
Making Contribution-Aware P2P Systems
Robust to Collusion Attacks Using Bandwidth

Puzzles
Michael K. Reiter1 Vyas Sekar2

Zhenghao Zhang3

Sep 23, 2008
CMU-CS-08-156

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA;reiter@cs.unc.edu
2Computer Science Department, Carnegie Mellon University,Pittsburgh, PA, USA;vyass@cs.cmu.edu
3Computer Science Department, Florida State University, Tallahassee, FL, USA;zzhang@cs.fsu.edu
We thank Hui Zhang for initial feedback and discussions on this project. This work was supported in part by Na-

tional Science Foundation grant number 0756998. Zhenghao Zhang was supported in part by the Planning Grant from
Florida State University (Project #022684). The views and conclusions contained here are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either express or implied,
of NSF, Carnegie Mellon University, Florida State University, or the U.S. Government or any of its agencies.

Keywords: Peer-to-Peer, Collusion, Ballot Stuffing, Reputation, Incentives, Security

Abstract

Many peer-to-peer (P2P) content-distribution systems reward a peer based on its contribution to
the system, specifically the amount of data that this peer serves to others. However, validating that
a peer did so is, to our knowledge, an open problem; e.g., in a simple form of “ballot stuffing”
attack, a group of colluding attackers can earn rewards by claiming to have served content to one
another, when they have not. We propose a simple puzzle mechanism to make contribution-aware
P2P content distribution systems robust to such collusion.Our construction is novel in that it both
ties solving the puzzle to possession of content and, by issuing puzzle challenges simultaneously
to all parties claiming to have the same content, prevents one content-holder from solving many
others’ puzzles. We provide two bounds (in the random oraclemodel) for adversaries’ ability to
defeat our puzzle scheme, one closed-form bound and one moreprecise, efficiently computable,
but non-closed-form bound. We additionally evaluate our design in the context of the Maze P2P
file-sharing architecture.

1 Introduction

Content distribution via peer-to-peer overlays is becoming increasingly popular; it has even been
reported that peer-to-peer file-sharing contributes more traffic volume to the Internet than any other
application [14]. Many such systems measure peer contribution and incentivize participation by
either providing the peers who contribute more with better performance (e.g., by giving them
higher priority in the distribution overlay [41, 36] or providing priority service through server-
assisted downloads (e.g., [27, 40]), or through out-of-band mechanisms (e.g., discount coupons,
frequent-flier-like rewards [40]). We refer to such P2P systems ascontribution-awareP2P systems
in that they actively measure the contribution of peers and reward them accordingly.

Unfortunately, to our knowledge, all known mechanisms for demonstrating how much data a
peer has served are vulnerable to a simple form of “ballot stuffing” [16, 10]. A group of colluding
attackers can report receiving service from each other without actually transferring content among
themselves. In some systems, this enables these peers to attack the system, e.g., by gaining a
powerful position in the distribution overlay and then launching a denial-of-service attack [41, 36].
In others, this enables these peers to get preferential service, or to get high-quality service while
contributing only a limited amount of upload bandwidth. Such attacks are not merely hypothetical,
but occur frequently in widely used P2P systems (e.g., [31, 34, 45, 39, 32, 5]). Fundamentally,
what makes the problem difficult is that with today’s networkinfrastructure, it is impossible for a
third party to verify if a specific data transfer occurred between two colluding entities.

In this paper, we propose abandwidth puzzlemechanism to make contribution-aware P2P
content distribution systems robust to such collusion attacks. More specifically, in this mechanism,
averifiercan confirm that claimed transfers of content actually occurred. For example, in content-
streaming from a distinguished server through a tree of peers (e.g., [41, 15, 13]), or in P2P systems
that incorporate a distinguished, trusted node for tracking content-transfer transactions (e.g., [44,
31, 40]), this distinguished node could additionally play the role of the verifier.

There are two key insights behind our design. First, to thosepeers (or “provers”) claiming to
have the file, the verifier presents puzzles for which the solution depends on the content of the file.
More specifically, the solution is computationally simple for a prover who has the file, but more
difficult for a prover who does not. In this respect, our puzzle design bears relationships toproofs
of data possession(e.g., [6, 22]) and similar mechanisms; we detail the similarities and differences
of our design in Section 2. Second, the verifiersimultaneouslypresents these puzzles to all peers
who currently claim to have the file, so as to make it difficult for a few peers who have the file to
quickly solve both their own puzzles and puzzles for collaborators who do not. This simultaneity
is a strategy borrowed from detectors for Sybil attacks [18,29]; again, we detail the similarities
and differences of our design in Section 2. The verifier checks the puzzle solutions and also notes
the time taken by the provers to report the solutions. Any peer whose solution is incorrect or whose
solution time is greater than a thresholdθ is a suspect for engaging in fake transactions.

Our puzzle design is relatively simple and, due to its construction using only hash functions
and pseudorandom functions, is efficient for both the verifier and for provers who do possess the
files they claim. The security analysis of our design, however, is more subtle than its design might
at first suggest. An analysis must account for any strategy bywhich adversaries might allocate
portions of each puzzle’s search space so as to optimally utilize the timeθ that each has to invest

1

and, more importantly, the file bits that each possesses. We provide (in the random oracle model)
a closed-form bound on the expected number of puzzles that a collection of adversaries can solve
in θ time (using any such strategy), as a function of the number ofhash computations that each
adversary can perform in that time and the number of file bits each possesses. For example, this
bound implies that for a file of sizen, an instance of our puzzle construction ensures that all
adversaries claiming to have a file must download an average of Ω(n/ log2 n) file bits in order to
solve their puzzles for this file in expectation. Moreover, this instance of our puzzle construction
is very efficient: It enables the verifier to construct each puzzle inα log2 n pseudorandom function
computations and two hash function computations, for some constantα > 1, and to verify each
puzzle in one comparison of hash function outputs. An honestprover must investO(nα/ log2 n)
time to solve this puzzle. We also provide a second, more refined bound on the expected number
of puzzles that a collection of adversaries can solve inθ time (again in the random oracle model).
While this bound is not a closed-form solution, it is efficiently computable and tighter, and thus
applies to smaller file sizes.

We demonstrate the benefits of our bandwidth puzzles using simulations of the Maze P2P file-
sharing system [44]. We choose Maze to guide our evaluation for two reasons. First, attacks of the
type that we seek to defend against here have been documentedin Maze [31], and so we can use
these documented attacks to inform our evaluation. Second,Maze is a type of P2P system that can
easily be adapted to use our bandwidth puzzles, owing to its structure utilizing a distinguished node
to receive reports of which peers transferred files to which others and to reward peers accordingly.
Our evaluations demonstrate that bandwidth puzzles prevent colluding attackers from benefiting
in the Maze system by either reducing the number of attacker requests satisfied by up to 95%
or by increasing the attackers’ download time by up to 200%. Also, the puzzle scheme limits the
impact of such attacks on legitimate client downloads, by providing honest peers with performance
identical to the scenario when there are no attackers in the system.

To summarize, the contributions of this paper are: (i) The development and implementation
of bandwidth puzzles (Section 4, Appendix B), a practical defense against a documented form
of attack on P2P systems; (ii) analyses of our bandwidth puzzle construction (in the random ora-
cle model) that bounds the success attainable by adversaries against it (Section 5, Appendix A);
and (iii) an evaluation of our construction using simulations of the Maze P2P file-sharing system
(Section 6).

2 Related Work

P2P and reputation systems:P2P protocols have been widely used for file distribution andmul-
timedia streaming. While P2P systems offer tremendous scalability compared to single server
systems, they suffer from the fundamental problem of managing incentives. Several works have
demonstrated the limitations of P2P protocols in the presence of selfish or malicious users and
free-riders [21, 39]. Measuring peer contributions have been suggested as mechanisms for mit-
igating these limitations (e.g., [41, 21]). Similarly, fair exchange and proof-of-service protocols
(e.g. [30, 40]) ensure that a mutually distrusting sender and receiver can engage in a P2P trans-
action (i.e., guaranteeing that the sender receives credits if and only if the receiver receives the

2

file). However these existing mechanisms cannot prevent attackers fromfreelygranting each other
credits for fake transactions. Our mechanism limits fake transactions to ensure that attackers can-
not achieve arbitrarily high rewards. Tit-for-tat contribution-awareness mechanisms such as those
used in BitTorrent [2] are evidently not vulnerable to the kinds of collusion attacks we seek to
mitigate in this paper. However, several studies (e.g, [21,35, 28]) have pointed out the need to
look beyondpairwisemechanisms such as tit-for-tat, and in particular make the case for designing
moreglobal contribution-aware mechanisms. Bandwidth puzzles serve as a basic building block
for implementing robust P2P systems with global contribution-aware mechanisms.
Client puzzles: Client puzzles (e.g., [20, 25, 4, 19, 17, 43]) force clients to demonstrate a certain
proof-of-work to a server before they can receive service. The goal of such puzzles is to throttle
the number of requests clients can issue to the server to defend against spam and denial-of-service
attacks. Our bandwidth puzzle scheme is an adaptation of this approach, in order to “throttle” the
reward that a client can receive for claimed content transfers, by tying puzzle solving to content
and issuing puzzle challenges simultaneously (see below).
Sybil attacks: Our adversary model involving colluding attackers claiming to have contributed
more resources than they actually have is similar to the notion of a Sybil attack, which Douceur [18]
suggests can be detected using simultaneous puzzle challenges. Levine et al. [29] provide a sur-
vey of known solutions to defend against Sybil attacks. These puzzles validate that each claimed
Sybil “identity” possesses a certain minimum amount of computation resources. Bandwidth puz-
zles instead validate that collaborators expend a certain amount of communication resources, by
leveraging the computational limits of each individual collaborator to force the collaborators to
distribute puzzle solving and hence the file.
Proofs of data possession (PDP) and Proofs of retrievability (POR): Proofs of data possession
(e.g., [6, 22, 7]) and proofs of retrievability (e.g., [26, 11, 38]) enable a client to verify that a
remote store has not deleted or modified data the client stored there. There are several conceptual
differences between the goals of a PDP/POR scheme and our puzzle scheme. First, PDP/POR
schemes only focus on the interaction between a single prover and verifier, and do not deal with
the case of colluding adversaries trying to claim credit forfake transactions. Second, PDP schemes
minimize the communication interaction between the proverand the verifier, without specifically
requiring that there be an asymmetry in the computation effort they expend. However, such an
asymmetry (and the ability to tune that asymmetry) is crucial for our goals: the solving cost must
be sufficiently high — even with the claimed content — to prevent one prover with the content
from solving puzzles for many others, and at the same time puzzle generation and verification
must be very efficient since the verifier must do these simultaneously for potentially many provers.
One driving consideration in PDP/POR design is that the verifier no longer possesses the file about
which it is querying. In contrast, we allow our verifier to possess the file, since the verifier can
download it or might even be its origin (e.g., in a streaming scenario), and we leverage this to yield a
design that is more efficient or flexible on certain axes than many PDP/POR designs. For example,
most PDP schemes depend on cryptographic operations involving modular exponentiations (versus
only hash functions and pseudorandom functions in our case), and existing POR constructions only
allow a prespecified limited number of challenges. Also related is the work by Golle et al. [24]
on communication enforcing signatures and storage enforcing commitment schemes. However,

3

their work provides a weaker guarantee than PDPs in that the prover expends some storage or
communication cost proportional to the message size, but not necessarily the actual data.

3 System Model and Goals

We presume a system model consisting of a designatedverifierand a collection of untrustedpeers,
also calledprovers. Any node can play the role of a verifier, provided that it can obtain the list of
peers that purport to possess certain content at a point in time, and provided that it has access to
that content (or to a peer who has the content and that it trusts). Peers transfer files between one
another1; we are not concerned with the manner by which peers choose others for downloading.
We require that peers are motivated to report to the verifier the files they claim to have downloaded
from or uploaded to others, and consequently the files that each has. The goal of our mechanism
is to enable the verifier to verify that the claimed bandwidthexpenditures to transfer those files
actually occurred.

The verifier does this by simultaneously presenting puzzlesto the peers claiming to have a
given file, and then recording the durations required by eachprover to report its solution. We
presume that the network latencies for transmitting puzzles and solutions between the verifier and
the provers are sufficiently small that they do not contribute significantly to the puzzle solving time
recorded by the verifier. On the basis of solution correctness and the puzzle-solving time that it
records and compares to a thresholdθ, the verifier generates a list of suspected colluders, i.e.,peers
suspected of not contributing the bandwidth claimed.

The puzzles presented by the verifier should have propertiestypical of puzzle schemes: (i)
Provers should be unable to precompute puzzle solutions, oruse previous puzzle solutions to gen-
erate new puzzle solutions. (ii) The verifier should incur low computational costs to generate
puzzles and check puzzle solutions, and should incur low bandwidth costs to send the puzzles
and receive the solutions. (iii) The verifier should be able to adjust the difficulty of the puzzle, as
appropriate.

Unlike previous puzzle constructions, however, our bandwidth puzzles must additionally en-
sure that for colluding provers to all solve their puzzles within timeθ, the file bits each receives
in doing so, on average (and possibly before receipt of the puzzle itself), is roughly proportional
to the size of the file. Were it not for thesimultaneityin issuing puzzles, this would be impossible
to achieve: each challenged prover could forward its puzzleto a designated solving prover who
had the file, who could solve the puzzle and return it to the challenged prover. By (ii) above, both
the puzzle and the solution would be small, implying that thebandwidth exchanged between the
challenged prover and the solving prover would be small. Simultaneous puzzle challenges pre-
clude such a strategy, since the solving prover is limited inthe amount of work it can do (hence,
the number of puzzles it can solve) in timeθ.

The above goal comes with two caveats, however. First, without network monitoring support,
it is not possible for the verifier to correctly ascertain which (if any) of multiple colluders actually

1In the interest of clarity, we will focus on a file-sharing model and present our discussion in terms of files. Note
that this can be easily applied to media streaming deployments by considering a contiguous sequence of data chunks
in the stream as a logical “file”.

4

has the file, even if it detects one or more of them as colludersvia our bandwidth puzzle scheme.
For example, one prover with the file could invest its time in solving another prover’s puzzle, even
at the expense of solving its own. As such, the verifier detects provers who collude, but cannot
ascertain who may or may not have the file. Second, to achieve the above goal, it is necessary
that the file not be substantially compressible. If it were, then colluding provers could exchange
the compressed version in lieu of the original file, and our goal could not be achieved. As such,
in the remainder of this paper we treat the file as a random file,i.e., in which each bit is selected
uniformly at random.

4 The Construction

We use “← ” to denote assignment, and “x
R

← X” to denote the selection of an element from set
X uniformly at random and its assignment tox. Concatenation is denoted by “||”.
Security parameters: There are three security parameters that play a role in our construction.
We useκ to denote the length of hash function outputs and keys to pseudorandom functions (see
below). A reasonable value today might beκ = 160. The other two security parameters are
denotedk andL, and together combine to dictate the difficulty of puzzle solving, and the costs that
the verifier and prover incur in generating and solving puzzles, respectively.
Hash functions: Our construction employs two hash functions.hash : {0, 1}κ × {1, . . . , L} ×
{0, 1}k → {0, 1}κ is one such hash function. While hash functions typically take a single string as
input, it is convenient to specifyhash as taking three inputs (which can obviously be encoded in an
unambiguous fashion as a string input to a one-input hash function such as SHA-1 [3]). In order to
prove security of our construction in Section 5, we modelhash as a random oracle [8]. The other
hash function we use isans : {0, 1}k → {0, 1}κ, though our proof does not require this to have the
properties of a random oracle; e.g., collision-resistance(e.g., see [37]) suffices.2

Pseudorandom functions:A pseudorandom function family{fK} is a family of functions param-
eterized by a secret keyK ∈ {0, 1}κ. Informally, the family has the property that it is infeasible
to distinguish between an oracle forfK whereK

R

←{0, 1}κ, and an oracle for a perfectly ran-
dom function with the same domain and range; see Goldreich etal. [23] for a formal definition.
Our construction uses two pseudorandom function families,{f 1

K : {1, . . . , L} → {0, 1}κ} and
{f 2

K : {1, . . . , k} → {1, . . . , n}}; we require that eachf 2
K be injective, and thus thatk ≤ n.

(Recall thatn is the file size in bits.) A practical example of a pseudorandom function family is
AES [1].
Construction: In our construction, a puzzle verifier generates puzzles with which to challenge a
collection of provers simultaneously. Generally we will presume that the verifier generates one
puzzle per prover, though there is no obstacle to sending multiple puzzles to each prover. Each
puzzle consists of a hash valueĥ output fromhash and, intuitively, a collection ofindex-sets
I1, . . . , IL. Each index-set is a set ofk random file indices, i.e., uniformly random samples from
{1, . . . , n}, without replacement. The verifier computesĥ as the hash of the file bits indexed by a
randomly chosen index-set, appended together in an unambiguous order. Solving the puzzle means

2Minimizing reliance on random oracles is desirable, since they are not a standard cryptographic assumption [12].

5

finding which of theL index-sets has this property and, more specifically, the string that hashes to
ĥ. Note that this requires at mostL computations ofhash for a prover who possesses the file, but
could require substantially more for a prover who is missingsome number of the file bits indexed
by the index-sets in the puzzle.

verifier prover

K1
R

←{0, 1}κ

ℓ̂
R

←{1, . . . , L}

K̂2 ← f 1
K1

(ℓ̂)
ˆstr ← file(f 2

K̂2

(1)) || . . .

. . . || file(f 2
K̂2

(k))

ĥ ← hash(K1, ℓ̂, ˆstr)
â ← ans(ˆstr)

K1,ĥ
-

measure this
durationdur

for ℓ ∈ {1, . . . , L}
K2 ← f 1

K1
(ℓ)

str ← file(f 2
K2

(1)) || . . .
. . . ||file(f 2

K2
(k))

if (hash(K1, ℓ, str) = ĥ)
a ← ans(str)
return a

a
¾

if (a 6= â ∨ dur > θ)
suspectprover

Figure 1: One bandwidth puzzle

This construction, as described, would
be inefficient in a number of ways. First,
for the verifier to transmitL index-sets of
k indices each would require computation
proportional tokL to generate the sets and
then communication costs proportional to
kL log2 n to transmit them. To reduce these
costs, the verifier generates index-sets pseu-
dorandomly; see Figure 1. First, it ran-
domly selects a keyK1 for the family f 1

and an index̂ℓ
R

←{1, . . . , L} to denote the
index-set from which the challengêh will
be generated. Second, it generates a key
K̂2 ← f 1

K1
(ℓ̂) from which it generates index-

set Iℓ̂ = {f 2
K̂2

(1), . . . , f 2
K̂2

(k)}. Note that
the verifier never needs to generate the other
L−1 index-sets, reducing its computation to
costs proportional tok alone. Simply send-
ing K1 and ĥ suffices to enable the prover
to search forℓ̂, and incurs communication
costs proportional only toκ. Becausef 1

andf 2 are pseudorandom, the prover is un-
able to predict the index-sets better than ran-
dom guessing prior to receivingK1. Another
way in which we reduce the communication
costs in practice is to have the prover return
ans(str) for the stringstr satisfyingĥ = hash(K1, ℓ̂, str)3, rather thanstr itself. As we will see,
it is generally necessary fork (and hencestr) to grow as a function ofn, whereas there is no such
need forκ (the size ofans outputs).

5 Proof of Security

In order to prove the security of our construction, we first recap the properties we assume of the
primitives we use. We assume that{f 1

K} and{f 2
K} are pseudorandom function families [23], and

thatans is a collision-resistant hash function [37]. These primitives achieve their desired properties

3IncludingK1 andℓ̂ as inputs tohash ensures that the results of one puzzle-solving process cannot be used in the
solving process of another puzzle, regardless of the file,k, andL.

6

— indistinguishability from a random function in the first case, and collision-resistance in the
second — with all but negligible probability as a function ofκ.4 As such, in the remainder of this
section, we simply assume that these properties hold, ignoring events that occur with probability
negligible inκ.

Another primitive, namelyhash, is modeled as a random oracle in our proof. Modelinghash

in this way enables us to quantify the security of our scheme as a function of the number ofhash

computations. That is, we cap the numberqhash of hash queries that anyprover can complete in
θ time, and then quantify the probability with which theprover returnsâ as a function ofqhash.
Moreover, modelinghash as a random oracle enables us to exploit the property in our proof that
one such computation provides no information about the computation ofhash on any other value.

Of course, the probability that an adversarialprover succeeds in returninĝa within θ time (i.e.,
after making at mostqhash queries tohash) also depends on the number of file bits it receives
before and during the puzzle-solving process. To model the receipt of file bits in our proof, we
also find it convenient to model aprover’s retrieval of file bits as calls to a random oraclefile :
{1, . . . , n} → {0, 1}. As discussed in Section 3, our construction requires that the file being
exchanged have sufficient empirical entropy to be incompressible, as otherwise adversaries could
“defeat” our verification by exchanging (in full) the compressed file. Consequently, we model the
file as a random string of lengthn, and track the number of file bits that an adversary retrievesprior
to returning a puzzle solution by the number of queries it makes to itsfile oracle.

5.1 A closed-form bound

In this section we present a closed-form bound for adversaries’ ability to solve puzzles:

Theorem 5.1. Let hash andfile be random oracles. ConsiderA adversaries working in collabo-
ration, each permittedqhash queries tohash, collectively permittedAqfile queries tofile, and collec-
tively challenged to solve a setP of P puzzles. For anyk ≥ log2(qhash/P + L) + 2 andδ > 0, the
expected number of puzzles that these adversaries can solvecollectively is at most

AP 2(1 + δ)kqfile

n(k − log2(qhash/P + L) − 1)
+

AP

L
+ Pn

(

eδ

(1 + δ)1+δ

)PkL/n

(1)

To see an example of Theorem 5.1 when, say, sending one puzzleto each prover andqhash = L,
consider settingL = nα/k for someα > 1 andk = α log2 n, which is at leastlog2(qhash/P +L)+2
(a requirement of Theorem 5.1) forn ≥ 256. Then, by instantiating (1) with these values and
simplifying, the number of puzzles thatA adversaries can solve in expectation, out of theP = A
that they receive, is at most

α(1 + δ)

(

A3

log2 A

) (

log2 n

n

)

qfile + A2

(

α log2 n

nα

)

+ An

(

eδ

(1 + δ)1+δ

)Anα−1

4A function g(·) is negligible if for any positive polynomialp(·), there is aκ0 such thatg(κ) ≤ 1/p(κ) for all
κ ≥ κ0.

7

for n ≥ 256. TreatingA andqfile as constants, note that each of the three terms in this sum goes to
zero asn → ∞. Moreover, in order for theA adversaries to solve theirA puzzles in expectation,
we can solve forqfile:

qfile ≥
1

α(1 + δ)

(

log2 A

A2

) (

n

log2 n

)

(

1 − A

(

α log2 n

nα

)

− n

(

eδ

(1 + δ)1+δ

)Anα−1
)

= Ω

(

n

log2 n

)

Expt(A):
file

R

← Func({1, . . . , n} → {0, 1})

hash
R

← Func({0, 1}κ × {1, . . . , L} × {0, 1}k → {0, 1}κ)

K1
R

←{0, 1}κ

ℓ̂
R

←{1, . . . , L}

K̂2 ← f 1
K1

(ℓ̂)
ˆstr ← file(f 2

K̂2

(1))|| . . . ||file(f 2
K̂2

(k))

ĥ ← hash(K1, ℓ̂, ˆstr)
â ← ans(ˆstr)

a ←Afile,hash(K1, ĥ)
if (a = â)
return 1

return 0

Figure 2: Experiment for Theorem 5.2

Though we defer the full proof of
Theorem 5.1 to Appendix A, we next
present one part of that proof, as our
tighter bound in Section 5.2 builds
from it. This result is stated in terms
of the experiment in Figure 2 for a
single adversaryA. Aside from the
random oraclesfile andhash, this ex-
periment exactly tracks theverifier’s
actions in the protocol in Figure 1.
In the experiment, letFunc(Dom →
Rng) denote the set of all functions
with domainDom and rangeRng.

In the proofs of Theorems 5.1
and 5.2, a property of a puzzle that in-
fluences how easy it is for adversaries
to solve is how “spread out” the in-
dices are that comprise its index-sets. Thus, we define the eventSpread(I, s), whereI is a multiset
(a set allowing repetition of elements) of indices from{1, . . . , n} ands is an integer, to denote that
no i ∈ {1, . . . , n} appearss or more times inI.

Theorem 5.2.Letfile andhash be random oracles, and letA be an adversary makingqfile queries
to file andqhash queries tohash. For anys ≥ 1 and anyk ≥ log2(qhash + L) + 2,

P [Expt(A) = 1 | Spread(I, s)] ≤
1

L

(

sqfile

k − log2(qhash + L) − 1
+ 1

)

whereI is the multisetI =
⋃L

ℓ=1 Iℓ andIℓ is the setIℓ = {f 2
K2

(1), . . . , f 2
K2

(k)} for K2 = f 1
K1

(ℓ).

Proof.

P [Expt(A) = 1 | Spread (I, s)] =

L
∑

ℓ=1

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ Spread (I, s)
]

P
[

ℓ̂ = ℓ | Spread (I, s)
]

=
1

L

L
∑

ℓ=1

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ Spread (I, s)
]

(2)

8

We now focus on boundingP
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ Spread(I, s)
]

from above. Letconfirm be

the event that theA performs a query tohash that returns the challenge valueĥ, within theqhash

oracle queries available to it. Then,

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ Spread (I, s)
]

= P
[

Expt(A) = 1 | confirm ∧ ℓ̂ = ℓ ∧ Spread (I, s)
]

P
[

confirm | ℓ̂ = ℓ ∧ Spread (I, s)
]

+

P
[

Expt(A) = 1 | ¬confirm ∧ ℓ̂ = ℓ ∧ Spread (I, s)
]

P
[

¬confirm | ℓ̂ = ℓ ∧ Spread (I, s)
]

(3)

Let yℓ be a random variable denoting the number of queries of the form hash(K1, ℓ, ∗) that A
makes in an execution. Letwℓi be a binary random variable such thatwℓi = 1 if i ∈ Iℓ andA
queriesfile(i), andwℓi = 0 otherwise. Letwℓ =

∑n
i=1 wℓi. We now take

P
[

Expt(A) = 1 | confirm ∧ ℓ̂ = ℓ ∧ Spread (I, s)
]

≤ 1 (4)

P
[

confirm | ℓ̂ = ℓ ∧ Spread (I, s)
]

≤
yℓ

2k−wℓ
(5)

P
[

Expt(A) = 1 | ¬confirm ∧ ℓ̂ = ℓ ∧ Spread (I, s)
]

≤
1

2k−wℓ − yℓ
(6)

P
[

¬confirm | ℓ̂ = ℓ ∧ Spread (I, s)
]

≤
2k−wℓ − yℓ

2k−wℓ
(7)

(5) and (7) follow fromA queryinghash(K1, ℓ, str) for only yℓ valuesstr of the2k−wℓ such possi-
ble values for thek−wℓ bits it did not retrieve fromfile. In the event¬confirm, the probability that
A produceŝa is simply that with which it guesses correctly from the remaining2k−wℓ − yℓ values
and submits thisstr to ans, leading to (6). Plugging these into (3), we get

P
[

Expt(A) = 1 | ℓ̂ = ℓ ∧ Spread (I, s)
]

≤ min

{

yℓ + 1

2k−wℓ
, 1

}

and then plugging this into (2), we get

P [Expt(A) = 1 | Spread (I, s)] ≤
1

L

L
∑

ℓ=1

min

{

yℓ + 1

2k−wℓ
, 1

}

=
1

L2k

L
∑

ℓ=1

min
{

(yℓ + 1)2wℓ, 2k
}

(8)
Consequently, we now focus on bounding

L
∑

ℓ=1

min
{

y′
ℓ2

wℓ, 2k
}

(9)

from above wherey′
ℓ = yℓ + 1, subject to the constraints

L
∑

ℓ=1

y′
ℓ ≤ qhash + L (10)

L
∑

ℓ=1

wℓ ≤ sqfile (11)

9

where (10) follows from
∑L

ℓ=1 yℓ ≤ qhash. To do so, we first note that for any fixedw1, . . . , wL, a
choice ofy′

1, . . . , y
′
L that maximizes (9) is one that maximizesy′

ℓ for the largest valueswℓ. That is,
if we orderw1, . . . , wL in nonincreasing order, then settingy′

ℓ = 2k−wℓ for ℓ = 1, 2, . . . , m where

m
∑

ℓ=1

2k−wℓ ≤ qhash + L <
m+1
∑

ℓ=1

2k−wℓ (12)

and settingy′
m+1 = qhash + L−

∑m
ℓ=1 2k−wℓ maximizes (9), and the maximum value for (9) is then

L
∑

ℓ=1

min
{

y′
ℓ2

wℓ , 2k
}

< (m + 1)2k (13)

Consequently, to obtain bounds on the maximum value of (9) for a givenqfile andqhash, it suf-
fices to findw1, . . . , wL so as to maximizem subject to (11) and (12). For any fixedm,

∑m
ℓ=1 2−wℓ

is minimized by settingwℓ = ⌈sqfile/m⌉ for 1 ≤ ℓ ≤ (sqfile mod m) andwℓ = ⌊sqfile/m⌋ for
(sqfile mod m) + 1 ≤ ℓ ≤ m. As such, the maximum value ofm is

arg min
m>0

{

qhash + L − m2k−(sqfile/m) if m | sqfile

qhash + L − (2m − (sqfile mod m))2k−⌈sqfile/m⌉ otherwise

If the maximum suchm dividessqfile, thenm2k−(sqfile/m) ≤ qhash + L implies m ≤ sqfile/(k −
log2(qhash + L)), and otherwisem ≤ sqfile/(k − log2(qhash + L) − 1). Combining this with (13),
we get that

L
∑

ℓ=1

min
{

y′
ℓ2

wℓ , 2k
}

< (m + 1)2k ≤

(

sqfile

k − log2(qhash + L) − 1
+ 1

)

2k

and so the result follows by combining this with (8).

5.2 A tighter, computable bound

We now provide an efficiently computable (albeit non-closed-form) bound that can be used in
place of that in Theorem 5.1. We first revisit the proof of Theorem 5.2 to get a bound for
P [Expt(A) = 1]. First, note that (4)–(8) do not depend onSpread (I, s), and thus we can re-
state (8) as:

P [Expt(A) = 1] ≤
1

L2k

L
∑

ℓ=1

min
{

(yℓ + 1)2wℓ, 2k
}

(14)

Now, define a binary variabledi that takes the value 1 ifA makes a query to thefile for index
i and 0 otherwise. Also, letoi denote the number of times indexi appears inI. As in the proof of
Theorem 5.2, we focus on bounding (9) from above, subject to the constraints

L
∑

ℓ=1

y′
ℓ ≤ qhash + L (15)

L
∑

ℓ=1

wℓ =
n

∑

i=1

oidi (16)

10

The only difference between the analysis here and the analysis of Theorem 5.2 is between (11)
and (16). Specifically, we count

∑L
ℓ=1 wℓ exactly in terms ofoi anddi instead of using the (loose)

upper boundsqfile. The rest of the analysis follows identically except that wereplace the termsqfile

with
∑n

i=1 oidi. With this, we now have

P [Expt(A) = 1] ≤
1

L

(∑n
i oidi

k − log2(qhash + L) − 1
+ 1

)

(17)

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

File size (n) in bits

F
ra

ct
io

n
of

 p
uz

zl
es

 s
ol

ve
d

in
 e

xp
ec

ta
tio

n

A = 5, qfile/n = 0.001

Analytical (Theorem 5.1)
LP−based (Section 5.2)

Figure 3: Example for bounds of Section 5

We can now extend the result in (17) to
the scenario of Theorem 5.1, whereA adver-
saries are working in collaboration, each per-
mitted qhash queries tohash, collectively per-
mitted Aqfile queries tofile, and collectively
challenged to solve a setP of P puzzles. As
in the proof of Theorem 5.1 (see Appendix A),
index the adversaries by1, . . . , A and the puz-
zles by1, . . . , P . Let Sap be a binary random
variable such thatSap = 1 if adversarya pro-
duces the solution for puzzlep, andSap = 0
otherwise. LettingS =

∑A
a=1

∑P
p=1 Sap, we

want to boundE [S] from above.
Now, define a binary variabledai that takes

the value 1 if adversarya makes a query to the
file for indexi and 0 otherwise. Also, letopi denote the number of times indexi appears in puzzle
p. Let qap

hash
denote the number of queries of the formhash(Kp

1 , ∗, ∗) made by adversarya, and let
qa
file

denote the number of queries by adversarya to file. Under the constraints

qa
file

=

n
∑

i=1

dai for 1 ≤ a ≤ A

(18)
A

∑

a=1

qa
file

≤ Aqfile (19)

P
∑

p=1

qap
hash

≤ qhash for 1 ≤ a ≤ A

(20)

we now seek to bound
A

∑

a=1

P
∑

p=1

E [Sap] =
A

∑

a=1

P
∑

p=1

1

L

(∑n
i opidai

k − log2(q
ap
hash

+ L) − 1
+ 1

)

≤
A

∑

a=1

P
∑

p=1

1

L

(∑n
i opidai

k − log2(qhash + L) − 1
+ 1

)

(21)
The second equality just applies (17) to each puzzle-adversary combination, and the inequality
follows since we are only decreasing the denominator by using qhash instead ofqap

hash
.

Now, consider the optimization problem defined by the objective function (21) subject to the
constraints (18)–(20). For any fixedP, this optimization problem is an integer linear program
with binary variablesdai. While it is hard to solve such large integer linear programs, relaxing
the integer constraints on the variables (and bounding themto be fractional variables in the range
[0, 1]) can only increase the optimum value and renders the problemefficiently solvable. Thus, by
solving this linear program we get an upper bound on the expected number of puzzles solved.

11

An example of the benefit of this approach to bounding the expected number of puzzles that
A adversaries can together solve, versus the closed-form bound offered in Theorem 5.1, is shown
in Figure 3. This figure plots the bound of Theorem 5.1 and the bound computed via the method
detailed in this section, for parameter settingsα = 1.5, k = α log2 n, L = nα/ log2 n, qfile/n =
0.001, qhash = L, andA = P = 5. As we can see, the bound in this section achieves roughly a
factor of 4–5 improvement over the bound of Theorem 5.1 for these choices of parameters.

6 Benefits in a P2P File-Sharing System

We evaluate the practical system impact of the bandwidth puzzle scheme in the context of the
Maze [44, 31] P2P file sharing system. Our choice of Maze was motivated by two factors. First,
the Maze system uses a centralized authority for auditing peer contributions. This is a natural
choice to serve as the verifier in charge of issuing and verifying puzzles. Second, the Maze system
incentivizes peers to upload content based on a “points” system that we describe briefly below.
Such incentive mechanisms are important for the viability of P2P systems to encourage uploaders.
However, a subsequent measurement study demonstrated a wide range of collusion attacks [31].
Our goal is to minimize the impact of collusion in such systems using bandwidth puzzles.
Maze system model:The Maze system has a centralized server to which every peer authenticates
and actively reports the set of files it possesses. In addition to providing query and search func-
tions, the server maintains a “points system”. Peers consume points while downloading files and
earn points while uploading files. Uploads add more points than downloads consume: each peer
earns 1.5 points for every 1MB of content uploaded, but consumes less than 1 point per MB of
download. (The actual number of points consumed is a function of file size, but in our evaluation
we use a simplified model assuming a fixed consumption rate of 1point per MB). New users are
bootstrapped with a prespecified number of points allowing some initial “free” downloads before
they can contribute. The system incentivizes peers to upload content by prioritizing download re-
quests based on the number of points the requesting peer currently has. (Specifically, requests are
queued with priorityrqsttime − 3 log ρ, whereρ is the current number of points the requester has.)
In addition, the system rate limits the upload rate to peers with less than512 points.
Adding bandwidth puzzles to Maze: In the traditional Maze system, upon receiving a report of
a completed file exchange, the server subtracts points from the downloader and credits points to
the uploader. With a system augmented with bandwidth puzzles, handling transactions is slightly
different. The server debits points from the downloader’s account as before. However, it does
not immediately credit the uploader for the transaction. Instead, it records apending transaction
identified by the 4-tuple:〈uploader , downloader , filename, credits〉.

The server sends puzzle challenges, in the role of the verifier. We refer to the time between
puzzle challenges as apuzzle epoch, and assume that the duration of a puzzle epoch is significantly
larger than the per-puzzle timeoutθ. At the start of each puzzle epoch, for each file for which
an exchange was reported during the previous puzzle epoch, the server retrieves the set of all
peers that currently claim to have the file and generates puzzles for these clients. One subtle issue
here is in setting the puzzle timeout for each client: some clients might receive multiple puzzles
during a single puzzle epoch since they might claim to possess more than one file. Thus, the

12

timeout for a puzzle should depend on the total number of puzzles sent to that client in this epoch.
Specifically, for clientx, thep-th puzzle is issued with thresholdθp = (p − 1) × θ, whereθ is the
per-puzzle duration threshold. (We assume that legitimateclients prioritize their received puzzles
based on the timeout indicated in the puzzle descriptor.) Onreceiving a response for a puzzle
sent tox for file filename, the server verifies if the answer is correct and if the response came
within the puzzle-specific timeout. If so, the servervalidatesall pending transactions of the form
〈uploader = ∗, x, filename, credits = ∗〉, thereby crediting the uploaders in these transactions
with the corresponding credits.
Attack Model: We specify attacks by acollusion graph. A collusion graph is a directed graph,
where each vertex is a malicious peer (either an actual or Sybil node). An edgex → y represents
an fake uploaderrelationship wherein peerx reports “fake” transactions to the server on behalf of
peery. In other words,x requests the server to credity for uploading a file, even thoughy does not
actually spend any bandwidth for the transfer. In our model,each suchx will periodically report
fake transactions to the server in addition to its actual (legitimate) transactions.

The notion of a collusion graph is general enough to capture different collusion patterns. For
example, in the Maze measurement study [31], the authors findthat most collusion patterns com-
prise two or three mutually colluding nodes. This is represented as a directedclique. Other forms
of observed collusion patterns includestar topologies (similar to a Sybil attack). In astar topology,
the only role of the Sybil identities is to grant points to their master node and they do not generate
any real file requests. In our evaluation, we focus on two types of graphs:cliquesandstars.
Simulation Framework: We implemented an event-driven simulator (three thousand lines of C++
code) to model file exchanges, transaction reports, and puzzle challenges. We make some simpli-
fying assumptions to make our simulation framework scalable and tractable. In particular, we do
not model network congestion effects, and instead assume that the only bandwidth bottleneck is
the upstream bandwidth bottleneck of the peers [9]. Also, weassume that all files are split into
1MB chunks, and that all file exchanges and transaction reports happen at the granularity (or an
integral multiple) of this chunk size. To simplify the request queue dynamics, each peer queues
file transfer requests based on the downloader’s points (using the same prioritization as in Maze)
and serves one at a time, without preemption.

Our simulation framework differs from the actual Maze system in a few ways. First, we assume
that peers request files only via the server whereas in the Maze system, peers can also “browse”
and request their “friends”’ files. This assumption does notimpact our results; it merely represents
an alternative file request pattern. Second, the Maze systemassumes a single uploader for each
file exchange. In contrast, we assume that files are split intochunks (similar to BitTorrent) and
each peer can request different chunks of the same file from multiple available uploaders. Again,
this has no impact on the strength of the collusion attacks, since we assume that the attackers’ fake
transactions deviate from this assumption (fake transactions credit a single colluding partner with
the entire upload). Third, Maze serves requests from persistent “free-riders” (clients with scores
lower than a prespecified threshold) with lower upstream bandwidth compared to other requests.
We do not model this, to avoid undesirable effects arising from the fact that each peer uploads to
one peer at a time. Instead, we evaluate two configurations: one in which peers allow free-riders
(but give their requests very low priority), and another in which peers deny service to free-riders.

13

No Attack Clique 100,10 Clique 200,20 Star 1000,19
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(a) Legitimate clients

Clique 100,10 Clique 200,20 Star 1000,19
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
um

be
r

of
 r

eq
ue

st
s

sa
tis

fie
d

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(b) Attackers

Figure 4: Number of requests satisfied. Each bar represents one of four Maze configurations. We
can either “Allow” or “Deny” free-riders and can choose to implement/not implement bandwidth
puzzles. Each cluster represents a specific attack configuration.

Each of our simulations runs for105 units of simulation time where each unit of simulation
time corresponds to 100ms of real time. There are 100 files shared with file request popularity
following a Zipf distribution. The simulation consists of 1000 legitimate clients. Each legitimate
client chooses an arrival time uniformly at random in[0, 105] and has an average lifetime of20, 000
units. Each client is bootstrapped on arrival with an initial set of files. Attackers arrive at time
20, 000 and persist until the end of the simulation. For each result,we repeat the simulation over 5
random initial seeds and present the averages across the multiple runs.

To model attackers’ responses to puzzle challenges, we assume that a puzzle sent to a peer who
does not have the file (or a fake peer) is solved with a fixed probability 0.1. We specify attacks
by a graph, e.g., Clique(100,10) denotes that there are 100 attackers organized in colluding cliques
each of size 10. Similarly, Star(1000,19) implies that there are 1000 attackers in total, organized in
50 star graphs each with 19 leaf nodes representing the fake (Sybil) identities. In our experiments,
we evaluate three attack scenarios: Clique(100,10), Clique(200,20), and Star(1000,19). We focus
on collusions of moderate size since the Maze measurement study [31] found that most collusion
patterns involved a small number of attackers.5

Results:We focus on two metrics in our simulations: number of requests satisfied and the average
request completion time. In each case, we measure the metricfor both legitimate clients and for
attackers. Attackers impact the performance of legitimateclients in two ways. First, each attacker
request served decreases the total bandwidth available to legitimate client requests. Second, at-
tackers can get better, faster service by boosting their points via fake transactions. This means
that requests from legitimate clients may end up with lower priority. The goal of the bandwidth
puzzle scheme in the context of Maze is to ensure that attackers do not degrade the performance of
legitimate clients and attackers do not receive undue advantage from fake transactions.

Figure 4(a) shows the number of legitimate clients’ requests satisfied. Bandwidth puzzles
boost the performance by 11-70%. The benefit is slightly better when free-rider requests are not
serviced. Also, across Clique(100,10) and Clique(200,20), as the number of attackers increases,

5Additionally, in some content-distribution systems (e.g., tree-based streaming), there are bounds on the number
of peers that any peer can interact with, thus inherently limiting the size of collusion attacks that can be launched.

14

No Attack Clique 100,10 Clique 200,20 Star 1000,19
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e

Allow, NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(a) Legitimate clients

Clique 100,10 Clique 200,20 Star 1000,19
0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
ve

ra
ge

 fi
le

 d
ow

nl
oa

d
tim

e

Allow NoPuzzle
Allow, WithPuzzle
Deny, NoPuzzle
Deny, WithPuzzle

(b) Attackers
Figure 5: Mean file download time

the benefit provided by the puzzle mechanism increases two-fold. In Figure 4(b) we see that
bandwidth puzzles decrease the total number of attackers’ requests satisfied by 50-75% in the case
when free-riders are allowed, and by 60-95% when free-riderrequests are denied.6

Figures 5(a) and 5(b) show the average completion time for legitimate and attacker requests.
Bandwidth puzzles improve the mean download time of legitimate client requests by 12-50%. Fig-
ure 5(b) shows that in the allow free-rider configuration, the mean download time for attacker
requests increases by 60-200%. Surprisingly, for some denyfree-rider configurations, the average
attacker completion time is lower when bandwidth puzzles are used. This anomaly can be ex-
plained by referring back to Figure 4(b) and the Maze system design. Recall that in Maze, each
peer is given some initial credits that it can use to downloadfiles. In the case of the deny free-rider
configuration (with bandwidth puzzles), the only attacker requests satisfied correspond to these
initial free downloads. Since attackers have credits initially, these requests see smaller queueing
delays.

For reference, we also show the results when there are no attackers in Figures 4(a) and 5(a).
When bandwidth puzzles are used, the number of legitimate client requests satisfied and the mean
download time with and without the attack are almost identical. This shows that attackers have
little or no impact on the performance of legitimate clientsin a system with bandwidth puzzles.

7 Discussion

Choosingθ: In a real-world deployment, provers may have heterogeneouscomputational capa-
bilities. Thus,θ should be set such that the slowest machine can solve bandwidth puzzle within
θ time. However, choosing too large aθ (or alternatively a determined adversary running a large
server farm for solving puzzles) opens the possibility of allowing one adversary on a fast machine
to solve multiple puzzles. This is not a specific limitation of our bandwidth puzzle scheme; this
is a broader limitation of client puzzle schemes. Puzzle schemes are most effective when attack-
ers have difficulty in gaining access to vast computing resources and when the disparity between

6It may appear anomalous that Star(1000,19) has fewer attacker requests satisfied even though the total number of
attackers is greater. However, recall that the Star(1000,19) attack has only 50 active nodes generating file requests.
The fake identities are passive peers and do not generate anyrequests.

15

verifiers is not too large. Memory-bound puzzles [4, 19, 17] can help mitigate moderate levels of
heterogeneity. We plan to explore if our bandwidth puzzle scheme can be extended to possess such
properties.
Ease of deployment:Our experience with extending a Maze-like system to incorporate bandwidth
puzzles (Section 6) required only a few hundred lines of additional code to the server and client im-
plementations. This suggests that the overhead to modify systems that have a distinguished trusted
node and have access to the content (e.g., [41, 15, 13, 44, 31,40]) is minimal. For scenarios in
which it is not feasible to have a central authority, we plan to explore more distributed architectures
(e.g., [35, 42]) in future work.

8 Conclusions

Peer-to-peer systems have long been plagued by the problem of malicious or selfish adversaries
exploiting weaknesses in the underlying incentive and reputation mechanisms. In particular, it has
been observed that a group of colluding adversaries can implement a “ballot stuffing” attack (i.e.,
by reporting having received service from one another without spending any actual resources) to
enhance their reputations to get preferential service.

Our work provides a simple, yet powerful primitive to thwartsuch collusion attacks in P2P sys-
tems. It is based on the key insight of simultaneously challenging the adversaries withbandwidth
puzzlesto demonstrate that the purported data transfers actually took place. We provide a security
analysis of our scheme in the random oracle model (both a closed-form and a tighter, non-closed-
form bound). We also demonstrate the practical impact of ourscheme in the context of a P2P
file-sharing system via simulation experiments. Our experiments demonstrate that the bandwidth
puzzles prevent colluding attackers from gaining undue advantage via ballot stuffing attacks and
from impacting the performance of honest peers.

References
[1] Advanced encryption standard. http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf.

[2] Bittorrent. http://www.bittorrent.com.

[3] Secure hash standard.http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[4] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-bound functions.ACM Trans-
actions on Internet Technology, 5:299–327, 2005.

[5] E. Adar and B. A. Huberman. Free riding on Gnutella.First Monday, 5, 2000.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data possession
at untrusted stores. InProc. of ACM CCS, 2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and Efficient Provable Data Possession. IACR
eArchive 2008/114 at http://eprint.iacr.org/2008/114.pdf, 2008.

[8] M. Bellare and P. Rogaway. Random oracles are practical:A paradigm for designing efficient protocols. In
Proceedings of the 1st ACM Conference on Computer and Communications Security, pages 62–73, Nov. 1993.

16

[9] A. Bharambe, C. Herley, and V. Padmanabhan. Analyzing and improving a BitTorrent network’s performance
mechanisms. InProceedings of IEEE INFOCOM, 2006.

[10] R. Bhattacharjee and A. Goel. Avoiding Ballot Stuffing in eBay-like Reputation Systems. InProc. of ACM
SIGCOMM P2P-ECON, 2005.

[11] K. Bowers, A. Juels, and A. Oprea. Proofs of Retrievability: Theory and Implementation. IACR eArchive
2008/175 at http://eprint.iacr.org/2008/175.pdf, 2008.

[12] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. InProceedings of the 30th
ACM Symposium on Theory of Computing, pages 209–218, May 1998.

[13] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. SplitStream: High-bandwidth
multicast in a cooperative environment. InProc. of ACM SOSP, 2003.

[14] K. Cho, K. Fukuda, and H. Esaki. The impact and implications of the growth in residential user-to-user traffic.
In Proc. ACM SIGCOMM, 2006.

[15] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. InProc. of ACM SIGMETRICS, 2000.

[16] C. Dellarocas. Immunizing online reputation reporting systems against unfair ratings and discriminatory behav-
ior. In Proceedings of the ACM Conference on Electronic Commerce, 2000.

[17] S. Doshi, F. Monrose, and A. Rubin. Efficient memory bound puzzles using pattern databases. InProceedings
of the International Conference on Applied Cryptography and Network Security, 2006.

[18] J. Douceur. The Sybil attack. InProceedings of the 1st International Workshop on Peer-to-Peer Systems, Mar.
2002.

[19] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam. InProceedings of
CRYPTO 2003, Aug. 2003.

[20] C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. InAdvances in Cryptology – CRYPTO
’92 (Lecture Notes in Computer Science 740), pages 139–147, 1993.

[21] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust Incentive Techniques for Peer-to-Peer Networks. InProc.
of ACM E-Commerce Conference, 2004.

[22] D. L. G. Filho and P. S. L. M. Barreto. Demonstrating datapossession and uncheatable data transfer. IACR
eArchive 2006/150 athttp://eprint.iacr.org/2006/150.pdf, 2006.

[23] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.Journal of the ACM, 33(4):792–
807, 1984.

[24] P. Golle, S. Jarecki, and I. Mironov. Cryptographic primitives enforcing communication and storage complexity.
In Proc. of Financial Cryptography, 2002.

[25] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connection depletion attacks. In
Proceedings of the 6th ISOC Network and Distributed System Security Symposium, Feb. 1999.

[26] A. Juels and B. S. K. Jr. PORs: Proofs of retrievability for large files. InProceedings of the 14th ACM Conference
on Computer and Communications Security, Oct. 2007.

[27] K. Kong and D. Ghosal. Mitigating server-side congestion in the Internet through pseudoserving.IEEE Trans-
actions on Networking, 7(4):530–545, Aug. 1999.

[28] K. Lai, M. Feldman, I. Stoica, and J. Chuang. Incentivesfor cooperation in peer-to-peer networks. InProc. of
Workshop on Economics of Peer-to-Peer Systems, 2004.

[29] B. N. Levine, C. Shields, and N. B. Margolin. A survey of solutions to the sybil attack. Technical Report
2006-052, University of Massachusetts Amherst, Oct. 2006.

17

[30] J. Li and X. Kang. Proof of service in a hybrid P2P environment. InProc. of ISPA Workshops, 2005.

[31] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. Anempirical study of collusion behavior in the
Maze P2P file-sharing system. InProceedings of the 2007 International Conference on Distributed Computting
Systems, June 2007.

[32] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting BitTorrent for fun (but not profit). InProceedings
of the Fifth International Workshop on Peer-to-Peer Systems, Feb. 2006.

[33] M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Probabilistic Analysis.
Cambridge University Press, 2005.

[34] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, andA. Venkataramani. Do incentives build robustness in
BitTorrent? InProceedings of the 4th USENIX Symposium on Networked Systems Design and Implementation,
Apr. 2007.

[35] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson.One hop reputations for peer to peer file sharing
workloads. InProceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation,
Apr. 2008.

[36] D. Purandare and R. Guha. BEAM: An Efficient Framework for Media Streaming. InProc. of IEEE LCN, 2006.

[37] P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations
for preimage resistance, second-preimage resistance, andcollision-resistance. InFast Software Encryption, 11th
International Workshop, FSE 2004 (Lecture Notes in Computer Science 3017), pages 371–388, 2004.

[38] H. Shacham and B. Waters. Compact Proofs of Retrievability. IACR eArchive 2008/073 at
http://eprint.iacr.org/2008/073.pdf, 2008.

[39] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent networks with the large view exploit.
In Proc. of IPTPS, 2007.

[40] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion: Cooperative Content Distribution with Robust
Incentives. InProc. of USENIX ATC, 2007.

[41] Y. Sung, M. Bishop, and S. Rao. Enabling Contribution Awareness in an Overlay Broadcasting System. InProc.
ACM SIGCOMM, 2006.

[42] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. KARMA: a secure economic framework for P2P resource
sharing. InP2P Econ, 2003.

[43] X. Wang and M. K. Reiter. Defending against denial-of-service attacks with puzzle auctions. InProceedings of
the 2003 IEEE Symposium on Security and Privacy, May 2003.

[44] M. Yang, H. Chen, B. Y. Zhao, Y. Dai, and Z. Zhang. Deployment of a Large-scale Peer-to-Peer Social Network.
In Proc. of WORLDS, 2004.

[45] M. Yang, Z. Zhang, X. Li, and Y. Dai. An Empirical Study ofFree-Riding Behavior in the Maze P2P File-Sharing
System. InProc. of IPTPS, 2005.

A Proof of Theorem 5.1

Consider a setP of P puzzles (|P| = P), and let puzzlep, 1 ≤ p ≤ P , be denoted by〈Kp
1 , ĥ

p〉.
Define setsIp

ℓ = {f 2
Kp

2

(1), . . . , f 2
Kp

2

(k)} for Kp
2 = f 1

Kp
1

(ℓ); multisetsIp =
⋃L

ℓ=1 Ip
ℓ ; and multiset

IP =
⋃P

p=1 Ip. Recalling the definition ofSpread(IP , s) from Section 5.1, we have:

18

Lemma A.1. For any setP of P puzzles and anyδ > 0,

P

[

¬Spread

(

IP , (1 + δ)
PkL

n

)]

≤ n

(

eδ

(1 + δ)1+δ

)PkL/n

Proof. Let bp
ℓ,i = 1 if i ∈ Ip

ℓ andbp
ℓ,i = 0 otherwise. So, the number of occurrencesci of i in IP is

ci =
∑P

p=1

∑L
ℓ=1 bp

ℓ,i. Then,

E [ci] =

P
∑

p=1

L
∑

ℓ=1

E
[

bp
ℓ,i

]

=

P
∑

p=1

L
∑

ℓ=1

P
[

bp
ℓ,i = 1

]

=

P
∑

p=1

L
∑

ℓ=1

k

n
=

PkL

n

Now, using Chernoff bounds (e.g., see [33, Theorem 4.4]),

P [ci ≥ (1 + δ)E [ci]] <

(

eδ

(1 + δ)1+δ

)E[ci]

=

(

eδ

(1 + δ)1+δ

)PkL/n

and so

P
[

¬Spread
(

IP , (1 + δ)E [ci]
)]

= P

[

n
∨

i=1

(ci ≥ (1 + δ)E [ci])

]

≤

n
∑

i=1

P [ci ≥ (1 + δ)E [ci]] ≤ n

(

eδ

(1 + δ)1+δ

)PkL/n

The significance of Lemma A.1 is that it limits the number of index-sets for which a file bit
obtained by an adversary can be useful. That is, any index theadversary queries offile is contained
in only fewer than(1 + δ)PkL

n
index-sets, with probability specified in Lemma A.1.

Proof of Theorem 5.1.Index the adversaries by1, . . . , A and the puzzles by1, . . . , P . Let Sap be
a binary random variable such thatSap = 1 if adversarya produces the solution for puzzlep, and
Sap = 0 otherwise. LettingS =

∑A
a=1

∑P
p=1 Sap, we want to boundE [S] from above. For any

δ > 0 ands = (1 + δ)PkL
n

,

E [S] = E
[

S | Spread(IP , s)
]

P
[

Spread(IP , s)
]

+ E
[

S | ¬Spread(IP , s)
]

P
[

¬Spread(IP , s)
]

≤ E
[

S | Spread(IP , s)
]

+ Pn

(

eδ

(1 + δ)1+δ

)PkL/n

(22)

The second term is obtained by taking

E
[

S | ¬Spread(IP , s)
]

≤ P and P
[

¬Spread(IP , s)
]

≤ n

(

eδ

(1 + δ)1+δ

)PkL/n

with the latter resulting from Lemma A.1.

19

Let qap
hash

denote the number of queries of the formhash(Kp
1 , ∗, ∗) made by adversarya, and let

qa
file

denote the number of queries by adversarya to file. Under the constraints

A
∑

a=1

qa
file

≤ Aqfile

P
∑

p=1

qap
hash

≤ qhash for 1 ≤ a ≤ A

we now seek to bound

E
[

S | Spread(IP , s)
]

=
A

∑

a=1

P
∑

p=1

P
[

Sap = 1 | Spread(IP , s)
]

≤

A
∑

a=1

P
∑

p=1

1

L

(

sqa
file

k − log2(q
ap
hash

+ L) − 1
+ 1

)

(23)

=
1

L

(

A
∑

a=1

sqa
file

P
∑

p=1

1

k − log2(q
ap
hash

+ L) − 1

)

+
AP

L
(24)

where (23) follows from Theorem 5.2 and the fact thatSpread(IP , s) ⇒ Spread(Ip, s). In order to
bound this, we first focus on

P
∑

p=1

1

k − log2(q
ap
hash

+ L) − 1
(25)

Using the technique of LaGrangian multipliers, define

Λ(qa1
hash

, . . . , qaP
hash

, λ) =

(

P
∑

p=1

1

k − log2(q
ap
hash

+ L) − 1

)

+ λ

(

P
∑

p=1

qap
hash

− qhash

)

Since setting∂Λ/∂qap
hash

= 0 yields an identical constraint for each1 ≤ p ≤ P , the summation (25)
is maximized whenqap

hash
= qap′

hash
for any1 ≤ p, p′ ≤ P , i.e.,qap

hash
= qhash/P for each1 ≤ p ≤ P .

So, the maximum value of (25) isP/(k − log2(qhash/P + L) − 1) and the maximum value of (24)
is

AP

L

(

sqfile

k − log2(qhash/P + L) − 1
+ 1

)

Plugging this into (22) gives the result.

B Microbenchmarks

We implement the puzzle generation, verification, and puzzle solution algorithms in C++ using the
OpenSSL libray SHA and AES implementations for hash and pseudorandom functions, respec-
tively. We analyze performance on various node configurations: pc600 (600MHz Intel Pentium III
“Coppermine” processor, 256MB PC100 ECC SDRAM), pc2000 (2.0 GHz Pentium IV processor,

20

1 2 3 4 5 6 7 8 9 10

x 10
4

100

150

200

250

300

350

400

450

Number of index sets (L)

P
uz

zl
e

ge
ne

ra
tio

n
tim

e
(in

 m
ic

ro
se

co
nd

s)
Fixed index set size (k) = 256, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(a) Generation

1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of index sets (L)

P
uz

zl
e

ve
rif

ic
at

io
n

tim
e

(in
 m

ic
ro

se
co

nd
s)

Fixed index set size (k) = 256, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(b) Verification

1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

16

18

20

Number of index sets (L)

P
uz

zl
e

so
lv

in
g

tim
e

(in
 s

ec
on

ds
)

Fixed index set size (k) = 256, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(c) Solution

Figure 6: Microbenchmarks for puzzle operations on different CPU platforms as a function ofL

100 200 300 400 500 600 700 800 900 1000 1100
0

200

400

600

800

1000

1200

1400

1600

1800

Index set size (k)

P
uz

zl
e

ge
ne

ra
tio

n
tim

e
(in

 m
ic

ro
se

co
nd

s)

Fixed number of index sets (L)= 20000, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(a) Generation

100 200 300 400 500 600 700 800 900 1000 1100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Index set size (k)

P
uz

zl
e

ve
rif

ic
at

io
n

tim
e

(in
 m

ic
ro

se
co

nd
s)

Fixed number of index sets (L)= 20000, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(b) Verification

100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

Index set size (k)

P
uz

zl
e

so
lv

in
g

tim
e

(in
 s

ec
on

ds
)

Fixed number of index sets (L)= 20000, filesize (n) = 16 * 107 bits

pc600

pc2000

pc3000

(c) Solution

Figure 7: Microbenchmarks for puzzle operations on different CPU platforms as a function ofk

512MB 400Mhz RAMBUS RAM), and pc3000 (3.0 GHz 64-bit Xeon processor, 2GB 400Mhz
DDR2 RAM).

For each experiment, we generate 100 puzzles and report the average time taken to generate,
verify, and solve the puzzles on the different hardware configurations as a function ofL andk in
Figures 6 and 7, respectively. First, note that the generation and verification times are orders of
magnitude smaller than the puzzle solution time on the different platforms. Second, the generation
and verification times are independent ofL. These satisfy our original system requirements in
Section 3: the verifier incurs low cost for generation and verification, and the verifier can adjust
the difficulty of the puzzle by increasingL without incurring additional cost.

21

