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Abstract
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types. Because we insist on canonical forms, structural rules for subtyping
can now be derived rather than being assumed as primitive. We illustrate the
expressive power of our system with several examples in the domain of logics
and programming languages.

This document is an extended version of a paper originally presented at the

Second International Workshop on Logical Frameworks and Meta-Languages: Theory

and Practice (LFMTP ’07) and published in Electronic Notes in Theoretical Com-

puter Science [LP08]. It supercedes Technical Report CMU-CS-07-127, which was

unpublished.

1Email: wlovas@cs.cmu.edu
2Email: fp@cs.cmu.edu

mailto:wlovas@cs.cmu.edu
mailto:fp@cs.cmu.edu


Keywords: LF, refinement types, subtyping, dependent types, intersection
types



1 Introduction

LF was created as a framework for defining logics [HHP93]. Since its inception,
it has been used to formalize reasoning about a number of deductive systems
(see [Pfe01] for an introduction). In its most recent incarnation as the Twelf
metalogic [PS99], it has been used to encode and mechanize the metatheory
of programming languages that are prohibitively complex to reason about on
paper [Cra03, LCH07].

It has long been recognized that some LF encodings would benefit from
the addition of a subtyping mechanism to LF [Pfe93, AC01]. In LF encodings,
judgements are represented by type families, and many subsyntactic relations
and judgemental inclusions can be elegantly represented via subtyping.

Prior work has explored adding subtyping and intersection types to LF via
refinement types [Pfe93]. Many of that system’s metatheoretic properties were
proven indirectly by translation into other systems, though, giving little insight
into a notion of adequacy or an implementation strategy. We present here a
refinement type system for LF based on the modern canonical forms approach,
and by doing so we obtain direct proofs of important properties like decidability.

In canonical forms-based LF, only β-normal η-long terms are well-typed —
the syntax restricts terms to being β-normal, while the typing relation forces
them to be η-long. Since standard substitution might introduce redexes even
when substituting a normal term into a normal term, it is replaced with a notion
of hereditary substitution that contracts redexes along the way, yielding another
normal term. Since only canonical forms are admitted, type equality is just
α-equivalence, and typechecking is manifestly decidable.

Canonical forms are exactly the terms one cares about when adequately
encoding a language in LF, so this approach loses no expressivity. Since all terms
are normal, there is no notion of reduction, and thus the metatheory need not
directly treat properties related to reduction, such as subject reduction, Church-
Rosser, or strong normalization. All of the metatheoretic arguments become
straightforward structural inductions, once the theorems are stated properly.

By introducing a layer of refinements distinct from the usual layer of types,
we prevent subtyping from interfering with our extension’s metatheory. We
also follow the general philosophy of prior work on refinement types [Fre94,
Dav05] in only assigning refined types to terms already well-typed in pure LF,
ensuring that our extension is conservative.

In the remainder of the paper, we describe our refinement type system along-
side several illustrative examples (Section 2). Then we explore its metatheory
and give proof sketches of important results, including decidability (Section 3).
We note that our approach leads to subtyping only being defined on atomic
types, but we show that subtyping at higher types is already present in our
system by proving that the usual declarative rules are sound and complete
with respect to an intrinsic notion of subtyping (Section 4). Finally, we discuss
some related work (Section 5) and summarize our results (Section 6).
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2 System and Examples

We present our system of LF with Refinements, LFR, through several examples.
In what follows, R refers to atomic terms and N to normal terms. Our atomic
and normal terms are exactly the terms from canonical presentations of LF.

R ::= c | x | R N atomic terms

N,M ::= R | λx.N normal terms

In this style of presentation, typing is defined bidirectionally by two judge-
ments: R⇒ A, which says atomic term R synthesizes type A, and N ⇐ A, which
says normal term N checks against type A. Since λ-abstractions are always
checked against a given type, they need not be decorated with their domain
types.

Types are similarly stratified into atomic and normal types.

P ::= a | P N atomic type families

A,B ::= P | Πx:A.B normal type families

The operation of hereditary substitution, written [N/x]
A

, is a partial function
which computes the normal form of the standard capture-avoiding substitution
of N for x. It is indexed by the putative type of x, A, to ensure termination,
but neither the variable x nor the substituted term N are required to bear any
relation to this type index for the operation to be defined. We show in Section 3
that when N and x do have type A, hereditary substitution is a total function on
well-formed terms.

Our layer of refinements uses metavariables Q for atomic sorts and S for
normal sorts. These mirror the definition of types above, except for the addition
of intersection and “top” sorts.

Q ::= s | Q N atomic sort families

S,T ::= Q | Πx::S@A.T | > | S1 ∧ S2 normal sort families

Sorts are related to types by a refinement relation, S @ A (“S refines A”),
discussed below. We only sort-check well-typed terms, and a term of type A
can be assigned a sort S only when S @ A. These constraints are collectively
referred to as the “refinement restriction”. We occasionally omit the “@ A” from
function sorts when it is clear from context.

2.1 Example: Natural Numbers

For the first running example we will use the natural numbers in unary notation.
In LF, they would be specified as follows

nat : type.
zero : nat.
succ : nat→ nat.
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Suppose we would like to distinguish the odd and the even numbers as
refinements of the type of all numbers.

even @ nat.
odd @ nat.

The form of the declaration is s @ a where a is a type family already declared
and s is a new sort family. Sorts headed by s are declared in this way to refine
types headed by a. The relation S @ A is extended through the whole sort
hierarchy in a compositional way.

Next we declare the sorts of the constructors. For zero, this is easy:

zero :: even.

The general form of this declaration is c :: S, where c is a constant already
declared in the form c : A, and where S @ A. The declaration for the successor
is slightly more difficult, because it maps even numbers to odd numbers and
vice versa. In order to capture both properties simultaneously we need to use
intersection sorts, written as S1 ∧ S2.1

succ :: even→ odd ∧ odd→ even.

In order for an intersection to be well-formed, both components must refine the
same type. The nullary intersection > can refine any type, and represents the
maximal refinement of that type.2

s @ a ∈ Σ

s N1 . . .Nk @ a N1 . . .Nk

S @ A T @ B

Πx::S.T @ Πx:A.B

S1 @ A S2 @ A

S1 ∧ S2 @ A > @ A

To show that the declaration for succ is well-formed, we establish that even →
odd ∧ odd→ even @ nat→ nat.

The refinement relation S @ A should not be confused with the usual subtyping
relation. Although each is a kind of subset relation3, they are quite different:
Subtyping relates two types, is contravariant in the domains of function types,
and is transitive, while refinement relates a sort to a type, so it does not make
sense to consider its variance or whether it is transitive. We will discuss sub-
typing below and in Section 4.

Now suppose that we also wish to distinguish the strictly positive natural
numbers. We can do this by introducing a sort pos refining nat and declaring
that the successor function yields a pos when applied to anything, using the
maximal sort.

1Intersection has lower precedence than arrow.
2As usual in LF, we use A → B as shorthand for the dependent type Πx:A.B when x does not

occur in B.
3It may help to recall the interpretation of S @ A: for a term to be judged to have sort S, it must

already have been judged to have type A for some A such that S @ A. Thus, the refinement relation
represents an inclusion “by fiat”: every term with sort S is also a term of sort A, by invariant. By
contrast, subsorting S1 ≤ S2 is a more standard sort of inclusion: every term with sort S1 is also a
term of sort S2, by subsumption (see Section 4).
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Canonical LF LF with Refinements

Γ, x:A ` N ⇐ B

Γ ` λx.N⇐ Πx:A.B

Γ ` R⇒ P′ P′ = P

Γ ` R⇐ P

x:A ∈ Γ

Γ ` x⇒ A

c:A ∈ Σ

Γ ` c⇒ A

Γ ` R⇒ Πx:A.B Γ ` N ⇐ A

Γ ` R N ⇒ [N/x]A B

Γ, x::S@A ` N ⇐ T

Γ ` λx.N ⇐ Πx::S@A.T
(Π-I)

Γ ` R⇒ Q′ Q′ ≤ Q

Γ ` R⇐ Q
(switch)

x::S@A ∈ Γ

Γ ` x⇒ S
(var)

c :: S ∈ Σ

Γ ` c⇒ S
(const)

Γ ` R⇒ Πx::S@A.T Γ ` N ⇐ S

Γ ` R N⇒ [N/x]A T
(Π-E)

pos @ nat.
succ :: · · · ∧ > → pos.

Since we only sort-check well-typed programs and succ is declared to have type
nat→ nat, the sort > here acts as a sort-level reflection of the entire nat type.

We can specify that all odds are positive by declaring odd to be a subsort of
pos.

odd ≤ pos.

Although any ground instance of odd is evidently pos, we need the subsorting
declaration to establish that variables of sort odd are also pos.

Putting it all together, we have the following:

even @ nat. odd @ nat. pos @ nat.
odd ≤ pos.
zero :: even.
succ :: even→ odd ∧ odd→ even ∧ > → pos.

Now we should be able to verify that, for example, succ (succ zero) ⇐ even.
To explain how, we analogize with pure canonical LF. Recall that atomic types
have the form a N1 . . .Nk for a type family a and are denoted by P. Arbitrary
types A are either atomic (P) or (dependent) function types (Πx:A.B). Canonical
terms are then characterized by the rules shown in the left column above.

There are two typing judgements, N ⇐ A which means that N checks
against A (both given) and R ⇒ A which means that R synthesizes type A (R
given as input, A produced as output). Both take place in a context Γ assigning
types to variables. To force terms to be η-long, the rule for checking an atomic
term R only checks it at an atomic type P. It does so by synthesizing a type
P′ and comparing it to the given type P. In canonical LF, all types are already
canonical, so this comparison is just α-equality.
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On the right-hand side we have shown the corresponding rules for sorts.
First, note that the format of the context Γ is slightly different, because it declares
sorts for variables, not just types. The rules for functions and applications are
straightforward analogues to the rules in ordinary LF. The rule switch for
checking atomic terms R at atomic sorts Q replaces the equality check with a
subsorting check and is the only place where we appeal to subsorting (defined
below). For applications, we use the type A that refines the type S as the index
parameter of the hereditary substitution.

Subsorting is exceedingly simple: it only needs to be defined on atomic
sorts, and is just the reflexive and transitive closure of the declared subsorting
relationship.

s1≤s2 ∈ Σ

s1 N1 . . .Nk ≤ s2 N1 . . .Nk Q ≤ Q

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

The sorting rules do not yet treat intersections. In line with the general
bidirectional nature of the system, the introduction rules are part of the checking
judgement, and the elimination rules are part of the synthesis judgement. Binary
intersection S1 ∧ S2 has one introduction and two eliminations, while nullary
intersection > has just one introduction.

Γ ` N⇐ S1 Γ ` N ⇐ S2

Γ ` N ⇐ S1 ∧ S2

(∧-I)
Γ ` N ⇐ >

(>-I)

Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S1

(∧-E1)
Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S2

(∧-E2)

Note that although (canonical forms-style) LF type synthesis is unique, LFR
sort synthesis is not, due to the intersection elimination rules.

Now we can see how these rules generate a deduction of succ (succ zero)⇐
even. The context is always empty and therefore omitted. To save space, we
abbreviate even as e, odd as o, pos as p, zero as z, and succ as s, and we omit
reflexive uses of subsorting.

` s⇒ e→ o ∧ (o→ e ∧ > → p)

` s⇒ o→ e ∧ > → p

` s⇒ o→ e

` s⇒ e→ o ∧ (. . .)
` s⇒ e→ o

` z⇒ e
` z⇐ e

` s z⇒ o
` s z⇐ o

` s (s z)⇒ e

` s (s z)⇐ e

Using the ∧-I rule, we can check that succ zero is both odd and positive:

...
` s z⇐ o

...
` s z⇐ p

` s z⇐ o ∧ p
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Each remaining subgoal now proceeds similarly to the above example.
To illustrate the use of sorts with non-trivial type families, consider the

definition of the double relation in LF.

double : nat→ nat→ type.
dbl-zero : double zero zero.
dbl-succ : ΠX:nat.ΠY:nat. double X Y→ double (succ X) (succ (succ Y)).

With sorts, we can now directly express the property that the second argument
to double must be even. But to do so, we require a notion analogous to kinds
that may contain sort information. We call these classes and denote them by L.

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S@A. L | > | L1 ∧ L2 classes

Classes L mirror kinds K, and they have a refinement relation L @ K similar to
S @ A. (We elide the rules here.) Now, the general form of the s @ a declaration
is s @ a :: L, where a : K and L @ K; this declares sort constant s to refine type
constant a and to have class L.

We reuse the type name double as a sort, as no ambiguity can result. As
before, we use > to represent a nat with no additional restrictions.

double @ double :: > → even→ sort.
dbl-zero :: double zero zero.
dbl-succ :: ΠX::>.ΠY::even. double X Y→ double (succ X) (succ (succ Y)).

After these declarations, it would be a sort error to pose a query such as
“?- double X (succ (succ (succ zero))).” before any search is ever attempted. In LF,
queries like this could fail after a long search or even not terminate, depending
on the search strategy. One of the important motivations for considering sorts
for LF is to avoid uncontrolled search in favor of decidable static properties
whenever possible.

The tradeoff for such precision is that now sort checking itself is non-
deterministic and has to perform search because of the choice between the two
intersection elimination rules. As Reynolds has shown, this non-determinism
causes intersection type checking to be PSPACE-hard [Rey96], even for normal
terms as we have here [Rey89]. Using techniques such as focusing, we believe
that for practical cases they can be analyzed efficiently for the purpose of sort
checking.4

2.2 A Second Example: The λ-Calculus

As a second example, we use an intrinsically typed version of the call-by-
value simply-typed λ-calculus. This means every object language expression
is indexed by its object language type. We use sorts to distinguish the set of
values from the set of arbitrary computations. While this can be encoded in LF
in a variety of ways, it is significantly more cumbersome.

4The present paper concentrates primarily on decidability, though, not efficiency.
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tp : type. % the type of object language types
➪ : tp→ tp→ tp. % object language function space
%infix right 10 ➪ .

exp : tp→ type. % the type of expressions
cmp @ exp. % the sort of computations
val @ exp. % the sort of values

val ≤ cmp. % every value is a (trivial) computation

lam :: (val A→ cmp B)→ val (A ➪ B).
app :: cmp (A ➪ B)→ cmp A→ cmp B.

In the last two declarations, we follow Twelf convention and leave the
quantification over A and B implicit, to be inferred by type reconstruction.
Also, we did not explicitly declare a type for lam and app. We posit a front end
that can recover this information from the refinement declarations for val and
cmp, avoiding redundancy.

The most interesting declaration is the one for the constant lam. The argu-
ment type (val A→ cmp B) indicates that lam binds a variable which stands for
a value of type A and the body is an arbitrary computation of type B. The result
type val (A ➪ B) indicates that any λ-abstraction is a value. Now we have, for
example (parametrically in A and B): A::>@tp,B::>@tp ` lam λx. lam λy. x ⇐
val (A ➪ (B ➪ A)).

Now we can express that evaluation must always returns a value. Since
the declarations below are intended to represent a logic program, we follow
the logic programming convention of reversing the arrows in the declaration
of ev-app.

eval :: cmp A→ val A→ sort.
ev-lam :: eval (lam λx.E x) (lam λx.E x).
ev-app :: eval (app E1 E2) V

← eval E1 (lam λx.E′
1

x)
← eval E2 V2

← eval (E′
1

V2) V.

Sort checking the above declarations demonstrates that evaluation always re-
turns a value. Moreover, if type reconstruction gives E′

1
the “most general”

sort val A → cmp A, the declarations also ensure that the language is indeed
call-by-value: it would be a sort error to ever substitute a computation for a
lam-bound variable, for example, by evaluating (E′

1
E2) instead of (E′

1
V2) in

the ev-app rule. An interesting question for future work is whether type recon-
struction can always find such a “most general” sort for implicitly quantified
metavariables.

A side note: through the use of sort families indexed by object language
types, the sort checking not only guarantees that the language is call-by-value
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and that evaluation, if it succeeds, will always return a value, but also that the
object language type of the result remains the same (type preservation).

2.3 A Final Example: The Calculus of Constructions

As a final example, we present the Calculus of Constructions. Usually, there is
a great deal of redundancy in its presentation because of repeated constructs
at the level of objects, families, and kinds. Using sorts, we can enforce the
stratification and write typing rules that are as simple as if we assumed the
infamous type : type.

term : type. % terms at all levels

hyp @ term. % hyperkinds (the classifier of “kind”)
knd @ term. % kinds
fam @ term. % families
obj @ term. % objects

tp :: hyp ∧ knd.
pi :: fam→ (obj→ fam)→ fam ∧ % dependent function types, Πx:A.B

fam→ (obj→ knd)→ knd ∧ % type family kinds, Πx:A.K
knd→ (fam→ fam)→ fam ∧ % polymorphic function types, ∀α:K.A
knd→ (fam→ knd)→ knd. % type operator kinds, Πα:K1.K2

lm :: fam→ (obj→ obj)→ obj ∧ % functions, λx:A.M
fam→ (obj→ fam)→ fam ∧ % type families, λx:A.B
knd→ (fam→ obj)→ obj ∧ % polymorphic abstractions, Λα:K.M
knd→ (fam→ fam)→ fam. % type operators, λα:K.A

ap :: obj→ obj→ obj ∧ % ordinary application, M N
fam→ obj→ fam ∧ % type family application, A M
obj→ fam→ obj ∧ % polymorphic instantiation, M [A]
fam→ fam→ fam. % type operator instantiation, A B

The typing rules can now be given non-redundantly, illustrating the implicit
overloading afforded by the use of intersections. We omit the type conversion
rule and auxiliary judgements for brevity.

of :: knd→ hyp→ sort ∧

fam→ knd→ sort ∧

obj→ fam→ sort.

of-tp :: of tp tp.

of-pi :: of (pi T1 λx.T2 x) tp
← of T1 tp
← (Πx:term. of x T1 → of (T2 x) tp).

of-lm :: of (lm U1 λx.T2 x) (pi U1 λx.U2 x)
← of U1 tp
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← (Πx:term. of x U1 → of (T2 x) (U2 x)).
of-ap :: of (ap T1 T2) (U1 T2)

← of T1 (pi U2 λx.U1 x)
← of T2 U2.

Intersection types also provide a degree of modularity: by deleting some con-
juncts from the declarations of pi, lm, and ap above, we can obtain an encoding
of any point on the λ-cube.

3 Metatheory

In this section, we present some metatheoretic results about our framework.
These follow a similar pattern as previous work using hereditary substitutions
[WCPW02, NPP07, HL07]. We give sketches of straightforward proofs; for
technically tricky proofs, we include all cases in Appendix B.

3.1 Hereditary Substitution

Recall that we replace ordinary capture-avoiding substitution with hereditary
substitution, [N/x]

A
, an operation which substitutes a normal term into a canon-

ical form yielding another canonical form, contracting redexes “in-line”. The
operation is indexed by the putative type of N and x to facilitate a proof of
termination. In fact, the type index on hereditary substitution need only be a
simple type to ensure termination. To that end, we denote simple types by α
and define an erasure to simple types (A)−.

α ::= a | α1 → α2 (a N1 . . .Nk)− = a (Πx:A.B)− = (A)− → (B)−

For clarity, we also index hereditary substitutions by the syntactic category on
which they operate, so for example we have [N/x]n

A
M =M′ and [N/x]s

A
S = S′;

Table 1 lists all of the judgements defining substitution. We write [N/x]n
A

M =M′

as short-hand for [N/x]n
(A)−

M =M′.

Our formulation of hereditary substitution is defined judgementally by
inference rules. The only place β-redexes might be introduced is when sub-
stituting a normal term N into an atomic term R: N might be a λ-abstraction,
and the variable being substituted for may occur at the head of R. Therefore,
the judgements defining substitution into atomic terms are the most interesting
ones.

We denote substitution into atomic terms by two judgements: [N0/x0]rr
α0

R =
R′, for when the head of R is not x, and [N0/x0]rn

α0
R = (N′, α′), for when the head

of R is x, where α′ is the simple type of the output N′. The former is just defined
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Judgement: Substitution into:

[N0/x0]rr
α0

R = R′ Atomic terms (yielding atomic)
[N0/x0]rn

α0
R = (N′, α′) Atomic terms (yielding normal)

[N0/x0]n
α0

N = N′ Normal terms

[N0/x0]
p
α0

P = P′ Atomic types
[N0/x0]a

α0
A = A′ Normal types

[N0/x0]
q
α0

Q = Q′ Atomic sorts
[N0/x0]s

α0
S = S′ Normal sorts

[N0/x0]k
α0

K = K′ Kinds
[N0/x0]l

α0
L = L′ Classes

[N0/x0]
γ
α0
Γ = Γ′ Contexts

Table 1: Judgements defining hereditary substitution.

compositionally; the latter is defined by two rules:

[N0/x0]rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(subst-rn-β)

The rule subst-rn-var just returns the substitutend N0 and its putative type
index α0. The rule subst-rn-β applies when the result of substituting into
the head of an application is a λ-abstraction; it avoids creating a redex by
hereditarily substituting into the body of the abstraction.

A simple lemma establishes that these two judgements are mutually exclu-
sive by examining the head of the input atomic term.

head(x) = x head(c) = c head(R N) = head(R)

Lemma 3.1.

1. If [N0/x0]rr
α0

R = R′, then head(R) , x0.

2. If [N0/x0]rn
α0

R = (N′, α′), then head(R) = x0.

Proof. By induction on the given derivation. �

Substitution into normal terms has two rules for atomic terms R, one which
calls the “rr” judgement and one which calls the “rn” judgement.

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
(subst-n-atom)

[N0/x0]rn
α0

R = (R′, a′)

[N0/x0]n
α0

R = R′
(subst-n-atom-norm)
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Note that the latter rule requires both the term and the type returned by the
“rn” judgement to be atomic.

Every other syntactic category’s substitution judgement is defined compo-
sitionally, tacitly renaming bound variables to avoid capture. For example, the
remaining rule defining substitution into normal terms, the rule for substituting
into a λ-abstraction, just recurses on the body of the abstraction.

[N0/x0]n
α0

N = N′

[N0/x0]n
α0
λx.N = λx.N′

Although we have only defined hereditary substitution relationally, it is
easy to show that it is in fact a partial function by proving that there only ever
exists one “output” for a given set of “inputs”.

Theorem 3.2 (Functionality of Substitution). Hereditary substitution is a func-
tional relation. In particular:

1. If [N0/x0]rr
α0

R = R1 and [N0/x0]rr
α0

R = R2, then R1 = R2,

2. If [N0/x0]rn
α0

R = (N1, α1) and [N0/x0]rn
α0

R = (N2, α2), then N1 = N2 and
α1 = α2,

3. If [N0/x0]n
α0

N = N1 and [N0/x0]n
α0

N = N2, then N1 = N2,

and similarly for other syntactic categories.

Proof. Straightforward induction on the first derivation, applying inversion to
the second derivation. The cases for rules subst-n-atom and subst-n-atom-
norm require Lemma 3.1 to show that the second derivation ends with the
same rule as the first one. �

Additionally, it is worth noting that hereditary substitution behaves just
like “ordinary” substitution on terms that do not contain the distinguished free
variable.

Theorem 3.3 (Trivial Substitution). Hereditary substitution for a non-occurring
variable has no effect.

1. If x0 < FV(R), then [N0/x0]rr
α0

R = R,

2. If x0 < FV(N), then [N0/x0]n
α0

N = N,

and similarly for other syntactic categories.

Proof. Straightforward induction on term structure. �
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3.2 Decidability

A hallmark of the canonical forms/hereditary substitution approach is that it
allows a decidability proof to be carried out comparatively early, before prov-
ing anything about the behavior of substitution, and without dealing with any
complications introduced by β/η-conversions inside types. Ordinarily in a de-
pendently typed calculus, one must first prove a substitution theorem before
proving typechecking decidable, since typechecking relies on type equality,
type equality relies on β/η-conversion, and β/η-conversions rely on substitu-
tion preserving well-formedness. (See for example [HP05] for a typical non-
canonical forms-style account of LF definitional equality.)

In contrast, if only canonical forms are permitted, then type equality is just
α-convertibility, so one only needs to show decidability of substitution in order to
show decidability of typechecking. Since LF encodings represent judgements
as type families and proof-checking as typechecking, it is comforting to have a
decidability proof that relies on so few assumptions.

Lemma 3.4. If [N0/x0]rn
α0

R = (N′, α′), then α′ is a subterm of α0.

Proof. By induction on the derivation of [N0/x0]rn
α0

R = (N′, α′). In rule subst-
rn-var, α′ is the same as α0. In rule subst-rn-β, our inductive hypothesis tells
us that α2 → α1 is a subterm of α0, so α1 is as well. �

By working in a constructive metalogic, we are able to prove decidability
of a judgement by proving an instance of the law of the excluded middle; the
computational content of the proof then represents a decision procedure.

Theorem 3.5 (Decidability of Substitution). Hereditary substitution is decidable.
In particular:

1. Given N0, x0, α0, and R, either∃R′. [N0/x0]rr
α0

R = R′, or@R′. [N0/x0]rr
α0

R = R′,

2. Given N0, x0, α0, and R, either ∃(N′, α′). [N0/x0]rn
α0

R = (N′, α′), or
@(N′, α′). [N0/x0]rn

α0
R = (N′, α′),

3. Given N0, x0, α0, and N, either ∃N′. [N0/x0]n
α0

N = N′, or @N′. [N0/x0]n
α0

N =
N′,

and similarly for other syntactic categories.

Proof. By lexicographic induction on the type subscript α0, the main subject of
the substitution judgement, and the clause number. For each applicable rule
defining hereditary substitution, the premises are at a smaller type subscript,
or if the same type subscript, then a smaller term, or if the same term, then an
earlier clause. The case for rule subst-rn-β relies on Lemma 3.4 to know that α2

is a strict subterm of α0. �

Theorem 3.6 (Decidability of Subsorting). Given Q1 and Q2, either Q1 ≤ Q2 or
Q1 6≤ Q2.
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Proof. Since the subsorting relation Q1 ≤ Q2 is just the reflexive, transitive
closure of the declared subsorting relation s1 ≤ s2, it suffices to compute this
closure, check that the heads of Q1 and Q2 are related by it, and ensure that all
of the arguments of Q1 and Q2 are equal. �

We prove decidability of typing by exhibiting a deterministic algorithmic
system that is equivalent to the original. Instead of synthesizing a single sort
for an atomic term, the algorithmic system synthesizes an intersection-free list
of sorts, ∆.

∆ ::= · | ∆,Q | ∆,Πx::S@A.T

(As usual, we freely overload comma to mean list concatenation, as no am-
biguity can result.) One can think of ∆ as the intersection of all its elements.
Instead of applying intersection eliminations, the algorithmic system eagerly
breaks down intersections using a “split” operator, leading to a deterministic
“minimal-synthesis” system.

split(Q) = Q split(S1 ∧ S2) = split(S1), split(S2)

split(Πx::S@A.T) = Πx::S@A.T split(>) = ·

c::S ∈ Σ

Γ ` cV split(S)

x::S@A ∈ Γ

Γ ` xV split(S)

Γ ` RV ∆ Γ ` ∆ @ N = ∆′

Γ ` R NV ∆′

The rule for applications uses an auxiliary judgement Γ ` ∆ @ N = ∆′ which
computes the possible types of R N given that R synthesizes to all the sorts in
∆. It has two key rules:

Γ ` · @ N = ·

Γ ` ∆ @ N = ∆′ Γ ` NW S [N/x]s
A T = T′

Γ ` (∆,Πx::S@A.T) @ N = ∆′, split(T′)

The other rules force the judgement to be defined when neither of the above
two rules apply.

Γ ` ∆ @ N = ∆′ Γ 0 NW S

Γ ` (∆,Πx::S@A.T) @ N = ∆′
Γ ` ∆ @ N = ∆′ @T′. [N/x]s

A T = T′

Γ ` (∆,Πx::S@A.T) @ N = ∆′

Γ ` ∆ @ N = ∆′

Γ ` (∆,Q) @ N = ∆′

Finally, to tie everything together, we define a new checking judgement Γ `
N W S that makes use of the algorithmic synthesis judgement; it looks just like
Γ ` N ⇐ S except for the rule for atomic terms.

Γ ` RV ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ` RW Q

Γ, x::S@A ` N W T

Γ ` λx.NW Πx::S@A.T

Γ ` N W >

Γ ` N W S1 Γ ` N W S2

Γ ` N W S1 ∧ S2

13



This new algorithmic system is manifestly decidable.

Theorem 3.7. Algorithmic sort checking is decidable. In particular:

1. Given Γ and R, either ∃∆. Γ ` RV ∆ or @∆. Γ ` RV ∆.

2. Given Γ, N, and S, either Γ ` N W S or Γ 0 N W S.

3. Given Γ, ∆, and N, ∃∆′. Γ ` ∆ @ N = ∆′.

Proof. By lexicographic induction on the term R or N, the clause number, and
the sort S or the list of sorts ∆. For each applicable rule, the premises are
either known to be decidable, or at a smaller term, or if the same term, then an
earlier clause, or if the same clause, then either a smaller S or a smaller ∆. For
clause 3, we must use our inductive hypothesis to argue that the rules cover all
possibilities, and so a derivation always exists. �

Note that the algorithmic synthesis system sometimes outputs an empty ∆
even when the given term is ill-typed, since the Γ ` ∆ @ N = ∆′ judgement is
always defined.

It is straightforward to show that the algorithm is sound and complete with
respect to the original bidirectional system.

Lemma 3.8. If Γ ` R⇒ S, then for all S′ ∈ split(S), Γ ` R⇒ S′.

Proof. By induction on S, making use of the ∧-E1 and ∧-E2 rules. �

Theorem 3.9 (Soundness of Algorithmic Typing).

1. If Γ ` RV ∆, then for all S ∈ ∆, Γ ` R⇒ S.

2. If Γ ` N W S, then Γ ` N ⇐ S.

3. If Γ ` ∆ @ N = ∆′, and for all S ∈ ∆, Γ ` R ⇒ S, then for all S′ ∈ ∆′,
Γ ` R N⇒ S′.

Proof. By induction on the given derivation, using Lemma 3.8. �

For completeness, we use the notation ∆ ⊆ ∆′ to mean that ∆ is a sublist of
∆′.

Lemma 3.10. If Γ ` ∆ @ N = ∆′ and Γ ` R V ∆ and Πx::S@A.T ∈ ∆ and
Γ ` N W S and [N/x]s

A
T = T′, then split(T′) ⊆ ∆′.

Proof. By straightforward induction on the derivation of Γ ` ∆ @ N = ∆′. �

Theorem 3.11 (Completeness for Algorithmic Typing).

1. If Γ ` R⇒ S, then Γ ` RV ∆ and split(S) ⊆ ∆.

2. If Γ ` N ⇐ S, then Γ ` N W S.

14



Proof. By straightforward induction on the given derivation. In the application
case, we make use of the fact that Γ ` ∆ @ N = ∆′ is always defined and apply
Lemma 3.10. �

Soundness, completeness, and decidability of the algorithmic system gives
us a decision procedure for the judgement Γ ` N ⇐ S. First, decidability tells us
that either Γ ` N W S or Γ 0 N W S. Then soundness tells us that if Γ ` N W S
then Γ ` N ⇐ S, while completeness tells us that if Γ 0 N W S then Γ 0 N⇐ S.

Decidability theorems and proofs for other syntactic categories’ formation
judgements proceed similarly. When all is said and done, we have enough to
show that the problem of sort checking an LFR signature is decidable.

Theorem 3.12 (Decidability of Sort Checking). Sort checking is decidable. In
particular:

1. Given Γ, N, and S, either Γ ` N ⇐ S or Γ 0 N ⇐ S,

2. Given Γ, S, and A, either Γ ` S @ A or Γ 0 S @ A, and

3. Given Σ, either ` Σ sig or 0 Σ sig.

3.3 Identity and Substitution Principles

Since well-typed terms in our framework must be canonical, that is β-normal
and η-long, it is non-trivial to prove S → S for non-atomic S, or to compose
proofs of S1 → S2 and S2 → S3. The Identity and Substitution principles
ensure that our type theory makes logical sense by demonstrating the reflexivity
and transitivity of entailment. Reflexivity is witnessed by η-expansion, while
transitivity is witnessed by hereditary substitution.

The Identity Principle effectively says that synthesizing (atomic) objects
can be made to serve as checking (normal) objects. The Substitution Principle
dually says that checking objects may stand in for synthesizing assumptions,
that is, variables.

3.3.1 Substitution

The goal of this section is to give a careful proof of the following Substitution
Theorem.

Theorem (Substitution). Suppose ΓL ` N0 ⇐ S0 . Then:

1. If

• ` ΓL, x0::S0@A0, ΓR ctx , and

• ΓL, x0::S0@A0, ΓR ` S @ A , and

• ΓL, x0::S0@A0, ΓR ` N ⇐ S ,

then
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• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ` ΓL, Γ
′
R

ctx , and

• [N0/x0]s
A0

S = S′ and [N0/x0]a
A0

A = A′ and ΓL, Γ
′
R
` S′ @ A′ , and

• [N0/x0]n
A0

N = N′ and ΓL, Γ
′
R
` N′ ⇐ S′ ,

2. If

• ` ΓL, x0::S0@A0, ΓR ctx and

• ΓL, x0::S0@A0, ΓR ` R⇒ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ` ΓL, Γ
′
R

ctx , and [N0/x0]s
A0

S = S′ , and either

– [N0/x0]rr
A0

R = R′ and ΓL, Γ
′
R
` R′ ⇒ S′ , or

– [N0/x0]rn
A0

R = (N′, α′) and ΓL, Γ
′
R
` N′ ⇐ S′ ,

and similarly for other syntactic categories.

To prove the Substitution Theorem, we require a lemma about how substitu-
tions compose. The corresponding property for a non-hereditary substitution
says that [N0/x0] [N2/x2] N = [[N0/x0] N2/x2] [N0/x0] N. For hereditary substitu-
tions, the situation is analogous, but we must be clear about which substitution
instances we must assume to be defined and which we may conclude to be de-
fined: If the three “inner” substitutions are defined, then the two “outer” ones
are also defined, and equal. Note that the composition lemma is something like
a diamond property; the notation below is meant to suggest this connection.

Lemma 3.13 (Composition of Substitutions). Suppose [N0/x0]n
α0

N2 = N82 and
x2 < FV(N0). Then:

1. If [N0/x0]n
α0

N = N8 and [N2/x2]n
α2

N = N′, then for some N8′,
[N8

2
/x2]n

α2
N8 = N8′ and [N0/x0]n

α0
N′ = N8′ ,

2. If [N0/x0]rr
α0

R = R8 and [N2/x2]rr
α2

R = R′, then for some R8′,
[N82/x2]rr

α2
R8 = R8′ and [N0/x0]rr

α0
R′ = R8′ ,

3. If [N0/x0]rr
α0

R = R8 and [N2/x2]rn
α2

R = (N′, β), then for some N8′,
[N82/x2]rn

α2
R8 = (N8′, β) and [N0/x0]n

α0
N′ = N8′ ,

4. If [N0/x0]rn
α0

R = (N8, β) and [N2/x2]rr
α2

R = R′, then for some N8′,
[N8

2
/x2]n

α2
N8 = N8′ and [N0/x0]rn

α0
R′ = (N8′, β) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction on the unordered pair of α0 and α2,
and on the first substitution derivation in each clause. The cases for rule subst-
rn-β in clauses 3 and 4 appeal to the induction hypothesis at a smaller type using
Lemma 3.4. The case in clause 4 swaps the roles of α0 and α2, necessitating the
unordered induction metric. (The full proof may be found in Appendix B.1.) �
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We also require a simple lemma about substitution into subsorting deriva-
tions:

Lemma 3.14 (Substitution into Subsorting). If Q1 ≤ Q2 and [N0/x0]
q
α0

Q1 = Q′
1

and [N0/x0]
q
α0

Q2 = Q′
2
, then Q′

1
≤ Q′

2
.

Proof. Straightforward induction using Theorem 3.2 (Functionality of Substi-
tution), since the subsorting rules depend only on term equalities, and not on
well-formedness. �

Next, we must state the Substitution Theorem in a form general enough
to admit an inductive proof. Following previous work on canonical forms-
based LF [WCPW02, HL07], we strengthen its statement to one that does not
presuppose the well-formedness of the context or the classifying types, but
instead merely presupposes that hereditary substitution is defined on them.
We call this strengthened theorem “Proto-Substitution” and prove it in several
parts. In order to capture the convention that we only sort-check well-typed
terms, Proto-Substitution includes hypotheses about well-typedness of terms;
these hypotheses use an erasure Γ∗ that transforms an LFR context into an LF
context.

·∗ = · (Γ, x::S@A)∗ = Γ∗, x:A

The structure of the proof under this convention requires that we interleave
the proof of the core LF Proto-Substitution theorem. In order to highlight the
essential content of the theorem—the part that relates to refinements—we write
the core LF assumptions and conclusions in grey, and in the proof itself, we elide
reasoning related to these grey assumptions. (It is always either straightforward
bookkeeping or follows by analogy with the refinement-related reasoning.)

Theorem 3.15 (Proto-Substitution, terms).

1. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 , and

• ΓL, x0::S0@A0, ΓR ` N ⇐ S and Γ∗
L
, x0:A0, Γ

∗
R
` N ⇐ A , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• [N0/x0]s
A0

S = S8 and [N0/x0]a
A0

A = A8 ,

then

• [N0/x0]n
A0

N = N8 , and

• ΓL, Γ
8

R
` N8 ⇐ S8 and Γ∗

L
, (Γ8

R
)∗ ` N8 ⇐ A8 .

2. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 , and
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• ΓL, x0::S0@A0, ΓR ` R⇒ S and Γ∗
L
, x0:A0, Γ

∗
R
` R⇒ A , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 and [N0/x0]a
A0

A = A8 , and

• either

– [N0/x0]rr
A0

R = R8 and

– ΓL, Γ
8

R
` R8 ⇒ S8 and Γ∗

L
, (Γ8

R
)∗ ` R8 ⇒ A8,

or

– [N0/x0]rn
A0

R = (N8, (A8)−) and

– ΓL, Γ
8

R
` N8 ⇐ S8 and Γ∗

L
, (Γ8

R
)∗ ` N8 ⇐ A8 .

Note: We tacitly assume the implicit signature Σ is well-formed. We do
not tacitly assume that any of the contexts, sorts, or types are well-formed. We
do tacitly assume that contexts respect the usual variable conventions in that
bound variables are always fresh, both with respect to other variables bound in
the same context and with respect to other free variables in terms outside the
scope of the binding.

Proof (sketch). By lexicographic induction on (A0)− and the derivation D hy-
pothesizing x0::S0@A0.

The most involved case is that for application R1 N2. When head(R1) = x0

hereditary substitution carries out a β-reduction, and the proof invokes the
induction hypothesis at a smaller type but not a subderivation. This case also
requires Lemma 3.13 (Composition): since function sorts are dependent, the
typing rule for application carries out a substitution, and we need to compose
this substitution with the [N0/x0]s

α0
substitution.

In the case where we check a term at sort>, we require the grey assumptions
in order to invoke the core LF Proto-Substitution theorem.

(The full proof may be found in Appendix B.2.) �

Next, we can prove analogous Proto-Substitution theorems for sorts/types
and for classes/kinds.

Theorem 3.16 (Proto-Substitution, sorts and types).

1. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 ,

• ΓL, x0::S0@A0, ΓR ` S @ A and Γ∗
L
, x0:A0, Γ

∗
R
` A⇐ type , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 and [N0/x0]a
A0

A = A8 , and
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• ΓL, Γ
8

R
` S8 @ A8 , and Γ∗

L
, (Γ8

R
)∗ ` A8 ⇐ type .

2. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 ,

• ΓL, x0::S0@A0, ΓR ` Q @ P⇒ L and Γ ` P⇒ K , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]
q

A0
Q = Q8 and [N0/x0]

p

A0
P = P8 , and

• [N0/x0]l
A0

L = L8 and [N0/x0]k
A0

K = K8 , and

• ΓL, Γ
8

R
` Q8 @ P8 ⇒ L8 and Γ∗

L
, (Γ8

R
)∗ ` P8 ⇒ K8 .

Proof. By induction on the derivation hypothesizing x0::S0@A0, using Theo-
rem 3.15 (Proto-Substitution, terms). The reasoning is essentially the same as
the reasoning for Theorem 3.15. �

Theorem 3.17 (Proto-Substitution, classes and kinds).
If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 ,

• ΓL, x0::S0@A0, ΓR ` L @ K and Γ∗
L
, x0:A0, Γ

∗
R
` K⇐ kind , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]l
A0

L = L8 and [N0/x0]k
A0

K = K8 , and

• ΓL, Γ
8

R
` L8 @ K8 , and Γ∗

L
, (Γ8

R
)∗ ` K8 ⇐ kind .

Proof. By induction on the derivation hypothesizing x0::S0@A0, using Theo-
rem 3.16 (Proto-Substitution, sorts and types). �

Then, we can finish Proto-Substitution by proving a Proto-Substitution the-
orem for contexts.

Theorem 3.18 (Proto-Substitution, contexts).
If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 , and

• ` ΓL, x0::S0@A0 ctx and ` Γ∗
L
, x0:A0, Γ

∗
R

ctx ,

then

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• ` ΓL, Γ
8

R
ctx and ` Γ∗

L
, (Γ8

R
)∗ ctx .
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Proof. Straightforward induction on ΓR. �

Finally, we have enough obtain a proof of the desired Substitution theorem.

Theorem 3.19 (Substitution). Suppose ΓL ` N0 ⇐ S0 . Then:

1. If

• ` ΓL, x0::S0@A0, ΓR ctx , and

• ΓL, x0::S0@A0, ΓR ` S @ A , and

• ΓL, x0::S0@A0, ΓR ` N ⇐ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ` ΓL, Γ
′
R

ctx , and

• [N0/x0]s
A0

S = S′ and [N0/x0]a
A0

A = A′ and ΓL, Γ
′
R
` S′ @ A′ , and

• [N0/x0]n
A0

N = N′ and ΓL, Γ
′
R
` N′ ⇐ S′ ,

2. If

• ` ΓL, x0::S0@A0, ΓR ctx and

• ΓL, x0::S0@A0, ΓR ` R⇒ S ,

then

• [N0/x0]
γ

A0
ΓR = Γ

′
R

and ` ΓL, Γ
′
R

ctx , and [N0/x0]s
A0

S = S′ , and either

– [N0/x0]rr
A0

R = R′ and ΓL, Γ
′
R
` R′ ⇒ S′ , or

– [N0/x0]rn
A0

R = (N′, α′) and ΓL, Γ
′
R
` N′ ⇐ S′ ,

and similarly for other syntactic categories.

Proof. Straightforward corollary of Theorems 3.15, 3.16, 3.17, and 3.18 (Proto-
Substitution). �

Having proven Substitution, we henceforth tacitly assume that all subjects
of a judgement are sufficiently well-formed for the judgement to make sense.
In particular, we assume that all contexts are well-formed, and whenever we
assume Γ ` N ⇐ S, we assume that for some well-formed type A, we have
Γ ` S @ A and Γ ` N ⇐ A. These assumptions embody our refinement
restriction: we only sort-check a term if it is already well-typed and even then
only at sorts that refine its type.

Similarly, whenever we assume Γ ` S @ A, we tacitly assume that Γ ` A ⇐
type, and whetever we assume Γ ` L @ K, we tacitly assume that Γ ` K⇐ kind.
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3.3.2 Identity

Just as we needed a composition lemma to prove the Substitution theorem, in
order to prove the Identity theorem we need a lemma about how η-expansion
commutes with substitution.5

In stating this lemma, we require a judgement that predicts the simple type
output of “rn” substitution. This judgement just computes the simple type
as in “rn” substitution, but without computing anything having to do with
substitution. Since it resembles a sort of “approximate typing judgement”, we
write it x0:α0 ` R : α. As with “rn” substitution, it is only defined when the
head of R is x0.

x0:α0 ` x0 : α0

x0:α0 ` R : α→ β

x0:α0 ` R N : β

Lemma 3.20. If [N0/x0]rn
α0

R = (N′, α′) and x0:α0 ` R : α, then α′ = α.

Proof. Straightforward induction. �

Lemma 3.21 (Commutativity of Substitution and η-expansion). Substitution
commutes with η-expansion. In particular:

1. (a) If [ηα(x)/x]n
αN = N′, then N = N′ ,

(b) If [ηα(x)/x]rr
α R = R′, then R = R′ ,

(c) If [ηα(x)/x]rn
α R = (N, β), then ηβ(R) = N ,

2. If [N0/x0]n
α0
ηα(R) = N′, then

(a) if head(R) , x0, then [N0/x0]rr
α0

R = R′ and ηα(R′) = N′ ,

(b) if head(R) = x0 and x0:α0 ` R : α, then [N0/x0]rn
α0

R = (N′, α) ,

and similarly for other syntactic categories.

Proof (sketch). By lexicographic induction onαand the given substitution deriva-
tion. The proofs of clauses 1a, 1b, and 1c analyze the substitution derivation,
while the proofs of clauses 2a and 2b analyze the simple type α at which R is
η-expanded. (The full proof may be found in Appendix B.3.) �

Note: By considering the variable being substituted for to be a bound
variable subject to α-conversion6, we can see that our Commutativity theorem
is equivalent to an apparently more general one where the η-expanded variable
is not the same as the substituted-for variable. For example, in the case of clause
(1a), we would have that if [ηα(x)/y]n

αN = N′, then [x/y] N = N′. We will freely
make use of this fact in what follows when convenient.

5The categorically-minded reader might think of this as the right and left unit laws for ◦ while
thinking of the composition lemma above as the associativity of ◦, where ◦ in the category represents
substitution, as usual.

6In other words, by reading [N0/x0]n
α0

N = N′ as something like substn
α0

(N0, x0.N) = N′, where
x0 is bound in N.
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S1 ≤ S2

S ≤ S
(refl)

S1 ≤ S2 S2 ≤ S3

S1 ≤ S3

(trans)
S2 ≤ S1 T1 ≤ T2

Πx::S1.T1 ≤ Πx::S2.T2

(S-Π)

S ≤ >
(>-R)

T ≤ S1 T ≤ S2

T ≤ S1 ∧ S2

(∧-R)

S1 ≤ T

S1 ∧ S2 ≤ T
(∧-L1)

S2 ≤ T

S1 ∧ S2 ≤ T
(∧-L2)

> ≤ Πx::S.>
(>/Π-dist)

(Πx::S.T1) ∧ (Πx::S.T2) ≤ Πx::S. (T1 ∧ T2)
(∧/Π-dist)

Figure 1: Derived rules for subsorting at higher sorts.

Theorem 3.22 (Expansion). If Γ ` S @ A and Γ ` R⇒ S, then Γ ` ηA(R)⇐ S.

Proof (sketch). By induction on S. TheΠx::S1@A1. S2 case relies on Theorem 3.19
(Substitution) to show that [ηA1 (x)/x]s

A1
S2 is defined and on Lemma 3.21 (Com-

mutativity) to show that it is equal to S2. (The full proof may be found in
Appendix B.4.) �

Theorem 3.23 (Identity). If Γ ` S @ A, then Γ, x::S@A ` ηA(x)⇐ S.

Proof. Corollary of Theorem 3.22 (Expansion). �

4 Subsorting at Higher Sorts

Our bidirectional typing discipline limits subsorting checks to a single rule,
the switch rule when we switch modes from checking to synthesis. Since we
insist on typing only canonical forms, this rule is limited to checking at atomic
sorts Q, and consequently, subsorting need only be defined on atomic sorts.
These observations naturally lead one to ask, what is the status of higher-sort
subsorting in LFR? How do our intuitions about things like structural rules,
variance, and distributivity—in particular, the rules shown in Fig. 1—fit into
the LFR picture?

It turns out that despite not explicitly including subsorting at higher sorts,
LFR implicitly includes an intrinsic notion of higher-sort subsorting through the
η-expansion associated with canonical forms. The simplest way of formulating

22



this intrinsic notion is as a variant of the identity principle: S is taken to be a
subsort of T if Γ, x::S@A ` ηA(x)⇐ T. This notion is equivalent to a number of
other alternate formulations, including a subsumption-based formulation and
a substitution-based formulation.

Theorem 4.1 (Alternate Formulations of Subsorting). Suppose that for some Γ0,
Γ0 ` S1 @ A and Γ0 ` S2 @ A, and define:

1. S1 ≤1 S2
def
= for all Γ and R: if Γ ` R⇒ S1, then Γ ` ηA(R)⇐ S2.

2. S1 ≤2 S2
def
= for all Γ: Γ, x::S1@A ` ηA(x)⇐ S2.

3. S1 ≤3 S2
def
= for all Γ and N: if Γ ` N ⇐ S1, then Γ ` N⇐ S2.

4. S1 ≤4 S2
def
= for all ΓL, ΓR, N, and S: if ΓL, x::S2@A, ΓR ` N ⇐ S then

ΓL, x::S1@A, ΓR ` N ⇐ S

5. S1 ≤5 S2
def
= for all ΓL, ΓR, N, S, and N1: if ΓL, x::S2@A, ΓR ` N ⇐ S and

ΓL ` N1 ⇐ S1, then ΓL, [N1/x]
γ

A
ΓR ` [N1/x]n

A
N ⇐ [N1/x]s

A
S.

Then, S1 ≤1 S2 ⇐⇒ S1 ≤2 S2 ⇐⇒ · · · ⇐⇒ S1 ≤5 S2.

Proof. Using the Identity and Substitution principles along with Lemma 3.21,
the Commutativity of Substitution with η-expansion.

1 =⇒ 2: By rule, Γ, x::S1@A ` x⇒ S1. By 1, Γ, x::S1@A ` ηA(x)⇐ S2.

2 =⇒ 3: Suppose Γ ` N ⇐ S1. By 2, Γ, x::S1@A ` ηA(x)⇐ S2. By Theorem 3.19
(Substitution), Γ ` [N/x]n

A
ηA(x) ⇐ S2. By Lemma 3.21 (Commutativity),

Γ ` N ⇐ S2.

3 =⇒ 4: Suppose ΓL, x::S2@A, ΓR ` N ⇐ S. By weakening, ΓL, y::S1@A,
x::S2@A, ΓR ` N ⇐ S. By Theorem 3.23 (Identity), ΓL, y::S1@A ` ηA(y) ⇐
S1. By 3, ΓL, y::S1@A ` ηA(y) ⇐ S2. By Theorem 3.19 (Substitution),
ΓL, y::S1@A, [ηA(y)/x]

γ

A
ΓR ` [ηA(y)/x]n

A
N ⇐ [ηA(y)/x]s

A
S. By Lemma 3.21

(Commutativity) and α-conversion, ΓL, x::S1@A, ΓR ` N ⇐ S.

4 =⇒ 5: Suppose ΓL, x::S2@A, ΓR ` N ⇐ S and ΓL ` N1 ⇐ S1. By 4,
ΓL, x::S1@A, ΓR ` N ⇐ S. By Theorem 3.19 (Substitution), ΓL, [N1/x]

γ

A
ΓR `

[N1/x]n
A

N ⇐ [N1/x]s
A

S.

5 =⇒ 1: Suppose Γ ` R ⇒ S1. By Theorem 3.22 (Expansion), Γ ` ηA(R) ⇐
S1. By Theorem 3.23 (Identity), Γ, x::S2@A ` ηA(x) ⇐ S2. By 5, Γ `
[ηA(R)/x]n

A
ηA(x) ⇐ S2. By Lemma 3.21 (Commutativity), Γ ` ηA(R) ⇐

S2. �

If we take “subsorting as η-expansion” to be our model of subsorting, we
can show the “usual” presentation in Fig. 1 to be both sound and complete
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with respect to this model. In other words, subsorting as η-expansion really
is subsorting (soundness), and it is no more than subsorting (completeness).
Alternatively, we can say that completeness demonstrates that there are no
subsorting rules missing from the usual declarative presentation: Fig. 1 ac-
counts for everything covered intrinsically by η-expansion. By the end of this
section, we will have shown the following theorems:

Theorem (Soundness of Declarative Subsorting). If S ≤ T, then Γ, x::S@A `
ηA(x)⇐ T.

Theorem (Completeness of Declarative Subsorting). If Γ, x::S@A ` ηA(x)⇐ T,
then S ≤ T.

Soundness is a straightforward inductive argument.

Theorem 4.2 (Soundness of Declarative Subsorting). If S ≤ T, then Γ, x::S@A `
ηA(x)⇐ T.

Proof. By induction, making use of the alternate formulations given by Theo-
rem 4.1. �

The proof of completeness is considerably more intricate. We demonstrate
completeness via a detour through an algorithmic subsorting system very sim-
ilar to the algorithmic typing system from Section 3.2, with judgements ∆ 5 S
and ∆ @ x::∆1@A1 = ∆2. To show completeness, we show that intrinsic sub-
sorting implies algorithmic subsorting and that algorithmic subsorting implies
declarative subsorting; the composition of these theorems is our desired com-
pleteness result.

Theorem (Intrinsic⇒Algorithmic). If Γ, x::S@A ` ηA(x)⇐ T, then split(S) 5 T.

Theorem (Algorithmic⇒ Declarative). If split(S) 5 T, then S ≤ T.

The following schematic representation of soundness and completeness
may help the reader to understand the key theorems.

“declarative”
S ≤ T

soundness
-

“intrinsic”
Γ, x::S@A ` ηA(x)⇐ T

completeness

“algorithmic”
split(S) 5 T

�

�

As mentioned above, the algorithmic subsorting system system is charac-
terized by two judgements: ∆ 5 S and ∆ @ x::∆1@A1 = ∆2 ; rules defining them
are shown in Figure 2. As in Section 3.2, ∆ represents an intersection-free list
of sorts. The interpretation of the judgement ∆ 5 S, made precise below, is
roughly that the intersection of all the sorts in ∆ is a subsort of the sort S.
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∆ 5 S

∆ 5 >

∆ 5 S1 ∆ 5 S2

∆ 5 S1 ∧ S2

Q′ ∈ ∆ Q′ ≤ Q

∆ 5 Q

∆ @ x::split(S1)@A1 = ∆2 ∆2 5 S2

∆ 5 Πx::S1@A1. S2

∆ @ x::∆1@A1 = ∆2

· @ x::∆1@A1 = ·

∆ @ x::∆1@A1 = ∆2 ∆1 5 S1 [ηA1 (x)/y]n
A1

S2 = S′2

(∆,Πy::S1@A1. S2) @ x::∆1@A1 = ∆2, split(S′2)

∆ @ x::∆1@A1 = ∆2 ∆1 65 S1

(∆,Πy::S1@A1. S2) @ x::∆1@A1 = ∆2

∆ @ x::∆1@A1 = ∆2 @S′2. [ηA1(x)/y]s
A1

S2 = S′2

(∆,Πy::S1@A1. S2) @ x::∆1@A1 = ∆2

∆ @ x::∆1@A1 = ∆2

(∆,Q) @ x::∆1@A1 = ∆2

Figure 2: Algorithmic subsorting.
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S1 ≤ T1 S2 ≤ T2

S1 ∧ S2 ≤ T1 ∧ T2

(S-∧)
S1 ∧ (S2 ∧ S3) ≤ (S1 ∧ S2) ∧ S3

(∧-assoc)

S ≤ Πx::T1.T2 T1 ≤ S1

S ∧ Πx::S1. S2 ≤ Πx::T1. (T2 ∧ S2)
(∧/Π-dist′)

Figure 3: Useful rules derivable from those in Figure 1.

The rule for checking whether ∆ is a subsort of a function type makes use
of the application judgement ∆ @ x::∆1@A1 = ∆2 to extract all of the applicable
function codomains from the list ∆. As in Section 3.2, care is taken to ensure
that this latter judgement is defined even in seemingly “impossible” scenarios
that well-formedness preconditions would rule out, like ∆ containing atomic
sorts or hereditary substitution being undefined.

Our first task is to demonstrate that the algorithm has the interpretation
alluded to above. To that end, we define an operator

∧

(−) that transforms a
list ∆ into a sort S by “folding” ∧ over ∆with unit >.

∧

(·) = >
∧

(∆, S) =
∧

(∆) ∧ S

Now our goal is to demonstrate that if the algorithm says ∆ 5 S, then declara-
tively

∧

(∆) ≤ S. First, we prove some useful properties of the
∧

(−) operator.

Lemma 4.3.
∧

(∆1) ∧
∧

(∆2) ≤
∧

(∆1,∆2)

Proof. Straightforward induction on ∆2. �

Lemma 4.4. S ≤
∧

(split(S)).

Proof. Straightforward induction on S. �

Lemma 4.5. If Q′ ∈ ∆ and Q′ ≤ Q, then
∧

(∆) ≤ Q.

Proof. Straightforward induction on ∆. �

Theorem 4.6 (Generalized Algorithmic⇒ Declarative).

1. If D :: ∆ 5 T, then
∧

(∆) ≤ T.

2. If D :: ∆ @ x::∆1@A1 = ∆2, then
∧

(∆) ≤ Πx::
∧

(∆1)@A1.
∧

(∆2).

Proof (sketch). By induction onD, using Lemmas 4.3, 4.4, and 4.5. The derivable
rules from Figure 3 come in handy in the proof of clause 2. (The full proof may
be found in Appendix B.5.) �

Theorem 4.6 is sufficient to prove that algorithmic subsorting implies declar-
ative subsorting.

26



Theorem 4.7 (Algorithmic⇒ Declarative). If split(S) 5 T, then S ≤ T.

Proof. Suppose split(S) 5 T. Then,
∧

(split(S)) ≤ T By Theorem 4.6.
S ≤
∧

(split(S)) By Lemma 4.4.
S ≤ T By rule trans.

�

Now it remains only to show that intrinsic subsorting implies algorithmic.
To do so, we require some lemmas. First, we extend our notion of a sort S
refining a type A to an entire list of sorts ∆ refining a type A in the obvious way.

Γ ` · @ A

Γ ` ∆ @ A Γ ` S @ A

Γ ` (∆, S) @ A

This new notion has the following important properties.

Lemma 4.8. If Γ ` ∆1 @ A and Γ ` ∆2 @ A, then Γ ` ∆1,∆2 @ A.

Proof. Straightforward induction on ∆2. �

Lemma 4.9. If Γ ` S @ A, then Γ ` split(S) @ A.

Proof. Straightforward induction on S. �

Lemma 4.10. If D :: Γ ` ∆ @ Πx:A1.A2 and E :: Γ ` ∆ @ N = ∆2 and [N/x]a
A1

A2 =

A′2, then Γ ` ∆2 @ A′2.

Proof (sketch). By induction onE, using Theorem 3.9 (Soundness of Algorithmic
Typing) to appeal to Theorem 3.19 (Substitution), along with Lemmas 4.8 and
4.9. (The full proof may be found in Appendix B.6.) �

We will also require an analogue of subsumption for our algorithmic typing
system, which relies on two lemmas about lists of sorts.

Lemma 4.11. If Γ ` ∆ @ A, then for all S ∈ ∆, Γ ` S @ A.

Proof. Straightforward induction on ∆. �

Lemma 4.12. If for all S ∈ ∆, Γ ` N⇐ S, then Γ ` N ⇐
∧

(∆).

Proof. Straightforward induction on ∆. �

Theorem 4.13 (Algorithmic Subsumption). If Γ ` R V ∆ and Γ ` ∆ @ A and
∆ 5 S, then Γ ` ηA(R)W S.

Proof. Straightforward deduction, using soundness and completeness of algo-
rithmic typing.
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∀S′ ∈ ∆. Γ ` R⇒ S′ By Theorem 3.9 (Soundness of Alg. Typing).
∀S′ ∈ ∆. Γ ` S′ @ A By Lemma 4.11.
∀S′ ∈ ∆. Γ ` ηA(R)⇐ S′ By Theorem 3.22 (Expansion).
Γ ` ηA(R)⇐

∧

(∆) By Lemma 4.12.

∆ 5 S By assumption.
∧

(∆) ≤ S By Theorem 4.6 (Generalized Alg. ⇒ Decl.).

Γ ` ηA(R)⇐ S By Theorem 4.2 (Soundness of Decl. Subsorting) and
Theorem 4.1 (Alternate Formulations of Subsorting).

Γ ` ηA(R)W S By Theorem 3.11 (Completeness of Alg. Typing).
�

Now we can prove the following main theorem, which generalizes our
desired “Intrinsic⇒ Algorithmic” theorem:

Theorem 4.14 (Generalized Intrinsic⇒ Algorithmic).

1. If Γ ` R V ∆ and E :: Γ ` ηA(R) W S and Γ ` ∆ @ A and Γ ` S @ A, then
∆ 5 S.

2. If Γ ` x V ∆1 and E :: Γ ` ∆ @ ηA1 (x) = ∆2 and Γ ` ∆1 @ A1 and
Γ ` ∆ @ Πx:A1.A2, then ∆ @ x::∆1@A1 = ∆2.

Proof (sketch). By induction on A, S, and E.
Clause 1 is most easily proved by case analyzing the sort S and applying

inversion to the derivation E. The case when S = Πx::S1@A1. S2 appeals to
the induction hypothesis at an unrelated derivation but at a smaller type, and
Lemmas 4.8 and 4.9 are used to satisfy the preconditions of the induction
hypotheses.

Clause 2 is most easily proved by case analyzing the derivation E. In one
case, we require the contrapositive of Theorem 4.13 (Algorithmic Subsumption)
to convert a derivation of Γ 0 ηA1 (x)W S1 into a derivation of ∆1 65 S1.

(The full proof may be found in Appendix B.7.) �

Theorem 4.14 along with Theorem 3.11, the Completeness of Algorithmic
Typing, gives us our desired result:

Theorem 4.15 (Intrinsic ⇒ Algorithmic). If Γ, x::S@A ` ηA(x) ⇐ T, then
split(S) 5 T.

Proof. Suppose Γ, x::S@A ` ηA(x)⇐ T. Then,

Γ, x::S@A ` xV split(S) By rule.
Γ, x::S@A ` ηA(x)W T By Theorem 3.11 (Completeness of Alg. Typing).
split(S) 5 T By Theorem 4.14.

�

Finally, we have Completeness as a simple corollary:
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Theorem 4.16 (Completeness of Declarative Subsorting). If Γ, x::S@A ` ηA(x)⇐
T, then S ≤ T.

Proof. Corollary of Theorems 4.15 and 4.7. �

5 Related Work

The works most closely related to ours extend various LF-like dependent type
theories with subtyping or intersection types, and we treat these first.

Pfenning described in an unrefereed workshop paper a proposed extension
of LF with refinement types [Pfe93]. The present work can be seen as a recon-
struction, reformulation, and extension of his ideas, with a focus on canonical
forms, decidability, and good proof-theoretic properties.

Aspinall and Compagnoni [AC01] studied a type theory λP≤ with both
dependent types and subtyping, but they treated subtyping directly rather
than introducing a refinement layer. Their chief difficulty was breaking the
cycle that arises between subtyping, kinding, and typing in order to show
decidability, which they did by splitting ordinary β-reduction into two levels,
one that reduces terms and one that reduces types. In our setting, the restriction
of attention to canonical forms obviates the need to consider β-reduction and
its properties (e.g. subject reduction, Church-Rosser, etc.) at the cost of a more
involved Substitution theorem, an arguably simpler development.

Aspinall [Asp00] also studied an unconventional system of subtyping with
dependent types using “power types”, a type-level analogue of power sets. As-
pinall’s system λPower has uniform “subtyping” at all levels since power “types”
can in fact classify type families; although the system remains predicative, this
generalization complicates the system’s metatheory. Aspinall’s use of a “rough
typing” judgement in formulating the metatheory of λPower is somewhat re-
lated to our use of simple types in the metatheory of hereditary substitution
and η-expansion.

Both Aspinall and Compagnoni’sλP≤ and Aspinall’sλPower are more general
than LFR in a certain sense, since they allow subtyping declarations between
atomic families whose arities and indices might be different. So far in the
development of LFR, no examples have wanted for such declarations. The
primary shortcoming of both λP≤ and λPower is their lack of intersection types,
which are essential for even the simplest of our examples.

Kopylov [Kop03] studied a dependent intersection
∧

x::A.B, a generaliza-
tion of ordinary intersection A ∧ B where the second type may depend on
the element that has both types.7 His motivation was finding a simple way
to define dependent records in NuPRL in terms of only single-field records
(following Reynolds’s trick in the design of Forsythe [Rey96]). It is tempting
to consider a dependent intersection sort

∧

x::S@A.T generalizing our S ∧ T,
but it turns out not to fit in the refinement framework: the sorts S and T must

7Kopylov wrote x:A ∩ B and A ∩ B.
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both refine the same type A, but this precludes T from depending on x; in other
words, a dependent intersection would always be degenerate.

There is also a great deal of work that is only tangentially related, which we
describe below in order to place the current work in its historical context.

Regular tree types and order-sorted logics for logic programming Types
naturally arise in logic programming and automated theorem proving as a
way to curtail meaningless search. For example, given a clause ∀n. nat(n) →
· · · → prime(n), one may end up searching for a proof of nat(Peter) → · · · →
prime(Peter) after instantiating n; even though this search will never succeed,
since it is not the case that nat(Peter), it would be better to avoid such mean-
ingless search in the first place. This observation leads to the introduction of
order-sorted logics, from which we borrow the term “sort”. The clause above
might be rewritten as ∀n : nat. · · · → prime(n), capturing the appropriate con-
straint statically.

One class of types that has proved particularly profitable is the regular tree
types [DZ92] (see [YFS92] for example), so-called due to their connection with
regular tree grammars. A key property that makes the regular tree types useful
is the existence of computable intersections, and this property eventually led to
the introduction of intersections in the context of refinement type systems for
functional languages, described below.

Among order-sorted logics are systems with “term declarations” [SS89].
Term declarations have the form ∀x1::S1 . . .∀xn::Sn.M : S, meaning that in any
context extending x1::S1, . . . , xn::Sn the term M can be judged to have sort S. For
instance, one might declare

∀x::even. succ x :: odd.

∀x::odd. succ x :: even.

to achieve roughly the same effect as our succ :: even→ odd ∧ odd→ even. One
problem with such systems is that they fail to give first-class status to the notion
that a term can have multiple sorts, like our intersection sorts do. Furthermore,
the typechecking problem for systems with term declarations is tricky at best,
since it requires the use of higher-order matching, a problem whose status was
until recently open and for which no practical implementation currently exists.

Intersection types Intersection types were originally introduced by Coppo et
al. [CDCV81] to describe a type theory in which types are preserved not only
by reduction but also by convertibility, i.e. in which subject expansion holds in
addition to subject reduction. Since β-conversion preserves types, they were
able to precisely characterize the class of normalizing terms as those that have
a non-trivial (essentially, non->) type.

Later, Reynolds used intersection types to simplify the design of the pro-
gramming language Forsythe [Rey96], e.g. by representing n-ary records as
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n-ary intersections of single-field records. Although Reynolds’s setting of im-
perative programming was vastly different from our world of logical frame-
works, many of his core motivations were similar to ours: namely, intersections
can be used to capture multiple properties of individual terms. Furthermore,
despite his working under assumptions and constraints quite different from
ours, one can see shades of many of his ideas reflected in our development.

Refinement types for functional languages The utility of regular tree types
in logic programming led Freeman to investigate them for functional lan-
guages [Fre94]. Freeman studied a system of refinement types for a fragment
of ML based on ideas relating to regular trees, but intersection types were also
a crucial addition for many of his examples. His focus was on maintaining
decidable inference with minimal declarations, but ultimately the theory fell
prey to algorithmic efficiency issues.

Later, Davies sought to tame the complexities and make refinement types
practical for Standard ML [Dav05]. Davies’s key decision was to abandon
pure inference of unannotated programs in favor of a bidirectional type system
and minimally annotated programs. The focus then was on minimizing the
annotation burden, a task somewhat alleviated by the apparent positive ben-
efits of annotations during program construction and their interpretation as
machine-checked documentation. Along the way, Davies discovered a curious
interaction of intersection types with effects quite similar to the interaction of
polymorphism with effects; the solution was to impose a value restriction similar
to the one familiar from ML-style let-polymorphism [DP00]. Additionally, the
system had to be weakened by the removal of the ∧/→ distributivity subtyping
rule, which could allow users to circumvent the value restriction.

Dunfield unified Davies work with a form of dependent typing inspired by
Xi’s Dependent ML [XP99], and extended the resulting system with the “indefi-
nite” union and existential types [Dun07]. Dunfield abandoned the refinement
restriction, studying a type system with arbitrary intersections and unions di-
rectly at the type level, but he maintained a bidirectional typing discipline. To
properly account for the indefinite property types, he extended bidirectional
checking with an evaluation order-directed “tridirectional rule” [DP04].

All of this work was in the context of functional programming, and thus
quite different from our work in logical frameworks. Obviously, since LF has
no side effects—indeed no reduction at all!—we have no need of Davies’s
value restriction, and since we treat only negative types, we have no need of
Dunfield’s tridirectional rule. But there are still some similarities that help
guide the present work, such as Freeman’s and Davies’s refinement restriction
and Davies’s and Dunfield’s bidirectional typing.

Subtler differences arise from different assumptions about the world at
typechecking time. The work on functional languages is all concerned with
typing closed terms, and datatypes embody a closed-world assumption, both
of which can be leveraged to reason about things like the emptiness of the
intersection even ∧ odd. In our setting, though, we have an inherently open-
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ended signature and we work under non-empty contexts: it is impossible to
show that even ∧ odd is empty because one might always have an assumption
of type even ∧ odd.8 However, it is exactly this open-endedness, coupled with
LF’s very weak, purely representational function space, that allows us to show
such strong theorems as the soundness and completeness of subtyping via η-
expansion, a theorem one would not expect to hold generally in the presence
of a large, computational function space.

6 Summary

In summary, we have exhibited a variant of the logical framework LF with a
notion of subtyping based on refinement types. We have demonstrated the
expressive power of this extension through a number of realistic examples, and
we have shown several metatheoretic properties critical to its utility as a logical
framework, including decidability of typechecking.

Our development was drastically simplified by the decision to admit only
canonical forms. One effect of this choice was that subsorting was only required
to be judgementally defined at base sorts; higher-sort subsorting was derived
through an η-expansion-based definition with respect to which we showed the
usual structural subsorting rules both sound and complete.

There are a number of avenues of future exploration. For one, it is unclear
how subsorting and intersection sorts will interact with the typical features
of a metalogical framework, including type reconstruction, unification, and
proof search, to name a few; these questions will have to be answered before
refinement types can be integrated into a practical implementation. It is also
worthwhile to consider adapting the refinement system to more expressive
frameworks, like the Linear Logical Framework or the Concurrent Logical
Framework.

References

[AC01] David Aspinall and Adriana B. Compagnoni. Subtyping depen-
dent types. Theoretical Computer Science, 266(1-2):273–309, 2001.

[Asp00] David Aspinall. Subtyping with power types. In Peter Clote and
Helmut Schwichtenberg, editors, CSL, volume 1862 of Lecture Notes
in Computer Science, pages 156–171. Springer, 2000.

[CDCV81] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional
characters of solvable terms. Zeitschrift für mathematische Logik und
Grundlagen der Mathematik, 27(2-6):45–58, 1981.

8One might imagine extending LFR with declarations of the form even ∧ odd ≤ empty to allow
the user to capture this property explicitly. As currently specified, LFR does not give the user the
ability to define any arbitrary subtyping lattice since it excludes such declarations.

32



[Cra03] Karl Crary. Toward a foundational typed assembly language. In
G. Morrisett, editor, Proceedings of the 30th Annual Symposium on
Principles of Programming Languages (POPL ’03), pages 198–212,
New Orleans, Louisiana, January 2003. ACM Press.

[Dav05] Rowan Davies. Practical Refinement-Type Checking. PhD thesis,
Carnegie Mellon University, May 2005. Available as Technical
Report CMU-CS-05-110.

[DP00] Rowan Davies and Frank Pfenning. Intersection types and com-
putational effects. In P. Wadler, editor, Proceedings of the Fifth In-
ternational Conference on Functional Programming (ICFP’00), pages
198–208, Montreal, Canada, September 2000. ACM Press.

[DP04] Joshua Dunfield and Frank Pfenning. Tridirectional typecheck-
ing. In Xavier Leroy, editor, ACM Symp. Principles of Programming
Languages (POPL ’04), pages 281–292, Venice, Italy, January 2004.

[Dun07] Joshua Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, August 2007. Available as Technical
Report CMU-CS-07-129.

[DZ92] Philip W. Dart and Justin Zobel. A regular type language for logic
programs. In Pfenning [Pfe92], pages 157–187.

[Fre94] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon
University, March 1994. Available as Technical Report CMU-CS-
94-110.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework
for defining logics. Journal of the Association for Computing Machin-
ery, 40(1):143–184, January 1993.

[HL07] Robert Harper and Daniel R. Licata. Mechanizing metatheory in a
logical framework. Journal of Functional Programming, 17(4–5):613–
673, July 2007.

[HP05] Robert Harper and Frank Pfenning. On equivalence and canonical
forms in the LF type theory. Transactions on Computational Logic,
6:61–101, January 2005.

[Kop03] Alexei Kopylov. Dependent intersection: A new way of defining
records in type theory. In Proceedings of the 18th Annual IEEE Sym-
posium on Logic in Computer Science (LICS ’03), pages 86–95. IEEE
Computer Society, 2003.

[LCH07] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mech-
anized metatheory of Standard ML. In Matthias Felleisen, editor,
Proceedings of the 34th Annual Symposium on Principles of Program-
ming Languages (POPL ’07), pages 173–184, Nice, France, January
2007. ACM Press.

33



[LP08] William Lovas and Frank Pfenning. A bidirectional refinement
type system for LF. Electronic Notes in Theoretical Computer Science,
196:113–128, January 2008.

[NPP07] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Con-
textual modal type theory. Transactions on Computational Logic, 2007.
To appear.

[Pfe92] Frank Pfenning, editor. Types in Logic Programming. MIT Press,
Cambridge, Massachusetts, 1992.

[Pfe93] Frank Pfenning. Refinement types for logical frameworks. In Her-
man Geuvers, editor, Informal Proceedings of the Workshop on Types
for Proofs and Programs, pages 285–299, Nijmegen, The Netherlands,
May 1993.

[Pfe01] Frank Pfenning. Logical frameworks. In Alan Robinson and An-
drei Voronkov, editors, Handbook of Automated Reasoning, chap-
ter 17, pages 1063–1147. Elsevier Science and MIT Press, 2001.

[PS99] Frank Pfenning and Carsten Schürmann. System description:
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A Complete Rules

In the judgement forms below, superscript + and − indicate a judgement’s
“inputs” and “outputs”, respectively.

A.1 Grammar

Kind level

K ::= type | Πx:A.K kinds

L ::= sort | Πx::S@A. L | > | L1 ∧ L2 classes

Type level

P ::= a | P N atomic type families

A ::= P | Πx:A1.A2 canonical type families

Q ::= s | Q N atomic sort families

S ::= Q | Πx::S1@A1. S2 | > | S1 ∧ S2 canonical sort families

Term level

R ::= c | x | R N atomic terms

N ::= R | λx.N canonical terms

Signatures and contexts

Σ ::= · | Σ,D signatures

D ::= a:K | c:A | s@a::L | s1≤s2 | c::S declarations

Γ ::= · | Γ, x::S@A contexts

A.2 Expansion and Substitution

All bound variables are tacitly assumed to be sufficiently fresh.

(A)− = α

α, β ::= a | α1 → α2

(a)− = a

(P N)− = (P)−

(Πx:A.B)− = (A)− → (B)−
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ηα(R) = N

ηa(R) = R

ηα→β(R) = λx. ηβ(R ηα(x))

[N0/x0]n
α0

N = N′

[N0/x0]rn
α0

R = (N, a)

[N0/x0]n
α0

R = N

[N0/x0]rr
α0

R = R′

[N0/x0]n
α0

R = R′
[N0/x0]n

α0
N = N′

[N0/x0]n
α0
λx.N = λx.N′

[N0/x0]rr
α0

R = R′

x , x0

[N0/x0]rr
α0

x = x [N0/x0]rr
α0

c = c

[N0/x0]rr
α0

R1 = R′1 [N0/x0]n
α0

N2 = N′2

[N0/x0]rr
α0

R1 N2 = R′1 N′2

[N0/x0]rn
α0

R = (N′, α′)

[N0/x0]rn
α0

x0 = (N0, α0)
(subst-rn-var)

[N0/x0]rn
α0

R1 = (λx.N1, α2 → α1)
[N0/x0]n

α0
N2 = N′2 [N′2/x]n

α2
N1 = N′1

[N0/x0]rn
α0

R1 N2 = (N′1, α1)
(subst-rn-β)

(Substitution for other syntactic categories (q, p, s, a, l, k, γ) is compositional.)

A.3 Kinding

Γ `Σ L+ @ K+

Γ ` sort @ type

Γ ` S @ A Γ, x::S@A ` L @ K

Γ ` Πx::S@A. L @ Πx:A.K

Γ ` > @ K

Γ ` L1 @ K Γ ` L2 @ K

Γ ` L1 ∧ L2 @ K
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Γ `Σ Q+ @ P− ⇒ L−

s@a::L ∈ Σ

Γ ` s @ a⇒ L

Γ ` Q @ P⇒ Πx::S@A. L Γ ` N ⇐ S [N/x]l
A L = L′

Γ ` Q N @ P N⇒ L′

Γ ` Q @ P⇒ L1 ∧ L2

Γ ` Q @ P⇒ L1

Γ ` Q @ P⇒ L1 ∧ L2

Γ ` Q @ P⇒ L2

Γ `Σ S+ @ A+

Γ ` Q @ P′ ⇒ L P′ = P L = sort

Γ ` Q @ P

Γ ` S @ A Γ, x::S@A ` S′ @ A′

Γ ` Πx::S@A. S′ @ Πx:A.A′

Γ ` > @ A

Γ ` S1 @ A Γ ` S2 @ A

Γ ` S1 ∧ S2 @ A

Note: no intro rules for classes > and L1 ∧ L2.

A.4 Typing

Γ `Σ R+ ⇒ S−

c::S ∈ Σ

Γ ` c⇒ S
(const)

x::S@A ∈ Γ

Γ ` x⇒ S
(var)

Γ ` R1 ⇒ Πx::S2@A2. S Γ ` N2 ⇐ S2 [N2/x]s
A2

S = S′

Γ ` R1 N2 ⇒ S′
(Π-E)

Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S1

(∧-E1)
Γ ` R⇒ S1 ∧ S2

Γ ` R⇒ S2

(∧-E2)

Γ `Σ N+ ⇐ S+

Γ ` R⇒ Q′ Q′ ≤ Q

Γ ` R⇐ Q
(switch)

Γ, x::S@A ` N⇐ S′

Γ ` λx.N⇐ Πx::S@A. S′
(Π-I)

Γ ` N ⇐ >
(>-I)

Γ ` N ⇐ S1 Γ ` N⇐ S2

Γ ` N ⇐ S1 ∧ S2

(∧-I)

37



Q+
1
≤ Q+2

Q1 = Q2

Q1 ≤ Q2

Q1 ≤ Q′ Q′ ≤ Q2

Q1 ≤ Q2

s1≤s2 ∈ Σ

s1 ≤ s2

Q1 ≤ Q2

Q1 N ≤ Q2 N

A.5 Signatures and Contexts

` Σ sig

` · sig

` Σ sig · `Σ∗ K⇐ kind a:K′ < Σ

` Σ, a:K sig

` Σ sig · `Σ∗ A⇐ type c:A′ < Σ

` Σ, c:A sig

` Σ sig a:K ∈ Σ · `Σ L @ K s@a′::L′ < Σ

` Σ, s@a::L sig

` Σ sig c:A ∈ Σ · `Σ S @ A c::S′ < Σ

` Σ, c::S sig

` Σ sig s1@a::L ∈ Σ s2@a::L ∈ Σ

` Σ, s1≤s2 sig

`Σ Γ ctx

` · ctx

` Γ ctx Γ ` S @ A

` Γ, x::S@A ctx
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B Full Proofs

B.1 Lemma 3.13 (Composition of Substitutions)

Lemma 3.13 (Composition of Substitutions). Suppose [N0/x0]n
α0

N2 = N8
2

and
x2 < FV(N0). Then:

1. If [N0/x0]n
α0

N = N8 and [N2/x2]n
α2

N = N′, then for some N8′,
[N8

2
/x2]n

α2
N8 = N8′ and [N0/x0]n

α0
N′ = N8′ ,

2. If [N0/x0]rr
α0

R = R8 and [N2/x2]rr
α2

R = R′, then for some R8′,
[N8

2
/x2]rr

α2
R8 = R8′ and [N0/x0]rr

α0
R′ = R8′ ,

3. If [N0/x0]rr
α0

R = R8 and [N2/x2]rn
α2

R = (N′, β), then for some N8′,
[N8

2
/x2]rn

α2
R8 = (N8′, β) and [N0/x0]n

α0
N′ = N8′ ,

4. If [N0/x0]rn
α0

R = (N8, β) and [N2/x2]rr
α2

R = R′, then for some N8′,
[N82/x2]n

α2
N8 = N8′ and [N0/x0]rn

α0
R′ = (N8′, β) ,

and similarly for other syntactic categories.

Proof. By lexicographic induction on the unordered pair of α0 and α2, and on
the first substitution derivation in each clause.

Not all clauses’ proofs need be mutually inductive—the four given cases
can be proven independently of the ones elided. We give only the proof for the
four given cases; the rest are straightforward.

1. Suppose [N0/x0]n
α0

N2 = N8
2

(We want to show:
andD :: [N0/x0]n

α0
N = N8 [N82/x2]n

α2
N8 = N8′

and E :: [N2/x2]n
α2

N = N′. and [N0/x0]n
α0

N′ = N8′.)

Case: D =
D1 :: [N0/x0]rn

α0
R = (N8, a)

[N0/x0]n
α0

R = N8

E =
E1 :: [N2/x2]rr

α2
R = R′

[N2/x2]n
α2

R = R′
By inversion, using Lemma 3.1.

[N8
2
/x2]n

α2
N8 = N8′ and [N0/x0]rn

α0
R′ = (N8′, a)

By i.h. (4) onD1.
[N0/x0]n

α0
R′ = N8′ By rule.

Case: D =
D1 :: [N0/x0]rr

α0
R = R8

[N0/x0]n
α0

R = R8

E =
E1 :: [N2/x2]rn

α2
R = (N′, a)

[N2/x2]n
α2

R = N′
or E =

E1 :: [N2/x2]rr
α2

R = R′

[N2/x2]n
α2

R = R′

By inversion.
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Subcase: E =
E1 :: [N2/x2]rn

α2
R = (N′, a)

[N2/x2]n
α2

R = N′

[N82/x2]rn
α2

R8 = (N8′, a) and [N0/x0]n
α0

N′ = N8′

By i.h. (3) onD1.
[N82/x2]n

α2
R8 = N8′ By rule.

Subcase: E =
E1 :: [N2/x2]rr

α2
R = R′

[N2/x2]n
α2

R = R′

[N82/x2]rr
α2

R8 = R8′ and [N0/x0]rr
α0

R′ = R8′ By i.h. (2) onD1.
[N8

2
/x2]n

α2
R8 = R8′ and [N0/x0]n

α0
R′ = R8′ By rule.

Case: D =
D1 :: [N0/x0]n

α0
N = N8

[N0/x0]n
α0
λx.N = λx.N8

E =
E1 :: [N2/x2]n

α2
N = N′

[N2/x2]n
α2
λx.N = λx.N′

By inversion.

[N82/x2]n
α2

N8 = N8′ and [N0/x0]n
α0

N′ = N8′ By i.h. (1) onD1.
[N82/x2]n

α2
λx.N8 = λx.N8′ and [N0/x0]n

α0
λx.N′ = λx.N8′ By rule.

2. Suppose [N0/x0]n
α0

N2 = N8
2

(We want to show:
andD :: [N0/x0]rr

α0
R = R8 [N8

2
/x2]rr

α2
R8 = R8′

and E :: [N2/x2]rr
α2

R = R′. and [N0/x0]rr
α0

R′ = R8′.)

Case: D =
x , x0

[N0/x0]rr
α0

x = x

E =
x , x2

[N2/x2]rr
α2

x = x
By inversion.

[N8
2
/x2]rr

α2
x = x and [N0/x0]rr

α0
x = x By rule.

Case: D =
[N0/x0]rr

α0
c = c

E =
[N2/x2]rr

α2
c = c

By inversion.

[N82/x2]rr
α2

c = c and [N0/x0]rr
α0

c = c By rule.
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Case: D =
D1 :: [N0/x0]rr

α0
R3 = R83 D2 :: [N0/x0]n

α0
N4 = N84

[N0/x0]rr
α0

R3 N4 = R83 N84

E =
E1 :: [N2/x2]rr

α2
R3 = R′3 E2 :: [N2/x2]n

α2
N4 = N′4

[N2/x2]rr
α2

R3 N4 = R′3 N′4
By inversion.

[N82/x2]rr
α2

R83 = R8′3 and [N0/x0]rr
α0

R′3 = R8′3 By i.h. (2) onD1.
[N82/x2]n

α2
N8

4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4
By i.h. (1) onD2.

[N82/x2]rr
α2

R83 N8
4
= R8′3 N8′

4
and [N0/x0]rr

α0
R′3 N′

4
= R8′3 N8′

4
By rule.

3. Suppose [N0/x0]n
α0

N2 = N82 (We want to show:
andD :: [N0/x0]rr

α0
R = R8 [N82/x2]rn

α2
R8 = (N8′, β)

and E :: [N2/x2]rn
α2

R = (N′, β). and [N0/x0]n
α0

N′ = N8′.)

Case: D =
x , x0

[N0/x0]rr
α0

x = x
, where R8 = x

E =
[N2/x2]rn

α2
x2 = (N2, α2)

, where N′ = N2 and x = x2

By inversion.

[N82/x2]rn
α2

x2 = (N82, α2) By rule.
[N0/x0]n

α0
N2 = N82 By assumption.

Case: D =
[N0/x0]rr

α0
c = c

, where R = c

Impossible: no rule can conclude E :: [N2/x2]rn
α2

c = (N′, β).

Case: D =
D1 :: [N0/x0]rr

α0
R3 = R83 D2 :: [N0/x0]n

α0
N4 = N84

[N0/x0]rr
α0

R3 N4 = R83 N84

E =

E1 :: [N2/x2]rn
α2

R3 = (λx.N′3, α4 → α3)

E2 :: [N2/x2]n
α2

N4 = N′4 E3 :: [N′4/x]n
α4

N′3 = N̂′
3

[N2/x2]rn
α2

R3 N4 = (N83, α3)
By inversion.

We need to show: [N82/x2]rn
α2

R83 N8
4
= (N̂8′

3
, α3) and [N0/x0]n

α0
N̂′

3
= N̂8′

3
.

[N8
2
/x2]rn

α2
R8

3
= (λx.N8′

3
, α4 → α3) and [N0/x0]n

α0
λx.N′

3
= λx.N8′

3
By i.h. (3) onD1.
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[N0/x0]n
α0

N′3 = N8′3 By inversion.
[N82/x2]n

α2
N8

4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4
By i.h. (1) onD2.

[N8′
4
/x]n
α4

N8′
3
= N̂8′

3
and [N0/x0]n

α0
N̂′

3
= N̂8′

3
By i.h. (1) on (α0, α4), using

[N0/x0]n
α0

N′
4
= N8′

4
,

[N0/x0]n
α0

N′
3
= N8′

3
,

and [N′
4
/x]n
α4

N′
3
= N̂′

3

[N82/x2]rn
α2

R83 N8
4
= (N̂8′

3
, α3) By rule, using

[N82/x2]rn
α2

R83 = (λx.N8′3 , α4 → α3),
[N82/x2]n

α2
N8

4
= N8′

4
,

and [N8′
4
/x]n
α4

N8′3 = N̂8′
3

.

4. Suppose [N0/x0]n
α0

N2 = N8
2

(We want to show:
andD :: [N0/x0]rn

α0
R = (N8, β) [N82/x2]n

α2
N8 = N8′

and E :: [N2/x2]rr
α2

R = R′. and [N0/x0]rn
α0

R′ = (N8′, β).)

Case: D =
[N0/x0]rn

α0
x0 = (N0, α0)

, where N8 = N0

E =
x0 , x2

[N2/x2]rr
α2

x0 = x0

, where R′ = x0 By inversion.

[N8
2
/x2]n

α2
N0 = N0 By trivial substitution, since x2 < FV(N0).

[N0/x0]rn
α0

x0 = (N0, α0) By rule.

Case: D =

D1 :: [N0/x0]rn
α0

R3 = (λx.N3, α4 → α3)
D2 :: [N0/x0]n

α0
N4 = N84 D3 :: [N84/x]n

α4
N3 = N83

[N0/x0]rn
α0

R3 N4 = (N83, α3)

E =
E1 :: [N2/x2]rr

α2
R3 = R′3 E2 :: [N2/x2]n

α2
N4 = N′4

[N2/x2]rr
α2

R3 N4 = R′3 N′4
By inversion.

We need to show: [N82/x2]n
α2

N83 = N8′3 and [N0/x0]rn
α0

R′3 N′
4
= (N8′3 , α3)

[N82/x2]n
α2
λx.N3 = λx.N′3 and [N0/x0]rn

α0
R′3 = (λx.N′3, α4 → α3)

By i.h. (4) onD1.
[N8

2
/x2]n

α2
N3 = N′

3
By inversion.

[N8
2
/x2]n

α2
N8

4
= N8′

4
and [N0/x0]n

α0
N′

4
= N8′

4
By i.h. (1) onD2.
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[N8′
4
/x]n
α4

N′3 = N8′3 and [N82/x2]n
α2

N83 = N8′3
By i.h. (1) on (α2, α4), using

[N82/x2]n
α2

N8
4
= N8′

4
,

[N8
2
/x2]n

α2
N3 = N′

3
,

andD3 :: [N8
4
/x]n
α4

N3 = N8
3
.

[N0/x0]rn
α0

R′
3

N′
4
= (N8′

3
, α3) By rule, using

[N0/x0]rn
α0

R′3 = (λx.N′3, α4 → α3)
[N0/x0]n

α0
N′

4
= N8′

4
,

and [N8′
4
/x]n
α4

N′3 = N8′3 .
�

B.2 Theorem 3.15 (Proto-Substitution, terms)

Theorem 3.15 (Proto-Substitution, terms).

1. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 , and

• ΓL, x0::S0@A0, ΓR ` N ⇐ S and Γ∗
L
, x0:A0, Γ

∗
R
` N ⇐ A , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
, and

• [N0/x0]s
A0

S = S8 and [N0/x0]a
A0

A = A8 ,

then

• [N0/x0]n
A0

N = N8 , and

• ΓL, Γ
8

R
` N8 ⇐ S8 and Γ∗

L
, (Γ8

R
)∗ ` N8 ⇐ A8 .

2. If

• ΓL ` N0 ⇐ S0 and Γ∗
L
` N0 ⇐ A0 , and

• ΓL, x0::S0@A0, ΓR ` R⇒ S and Γ∗
L
, x0:A0, Γ

∗
R
` R⇒ A , and

• [N0/x0]
γ

A0
ΓR = Γ

8

R
,

then

• [N0/x0]s
A0

S = S8 and [N0/x0]a
A0

A = A8 , and

• either

– [N0/x0]rr
A0

R = R8 and

– ΓL, Γ
8

R
` R8 ⇒ S8 and Γ∗

L
, (Γ8

R
)∗ ` R8 ⇒ A8,

or

– [N0/x0]rn
A0

R = (N8, (A8)−) and

– ΓL, Γ
8

R
` N8 ⇐ S8 and Γ∗

L
, (Γ8

R
)∗ ` N8 ⇐ A8 .
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Proof. By lexicographic induction on (A0)− and the derivationD hypothesizing
x0::S0@A0.

1. Suppose ΓL ` N0 ⇐ S0

andD :: ΓL, x0::S0@A0, ΓR ` N ⇐ S
and [N0/x0]

γ

A0
ΓR = Γ

8

R

and [N0/x0]s
A0

S = S8.

Case: D =
D1 :: ΓL, x0::S0@A0, ΓR ` R⇒ Q1 D2 :: Q1 ≤ Q

ΓL, x0::S0@A0, ΓR ` R⇐ Q

[N0/x0]s
A0

Q1 = Q8
1

and either

([N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
` R8 ⇒ Q8

1
), or

([N0/x0]rn
A0

R = (N8, (P8
1
)−) and ΓL, Γ

8

R
` N8 ⇐ Q8

1
)

By i.h. (2) onD1.

S8 = Q8 and [N0/x0]
q

A0
Q = Q8 By inversion.

Q8
1
≤ Q8 By Lemma 3.14 (Substitution into Subsorting).

Subcase: [N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
` R8 ⇒ Q8

1

[N0/x0]n
A0

R = R8 By rule subst-n-atom.

ΓL, Γ
8

R
` R8 ⇐ Q8 By rule switch.

Subcase: [N0/x0]rn
A0

R = (N8, (P8
1
)−) and ΓL, Γ

8

R
` N8 ⇐ Q8

1

N8 = R8 and ΓL, Γ
8

R
` R8 ⇒ Q8

2
and Q8

2
≤ Q8

1
By inversion.

(P8
1
)− = a, for some a By definition.

[N0/x0]n
A0

R = R8 By rule subst-n-atom-norm.

Q82 ≤ Q8 By rule.
ΓL, Γ

8

R
` R8 ⇐ Q8 By rule switch.

Case: D =
D1 :: ΓL, x0::S0@A0, ΓR, x::S1@A1 ` N ⇐ S2

ΓL, x0::S0@A0, ΓR ` λx.N⇐ Πx::S1@A1. S2

S8 = Πx::S8
1
@A8

1
. S82 and [N0/x0]s

A0
S1 = S8

1
and

[N0/x0]a
A0

A1 = A8
1

and [N0/x0]s
A0

S2 = S8
2

By inversion.

[N0/x0]
γ

A0
ΓR, x::S1@A1 = Γ

8

R
, x::S8

1
@A8

1
By rule.

[N0/x0]n
A0

N = N8 and ΓL, Γ
8

R
, x::S8

1
@A8

1
` N8 ⇐ S8

2

By i.h. (1) onD1.
[N0/x0]n

A0
λx.N = λx.N8 By rule.

ΓL, Γ
8

R
` λx.N8 ⇐ Πx::S8

1
@A8

1
. S82 By rule.

Case: D =

D1 :: ΓL, x0::S0@A0, ΓR ` N⇐ S1

D2 :: ΓL, x0::S0@A0, ΓR ` N⇐ S2

ΓL, x0::S0@A0, ΓR ` N ⇐ S1 ∧ S2
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S8 = S8
1
∧ S82 and [N0/x0]s

A0
S1 = S8

1
and [N0/x0]s

A0
S2 = S82

By inversion.
[N0/x0]s

A0
N = N8

1
and ΓL, Γ

8

R
` N8

1
⇐ S8

1
By i.h. (1) onD1.

[N0/x0]s
A0

N = N82 and ΓL, Γ
8

R
` N82 ⇐ S82 By i.h. (1) onD2.

N8
1
= N8

2
By Theorem 3.2 (Functionality of Substitution).

Let N8 = N8
1
= N82: ΓL, Γ

8

R
` N8 ⇐ S1 ∧ S2 By rule.

Case: D =
ΓL, x0::S0@A0, ΓR ` N⇐ >

[N0/x0]n
A0

N = N8 By core LF Proto-Substitution Theorem.

ΓL, Γ
8

R
` N8 ⇐ > By rule.

Note: This case is where we make use of the three grey assumptions
to clause 1. The remainder of the grey assumptions and conclusions
are only required to ensure that these three key assumptions are
satisfied on every inductive appeal. (The interested reader may gain
great insight into the essential difficulty of the proof by tracing these
dependencies; all of the action is in the “application” case of clause 2.)

2. SupposeΓL ` N0 ⇐ S0 andD :: ΓL, x0::S0@A0, ΓR ` R⇒ S and [N0/x0]
γ

A0
ΓR =

Γ8
R

.

Case: D =
c:S ∈ Σ

ΓL, x0::S0@A0, ΓR ` c⇒ S

FV(S) = ∅ By signature well-formedness.
[N0/x0]s

A0
S = S By trivial substitution.

[N0/x0]rr
A0

c = c By rule.

ΓL, Γ
8

R
` c⇒ S By rule.

Case: D =
x::S@A ∈ ΓL, x0::S0@A0, ΓR

ΓL, x0::S0@A0, ΓR ` x⇒ S

Subcase: x::S@A ∈ ΓL

x0 < FV(S) and x0 , x By α-conversion convention.
[N0/x0]s

A0
S = S By trivial substitution.

[N0/x0]rr
A0

x = x By rule.

ΓL, Γ
8

R
` x⇒ S By rule.

Subcase: x::S@A = x0::S0@A0

x0 < FV(S0) By α-conversion convention.
[N0/x0]s

A0
S0 = S0 By trivial substitution.

[N0/x0]rn
A0

x0 = (N0, (A0)−) By rule.
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ΓL ` N0 ⇐ S0 By assumption.
ΓL, Γ

8

R
` N0 ⇐ S0 By weakening.

Subcase: x::S@A ∈ ΓR

[N0/x0]
γ

A0
ΓR = Γ

8

R
By assumption.

x::S8@A8 ∈ Γ8
R

and [N0/x0]s
A0

S = S8 By inversion.

x0 , x By α-conversion convention.
[N0/x0]rr

A0
x = x By rule.

ΓL, Γ
8

R
` x⇒ S8 By rule.

Case: D =

D1 :: ΓL, x0::S0@A0, ΓR ` R1 ⇒ Πx::S2@A2. S1

D2 :: ΓL, x0::S0@A0, ΓR ` N2 ⇐ S2 D3 :: [N2/x]s
A2

S1 = S′1

ΓL, x0::S0@A0, ΓR ` R1 N2 ⇒ S′1

[N0/x0]s
A0
Πx::S2@A2. S1 = S8 and either

([N0/x0]rr
A0

R1 = R8
1

and ΓL, Γ
8

R
` R8

1
⇒ S8), or

([N0/x0]rn
A0

R1 = (N8
1
, (Πx:A8

2
.A8

1
)−) and ΓL, Γ

8

R
` N8

1
⇐ S8)

By i.h. (2) onD1.
S8 = Πx::S82@A82. S

8

1
and [N0/x0]s

A0
S2 = S8

2
and [N0/x0]s

A0
S1 = S8

1
By inversion.

[N0/x0]n
A0

N2 = N8
2

and ΓL, Γ
8

R
` N8

2
⇐ S8

2
By i.h. (1) onD2.

[N8
2
/x]s

A2
S8

1
= S8′

1
and [N0/x0]s

A0
S′

1
= S8′

1

By Lemma 3.13 (Composition).

Subcase: [N0/x0]rr
A0

R1 = R8
1

and ΓL, Γ
8

R
` R8

1
⇒ Πx::S8

2
@A8

2
.A8

1

[N0/x0]rr
A0

R1 N2 = R8
1

N82 By rule.

ΓL, Γ
8

R
` R8

1
N82 ⇒ S8′

1
By rule.

Subcase: [N0/x0]rn
A0

R1 = (N8
1
, (Πx:A82.A

8

1
)−) and ΓL, Γ

8

R
` N8

1
⇐ Πx::S82@A82. S

8

1

N8
1
= λx.N8 and ΓL, Γ

8

R
, x::S8

2
@A8

2
` N8 ⇐ S8

1
By inversion.

[N82/x]n
A2

N8 = N8′ and ΓL, Γ
8

R
` N8′ ⇐ S8′

1

By i.h. (1) at (A2)−, using
ΓL, Γ

8

R
` N82 ⇐ S82 ,

ΓL, Γ
8

R
, x::S82@A82 ` N8 ⇐ S8

1
,

[N8
2
/x]
γ

A8
2

· = · ,

and [N82/x]s
A8

2

S8
1
= S8′

1
.

[N0/x0]rn
A0

R1 N2 = N8′ By rule, using

[N0/x0]rn
A0

R1 = (λx.N8, (Πx:A8
2
.A8

1
)−) ,

[N0/x0]n
A0

N2 = N8
2

,

and [N8
2
/x]n

A2
N8 = N8′ .
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Case: D =
D1 :: ΓL, x0::S0@A0, ΓR ` R⇒ S1 ∧ S2

ΓL, x0::S0@A0, ΓR ` R⇒ S1

[N0/x0]s
A0

S1 ∧ S2 = S8 and either

([N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
` R8 ⇒ S8), or

([N0/x0]rn
A0

R = (N8, (A8)−) and ΓL, Γ
8

R
` N8 ⇐ S8)

By i.h. (2) onD1.
S8 = S8

1
∧ S8

2
and [N0/x0]s

A0
S1 = S8

1
By inversion.

Subcase: [N0/x0]rr
A0

R = R8 and ΓL, Γ
8

R
` R8 ⇒ S8

1
∧ S8

2

ΓL, Γ
8

R
` R8 ⇒ S8

1
By rule.

Subcase: [N0/x0]rn
A0

R = (N8, (A8)−) and ΓL, Γ
8

R
` N8 ⇐ S8

1
∧ S82

ΓL, Γ
8

R
` N8 ⇐ S8

1
By inversion.

Case: D =
D1 :: ΓL, x0::S0@A0, ΓR ` R⇒ S1 ∧ S2

ΓL, x0::S0@A0, ΓR ` R⇒ S2

Similar. �

B.3 Lemma 3.21 (Commutativity of Substitution andη-expansion)

Lemma 3.21 (Commutativity of Substitution and η-expansion). Substitution
commutes with η-expansion. In particular:

1. (a) If [ηα(x)/x]n
αN = N′, then N = N′ ,

(b) If [ηα(x)/x]rr
α R = R′, then R = R′ ,

(c) If [ηα(x)/x]rn
α R = (N, β), then ηβ(R) = N ,

2. If [N0/x0]n
α0
ηα(R) = N′, then

(a) if head(R) , x0, then [N0/x0]rr
α0

R = R′ and ηα(R′) = N′ ,

(b) if head(R) = x0 and x0:α0 ` R : α, then [N0/x0]rn
α0

R = (N′, α) ,

and similarly for other syntactic categories.

Proof. By lexicographic induction on α and the given substitution derivation.
Not all clauses’ proofs need be mutually inductive—the two given cases can

be proven independently of the ones elided. We give only the proof for the two
given cases; the rest are straightforward.

1. (a) SupposeD :: [ηα(x)/x]n
αN = N′.

Case: D =
D1 :: [ηα(x)/x]rr

α R = R′

[ηα(x)/x]n
αR = R′
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R = R′ By i.h. (1b) on α,D1.

Case: D =
D1 :: [ηα(x)/x]rn

α R = (R′, a′)

[ηα(x)/x]n
αR = R′

ηa′(R) = R′ By i.h. (1c) on α,D1.
ηa′(R) = R By definition.
R = R′ By transitivity of equality.

Case: D =
D1 :: [ηα(x)/x]n

αN = N′

[ηα(x)/x]n
α λy.N = λy.N′

N = N′ By i.h. (1a) on α,D1.
λy.N = λy.N′ By compatibility of equality.

(b) SupposeD :: [ηα(x)/x]rr
α R = R′.

Case: D =
y , x

[ηα(x)/x]rr
α y = y

y = y By reflexivity of equality.

Case: D =
[ηα(x)/x]rr

α c = c

c = c By reflexivity of equality.

Case: D =
D1 :: [ηα(x)/x]rr

α R1 = R′1 D2 :: [ηα(x)/x]n
αN2 = N′2

[ηα(x)/x]rr
α R1 N2 = R′1 R′2

R1 = R′
1

By i.h. (1b) on α,D1.
N2 = N′2 By i.h. (1a) on α,D2.
R1 N2 = R′

1
N′

2
By compatibility of equality.

(c) SupposeD :: [ηα(x)/x]rn
α R = (N, β)

Case: D =
[ηα(x)/x]rn

α x = (ηα(x), α)

ηα(x) = ηα(x) By reflexivity of equality.

Case: D =

D1 :: [ηα(x)/x]rn
α R1 = (λy.N1, α2 → α1)

D2 :: [ηα(x)/x]n
αN2 = N′2 D3 :: [N′2/y]n

α2
N1 = N′1

[ηα(x)/x]rn
α R1 N2 = (N′1, α1)
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We need to show: ηα1 (R1 N2) = N′
1
.

ηα2→α1(R1) = λy.N1 By i.h. (1c) on α,D1.
ηα2→α1(R1) = λy. ηα1(R1 ηα2 (y)) By definition.
ηα1 (R1 ηα2 (y)) = N1 By compatibility of equality.

N2 = N′
2

By i.h. (1a) on α,D2.

D3 :: [N2/y]n
α2
ηα1(R1 ηα2 (y)) = N′

1
By replacing equals for equals.

y < FV(R1) and head(R1) , y By α-conversion convention.
[N2/y]rr

α2
R1 ηα2 (y) = R′ and ηα1 (R′) = N′

1
By i.h. (2a) on α1,D3.

R′ = R′
1

N′′2 and
[N2/y]rr

α2
R1 = R′

1
andD4 :: [N2/y]n

α2
ηα2 (y) = N′′2 By inversion.

[N2/y]rr
α2

R1 = R1 By trivial substitution.
R1 = R′

1
By functionality of substitution.

head(y) = y By definition.
y:α2 ` y : α2 By rule.
[N2/y]rn

α2
y = (N′′2 , α2) By i.h. (2b) on α2,D4.

N′′
2
= N2 By inversion.

R′ = R1 N2 By equality reasoning.
ηα1 (R′) = N′

1
From above.

ηα1 (R1 N2) = N′
1

By replacing equals for equals.

2. SupposeD :: [N0/x0]n
α0
ηα(R) = N′.

(a) Suppose head(R) , x0. We need to show: [N0/x0]rr
α0

R = R′ and
ηα(R

′) = N′.

Case: α = a.

ηa(R) = R By definition.
D :: [N0/x0]n

α0
R = N′ By equality.

N′ = R′ and [N0/x0]rr
α0

R = R′. By inversion, using Lemma 3.1.
ηa(R′) = R′ By definition.

Case: α = α2 → α1.

ηα2→α1(R) = λy. ηα1 (R ηα2 (y)) By definition.
D :: [N0/x0]n

α0
λy. ηα1(R ηα2 (y)) = N′ By equality.

N′ = λy.N′′ andD1 :: [N0/x0]n
α0
ηα1(R ηα2 (y)) = N′′ By inversion.

[N0/x0]rr
α0

R ηα2 (y) = R′′ and ηα1 (R′′) = N′′ By i.h. (2a) on α1,D1.
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R′′ = R′ N and [N0/x0]rr
α0

R = R′ and [N0/x0]n
α0
ηα2 (y) = N

By inversion.
N = ηα2 (y) By trivial substitution and functionality.
ηα1 (R′′) = ηα1(R

′ηα2 (y)) = N′′ By equality.

ηα2→α1(R
′) = λy. ηα1(R

′ ηα2 (y)) By definition.
= λy.N′′ = N′ By equality.

(b) Suppose the head(R) = x0 and x0:α0 ` R : α. We need to show:
[N0/x0]rn

α0
R = (N′, α).

Case: α = a.

ηa(R) = R By definition.
D :: [N0/x0]n

α0
R = N′. By equality.

[N0/x0]rn
α0

R = (N′, a′) By inversion, using Lemma 3.1.
a′ = a By Lemma 3.20.

Case: α = α2 → α1.

ηα2→α1(R) = λy. ηα1 (R ηα2 (y)) By definition.
D :: [N0/x0]n

α0
λy. ηα1(R ηα2 (y)) = N′ By equality.

N′ = λy.N′′ andD1 :: [N0/x0]n
α0
ηα1(R ηα2 (y)) = N′′ By inversion.

x0:α0 ` R ηα2 (y) : α1 By rule.
E :: [N0/x0]rn

α0
R ηα2 (y) = (N′′, α1) By i.h. (2b) on α1,D1.

E1 :: [N0/x0]rn
α0

R = (λy.N′′′, α′2 → α1) and
E2 :: [N0/x0]n

α0
ηα2 (y) = N and

E3 :: [N/y]n
α′

2

N′′′ = N′′ By inversion.

α′2 → α1 = α2 → α1 By Lemma 3.20.
N = ηα2 (y) By trivial substitution and functionality.
E3 :: [ηα2 (y)/y]n

α2
N′′′ = N′′ By equality.

N′′′ = N′′ By i.h. (1a) on α2,E3.

E1 :: [N0/x0]rn
α0

R = (λy.N′′, α2 → α1),
i.e. [N0/x0]rn

α0
R = (N′, α) By equality.

�

B.4 Theorem 3.22 (Expansion)

Theorem 3.22 (Expansion). If Γ ` S @ A and Γ ` R⇒ S, then Γ ` ηA(R)⇐ S.

Proof. By induction on S.

Case: S = >

Γ ` ηA(R)⇐ > By rule.
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Case: S = S1 ∧ S2

Γ ` S @ A1 and Γ ` S @ A2 By inversion.
Γ ` R⇒ S1 and Γ ` R⇒ S2 By rules ∧-E1 and ∧-E2.
Γ ` ηA(R)⇐ S1 and Γ ` ηA(R)⇐ S2 By i.h. on S1 and S2.
Γ ` ηA(R)⇐ S1 ∧ S2 By rule ∧-I.

Case: S = Q

A = P By inversion.
ηA(R) = ηP(R) = R By definition.
Q ≤ Q By rule.
Γ ` R⇐ Q By rule switch.

Case: S = Πx::S1@A1. S2

A = Πx:A1.A2 and Γ ` S1 @ A1 and Γ, x::S1@A1 ` S2 @ A2

By inversion.
ηA(R) = ηΠx:A1.A2 (R) = λx. ηA2 (R ηA1 (x)) By definition.

Γ, y::S1@A1 ` S1 @ A1 By weakening.
Γ, y::S1@A1 ` y⇒ S1 By rule.
Γ, y::S1@A1 ` ηA1 (y)⇐ S1 By i.h. on S1.

Γ, y::S1@A1, x::S1@A1 ` S2 @ A2 By weakening.
[ηA1 (y)/x]s

A1
S2 = S′2 By Theorem 3.19 (Substitution).

S′2 = [y/x] S2 By Lemma 3.21 (Commutativity).

Γ, y::S1@A1 ` R⇒ Πx::S1@A1. S2 By weakening.
Γ, y::S1@A1 ` R ηA1 (y)⇒ [y/x] S2 By rule Π-E.
Γ, x::S1@A1 ` R ηA1 (x)⇒ S2 By α-conversion.

Γ, x::S1@A1 ` ηA2 (R ηA1 (x))⇐ S2 By i.h. on S2.
Γ ` λx. ηA2 (R ηA1 (x))⇐ Πx::S1@A1. S2 By rule Π-I.

�

B.5 Theorem 4.6 (Generalized Algorithmic⇒ Declarative)

Theorem 4.6 (Generalized Algorithmic⇒ Declarative).

1. If D :: ∆ 5 T, then
∧

(∆) ≤ T.

2. If D :: ∆ @ x::∆1@A1 = ∆2, then
∧

(∆) ≤ Πx::
∧

(∆1)@A1.
∧

(∆2).

Proof. By induction on D. To reduce clutter, we omit the refined type A1 from
bound variables, since it does not affect declarative subsorting in any significant
way.
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1. SupposeD :: ∆ 5 T.

Case: D =
∆ 5 >

∧

(∆) ≤ > By rule >-R.

Case: D =
D1 :: ∆ 5 S1 D2 :: ∆ 5 S2

∆ 5 S1 ∧ S2

∧

(∆) ≤ S1 By i.h. (1) onD1.
∧

(∆) ≤ S2 By i.h. (1) onD2.
∧

(∆) ≤ S1 ∧ S2 By rule ∧-R.

Case: D =
Q′ ∈ ∆ Q′ ≤ Q

∆ 5 Q
∧

(∆) ≤ Q By Lemma 4.5.

Case: D =
D1 :: ∆ @ x::split(S1) = ∆2 D2 :: ∆2 5 S2

∆ 5 Πx::S1. S2

∧

(∆) ≤ Πx::
∧

(split(S1)).
∧

(∆2) By i.h. (2) onD1.

S1 ≤
∧

(split(S1)) By Lemma 4.4.
∧

(∆2) ≤ S2 By i.h. (1) onD2.
Πx::
∧

(split(S1)).
∧

(∆)2 ≤ Πx::S1. S2 By rule S-Π.

∧

(∆) ≤ Πx::S1. S2 By rule trans.

2. SupposeD :: ∆ @ x::split(S1) = ∆2.

Case: D =
· @ x::∆1 = ·

∧

(·) = > By definition.
We need to show > ≤ Πx::

∧

(∆1).>.
> ≤ Πx::

∧

(∆1).> By rule >/Π-dist.

Case: D =
D1 :: ∆ @ x::∆1 = ∆2 D2 :: ∆1 5 S1 D3 :: [ηA(x)/y]s

A S2 = S′2

(∆,Πy::S1@A. S2) @ x::∆1 = ∆2, split(S′2)
∧

(∆,Πy::S1@A. S2) =
∧

(∆) ∧ Πy::S1@A. S2 By definition.
Want to show:

∧

(∆) ∧ Πy::S1@A. S2 ≤ Πx::
∧

(∆1).
∧

(∆2, split(S′2)).
S′

2
= [x/y] S2 By Lemma 3.21 (Commutativity).

So (α-varied):
∧

(∆) ∧ Πx::S1@A. S′2 ≤ Πx::
∧

(∆1).
∧

(∆2, split(S′2)).

Note: in the following, we omit some uses of reflexivity (rule refl).
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∧

(∆) ≤ Πx::
∧

(∆1).
∧

(∆2) By i.h. (2) onD1.
∧

(∆1) ≤ S1 By i.h. (1) onD2.
∧

(∆) ∧ Πx::S1. S
′
2
≤ Πx::

∧

(∆1).
(

∧

(∆2) ∧ S′
2

)

By rule ∧/Π-dist′.

S′2 ≤
∧

(split(S′2)) By Lemma 4.4.
∧

(∆2) ∧ S′
2
≤
∧

(∆2) ∧
∧

(split(S′
2
)) By rule S-∧.

∧

(∆2) ∧
∧

(split(S′2)) ≤
∧

(∆2, split(S′2)) By Lemma 4.3.
∧

(∆2) ∧ S′2 ≤
∧

(∆2, split(S′2)) By rule trans.

Πx::
∧

(∆1).
(

∧

(∆2) ∧ S′
2

)

≤ Πx::
∧

(∆1).
∧

(∆2, split(S′
2
))

By rule S-Π.

∧

(∆) ∧ Πx::S1. S
′
2 ≤ Πx::

∧

(∆1).
∧

(∆2, split(S′2)) By rule trans.

Case: D =
D1 :: ∆ @ x::∆1 = ∆2 ∆1 65 S1

∆,Πy::S1@A. S2 @ x :: ∆1 = ∆2

∧

(∆,Πy::S1@A. S2) =
∧

(∆) ∧ Πy::S1@A. S2 By definition.
∧

(∆) ≤ Πx::
∧

(∆1).
∧

(∆2) By i.h. (2) onD1.
∧

(∆) ∧ Πy::S1@A. S2 ≤ Πx::
∧

(∆1).
∧

(∆2) By rule ∧-L1.

Case: D =
D1 :: ∆ @ x::∆1 = ∆2 @S′2. [ηA(x)/y]s

A S2 = S′2

∆,Πy::S1@A. S2 @ x :: ∆1 = ∆2

Similar.

Case: D =
D1 :: ∆ @ x::∆1 = ∆2

∆,Q @ x :: ∆1 = ∆2

Similar. �

B.6 Lemma 4.10

Lemma 4.10. If D :: Γ ` ∆ @ Πx:A1.A2 and E :: Γ ` ∆ @ N = ∆2 and [N/x]a
A1

A2 =

A′
2
, then Γ ` ∆2 @ A′

2
.

Proof. By induction on E.

Case: E =
Γ ` · @ N = ·

Γ ` · @ A′
2

By rule.

Case: E =
E1 :: Γ ` ∆ @ N = ∆2 E2 :: Γ ` N W S1 E3 :: [N/x]s

A1
S2 = S′2

Γ ` (∆,Πx::S1@A1. S2) @ N = ∆2, split(S′2)
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D1 :: Γ ` ∆ @ Πx:A1.A2 and
D2 :: Γ ` Πx::S1@A1. S2 @ Πx:A1.A2 By inversion onD.
Γ ` ∆2 @ A′

2
By i.h. on E1.

Γ ` S1 @ A1 and Γ, x::S1@A1 ` S2 @ A2 By inversion onD2.
Γ ` N ⇐ S1 By Theorem 3.9 (Soundness of Alg. Typing).
Γ ` S′2 @ A′2 By Theorem 3.19 (Substitution).
Γ ` split(S′

2
) @ A′

2
By Lemma 4.9.

Γ ` (∆2, split(S′2)) @ A′2 By Lemma 4.8.

Case: E =
E1 :: Γ ` ∆ @ N = ∆2 Γ 0 NW S1

Γ ` (∆,Πx::S1@A1. S2) @ N = ∆2

Γ ` ∆ @ Πx:A1.A2 By inversion onD.
Γ ` ∆2 @ A′

2
By i.h. on E1.

Case: E =
E1 :: Γ ` ∆ @ N = ∆2 @S′2. [N/y]s

A1
S2 = S′2

Γ ` (∆,Πx::S1@A1. S2) @ N = ∆2

Similar.

Case: E =
E1 :: Γ ` ∆ @ N = ∆2

Γ ` (∆,Q) @ N = ∆2

Impossible:
Γ ` Q @ Πx:A1.A2 By inversion onD.
But there is no rule that can conclude this. �

B.7 Theorem 4.14 (Generalized Intrinsic⇒ Algorithmic)

Theorem 4.14 (Generalized Intrinsic⇒ Algorithmic).

1. If Γ ` R V ∆ and E :: Γ ` ηA(R) W S and Γ ` ∆ @ A and Γ ` S @ A, then
∆ 5 S.

2. If Γ ` x V ∆1 and E :: Γ ` ∆ @ ηA1 (x) = ∆2 and Γ ` ∆1 @ A1 and
Γ ` ∆ @ Πx:A1.A2, then ∆ @ x::∆1@A1 = ∆2.

Proof. By induction on A, S, and E. We omit the refined type A1 from the ∆1

argument of the application judgement when it is clear from context.

1. Suppose D :: Γ ` R V ∆, E :: Γ ` ηA(R) W S, F :: Γ ` ∆ @ A, and
G :: Γ ` S @ A.
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Case: S = Q

A = P By inversion on G.
ηP(R) = R By definition.

E =
Γ ` RV ∆ Q′ ∈ ∆ Q′ ≤ Q

Γ ` RW Q
By inversion.

∆ 5 Q By rule.

Case: S = >

∆ 5 > By rule.

Case: S = S1 ∧ S2

E =
E1 :: Γ ` ηA(R)W S1 E2 :: Γ ` ηA(R)W S2

Γ ` ηA(R)W S1 ∧ S2

By inversion.

∆ 5 S1 By i.h. (1) on S1 and E1

∆ 5 S2 By i.h. (1) on S2 and E2

∆ 5 S1 ∧ S2 By rule.

Case: S = Πx::S1@A1. S2

A = Πx:A1.A2 and
Γ ` S1 @ A1 and Γ, x::S1@A1 ` S2 @ A2 By inversion on G.
ηΠx:A1.A2 (R) = λx. ηA2 (R ηA1 (x)) By definition.

E =
E1 :: Γ, x::S1@A1 ` ηA2 (R ηA1 (x))W S2

Γ ` λx. ηA2 (R ηA1 (x))W Πx::S1@A1. S2

By inversion.

Γ, x::S1@A1 ` RV ∆ By weakening.
Γ, x::S1@A1 ` ∆ @ ηA1 (x) = ∆2 By Theorem 3.7, clause (3).
Γ, x::S1@A1 ` R ηA1 (x)V ∆2 By rule.
[ηA1 (x)/A1]a

x A2 = A2 By validity of Πx:A1.A2 and Lemma 3.21.
Γ, x::S1@A1 ` ∆2 @ A2 By Lemma 4.10.
∆2 5 S2 By i.h. (1) on A2, S2, and E1.

Γ, x::S1@A1 ` xV split(S1) By rule.
Γ, x::S1@A1 ` ∆ @ ηA1 (x) = ∆2 From above.
Γ ` split(S1) @ A1 By Lemma 4.9.
Γ ` ∆ @ Πx:A1.A2 By assumption.
∆ @ x::split(S1) = ∆2 By i.h. (2) on A1.

∆ 5 Πx::S1@A1. S2 By rule.
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2. SupposeD :: Γ ` xV ∆1 andE :: Γ ` ∆ @ ηA1 (x) = ∆2 andF :: Γ ` ∆1 @ A1

and G :: Γ ` ∆ @ Πx:A1.A2.

Case: E =
Γ ` · @ ηA1 (x) = ·

· @ x::∆1 = · By rule.

Case: E =

E1 :: Γ ` ∆ @ ηA1 (x) = ∆2

E2 :: Γ ` ηA1 (x)W S1 E3 :: [ηA1 (x)/y]s
A1

S2 = S′2

Γ ` (∆,Πy::S1@A1. S2) @ ηA1 (x) = ∆2, split(S′2)

Γ ` ∆ @ Πx:A1.A2 and
Γ ` S1 @ A1 and Γ, y::S1@A1 ` S2 @ A2 By inversion on G.
∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
∆1 5 S1 By i.h. (1) on E2.
[ηA1 (x)/y]s

A1
S2 = S′

2
By subderivation E3.

(∆,Πy::S1@A1. S2) @ x::∆1 = (∆2, split(S′
2
)) By rule.

Case: E =
E1 :: Γ ` ∆ @ ηA1 (x) = ∆2 Γ 0 ηA1 (x)W S1

Γ ` (∆,Πx::S1@A1. S2) @ ηA1 (x) = ∆2

Γ ` ∆ @ Πx:A1.A2 and
Γ ` S1 @ A1 and Γ, y::S1@A1 ` S2 @ A2 By inversion on G.
∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
∆1 65 S1 By Theorem 4.13 (Alg. Subsumption), contrapositive.
(∆,Πy::S1@A1. S2) @ x::∆1 = ∆2 By rule.

Case: E =
E1 :: Γ ` ∆ @ ηA1 (x) = ∆2 @S′2. [ηA1(x)/y]s

A1
S2 = S′2

Γ ` (∆,Πy::S1@A1. S2) @ ηA1 (x) = ∆2

∆ @ x::∆1 = ∆2 By i.h. (2) on E1.
@S′

2
. [ηA(x)/y]s

A1
S2 = S′

2
By side condition.

(∆,Πy::S1@A1. S2) @ x::∆1 = ∆2 By rule.

Case: E =
E1 :: Γ ` ∆ @ N = ∆2

Γ ` (∆,Q) @ N = ∆2

Impossible:
Γ ` Q @ Πx:A1.A2 By inversion on G.
But there is no rule that can conclude this. �
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