Using FIRE & ICE for Detecting and Recovering Compromised
Nodes in Sensor Networks

Arvind Seshadri, Mark Luk, Adrian Perrig,
Leendert van Doorn, Pradeep Khosla

December 2004
CMU-CS-04-187

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This paper presents a suite of protocols called FIRE (Foygesilient Intrusion detection, Recovery, and Estaltishts of
keys), for detecting and recovering compromised nodesrinsenetworks. FIRE consists of two protocols: an intrusion
detection and code update protocol, and a cryptographicufate protocol. In concert, the FIRE protocols enable us to
design a sensor network that can always detect compromages(no false negatives), and either repair them througleco
updates and set up new cryptographic keys, or revoke therconiged nodes from the network.

The FIRE protocols are based on ICE (Indisputable Code Bi@tyy a mechanism providing externally verifiable code
execution on off-the-shelf sensor nodes. ICE gives theWolh two properties: 1) the locations in memory from whée t
code is currently executing on a sensor node, matches medowations being verified and 2) the memory contents being
verified are correct. Together, these two properties gutearhat the code currently executing on the sensor nodetisato
The FIRE protocols represent a significant step towardsgisg secure sensor networks. As far as we are aware, there ar
no techniques for intrusion detection in adhoc and senstworks that do make any false negative claims. Also, we do not
know of any existing techniques that can automaticallyvecacompromised sensor nodes.

We present an implementation of our FIRE protocols and ICEwrent off-the-shelf sensor devices.

This research was supported in part by the CyLab at CarnegltoiMunder grant DAAD19-02-1-0389 from the Army Researdfic®, and grant
CAREER CNS-0347807 from NSF, and by gifts from Bosch and IBe views and conclusions contained here are those of theraund should not be
interpreted as necessarily representing the official @slior endorsements, either express or implied, of ARO, BoSarnegie Mellon University, IBM,
NSF, or the U.S. Government or any of its agencies.

Keywords: intrusion detection, code update, key update, self-viegfgode, sensor network

1 Introduction

Sensor networks are expected to be deployed in the neaefutwa variety of safety-critical appli-
cations such as critical infrastructure protection andeillance, military applications, fire and burglar
alarm systems, home and office automation, inventory cbsysiems, and many medical applications
such as patient monitoring. Sensor nodes in a sensor netwadally run identical software. Vulner-
abilities in the sensor node software, like buffer overflpleave all sensor nodes vulnerable to remote
exploit. An attacker can exploit a vulnerability to injectdaexecute arbitrary code on the sensor nodes,
steal their cryptographic keys, and possibly also compserthie privacy and safety of people. Secu-
rity is especially challenging to achieve in this settingedo the severe resource constraints of limited
memory, computation, battery energy, and wireless comaation bandwidth in current sensor network
technology.

This paper presents a suite of protocols, called FIRE (Fgresilient Intrusion detection, Recov-
ery, and Establishments of keys), for detecting and redogdrom intrusion in sensor networks. An
intrusion is defined as the process of a remote attacker compromisiegsoisnode using software
vulnerabilities such as a buffer overflow. We design a nopereach for intrusion detection in sensor
networks that does not make any false negative claiimes, when our technique claims that a node is
uncompromised, the node is indeed uncompromised. Corygifse node is found compromised, it is
either compromised, or uncompromised but under a deniagmwice (DOS) attack. However, an un-
compromised node that is found compromised due to a DOatteay be found to be uncompromised
after the DOS attack ends. Our intrusion detection algaritises a completely new technique. As we
discuss in more detail in our related work section, previotisision detection approaches in wireless
networks utilize wireless monitoring and heuristics toedétmisuse or anomalous behavior. In these
systems, neighboring nodes monitor packets sent by a nadeagse alarms if the node misbehaves.
Such approaches unfortunately are susceptible to slanddraming attacks, and exhibit false positive
as well as false negative detections.

Once a node is found to be under the control of an attackerast so far an open challenge how
to regain control of the node and how to set up new cryptodcagdys without human intervention.
To the best of our knowledge, we present the first protocalsécure code updates and secure key
establishment after node compromise in sensor networkss€uure code update mechanism securely
patches a sensor node. By “secure”we mean that a verifieingladirm guarantee that the patch was
correctly installed and that the code image of the noder aftplication of the patch, is correct. Our
secure key establishment mechanism enables a trustedmoslestablish a secret key with a node that
was compromised. Our approach to key establishment is irrrtmuman-in-the-middle attacks without
requiring any shared secrets. Moreover, an eavesdropesrrdi learn the established secret key. The
results we present in this paper appear even more surpgging we assume commaodity sensor nodes
(i.e., no special hardware required). However, we do asshatehe attacker only has remote access to
the sensor network, i.e., the attacker is not physicallggmein the proximity, but communicates with
the sensor nodes through a network. Our techniques cant detgcecover nodes even if an attacker
compromises an arbitrary number of sensor nodes, uplobidsagy code into the node, and where nodes
can arbitrarily collude.

All our protocols are based on a new mechanism: ICE, whiatdstéor Indisputable Code Execution.
ICE is a request-response protocol between the verifier laadi¢évice. The verifier does not have

We define gositiveas a sensor node that is compromised, andgativeas a node that is uncompromised.

1

physical access to the device’s CPU, bus, or memory, but nbBhcommunicate over a wireless link
with the device. ICE verifies exactly what code is executindlee device at the time the verification is
performed. The verifier sends a request to the device. Thealeesmputes a response to the verifier's
request using a verification function (hereafter called ItBE verification function), and returns the
response to the verifier. A correct response from the devieeagtees to the verifier that two properties
hold on the device. First, the location, in memory, of theecodrrently executing on the device, matches
the location, in memory, of the content we are verifying. @kt the memory contents being verified
are correct. Taken together, these two properties asseineetifier that the code it expected to execute
on the device, at the time of verification, did indeed exeoumt¢he device. A correct response from the
device should guarantee that the two properties mentiobedeahold even if the attacker controls the
node before ICE runs and make arbitrary changes to the mecoatgnt.

We present an implementation of FIRE & ICE, Our implemenptatis based on the Telos sensor
nodes, the most recent sensor platform of the Berkeley raatéyf [12].

Outline In Section 2, we present the problem definition, and desthi&sensor network architecture,

assumptions, and the attacker model. Section 3 descriedSEmechanism. In Section 4, we describe
FIRE as well as our implementation and evaluation of the FgR&ocol suite. Section 5 discusses
related work, and Section 6 concludes.

2 Problem Definition, Assumptions and Attacker Model

We first state our assumptions about the sensor networktactlrie in Section 2.1. Section 2.2
discusses our attacker model. In Section 2.3, we descréygrtiblem of detecting and repairing remote
intrusions in sensor networks.

2.1 Sensor Network Assumptions

We assume a wireless sensor network consisting of one oipeutiase stations and several sensor
nodes. The sensor nodes communicate among themselvesdrakthstation using a wireless network.
The communication between the base station and sensor cadé&® single-hop or multi-hop.

The base station is the gateway between the sensor netwdrtharoutside world. Other sensor
networks or computers on the world-wide Internet can sehaoré& packets to the sensor nodes through
the base station. Every sensor node and the base statioruhagua identifier, hereafter referred to as
node IDor base station ID

To authenticate messages between sensor nodes and thédbase we assume, for simplicity, that
a public-key infrastructure is set up, where each sensog kndws the authentic public key of the base
station (we assume that the base station is the CertificAtidimority (CA) of the network). Malan et al.
have recently shown that public-key cryptography takesierotder of tens of seconds on current sensor
nodes [23], which is justifiable for a small number of opemas. We could also assume pairwise shared
keys between the base station and sensor nodes, and uselif iBfPastructure to set up additional
keys [26]. We assume that the base station is immune agamste attacks that inject and run arbitrary
code on the base station or steal the cryptographic keyg inabe station. This assumptionis commonly
made in secure sensor networks, since compromise of thestasm implies compromise of the entire
network.

We further assume that each sensor node has a few bytes ofGrédadlemory (ROM). The ROM
stores the node ID of the sensor node and base station'skgyli By keeping a sensor node’s node
ID in the ROM, we prevent impersonation attacks where arclgtachanges the node ID of a node to
impersonate another node, for example the Sybil attacki[8¢. base station’s public key is used by the
sensor nodes to authenticate packets from the base st&taing the base station’s public key in ROM
prevents an attacker from changing that key if a node is comysed.

We also assume that the code that implements FIRE & ICE, gl in size (approximately 3-4
KB), can be carefully written to be free from software vuknaiities like buffer overflows.

2.2 Attacker Model

In this paper, we study all remote attacks that an attackedauanch against the sensor nodes in a
sensor network. A remote attacker exploits vulnerabditike buffer overflows, in the software run-
ning on the sensor nodes to compromise the sensor nodes. aOrage is compromised, the attacker
has full control. That is, the attacker can inject and runteaty code, and steal cryptographic keys.
Malicious nodes controlled by the attacker can collude. ¥gme that the attacker does not introduce
its own powerful hardware like laptop computers into thessemetwork to impersonate sensor nodes.
Introducing new hardware into a sensor network requiresatteeker to be physically present which
translates to a substantially more determined attackemany physically secure sensor networks like
those in nuclear power plants or in military environmernts, attacker will not be able to introduce its
own hardware into the network.

In our future work, we will consider an attacker who is prasgrthe sensor network, allowing it to
introduce its own malicious and computationally powerfehsor nodes.

2.3 Problem Definition

We consider the setting of a sensor node that has a softwarerability in its code. An attacker
can exploit the vulnerability to compromise the sensor no&lger compromising the sensor node the
attacker can read out the memory contents or inject makoiodle into the node.

When a vulnerability is discovered in the sensor node soéwie base station has to first detect
which sensor nodes in the network have been compromised aftacker. For uncompromised nodes,
their code has to be updated to remove the vulnerability. ddmpromised nodes either have to be
repaired or be blacklisted by the base station.

To repair compromised nodes, first, any malicious code ongbés made by the attacker have to be
removed from the memory of the sensor node. Then, the codéngion the sensor needs to be updated
to remove the software vulnerability. All repair needs tado@e in the presence of malicious code that
may prevent the repair from happening. For example, if treelstation sends a software patch to a
compromised sensor node, malicious code running on themagidake the application of the patch.

New cryptographic keys have to be established between the $tation and the all sensor nodes.
Even uncompromised nodes need new cryptographic keys $eeaawattacker could have compromised
a node, read out the cryptographic keys, and then undonéatiges to make it appear as though the
node were not compromised. The protocol used to establishcngtographic keys cannot be based
on the assumption of the existence of any shared secreteéetiie base station and sensor nodes.
All shared secrets might have been compromised. Even wigitared secrets, the cryptographic key
establishment protocol has to be immune to eavesdroppithgnam-in-the-middle attacks.

3

3 ICE: Indisputable Code Execution

In this section, we first describe the indisputable code @x@e mechanism and show how self-
verifying code can be used to achieve indisputable codeutioec Section 3.2 shows attacks against
self-verifying code to spoof the existence of the indispiegaode execution property and the properties
our self-verifying code (hereafter called the ICE verifioatfunction) has that prevent these attacks. In
Section 3.3, we describe the design of the ICE verificatiorttion to achieve its required properties.
Finally, Section 3.4 discusses the implementation of tHe Werification function on the Telos sensor
nodes.

3.1 Indisputable Code Execution

We consider the model where a verifier wants to verify whatecisdexecuting on a device, when
the verification is performed on the device. However, theafieerdoes not have physical access to the
device's CPU, bus, or memory, but can only communicate withdevice over a network link. The
verifier knows the exact hardware configuration of the devéral can command the device to run a
self-verifying checksum function, called the ICE verificat function. In this model, the verifier sends
a challenge to the device, asking the device to use the IGEcation function to compute and return
a checksum over the contents of memory from which the ICHigation function runs. If the ICE
verification function that runs on the device is correct drICE verification function is running from
the correct location in memory, the device responds withctireect checksum within a pre-specified
time period; if the ICE verification function is incorrect mmning from a different location in memory
than that expected by the verifier, either the checksum wilhisorrect with overwhelming probability,
or the device will respond after the pre-specified time pkfgince the ICE verification function is
designed to execute slower if the ICE verification functiode is different or it runs from a different
location in memory). This is the same setting as previousareh on this topic assumes [16, 29].
Figure 1 shows an example of a verifier that verifies the codewging on a device.

Challenge
Verifier T Device

wvl V.22 |

Code Checksum *Program Counter

Figure 1. Setting of Indisputable Code Execution, a verifier wants to ensure that a device is indeed
executing a certain piece of code. The verifier knows the hard ware architecture of the device and the
value of the piece of code it wants to verify. The device’'s mem ory contains the code the verifier wants
to verify. The verifier sends a challenge and only receives th e correct checksum within a bounded
time period if the device is indeed executing the correct cod e.

The property of ICE (Indisputable Code Execution) is thédfreégezes” the code on the device, such
that the verifier obtains assurance about what code is dlymemning. As we show in Section 4, ICE
is a powerful primitive that enables a wide variety of higherel security mechanisms, such as secure
verifiable code updates, secure key establishment, angiotr detection.

We use self-verifying code to implement ICE. We defsedf-verifying codas a sequence of instruc-
tions, that compute a checksum over themselves in a way hibatitecksum would be wrong or the
computation would be slower if the sequence of instructisese modified.

3.2 Attacks Against Self-Verifying Code

We now describe potential attacks against any self-vergfiydode and intuitions on how we design
our defenses.

Pre-computation and replay attacks. An attacker can compute the checksum over the memory re-
gion containing the ICE verification function, before makichanges to the ICE verification function.
Later when the verifier asks the device to compute and rehaichecksum, the device returns the pre-
computed value. To prevent this attack, the verifier sereldéirice a random challenge along with every
verification request. The checksum computed by the deviedfusiction of this challenge. The chal-
lenge sent by the verifier is sufficiently long to prevent agrattacks when the attacker stores previously
observed challenge-checksum pairs.

Data substitution attacks. The ICE verification function makes multiple linear passesranemory
region from which it runs and iteratively computes the clseck. An attacker can change a some bytes
of the ICE verification function and keep the original val@s different location in memory. When
the ICE verification function tries to read from the memorgdtions the attacker changed, the attacker
diverts the read to the locations in memory where it storedtiginal values. The attacker has to insert
ani f statement before the instruction in the ICE verificationction that reads from memory to check
when the read goes to one of the locations it changed. Ingdfe extra f statement slows down the
computation of the checksum. This slowdown will be detedtgdhe verifier when it does not receive
the checksum from the device within the correct time. Howedbe attacker can make one optimization
to reduce the overhead of the exirk statement. We unroll the loop of the ICE verification funatio
Thus, the body of the ICE verification function is composedeferal instances of the basic loop. Since
the ICE verification function makes linear passes over mgntlog attacker can predict in advance which
loop instances will access the memory locations it modifi€den, it can insert thef statements in
those loop instances alone. To force the attacker to ingestatements into every instance of the loop,
we unroll the ICE verification function loop so that the numbginstances of unrolled loop and the size
of the memory region over which the checksum is computed @peroe. This ensures that the same
memory location will be accessed by different loop instandearing different passes over the memory
region. So, the attacker is forced to ingeft statements into every loop instance.

Memory copy attacks. Since we only want to verify the code that is currently exgxubn a device
and that code only constitutes a small part of the full menoanytents of the device, we are faced with
two copy attacks: either the correct code is copied to amddigation in memory and malicious code is
executing at the location of the correct code (Figure 2)hercorrect code resides at the correct memory
location and the malicious code is executing at anothetilmeaf memory (Figure 3). Itis clear that we
need to prevent both attacks to have self-verifying codeprévent the first attack, we need to ensure
that the contents that we compute the checksum over aresfibfobm the correct address locations in
memory. To prevent the second attack, we need to ensurehi@rogram counter is pointing to the

5

correct memory addresses. A third attack is that both theecbcode and the malicious code are at
different memory locations. It is clear that either of theictermeasures that prevent the first or second
copy attack also prevent the third attack.

Challenge
Verifier T Device

w W4 |
> Malicious code

Code Checksum Program Counter

Figure 2. In this attack, the correct code resides at a differ ent memory location, and the attacker
executes malicious code at the correct memory location, com puting the memory checksum over the
correct code.

Challenge
Verifier T Device

mv) |
Code Checksu *Program Counter

Malicious code

Figure 3. In this attack, the correct code resides at the corr ect memory location, but the attacker
executes malicious code at a different memory location, com puting the memory checksum over the
correct code.

Loop counter modification attack. The attacker that has modified a certain portion of the memory
being checked modifies the termination value of loop cousdahat the ICE verification function runs
until it reaches the beginning of the modified memory regfonce the loop is exited the attacker forges
the checksum over the memory it modified. After that, thecattajumps back to the legitimate copy of
ICE verification function and runs it until completion. Atigh the attacker’s forgery of the checksum
has incurs a time overhead, this overhead would be limitead gmall portion of the memory content
under examination. The result is that the time overhead nhiglhoo small to be detected by the verifier.
To prevent this attack, we incorporate the termination eatithe loop counter into the checksum to
catch modifications to this value.

Since the ICE verification function depends on timing, maitgcks attempt to speed up the checksum
computation. This allows the attacker to run a maliciou#fieation function and use the time gained by
speeding up the checksum computation to forge the correckskim. As long as the correct checksum
is returned to the verifier by a certain time, the verifier vababnsider this node as uncompromised.
Three such attacks leveraging timing is presented below.

Computing checksum out-of-order attack. The verification function makes one or more linear passes
over the memory region for which it computes the checksunme dttacker knows exactly how many

6

times a given memory location is accessed during the cortipataf the checksum, thus it may com-
pute the checksum contributions all at once without periognthe iterations. This would enable the
attacker to save time, and in conjunction with the memoryapacks allow the attacker to return the
correct checksum within the allocated time. Making thefigation function non-associative prevents
the attacker from making shortcuts in the computation.

Optimized implementation attack. The attacker may decrease the execution time of the ICE -verifi
cation function by optimizing the code, which allows theaaker to use the time gained to forge the
checksum, without being detected. Similar to previousaedein this area [16, 29], we need to show
that the code cannot be further optimized. As previousiyigai out, we can use automated tools to
either exhaustively find the most efficient implementatibh][or to use theorem proving techniques to
show that a given code fragment is optimal [15]. In any casegoal is to keep the code exceedingly
simple to facilitate manual inspection and the use of theslst

Multiple colluding devices attack. Another way to speed up execution is by leveraging multigle d
vices to compute the checksum in parallel. Multiple devicas collude to compute different ranges in
the ICE verification function loop and combine their resttget the final checksum. To prevent this
attack, we want to make the verification function non-patable to force sequential execution.

3.3 Design of ICE

The key idea in ICE is that the ICE verification function cortgsua checksum over its own instruction
sequence and return the checksum to the verifier within aicetitne period of time. We now discuss
what primitive we use to generate the fingerprint of memory.

As mentioned in Section 3.2, the checksum computation t@sistant to pre-computation and reply
attacks. This requirement rules out using a cyrptograpasthHunction. We could use a cryptographic
message authentication code (MAC), like HMAC [5]. HoweWdAC functions have much stronger
properties than we require. MACs are designed to resist tA€ fbrgery attack. In this attack, the
attacker has observes the MAC values for a number of diffenguits. All MAC values are computed
using the same key. The attacker then tries to generate a Mr&hfunknown input, under tlsamekey,
using the input-MAC pairs it has observed. In our setting,\tarifier sends a random challenge to the
device along with each verification request. The device theesgandom challenge as the key to generate
the memory fingerprint. Since the key changes every timeyth€ forgery attack is not relevant in our
setting.

We use a simple checksum function to generate a fingerprimeshory. The checksum function
uses the random challenge sent by the verifier to seed a pseudldon number generator (PRG) and
to initialize the checksum variable. The output of the PR@orporated into the checksum during
each iteration of the checksum function. The input used topde the checksum changes with each
verification request since the initial value of checksumalze and output of the PRG will be different
for each challenge sent by the verifier. Hence, the final cheokreturned by the device will be a
function of the verifier's challenge.

To prove to the verifier that the ICE verification function igully computing the checksum over
itself, we need to detect the two copy attacks mentioned ati@e3.2. To prove to the verifier, that
the ICE verification function is executing from the correatdtions in memory, the ICE verification

7

function includes the value of the program counter (PC) iheochecksum. To prove to the verifier that
the checksum is computed over the correct locations in mgrtioe ICE verification function includes
the data pointer, that is used to read the memory, into thekshien. Hence, when the checksum returned
by the device to the verifier is correct, the verifier is asduhat the program counter, data pointer and
the contents of the region of memory over which the checksasia@mputed, all had the correct values.

If an attacker tries to launch either of the copy attacks maet in Section 3.2, the attacker will have
to incorporate additional instructions into the ICE vesfion function to simulate the correct values for
the PC and the data pointer. These additional instructialhswdown the computation of the ICE
checksum.

The ICE verification function uses an alternate sequencddifians and XOR operations to compute
the checksum, thereby making the checksum computatioragsoeiative. An alternate sequence of
additions and XOR operations is non-associative becayasé + c is equivalent tda & b) + ¢, but not
a® (b+c).

In order to make the checksum function non-parallelizaléeyse the two preceding checksum values
to compute the current checksum value. Also, the PRG gerseitat current output based on its last
output.

Figure 4 shows the pseudocode of the ICE verification functidhe ICE verification function it-
eratively computes a 128-bit checksum of the contents of omgnilrhe pseudocode is presented in a
non-optimized form for readability. It takes in a parametavhich is the number of iterations the ICE
verification function should perform when computing theatsaim. The 128-bit checksum is repre-
sented as an array of eight 16-bit values. The ICE verifiodtimction updated one 16-bit element of
the checksum array in each iteration of its loop. To updatbexksum element, the ICE verification
function loads a word from memory, transforms the word tedbaded and adds the transformed value
to the checksum element. The checksum element is thenddé&dtdy one bit.

The random challenge sent by the verifier is 144 bits long.h@f 1128 bits are used to initialize the
checksum array and 16 bits are used as the seed for the Tdnncti

We use a 16-bit T function [17] as the PRG. T functions havepiteperty that the'” output only
depends on outputs. . . i. The particular T function we use in the pseudocode is x + (2 V 5). In
practice, we should use a family of T functions because a €tion starts repeating itself after it has
generated all elements in its range. Another option for a RR@Ed be the RC4 stream cipher. However,
T functions are very efficient, and their code can be easibyv&ld to be non-optimizable.

To ensure that the intruder cannot modify a single byte, bezksum function needs to examine the
entire memory content under verification. Previously, aesieers propose to traverse the memory in
pseudo-random order [16, 29]. This approach is undesirbleever, because it requirégn log(n))
memory reads to achieve high probability that each memaation was accessed at least once, where
is memory size. The ICE verification function makes multiptear passes over memory, thus requiring
only O(n) accesses to touch every memory location with a probabilibne. As the pseudocode shows,
the data pointer is incremented during each iteration ofibe and then checked for bounds before each
memory read.

Figure 4. ICE Pseudocode
/lInput: y number of iterations of the verification procedure
//Output: Checksund’
[IVariables:[code_start, code_end] - bounds of memory address under verification

Il daddr - address of current memory access
Il b - content ofdaddr

Il x - value of T function

1 [- counter of iterations

daddr «— code_start
for | =yto0do
/IT function updates
x—x+ (2?V5)
//Read from memory address
b — mem[daddr++]
if daddr > code_end then
daddr «— code_start
end if
//Calculate checksum. Lét be the checksum vector arnide the current index.
C; —Ci+PC® (b PC+1dC;_2)® (x®daddr + Cj_y) + PC
C; « rotate left(})
/lupdate checksum index
j—(j+1) mod8
end for

3.4 Implementation of ICE

3.4.1 Sensor Node Architecture

We implemented ICE the Telos sensor nodes, the most recefdnoh of the Berkeley mote family. The
Telos motes the use the MSP430 microcontroller from Texsisuments. The MSP430 is a 16-bit von-
Neumann architecture with 60K of Flash memory, and 2K of RAMe microcontroller has a 8MHz
CPU that features the RISC architecture and has 16 16-hsteeg,.

The ICE verification function uses all 16 CPU registers. This attacker does have any more free
registers for any modifications it makes. For an architetia has more registers, we can deny the
availability of reigsters to the attacker by storing theakseim in registers and extending the size of the
checksum until no free registers remain.

The MSP430 CPU has the following features. Operation witin@diate operands take more CPU
cycles than register-to-register operations. In gendéna,property holds for most CPU architectures.
The program counter (PC) is a regular register. Hence, weeaaily incorporate the PC value into
the checksum. The CPU also has a hardware multiplier. Treepoe of the multiplier considerably
speeds up the computation of the T function. However, thegmee of a hardware multiplier is not
absolutely necessary for the ICE verification function. he tabsence of a hardware multiplier, the
multiply operation in the T function can be simuluated or THeinction can be replaced by RC4, which
does not require any multiply operations.

Assembly Instruction Explanation

/IT function updates x

mov r15, &MPY load x into first operand of hardware multiplier
mov r15, &OP2 load x into second operand of hardware mudipli
bis #0x05, &RESLO OR 5 into output of hardware multiplier,iathholdsz?
add &RESLO, r15 T —z+ (22 V5)

/Ireads memory at addreskddr,and calculates checksur@(at register 6)
mov r14+, rl13 r13 «— mem/|daddr++]

xor r0, r13 rl3 —r13 e PC

add r12,rl13 r13 « r13 + loopIndex

xorr4, r13 rl3 «—r13 @ Cj_

add ro, r6 C; — C;+ PC

xor rl3, r6 C;—C;orl3

mov r15, r13 r13 < x(from T function)

xorrl4, r13 r1l3 «— r13 & daddr

add r5, r13 rl3 «—r13+Cj_;

Xorrl3, r6 C;«—Cjorl3

add ro, r6 C; — C;+ PC

rlaré C; « rotate leffC}]

adc r6

Figure 5. ICE Assembly code

3.4.2 Assembly Code

Figure 5 shows the main loop the ICE verification functiontten in the assembly language of MSP-
430. As can be seen, all variables used in the checksum catigguare maintained in the CPU registers.
The code is manually optimized to ensure that the attackeratdind a more optimized implementation.
The main loop consists of just 17 assembly instructions akelst 30 machine cycles. We will show that
the best attack code would achieve a 3 cycle overhead in taation of the main loop, which represents
a 10% overhead.

As part of the assembly code optimization, we unrolled tlop I8 times. This allows us to the keep
the checksum array in the CPU registers and also to elimih&ehecksum index variable. In the
unoptimized code, bounds checking is performed on the dideeas at every memory access. After
unrolling the loop, an obvious optimization would be to peni bounds checking at the very end of the
unrolled loop instead of at every instance, thus savingesydf we do so, the data pointer might go out
of bounds by at most 7 memory locations. To ensure the chatksuoction still operates correctly, we
pad the end of the self verification code with known valueg.(é&NOPs no-operation instructions) for
up to 7 memory locations. Thus, if our memory reads are gouigpbbounds, we would still only be
accessing known values.

Based on the assembler code, we will now show that the att@io&ars a time overhead of least 3
CPU cycles when it carries out any of attacks mentioned ini@e8.2. To carry out the memory copy
attacks, the attacker has to forge the values of either therRie data pointer. The attacker does not

10

have any free registers. Thus, the fastest way to forge tiagodénter is save the correct value of the data
pointer before the memory access, replace it with a valubefttacker’'s choosing and to restore the
correct the value of the data pointer before it is incorpafanto the checksum. This incurs an overhead
of 4 CPU cycles per iteration on the MSP430.

To forge the PC, the attacker can replace the value of the Pi@mediate since the each sampled
value of a PC is a constant. However, on the MSP430 archite¢amd most RISC architectures), such
an operation using an immediate operand required 1 more @El& compared to a register-to-register
operation. Since we use the PC 3 times in each iterationfthekar would incur a 3 CPU cycle penalty.

All other attacks that involve making changes to the ICEfieaiion function code directly will in-
volve the data substitution attack. The data substituitatks requires that the attacker to insert at least
one extra f statement into every iteration of the ICE verification fuont Ani f statement translates
into a compare and a branch in assembly. On the MSP430 a cerapdra branch together take 3 CPU
cycles.

Typically, the ICE verification function would verify itseds well as a few other functions that will
execute immediately following it. After computing and neting the checksum, the ICE verification
function would jump to one of these verified functions. Frdra assembler code, it is clear that the ICE
verification function does not contain any contiguous mgmegion that has the same value. However,
we cannot make the same claim about the other functions @tatverifies. If these functions have
a contiguous region all of which has the same value, like &éebwff zeros for example, the attacker
can take advantage of this situation by having a maliciousie@ion function that does not perform
memory reads when it iterates through this memory regiorihi;way, the attacker would save some
CPU cycles that could be used to carry out other attacks. &eept this attack, we encrypt all memory
content under verification except the code of the ICE vetificefunction itself.

3.5 Results

We implemented two versions of the ICE verification functamthe Berkeley Telos motes: a legit-
imate version and a malicious version that assumes thattthekar has a 3 CPU cycle overhead per
iteration of the ICE verification function. This translaiet a 10% runtime overhead. The MSP-430
microcontroller has an emulator board and a real-time C-8&bugger that can monitor the status, reg-
ister file, and memory content of the device. We profiled ba#tations and Figure 6 shows the runtime
overhead. A detectable time difference is required in ofdethe ICE protocol to identify malicious
nodes. As our results show, we can achieve an arbitrarigelame difference by varying the number of
memory accesses.

Since the running time of the ICE verification function ireses linearly with the number of iterations,
we wish to minimize this number, and yet induce a time oveattteahe attacker that is detectable by
the verifier. In practice, the verifier should choose the nendb iterations to ensure that the attacker’s
overhead is greater than network latency. As a corollaryneed a strict upper bound on network
latency.

4 Protocols for Intrusion Detection and Repair

We start this section by describing how ICE can be used tainarishe FIRE protocols, i.e., protocols
for intrusion detection, code updates and cryptographjalkelates in sensor networks. This is followed

11

0.5 T T T T T T T T T

0.45— — Legitimate Verification Runtime
3 --- Attacker Verification Runtime
0.4 Time Difference -

|\

0.35—
0.3

0.25(—

Time in Seconds

0.2
0.15(—

0.1

0.05—

S 11 1 1
4000 60000 80000 le+0t
Number of Memory Accesses

Figure 6. Runtime Overhead of Attacker

by a high-level description of the protocols. Appendix Ayeg a more detailed description of the
protocols. In Section 4.4, we discuss some points to be dereil when using the FIRE protocols for
building systems.

ICE verif. function Patching function

Sensor node memory

DH code

Hash function

Figure 7. Memory layout of a sensor node. The ICE verification function is used to verify the contents
of memory containing itself, and a hash function. The hash fu nction computes a hash of the rest of
the sensor node memory. The patch function is used for code up dates and the Diffie-Hellman code
is used for cryptographic key updates.

4.1 Extending ICE

The FIRE protocols use ICE as the primitive. The ICE verifaafunction is a self-verifying func-
tion. When the ICE checksum returned by a device is correctéhifier is assured that the code that is
expected to have executed on the device did in fact executeeatevice.

We can ask the ICE verification function to produce a checksfirmemory regions of any size.
As long as the memory region being verified includes the pomif memory where the ICE verification
function resides, a correct ICE checksum is a guaranteéthatemory region over which the checksum
was computed has the expected contents. When designingREepfotocols using ICE, we make the
ICE verification function check a region of memory that caméahe code for the FIRE protocols and

12

the code for the ICE verification function. After computitgetchecksum, the ICE verification function
jumps to the code of one of the FIRE protocols. In the contédemsor networks, the base station
functions as the verifier and the sensor node is the devicg lvarified. The memory of every sensor
node has code for the ICE verification function and the FIREqwols.

The time taken by a sensor node to compute the ICE checksurto s measured accurately to
verify the correctness of the ICE checksum. In multi-hopssemetworks, the network latency between
the base station and the sensor node can considerably atyré between sending a ICE challenge
and receiving a response. To minimize the variance, thediasen can ask a node that is the neighbor
of the node computing the checksum to measure the ICE checkemputation time. However, the
node that is asked to time the checksum computation of a anotide has to be trusted. The base
station establishes the required trust relationship byguan expanding ring method. The base station
first verifies nodes that are one network hop away from it. is¢hse, the base station can directly time
the ICE checksum computation. The nodes that are one netvagrlaway are then asked by the base
station to measure the time taken by their neighbors to cterpe checksum. In this manner, the ICE
verification spreads out from the base station like an exipgnthg.

Even a one-hop network latency is not deterministic in a eg® environment where multiple sensor
nodes contend for the radio channel. To make the one hop rnelatency deterministic, the sensor node
computing the ICE checksum is given exclusive access taithie channel. Now, the one hop network
latency can be predetermined by the base station. The seodercomputing the ICE checksum can be
be asked by the base station to do a sufficient number ofitiesabf the ICE verification function loop,
so that the expected time overhead for an attacker’s ICEkshiet computation is much greater than the
predetermined one hop network communication latency.

A malicious sensor node can forward the ICE challenge to mypnode that has a copy of the correct
memory contents and can compute the ICE checksum fastethikasensor node. The time saved by
a faster computation of the ICE checksum can be used for cameaiing the ICE challenge from the
sensor node to the proxy and communicating the ICE checksumthe proxy to the sensor node. This
way the malicious sensor node can fake the ICE checksum anfibtfpery will go undetected by the
base station.

To compute the checksum faster than a sensor node, the pasxiolbe a computing device with
greater computing and storage resources than a sensorfmdexample, the proxy device can be a PC
on the Internet, but not another sensor node. All sensorsoaéng identical memory layouts take the
same amount of time to compute the ICE checksum.

The base station detects proxy attacks by delaying all padletween the sensor network and the
outside world by a few seconds when a sensor node is compgh8ri@E checksum. The base station is
the gateway between the sensor network and the outside.waordpackets sent and received between
a malicious sensor node and a proxy that is outside the seeswork will have to pass through the
base station. If a sensor node tries to use a proxy node tacbatpute the ICE checksum, the delay
introduced into the communication by the base station wgle that the sensor node cannot return the
ICE checksum to the base station within the expected amduime.

4.2 Protocols for Intrusion Detection and Code Updates

We define intrusion as the process of a remote attacker conigirgg a node using software vulner-
abilities. The purpose our intrusion detection and repeotqeol is to provide a method for the base

13

B— A: (ICE Challenge

B: T, = Current time

A: Compute ICE checksum over memory region containing ICHigation function and the hash function
A— B: (ICE checksum

B : T» = Current time

Verify (T, — T1) < Allowed time to compute ICE checksum
Verify ICE checksum from sensor node using checksum condpeself

A— B: (Hash of rest of memoly

B: Use hash of sensor node memaory contents to determine iffreghsor node memory is correct
Prepare code patches for sensor node
B— A: (Code patches

A: Apply patches

Figure 8. Protocol for detecting intrusion and sending code updates between the base station B and
a sensor node A.

station to detect whether a node has been compromised. ih&mgion is detected, either the sensor

node is blacklisted by the base station or the node is repaire repair a node, the base station sends
an update to the sensor node to patch the software vulnigyabihe base station is guaranteed that the
sensor node applies the code updates sent by the base atadisrepaired fully.

The intrusion detection mechanism does not make any falgatiwe claims. That is, if a node is
flagged by the mechanism as being uncompromised, the nod¢uisllg uncompromised. If a node
is tagged as being compromised, then either the node isligcamampromised or is experiencing a
DOS attack. For example, a malicious node could jam an unoamiped node computing the ICE
checksum. Then the node computing the ICE checksum will eatiide to return the ICE checksum to
the base station within the expected amount of time and wikar to have been compromised.

The ICE verification function computes a ICE checksum overrdgion of memory that contains the
ICE verification function and a hash function. After finispithe ICE checksum computation, the ICE
verification function jumps to the hash function. The hagfcfion computes a hash over the rest of
the memory. Figure 8 shows a simplified version of the inbmsletection and code update protocol.
Appendix A gives the full protocol.

When the ICE checksum is correct, the hash function can keettuo compute a correct hash of the
sensor node’s memory. In this case, the base station canacertige hash of a sensor node’s memory
with the correct hash to determine if there have been chatogdbee memory contents of the sensor
node. The base station can also pinpoint exactly whichilmesiin the memory of a sensor node have
been changed by asking the sensor node to compute hashdfediregions of its memory. Once
the changed locations in the memory of a sensor node haveitestified, the base station can send
memory updates for exactly those memory locations that hega modified on the sensor node. So, the
amount of data sent from the base station to the sensor ndideevaninimized. Even though computing
the extra hashes over memory take up energy, energy redairedmmunication is at least an order of
magnitude larger than energy used for computation. Hernvegab less energy will be utilized.

14

B — A: (ICE ChallengeDH half-key gYmod p)
B: T, = Current time
A: Compute ICE checksum over memory region containing ICHigation function,
hash function and node ID
C1 = ICE checksum
r&{0, 13128
Generate one-way hash chaih,= F(Cy) ® r,d1 = F(d2),dy = F(d1)
A— B: (do, MAC¢, (do))
B: T, = Current time
Verify (T, — T1) < Allowed time to compute ICE checksum
Compute MAC ofd, using ICE checksum computed by self
If MAC of dy computed by self equals MAC @ sent by sensor node, then node’s ICE checksum is correc
A Compute hash of rest of memof,,cim
A—B: (MACq, (Hpmem))
A: Generate DH half-key*mod p
A— B: (dy,g"mod p, M ACq4,(g"mod p))
B: Verify dy = F(dy)
ComputeM ACq, (Hpmenm) Usingd; and Hyy,.,, computed by self
Verify MAC of H,,.,, returned by A
A— B: (r)
B: Computed; = F(C1) @ r usingr and ICE checksum computed by self
Verify dy = F(ds)
Verify MAC of g*mod p usingds
Compute(g*mod p)?mod p
A: Compute(g¥mod p)“mod p
Figure 9. Protocol for symmetric key establishment between the base station B and a sensor node

A. I'is a cryptographic hash function based on the RC5 block ciphe r.The protocol uses a CBC-MAC
derived from RC5.

If the ICE checksum returned by the sensor node is incorteet, the memory region containing the
ICE verification function, the hash function and the funitto apply code updates has been modified.
In this case the base station has no guarantee of what idlgexacuting on the sensor node. Thus, the
base station blacklists the sensor node.

4.3 Cryptographic Key Update Protocol

Once a sensor node has been repaired by undoing changetattieratade to its memory contents
and the software vulnerability removed using a code updatew cryptographic key needs to be estab-
lished between the sensor node and the base station. Eveentar node looks uncompromised, a new
cryptographic key needs to be established since the attackiéd have compromised the node, read out
its cryptographic key, and then undone all changes madetm#mory.

15

Our cryptographic key update protocol does not rely on tlesgmce of any shared secrets between
the base station and the sensor node. We assume that theeakaows the entire memory contents of
the sensor node. The cryptographic key update protocdbledias a symmetric key between the base
station and a sensor node, preventing man-in-the-middieeanesdropping attacks.

At first glance, it may appear impossible to rule out mankie-iniddle and eavesdropping attacks
without leveraging a shared secret key. However, the ptiggewe rely on here are that, one, the
attacker is remote and has a longer delay for messages amdaltweensor nodes in the network have
equal computational capabilities. Using the ICE appro#iod pase station sends a challenge that only
a node with the correct memory contents can correctly sdlMe.assume that each sensor node has a
few bytes of Read-Only Memory (ROM) containing its node icheTsensor node uses the challenge
sent by the base station to compute a checksum over the meegpoy containing the ICE verification
function, a hash function and its node id. The sensor node tivé correct node id and memory layout
will be able to generate the ICE checksum faster than allratbdes in sensor network. We leverage
this asymmetry in time of computing the ICE checksum to distiala symmetric key between the base
station and the sensor node.

A symmetric key is established between the base station @m&bs node using the Diffie-Hellman
(DH) key exchange protocol. In order to prevent man-in4thidele attacks, the sensor node and the
base station need to authenticate the DH protocol mess¥#geassume that all sensor nodes have the
base station’s public key in their Read-Only Memory (ROMgnide, the sensor node can authenticate
the base station’s DH half key. A simple way to complete the K&y exchange is for the sensor node
to generate and send a DH half key to the base station imnegdafter computing the ICE checksum.
The sensor node also sends a MAC of its DH half key to the baserst The MAC is generated using
the ICE checksum as the key. If the time taken by the sensa tiodompute the ICE checksum and
generate its DH half-key is less than the time taken by tleekttr to forge the ICE checksum, then, on
the verifying the MAC, the base station is assured that theh@lfikey could have only come from the
correct sensor node. This statement is true since no otheosaode can compute the ICE checksum
as fast the correct sensor node.

However, computing DH half keys is too slow on sensor nodesattacker can pre-compute a Diffie-
Hellman half key before the ICE challenge arrives from theebstation and then use the extra time to
forge the ICE checksum. The attacker can then generate thect®AC for its DH half-key.

Since generation of the Diffie-Hellman half key is too slowptrform right after computing the ICE
checksum, we need a fast mechanism to set up an authentitetedel between the node and the base
station. This authenticated channel can be used by therseode to send its Diffie-Hellman half key
to the base station. Since one-way functions are efficieabtopute, we use the Guy Fawkes protocol
by Anderson et al. [2] to set up the authenticated channeth Be base station and the sensor node
compute a short one-way hash chain. We let the node creatsla dne-way hash chain, containing
three elements, right after the checksum computation. ©de generates the initial element of its hash
chain as a function of the ICE checksum and a randomly choakre.v This ensures that an attacker
cannot precompute the hash chain to save some time for §ptgenICE checksum. In addition, since
the node also uses a random value to generate the its hash mbather node can generate the node’s
hash chain even when after forging the ICE checksum somatine future.

The node uses the ICE checksum to authenticate its one-wag ththe base station. Then, the
node computes a fresh Diffie-Hellman half key, and authateggit through the Guy Fawkes protocol.
Thus, we achieve secure key establishment without shaoedtserobust to man-in-the-middle attacks

16

and eavesdropping by colluding malicious nodes. Figureo®ssta simplified version of our key update
protocol where we do not show details of how the sensor notieeaticates packets from the base
station. Appendix A gives the full protocol.

4.4 Considerations for System Design

Selection of cryptographic primitives Because of our application onto sensor nodes with limited
computation power and resources, implementation of thetagyaphic primitives posed a major chal-
lenge. To save program memory, we reuse one block ciphergtement all cryptographic primitives.
We suggest using RC5 [28] as the block cipher because of il sode size and efficiency. In prior
work in sensor network security [26], Perrig et al. stateat #hn optimized RC5 algorithm can com-
pute an 8 byte block encryption in 120 cycles. Thus, on thikitecture, one execution of RC5 merely
requires 0.015 ms.

A CBC-MAC operation can be implemented by using RC5 as thekatgpher. The hash function can
also be constructed with RC5 as followsgz) = RC5(x) @ z, using a standard value as the key.

Diffie-Hellman parameters Because of stringent resource constraint on sensor noaess,work on
sensor network security only operates with symmetric aygphic protocols. Generally, it is consid-
ered impractical to perform expensive asymmetric cry@phic operations on sensor nodes because
they do not have enough computation power or memory size.utnork, by carefully picking the
parameters, it is possible to run asymmetric algorithmsherBerkeley Telos motes.

By selecting the bare minimum needed to perform Diffie-Halmwe used a subset of the TinyPK
package from BBN [4]. The Diffie-Hellman key exchange is aynasietric cryptographic protocol that
is based on the operatigfi mod p. The security of Diffie-Hellman is based on the length of seer
and a publip. When applied to sensor nodes, a 14 hytad 64 byter is sufficient, since it would yield
a subgroup discrete logarithm key size of 112 bits. AccaydoLenstra et al. [18], these parameters
would be deemed as secure in the year 1990 using state oftfleelanology at that time. Since we are
dealing with low cost, mass quantity sensor nodes, 1990d@fesecurity is sufficient. Of course, the
attacker can break our system using powerful Gigahertz mastior each sensor node, but this would
be a very unlikely scenario because the attacker would ia¢ugh cost.

Sinceg is relatively unimportant in the security of the protocok wsetg to be 2 in order to speed
up computation. Using these parameters, the Telos mote atdeeto perfornry® mod p in 13.8 sec-
onds. Since the Diffie-Hellman calculation is not timed ag p&the ICE loop, a runtime of 13.8 s is
acceptable.

5 Related Work

In this section, we review related work in code attestatintrusion detection in wireless networks,
code updates in wireless networks, and key distributionireless networks.

Hardware based attestation is promoted by the Trusted Camgpgroup (TCG) [32]. Several chip
manufacturers sell Trusted Platform Modules (TPMs), whicplement the TCG standard. TCG and
Microsoft's NGSCB have been proposed as memory-conteggtation techniques that use secure hard-
ware in form of a TPM chip to provide attestation [25, 32]. Dioecost and power constraints, sensor
nodes are unlikely to have secure hardware. Also, TCG and@®B33ovide load-time attestation i.e.

17

they can only guarantee what was initially loaded into mgnaitially was correct. ICE requires run-
time attestation to know what the current contents of meraoey

In the software-based attestation space, Kennel and Jampespose the first system [16], however
Shankar, Chew, and Tygar have identified weaknesses imther{30]. Seshadri et al. propose SWATT,
which is a software-based memory content attestation nméina[29]. SWATT needs to check the
entire memory of the node to ensure that an attacker candetrhalicious code anywhere in memory.
Checking the entire memory is time consuming on nodes wigfelenemory sizes. Further, SWATT does
a pseudorandom access pattern over memory. This requirAS BW perform O * Inn) accesses to
memory, where: is the size of memory in bytes, to ensure that every memoatilme is accessed with
high probability. This approach is impractical for largemmies. Our ICE technique only checks a
portion of memory instead of the whole memory, relievingtiirawback. Our attestation performs a
linear pass over memory. Thus, all memory locations aressecewith a probability of one.

Zhang and Lee [33] describe the issues of intrusion detestystems (IDS) in ad hoc wireless net-
works. They describe an architecture for an IDS for wirelessvorks. Marti et al. [24] propose an
intrusion detection system specifically for the DSR routimgtocol, their Watchdog and Pathrater at-
tempt to find nodes that do not correctly forward traffic byntiying the attacking nodes and avoiding
them in the routes used. Buchegger and LeBoudec [6] propGSHIDANT, a system consisting of a
monitor, a trust monitor, a reputation system, and a pathagemn Lee et al. studied intrusion detection
in wireless networks in more detail [1, 13, 33, 34]. All thegmroaches rely on passive network mon-
itoring to detect malicious activity. These techniqueshale false positives and false negatives. The
approaches we describe in this paper take an active approaatecking the memory of a node our
technique is not susceptible to false negatives, howemeattacker who interferes with the verification
may delay, corrupt, or jam the response message and thusfedges positives. In any case, this work is
the first work that we are aware of that proposes an intrusedeation system for sensor networks.

In the area of sensor network software updates, all relasearch projects we are aware of do not
consider security, but are mainly concerned with efficieang reliability [14, 19, 20, 31]. They all
assume a trustworthy environment.

Many researchers have considered key establishment ptsetbowever, all these efforts assume the
presence of secret information to prevent man-in-the-faidt¢tacks [3, 7, 9, 10, 21, 22, 26, 27, 35].
The key establishment protocol we present in this papekeisittst sensor network routing protocol that
prevents man-in-the-middle attacks without assuming thegnce of authentic or secret information, or
a trusted side-channel to establish authentic information

6 Conclusion

We present a new architecture to secure sensor networksh whables secure detection and recovery
from sensor node compromise. Our approach is to design arsioh detection system that is free of
any false negatives, and that can identify compromisedsiddeaddition, we design two mechanisms to
recover compromised nodes, which to the best of our knoveledg the first protocols to deal with such
issues. Our first mechanism can securely update the codeeosarsnode, offering a strong guarantee
that the node has been correctly patched. Our second meaihaeits up new cryptographic keys,
even though an attacker may know all memory contents of tlde,nand can eavesdrop on and inject
arbitrary messages in the network. All our mechanisms aedan ICE (Indisputable Code Execution),
which freezes the memory contents to verify the correctioésbe code currently executing on the

18

node. Through our implementation in off-the shelf sensalasove demonstrate that our techniques are
practical on current sensor nodes, without requiring spieeid hardware. We are excited about other
applications that our techniques may enable, which we wgl@e in our future work.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

Yi an Huang, Wei Fan, Wenke Lee, and Philip S. Yu. Crosatiee analysis for detecting ad-hoc
routing anomalies. IRroceedings of The 23rd International Conference on Distied Computing
Systems (ICDCSMay 2003.

R. Anderson, F. Bergadano, B. Crispo, J. Lee, C. Mandaamd R. Needham. A new family of
authentication protocolACM Operating Systems Revie3?2(4):9-20, October 1998.

Ross Anderson, Haowen Chan, and Adrian Perrig. Key tidac Smart trust for smart dust. In
Proceedings of IEEE International Conference on Networdt®rols (ICNP 2004)October 2004.

BBN. Tinypk. Private communications, 2003.

Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keyingshafunctions for message authenti-
cation. In Neal Koblitz, editorAdvances in Cryptology - Crypto '9®ages 1-15, Berlin, 1996.
Springer-Verlag. Lecture Notes in Computer Science Voldi@o.

Sonja Buchegger and Jean-Yves Le Boudec. Performaralgsis of the confidant protocol (co-
operation of nodes - fairness in dynamic ad-hoc networks AGM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc 2002usanne, June 2002.

Haowen Chan, Adrian Perrig, and Dawn Song. Random kegligtrébution schemes for sensor
networks. INNEEE Symposium on Security and Privabay 2003.

John R. Douceur. The Sybil attack. Hirst International Workshop on Peer-to-Peer Systems
(IPTPS '02) March 2002.

[9] W. Du, J. Deng, Y. Han, and P. Varshney. A pairwise key gisgribution scheme for wireless

[10]

[11]

[12]

sensor networks. IRroceedings of the Tenth ACM Conference on Computer and Qaroations
Security (CCS 2003pages 42-51, October 2003.

L. Eschenauer and V. Gligor. A key-management schemali&iributed sensor networks. In
Proceedings of the 9th ACM Conference on Computer and Coroatiom Securitypages 41-47,
November 2002.

Free Software Foundation. superopt - finds the shoisstuction sequence for a given function.
http://ww. gnu. org/ directory/ devel / conpil ers/ superopt. htn .

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, k. Culler, and Kristofer S. J. Pister.
System architecture directions for networked sensor#ré¢hitectural Support for Programming
Languages and Operating Systemages 93-104, 2000.

19

[13] Yian Huang and Wenke Lee. Attack analysis and detedboad hoc routing protocols. IRro-
ceedings of The 7th International Symposium on Recent A&dgan Intrusion Detection (RAID
2004) September 2004.

[14] Jonathan W. Hui and David Culler. The dynamic behavioa alata dissemination protocol for
network programming at scale. Froceedings of ACM Conference on Embedded Networked
Sensor Systems (SenSys,0ddvember 2004.

[15] Rajeev Joshi, Greg Nelson, and Keith Randall. Denajoa-directed superoptimizer. Rroceed-
ings of the ACM SIGPLAN 2002 Conference on Programming lagguesign and implementa-
tion, pages 304-314, 2002.

[16] Rick Kennell and Leah H. Jamieson. Establishing theuggty of remote computer systems. In
Proceedings of the 11th USENIX Security SymposW@&ENIX, August 2003.

[17] Alexander Klimov and Adi Shamir. New cryptographicpitives based on multiword t-functions.
In Fast Software Encryption, 11th International WorkshBpbruary 2004.

[18] Arjen Lenstra and Eric Verheul. Selecting cryptograiey sizes. Inlournal of Cryptology: The
Journal of the International Association for Cryptologiesearch1999.

[19] Philip Levis, Sam Madden, David Gay, Joseph Polastobdr Szewczyk, Alec Woo, Eric Brewer,
and David Culler. The emergence of networking abstractesrstechniques in TinyOS. IRro-
ceedings of the First USENIX/ACM Symposium on Networkead@gDesign and Implementation
(NSDI 2004) March 2004.

[20] Philip Levis, Neil Patel, David Culler, and Scott Shenk Trickle: A self-regulating algorithm
for code propagation and maintenance in wireless sensmort. In Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design andhheptiation (NSDI 2004March
2004.

[21] D. Liu and P. Ning. Establishing pairwise keys in distried sensor networks. Froceedings of
the Tenth ACM Conference on Computer and Communicationsi§e(CCS 2003)pages 5261,
October 2003.

[22] D. Liu and P. Ning. Location-based pairwise key estdbtients for static sensor networks. In
ACM Workshop on Security in Ad Hoc and Sensor Networks (SBEBNOctober 2003.

[23] D. Malan, M. Welsh, and M. Smith. A public-key infrastture for key distribution in TinyOS
based on elliptic curve cryptography. Rroceedings of the First IEEE International Conference
on Sensor and Ad hoc Communications and Networks (SECON,2D8&bber 2004.

[24] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Ntjating routing misbehaviour in mobile ad
hoc networks. IrProceedings of the sixth annual International ConferencéMmbile Computing
and Networkingpages 255-265, Boston MA, USA, August 2000.

[25] Next-Generation Secure Computing Base (NGSCB)http://ww. m crosoft.com
resour ces/ ngsch/ def aul t. nspx, 2003.

20

[26] Adrian Perrig, Robert Szewczyk, Victor Wen, David @ujland J. D. Tygar. SPINS: Security
protocols for sensor networks. eventh Annual ACM International Conference on Mobile Com-
puting and Networks (MobiCom 20QRBome, Italy, July 2001.

[27] Roberto Di Pietro, Luigi V. Mancini, and Alessandro MeRandom key assignment for secure
wireless sensor networks. ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN
2003) November 2003.

[28] Ron Rivest. The RC5 encryption algorithm. In Ross Amsder, editor,Proceedings of the 1st
International Workshop on Fast Software Encryptionlume 809 ofLecture Notes in Computer
Sciencepages 86—-96. Springer-Verlag, Berlin Germany, 1995.

[29] Arvind Seshadri, Adrian Perrig, Leendert van Doornd &madeep Khosla. Swatt: Software-based
attestation for embedded devices Pimceedings of the IEEE Symposium on Security and Prjvacy
May 2004.

[30] Umesh Shankar, Monica Chew, and J. D. Tygar. Side effac® not sufficient to authenticate
software. InProceedings of USENIX Security Symposipages 89-101, August 2004.

[31] Thanos Stathopoulos, John Heidemann, and Deboraim EAtremote code update mechanism for
wireless sensor networks. Technical Report CENS-TR-3Wddsity of California, Los Angeles,
Center for Embedded Networked Computing, November 2003.

[32] Trusted Computing Group (TCG). https://wwv. t rust edconputi nggroup. org/,
2003.

[33] Yongguang Zhang and Wenke Lee. Intrusion detectioniialess ad-hoc networks. Proceedings
of International Conference on Mobile Computing and Netkarg (MobiCom 200Q)August 2000.

[34] Yongguang Zhang, Wenke Lee, and Yian Huang. Intrusairction techniques for mobile wireless
networks.ACM/Kluwer Wireless Networks Journal (ACM WINEJ([5), September 2003.

[35] S. Zhu, S. Setia, and S. Jajodia. LEAP: Efficient seguriechanisms for large-scale distributed
sensor networks. IRroceedings of the Tenth ACM Conference on Computer and Qaroations
Security (CCS 2003pages 62—72, October 2003.

A Appendix

Figure 10 shows the the protocol that is used by the basemstdi) detecting intrusion in a sensor
node and sending code updates to a sensor néfle The base station and the sensor node are one
network hop away from each other. The protocol is for a nodelvhas not been compromised but
has a software vulnerability that needs to be patched. The $tation has a private key, denoted in the
protocol by K ;.

Figure 11 shows the detailed protocol for symmetric keyldslament between the base statiéh,
and a sensor nodd,. The base station has a private key, denoted in the protychlB.

21

A— B:

B— A:

A— B:
B— A:

A— B:

B — A:
A— B:

B— A:

R 144
h4<_{07 1}
Generate one-way hash chaifi= F'(hy), hy = F(hg),h1 = F(hg),ho = F(hy)
(hOa {hO}K§1>
Verify signature orhg using base station’s public key from ROM
Wait for 15 secs to allow node to verify signaturefon

(h1)

Ty = Current time

Verify hg = F(hl)

Compute ICE checksum over memory region containing ICHigation function,
hash function and node ID usirtg as key

C7 = ICE checksum

r&{o, 1)1

Generate one-way hash chaih= F(C1) ® r,dy = F(da),dy = F(dy)

(do, MACc, (do))

T» = Current time

Verify (7> — T1) < Allowed time to compute ICE checksum

Verify MAC of dy by recomputing MAC using ICE checksum computed by self
If MAC of dy computed by self equals MAC @ sent by sensor node, then node’s ICE checksum is correc

(h2)

Verify base station’s acknowledgmetity), hy = F(hs)
Compute hash of rest of memory

H,,ern, = Hash of memory

<MACd1 (Hmem)>

(h3)

Verify base station’s acknowledgmetits), ho = F'(h3)

(d1)

Verify, dy = F(dy)

ComputeM ACq, (Hpmenm) Usingd; and Hyy,.,, computed by self
Verify MAC of H,,.,, returned by A

(codepatch, M AC},, (codepatch))

(r)

Computed, = F(Cy) @ r usingr and ICE checksum computed by self
Verify, dy = F(dg)

(ha)

Verify, hg = F(h4)

Compute and verif\f AC},, (codepatch) usinghy

Apply patch

Figure 10. Protocol used by the base station, B, detect intrusion and to send a code update to patch
a software vulnerability in an uncompromised sensor node, A. Fis a cryptographic hash function
based on the RC5 block cipher. The protocol uses a CBC-MAC der ived from RC5.

22

B: hadt{o, 13144
Generate one-way hash chaifi= F'(hy), hy = F(hg),h1 = F(hg),ho = F(hy)
B— A: (ho,{ho}K§1>
A: Verify signature orhg using base station’s public key from ROM
B: {0, 13112
Wait for 15 secs to allow node to verify signaturefon
B— A: (h1,g9Y mod p, M AC}, (g¥ mod p))
B : Ty = Current time
A: Verify, hg = F(hy)
Compute ICE checksum over memory region containing ICHigation function,
hash function and node ID usirig as key
C1 = ICE checksum
r&{o, 1)1
Generate one-way hash chaia,= F(C1) @ r,d; = F(da),dy = F(dy)
A— B: <d0,MACCl (do))
B : T» = Current time
Verify (7> — T1) < Allowed time to compute ICE checksum
Verify MAC of dy by recomputing MAC using ICE checksum computed by self
If MAC of dy computed by self equals MAC af sent by sensor node, then ICE checksum computed by nc
B— A: (ha)
A: Verify base station’s acknowledgmefity), hy = F'(ha)
Verify MAC of ¢g¥ mod p usinghs
Compute hash of rest of memory
H,,e,, = Hash of memory
A— B: (MAC4, (Hmem))
B — A: <h3>
A: Verify base station’s acknowledgmetits), ho = F'(h3)
zd{0,1}112
A— B: (dy,g" mod p, M ACy,(g" mod p))
B: Verify, dy = F(dy)
ComputeM ACq, (Hpmenm) Usingd; and Hyy,.,, computed by self
Verify MAC of H,,.,, returned by A
B— A: <h4>
A— B: (r)
B: Computeds = F(C1) @ r using r and ICE checksum computed by self
Verify, dy = F(ds)
Verify MAC of ¢* mod p usingds
Compute(g* mod p)” mod p
A: Verify base station’s acknowledgmeit,), hs = F'(h4)
Compute(g¥ mod p)* mod p

Figure 11. Protocol for symmetric key establishment betwee n the base station B and a sensor node
A. Fis a cryptographic hash function based on the Rﬁ? block cip her. The protocol uses a CBC-MAC
derived from RC5.

