7.3.1 Background
In addition to part-of-speech tagging in natural language processing, scene understanding in com-
puter vision is another important and challenging structured prediction problem. The de facto
approach to this problem is with random field based models [Kumar and Hebert, 2006, Gould
et al., 2008, Ladicky et al., 2010], where the random variables in the graph represent the object
category for a region/patch in the image. While random fields provide a clean interface between
modeling and inference, recent works [Tu and Bai, 2010, Munoz et al., 2010, Socher et al., 2011,
Farabet et al., 2013] have demonstrated alternative approaches that achieve equivalent or improved
performances with the additional benefit of a simple, efficient, and modular inference procedure.

Inspired by the hierarchical representation used in the state-of-the-art scene understanding tech-
nique from Munoz et al. [2010], we apply STRUCTUREDSPEEDBOOST to the scene understand-
ing problem by reasoning over differently sized regions in the scene. In the following, we briefly
review the hierarchical inference machine (HIM) approach from [Munoz et al., 2010] and then
describe how we can perform an anytime prediction whose structure is similar in spirit.

7.3.2 Hierarchical Inference Machines
HIM parses the scene using a hierarchy of segmentations, as illustrated in Figure 7.1. By in-
corporating multiple different segmentations, this representation addresses the problem of scale
ambiguity in images. Instead of performing (approximate) inference on a large random field de-
fined over the regions, inference is broken down into a sequence of predictions. As illustrated in
Figure 7.1, a predictor f is associated with each level in the hierarchy that predicts the probability
distribution of classes/objects contained within each region. These predictions are then used by the
subsequent predictor in the next level (in addition to features derived from the image statistics) to
make refined predictions on the finer regions; and the process iterates. By passing class distribu-
tions between predictors, contextual information is modeled even though the segmentation at any
particular level may be incorrect. We note that while Figure 7.1 illustrates a top-down sequence
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over the hierarchy, in practice, the authors iterate up and down the hierarchy which we also do in
our comparison experiments.

7.3.3 Speedy Inference Machines
While HIM decomposes the structured prediction problem into an efficient sequence of predic-
tions, it is not readily suited for an anytime prediction. First, the final predictions are generated
when the procedure terminates at the leaf nodes in the hierarchy. Hence, interrupting the procedure
before then would result in final predictions over coarse regions that may severely undersegment
the scene. Second, the amount of computation time at each step of the procedure is invariant to the
current performance. Because the structure of the sequence is predefined, the inference procedure
will predict multiple times on a region as it traverses over the hierarchy, even though there may
be no room for improvement. Third, the input to each predictor in the sequence is a fixed feature
descriptor for the region. Because these input descriptors must be precomputed for all regions in
the hierarchy before the inference process begins, there is a fixed initial computational cost. In
the following, we describe how STRUCTUREDSPEEDBOOST addresses these three problems three
problems for anytime scene understanding.

Scene Understanding Objective

In order to address the first issue, we learn an additive predictor f which predicts a per-pixel
classification for the entire image at once. In contrast to HIM whose multiple predictors’ losses are
measured over regions, we train a single predictor whose loss is measured over pixels. Concretely,
given per-pixel ground truth distributions pj ∈ RK , we wish to optimize per-pixel, cross-entropy
risk for all pixels in the image

R[f ] = EX

[
−
∑
j

∑
k

pjk log q(f(x))jk

]
, (7.7)

where

q(y)jk =
exp(yjk)∑
k′ exp(yjk′)

, (7.8)

i.e., the probability of the k’th class for the j’th pixel. Using Equation (7.2), the probability dis-
tribution associated with each pixel is then dependent on 1) the pixels to update, selected by hS,
and 2) the value of the predictor hP evaluated on those respective pixels. The definition of these
functions are defined in the following subsections.

Structure Selection and Prediction

In order to account for scale ambiguity and structure in the scene, we can similarly integrate mul-
tiple regions into our predictor. By using a hierarchical segmentation of the scene that produces
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many segments/regions, we can consider each resulting region or segment of pixels S in the hier-
archy as one possible set of outputs to update. Intuitively, there is no need to update regions of the
image where the predictions are correct at the current inference step. Hence, we want to update
the portion of the scene where the predictions are uncertain, i.e., have high entropy H . To achieve
this, we use a selector function that selects regions that have high average per-pixel entropies in
the current predictions,

hS(x, ŷ) =

{
S

∣∣∣∣∣ 1

|S|
∑
j∈S

H(q(ŷ)j) > θ

}
, (7.9)

for some fixed threshold θ. In practice, the set of predictors HS used at training time is created
from a diverse set of thresholds θ.

Additionally, we assume that the features ψj used for each pixel in a given selected region are
drawn from the entire region, so that if a given scale is selected features corresponding to that scale
are used to update the selected pixels. For a given segment S, call this feature vector ψS .

Given the above selector function, we use Equation (7.3) to find the next best predictor function,
as in Algorithm 7.1, optimizing

h∗P = arg min
hP

∑
S∈hS(x,ŷ)

∑
j∈S

‖∇(x)j − hP(ψS)‖2. (7.10)

Because all pixels in a given region use the same feature vector, this reduces to the weighted
least squares problem:

h∗P = arg min
hP

∑
S∈hS(x,ŷ)

|S|‖∇S − hP(ψS)‖2. (7.11)

where ∇S = Ej∈S[∇(x)j] = Ej∈S[pj − q(ŷ)j]. In words, we find a vector-valued regressor hP

with minimal weighted least squares error between the difference in ground truth and predicted
per-pixel distributions, averaged over each selected region/segment, and weighted by the size of
the selected region. This is an intuitive update that places large weight to updating large regions.

Dynamic Feature Computation

In the scene understanding problem, a significant computational cost during inference is often
feature descriptor computation. To this end, we utilize the SPEEDBOOST cost model Equation (7.6)
to automatically select the most computationally efficient features.

The features used in this application, drawn from previous work [Gould et al., 2008, Ladicky,
2011] and detailed in the following section, are computed as follows. First, a set of base feature
descriptors are computed from the input image data. In many applications it is useful to quantize
these base feature descriptors and pool them together to form a set of derived features [Coates
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FH SHAPE TXT (B) TXT (D) LBP (B) LBP (D) I-SIFT (B) I-SIFT (D) C-SIFT (B) C-SIFT (D)
167 2 29 66 64 265 33 165 93 443

Table 7.1: Average timings (ms) for computing all features for an image in the SBD. (B) is the time to
compute the base per-pixel feature responses, and (D) is the time to compute the derived averaged-pooled
region codes to all cluster centers.

et al., 2011]. We follow the soft vector quantization approach in [Coates et al., 2011] to form a
quantized code vector by computing distances to multiple cluster centers in a dictionary.

This computation incurs a fixed cost for 1) each group of features with a common base feature,
and 2) an additional, smaller fixed cost for each actual feature used. In order to account for these
costs, we use an additive model similar to Xu et al. [2012] and the budgeted feature selection
application examine in the experimental analysis of the SPEEDBOOST algorithm, in Section 6.5.3.

Formally, let φ ∈ Φ be the set of features and γ ∈ Γ be the set of feature groups, and cφ and
cγ be the cost for computing derived feature φ and the base feature for group γ, respectively. Let
Φ(f) be the set of features used by predictor f and Γ(f) the set of its used groups. Given a current
predictor ft−1, its group and derived feature costs are then just the costs of any new group and
derived features and have not previously been computed:

cΓ(hP) =
∑

γ∈Γ(hP)\Γ(ft−1)

cγ,

cΦ(hP) =
∑

φ∈Φ(hP)\Φ(ft−1)

cφ.

The total cost model in Equation (7.6) can then be derived using the sum of the feature costs and
group costs as

c(h) = c(hs) + c(hP)

= εS + εP + cΓ(hP) + cΦ(hP),
(7.12)

where εS and εP are small fixed costs for evaluating a selection and prediction function, respectively.
In order to generate hP with a variety of costs, we use a modified regression tree that penalizes

each split based on its potential cost, as in [Xu et al., 2012]. This approach augments the least-
squares regression tree impurity function with a cost regularizer:

ED
[
wD‖yD − hP(xD)‖2]+ λ (cΓ(hP) + cΦ(hP)) , (7.13)

where λ regularizes the cost. In addition to Equation (7.12), training regression trees with different
values of λ, enables STRUCTUREDSPEEDBOOST to automatically select the most cost-efficient
predictor.
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Table 7.2: Recalls on the Stanford Background Dataset (top) and CamVid (bottom) where Class is the
average per-class recall and Pixel is the per-pixel accuracy. †Uses additional training data not leveraged by
other techniques.

7.4 Experimental Analysis

7.4.1 Setup

We evaluate performance metrics between SIM and HIM on the 1) Stanford Background Dataset
(SBD) [Gould et al., 2009], which contains 8 classes, and 2) Cambridge Video Dataset (CamVid)
[Brostow et al., 2008], which contains 11 classes; we follow the same training/testing evalua-
tion procedures as originally described in the respective papers. As shown in Table 7.2, we note
that HIM achieves state-of-the-art performance and these datasets and analyze the computational
tradeoffs when compared with SIM. Since both methods operate over a region hierarchy of the
scene, we use the same segmentations, features, and regression trees (weak predictors) for a fair
comparison.

Segmentations

We construct a 7-level segmentation hierarchy by recursively executing the graph-based segmen-
tation algorithm (FH) [Felzenszwalb and Huttenlocher, 2004] with parameters

σ = 0.25, c = 102 × [1, 2, 5, 10, 50, 200, 500],

k = [30, 50, 50, 100, 100, 200, 300].

These values were qualitatively chosen to generate regions at different resolutions.
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Features

A region’s feature descriptor is composed of 5 feature groups (Γ): 1) region boundary shape/geometry/location
(SHAPE) [Gould et al., 2008], 2) texture (TXT), 3) local binary patterns (LBP), 4) SIFT over in-
tensity (I-SIFT), 5) SIFT separately over colors R, G, and B (C-SIFT). The last 4 are derived
from per-pixel descriptors for which we use the publicly available implementation from [Ladicky,
2011].

Computations for segmentation and features are shown in Table 7.1; all times were computed
on an Intel i7-2960XM processor. The SHAPE descriptor is computed solely from the segmentation
boundaries and is efficient to compute. The remaining 4 feature group computations are broken
down into the per-pixel descriptor (base) and the average-pooled vector quantized codes (derived),
where each of the 4 groups are quantized separately with a dictionary size of 150 elements/centers
using k-means. For a given pixel descriptor, υ, its code assignment to cluster center, µi, is derived
from its squared L2 distance di(υ) = ‖υ − µi‖2

2. Using the soft code assignment from [Coates
et al., 2011], the code is defined as max(0, zi(υ)), where

zi(υ) = Ej[dj(υ)]− di(υ) (7.14)
= Ej[‖µj‖2]− 2〈Ej[µj], υ〉 − (‖µi‖2 − 2〈µi, υ〉). (7.15)

Note that the expectations are indepndent from the query descriptor v, hence the i’th code can be
computed independently and enables selective computation for the region. The resulting quantized
pixel codes are then averaged within each region. Thus, the costs to use these derived features
are dependent if the pixel descriptor has already been computed or not. For example, when the
weak learner first uses codes from the I-SIFT group, the cost incurred is the time to compute the
I-SIFT pixel descriptor plus the time to compute distances to each specified center.

7.4.2 Analysis

In Figure 7.4 we show which cluster centers, from each of the four groups, are being selected by
SIM as the inference time increases. We note that efficient SHAPE descriptor is chosen on the first
iteration, followed by the next cheapest descriptors TXT and I-SIFT. Although LBP is cheaper
than C-SIFT, the algorithm ignored LBP because it did not improve prediction wrt cost.

In Figure 7.2, we compare the classification performance of SIM and several other algorithms
with respect to inference time. We consider HIM as well as two variants which use a limited set of
the 4 feature groups (only TXT and TXT & I-SIFT); these SIM and HIM models were executed
on the same computer. We also compare to the reported performances of other techniques and
stress that these timings are reported from different computing configurations. The single anytime
predictor generated by our anytime structured prediction approach is competitive with all of the
specially trained, standalone models without requiring any of the manual analysis necessary to
create the different fixed models.



138 CHAPTER 7. ANYTIME STRUCTURED PREDICTION

In Figure 7.3, we show the progress of the SIM algorithm as it processes a scene from each of
the datasets. Over time, we see the different structural nodes (regions) selected by the algorithm as
well as improving classification.
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Figure 7.2: Average pixel classification accuracy for SBD (top) and CamVid (bottom) datasets as a function
of inference time.
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— Sky — Tree — Road — Grass — Water — Building — Mountain — Object

— Building — Tree — Sky — Car — Sign — Road — Person — Fence — Pole — Sidewalk — Bicyclist

Figure 7.3: Sequence of images displaying the inferred labels and selected regions at iterations
t = {1, 5, 15, 50, 100, 225} of the SIM algorithm for a sample image from the Stanford Back-
ground (top) and CamVid (bottom) datasets. The corresponding inference times for these iterations are
{0.42s, 0.44s, 0.47s, 0.79s, 1.07s, 1.63s} (top) and {0.41s, 0.42s, 0.44s, 0.52s, 0.85s, 1.42s} (bottom).
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— TXT — I-SIFT — C-SIFT — LBP

Figure 7.4: The number of cluster centers selected within each feature group by SIM as a function of
inference time.
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Chapter 8

Conclusion

8.1 Future Directions

In this thesis we propose a framework for anytime prediction and give algorithms for learning any-
time predictors based on functional gradient methods and greedy optimization. Using these two
areas, we give analysis and theoretical guarantees that show that our anytime prediction algorithms
make near-optimal trade-offs between cost and accuracy without knowing the prediction time con-
straints apriori. There are a number of areas where we believe this sequential anytime prediction
approach and accompanying analysis can be extended.

8.1.1 Anytime Representation Learning

Xu et al. [2013a] have proposed an anytime prediction approach which learns feature represen-
tations which change over time, and then computes predictions using these representations. In a
similar fashion to deep network approaches, they learn a set of predictors {fd}Dd=1 which output a
D dimensional feature representation and then combine this representation with a top layer using
some simple linear function of the learned features, such as a Support Vector Machine.

We imagine that a similar approach to anytime representation learning could be derived using
SPEEDBOOST as a base along with our prior work in backpropagated functional gradient tech-
niques [Grubb and Bagnell, 2010] to build a similar network. By learning the layer of repre-
sentation predictors fd using a cost-greedy SPEEDBOOST approach and using functional gradient
backpropagation to optimize the complete network, we may be able to improve the cost, accuracy
trade-off behavior of their previous anytime representation learning approach, or even present a
simpler algorithm for learning anytime representation learners.

It would be interesting to see how this approach compares to the previous work in anytime
representation learning, and if this anytime representation approach offers any advantages over the
direct anytime prediction approach we’ve learned here. Perhaps the representation learned could
be used to enable anytime behavior in some other setting by using the anytime representation as
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input, such as anytime clustering or anytime dimensionality reduction.

8.1.2 Parallel Weak Predictors

In this document, we have considered only the computational model where weak predictors are
sequentially applied to a given input until interrupted. One alternative model is to consider the
setting where weak predictors can freely be run in parallel. Consider the example of a large-scale
web service which must compute predictions on a large number of inputs simultaneously. Typically
in such a setting there are a number of other prediction algorithms running remotely that provide
weak predictions to the overall web-service. In this case selecting a single weak predictor to run is
counterproductive, as it is much more efficient to make requests to the other services in parallel.

In the parallel setting, we imagine that there are actually two computational constraints at play:
the amount of parallelism available and the amount of time or total computation available to the
system. One approach would be to only consider weak predictors that are parallelized to take
advantage of any parallel resources, and revert to the sequential model we’ve outlined here.

An approach that would perhaps be more widely applicable is to consider weak predictors that
are unparallelized, i.e.single threaded, and derive algorithms which select weak predictors to run in
parallel. The anytime algorithms we presented here can naively be parallelized by simply schedul-
ing the sequences of weak predictors selected using some scheduling policy, but it is unclear what
kind of guarantees can be derived here, and if some joint learning of scheduling policy and weak
predictors to use in the ensemble could perform better.

One other setting to consider would be one more similar to the web service setting used as an
illustrative example. In this setting all weak predictors can potentially be run in parallel, but the
cost of evaluating a weak predictor may be dependent on what portion of the data is sent to it. In
this setting the learning problem would be to find a policy for evaluating different weak predictors
on a given example, where weak predictors can also be evaluated in parallel. For example, it may
best to evaluate a single simple weak predictor on all examples, then, depending on the outcome,
evaluate many expensive weak predictors in parallel. It may be that the same algorithms can be
used for both of these parallel settings. Investigating anytime prediction algorithms for this setting
would be interesting as well.

8.1.3 Branching Predictors

Many recent approaches to the budgeted prediction problem utilize a branching approach which
can compute different weak predictors, or use different actions, on each example based on previous
predictions. For example, policy based approaches [Busa-Fekete et al., 2012, Karayev et al., 2012,
He et al., 2013] learn a policy which uses previous predictions to select which actions to take
next, and hence can select to compute different predictors based on the outcome of early predictive
actions. Similarly, Gao and Koller [2011] use an approach which conditions actions on previous
predictions, and Xu et al. [2013b] give an extension of the Greedy Miser approach for learning a
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tree of weak predictors instead of a sequence.
Many of these approaches observe a significant decrease in cost for achieving the same accu-

racy, because individual weak predictors can be targeted to different subsets of the input space. To
compare with these approaches and explore possible gains from branching, it would be interesting
to consider a branching version of our anytime approach, which learn a tree of weak predictors
in a manner similar to Xu et al. [2013b]. To learn their tree based structure they utilize a global
optimization which adjusts all nodes in the tree simultaneously and optimize final performance. It
would be interesting to see if the greedy approach here could be adapted to select a tree of predic-
tors, or if some kind of global optimization of decisions must be done to obtain efficient tree-based
performance.

8.1.4 Understanding Generalization Properties
Throughout this document we have analyzed the predictive performance of our learned anytime
predictors using the training performance as a metric, and the near-optimality guarantees given
are statements about the near-optimality of cost-greedy algorithms with respect to the optimal
training performance. However, in practice, we often see that these cost-greedy approaches cause
an increase in overfitting, particularly in the domains where computation time is dominated by
feature computation costs, by emphasizing the maximal re-use of already computed features.

A useful line of work would be to analyze the generalization properties of our anytime ap-
proach, and possibly improve the robustness to overfitting by modifying our algorithms. We have
developed some methods for doing this in our practical applications, such as evaluating the cost-
greedy metric on held-out validation data, but there is still much work to be done in understanding
how to handle overfitting in general.
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