New Theoretical Frameworks for Machine Learning

Maria-Florina Balcan

CMU-CS-08-153
September 15th, 2008

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:

Avrim Blum, Chair
Manuel Blum
Yishay Mansour
Tom Mitchell
Santosh Vempala

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2008 Maria-Florina Balcan

This research was sponsored by the National Science Foundation under grant numbers IIS-0121678, 11S-0312814, CCF-0514922,
CCR-0122581, the U.S. Army Research Office under grant number DAAD-190213089, Google, and the IBM Ph.D. Fellowship.
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity



Keywords: Data Dependent Concept Spaces, Clustering, Value of Unlabeled Data, Semi-supervised
Learning, Active Learning, Co-training, Similarity-based Learning, Kernels, Margins, Low-Dimensional
Mappings, Sample Complexity, Mechanism and Auction Design, Random Sampling Mechanisms, Profit
Maximization.



In memoria tatalui meu. Vei ramane vesnic in suflet, inima si gand!



v



Abstract

This thesis has two primary thrusts. The first is developing new models and algorithms for important
modern and classic learning problems. The second is establishing new connections between Machine
Learning and Algorithmic Game Theory.

The formulation of the PAC learning model by Valiant [201] and the Statistical Learning Theory
framework by Vapnik [203]] have been instrumental in the development of machine learning and the design
and analysis of algorithms for supervised learning. However, while extremely influential, these models do
not capture or explain other important classic learning paradigms such as Clustering, nor do they capture
important emerging learning paradigms such as Semi-Supervised Learning and other ways of incorpo-
rating unlabeled data in the learning process. In this thesis, we develop the first analog of these general
discriminative models to the problems of Semi-Supervised Learning and Clustering, and we analyze both
their algorithmic and sample complexity implications. We also provide the first generalization of the well-
established theory of learning with kernel functions to case of general pairwise similarity functions and
in addition provide new positive theoretical results for Active Learning. Finally, this dissertation presents
new applications of techniques from Machine Learning to Algorithmic Game Theory, which has been a
major area of research at the intersection of Computer Science and Economics.

In machine learning, there has been growing interest in using unlabeled data together with labeled
data due to the availability of large amounts of unlabeled data in many contemporary applications. As a
result, a number of different semi-supervised learning methods such as Co-training, transductive SVM,
or graph based methods have been developed. However, the underlying assumptions of these methods
are often quite distinct and not captured by standard theoretical models. This thesis introduces a new
discriminative model (a PAC or Statistical Learning Theory style model) for semi-supervised learning,
that can be used to reason about many of the different approaches taken over the past decade in the
Machine Learning community. This model provides a unified framework for analyzing when and why
unlabeled data can help in the semi-supervised learning setting, in which one can analyze both sample-
complexity and algorithmic issues. In particular, our model allows us to address in a unified way key
issues such as “Under what conditions will unlabeled data help and by how much?” and “How much data
should I expect to need in order to perform well?”.

Another important part of this thesis is Active Learning for which we provide several new theoretical
results. In particular, this dissertation includes the first active learning algorithm which works in the
presence of arbitrary forms of noise, as well as a few margin based active learning algorithms.

In the context of Kernel methods (another flourishing area of machine learning research), this thesis
shows how Random Projection techniques can be used to convert a given kernel function into an explicit,
distribution dependent set of features, which can then be fed into more general (not necessarily kernel-
izable) learning algorithms. In addition, this work shows how such methods can be extended to more
general pairwise similarity functions and also gives a formal theory that matches the standard intuition
that a good kernel function is one that acts as a good measure of similarity. We thus strictly generalize and
simplify the existing theory of kernel methods. Our approach brings a new perspective as well as a much



simpler explanation for the effectiveness of kernel methods, which can help in the design of good kernel
functions for new learning problems.

We also show how we can use this perspective to help thinking about Clustering in a novel way. While
the study of clustering is centered around an intuitively compelling goal (and it has been a major tool
in many different fields), reasoning about it in a generic and unified way has been difficult, in part due
to the lack of a general theoretical framework along the lines we have for supervised classification. In
our work we develop the first general discriminative clustering framework for analyzing accuracy without
probabilistic assumptions.

This dissertation also contributes with new connections between Machine Learning and Mechanism
Design. Specifically, this thesis presents the first general framework in which machine learning methods
can be used for reducing mechanism design problems to standard algorithmic questions for a wide range
of revenue maximization problems in an unlimited supply setting. Our results substantially generalize
the previous work based on random sampling mechanisms — both by broadening the applicability of such
mechanisms and by simplifying the analysis. From a learning perspective, these settings present several
unique challenges: the loss function is discontinuous and asymmetric, and the range of bidders’ valuations
may be large.
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Chapter 1

Introduction

The formulation of the classic discriminative models for Supervised Learning, namely the PAC learning
model by Valiant [201] and the Statistical Learning Theory framework by Vapnik [203], were instrumental
in the development of machine learning and the design and analysis of algorithms for supervised learning.
However, while very influential, these models do not capture or explain other important classic learning
paradigms such as Clustering, nor do they capture important emerging learning paradigms such as Semi-
Supervised Learning and other ways of incorporating unlabeled data in the learning process. In this
thesis, we develop new frameworks and algorithms for addressing key issues in several important classic
and modern learning paradigms. In particular, we study Semi-Supervised Learning, Active Learning,
Learning with Kernels and more general similarity functions, as well as Clustering. In addition, we
present new applications of techniques from Machine Learning to emerging areas of Computer Science,
such as Auction and Mechanism Design.

We start with a high level presentation of our work, and then in Section [1.1/ we give a more detailed
overview of the main contributions of this thesis in each of the main directions. In Section|1.2/ we summa-
rize the main results and describe the structure of this thesis, as well as provide bibliographic information.

New Frameworks and Algorithms for Machine Learning Over the years, machine learning has grown
into a broad discipline that has produced fundamental theories of learning processes, as well as learning
algorithms that are routinely used in commercial systems for speech recognition, computer vision, and
spam detection, to name just a few. The primary theoretical advances have been for passive supervised
learning problems [172], where a target function (e.g., a classifier) is estimated using only labeled exam-
ples which are considered to be drawn i.i.d. from the whole population. For example, in spam detection
an automatic classifier to label emails as spam or not would be trained using a sample of previous emails
labeled by a human user. However, for most contemporary practical problems there is often useful ad-
ditional information available in form of cheap and plentiful unlabeled data: e.g., unlabeled emails for
the spam detection problem. As a consequence, there has recently been substantial interest in Semi-
Supervised Learning, a method for using unlabeled data together with labeled data to improve learning.
Several different semi-supervised learning algorithms have been developed and numerous successful ex-
perimental results have been reported. However the underlying assumptions of these methods are quite
different and their effectiveness cannot be explained by standard learning models (the PAC model or the
Statistical Learning Theory framework). While many of these methods had theoretical justification under
specific assumptions, there has been no unified framework for semi-supervised learning in general. In this
thesis, we develop a comprehensive theoretical framework that provides a unified way for thinking about
semi-supervised learning; this model can be used to reason about many of the different approaches taken
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over the past decade in the machine learning community.!

In the context of Active Learning (another modern learning paradigm in which the algorithm can
interactively ask for the labels of unlabeled examples of its own choosing), we present several new the-
oretical results. In particular we describe the first active learning procedure that works in the presence
of arbitrary forms of noise. This procedure relies only upon the assumption that samples are drawn i.i.d.
from some underlying distribution and it makes no assumptions about the mechanism producing the noise
(e.g., class/target misfit, fundamental randomization, etc.). We also present theoretical justification for
margin-based algorithms which have proven quite successful in practical applications, e.g., in text classi-
fication [199].

Another important component of this thesis is the development of more intuitive and more operational
explanations for well-established learning paradigms, for which a solid theory did exist, but it was too
abstract and disconnected from practice. In particular, in the context of Kernel methods (a state of the
art technique for supervised learning and a flourishing area of research in modern machine learning), we
develop a theory of learning with similarity functions that provides theoretical justification for the common
intuition that a good kernel function is one that acts as a good measure of similarity. This theory is strictly
more general and involves more tangible quantities than those used by the traditional analysis.

Finally, we also present a new perspective on the classic Clustering problem. Problems of clustering
data from pairwise similarity information are ubiquitous in science and as a consequence clustering re-
ceived substantial attention in many different fields for many years. The theoretical work on the topic has
generally been of two types: either on algorithms for (approximately) optimizing various distance-based
objectives such as k-median, k-means, and min-sum, or on clustering under probabilistic “generative
model” assumptions such as mixtures of Gaussian or related distributions. In this thesis we propose a
new approach to analyzing the problem of clustering. We consider the goal of approximately recovering
an unknown target clustering using a similarity function (or a weighted graph), given only the assump-
tion of certain natural properties that the similarity or weight function satisfies with respect to the desired
clustering. Building on our models for learning with similarity functions in the context of supervised
classification, we provide the first general discriminative clustering framework for analyzing clustering
accuracy without probabilistic assumptions. In this model we directly address the fundamental question
of what kind of information a clustering algorithm needs in order to produce a highly accurate clustering
of the data, and we analyze both information theoretic and algorithmic aspects.

At a technical level, a common characteristic of many of the models we introduce to study these learning
paradigms (e.g., semi-supervised learning or learning and clustering via similarity functions) is the use
of data dependent concept spaces, which we expect to be a major line of research in the next years in
machine learning. The variety of results we present in these models relies on a very diverse set of insights
and techniques from Algorithms and Complexity, Empirical Processes and Statistics, Optimization, as
well as Geometry and Embeddings.

Connections between Machine Learning and Algorithmic Game Theory This thesis also includes a
novel application of machine learning techniques to automate aspects of Mechanism Design and formally
address the problem of market analysis, as well as development of pricing algorithms with improved
guarantees over previous methods.

Developing algorithms for a highly distributed medium such as the Internet requires a careful consid-
eration of the objectives of the various parties in the system. As a consequence, Mechanism Design has
become an increasingly important part of algorithmic research and computer science more generally in

! This model appears in a recent book about Semi-Supervised Learning [27] and it can be used to explain when and why
unlabeled data can help in many of the specific methods given in the other chapters of the book.
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recent years. Mechanism design can be thought of as a distinct form of algorithm design, where a central
entity must perform some computation (e.g., resource allocation or decision making) under the constraint
that the agents supplying the inputs have their own interest in the outcome of the computation. As a result,
it is desirable that the employed procedure be incentive compatible, meaning that it should be in each
agent’s best interest to report truthfully, or to otherwise act in a well-behaved manner. Typical examples
of such mechanisms are auctions of products (e.g., software packages) or pricing of shared resources (e.g.
network links) where the central entity would use inputs (bids) from the agents in order to allocate goods in
a way that maximizes its revenue. Most of the previous work on incentive compatible mechanism design
for revenue maximization has been focused on very restricted settings [122, 174] (e.g., one item for sale
and/or single parameter agents), and many of the previous incentive compatible mechanisms have been
“hand-crafted” for the specific problem at hand. In this thesis we use techniques from machine learning
to provide a generic reduction from the incentive-compatible mechanism design question to more stan-
dard algorithmic questions, for a wide variety of revenue-maximization problems, in an unlimited supply
setting.

1.1 Overview

A more detailed overview of this thesis follows below.

1.1.1 Incorporating Unlabeled Data in the Learning Process

As mentioned earlier, machine learning has traditionally focused on problems of learning a task from
labeled examples only. However, for many contemporary practical problems such as classifying web
pages or detecting spam, there is often additional information available; in particular, for many of these
settings unlabeled data is often much cheaper and more plentiful than labeled data. As a consequence,
there has recently been substantial interest in using unlabeled data together with labeled data for learning
[59, 162,135, 1141}, 159, 176, 181, 215], since clearly, if useful information can be extracted from it that
reduces dependence on labeled examples, this can be a significant benefit [58, [172].

There are currently several settings that have been considered for incorporating unlabeled data in the
learning process. Here, in addition to a set of labeled examples drawn at random from the underlying data
distribution, it is assumed that the learning algorithm can also use a (usually much larger) set of unlabeled
examples from the same distribution.

A first such setting is passive Semi-Supervised Learning (which we will refer to as SSL) [6]. What
makes unlabeled data so useful in the SSL context and what many of the SSL. methods exploit, is that for
a wide variety of learning problems, the natural regularities of the problem involve not only the form of
the function being learned by also how this function relates to the distribution of data. For example, in
many problems one might expect the target function should cut through low density regions of the space,
a property used by the transductive SVM algorithm [141]. In other problems one might expect the target
to be self-consistent in some way, a property used by Co-training [62]]. Unlabeled data is then potentially
useful in this setting because, in principle, it allows one to reduce search space from the whole set of
hypotheses, down to the set of a-priori reasonable ones with respect to the underlying distribution.

A second setting which has been considered for incorporating unlabeled data in the learning process
which has been increasingly popular for the past few years, is Active Learning [86),94]. Here, the learning
algorithm has both the capability of drawing random unlabeled examples from the underlying distribution,
and that of asking for the labels of any of these examples. The hope is that a good classifier can be learned
with significantly fewer labels by actively directing the queries to informative examples. As opposed to
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the SSL setting, and similarly to the classical supervised learning settings (PAC and Statistical Learning
Theory settings) the only prior belief about the learning problem in the active learning setting is that
the target function (or a good approximation of it) belongs to a given concept class. Luckily, it turns
out that for simple concept classes such as linear separators on the line one can achieve an exponential
improvement (over the usual supervised learning setting) in the labeled data sample complexity, under no
additional assumptions about the learning problem [86, 94]]. In general, however, for more complicated
concept classes, the speed-ups achievable in the active learning setting depend on the match between the
distribution over example-label pairs and the hypothesis class. Furthermore, there are simple examples
where active learning does not help at all, not even in the realizable case [94].

In this thesis we study both Active Learning and Semi-Supervised Learning. For the semi-supervised
learning problem, we provide a unified discriminative model (i.e., a PAC or Statistical Learning Theory
style model) that captures many of the ways unlabeled data is typically used, and provides a very general
framework for thinking about this issue. This model provides a unified framework for analyzing when and
why unlabeled data can help, in which one can discuss both sample-complexity and algorithmic issues.
Our model can be viewed as an extension of the standard PAC model, where in addition to a concept class
C, one also proposes a compatibility function (an abstract prior): a type of compatibility that one believes
the target concept should have with the underlying distribution of data. For example, such a belief could
be that the target should cut through a low-density region of space, or that it should be self-consistent
in some way as in co-training. This belief is then explicitly represented in the model. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space
of hypotheses, and to reduce the size of the search space from the whole set of hypotheses C' down
to those that, according to one’s assumptions, are a-priori reasonable with respect to the distribution.
After proposing the model, we analyze fundamental sample-complexity issues in this setting such as
“How much of each type of data one should expect to need in order to learn well?”, and “What are the
basic quantities that these numbers depend on?”. We present a variety of sample-complexity bounds,
both in terms of uniform-convergence results—which apply to any algorithm that is able to find rules
of low error and high compatibility—as well as e-cover-based bounds that apply to a more restricted
class of algorithms but can be substantially tighter. For instance, we describe several natural cases in
which e-cover-based bounds can apply even though with high probability there still exist bad hypotheses
in the class consistent with the labeled and unlabeled examples. Finally, we present several PAC-style
algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-Training with
linear separators that, if the distribution satisfies independence given the label, requires only a single
labeled example to learn to any desired error rate € and is computationally efficient (i.e., achieves PAC
guarantees). This substantially improves on the results of [62] which required enough labeled examples
to produce an initial weak hypothesis. We describe these results in Chapter 2.

For the active learning problem, we prove for the first time, the feasibility of agnostic active learning.
Specifically we propose and analyze the first active learning algorithm that finds an e-optimal hypothesis
in any hypothesis class, when the underlying distribution has arbitrary forms of noise. We also analyze
margin based active learning of linear separators. We discuss these results in Chapter 5. Finally, we
mention recent work in which we have shown that in an asymptotic model for active learning where one
bounds the number of queries the algorithm makes before it finds a good function (i.e. one of arbitrarily
small error rate), but not the number of queries before it knows it has found a good function, one can
obtain significantly better bounds on the number of label queries required to learn than in the traditional
active learning models.

In addition to being helpful in the semi-supervised Learning and active learning settings, unlabeled
data becomes useful in other settings as well, both in partially supervised learning models and, of course,
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in purely unsupervised learning (e.g., clustering). In this thesis we study the use of unlabeled data in the
context of learning with Kernels and more general similarity functions. We also analyze how to effectively
use unlabeled data for Clustering with non-interactive feedback. We discuss these in turn below.

1.1.2 Similarity Based Learning

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well [133} 139, 1187, 190, 203]]. They are used in domains ranging from Computer Vision [132] to
Computational Biology [187] to Language and Text Processing [139], with workshops, (e.g. [2,13,4,15]),
books [133,1139,1187,1190] [203]], and large portions of major conferences (see, e.g., [1]) devoted to kernel
methods. In this thesis, we strictly generalize and simplify the existing theory of Kernel Methods. Our
approach brings a new perspective as well as a much simpler explanation for the effectiveness of kernel
methods, which can help in the design of good kernel functions for new learning problems.

A kernel is a function that takes in two data objects (which could be images, DNA sequences, or points
in R™) and outputs a number, with the property that the function is symmetric and positive-semidefinite.
That is, for any kernel K, there must exist an (implicit) mapping ¢, such that for all inputs =, ' we have
K(z,2') = ¢(x) - ¢(2'). The kernel is then used inside a “kernelized” learning algorithm such as SVM
or kernel-perceptron as the way in which the algorithm interacts with the data. Typical kernel functions
for structured data include the polynomial kernel K (x,z') = (1 + z - 2/)¢ and the Gaussian kernel
K(z,2') = e~llz=l*/20% " and a number of special-purpose kernels have been developed for sequence
data, image data, and other types of data as well [88,/89,/157,173,193].

The theory behind kernel functions is based on the fact that many standard algorithms for learning
linear separators, such as SVMs and the Perceptron algorithm, can be written so that the only way they
interact with their data is via computing dot-products on pairs of examples. Thus, by replacing each
invocation of z -z’ with a kernel computation K (z,z’), the algorithm behaves exactly as if we had
explicitly performed the mapping ¢(x), even though ¢ may be a mapping into a very high-dimensional
space (dimension n¢ for the polynomial kernel) or even an infinite-dimensional space (as in the case of the
Gaussian kernel). Furthermore, these algorithms have convergence rates that depend only on the margin
of the best separator, and not on the dimension of the space in which the data resides [18} [191]. Thus,
kernel functions are often viewed as providing much of the power of this implicit high-dimensional space,
without paying for it computationally (because the ¢ mapping is only implicit) or in terms of sample size
(if the data is indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. First, when designing a kernel function
for some learning problem, the intuition typically employed is that a good kernel would be one that serves
as a good similarity function for the given problem [187]. On the other hand, the above theory talks
about margins in an implicit and possibly very high-dimensional space. So, in this sense the theory is not
that helpful for providing intuition when selecting or designing a kernel function. Second, it may be that
the most natural similarity function for a given problem is not positive-semidefinite, and it could require
substantial work, possibly reducing the quality of the function, to coerce it into a legal form. Finally, from
a complexity-theoretic perspective, it is somewhat unsatisfying for the explanation of the effectiveness of
some algorithm to depend on properties of an implicit high-dimensional mapping that one may not even
be able to calculate. In particular, the standard theory at first blush has a “something for nothing” feel to it
(all the power of the implicit high-dimensional space without having to pay for it) and perhaps there is a
more prosaic explanation of what it is that makes a kernel useful for a given learning problem. For these
reasons, it would be helpful to have a theory that involved more tangible quantities.

In this thesis we provide new theories that address these limitations in two ways. First, we show how
Random Projection techniques can be used to convert a given kernel function into an explicit, distribution
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dependent, set of features, which can then be fed into more general (not necessarily kernelizable) learning
algorithms. Conceptually, this result suggests that designing a good kernel function is much like designing
a good feature space. From a practical perspective it provides an alternative to “kernelizing” a learning
algorithm: rather than modifying the algorithm to use kernels, one can instead construct a mapping into a
low-dimensional space using the kernel and the data distribution, and then run an un-kernelized algorithm
over examples drawn from the mapped distribution.

Second, we also show how such methods can be extended to more general pairwise similarity func-
tions and also give a formal theory that matches the standard intuition that a good kernel function is one
that acts as a good measure of similarity. In particular, we define a notion of what it means for a pairwise
function K (x, 2’) to be a “good similarity function” for a given learning problem that (a) does not require
the notion of an implicit space and allows for functions that are not positive semi-definite, (b) is provably
sufficient for learning, and (c) is broad, in sense that a good kernel in the standard sense (large margin in
the implicit ¢-space) will also satisfy our definition of a good similarity function, though with some loss
in the parameters. This framework provides the first rigorous explanation for why a kernel function that
is good in the large-margin sense can also formally be viewed as a good measure of similarity, thereby
giving formal justification to a common intuition about kernels. We start by analyzing a first notion of a
good similarity function in Section 3.3 and analyze its relationship with the usual notion of a good kernel
function. We then present a slightly different and broader notion that we show it provides even better
kernels to similarity translation. Any large-margin kernel function is a good similarity function under
the new definition, and while we still incur some loss in the parameters, this loss is much smaller than
under the prior definition, especially in terms of the final labeled sample-complexity bounds. In particular,
when using a valid kernel function as a similarity function, a substantial portion of the previous sample-
complexity bound can be transferred over to merely a need for unlabeled examples. We also show our
new notion is strictly more general than the notion of a large margin kernel. We discuss these results in
Section 3.4. In Chapter |6 other random projection results for the case where K is in fact a valid kernel.

1.1.3 Clustering via Similarity Functions

Problems of clustering data from pairwise similarity information are ubiquitous in science [8, 19, 83,91
95,138,146, 147,151, 205]]. A typical example task is to cluster a set of emails or documents according
to some criterion (say, by topic) by making use of a pairwise similarity measure among data objects. In
this context, a natural example of a similarity measure for document clustering might be to consider the
fraction of important words that two documents have in common.

While the study of clustering is centered around an intuitively compelling goal (and it has been a major
tool in many different fields), it has been difficult to reason about it at a general level in part due to the
lack of a theoretical framework along the lines we have for supervised classification.

In this thesis we develop the first general discriminative framework for Clustering, i.e. a framework for
analyzing clustering accuracy without making strong probabilistic assumptions. In particular, we present
a theoretical approach to the clustering problem that directly addresses the fundamental question of how
good the similarity measure must be in terms of its relationship to the desired ground-truth clustering (e.g.,
clustering by topic) in order to allow an algorithm to cluster well. Very strong properties and assumptions
are needed if the goal is to produce a single approximately-correct clustering; however, we show that if we
relax the objective and allow the algorithm to produce a hierarchical clustering such that desired clustering
is close to some pruning of this tree (which a user could navigate), then we can develop a general theory
of natural properties that are sufficient for clustering via various kinds of algorithms. This framework is
an analogue of the PAC learning model for clustering, where the natural object of study, rather than being
a concept class, is instead a property of the similarity information with respect to the desired ground-truth
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Figure 1.1: Data lies in four regions A, B, C, D (e.g., think of as documents on baseball, football, TCS,
and Al). Suppose that K (z,y) = 1 if = and y belong to the same region, K (z,y) = 1/2if x € A and
y€ Borifx € Candy € D, and K(z,y) = 0 otherwise. Even assuming that all points are more similar
to other points in their own cluster than to any point in any other cluster, there are still multiple consistent
clusterings, including two consistent 3-clusterings (AU B, C, D) or (A, B, C' U D)). However, there is
a single hierarchical decomposition such that any consistent clustering is a pruning of this tree.

clustering.

As indicated above, the main difficulty that appears when phrasing the problem in this general way is
that if one defines success as outputting a single clustering that closely approximates the correct clustering,
then one needs to assume very strong conditions on the similarity function. For example, if the function
provided by the domain expert is extremely good, say K (z,y) > 1/2 for all pairs x and y that should be
in the same cluster, and K (x,y) < 1/2 for all pairs « and y that should be in different clusters, then we
could just use it to recover the clusters in a trivial way. However, if we just slightly weaken this condition
to simply require that all points = are more similar to all points y from their own cluster than to any points
y from any other clusters, then this is no longer sufficient to uniquely identify even a good approximation
to the correct answer. For instance, in the example in Figure|l.1, there are multiple clusterings consistent
with this property (one with 1 cluster, one with 2 clusters, two with 3 clusters, and one with 4 clusters).
Even if one is told the correct clustering has 3 clusters, there is no way for an algorithm to tell which of
the two (very different) possible solutions is correct. In fact, results of Kleinberg [151] can be viewed
as effectively ruling out a broad class of scale-invariant properties like this one as being sufficient for
producing the correct answer.

In our work we overcome this problem by considering two relaxations of the clustering objective
that are natural for many clustering applications. The first is to allow the algorithm to produce a small
list of clusterings such that at least one of them has low error®. The second is (as mentioned above) to
allow the clustering algorithm to produce a tree (a hierarchical clustering) such that the correct answer is
approximately some pruning of this tree. For instance, the example in Figure|1.1/has a natural hierarchical
decomposition of this form. Both relaxed objectives make sense for settings in which we imagine the
output being fed to a user who will then decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure how specific you wanted to be, so
if any of these clusters are too broad, just click and I will split it for you.” We then show that with
these relaxations, a number of interesting, natural learning-theoretic and game-theoretic properties can be
defined that each are sufficient to allow an algorithm to cluster well.

For concreteness, we shall summarize in the following our main results. First, we consider a family

%So, this is similar in spirit to list-decoding in coding theory.

7



of stability-based properties, showing that a natural generalization of the ‘“stable marriage” property is
sufficient to produce a hierarchical clustering. (The property is that no two subsets A C C, A’ C C’ of
clusters C' # C’ in the correct clustering are both more similar on average to each other than to the rest of
their own clusters.) Moreover, a significantly weaker notion of stability (which we call “stability of large
subsets”) is also sufficient to produce a hierarchical clustering, but requires a more involved algorithm. We
also show that a weaker “average-attraction” property (which is provably not enough to produce a single
correct hierarchical clustering) is sufficient to produce a small list of clusterings, and give generalizations
to even weaker conditions that are related to the notion of large-margin kernel functions. We develop
a notion of the clustering complexity of a given property (the minimum possible list length that can be
guaranteed by any algorithm) and provide both upper and lower bounds for the properties we consider.
This notion is analogous to notions of capacity in classification [72, 103} 203] and it provides a formal
measure of the inherent usefulness of a given property. We show that properties implicitly assumed by
approximation algorithms for standard graph-based objective functions can be viewed as special cases of
some of the properties considered above.

We also show how our algorithms can be extended to the inductive case, i.e., by using just a constant-
sized sample, as in property testing. While most of our algorithms extend in a natural way, for certain
properties their analysis requires more involved arguments using regularity-type results of [14, 113].

More generally, our framework provides a formal way to analyze what properties of a similarity func-
tion would be sufficient to produce low-error clusterings, as well as what algorithms are suited for a given
property. For some of our properties we are able to show that known algorithms succeed (e.g. variations of
bottom-up hierarchical linkage based algorithms). However, for the most general ones, e.g., the stability
of large subsets property, we need new algorithms that are able to take advantage of them. In fact, the al-
gorithm we develop for the stability of the large subsets property combines learning-theoretic approaches
used in Chapter 3/ (and described in Section 1.1.2) with linkage-style methods. We describe these results
in Chapter 4.

1.1.4 Mechanism Design, Machine Learning, and Pricing Problems

In this thesis we also present explicit connections between Machine Learning Theory and certain contem-
porary problems in Economics.

With the Internet developing as the single most important arena for resource sharing among parties
with diverse and selfish interests, traditional algorithmic and distributed systems need to be combined with
the understanding of game-theoretic and economic issues [177]. A fundamental research endeavor in this
new field is the design and analysis of auction mechanisms and pricing algorithm [70, /121,124,129, (129].
In this thesis we show how machine learning methods can be used in the design of auctions and other
pricing mechanisms with guarantees on their performance.

In particular, we show how sample complexity techniques from statistical learning theory can be used
to reduce problems of incentive-compatible mechanism design to standard algorithmic questions, for a
wide range of revenue-maximizing problems in an unlimited supply setting. In doing so, we obtain a
unified approach for considering a variety of profit maximizing mechanism design problems, including
many that have been previously considered in the literature. We show how techniques from in machine
learning theory can be used both for analyzing and designing our mechanisms. We apply our reductions
to a diverse set of revenue maximizing pricing problems, such as the problem of auctioning a digital good,
the attribute auction problem, and the problem of item pricing in unlimited supply combinatorial auctions.

For concreteness, in the following paragraphs, we shall give more details on the setting we study in
our work. Consider a seller with multiple digital goods or services for sale, such as movies, software,
or network services, over which buyers may have complicated preferences. In order to sell these items



through an incentive-compatible auction mechanism, this mechanism should have the property that each
bidder is offered a set of prices that do not depend on the value of her bid. The problem of designing
a revenue-maximizing auction is known in the economics literature as the optimal auction design prob-
lem [171]. The classical model for optimal auction design assumes a Bayesian setting in which players’
valuations (types) are drawn from some probability distribution that furthermore is known to the mech-
anism designer. For example, to sell a single item of fixed marginal cost, one should set the price that
maximizes the profit margin per sale times the probability a random person would be willing to buy at
that price. However, in complex or non-static environments, these assumptions become unrealistic. In
these settings, machine learning can provide a natural approach to the design of near-optimal mechanisms
without such strong assumptions or degree of prior knowledge.

Specifically, notice that while a truthful auction mechanism should have the property that the prices
offered to some bidder ¢ do not depend on the value of her bid, they can depend on the amounts bid by other
bidders j. From a machine learning perspective, this is very similar to thinking of bidders as “examples”
and our objective being to use information from examples j # i to produce a good prediction with respect
to example ¢. Thus, without presuming a known distribution over bidders (or even that bidders come
from any distribution at all) perhaps if the number of bidders is sufficiently large, enough information
can be learned from some of them to perform well on the rest. In this thesis we formalize this idea and
show indeed that sample-complexity techniques from machine learning theory [18, 203] can be adapted
to this setting to give quantitative bounds for this kind of approach. More generally, we show that sample
complexity analysis can be applied to convert incentive-compatible mechanism design problems to more
standard algorithm-design questions, in a wide variety of revenue-maximizing auction settings.

Our reductions imply that for these problems, given an algorithm for the non incentive-compatible
pricing problem, we can convert it into an algorithm for the incentive-compatible mechanism design prob-
lem that is only a factor of (1+¢) worse, as long as the number of bidders is sufficiently large as a function
of an appropriate measure of complexity of the class of allowable pricing functions. We apply these results
to the problem of auctioning a digital good, to the attribute auction problem which includes a wide variety
of discriminatory pricing problems, and to the problem of item-pricing in unlimited-supply combinatorial
auctions.From a machine learning perspective, these settings present several challenges: in particular, the
loss function is discontinuous, is asymmetric, and has a large range.

The high level idea of our most basic reduction is based on the notion of a random sampling auction.
For concreteness, let us imagine we are selling a collection of n goods or services of zero marginal cost
to us, to n bidders who may have complex preference functions over these items, and our objective is to
achieve revenue comparable to the best possible assignment of prices to the various items we are selling.
So, technically speaking, we are in the setting of maximizing revenue in an unlimited supply combinatorial
auction. Then given a set of bids S, we perform the following operations. We first randomly partition S
into two sets 51 and S2. We then consider the purely algorithmic problem of finding the best set of prices
py for the set of bids S; (which may be difficult but is purely algorithmic), and the best set of prices pa
for the set of bids S>. We then use p; as offer prices for bidders in S5, giving each bidder the bundle
maximizing revealed valuation minus price, and use py as offer prices for bidders in S;. We then show
that even if bidders’ preferences are extremely complicated, this mechanism will achieve revenue close to
that of the best fixed assignment of prices to items so long as the number of bidders is sufficiently large
compared to the number of items for sale. For example, if all bidders’ valuations on the grand bundle of
all n items lie in the range [1, k], then O(hn/€?) bidders are sufficient so that with high probability, we
come within a (1 + €) factor of the optimal fixed item pricing. Or, if we cannot solve the algorithmic
problem exactly (since many problems of this form are often NP-hard [25, 26, 32, 129]), we lose only a
(1 + €) factor over whatever approximation our method for solving the algorithmic problem gives us.
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More generally, these methods apply to a wide variety of pricing problems, including those in which
bidders have both public and private information, and also give a formal framework in which one can
address other interesting design issues such as how fine-grained a market segmentation should be. This
framework provides a unified approach to considering a variety of profit maximizing mechanism design
problems including many that have been previously considered in the literature. Furthermore, our re-
sults substantially generalize the previous work on random sampling mechanisms by both broadening the
applicability of such mechanisms and by simplifying the analysis.

Some of our techniques give suggestions for the design of mechanisms and others for their analysis.
In terms of design, these include the use of discretization to produce smaller function classes, and the use
of structural-risk minimization to choose an appropriate level of complexity of the mechanism for a given
set of bidders. In terms of analysis, these include both the use of basic sample-complexity arguments, and
the notion of multiplicative covers for better bounding the true complexity of a given class of offers.

Finally, from a learning perspective, this mechanism-design setting presents a number of technical
challenges when attempting to get good bounds: in particular, the payoff function is discontinuous and
asymmetric, and the payoffs for different offers are non-uniform. For example, we develop bounds based
on a different notion of covering number than typically used in machine learning, in order to obtain results
that are more meaningful for this mechanism design setting. We describe these results in Chapter 7.

1.2 Summary of the Main Results and Bibliographic Information

This thesis is organized as follows.

e In Chapter 2/ we present the first general discriminative model for Semi-Supervised learning. In this
model we provide a variety of algorithmic and sample complexity results and we also show how it
can be used to reason about many of the different semi-supervised learning approaches taken over
the past decade in the machine learning community. Much of this chapter is based on work that
appears in [23]], [27]. Other related work we have done on Co-training (which we briefly mention)
appears in [28].

e In Chapter 3/ we provide a theory of learning with general similarity functions (that is, functions
which are not necessarily legal kernels). This theory provides conditions on the suitability of a
similarity function for a given learning problem in terms of more tangible and more operational
quantities than those used by the standard theory of kernel functions. In addition to being provably
more general than the standard theory, our framework provides the first rigorous explanation for
why a kernel function that is good in the large-margin sense can also formally be viewed as a good
measure of similarity, thereby giving formal justification to a common intuition about kernels. In
this chapter we analyze both algorithmic and sample complexity issues, and this is mostly based on
work that appears in [24], [38], and [39].

e In Chapter 4/we study Clustering and we present the first general framework for analyzing clustering
accuracy without probabilistic assumptions. Again, in this chapter we consider both algorithmic and
information theoretic aspects. This is mainly based on work that appears in [40], but also includes
parts from the recent work in [42]].

e In ChapterS/we analyze Active Learning and present two main results. In Section /5.1, we provide a
generic active learning algorithm that works in the presence of arbitrary forms of noise. This section
is focused mostly on sample complexity aspects and the main contribution here is to provide the
first positive result showing that active learning can provide a significant improvement over passive
learning even in the presence of arbitrary forms of noise. In Section |5.2| we analyze a natural
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margin-based active learning strategy for learning linear separators (which queries points near the
hypothesized decision boundary). We provide a detailed analysis (both sample complexity and
algorithmic) both in the realizable case and in a specific noisy setting related to the Tsybakov noise
condition. This chapter is based on work that appears in [30], [35], and [33]. We also briefly
mention other recent work on the topic [41].

e In Chapter 6 we present additional results on learning with kernel functions. Specifically, we show
how Random Projection techniques can be used to “demystify” kernel functions. We show that
in the presence of a large margin, a kernel can be efficiently converted into a mapping to a low
dimensional space; in particular, we present a computationally efficient procedure that, given black-
box access to the kernel and unlabeled data, generates a small number of features that approximately
preserve both separability and margin. This is mainly based on work that appears in [31].

e In Chapter 7 we show how model selection and sample complexity techniques in machine learning
can be used to convert difficult mechanism design problems to more standard algorithmic questions
for a wide range of pricing problems. We present a unified approach for considering a variety of
profit maximizing mechanism design problems, such as the problem of auctioning a digital good, the
attribute auction problem (which includes many discriminatory pricing problems), and the problem
of item pricing in unlimited supply combinatorial auctions. These results substantially generalize
the previous work on random sampling mechanisms by both broadening the applicability of such
mechanisms (e.g., to multi-parameter settings), and by simplifying and refining the analysis. This
chapter is mainly based on work that appears in [29] and [36] and it is focused on using machine
learning techniques for providing a generic reduction from the incentive-compatible mechanism
design question to more standard algorithmic questions, without also attempting to address the
algorithmic questions as well. In other related work (which for coherence and space limitations is
not included in this thesis) we have also considered various algorithmic problems that arise in this
context [26], [25], [32] and [37].

While we discuss both technical and conceptual connections between the various learning protocols
and paradigms studied throughout the thesis, each chapter can also be read somewhat independently.
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Chapter 2

A Discriminative Framework for
Semi-Supervised Learning

There has recently been substantial interest in semi-supervised learning — a paradigm for incorporating
unlabeled data in the learning process — since any useful information that reduces the amount of labeled
data needed for learning can be a significant benefit. Several techniques have been developed for doing
this, along with experimental results on a variety of different learning problems. Unfortunately, the stan-
dard learning frameworks for reasoning about supervised learning do not capture the key aspects and the
assumptions underlying these semi-supervised learning methods.

In this chapter we describe an augmented version of the PAC model designed for semi-supervised
learning, that can be used to reason about many of the different approaches taken over the past decade in
the Machine Learning community. This model provides a unified framework for analyzing when and why
unlabeled data can help in the semi-supervised learning setting, in which one can analyze both sample-
complexity and algorithmic issues. The model can be viewed as an extension of the standard PAC model
where, in addition to a concept class C, one also proposes a compatibility notion: a type of compatibility
that one believes the target concept should have with the underlying distribution of data. Unlabeled data
is then potentially helpful in this setting because it allows one to estimate compatibility over the space of
hypotheses, and to reduce the size of the search space from the whole set of hypotheses C' down to those
that, according to one’s assumptions, are a-priori reasonable with respect to the distribution. As we show,
many of the assumptions underlying existing semi-supervised learning algorithms can be formulated in
this framework.

After proposing the model, we then analyze sample-complexity issues in this setting: that is, how
much of each type of data one should expect to need in order to learn well, and what the key quantities are
that these numbers depend on. Our work is the first to address such important questions in the context of
semi-supervised learning in a unified way. We also consider the algorithmic question of how to efficiently
optimize for natural classes and compatibility notions, and provide several algorithmic results including
an improved bound for Co-Training with linear separators when the distribution satisfies independence
given the label.

2.1 Introduction

As mentioned in Chapter 1, given the easy availability of unlabeled data in many settings, there has been
growing interest in methods that try to use such data together with the (more expensive) labeled data
for learning. In particular, a number of semi-supervised learning techniques have been developed for
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doing this, along with experimental results on a variety of different learning problems. These include
label propagation for word-sense disambiguation [210], co-training for classifying web pages [62] and
improving visual detectors [159], transductive SVM [141]] and EM [176] for text classification, graph-
based methods [215], and others. The problem of learning from labeled and unlabeled data has been the
topic of several ICML workshops [15,/117] as well as a recent book [82] and survey article [214].

What makes unlabeled data so useful and what many of these methods exploit, is that for a wide variety
of learning problems, the natural regularities of the problem involve not only the form of the function being
learned by also how this function relates to the distribution of data. For example, in many problems one
might expect the target function should cut through low density regions of the space, a property used by
the transductive SVM algorithm [141]. In other problems one might expect the target to be self-consistent
in some way, a property used by Co-training [62]. Unlabeled data is potentially useful in these settings
because it then allows one to reduce the search space to a set which is a-priori reasonable with respect to
the underlying distribution.

Unfortunately, however, the underlying assumptions of these semi-supervised learning methods are
not captured well by standard theoretical models. The main goal of this chapter is to propose a unified the-
oretical framework for semi-supervised learning, in which one can analyze when and why unlabeled data
can help, and in which one can discuss both sample-complexity and algorithmic issues in a discriminative
(PAC-model style) framework.

One difficulty from a theoretical point of view is that standard discriminative learning models do not
allow one to specify relations that one believes the target should have with the underlying distribution.
In particular, both in the PAC model [69, 149, 201]] and the Statistical Learning Theory framework [203]
there is purposefully a complete disconnect between the data distribution D and the target function f
being learned. The only prior belief is that f belongs to some class C': even if the data distribution D is
known fully, any function f € C' is still possible. For instance, in the PAC model, it is perfectly natural
(and common) to talk about the problem of learning a concept class such as DNF formulas [162, 206]]
or an intersection of halfspaces [47, |61, 153} 204] over the uniform distribution; but clearly in this case
unlabeled data is useless — you can just generate it yourself. For learning over an unknown distribution,
unlabeled data can help somewhat in the standard models (e.g., by allowing one to use distribution-specific
algorithms and sample-complexity bounds [53, [144]), but this does not seem to capture the power of
unlabeled data in practical semi-supervised learning methods.

In generative models, one can easily talk theoretically about the use of unlabeled data, e.g., [76, [77].
However, these results typically make strong assumptions that essentially imply that there is only one
natural distinction to be made for a given (unlabeled) data distribution. For instance, a typical generative
model would be that we assume positive examples are generated by one Gaussian, and negative examples
are generated by another Gaussian. In this case, given enough unlabeled data, we could in principle
recover the Gaussians and would need labeled data only to tell us which Gaussian is the positive one and
which is the negative one.! However, this is too strong an assumption for most real-world settings. Instead,
we would like our model to allow for a distribution over data (e.g., documents we want to classify) where
there are a number of plausible distinctions we might want to make. In addition, we would like a general
framework that can be used to model many different uses of unlabeled data.

2.1.1 Our Contribution

In this chapter, we present a discriminative (PAC-style framework) that bridges between these positions
and can be used to help think about and analyze many of the ways unlabeled data is typically used. This

'[76, [77] do not assume Gaussians in particular, but they do assume the distributions are distinguishable, which from this
perspective has the same issue.
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framework extends the PAC learning model in a way that allows one to express not only the form of
target function one is considering, but also relationships that one hopes the target function and underlying
distribution will possess. We then analyze both sample-complexity issues—that is, how much of each
type of data one should expect to need in order to learn well—as well as algorithmic results in this model.
We derive bounds for both the realizable (PAC) and agnostic (statistical learning framework) settings.

Specifically, the idea of the proposed model is to augment the PAC notion of a concept class, which
is a set of functions (such as linear separators or decision trees), with a notion of compatibility between
a function and the data distribution that we hope the target function will satisfy. Rather than talking of
“learning a concept class C,” we will talk of “learning a concept class C' under compatibility notion y.”
For example, suppose we believe there should exist a low-error linear separator, and that furthermore, if
the data happens to cluster, then this separator does not slice through the middle of any such clusters. Then
we would want a compatibility notion that penalizes functions that do, in fact, slice through clusters. In
this framework, the ability of unlabeled data to help depends on two quantities: first, the extent to which
the target function indeed satisfies the given assumptions, and second, the extent to which the distribution
allows this assumption to rule out alternative hypotheses. For instance, if the data does not cluster at
all (say the underlying distribution is uniform in a ball), then all functions would equally satisfy this
compatibility notion and the assumption is not useful. From a Bayesian perspective, one can think of this
as a PAC model for a setting in which one’s prior is not just over functions, but also over how the function
and underlying distribution relate to each other.

To make our model formal, we will need to ensure that the degree of compatibility be something that
can be estimated from a finite sample. To do this, we will require that the compatibility notion y in fact
be a function from C' x X to [0, 1], where the compatibility of a hypothesis h with the data distribution
D is then E,p[x(h,z)]. That is, we require that the degree of incompatibility be a kind of unlabeled
loss function, and the incompatibility of a hypothesis i with a data distribution D is a quantity we can
think of as an “unlabeled error rate” that measures how a-priori unreasonable we believe some proposed
hypothesis to be. For instance, in the example above of a “margin-style” compatibility, we could define
X(f, z) to be an increasing function of the distance of z to the separator f. In this case, the unlabeled error
rate, 1 — x(f, D), is a measure of the probability mass close to the proposed separator. In co-training,
where each example = has two “views” (x = (x1, x2)), the underlying belief is that the true target ¢* can
be decomposed into functions (¢}, ¢&) over each view such that for most examples, ¢;(z1) = ¢4(x2). In
this case, we can define x ((f1, f2), (x1,z2)) = 1if fi(z1) = fa(z2), and 0if fi(x1) # f2(x2). Then the
compatibility of a hypothesis (f1, fo) with an underlying distribution D is Pr(;, 4)~p[fi(z1) = fa(z2)].

This framework allows us to analyze the ability of a finite unlabeled sample to reduce our dependence
on labeled examples, as a function of (1) the compatibility of the target function (i.e., how correct we were
in our assumption) and (2) various measures of the “helpfulness” of the distribution. In particular, in our
model, we find that unlabeled data can help in several distinct ways.

e If the target function is highly compatible with D and belongs to C, then if we have enough unla-
beled data to estimate compatibility over all f € C', we can in principle reduce the size of the search
space from C' down to just those f € C' whose estimated compatibility is high. For instance, if D is
“helpful”, then the set of such functions will be much smaller than the entire set C'. In the agnostic
case we can do (unlabeled)-data-dependent structural risk minimization to trade off labeled error
and incompatibility.

e By providing an estimate of D, unlabeled data can allow us to use a more refined distribution-
specific notion of “hypothesis space size” such as Annealed VC-entropy [103], Rademacher com-
plexities [43, 72, 155] or the size of the smallest e-cover [53]], rather than VC-dimension [69, [149].
In fact, for many natural notions of compatibility we find that the sense in which unlabeled data
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reduces the “size” of the search space is best described in these distribution-specific measures.

e Finally, if the distribution is especially helpful, we may find that not only does the set of compatible
f € C have a small e-cover, but also the elements of the cover are far apart. In that case, if we
assume the target function is fully compatible, we may be able to learn from even fewer labeled
examples than the ©2(1/¢€) needed just to verify a good hypothesis. For instance, as one application
of this, we show that under the assumption of independence given the label, one can efficiently
perform Co-Training of linear separators from a single labeled example!

Our framework also allows us to address the issue of how much unlabeled data we should expect to
need. Roughly, the “VCdim/€2” form of standard sample complexity bounds now becomes a bound on the
number of unlabeled examples we need to uniformly estimate compatibilities. However, technically, the
set whose VC-dimension we now care about is not C' but rather a set defined by both C and x: that is, the
overall complexity depends both on the complexity of C' and the complexity of the notion of compatibility
(see Section 2.3.1). One consequence of our model is that if the target function and data distribution are
both well behaved with respect to the compatibility notion, then the sample-size bounds we get for labeled
data can substantially beat what one could hope to achieve through pure labeled-data bounds, and we
illustrate this with a number of examples through the chapter.

2.1.2 Summary of Main Results

The primary contributions of this chapter are the following. First, as described above, we develop a
new discriminative (PAC-style) model for semi-supervised learning, that can be used to analyze when
unlabeled data can help and how much unlabeled data is needed in order to gain its benefits, as well as
the algorithmic problems involved. Second, we present a number of sample-complexity bounds in this
framework, both in terms of uniform-convergence results—which apply to any algorithm that is able to
find rules of low error and high compatibility—as well as e-cover-based bounds that apply to a more
restricted class of algorithms but can be substantially tighter. For instance, we describe several natural
cases in which e-cover-based bounds can apply even though with high probability there still exist bad
hypotheses in the class consistent with the labeled and unlabeled examples. Finally, we present several
PAC-style algorithmic results in this model. Our main algorithmic result is a new algorithm for Co-
Training with linear separators that, if the distribution satisfies independence given the label, requires
only a single labeled example to learn to any desired error rate € and is computationally efficient (i.e.,
achieves PAC guarantees). This substantially improves on the results of [62] which required enough
labeled examples to produce an initial weak hypothesis, and in the process we get a simplification to the
noisy halfspace learning algorithm of [64].

Our framework has helped analyze many of the existing semi-supervised learning methods used in
practice and has guided the development of new semi-supervised learning algorithms and analyses. We
discuss this further in Section 2.6.1.

2.1.3 Structure of this Chapter

We begin by describing the general setting in which our results apply as well as several examples to il-
lustrate our framework in Section [2.2. We then give results both for sample complexity (in principle, how
much data is needed to learn) and efficient algorithms. In terms of sample-complexity, we start by dis-
cussing uniform convergence results in Section 2.3.1. For clarity we begin with the case of finite hypoth-
esis spaces in Section [2.3.1, and then discuss infinite hypothesis spaces in Section 2.3.1. These results
give bounds on the number of examples needed for any learning algorithm that produces a compatible
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hypothesis of low empirical error. We also show how in the agnostic case we can do (unlabeled)-data-
dependent structural risk minimization to trade off labeled error and incompatibility in Section 2.3.1. To
achieve tighter bounds, in Section 2.3.2 we give results based on the notion of e-cover size. These bounds
hold only for algorithms of a specific type (that first use the unlabeled data to choose a small set of “repre-
sentative” hypotheses and then choose among the representatives based on the labeled data), but can yield
bounds substantially better than with uniform convergence (e.g., we can learn even though there exist bad
h € C consistent with the labeled and unlabeled examples).

In Section 2.4, we give our algorithmic results. We begin with a particularly simple class C' and com-
patibility notion  for illustration, and then give our main algorithmic result for Co-Training with linear
separators. In Section 2.5 we discuss a transductive analog of our model, connections with generative
models and other ways of using unlabeled data in machine learning, as well as the relationship between
our model and the Luckiness Framework [191] developed in the context of supervised learning. Finally,
in Section 2.6 we discuss some implications of our model and present our conclusions, as well a number
of open problems.

2.2 A Formal Framework

In this section we introduce general notation and terminology we use throughout the chapter, and describe
our model for semi-supervised learning. In particular, we formally define what we mean by a notion of
compatibility and we illustrate it through a number of examples including margins and co-training.

We will focus on binary classification problems. We assume that our data comes according to a
fixed unknown distribution D over an instance space X, and is labeled by some unknown target function
c¢*: X — {0,1}. A learning algorithm is given a set Sy, of labeled examples drawn i.i.d. from D and
labeled by c* as well as a (usually larger) set Sy of unlabeled examples from D. The goal is to perform
some optimization over the samples Sy, and Sy and to output a hypothesis that agrees with the target over
most of the distribution. In particular, the error rate (also called “O-1 loss”) of a given hypothesis f is
defined as err(f) = errp(f) = Prg~p[f(x) # c¢*(x)]. For any two hypotheses fi, f2, the distance with
respect to D between f; and f is defined as d(f1, f2) = dp(f1, f2) = Pra~p|[fi(z) # fa(z)]. We will
use err(f) to denote the empirical error rate of f on a given labeled sample (i.e., the fraction of mistakes
on the sample) and 02( f1, f2) to denote the empirical distance between f; and fs on a given unlabeled
sample (the fraction of the sample on which they disagree). As in the standard PAC model, a concept
class or hypothesis space is a set of functions over the instance space X. In the “realizable case”, we
make the assumption that the target is in a given class C, whereas in the “agnostic case” we do not make
this assumption and instead aim to compete with the best function in the given class C'.

We now formally describe what we mean by a notion of compatibility. A notion of compatibility is a
mapping from a hypothesis f and a distribution D to [0, 1] indicating how “compatible” f is with D. In
order for this to be estimable from a finite sample, we require that compatibility be an expectation over
individual examples.? Specifically, we define:

Definition 2.2.1 A legal notion of compatibility is a function x : C' x X — [0, 1] where we (overloading
notation) define x(f, D) = E,.p|x(f,x)]. Given a sample S, we define x(f,S) to be the empirical
average of x over the sample.

2One could imagine more general notions of compatibility with the property that they can be estimated from a finite sample
and all our results would go through in that case as well. We consider the special case where the compatibility is an expectation
over individual examples for simplicity of notation, and because most existing semi-supervised learning algorithms used in
practice do satisfy it.
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Note 1 One could also allow compatibility functions over k-tuples of examples, in which case our (un-
labeled) sample-complexity bounds would simply increase by a factor of k. For settings in which D is
actually known in advance (e.g., transductive learning, see Section 2.5.1) we can drop this requirement
entirely and allow any notion of compatibility x(f, D) to be legal.

Definition 2.2.2 Given compatibility notion x, the incompatibility of f with D is 1 — x(f, D). We will
also call this its unlabeled error rate, err,,;(f), when x and D are clear from context. For a given
sample S, we use erry,(f) = 1 — x(f, S) to denote the empirical average over S.

Finally, we need a notation for the set of functions whose incompatibility (or unlabeled error rate) is
at most some given value 7.
Definition 2.2.3 Given value 7, we define Cp (1) = {f € C : erryn(f) < 7} So, e.g., Cpy(1) = C.
Similarly, for a sample S, we define Cs, (1) = {f € C : erryn(f) < 7}

We now give several examples to illustrate this framework:

Example 1. Suppose examples are points in B¢ and C'is the class of linear separators. A natural belief
in this setting is that data should be “well-separated”: not only should the target function separate the
positive and negative examples, but it should do so by some reasonable margin ~y. This is the assumption
used by Transductive SVM, also called Semi-Supervised SVM (SVM) [55, 81, [141]. In this case, if we
are given ~y up front, we could define x(f,x) = 1 if x is farther than distance ~ from the hyperplane
defined by f, and x(f,z) = 0 otherwise. So, the incompatibility of f with D is the probability mass
within distance y of the hyperplane f - = 0. Alternatively, if we do not want to commit to a specific =y
in advance, we could define x(f, x) to be a smooth function of the distance of x to the separator, as done
in [81]. Note that in contrast, defining compatibility of a hypothesis based on the largest v such that D
has probability mass exactly zero within distance y of the separator would not fit our model: it cannot be
written as an expectation over individual examples and indeed would not be a good definition since one
cannot distinguish “zero” from “exponentially close to zero” from a small sample of unlabeled data.

Example 2. In co-training [62], we assume examples = each contain two “views”: x = (x1, x2), and
our goal is to learn a pair of functions (f1, f2), one on each view. For instance, if our goal is to classify web
pages, we might use x; to represent the words on the page itself and x2 to represent the words attached
to links pointing fo this page from other pages. The hope underlying co-training is that the two parts of
the example are generally consistent, which then allows the algorithm to bootstrap from unlabeled data.
For example, iterative co-training uses a small amount of labeled data to learn some initial information
(e.g., if a link with the words “my advisor” points to a page then that page is probably a faculty member’s
home page). Then, when it finds an unlabeled example where one side is confident (e.g., the link says “my
advisor”), it uses that to label the example for training over the other view. In regularized co-training,
one attempts to directly optimize a weighted combination of accuracy on labeled data and agreement over
unlabeled data. These approaches have been used for a variety of learning problems, including named
entity classification [87], text classification [116, [175], natural language processing [182], large scale
document classification [180], and visual detectors [159]]. As mentioned in Section 2.1, the assumptions
underlying this method fit naturally into our framework. In particular, we can define the incompatibility of
some hypothesis (f1, f2) with distribution D as Pr,, ,,y~p[fi(z1) # f2(x2)]. Similar notions are given
in subsequent work of [184, [196]] for other types of learning problems (e.g. regression) and for other loss
functions.

Example 3. In transductive graph-based methods, we are given a set of unlabeled examples connected
in a graph g, where the interpretation of an edge is that we believe the two endpoints of the edge should
have the same label. Given a few labeled vertices, various graph-based methods then attempt to use
them to infer labels for the remaining points. If we are willing to view D as a distribution over edges
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(a uniform distribution if g is unweighted), then as in co-training we can define the incompatibility of
some hypothesis f as the probability mass of edges that are cut by f, which then motivates various cut-
based algorithms. For instance, if we require f to be boolean, then the mincut method of [59] finds the
most-compatible hypothesis consistent with the labeled data; if we allow f to be fractional and define
1 —x(f, (x1,22)) = (f(z1) — f(x2))?, then the algorithm of [215] finds the most-compatible consistent
hypothesis. If we do not wish to view D as a distribution over edges, we could have D be a distribution
over vertices and broaden Definition 2.2.1/to allow for x to be a function over pairs of examples. In fact, as
mentioned in Note|l, since we have perfect knowledge of D in this setting we can allow any compatibility
function x(f, D) to be legal. We discuss more connections with graph-based methods in Section 2.5.1.

Example 4. As a special case of co-training, suppose examples are pairs of points in R, C'is the
class of linear separators, and we believe the two points in each pair should both be on the same side of
the target function. (So, this is a version of co-training where we require f; = f5.) The motivation is that
we want to use pairwise information as in Example 3, but we also want to use the features of each data
point. For instance, in the word-sense disambiguation problem studied by [210], the goal is to determine
which of several dictionary definitions is intended for some target word in a piece of text (e.g., is “plant”
being used to indicate a tree or a factory?). The local context around each word can be viewed as placing
it into R?, but the edges correspond to a completely different type of information: the belief that if a word
appears twice in the same document, it is probably being used in the same sense both times. In this setting,
we could use the same compatibility function as in Example 3, but rather than having the concept class C
be all possible functions, we restrict C' to just linear separators.

Example 5. In a related setting to co-training considered by [158], examples are single points in X
but we have a pair of hypothesis spaces (C7, C2) (or more generally a k-tuple (C1, ..., Cy)), and the goal
is to find a pair of hypotheses (f1, fo) € C1 x Cy with low error over labeled data and that agree over the
distribution. For instance, if data is sufficiently “well-separated”, one might expect there to exist both a
good linear separator and a good decision tree, and one would like to use this assumption to reduce the need
for labeled data. In this case one could define compatibility of (f1, fo) with D as Pry.p[fi(z) = fo(x)],
or the similar notions given in [158,189].

2.3 Sample Complexity Results

We now present several sample-complexity bounds that can be derived in this framework, showing how
unlabeled data, together with a suitable compatibility notion, can reduce the need for labeled examples. We
do not focus on giving the tightest possible bounds, but instead on the types of bounds and the quantities
on which they depend, in order to better understand what it is about the learning problem one can hope to
leverage from with unlabeled data.

The high-level structure of all of these results is as follows. First, given enough unlabeled data (where
“enough” will be a function of some measure of the complexity of C' and possibly of x as well), we can
uniformly estimate the true compatibilities of all functions in C' using their empirical compatibilities over
the sample. Then, by using this quantity to give a preference ordering over the functions in C, in the
realizable case we can reduce “C” down to “the set of functions in C' whose compatibility is not much
larger than the true target function” in bounds for the number of labeled examples needed for learning. In
the agnostic case we can do (unlabeled)-data-dependent structural risk minimization to trade off labeled
error and incompatibility. The specific bounds differ in terms of the exact complexity measures used (and a
few other issues) and we provide examples illustrating when and how certain complexity measures can be
significantly more powerful than others. Moreover, one can prove fallback properties of these procedures
— the number of labeled examples required is never much worse than the number of labeled examples
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required by a standard supervised learning algorithm. However, if the assumptions happen to be right, one
can significantly benefit by using the unlabeled data.

2.3.1 Uniform Convergence Bounds

We begin with uniform convergence bounds (later in Section 2.3.2| we give tighter e-cover bounds that
apply to algorithms of a particular form). For clarity, we begin with the case of finite hypothesis spaces
where we measure the “size” of a set of functions by just the number of functions in the set. We then
discuss several issues that arise when considering infinite hypothesis spaces, such as what is an appropriate
measure for the “size” of the set of compatible functions, and the need to account for the complexity of the
compatibility notion itself. Note that in the standard PAC model, one typically talks of either the realizable
case, where we assume that the target function ¢* belongs to C, or the agnostic case where we allow any
target function c¢* [149]. In our setting, we have the additional issue of unlabeled error rate, and can either
make an a-priori assumption that the target function’s unlabeled error is low, or else provide a bound in
which our sample size (or error rate) depends on whatever its unlabeled error happens to be. We begin in
Sections 2.3.1/and 2.3.1! with bounds for the the setting in which we assume ¢* € C, and then in Section
2.3.1lwe consider the agnostic case where we remove this assumption.

Finite hypothesis spaces

We first give a bound for the “doubly realizable” case where we assume ¢* € C' and err,,,;(¢*) = 0.
Theorem 2.3.1 If ¢* € C and erry,(c*) = 0, then m,, unlabeled examples and m; labeled examples are
sufficient to learn to error € with probability 1 — 9, where

2
1)

2

1
w=—11 1
m E[nCH—n 5

1
] and m; = - [ln]CD,X(e)\ +1n

In particular, with probability at least 1 — 6, all f € C with err(f) = 0 and érryy (f) = 0 have
err(f) <e

Proof: The probability that a given hypothesis f with err,,,;(f) > € has err,,;(f) = 0 is at most
(1 - < % for the given value of m,,. Therefore, by the union bound, the number of unlabeled

examples is sufficient to ensure that with probability 1 — %, only hypotheses in Cp  (€) have €rr,,,; (f) =
0. The number of labeled examples then similarly ensures that with probability 1 — g, none of those whose
true error is at least € have an empirical error of 0, yielding the theorem. W

Interpretation: If the target function indeed is perfectly correct and compatible, then Theorem 2.3.1
gives sufficient conditions on the number of examples needed to ensure that an algorithm that optimizes
both quantities over the observed data will, in fact, achieve a PAC guarantee. To emphasize this, we will
say that an algorithm efficiently PAC,,,;-learns the pair (C, x) if it is able to achieve a PAC guarantee
using time and sample sizes polynomial in the bounds of Theorem 2.3.1. For a formal definition see
Definition 2.3.1 at the end of this section.

We can think of Theorem 2.3.1/as bounding the number of labeled examples we need as a function of
the “helpfulness” of the distribution D with respect to our notion of compatibility. That is, in our context,
a helpful distribution is one in which Cp , (€) is small, and so we do not need much labeled data to identify
a good function among them. We can get a similar bound in the situation when the target function is not
fully compatible:
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Theorem 2.3.2 [f ¢* € C and erryy,(c*) = t, then m,, unlabeled examples and m; labeled examples are
sufficient to learn to error € with probability 1 — 6, for

2 4 1 2
My, = 6—2 |:ln|0| + In 5:| and m; = g |:ln|CD,X(t+2€)| +1In 5:| :

In particular, with probability at least 1 — 6, the f € C that optimizes érryy,(f) subject to err(f) = 0
has err(f) <e.

Alternatively, given the above number of unlabeled examples m,,, for any number of labeled examples
my, with probability at least 1 — 6, the f € C' that optimizes €rv () subject to err(f) = 0 has

err(f) < nlll {ln |Cp y(erryni(c’) + 2¢)| +1n ?] ) 2.1
Proof: By Hoeffding bounds, m,, is sufficiently large so that with probability at least 1 — 6/2, all f € C
have |er7yn(f) — errum(f)] < e Thus, {f € C : érryu(f) < t+ €} C Cp(t + 2¢). For the first
implication, the given bound on m; is sufficient so that with probability at least 1 — 4, all f € C with
err(f) = 0and erry, (f) < t+ehave err(f) < ¢; furthermore, érr,,,;(c*) < t+e, so such a function f
exists. Therefore, with probability at least 1 — ¢, the f € C' that optimizes €77, (f) subjectto err(f) =0
has err(f) < e, as desired. For second implication, inequality (2.1) follows immediately by solving for
the labeled estimation-error as a function of m;. W

Interpretation: Theorem [2.3.2/has several implications. Specifically:

1. If we can optimize the (empirical) unlabeled error rate subject to having zero empirical labeled
error, then to achieve low true error it suffices to draw a number of labeled examples that depends
logarithmically on the number of functions in C' whose unlabeled error rate is at most 2e greater
than that of the target c*.

2. Alternatively, for any given number of labeled examples m;, we can provide a bound (given in
equation [2.1) on our error rate that again depends logarithmically on the number of such functions,
i.e., with high probability the function f € C' that optimizes érr,;(f) subject to err(f) = 0 has
err(f) < m% [In |Cp (errum(c®) + 2€)| +In 2].

3. If we have a desired maximum error rate € and do not know the value of err,,;(c*) but have the
ability to draw additional labeled examples as needed, then we can simply do a standard “doubling
trick” on m;. On each round, we check if the hypothesis f found indeed has sufficiently low
empirical unlabeled error rate, and we spread the “6” parameter across the different runs. See, e.g.,
Corollary 2.3.6/in Section 2.3.1.

Finally, before going to infinite hypothesis spaces, we give a simple Occam-style version of the above
bounds for this setting. Given a sample S, let us define descs(f) = In|Cyg(€rryn(f))|. That is,
descg(f) is the description length of f (in “nats”) if we sort hypotheses by their empirical compatibility
and output the index of f in this ordering. Similarly, define e-descp(f) = In|Cp y (erruni(f) + €)|. This
is an upper-bound on the description length of f if we sort hypotheses by an e-approximation to the their
true compatibility. Then we immediately get a bound as follows:

Corollary 2.3.3 For any set S of unlabeled data, given my labeled examples, with probability at least
1 -4, all f € C satisfying err(f) = 0 and descs(f) < em; —In(1/9) have err(f) < e. Furthermore, if
|S| > %[ln |C| + In 2], then with probability at least 1 — 6, all f € C satisfy descs(f) < e-descp(f).

Interpretation: The point of this bound is that an algorithm can use observable quantities (the “empirical
description length” of the hypothesis produced) to determine if it can be confident that its true error rate
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is low (Le., if we can find a hypothesis with descg(f) < em; — In(1/6) and érr(f) = 0, we can be
confident that it has error rate at most €). Furthermore, if we have enough unlabeled data, the observable
quantities will be no worse than if we were learning a slightly less compatible function using an infinite-
size unlabeled sample.

Note that if we begin with a non-distribution-dependent ordering of hypotheses, inducing some de-
scription length desc( f), and our compatibility assumptions turn out to be wrong, then it could well be that
descp(c*) > desc(c*). In this case our use of unlabeled data would end up hurting rather than helping.
However, notice that by merely interleaving the initial ordering and the ordering produced by S, we get a
new description length desce,, (f) such that

descpew(f) < 14 min(desc(f),descs(f)).

Thus, up to an additive constant, we can get the best of both orderings.

Also, if we have the ability to purchase additional labeled examples until the function produced is
sufficiently “short” compared to the amount of data, then we can perform the usual stratification and be
confident whenever we find a consistent function f such that descg(f) < em; — IH(W)
is the number of labeled examples seen so far.

, where my

Efficient algorithms in our model Finally, we end this section with a definition describing our goals for
efficient learning algorithms, based on the above sample bounds.

Definition 2.3.1 Given a class C and compatibility notion x, we say that an algorithm efficiently PAC,,,;-
learns the pair (C,X) if, for any distribution D, for any target function ¢* € C with erry,(c*) =
0, for any given ¢ > 0, § > 0, with probability at least 1 — § it achieves error at most € using
poly(log |C|,1/€,1/8) unlabeled examples and poly(log |Cp (€)|,1/€,1/0) labeled examples, and with
time which is poly(log |C|,1/e€,1/9).

We say that an algorithm semi-agnostically PAC ,;-learns (C, x) if it is able to achieve this guarantee
forany c* € C evenif errypn(c*) # 0, using labeled examples poly(log |Cp  (erryni(c*)+¢€)|,1/€,1/9).

Infinite hypothesis spaces

To reduce notation, we will assume in the rest of this chapter that x(f,z) € {0,1} so that x(f, D) =
Pry~p[x(f,z) = 1]. However, all our sample complexity results can be easily extended to the general
case.

For infinite hypothesis spaces, the first issue that arises is that in order to achieve uniform convergence
of unlabeled error rates, the set whose complexity we care about is not C but rather x(C') = {xs : f € C}
where xf : X — {0,1} and x¢(x) = x(f, z). For instance, suppose examples are just points on the line,
and C' = {fo(z) : fo(x) = 1iff z < a}. In this case, VCdim(C') = 1. However, we could imagine
a compatibility function such that x(f,, =) depends on some complicated relationship between the real
numbers a and z. In this case, VCdim(x(C')) is much larger, and indeed we would need many more
unlabeled examples to estimate compatibility over all of C'.

A second issue is that we need an appropriate measure for the “size” of the set of surviving functions.
VC-dimension tends not to be a good choice: for instance, if we consider the case of Example 1 (margins),
then even if data is concentrated in two well-separated “blobs”, the set of compatible separators still has as
large a VC-dimension as the entire class even though they are all very similar with respect to D (see, e.g.,
Figure 2.1/ after Theorem 2.3.5/ below). Instead, it is better to consider distribution dependent complexity
measures such as annealed VC-entropy [103] or Rademacher averages [43,72,/155]]. For this we introduce
some notation. Specifically, for any C, we denote by C[m, D] the expected number of splits of m points
(drawn i.i.d.) from D using concepts in C. Also, for a given (fixed) S C X, we will denote by S the

22



uniform distribution over S, and by C[m, S] the expected number of splits of m points from S using
concepts in C'. The following is the analog of Theorem 2.3.2 for the infinite case.

Theorem 2.3.4 If ¢* € C and erryy,(c*) = t, then m,, unlabeled examples and m; labeled examples are
sufficient to learn to error € with probability 1 — 9, for

my, = O VCdim (x(C)) lnl + 1 ln2
€2 e €774

and

J

where recall Cp , (t + 2€)[2my, D] is the expected number of splits of 2my points drawn from D using
concepts in C of unlabeled error rate < t + 2e¢. In particular, with probability at least 1 — 6, the f € C
that optimizes €rv ., (f) subject to err(f) = 0 has err(f) < e.

2 4
my = - [ln (2CD,X(t + 2¢)[2my, D]) +1In ] ,
€

Proof: Let S be the set of m,, unlabeled examples. By standard VC-dimension bounds (e.g., see
Theorem |A.1.1/in Appendix |A.1.1) the number of unlabeled examples given is sufficient to ensure that
with probability at least 1 — § we have | Prys[xf(z) = 1] — Pryup[xs(z) = 1]| < eforall x; € x(O).
Since x f(x) = x(f, ), this implies that we have |77y (f) — erryni(f)] < eforall f € C. So, the set
of hypotheses with €77, (f) < t + € is contained in Cp , (¢ + 2¢).

The bound on the number of labeled examples now follows directly from known concentration results
using the expected number of partitions instead of the maximum in the standard VC-dimension bounds
(e.g., see Theorem A.1.2/in Appendix A.1.1]). This bound ensures that with probability 1 — g, none of the
functions f € Cp , (t + 2¢) with err(f) > € have err(f) = 0.

The above two arguments together imply that with probability 1 — 4, all f € C with err(f) = 0 and
errun(f) <t + ehave err(f) < ¢, and furthermore ¢* has érr,,;(c*) < t + e. This in turn implies that
with probability at least 1 — J, the f € C' that optimizes érr,,,;(f) subject to err(f) = 0 has err(f) <e
as desired. W

We can also give a bound where we specify the number of labeled examples as a function of the unla-
beled sample; this is useful because we can imagine our learning algorithm performing some calculations
over the unlabeled data and then deciding how many labeled examples to purchase.

Theorem 2.3.5 If ¢* € C and erryy(c*) = t, then an unlabeled sample S of size

; (max[vc*dzm(C);VCdzm(x(C))} mle L 2)
€ €

€ 19

is sufficient so that if we label m; examples drawn uniformly at random from S, where
4 4
my > = |In(2Cs (t + €)[2my, S]) + In 5
€

then with probability at least 1 — 0, the f € C' that optimizes €rvy,(f) subject to err(f) = 0 has
err(f) <e

Proof: Standard VC-bounds (in the same form as for Theorem 2.3.4) imply that the number of labeled
examples m; is sufficient to guarantee the conclusion of the theorem with “err(f)” replaced by “err<(f)”
(the error with respect to S) and “e” replaced with “e/2”. The number of unlabeled examples is enough
to ensure that, with probability > 1 — %, forall f € C, lerr(f) — errg(f)| < €/2. Combining these two
statements yields the theorem. W
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Note that if we assume err,,;(c*) = 0, then we can use the set Cg , (0) instead of Cg , (¢ + €) in the
formula giving the number of labeled examples in Theorem 2.3.5.

Note: Notice that for the setting of Example 1, in the worst case (over distributions D) this will essentially
recover the standard margin sample-complexity bounds for the number of labeled examples. In particular,
Cs,(0) contains only those separators that split S with margin > +, and therefore, s = ‘CS,X(O) [2my, S]
is no greater than the maximum number of ways of splitting 2m; points with margin y. However, if the
distribution is helpful, then the bounds can be much better because there may be many fewer ways of
splitting S with margin ~y. For instance, in the case of two well-separated “blobs” illustrated in Figure 2.1,
if S is large enough, we would have just s = 4.

Figure 2.1: Linear separators with a margin-based notion of compatibility. If the distribution is uniform
over two well-separated “blobs” and the unlabeled set S is sufficiently large, the set Cs,, (0) contains only
four different partitions of .5, shown in the figure as f1, fo, f3, and f4. Therefore, Theorem 2.3.5 implies
that we only need O(1/¢) labeled examples to learn well.

Theorem 2.3.5 immediately implies the following stratified version, which applies to the case in which
one repeatedly draws labeled examples until that number is sufficient to justify the most-compatible hy-
pothesis found.

Corollary 2.3.6 An unlabeled sample S of size
O (maX[VC’dzm(C), VCdim(x(C))] lnl n % In §>
€ €

is sufficient so that with probability > 1 — § we have that simultaneously for every k > 0 the following is
true: if we label my, examples drawn uniformly at random from S, where

Ak + 1)(k + 2)]
5

then all f € C with err(f) = 0and érryy,(f) < (k+ 1)e have err(f) < e

€2

my > % [ln (2Cs((k + 1)e) [2my, S]) + In

Interpretation: This corollary is an analog of Theorem 2.3.3/ and it justifies a stratification based on
the estimated unlabeled error rates. That is, beginning with £k = 0, one draws the specified number
of examples and checks to see if a sufficiently compatible hypothesis can be found. If so, one halts with
success, and if not, one increments k and tries again. Since k < %, we clearly have a fallback property: the
number of labeled examples required is never much worse than the number of labeled examples required
by a standard supervised learning algorithm.

If one does not have the ability to draw additional labeled examples, then we can fix m; and instead
stratify over estimation error as in [45]. We discuss this further in our agnostic bounds in Section 2.3.1
below.
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The agnostic case

The bounds given so far have been based on the assumption that the target function belongs to C' (so
that we can assume there will exist f € C with err(f) = 0). One can also derive analogous results for
the agnostic (unrealizable) case, where we do not make that assumption. We first present one immediate
bound of this form, and then show how we can use it in order to trade off labeled and unlabeled error
in a near-optimal way. We also discuss the relation of this to a common “regularization” technique used
in semi-supervised learning. As we will see, the differences between these two point to certain potential
pitfalls in the standard regularization approach.

Theorem 2.3.7 Let f; = argmin cc[err(f)|errun(f) < t]. Then an unlabeled sample S of size

. - 1. 2
O <max[VC’dzm(C’);VCd’Lm(X(C))] log = + — log 5)
€ €

€

and a labeled sample of size

4
my > % [log (20D7X(t + 2¢)[2my, D]) + log 5]
€
is sufficient so that with probability > 1 — 0, the f € C that optimizes érr(f) subject to €7y (f) < t+e
has err(f) < err(ff) + e+ +/log(4/9)/(2m;) < err(f}) + 2e.

Proof: The given unlabeled sample size implies that with probability 1 — /2, all f € C have
lerruni(f) — erruni(f)] < € which also implies that err,,,;(f) < t + €. The labeled sample size,
using standard VC bounds (e.g, Theorem A.1.3/in the Appendix A.1.2) imply that with probability at least
1—-0/4,all f € Cp,,(t+ 2€) have |err(f) —err(f)| < e. Finally, by Hoeffding bounds, with probability
at least 1 — 0/4 we have

Fi(f7) < err(f7) + /1og(478)] 2my).

Therefore, with probability at least 1 — J, the f € C that optimizes err(f) subject to err . (f) <t + €
has

err(f) <err(f) +e<err(f)) +e<err(f) +e++/log(4/d)/(2my) < err(f;) + 2,
as desired. W

Interpretation: Given a value ¢, Theorem[2.3.7/ bounds the number of labeled examples needed to achieve
error at most € larger than that of the best function f; of unlabeled error rate at most ¢. Alternatively, one
can also state Theorem [2.3.7| in the form more commonly used in statistical learning theory: given any
number of labeled examples m; and given ¢ > 0, Theorem 2.3.7 implies that with high probability, the
function f that optimizes err(f) subject to érr,;(f) <t + € satisfies

err(f) < err(f) +e < err(ff) + e + w

where

€ = \/nil log (8CD7X(t + 2¢)[2my, D]/(S).

Note that as usual, there is an inherent tradeoff here between the quality of the comparison function f/,
which improves as ¢ increases, and the estimation error €;, which gets worse as ¢ increases. Ideally, one
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would like to achieve a bound of min,[err(f) + €] + /log(4/6)/(2my); i.e., as if the optimal value of
t were known in advance. We can perform nearly as well as this bound by (1) performing a stratification
over t (so that the bound holds simultaneously for all values of ¢) and (2) using an estimate €; of ¢; that
we can calculate from the unlabeled sample and therefore use in the optimization. In particular, letting
fo = argmin g co[err(f') : errym(f') < t], we will output f = argming, [err(f;) + &].

Specifically, given a set S of unlabeled examples and m; labeled examples, let

. R 24
& = &(S,m) = ¢ 22 o (8Cs (1) mi, 5).

where we define C's , (t)[my, S] to be the number of different partitions of the first m; points in S using
functions in Cg , (1), i.e., using functions of empirical unlabeled error at most ¢ (we assume |S| > my).
Then we have the following theorem.

Theorem 2.3.8 Let f; = argming cclerr(f')|errun(f’) < t] and define é(f') = &y fort’ = erryn(f').
Then, given my labeled examples, with probability at least 1 — 0, the function

f = argminp[err(f) + é(f')]

satisfies the guarantee that

err(f) < mtin[err(fj) +e(f)]+5 1()g7(ngl/5)

Proof: First we argue that with probability at least 1 — §/2, for all f' € C we have

err(f') < @r(f) + e(f) + 4y B,

1
In particular, define Cy = Cg,(0) and inductively for & > 0 define C}, = Cg(t) for t; such that
Ck[my, S] = 8Ck_1[my, S]. (If necessary, arbitrarily order the functions with empirical unlabeled error
exactly t; and choose a prefix such that the size condition holds.) Also, we may assume without loss of
generality that Cy[m;, S] > 1. Then, using bounds of [71] (see also Appendix A), we have that with
probability at least 1 — 6/2+2 all f' € C}, \ Ci_; satisfy:

err(f) < er(f)+ \/721 log(Cx[my, S]) + 4\/7;” log(2k+3/6)

< &)+ \/6 log(Ci[mu, S]) + 4\/;” log(2¥) + 4 171” log(8/5)
< \/ 5 tog(Cilmu, S]) + \/ n‘; log(8*) + 4\/ Wil log(8/5)
< \/ 5 rog(Crlm, S)) +4\/ nil log(8/5)

< err(f)+e(f)+ *10g(8/5)

Now, let f* = argmin . [err(f7)+¢é(f;)]. By Hoeffding bounds, with probability at least 1—§/2 we have
err(f*) < err(f*)++/log(2/0)/(2my). Also, by construction we have err(f)+é(f) < err(f*)+e(f*).
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Therefore with probability at least 1 — § we have:

err(f) < @mr(f) + é(f) +4y/1og(8/8) /mi
< @H(f) + &) + 4y/log(8/6) /i
< err(f%) + &(f") + 5y/10g(8/5) /mi

as desired. MW

The above result bounds the error of the function f produced in terms of the quantity €(f*) which de-
pends on the empirical unlabeled error rate of f*. If our unlabeled sample .S is sufficiently large to estimate
all unlabeled error rates to +e, then with high probability we have err(f;) <t + ¢, so €(f;) < €.+, and
moreover Cg , (t+€) C Cp . (t+2€). So, our error term €( f;") is at most \/72741 log (8Cp  (t + 2€)[my, S]).
Recall that our ideal error term ¢, for the case that ¢ was given to the algorithm in advance, factoring out the

dependence on §, was \/nil log (8C’D7x(t + 2¢)[2my, D]) [71] show that for any class C, the quantity

log(C[m, S]) is tightly concentrated about log(C[m, D]) (see also Theorem A.1.6/in the Appendix A.1.2),
so up to multiplicative constants, these two bounds are quite close.

Interpretation and use of unlabeled error rate as a regularizer: The above theorem suggests to op-
timize the sum of the empirical labeled error rate and an estimation-error bound based on the unlabeled
error rate. A common related approach used in practice in machine learning (e.g., [82]) is to just di-
rectly optimize the sum of the two kinds of error: i.e., to find argmin¢[err(f) + €rryu(f)]. However,
this is not generically justified in our framework, because the labeled and unlabeled error rates are really
of different “types”. In particular, depending on the concept class and notion of compatibility, a small
change in unlabeled error rate could substantially change the size of the compatible set.* For example,
suppose all functions in C' have unlabeled error rate 0.6, except for two: function f has unlabeled er-
ror rate 0 and labeled error rate 1/2, and function fp5 has unlabeled error rate 0.5 and labeled error
rate 1/10. Suppose also that C' is sufficiently large that with high probability it contains some func-
tions f that drastically overfit, giving é77(f) = 0 even though their true error is close to 1/2. In this
case, we would like our algorithm to pick out fy 5 (since its labeled error rate is fairly low, and we
cannot trust the functions of unlabeled error 0.6). However, even if we use a regularization parame-
ter A, there is no way to make fo5 = argming[err(f) + Aerryy(f)]: in particular, one cannot have
1/10+0.5A < min[1/2+40X,0+0.6A]. So, in this case, this approach will not have the desired behavior.

Note: One could further derive tighter bounds, both in terms of labeled and unlabeled examples, that are
based on other distribution dependent complexity measures and using stronger concentration results (see
e.g. [72]]).

2.3.2 ¢-Cover-based Bounds

The results in the previous section are uniform convergence bounds: they provide guarantees for any
algorithm that optimizes over the observed data. In this section, we consider stronger bounds based on
e-covers that apply to algorithms that behave in a specific way: they first use the unlabeled examples to
choose a “representative” set of compatible hypotheses, and then use the labeled sample to choose among
these. Bounds based on e-covers exist in the classical PAC setting, but in our framework these bounds
and algorithms of this type are especially natural, and the bounds are often much lower than what can be
achieved via uniform convergence. For simplicity, we restrict ourselves in this section to the realizable

3On the other hand, for certain compatibility notions and under certain natural assumptions, one can use unlabeled error rate
directly, e.g., see e.g., [196].
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case. However one can combine ideas in Section 2.3.1 with ideas in this section in order to derive bounds
in the agnostic case as well. We first present our generic bounds. In Section [2.3.2| we discuss natural
settings in which they can be especially useful, and in then Section 2.3.2 we present even tighter bounds
for co-training.

Recall that a set C. C 2% is an e-cover for C' with respect to D if for every f € C thereis a f' € C.
which is e-close to f. That is, Prpp(f(z) # f(x)) <e.

We start with a theorem that relies on knowing a good upper bound on the unlabeled error rate of the
target function err,;(c*).

Theorem 2.3.9 Assume c¢* € C and let p be the size of a minimum e-cover for Cp , (erryni(c*) + 2€).
Then using m,, unlabeled examples and m; labeled examples for

my = O max[VCdim(C), VCdim(x(C))] log} N ilogg andmy = O llng 7
€2 e € 790 e 9

we can with probability 1 — ¢ identify a hypothesis f € C with err(f) < 6e.

Proof: Lett = erry,(c*). Now, given the unlabeled sample Sy, define C/ C C as follows: for
every labeling of Sy that is consistent with some f in C, choose a hypothesis in C' for which érr,,,;(f) is
smallest among all the hypotheses corresponding to that labeling. Next, we obtain C, by eliminating from
C' those hypotheses f with the property that err,,,;(f) > t + ¢. We then apply a greedy procedure on C
to obtain G, = {g1,--- , gs}, as follows:

Initialize C! = Cc and i = 1.

1. Let g; = argmin e/ﬁaunl(f)

feci

2. Using the unlabeled sample Sy, determine C/*! by deleting from C? those hypotheses f with the
property that d(g;, f) < 3e.

3. If Ci*! = () then set s = 7 and stop; else, increase i by 1 and goto 1.

We now show that with high probability, G is a 5e-cover of Cp ,(t) with respect to D and has size
at most p. First, our bound on m,, is sufficient to ensure that with probability > 1 — g, we have (a)
ld(f,9) —d(f,g)| < eforall f,g € C and (b) |eFFyni(f) — errun(f)| < eforall f € C. Let us assume
in the remainder that this (a) and (b) are indeed satisfied. Now, (a) implies that any two functions in C that
agree on Sy have distance at most ¢, and therefore C” is an e-cover of C. Using (b), this in turn implies
that C. is an e-cover for Cp ,(t). By construction, G, is a 3e-cover of C. with respect to distribution
Sy, and thus (using (a)) G is a 4e-cover of C, with respect to D, which implies that G, is a 5e-cover of
Cp,(t) with respect to D.

We now argue that G has size at most p. Fix some optimal e-cover { f1, ..., fp} of Cp y (erry(c*)+
2¢). Consider function g; and suppose that g; is covered by Jo(i)- Then the set of functions deleted in
step (2) of the procedure include those functions f satisfying d(g;, f) < 2e which by triangle inequality
includes those satisfying d( fy(;), f) < €. Therefore, the set of functions deleted include those covered by
fo(s) and so for all j > i, o(j) # o(i); in particular, o is 1-1. This implies that G has size at most p.

Finally, to learn ¢* we simply output the function f € G, of lowest empirical error over the labeled
sample. By Chernoff bounds, the number of labeled examples is enough to ensure that with probability
>1- % the empirical optimum hypothesis in G, has true error at most 6e. This implies that overall, with
probability > 1 — 4, we find a hypothesis of error at most 6e. B

Note that Theorem [2.3.9 relies on knowing a good upper bound on err,,,;(¢*). If we do not have
such an upper bound, then one can perform a stratification as in Sections 2.3.1 and 2.3.1. For example,
if we have a desired maximum error rate € and we do not know a good upper bound for err,,;(c*) but
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we have the ability to draw additional labeled examples as needed, then we can simply run the procedure
in Theorem 2.3.9 for various value of p, testing on each round to see if the hypothesis f found indeed
has zero empirical labeled error rate. One can show that m; = O (% In %) labeled examples are sufficient
in total for all the “validation” steps.* If the number of labeled examples m; is fixed, then one can also
perform a stratification over the target error e.

Some illustrative examples

To illustrate the power of e-cover bounds, we now present two examples where these bounds allow for
learning from significantly fewer labeled examples than is possible using uniform convergence.

Graph-based learning: Consider the setting of graph-based algorithms (e.g., Example 3). In particular,
the input is a graph g where each node is an example and C is the class of all boolean functions over the
nodes of g. Let us define the incompatibility of a hypothesis to be the fraction of edges in g cut by it.
Suppose now that the graph g consists of two cliques of n/2 vertices, connected together by en?/4 edges.
Suppose the target function ¢* labels one of the cliques as positive and one as negative, so the target func-
tion indeed has unlabeled error rate less than e. Now, given any set Sy, of m; < en/4 labeled examples,
there is always a highly-compatible hypothesis consistent with S, that just separates the positive points
in Sy, from the entire rest of the graph: the number of edges cut will be at most nm; < en?/4. However,
such a hypothesis has true error nearly 1/2 since it has less than en/4 positive examples. So, we do not
yet have uniform convergence over the space of highly compatible hypotheses, since this hypothesis has
zero empirical error but high true error. Indeed, this illustrates an overfitting problem that can occur with
a direct minimum-cut approach to learning [59, 67, [140]. On the other hand, the set of functions of unla-
beled error rate less than ¢ has a small e-cover: in particular, any partition of g that cuts less than en? /4
edges must be e-close to (a) the all-positive function, (b) the all-negative function, (c) the target function
c*, or (d) the complement of the target function 1 — ¢*. So, e-cover bounds act as if the concept class had
only 4 functions and so by Theorem 2.3.9/ we need only O(% log %) labeled examples to learn well > (In
fact, since the functions in the cover are all far from each other, we really need only O(log %) examples.
This issue is explored further in Theorem 2.3.11)).

Simple co-training: For another case where e-cover bounds can beat uniform-convergence bounds, imag-
ine examples are pairs of points in {0, 1}, C is the class of linear separators, and compatibility is deter-
mined by whether both points are on the same side of the separator (i.e., the case of Example 4). Now
suppose for simplicity that the target function just splits the hypercube on the first coordinate, and the
distribution is uniform over pairs having the same first coordinate (so the target is fully compatible). We
then have the following.

Theorem 2.3.10 Given poly(d) unlabeled examples Sy and % log d labeled examples St,, with high prob-
Vd

ability there will exist functions of true error 1/2 — 272 4 that are consistent with S, and compatible
with Sg;.

Proof: Let V be the set of all variables (not including ) that (a) appear in every positive example
of 57, and (b) appear in no negative example of Sy. In other words, these are variables x; such that

4Specifically, note that as we increase ¢ (our current estimate for the unlabeled error rate of the target function), the associated
p (which is an integer) increases in discrete jumps, p1, p2, . ... We can then simply spread the “0” parameter across the different
runs, in particular run ¢ would use § /(¢ + 1). Since p; > 4, this implies that m; = O % In % labeled examples are sufficient
for all the “validation” steps.

SEffectively, e-cover bounds allow one to rule out a hypothesis that, say, just separates the positive points in Sy, from the rest
of the graph by noting that this hypothesis is very close (with respect to D) to the all-negative hypothesis, and that hypothesis
has a high labeled-error rate.
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the function f(z) = x; correctly classifies all examples in Sz,. Over the draw of S7, each variable has a
(1/2)%15c] = 1/+/d chance of belonging to V, so the expected size of V is (d — 1) /+/d and so by Chernoff
bounds, with high probability V' has size at least %\/& Now, consider the hypothesis corresponding to
the conjunction of all variables in V. This correctly classifies the examples in Sy, and with probability
at least 1 — 2]SU]2*|V| it classifies every other example in Sy negative because each example in Sy has
only a 1/2!VI chance of satisfying every variable in V. Since |Sy;| = poly(d), this means that with high
probability this conjunction is compatible with Sy and consistent with Sy, even though its true error is at
least 1/2 — 27:Vi

So, given only a set Sy of poly(d) unlabeled examples and a set Sy, of ilogd labeled examples
we would not want to use a uniform convergence based algorithm since we do not yet have uniform
convergence. In contrast, the cover-size of the set of functions compatible with Sy is constant, so e-cover
based bounds again allow learning from just only O(% log %) labeled examples (Theorem 2.3.9). In fact

as we show in Theorem 2.3.11]/ we only need O <log 1 %) labeled examples in this case.

Learning from even fewer labeled examples

In some cases, unlabeled data can allow us to learn from even fewer labeled examples than given by The-
orem 2.3.9. In particular, consider a co-training setting where the target ¢* is fully compatible and D sat-
isfies the property that the two views x; and x5 are conditionally independent given the label ¢*({z1, z2)).
As shown by [62]], one can boost any weak hypothesis from unlabeled data in this setting (assuming one
has enough labeled data to produce a weak hypothesis). Related sample complexity results are given
in [97]. In fact, we can use the notion of e-covers to show that we can learn from just a single labeled
example. Specifically, for any concept classes C and C'5, we have:

Theorem 2.3.11 Assume that err(c*) = erryy,(c*) = 0 and D satisfies independence given the label.
Then for any T < €/4, using m,, unlabeled examples and m; labeled examples we can find a hypothesis
that with probability 1 — § has error at most €, for

T

my = O <1 {(VCdim(Cl) + VCdim(Cs))In 1 +1In Z]) and m; = O <log1 (15> .
T T

Proof: We will assume for simplicity the setting of Example 3, where ¢* = ¢] = ¢5 and also Dy =
Dy = D (the general case is handled similarly, but just requires more notation).

We start by characterizing the hypotheses with low unlabeled error rate. Recall that x(f, D) =
Priy, 2py~nlf(z1) = f(22)], and for concreteness assume f predicts using z1 if f(z1) # f(x2). Con-
sider f € C with erry,(f) < 7 and let’s define p_ = Pr__p [c*(z) = 0], py = Pr p[c*(z) = 1] and
for i, j € {0, 1} define p;; = Pr, 5 [f(7) = i,c"(x) = j]. We clearly have err (f) = p1o + po1. From
erTunt(f) = Pr(z, wo)~p [f (x1) # f (72)] < 7, using the independence given the label of D, we get

2 2
P10Poo + Po1P11 <r
P1o+Poo  Po1 + P11

2p10P00
P10+Poo

fact that % < 7 implies that we cannot have both pg; > 7 and p;; > 7. Therefore, any hypothesis
f with erry,,; (f) < 7 falls in one of the following categories:

In particular, the fact that < 7 implies that we cannot have both p;p > 7 and pgg > 7, and the

1. fis“closeto ¢*”: pigp < 7and po; < 7550 err(f) < 27.
2. fis“close to ¢*: popg < 7and p1; < T;soerr(f) >1—27.

30



3. f “almost always predicts negative”: for p1g < 7 and p11 < 7;s0 Pr[f(z) =0] > 1 — 27.

4. f “almost always predicts positive”: for pog < 7 and pg1 < 7; so Pr[f(z) = 0] < 27.

Let f1 be the constant positive function and fj be the constant negative function. Now note that our
bound on m,, is sufficient to ensure that with probability > 1 — 2, we have (a) |d(f,g) — d(f,g)| < T
forall f,g € C and (b) all f € C with érry,(f) = 0 satisfy erry(f) < 7. Let us assume in the
remainder that this (a) and (b) are indeed satisfied. By our previous analysis, there are at most four kinds
of hypotheses consistent with unlabeled data: those close to ¢*, those close to its complement ¢*, those
close to fo, and those close to f. Furthermore, c*, c*, fo, and f; are compatible with the unlabeled data.

So, algorithmically, we first check to see if there exists a hypothesis g € C with érr,,;;(g) = 0 such
that J( fi,9) > 37 and J( fo,g) > 37. If such a hypothesis g exists, then it must satisfy either case (1)
or (2) above. Therefore, we know that one of {g,g} is 27-close to ¢*. If not, we must have p; < 47 or
p— < 47, in which case we know that one of { fy, f1 } is 47-close to ¢*. So, either way we have a set of two
functions, opposite to each other, one of which is at least 47-close to ¢*. We finally use O(log1 %) labeled
examples to pick one of these to output, namely the one with lowest empirical labeled error. Lemma2.3.12
below then implies that with probability 1 — 4 the function we output has error at most 47 <e. N

Lemma 2.3.12 Consider T < %. Let C; = { 7 f} be a subset of C' containing two opposite hypotheses
with the property that one of them is T-close to c*. Then, m; > 6 log( ) (%) labeled examples are sufficient

1
so that with probability > 1 — 0, the concept in C; that is T-close to ¢* in fact has lower empirical error.

Proof: We need to show that if m; > 6log1 (%), then
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d, which implies the desired result. B

In particular, by reducing 7 to poly(d) in Theorem 2.3.11, we can reduce the number of labeled
examples needed m; to one. Note however that we will need polynomially more unlabeled examples.

In fact, the result in Theorem 2.3.11] can be extended to the case that D" and D~ merely satisfy
constant expansion rather than full independence given the label, see [28].

Note: Theorem 2.3.11 illustrates that if data is especially well behaved with respect to the compatibility
notion, then our bounds on labeled data can be extremely good. In Section 2.4.2, we show for the case of
linear separators and independence given the label, we can give efficient algorithms, achieving the bounds
in Theorem 2.3.11] in terms of labeled examples by a polynomial time algorithm. Note, however, that
both these bounds rely heavily on the assumption that the target is fully compatible. If the assumption is
more of a “hope” than a belief, then one would need an additional sample of 1/¢ labeled examples just to
validate the hypothesis produced.
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2.4 Algorithmic Results

In this section we give several examples of efficient algorithms in our model that are able to learn using
sample sizes comparable to those described in Section 2.3. Note that our focus is on achieving a low-error
hypothesis (also called minimizing 0-1 loss). Another common practice in machine learning (both in the
context of supervised and semi-supervised learning) is to instead try to minimize a surrogate convex loss
that is easier to optimize [82]. While this does simplify the computational problem, it does not in general
solve the true goal of achieving low error.

2.4.1 A simple case

We give here a simple example to illustrate the bounds in Section [2.3.1, and for which we can give a
polynomial-time algorithm that takes advantage of them. Let the instance space X = {0,1}¢, and for
x € X, let vars(x) be the set of variables set to 1 in the feature vector z. Let C' be the class of monotone
disjunctions (e.g., 1 V x3 V x¢), and for f € C, let vars(f) be the set of variables disjoined by f.
Now, suppose we say an example x is compatible with function f if either vars(x) C vars(f) or else
vars(z) Nvars(f) = ¢. This is a very strong notion of “margin”: it says, in essence, that every variable
is either a positive indicator or a negative indicator, and no example should contain both positive and
negative indicators.

Given this setup, we can give a simple PAC,,,;-learning algorithm for this pair (C, x): that is, an
algorithm with sample size bounds that are polynomial (or in this case, matching) those in Theorem 2.3.1.
Specifically, we can prove the following:

Theorem 2.4.1 The class C' of monotone disjunctions is PAC,,,;-learnable under the compatibility notion
defined above.

Proof: We begin by using our unlabeled data to construct a graph on d vertices (one per variable),
putting an edge between two vertices ¢ and j if there is any example x in our unlabeled sample with
i,j € vars(x). We now use our labeled data to label the components. If the target function is fully
compatible, then no component will get multiple labels (if some component does get multiple labels, we
halt with failure). Finally, we produce the hypothesis f such that vars(f) is the union of the positively-
labeled components. This is fully compatible with the unlabeled data and has zero error on the labeled
data, so by Theorem 2.3.1, if the sizes of the data sets are as given in the bounds, with high probability the
hypothesis produced will have error at moste. W

Notice that if we want to view the algorithm as “purchasing” labeled data, then we can simply ex-
amine the graph, count the number of connected components k, and then request %[l{: In2+1In %] labeled
examples. (Here, 28 = |Cg,(0)].) By the proof of Theorem 2.3.1, with high probability 28 < |Cp , (€)
so we are purchasing no more than the number of labeled examples in the theorem statement.

Also, it is interesting to see the difference between a “helpful” and “non-helpful” distribution for this
problem. An especially non-helpful distribution would be the uniform distribution over all examples z
with |vars(z)| = 1, in which there are d components. In this case, unlabeled data does not help at all, and
one still needs €2(d) labeled examples (or, even 2 (g) if the distribution is non-uniform as in the lower
bounds of [105]). On the other hand, a helpful distribution is one such that with high probability the
number of components is small, such as the case of features appearing independently given the label.

b

2.4.2 Co-training with linear separators

We now consider the case of co-training where the hypothesis class C' is the class of linear separators. For
simplicity we focus first on the case of Example 4: the target function is a linear separator in R¢ and each
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example is a pair of points, both of which are assumed to be on the same side of the separator (i.e., an
example is a line-segment that does not cross the target hyperplane). We then show how our results can
be extended to the more general setting.

As in the previous example, a natural approach is to try to solve the “consistency” problem: given a set
of labeled and unlabeled data, our goal is to find a separator that is consistent with the labeled examples
and compatible with the unlabeled ones (i.e., it gets the labeled data correct and doesn’t cut too many
edges). Unfortunately, this consistency problem is NP-hard: given a graph g embedded in R? with two
distinguished points s and %, it is NP-hard to find the linear separator with s on one side and ¢ on the
other that cuts the minimum number of edges, even if the minimum is zero [108]]. For this reason, we will
make an additional assumption, that the two points in an example are each drawn independently given
the label. That is, there is a single distribution D over R?, and with some probability py, two points
are drawn i.i.d. from D (D restricted to the positive side of the target function) and with probability
1 — p4, the two are drawn i.i.d from D_ (D restricted to the negative side of the target function). Note
that our sample complexity results in Section 2.3.2/ extend to weaker assumptions such as distributional
expansion introduced by [28], but we need true independence for our algorithmic results. [62] also give
positive algorithmic results for co-training when (a) the two views of an example are drawn independently
given the label (which we are assuming now), (b) the underlying function is learnable via Statistical
Query algorithms® (which is true for linear separators [64]), and (c) we have enough labeled data to
produce a weakly-useful hypothesis (defined below) on one of the views to begin with. We give here an
improvement over that result by showing how we can run the algorithm in [62] with only a single labeled
example, thus obtaining an efficient algorithm in our model. It is worth noticing that in the process, we
also somewhat simplify the results of [64] on efficiently learning linear separators with noise without a
margin assumption.

For the analysis below, we need the following definition. A weakly-useful predictor is a function f
such that for some ( that is at least inverse polynomial in the input size we have:

Prif(x) = 1|c*(z) = 1] > Pr[f(z) = 1|c*(z) = 0] + . (2.2)

It is equivalent to the usual notion of a “weak hypothesis” [149] when the target function is balanced,
but requires the hypothesis give more information when the target function is unbalanced [62]. Also,
we will assume for convenience that the target separator passes through the origin, and let us denote the
separator by ¢* - x = 0.

We now describe an efficient algorithm to learn to any desired error rate € in this setting from just
a single labeled example. For clarity, we first describe an algorithm whose running time depends poly-
nomially on both the dimension d and 1/, where + is a soft margin of separation between positive and
negative examples. Formally, in this case we assume that at least some non-negligible probability mass of
examples z satisfy NchJl > 7; i.e., they have distance at least 7y to the separating hyperplane x - ¢* = 0
after normalization. This is a common type of assumption in machine learning (in fact, often one makes
the much stronger assumption that nearly all probability mass is on examples z satisfying this condition).
We then show how one can replace the dependence on 1/~ with instead a polynomial dependence on the
number of bits of precision b in the data, using the Outlier Removal Lemma of [64]] and [104].

Theorem 2.4.2 Assume that at least an o probability mass of examples x have margin || i J‘ > vy with

respect to the target separator c¢*. There is a polynomial-time algorithm (polynomial in d, 1/, 1/c, 1/€,
and 1/9) to learn a linear separator under the above assumptions, from a polynomial number of unlabeled
examples and a single labeled example.

For a detailed description of the Statistical Query model see [148] and [149].
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Algorithm 1 Co-training with Linear Separators. The Soft Margin Case.

Input: €, §, T a set Sy, of m; labeled examples drawn i.i.d from D, a set Sy of m, unlabeled
examples drawn i.i.d from D.

Output: Hypothesis of low error.

Let h,, be the all-positive function. Let h,, be the all-negative function. Let 7 = €/6, ¢; = 7/4.
(1) Fori=1,...,Tdo
- Choose a random halfspace f; going through the origin.

- Feed f;, Sy and error parameters ¢; and confidence parameter 0/6 into the bootstrapping
procedure of [62] to produce h;.

(2) Let / be argminhi{e/ﬁ‘unl(hi)\d(h, hy) > 37, d(h, hy) > 37}.
If @nunl(hz) > 3¢q, thenlet h = hp.

(3) Use Sy, to output either k or h: output the hypothesis with lowest empirical error on the set Sy..

Proof: Let € and ¢ be the desired accuracy and confidence parameters. Let T = O ( ch»y log (%)), My =
poly(1/v,1/a,1/€,1/6,d), and m; = 1. We run Algorithm 1 with the inputs €, §, T Sz, Sy7, and my; = 1.
LetT =€/6,e1 = 7/4.

In order to prove the desired result, we start with a few facts.

We first note that our bound on m,, is sufficient to ensure that with probability > 1 — 9. we have (a)
|d(f,9) —d(f,g)| < 7forall f,g € C and (b)all f € C have |77y (f) — erru(f)| < €1

We now argue that if at least an « probability mass of examples x have margin % > ~ with
respect to the target separator c*, then a random halfspace has at least a poly(«, v) probability of being
a weakly-useful predictor. (Note that [64] uses the Perceptron algorithm to get weak learning; here, we
need something simpler since we need to save our labeled example to the very end.) Specifically, consider
a point x of margin v, > . By definition, the margin is the cosine of the angle between x and c*, and
therefore the angle between z and c* is 7/2 — cos™!(7,) < 7/2 — 7. Now, imagine that we draw f at
random subject to f - ¢* > 0 (half of the f’s will have this property) and define f(z) = sign(f - z). Then,

Pr(f(2) # ¢ @) ¢ 2 0) < (n/2 =)/ = 1/2=/x.

Moreover, if « does not have margin + then at the very least we have Pr¢(f(x) # ¢*(z)|f-¢* > 0) < 1/2.

Now define distribution D* = %D.‘,— + %D_; that is D* is the distribution D but balanced to 50%
positive and 50% negative. With respect to D* at least an a;/2 probability mass of the examples have
margin at least -y, and therefore:

E¢lerrp-(f)If - ¢ = 0] <1/2 = (a/2)(v/7).
Since err(f) is a bounded quantity, by Markov inequality this means that at least an Q(«y) probability

mass of functions f must satisfy errp«(f) < % — 7 which in turn implies that they must be useful weakly

7
predictors with respect to D as defined in Equation (2.2) with 5 = 7.
The second part of the argument is as follows. Note that in Step(1) of our algorithm we repeat the
following process for T iterations: pick a random f;, and plug it into the bootstrapping theorem of [62]

(which, given a distribution over unlabeled pairs (2], 2:3), will use f;(x7]) as a noisy label of x3, feeding the

result into a Statistical Query algorithm). Since T = O (a—l,y log (%)), using the above observation about
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random halfspaces being weak predictors, we obtain that with high probability at least 1 —§ /6, at least one
of the random hypothesis f; was a weakly-useful predictor; and since m,, = poly(1/v,1/a,1/¢,1/4,d)
we also have the associated hypothesis h; output by the bootstrapping procedure of [62] will with prob-
ability at least 1 — /6 satisfy err(h;) < €;. This implies that with high probability at least 1 — 26/3,
at least one of the hypothesis h; we find in Step 1 has true labeled error at most ¢;. For the rest of the
hypotheses we find in Step 1, we have no guarantees.

We now observe the following. First of all, any function f with small err(f) must have small
erryni(f); in particular,

errunt(f) = Pr(f(z1) # f(22)) < 2err(f).

This implies that with high probability at least 1 — 26/3, at least one of the hypothesis h; we find in Step
1 has true unlabeled error at most 2¢1, and therefore empirical unlabeled error at most 3¢;. Secondly,
because of the assumption of independence given the label, as shown in Theorem 2.3.11), with high prob-
ability the only functions with unlabeled error at most 7 are functions 27-close to ¢*, 27-close to —c*,
27-close to the “all positive” function, or 27-close to the “all negative” function.

In Step (2) we first examine all the hypotheses produced in Step 1, and we pick the hypothesis h
with the smallest empirical unlabeled error rate subject to being empirically at least 37-far from the “all-
positive” or “all-negative” functions. If the the empirical error rate of this hypothesis h is at most 3¢; we
know that its true unlabeled error rate is at most 4e; < 7, which further implies that either h or —h is 27
close to c*. However, if the empirical unlabeled error rate of A is greater than 3¢;, then we know that the
target must be 47-close to the all-positive or all-negative function so we simply choose h = “all positive”
(this is true since the unlabeled sample was large enough so that |d(f, g) — d(f, g)| < 7).

So, we have argued that with probability at least 1 — 26/3 either h or —h is 47-close to ¢*. We can

now just use O (log( 1) (%)) labeled examples to determine which case is which (Lemma |2.3.12). This

quantity is at most 1 and our error rate is at most € if we set 7 < ¢/4 and 7 sufficiently small compared to
0. This completes the proof. W

The above algorithm assumes one can efficiently pick a random unit-length vector in R?, but the
argument easily goes through even if we do this to only O(log 1/+) bits of precision.
We now extend the result to the case that we make no margin assumption.

Theorem 2.4.3 There is a polynomial-time algorithm (in d, b, 1/¢, and 1/0, where d is the dimension of
the space and b is the number of bits per example) to learn a linear separator under the above assumptions,
from a polynomial number of unlabeled examples and a single labeled example. Thus, we efficiently
PAC,1-learn the class of linear separators over {—Qb, L Qb}d under the agreement notion of
compatibility if the distribution D satisfies independence given the label.

Proof: We begin by drawing a large unlabeled sample S (of size polynomial in d and b). We then
compute a linear transformation 7" that when applied to .S has the property that for any hyperplane w -
x = 0, at least a 1/poly(d, b) fraction of T'(S) has margin at least 1/poly(d,b). We can do this via the
Outlier Removal Lemma of [64] and [104]. Specifically, the Outlier Removal Lemma states that given
a set of points S, one can algorithmically remove an € fraction of S and ensure that for the remaining
set S’, for any vector w, max,eg (w - z)? < poly(d, b, 1/ )Epes[(w - x)?], where b is the number
of bits needed to describe the input points. Given such a set S’, one can then use its eigenvectors to
compute a standard linear transformation (also described in [64]) T : R? — Rd/, where d' < d is the
dimension of the subspace spanned by S’, such that in the transformed space, for all unit-length w, we
have E c7(gn[(w - )?] = 1. In particular, since the maximum of (w - x)? is bounded, this implies that
for any vector w € R?, at least an « fraction of points z € T'(S’) have margin at least « for some
a > 1/poly(b,d,1/€).
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Now, choose ¢ = €/4, and let D’ be the distribution D restricted to the space spanned by S’. By
VC-dimension bounds, |S| = O(d/a) is sufficient so that with high probability, (a) D’ has probability
mass at least 1 — €/2, and (b) the vector T'(¢*) has at least an «/2 probability mass of 7'(D’) at margin
> . Thus, the linear transformation 7" converts the distribution D’ into one satisfying the conditions
needed for Theorem 2.4.2, and any hypothesis produced with error < ¢/2 on D’ will have error at most €
on D. So, we simply apply 7" to D’ and run the algorithm for Theorem 2.4.2 to produce a low-error linear
separator. W

Note: We can easily extend our algorithm to the standard co-training setting (where c] can be different
from c3) as follows: we repeat the procedure in a symmetric fashion, and then just try all combinations
of pairs of functions returned to find one of small unlabeled error rate, not close to “all positive”, or “all

negative”. Finally we use O <log (1) (%)) labeled examples to produce a low error hypothesis (and here
we use only one part of the examplee and only one of the functions in the pair).

2.5 Related Models

In this section we discuss a transductive analog of our model, some connections with generative models
and other ways of using unlabeled data in Machine Learning, and the relationship between our model and
the luckiness framework of [191]].

2.5.1 A Transductive Analog of our Model

In transductive learning, one is given a fixed set .S of examples, of which some small random subset is
labeled, and the goal is to predict well on the rest of S. That is, we know which examples we will be tested
on up front, and in a sense this a case of learning from a known distribution (the uniform distribution over
S). We can also talk about a transductive analog of our inductive model, that incorporates many of the
transductive learning methods that have been developed. In order to make use of unlabeled examples, we
will again express the relationship we hope the target function has with the data through a compatibility
notion x. However, since in this case the compatibility of a given hypothesis is completely determined
by .S (which is known), we will not need to require that compatibility be an expectation over unlabeled
examples. From the sample complexity point of view we only care about how much labeled data we need,
and algorithmically we need to find a highly compatible hypothesis with low error on the labeled data.

Rather than presenting general theorems, we instead focus on the modeling question, and show how
a number of existing transductive graph-based learning algorithms can be modeled in our framework. In
these methods one usually assumes that there is weighted graph g defined over .S, which is given a-priori
and encodes the prior knowledge. In the following we denote by W the weighted adjacency matrix of g
and by Cj the set of all binary functions over S.

Minimum cut Suppose for f € C's we define the incompatibility of f to be the weight of the cut in g
determined by f. This is the implicit notion of compatibility considered in [59], and algorithmically
the goal is to find the most compatible hypothesis that is correct on the labeled data, which can be
solved efficiently using network flow. From a sample-complexity point of view, the number of
labeled examples we need is proportional to the VC-dimension of the class of hypotheses that are
at least as compatible as the target function. This is known to be O (%) [150, 152], where k is the
number of edges cut by ¢* and A is the size of the global minimum cut in the graph. Also note that
the Randomized Mincut algorithm (considered by [67]), which is an extension of the basic mincut
approach, can be viewed as motivated by a PAC-Bayes sample complexity analysis of the problem.
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Normalized Cut For f € Cg define size(f) to be the weight of the cut in g determined by f, and let
neg(f) and pos(f) be the number of points in S on which f predicts negative and positive, re-
spectively. For the normalized cut setting of [140] we can define the incompatibility of f € Cg
to be #@él’(ﬁ' This is the penalty function used in [140], and again, algorithmically the goal
would be to find a highly compatible hypothesis that is correct on the labeled data. Unfortunately,
the corresponding optimization problem is in this case is NP-hard. Still, several approximate solu-
tions have been considered, leading to different semi-supervised learning algorithms. For instance,
Joachims [140] considers a spectral relaxation that leads to the “SGT algorithm”; another relaxation

based on semidefinite programming is considered in [56].

Harmonic Function We can also model the algorithms introduced in [215]] as follows. If we consider f
to be a probabilistic prediction function defined over S, then we can define the incompatibility of f
to be

D wiy (1) = £(3)* = fTLf.

where L is the un-normalized Laplacian of g. Similarly we can model the algorithm introduced
by Zhao et al. [213] by using an incompatibility of f given by f7Lf where L is the normalized
Laplacian of g. More generally, all the Graph Kernel methods can be viewed in our framework if
we consider that the incompatibility of f is given by || f||x = f? K f where K is a kernel derived
from the graph (see for instance [216]).

2.5.2 Connections to Generative Models

It is also interesting to consider how generative models can be fit into our model. As mentioned in Section
2.1, a typical assumption in a generative setting is that D is a mixture with the probability density function
p(z|0) = po - po(x|6p) + p1 - p1(x]61) (see for instance [76, 77, 183]). In other words, the labeled
examples are generated according to the following mechanism: a label y € {0, 1} is drawn according to
the distribution of classes {pg,p1} and then a corresponding random feature vector is drawn according
to the class-conditional density p,. The assumption typically used is that the mixture is identifiable.
Identifiability ensures that the Bayes optimal decision border {x : pg - po(z|0y) = p1 - p1(x|61)} can
be deduced if p(z|0) is known, and therefore one can construct an estimate of the Bayes border by using
p(x|0) instead of p(|0). Essentially once the decision border is estimated, a small labeled sample suffices
to learn (with high confidence and small error) the appropriate class labels associated with the two disjoint
regions generated by the estimate of the Bayes decision border. To see how we can incorporate this setting
in our model, consider for illustration the setting in [183]; there they assume that pg = p;, and that the
class conditional densities are d-dimensional Gaussians with unit covariance and unknown mean vectors
0; € RY. The algorithm used is the following: the unknown parameter vector § = (6, f;) is estimated
from unlabeled data using a maximum likelihood estimate; this determines a hypothesis which is a linear
separator that passes through the point (90 + 01) /2 and is orthogonal to the vector 61 — Bo; finally each
of the two decision regions separated by the hyperplane is labeled according to the majority of the labeled
examples in the region. Given this setting, a natural notion of compatibility we can consider is the expected
log-likelihood function (where the expectation is taken with respect to the unknown distribution specified
by 0). Specifically, we can identify a legal hypothesis f7 with the set of parameters 0 = (6o,01) that
determine it, and then we can define x(fg, D) = Egep(log(p(z|d))]. [183] show that if the unlabeled
sample is large enough, then all hypotheses specified by parameters # which are close enough to , will
have the property that their empirical compatibilities will be close enough to their true compatibilities.
This then implies (together with other observations about Gaussian mixtures) that the maximum likelihood
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estimate will be close enough to @, up to permutations. (This actually motivates x as a good compatibility
function in our model.)

More generally, we can deal with other parametric families using the same compatibility notion; how-
ever, we will need to impose constraints on the distributions allowed in order to ensure that the compati-
bility is actually well defined (the expected log-likelihood is bounded).

As mentioned in Section 2.1, this kind of generative setting is really at the extreme of our model.
The assumption that the distribution that generates the data is truly a mixture implies that if we knew the
distribution, then there are only two possible concepts left (and this makes the unlabeled data extremely
useful).

2.5.3 Connections to the Luckiness Framework

It is worth noticing that there is a strong connection between our approach and the luckiness frame-
work [170,191]. In both cases, the idea is to define an ordering of hypotheses that depends on the data,
in the hope that we will be “lucky” and find that the target function appears early in the ordering. There
are two main differences, however. The first is that the luckiness framework (because it was designed for
supervised learning only) uses labeled data both for estimating compatibility and for learning: this is a
more difficult task, and as a result our bounds on labeled data can be significantly better. For instance,
in Example 4 described in Section 2.2, for any non-degenerate distribution, a dataset of %l pairs can with
probability 1 be completely shattered by fully-compatible hypotheses, so the luckiness framework does
not help. In contrast, with a larger (unlabeled) sample, one can potentially reduce the space of compatible
functions quite significantly, and learn from o(d) or even O(1) labeled examples depending on the distri-
bution — see Section 2.3.2 and Section 2.4. Secondly, the luckiness framework talks about compatibility
between a hypothesis and a sample, whereas we define compatibility with respect to a distribution. This
allows us to talk about the amount of unlabeled data needed to estimate true compatibility. There are also
a number of differences at the technical level of the definitions.

2.5.4 Relationship to Other Ways of Using Unlabeled Data for Learning

It is well known that when learning under an unknown distribution, unlabeled data might help some-
what even in the standard discriminative models by allowing one to use both distribution-specific algo-
rithms [S3], [144]], [194] and/or tighter data dependent sample-complexity bounds [43,155]. However in
all these methods one chooses a class of functions or a prior over functions before performing the infer-
ence. This does not capture the power of unlabeled data in many of the practical semi-supervised learning
methods, where typically one has some idea about what structure of the data tells about the target function,
and where the choice of prior can be made more precise after seeing the unlabeled data [62, 141,158, /184].
Our focus in this chapter has been to provide a unified discriminative framework for reasoning about use-
fulness of unlabeled data in such settings in which one can analyze both sample complexity and algorith-
mic results.

Another learning setting where unlabeled data is useful and which has been increasingly popular for
the past few years is Active Learning [30, 33} 34, 41, 186/, 94]. Here, the learning algorithm has both the
capability of drawing random unlabeled examples from the underlying distribution and that of asking for
the labels of any of these examples, and the hope is that a good classifier can be learned with significantly
fewer labels by actively directing the queries to informative examples. Note though that as opposed
to the Semi-supervised learning setting, and similarly to the classical supervised learning settings (PAC
and Statistical Learning Theory settings) the only prior belief about the learning problem in the Active
Learning setting is that the target function (or a good approximation of it) belongs to a given concept
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class. Luckily, it turns out that for simple concept classes such as linear separators on the line one can
achieve an exponential improvement (over the usual supervised learning setting) in the labeled data sample
complexity, under no additional assumptions about the learning problem [30, [86].7 In general, however,
for more complicated concept classes, the speed-ups achievable in the active learning setting depend on
the match between the distribution over example-label pairs and the hypothesis class, and therefore on
the target hypothesis in the class. We discuss all these further as well as our contribution on the topic in
Chapter 5.

Finally, in this thesis, we present in the context of learning with kernels and more general similarity
functions one other interesting use of unlabeled data in the learning process. While the approach of
using unlabeled data in that context does have a similar flavor to the approach in this chapter, the final
guarantees and learning procedures are somewhat different from those presented here. In that case the
hypothesis space has an infinite capacity before performing the inference. In the training process, in a
first stage, we first use unlabeled in order to extract a much smaller set of functions with the property that
with high probability the target is well approximated by one the functions in the smaller class. In a second
stage we then use labeled examples to learn well. We present this in more details Chapter|3/in Section 3.5.

2.6 Conclusions

Given the easy availability of unlabeled data in many settings, there has been growing interest in meth-
ods that try to use such data together with the (more expensive) labeled data for learning. Nonetheless,
there has been substantial disagreement and no clear consensus about when unlabeled data helps and by
how much. In our work, we have provided a PAC-style model for semi-supervised learning that captures
many of the ways unlabeled data is typically used, and provides a very general framework for thinking
about this issue. The high level implication of our analysis is that unlabeled data is useful if (a) we have
a good notion of compatibility so that the target function indeed has a low unlabeled error rate, (b) the
distribution D is helpful in the sense that not too many other hypotheses also have a low unlabeled error
rate, and (c) we have enough unlabeled data to estimate unlabeled error rates well. We then make these
statements precise through a series of sample-complexity results, giving bounds as well as identifying the
key quantities of interest. In addition, we give several efficient algorithms for learning in this framework.
One consequence of our model is that if the target function and data distribution are both well behaved
with respect to the compatibility notion, then the sample-size bounds we get can substantially beat what
one could hope to achieve using labeled data alone, and we have illustrated this with a number of examples
throughout the chapter.

2.6.1 Subsequent Work

Following the initial publication of this work, several authors have used our framework for reasoning
about semi-supervised learning, as well as for developing new algorithms and analyses of semi-supervised
learning. For example [114, 184, [189]] use it in the context of agreement-based multi-view learning for
either classification with specific convex loss functions (e.g., hinge loss) or for regression. Sridharan and
Kakade [196] use our framework in order to provide a general analysis multi-view learning for a variety
of loss functions and learning tasks (classification and regression) along with characterizations of suitable
notions of compatibility functions. Parts of this work appear as a book chapter in [82]] and as stated in the

"For this simple concept class one can achieve a pure exponential improvement [86] in the realizable case, while in the
agnostic case the improvement depends upon the noise rate [30].
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introduction of that book, our framework can be used to obtain bounds for a number of the semi-supervised
learning methods used in the other chapters.

2.6.2 Discussion

Our work brings up a number of open questions, both specific and high-level. One broad category of such
questions is for what natural classes C' and compatibility notions y can one provide an efficient algorithm
that PAC,,,;-learns the pair (C, x): i.e., an algorithm whose running time and sample sizes are polynomial
in the bounds of Theorem 2.3.17 For example, a natural question of this form is: can one generalize the
algorithm of Section 2.4.1/to allow for irrelevant variables that are neither positive nor negative indicators?
That is, suppose we define a “two-sided disjunction” h to be a pair of disjunctions (h,h_) where h is
compatible with D iff for all examples x, h4(z) = —h_(z) (and let us define h(x) = hy(x)). Can we
efficiently learn the class of two-sided disjunctions under this notion of compatibility?

Alternatively, as a different generalization of the problem analyzed in Section2.4.1, suppose that again
every variable is either a positive or negative indicator, but we relax the “margin” condition. In particular,
suppose we require that every example x either contain at least 60% of the positive indicators and at
most 40% of the negative indicators (for positive examples) or vice versa (for negative examples). Can
this class be learned efficiently with bounds comparable to those from Theorem 2.3.1?7 Along somewhat
different lines, can one generalize the algorithm given for Co-Training with linear separators, to assume
some condition weaker than independence given the label, while maintaining computational efficiency?
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Chapter 3

A General Theory of Learning with
Similarity Functions

3.1 Learning with Kernel Functions. Introduction

Kernel functions have become an extremely popular tool in machine learning, with an attractive theory
as well [1} 11331139, 187, 1190, 203]. A kernel is a function that takes in two data objects (which could
be images, DNA sequences, or points in R™) and outputs a number, with the property that the function
is symmetric and positive-semidefinite. That is, for any kernel K, there must exist an (implicit) mapping
¢, such that for all inputs z, 2’ we have K(z,2') = (¢(x),p(x’)). The kernel is then used inside a
“kernelized” learning algorithm such as SVM or kernel-perceptron in place of direct access to the data.
Typical kernel functions for structured data include the polynomial kernel K (x, 2') = (1+z-2')? and the
Gaussian kernel K (z,2') = e~ lle=2'I?/20% " and a number of special-purpose kernels have been developed
for sequence data, image data, and other types of data as well [88,89,157,173,193].

The theory behind kernel functions is based on the fact that many standard algorithms for learning
linear separators, such as SVMs [203] and the Perceptron [110] algorithm, can be written so that the only
way they interact with their data is via computing dot-products on pairs of examples. Thus, by replacing
each invocation of (x, ') with a kernel computation K (x, 2’), the algorithm behaves exactly as if we had
explicitly performed the mapping ¢(x), even though ¢ may be a mapping into a very high-dimensional
space. Furthermore, these algorithms have learning guarantees that depend only on the margin of the best
separator, and not on the dimension of the space in which the data resides [18,191]]. Thus, kernel functions
are often viewed as providing much of the power of this implicit high-dimensional space, without paying
for it either computationally (because the ¢ mapping is only implicit) or in terms of sample size (if data is
indeed well-separated in that space).

While the above theory is quite elegant, it has a few limitations. When designing a kernel function
for some learning problem, the intuition employed typically does not involve implicit high-dimensional
spaces but rather that a good kernel would be one that serves as a good measure of similarity for the given
problem [187]. So, in this sense the theory is not always helpful in providing intuition when selecting or
designing a kernel function for a particular learning problem. Additionally, it may be that the most natural
similarity function for a given problem is not positive-semidefinite!, and it could require substantial work,
possibly reducing the quality of the function, to coerce it into a “legal” form. Finally, it is a bit unsatisfying
for the explanation of the effectiveness of some algorithm to depend on properties of an implicit high-

'This is very common in the context of Computational Biology where the most natural measures of alignment between
sequences are not legal kernels. For more examples see Section 3.2

41



dimensional mapping that one may not even be able to calculate. In particular, the standard theory at
first blush has a “something for nothing” feel to it (all the power of the implicit high-dimensional space
without having to pay for it) and perhaps there is a more prosaic explanation of what it is that makes a
kernel useful for a given learning problem. For these reasons, it would be helpful to have a theory that
was in terms of more tangible quantities.

In this chapter, we develop a theory of learning with similarity functions that addresses a number of
these issues. In particular, we define a notion of what it means for a pairwise function K (x, z’) to be a
“good similarity function” for a given learning problem that (a) does not require the notion of an implicit
space and allows for functions that are not positive semi-definite, (b) we can show is sufficient to be used
for learning, and (c) strictly generalizes the standard theory in that a good kernel in the usual sense (large
margin in the implicit ¢-space) will also satisfy our definition of a good similarity function. In this way,
we provide the first theory that describes the effectiveness of a given kernel (or more general similarity
function) in terms of natural similarity-based properties.

More generally, our framework provides a formal way to analyze properties of a similarity function
that make it sufficient for learning, as well as what algorithms are suited for a given property. Note that
while our work is motivated by extending the standard large-margin notion of a good kernel function,
we expect one can use this framework to analyze other, not necessarily comparable, properties that are
sufficient for learning as well. In fact, recent work along these lines is given in [208].

Structure of this chapter: We start with background and notation in Section 3.2. We the present a first
notion of a good similarity function in Section 3.3/and analyze its relationship with the usual notion of a
good kernel function. (These results appear in [24] and [38]].) In section 3.4/ we present a slightly different
and broader notion that we show provides even better kernels to similarity translation; in Section 3.4.3/ we
give a separation result, showing that this new notion is strictly more general than the notion of a large
margin kernel. (These results appear in [39].)

3.2 Background and Notation

We consider a learning problem specified as follows. We are given access to labeled examples (x,y)
drawn from some distribution P over X x {—1, 1}, where X is an abstract instance space. The objec-
tive of a learning algorithm is to produce a classification function g : X — {—1, 1} whose error rate
Pr, y~p[9(z) # y] is low. We will consider learning algorithms that only access the points = through a
pairwise similarity function K (x, 2') mapping pairs of points to numbers in the range [—1, 1]. Specifically,

Definition 3.2.1 A similarity function over X is any pairwise function K : X x X — [—1,1]. We say
that K is a symmetric similarity function if K (xz,2') = K(2/, x) for all x,x’.

A similarity function K is a valid (or legal) kernel function if it is positive-semidefinite, i.e. there
exists a function ¢ from the instance space X into some (implicit) Hilbert “¢-space” such that

K(z,2') = (¢(2), d(2")).

See, e.g., Smola and Scholkopf [186] for a discussion on conditions for a mapping being a kernel function.
Throughout this chapter, and without loss of generality, we will only consider kernels such that K (x, z) <
1 for all x € X. Any kernel K can be converted into this form by, for instance, defining

K(z,2') = K(x,2')//K (x,z)K (2, z').
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We say that K is (e, y)-kernel good for a given learning problem P if there exists a vector 3 in the ¢-space
that has error € at margin +y; for simplicity we consider only separators through the origin. Specifically:>
Definition 3.2.2 K is (¢,y)-kernel good if there exists a vector (3, ||5|| < 1 such that

(x,lya)ip (o(z),B) >v] >1—e

We say that K is y-kernel good if it is (e, y)-kernel good for e = 0; i.e., it has zero error at margin .
Given a kernel that is (e, y)-kernel-good for some learning problem P, a predictor with error rate at
most € + e, can be learned (with high probability) from a sample of” @((e + €acc)/ ("}/26303)) examples
(drawn independently from the source distribution) by minimizing the number of margin ~y violations
on the sample [168]. However, minimizing the number of margin violations on the sample is a difficult
optimization problem [18, 20]. Instead, it is common to minimize the so-called hinge loss relative to a
margin.
Definition 3.2.3 We say that K is (e, 7y)-kernel good in hinge-loss if there exists a vector (3, ||3|| < 1 such
that

Ey~plll =48, 0(2)) /4] < e

where [1 — z]; = max(1 — z,0) is the hinge loss.

Given a kernel that is (e, y)-kernel-good in hinge-loss, a predictor with error rate at most € + €,¢. can
be efficiently learned (with high probability) from a sample of (’)(1 / (’y?efcc)) examples by minimizing
the average hinge loss relative to margin «y on the sample [43].

We end this section by noting that a general similarity function might not be a legal (valid) kernel. To
illustrate this we provide a few examples in the following.

Examples of similarity functions which are not legal kernel functions. As a simple example, let
us consider a document classification task and let us assume we have a similarity function K such that
two documents have similarity 1 if they have either an author in common or a keyword in common, and
similarity 0 otherwise. Then we could have three documents A, B, and C, such that K (A, B) = 1 because
A and B have an author in common, K (B,C) = 1 because B and C have a keyword in common, but
K(A,C) = 0 because A and C have neither an author nor a keyword in common (and K (A, A) =
K(B,B) = K(C,C) = 1). On the other hand, a kernel requires that if ¢(A) and ¢(B) are of unit length
and (¢(A), p(B)) = 1, then ¢(A) = ¢(B), so this could not happen if K was a valid kernel.

Similarity functions that are not legal kernels are common in the context of computational biol-
ogy [160]; standard examples include various measures of alignment between sequences such as BLAST
scores for protein sequences or for DNA. Finally, one other natural example of a similarity function that
might not be a legal kernel (and which might not be even symmetric) is the following: consider a trans-
ductive setting (where we have all the points we want to classify in advance) and assume we have a
base distance function d(x, z’). Let us define K (x, ') as the percentile rank of z’ in distance to z (i.e.,
K(z,2') = Prd(z,2’) < d(x,z")]; then clearly K might not be a legal kernel since in fact it might not
even be a symmetric similarity function.

Of course, one could modify such a function to be positive semidefinite, e.g., by blowing up the
diagonal or by using other related methods suggested in the literature [166], but none of these methods
have a formal guarantee on the final generalization bound (and these methods might significantly decrease
the “dynamic range” of K and yield a very small margin).

% Note that we are distinguishing between what is needed for a similarity function to be a valid or legal kernel function

(symmetric and positive semidefinite) and what is needed to be a good kernel function for a learning problem (large margin).
3The O(-) notations hide logarithmic factors in the arguments, and in the failure probability.
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3.3 Learning with More General Similarity Functions: A First Attempt

Our goal is to describe “goodness” properties that are sufficient for a similarity function to allow one to
learn well that ideally are intuitive and subsume the usual notion of good kernel function. Note that as
with the theory of kernel functions [186], “goodness” is with respect to a given learning problem P, and
not with respect to a class of target functions as in the PAC framework [149, 201].

We start by presenting here the notion of good similarity functions introduced in [24] and further ana-
lyzed in [195] and [38], which throughout the chapter we call the Balcan - Blum’06 definition. We begin
with a definition (Definition 3.3.1) that is especially intuitive and allows for learning via a very simple
algorithm, but is not broad enough to include all kernel functions that induce large-margin separators. We
then broaden this notion to the main definition in [24] (Definition 3.3.5) that requires a more involved
algorithm to learn, but is now able to capture all functions satisfying the usual notion of a good kernel
function. Specifically, we show that if K is a similarity function satisfying Definition 3.3.5 then one
can algorithmically perform a simple, explicit transformation of the data under which there is a low-error
large-margin separator. We also consider variations on this definition (e.g., Definition 3.3.6) that produce
better guarantees on the quality of the final hypothesis when combined with existing learning algorithms.

A similarity function K satisfying the Balcan - Blum’06 definition, but that is not positive semi-
definite, is not necessarily guaranteed to work well when used directly in standard learning algorithms
such as SVM or the Perceptron algorithm®. Instead, what we show is that such a similarity function
can be employed in the following two-stage algorithm. First, re-represent that data by performing what
might be called an “empirical similarity map”: selecting a subset of data points as landmarks, and then
representing each data point using the similarities to those landmarks. Then, use standard methods to find
a large-margin linear separator in the new space. One property of this approach is that it allows for the use
of a broader class of learning algorithms since one does not need the algorithm used in the second step to
be “kernalizable”. In fact, the work in this chapter is motivated by work on a re-representation method that
algorithmically transforms a kernel-based learning problem (with a valid positive-semidefinite kernel) to
an explicit low-dimensional learning problem [31]. (We present this Chapter 6.)

Deterministic Labels: For simplicity in presentation, for most of this section we will consider only
learning problems where the label y is a deterministic function of x. For such learning problems, we can
use y(x) to denote the label of point =, and we will use = ~ P as shorthand for (z,y(z)) ~ P. We will
return to learning problems where the label y may be a probabilistic function of = in Section 3.3.5.

3.3.1 Sufficient Conditions for Learning with Similarity Functions

We now provide a series of sufficient conditions for a similarity function to be useful for learning, leading
to the notions given in Definitions|3.3.5/and 3.3.6.

3.3.2 Simple Sufficient Conditions

We begin with our first and simplest notion of “good similarity function” that is intuitive and yields
an immediate learning algorithm, but which is not broad enough to capture all good kernel functions.
Nonetheless, it provides a convenient starting point. This definition says that K is a good similarity
function for a learning problem P if most examples x (at least a 1 — ¢ probability mass) are on average at
least v more similar to random examples z’ of the same label than they are to random examples x’ of the
opposite label. Formally,

“However, as we will see in Section [3.3.5, if the function is positive semi-definite and if it is good in the Balcan -
Blum’06 sense [24,38]], or in the Balcan - Blum - Srebro’08 sense [39], then we can show it is good as a kernel as well.
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Definition 3.3.1 K is a strongly (¢,y)-good similarity function for a learning problem P if at least a
1 — € probability mass of examples x satisfy:

EypK(z,2)|y(z) = y(2)] = Epp[K(z,2)ly(z) # y(2')] + 7. 3.1

For example, suppose all positive examples have similarity at least 0.2 with each other, and all negative
examples have similarity at least 0.2 with each other, but positive and negative examples have similarities
distributed uniformly at random in [—1,1]. Then, this would satisfy Definition 3.3.1 for v = 0.2 and
¢ = 0. Note that with high probability this would not be positive semidefinite.”

Definition 3.3.1! captures an intuitive notion of what one might want in a similarity function. In ad-

dition, if a similarity function K satisfies Definition 3.3.1 then it suggests a simple, natural learning
algorithm: draw a sufficiently large set ST of positive examples and set S~ of negative examples, and
then output the prediction rule that classifies a new example x as positive if it is on average more similar
to points in S than to points in S, and negative otherwise. Formally:
Theorem 3.3.1 If K is strongly (e,v)-good, then a set ST of (16/72)1In(2/6) positive examples and a
set S~ of (16/72)In(2/6) negative examples are sufficient so that with probability > 1 — 6, the above
algorithm produces a classifier with error at most € + 9.

Proof: Let Good be the set of x satisfying

Epp[K(2,2')[y(x) = y(2')] = Borop[K (2, 2)|y(x) # y(2')] + 7.

So, by assumption, Pr,.p[z € Good] > 1 — e. Now, fix x € Good. Since K(z,2’) € [—1,1], by
Hoeffding bounds we have that over the random draw of the sample S,

Pr (‘EQC/GSJr [K(z,2")] — Egop[K(x,2")|y(a") = 1]‘ > 7/2) < 2672‘S+|72/16,

and similarly for S~. By our choice of | S| and |S~|, each of these probabilities is at most 62 /2.

So, for any given 2 € Good, there is at most a § probability of error over the draw of ST and S~.
Since this is true for any = € Good, it implies that the expected error of this procedure, over € Good,
is at most 62, which by Markov’s inequality implies that there is at most a § probability that the error rate
over Good is more than §. Adding in the € probability mass of points not in Good yields the theorem. B

Before going to our main notion note that Definition [3.3.1/ requires that almost all of the points (at
least a 1 — ¢ fraction) be on average more similar to random points of the same label than to random points
of the other label. A weaker notion would be simply to require that two random points of the same label
be on average more similar than two random points of different labels. For instance, one could consider
the following generalization of Definition 3.3.1:

Definition 3.3.2 K is a weakly ~v-good similarity function for a learning problem P if:

E,oop[K(z,2)y(z) = y(2)] > Epwp[K(z,2)|y(z) # y()] + 7. (3.2)

While Definition 3.3.2]still captures a natural intuitive notion of what one might want in a similarity
function, it is not powerful enough to imply strong learning unless - is quite large. For example, suppose
the instance space is R and that the similarity measure K we are considering is just the product of the first
coordinates (i.e., dot-product but ignoring the second coordinate). Assume the distribution is half positive

>In particular, if the domain is large enough, then with high probability there would exist negative example A and positive

examples B, C such that K (A, B) is close to 1 (so they are nearly identical as vectors), K (A, C') is close to —1 (so they are
nearly opposite as vectors), and yet K (B, C') > 0.2 (their vectors form an acute angle).
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and half negative, and that 75% of the positive examples are at position (1,1) and 25% are at position
(—=1,1), and 75% of the negative examples are at position (—1, —1) and 25% are at position (1, —1).
Then K is a weakly y-good similarity function for v = 1/2, but the best accuracy one can hope for using
K is 75% because that is the accuracy of the Bayes-optimal predictor given only the first coordinate.

We can however show that for any v > 0, Definition 3.3.2'is enough to imply weak learning [188]]. In
particular, the following simple algorithm is sufficient to weak learn. First, determine if the distribution is
noticeably skewed towards positive or negative examples: if so, weak-learning is immediate (output all-
positive or all-negative respectively). Otherwise, draw a sufficiently large set S of positive examples and
set S~ of negative examples. Then, for each z, consider 7(z) = 3 [E e+ [K (z,2)] — Epeg- [K (2, 2')]).
Finally, to classify x, use the following probablhstlc prediction rule: classify x as positive with probability
1+g(w) and as negative with probability =2(%) ). (Notice that (x) € [—1,1] and so our algorithm is well
defined.) We can then prove the following result.

Theorem 3.3.2 If K is a weakly ~v-good similarity function, then with probability at least 1—24, the above

algorithm using sets S N of szze 64 In ( ) vields a classifier with error at most = — 1%'

Proof: First, we assume the algorlthm initially draws a sufficiently large sample such that if the distri-
bution is skewed with probability mass greater than % + o on positives or negatives for a = g5, then
with probability at least 1 — § / 2 the algorithm notices the bias and weak-learns immediately (and if the
distribution is less skewed than & 5 T 12“%, with probability 1 — 6/2 it does not incorrectly halt in this step).
In the following, then, we may assume the distribution P is less than (% + «)-skewed, and let us define
P’ to be P reweighted to have probability mass exactly 1/2 on positive and negative examples. Thus,
Definition 3.3.2 is satisfied for P’ with margin at least v — 4c.

For each z define y(z) as 1 E/[K(z,2/)|y(2') = 1] — 3E»[K(z,2')|y(z’) = —1] and notice that
Definition 3.3.2/ implies that E,.pr [y(z)y(x)] > /2 — 2. Consider now the probabilistic prediction
function g defined as g(x) = 1 with probability 1++(x) and g(z) = —1 with probability 1_+($) We
clearly have that for a fixed z,

_y(@)(y(z) —y(x))
Pr(g(e) # y(2)) = 5 ,

which then implies that Pr,p 4(g(z) # y(z)) < 3 — 37 — o. Now notice that in our algorithm we

do not use y(z) but an estimate of it (z), and so the last step of the proof is to argue that this is good
enough. To see this, notice first that d is large enough so that for any fixed x we have

TS 32
This implies
= Y Yo
— > - — < 1=
x%(£g<mw ()| = M»- 3
so

o (2 (b -3l = T - 2) = 2) <o

This further implies that with probability at least 1—0/2 we have B, pr [y(2)3(x)] > (1 — %) T2 >

g—z. Finally using a reasoning similar to the one above (concerning the probabilistic prediction function
based on y(z)), we obtain that with probability at least 1 — §/2 the error of the probabilistic classifier
based on () is at most 3 17;8 on P’, which implies the error over P is at most 5 — 1% ta=1- f’;s
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Figure 3.1: Positives are split equally among upper-left and upper-right. Negatives are all in the lower-
right. For @« = 30° (so v = 1/2) a large fraction of the positive examples (namely the 50% in the
upper-right) have a higher dot-product with negative examples (%) than with a random positive example
(% 14 %(—%) = }1) However, if we assign the positives in the upper-left a weight of 0, those in the
upper-right a weight of 1, and assign negatives a weight of %, then all examples have higher average
weighted similarity to those of the same label than to those of the opposite label, by a gap of %.

Returning to Definition 3.3.1, Theorem 3.3.1/ implies that if K is a strongly (e, ~y)-good similarity
function for small € and not-too-small -y, then it can be used in a natural way for learning. However,
Definition 3.3.1] is not sufficient to capture all good kernel functions. In particular, Figure 3.1/ gives a
simple example in R? where the standard kernel K (x,2') = (x, z') has a large margin separator (margin
of 1/2) and yet does not satisfy Definition 3.3.1, even for v = 0 and € = 0.24.

Notice, however, that if in Figure 3.1 we simply ignored the positive examples in the upper-left when
choosing 2/, and down-weighted the negative examples a bit, then we would be fine. This then motivates
the following intermediate notion of a similarity function K being good under a weighting function w
over the input space that can downweight certain portions of that space.

Definition 3.3.3 A similarity function K together with a bounded weighting function w over X (specifi-
cally, w(z") € [0,1] forall ' € X) is a strongly (e, v)-good weighted similarity function for a learning
problem P if at least a 1 — € probability mass of examples x satisfy:

Eyplw(@)K(z,2)ly(z) = y(@)] = Eyoplw@)K(z, 2 )y(z) #y@)]+y. (33

We can view Definition [3.3.3! intuitively as saying that we only require most examples be substantially
more similar on average to representative points of the same class than to representative points of the
opposite class, where “representativeness” is a score in [0, 1] given by the weighting function w. A pair
(K, w) satisfying Definition|3.3.3/can be used in exactly the same way as a similarity function K satisfying
Definition 3.3.1, with the exact same proof used in Theorem 3.3.1 (except now we view w(y) K (z, z’) as
the bounded random variable we plug into Hoeffding bounds).

3.3.3 Main Balcan - Blum’06 Conditions
Unfortunately, Definition 3.3.3/ requires the designer to construct both K and w, rather than just K. We
now weaken the requirement to ask only that such a w exist, in Definition 3.3.4 below:

Definition 3.3.4 (Main Balcan - Blum’06 Definition, Balanced Version) A similarity function K is an
(e, 7v)-good similarity function for a learning problem P if there exists a bounded weighting function w
over X (w(x') € [0,1] for all #' € X ) such that at least a 1 — € probability mass of examples x satisfy:

Eyoplw(@)K(z,2')|y(z) = y(@')] > Epoplw@)K(z,2)y() #y@@)]+v. (B4
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As mentioned above, the key difference is that whereas in Definition 3.3.3/ one needs the designer
to construct both the similarity function K and the weighting function w, in Definition 3.3.4/ we only
require that such a w exist, but it need not be known a-priori. That is, we ask only that there exist a
large probability mass of “representative” points (a weighting scheme) satisfying Definition |3.3.3} but the
designer need not know in advance what that weighting scheme should be.

Definition 3.3.4 can also be stated as requiring that, for at least 1 — e of the examples, the classification
margin

Eyplw(@)K (2, 2")|y(z) = y(2")] — Byp[w(z) K (2, 2)y(x) # y(a')]
= y(@)Eynp [w(a)y(a ) K (2, 2') /Py (a'))]

be at least v, where P(y(z’)) is the marginal probability under P, i.e. the prior, of the label associated
with /. We will find it more convenient in the following to analyze instead a slight variant, dropping the
factor 1/ P(y(x")) from the classification margin (3.5)—see Definition3.3.5/in the next Section. Any sim-
ilarity function satisfying Definition 3.3.5 also satisfies Definition [3.3.4/ (by simply multiplying w(z’) by
P(y(z'))). However, the learning algorithm using Definition 3.3.5/is slightly simpler, and the connection
to kernels is a bit more direct.

We are now ready to present the main sufficient condition for learning with similarity functions in [24].
This is essentially a restatement of Definition 3.3.4, dropping the normalization by the label “priors” as
discussed at the end of the preceding Section.

(3.5)

Definition 3.3.5 (Main Balcan - Blum’06 Definition, Margin Violations) A similarity function K is an
(€, 7v)-good similarity function for a learning problem P if there exists a bounded weighting function w
over X (w(x') € [0,1] for all ' € X ) such that at least a 1 — € probability mass of examples x satisfy:

Eyply(x)y(@w(a)K(z,2)] = 7. (3.6)

We would like to establish that the above condition is indeed sufficient for learning. I.e. that given an
(€,7)-good similarity function K for some learning problem P, and a sufficiently large labeled sample
drawn from P, one can obtain (with high probability) a predictor with error rate arbitrarily close to €. To
do so, we will show how to use an (¢,y)-good similarity function K, and a sample S drawn from P, in
order to construct (with high probability) an explicit mapping ¢° : X — R for all points in X (not only
points in the sample S), such that the mapped data (¢°(z), y(x)), where z ~ P, is separated with error
close to ¢ (and in fact also with large margin) in the low-dimensional linear space R% (Theorem (3.3.3
below). We thereby convert the learning problem into a standard problem of learning a linear separator,
and can use standard results on learnability of linear separators to establish learnability of our original
learning problem, and even provide learning guarantees.

What we are doing is actually showing how to use a good similarity function K (that is not necessarily
a valid kernel) and a sample S drawn from P to construct a valid kernel K°, given by K° (x,2) =
(¢%(x), ¢°(2')), that is kernel-good and can thus be used for learning (In Section3.3.5 we show that if
K is already a valid kernel, a transformation is not necessary as K itself is kernel-good). We are therefore
leveraging here the established theory of linear, or kernel, learning in order to obtain learning guarantees
for similarity measures that are not valid kernels.

Interestingly, in Section 3.3.5 we also show that any kernel that is kernel-good is also a good similar-
ity function (though with some degradation of parameters). The suggested notion of “goodness” (Defini-
tion 3.3.5) thus encompasses the standard notion of kernel-goodness, and extends it also to non-positive-
definite similarity functions.

Theorem 3.3.3 Let K be an (e,)-good similarity function for a learning problem P. For any 6 > 0,
let S = {%1,%2,...,%4} be a sample of size d = 8log(1/8)/v? drawn from P. Consider the mapping
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#% : X — R? defined as follows: ¢°,(z) = %, i € {1,...,d}. With probability at least 1 — 0

over the random sample S, the induced distribution ¢ (P)in R® has a separator of error at most € + §
at margin at least vy /2.

Proof: Let w : X — [0, 1] be the weighting function achieving (3.6) of Definition [3.3.5. Consider the

(Zi)w(F:)

linear separator 3 € RY, given by 3; = yT; note that ||3|| < 1. We have, for any x, y(z):

d
y()(8,6°(@) = 3 D ylw)y(@)w(E) K (. &) ()
=1

The right hand side of the (3.7) is an empirical average of —1 < y(z)y(a’)w(z")K(z,2') < 1, and so by
Hoeffding’s inequality, for any x, and with probability at least 1 — §2 over the choice of S, we have:

210g(5%)

4 (3.8)

d
S y(a)y (@) w(E) K (2,5:) > Baep [y(@)y(a Yo(@) K (2, 2')] -
=1

[SHN

Since the above holds for any x with probability at least 1 — 62 over the choice of .S, it also holds with
probability at least 1 — 2 over the choice of 2 and S. We can write this as:

Eg. pa [ PSD( violation )} < 6 3.9

where “violation” refers to violating (3.8). Applying Markov’s inequality we get that with probability at
least 1 —  over the choice of S, at most ¢ fraction of points violate (3.8). Recalling Definition 3.3.5, at
most an additional e fraction of the points violate (3.6). But for the remaining 1 — € — § fraction of the

log( L
points, for which both (3.8) and (3.6) hold, we have: y(z)(3, ¢ (z)) > v — 2 Ogd( 2) _ /2, where to

get the last inequality we use d = 8log(1/5)/7%. W

We can learn a predictor with error rate at most € + €, using an (e, y)-good similarity function K&
as follows. We first draw from P a sample S = {&1,Zo,...,%Zq} of size d = (4/7)?In(4/d¢€ycc) and
construct the mapping ¢° : X — R defined as follows: ¢°,(z) = %, i € {1,...,d}. The
guarantee we have is that with probability at least 1 — ¢ over the random sample S, the induced dis-
tribution ¢° (P) in R?, has a separator of error at most € 4 €,c/2 at margin at least /2. So, to learn
well, we then draw a new, fresh sample, map it into the transformed space using ¢#°, and then learn
a linear separator in transformed space using ¢°, the new space. The number of landmarks is domi-
nated by the O((e + €acc)d/e%e)) = O((€ + €acc)/(7?€2)) sample complexity of the linear learning,
yielding the same order sample complexity as in the kernel-case for achieving error at most € + €acc:
O((5 + eaCC)/(’YZQ%cc))-

Unfortunately, the above sample complexity refers to learning by finding a linear separator minimizing
the error over the training sample. This minimization problem is NP-hard [18], and even NP-hard to
approximate [20]. In certain special cases, such as if the induced distribution ¢°(P) happens to be log-
concave, efficient learning algorithms exist [145]. However, as discussed earlier, in the more typical case,
one minimizes the hinge-loss instead of the number of errors. We therefore consider also a modification
of Definition 3.3.5/ that captures the notion of good similarity functions for the SVM and Perceptron
algorithms as follows:
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Definition 3.3.6 (Main Balcan - Blum’06 Definition, Hinge Loss) A similarity function K is an (e, ~)-
good similarity function in hinge loss for a learning problem P if there exists a weighting function
w(x') € [0,1] for all 2’ € X such that

E. | [1 —y(z)g(x)/+ (3.10)

where g(z) = Epoply(2 ) w(a’)K (x,2")] is the similarity-based prediction made using w(), and recall
that [1 — z]4+ = max(0, 1 — z) is the hinge-loss.

In other words, we are asking: on average, by how much, in units of v, would a random example x fail
to satisfy the desired  separation between the weighted similarity to examples of its own label and the
weighted similarity to examples of the other label.

Similarly to Theorem 3.3.3, we have:

Theorem 3.3.4 Let K be an (e€,)-good similarity function in hinge loss for a learning problem P. For
any e > 0and 0 < 6 < ey /4 let S = {&1,%2,...,%q} be a sample of size d = 161log(1/3)/(e17)?
drawn from P. With probability at least 1 — & over the random sample S, the induced distribution ¢° (P)
in R, for ¢° as defined in Theorem|3.3.3, has a separator achieving hinge-loss at most € + €, at margin
at least 7.

Proof: Letw : X — [0, 1] be the weighting function achieving an expected hinge loss of at most € at
margin v, and denote g(z) = Epp[y(2')w(z") K (x, 2)]. Defining (3 as in Theorem 3.3.3/and following
the same arguments we have that with probability at least 1 — & over the choice of .S, at most J fraction of
the points x violate 3.8, We will only consider such samples S. For those points that do not violate (3.8)
we have:

0g(3z
1= 0@ (3.6°) s < 1 = vl 25 < y@g) o)y + a2 G

For points that do violate (3.8)), we will just bound the hinge loss by the maximum possible hinge-loss:
2){(B,6°(@))/7+ < 1+max [y@)|Bll[|¢°@)|| /¥ <1+1/y<2/y (12

Combining these two cases we can bound the expected hinge-loss at margin :

Eop[[1 —y()(B,¢°(2))/7]+] E;p[[1 — y(z)g(x)/7]+] + €1/2 + Pr(violation ) - (2/7)
E.wp[[l —y(z)g(x)/7]+] +€1/2 + 26/

Eop[[l —y(x)g(x)/7]4] + e, (3.13)

ININ TN

where the last inequality follows from § < e;v/4. R

We can learn a predictor with error rate at most € + €, using an (e, y)-good similarity function K&
as follows. We first draw from P a sample S = {Z1,Zo,...,Z4} of size d = 1610g(2/(5)/(ea007)2 and

construct the mapping ¢° : X — R? defined as follows: ¢, () = K(I\[xl) € {1,...,d}. The guarantee

we have is that with probability at least 1 — & over the random sample S, the induced distribution ¢° (P)
in RY, has a separator achieving hinge-loss at most € + €,cc/2 at margin ~. So, to learn well, we can then
use an SVM solver in the ¢°-space to obtain (with probability at least 1 — 26) a predictor with error rate
€ + €qcc USING (7)(1 /(v?€%.)) examples, and time polynomial in 1/7,1/€ycc and log(1/9).

50



3.3.4 Extensions

We present here a few extensions of our basic setting in Section 3.3.3. For simplicity, we only consider
the margin-violation version of our definitions, but all the results here can be easily extended to the hinge
loss case as well.

Combining Multiple Similarity Functions

Suppose that rather than having a single similarity function, we were instead given n functions K1, ..., K,
and our hope is that some convex combination of them will satisfy Definition 3.3.5. Is this sufficient to
be able to learn well? (Note that a convex combination of similarity functions is guaranteed to have range
[—1, 1] and so be a legal similarity function.) The following generalization of Theorem 3.3.3/ shows that
this is indeed the case, though the margin parameter drops by a factor of y/n. This result can be viewed
as analogous to the idea of learning a kernel matrix studied by [157] except that rather than explicitly
learning the best convex combination, we are simply folding the learning process into the second stage of
the algorithm.

Theorem 3.3.5 Suppose K1, ..., K, are similarity functions such that some (unknown) convex combina-
tion of them is (e, ~y)-good. If one draws a set S = {Z1, %2, ..., %4} from P containing d = 8log(1/6)/~>

examples, then with probability at least 1 — 6, the mapping ¢° : X — R™ defined as gzﬁs(a:) = p\;%),

ps('r) = (K1($7j1)7 SRR Kl(x7jd)> -'-7Kn(x7jl)v s aKn(xayd))

has the property that the induced distribution ¢°(P) in R™ has a separator of error at most € + 6 at
margin at least vy /(2y/n).

Proof: Let K = a1 K1 +. ..+ a, K, be an (¢, y)-good convex-combination of the K;. By Theorem 3.3.3]

05 (x)

had we instead performed the mapping: gES : X — R defined as QASS (x) = N

P (x) = (K(z, i), ..., K(x,&q))

then with probability 1 — 4, the induced distribution qgs (P) in R? would have a separator of error at most
€+ ¢ at margin at least /2. Let 4 be the vector corresponding to such a separator in that space. Now,
let us convert ﬁ into a vector in R by replacing each coordinate ﬁj with the n values (o ﬂ], .. anﬁj)

Call the resultmg vector ﬁ Notice that by des1gn for any x we have < B, ¢ (x )> = —<ﬁ 5 (z )>

; is equal to 1 and the rest are
0). Thus, the vector 3 under distribution ¢°(P) has the similar properties as the vector 3 under ¢° (P);

50, using the proof of Theorem [3.3.3/ we obtain that that the induced distribution ¢°(P) in R™ has a
separator of error at most € + ¢ at margin at least y/(2y/n). H

Note that the above argument actually shows something a bit stronger than Theorem 3.3.5. In partic-
ular, if we define & = (a1, ..., a,) to be the mixture vector for the optimal K, then we can replace the
margin bound v/(2y/n) with v/(2||a||/n). For example, if « is the uniform mixture, then we just get
the bound in Theorem 3.3.3/of /2.

Also note that if we are in fact using an L;-based learning algorithm then we could do much better —
for details on such an approach see Section 3.4.6.
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Multi-class Classification

We can naturally extend all our results to multi-class classification. Assume for concreteness that there

are r possible labels, and denote the space of possible labels by Y = {1,--- ,r}; thus, by a multi-class

learning problem we mean a distribution P over labeled examples (z, y(z)), where x € X and y(z) € Y.
For this multi-class setting, Definition 3.3.4/ seems most natural to extend. Specifically:

Definition 3.3.7 (main, multi-class) A similarity function K is an (e, ~)-good similarity function for a
multi-class learning problem P if there exists a bounded weighting function w over X (w(z") € [0, 1] for
all ¥’ € X ) such that at least a 1 — € probability mass of examples x satisfy:

E.plw(@)K(z,2)y(x) =y(z")] > Epoplw(@)K(z,2")|y(x) =1i] +v foralli € Y,i # y(x)

We can then extend the argument in Theorem|3.3.3/and learn using standard adaptations of linear-separator
algorithms to the multiclass case (e.g., see [110]).

3.3.5 Relationship Between Good Kernels and Good Similarity Measures

As discussed earlier, the similarity-based theory of learning is more general than the traditional kernel-
based theory, since a good similarity function need not be a valid kernel. However, for a similarity function
K that is a valid kernel, it is interesting to understand the relationship between the learning results guar-
anteed by the two theories. Similar learning guarantees and sample complexity bounds can be obtained
if K is either an (e, y)-good similarity function, or a valid kernel and (e, )-kernel-good. In fact, as we
saw in Section 3.3.3| the similarity-based guarantees are obtained by transforming (using a sample) the
problem of learning with an (e, y)-good similarity function to learning with a kernel with essentially the
same goodness parameters. This is made more explicit in Corollary 3.3.11.

In this section we study the relationship between a kernel function being good in the similarity 