A Bidirectional Refinement Type System for LF

William Lovas ${ }^{1} \quad$ Frank Pfenning ${ }^{2}$

May 2007
CMU-CS-08-129

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present a system of refinement types for LF in the style of recent formulations where only canonical forms are well-typed. Both the usual LF rules and the rules for type refinements are bidirectional, leading to a straightforward proof of decidability of typechecking even in the presence of intersection types. Because we insist on canonical forms, structural rules for subtyping can now be derived rather than being assumed as primitive. We illustrate the expressive power of our system with several examples in the domain of logics and programming languages.

This document is an extended version of a paper originally presented at the Second International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP '07) and published in Electronic Notes in Theoretical Computer Science [LP08]. It supercedes Technical Report CMU-CS-07-127, which was unpublished.

[^0]Keywords: LF, refinement types, subtyping, dependent types, intersection types

1 Introduction

LF was created as a framework for defining logics [HHP93]. Since its inception, it has been used to formalize reasoning about a number of deductive systems (see [Pfe01] for an introduction). In its most recent incarnation as the Twelf metalogic [PS99], it has been used to encode and mechanize the metatheory of programming languages that are prohibitively complex to reason about on paper [Cra03, LCH07].

It has long been recognized that some LF encodings would benefit from the addition of a subtyping mechanism to LF [Pfe93, AC01]. In LF encodings, judgements are represented by type families, and many subsyntactic relations and judgemental inclusions can be elegantly represented via subtyping.

Prior work has explored adding subtyping and intersection types to LF via refinement types [Pfe93]. Many of that system's metatheoretic properties were proven indirectly by translation into other systems, though, giving little insight into a notion of adequacy or an implementation strategy. We present here a refinement type system for LF based on the modern canonical forms approach, and by doing so we obtain direct proofs of important properties like decidability.

In canonical forms-based LF, only β-normal η-long terms are well-typed the syntax restricts terms to being β-normal, while the typing relation forces them to be η-long. Since standard substitution might introduce redexes even when substituting a normal term into a normal term, it is replaced with a notion of hereditary substitution that contracts redexes along the way, yielding another normal term. Since only canonical forms are admitted, type equality is just α-equivalence, and typechecking is manifestly decidable.

Canonical forms are exactly the terms one cares about when adequately encoding a language in LF, so this approach loses no expressivity. Since all terms are normal, there is no notion of reduction, and thus the metatheory need not directly treat properties related to reduction, such as subject reduction, ChurchRosser, or strong normalization. All of the metatheoretic arguments become straightforward structural inductions, once the theorems are stated properly.

By introducing a layer of refinements distinct from the usual layer of types, we prevent subtyping from interfering with our extension's metatheory. We also follow the general philosophy of prior work on refinement types [Fre94, Dav05] in only assigning refined types to terms already well-typed in pure LF, ensuring that our extension is conservative.

In the remainder of the paper, we describe our refinement type system alongside several illustrative examples (Section 2). Then we explore its metatheory and give proof sketches of important results, including decidability (Section 3). We note that our approach leads to subtyping only being defined on atomic types, but we show that subtyping at higher types is already present in our system by proving that the usual declarative rules are sound and complete with respect to an intrinsic notion of subtyping (Section 4). Finally, we discuss some related work (Section 5) and summarize our results (Section 6).

2 System and Examples

We present our system of LF with Refinements, LFR, through several examples. In what follows, R refers to atomic terms and N to normal terms. Our atomic and normal terms are exactly the terms from canonical presentations of LF.

$$
\begin{aligned}
R::=c|x| R N & & \text { atomic terms } \\
N, M::=R \mid \lambda x . N & & \text { normal terms }
\end{aligned}
$$

In this style of presentation, typing is defined bidirectionally by two judgements: $R \Rightarrow A$, which says atomic term R synthesizes type A, and $N \Leftarrow A$, which says normal term N checks against type A. Since λ-abstractions are always checked against a given type, they need not be decorated with their domain types.

Types are similarly stratified into atomic and normal types.

$$
\begin{array}{rlr}
P::=a \mid P N & & \text { atomic type families } \\
A, B::=P \mid \Pi x: A . B & & \text { normal type families }
\end{array}
$$

The operation of hereditary substitution, written $[N / x]_{A}$, is a partial function which computes the normal form of the standard capture-avoiding substitution of N for x. It is indexed by the putative type of x, A, to ensure termination, but neither the variable x nor the substituted term N are required to bear any relation to this type index for the operation to be defined. We show in Section 3 that when N and x do have type A, hereditary substitution is a total function on well-formed terms.

Our layer of refinements uses metavariables Q for atomic sorts and S for normal sorts. These mirror the definition of types above, except for the addition of intersection and "top" sorts.

$$
\begin{array}{rlr}
Q::=s \mid Q N & \text { atomic sort families } \\
S, T::=Q|\Pi x:: S \sqsubset A . T| \top \mid S_{1} \wedge S_{2} & \text { normal sort families }
\end{array}
$$

Sorts are related to types by a refinement relation, $S \sqsubset A$ (" S refines A "), discussed below. We only sort-check well-typed terms, and a term of type A can be assigned a sort S only when $S \sqsubset A$. These constraints are collectively referred to as the "refinement restriction". We occasionally omit the " $\llcorner A$ " from function sorts when it is clear from context.

2.1 Example: Natural Numbers

For the first running example we will use the natural numbers in unary notation. In LF, they would be specified as follows

$$
\begin{aligned}
& \text { nat : type. } \\
& \text { zero : nat. } \\
& \text { succ : nat } \rightarrow \text { nat. }
\end{aligned}
$$

Suppose we would like to distinguish the odd and the even numbers as refinements of the type of all numbers.

```
even ᄃ nat.
odd \sqsubset nat.
```

The form of the declaration is $s \sqsubset a$ where a is a type family already declared and s is a new sort family. Sorts headed by s are declared in this way to refine types headed by a. The relation $S \sqsubset A$ is extended through the whole sort hierarchy in a compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:
zero :: even.
The general form of this declaration is $c:: S$, where c is a constant already declared in the form $c: A$, and where $S \sqsubset A$. The declaration for the successor is slightly more difficult, because it maps even numbers to odd numbers and vice versa. In order to capture both properties simultaneously we need to use intersection sorts, written as $S_{1} \wedge S_{2} .{ }^{1}$

$$
\text { succ }:: \text { even } \rightarrow \text { odd } \wedge \text { odd } \rightarrow \text { even. }
$$

In order for an intersection to be well-formed, both components must refine the same type. The nullary intersection T can refine any type, and represents the maximal refinement of that type. ${ }^{2}$
$\frac{s \sqsubset a \in \Sigma}{s N_{1} \ldots N_{k} \sqsubset a N_{1} \ldots N_{k}} \quad \frac{S \sqsubset A \quad T \sqsubset B}{\Pi x:: S . T \sqsubset \Pi x: A . B} \quad \frac{S_{1} \sqsubset A \quad S_{2} \sqsubset A}{S_{1} \wedge S_{2} \sqsubset A} \quad \overline{\top \sqsubset A}$

To show that the declaration for succ is well-formed, we establish that even \rightarrow odd \wedge odd \rightarrow even \sqsubset nat \rightarrow nat.

The refinement relation $S \sqsubset A$ should not be confused with the usual subtyping relation. Although each is a kind of subset relation ${ }^{3}$, they are quite different: Subtyping relates two types, is contravariant in the domains of function types, and is transitive, while refinement relates a sort to a type, so it does not make sense to consider its variance or whether it is transitive. We will discuss subtyping below and in Section 4.

Now suppose that we also wish to distinguish the strictly positive natural numbers. We can do this by introducing a sort pos refining nat and declaring that the successor function yields a pos when applied to anything, using the maximal sort.

[^1]| Canonical LF | LF with Refinements |
| :---: | :---: |
| $\frac{\Gamma, x: A \vdash N \Leftarrow B}{\Gamma \vdash \lambda x . N \Leftarrow \Pi x: A . B}$ | $\frac{\Gamma, x:: S \sqsubset A \vdash N \Leftarrow T}{\Gamma \vdash \lambda x \cdot N \Leftarrow \Pi x:: S \subset A . T}(\Pi-\mathbf{I})$ |
| $\frac{\Gamma \vdash R \Rightarrow P^{\prime} \quad P^{\prime}=P}{\Gamma \vdash R \Leftarrow P}$ | $\frac{\Gamma \vdash R \Rightarrow Q^{\prime} \quad Q^{\prime} \leq Q}{\Gamma \vdash R \Leftarrow Q} \text { (switch) }$ |
| $\frac{x: A \in \Gamma}{\Gamma \vdash x \Rightarrow A} \quad \frac{c: A \in \Sigma}{\Gamma \vdash c \Rightarrow A}$ | $\frac{x: S \subset A \in \Gamma}{\Gamma \vdash x \Rightarrow S}(\text { var }) \quad \frac{c:: S \in \Sigma}{\Gamma \vdash c \Rightarrow S} \text { (const) }$ |
| $\frac{\Gamma \vdash R \Rightarrow \Pi x: A . B \quad \Gamma \vdash N \Leftarrow A}{\Gamma \vdash R N \Rightarrow[N / x]_{A} B}$ | $\frac{\Gamma \vdash R \Rightarrow \Pi x:: S \subset A . T \quad \Gamma \vdash N \Leftarrow S}{\Gamma \vdash R N \Rightarrow[N / x]_{A} T} \text { (П-E) }$ |

Since we only sort-check well-typed programs and succ is declared to have type nat \rightarrow nat, the sort T here acts as a sort-level reflection of the entire nat type.

We can specify that all odds are positive by declaring odd to be a subsort of pos.

$$
\text { odd } \leq \text { pos. }
$$

Although any ground instance of odd is evidently pos, we need the subsorting declaration to establish that variables of sort odd are also pos.

Putting it all together, we have the following:

```
even \sqsubsetnat. odd \sqsubset nat. pos\sqsubset nat.
odd \leq pos.
zero :: even.
succ :: even }->\mathrm{ odd ^ odd }->\mathrm{ even }\wedge \top -> pos
```

Now we should be able to verify that, for example, succ (succ zero) \Leftarrow even. To explain how, we analogize with pure canonical LF. Recall that atomic types have the form $a N_{1} \ldots N_{k}$ for a type family a and are denoted by P. Arbitrary types A are either atomic (P) or (dependent) function types ($\Pi x: A . B$). Canonical terms are then characterized by the rules shown in the left column above.

There are two typing judgements, $N \Leftarrow A$ which means that N checks against A (both given) and $R \Rightarrow A$ which means that R synthesizes type $A(R$ given as input, A produced as output). Both take place in a context Γ assigning types to variables. To force terms to be η-long, the rule for checking an atomic term R only checks it at an atomic type P. It does so by synthesizing a type P^{\prime} and comparing it to the given type P. In canonical LF, all types are already canonical, so this comparison is just α-equality.

On the right-hand side we have shown the corresponding rules for sorts. First, note that the format of the context Γ is slightly different, because it declares sorts for variables, not just types. The rules for functions and applications are straightforward analogues to the rules in ordinary LF. The rule switch for checking atomic terms R at atomic sorts Q replaces the equality check with a subsorting check and is the only place where we appeal to subsorting (defined below). For applications, we use the type A that refines the type S as the index parameter of the hereditary substitution.

Subsorting is exceedingly simple: it only needs to be defined on atomic sorts, and is just the reflexive and transitive closure of the declared subsorting relationship.

$$
\frac{s_{1} \leq s_{2} \in \Sigma}{s_{1} N_{1} \ldots N_{k} \leq s_{2} N_{1} \ldots N_{k}} \quad \overline{Q \leq Q} \quad \frac{Q_{1} \leq Q^{\prime} \quad Q^{\prime} \leq Q_{2}}{Q_{1} \leq Q_{2}}
$$

The sorting rules do not yet treat intersections. In line with the general bidirectional nature of the system, the introduction rules are part of the checking judgement, and the elimination rules are part of the synthesis judgement. Binary intersection $S_{1} \wedge S_{2}$ has one introduction and two eliminations, while nullary intersection T has just one introduction.

$$
\begin{aligned}
& \frac{\Gamma \vdash N \Leftarrow S_{1} \quad \Gamma \vdash N \Leftarrow S_{2}}{\Gamma \vdash N \Leftarrow S_{1} \wedge S_{2}}(\wedge-\mathbf{I}) \quad \frac{\Gamma \vdash N \Leftarrow \top}{(T-I)} \\
& \frac{\Gamma \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma \vdash R \Rightarrow S_{1}}\left(\wedge-\mathbf{E}_{1}\right) \quad \frac{\Gamma \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma \vdash R \Rightarrow S_{2}}\left(\wedge-\mathbf{E}_{2}\right)
\end{aligned}
$$

Note that although (canonical forms-style) LF type synthesis is unique, LFR sort synthesis is not, due to the intersection elimination rules.

Now we can see how these rules generate a deduction of succ (succ zero) \Leftarrow even. The context is always empty and therefore omitted. To save space, we abbreviate even as e, odd as o, pos as p, zero as z, and succ as s, and we omit reflexive uses of subsorting.

Using the $\wedge-$ I rule, we can check that succ zero is both odd and positive:

$$
\frac{\vdots}{\vdash s z \Leftarrow o \quad\llcorner s z \Leftarrow p}+\vdash s z \Leftarrow o \wedge p
$$

Each remaining subgoal now proceeds similarly to the above example.
To illustrate the use of sorts with non-trivial type families, consider the definition of the double relation in LF.

$$
\begin{aligned}
& \text { double : nat } \rightarrow \text { nat } \rightarrow \text { type. } \\
& \text { dbl-zero : double zero zero. } \\
& \text { dbl-succ : ПX:nat. ПY:nat. double } X Y \rightarrow \text { double }(\text { succ } X)(\text { succ }(\text { succ } Y)) \text {. }
\end{aligned}
$$

With sorts, we can now directly express the property that the second argument to double must be even. But to do so, we require a notion analogous to kinds that may contain sort information. We call these classes and denote them by L.

$$
\begin{array}{lr}
K::=\text { type } \mid \Pi x: A . K & \text { kinds } \\
L::=\text { sort }|\Pi x:: S \sqsubset A . L| \top \mid L_{1} \wedge L_{2} & \text { classes }
\end{array}
$$

Classes L mirror kinds K, and they have a refinement relation $L \sqsubset K$ similar to $S \sqsubset A$. (We elide the rules here.) Now, the general form of the $s \sqsubset a$ declaration is $s \sqsubset a:: L$, where $a: K$ and $L \sqsubset K$; this declares sort constant s to refine type constant a and to have class L.

We reuse the type name double as a sort, as no ambiguity can result. As before, we use T to represent a nat with no additional restrictions.

$$
\begin{aligned}
& \text { double } \sqsubset \text { double }:: ~ \top \rightarrow \text { even } \rightarrow \text { sort. } \\
& \text { dbl-zero :: double zero zero. } \\
& \text { dbl-succ :: ПX::Т. ПY::even.double } X Y \rightarrow \text { double }(\text { succ } X)(\text { succ }(\text { succ } Y)) .
\end{aligned}
$$

After these declarations, it would be a sort error to pose a query such as "?- double X (succ (succ (succ zero)))." before any search is ever attempted. In LF, queries like this could fail after a long search or even not terminate, depending on the search strategy. One of the important motivations for considering sorts for LF is to avoid uncontrolled search in favor of decidable static properties whenever possible.

The tradeoff for such precision is that now sort checking itself is nondeterministic and has to perform search because of the choice between the two intersection elimination rules. As Reynolds has shown, this non-determinism causes intersection type checking to be PSPACE-hard [Rey96], even for normal terms as we have here [Rey89]. Using techniques such as focusing, we believe that for practical cases they can be analyzed efficiently for the purpose of sort checking. ${ }^{4}$

2.2 A Second Example: The λ-Calculus

As a second example, we use an intrinsically typed version of the call-byvalue simply-typed λ-calculus. This means every object language expression is indexed by its object language type. We use sorts to distinguish the set of values from the set of arbitrary computations. While this can be encoded in LF in a variety of ways, it is significantly more cumbersome.

[^2]```
tp: type. % the type of object language types
\Delta}tp->tp->tp.\quad%\mathrm{ object language function space
%infix right 10 ¢ .
exp :tp-> type. % the type of expressions
cmp \sqsubset exp. % the sort of computations
val ᄃ exp. % the sort of values
val \leqcmp. % every value is a (trivial) computation
lam :: (val A ->cmp B) -> val (A }>B)
app :: cmp }A>B)->сmp A->cmp B.
```

In the last two declarations, we follow Twelf convention and leave the quantification over $A$ and $B$ implicit, to be inferred by type reconstruction. Also, we did not explicitly declare a type for lam and app. We posit a front end that can recover this information from the refinement declarations for val and cmp, avoiding redundancy.

The most interesting declaration is the one for the constant lam. The argument type (val $A \rightarrow \operatorname{cmp} B$ ) indicates that lam binds a variable which stands for a value of type $A$ and the body is an arbitrary computation of type $B$. The result type val $(A \Rightarrow B)$ indicates that any $\lambda$-abstraction is a value. Now we have, for example (parametrically in $A$ and $B$ ): $A::$ Tᄃtp, $B::$ Tᄃtp $\vdash \operatorname{lam} \lambda x$.lam $\lambda y . x \Leftarrow$ $\operatorname{val}(A \Rightarrow(B \Rightarrow A))$.

Now we can express that evaluation must always returns a value. Since the declarations below are intended to represent a logic program, we follow the logic programming convention of reversing the arrows in the declaration of ev-app.

$$
\begin{aligned}
& \text { eval }:: \text { cmp } A \rightarrow \text { val } A \rightarrow \text { sort. } \\
& \text { ev-lam }:: \\
& \text { ev-app }: \text { eval }(\operatorname{lam} \lambda x . E x)(\operatorname{lam} \lambda x . E x) . \\
& \leftarrow \operatorname{eval} E_{1}\left(\operatorname{lam} \lambda x . E_{1}^{\prime} x\right) \\
& \leftarrow \operatorname{eval} E_{2} V_{2} \\
& \leftarrow \operatorname{eval}\left(E_{1}^{\prime} V_{2}\right) V .
\end{aligned}
$$

Sort checking the above declarations demonstrates that evaluation always returns a value. Moreover, if type reconstruction gives $E_{1}^{\prime}$ the "most general" sort val $A \rightarrow \operatorname{cmp} A$, the declarations also ensure that the language is indeed call-by-value: it would be a sort error to ever substitute a computation for a lam-bound variable, for example, by evaluating ( $E_{1}^{\prime} E_{2}$ ) instead of ( $E_{1}^{\prime} V_{2}$ ) in the ev-app rule. An interesting question for future work is whether type reconstruction can always find such a "most general" sort for implicitly quantified metavariables.

A side note: through the use of sort families indexed by object language types, the sort checking not only guarantees that the language is call-by-value
and that evaluation, if it succeeds, will always return a value, but also that the object language type of the result remains the same (type preservation).

### 2.3 A Final Example: The Calculus of Constructions

As a final example, we present the Calculus of Constructions. Usually, there is a great deal of redundancy in its presentation because of repeated constructs at the level of objects, families, and kinds. Using sorts, we can enforce the stratification and write typing rules that are as simple as if we assumed the infamous type : type.


The typing rules can now be given non-redundantly, illustrating the implicit overloading afforded by the use of intersections. We omit the type conversion rule and auxiliary judgements for brevity.

$$
\begin{aligned}
& \text { of }:: \text { knd } \rightarrow \text { hyp } \rightarrow \text { sort } \wedge \\
& \text { fam } \rightarrow \text { knd } \rightarrow \text { sort } \wedge \\
& \text { obj } \rightarrow \text { fam } \rightarrow \text { sort. } \\
& \text { of-tp :: of tp tp. } \\
& \text { of-pi :: of (pi } \left.T_{1} \lambda x . T_{2} x\right) t p \\
& \leftarrow \text { of } T_{1} t p \\
& \leftarrow\left(\Pi x \text { :term. of } x T_{1} \rightarrow \text { of }\left(T_{2} x\right) t p\right) . \\
& \text { of-lm :: of }\left(l m U_{1} \lambda x . T_{2} x\right)\left(\text { pi } U_{1} \lambda x . U_{2} x\right) \\
& \leftarrow o f U_{1} t p
\end{aligned}
$$

$$
\begin{aligned}
& \leftarrow\left(\Pi x: \text { term. of } x U_{1} \rightarrow \text { of }\left(T_{2} x\right)\left(U_{2} x\right)\right) . \\
\text { of-ap }:: & \text { of }\left(\text { ap } T_{1} T_{2}\right)\left(U_{1} T_{2}\right) \\
& \leftarrow \text { of } T_{1}\left(\text { pi } U_{2} \lambda x . U_{1} x\right) \\
& \leftarrow \text { of } T_{2} U_{2} .
\end{aligned}
$$

Intersection types also provide a degree of modularity: by deleting some conjuncts from the declarations of $\mathrm{pi}, \mathrm{lm}$, and ap above, we can obtain an encoding of any point on the $\lambda$-cube.

## 3 Metatheory

In this section, we present some metatheoretic results about our framework. These follow a similar pattern as previous work using hereditary substitutions [WCPW02, NPP07, HL07]. We give sketches of straightforward proofs; for technically tricky proofs, we include all cases in Appendix B.

### 3.1 Hereditary Substitution

Recall that we replace ordinary capture-avoiding substitution with hereditary substitution, $[N / x]_{A}$, an operation which substitutes a normal term into a canonical form yielding another canonical form, contracting redexes "in-line". The operation is indexed by the putative type of $N$ and $x$ to facilitate a proof of termination. In fact, the type index on hereditary substitution need only be a simple type to ensure termination. To that end, we denote simple types by $\alpha$ and define an erasure to simple types $(A)^{-}$.

$$
\alpha::=a \mid \alpha_{1} \rightarrow \alpha_{2} \quad\left(a N_{1} \ldots N_{k}\right)^{-}=a \quad(\Pi x: A . B)^{-}=(A)^{-} \rightarrow(B)^{-}
$$

For clarity, we also index hereditary substitutions by the syntactic category on which they operate, so for example we have $[N / x]_{A}^{\mathrm{n}} M=M^{\prime}$ and $[N / x]_{A}^{\mathrm{s}} S=S^{\prime}$; Table 1 lists all of the judgements defining substitution. We write $[N / x]_{A}^{n} M=M^{\prime}$ as short-hand for $[N / x]_{(A)^{-}}^{\mathrm{n}} M=M^{\prime}$.

Our formulation of hereditary substitution is defined judgementally by inference rules. The only place $\beta$-redexes might be introduced is when substituting a normal term $N$ into an atomic term $R$ : $N$ might be a $\lambda$-abstraction, and the variable being substituted for may occur at the head of $R$. Therefore, the judgements defining substitution into atomic terms are the most interesting ones.

We denote substitution into atomic terms by two judgements: $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=$ $R^{\prime}$, for when the head of $R$ is not $x$, and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$, for when the head of $R$ is $x$, where $\alpha^{\prime}$ is the simple type of the output $N^{\prime}$. The former is just defined

| Judgement: | Substitution into: |
| :--- | :--- |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ | Atomic terms (yielding atomic) |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}} R=\left(N^{\prime}, \alpha^{\prime}\right)$ | Atomic terms (yielding normal) |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}$ | Normal terms |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{p}} P=P^{\prime}$ | Atomic types |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\alpha} A=A^{\prime}$ | Normal types |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{q}} Q=Q^{\prime}$ | Atomic sorts |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{s}} S=S^{\prime}$ | Normal sorts |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{k}} K=K^{\prime}$ | Kinds |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\alpha} L=L^{\prime}$ | Classes |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\gamma} \Gamma=\Gamma^{\prime}$ | Contexts |

Table 1: Judgements defining hereditary substitution.
compositionally; the latter is defined by two rules:

$$
\begin{gathered}
\overline{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} x_{0}=\left(N_{0}, \alpha_{0}\right)} \text { (subst-rn-var) } \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{1}=\left(\lambda x . N_{1}, \alpha_{2} \rightarrow \alpha_{1}\right)} \\
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime} \quad\left[N_{2}^{\prime} / x\right]_{\alpha_{2}}^{\mathrm{n}} N_{1}=N_{1}^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{1} N_{2}=\left(N_{1}^{\prime}, \alpha_{1}\right)} \text { (subst-rn- } \beta \text { ) }
\end{gathered}
$$

The rule subst-rn-var just returns the substitutend $N_{0}$ and its putative type index $\alpha_{0}$. The rule subst-rn- $\beta$ applies when the result of substituting into the head of an application is a $\lambda$-abstraction; it avoids creating a redex by hereditarily substituting into the body of the abstraction.

A simple lemma establishes that these two judgements are mutually exclusive by examining the head of the input atomic term.

$$
\operatorname{head}(x)=x \quad \operatorname{head}(c)=c \quad \operatorname{head}(R N)=\operatorname{head}(R)
$$

## Lemma 3.1.

1. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$, then $\operatorname{head}(R) \neq x_{0}$.
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$, then head $(R)=x_{0}$.

Proof. By induction on the given derivation.
Substitution into normal terms has two rules for atomic terms $R$, one which calls the "rr" judgement and one which calls the "rn" judgement.

$$
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=R^{\prime}} \text { (subst-n-atom) } \quad \frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(R^{\prime}, a^{\prime}\right)}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=R^{\prime}} \text { (subst-n-atom-norm) }
$$

Note that the latter rule requires both the term and the type returned by the "rn" judgement to be atomic.

Every other syntactic category's substitution judgement is defined compositionally, tacitly renaming bound variables to avoid capture. For example, the remaining rule defining substitution into normal terms, the rule for substituting into a $\lambda$-abstraction, just recurses on the body of the abstraction.

$$
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda x . N=\lambda x . N^{\prime}}
$$

Although we have only defined hereditary substitution relationally, it is easy to show that it is in fact a partial function by proving that there only ever exists one "output" for a given set of "inputs".
Theorem 3.2 (Functionality of Substitution). Hereditary substitution is a functional relation. In particular:

1. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R_{1}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R_{2}$, then $R_{1}=R_{2}$,
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{mn}} R=\left(N_{1}, \alpha_{1}\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{mn}} R=\left(N_{2}, \alpha_{2}\right)$, then $N_{1}=N_{2}$ and $\alpha_{1}=\alpha_{2}$,
3. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N_{1}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N_{2}$, then $N_{1}=N_{2}$,
and similarly for other syntactic categories.
Proof. Straightforward induction on the first derivation, applying inversion to the second derivation. The cases for rules subst-n-atom and subst-n-atomnorm require Lemma 3.1 to show that the second derivation ends with the same rule as the first one.

Additionally, it is worth noting that hereditary substitution behaves just like "ordinary" substitution on terms that do not contain the distinguished free variable.

Theorem 3.3 (Trivial Substitution). Hereditary substitution for a non-occurring variable has no effect.

1. If $x_{0} \notin \mathrm{FV}(R)$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R$,
2. If $x_{0} \notin \operatorname{FV}(N)$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N$,
and similarly for other syntactic categories.
Proof. Straightforward induction on term structure.

### 3.2 Decidability

A hallmark of the canonical forms/hereditary substitution approach is that it allows a decidability proof to be carried out comparatively early, before proving anything about the behavior of substitution, and without dealing with any complications introduced by $\beta / \eta$-conversions inside types. Ordinarily in a dependently typed calculus, one must first prove a substitution theorem before proving typechecking decidable, since typechecking relies on type equality, type equality relies on $\beta / \eta$-conversion, and $\beta / \eta$-conversions rely on substitution preserving well-formedness. (See for example [HP05] for a typical noncanonical forms-style account of LF definitional equality.)

In contrast, if only canonical forms are permitted, then type equality is just $\alpha$-convertibility, so one only needs to show decidability of substitution in order to show decidability of typechecking. Since LF encodings represent judgements as type families and proof-checking as typechecking, it is comforting to have a decidability proof that relies on so few assumptions.

Lemma 3.4. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$, then $\alpha^{\prime}$ is a subterm of $\alpha_{0}$.
Proof. By induction on the derivation of $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$. In rule subst-rn-var, $\alpha^{\prime}$ is the same as $\alpha_{0}$. In rule subst-rn- $\beta$, our inductive hypothesis tells us that $\alpha_{2} \rightarrow \alpha_{1}$ is a subterm of $\alpha_{0}$, so $\alpha_{1}$ is as well.

By working in a constructive metalogic, we are able to prove decidability of a judgement by proving an instance of the law of the excluded middle; the computational content of the proof then represents a decision procedure.

Theorem 3.5 (Decidability of Substitution). Hereditary substitution is decidable. In particular:

1. Given $N_{0}, x_{0}, \alpha_{0}$, and $R$, either $\exists R^{\prime} .\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$, or $\nexists R^{\prime} .\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$,
2. Given $N_{0}, x_{0}, \alpha_{0}$, and $R$, either $\exists\left(N^{\prime}, \alpha^{\prime}\right)$. $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$, or $\nexists\left(N^{\prime}, \alpha^{\prime}\right) .\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$,
3. Given $N_{0}, x_{0}, \alpha_{0}$, and $N$, either $\exists N^{\prime} .\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}$, or $\nexists N^{\prime} \cdot\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=$ $N^{\prime}$,
and similarly for other syntactic categories.
Proof. By lexicographic induction on the type subscript $\alpha_{0}$, the main subject of the substitution judgement, and the clause number. For each applicable rule defining hereditary substitution, the premises are at a smaller type subscript, or if the same type subscript, then a smaller term, or if the same term, then an earlier clause. The case for rule subst-rn- $\beta$ relies on Lemma 3.4 to know that $\alpha_{2}$ is a strict subterm of $\alpha_{0}$.

Theorem 3.6 (Decidability of Subsorting). Given $Q_{1}$ and $Q_{2}$, either $Q_{1} \leq Q_{2}$ or $Q_{1} \not \leq Q_{2}$.

Proof. Since the subsorting relation $Q_{1} \leq Q_{2}$ is just the reflexive, transitive closure of the declared subsorting relation $s_{1} \leq s_{2}$, it suffices to compute this closure, check that the heads of $Q_{1}$ and $Q_{2}$ are related by it, and ensure that all of the arguments of $Q_{1}$ and $Q_{2}$ are equal.

We prove decidability of typing by exhibiting a deterministic algorithmic system that is equivalent to the original. Instead of synthesizing a single sort for an atomic term, the algorithmic system synthesizes an intersection-free list of sorts, $\Delta$.

$$
\Delta::=\cdot|\Delta, Q| \Delta, \Pi x:: S \sqsubset A . T
$$

(As usual, we freely overload comma to mean list concatenation, as no ambiguity can result.) One can think of $\Delta$ as the intersection of all its elements. Instead of applying intersection eliminations, the algorithmic system eagerly breaks down intersections using a "split" operator, leading to a deterministic "minimal-synthesis" system.

$$
\begin{array}{clc}
\operatorname{split}(Q)=Q & \operatorname{split}\left(S_{1} \wedge S_{2}\right)=\operatorname{split}\left(S_{1}\right), \operatorname{split}\left(S_{2}\right) \\
\operatorname{split}(\Pi x:: S \sqsubset A . T)=\Pi x:: S \sqsubset A . T & \operatorname{split}(T)=\cdot \\
\frac{c:: S \in \Sigma}{\Gamma \vdash c \Rightarrow \operatorname{split}(S)} & \frac{x:: S \sqsubset A \in \Gamma}{\Gamma \vdash x \Rightarrow \operatorname{split}(S)} & \frac{\Gamma \vdash R \Rightarrow \Delta \quad \Gamma \vdash \Delta @ N=\Delta^{\prime}}{\Gamma \vdash R N \Rightarrow \Delta^{\prime}}
\end{array}
$$

The rule for applications uses an auxiliary judgement $\Gamma \vdash \Delta @ N=\Delta^{\prime}$ which computes the possible types of $R N$ given that $R$ synthesizes to all the sorts in $\Delta$. It has two key rules:

$$
\overline{\Gamma \vdash \cdot @ N=\cdot} \quad \frac{\Gamma \vdash \Delta @ N=\Delta^{\prime} \quad \Gamma \vdash N \equiv S \quad[N / x]_{A}^{\mathrm{s}} T=T^{\prime}}{\Gamma \vdash(\Delta, \Pi x:: S \sqsubset A . T) @ N=\Delta^{\prime}, \operatorname{split}\left(T^{\prime}\right)}
$$

The other rules force the judgement to be defined when neither of the above two rules apply.

$$
\begin{gathered}
\frac{\Gamma \vdash \Delta @ N=\Delta^{\prime} \quad \Gamma \nvdash N}{\Gamma \vdash(\Delta, \Pi x:: S \sqsubset A . T) @ N=} \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash} \quad \frac{\Delta^{\prime}}{\Gamma \vdash(\Delta, \Pi x:: S \sqsubset A . T) @ N=\Delta^{\prime}} \quad \nexists T^{\prime} \cdot[N / x]_{A}^{\mathrm{s}} T=T^{\prime} \\
\frac{\Gamma \vdash \Delta @ N=\Delta^{\prime}}{\Gamma \vdash(\Delta, Q) @ N=\Delta^{\prime}}
\end{gathered}
$$

Finally, to tie everything together, we define a new checking judgement $\Gamma \vdash$ $N \Leftarrow S$ that makes use of the algorithmic synthesis judgement; it looks just like $\Gamma \vdash N \Leftarrow S$ except for the rule for atomic terms.

$$
\begin{array}{cc}
\frac{\Gamma \vdash R \Rightarrow \Delta \quad Q^{\prime} \in \Delta}{\Gamma \vdash R \Leftarrow Q} & Q^{\prime} \leq Q \\
\frac{\Gamma \vdash x:: S \sqsubset A \vdash N \Leftarrow T}{\Gamma \vdash N \Leftarrow \top} & \frac{\Gamma \vdash N \Leftarrow S_{1} \quad \Gamma \vdash N \Leftarrow S_{2}}{\Gamma \vdash N \Leftarrow S_{1} \wedge S_{2}}
\end{array}
$$

This new algorithmic system is manifestly decidable.
Theorem 3.7. Algorithmic sort checking is decidable. In particular:

1. Given $\Gamma$ and $R$, either $\exists \Delta . \Gamma \vdash R \Rightarrow \Delta$ or $\nexists \Delta . \Gamma \vdash R \Rightarrow \Delta$.
2. Given $\Gamma, N$, and $S$, either $\Gamma \vdash N \Leftarrow S$ or $\Gamma \nvdash N \Leftarrow S$.
3. Given $\Gamma, \Delta$, and $N, \exists \Delta^{\prime} . \Gamma \vdash \Delta @ N=\Delta^{\prime}$.

Proof. By lexicographic induction on the term $R$ or $N$, the clause number, and the sort $S$ or the list of sorts $\Delta$. For each applicable rule, the premises are either known to be decidable, or at a smaller term, or if the same term, then an earlier clause, or if the same clause, then either a smaller $S$ or a smaller $\Delta$. For clause 3, we must use our inductive hypothesis to argue that the rules cover all possibilities, and so a derivation always exists.

Note that the algorithmic synthesis system sometimes outputs an empty $\Delta$ even when the given term is ill-typed, since the $\Gamma \vdash \Delta @ N=\Delta^{\prime}$ judgement is always defined.

It is straightforward to show that the algorithm is sound and complete with respect to the original bidirectional system.

Lemma 3.8. If $\Gamma \vdash R \Rightarrow S$, then for all $S^{\prime} \in \operatorname{split}(S), \Gamma \vdash R \Rightarrow S^{\prime}$.
Proof. By induction on $S$, making use of the $\wedge-\mathrm{E}_{1}$ and $\wedge-\mathrm{E}_{2}$ rules.
Theorem 3.9 (Soundness of Algorithmic Typing).

1. If $\Gamma \vdash R \Rightarrow \Delta$, then for all $S \in \Delta, \Gamma \vdash R \Rightarrow S$.
2. If $\Gamma \vdash N \Leftarrow S$, then $\Gamma \vdash N \Leftarrow S$.
3. If $\Gamma \vdash \Delta @ N=\Delta^{\prime}$, and for all $S \in \Delta, \Gamma \vdash R \Rightarrow S$, then for all $S^{\prime} \in \Delta^{\prime}$, $\Gamma \vdash R N \Rightarrow S^{\prime}$.

Proof. By induction on the given derivation, using Lemma 3.8.
For completeness, we use the notation $\Delta \subseteq \Delta^{\prime}$ to mean that $\Delta$ is a sublist of $\Delta^{\prime}$.

Lemma 3.10. If $\Gamma \vdash \Delta @ N=\Delta^{\prime}$ and $\Gamma \vdash R \Rightarrow \Delta$ and $\Pi x:: S \subset A . T \in \Delta$ and $\Gamma \vdash N \Leftarrow S$ and $[N / x]_{A}^{\mathrm{s}} T=T^{\prime}$, then $\operatorname{split}\left(T^{\prime}\right) \subseteq \Delta^{\prime}$.

Proof. By straightforward induction on the derivation of $\Gamma \vdash \Delta @ N=\Delta^{\prime}$.
Theorem 3.11 (Completeness for Algorithmic Typing).

1. If $\Gamma \vdash R \Rightarrow S$, then $\Gamma \vdash R \Rightarrow \Delta$ and $\operatorname{split}(S) \subseteq \Delta$.
2. If $\Gamma \vdash N \Leftarrow S$, then $\Gamma \vdash N \Leftarrow S$.

Proof. By straightforward induction on the given derivation. In the application case, we make use of the fact that $\Gamma \vdash \Delta @ N=\Delta^{\prime}$ is always defined and apply Lemma 3.10.

Soundness, completeness, and decidability of the algorithmic system gives us a decision procedure for the judgement $\Gamma \vdash N \Leftarrow S$. First, decidability tells us that either $\Gamma \vdash N \Leftarrow S$ or $\Gamma \nvdash N \Leftarrow S$. Then soundness tells us that if $\Gamma \vdash N \Leftarrow S$ then $\Gamma \vdash N \Leftarrow S$, while completeness tells us that if $\Gamma \nvdash N \Leftarrow S$ then $\Gamma \nvdash N \Leftarrow S$.

Decidability theorems and proofs for other syntactic categories' formation judgements proceed similarly. When all is said and done, we have enough to show that the problem of sort checking an LFR signature is decidable.

Theorem 3.12 (Decidability of Sort Checking). Sort checking is decidable. In particular:

1. Given $\Gamma, N$, and $S$, either $\Gamma \vdash N \Leftarrow S$ or $\Gamma \nvdash N \Leftarrow S$,
2. Given $\Gamma, S$, and $A$, either $\Gamma \vdash S \sqsubset A$ or $\Gamma \nvdash S \sqsubset A$, and
3. Given $\Sigma$, either $\vdash \Sigma \operatorname{sig}$ or $\nvdash \Sigma$ sig.

### 3.3 Identity and Substitution Principles

Since well-typed terms in our framework must be canonical, that is $\beta$-normal and $\eta$-long, it is non-trivial to prove $S \rightarrow S$ for non-atomic $S$, or to compose proofs of $S_{1} \rightarrow S_{2}$ and $S_{2} \rightarrow S_{3}$. The Identity and Substitution principles ensure that our type theory makes logical sense by demonstrating the reflexivity and transitivity of entailment. Reflexivity is witnessed by $\eta$-expansion, while transitivity is witnessed by hereditary substitution.

The Identity Principle effectively says that synthesizing (atomic) objects can be made to serve as checking (normal) objects. The Substitution Principle dually says that checking objects may stand in for synthesizing assumptions, that is, variables.

### 3.3.1 Substitution

The goal of this section is to give a careful proof of the following Substitution Theorem.

Theorem (Substitution). Suppose $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$. Then:

1. If


- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash S \sqsubset A$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\prime} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$ and $\vdash \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \mathrm{ctx}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash S^{\prime} \sqsubset A^{\prime}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N=N^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$,

2. If

- $+\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \operatorname{ctx}$ and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$ and $\vdash \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \mathrm{ctx}$, and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$, and either
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S^{\prime}$, or
$-\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$,
and similarly for other syntactic categories.
To prove the Substitution Theorem, we require a lemma about how substitutions compose. The corresponding property for a non-hereditary substitution says that $\left[N_{0} / x_{0}\right]\left[N_{2} / x_{2}\right] N=\left[\left[N_{0} / x_{0}\right] N_{2} / x_{2}\right]\left[N_{0} / x_{0}\right] N$. For hereditary substitutions, the situation is analogous, but we must be clear about which substitution instances we must assume to be defined and which we may conclude to be defined: If the three "inner" substitutions are defined, then the two "outer" ones are also defined, and equal. Note that the composition lemma is something like a diamond property; the notation below is meant to suggest this connection.

Lemma 3.13 (Composition of Substitutions). Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n} N_{2}=N_{2}$ and $x_{2} \notin \mathrm{FV}\left(N_{0}\right)$. Then:

1. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N=N^{\prime}$, then for some $N^{\prime \prime}$, $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n_{2}} N^{\prime}=N^{\prime}$,
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}$, then for some $R^{\prime \prime}$,
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{Tr}} R^{\prime}=R^{\prime \prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{Tr}} R^{\prime}=R^{\prime}$,
3. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R=\left(N^{\prime}, \beta\right)$, then for some $N^{\prime}$, $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{m}} R^{\prime}=\left(N^{\prime}, \beta\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N^{\prime}=N^{\prime}$,
4. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=\left(N^{\prime}, \beta\right)$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\text {rr }} R=R^{\prime}$, then for some $N^{\prime}$, $\left[N_{2}^{\mathrm{2}} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R^{\prime}=\left(N^{\prime}, \beta\right)$,
and similarly for other syntactic categories.
Proof (sketch). By lexicographic induction on the unordered pair of $\alpha_{0}$ and $\alpha_{2}$, and on the first substitution derivation in each clause. The cases for rule subst-rn- $\beta$ in clauses 3 and 4 appeal to the induction hypothesis at a smaller type using Lemma 3.4. The case in clause 4 swaps the roles of $\alpha_{0}$ and $\alpha_{2}$, necessitating the unordered induction metric. (The full proof may be found in Appendix B.1.)

We also require a simple lemma about substitution into subsorting derivations:

Lemma 3.14 (Substitution into Subsorting). If $Q_{1} \leq Q_{2}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{q} Q_{1}=Q_{1}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{q} Q_{2}=Q_{2}^{\prime}$, then $Q_{1}^{\prime} \leq Q_{2}^{\prime}$.

Proof. Straightforward induction using Theorem 3.2 (Functionality of Substitution), since the subsorting rules depend only on term equalities, and not on well-formedness.

Next, we must state the Substitution Theorem in a form general enough to admit an inductive proof. Following previous work on canonical formsbased LF [WCPW02, HL07], we strengthen its statement to one that does not presuppose the well-formedness of the context or the classifying types, but instead merely presupposes that hereditary substitution is defined on them. We call this strengthened theorem "Proto-Substitution" and prove it in several parts. In order to capture the convention that we only sort-check well-typed terms, Proto-Substitution includes hypotheses about well-typedness of terms; these hypotheses use an erasure $\Gamma^{*}$ that transforms an LFR context into an LF context.

$$
.^{*}=\cdot \quad(\Gamma, x:: S \sqsubset A)^{*}=\Gamma^{*}, x: A
$$

The structure of the proof under this convention requires that we interleave the proof of the core LF Proto-Substitution theorem. In order to highlight the essential content of the theorem-the part that relates to refinements-we write the core LF assumptions and conclusions in grey, and in the proof itself, we elide reasoning related to these grey assumptions. (It is always either straightforward bookkeeping or follows by analogy with the refinement-related reasoning.)

Theorem 3.15 (Proto-Substitution, terms).

1. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash N \Leftarrow A$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N=N^{\prime}$, and
- $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$ and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash N^{\prime} \Leftarrow A^{\prime}$.

2. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash R \Rightarrow A$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$, and
- either
$-\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and
$-\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S^{\prime}$ and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash R^{\prime} \Rightarrow A^{\prime}$,
or
$-\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime},\left(A^{\prime}\right)^{-}\right)$and
$-\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$ and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash N^{\prime} \Leftarrow A^{\prime}$.
Note: We tacitly assume the implicit signature $\Sigma$ is well-formed. We do not tacitly assume that any of the contexts, sorts, or types are well-formed. We do tacitly assume that contexts respect the usual variable conventions in that bound variables are always fresh, both with respect to other variables bound in the same context and with respect to other free variables in terms outside the scope of the binding.

Proof (sketch). By lexicographic induction on $\left(A_{0}\right)^{-}$and the derivation $\mathcal{D}$ hypothesizing $x_{0}: \because S_{0} \sqsubset A_{0}$.

The most involved case is that for application $R_{1} N_{2}$. When head $\left(R_{1}\right)=x_{0}$ hereditary substitution carries out a $\beta$-reduction, and the proof invokes the induction hypothesis at a smaller type but not a subderivation. This case also requires Lemma 3.13 (Composition): since function sorts are dependent, the typing rule for application carries out a substitution, and we need to compose this substitution with the $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{s}}$ substitution.

In the case where we check a term at sort T, we require the grey assumptions in order to invoke the core LF Proto-Substitution theorem.
(The full proof may be found in Appendix B.2.)
Next, we can prove analogous Proto-Substitution theorems for sorts/types and for classes/kinds.

Theorem 3.16 (Proto-Substitution, sorts and types).

1. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$,
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash S \sqsubset A$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash A \Leftarrow$ type , and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$, and
- $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash S^{\prime} \sqsubset A^{\prime}$, and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash A^{\prime} \Leftarrow$ type .

2. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$,
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash Q \sqsubset P \Rightarrow L$ and $\Gamma \vdash P \Rightarrow K$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{q}} Q=Q^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{p}} P=P^{\prime}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{1} L=L^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{k}} K=K^{\prime}$, and
- $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash Q^{\prime} \sqsubset P^{\prime} \Rightarrow L^{\prime}$ and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash P^{\prime} \Rightarrow K^{\prime}$.

Proof. By induction on the derivation hypothesizing $x_{0}:: S_{0} \sqsubset A_{0}$, using Theorem 3.15 (Proto-Substitution, terms). The reasoning is essentially the same as the reasoning for Theorem 3.15.

Theorem 3.17 (Proto-Substitution, classes and kinds).
If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$,
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash L \sqsubset K$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash K \Leftarrow$ kind, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{1} L=L^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{k}} K=K^{\prime}$, and
- $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash L^{\prime} \sqsubset K^{\prime}$, and $\Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash K^{\prime} \Leftarrow$ kind.

Proof. By induction on the derivation hypothesizing $x_{0}:: S_{0} \sqsubset A_{0}$, using Theorem 3.16 (Proto-Substitution, sorts and types).

Then, we can finish Proto-Substitution by proving a Proto-Substitution theorem for contexts.

## Theorem 3.18 (Proto-Substitution, contexts).

If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$, and
- $\vdash \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0} \mathrm{ctx}$ and $\vdash \Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \mathrm{ctx}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$, and
- $\vdash \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \mathrm{ctx}$ and $\vdash \Gamma_{\mathrm{L}^{\prime}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \mathrm{ctx}$.

Proof. Straightforward induction on $\Gamma_{R}$.
Finally, we have enough obtain a proof of the desired Substitution theorem.
Theorem 3.19 (Substitution). Suppose $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$. Then:

1. If

- $\vdash \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \mathrm{ctx}$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash S \sqsubset A$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$ and $\vdash \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \mathrm{ctx}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash S^{\prime} \sqsubset A^{\prime}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N=N^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$,

2. If

- $\vdash \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \mathrm{ctx}$ and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$ and $\vdash \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \mathrm{ctx}$, and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$, and either
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S^{\prime}$, or
$-\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$,
and similarly for other syntactic categories.
Proof. Straightforward corollary of Theorems 3.15, 3.16, 3.17, and 3.18 (ProtoSubstitution).

Having proven Substitution, we henceforth tacitly assume that all subjects of a judgement are sufficiently well-formed for the judgement to make sense. In particular, we assume that all contexts are well-formed, and whenever we assume $\Gamma \vdash N \Leftarrow S$, we assume that for some well-formed type $A$, we have $\Gamma \vdash S \sqsubset A$ and $\Gamma \vdash N \Leftarrow A$. These assumptions embody our refinement restriction: we only sort-check a term if it is already well-typed and even then only at sorts that refine its type.

Similarly, whenever we assume $\Gamma \vdash S \sqsubset A$, we tacitly assume that $\Gamma \vdash A \Leftarrow$ type, and whetever we assume $\Gamma \vdash L \sqsubset K$, we tacitly assume that $\Gamma \vdash K \Leftarrow$ kind.

### 3.3.2 Identity

Just as we needed a composition lemma to prove the Substitution theorem, in order to prove the Identity theorem we need a lemma about how $\eta$-expansion commutes with substitution. ${ }^{5}$

In stating this lemma, we require a judgement that predicts the simple type output of "rn" substitution. This judgement just computes the simple type as in "rn" substitution, but without computing anything having to do with substitution. Since it resembles a sort of "approximate typing judgement", we write it $x_{0}: \alpha_{0} \vdash R: \alpha$. As with "rn" substitution, it is only defined when the head of $R$ is $x_{0}$.

$$
\frac{x_{0}: \alpha_{0} \vdash x_{0}: \alpha_{0}}{x_{0}: \alpha_{0} \vdash R: \alpha \rightarrow \beta}
$$

Lemma 3.20. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)$ and $x_{0}: \alpha_{0} \vdash R: \alpha$, then $\alpha^{\prime}=\alpha$.
Proof. Straightforward induction.
Lemma 3.21 (Commutativity of Substitution and $\eta$-expansion). Substitution commutes with $\eta$-expansion. In particular:

1. (a) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N=N^{\prime}$, then $N=N^{\prime}$,
(b) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R=R^{\prime}$, then $R=R^{\prime}$,
(c) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} R=(N, \beta)$, then $\eta_{\beta}(R)=N$,
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha}(R)=N^{\prime}$, then
(a) if $\operatorname{head}(R) \neq x_{0}$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\eta_{\alpha}\left(R^{\prime}\right)=N^{\prime}$,
(b) if head $(R)=x_{0}$ and $x_{0}: \alpha_{0} \vdash R: \alpha$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha\right)$,
and similarly for other syntactic categories.
Proof (sketch). By lexicographic induction on $\alpha$ and the given substitution derivation. The proofs of clauses $1 \mathrm{a}, 1 \mathrm{~b}$, and 1 c analyze the substitution derivation, while the proofs of clauses 2 a and 2 b analyze the simple type $\alpha$ at which $R$ is $\eta$-expanded. (The full proof may be found in Appendix B.3.)

Note: By considering the variable being substituted for to be a bound variable subject to $\alpha$-conversion ${ }^{6}$, we can see that our Commutativity theorem is equivalent to an apparently more general one where the $\eta$-expanded variable is not the same as the substituted-for variable. For example, in the case of clause (1a), we would have that if $\left[\eta_{\alpha}(x) / y\right]_{\alpha}^{\mathrm{n}} N=N^{\prime}$, then $[x / y] N=N^{\prime}$. We will freely make use of this fact in what follows when convenient.

[^3]\[

$$
\begin{gathered}
\frac{S_{1} \leq S_{2} \quad S_{2} \leq S_{3}}{S_{1} \leq S_{3}} \text { (trans) } \frac{S_{2} \leq S_{1} \quad T_{1} \leq T_{2}}{\Pi x:: S_{1} \cdot T_{1} \leq \Pi x:: S_{2} \cdot T_{2}} \text { (S-П) } \\
\frac{T \leq S_{1}}{T \leq T}(\mathrm{~T}-\mathbf{R}) \quad \frac{T \leq S_{2}}{T \leq S_{1} \wedge S_{2}}(\wedge-\mathbf{R}) \\
\frac{S_{1} \leq T}{S_{1} \wedge S_{2} \leq T}\left(\wedge-\mathbf{L}_{1}\right) \quad \frac{S_{2} \leq T}{S_{1} \wedge S_{2} \leq T}\left(\wedge-\mathbf{L}_{2}\right) \\
\frac{\mathrm{T} \leq \Pi x:: S . \mathrm{T}}{}(\mathrm{~T} / \Pi \text {-dist) } \\
\frac{\left(\Pi x:: S . T_{1}\right) \wedge\left(\Pi x:: S . T_{2}\right) \leq \Pi x:: S .\left(T_{1} \wedge T_{2}\right)}{(\wedge / \Pi \text {-dist) }}
\end{gathered}
$$
\]

Figure 1: Derived rules for subsorting at higher sorts.

Theorem 3.22 (Expansion). If $\Gamma \vdash S \sqsubset A$ and $\Gamma \vdash R \Rightarrow S$, then $\Gamma \vdash \eta_{A}(R) \Leftarrow S$.
Proof (sketch). By induction on $S$. The $\Pi x:: S_{1} \sqsubset A_{1}$. $S_{2}$ case relies on Theorem 3.19 (Substitution) to show that $\left[\eta_{A_{1}}(x) / x\right]_{A_{1}}^{\mathrm{s}} S_{2}$ is defined and on Lemma 3.21 (Commutativity) to show that it is equal to $S_{2}$. (The full proof may be found in Appendix B.4.)

Theorem 3.23 (Identity). If $\Gamma \vdash S \sqsubset A$, then $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow S$.
Proof. Corollary of Theorem 3.22 (Expansion).

## 4 Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule, the switch rule when we switch modes from checking to synthesis. Since we insist on typing only canonical forms, this rule is limited to checking at atomic sorts $Q$, and consequently, subsorting need only be defined on atomic sorts. These observations naturally lead one to ask, what is the status of higher-sort subsorting in LFR? How do our intuitions about things like structural rules, variance, and distributivity-in particular, the rules shown in Fig. 1-fit into the LFR picture?

It turns out that despite not explicitly including subsorting at higher sorts, LFR implicitly includes an intrinsic notion of higher-sort subsorting through the $\eta$-expansion associated with canonical forms. The simplest way of formulating
this intrinsic notion is as a variant of the identity principle: $S$ is taken to be a subsort of $T$ if $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T$. This notion is equivalent to a number of other alternate formulations, including a subsumption-based formulation and a substitution-based formulation.

Theorem 4.1 (Alternate Formulations of Subsorting). Suppose that for some $\Gamma_{0}$, $\Gamma_{0} \vdash S_{1} \sqsubset A$ and $\Gamma_{0} \vdash S_{2} \sqsubset A$, and define:

1. $S_{1} \leq_{1} S_{2} \stackrel{\text { def }}{=}$ for all $\Gamma$ and $R$ : if $\Gamma \vdash R \Rightarrow S_{1}$, then $\Gamma \vdash \eta_{A}(R) \Leftarrow S_{2}$.
2. $S_{1} \leq_{2} S_{2} \stackrel{\text { def }}{=}$ for all $\Gamma: \Gamma, x:: S_{1} \sqsubset A \vdash \eta_{A}(x) \Leftarrow S_{2}$.
3. $S_{1} \leq_{3} S_{2} \stackrel{\text { def }}{=}$ for all $\Gamma$ and $N$ : if $\Gamma \vdash N \Leftarrow S_{1}$, then $\Gamma \vdash N \Leftarrow S_{2}$.
4. $S_{1} \leq_{4} S_{2} \stackrel{\text { def }}{=}$ for all $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}, N$, and $S$ : if $\Gamma_{\mathrm{L}}, x:: S_{2} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$ then $\Gamma_{\mathrm{L}}, x:: S_{1} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$
5. $S_{1} \leq_{5} S_{2} \stackrel{\text { def }}{=}$ for all $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}, N, S$, and $N_{1}$ : if $\Gamma_{\mathrm{L}}, x:: S_{2} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$ and $\Gamma_{\mathrm{L}} \vdash N_{1} \Leftarrow S_{1}$, then $\Gamma_{\mathrm{L}},\left[N_{1} / x\right]_{A}^{\gamma} \Gamma_{\mathrm{R}} \vdash\left[N_{1} / x\right]_{A}^{\mathrm{n}} N \Leftarrow\left[N_{1} / x\right]_{A}^{\mathrm{s}} S$.

Then, $S_{1} \leq_{1} S_{2} \Longleftrightarrow S_{1} \leq_{2} S_{2} \Longleftrightarrow \cdots \Longleftrightarrow S_{1} \leq_{5} S_{2}$.
Proof. Using the Identity and Substitution principles along with Lemma 3.21, the Commutativity of Substitution with $\eta$-expansion.
$1 \Longrightarrow 2$ : By rule, $\Gamma, x:: S_{1} \sqsubset A \vdash x \Rightarrow S_{1}$. By $1, \Gamma, x:: S_{1} \sqsubset A \vdash \eta_{A}(x) \Leftarrow S_{2}$.
$2 \Longrightarrow$ 3: Suppose $\Gamma \vdash N \Leftarrow S_{1}$. By 2, $\Gamma, x:: S_{1} \sqsubset A \vdash \eta_{A}(x) \Leftarrow S_{2}$. By Theorem 3.19 (Substitution), $\Gamma \vdash[N / x]_{A}^{\mathrm{n}} \eta_{A}(x) \Leftarrow S_{2}$. By Lemma 3.21 (Commutativity), $\Gamma \vdash N \Leftarrow S_{2}$.
$3 \Longrightarrow 4:$ Suppose $\Gamma_{\mathrm{L}}, x:: S_{2} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$. By weakening, $\Gamma_{\mathrm{L}}, y:: S_{1} \sqsubset A$, $x:: S_{2} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$. By Theorem 3.23 (Identity), $\Gamma_{\mathrm{L}}, y:: S_{1} \sqsubset A \vdash \eta_{A}(y) \Leftarrow$ $S_{1}$. By 3, $\Gamma_{\mathrm{L}}, y:: S_{1} \sqsubset A \vdash \eta_{A}(y) \Leftarrow S_{2}$. By Theorem 3.19 (Substitution), $\Gamma_{\mathrm{L}}, y:: S_{1} \sqsubset A,\left[\eta_{A}(y) / x\right]_{A}^{\gamma} \Gamma_{\mathrm{R}} \vdash\left[\eta_{A}(y) / x\right]_{A}^{\mathrm{n}} N \Leftarrow\left[\eta_{A}(y) / x\right]_{A}^{\mathrm{s}} S$. By Lemma 3.21 (Commutativity) and $\alpha$-conversion, $\Gamma_{\mathrm{L}}, x:: S_{1} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$.
$4 \Longrightarrow$ 5: Suppose $\Gamma_{\mathrm{L}}, x:: S_{2} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$ and $\Gamma_{\mathrm{L}} \vdash N_{1} \Leftarrow S_{1}$. By 4, $\Gamma_{\mathrm{L}}, x:: S_{1} \sqsubset A, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$. By Theorem 3.19 (Substitution), $\Gamma_{\mathrm{L}},\left[N_{1} / x\right]_{A}^{\gamma} \Gamma_{\mathrm{R}} \vdash$ $\left[N_{1} / x\right]_{A}^{\mathrm{n}} N \Leftarrow\left[N_{1} / x\right]_{A}^{\mathrm{s}} S$.
$5 \Longrightarrow 1$ : Suppose $\Gamma \vdash R \Rightarrow S_{1}$. By Theorem 3.22 (Expansion), $\Gamma \vdash \eta_{A}(R) \Leftarrow$ $S_{1}$. By Theorem 3.23 (Identity), $\Gamma, x:: S_{2} \sqsubset A \vdash \eta_{A}(x) \Leftarrow S_{2}$. By $5, \Gamma \vdash$ $\left[\eta_{A}(R) / x\right]_{A}^{\mathrm{n}} \eta_{A}(x) \Leftarrow S_{2}$. By Lemma 3.21 (Commutativity), $\Gamma \vdash \eta_{A}(R) \Leftarrow$ $S_{2}$.

If we take "subsorting as $\eta$-expansion" to be our model of subsorting, we can show the "usual" presentation in Fig. 1 to be both sound and complete
with respect to this model. In other words, subsorting as $\eta$-expansion really is subsorting (soundness), and it is no more than subsorting (completeness). Alternatively, we can say that completeness demonstrates that there are no subsorting rules missing from the usual declarative presentation: Fig. 1 accounts for everything covered intrinsically by $\eta$-expansion. By the end of this section, we will have shown the following theorems:

Theorem (Soundness of Declarative Subsorting). If $S \leq T$, then $\Gamma, x:: S \sqsubset A \vdash$ $\eta_{A}(x) \Leftarrow T$.

Theorem (Completeness of Declarative Subsorting). If $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T$, then $S \leq T$.

Soundness is a straightforward inductive argument.
Theorem 4.2 (Soundness of Declarative Subsorting). If $S \leq T$, then $\Gamma, x:: S \sqsubset A \vdash$ $\eta_{A}(x) \Leftarrow T$.

Proof. By induction, making use of the alternate formulations given by Theorem 4.1.

The proof of completeness is considerably more intricate. We demonstrate completeness via a detour through an algorithmic subsorting system very similar to the algorithmic typing system from Section 3.2, with judgements $\Delta \leqq S$ and $\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$. To show completeness, we show that intrinsic subsorting implies algorithmic subsorting and that algorithmic subsorting implies declarative subsorting; the composition of these theorems is our desired completeness result.

Theorem (Intrinsic $\Rightarrow$ Algorithmic). If $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T$, then $\operatorname{split}(S) \leqq T$.
Theorem (Algorithmic $\Rightarrow$ Declarative). If $\operatorname{split}(S) \leqq T$, then $S \leq T$.
The following schematic representation of soundness and completeness may help the reader to understand the key theorems.


As mentioned above, the algorithmic subsorting system system is characterized by two judgements: $\Delta \leqq S$ and $\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$; rules defining them are shown in Figure 2. As in Section 3.2, $\Delta$ represents an intersection-free list of sorts. The interpretation of the judgement $\Delta \leqq S$, made precise below, is roughly that the intersection of all the sorts in $\Delta$ is a subsort of the sort $S$.

$$
\begin{aligned}
& \Delta \leqq S \\
& \overline{\Delta \leqq T} \quad \frac{\Delta \leqq S_{1} \quad \Delta \leqq S_{2}}{\Delta \leqq S_{1} \wedge S_{2}} \quad \frac{Q^{\prime} \in \Delta \quad Q^{\prime} \leq Q}{\Delta \leqq Q} \\
& \frac{\Delta @ x:: s p l i t\left(S_{1}\right) \sqsubset A_{1}=\Delta_{2} \quad \Delta_{2} \leqq S_{2}}{\Delta \leqq \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}} \\
& \Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2} \\
& \overline{-@ x:: \Delta_{1} \sqsubset A_{1}=\cdot} \frac{\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2} \quad \Delta_{1} \leqq S_{1} \quad\left[\eta_{A_{1}}(x) / y\right]_{1_{1}}^{\mathrm{n}} S_{2}=S_{2}^{\prime}}{\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)} \\
& \frac{\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2} \quad \Delta_{1} \nsubseteq S_{1}}{\left(\Delta, \text { П }:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}} \\
& \frac{\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2} \quad \nexists S_{2}^{\prime} \cdot\left[\eta_{A_{1}}(x) / y\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}} \quad \frac{\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}}{(\Delta, Q) @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}}
\end{aligned}
$$

Figure 2: Algorithmic subsorting.

$$
\begin{gathered}
\frac{S_{1} \leq T_{1} \quad S_{2} \leq T_{2}}{S_{1} \wedge S_{2} \leq T_{1} \wedge T_{2}}(\mathbf{S}-\wedge) \quad \frac{T_{1} \wedge\left(S_{2} \wedge S_{3}\right) \leq\left(S_{1} \wedge S_{2}\right) \wedge S_{3}}{S_{1}}(\wedge \text {-assoc }) \\
\frac{S \leq \Pi x:: T_{1} \cdot T_{2}}{S \wedge \Pi x:: S_{1} \cdot S_{2} \leq \Pi x:: T_{1} \cdot\left(T_{2} \wedge S_{2}\right)}(\wedge / \Pi \text {-dist' })
\end{gathered}
$$

Figure 3: Useful rules derivable from those in Figure 1.

The rule for checking whether $\Delta$ is a subsort of a function type makes use of the application judgement $\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$ to extract all of the applicable function codomains from the list $\Delta$. As in Section 3.2, care is taken to ensure that this latter judgement is defined even in seemingly "impossible" scenarios that well-formedness preconditions would rule out, like $\Delta$ containing atomic sorts or hereditary substitution being undefined.

Our first task is to demonstrate that the algorithm has the interpretation alluded to above. To that end, we define an operator $\Lambda(-)$ that transforms a list $\Delta$ into a sort $S$ by "folding" $\wedge$ over $\Delta$ with unit $T$.

$$
\bigwedge(\cdot)=\top \quad \bigwedge(\Delta, S)=\bigwedge(\Delta) \wedge S
$$

Now our goal is to demonstrate that if the algorithm says $\Delta \leqq S$, then declaratively $\bigwedge(\Delta) \leq S$. First, we prove some useful properties of the $\Lambda(-)$ operator.

Lemma 4.3. $\wedge\left(\Delta_{1}\right) \wedge \bigwedge\left(\Delta_{2}\right) \leq \bigwedge\left(\Delta_{1}, \Delta_{2}\right)$
Proof. Straightforward induction on $\Delta_{2}$.
Lemma 4.4. $S \leq \wedge(\operatorname{split}(S))$.
Proof. Straightforward induction on $S$.
Lemma 4.5. If $Q^{\prime} \in \Delta$ and $Q^{\prime} \leq Q$, then $\wedge(\Delta) \leq Q$.
Proof. Straightforward induction on $\Delta$.
Theorem 4.6 (Generalized Algorithmic $\Rightarrow$ Declarative).

1. If $\mathcal{D}:: \Delta \leqq T$, then $\bigwedge(\Delta) \leq T$.
2. If $\mathcal{D}:: \Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$, then $\bigwedge(\Delta) \leq \Pi x:: \wedge\left(\Delta_{1}\right) \sqsubset A_{1} . \wedge\left(\Delta_{2}\right)$.

Proof (sketch). By induction on $\mathcal{D}$, using Lemmas 4.3, 4.4, and 4.5. The derivable rules from Figure 3 come in handy in the proof of clause 2. (The full proof may be found in Appendix B.5.)

Theorem 4.6 is sufficient to prove that algorithmic subsorting implies declarative subsorting.

Theorem 4.7 (Algorithmic $\Rightarrow$ Declarative). If $\operatorname{split}(S) \leqq T$, then $S \leq T$.
Proof. Suppose split $(S) \leqq T$. Then,

```
\(\bigwedge(\operatorname{split}(S)) \leq T\)
By Theorem 4.6.
\(S \leq \wedge(\operatorname{split}(S))\)
 By Lemma 4.4.
\(S \leq T \quad\) By rule trans.
```

Now it remains only to show that intrinsic subsorting implies algorithmic. To do so, we require some lemmas. First, we extend our notion of a sort $S$ refining a type $A$ to an entire list of sorts $\Delta$ refining a type $A$ in the obvious way.

$$
\frac{\Gamma \vdash \cdot \sqsubset A}{\Gamma \vdash \Delta \sqsubset A \quad \Gamma \vdash S \sqsubset A}
$$

This new notion has the following important properties.
Lemma 4.8. If $\Gamma \vdash \Delta_{1} \sqsubset A$ and $\Gamma \vdash \Delta_{2} \sqsubset A$, then $\Gamma \vdash \Delta_{1}, \Delta_{2} \sqsubset A$.
Proof. Straightforward induction on $\Delta_{2}$.
Lemma 4.9. If $\Gamma \vdash S \sqsubset A$, then $\Gamma \vdash \operatorname{split}(S) \sqsubset A$.
Proof. Straightforward induction on $S$.
Lemma 4.10. If $\mathcal{D}:: \Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$ and $\mathcal{E}:: \Gamma \vdash \Delta @ N=\Delta_{2}$ and $[N / x]_{A_{1}}^{\text {a }} A_{2}=$ $A_{2}^{\prime}$, then $\Gamma \vdash \Delta_{2} \sqsubset A_{2}^{\prime}$.

Proof (sketch). By induction on $\mathcal{E}$, using Theorem 3.9 (Soundness of Algorithmic Typing) to appeal to Theorem 3.19 (Substitution), along with Lemmas 4.8 and 4.9. (The full proof may be found in Appendix B.6.)

We will also require an analogue of subsumption for our algorithmic typing system, which relies on two lemmas about lists of sorts.

Lemma 4.11. If $\Gamma \vdash \Delta \sqsubset A$, then for all $S \in \Delta, \Gamma \vdash S \sqsubset A$.
Proof. Straightforward induction on $\Delta$.
Lemma 4.12. If for all $S \in \Delta, \Gamma \vdash N \Leftarrow S$, then $\Gamma \vdash N \Leftarrow \wedge(\Delta)$.
Proof. Straightforward induction on $\Delta$.
Theorem 4.13 (Algorithmic Subsumption). If $\Gamma \vdash R \Rightarrow \Delta$ and $\Gamma \vdash \Delta \sqsubset A$ and $\Delta \leqq S$, then $\Gamma \vdash \eta_{A}(R) \Leftarrow S$.

Proof. Straightforward deduction, using soundness and completeness of algorithmic typing.

$$
\begin{aligned}
& \forall S^{\prime} \in \Delta . \Gamma \vdash R \Rightarrow S^{\prime} \quad \text { By Theorem } 3.9 \text { (Soundness of Alg. Typing). } \\
& \forall S^{\prime} \in \Delta . \Gamma \vdash S^{\prime} \sqsubset A \quad \text { By Lemma 4.11. } \\
& \forall S^{\prime} \in \Delta . \Gamma \vdash \eta_{A}(R) \Leftarrow S^{\prime} \quad \text { By Theorem 3.22 (Expansion). } \\
& \Gamma \vdash \eta_{A}(R) \Leftarrow \bigwedge(\Delta) \\
& \Delta \leqq S \\
& \text { By assumption. } \\
& \wedge(\Delta) \leq S \\
& \text { By Theorem } 4.6 \text { (Generalized Alg. } \Rightarrow \text { Decl.). } \\
& \Gamma \vdash \eta_{A}(R) \Leftarrow S \quad \text { By Theorem } 4.2 \text { (Soundness of Decl. Subsorting) and } \\
& \text { Theorem } 4.1 \text { (Alternate Formulations of Subsorting). } \\
& \Gamma \vdash \eta_{A}(R) \Leftarrow S \quad \text { By Theorem } 3.11 \text { (Completeness of Alg. Typing). }
\end{aligned}
$$

Now we can prove the following main theorem, which generalizes our desired "Intrinsic $\Rightarrow$ Algorithmic" theorem:

Theorem 4.14 (Generalized Intrinsic $\Rightarrow$ Algorithmic).

1. If $\Gamma \vdash R \Rightarrow \Delta$ and $\mathcal{E}:: \Gamma \vdash \eta_{A}(R) \Leftarrow S$ and $\Gamma \vdash \Delta \sqsubset A$ and $\Gamma \vdash S \sqsubset A$, then $\Delta \leqq S$.
2. If $\Gamma \vdash x \Rightarrow \Delta_{1}$ and $\mathcal{E}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2}$ and $\Gamma \vdash \Delta_{1} \sqsubset A_{1}$ and $\Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$, then $\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$.

Proof (sketch). By induction on $A, S$, and $\mathcal{E}$.
Clause 1 is most easily proved by case analyzing the sort $S$ and applying inversion to the derivation $\mathcal{E}$. The case when $S=\Pi x:: S_{1} \sqsubset A_{1} . S_{2}$ appeals to the induction hypothesis at an unrelated derivation but at a smaller type, and Lemmas 4.8 and 4.9 are used to satisfy the preconditions of the induction hypotheses.

Clause 2 is most easily proved by case analyzing the derivation $\mathcal{E}$. In one case, we require the contrapositive of Theorem 4.13 (Algorithmic Subsumption) to convert a derivation of $\Gamma \nvdash \eta_{A_{1}}(x) \Leftarrow S_{1}$ into a derivation of $\Delta_{1} \not \leq S_{1}$.
(The full proof may be found in Appendix B.7.)
Theorem 4.14 along with Theorem 3.11, the Completeness of Algorithmic Typing, gives us our desired result:

Theorem 4.15 (Intrinsic $\Rightarrow$ Algorithmic). If $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T$, then $\operatorname{split}(S) \leqq T$.

Proof. Suppose $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T$. Then,
$\Gamma, x:: S \sqsubset A \vdash x \Rightarrow \operatorname{split}(S) \quad$ By rule.
$\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow T \quad$ By Theorem 3.11 (Completeness of Alg. Typing).
$\operatorname{split}(S) \leqq T \quad$ By Theorem 4.14.

Finally, we have Completeness as a simple corollary:

Theorem 4.16(Completeness of Declarative Subsorting). If $\Gamma, x:: S \sqsubset A \vdash \eta_{A}(x) \Leftarrow$ $T$, then $S \leq T$.

Proof. Corollary of Theorems 4.15 and 4.7.

## 5 Related Work

The works most closely related to ours extend various LF-like dependent type theories with subtyping or intersection types, and we treat these first.

Pfenning described in an unrefereed workshop paper a proposed extension of LF with refinement types [Pfe93]. The present work can be seen as a reconstruction, reformulation, and extension of his ideas, with a focus on canonical forms, decidability, and good proof-theoretic properties.

Aspinall and Compagnoni [AC01] studied a type theory $\lambda \mathrm{P}_{\leq}$with both dependent types and subtyping, but they treated subtyping directly rather than introducing a refinement layer. Their chief difficulty was breaking the cycle that arises between subtyping, kinding, and typing in order to show decidability, which they did by splitting ordinary $\beta$-reduction into two levels, one that reduces terms and one that reduces types. In our setting, the restriction of attention to canonical forms obviates the need to consider $\beta$-reduction and its properties (e.g. subject reduction, Church-Rosser, etc.) at the cost of a more involved Substitution theorem, an arguably simpler development.

Aspinall [Asp00] also studied an unconventional system of subtyping with dependent types using "power types", a type-level analogue of power sets. Aspinall's system $\lambda_{\text {Power }}$ has uniform "subtyping" at all levels since power "types" can in fact classify type families; although the system remains predicative, this generalization complicates the system's metatheory. Aspinall's use of a "rough typing" judgement in formulating the metatheory of $\lambda_{\text {Power }}$ is somewhat related to our use of simple types in the metatheory of hereditary substitution and $\eta$-expansion.

Both Aspinall and Compagnoni's $\lambda \mathrm{P}_{\leq}$and Aspinall's $\lambda_{\text {Power }}$ are more general than LFR in a certain sense, since they allow subtyping declarations between atomic families whose arities and indices might be different. So far in the development of LFR, no examples have wanted for such declarations. The primary shortcoming of both $\lambda \mathrm{P}_{\leq}$and $\lambda_{\text {Power }}$ is their lack of intersection types, which are essential for even the simplest of our examples.

Kopylov [Kop03] studied a dependent intersection $\wedge x:: A . B$, a generalization of ordinary intersection $A \wedge B$ where the second type may depend on the element that has both types. ${ }^{7}$ His motivation was finding a simple way to define dependent records in NuPRL in terms of only single-field records (following Reynolds's trick in the design of Forsythe [Rey96]). It is tempting to consider a dependent intersection sort $\wedge x:: S \sqsubset A . T$ generalizing our $S \wedge T$, but it turns out not to fit in the refinement framework: the sorts $S$ and $T$ must

[^4]both refine the same type $A$, but this precludes $T$ from depending on $x$; in other words, a dependent intersection would always be degenerate.

There is also a great deal of work that is only tangentially related, which we describe below in order to place the current work in its historical context.

Regular tree types and order-sorted logics for logic programming Types naturally arise in logic programming and automated theorem proving as a way to curtail meaningless search. For example, given a clause $\forall n . n a t(n) \rightarrow$ $\cdots \rightarrow \operatorname{prime}(n)$, one may end up searching for a proof of nat(Peter) $\rightarrow \cdots \rightarrow$ prime(Peter) after instantiating $n$; even though this search will never succeed, since it is not the case that nat(Peter), it would be better to avoid such meaningless search in the first place. This observation leads to the introduction of order-sorted logics, from which we borrow the term "sort". The clause above might be rewritten as $\forall n:$ nat. $\cdots \rightarrow \operatorname{prime}(n)$, capturing the appropriate constraint statically.

One class of types that has proved particularly profitable is the regular tree types [DZ92] (see [YFS92] for example), so-called due to their connection with regular tree grammars. A key property that makes the regular tree types useful is the existence of computable intersections, and this property eventually led to the introduction of intersections in the context of refinement type systems for functional languages, described below.

Among order-sorted logics are systems with "term declarations" [SS89]. Term declarations have the form $\forall x_{1}:: S_{1} \ldots \forall x_{n}:: S_{n} . M: S$, meaning that in any context extending $x_{1}:: S_{1}, \ldots, x_{n}:: S_{n}$ the term $M$ can be judged to have sort $S$. For instance, one might declare

$$
\begin{aligned}
& \forall x:: \text { :ven. succ } x:: \text { odd. } \\
& \forall x:: \text { odd. succ } x:: \text { even. }
\end{aligned}
$$

to achieve roughly the same effect as our succ :: even $\rightarrow$ odd $\wedge$ odd $\rightarrow$ even. One problem with such systems is that they fail to give first-class status to the notion that a term can have multiple sorts, like our intersection sorts do. Furthermore, the typechecking problem for systems with term declarations is tricky at best, since it requires the use of higher-order matching, a problem whose status was until recently open and for which no practical implementation currently exists.

Intersection types Intersection types were originally introduced by Coppo et al. [CDCV81] to describe a type theory in which types are preserved not only by reduction but also by convertibility, i.e. in which subject expansion holds in addition to subject reduction. Since $\beta$-conversion preserves types, they were able to precisely characterize the class of normalizing terms as those that have a non-trivial (essentially, non- $T$ ) type.

Later, Reynolds used intersection types to simplify the design of the programming language Forsythe [Rey96], e.g. by representing $n$-ary records as
$n$-ary intersections of single-field records. Although Reynolds's setting of imperative programming was vastly different from our world of logical frameworks, many of his core motivations were similar to ours: namely, intersections can be used to capture multiple properties of individual terms. Furthermore, despite his working under assumptions and constraints quite different from ours, one can see shades of many of his ideas reflected in our development.

Refinement types for functional languages The utility of regular tree types in logic programming led Freeman to investigate them for functional languages [Fre94]. Freeman studied a system of refinement types for a fragment of ML based on ideas relating to regular trees, but intersection types were also a crucial addition for many of his examples. His focus was on maintaining decidable inference with minimal declarations, but ultimately the theory fell prey to algorithmic efficiency issues.

Later, Davies sought to tame the complexities and make refinement types practical for Standard ML [Dav05]. Davies's key decision was to abandon pure inference of unannotated programs in favor of a bidirectional type system and minimally annotated programs. The focus then was on minimizing the annotation burden, a task somewhat alleviated by the apparent positive benefits of annotations during program construction and their interpretation as machine-checked documentation. Along the way, Davies discovered a curious interaction of intersection types with effects quite similar to the interaction of polymorphism with effects; the solution was to impose a value restriction similar to the one familiar from ML-style let-polymorphism [DP00]. Additionally, the system had to be weakened by the removal of the $\wedge / \rightarrow$ distributivity subtyping rule, which could allow users to circumvent the value restriction.

Dunfield unified Davies work with a form of dependent typing inspired by Xi's Dependent ML [XP99], and extended the resulting system with the "indefinite" union and existential types [Dun07]. Dunfield abandoned the refinement restriction, studying a type system with arbitrary intersections and unions directly at the type level, but he maintained a bidirectional typing discipline. To properly account for the indefinite property types, he extended bidirectional checking with an evaluation order-directed "tridirectional rule" [DP04].

All of this work was in the context of functional programming, and thus quite different from our work in logical frameworks. Obviously, since LF has no side effects-indeed no reduction at all!-we have no need of Davies's value restriction, and since we treat only negative types, we have no need of Dunfield's tridirectional rule. But there are still some similarities that help guide the present work, such as Freeman's and Davies's refinement restriction and Davies's and Dunfield's bidirectional typing.

Subtler differences arise from different assumptions about the world at typechecking time. The work on functional languages is all concerned with typing closed terms, and datatypes embody a closed-world assumption, both of which can be leveraged to reason about things like the emptiness of the intersection even $\wedge$ odd. In our setting, though, we have an inherently open-
ended signature and we work under non-empty contexts: it is impossible to show that even $\wedge$ odd is empty because one might always have an assumption of type even $\wedge$ odd. ${ }^{8}$ However, it is exactly this open-endedness, coupled with LF's very weak, purely representational function space, that allows us to show such strong theorems as the soundness and completeness of subtyping via $\eta$ expansion, a theorem one would not expect to hold generally in the presence of a large, computational function space.

## 6 Summary

In summary, we have exhibited a variant of the logical framework LF with a notion of subtyping based on refinement types. We have demonstrated the expressive power of this extension through a number of realistic examples, and we have shown several metatheoretic properties critical to its utility as a logical framework, including decidability of typechecking.

Our development was drastically simplified by the decision to admit only canonical forms. One effect of this choice was that subsorting was only required to be judgementally defined at base sorts; higher-sort subsorting was derived through an $\eta$-expansion-based definition with respect to which we showed the usual structural subsorting rules both sound and complete.

There are a number of avenues of future exploration. For one, it is unclear how subsorting and intersection sorts will interact with the typical features of a metalogical framework, including type reconstruction, unification, and proof search, to name a few; these questions will have to be answered before refinement types can be integrated into a practical implementation. It is also worthwhile to consider adapting the refinement system to more expressive frameworks, like the Linear Logical Framework or the Concurrent Logical Framework.

## References

[AC01] David Aspinall and Adriana B. Compagnoni. Subtyping dependent types. Theoretical Computer Science, 266(1-2):273-309, 2001.
[Asp00] David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichtenberg, editors, CSL, volume 1862 of Lecture Notes in Computer Science, pages 156-171. Springer, 2000.
[CDCV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 27(2-6):45-58, 1981.

[^5][Cra03] Karl Crary. Toward a foundational typed assembly language. In G. Morrisett, editor, Proceedings of the 30th Annual Symposium on Principles of Programming Languages (POPL '03), pages 198-212, New Orleans, Louisiana, January 2003. ACM Press.
[Dav05] Rowan Davies. Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University, May 2005. Available as Technical Report CMU-CS-05-110.
[DP00] Rowan Davies and Frank Pfenning. Intersection types and computational effects. In P. Wadler, editor, Proceedings of the Fifth International Conference on Functional Programming (ICFP'00), pages 198-208, Montreal, Canada, September 2000. ACM Press.
[DP04] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking. In Xavier Leroy, editor, ACM Symp. Principles of Programming Languages (POPL '04), pages 281-292, Venice, Italy, January 2004.
[Dun07] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis, Carnegie Mellon University, August 2007. Available as Technical Report CMU-CS-07-129.
[DZ92] Philip W. Dart and Justin Zobel. A regular type language for logic programs. In Pfenning [Pfe92], pages 157-187.
[Fre94] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon University, March 1994. Available as Technical Report CMU-CS-94-110.
[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association for Computing Machinery, 40(1):143-184, January 1993.
[HL07] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a logical framework. Journal of Functional Programming, 17(4-5):613673, July 2007.
[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory. Transactions on Computational Logic, 6:61-101, January 2005.
[Kop03] Alexei Kopylov. Dependent intersection: A new way of defining records in type theory. In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS '03), pages 86-95. IEEE Computer Society, 2003.
[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Standard ML. In Matthias Felleisen, editor, Proceedings of the 34th Annual Symposium on Principles of Programming Languages (POPL '07), pages 173-184, Nice, France, January 2007. ACM Press.
[LP08] William Lovas and Frank Pfenning. A bidirectional refinement type system for LF. Electronic Notes in Theoretical Computer Science, 196:113-128, January 2008.
[NPP07] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. Transactions on Computational Logic, 2007. To appear.
[Pfe92] Frank Pfenning, editor. Types in Logic Programming. MIT Press, Cambridge, Massachusetts, 1992.
[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Herman Geuvers, editor, Informal Proceedings of the Workshop on Types for Proofs and Programs, pages 285-299, Nijmegen, The Netherlands, May 1993.
[Pfe01] Frank Pfenning. Logical frameworks. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, chapter 17, pages 1063-1147. Elsevier Science and MIT Press, 2001.
[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf - a meta-logical framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference on Automated Deduction (CADE-16), pages 202-206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.
[Rey89] John C. Reynolds. Even normal forms can be hard to type. Unpublished, marked Carnegie Mellon University, December 1, 1989.
[Rey96] John C. Reynolds. Design of the programming language Forsythe. Report CMU-CS-96-146, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 28, 1996.
[SS89] Manfred Schmidt-Schauß. Computational Aspects of an Order-sorted Logic with Term Declarations. Number 395 in Lecture Notes in Computer Science. Springer, 1989.
[WCPW02] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concurrent logical framework I: Judgments and properties. Technical Report CMU-CS-02-101, Department of Computer Science, Carnegie Mellon University, 2002. Revised May 2003.
[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In A. Aiken, editor, Conference Record of the 26th Symposium on Principles of Programming Languages (POPL'99), pages 214-227. ACM Press, January 1999.
[YFS92] Eyal Yardeni, Thom Frühwirth, and Ehud Shapiro. Polymorphically typed logic programs. In Pfenning [Pfe92], pages 63-90.

## A Complete Rules

In the judgement forms below, superscript + and - indicate a judgement's "inputs" and "outputs", respectively.

## A. 1 Grammar

## Kind level

$$
\begin{array}{lr}
K::=\text { type } \mid \Pi x: A . K & \text { kinds } \\
L::=\text { sort }|\Pi x:: S \sqsubset A . L| \top \mid L_{1} \wedge L_{2} & \text { classes }
\end{array}
$$

## Type level

$\begin{array}{lr}P::=a \mid P N & \text { atomic type families } \\ A::=P \mid \Pi x: A_{1} . A_{2} & \text { canonical type families }\end{array}$

$$
\begin{array}{lr}
Q::=s \mid Q N & \text { atomic sort families } \\
S::=Q\left|\Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}\right| \top \mid S_{1} \wedge S_{2} \quad \text { canonical sort families }
\end{array}
$$

## Term level

$$
\begin{array}{rr}
R::=c|x| R N & \text { atomic terms } \\
N::=R \mid \lambda x . N & \text { canonical terms }
\end{array}
$$

## Signatures and contexts

| $\Sigma::=\cdot \mid \Sigma, D$ | signatures |
| :--- | ---: |
| $D::=a: K\|c: A\| s \sqsubset a:: L\left\|s_{1} \leq s_{2}\right\| c:: S$ | declarations |
| $\Gamma::=\cdot \mid \Gamma, x:: S \sqsubset A$ | contexts |

## A. 2 Expansion and Substitution

All bound variables are tacitly assumed to be sufficiently fresh.

$$
(A)^{-}=\alpha
$$

$$
\begin{aligned}
& \alpha, \beta::=a \mid \alpha_{1} \rightarrow \alpha_{2} \\
&(a)^{-}=a \\
&(P N)^{-}=(P)^{-} \\
&(\Pi x: A \cdot B)^{-}=(A)^{-} \rightarrow(B)^{-}
\end{aligned}
$$

$$
\eta_{\alpha}(R)=N
$$

$$
\begin{aligned}
\eta_{a}(R) & =R \\
\eta_{\alpha \rightarrow \beta}(R) & =\lambda x \cdot \eta_{\beta}\left(R \eta_{\alpha}(x)\right)
\end{aligned}
$$

$$
\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}
$$

$$
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=(N, a)}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=N} \quad \frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=R^{\prime}} \quad \frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda x . N=\lambda x \cdot N^{\prime}}
$$

$$
\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}
$$

$$
\begin{array}{r}
\frac{x \neq x_{0}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} x=x} \quad \frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{1}=R_{1}^{\prime} \quad\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} c=c} \quad \begin{array}{r}
\left.N_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{1} N_{2}=R_{1}^{\prime} N_{2}^{\prime} \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha^{\prime}\right)}
\end{array}
\end{array}
$$

$$
\begin{gathered}
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} x_{0}=\left(N_{0}, \alpha_{0}\right)}{} \text { (subst-rn-var) } \\
\frac{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{1}=\left(\lambda x . N_{1}, \alpha_{2} \rightarrow \alpha_{1}\right)}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime} \quad\left[N_{2}^{\prime} / x\right]_{\alpha_{2}}^{\mathrm{n}} N_{1}=N_{1}^{\prime}} \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{1} N_{2}=\left(N_{1}^{\prime}, \alpha_{1}\right)} \\
\text { (subst-rn- } \beta)
\end{gathered}
$$

(Substitution for other syntactic categories ( $\mathrm{q}, \mathrm{p}, \mathrm{s}, \mathrm{a}, \mathrm{l}, \mathrm{k}, \gamma$ ) is compositional.)

## A. 3 Kinding

$$
\Gamma \vdash_{\Sigma} L^{+} \sqsubset K^{+}
$$

$$
\begin{aligned}
\overline{\Gamma \vdash \text { sort } \sqsubset \text { type }} & \frac{\Gamma \vdash S \sqsubset A \quad \Gamma, x:: S \sqsubset A \vdash L \sqsubset}{\Gamma \vdash \Pi x:: S \sqsubset A . L \sqsubset \Pi x: A . K} \\
\frac{\Gamma \vdash \text { T ᄃK }}{} & \frac{\Gamma \vdash L_{1} \sqsubset K}{\Gamma \vdash L_{1} \wedge L_{2} \sqsubset K}
\end{aligned}
$$

$$
\Gamma r_{\Sigma} Q^{+} \sqsubset P^{-} \Rightarrow L^{-}
$$

$$
\begin{gathered}
\frac{s \sqsubset a:: L \in \Sigma}{\Gamma \vdash s \sqsubset a \Rightarrow L} \quad \frac{\Gamma \vdash Q \sqsubset P \Rightarrow \Pi x:: S \sqsubset A . L}{\Gamma \vdash Q N \sqsubset P N \Rightarrow L^{\prime}} \quad \Gamma \Leftarrow S \\
\frac{\Gamma \vdash Q \sqsubset P \Rightarrow L_{1} \wedge L_{2}}{\Gamma \vdash Q \sqsubset P \Rightarrow L_{1}} \\
\end{gathered}
$$

$$
\Gamma \vdash_{\Sigma} S^{+} \sqsubset A^{+}
$$

$$
\begin{array}{cc}
\frac{\Gamma \vdash Q \sqsubset P^{\prime} \Rightarrow L}{} \quad P^{\prime}=P & L=\text { sort } \\
\Gamma \vdash Q \sqsubset P & \frac{\Gamma \vdash S \sqsubset A \quad \Gamma, x:: S \sqsubset A \vdash S^{\prime} \sqsubset A^{\prime}}{\Gamma \vdash \Pi x:: S \sqsubset A . S^{\prime} \sqsubset \Pi x: A . A^{\prime}} \\
\frac{}{\Gamma \vdash \mathrm{T} \sqsubset A} & \frac{\Gamma \vdash S_{1} \sqsubset A \quad \Gamma \vdash S_{2} \sqsubset A}{\Gamma \vdash S_{1} \wedge S_{2} \sqsubset A}
\end{array}
$$

Note: no intro rules for classes $T$ and $L_{1} \wedge L_{2}$.

## A. 4 Typing

$$
\begin{gathered}
\frac{c:: S \in \Sigma}{\Gamma \vdash c \Rightarrow S} \text { (const) } \quad \frac{x:: S \sqsubset A \in \Gamma}{\Gamma \vdash x \Rightarrow S} \text { (var) } \\
\frac{\Gamma \vdash R_{1} \Rightarrow \Pi x:: S_{2} \sqsubset A_{2} \cdot S \quad \Gamma \vdash N_{2} \Rightarrow S^{-}}{\Gamma \vdash R_{1} N_{2} \Rightarrow S_{2}^{\prime}} \quad\left[N_{2} / x\right]_{A_{2}}^{\mathrm{s}} S=S^{\prime} \\
(\Pi-\mathbf{E}) \\
\frac{\Gamma \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma \vdash R \Rightarrow S_{1}}\left(\wedge-\mathbf{E}_{1}\right) \quad \frac{\Gamma \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma \vdash R \Rightarrow S_{2}}\left(\wedge-\mathbf{E}_{2}\right) \\
\frac{\Gamma \vdash R \Rightarrow Q^{\prime} \quad Q^{\prime} \leq Q}{\Gamma \vdash R \Leftarrow Q} \text { (switch) } \quad \frac{\Gamma, x:: S \sqsubset A \vdash N \Leftarrow S^{\prime}}{\Gamma \vdash \lambda x . N \Leftarrow \Pi x:: S \sqsubset A . S^{\prime}}(\Pi-\mathbf{I}) \\
\frac{\Gamma \vdash N \Leftarrow N^{+} \Leftarrow S^{+}}{\Gamma \vdash T}(\mathrm{~T}-\mathbf{I}) \quad\left(\frac{\Gamma \vdash N \Leftarrow S_{1} \quad \Gamma \vdash N \Leftarrow S_{2}}{\Gamma \vdash N \Leftarrow S_{1} \wedge S_{2}}(\wedge-\mathbf{I})\right.
\end{gathered}
$$

$$
\frac{Q_{1}=Q_{2}}{Q_{1} \leq Q_{2}} \quad \frac{Q_{1} \leq Q^{\prime} \quad Q^{\prime} \leq Q_{2}}{Q_{1} \leq Q_{2}} \quad \frac{s_{1} \leq s_{2} \in \Sigma}{s_{1} \leq s_{2}} \quad \frac{Q_{1}^{+} \leq Q_{2}^{+}}{Q_{1} N \leq Q_{2} N}
$$

## A. 5 Signatures and Contexts



## B Full Proofs

## B. 1 Lemma 3.13 (Composition of Substitutions)

Lemma 3.13 (Composition of Substitutions). Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime}$ and $x_{2} \notin \mathrm{FV}\left(N_{0}\right)$. Then:

1. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N=N^{\prime}$, then for some $N^{\prime \prime}$, $\left[N_{2}^{2} / x_{2}\right]_{\alpha_{2}}^{n} N^{\prime}=N^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n^{n}} N^{\prime}=N^{\prime}$,
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{Tr}} R=R^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}$, then for some $R^{\prime \prime}$, $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{Tr}} R^{\prime}=R^{\prime \prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{Tr}} R^{\prime}=R^{\prime \prime}$,
3. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R=\left(N^{\prime}, \beta\right)$, then for some $N^{\prime}$, $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{m}} R^{\prime}=\left(N^{\prime}, \beta\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N^{\prime}=N^{\prime}$,
4. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \beta\right)$ and $\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}$, then for some $N^{\prime}$, $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R^{\prime}=\left(N^{\prime}, \beta\right)$,
and similarly for other syntactic categories.
Proof. By lexicographic induction on the unordered pair of $\alpha_{0}$ and $\alpha_{2}$, and on the first substitution derivation in each clause.

Not all clauses' proofs need be mutually inductive-the four given cases can be proven independently of the ones elided. We give only the proof for the four given cases; the rest are straightforward.

1. Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n_{0}} N_{2}=N_{2}$ and $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}_{0}} N=N^{\wedge}$ and $\mathcal{E}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N=N^{\prime}$.

## (We want to show:

$$
\text { and } \left.\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n} N^{\prime}=N^{\prime \prime} .\right)
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\top}, a\right)}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=N^{\curlywedge}}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{r}} R=R^{\prime}} \quad \text { By inversion, using Lemma 3.1. }
$$

$$
\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R^{\prime}=\left(N^{\prime}, a\right)
$$

By i.h. (4) on $\mathcal{D}_{1}$.

$$
\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R^{\prime}=N^{\prime}
$$

By rule.
Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{pr}} R=R^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=R^{\prime}}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R=\left(N^{\prime}, a\right)}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} R=N^{\prime}} \text { or } \mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} R=R^{\prime}}
$$

By inversion.

Subcase: $\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R=\left(N^{\prime}, a\right)}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} R=N^{\prime}}$
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R^{\prime}=\left(N^{\prime}, a\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N^{\prime}=N^{\prime}$
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} R^{\prime}=N^{\prime}$
By i.h. (3) on $\mathcal{D}_{1}$.
By rule.
Subcase: $\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} R=R^{\prime}}$
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R^{\prime}=R^{\prime \prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R^{\prime}=R^{\prime}$
By i.h. (2) on $\mathcal{D}_{1}$. $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}^{2}} R^{\prime}=R^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R^{\prime}=R^{\prime}$

By rule.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\top}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda x . N=\lambda x . N^{\top}}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N=N^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} \lambda x \cdot N=\lambda x \cdot N^{\prime}}
$$

By inversion.

$$
\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N^{\prime}=N^{\prime} \quad \text { By i.h. (1) on } \mathcal{D}_{1}
$$ $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} \lambda x . N^{\prime}=\lambda x . N^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda x . N^{\prime}=\lambda x . N^{\prime} \quad$ By rule.

2. Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{1}$ and $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\mathcal{E}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}$.

Case: $\mathcal{D}=\frac{x \neq x_{0}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} x=x}$

$$
\mathcal{E}=\frac{x \neq x_{2}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} x=x}
$$

(We want to show:
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R^{\prime}=R^{\prime}$
and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R^{\prime}=R^{\prime}$. .)

$$
\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} x=x \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} x=x
$$

By rule.

Case: $\mathcal{D}=\frac{}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} c=c}$

$$
\begin{aligned}
& \mathcal{E}=\frac{}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} c=c} \\
& {\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} c=c \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} c=c}
\end{aligned}
$$

By inversion.

By rule.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3}=R_{3}^{\prime} \quad \mathcal{D}_{2}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}=N_{4}^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3} N_{4}=R_{3}^{\prime} N_{4}^{\prime}}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3}=R_{3}^{\prime} \quad \mathcal{E}_{2}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}=N_{4}^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3} N_{4}=R_{3}^{\prime} N_{4}^{\prime}}
$$

By inversion.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3}^{\prime}=R_{3}^{\prime \prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3}^{\prime}=R_{3}^{\prime \prime} \quad$ By i.h. (2) on $\mathcal{D}_{1}$.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime} \quad$ By i.h. (1) on $\mathcal{D}_{2}$.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3}^{\prime} N_{4}^{\prime}=R_{3}^{\prime} N_{4}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3}^{\prime} N_{4}^{\prime}=R_{3}^{\prime} N_{4}^{\prime} \quad$ By rule.
3. Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime}$ and $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\mathcal{E}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R=\left(N^{\prime}, \beta\right)$.
(We want to show:

Case: $\mathcal{D}=\frac{x \neq x_{0}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} x=x}$, where $R^{\prime}=x$

$$
\mathcal{E}=\frac{}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} x_{2}=\left(N_{2}, \alpha_{2}\right)}, \text { where } N^{\prime}=N_{2} \text { and } x=x_{2}
$$

By inversion.

$$
\begin{array}{lr}
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} x_{2}=\left(N_{2}^{\prime}, \alpha_{2}\right)} & \text { By rule. } \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime}} & \text { By assumption. }
\end{array}
$$

Case: $\mathcal{D}=\frac{}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} c=c}$, where $R=c$
Impossible: no rule can conclude $\mathcal{E}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} c=\left(N^{\prime}, \beta\right)$.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3}=R_{3}^{\prime} \quad \mathcal{D}_{2}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}=N_{4}^{\prime}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R_{3} N_{4}=R_{3}^{\prime} N_{4}^{\prime}}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3}=\left(\lambda x . N_{3}^{\prime}, \alpha_{4} \rightarrow \alpha_{3}\right)}{\left.\mathcal{E}_{2}: N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}=N_{4}^{\prime} \quad \mathcal{E}_{3}::\left[N_{4}^{\prime} / x\right]_{\alpha_{4}}^{\mathrm{n}} N_{3}^{\prime}=\hat{N}_{3}^{\prime}} \begin{aligned}
& {\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3} N_{4}=\left(N_{3}^{\prime}, \alpha_{3}\right)}
\end{aligned}
$$

By inversion.
We need to show: $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3}^{\prime} N_{4}^{\prime}=\left(\hat{N}_{3}^{\prime}, \alpha_{3}\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \hat{N}_{3}^{\prime}=\hat{N}_{3}^{\prime \prime}$.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3}^{\prime}=\left(\lambda x . N_{3}^{\prime}, \alpha_{4} \rightarrow \alpha_{3}\right)$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda x . N_{3}^{\prime}=\lambda x . N_{3}^{\prime}$
By i.h. (3) on $\mathcal{D}_{1}$.

$$
\begin{array}{lr}
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{3}^{\prime}=N_{3}^{\prime}} & \text { By inversion. } \\
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{n} N_{4}^{\prime \prime}=N_{4}^{\prime \prime} \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime \prime}} & \text { By i.h. (1) on } \mathcal{D}_{2} . \\
{\left[N_{4}^{\prime \prime} / x\right]_{\alpha_{4}}^{\mathrm{n}} N_{3}^{\prime \prime}=\hat{N}_{3}^{\prime \prime} \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \hat{N}_{3}^{\prime}=\hat{N}_{3}^{\prime \prime}} & \\
& \text { By i.h. (1) on }\left(\alpha_{0}, \alpha_{4}\right) \text {, using } \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime},} \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{n} N_{3}^{\prime}=N_{3}^{\prime \prime}} \\
\text { and }\left[N_{4}^{\prime} / x\right]_{\alpha_{4}}^{n} N_{3}^{\prime}=\hat{N}_{3}^{\prime}
\end{array}
$$

$$
\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3}^{\prime} N_{4}^{\prime}=\left(\hat{N}_{3}^{\prime}, \alpha_{3}\right) \quad \begin{array}{r}
\text { By rule, using } \\
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rn}} R_{3}^{\prime}=\left(\lambda x \cdot N_{3}^{\prime}, \alpha_{4} \rightarrow \alpha_{3}\right),} \\
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime \prime},} \\
\text { and }\left[N_{4}^{\prime} / x\right]_{\alpha_{4}}^{\mathrm{n}} N_{3}^{\prime \prime}=\hat{N}_{3}^{\prime \prime} .
\end{array}
$$

4. Suppose $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{2}=N_{2}$ and $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \beta\right)$ and $\mathcal{E}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R=R^{\prime}$.
(We want to show:
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}$
and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}^{2}} R^{\prime}=\left(N^{\prime}, \beta\right)$.)

Case: $\mathcal{D}=\frac{}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} x_{0}=\left(N_{0}, \alpha_{0}\right)}$, where $N{ }^{\wedge}=N_{0}$

$$
\begin{array}{lr}
\mathcal{E}=\frac{x_{0} \neq x_{2}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} x_{0}=x_{0}}, \text { where } R^{\prime}=x_{0} \\
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{0}=N_{0}} & \text { By inversion. } \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} x_{0}=\left(N_{0}, \alpha_{0}\right)} & \text { By trivial substitution, since } x_{2} \notin \mathrm{FV}\left(N_{0}\right) . \\
\text { By rule. } .
\end{array}
$$

$$
\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3}=\left(\lambda x . N_{3}, \alpha_{4} \rightarrow \alpha_{3}\right)
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{2}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}=N_{4}^{\perp} \quad \mathcal{D}_{3}::\left[N_{4}^{\perp} / x\right]_{\alpha_{4}}^{\mathrm{n}} N_{3}=N_{3}^{\perp}}{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3} N_{4}=\left(N_{3}^{\perp}, \alpha_{3}\right)}$

$$
\mathcal{E}=\frac{\mathcal{E}_{1}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3}=R_{3}^{\prime} \quad \mathcal{E}_{2}::\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}=N_{4}^{\prime}}{\left[N_{2} / x_{2}\right]_{\alpha_{2}}^{\mathrm{rr}} R_{3} N_{4}=R_{3}^{\prime} N_{4}^{\prime}}
$$

By inversion.
We need to show: $\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{3}^{\prime}=N_{3}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3}^{\prime} N_{4}^{\prime}=\left(N_{3}^{\prime}, \alpha_{3}\right)$
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} \lambda x . N_{3}=\lambda x . N_{3}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3}^{\prime}=\left(\lambda x . N_{3}^{\prime}, \alpha_{4} \rightarrow \alpha_{3}\right)$ By i.h. (4) on $\mathcal{D}_{1}$.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{3}=N_{3}^{\prime}$ By inversion.
$\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N_{4}^{\prime}=N_{4}^{\prime}$
By i.h. (1) on $\mathcal{D}_{2}$.

$$
\begin{aligned}
{\left[N_{4}^{\prime \prime} / x\right]_{\alpha_{4}}^{\mathrm{n}} N_{3}^{\prime}=N_{3}^{\prime} \text { and }\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{\mathrm{n}} N_{3}^{\prime}=N_{3}^{\prime \prime} } \\
\text { By i.h. (1) on }\left(\alpha_{2}, \alpha_{4}\right) \text {, using } \\
{\left[N_{2}^{\prime} / x_{2}\right]_{]_{2}}^{n} N_{4}^{\prime}=N_{4}^{\prime \prime}, } \\
{\left[N_{2}^{\prime} / x_{2}\right]_{\alpha_{2}}^{n} N_{3}=N_{3}^{\prime} } \\
\text { and } \mathcal{D}_{3}::\left[N_{4}^{\prime} / x_{\alpha_{4}}^{n} N_{3}=N_{3}^{\prime} .\right.
\end{aligned}
$$

$$
\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3}^{\prime} N_{4}^{\prime}=\left(N_{3}^{\prime}, \alpha_{3}\right)
$$

By rule, using

$$
\begin{array}{r}
{\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R_{3}^{\prime}=\left(\lambda x . N_{3}^{\prime}, \alpha_{4} \rightarrow \alpha_{3}\right)} \\
{\left[N_{0} / x_{0}\right]_{\alpha_{0}} N_{4}^{\prime}=N_{4}^{\prime},} \\
\text { and }\left[N_{4}^{\prime} / x\right]_{\alpha_{4}}^{0} N_{3}^{\prime}=N_{3}^{4} .
\end{array}
$$

## B. 2 Theorem 3.15 (Proto-Substitution, terms)

Theorem 3.15 (Proto-Substitution, terms).

1. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash N \Leftarrow A$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A=A^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N=N$, and
- $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$ and $\Gamma_{\mathrm{L}^{*}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash N^{\prime} \Leftarrow A^{\prime}$.

2. If

- $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\Gamma_{\mathrm{L}}^{*} \vdash N_{0} \Leftarrow A_{0}$, and
- $\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S$ and $\Gamma_{\mathrm{L}}^{*}, x_{0}: A_{0}, \Gamma_{\mathrm{R}}^{*} \vdash R \Rightarrow A$, and
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$,
then
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{S}} S=S^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{a} A=A^{\prime}$, and
- either
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and
$-\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S^{\prime}$ and $\Gamma_{\mathrm{L}}^{*},\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash R^{\prime} \Rightarrow A^{\prime}$,
or
- $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime},\left(A^{\top}\right)^{-}\right)$and
$-\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}$ and $\Gamma_{\mathrm{L}^{*}}^{*}\left(\Gamma_{\mathrm{R}}^{\prime}\right)^{*} \vdash N^{\prime} \Leftarrow A^{\prime}$.

Proof. By lexicographic induction on $\left(A_{0}\right)^{-}$and the derivation $\mathcal{D}$ hypothesizing $x_{0}:: S_{0} \sqsubset A_{0}$.

1. Suppose $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$
and $\mathcal{D}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N \Leftarrow S$
and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma_{0}} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime}$
and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}_{0}} S=S^{\prime}$.
Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+R \Rightarrow Q_{1} \quad \mathcal{D}_{2}:: Q_{1} \leq Q}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+R \Leftarrow Q}$

$$
\begin{aligned}
& {\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} Q_{1}=Q^{\prime} \text { and either }} \\
& \left(\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{T}} R=R^{\prime} \text { and } \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\mathrm{R}} \vdash R^{\prime} \Rightarrow Q_{1}^{\prime}\right) \text {, or } \\
& \left(\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{Tn}} R=\left(N^{\prime},\left(P_{1}^{\prime}\right)^{-}\right) \text {and } \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow Q_{1}^{\prime}\right)
\end{aligned}
$$

By i.h. (2) on $\mathcal{D}_{1}$.

$$
\begin{aligned}
& S^{\prime}=Q^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{A_{0}}^{q} Q=Q^{\prime} \quad \text { By Lemma } 3.14 \text { (Substitution into Subsorsing). } \\
& Q_{1}^{\prime} \leq Q^{\prime}
\end{aligned}
$$

Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime}+R^{\prime} \Rightarrow Q_{1}^{\prime}$

$$
\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} R=R^{\prime}
$$

$$
\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime}+R^{\prime} \Leftarrow Q^{\prime} \quad \text { By rule switch }
$$

Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{`},\left(P_{1}^{\mathrm{Y}}\right)^{-}\right)$and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{`} \Leftarrow Q_{1}^{\prime}$ $N^{\prime}=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow Q_{2}^{\prime}$ and $Q_{2}^{\prime} \leq Q_{1}^{\prime} \quad$ By inversion. $\left(P_{1}^{\mathrm{O}}\right)^{-}=a$, for some $a \quad$ By definition. $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} R=R^{\prime}$ $Q_{2}^{\prime} \leq Q^{\prime}$

By rule subst-n-atom-norm. $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Leftarrow Q^{\prime}$

By rule. By rule switch.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}, x:: S_{1} \sqsubset A_{1}+N \Leftarrow S_{2}}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+\lambda x . N \Leftarrow \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}}$

$$
S^{\prime}=\Pi x:: S_{1}^{\prime} \sqsubset A_{1}^{\prime} \cdot S_{2}^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{A_{0}}^{s} S_{1}=S_{1}^{\prime} \text { and }
$$

$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{a}} A_{1}=A_{1}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}$
By inversion.
$\left[N_{0} / x_{0}\right]_{A_{0}^{\prime}}^{\prime} \Gamma_{\mathrm{R}}, x:: S_{1} \sqsubset A_{1}=\Gamma_{\mathrm{R}^{\prime}}^{\prime}, x: S_{1}^{\prime} \sqsubset A_{1}^{\prime}$
By rule.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\lambda_{0}} N=N^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}^{\prime}}^{\prime} x:: S_{1}^{\prime} \sqsubset A_{1}^{\prime} \vdash N^{\prime} \Leftarrow S_{2}^{\prime}$
By i.h. (1) on $\mathcal{D}_{1}$.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} \lambda x . N=\lambda x . N^{\prime}$
By rule.
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash \lambda x . N^{\prime} \Leftarrow \Pi x: S_{1}^{\prime} \sqsubset A_{1}^{\prime} \cdot S_{2}^{\prime}$
By rule.
Case: $\mathcal{D}=\frac{\begin{array}{l}\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+N \Leftarrow S_{1} \\ \mathcal{D}_{2}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+N \Leftarrow S_{2} \\ \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+N \Leftarrow S_{1} \wedge S_{2}\end{array}}{\text { 俍 }}$

$$
S^{\prime}=S_{1}^{\prime} \wedge S_{2}^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{1}=S_{1}^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}
$$

By inversion.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{s} N=N_{1}^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N_{1}^{\prime} \Leftarrow S_{1}^{\prime} \quad$ By i.h. (1) on $\mathcal{D}_{1}$. $\left[N_{0} / x_{0}\right]_{A_{0}}^{A_{0}} N=N_{2}^{\top}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\mathrm{R}} \vdash N_{2}^{N} \Leftarrow S_{2}^{\prime} \quad$ By i.h. (1) on $\mathcal{D}_{2}$. $N_{1}^{\prime}=N_{2}^{\prime} \quad$ By Theorem 3.2 (Functionality of Substitution). Let $N^{\top}=N_{1}^{\prime}=N_{2}^{\prime}: \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime}+N^{\top} \Leftarrow S_{1} \wedge S_{2} \quad$ By rule.

Case: $\mathcal{D}=\overline{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+N \Leftarrow \top}$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N=N^{`} \quad$ By core LF Proto-Substitution Theorem.
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow \mathrm{T} \quad$ By rule.
Note: This case is where we make use of the three grey assumptions to clause 1. The remainder of the grey assumptions and conclusions are only required to ensure that these three key assumptions are satisfied on every inductive appeal. (The interested reader may gain great insight into the essential difficulty of the proof by tracing these dependencies; all of the action is in the "application" case of clause 2.)
2. Suppose $\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$ and $\mathcal{D}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=$ $\Gamma_{\mathrm{R}}^{\prime}$.

Case: $\mathcal{D}=\frac{c: S \in \Sigma}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}+c \Rightarrow S}$
$\begin{array}{lr}\mathrm{FV}(S)=\emptyset & \text { By signature well-formedness. } \\ {\left[N_{0} / x_{0}\right]_{A_{0}}^{s} S=S} & \text { By trivial substitution. } \\ {\left[N_{0} / x_{0} \mathrm{I}_{A_{0}} c=c\right.} & \text { By rule. } \\ \Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\top}+c \Rightarrow S & \text { By rule. }\end{array}$
Case: $\mathcal{D}=\frac{x:: S \sqsubset A \in \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}}}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash x \Rightarrow S}$
Subcase: $x:: S \subset A \in \Gamma_{\mathrm{L}}$
$x_{0} \notin \mathrm{FV}(S)$ and $x_{0} \neq x \quad$ By $\alpha$-conversion convention.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{S}} S=S$
By trivial substitution.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}_{0}} x=x$
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{1}+x \Rightarrow S$
By rule.
By rule.
Subcase: $x:: S \subset A=x_{0}:: S_{0} \sqsubset A_{0}$
$x_{0} \notin \mathrm{FV}\left(S_{0}\right)$
By $\alpha$-conversion convention.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{0}=S_{0}$
By trivial substitution.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} x_{0}=\left(N_{0},\left(A_{0}\right)^{-}\right)$
By rule.
$\Gamma_{\mathrm{L}} \vdash N_{0} \Leftarrow S_{0}$
By assumption.
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N_{0} \Leftarrow S_{0}$
By weakening.

Subcase: $x:: S \sqsubset A \in \Gamma_{\mathrm{R}}$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\gamma} \Gamma_{\mathrm{R}}=\Gamma_{\mathrm{R}}^{\prime} \quad$ By assumption.
$x:: S^{\prime} \sqsubset A^{\prime} \in \Gamma_{\mathrm{R}}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S=S^{\prime} \quad$ By inversion.
$x_{0} \neq x$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} x=x$
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash x \Rightarrow S^{\prime}$

By rule.
By rule.

$$
\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R_{1} \Rightarrow \Pi x:: S_{2} \sqsubset A_{2} . S_{1}
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{2}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash N_{2} \Leftarrow S_{2} \quad \mathcal{D}_{3}::\left[N_{2} / x\right]_{A_{2}}^{\mathrm{s}} S_{1}=S_{1}^{\prime}}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R_{1} N_{2} \Rightarrow S_{1}^{\prime}}$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} \Pi x:: S_{2} \sqsubset A_{2} . S_{1}=S^{\prime}$ and either
( $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R_{1}=R_{1}^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R_{1}^{\prime} \Rightarrow S^{\prime}$ ), or
$\left(\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R_{1}=\left(N_{1}^{\prime},\left(\Pi x: A_{2}^{\prime} \cdot A_{1}^{\prime}\right)^{-}\right)\right.$and $\left.\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N_{1}^{\prime} \Leftarrow S^{\prime}\right)$
By i.h. (2) on $\mathcal{D}_{1}$.
$S^{\prime}=\Pi x:: S_{2}^{\prime} \sqsubset A_{2}^{\prime} . S_{1}^{\prime}$
and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{1}=S_{1}^{\prime} \quad$ By inversion.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N_{2}^{\prime} \Leftarrow S_{2}^{\prime} \quad$ By i.h. (1) on $\mathcal{D}_{2}$. $\left[N_{2}^{\prime} / x\right]_{A_{2}}^{\mathrm{s}} S_{1}^{\prime}=S_{1}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{1}^{\prime}=S_{1}^{\prime}$

By Lemma 3.13 (Composition).
Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R_{1}=R_{1}^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R_{1}^{\prime} \Rightarrow \Pi x:: S_{2}^{\prime} \sqsubset A_{2}^{\prime} . A_{1}^{\prime}$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R_{1} N_{2}=R_{1}^{\prime} N_{2}^{\prime}$
By rule.
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R_{1}^{\prime} N_{2}^{\prime} \Rightarrow S_{1}^{\prime}$
By rule.
Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R_{1}=\left(N_{1}^{\prime},\left(\Pi x: A_{2}^{\prime} . A_{1}^{\prime}\right)^{-}\right)$and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N_{1}^{\prime} \Leftarrow \Pi x:: S_{2}^{\prime} \sqsubset A_{2}^{\prime} . S_{1}^{\prime}$ $N_{1}^{\prime}=\lambda x . N^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}^{\prime}}^{\prime} x:: S_{2}^{\prime} \sqsubset A_{2}^{\prime}+N^{\prime} \Leftarrow S_{1}^{\prime}$

By inversion. $\left[N_{2}^{\prime} / x\right]_{A_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S_{1}^{\prime}$

> By i.h. (1) at $\left(A_{2}\right)^{-}$, using $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime}+N_{2}^{\prime} \Leftarrow S_{2}^{\prime}$,
> $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}^{\prime}}^{\prime} x:: S_{2}^{\prime} \sqsubset A_{2}^{\prime}+N^{\prime} \Leftarrow S_{1}^{\prime}$,
> $\left[N_{2}^{\prime} / x\right]_{A_{2}^{\prime}}^{\gamma}=\cdot$,
> and $\left[N_{2}^{\prime} / x\right]_{A_{2}^{\prime}}^{\mathrm{s}} S_{1}^{\prime}=S_{1}^{\prime}$.
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R_{1} N_{2}=N^{\prime}$
By rule, using

$$
\begin{array}{r}
{\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R_{1}=\left(\lambda x \cdot N^{\prime},\left(\Pi x: A_{2}^{\prime} \cdot A_{1}^{\prime}\right)^{-}\right),} \\
{\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{n}} N_{2}=N_{2}^{\prime},} \\
\text { and }\left[N_{2}^{\prime} / x\right]_{A_{2}}^{\mathrm{n}} N^{\prime}=N^{\prime}
\end{array}
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S_{1}}$
$\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{1} \wedge S_{2}=S^{\prime}$ and either
( $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S^{\prime}$ ), or
$\left(\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime},\left(A^{\prime}\right)^{-}\right)\right.$and $\left.\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S^{\prime}\right)$
By i.h. (2) on $\mathcal{D}_{1}$.
$S^{\prime}=S_{1}^{\prime} \wedge S_{2}^{\prime}$ and $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{s}} S_{1}=S_{1}^{\prime}$
By inversion.
Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S_{1}^{\prime} \wedge S_{2}^{\prime}$
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash R^{\prime} \Rightarrow S_{1}^{\prime}$
By rule.
Subcase: $\left[N_{0} / x_{0}\right]_{A_{0}}^{\mathrm{rn}} R=\left(N^{\prime},\left(A^{\prime}\right)^{-}\right)$and $\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S_{1}^{\prime} \wedge S_{2}^{\prime}$
$\Gamma_{\mathrm{L}}, \Gamma_{\mathrm{R}}^{\prime} \vdash N^{\prime} \Leftarrow S_{1}^{\prime} \quad$ By inversion.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S_{1} \wedge S_{2}}{\Gamma_{\mathrm{L}}, x_{0}:: S_{0} \sqsubset A_{0}, \Gamma_{\mathrm{R}} \vdash R \Rightarrow S_{2}}$
Similar.

## B. 3 Lemma 3.21 (Commutativity of Substitution and $\eta$-expansion)

Lemma 3.21 (Commutativity of Substitution and $\eta$-expansion). Substitution commutes with $\eta$-expansion. In particular:

1. (a) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N=N^{\prime}$, then $N=N^{\prime}$,
(b) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R=R^{\prime}$, then $R=R^{\prime}$,
(c) If $\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} R=(N, \beta)$, then $\eta_{\beta}(R)=N$,
2. If $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha}(R)=N^{\prime}$, then
(a) if head $(R) \neq x_{0}$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\eta_{\alpha}\left(R^{\prime}\right)=N^{\prime}$,
(b) if $\operatorname{head}(R)=x_{0}$ and $x_{0}: \alpha_{0} \vdash R: \alpha$, then $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha\right)$,
and similarly for other syntactic categories.
Proof. By lexicographic induction on $\alpha$ and the given substitution derivation.
Not all clauses' proofs need be mutually inductive-the two given cases can be proven independently of the ones elided. We give only the proof for the two given cases; the rest are straightforward.
3. (a) Suppose $\mathcal{D}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N=N^{\prime}$.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R=R^{\prime}}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} R=R^{\prime}}$

$$
R=R^{\prime} \quad \text { By i.h. (1b) on } \alpha, \mathcal{D}_{1} .
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} R=\left(R^{\prime}, a^{\prime}\right)}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} R=R^{\prime}}$
$\eta_{a^{\prime}}(R)=R^{\prime}$
$\eta_{a^{\prime}}(R)=R$
By i.h. (1c) on $\alpha, \mathcal{D}_{1}$. By definition. $R=R^{\prime}$
By transitivity of equality.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N=N^{\prime}}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{n} \lambda y \cdot N=\lambda y \cdot N^{\prime}}$

$$
N=N^{\prime}
$$

By i.h. (1a) on $\alpha, \mathcal{D}_{1}$.
$\lambda y \cdot N=\lambda y \cdot N^{\prime}$
By compatibility of equality.
(b) Suppose $\mathcal{D}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R=R^{\prime}$.

Case: $\mathcal{D}=\frac{y \neq x}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} y=y}$
$y=y \quad$ By reflexivity of equality.

Case: $\mathcal{D}=\frac{}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} c=c}$

$$
c=c
$$

By reflexivity of equality.
Case: $\mathcal{D}=\frac{\mathcal{D}_{1}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R_{1}=R_{1}^{\prime} \quad \mathcal{D}_{2}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N_{2}=N_{2}^{\prime}}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rr}} R_{1} N_{2}=R_{1}^{\prime} R_{2}^{\prime}}$

$$
\begin{array}{lr}
R_{1}=R_{1}^{\prime} & \text { By i.h. (1b) on } \alpha, \mathcal{D}_{1} . \\
N_{2}=N_{2}^{\prime} & \text { By i.h. (1a) on } \alpha, \mathcal{D}_{2} . \\
R_{1} N_{2}=R_{1}^{\prime} N_{2}^{\prime} & \text { By compatibility of equality. }
\end{array}
$$

(c) Suppose $\mathcal{D}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} R=(N, \beta)$

Case: $\mathcal{D}=\frac{}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} x=\left(\eta_{\alpha}(x), \alpha\right)}$

$$
\eta_{\alpha}(x)=\eta_{\alpha}(x) \quad \text { By reflexivity of equality }
$$

$$
\mathcal{D}_{1}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{rn}} R_{1}=\left(\lambda y \cdot N_{1}, \alpha_{2} \rightarrow \alpha_{1}\right)
$$

Case: $\mathcal{D}=\frac{\mathcal{D}_{2}::\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{n}} N_{2}=N_{2}^{\prime} \quad \mathcal{D}_{3}::\left[N_{2}^{\prime} / y\right]_{\alpha_{2}}^{\mathrm{n}} N_{1}=N_{1}^{\prime}}{\left[\eta_{\alpha}(x) / x\right]_{\alpha}^{\mathrm{nn}} R_{1} N_{2}=\left(N_{1}^{\prime}, \alpha_{1}\right)}$

We need to show: $\eta_{\alpha_{1}}\left(R_{1} N_{2}\right)=N_{1}^{\prime}$.

| $\eta_{\alpha_{2} \rightarrow \alpha_{1}}\left(R_{1}\right)=\lambda y . N_{1}$ | By i.h. (1c) on $\alpha, \mathcal{D}_{1}$. |
| :---: | :---: |
| $\eta_{\alpha_{2} \rightarrow \alpha_{1}}\left(R_{1}\right)=\lambda y \cdot \eta_{\alpha_{1}}\left(R_{1} \eta_{\alpha_{2}}(y)\right)$ | By definition. |
| $\eta_{\alpha_{1}}\left(R_{1} \eta_{\alpha_{2}}(y)\right)=N_{1} \quad$ By com | By compatibility of equality. |
| $N_{2}=N_{2}^{\prime}$ | By i.h. (1a) on $\alpha, \mathcal{D}_{2}$. |
| $\mathcal{D}_{3}::\left[N_{2} / y\right]_{\alpha_{2}}^{\mathrm{n}} \eta_{\alpha_{1}}\left(R_{1} \eta_{\alpha_{2}}(y)\right)=N_{1}^{\prime} \quad$ By replac | By replacing equals for equals. |
| $y \notin \mathrm{FV}\left(R_{1}\right)$ and head $\left(R_{1}\right) \neq y \quad$ By $\alpha$-co | By $\alpha$-conversion convention. |
| $\left[N_{2} / y\right]_{\alpha_{2}}^{\text {rr }} R_{1} \eta_{\alpha_{2}}(y)=R^{\prime}$ and $\eta_{\alpha_{1}}\left(R^{\prime}\right)=N_{1}^{\prime}$ | $N_{1}^{\prime} \quad$ By i.h. (2a) on $\alpha_{1}, \mathcal{D}_{3}$. |
| $R^{\prime}=R_{1}^{\prime} N_{2}^{\prime \prime}$ and |  |
| $\left[N_{2} / y\right]_{\alpha_{2}}^{\mathrm{rr}} R_{1}=R_{1}^{\prime}$ and $\mathcal{D}_{4}::\left[N_{2} / y\right]_{\alpha_{2}}^{\mathrm{n}} \eta_{\alpha_{2}}(y)=N_{2}^{\prime \prime}$ | $\eta_{\alpha_{2}}(y)=N_{2}^{\prime \prime} \quad$ By inversion. |

$\left[N_{2} / y\right]_{\alpha_{2}}^{\mathrm{rr}} R_{1}=R_{1}$ $R_{1}=R_{1}^{\prime}$
$\operatorname{head}(y)=y \quad$ By definition.
$y: \alpha_{2} \vdash y: \alpha_{2} \quad$ By rule.
$\left[N_{2} / y\right]_{\alpha_{2}}^{\mathrm{rn}} y=\left(N_{2}^{\prime \prime}, \alpha_{2}\right) \quad$ By i.h. (2b) on $\alpha_{2}, \mathcal{D}_{4}$.
$N_{2}^{\prime \prime}=N_{2}$
$R^{\prime}=R_{1} N_{2} \quad$ By equality reasoning. $\eta_{\alpha_{1}}\left(R^{\prime}\right)=N_{1}^{\prime} \quad$ From above. $\eta_{\alpha_{1}}\left(R_{1} N_{2}\right)=N_{1}^{\prime} \quad$ By replacing equals for equals.
2. Suppose $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha}(R)=N^{\prime}$.
(a) Suppose head $(R) \neq x_{0}$. We need to show: $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$ and $\eta_{\alpha}\left(R^{\prime}\right)=N^{\prime}$.
Case: $\alpha=a$.

| $\eta_{a}(R)=R$ | By definition. |
| :--- | ---: |
| $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=N^{\prime}$ | By equality. |
| $N^{\prime}=R^{\prime}$ and $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime}$. | By inversion, using Lemma 3.1. |
| $\eta_{a}\left(R^{\prime}\right)=R^{\prime}$ | By definition. |

Case: $\alpha=\alpha_{2} \rightarrow \alpha_{1}$.
$\eta_{\alpha_{2} \rightarrow \alpha_{1}}(R)=\lambda y \cdot \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right) \quad$ By definition.
$\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda y \cdot \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right)=N^{\prime}$ By equality.
$N^{\prime}=\lambda y \cdot N^{\prime \prime}$ and $\mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right)=N^{\prime \prime} \quad$ By inversion.
$\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R \eta_{\alpha_{2}}(y)=R^{\prime \prime}$ and $\eta_{\alpha_{1}}\left(R^{\prime \prime}\right)=N^{\prime \prime} \quad$ By i.h. (2a) on $\alpha_{1}, \mathcal{D}_{1}$.
(b) Suppose the head $(R)=x_{0}$ and $x_{0}: \alpha_{0} \vdash R: \alpha$. We need to show: $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha\right)$.
Case: $\alpha=a$.

| $\eta_{a}(R)=R$ | By definition. |
| :--- | ---: |
| $\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} R=N^{\prime}$. | By equality. |
| $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, a^{\prime}\right)$ | By inversion, using Lemma 3.1. |
| $a^{\prime}=a$ | By Lemma 3.20. |

Case: $\alpha=\alpha_{2} \rightarrow \alpha_{1}$.

$$
\begin{array}{lr}
\eta_{\alpha_{2} \rightarrow \alpha_{1}}(R)=\lambda y \cdot \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right) & \text { By definition. } \\
\mathcal{D}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \lambda y \cdot \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right)=N^{\prime} & \text { By equality. } \\
N^{\prime}=\lambda y \cdot N^{\prime \prime} \text { and } \mathcal{D}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha_{1}}\left(R \eta_{\alpha_{2}}(y)\right)=N^{\prime \prime} & \text { By inversion. } \\
x_{0}: \alpha_{0} \vdash R \eta_{\alpha_{2}}(y): \alpha_{1} & \text { By i.h. (2b) on } \alpha_{1}, \mathcal{D}_{1} . \\
\mathcal{E}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R \eta_{\alpha_{2}}(y)=\left(N^{\prime \prime}, \alpha_{1}\right) & \\
& \\
\mathcal{E}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(\lambda y . N^{\prime \prime \prime}, \alpha_{2}^{\prime} \rightarrow \alpha_{1}\right) \text { and } & \\
\mathcal{E}_{2}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha_{2}}(y)=N \text { and } & \\
\mathcal{E}_{3}:[N / y]_{\alpha_{2}^{\prime}}^{\mathrm{n}} N^{\prime \prime \prime}=N^{\prime \prime} & \text { By inversion. }
\end{array}
$$

$$
\alpha_{2}^{\prime} \rightarrow \alpha_{1}=\alpha_{2} \rightarrow \alpha_{1} \quad \text { By Lemma 3.20. }
$$

$$
N=\eta_{\alpha_{2}}(y) \quad \text { By trivial substitution and functionality }
$$

$$
\mathcal{E}_{3}::\left[\eta_{\alpha_{2}}(y) / y\right]_{\alpha_{2}}^{\mathrm{n}} N^{\prime \prime \prime}=N^{\prime \prime}
$$

By equality.

$$
N^{\prime \prime \prime}=N^{\prime \prime}
$$

$\mathcal{E}_{1}::\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(\lambda y \cdot N^{\prime \prime}, \alpha_{2} \rightarrow \alpha_{1}\right)$,
i.e. $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rn}} R=\left(N^{\prime}, \alpha\right) \quad$ By equality.

## B. 4 Theorem 3.22 (Expansion)

Theorem 3.22 (Expansion). If $\Gamma \vdash S \sqsubset A$ and $\Gamma \vdash R \Rightarrow S$, then $\Gamma \vdash \eta_{A}(R) \Leftarrow S$.
Proof. By induction on $S$.
Case: $S=\top$

$$
\Gamma \vdash \eta_{A}(R) \Leftarrow \top \quad \text { By rule }
$$

$$
\begin{aligned}
& R^{\prime \prime}=R^{\prime} N \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{rr}} R=R^{\prime} \text { and }\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} \eta_{\alpha_{2}}(y)=N \\
& \text { By inversion. } \\
& N=\eta_{\alpha_{2}}(y) \quad \text { By trivial substitution and functionality. } \\
& \eta_{\alpha_{1}}\left(R^{\prime \prime}\right)=\eta_{\alpha_{1}}\left(R^{\prime} \eta_{\alpha_{2}}(y)\right)=N^{\prime \prime} \quad \text { By equality. } \\
& \eta_{\alpha_{2} \rightarrow \alpha_{1}}\left(R^{\prime}\right)=\lambda y \cdot \eta_{\alpha_{1}}\left(R^{\prime} \eta_{\alpha_{2}}(y)\right) \quad \text { By definition. } \\
& =\lambda y \cdot N^{\prime \prime}=N^{\prime} \\
& \text { By equality. }
\end{aligned}
$$

Case: $S=S_{1} \wedge S_{2}$

$$
\begin{aligned}
& \Gamma \vdash S \sqsubset A_{1} \text { and } \Gamma \vdash S \sqsubset A_{2} \\
& \Gamma \vdash R \Rightarrow S_{1} \text { and } \Gamma \vdash R \Rightarrow S_{2} \\
& \Gamma \vdash \eta_{A}(R) \Leftarrow S_{1} \text { and } \Gamma \vdash \eta_{A}(R) \Leftarrow S_{2} \\
& \Gamma \vdash \eta_{A}(R) \Leftarrow S_{1} \wedge S_{2}
\end{aligned}
$$

By inversion. By rules $\wedge-\mathrm{E}_{1}$ and $\wedge-\mathrm{E}_{2}$.

By i.h. on $S_{1}$ and $S_{2}$.
By rule $\wedge-\mathrm{I}$.
Case: $S=Q$

$$
\begin{array}{lr}
A=P & \text { By inversion. } \\
\eta_{A}(R)=\eta_{P}(R)=R & \text { By definition. } \\
Q \leq Q & \text { By rule. } \\
\Gamma \vdash R \Leftarrow Q & \text { By rule switch. }
\end{array}
$$

Case: $S=\Pi x:: S_{1} \sqsubset A_{1} . S_{2}$

$$
\begin{aligned}
& A=\Pi x: A_{1} . A_{2} \text { and } \Gamma \vdash S_{1} \sqsubset A_{1} \text { and } \Gamma, x:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} \\
& \eta_{A}(R)=\eta_{\Pi x: A_{1} \cdot A_{2}}(R)=\lambda x \cdot \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right) \\
& \Gamma, y:: S_{1} \sqsubset A_{1} \vdash S_{1} \sqsubset A_{1} \\
& \Gamma, y:: S_{1} \sqsubset A_{1} \vdash y \Rightarrow S_{1} \\
& \Gamma, y:: S_{1} \sqsubset A_{1} \vdash \eta_{A_{1}}(y) \Leftarrow S_{1} \\
& \text { By inversion. } \\
& \text { By definition. } \\
& \text { By weakening. } \\
& \text { By rule. } \\
& \text { By i.h. on } S_{1} \text {. } \\
& \Gamma, y:: S_{1} \sqsubset A_{1}, x:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} \\
& \text { By weakening. } \\
& {\left[\eta_{A_{1}}(y) / x\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}} \\
& S_{2}^{\prime}=[y / x] S_{2} \\
& \text { By Theorem } 3.19 \text { (Substitution). } \\
& \Gamma, y:: S_{1} \sqsubset A_{1} \vdash R \Rightarrow \Pi x:: S_{1} \sqsubset A_{1} . S_{2} \\
& \Gamma, y:: S_{1} \sqsubset A_{1} \vdash R \eta_{A_{1}}(y) \Rightarrow[y / x] S_{2} \\
& \Gamma, x:: S_{1} \sqsubset A_{1} \vdash R \eta_{A_{1}}(x) \Rightarrow S_{2} \\
& \Gamma, x:: S_{1} \sqsubset A_{1} \vdash \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right) \Leftarrow S_{2} \\
& \text { By Lemma } 3.21 \text { (Commutativity). } \\
& \Gamma \vdash \lambda x . \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right) \Leftarrow \Pi x:: S_{1} \sqsubset A_{1} . S_{2} \\
& \text { By weakening. } \\
& \text { Вy rule П-E. } \\
& \text { By } \alpha \text {-conversion. } \\
& \text { By i.h. on } S_{2} \text {. } \\
& \text { Вy rule П-I. }
\end{aligned}
$$

## B.5 Theorem 4.6 (Generalized Algorithmic $\Rightarrow$ Declarative)

Theorem 4.6 (Generalized Algorithmic $\Rightarrow$ Declarative).

1. If $\mathcal{D}:: \Delta \leqq T$, then $\bigwedge(\Delta) \leq T$.
2. If $\mathcal{D}:: \Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$, then $\bigwedge(\Delta) \leq \Pi x:: \wedge\left(\Delta_{1}\right) \sqsubset A_{1} . \wedge\left(\Delta_{2}\right)$.

Proof. By induction on $\mathcal{D}$. To reduce clutter, we omit the refined type $A_{1}$ from bound variables, since it does not affect declarative subsorting in any significant way.

1. Suppose $\mathcal{D}:: \Delta \leqq T$.

Case: $\mathcal{D}=\frac{}{\Delta \leqq T}$

$$
\bigwedge(\Delta) \leq \top
$$

By rule T-R.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta \leqq S_{1} \quad \mathcal{D}_{2}:: \Delta \leqq S_{2}}{\Delta \leqq S_{1} \wedge S_{2}}$

$$
\begin{aligned}
& \bigwedge(\Delta) \leq S_{1} \\
& \bigwedge(\Delta) \leq S_{2} \\
& \bigwedge(\Delta) \leq S_{1} \wedge S_{2}
\end{aligned}
$$

$$
\text { By i.h. (1) on } \mathcal{D}_{1} \text {. }
$$

By i.h. (1) on $\mathcal{D}_{2}$.
By rule $\wedge-\mathbf{R}$.

Case: $\mathcal{D}=\frac{Q^{\prime} \in \Delta \quad Q^{\prime} \leq Q}{\Delta \leqq Q}$
$\wedge(\Delta) \leq Q$
By Lemma 4.5.
Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta @ x:: \operatorname{split}\left(S_{1}\right)=\Delta_{2} \quad \mathcal{D}_{2}:: \Delta_{2} \leqq S_{2}}{\Delta \leqq \Pi x:: S_{1} . S_{2}}$
$\bigwedge(\Delta) \leq \Pi x:: \bigwedge\left(\operatorname{split}\left(S_{1}\right)\right) . \bigwedge\left(\Delta_{2}\right) \quad$ By i.h. (2) on $\mathcal{D}_{1}$.
$S_{1} \leq \wedge\left(\operatorname{split}\left(S_{1}\right)\right) \quad$ By Lemma 4.4.
$\wedge\left(\Delta_{2}\right) \leq S_{2}$ By i.h. (1) on $\mathcal{D}_{2}$. By rule S-П.
$\Lambda(\Delta) \leq \Pi x:: S_{1} . S_{2}$
By rule trans.
2. Suppose $\mathcal{D}:: \Delta @ x:: \operatorname{split}\left(S_{1}\right)=\Delta_{2}$.

$\bigwedge(\cdot)=\top \quad$ By definition.
We need to show $\top \leq \Pi x:: \wedge\left(\Delta_{1}\right)$. $\top$.
$\top \leq \Pi x:: \wedge\left(\Delta_{1}\right) . T \quad$ By rule $T / \Pi$-dist.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta @ x:: \Delta_{1}=\Delta_{2} \quad \mathcal{D}_{2}:: \Delta_{1} \leqq S_{1} \quad \mathcal{D}_{3}::\left[\eta_{A}(x) / y\right]_{A}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\left(\Delta, \Pi y:: S_{1} \sqsubset A . S_{2}\right) @ x:: \Delta_{1}=\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)}$
$\bigwedge\left(\Delta, \Pi y:: S_{1} \sqsubset A . S_{2}\right)=\bigwedge(\Delta) \wedge \Pi y:: S_{1} \sqsubset A . S_{2} \quad$ By definition.
Want to show: $\quad \bigwedge(\Delta) \wedge \Pi y:: S_{1} \sqsubset A . S_{2} \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right)$.
$S_{2}^{\prime}=[x / y] S_{2} \quad$ By Lemma 3.21 (Commutativity).
So $\left(\alpha\right.$-varied): $\quad \Lambda(\Delta) \wedge \Pi x:: S_{1} \sqsubset A . S_{2}^{\prime} \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right)$.
Note: in the following, we omit some uses of reflexivity (rule refl).
$\bigwedge(\Delta) \leq \Pi x:: \bigwedge\left(\Delta_{1}\right) . \bigwedge\left(\Delta_{2}\right) \quad$ By i.h. (2) on $\mathcal{D}_{1}$.
$\bigwedge\left(\Delta_{1}\right) \leq S_{1} \quad$ Byi.h. (1) on $\mathcal{D}_{2}$.
$\wedge(\Delta) \wedge \Pi x:: S_{1} . S_{2}^{\prime} \leq \Pi x:: \wedge\left(\Delta_{1}\right) \cdot\left(\bigwedge\left(\Delta_{2}\right) \wedge S_{2}^{\prime}\right) \quad$ By rule $\wedge / \Pi$-dist ${ }^{\prime}$.
$S_{2}^{\prime} \leq \bigwedge\left(\operatorname{split}\left(S_{2}^{\prime}\right)\right) \quad$ By Lemma 4.4.
$\bigwedge^{2}\left(\Delta_{2}\right) \wedge S_{2}^{\prime} \leq \bigwedge\left(\Delta_{2}\right) \wedge \bigwedge\left(\operatorname{split}\left(S_{2}^{\prime}\right)\right) \quad$ By rule $S$ - $\wedge$.
$\wedge\left(\Delta_{2}\right) \wedge \bigwedge\left(\operatorname{split}\left(S_{2}^{\prime}\right)\right) \leq \bigwedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right) \quad$ By Lemma 4.3.
$\wedge\left(\Delta_{2}\right) \wedge S_{2}^{\prime} \leq \bigwedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right) \quad$ By rule trans.
$\Pi x:: \wedge\left(\Delta_{1}\right) \cdot\left(\bigwedge\left(\Delta_{2}\right) \wedge S_{2}^{\prime}\right) \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right)$
By rule $\mathbf{S}-\Pi$.
$\wedge(\Delta) \wedge \Pi x:: S_{1} \cdot S_{2}^{\prime} \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right) \quad$ By rule trans.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta @ x:: \Delta_{1}=\Delta_{2} \quad \Delta_{1} \not \leq S_{1}}{\Delta, \Pi y:: S_{1} \sqsubset A . S_{2} @ x:: \Delta_{1}=\Delta_{2}}$
$\wedge\left(\Delta, \Pi y:: S_{1} \sqsubset A . S_{2}\right)=\bigwedge(\Delta) \wedge \Pi y:: S_{1} \sqsubset A . S_{2} \quad$ By definition.
$\Lambda(\Delta) \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}\right)$ By i.h. (2) on $\mathcal{D}_{1}$.
$\wedge(\Delta) \wedge \Pi y:: S_{1} \sqsubset A . S_{2} \leq \Pi x:: \wedge\left(\Delta_{1}\right) . \wedge\left(\Delta_{2}\right) \quad$ By rule $\wedge-\mathrm{L}_{1}$.

Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta @ x:: \Delta_{1}=\Delta_{2} \quad \nexists S_{2}^{\prime} \cdot\left[\eta_{A}(x) / y\right]_{A}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\Delta, \Pi y:: S_{1} \sqsubset A . S_{2} @ x:: \Delta_{1}=\Delta_{2}}$
Similar.
Case: $\mathcal{D}=\frac{\mathcal{D}_{1}:: \Delta @ x:: \Delta_{1}=\Delta_{2}}{\Delta, Q @ x:: \Delta_{1}=\Delta_{2}}$
Similar.

## B. 6 Lemma 4.10

Lemma 4.10. If $\mathcal{D}:: \Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$ and $\mathcal{E}:: \Gamma \vdash \Delta @ N=\Delta_{2}$ and $[N / x]_{A_{1}}^{\mathrm{a}} A_{2}=$ $A_{2}^{\prime}$, then $\Gamma \vdash \Delta_{2} \sqsubset A_{2}^{\prime}$.
Proof. By induction on $\mathcal{E}$.
Case: $\mathcal{E}=\overline{\Gamma \vdash \cdot @ N=}$.
$\Gamma \vdash \cdot \sqsubset A_{2}^{\prime} \quad$ By rule.

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ N=\Delta_{2} \quad \mathcal{E}_{2}:: \Gamma \vdash N \Leftarrow S_{1} \quad \mathcal{E}_{3}::[N / x]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\Gamma \vdash\left(\Delta, \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ N=\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)}$

$$
\begin{array}{lr}
\mathcal{D}_{1}:: \Gamma \vdash \Delta \sqsubset \Pi x: A_{1} \cdot A_{2} \text { and } & \\
\mathcal{D}_{2}:: \Gamma \vdash \Pi x:: S_{1} \sqsubset A_{1} . S_{2} \sqsubset \Pi x: A_{1} . A_{2} & \text { By inversion on } \mathcal{D} . \\
\Gamma \vdash \Delta_{2} \sqsubset A_{2}^{\prime} & \text { By i.h. on } \mathcal{E}_{1} . \\
& \\
\Gamma \vdash S_{1} \sqsubset A_{1} \text { and } \Gamma, x:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} & \text { By inversion on } \mathcal{D}_{2} . \\
\Gamma \vdash N \Leftarrow S_{1} & \text { By Theorem } 3.9 \text { (Soundness of Alg. Typing). } \\
\Gamma \vdash S_{2}^{\prime} \sqsubset A_{2}^{\prime} & \text { By Theorem 3.19 (Substitution). } \\
\Gamma \vdash \operatorname{split}\left(S_{2}^{\prime}\right) \sqsubset A_{2}^{\prime} & \text { By Lemma 4.9. } \\
& \\
\Gamma \vdash\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right) \sqsubset A_{2}^{\prime} & \text { By Lemma 4.8. }
\end{array}
$$

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ N=\Delta_{2} \quad \Gamma \nvdash N \Leftarrow S_{1}}{\Gamma \vdash\left(\Delta, \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ N=\Delta_{2}}$
$\Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2} \quad$ By inversion on $\mathcal{D}$.
$\Gamma \vdash \Delta_{2} \sqsubset A_{2}^{\prime}$
By i.h. on $\mathcal{E}_{1}$.

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ N=\Delta_{2} \quad \nexists S_{2}^{\prime} \cdot[N / y]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\Gamma \vdash\left(\Delta, \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ N=\Delta_{2}}$

Similar.
Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ N=\Delta_{2}}{\Gamma \vdash(\Delta, Q) @ N=\Delta_{2}}$

Impossible:
$\Gamma \vdash Q \sqsubset \Pi x: A_{1} . A_{2} \quad$ By inversion on $\mathcal{D}$.
But there is no rule that can conclude this.

## B. 7 Theorem 4.14 (Generalized Intrinsic $\Rightarrow$ Algorithmic)

Theorem 4.14 (Generalized Intrinsic $\Rightarrow$ Algorithmic).

1. If $\Gamma \vdash R \Rightarrow \Delta$ and $\mathcal{E}:: \Gamma \vdash \eta_{A}(R) \Leftarrow S$ and $\Gamma \vdash \Delta \sqsubset A$ and $\Gamma \vdash S \sqsubset A$, then $\Delta \leqq S$.
2. If $\Gamma \vdash x \Rightarrow \Delta_{1}$ and $\mathcal{E}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2}$ and $\Gamma \vdash \Delta_{1} \sqsubset A_{1}$ and $\Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$, then $\Delta @ x:: \Delta_{1} \sqsubset A_{1}=\Delta_{2}$.

Proof. By induction on $A, S$, and $\mathcal{E}$. We omit the refined type $A_{1}$ from the $\Delta_{1}$ argument of the application judgement when it is clear from context.

1. Suppose $\mathcal{D}:: \Gamma \vdash R \Rightarrow \Delta, \mathcal{E}:: \Gamma \vdash \eta_{A}(R) \Leftarrow S, \mathcal{F}:: \Gamma \vdash \Delta \sqsubset A$, and $\mathcal{G}:: \Gamma \vdash S \sqsubset A$.

Case: $S=Q$
$A=P$
$\eta_{P}(R)=R$
$\mathcal{E}=\frac{\Gamma \vdash R \Rightarrow \Delta \quad Q^{\prime} \in \Delta \quad Q^{\prime} \leq Q}{\Gamma \vdash R \Leftarrow Q}$
$\Delta \leqq Q$

By inversion on $\mathcal{G}$.
By definition.

By inversion.
By rule.

Case: $S=\top$
$\Delta \leqq \top \quad$ By rule.

Case: $S=S_{1} \wedge S_{2}$
$\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \eta_{A}(R) \Leftarrow S_{1} \quad \mathcal{E}_{2}:: \Gamma \vdash \eta_{A}(R) \Leftarrow S_{2}}{\Gamma \vdash \eta_{A}(R) \Leftarrow S_{1} \wedge S_{2}} \quad$ By inversion.
$\Delta \leqq S_{1} \quad$ By i.h. (1) on $S_{1}$ and $\mathcal{E}_{1}$
$\Delta \leqq S_{2} \quad$ By i.h. (1) on $S_{2}$ and $\mathcal{E}_{2}$
$\Delta \leqq S_{1} \wedge S_{2} \quad$ By rule.

Case: $S=\Pi x:: S_{1} \sqsubset A_{1} . S_{2}$
$A=\Pi x: A_{1} . A_{2}$ and
$\Gamma \vdash S_{1} \sqsubset A_{1}$ and $\Gamma, x:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} \quad$ By inversion on $\mathcal{G}$.
$\eta_{\Pi x: A_{1} \cdot A_{2}}(R)=\lambda x \cdot \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right)$
By definition.
$\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma, x:: S_{1} \sqsubset A_{1} \vdash \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right) \Leftarrow S_{2}}{\Gamma \vdash \lambda x . \eta_{A_{2}}\left(R \eta_{A_{1}}(x)\right) \Leftarrow \Pi x:: S_{1} \sqsubset A_{1} . S_{2}} \quad \quad$ By inversion.
$\Gamma, x:: S_{1} \sqsubset A_{1} \vdash R \Rightarrow \Delta \quad$ By weakening.
$\Gamma, x:: S_{1} \sqsubset A_{1} \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2} \quad$ By Theorem 3.7, clause (3).
$\Gamma, x:: S_{1} \sqsubset A_{1} \vdash R \eta_{A_{1}}(x) \Rightarrow \Delta_{2} \quad$ By rule.
$\left[\eta_{A_{1}}(x) / A_{1}\right]_{x}^{\mathrm{a}} A_{2}=A_{2} \quad$ By validity of $\Pi x: A_{1} . A_{2}$ and Lemma 3.21.
$\Gamma, x:: S_{1} \sqsubset A_{1} \vdash \Delta_{2} \sqsubset A_{2}$
By Lemma 4.10.
$\Delta_{2} \leqq S_{2}$ By i.h. (1) on $A_{2}, S_{2}$, and $\mathcal{E}_{1}$.

By rule.
From above.
By Lemma 4.9.
By assumption.
By i.h. (2) on $A_{1}$.
By rule.
2. Suppose $\mathcal{D}:: \Gamma \vdash x \Rightarrow \Delta_{1}$ and $\mathcal{E}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2}$ and $\mathcal{F}:: \Gamma \vdash \Delta_{1} \sqsubset A_{1}$ and $\mathcal{G}:: \Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$.

Case: $\mathcal{E}=\overline{\Gamma \vdash \cdot @ \eta_{A_{1}}(x)=}$

- @ $x:: \Delta_{1}=$.

By rule.

$$
\mathcal{E}_{1}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2}
$$

Case: $\mathcal{E}=\frac{\mathcal{E}_{2}:: \Gamma \vdash \eta_{A_{1}}(x) \Leftarrow S_{1} \quad \mathcal{E}_{3}::\left[\eta_{A_{1}}(x) / y\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\Gamma \vdash\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} . S_{2}\right) @ \eta_{A_{1}}(x)=\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)}$
$\Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$ and
$\Gamma \vdash S_{1} \sqsubset A_{1}$ and $\Gamma, y:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} \quad$ By inversion on $\mathcal{G}$.
$\Delta @ x:: \Delta_{1}=\Delta_{2}$
By i.h. (2) on $\mathcal{E}_{1}$.
$\Delta_{1} \leqq S_{1}$
By i.h. (1) on $\mathcal{E}_{2}$.
$\left[\eta_{A_{1}}(x) / y\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}$
By subderivation $\mathcal{E}_{3}$.
$\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} . S_{2}\right) @ x:: \Delta_{1}=\left(\Delta_{2}, \operatorname{split}\left(S_{2}^{\prime}\right)\right)$
By rule.

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2} \quad \Gamma \nvdash \eta_{A_{1}}(x) \Leftarrow S_{1}}{\Gamma \vdash\left(\Delta, \Pi x:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ \eta_{A_{1}}(x)=\Delta_{2}}$
$\Gamma \vdash \Delta \sqsubset \Pi x: A_{1} . A_{2}$ and
$\Gamma \vdash S_{1} \sqsubset A_{1}$ and $\Gamma, y:: S_{1} \sqsubset A_{1} \vdash S_{2} \sqsubset A_{2} \quad$ By inversion on $\mathcal{G}$. $\Delta @ x:: \Delta_{1}=\Delta_{2}$

By i.h. (2) on $\mathcal{E}_{1}$.
$\Delta_{1} \not \leq S_{1} \quad$ By Theorem 4.13 (Alg. Subsumption), contrapositive.

$$
\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ x:: \Delta_{1}=\Delta_{2} \quad \text { By rule. }
$$

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ \eta_{A_{1}}(x)=\Delta_{2} \quad \nexists S_{2}^{\prime} \cdot\left[\eta_{A_{1}}(x) / y\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}}{\Gamma \vdash\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} \cdot S_{2}\right) @ \eta_{A_{1}}(x)=\Delta_{2}}$
$\Delta @ x:: \Delta_{1}=\Delta_{2}$
$\nexists S_{2}^{\prime} \cdot\left[\eta_{A}(x) / y\right]_{A_{1}}^{\mathrm{s}} S_{2}=S_{2}^{\prime}$
$\left(\Delta, \Pi y:: S_{1} \sqsubset A_{1} . S_{2}\right) @ x:: \Delta_{1}=\Delta_{2}$

Case: $\mathcal{E}=\frac{\mathcal{E}_{1}:: \Gamma \vdash \Delta @ N=\Delta_{2}}{\Gamma \vdash(\Delta, Q) @ N=\Delta_{2}}$
Impossible:
$\Gamma \vdash Q \sqsubset \Pi x: A_{1} . A_{2} \quad$ By inversion on $\mathcal{G}$.
But there is no rule that can conclude this.


[^0]:    ${ }^{1}$ Email: wlovas@cs.cmu.edu
    ${ }^{2}$ Email: fp@cs.cmu.edu

[^1]:    ${ }^{1}$ Intersection has lower precedence than arrow.
    ${ }^{2}$ As usual in LF, we use $A \rightarrow B$ as shorthand for the dependent type $\Pi x: A$. $B$ when $x$ does not occur in $B$.
    ${ }^{3}$ It may help to recall the interpretation of $S \sqsubset A$ : for a term to be judged to have sort $S$, it must already have been judged to have type $A$ for some $A$ such that $S \sqsubset A$. Thus, the refinement relation represents an inclusion "by fiat": every term with sort $S$ is also a term of sort $A$, by invariant. By contrast, subsorting $S_{1} \leq S_{2}$ is a more standard sort of inclusion: every term with sort $S_{1}$ is also a term of sort $S_{2}$, by subsumption (see Section 4).

[^2]:    ${ }^{4}$ The present paper concentrates primarily on decidability, though, not efficiency.

[^3]:    ${ }^{5}$ The categorically-minded reader might think of this as the right and left unit laws for $\circ$ while thinking of the composition lemma above as the associativity of $\circ$, where $\circ$ in the category represents substitution, as usual.
    ${ }^{6}$ In other words, by reading $\left[N_{0} / x_{0}\right]_{\alpha_{0}}^{\mathrm{n}} N=N^{\prime}$ as something like subst ${ }_{\alpha_{0}}^{n}\left(N_{0}, x_{0} \cdot N\right)=N^{\prime}$, where $x_{0}$ is bound in $N$.

[^4]:    ${ }^{7}$ Kopylov wrote $x: A \cap B$ and $A \cap B$.

[^5]:    ${ }^{8}$ One might imagine extending LFR with declarations of the form even $\wedge$ odd $\leq$ empty to allow the user to capture this property explicitly. As currently specified, LFR does not give the user the ability to define any arbitrary subtyping lattice since it excludes such declarations.

