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Abstract

This thesis is motivated by the vision of enabling the ubiquitous deployment of ap-

plications such as audio/video conferencing and broadcasting over the Internet. For over

15 years, researchers have attempted to enable such applications using the IP Multicast

architecture. However, concerns regarding per-group state in routers, deployment issues,

and difficulties with supporting higher level functionality such as reliability and congestion

control has prevented IP Multicast from taking roots.

We take the stand that ”it is feasible to efficiently enable group communication applica-

tions on the Internet without router and IP level support” . We demonstrate this thesis in

the context of an alternate architecture that we call End System Multicast. Here, end sys-

tems implement all multicast functionality, including membership management, and packet

replication. By eliminating state in routers, and exploiting application-specific intelligence,

we argue that End System Multicast can address fundamental concerns with IP Multicast.

We present the design and implementation of protocols for constructing efficient overlays

among participating end systems in a self-organizing manner. The scale of nodes involved,

and the dynamic and heterogeneous nature of the Internet make the design of these protocols

different than traditional distributed algorithms. We present Narada, the first published

self-organizing protocol for overlay multicast. We also present Sparta, a protocol deployed

in a fully operational broadcasting system based on End System Multicast. The system has

been used to broadcast several events including the ACM SIGCOMM and SOSP conferences,

and has been used by several thousand users. The thesis adopts an integrated approach

to validating architecture, protocol design, and systems building. The protocols address

issues such as constructing bandwidth-optimized overlays, and node heterogeneity, that are

critical in building operational systems, yet overlooked by the community.

The thesis has influenced the community’s thinking on multicast and inspired much

follow-on effort. Narada has been extensively used as a benchmark for comparison. Metrics

that the thesis introduces, such as Stress, and Relative Delay Penalty, have become

standard benchmarks for evaluating overlay based solutions. Experience gathered from

extensive real deployment is a distinguishing highlight of this thesis.

iii



iv



Contents

1 Introduction 1

1.1 Background: IP Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 End System Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Application End-point Architectures . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Concerns with ESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Approach and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Relation to other theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Narada Protocol:Design and Evaluation 11

2.1 Narada Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Group Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Improving mesh quality . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Data Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Performance Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Factors that affect Narada’s Performance . . . . . . . . . . . . . . . 21

2.3.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Simulation Results with a Typical Run . . . . . . . . . . . . . . . . 23

2.4.2 Impact of factors on performance . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Protocol Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Optimizing overlays for bandwidth-demanding applications 31

3.1 Conferencing Applications and Overlay Design . . . . . . . . . . . . . . . . 32

3.2 Conferencing Optimized Overlays . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Schemes for Constructing Overlays . . . . . . . . . . . . . . . . . . . 36

3.3.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Results with a Typical Run . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.2 Comparison of Schemes for Overlays . . . . . . . . . . . . . . . . . . 40

3.4.3 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Evaluation of probing techniques . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Experience Building and Deploying an ESM-Based Broadcasting System 53

4.1 ESM Broadcasting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Sparta Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Evaluation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.1 Average Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 Sensitivity to Stay Time . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.3 Transient Performance of Users . . . . . . . . . . . . . . . . . . . . . 68

4.5.4 Loss Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.5 Correlation of losses among users . . . . . . . . . . . . . . . . . . . . 73

4.5.6 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.7 Summary and Discussion of Results . . . . . . . . . . . . . . . . . . 75

4.6 Design Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 On-demand Waypoint Invocation . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Contributor-Aware Overlays . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.3 NAT-Aware Overlay Construction . . . . . . . . . . . . . . . . . . . 80

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 The Impact of Heterogeneous Bandwidth Constraints on Protocol Design 83

5.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Two classes of protocol designs . . . . . . . . . . . . . . . . . . . . . 84

5.1.2 Handling of heterogeneous bandwidth constraints . . . . . . . . . . . 85

5.2 Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Performance-Centric Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Honoring per-node constraints . . . . . . . . . . . . . . . . . . . . . 88

5.3.2 Issues with heterogeneous constraints . . . . . . . . . . . . . . . . . 90

5.3.3 Techniques for differential treatment . . . . . . . . . . . . . . . . . . 91

5.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.5 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 DHT-based protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



5.4.1 Pastry/Scribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Issues with heterogeneous constraints . . . . . . . . . . . . . . . . . 98

5.4.3 Techniques Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.5 Discussion of Potential Solutions . . . . . . . . . . . . . . . . . . . . 102

5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Related Work 105

6.1 Architectures for Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 Scalable Group Management . . . . . . . . . . . . . . . . . . . . . . 107

6.2.2 DHT-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.3 Richer structures for data delivery . . . . . . . . . . . . . . . . . . . 110

6.2.4 Protocol Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Broadcasting Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Conclusions and Future work 113

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.1 Bandwidth Constrained Environments . . . . . . . . . . . . . . . . . 115

7.2.2 User Cooperation and Security Issues . . . . . . . . . . . . . . . . . 116

7.2.3 Hybrid Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.4 Protocol Design Enhancements . . . . . . . . . . . . . . . . . . . . . 117

7.2.5 Understanding Trade-offs between Protocol Design Choices . . . . . 117

7.2.6 System Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.7 Management of Large-scale Distributed Systems . . . . . . . . . . . 118

vii



viii



List of Figures

1.1 Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Naive Unicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 IP Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 End System Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Overlay multicast simplifies tackling receiver heterogeneity . . . . . . . . . . 5

2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Illustration of the mesh-first approach used by Narada . . . . . . . . . . . . 12

2.3 Actions taken by a member i on receiving a refresh message from member j. 14

2.4 A sample virtual topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Scheduling algorithm used by member i to repair mesh partition . . . . . . 16

2.6 Algorithm i uses in determining utility of adding link to j . . . . . . . . . . 17

2.7 Algorithm i uses in determining if a link must be added to j . . . . . . . . . 18

2.8 Algorithm i uses to determine consensus cost to a neighbor j . . . . . . . . 19

2.9 Naive Unicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 IP Multicast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 ESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.12 Cumulative distribution of RDP shown at various snapshots of the simulation.

The minutes denote the time after the last join. . . . . . . . . . . . . . . . . 23

2.13 RDP vs. physical delay. Each point denotes the existence of a pair of mem-

bers with a given physical delay and RDP . . . . . . . . . . . . . . . . . . . 24

2.14 Overlay delay vs. physical delay. Each point denotes the existence of a pair

of members with a given physical delay and overlay delay . . . . . . . . . . 25

2.15 Cumulative number of virtual links added and removed vs. time . . . . . . 26

2.16 No. of physical links with a given stress vs. Stress for naive unicast, Narada

and DVMRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.17 90 percentile RDP vs. group size for topologies from three models . . . . . 28

2.18 Worst case physical link stress vs. group size for topologies from three models 29

2.19 Effect of group size on NRU : Narada vs. naive unicast . . . . . . . . . . . . 30

2.20 Worst case physical link stress vs. topology size for topologies from three

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Architectural framework for supporting conferencing applications . . . . . . 32

3.2 Mean Bandwidth averaged over all receivers as a function of time. . . . . . 40

3.3 Mean RTT averaged over all receivers as a function of time. . . . . . . . . . 41

ix



3.4 Cumulative distribution of RTT, one curve for each receiver. . . . . . . . . 42

3.5 Mean bandwidth versus rank at 1.2 Mbps source rate for the Primary Set of

machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Mean RTT versus rank at 1.2 Mbps source rate for the Primary Set of machines 44

3.7 Mean bandwidth versus rank at 2.4 Mbps source rate for the Primary Set . 45

3.8 Mean RTT versus rank at 2.4 Mbps source rate for the Primary Set . . . . 46

3.9 Mean bandwidth versus rank at 2.4 Mbps source rate for the Extended Set

of machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Mean RTT versus rank at 2.4 Mbps source rate for the Extended Set of machines 48

3.11 Mean receiver bandwidth as a function of time at 1.5 Mbps source rate. Only

the first 80 seconds of the experiments are shown here. . . . . . . . . . . . . 49

3.12 Cumulative distribution of convergence time for basic techniques. . . . . . . 50

4.1 Broadcast system overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Single overlay approach to host heterogeneity. . . . . . . . . . . . . . . . . . 54

4.3 Snapshot of the overlay tree during SIGCOMM2002. Participants, marked

by geographical regions, were fairly clustered. Waypoints, marked by outer

circles, took on many positions throughout the tree. . . . . . . . . . . . . . 65

4.4 Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the 6 larger broadcasts. . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the SIGCOMM2002 broadcast. Each curve corresponds to the hosts

that have stayed for at least a certain amount of time. . . . . . . . . . . . . 67

4.6 Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the Slashdot broadcast. Each curve corresponds to the hosts that

have stayed for at least a certain amount of time. . . . . . . . . . . . . . . . 68

4.7 Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the Slashdot broadcast for hosts that stay for at least 5 minutes.

Each curve corresponds to the performance these hosts observe during a

certain amount of time from the start of the session. . . . . . . . . . . . . . 69

4.8 Cumulative distribution of fraction of session time with more than 5% packet

loss of hosts in the two broadcasts. . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Cumulative distribution of time between interrupts . . . . . . . . . . . . . . 71

4.10 Cumulative distribution of mean interrupt duration. . . . . . . . . . . . . . 72

4.11 Loss diagnosis for SIGCOMM2002. . . . . . . . . . . . . . . . . . . . . . . . 73

4.12 The session is sampled at periodic intervals, and we estimate the number of

members that see loss in each sample. The graph plots the fraction of the

total samples for which less than a certain number of hosts see loss, against

the number of hosts that see loss. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 The spikes show the number of members that see loss at a particular time

instant in the broadcast as a function of the time that has elapsed (in seconds)

since the beginning of the broadcast. The total number of members in the

group at that instant is also plotted. . . . . . . . . . . . . . . . . . . . . . 75

x



4.14 Resource Usage as a function of time since start of broadcast (in seconds) . 76

4.15 Average delay experienced by receivers as a function of time since start of

broadcast (in seconds). Note that the delay merely refers to the sum of the

UDP delays of each overlay link, and does not correspond to actual delay

seen by a data packet (given the use of TCP on each link). . . . . . . . . . 77

4.16 Resource Index as a function of time with and without waypoint support for

the two broadcasts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.17 Number of rejected hosts under three different protocol scenarios in the sim-

ulated Slashdot environment. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.18 Resource Index comparison of two connectivity solutions for NAT/firewall:

(i) Slashdot (TCP), (ii) Hypothetical Slashdot (UDP). . . . . . . . . . . . . 81

5.1 Constitution of hosts from various sources. SIGCOMM2002 and Slashdot refer to

two different broadcasts with our operationally deployed ESM Broadcasting system

(Chapter 4). Gnutella refers to a measurement study of peer characteristics of the

Gnutella system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Need for differential treatment. (a) Maintaining balanced trees is not easy

even with homogeneous degree constraints. If P dies, the depth of L and

descendants is affected (Sec 5.3.3). (b) Entire subtrees could be rejected when

the subtree connected to the source is saturated with non-contributors. H,M ,

and Z represent nodes of high degree, medium degree and non-contributors

respectively; (c) Depth can be poor with heterogeneous degree constraints . 88

5.3 An example structure constructed by NICE . . . . . . . . . . . . . . . . . . 88

5.4 Rejection-rate Vs. fraction of non-contributors for various average degree

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Depth Vs. Average Degree. The fraction of non-contributors is fixed at 65%. 90

5.6 Depth Vs. Average Degree with 50% non-contributors. . . . . . . . . . . . . 92

5.7 Loss Rate (% of session) Vs. average degree with 50% non-contributors. . . 93

5.8 Loss rate distribution for different receiver classes. Avg. Degree = 1.34, 50%

non-contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Impact of scale by varying join rate. Mean stay time fixed at 300. Average

degree 1.34 and 50% non-contributors. . . . . . . . . . . . . . . . . . . . . . 95

5.10 Impact of varying constitution with average degree fixed at 2.28. . . . . . . 96

5.11 Fraction of non-DHT links (mean over the session) in homogenous environ-

ments for various values of node degree and b, the base of the node IDs in

Pastry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.12 Depth Vs. Average Degree in heterogeneous settings. We compute mean

depth of a node during the session, and compute median across the nodes.

The fraction of non-contributors is fixed at 50%. . . . . . . . . . . . . . . . 101

5.13 Fraction of non-DHT links Vs. Average Degree in heterogeneous settings.

The fraction of non-contributors is fixed at 50%. . . . . . . . . . . . . . . . 102

6.1 Taxonomy of protocol proposals . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



xii



List of Tables

3.1 Average normalized resource usage of different schemes . . . . . . . . . . . . 45

4.1 Summary of major broadcasts using the system. The first 4 events are names

of technical conferences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Host distributions for two broadcast events, excluding waypoints, shown only

for a portion of the broadcast. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Summary of group membership dynamics and composition for the 6 larger

broadcasts using the system. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Summary of user feedback for two broadcast events. Each number indicates

the percentage of users who are satisfied in the given category. . . . . . . . 67

xiii



Chapter 1

Introduction

The vision driving the research in this thesis is the goal of ubiquitous deployment of ap-

plications such as audio/video conferencing, distance learning and IP Television over the

Internet. “Ubiquitous” refers to enabling anyone with connectivity to the Internet to broad-

cast his own content, or be able to subscribe to an existing broadcast/conference. Further,

this must be enabled in a low-overhead manner and with low cost.

Two key aspects characterize the applications we consider. First, they are synchronous,

that is, they involve a large number of participants simultaneously tuning into the applica-

tion. Second, they involve high bandwidth of several hundred or more kilobytes a second.

Finally, applications like conferencing are interactive, and may require latencies of less than

a few hundred milliseconds.

The conventional wisdom has been that efficiently supporting such applications requires

support for multicast functionality at the network level (IP layer). Accordingly, researchers

have proposed and studied IP Multicast, an architecture that requires support from routers

and network infrastructure. IP Multicast has been widely investigated by the research

and industrial community, and these efforts have resulted in numerous publications and

Internet standards. However, over a decade after its initial proposal, IP Multicast has

remained plagued with concerns related to scalability, network management, and support

for higher level functionality like error, flow, and congestion control, and has seen very

limited deployment.

This thesis argues that multicast can be efficiently supported without network level

support, and explores this claim in the context of an alternate architecture that we call

End System Multicast. End System Multicast is a complete philosophical, and architec-

tural departure from IP Multicast. Here, end systems implement all multicast functionality,

including membership management, and packet replication. No support is required from

routers, and all complexity is pushed to the edges. By eliminating state in routers, and ex-

ploiting application-specific intelligence, we believe that End System Multicast can address

fundamental concerns with IP Multicast.

To validate the claims, the thesis has designed and implemented protocols for construct-

ing efficient overlays among participating end systems in a self-organizing manner. The scale

of nodes involved, the dynamics of participation (group dynamics and Internet congestion),

and the heterogeneity in the Internet (diversity of nodes and diversity of bandwidth and In-

ternet path characteristics) make the design of these protocols very different than traditional
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distributed algorithms.

The protocols developed by the thesis form a key part of a fully operational broadcasting

system based on End System Multicast. The system has been used to broadcast several

real events including the ACM SIGCOMM and SOSP conferences, and has been used by

over four thousand users. The real deployment and experience obtained help to validate the

ESM architecture, have guided the design of ESM prototypes, and form a distinguishing

aspect of this thesis.

The rest of this chapter describes the key ideas behind End System Multicast, the

benefits and the concerns with the architecture, and an overview of the approach taken by

the thesis. We also summarize the contributions made by the thesis and provide a roadmap

of the rest of the thesis.

1.1 Background: IP Multicast

IP Multicast is an architecture for group communication proposed by Steve Deering in

his seminal paper published in 1989 [15]. Members participating in the application join a

multicast group, which is assigned addresses that are part of the Internet Address space.

Routers dynamically construct trees for delivering data, which can reach all recipients.

Routers are required to maintain state for every individual multicast group, and can replicate

packets, and forward them along multiple interfaces.

Multicast was perhaps the first major functionality added to the IP layer since the

original design. While more than a decade has passed since IP Multicast was first proposed,

several fundamental concerns with the architecture remain unaddressed. As a result, IP

Multicast remains practically undeployed to this day.

• Scalability with number of groups: IP Multicast requires routers to maintain per

group state, which violates the “stateless” architectural principle of the original de-

sign. There is no obvious way to aggregate multicast addresses, and routers need to

deal with large forwarding state. Further, routers need to maintain per-group con-

trol state information, that includes processing periodic per-group control messages,

and handling per-group timers. Maintaining such state in a distributed fashion is a

challenge.

• Support of higher layer functionality: IP Multicast provides a best-effort multi-point

delivery service. Support of functionality like reliability and congestion control is left

to the end systems. While this separation of routing and transport has worked ex-

tremely well in the unicast context, a similar design philosophy has led to several

difficulties in the multicast context. Consider the problem of multicast congestion

control, where a single sender sends data to multiple receivers. In a heterogeneous

Internet environment, each receiver requires transmission of data at a different rate.

Sending data at the rate of the slowest receiver results in unnecessary quality degrada-

tion of the fastest receiver, and transmitting at the rate of the fastest receiver swamps

the slowest machine.
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While there have been several innovative ideas for dealing with multicast congestion

control, and reliable multicast, these problems are generally acknowledged as hard, and

there is no satisfactory solution to these problems yet. For example, an innovative

idea for achieving congestion control while multicasting video is layering [64]. The

sender encodes video into different layers, where higher layers are refinements over

lower layers. Each layer is multicast to a different group. Each receiver subscribes to

an appropriate number of layers, depending on its capability. While layered multicast

is an interesting idea, several fundamental concerns regarding unfairness, instability,

synchronization among receivers, and high latencies involved in adding and dropping

multicast groups remain unaddressed [53], [54], [3].

• Management and deployment issues: There have been several concerns regarding the

deployment of IP Multicast. First, IP Multicast allows any Internet host to send data

to a given multicast group, and does not support admission control. This leads to the

concern that a malicious host could cause significant disruption to the entire network

by flooding data to popular multicast groups. Even a host with limited bandwidth to

the Internet can cause significant damage given the multiplicative effect of a multicast-

enabled network. Second, while intra-domain multicast is relatively easy to deploy,

there are several obstacles to providing support for inter-domain multicast [16]. Third,

IP Multicast requires that groups obtain a globally unique address in a consistent

and distributed fashion, which is quite hard. Recent work such as Express [29] has

attempted to alleviate these concerns, by proposing changes to the IP Multicast model.

However, such work is restricted to dealing with large-scale single source applications

such as broadcasts, and has met with limited success even in such realms.

1.2 End System Multicast

End System Multicast is based on three key ideas that we summarize below.

• Push functionality from the routers to the edge: End System Multicast requires ab-

solutely no change to routers, and all intelligence is implemented at the end systems.

The stateless nature of Internet routing is maintained, and the inherent scaling con-

cerns introduced by the IP layer are avoided. Further, deployment is not an issue, as

no change is required to network infrastructure.

• Application-Specific customizability: IP Multicast provides a generic point-to-multipoint

routing abstraction that is independent of any particular application. In contrast, in

End System Multicast, we explicitly advocate that the solution be customized to the

needs of the individual application. Given the diversity in group communication ap-

plications, we believe that a one-size fit-all approach cannot satisfactorily address the

requirements of any application.

• Integrated Multicast Transport and Routing: IP Multicast attempts to conform to the

traditional separation of routing (e.g., IP) and transport (e.g. TCP) that has worked
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Figure 1.4: End System Multicast

well in the unicast context. However, as we have discussed, such an approach has

complicated support of end-to-end reliability, and congestion control in the multicast

domain. In contrast, in End System Multicast, we advocate that issues pertaining to

routing and transport be treated in an integrated fashion. For example, as shown in

Figure 1.5, we can tackle receiver heterogeneity by running unicast congestion control

algorithms on each overlay link, and by buffering, or application specific packet drop

policies (or even transcoding) in splitting nodes of the overlay tree.

Figures 1.1-1.4 illustrate the differences between End System Multicast and IP Multicast.

Figure 1.1 depicts an example physical topology. R1 and R2 are routers, while A, B, C,

and D are end systems. Link delays are as indicated. Thus, R1 − R2 may be imagined to

be a costly transcontinental link, while all other links are cheaper local links. Further, let

us assume A wishes to send data to all other members. Figure 1.2 depicts naive unicast

transmission. Naive unicast results in significant redundancy on links near the source (for

example, link A − R1 carries three copies of a transmission by A), and results in duplicate

copies on costly links (for example, link R1 − R2 has two copies of a transmission by A).

Figure 1.3 illustrates how IP Multicast delivers data. Notice that routers can copy packets

and forward them along multiple interfaces. Redundant transmission is avoided, and exactly

one copy of the packet traverses any given physical link. Figure 1.4 presents an efficient way

in which data can be delivered from the sender A to the various receivers, using End System

Multicast. The number of redundant copies of data near the source is reduced compared to

naive unicast, and just one copy of the packet goes across the costly transcontinental link

R1 − R2. Yet, this efficiency has been obtained with absolutely no change to routers, and

all intelligence is implemented at the end systems.
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1.3 Application End-point Architectures

Given that End System Multicast tries to push functionality to the edges, there are several

choices in instantiating such an architecture. On one end of the spectrum is a purely

application end-point architecture, where functionality is pushed to the end systems actually

participating in the multicast group. On the other end of the spectrum is an infrastructure-

centric architecture, where an organization that provides value added services deploys

proxies at strategic locations on the Internet. End systems attach themselves to proxies

near them, and receive data using plain unicast.

Both the application end-point, and the infrastructure model are emerging to be impor-

tant trends in the Internet today. Companies such as Groove Networks [26], Napster [41],

and applications like Freenet [13] and Gnutella [25] fall in the application end-point domain,

while companies such as Akamai [2], and Fast Forward [30] fall in the infrastructure service

model. While both models are interesting in their own right, they offer different constraints

and present different sets of challenges.

The focus of this thesis is on an application end-point architecture. This choice was

motivated because it was more aligned with our objectives of enabling the ubiquitous de-

ployment of broadcasting and conferencing applications. Such an architecture is completely

distributed, and leverages the bandwidth resources of end systems actually participating in

the group. In contrast, while an infrastructure service can potentially deal with a smaller

number of well-defined groups, it is unclear whether it can support the bandwidth require-

ments associated with deploying tens of thousands of high-bandwidth conferencing and

broadcasting applications. Further, an application end-point architecture is instantaneous

to deploy, and can enable support of applications with minimal set-up overhead and low

cost.

While application end-point architectures have the promise to enable ubiquitous deploy-

ment, infrastructure-centric architecture can potentially provide more robust data delivery.

Infrastructure-centric architectures involve better provisioned proxy hosts that can be lo-

cated at strategic locations on the Internet. Further, the probability of failure of such hosts

is low. In contrast, application end-point architectures potentially involve a wider range of
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end systems that may not provide as good performance, and must deal with the failures

of end systems. Finally, infrastructure-based architectures may scale better to very large

group sizes given the better robustness properties they provide.

Infrastructure-centric and application end-point architectures represent two ends of a

rich spectrum. One can conceive of several hybrid architectures that both leverage resources

at end system participants, as well as infrastructure nodes. While we do not explore such

architectures in this thesis, we note that our deployment efforts described in Chapter 4

employ additional hosts that we call waypoints - the objective is to construct overlays using

actual end systems to the extent possible, but to gracefully leverage waypoints to enhance

performance when available.

In the rest of this dissertation, by End System Multicast, we implicitly refer to an

application end-point architecture.

1.4 Concerns with ESM

While End System Multicast has the potential to address many of the issues with IP Mul-

ticast, a key concern with the architecture is performance. The performance concerns stem

from several reasons:

• Fundamental inefficiencies of overlays: An overlay approach cannot be as efficient

as an approach involving native support from IP Multicast. ESM cannot completely

eliminate the transmission of redundant packets on physical links, and potentially

involves higher latencies than IP Multicast. For example, in Figure 1.4, the latency

from A to D has been increased using ESM as compared to using IP Multicast, while

the link A − B carries redundant transmissions.

• Limited knowledge of network Efficient overlays must be constructed in a diverse and

heterogeneous environment. Further, this must be done by members that have a

limited view of the network, and potentially using distributed approaches.

• Dynamic: Efficient overlays must be constructed in a dynamic environment where

members may join and leave dynamically, members may fail, and issues such as con-

gestion in Internet links must be dealt with.

In addition to the performance concerns, there are unknowns regarding how willing users

are to cooperate in the overlay construction and donate their bandwidth resources. Finally,

there are concerns regarding malicious clients that may disrupt data delivery. In this thesis

however, we will primarily focus on the performance concerns with End System Multicast.

1.5 Thesis Approach and Discussion

This thesis research is primarily motivated by the question: is it viable to provide good

performance to applications using an End System Multicast architecture?
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To gain insight into the question, the thesis has designed and implemented protocols for

constructing efficient overlays among participating end systems in a self-organizing manner.

The scale of nodes involved, the dynamics of participation (group dynamics and Internet

congestion), and the heterogeneity in the Internet (diversity of nodes and diversity of band-

width and Internet path characteristics) make the design of these protocols very different

than traditional distributed algorithms.

The protocols designs have been motivated by real applications, and have been deployed

in a fully operational broadcasting system based on End System Multicast. The wide-spread

operational use of the broadcasting system has helped to validate the End System Multicast

architecture.

The thesis has adopted an integrated approach to validating ESM architecture, design

of protocols and system building. The protocols have been designed with the view that

they represent prototype solutions that help to investigate the feasibility of the ESM archi-

tecture. Building a full-fledged operational system has influenced an empirical approach to

protocol design. The thesis identifies important real-world issues that must be addressed

by protocol designs, considers techniques to tackle the issues, and empirically demonstrates

the effectiveness of the techniques.

The thesis has attempted to demonstrate the performance potential of End System Mul-

ticast in several phases. Each phase has involved an increase in the realism of the effort, and

has built on and extended earlier designs. The initial prototypes developed were evaluated

using simulations. The thesis then moved to experiments with the prototypes in Internet

test-bed environments, during which key refinements were added relating to adaptation

to Internet dynamics and light-weight probing heuristics. The designs so developed were

adapted into real deployment. Experience with a deployed system and users both further

helped establish the credibility of ESM, and has provided access to real workloads and

insights that are guiding future iterations of the design process.

1.6 Contributions

We summarize the key contributions of the thesis below:

Architecture: The primary contribution of this thesis is demonstrating that “it is fea-

sible to efficiently enable a wide range of group communication applications using an End

System Multicast architecture.” This thesis is demonstrated in the context of two impor-

tant bandwidth-demanding applications - audio/video conferencing and broadcasting. The

thesis is validated through extensive simulation and Internet test-bed experiments, as well

as live deployment of a real broadcasting system based on ESM which has been used to

support several thousand users. The thesis work has played a key role in the emergence of

overlay multicast as a field of its own right [24, 11, 34, 10, 36, 49, 66, 37, 57, 43, 73, 14, 8],

and has influenced the community’s thinking on the right architecture for multicast.

Protocol Design The thesis has designed and implemented two self-organizing protocols

for End System Multicast. The protocols construct efficient overlays among participating
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end systems in a distributed and self-improving fashion, taking user dynamics into account.

The specific protocol designs include:

• Narada, a protocol motivated by multi-source conferencing applications. Narada is

the first published self-organizing protocol for overlay multicast, and has been used

extensively as a baseline of comparison by the research community [57].

• Sparta, a protocol for single-source broadcasting applications that forms part of the

operationally deployed broadcasting system. This is perhaps the only self-organizing

protocol in the community that has seen real user experience.

Investigation of real-world issues that impact protocol design: The objective of

building a fully operational system has influenced a unique systems approach to the protocol

designs that distinguishes the thesis research from other concurrent efforts in the community.

Some specific contributions are:

• The thesis perhaps provides the most extensive experience with handling bandwidth as

a metric in overlay construction, while most protocols in literature typically consider

delay-based metrics. The contributions include a study that systematically demon-

strates the importance and viability of optimizing overlays for dual metrics - band-

width and latency - in contructing overlays targeted for conferencing applications. The

study has also evaluated light-weight probing heuristics while constructing overlays

optimized for bandwidth.

• The thesis has conducted a study of the impact of heterogeneity in outgoing bandwidth

constraints of nodes on protocols of two different classes of design for End System

Multicast. The issue has been motivated based on our deployment experience, and

our study is perhaps the first systematic investigation of the issue to the best of our

knowledge.

System Artifacts: The protocol designs in this thesis have evolved through implementa-

tion, and form a key component of a full-fledged broadcasting system based on End System

Multicast. The system is satisfying the needs of real content publishers and viewers. It has

been used to broadcast tens of events, and has been used by several thousand users. The

extensive and sustained usage of the system are proving it to be an important contribution

in its own right.

Metrics and methodology: This thesis makes key contributions to metrics and method-

ology for evaluating ESM prototypes. For example, metrics such as Stress and Relative

Delay Penalty introduced by this thesis have been extensively used in the research com-

munity to evaluate overlay protocols.

1.7 Relation to other theses

Much of this thesis research has been conducted in conjunction with a companion thesis [1].

Both theses are motivated by the primary objective of demonstrating the viability of the
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End System Multicast architecture, have made significant contributions to the building of

the ESM broadcasting system, and share much of the evaluation metrics and methodology.

The theses differ in the issues emphasized towards the common goal of validating the

ESM architecture. This thesis has emphasized issues related to self-organizing protocols for

ESM. It has led the design and implementation of the Narada and Sparta protocols, and

has conducted a study of the impact of heterogeneous out-going bandwidth constraints of

nodes on protocol design. In contrast, [1] has emphasized issues in the design of a system

that are orthogonal to protocol design. The contributions of [1] include the design of

APIs between the application and ESM software, handling variations in receiver capabilities

through application-level adaptation, and incentive mechanisms for users.

1.8 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 presents the design of the Narada protocol. Narada was targeted at small-

scale multi-source applications such as conferencing. In the context of the Narada protocol,

the chapter studies key performance concerns with End System Multicast using a simulation

study.

Chapter 3 investigates the viability of End System Multicast to support bandwidth-

demanding applications in real Internet settings. The focus is on conferencing applications

that simultaneously need high bandwidth and low latencies. The chapter presents tech-

niques that enable Narada to build overlays that are simultaneously optimized for both

metrics. A detailed evaluation on Internet-testbeds demonstrates the importance of adapt-

ing to both metrics and shows that the heuristics work well.

Chapter 4 describes experience with a fully operational broadcasting system based on

End System Multicast. This thesis is responsible for the design and implementation of

Sparta - the protocol used in the system. While Narada was targeted at smaller-scale

multi-source conferencing applications, the system was targeted at larger-scale single-source

broadcasting applications. This has led to a protocol that has a different architecture than

Narada, yet which builds on several insights obtained with the initial Narada prototype.

The chapter presents the details of Sparta, the deployment of the system, a detailed char-

acterization of the performance, and lessons learnt through the experience. Overall, the

results show that ESM is easy to deploy and can provide good application performance.

Chapter 5 presents a systematic study of a key issue that was highlighted by our deploy-

ment experience - the need to explicitly consider the heterogeneity in node characteristics

in the design of ESM protocols. The implications of this issue is studied for two different

classes of protocol designs for End System Multicast.

Chapter 6 presents related work, and Chapter 7 presents conclusions and future research

directions.
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Chapter 2

The Narada Protocol:Design and Evaluation

In this chapter, we present Narada, a protocol that constructs efficient data delivery trees

among participating members in a self-organizing manner. The design of Narada has been

influenced by smaller-scale multi-source applications such as audio/video conferencing. This

chapter presents the generic framework of Narada, but key issues in customizing Narada to

bandwidth demanding applications are discussed in Chapter 3.

Narada constructs an overlay structure among participating end systems in a self-

organizing and fully distributed manner. Narada is robust to the failure of end systems

and to dynamic changes in group membership. End systems begin with no knowledge of the

underlying physical topology, and they determine latencies to other end systems by probing

them in a controlled fashion. Narada continually refines the overlay structure as more probe

information is available.

We study two key performance concerns relating to End System Multicast in the context

of the Narada protocol: (i) how effective is an overlay architecture in minimizing the trans-

mission of redundant packets on physical links?; and (ii) what delay penalties do receivers

observe using an overlay-based approach? Our detailed simulation results with Narada are

encouraging. In a group of 128 members, the delay between at least 90% of pairs of members

increases by a factor of at most 4 compared to the unicast delay between them. Further,

no physical link carries more than 9 identical copies of a given packet.

The rest of the chapter is organized as follows. Section 2.1 presents the design goals

with Narada, the key design decisions taken, and the alternatives. Section 2.2 presents a

detailed description of the Narada protocol. Sections 2.3 and 2.4 present our simulation

methodology and results, and we conclude in Section 2.5.

2.1 Narada Design

In designing Narada, we have the following objectives in mind:

• Self-organizing: The construction of the end system overlay must take place in a fully

distributed fashion and must be robust to dynamic changes in group membership.

• Overlay efficiency: The constructed overlay must have a low redundancy on underlying

physical links, and delays from the source to each receiver must be low. Further, the out-
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degree of each member in the overlay (or the number of children a member can sustain)

must reflect the bandwidth of its connection to the Internet.

• Self-improving in an incremental fashion: The overlay construction must include mecha-

nisms by which end systems gather network information in a scalable fashion. The protocol

must allow for the overlay to incrementally evolve into a better structure as more informa-

tion becomes available.

Design Space: Narada constructs an overlay tree rooted at each source for delivering data

from that source. There are two possible design alternatives. The first alternative is to have

no formal data delivery structure, and to have every data packet distributed using epidemic

or gossip-like algorithms. Such an approach can be inefficient with a host potentially getting

multiple copies of the same data packet. The second alternative is to construct more resilient

structures than trees. The naive approach to this can have a high overhead - recent follow-

up work on Narada has investigated constructing redundant structures in conjunction with

specialized coding algorithms as a way to controlling the overhead [43, 8].

Narada is targeted at multi-source applications (e.g. audio/video conferencing). While

the goal is to construct trees rooted at each source, it does not do so directly but in a two-

step process. In the first step, it constructs a richer connected graph that we term mesh.

The mesh could in general be an arbitrary connected subgraph of the complete graph of

the participating nodes, but Narada constructs a mesh with has desirable performance

properties as discussed later. In the second step, Narada constructs (reverse) shortest path

spanning trees of the mesh, each tree rooted at the corresponding source using well known

routing algorithms. Figure 2.2 presents an example mesh that Narada constructs for the

physical topology shown in Figure 2.1, along with the shortest path spanning tree rooted

at A.

In our approach, given that data delivery trees are constructed from among links of the

mesh, it is important to construct a good mesh so that good quality trees may be produced.

In particular, we attempt to ensure the following properties: (i) the shortest path delay

between any pair of members along the mesh is at most K times the unicast delay between

them, where K is a small constant and (ii) each member has a limited number of neigh-
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bors in the mesh which does not exceed a given (per-member) bound chosen to reflect the

bandwidth of the member’s connection to the Internet.1 Limiting the number of neighbors

regulates the fanout of members in the spanning trees. Second, it controls the overhead

of running routing algorithms on the mesh. The extreme case where the mesh is chosen

to be the complete graph of all nodes and all pairs of links connecting them incurs all the

overhead of routing with none of its benefits as the resulting shortest path spanning trees

degenerates to naive unicast transmission.

There are two natural design alternatives to the mesh-based approach that we adopt:

• Shared Trees: A first alternative is to construct a single shared tree rather than a tree

for each source. While shared trees are potentially not as efficient as per-source trees, a

greater difficulty is maintaining connectivity of the tree structure. Typically shared tree

approaches involve needing to elect a root of the shared tree - handling failure of the root

is not easy and it is difficult to analyze the robustness properties of the resulting designs.

• Multiple independently constructed trees: A second alternative is to construct a tree for

each source, with each tree constructed directly in that members select parents from among

the members they know. Such an approach requires seperate algorithms for group manage-

ment (having members know about other members), and also require mechanisms by which

a new member joining the group and becoming a source can announce itself, so that exist-

ing members can join the tree rooted at this new member. In contrast, in the mesh-based

approach of Narada, group management functions are abstracted out and handled at the

mesh, and we may leverage standard routing algorithms for construction of data delivery

trees.

2.2 Design Details

In this section, we present a detailed description of Narada. We explain the distributed

algorithms that Narada uses to construct and maintain the mesh in Section 2.2.1. We

present heuristics that Narada uses to improve mesh quality in Section 2.2.2. Narada runs

a variant of standard distance vector algorithms on top of the mesh and uses well known

algorithms to construct per-source (reverse) shortest path spanning trees for data delivery.

We discuss this in Section 2.2.3.

2.2.1 Group Management

We have seen that Narada constructs a mesh among end systems participating in the multi-

cast group. In this section, we present mechanisms Narada uses to keep the mesh connected,

1An ideal mesh is a “Degree-Bounded K-spanner” [35] of the complete graph of all nodes in the group

and all links connecting them. The problem of constructing Degree-Bounded K-spanners of a graph has

been widely studied in centralized settings that assume complete information and is NP-complete even in

such scenarios [35].
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Let i receive refresh message from neighbor j at i′s local

time t. Let < k, skj > be an entry in j′s refresh message.

• if i does not have an entry for k, then i inserts the

entry < k, skj , t > into its table

• else if i’s entry for k is < k, ski, tki >, then

• if ski ≥ skj i ignores the entry pertaining to k

• else i updates its entry for k to < k, skj , t >

Figure 2.3: Actions taken by a member i on receiving a refresh message from member j.

to incorporate new members into the mesh and to repair possible partitions that may be

caused by members leaving the group or by member failure.

As we do not wish to rely on a single non-failing entity to keep track of group mem-

bership, the burden of group maintenance is shared jointly by all members. To achieve a

high degree of robustness, our approach is to have every member maintain a list of all other

members in the group. Since Narada is targeted towards small sized groups, maintaining

the complete group membership list is not a major overhead. Every member’s list needs

to be updated when a new member joins or an existing member leaves. The challenge

is to disseminate changes in group membership efficiently, especially in the absence of a

multicast service provided by the lower layer. We tackle this by exploiting the mesh to

propagate such information. However, this strategy is complicated by the fact that the

mesh might itself become partitioned when a member leaves. To handle this, we require

that each member periodically generate a refresh message with monotonically increasing

sequence number, which is disseminated along the mesh. Each member i keeps track of the

following information for every other member k in the group: (i) member address k; (ii) last

sequence number ski that i knows k has issued; and (iii) local time at i when i first received

information that k issued ski. If member i has not received an update from member k for

Tm time, then, i assumes that k is either dead or potentially partitioned from i. It then

initiates a set of actions to determine the existence of a partition and repair it if present as

discussed in Section 2.2.1.3.

Propagation of refresh messages from every member along the mesh could potentially be

quite expensive. Instead, we require that each member periodically exchange its knowledge

of group membership with its neighbors in the mesh. A message from member i to a

neighbor j contains a list of entries, one entry for each member k that i knows is part of

the group. Each entry has the following fields: (i) member address k; and (ii) last sequence

number ski that i knows k has issued. On receiving a message from a neighbor j, member

i updates its table according to the pseudo code presented in Figure 2.3.

Finally, given that a distance vector routing algorithm is run on top of the mesh (Section

2.2.3), routing update messages exchanged between neighbors can include member sequence

number information with minimum extra overhead.
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2.2.1.1 Member Join

When a member wishes to join a group, Narada assumes that the member is able to get a

list of group members by an out-of-band bootstrap mechanism. The list needs neither be

complete nor accurate, but must contain at least one currently active group member. In

this paper, we do not address the issue of the bootstrap mechanism. We believe that such

a mechanism is application specific and our protocol is able to accommodate different ways

of obtaining the bootstrap information.

The joining member randomly selects a few group members from the list available to

it and sends them messages requesting to be added as a neighbor. It repeats the process

until it gets a response from some member, when it has successfully joined the group.

Having joined, the member then starts exchanging refresh messages with its neighbors. The

mechanisms described earlier will ensure that the newly joined member and the rest of the

group learn about each other quickly.

2.2.1.2 Member Leave and Failure

When a member leaves a group, it notifies its neighbors, and this information is propagated

to the rest of the group members along the mesh. In Section 2.2.3, we will describe our en-

hancement to distance vector routing that requires a leaving member to continue forwarding

packets for some time to minimize transient packet loss.

We also need to consider the difficult case of abrupt failure. In such a case, failure should

be detected locally and propagated to the rest of the group. In this paper, we assume a

failstop failure model [61], which means that once a member dies, it remains in that state,

and the fact that the member is dead is detectable by other members. We explain the

actions taken on member death with respect to Figure 2.4. This example depicts the mesh

between group members at a given point in time. Assume that member C dies. Its neighbors

in the mesh, A, G stop receiving refresh messages from C. Each of them independently

send redundant probe messages to C, such that the probability every probe message (or its

reply) is lost is very small. If C does not respond to any probe message, then, A and G

assume C to be dead and propagate this information throughout the mesh.

Every member needs to retain entries in its group membership table for dead members.

Otherwise, it is impossible to distinguish between a refresh announcing a new member and
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Let Q be a queue of members for which i has stopped

receiving sequence number updates for at least Tm

time. Let T be maximum time an entry may remain in Q.

while(1) begin

Update Q;

while( !Empty(Q) and

Head(Q) is present in Q for ≥ T time)

begin

j= Dequeue(Q);

Initiate probe cycle to determine if j is dead

or to add a link to it.

end

if( !Empty(Q)) begin

prob = Length(Q)/ GroupSize;

With probability prob begin

j= Dequeue(Q);

Initiate probe cycle to determine if j is dead

or to add a link to it.

end

sleep(P). // Sleep for time P seconds

end

Figure 2.5: Scheduling algorithm used by member i to repair mesh partition

a refresh announcing stale information regarding a dead member. However, dead member

information can be flushed after sufficient amount of time.

2.2.1.3 Repairing Mesh Partitions

It is possible that member failure can cause the mesh to become partitioned. For ex-

ample, in Figure 2.4, if member A dies, the mesh becomes partitioned. In such a case,

members must first detect the existence of a partition, and then repair it by adding at least

one virtual link to reconnect the mesh. Members on each side of the partition stop receiving

sequence number updates from members on the other side . This condition is detected by

a timeout of duration Tm.

Each member maintains a queue of members that it has stopped receiving sequence

number updates from for at least Tm time. It runs a scheduling algorithm that periodically

and probabilistically deletes a member from the head of the queue. The deleted member

is probed and it is either determined to be dead, or a link is added to it. The scheduling

algorithm is adjusted so that no entry remains in the queue for more than a bounded

period of time. Further, the probability value is chosen so that in spite of several members

simultaneously attempting to repair partition only a small number of new links are added.

The algorithm is summarized in Figure 2.5.
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EvaluateUtility (j) begin

utility = 0

for each member m (m not i) begin

CL = current latency between i and m along mesh

NL = new latency between i and m along mesh

if edge i-j were added

if (NL < CL) then begin

utility + = CL−NL
CL

end

end

return utility

Figure 2.6: Algorithm i uses in determining utility of adding link to j

2.2.2 Improving mesh quality

The constructed mesh can have a poor quality because: (i) initial neighbor selection by

a member joining the group is random given limited availability of topology information

at bootstrap; (ii) partition repair might aggressively add edges that are essential for the

moment but not useful in the long run; (iii) group membership may change due to dynamic

join and leave; and (iv) underlying network conditions, routing and load may vary. Narada

allows for incremental improvement of mesh quality. Members probe each other at random

and new links may be added depending on the perceived gain in utility in doing so. Further,

members continuously monitor the utility of existing links, and drop links perceived as not

useful. This dynamic adding and dropping of links in the mesh distinguishes Narada from

other topology maintenance protocols.

The issue then is the design of a utility function that reflects mesh quality. A good

quality mesh must ensure that the shortest path delay between any pair of members along

the mesh is comparable to the unicast delay between them. A member i computes the

utility gain if a link is added to member j based on (i) the number of members to which j

improves the routing delay of i; and (ii) how significant this improvement in delay is. Figure

2.6 presents pseudo code that i uses to compute the gain in utility if a link to member j

is added. The utility can take a maximum value of n, where n is the number of group

members i is aware of. Each member m can contribute a maximum of 1 to the utility, the

actual contribution being i′s relative decrease in delay to m if the edge to j were added.

We now present details of how Narada adds and removes links from the mesh.

Addition of links: Narada requires every member to constantly probe other members.

Currently, the algorithm that we use is to conduct a probe periodically, and probe some

random member each time. This algorithm could be made smarter by varying the interval

between probes depending on how satisfied a member is with the performance of the mesh,

as well as choosing whom to probe based on results of previous probes.

When a member i probes a member j, j returns to i a copy of its routing table. i

uses this information to compute the gain in utility if a link to j is added as described in

Figure 2.6. i decides to add a link to j if the utility gain exceeds a given threshold. The
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ShouldAddNeighbor (j) begin

utilityGain = EvaluateUtility(j)

thresh = GroupSize
(MaxFanout(i) ∗ m)

/* m is a damping constant ≥ 1.0 */

if (CurrentFanout(j) < MinFanout(j)) and

(CurrentFanout(i) < MinFanout(i)) then begin

thresh / = 2; /* lower thresh if current

fanout of i, j low */

end

if (utilityGain > thresh) return yes;

CL = current latency between i and j along mesh

PL = physical latency between i and j

/* Nodes with latency < L are considered close */

/* K is highest tolerable penalty for close nodes */

if(PL < L and CL
PL

> K and

CurrentFanout(i) < MaxFanout(i) and

CurrentFanout(j) < MaxFanout(j))

return yes;

else

return no;

end

Figure 2.7: Algorithm i uses in determining if a link must be added to j

threshold value is a function of i′s estimation of group size, and the current and maximum

fanout values of i and j respectively. Finally, i may also add a link to j if the physical delay

between them is very low and the current overlay delay between them very high.

Dropping of links: Ideally, the loss in utility if a link were to be dropped must exactly

equal the gain in utility if the same link were immediately re-added. However, this requires

estimating the relative increase in delay to a member if a link were dropped and it is difficult

to obtain such information. Instead, we overestimate the actual utility of a link by its cost.

The cost of a link between i and j in i′s perception is the number of group members for

which i uses j as next hop. Periodically, a member computes the consensus cost of its link

to every neighbor using the algorithm shown in Figure 2.8. It then picks the neighbor with

lowest consensus cost and drops it if the consensus cost falls below a certain threshold. The

threshold is again computed as a function of the member’s estimation of group size and

its current and maximum fanout. The consensus cost of a link represents the maximum of

the cost of the link in each neighbor’s perception. Yet, it might be computed locally as the

mesh runs a distance vector algorithm with path information.

Our heuristics for link-dropping have the following desirable properties:

• Stability: A link that Narada drops is unlikely to be added again immediately. This is

ensured by several factors: (i) the threshold for dropping a link is less than or equal to the

threshold for adding a link; (ii) the utility of an existing link is overestimated by the cost

metric; (iii) dropping of links is done considering the perception that both members have

18



EvaluateConsensusCost(j) begin

Costij = number of members for which i uses j as

next hop for forwarding packets.

Costji = number of members for which j uses i as

next hop for forwarding packets.

return max(Costij, Costji)

end

Figure 2.8: Algorithm i uses to determine consensus cost to a neighbor j

regarding link cost; (iv) a link with small delay is not dropped.

•Partition avoidance: We present an informal argument as to why our link dropping algo-

rithm does not cause a partition assuming steady state conditions and assuming multiple

links are not dropped concurrently. Assume that member i drops neighbor j. This could

result in at most two partitions. Assume the size of i′s partition is Si and the size of j′s

partition is Sj . Further, assume both i and j know all members currently in the group.

Then, the sum of Si and Sj is the size of the group. Thus Costij must be at least Sj and

Costji must be at least Si, and at least one of these must exceed half the group size. As

long as the drop threshold is lower than half the group size, the edge will not be dropped.

2.2.3 Data Delivery

We have described how Narada constructs a mesh among participating group members,

how it keeps it connected, and how it keeps refining the mesh. In this section we explain

how Narada builds data delivery tree.

Narada runs a distance vector protocol on top of the mesh. In order to avoid the well-

known count-to-infinity problems, it employs a strategy similar to BGP [51]. Each member

not only maintains the routing cost to every other member, but also maintains the path

that leads to such a cost. Further, routing updates between neighbors contains both the

cost to the destination and the path that leads to such a cost. The per-source trees used

for data delivery are constructed from the reverse shortest path between each recipient and

the source, in identical fashion to DVMRP [15]. A member M that receives a packet from

source S through a neighbor N forwards the packet only if N is the next hop on the shortest

path from M to S. Further, M forwards the packet to all its neighbors who use M as the

next hop to reach S.

The routing metric used in the distance vector protocol is the latency between neighbors.

Each endpoint of a link independently estimates the latency of the link and could have

different estimates. Using the latency as a metric enables routing to adapt to dynamics in

the underlying network. However, it also increases the probability of routing instability and

oscillations. In our work, we assume that members use an exponential smoothing algorithm

to measure latency. Further, the latency estimate is updated only at periodic intervals.

The period length can be varied to tradeoff routing stability with reactivity to changing

conditions.
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Figure 2.11: ESM

A consequence of running a routing algorithm for data delivery is that there could be

packet loss during transient conditions when member routing tables have not yet converged.

In particular, there could be packet loss when a member leaves the group or when a link

is dropped for performance reasons. To avoid this, data continues to be forwarded along

old routes for enough time until routing tables converge. To achieve this, we introduce a

new routing cost called Transient Forward (TF). TF is guaranteed to be larger than the

cost of a path with a valid route, but smaller than infinite cost. A member M that leaves

advertises a cost of TF for all members for which it had a valid route. Normal distance

vector operations leads to members choosing alternate valid routes not involving M (as TF

is guaranteed to be larger than the cost of any valid route). The leaving member continues

to forward packets until it is no longer used by any neighbor as a next hop to reach any

member, or until a certain time period expires.

2.3 Simulation Experiments

In this section, we present our methodology for evaluating the properties of the overlay

structure that Narada produces, and the overheads associated with the Narada protocol.

2.3.1 Performance Indices

An overlay structure fundamentally cannot perform as efficiently as IP Multicast. We are

interested in evaluating the quality of the structure produced by Narada and in comparing

it with two alternate methods of data dissemination: IP Multicast using DVMRP[15] and

naive unicast. Figures 2.9, 2.10 and 2.11 show dissemination structures using unicast, IP

Multicast, and End System Multicast.

To facilitate our comparison, we consider the following metrics:

• Relative Delay Penalty (RDP) , which is a measure of the increase in delay that applica-

tions perceive while using ESM. For example, in Figure 2.11, the delay from A to D with

ESM is 29, the delay of the unicast path from A to D is 27, and the RDP of <A,D> is 29
27 .
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• Worst Case Stress , defined as maxL
i=1 si, where L is the number of physical links used

in transmission and si is the stress of link i. The stress of a physical link is the number of

identical copies of a packet carried by the link. In Figure 2.11, link R1−R2 has a stress of

1, link A − R1 has a stress of 2, and the worst case stress is 2.

• Normalized Resource Usage (NRU) , defined as the ratio of the resource usage with Narada

relative to resource usage of DVMRP. We define resource usage as
∑L

i=1 di ∗ si, where, L is

the number of links active in data transmission, di is the delay of link i and si is the stress

of link i. The resource usage is a metric of the network resources consumed in the process of

data delivery to all receivers, and the NRU is a measure of the additional network resources

consumed by ESM compared to IP Multicast. Implicit here is the assumption that links

with higher delay tend to be associated with higher cost. The resource usage metric does

not affect performance perceived by the application, however it measures how effectively an

overlay topology makes use of network resources, for instance by clustering receivers that

are located near each other. The resource usage might be computed to be 30 in the case

of transmission by DVMRP, 57 for naive unicast and 32 for the smarter tree, shown in

Figure 2.10, Figure 2.9 and Figure 2.11 respectively, and the NRU for ESM is 32
30 .

DVMRP has an RDP of 1 (assuming symmetric routing), a worst case stress of 1 and by

definition an NRU of 1. Naive unicast has an RDP of 1 (by definition) and a worst case

stress of r, when r is the number of receivers.

Finally, we also evaluate the time it takes for the overlay to stabilize and the protocol

overhead that Narada introduces. In this chapter, we do not consider performance metrics

related to behavior under transient conditions, such as packet loss.

2.3.2 Factors that affect Narada’s Performance

We have investigated the effects of the following factors on Narada’s performance: (i) topol-

ogy model; (ii) topology size; (iii) group size and (iv) fanout range.

We used three different models to generate backbone topologies for our simulation. For

each model of the backbone, we modeled members as being attached directly to the back-

bone topology. Each member was attached to a random router, and was assigned a random

delay of 1 − 4ms.

• Waxman: The model considers a set of n vertices on a square in the plane and places

an edge between two points with a probability of αe
−d
β∗L , where, d is the distance between

vertices , L is the length of the longest possible edge and α and β are parameters. We use

the Georgia Tech. [75] random graph generators to generate topologies of this model.

• Mapnet: Backbone connectivity and delay are modeled after actual ISP backbones that

could span multiple continents. Connectivity information is obtained from the CAIDA Map-

net project database [23]. Link delays are assigned based on geographical distance between

nodes.

• Automous System map (ASMap): Backbone connectivity information is modeled after

inter-domain Internet connectivity. This information is collected by a route server from
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BGP routing tables of multiple geographically distributed routers with BGP connections to

the server [22]. This data has been analyzed in [20] and has been shown to satisfy certain

power laws. Random link delays of 8 − 12 ms was assigned to each physical link.

In our simulations, we used backbone topology sizes consisting of up to 1070 members and

multicast groups of up to 256 members. The fanout range of a member is the minimum and

maximum number of neighbors each member strives to maintain in the mesh. An increase of

the fanout range could decrease mesh diameter and result in lower delay penalties. However,

it could potentially result in higher stress on links near members.

In addition, we identify network routing policy and group distribution as factors that

could impact Narada’s performance but do not investigate these in this chapter. Routing

policy could be significant because in the event that routing is not based on shortest path,

some pairs of members could have an RDP of less than 1 with Narada. Group distribution is

important as presence of clusters in groups could improve Narada’s performance compared

to unicast. This is because Narada could minimize the number of copies of a packet that

enter a cluster via costlier inter-cluster links and distribute them along cheaper intra-cluster

links.

2.3.3 Simulation Setup

We use a locally written, packet-level, event-based simulator to evaluate our protocol. The

simulator assumes shortest delay routing between any two members. The simulator models

the propagation delay of physical links but does not model queueing delay and packet

losses. This was done to make our simulations more scalable. We consider dynamic network

conditions by presenting experiments on the Internet in later chapters of this thesis.

All experiments we report here are conducted in the following manner. A fixed number

of members join the group in the first 100 seconds of the simulation in random sequence.

A member that joins is assumed to contain a list of all members that joined the group

previously. After 100 seconds, there is no further change in group membership. One sender

is chosen at random to multicast data at a constant rate. We allow the simulation to run

for 40 minutes. In all experiments, neighbors exchanges routing messages every 30 seconds.

Each member probes one random group member every 10 seconds to evaluate performance.

2.4 Results

We begin by presenting results from a typical experiment that characterizes key aspects of

Narada’s performance in Section 2.4.1. In Section 2.4.2, we present results that investigate

the influence of the factors on Narada’s performance. We do not adopt a full factorial design

that investigates every possible combination of all factors. Instead we study the influence of

each individual factor on Narada’s performance one at a time, keeping other factors fixed.

We present protocol overhead incurred with Narada in Section 2.4.3. Finally, we summarize

and interpret our results in Section 2.4.4.
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Figure 2.12: Cumulative distribution of RDP shown at various snapshots of the simulation.

The minutes denote the time after the last join.

2.4.1 Simulation Results with a Typical Run

This section presents results from a single typical experiment. The results are typical in

the sense they capture some of the key invariants in the performance of Narada across all

runs. In the experiment, we used a topology generated by the Waxman model consisting of

1024 nodes and 3145 links. We used a group size of 128 members, and each member had a

fanout range of <3-6>.

Delay Penalty and Stabilization Time: Figure 2.12 plots the cumulative distribution

of RDP at different time instances during the simulation. The horizontal axis represents

a given value of RDP and the vertical axis represents the percentage of pairs of group

members for which the RDP was less than this value. Each curve corresponds to the

cumulative distribution at a particular time instance. It might happen that at a given time,

some members have not yet learned of the existence of some other members or do not have

routes to others. Thus, 1 minute after the last join, approximately 10% of pairs do not have

routes to each other, indicated by the lower curve. All pairs have routes to each other 2

minutes after the last join. As time increases, the curve moves to the left, indicating the

RDP is reduced as the quality of the overlay improves.

When the system stabilizes, about 90% of pairs of members have RDP less than 4.

However, there exist a few pairs of members with high RDP. This tail can be explained

from Figure 2.13. Each dot in this figure indicates the existence of a pair of members with

a given RDP and physical delay. We observe that all pairs of members with high RDP have

very small physical delays. Such members are so close to each other in the physical network

that even a slightly sub-optimal configuration leads to a high delay penalty. However, the
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Figure 2.13: RDP vs. physical delay. Each point denotes the existence of a pair of members

with a given physical delay and RDP

delay between them along the overlay is not too high. This can be seen from Figure 2.14,

where each point represents the existence of a pair of members with a given overlay delay

and a given physical delay. It may be verified that the delay between all pairs of members

along the overlay is at most 160ms, while the physical delay can be as high as 71ms.

In future experiments, we summarize RDP results of an experiment by the 90 percentile

RDP value. We believe this is an appropriate method of summarizing results because: (i)

it is an upper bound on the RDP observed by 90% of pairs of members; (ii) for pairs of

members with a RDP value higher than the 90 percentile, the overlay delay is small as

discussed in the previous paragraph; and (iii) it is fairly insensitive to particular experiment

parameters, unlike the omitted tail

Figure 2.15 plots the cumulative number of virtual links added and removed from the

mesh as a function of simulation time. We observe that most of the changes happen within

the first 4 minutes of the simulation. This is consistent with the behavior seen in Figure

3.3 and indicates that the mesh quickly stabilizes into a good structure.

Physical Link Stress: We study the variation of physical link stress under Narada and

compare the results we obtain for a typical run with physical stress under DVMRP and

naive unicast in Figure 2.16. One of the members is picked as source at random, and we

evaluate the stress of each physical link. Here, the horizontal axis represents stress and

the vertical axis represents the number of physical links with a given stress. The stress of

any physical link is at most 1 for DVMRP, indicated by a solitary dot. Under both naive

unicast and Narada, most links have a small stress - this is only to be expected. However,

the significance lies in the tail of the plots. Under naive unicast, one link has a stress of

127 and quite a few links have a stress above 16. This is unsurprising considering that links
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Figure 2.14: Overlay delay vs. physical delay. Each point denotes the existence of a pair of

members with a given physical delay and overlay delay

near the source are likely to experience high stress. Narada however distributes the stress

more evenly across physical links, and no physical link has a stress larger than 9. While

this is high compared to DVMRP, it is a 14-fold improvement over naive unicast.

2.4.2 Impact of factors on performance

We are interested in studying the variation in Narada’s performance due to each of the

following factors: (i) topology model; (ii) topology size; (iii) group size; and (iv) fanout

range. Keeping other factors fixed at the default, we study the influence of each individual

factor on Narada’s performance. For all results in this section, we compute each data point

by conducting 25 simulation experiments and plot the mean with 95% confidence intervals.

Topology Model and Group Size: We used a Waxman topology consisting of 1024

routers and 3145 links, an ASMap topology consisting of 1024 routers and 3037 links and a

Mapnet topology consisting of 1070 routers and 3170 links. We assumed a fanout range of

<3-6> for all group members.

Figure 2.17 plots the variation of the 90 percentile RDP with group size for three topolo-

gies. Each curve corresponds to one topology. All the curves are close to each other indicat-

ing that the RDP is not sensitive to the choice of the topology model. For all topologies and

for a group size of 128 members, the 90 percentile RDP is less than 4. For each topology,

the 90 percentile RDP increases with group size. This is because an increase of group size

results in an increase of mesh diameter and hence an increase of RDP.

Figure 2.18 plots the variation of worst case physical link stress against group size for

three topologies. Each curve corresponds to one topology. We observe that the curves are
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Figure 2.15: Cumulative number of virtual links added and removed vs. time

close to each other for small group sizes but seem to diverge for larger group sizes. Further,

for all topologies, worst case stress increases with group size. Thus, for a group size of 64,

mean worst case stress is about 5 − 7 across the three topologies, while for a group size of

256, it is about 8 − 14. We believe this increase of stress with group size is an artifact of

the small topologies in a simulation environment relative to the actual Internet backbone.

We discuss this further in Section 2.4.4.

Figure 2.19 plots the normalized resource usage (NRU) against group size for the Wax-

man model alone. The lower and upper curves correspond to Narada and unicast re-

spectively. First, Narada consumes less network resources than naive unicast, and this is

consistent for all group sizes. For a group size of 128, the NRU for Narada is about 1.8 and

2.2 for naive unicast. Second, NRU increases with group size. While these results imply a

nearly 20% savings of network resources, we believe that the savings could be even more

significant if members are clustered. We have repeated this study with the Mapnet and

ASMap topologies and observe similar trends. For all topologies, the NRU is at most 1.8

for a group size of 128.

Topology Size: For each topology model, we generate topologies of sizes varying from

about 64 nodes to about 1070 nodes and evaluate the impact on Narada’s performance. In

the experiments, we fixed the group size as 128, and a fanout range of < 3 − 6 >. Figure

2.20 plots the worst case physical link stress against topology size for each topology model.

Across all topology models, we observe that the worst case stress increases with decrease in

topology size. While the same general trend is observed for all topology models, it seems

more pronounced for Waxman. We discuss this further in Section 2.4.4.

We have also studied the effect of topology size on RDP and NRU. Across all topol-

ogy models, RDP appears largely unaffected by topology size, while NRU decreases with
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Figure 2.16: No. of physical links with a given stress vs. Stress for naive unicast, Narada

and DVMRP

increase in topology size.

Fanout Range: So far, we have assumed that each member strives to maintain <3-

6> neighbors in the mesh. We have investigated the effect of variation of fanout range

on Narada’s performance. In summary, when the fanout range increases, mesh diameter

decreases and stress on links close to members increases. Consequently, RDP decreases

while worst case stress increases. For a group of 128 members, as fanout range increases

from <2-4> to <8-16>, the 90 percentile RDP decreases from about 5.5 to 2 while the

worst case physical stress increases from about 9 to 15.

2.4.3 Protocol Overhead

Narada incurs a protocol overhead for two reasons. First, members periodically exchange

routing tables and control information between each other. Second, members estimate their

delays to other members by probing them periodically. We define Protocol Overhead Ratio

(POR) as the ratio of bytes of non-data traffic that enter the network to bytes of data

traffic. While we do not present results, we find that POR increases linearly with group

size. Further, we note that the protocol traffic that Narada introduces is independent of

source data rate and thus the POR decreases with increase in data traffic. For a group size

of 128 members, the POR is about 0.25 for a source data rate of 16 kilobits per second

(kbps), and less than 0.04 for a source data rate of 128 kbps. For a 64 member group and

a source data rate of 128 kbps, the POR is hardly 0.02.
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Figure 2.17: 90 percentile RDP vs. group size for topologies from three models

2.4.4 Results Summary

In this section, we summarize key results that we have presented and attempt to explain

the results.

• Across a range of topology models, Narada results in a low RDP for the group sizes we

consider. For a group size of 16, the 90 percentile RDP is less than 2.5, while for group sizes

of 128 members, the 90 percentile RDP is less than 4. We hypothesize that RDP values

might be lower on the Internet, as Internet routing is policy based and sub-optimal, while

the simulator assumes shortest path routing.

• Across a range of topology models, Narada results in a low worst case stress for the group

sizes we consider. For a group size of 16, the worst case stress is about 5. For a larger group

size of 128 members, the worst case stress is 12, but this is still a reduction of a factor of 14

compared to unicast. We hypothesize that the worst case stress on the Internet is lower than

seen in simulations. This is because the largest topologies that we use in our simulations

(around 1000 nodes) are still orders of magnitude smaller than the Internet. We believe

the smaller topology sizes increase the probability that an internal physical link could be

shared by two overlay links that do not have any end-point in common (for example, by

links A−B and C −D, where A,B,C and D are distinct end systems). This could increase

worst case stress with Narada because Narada only regulates fanout of members and does

not directly regulate the stress of internal physical links.

• Narada lowers resource usage by at least 20% compared to unicast for a range of group

sizes. We believe that if members are clustered, Narada can result in even larger improve-

ment in resource usage.
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Figure 2.18: Worst case physical link stress vs. group size for topologies from three models

2.5 Summary

This chapter presents the design of Narada, perhaps the first self-organizing protocol for

overlay multicast. Narada is targeted at smaller-scale, and multi-source applications. We

presents the design space, key design decisions, and details of the design. We studied two

fundamental performance concerns with End System Multicast in the context of Narada:

increased delay penalties for receivers, and redundant copies on physical links. Our simu-

lation results indicate that in a group of 128 members, the delay between at least 90% of

pairs of members increases by a factor of at most 4 compared to the unicast delay between

them. Further, no physical link carries more than 9 identical copies of a given packet. We

believe these results demonstrate the viability of End System Multicast, and indicate that

the performance penalties with this architecture are low.
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Chapter 3

Optimizing overlays for bandwidth-demanding applications

Chapter 2 demonstrated that the performance penalty with End System Multicast can

be acceptably low, using simulation experiments, static delay-based metrics and controlled

environments. In this chapter, we evaluate the feasibility of End System Multicast to satisfy

the demands of bandwidth-demanding applications like conferencing and broadcasting, in

actual Internet environments

Our study is conducted in the context of an important class of applications: audio and

video conferencing. Internet based conferencing applications have received a great amount

of attention in the last decade, during which tools like vic[39], vat[32] and rat[27] were devel-

oped. Yet, these tools are not ubiquitously deployed today due to the limited availability of

IP Multicast. Conferencing applications have stringent performance requirements, requir-

ing not only a high sustained throughput between the source and receivers, but also require

low latencies.

We show that in order to enable conferencing applications, it is necessary for self-

organizing protocols to adapt to both latency and bandwidth metrics. We present tech-

niques by which such protocols can adapt to dynamic metrics like available bandwidth and

latency, and yet remain resilient to network noise and inaccuracies inherent in the measure-

ment of these quantities. We demonstrate our ideas by incorporating them into the Narada

protocol presented in Chapter 2. While we have chosen to use Narada, we believe that the

techniques we present can be incorporated into other self-organizing protocols.

We evaluate our techniques by testing the Narada protocol on a wide-area test-bed. Our

test-bed comprises twenty machines that are distributed around North America, Asia and

Europe. Our results demonstrate that our techniques can provide good performance, both

from the application perspective and from the network perspective. With our scheme, the

end-to-end bandwidth and latency attained by each receiver along the overlay is comparable

to the bandwidth and latency of the unicast path from the source to that receiver. Further,

when our techniques are incorporated into Narada, applications can see improvements of

over 30–40% in both throughput, and latency.

The rest of the chapter is organized as follows. Section 3.1 presents important perfor-

mance issues that self-organizing protocols need to address to support conferencing appli-

cations. Our techniques for tackling these issues are presented in Section 3.2. Sections 3.3

and 3.4 present our evaluation methodology and results. We summarize in Section 3.6.
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Figure 3.1: Architectural framework for supporting conferencing applications

3.1 Conferencing Applications and Overlay Design

In this section, we study the issues involved in supporting conferencing applications using

End System Multicast. We begin by presenting the distinguishing characteristics of confer-

encing applications:

• Performance requirements: Conference applications require low latencies, and need to

sustain high bandwidth between the source and receivers. In contrast, broadcasting and file

transfer applications are primarily interested in bandwidth, and latency is not a concern.

• Gracefully degradable: Conference applications deal with media streams that can tolerate

loss through a degradation in application quality. This is in contrast to file transfer appli-

cations that require reliable data delivery.

• Session lengths: Conferences are generally long lived, lasting tens of minutes. In contrast,

applications like file transfer and software downloading may be short-lived, lasting for the

duration of the transfer.

• Group characteristics: Conferences usually involve small groups, consisting of tens to

hundreds of participants. Membership can be dynamic. Again, this is in contrast to appli-

cations like broadcasting, and content delivery that may deal with much larger group sizes.

• Source transmission patterns: Typically, conferencing applications have a source that

transmits data at a fixed rate. While any member can be the source, there is usually a

single source at any point in time. In contrast, large scale broadcasting applications have a

single static source throughout a session.

To support conferencing applications, we consider a framework involving a hop-by-hop

congestion control protocol. Congestion control on each individual overlay link is ensured by

running a TCP-friendly protocol for streaming media applications [6, 21, 70]. An overlay

node adapts to a bandwidth mismatch between the upstream and downstream links by

dropping packets. Figure 3.1 shows an example of an overlay tree, where A is the source.

Links A-B and C-D cannot sustain the source rate of 5 Mbps, and consequently nodes A and

C reduce the rate using some appropriate packet drop policy. Such a framework exploits the
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gracefully degradable nature of conferencing applications, and the application-customizable

nature of the End System Multicast architecture.

We focus on addressing key performance issues with using self-organizing protocols to

support conferencing applications. In particular, the issues we consider are:

• Optimization for dual metrics: Overlay links need to be chosen in such a manner as to

simultaneously ensure high bandwidth and low latencies from every source to each receiver.

• Optimization for dynamic metrics: Internet latencies and available bandwidth are dy-

namic, and the overlay needs to adapt to long-term variations in path characteristics. Yet,

it needs to be resilient to network noise and inaccuracies that is inherent in the measure-

ment of these quantities. Frequent changes to overlay topology could result in instability

and transient performance degradation.

We incorporate our ideas in the Narada protocol. On the one hand, Narada is explicitly

designed for multi-source applications. On the other hand, the smaller group size of confer-

encing applications makes choosing Narada acceptable, even though Narada requires every

member to maintain state about all other members.

3.2 Conferencing Optimized Overlays

In this section, we present a set of techniques that help self-organizing protocols deal with

the challenges of supporting conferencing applications. While we believe our ideas can

easily be incorporated into all End System Multicast protocols, we demonstrate them on

the Narada protocol described in Chapter 2. The key elements of Narada important for

this discussion is that it constructs a mesh among participating end hosts, and runs a

distance vector algorithm extended with path information on top of the mesh. It leverages

a DVMRP-like algorithm for constructing the spanning trees for data delivery.

Constructing an overlay optimized for both latency and bandwidth presents a range of

choices. In designing heuristics for tackling this problem, we have been motivated by the

work done by Wang and Crowcroft [74] in the context of routing on multiple metrics in

the Internet. A first choice is to optimize the overlay for a single mixed metric that is a

function of both bandwidth and latency. However, it is not clear how this function can

individually reflect the bandwidth and latency requirements of the application. A second

approach is to treat the two metrics explicitly and with equal importance. Thus, a change

would be made to the overlay if either the bandwidth or the latency improves as a result

of that change. However, this approach could lead to oscillations when confronted with

two conflicting options, one with better latency, and the other with better bandwidth but

poorer latency. Instead, we consider both bandwidth and latency explicitly, but prioritize

bandwidth over latency. We believe that this prioritization reflects the application semantics

better.

We incorporate this idea in Narada, by choosing multiple routing metrics in the distance

vector protocol running on the mesh - the available bandwidth and the latency of the overlay

link. The routing protocol uses a variant of the shortest widest path algorithm presented in
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[74]. Every member tries to pick the widest (highest bandwidth) path to every other member.

If there are multiple paths with the same bandwidth, the member picks the shortest (lowest

latency) path among all these.

Both available bandwidth and latency are dynamic in nature, and using them as routing

metrics leads to serious concerns of instability. We deal with the stability concerns using

techniques in the design of the routing metrics described below:

• Latency: We filter raw estimates of the overlay link latency using an exponential smoothing

algorithm. The advertised link latency is left unchanged until the smoothed estimate differs

from the currently advertised latency by a significant amount.

• Available Bandwidth: We filter raw estimates of the available bandwidth of an overlay

link using an exponential smoothing algorithm, to produce a smoothed estimate. Next, in-

stead of using the smoothed estimate as a routing metric, we define discretized bandwidth

levels. The smoothed estimate is rounded down to the nearest bandwidth level for routing

purposes. Thus, a mesh link with a smoothed estimate of 600 Kbps may be advertised as

having a bandwidth of 512 Kbps, in a system with levels corresponding to 512 Kbps and

1024 Kbps. To tackle possible oscillations if the smoothed estimate is close to a bandwidth

level, we employ a simple hysteresis algorithm. Thus, while we move down a level immedi-

ately when the smoothed estimate falls below the current level, we move up a level only if

the estimate significantly exceeds the bandwidth corresponding to the next level.

Given that conferencing applications often have a fixed source rate, the largest level in the

system is set to the source rate. Discretization of bandwidth and choice of a maximum

bandwidth level ensure that all overlay links can fall in a small set of equivalence classes

with regard to bandwidth. This discretized bandwidth metric not only enables greater

stability in routing on the overlays, but also allows latency to become a determining factor

when different links have similar but not identical bandwidth.

Given a good quality mesh, the mechanisms described above seek to construct overlay

trees that ensure good bandwidth and latencies between every source and the recipients.

We retain the basic mechanisms presented in the Narada protocol to improve the quality

of the mesh itself. Members probe non-neighbors at random, and may add a new link

to the mesh if the utility gain of adding the link exceeds a threshold. Members monitor

existing links, and drop them if the cost of dropping the link falls below a threshold. The

utility gain, and cost are computed based on the number of members to which performance

improves (degrades) in bandwidth and latency if the mesh link were added (dropped), and

the significance of the improvement (degradation).

Members determine latencies of links in the mesh by periodically (currently every 200

milliseconds) exchanging packets with their neighbors and estimating the round trip time.

The link latency is assumed to be half the round trip time. These measurements have a

low overhead. The overhead can be further reduced by querying the underlying transport

protocol if this is possible.

We keep bandwidth estimates of links already in the mesh up to date by passively

monitoring the performance of these links when there is data flow along them. Members
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periodically advertise the rates at which they are transferring data to their neighbors along

a mesh link. The neighbor compares this advertised estimate, with an estimate of data it

actually receives along that mesh link. If the rates are comparable, it treats the estimate as

a lower bound on available bandwidth. Otherwise, it assumes the rate at which it receives

data is an actual estimate of the bandwidth of the link. Bandwidth estimates of links not

in the mesh are not easy to obtain without active end-to-end measurements. We consider

this in further detail in Section 3.5 by evaluating light-weight probing heuristics to guide

parent selection.

3.3 Experimental Evaluation

Our evaluation seeks to answer the following questions:

• From the application perspective, can End System Multicast meet the bandwidth and

latency requirements of conferencing applications in the Internet?

• How critical is it to adapt to network performance metrics such as bandwidth and latency

while constructing overlays?

• What are the network costs and overhead associated with the self-organizing overlay ar-

chitectures we consider?

To answer these questions, we examine the performance of several schemes for constructing

overlay networks, described in Section 3.3.1. Of these schemes, only one adapts dynamically

to both bandwidth and latency. All other schemes consider only one of these metrics, or

none at all. Section 3.4 presents detailed results that compare the performance of all the

schemes. In Section 3.5, we consider light-weight probing heuristics.

Two important factors affect the performance of a scheme for constructing overlay net-

works. These critical factors are the characteristics of the source application and the degree

of heterogeneity in the host set we consider. Less demanding applications and more homo-

geneous environments can make even a poorly constructed overlay perform adequately.

We consider the performance of the schemes with different speed constant bit rate (CBR)

sources. CBR encodings are common in conferencing applications, and make our evaluation

convenient. To study the performance of overlay schemes in environments with different

degrees of heterogeneity, we create two groupings of hosts, the Primary Set and the Extended

Set. The Primary Set contains 13 hosts located at university sites in North America where

nodes are in general well-connected to each other. The Extended Set includes a machine

behind ADSL, and hosts in Asia and Europe, in addition to the hosts in the primary set.

Thus, there is a much greater degree of variation in bandwidth and latencies of paths

between nodes in the Extended Set.

We conducted several experiments over a period of two weeks on a wide area test-bed.

Our experiments measure the bandwidth and latency that a overlay provides between the

source and the different clients. We also measure the network resource usage and overheads

incurred by the different overlay schemes. The details of these measurements are in the

sections that will follow. We vary both the source rate and client set to evaluate how well
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the schemes operate in different conditions.

3.3.1 Schemes for Constructing Overlays

Our schemes for constructing overlays are derived from the Narada protocol [11], and differ

from each other based on which network metrics they consider. We compare the following

schemes for overlay construction:

• Sequential Unicast: To analyze the efficiency of a scheme for constructing overlays, we

would ideally like to compare the overlay tree it produces with the “best possible overlay

tree” for the entire set of group members. We approximate this by the Sequential Unicast

test, which measures the bandwidth and latency of the unicast path from the source to each

recipient independently (in the absence of other recipients). Thus, Sequential Unicast is not

a feasible overlay at all but a hypothetical construct used for comparison purposes.

• Random: This represents a scheme that produces random, but connected overlay trees

rooted at the source. This scheme also helps to validate our evaluation, and addresses the

issue as to whether our machine set is varied enough that just about any overlay tree yields

good performance.

• Prop-Delay-Only: This represents a scheme that builds overlays based on propagation

delay, a static network metric. Measuring propagation delay incurs low overhead, and

overlays optimized for this metric have been shown to yield reasonably good simulation

results [11]. In our evaluation, we computed the propagation delay of an overlay link by

picking the minimum of several one-way delay estimates.

• Latency-Only and Bandwidth-Only: These two schemes construct overlays based on a

single dynamic metric with no regard to the other metric. They are primarily used to

highlight the importance of using both bandwidth and latency in overlay construction.

• Bandwidth-Latency: This represents our proposed scheme that uses both bandwidth and

latency as metrics to construct overlays.

Many of our hosts are on 10 Mbps connections, and we use source rates as high as 2.4 Mbps.

To prevent obviously bad choices of overlay trees due to saturation of the local link, schemes

that use static network metrics like Prop-Delay-Only are required to impose static, pre-

configured degree bound restrictions on the overlay trees they construct [11]. In our evalu-

ation, we try to be give Random and Prop-Delay-Only the best possible chance to succeed

by appropriately choosing per-host degree bounds based on the bandwidth of that host’s

connection to the Internet. On the other hand, Bandwidth-Latency , Latency-Only and

Bandwidth-Only are able to adapt to dynamic network metrics. This enables them to au-

tomatically detect and avoid congestion on links near members, without a pre-configured

degree bound.

3.3.2 Experimental Methodology

The varying nature of Internet performance influences the relative results of experiments

done at different times. Characteristics may change at any time and affect the performance
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of various experiments differently. Ideally, we should test all schemes for constructing over-

lays concurrently, so that they may observe the exact same network conditions. However,

this is not possible, as the simultaneously operating overlays would interfere with each

other. Therefore, we adopt the following strategy: (i) we interleave experiments with the

various protocol schemes that we compare to eliminate biases due to changes that occur at

shorter time scales, and (ii) we run the same experiment at different times of the day and

on different days of the week to eliminate biases due to changes that occur at a longer time

scale. We aggregate the results obtained from several runs that have been conducted over

a two week period.

Every individual experiment is conducted in the following fashion. Initially, all group

members join the group at approximately the same time. The source multicasts data at

a constant rate and after four minutes, bandwidth and round-trip time measurements are

collected. Each experiment lasts for 20 minutes. We adopt the above set-up for all schemes,

except Sequential Unicast. As described in Section 3.3.1, Sequential Unicast determines the

bandwidth and latency information of a unicast path, which we estimate by unicasting data

from the source to each receiver for two minutes in sequence.

3.3.3 Performance Metrics

We use the following metrics to capture the quality of an overlay tree:

• Bandwidth: This metric measures the application level throughput at the receiver, and is

an indicator of the quality of received video.

• Latency: This metric measures the end-to-end delay from the source to the receivers,

as seen by the application. It includes the propagation and queuing delays of individual

overlay links, as well as queueing delay and processing overhead at end systems along the

path. We ideally wish to measure the latency of each individual data packet. However, issues

associated with time synchronization of hosts and clock skew adds noise to our measurements

of one-way delay that is difficult to quantify. Therefore, we choose to estimate the round

trip time (RTT). By RTT, we refer to the time it takes for a packet to move from the source

to a recipient along a set of overlay links, and back to the source, using the same set of

overlay links but in reverse order. Thus, the RTT of an overlay path S-A-R is the time

taken to traverse S-A-R-A-S. The RTT measurements include all delays associated with

one way latencies, and are ideally twice the end-to-end delay.

• Resource Usage: This metric defined in Chapter 2 captures the network resources con-

sumed in the process of delivering data to all receivers. The resource usage of an overlay

tree is the sum of the costs of its constituent overlay links. The cost of an overlay link is the

sum of the costs of the physical links that constitute the overlay link. In our evaluation, we

assume the cost of a physical link to be the propagation delay of that link, guided by the in-

tuition that it is more efficient use of network resources to use shorter links than longer ones.

We consider the Normalized Resource Usage of an overlay tree as defined in Chapter 2 - the

ratio of the resource usage of the overlay tree to the resource usage with IP Multicast. The
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resource usage with IP Multicast is the sum of the costs (delays) of the physical links of

the native IP Multicast tree used in delivering data to the receivers. In our evaluation, we

determine the IP Multicast tree based on the unicast paths from the source to each receiver.

This is the tree that the classical DVMRP protocol [15] would construct (assuming Internet

routing is symmetrical). We derive the physical links of this IP Multicast tree, as well as

the delays of these links, by doing a traceroute from the source to each receiver.

Bandwidth and latency are metrics of the application level performance that an overlay

provides, while resource usage is a measure of the network costs incurred. The objective

of our evaluation is to understand the qualities of the overlay tree that different schemes

create with respect to these metrics.

For a metric such as resource usage, it is easy to summarize the quality of the overlay

produced. However, for metrics such as latency and bandwidth, we need to summarize the

performance that a number of different hosts observe. Although the set of hosts and source

transmission rate are identical, a particular scheme may create a different overlay layout for

each experimental run. As a result, an individual host may observe different performance

across the runs. However, this does not imply that the different overlays are of any different

quality. Therefore, we need metrics that capture the performance of the overlay tree as a

whole.

Let us consider how we summarize an experiment with regard to a particular metric

such as bandwidth or latency. For a set of n receivers, we sort the average metric value

of the various receivers in ascending order, and assign a rank to each receiver from 1 to n.

The worst-performing receiver is assigned a rank of 1, and the best-performing receiver is

assigned a rank of n. For every rank r, we gather the results for the receiver with rank

r across all experiments, and compute the mean. Note that the receiver corresponding to

a rank r could vary from experiment to experiment. For example, the result for rank 1

represents the performance that the worst performing receiver would receive on average in

any experiment.

In addition to the mean bandwidth or latency for a given rank, we also calculate the

standard deviation of this measure. The standard deviation captures the variation in quality

of overlay trees that a particular scheme produces across different runs. For example, a

scheme may produce trees where every receiver gets good performance in a particular run,

but many receivers get bad performance in another run. A factor that may complicate

the interpretation of standard deviation is that variability in performance may also occur

due to changes in Internet conditions (such as time of day effects). Thus, potentially no

overlay may be able to provide good performance at a given time. However, our results in

Section 3.4 demonstrate that some schemes are able to keep the standard deviation low.

This leads us to believe the standard deviation is a reasonable measure of the variability in

performance with a scheme itself.

3.3.4 Implementation Issues

The experiments are conducted using unoptimized code running at the user level. Imple-

mentation overhead and delays at end systems could potentially be minimized by pushing
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parts of the implementation in the kernel, and by optimizing the code. We have used

TFRC as the underlying transport protocol on each overlay link, as discussed in Section

3.1. TFRC is rate-controlled UDP, and achieves TCP-friendly bandwidths. It does not

suffer delays associated with TCP such as retransmission delays, and queueing delays at

the sender buffer.

3.4 Experimental Results

We begin by presenting results in a typical experiment run in Section 3.4.1. Section 3.4.2

provides a detailed comparison of various schemes for constructing overlays with regard to

application level performance, and Section 3.4.3 presents results related to network costs.

3.4.1 Results with a Typical Run

This section presents the performance results of our scheme in a typical experiment. It gives

an idea of the performance of individual receivers throughout an experiment as a function

of time. Our experiment was conducted on a week-day afternoon, using the Primary Set of

13 machines and at a source rate of 1.2 Mbps. The source host is at UCSB.

Figure 3.2 plots the bandwidth seen by a receiver, averaged across all receivers as a

function of time. Each vertical line denotes a change in the overlay tree for the source

UCSB. We observe that it takes about 150 seconds for the overlay to improve, and for the

hosts to start receiving good bandwidth. After about 150 seconds, and for most of the

session from this time on, the mean bandwidth observed by a receiver is practically the

source rate. This indicates that all receivers get nearly the full source rate throughout the

session.

Figure 3.3 plots the RTT to a receiver, averaged across all receivers as a function of time.

Again, the mean RTT to a receiver is about 100 ms on average after about 150 seconds,

and remains lower than this value almost throughout the session.

Figures 3.2 and 3.3 show that in the first few minutes of the session, the overlay makes

many topology changes at very frequent intervals. During this period, members are gather-

ing network information, and improving the quality of the overlay. In most of our runs, we

find that the overlay converges to a reasonably stable structure after about four minutes.

Given this, we gather bandwidth and RTT statistics after four minutes for the rest of our

experiments.

The figures above also highlight the adaptive nature of our scheme. We note that there

is a visible dip in bandwidth, and a sharp peak in RTT at around 460 seconds. An analysis

of our logs indicates that this was because of congestion on a link in the overlay tree. The

overlay is able to adapt by making a set of topology changes, as indicated by the vertical

lines immediately following the dip, and recovers in about 40 seconds.

We now consider how the RTTs to individual receivers vary during a session. Figure

3.4 plots the cumulative distribution of the RTT estimates to every receiver. For each

receiver, there is usually at least one RTT estimate every second, for the entire duration of

the session. Each curve corresponds to a particular receiver, and each point indicates the
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Figure 3.2: Mean Bandwidth averaged over all receivers as a function of time.

fraction of the RTT estimates to that receiver that have an RTT lower than a particular

value. For all receivers, over 94% of the RTT estimates are less than 200 ms, while over

98% of the RTT estimates are less than 400 ms. Assuming that one-way latency is one half

of the RTT, this indicates that end-to-end latencies are lower than 100 ms most of the time,

and less than 200 ms almost all the time.

3.4.2 Comparison of Schemes for Overlays

We present detailed results of our comparisons of several schemes for constructing overlay

trees on the Internet. We begin our comparison study with the Primary Set and a source

rate of 1.2 Mbps. Internet paths between most pairs of hosts in the Primary Set can

sustain throughputs of 1.2 Mbps. Thus, this study represents a relatively less heteroge-

neous environment where simpler schemes could potentially work reasonably well. Next,

we consider the Primary Set, but at a source rate of 2.4 Mbps. This environment is more

stressful to our schemes for two reasons. First, fewer Internet paths in the Primary Set

are able to sustain this increased source rate and thus, this represents an environment with

a higher degree of heterogeneity. Second, several hosts in our test-bed are located behind

10 Mbps connections, and a poorly constructed overlay can result in congestion near the

host. Schemes that work well at 1.2 Mbps potentially work less well at 2.4 Mbps. Finally, to

stress our scheme Bandwidth-Latency, we consider an extremely heterogeneous environment

represented by the Extended Set, and assuming a source rate of 2.4 Mbps. We believe our

choice of source rates is realistic and representative of current and emerging high bandwidth

video applications.
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Figure 3.3: Mean RTT averaged over all receivers as a function of time.

3.4.2.1 Primary Set at 1.2 Mbps Source Rate

Figure 3.5 plots the mean bandwidth against rank for four different schemes. Each curve

corresponds to one scheme, and each point in the curve corresponds to the mean bandwidth

that a machine of that rank receives with a particular scheme, averaged across all runs.

The error-bars show the standard deviation, which indicates the degree of variability in

performance that a particular scheme for constructing overlays may involve. For example,

the worst-performing machine (rank 1) with the Random scheme, receives a bandwidth of

a little lower than 600 Kbps on average. We use the same way of presenting data in all our

comparison results.1

We wish to make several observations. First, the Sequential Unicast test indicates that

all but one machine get close to the source rate, as indicated by one of the top lines with a

dip at rank 1. Second, both Bandwidth-Latency and Bandwidth-Only are comparable to

Sequential Unicast. They are able to ensure that even the worst-performing machine in any

run receives 1150 Kbps on average. Further, these schemes can result in consistently good

performance, as seen by the small standard deviations. Interestingly, these schemes result

in much better performance for the worst-performing machine as compared to Sequential

Unicast. It turns out this is because of the existence of pathologies in Internet routing.

It has been observed that Internet routing is sub-optimal and there often exists alternate

paths between end system that have better bandwidth and latency properties than the

default paths [59]. Third, the Random scheme is sub-optimal in bandwidth. On average,

the worst-performing machine with the Random scheme (rank 1) gets a mean bandwidth

of about 600 Kbps. Further, the performance of Random can be quite variable as indicated

by the large standard deviation. We believe that this poor performance with Random is

because of the inherent variability in Internet path characteristics, even in relatively well

connected settings.

1The curves are slightly offset from each other for clarity of presentation.
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Figure 3.4: Cumulative distribution of RTT, one curve for each receiver.

Figure 3.6 plots mean RTT against rank for the same set of experiments. First, the

RTT of the unicast paths from the source to the recipients can be up to about 150 ms,

as indicated by the lowest line corresponding to Sequential Unicast. Second, Bandwidth-

Latency is good at optimizing the overlay for delay. The worst machine in any run has

an RTT of about 160 ms on average. Third, both Random and Bandwidth-Only perform

considerably worse. While Random results in an RTT of about 350 ms for the worst

machine on average, Bandwidth-Only results in an RTT of about 250 ms. Both Bandwidth-

Only and Random can have poor latencies because of suboptimal overlay topologies that

may involve criss-crossing the continent. In addition, Random is unable to avoid delays

related to congestion, particularly near the participating end hosts, while Bandwidth-Only

may benefit due to some correlation between bandwidth and delay.

We have also evaluated Prop-Delay-Only and Latency-Only under this setting, and find

that they perform similarly to Bandwidth-Latency in RTT, and slightly worse in bandwidth.

We omit the results for clarity. Further, given the poor performance of Random, even in

very simple settings, we do not consider it further in our evaluation.

3.4.2.2 Primary Set at 2.4 Mbps Source Rate

In this section, we focus on the performance comparison between Bandwidth-Latency and

two delay-based schemes, Prop-Delay-Only and Latency-Only. Figures 3.7 and 3.8 present

the mean bandwidth and RTT against host rank for four different schemes.

First, we observe that the paths from the source to most receivers can sustain bandwidths

of up to 2.4 Mbps, as indicated by the Sequential-Unicast test. Second, Bandwidth-Latency

comes very close to achieving this benchmark, and can outperform Sequential Unicast for

machines with lower rank. Next, we observe that both Latency-Only and Prop-Delay-

Only perform poorly in bandwidth. For machines of rank 1–5, Bandwidth-Latency can

outperform Prop-Delay-Only, and Latency-Only by over 500 Kbps. While Prop-Delay-Only
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Figure 3.5: Mean bandwidth versus rank at 1.2 Mbps source rate for the Primary Set of

machines

and Latency-Only can provide reasonable performance at source rates of 1.2 Mbps, they

are unable to provide good performance in bandwidth at 2.4 Mbps with the same set of

machines.

From the perspective of RTT, we find that Bandwidth-Latency performs almost indis-

tinguishably from Latency-Only, and both schemes achieve performance reasonably close to

Sequential Unicast. However, more surprisingly, Prop-Delay-Only achieves RTTs at least

100 ms more than Bandwidth-Latency for machines of lower rank, and thus performs badly

even in the RTT metric. This is because delays in the Internet may often arise due to con-

gestion, and optimizing purely for propagation delay need not optimize the latencies seen

by the application. This observation becomes particularly important in our environment

where many hosts are behind 10 Mbps connections, and poorly constructed overlays could

cause congestion near a host. While we did use conservative pre-configured degree bounds

recommended in [10, 24, 11], this strategy is not capable of dealing with dynamic cross-

traffic. In contrast, the dynamic nature of Bandwidth-Latency and Latency-Only enables

them to perform better in such situations.

We have also evaluated Bandwidth-Only in this environment. We find the bandwidth

results are comparable to Bandwidth-Latency, but the RTT results are worse. Finally,

because of the poor performance of Prop-Delay-Only, our future evaluation concentrates on

Latency-Only while analyzing the performance of delay based schemes.

3.4.2.3 Extended Set at 2.4 Mbps Source Rate

Our results so far demonstrate that even in less heterogeneous environments such as the

Primary Set, satisfying the requirements of conferencing applications requires considering

both bandwidth and latency as metrics in overlay construction. To further emphasize the

importance of taking both bandwidth and latency into account, we consider extremely
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Figure 3.6: Mean RTT versus rank at 1.2 Mbps source rate for the Primary Set of machines

heterogeneous environments as represented by the Extended Set. Figures 3.9 and 3.10 plot

the bandwidth and RTT against host ranks for the four schemes of interest.

The Sequential Unicast curves show that there are quite a few members that have low

bandwidth and high latencies from the source, which indicates the heterogeneity in the set

we consider. Even in such a heterogeneous setting, Bandwidth-Latency is able to achieve

a performance close to the Sequential Unicast test. Apart from the less well-connected

hosts (ranks 1–5), all other members get bandwidths of at least 1.8 Mbps, and see RTTs of

less than 250 ms on average. For ranks 1–5, Bandwidth-Latency is able to exploit Internet

routing pathologies and provide better performance than Sequential Unicast . A particularly

striking example was two machines in Taiwan, only one of which had good performance to

machines in North America. In our runs, the machine with poorer performance was able to

achieve significantly better performance by connecting to the other machine in Taiwan.

Next, we observe that Bandwidth-Only results in high RTT, while Latency-Only per-

forms poorly in bandwidth. For example, for machines of rank 7, Bandwidth-Latency can

sustain throughputs almost 800 Kbps more than Latency-Only, and achieve RTTs more

than 100 ms lower than Bandwidth-Only. Further, Bandwidth-Latency has smaller stan-

dard deviations, which indicates that the overlays produced by Bandwidth-Latency consis-

tently attain good performance in both bandwidth and latency. Finally, we observe that

Bandwidth-Latency provides almost equivalent performance to Bandwidth-Only in band-

width, and to Latency-Only in RTT indicating that optimizing for multiple metrics does

not compromise the performance with respect to any single metric.

3.4.2.4 Summary of comparison results

We summarize results from our comparison study below:

• Our techniques enable the construction of efficient overlays optimized for both bandwidth

and latency, as required by conferencing applications. Even in extremely heterogeneous
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Figure 3.7: Mean bandwidth versus rank at 2.4 Mbps source rate for the Primary Set

Experiment Setup Primary Primary Extended

1.2 Mbps 2.4 Mbps 2.4 Mbps

Unicast 2.62 2.62 1.83

Random 2.24 2.05 1.97

Latency-Only 1.39 1.42 1.25

Bandwidth-Only 1.85 1.86 1.51

Bandwidth-Latency 1.49 1.73 1.31

Min-Span 0.85 0.85 0.83

Table 3.1: Average normalized resource usage of different schemes

environments, Bandwidth-Latency has performance comparable to Sequential Unicast, and

sometimes performs better by exploiting Internet pathologies.

• Random overlays do not perform well even in settings with a small amount of heterogeneity.

• Overlays that adapt to simple static metrics like propagation delay perform quite poorly,

not only in bandwidth, but also in latencies. This is because schemes that use only static

metrics fail to detect and react to network congestion, resulting in larger queueing delays

and higher packet loss.

• Overlays that adapt to latency alone are unable to provide good bandwidth performance,

especially at higher source rates. Conversely, overlays that adapt to bandwidth alone are

unable to provide good latencies. These results indicate that latency and bandwidth are not

strongly correlated on the Internet, and it is critical to consider both metrics to construct

overlays optimized for conferencing applications.
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Figure 3.8: Mean RTT versus rank at 2.4 Mbps source rate for the Primary Set

3.4.3 Resource Usage

Table 3.1 compares the mean normalized resource usage (Section 3.3.3) of the overlay trees

produced by the various schemes for different environments and source rates. The values are

normalized with respect to the resource usage with native IP Multicast support, determined

as explained in Section 3.3.3. Thus, we would like the normalized resource usage to be as

small as possible, with a value of 1.00 representing an overlay tree that has the same resource

usage as IP Multicast. Given that the trees constructed by self-organizing protocols can

change over time, we consider the final tree produced at the end of an experiment. However,

we observe that the overlays produced by these schemes are stable after about four minutes.

There are several observations to be made from Table 3.1. First, naive degenerated uni-

cast trees which have all recipients rooted at the source, and schemes such as Random that

do not explicitly exploit network information have a high resource usage. Second, protocols

that adapt to bandwidth alone (Bandwidth-Only) make less efficient use of network resources

compared to protocols such as Bandwidth-Latency, and Latency-Only which consider delay

based metrics. Third, the resource usage with Bandwidth-Latency is a little higher than

Latency-Only, which reflects the cost in adapting to better bandwidth paths. Fourth, the

resource usage with Bandwidth-Latency increases with source rate (in the Primary Set).

This is because it favors higher bandwidth paths over lower delay paths at higher source

rates. Finally, we note that Min-Span, the minimum spanning tree of the complete graph

of all members, has a resource usage better than IP Multicast. This indicates that overlay

trees can indeed have lower resource usage than IP Multicast. While minimum spanning

trees are known to be optimal with respect to resource usage, it is not clear they can meet

the requirements of the application.
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Figure 3.9: Mean bandwidth versus rank at 2.4 Mbps source rate for the Extended Set of

machines

3.5 Evaluation of probing techniques

Our results in Section 3.4 demonstrate the importance of adapting to bandwidth. A key

issue we have not discussed is choosing a parent from several prospective parents, to many of

whom bandwidth is not known. Directly measuring the available bandwidth to prospective

parents is costly - hence we consider light-weight probing heuristics to achieve this goal.

We evaluated peer selection heuristics based on three techniques: round-trip time (RTT)

probing, 10KB TCP probing, and bottleneck bandwidth (BNBW) probing.

The evaluation reported here has been conducted in conjunction with a detailed study

of the performance characteristics of Napster hosts [72]. The key findings from the study

relevant to this discussion are:

• All three probing techniques considered (RTT, 10KB transfer and BNBW) when used

individually help select peers that provide 40− 50% of the performance with the best

peer.

• The performance with the techniques can be significantly enhanced if the probing

techniques are used to shortlist a small set of choices, with a oracle picking the best

from among these choices In particular, choosing the best from among a set of 5 hosts

shortlisted by any of the techniques produces a peer that provides more than 80% of

the optimal performance.

• The three probing techniques share complementary properties and performance can

potentially be improved by applying the techniques simultaneously.

These observations above motivate us to investigate heuristics that involve applying

RTT-based probing heuristics to short-list a set of candidate parents, and then applying
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Figure 3.10: Mean RTT versus rank at 2.4 Mbps source rate for the Extended Set of machines

other light-weight probing techniques to make the final choice. We chose RTT-based probing

heuristics to produce a short-list (of five hosts) in the first step because of its very low

overhead and light-weight nature.

We considered the following techniques:

• Random: This technique chooses a peer at random.

• RTT: This technique uses single-packet RTT probe to select peers. In our experiment,

we conduct RTT probes in parallel to all peers of interest, and select the one with the

smallest RTT value.

• RTT filter + 10K: This technique selects at most 5 of the candidate peers based on the

best RTT estimates and perform 10KB of file transfer using TCP in parallel. The peer

with the shortest transfer time is selected. Use of 10KB probes has been suggested in

Overcast [34].

• RTT filter + 1-bit BNBW: This technique selects at most 5 peers with the lowest

RTT estimates and then chooses the peer with the highest bottleneck bandwidth.

Ideally we would like to measure the bottleneck bandwidth between peers during our

experiments. However, the bottleneck bandwidth measurement tools we are aware of

all require super-user access, which is a privilege we do not have on the majority of our

testbed machines. Hence, we decide to use only a single bit to differentiate between

ADSL and non-ADSL peers and study how much can such minimal information help.

To select a good performance metric to evaluate the probing techniques for End System

Multicast, we need to consider some of its unique characteristics. First, a peer is satisfied

with a parent peer as long as it can receive data at the source rate. The maximal achievable

throughput is not important. Second, as we show later in this section, due to the con-

tinuously adaptive nature of overlay multicast streaming, given sufficient time, the overlay
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Figure 3.11: Mean receiver bandwidth as a function of time at 1.5 Mbps source rate. Only

the first 80 seconds of the experiments are shown here.

structure will converge to a stable configuration, where each peer is receiving data at as

high a quality as possible. Thus, the key performance metric is the convergence time.

We define the convergence time of a peer to be the amount of time after the initial join

it takes for the peer to receive more than 95% of the stable bandwidth for 30 seconds. We

determine the stable bandwidth of a peer based on the bandwidth it receives at the end of

a 5-minute experiment. The 30 second window is necessary because a peer’s performance

may momentarily dip below 95% of the stable bandwidth due to network performance

fluctuations.

We evaluate the probing techniques on the Internet test-bed using the Extended Set.

Every individual experiment is conducted in the following fashion. Members join the group

in a sequential order, spaced by 2 seconds apart. The order in which members join is

randomized in each experiment. The source multicasts data at a constant rate of 1.5Mbps.

Each experiment lasts for 5 minutes.

Figure 3.11 plots the mean bandwidth, averaged across all receivers and multiple exper-

iments as a function of time. Each curve corresponds to one probing technique. For clarity,

only the result of the first 80 seconds of the experiments are shown. For all techniques,

the overlay reaches the same stable performance within 30 seconds. However, random peer

selection leads to a longer time to converge compared to techniques that exploit network

information. These results show that while a self-improving overlay eventually converges to

stable performance, a better peer selection technique can help to improve overlay conver-

gence.

Figure 3.12 shows the cumulative distribution of convergence time of different individual

receivers. First, regardless of the peer selection technique used, almost all peers converge to

receive good bandwidth within 60 seconds. Second, Random results in longer convergence

time with as many as 30% of the peers taking longer than 15 seconds to converge. The use
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Figure 3.12: Cumulative distribution of convergence time for basic techniques.

of a simple RTT technique greatly improves convergence time, and 70% of the peers take

less than 5 seconds to converge. This is an indication that RTT can successfully help peers

to select good parent peers when they first joined the group. Finally, RTT filter with either

10K or 1-bit BNBW results in better convergence property than RTT alone, and 80% of

the peers take less than 5 seconds to converge. Note that even though our low-fidelity 1-bit

BNBW metric can only differentiate the 3 ADSL host from the rest, it is shown to have

benefits.

Our results so far indicate that simple light-weight techniques such as RTT filter with

1-bit BNBW can achieve good convergence properties compared to random peer selection.

We have considered whether more sophisticated ways of combining these techniques can

help to further improve performance. Our results indicated that there is not much benefit

to this, and we refer the reader to [72] for further details.

3.6 Summary

In this chapter, we considered the viability of End System Multicast to supporting bandwidth-

demanding applications in real Internet settings. We focused our study on conferencing

applications, that simultaneously need high bandwidth and low latencies. We considered

how the Narada protocol may be customized for conferencing applications, and presented

techniques that enable Narada to adapt to both bandwidth and latency in the overlay

construction.

A detailed evaluation on a real-world Internet test-bed demonstrates that our heuristics

work well. In experiments with our Primary Set, at source rates of both 1.2 and 2.4 Mbps,

most hosts are able to sustain over 95% of the source rate on average, and yet achieve

latencies of less than 100 ms. In extremely heterogeneous settings such as the Extended Set,

the mean performance attained by each receiver is comparable to the performance of the
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unicast path from the source to that receiver.

Our results also demonstrate the importance of adapting to both bandwidth and la-

tency while constructing overlays. For example, in experiments with the Extended Set,

Bandwidth-Latency can provide 50% higher throughput than Latency-Only, and 30–40%

lower latencies than Bandwidth-Only for several ranks. Protocols that do not consider

any network metrics like Random, or those that consider only static network metrics like

Prop-Delay-Only perform much worse.

Finally, we evaluated light-weight probing heuristics that can guide parent selection

while constructing overlays, given that probing nodes to determine their bandwidth can

have a high overhead. Our evaluation show that RTT-based probing techniques are effec-

tive in reducing convergence time. While combining RTT-based techniques with 10-Kbyte

bandwidth probes and 1-bit bottleneck bandwidth information helps, the improvement in

performance is not significant.

Overall, our results show the promise of enabling bandwidth-demanding applications on

the Internet using End System Multicast.
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Chapter 4

Experience Building and Deploying an ESM-Based

Broadcasting System

Chapter 2 and Chapter 3 evaluated the performance of End System Multicast prototypes

using simulation studies and experiments on wide-area Internet test-beds. In this chapter,

we take these ideas further, and present our experience building and deploying a fully oper-

ational broadcasting system based on End System Multicast. On the one hand, deployment

of applications enhances the credibility of End System Multicast, and is perhaps the only

way to eventually validate the architecture. On the other hand, experience gained from such

usage guides us to key challenges that future iterations of the system design must focus on.

While the earlier chapters in this dissertation focused on conferencing applications, the

system targets broadcasting applications. Like conferencing applications, broadcasting ap-

plications are bandwidth-demanding and involve video bit rates of several hundred kilobits

per second. In addition, both applications involve gracefully degradable media streams and

can tolerate losses by degrading stream quality. However, while conferencing applications

involve multiple sources and smaller group sizes, broadcasting applications typically involve

a single source, and much larger group sizes. Further, while conferencing applications are

interactive and require latencies of the order of a few hundred milliseconds, broadcasting

applications tend to be live rather than interactive, and can tolerate latencies of several

seconds.

The system has been built in the context of the End System Multicast project at

Carnegie Mellon. In building the system, we have adopted simple or natural solutions,

with the provision that the design decisions could be revisited in the light of future experi-

ence. This approach has accelerated the deployment of the system, and, consequently has

led to faster feedback from real deployment.

This thesis has led the design and implementation of Sparta, the self-organizing protocol

in the system. The design of Sparta is integrated with the overall objectives of validating the

ESM architecture, and building an operational system. Sparta builds on our prior experi-

ence with Narada. However, key differences arise in the group management algorithms used

in the protocol, given that Narada was targeted at smaller-scale multi-source conferencing

applications, while Sparta is targeted at larger-scale single-source broadcasting applications.

Further, implementing the protocol in the context of a real system has led to several re-

finements of the ideas in Narada, and this has led to a unique implementation-oriented
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Figure 4.1: Broadcast system overview.
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Figure 4.2: Single overlay approach to host heterogeneity.

perspective to protocol design.

In over a year, the system has been providing a cost-effective alternative for Internet

broadcasts. It has been used to broadcast tens of events, and has been used by thousands

of users spread across multiple continents in home, academic and commercial environments.

Technical conferences and special interest groups are the early adopters. Our experience

confirms that End System Multicast can be easily deployed and can provide good application

performance. The experience has also highlighted key issues that future designs of the

system must address, and we believe are of broader interest to the community.

The rest of the chapter is organized as follows. Section 4.1 provides a summary of the

ESM broadcasting system, the detailed description of which can be found in [12]. Section 4.2

provides a detailed description of the self-organizing protocol used in the system. We discuss

the deployment of the system, and the performance we have seen in Sections 4.4 and 4.5.

We present some of these key lessons in Section 4.6.
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4.1 ESM Broadcasting System

Figure 4.1 gives a high-level overview of our broadcasting system. The encoder takes the

multimedia signal from the camera, converts into audio and video streams, and sends to

the broadcast source. The broadcast source and receivers run an overlay multicast protocol

to disseminate the streams along the overlay. Each receiver gets the broadcast stream, and

forwards to the media player running on the same machine. In addition, the participating

hosts send performance statistics to the monitor and log server for both on-line and post-

mortem analyses.

The system has three main components:

• Overlay protocol for data dissemination: This is the protocol used to construct

efficient overlay trees among participating hosts. We present this in greater detail in

Section 4.2.

• Support for receivers with heterogeneous capabilities: Internet hosts are heterogeneous

and may have a wide range of receiving bandwidth capabilities. The system tackles

this by encoding video at multiple bit-rates in parallel and broadcasting them simul-

taneously, along with the audio stream, through the overlay as shown in Figure 4.2.

Further, a unicast congestion control protocol is run on the data path between every

parent and child, and a prioritized packet forwarding scheme is employed at each over-

lay link. Audio is prioritized over video streams, and lower quality video is prioritized

over higher quality video. The system dynamically selects the best video stream based

on loss rate to display to the user. When a receiver does not have sufficient bandwidth

to view the high quality video stream, or when there are transient dips in available

bandwidth due to congestion, as long as the lower quality video stream is received, a

legible image can still be displayed. This design can be seamlessly integrated with lay-

ered codecs if available. We used TCP as the unicast congestion control protocol, but

more recent deployments use TFRC [21], a UDP-based congestion control protocol.

• Support for receivers behind NATs and firewalls: Hosts behind NATs cannot initiate

communication to other hosts behind NATs. The system employs heuristics that

enable hosts behind NATs to be parents of hosts with public IP addresses, (though

they cannot be parents of other hosts behind NATs). The reader is refered to [12] for

further details.

We use QuickTime [47] as the media player. This choice was motivated by the fact that

it is widely available and runs on multiple popular platforms. We use Sorenson 3 [65] and

MPEG4, both of which are supported by QuickTime, as video codecs. Typical bit rates

used in our broadcasts are audio at 20 Kbps, and two target video bit-rates of 100 kbps and

300 kbps.

The broadcasting system is supported in Linux, Windows and MAC. Receivers tune

into the broadcast using a simple web-link interface. The system includes a publishing

toolkit [18] which allows content publishers to easily set up a broadcast of their own,

and a monitoring system which provides content publishers with online information about
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individual participating hosts, the current overlay tree, the bandwidth on each overlay link,

and the current group membership.

4.2 Sparta Description

In this section, we describe the overall goals and approach while designing Sparta, key

differences from the Narada protocol presented in earlier chapters, and present a detailed

description of the protocol implementation.

4.2.1 Design Approach

The decisions taken while designing and implementing Sparta are best understood by ap-

preciating the broader context in which the effort was undertaken. The design of Sparta

is integrated with the overall objectives of validating the ESM architecture, and building

an operational system. Putting together an operational system involves making design

decisions on several individual components of the system. The trade-offs between the de-

sign choices, and the significance of the design choice in the overall context of the system

performance have not always been apparent. Our overall approach has been to emphasize

putting together a complete prototype to help us appreciate the range of issues involved,

while adopting simple or natural design choices for any given component. Our belief has

been that the overall experience could guide us to key design decisions that need to revisited

and more carefully examined, which could in turn lead to refinements in the next iteration

of the system design.

4.2.2 Overview

Sparta is distributed, self-organizing and performance-aware, and constructs a tree rooted

at the source. The tree is optimized primarily for bandwidth, and secondarily for delay.

We use a distributed protocol, as opposed to a centralized protocol to minimize the control

overhead at the source.

While we have adopted a tree-based data delivery structure, performance can potentially

be improved by constructing more resilient data delivery structures. In particular, recent

work has investigated mechanisms for redundancy in conjunction with specialized coding

algorithms [43, 8]. While we hope to leverage these ideas in future designs, our design has

been influenced by practical system constraints on an immediately deployable operational

system, and our desire to interoperate with commercial media players and a wide range of

popular codecs.

Contrast with Narada: Sparta builds on our experience with Narada. However, key

differences arise from the fact that Sparta is targeted at single-source broadcasting applica-

tions, while Narada targeted multi-source conferencing applications. The goal of supporting

multiple sources motivated the design of a two step process for tree construction in Narada,

with the first step involving the construction of a mesh, and the second step involving the

construction of spanning trees of the mesh using routing algorithms. In contrast, given that
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the system deals with single source applications, the new protocol adopts a direct single step

process for tree construction, with members directly choosing parents from other members

they know.

The Narada protocol required members to maintain knowledge of all other group mem-

bers. This design point was chosen given that the design targeted conferencing applications

that typically involved smaller group sizes. However, the control overhead becomes signifi-

cant for much larger group sizes that the broadcasting system is targeted for. This leads us

to adopt more scalable group management algorithms in Sparta, where each member knows

only a small subset of the group members.

4.2.3 Protocol Description

We present the various components of Sparta, and the details of each component.

4.2.3.1 Group Management

The group management algorithms refer to the mechanisms that enable each member to

maintain knowledge of only a small subset of group members, irrespective of the total

number of members in the group. In our protocol, each member maintains information about

a random subset of members not correlated to the tree used for data delivery. Each member

also maintains information about the path from the source to itself, through periodic control

packets exchanges between every parent and child in the tree. A new host joins the broadcast

by contacting the source and retrieving a random list of hosts that are currently in the group,

based on the knowledge with the source. It then selects one of these members as its parent

using the parent selection algorithm (Section 4.2.3.4). A member that is disconnected from,

or is not satisfied with the performance from its parent chooses a new parent from among

the members it knows using the same parent selection algorithm.

Members maintain a random list of group members by using a gossip protocol adapted

from [52]. Each host A periodically picks a member (say B) at random, and sends B a

subset of group members that A knows, along with the last timestamp it has heard for each

member. When B receives a membership message, it updates its list of known members

by creating entries for members it learns about newly, and by refreshing the timestamp for

members it already knows about. Each members delete state of other members if the state

has not been refreshed in a certain period (timeout)

The overhead due to messages associated with the group management algorithm depends

on the time between consecutive gossip messages sent by a node, and the number of members

about which information is sent in each gossip. To keep the overhead small, we assume gossip

messages are sent every two seconds and carry information about eight members.

In the algorithm above, membership information may be stale - that is, entries in a mem-

ber’s knowledge table may correspond to members that have left the group. The choice of

timeout value, timeout, is important. Choosing a high value could result in a significant

fraction of member entries corresponding to dead nodes. However, making it too small

could be too aggressive, and restricts the total number of nodes that a host knows. In our
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implementation, we use a timeout value of 5 minutes.

Design Discussion: Our group management algorithm constructs a knowledge graph

where each member knows a random subset of members in the group. One design alternative

is to organize members into a more hierarchical structure. Our current design choice has

primarily been motivated by its simplicity. While it is possible that hierarchical approaches

may have better scaling properties, they involve a higher implementation complexity, and

our preliminary investigations did not reveal a clear performance benefit. We defer a detailed

investigation of the trade-offs between the design choices for group management algorithms

to future work.

There are two dimensions in we hope to refine the current group management algorithms

in the future at much larger scales. First, the current mechanisms are not explicitly opti-

mized for clustering receivers at nearby locations. A possible improvement is to have the

source provide more informed group membership subsets to nodes, perhaps by leveraging

knowledge of their network coordinates [71]. Second, in our group management algorithm,

all nodes that join contact the source to get boot-strapped. This can potentially be an issue

at much larger scales in the presence of flash-crowds, or many simultaneous joins in the

system. We hope to investigate these concerns and incorporate mechanisms to tackle the

issues in future designs.

4.2.3.2 Handling Group Membership Dynamics

Dealing with graceful member leave is fairly straight-forward: hosts continue forwarding

data for a short period, while its children look for new parents using the parent selection

method described below. This serves to minimize disruptions to the overlay. Hosts also

send periodic control packets to their children to indicate live-ness. If a child does not

receive control packets from the parent for a certain period of time, it assumes the parent

is dead, and finds a new parent using the parent selection algorithm described later. The

detection time, or time taken to detect death is set at about 5 seconds, as explained in the

next subsection.

4.2.3.3 Performance-Aware Adaptation

We consider three dynamic network metrics: available bandwidth, latency and loss. There

are two main components to this adaptation process: (i) detecting poor performance from

the current parent, or identifying that a host must switch parents, and (ii) choosing a new

parent, which is discussed in the parent selection algorithm.

Detection Time: Each host maintains the application-level throughput it is receiving in

a recent time window. If its performance is significantly below the source rate (less than

90% in our implementation), then it enters the probe phase to select a new parent. One

of the parameters that we have found important is the detection time parameter, which

indicates how long a host must stay with a poor performing parent before it switches to

another parent. We employed a detection time of 5 seconds. The choice of this timeout
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value has been influenced by the fact that we are running a congestion control protocol

on the data path (TCP or TFRC). Switching to a new parent requires going through a

slow-start phase, and we have observed it may take 1 - 2 seconds to get the full source rate.

Constrained hosts: Our experience reveals the need for the protocol to adaptively tune

the detection time because: (a) many hosts are not capable of receiving the full source

rate, (b) even hosts that normally perform well may experience intermittent local network

congestion, resulting in poor performance for any choice of parent, (c) there can be few good

and available parent choices in the system. Changing parents under these environments

may not be fruitful. We have implemented a simple heuristic for dynamically adjusting the

detection time, involving an increase if several parent changes have been made recently, and

a decrease if it has been a long time since the last parent change.

VBR Streams: Our initial implementation did not consider loss rate as a metric. We

found it necessary to consider loss-rates while dealing with variable-bit-rate streams. For

example, in one of our broadcasts, the source rate was 429 kbps on average, with a standard

deviation of 65 kbps, and a peak of 3 Mbps. If loss rates were not considered, dips in

the source rate would cause receivers to falsely assume a dip in performance and react

unnecessarily. Our solution avoids parent changes if no packet losses are observed despite

the bandwidth performance being poor.

Adaptation Policy: The failure of a node or congestion on an overlay link can impact a

large number of down-stream recepients. Ideally, we would like the reaction to these events

to be coordinated, with only the immediately affected children switching parents. However,

there are two difficulties. First, there is an implementation complexity associated with

achieving such coordination in a distributed fashion. Second, it is possible that the root

node of the affected sub-tree may be unable to fix the problem because of congestion close

to it, while its descendants have the potential to. Our current implementation chooses a

solution with minimal coordination: all end systems observe their current performance, and

independently switch parents if the performance is not good for a detection time window.

In the case a host gracefully leaves, given that it informs its children first, it is likely the

immediate children alone will react and fix the problem. With abrupt death of members,

or network congestion however, it is likely that all descendants in a sub-tree detect such

an event simultaneously, and independently fix the problem. Our design choice has been

motivated by its simplicity - we defer to future work an investigation of the trade-offs

between the performance benefits of more coordinated schemes, and the implementation

complexity associated with them.

4.2.3.4 Parent Selection

When a host (say A) joins the broadcast, or needs to make a parent change, it probes a

random subset of hosts it knows. The probing is biased toward members that have not been

probed or have low delay. The number of people probed in each cycle must be large enough

that a reasonable selection of parent can be found, but not too large that this becomes a

high overhead. Our current implementation involves probing about thirty hosts.

Some of the hosts that A probes may no longer be in the group given the group manage-

ment algorithm can involve stale entries. Each host B that is still in the group responds to
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the probe providing information about: (i) the performance (application throughput in the

recent 5 seconds, and delay) it is receiving; (ii) whether it is degree-saturated or not; and

(iii) whether it is a descendant of A. The probe also enables A to determine the round-trip

time to B.

A waits for responses for a timeout period of 1 second. The choice of the timeout

period was motivated by it being a large enough value of Internet round-trip times that

maximizes the number of responses received from members. From the responses A receives,

it eliminates those members that are saturated, or who are its descendant. From the

remaining members, a node is picked as parent as described in the next paragraph. While

eliminating descendants helps avoid loops, such information may be inconsistent. In such

cases, a parent change by A may result in a loop. This is detected after the fact through the

normal path update operations, and all affected members employ a fresh round of parent

selection. From our experience, we have found the optimistic strategy to work reasonably

well, and loop occurence is rare.

In order to assess the number of children a parent can support, we ask the user to choose

whether there is at least a 10 Mbps up-link to the Internet. If so, we assign such hosts a

degree bound of 6, to support up to that many number of children. Otherwise, we assign a

degree bound of 0 so that the host does not support any children. We hope to incorporate

mechanisms that can automatically detect the access bandwidth of the host in the future.

For each member B that has not been eliminated, A evaluates the performance (through-

put and delay) it expects to receive if B were chosen as a parent. The expected delay is the

sum of the delay B is experiencing from the source, and the delay of the overlay link B −A

estimated from the probe response of B. A computes the expected application throughput

as the minimum of the throughput B is currently seeing and the available bandwidth of the

path between B and A.

A shortlists B for further consideration if either: (i) switching to B has the potential to

substantially improve application throughput; or (ii) switching to B provides as much or

better throughput while substantially improving delay. B substantially improves through-

put to A if picking B as parent can result in the delivery of a higher quality of video than

that currently being received. B substantially improves delay to A if the fractional decrease

in delay exceeds a threshold (25% in our implementation). From among the shortlisted can-

didates, A picks the parent that can offer the best bandwidth, and breaks a tie by picking

a parent that has the lowest delay to A. If no node is shortlisted, then A continues with its

current choice of parent.

One difficulty in the heuristics above is that they assume A knows the available band-

width of the link B − A. However, in practice, the available bandwidth of paths cannot be

measured unless there is data flow along the path. The protocol tackles this by maintaining

a history of performance of past parents - if A has previously chosen B as parent, then it

has an estimate of the bandwidth of the overlay link B−A. If there are some hosts to which

bandwidth is known (likely because they have been chosen in the past), then A picks one

of them as parent if they are known to provide good bandwidth. If they are known to not

provide good bandwidth, or the bandwidth to hosts is not known, then A picks a parent

based on delay, based on our results in Chapter 3 which show the promise of light-weight
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RTT-probing heuristics.

4.3 Evaluation Overview

In the rest of this chapter, we present our experience with the ESM-based broadcasting

system. We organize our discussions by focusing on a few key questions:

• How easy is to deploy applications using End System Multicast?

• How well does the system perform in terms of giving good performance to the user? How

does the environment affect system performance?

• What design refinements could have led to better performance, and have been highlighted

from our experience?

Section 4.4 presents a detailed description of the deployment we have achieved with

our system. We describe our deployment both in terms of the usage of our system, and

the diversity of deployment achieved. We also characterize the environments we see in our

broadcasts, as these characteristics play a key role in impacting the performance of the

system. We present results from broadcasts in Section 4.5, analyzing the system from a

variety of perspectives. Finally, in Section 4.6, we quantitatively analyze the performance

benefits that may accrue from key design modifications motivated by our experience.

4.4 Deployment

In this section, we present the deployment status of the ESM Broadcasting System. Our

goal is to both present an idea of how wide and successful our deployment is, as well as

to characterize key charcteristics of the environments of our broadcast that may affect the

performance results.

Over the last year, the system has been used by at least 4 content publishers besides

ourselves to broadcast tens of events, has accumulated hundreds of operational hours, and

has been used by several thousand participants. Most broadcasts involved technical content

like workshops and conferences, with audience tuning in because they were interested in

the content, but could not attend the events in person. We also conducted an experimental

broadcast to the Slashdot [63] community (a web-based discussion forum). In this broadcast,

some of the audience tuned in for the content, while others tuned in because they were

curious about the system.

The ultimate goal of ESM is to investigate purely application-end point architectures,

where overlays are constructed only among group members actually participating in the

broadcast. However, the viability of the architecture depends on the ability of participating

hosts to support other children, which depends both on the bandwidth resources of par-

ticipating hosts, and the willingness of users to contribute their bandwidth resources. Our

deployment efforts were motivated by the objectives of investigating how far we could go

with purely application end-point architectures, and to gain more experience with issues

such as the availability of bandwidth resources in real deployment scenarios. However un-

like conventional research experiments, our deployment needs to run in real-life, involves

61



convincing event-organizers to use our system, and involves real users who primarily care

about the final content delivered. Failures would damage our credibility, and limit future

adoption of our system.

Given these constraints, our deployment employed PlanetLab [46] machines, which we

call waypoints, to join the broadcast, in addition to the real participants. From the per-

spective of the system, waypoints are the same as normal participating hosts and run the

same protocol – the only purpose they served was increasing the amount of resources in the

system. To see this, consider Figure 4.3, which plots a snapshot of the overlay during the

SIGCOMM2002 broadcast. The shape and shade of each node represents the geographical

location of the host as indicated by the legend. Nodes with a dark outer circle represent

waypoints. We see that waypoints are scattered around at interior nodes in the overlay,

and may have used normal hosts as parents. Thus they behave like any other user, rather

than statically provisioned infrastructure nodes. While our use of waypoints so far has pre-

vented direct conclusions about purely application end-point architectures, our subsequent

analysis in Section 4.6 studies the role played by waypoints in the broadcast, and points to

opportunities for the reduced use of waypoints in subsequent broadcasts.

Table 4.1 lists the major broadcasts, duration, number of unique participants, number of

waypoints used in each broadcast and the peak group size. The broadcast events attracted

from 15 to 1600 unique participants throughout the duration. The peak sizes, or number

of simultaneous participants in any broadcast ranged from about 10 to 280. Efforts are

ongoing to attract larger peak sizes.

Table 4.3 presents detailed information regarding user dynamics and composition of

hosts in our broadcasts. Both factors influence the performance of a self-organizing proto-

col. The more dynamic an environment, the more frequently a host is triggered to react.

The more unfavorable the composition of hosts, the longer it could potentially take to dis-

cover a good parent. We present results from 6 of our larger broadcasts, 5 of which were

conference/lecture-type broadcasts, and the other being Slashdot . For multi-day events,

such as SIGCOMM2002 and SIGCOMM2003, we present results from one day in the broad-

cast. For Slashdot, we present results for the first 8 hours. We define an entity as a unique

user identified by its < publicIP, privateIP > pair. An entity may join the broadcast many

times, perhaps to tune in to distinct portions of the broadcast, and have many incarnations.

Our analysis reports on incarnations unless otherwise stated.

Table 4.3 lists the mean session interarrival time in seconds for the 6 broadcasts in the

fourth column. The Slashdot broadcast has the highest rate of group dynamics compared to

all other broadcasts using our system. For the five broadcasts of conferences and lectures,

the mean interarrival time was a minute or more, whereas the interarrival time for Slashdot

was just 17 seconds.

Table 4.3 also presents two different measures of session duration: individual incarnation

duration and entity duration (cumulative over all incarnations) which captures the entity’s

entire attention span. For entity session duration, again, we find that all 5 real broadcasts

of conferences and lectures have a mean of 26 minutes or more, and a median of 16 minutes

or more. In the SIGCOMM2002 broadcast, the median was 1.5 hours which corresponds

to one technical session in the conference. To contrast, the Slashdot audience has a very
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short attention span of 11 and 7 minutes for the mean and median. This indicates that the

Slashdot audience may have been less interested in the content. The incarnation session

duration also follows a similar trend with shorter durations. We note that the shorter

incarnation session durations with SIGCOMM2003 and Lecture1 were caused by a couple

of entities testing the system and joining and leaving frequently.

Table 4.3 presents information regarding the composition of participating hosts in the

system, by presenting the the percentage of incarnations in the system that were eligible

as parents (based on whether their out-going bandwidth was sufficient). The table also

presents the percentage of incarnations which are public hosts, and which can serve as

parents. The 5 conference and lecture broadcasts have the same trend, with 44% or more

incarnations that can serve as parents. On the other hand, only 19% of incarnations could

be parents in Slashdot. Further, when we consider the fraction of public hosts that could be

parents, we find this ranges from 17 − 57% for the conference-style broadcasts, but is just

7% for the Slashdot broadcast. This indicates that there were much less available resources

in the system in the Slashdot broadcast.

Table 4.2 presents a more detailed view of the diversity of hosts that took part in two

of the large broadcasts (SIGCOMM2002 and Slashdot). The deployment has reached a

wide portion of the Internet - users across multiple continents, in home, academic and com-

mercial environments, and behind various access technologies. Further, we see that in the

Slashdot broadcast over 66% of the hosts are behind cable/DSL and cannot take children,

while 68% of the hosts are behind NAT, and can only support public hosts as children. This

is in contrast to the SIGCOMM2002 broadcast where only 20% of the hosts are behind ca-

ble/DSL. Note that we did not have NAT/firewall support in the SIGCOMM2002 broadcast.

Summary: We have been successful in achieving wide-scale deployment with our ESM-

based broadcasting system. The number of users and the diversity of users demonstrates the

deployment potential of End System Multicast. We wish to contrast this to the MBone [7],

the usage of which was primarily restricted to researchers in academic institutions. We

have also characterized key aspects of our broadcast. Most of our broadcasts have been

conference/lecture-style, with inter-arrival times of the order of a few minutes, incarnation

stay-time durations of around ten minutes, and a large fraction of incarnations being eligible

as parents. The Slashdot broadcast on the other hand had inter-arrival times of 17 seconds,

incarnation stay-time of 3 minutes, and with only 7% of the total incarnations being eligible

as parents.

4.5 Performance Results

In this section, we present results evaluating the system from several perspectives. Sec-

tion 4.5.1 presents the average performance of users, measured in terms of the mean

application-level throughput a user sees during the session, and subjective feedback pro-

vided by users. Section 4.5.2 present results that correlate performance users see with how

long they have stayed in the group. Section 4.5.3 provides more detailed results on the

transient performance of users providing performance of audio and different video quality
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Event Duration Unique Hosts/ Peak Size/
(hours) Waypoints Waypoints

SIGCOMM2002 25 338/16 83/16

SIGCOMM2003 72 705/61 101/61

DISC2003 16 30/10 20/10

SOSP2003 24 401/10 56/10

Slashdot 24 1609/29 160/19

DARPA Grand Challenge 4 800/15 280/15

Distinguished Lectures Series 9 358/139 80/59
(8 distinct events)

Sporting Event 24 85/22 44/22

Commencement 5 21/3 8/3
(3 distinct events)

Special Interest 14 43/3 14/3

Meeting 5 15/2 10/2

Table 4.1: Summary of major broadcasts using the system. The first 4 events are names of

technical conferences.

SIGCOMM2002 broadcast 8/2002 9am-5pm (total 141 hosts)

Region North America (101) Europe (20) Oceania (1) Asia (12) Unknown (7)

Background Home (26) University (87) Industry (5) Government (9) Unknown (14)

Connectivity Cable Modem (12) 10+ Mbps (91) DSL (14) T1 (2) Unknown (22)

Slashdot broadcast 12/2002 2pm-10:30pm (total 1316 hosts)

Region North America (967) Europe (185) Oceania (48) Asia (8) Unknown (108)

Background Home (825) University (127) Industry (85) Government (80) Unknown (199)

Connectivity Cable Modem (490) 10+ Mbps (258) DSL (389) T1 (46) Unknown (133)

NAT NAT (908) Public (316) Firewall (92)

Table 4.2: Host distributions for two broadcast events, excluding waypoints, shown only for

a portion of the broadcast.

streams, and information regarding how long users experience periods of bad performance,

and the time in between periods of bad performance. Section 4.5.4 presents factors that

affect the performance of hosts, and how significant an impact the factors had on overall

performance. Section 4.5.5 considers how correlated losses seen by users were with each

other, and details regarding catastrophic events that impacted significant portions of the

tree. While much of this analysis pertains to application performance, Section 4.5.6 presents

metrics that captures the overall quality of the overlay. We summarize our findings in Sec-

tion 4.5.7.

The data that we use for the analysis is obtained from performance logs collected from

hosts participating in the broadcast. Some of the analysis requires logs to be time syn-

chronized. During the broadcast, whenever a host sends a message to the source as part of

normal protocol operations (for example, gossip or probe message), the difference in local

offsets is calculated and printed as part of the log. In the offline analysis, the global time

for an event is reconstructed by adding this offset. We have found that the inaccuracy of

not considering clock skew is negligible.
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Figure 4.3: Snapshot of the overlay tree during SIGCOMM2002. Participants, marked by

geographical regions, were fairly clustered. Waypoints, marked by outer circles, took on

many positions throughout the tree.

4.5.1 Average Performance

Figure 4.4 plots the cumulative distribution of mean session bandwidth, normalized to the

source rate for the 6 broadcasts. Five of the broadcasts see good performance: more than

90% of hosts get more than 90% of the full source rate in the SIGCOMM2002, Lecture 2,

and Lecture 3 broadcasts; more than 80% of hosts get more than 90% of the full source rate

in the SIGCOMM2003 and Lecture 1 broadcasts. In the Slashdot broadcast, however, only

60% of the hosts get over 90% of the full source rate.

Table 4.4 summarizes statistics from a feedback form users were encouraged to fill when

they left the broadcast. The form required users to rate their satisfaction level for various

quality metrics such as ease of setup, overall audio and video quality, frequency of stalls,

and duration of stalls. The results are subjective and should be considered in conjunction

with the more objective network-level metrics. Further, only 18% of users responded, which

further affects the results. Table 4.4 shows that most users were satisfied with the overall

performance of the system. Further, more users were satisfied with the overall performance

in the SIGCOMM2002 broadcast, which is consistent with the network level metrics in

Figure 4.4.

4.5.2 Sensitivity to Stay Time

Our results in Section 4.5.1 presented the performance of receivers that have stayed in the

group for at least 1 minute. We consider whether there exists a correlation between how

long hosts stay, and the performance they observe. For instance, such a correlation may

occur because hosts that see poor performance may leave the group.
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Event Duration Incarnations Mean Session Incarnation Session Entity Session % Eligible
(hours) Excluding Interarrival Duration (minutes) Duration (minutes) Parents

Waypoints Time (sec) Mean Median Mean Median All Public
hosts hosts

SIGCOMM2002 8 375 83 61 11 161 93 57% 57%

SIGCOMM2003 9 102 334 29 2 71 16 46% 17%

Lecture 1 1 52 75 12 2 26 19 62% 33%

Lecture 2 2 72 120 31 13 50 53 44% 21%

Lecture 3 1 42 145 31 7 42 31 73% 43%

Slashdot 8 2178 17 18 3 11 7 19% 7%

Table 4.3: Summary of group membership dynamics and composition for the 6 larger broad-

casts using the system.
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Figure 4.4: Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the 6 larger broadcasts.

Figure 4.5 plots the cumulative distribution of mean session bandwidth, normalized to

the source rate for the SIGCOMM2002 broadcast. Each curve presents the distribution of

performance of hosts, only considering those hosts that have stayed in the group for at least

a certain amount of time (MinStay). We see that curves corresponding to a MinStay of

15 seconds or more are indistinguishable from each other, however the curve corresponding

to a MinStay of 0 has poorer performance. This was primarily because of a set of about

12 hosts that were unable to receive any data, and likely left the group as a result of this.

Figure 4.6 plots a similar set of curves for the Slashdot broadcast. The performance is

more sensitive to the MinStay parameter, with the performance of curves corresponding

to a MinStay of 2 or more minutes being much better than curves corresponding to a

MinStay of 1 minute or less. We investigate this further by considering the convergence

time, or the time users take to see good performance. Figure 4.7 plots the performance

of only hosts that have a MinStay of at least 5 minutes. All curves correspond to the
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Setup Audio Video
ease Quality Quality

SIGCOMM2002 95% 92% 81%

Slashdot 96% 71% 66%

Table 4.4: Summary of user feedback for two broadcast events. Each number indicates the

percentage of users who are satisfied in the given category.
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Figure 4.5: Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the SIGCOMM2002 broadcast. Each curve corresponds to the hosts that have

stayed for at least a certain amount of time.

same set of hosts - but show the cumulative distribution of the mean performance of the

hosts over the first X minutes of their sessions for various values of X. We see that the

mean performance of the hosts increases with X, and the mean performance over the entire

session is significantly better than the mean performance over the first minute.1

Our results indicate that in the Slashdot broadcast, there exists a strong correlation

between the duration hosts stay and the performance they observe. However, we are unable

to precisely decouple cause and effect from our results. On the one hand, we believe a large

number of receivers tuned in merely to check the system and were not really interested

in the content. These users intrinsically intended to stay for a short time, during which

performance had not yet converged, resulting in poor performance. On the other hand, it

is also possible that users who otherwise intended to stay longer were impatient and left

the system before it had converged to good performance. It is likely that both these factors

had played a role - however we are unable to seperate the factors based on the information

in our logs.

1We believe the larger convergence times in Slashdot are related to the composition of the environment,

and discuss this later in the chapter.
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Figure 4.6: Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the Slashdot broadcast. Each curve corresponds to the hosts that have stayed for

at least a certain amount of time.

4.5.3 Transient Performance of Users

We measure the transient performance based on the application-level losses that users expe-

rience. Our system is instrumented with measurement code that logs application loss rate

sampled at 5 second intervals. A sample is considered as being a loss if its value is larger

than 5% for each media stream, which in our experience is noticeable to human perception.

We use three inter-related, but complementary metrics: (i) session loss , or the fraction of

session for which the incarnation sees loss; (ii) mean interrupt duration; and (iii) interrupt

frequency.

Session Loss is computed as follows. If an incarnation participates for 600 seconds, it

would have about 120 loss samples. If 12 of those samples are marked as being a loss, then

the incarnation sees loss for 10% of its session.

We define an interrupt to be a period of (one or more) consecutive loss samples. Interrupt

duration is computed as the amount of time that loss samples are consecutively marked as

losses. The interrupt durations are then averaged across all interrupts that an incarnation

experiences. Note that this metric is sensitive to the sampling period.

Interrupt frequency is computed as the number of distinct interrupts over the incarna-

tion’s session duration, and reflects the dynamicity of the environment. A distinct interrupt

is determined to be a consecutive period for which the loss samples are marked as a loss. For

example, if an incarnation stays for 1 minute, and experiences 2 distinct 5-second interrupts,

the interrupt frequency would be once every 30 seconds.

Figure 4.8 depicts the cumulative distribution of the fraction of time all incarnations

saw more than 5% packet losses in all three streams in Slashdot and the SIGCOMM2002

broadcast. We only consider incarnations that stay for at least 1 minute to eliminate biases
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Figure 4.7: Cumulative distribution of mean session bandwidth (normalized to the source

rate) for the Slashdot broadcast for hosts that stay for at least 5 minutes. Each curve

corresponds to the performance these hosts observe during a certain amount of time from

the start of the session.

due to incarnations that have short session durations. For the SIGCOMM2002 broadcast,

the performance is good. Over 60% of the hosts see no loss in audio and low quality video,

and over 40% of the hosts see no loss in high quality video. Further, over 90% of the hosts

see loss for less than 5% of the session in the audio and low quality streams, and over 80% of

the hosts see loss for less than 5% of the session in the high quality stream. We will further

analyze the performance of the hosts that are seeing the worst performance in Section 4.5.4.

For the Slashdot broadcast on the other hand, the low quality video and audio streams

see reasonable performance, but the performance of the high quality stream is much less

satisfactory. Over 70% of the users see loss for less than 10% of the session in low quality

video, but only 50% of users see loss for less than 10% of the session for high quality video.

Note that the audio and low quality streams are seeing better performance than the high

quality because they are being prioritized in the transmission. For sessions with a high loss

rate of high quality video, the low quality one was actually displayed to the user.

Figure 4.9 plots the cumulative distribution of the mean time between successive inter-

rupts seen by each incarnation. In the SIGCOMM2002 broadcast over 80% of hosts see an

interrupt less frequent than once in five minutes and 90% see an interrupt less frequent than

once in two minutes. In Slashdot, 60% of hosts see an interrupt less frequent than once in

five minutes and 80% see an interrupt less frequent than once in two minutes. The higher

interrupt frequency with Slashdot probably reflects the more dynamic environment.

Figure 4.10 depicts the cumulative distribution of the duration of interrupts seen by

each incarnation. We find that the interrupt duration is almost identical for 5 curves: all 3

streams in SIGCOMM2002, and low quality video and audio in Slashdot. More than 70%
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Figure 4.8: Cumulative distribution of fraction of session time with more than 5% packet

loss of hosts in the two broadcasts.

of hosts see a mean interrupt duration of less than 10 seconds, and 90% of hosts see a mean

interrupt duration of less than 25 seconds for all 5 streams. However, the high quality video

in Slashdot sees a pronounced higher interrupt duration, with the last 10% of the hosts

seeing a mean interrupt duration of greater than 50 seconds.

4.5.4 Loss Diagnosis

Our results indicate that while the conference-style broadcasts see good performance, the

performance with the Slashdot broadcast is less satisfactory particularly with regard to the

high quality video streams. Further, even for the conference-style broadcasts, there is a tail,

with a small fraction of hosts seeing higher losses and recovery times.

We believe the poorer performance with Slashdot is due to the composition of the

environment. With over 66% of the total incarnations behind cable/DSL, and 68% of the

incarnations behind NAT/Firewall, a very small fraction of the total group members have

the ability at any point in time to take on further children. Further, though the members

may be able to support children, their performance may not be good. We consider such

resource-constrained regimes in greater detail in Section 4.6, and present design refinements

that may help performance in these regimes.

In the rest of this section, we consider the losses that arise in the SIGCOMM2002 broad-

cast. When evaluating a self-organizing protocol, we need to distinguish between losses that

could possibly be fixed by appropriate self-organization techniques from the losses that are

fundamental to the system (i.e., those caused by access link capacity limitations, trans-

oceanic bottleneck link congestions and local congestions). Further, we are interested in

identifying the location of losses in the overlay tree, and attribute causes to the loss. We

now summarize steps in our loss diagnosis methodology below:
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Figure 4.9: Cumulative distribution of time between interrupts

• Identifying Root-Events: If a host sees bad performance, then all of its descendants

downstream see bad performance. Our first step filters out losses at descendants, and

isolates a set of “root-events”. If a host sees losses at a particular time, we determine

whether its parent saw losses in a 5 second window around that time. This correlation

relies on the time synchronization mechanism that we described earlier in the section.

• Identifying Network Events: Next, we classify the losses between the host and its parent

based on cause. In our system, there are potentially two primary causes: (i) parent leave

or death, and (ii) network problems (congestion or poor bandwidth) between the parent

and child. There could be other miscellaneous causes such as implementation bugs. Events

corresponding to parent leave and death can be identified by examining the parent logs.

Implementation bugs are revealed by abnormal patterns we detect during manual verifica-

tion and analysis of logs. We classify the remaining losses that we are not able to attribute

to any known cause as due to network problems.

• Classifying constrained hosts: Network losses can occur at several locations: (i) local

to the child where a parent change is not needed; or (ii) local to the parent, or on the

link between parent and child. As a first step, we identify hosts that see persistent losses

near it using the following heuristic. If a host has seen losses for over a significant fraction

of the session, if most of the losses are “root-losses” (i.e. the parent of the host does not

see loss), and the host has tried several distinct parents during the session, then we decide

the host is bandwidth constrained. Inherent here is the assumption that the protocol is

doing a reasonable job in parent selection. We note that while this heuristic works well in

environments with higher Resource Index, it is not as effective in environments with lower

Resource Index. This is because in low Resource Index regimes, it is difficult to distinguish

whether a node did not find a good parent because its local resources were limited, or
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Figure 4.10: Cumulative distribution of mean interrupt duration.

because the choices in the system were fundamentally poor. Finally, we manually verify

these hosts and look for other evidence they are constrained (for example, location across

a trans-oceanic link, names indicating they are behind wireless links etc.).

• Classifying congestion losses: The remaining losses correspond to hosts that usually see

good performance but see transient periods of bad performance. If its siblings experience

loss at around the same time, it is evidence that the loss is near the parent and not near

a child; if a child has made several parent changes during an extended loss period, it is

evidence that the loss is near the child. For the events that we are unable to classify, we

label them as having “unknown location”.

We analyze the data from the SIGCOMM2002 broadcast using the loss diagnosis method-

ology to get better insight into the tail in performance in Figure 4.8. Figure 4.11 shows the

breakdown of all loss samples across all hosts. We find that almost 51% of losses are not

fixable by self-organization. 49% corresponded to hosts that were bandwidth constrained,

while 2% of losses belonged to hosts that were normally good, but experienced network

problems close to them for a prolonged period. 6% of losses corresponded to network events

that may be fixable by adaptation, while 18% of losses corresponded to network events

that we were not able to classify. Manual cross-verification of the tail revealed about 30

incarnations that were marked as constrained hosts. This corresponded to about 17 distinct

entities. Of these, 5 are in Asia, 1 in Europe, 3 behind wireless links, 1 behind a LAN that

was known to have congestion issues, and 7 behind DSL links.
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Figure 4.11: Loss diagnosis for SIGCOMM2002.

4.5.5 Correlation of losses among users

Our results so far have focused on the performance of individual users independent of other

users. In this section, we consider how losses are correlated across users - that is, how many

hosts may simultaneously see loss at a given time instant. This may occur for instance if

there is congestion on a link higher up in the overlay tree that affects several descendants.

The session is sampled at periodic intervals, and we estimate the number of members

that see loss in each sample. The graph plots the fraction of the total samples for which less

than a certain number of hosts see loss, against the number of hosts that see loss. A point

(x, y) indicates that there are less than x members that experience loss simultaneously for

a fraction y of the total session time. For over 90% of the samples, less than 3 members

simultaneously see loss, while for over 99% of the time samples less than 9 members simul-

taneously see loss. However, there is a tail, which indicates catastrophic events could occur

that affect a significant number of members.

Figure 4.13 provides insight on how the catastrophic events are distributed at different

times of the broadcast. The X-Axis represents the number of seconds that have elapsed

since the broadcast started. The top curve shows the total number of members that are

present in the group at any time. The impulses show the number of members that see loss

at a given time. For most of the time, there are very few members that see loss, confirming

Figure 4.12. There are sharp spikes corresponding to catastrophic events that occur high

in the tree, but most of these spikes last a relatively short duration.

Figure 4.13 also indicates that the loss spikes are more concentrated in certain periods

- in particular, there is a higher concentration around the time 8800− 10000. One possible

reason for this is a particularly harsh catastrophic event that occured at around 8800. This

event involved an outage on the high bandwidth Internet-2 connection from the source that
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Figure 4.12: The session is sampled at periodic intervals, and we estimate the number of

members that see loss in each sample. The graph plots the fraction of the total samples

for which less than a certain number of hosts see loss, against the number of hosts that see

loss.

lasted nearly 3 minutes. The outage affected 5 of the 6 children of the source, with the

unaffected child being in Europe. The protocol reacted by having all these children pick

parents from nodes present in the subtree rooted at the European node. After a while

the outage cleared and nodes in the US moved back to the source. Figure 4.15 provides

confirmation of this episode by plotting the average delay of the recepients from the source

as a function of time. The delay here refers to the sum of the delays of all the overlay

links from the source to the receiver, measured from protocol operations. There is a sharp

spike around time 8800 - this corresponds to a tree with the source having a single child

presented in Europe. While the actions surrounding the event happened over 100 − 200

seconds, a subsequent period of over 1000 seconds appears to have a higher frequency of

high loss instances. It is possible the earlier actions impacted the tree structure in a way to

make it more susceptible to failures over the longer term. However, we are unable to find

direct evidence of this and distinguish this from pure random chance.

4.5.6 Resource Usage

Our results so far focus on application-level losses. We now consider how efficiently the

constructed overlay uses the network resources in the system. Consider Figure 4.3 again,

which plots a snapshot of the overlay during the SIGCOMM2002 broadcast. The shape

and color of each node represents the geographical location of the host as indicated by the

legend. We see that the protocol does a reasonable job of clustering nodes that are in the

same geographical location.

To more formally evaluate the protocol, we consider the resource usage metric defined
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in Chapter 2. We compute the resource usage of an overlay tree to be the sum of the delays

of each of the overlay links. We obtain information about delays between members from

the probe messages they use which are part of the protocol. Further, we consider the ratio

of this value to the resource usage of the minimum spanning tree constructed on the same

set of nodes. Figure 4.14 plots the ratio at different times during the broadcast. For most

of the broadcast, the resource usage is small, and varies between 2 and 3. Note that the

minimum spanning tree though optimal in resource usage may not necessarily be a feasible

data delivery tree, as it may not honor the outgoing bandwidth constraints of nodes. Finally,

it is possible that at much larger scales, the protocol is less efficient at clustering members

given the random nature of our group management protocol. This can be potentially be

improved by having the source provide nodes information about geographically closer nodes,

through mechanisms like network coordinates of nodes [71].

4.5.7 Summary and Discussion of Results

In this section, we presented results analysing the performance of the ESM system from

several perspectives in many real broadcasts. We summarize our key results:

• For the conference/lecture style broadcasts, the system has provided consistently good

application level performance. For all these broadcasts, the system provided an average

throughput of more than 80%−90% of the full source rate. In the SIGCOMM2002 broadcast,

over 90% of the hosts see loss for less than 5% of the session in the audio and low quality
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Figure 4.14: Resource Usage as a function of time since start of broadcast (in seconds)

streams, and over 80% of the hosts see loss for less than 5% of the session in the high quality

stream.

• We presented a loss diagnosis procedure to determine key causes for losses. In the SIG-

COMM2002 broadcast, over 51% of the losses are due to constraints close to the host - hosts

that are not able to receive the full throughput during the session, or hosts that normally

see good performance, but may see periods of bad performance close to them.

• With the Slashdot broadcast, users see good performance with audio and low quality

video, but the performance of high quality video is not as satisfactory. While over 70% of

the users see loss for less than 10% of the session in low quality video, only 50% of users

see loss for less than 10% of the session for high quality video. The key reason for this is

the constitution of the environment - a much higher fraction of hosts behind cable modem,

DSL and NAT results in a much smaller fraction of nodes being eligible parents.

• We investigated how correlated losses among users are. While most of the time there are

very few users that see losses, there are occasional periods due to catastrophic events where

a large number of users see loss. In the SIGCOMM2002 broadcast, we saw the catastrophic

events being more concentrated at particular points in time. While it is possible mechanisms

in the protocol that result in better quality tree structures may have helped alleviate this,

we are unable to find strong evidence to support this.

• We measured the Resource Usage of trees constructed by the protocol, and find this to

range between a factor of 2 and 3 times the resource usage of the minimum spanning tree.

We note that the minimum spanning tree itself may not represent a feasible data delivery

tree. Finally, it may be possible to further reduce the resource usage using explicit cluster-

ing mechanisms in the protocol.

Our system represents a particular point in the design space of solutions for End System
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Figure 4.15: Average delay experienced by receivers as a function of time since start of

broadcast (in seconds). Note that the delay merely refers to the sum of the UDP delays of

each overlay link, and does not correspond to actual delay seen by a data packet (given the

use of TCP on each link).

Multicast. Further, as discussed earlier, our overall approach while designing the system

has been to emphasize putting together a complete prototype, while adopting simple or

natural design choices for any given component. Our results demonstrate that fairly simple

designs with ESM go a long distance towards enabling an interesting class of broadcast-

ing/conferencing applications on the Internet. While our results show the promise of ESM,

there are several directions in which the design of the system can be improved in the fu-

ture. These include the construction of more resilient data delivery structures rather than

trees, incorporating error-recovery mechanisms to exploit buffers at end systems, refining

the group management algorithms to achieve better clustering, and addressing concerns

regarding flash crowds. While all these are important directions, the key challenge that our

deployment experience has highlighted is the need to provide good performance in resource-

constrained environments like Slashdot, where a large fraction of hosts are behind NATs,

and bandwidth-constrained access technologies like cable modem and DSL.

4.6 Design Lessons

In this section, we present design refinements that can enhance performance in environ-

ments like Slashdot that are resource-constrained. To more formally captures the resource

availability in the environment, we introduce a metric that we call the Resource Index.

We define the Resource Index to be the ratio of the total outgoing bandwidth of the

system to the total incoming bandwidth in the system. A Resource Index of 1 indicates

that the system is saturated, and a ratio less than 1 indicates that not all the participating
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Figure 4.16: Resource Index as a function of time with and without waypoint support for

the two broadcasts.

hosts in the broadcast can receive the full source rate. As the Resource Index gets higher,

the environment becomes less constrained and it becomes more feasible to construct a

good overlay tree. The definition of Resource Index has been extended to incorporate

the connectivity constraints of NATs and firewalls, by only considering free slots available

for NAT hosts. See [12] for details. The Resource Index only captures the availability

of resources in the environment, and does not account for factors such as performance of

Internet paths. Further, the index is computed assuming global knowledge, but in practice,

a distributed protocol may not be able to use the resources as optimally as it could have.

4.6.1 On-demand Waypoint Invocation

Our broadcasts employed Planetlab hosts that we call waypoints in addition to the actual

user machines, as discussed in Section 4.4. We study the role played by the waypoints in

our broadcasts.

Figure 4.16 plots the Resource Index in the Conference and Slashdot broadcasts as a

function of time of the broadcast. There are two curves corresponding to each broadcast

- one corresponding to the actual set of hosts present in the broadcast, and one without

the waypoint machines we used. With the waypoints, the Conference broadcast has a Re-

source Index of 4, potentially enough to support 4 times the number of members. Further,

the Conference broadcast had enough capacity to sustain all hosts even without waypoint

support. In fact, all our broadcasts besides Slashdot had sufficient resources among partici-

pating hosts and did not require the support of waypoints. In one of the lecture broadcasts,

all the waypoint left simultaneously in the middle of the broadcast due to a configuration

problem, and we found that the system was able to operate well without the waypoints.

In contrast, the Slashdot broadcast has a Resource Index that is barely over 1. Further,
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Figure 4.17: Number of rejected hosts under three different protocol scenarios in the simu-

lated Slashdot environment.

the Resource Index was much lower without waypoint support, and occasionally dipped

below 1. This indicates that it was not always feasible to construct an overlay among all

participating hosts which could sustain the source rate. Dealing with such environments

can take on two complementary approaches: (i) designing techniques that can enable good

performance in purely application end-point architecture, even in the absence of waypoints

(which forms the thrust of the subsequent sections); and (ii) use a waypoint architecture,

with the insight that waypoints may not be needed for the entire duration of the broadcast,

and can be invoked on-demand. In our future deployments, our objective is to explore both

approaches and gradually decrease the dependence on waypoints, using them as a back-up

mechanism only when needed.

In the long-term, waypoint architectures may constitute an interesting research area in

their own right, being intermediate forms between pure application end-point architectures

which rely only on end-user resources, and statically provisioned infrastructure-centric solu-

tions. The key aspect that distinguishes waypoints from statically provisioned nodes is that

the system does not depend on these hosts, but leverages them to improve performance.

4.6.2 Contributor-Aware Overlays

If the Resource Index dips below 1 like in the Slashdot broadcast without waypoints, the

system must reject some hosts or degrade application quality. In this section, we evaluate

performance in terms of the fraction of hosts that are rejected, or see lower application

quality. We consider three policies. In the First-Come-First-Served (FCFS) policy that

is currently used in our system, any host that is looking for a new parent, but finds no

unsaturated parent is rejected. In the Contributor-Aware policy, the system distinguishes

between two categories of hosts: contributors (hosts that can support children), and free-
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riders (hosts that cannot support children). A contributor C that is looking for a new

parent may preempt a free-rider (say F ). C can either accommodate F as a child, or kick

it out of the system if C is itself saturated. This policy is motivated by the observation

that preferentially retaining contributors over free-riders can help increase overall system

resources. Finally, we consider Rate-Adaptation where a parent reduces the video rate to

existing free-riders in order to accommodate more free-riders. For example, a parent can

stop sending the high quality video (300 kbps) to one child, and in return, support three

additional 100 kbps children. This policy is an example that not only differentially treats

hosts based on their capabilities, but also exploits application knowledge.

We evaluate the potential of these policies by conducting a trace-based simulation using

the group membership dynamics pattern from the Slashdot broadcast. We retain the same

constitution of contributors and free-riders, but remove the waypoints from the group. We

simulate a single-tree protocol where each receiver greedily selects an unsaturated parent,

and we assume global knowledge in parent selection. If there is no unsaturated parent in

the system, then we take action corresponding to the policies described above. Figure 4.17

shows the performance of the policies. We see that throughout the event, 78% of hosts

are rejected using the FCFS policy. Contributor-Aware policy can drastically reduce the

number of rejections to 11%. However, some free-riders are rejected because there are times

when the system is saturated. With the Rate Adaptation policy however, no free-rider is

rejected. Instead, 28% of the hosts get degraded video for some portion of the session.

Our results demonstrate the importance and potential of contributor-aware rejection

and rate adaptation. A practical design has to deal with many issues, for example, robust

ways of automatically identifying contributors, techniques to discover the saturation level of

the system in a distributed fashion, and the trade-offs in terms of larger number of structure

changes that preemption could incur. We are currently in the process of incorporating these

policies in our design and evaluating their actual performance.

4.6.3 NAT-Aware Overlay Construction

Hosts behind NATs and firewalls can constitute an overwhelming fraction of the total hosts

in the Internet (for example, 50%-70% of the hosts in Slashdot ). This significantly lowers

the Resource Index given that hosts behind NATs cannot choose other hosts behind NATs

as parents.

Two modifications to our system can help improve performance with NATs. A first

modification involves using UDP as the transport protocol for data delivery rather than

TCP. This is because a UDP-based transport protocol can enable connectivity between

hosts behind NATs if one of them is a full-cone NAT. Full Cone NATs can receive incoming

packets to a port from any arbitrary host once it sends a packet on that port to any

destination. Such hosts are in contrast to Symmetric NATs which allow incoming packets

only from the host that it has previously sent a packet to. A second modification involves

making the self-organizing protocol explicitly aware of NAT/firewalls. In particular, if

public hosts preferentially choose NATs as parents, then more resources at the public hosts
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Figure 4.18: Resource Index comparison of two connectivity solutions for NAT/firewall: (i)

Slashdot (TCP), (ii) Hypothetical Slashdot (UDP).

themselves are available for NATs/firewalls.

We evaluate the potential of these two design improvements in the Slashdot broadcast.

Figure 4.18 shows the Resource Index for the system for the various design alternatives as a

function of time, again omitting waypoint hosts. The lowest curve corresponds to Resource

Index with NAT-Aware protocol structuring, and a TCP-based protocol. The upper curve

corresponds to the Resource Index with a UDP-based protocol and a NAT-aware protocol

construction. The upper curve represents an improvement of 74%, indicating that the

combination of the two techniques has the potential to significantly improve the Resource

Index .

4.7 Summary

This chapter presents early experience with an operational broadcasting system based on

End System Multicast. To our knowledge this is among the first reports on experience with

real application deployment based on overlay multicast, involving real users.

Our emphasis while designing the system has been to build a completely operational

prototype, tackling a wide range of issues in the process. Many of the system components

present interesting design decisions – our overall approach has been to adopt simple design

choices, with a view to revisiting the decisions in the light of future experience.

This thesis has led the design and implementation of Sparta - the self-organizing protocol

in the system. The design of Sparta is integrated with the overall objectives of validating

the ESM architecture, and building an operational system. Sparta builds on our prior

experience with Narada. However, it employs different group management algorithms as

compared to Narada given the shift in focus from smaller-scale multi-source conferencing

81



applications to larger-scale single-source broadcasting applications. Further, implementing

the protocol in the context of a real system has led to several refinements of the ideas in

Narada, and has led to a unique implementation-oriented perspective on protocol design.

Our experience with the system has included several positives, and has taught us im-

portant lessons which we summarize below:

• ESM is easy to deploy: In less than a year, we have broadcast tens of events and our

system has been used by thousands of users. The system is satisfying the needs of real

content publishers and viewers. The users have been from diverse geographical locations,

and from home, commercial and educational environments. We believe the deployment

achieved surpasses deployment using the IP-Multicast based MBone experimental network,

both in terms of number of participants, and with respect to diversity of participants. The

Mbone, even in its prime, was primarily restricted to university users.

• ESM provides good application performance: We have provided a detailed characteriza-

tion of the performance of the system with a range of metrics. Our experience with several

conference/lecture-type broadcasts indicate that our system provides good performance to

users. In such environments, we consistently observe that over 80 − 90% of the hosts see

loss for less than 5% of their sessions. Further, hosts that perform poorly are typically

bandwidth constrained hosts. Even in a more extreme environment like Slashdot , users see

good performance in audio and low quality video. These results indicate that reasonably

simple designs adopted in the system can go a long way towards enabling good performance

with ESM.

• Environments with low Resource Index are challenging: A key issue with our design

that has been highlighted through experience is the performance in regimes with low Re-

source Index. We considered a range of refinements that can help address the issue based

on exploiting heterogeneity in node capabilities through differential treatment, NAT-aware

overlay construction, and on-demand waypoint invocation. We hope to implement these

refinements and gain more experience in such regimes in the future.

Overall, our experience demonstrates the potential of End System Multicast as a cost-

effective alternative for enabling Internet broadcast, and significantly increases the credibil-

ity of the architecture.
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Chapter 5

The Impact of Heterogeneous Bandwidth Constraints on

Protocol Design

Our experience with a broadcasting system (Chapter 4) highlighted the importance of lever-

aging the heterogeneity in node bandwidth constraints while deploying ESM in environments

where the overall bandwidth resources in the system are scarce. In this chapter, we system-

atically study the implications of heterogeneous bandwidth constraints of nodes on multiple

existing protocol designs for End System Multicast. Our work is set in the context of

bandwidth-intensive and non-interactive applications in environments with little dedicated

infrastructure support.

Figure 5.1 summarizes the constitution of hosts in studies with operationally deployed

overlay systems [12, 58] including our own, and highlights the significant heterogeneity

present in Internet environments today due to presence of various access technologies like

cable modem, DSL and Ethernet. However, the implications of such heterogeneity on

protocol designs for overlay multicast has received limited attention in the community, where

the emphasis has primarily been on issues such as scalability and on delay-based metrics.

Our focus in this chapter is on the outgoing bandwidth of nodes. This is distinguished

from heterogeneity in the incoming, or receiving bandwidth, which has been widely studied

[64, 42]. In the rest of the chapter, we use the term “bandwidth” to refer to the “outgoing

bandwidth” unless otherwise mentioned.

Two classes of designs have emerged for overlay multicast: (i) Performance-centric; and

(ii) DHT-based. Performance-centric protocols are directly optimized for the application at

hand, and the primary consideration while adding links in the overlay topology is application

performance. In contrast, DHT-based protocols focus on maintaining a structure based on

a virtual id space. The objective is to support multiple applications simultaneously, and

amortize costs across the applications [55, 37]. We analyze representative examples of

protocols from each class to understand the impact of heterogeneous bandwidth constraints

of nodes. We note that our nomenclature merely refers to the primary criterion in selection

of links in the overlay topology, and does not imply worse performance for DHT-based

approaches.

We demonstrate through simulations that in typical deployment settings where the

bandwidth resources in the system are scarce, it is critical to treat nodes differently based

on their bandwidth constraints. We show that it is feasible to extend performance-centric

83



protocols to incorporate such differential treatment. To this end, we incorporate appro-

priate techniques in HMTP [76], a representative performance-centric protocol, and show

their potential using a systematic evaluation. To the best of our knowledge, this is the

first systematic study of techniques for bandwidth-based differention in overlay multicast

protocols.

We also consider Scribe [37], a representative and relatively mature DHT-based protocol

for overlay multicast. Our analysis reveals that imposing bandwidth constraints on Scribe

can result in the creation of a significant number of non-DHT links, that is, links that

are present in the overlay tree but are not part of the underlying DHT. Non-DHT links

are undesirable because they restrict the benefits of the route convergence and loop-free

properties of DHT routing, and incur maintenance costs in addition to that of the DHT

infrastructure. We find that a key cause for the creation of non-DHT links is the mismatch

between the id space that underlies the DHT structure and node bandwidth constraints.

We discuss potential ways of addressing the issues.

The rest of the chapter is organized as follows. Section 5.1 provides background and

related work. Section 5.2 presents our evaluation framework. Section 5.3 presents issues

with heterogeneous bandwidth constraints, and how they may be addressed in performance-

centric protocols. Section 5.4 discusses the same issues with DHT-based protocols.

5.1 Background and Related Work

5.1.1 Two classes of protocol designs

We broadly classify protocols for overlay multicast as falling under one of two categories:

(i) Performance-centric protocols; and (ii) DHT-based protocols.

In performance-centric protocols, the focus is on constructing overlay topologies where

neighbor relationships are primarily governed by performance. Such protocols typically

incorporate special group management mechanisms to enable each node to maintain knowl-

edge of a subset of group members. When a parent dies, or bad performance is observed,

nodes switch to a parent they believe can provide better performance. Nodes may also per-

form periodic probes for locating better parents. Both protocols presented in this thesis -

the Narada protocol in Chapters 2 and 3, as well as the broadcasting protocol in Chapter 4

- are examples of performance-centric protocols. Other examples of such protocols include

Scattercast [10], Yoid [24], NICE [57], Overcast [34], and HMTP [76].

In contrast, in DHT-based protocols, such as Delaunay Triangulations [36], CAN-multicast

[49], Bayuex [66] and Scribe [37], members are assigned addresses from an abstract coordi-

nate space such as a ring, torus or hypercube. By creating neighbor links based on these

addresses, a structured overlay is created which enables scalable and efficient unicast rout-

ing based on the node identifiers. These unicast routes are then used for creating multicast

distribution trees.

Two principal reasons have been advocated for a DHT-based approach. First, such an

approach provides a generic primitive that can benefit a wide range of applications besides

overlay multicast, such as file-sharing. Second, the same DHT-based overlay can be used to
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simultaneously support and maintain a large number of overlay applications and multicast

trees. This could help keep the costs low as compared to constructing and maintaining

many individual overlays.

While DHT-based approaches have several advantages, a key concern is application

performance, given that selection of overlay links is not dictated by performance alone.

Studying the performance potential of DHT-based overlays, and mechanisms to enable

good performance with DHTs is an active and ongoing area of research. Much of the work

to date has focused on delay-based metrics. More recent work has investigated the impact

of heterogeneity in nodes for file-sharing applications [19]. In contrast, this chapter focuses

on concerns specific to heterogeneous bandwidth constraints of nodes unique to overlay

multicast.

5.1.2 Handling of heterogeneous bandwidth constraints

Issues related to the heterogeneity in the bandwidth constraints of nodes have not been

considered by many of the most frequently cited and used self-organizing protocols both

in the DHT and non-DHT space. This includes protocols such as Yoid [24], Narada [11],

Overcast[34], Scattercast[10], ALMI [45], Scribe [37], CAN [49], Bayeux [66], Delaunay

Triangulations [36], NICE [57], HMTP [73], SplitStream [8] Coopnet [43] and Bullet [14].

The focus of most of this work has been on algorithms for scalable group management,

ensuring low delay penalties, and redundancy of data delivery.

Dealing with heterogeneity in the receiving capabilities of nodes through mechanisms

like layered coding has been widely studied [64, 42]. In contrast, our focus is on hetero-

geneity in the outgoing bandwidth of nodes.

The key idea underlying the techniques considered in this chapter is preemption, or

the ability of a node to displace another node in the overlay tree. This notion has been

employed by other works [8, 40, 37]. However, the preemption heuristics used in [8, 37] are

based on delays or prefix matches of nodes, in contrast to this chapter where the emphasis

is on preemption based on bandwidth constraints. Second, none of these works consider

the impact of preemption on tree depth, nor systematically study the trade-offs associated

with the disruptive nature of preemption. In contrast, this chapter highlights the critical

need of bandwidth-based preemption, and investigates issues related to incorporating these

techniques in different classes of protocols.

5.2 Evaluation Framework

The setting we consider is that of unidirectional multicast from a single source to a set of

receivers. Such unidirectional flow of data would typically correspond to non-interactive

applications such as video broadcasting which do not place a tight constraint on the end-

to-end latency. We assume a constant bit rate (CBR) source stream, which is a good

approximation for streaming video sources in the Internet. We assume an environment

where only nodes that are interested in the content at any point in time are members of the

distribution tree and contribute bandwidth to the system. We assume a single distribution
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Event Low Medium High Avg

Speed Speed Speed Deg

100Kbps 1.5Mbps 10Mbps

(deg. 0) (deg. 2) (deg. 10)

SIGCOMM2002 [12] 22% 2% 76% 7.64

Slashdot [12] 74% 4% 22% 2.28

Gnutella [58] 65% 27% 8% 1.34

Figure 5.1: Constitution of hosts from various sources. SIGCOMM2002 and Slashdot refer to

two different broadcasts with our operationally deployed ESM Broadcasting system (Chapter 4).

Gnutella refers to a measurement study of peer characteristics of the Gnutella system.

tree spanning the set of interested nodes.

5.2.1 Models

We describe key characteristics of the environment that we model and that we believe are

important to consider while designing protocols for overlay multicast:

• Per-node bandwidth constraints: We use the outgoing bandwidth limit of each host to

determine its degree or fanout in the overlay multicast tree, i.e., the maximum number of

children that it can forward the stream to. We make the simplifying assumption that the

outgoing bandwidth limit of a host is a fixed quantity that is a property of the host itself

regardless of the peer that it is communicating with. This models the common case where

the bottleneck for all communication is the access link to the wide area network.

• Heterogeneity in node constraints: Our model of heterogeneity in node degrees is derived

from realistic application bandwidth requirements and measurements of host bandwidth

constraints. Typical streaming video rates on the Internet today are of the order of sev-

eral hundred kilobits per second [12]. On the other hand, using data from measurement

studies [58] and real Internet broadcast events [12] summarized in Figure 5.1, the host con-

nectivity can be categorized into: (a) constrained links such as cable and DSL (few hundred

Kbps), (b) intermediate speed links such as T1 lines (1.5 Mbps), and (c) high-speed links (10

Mbps or better). Based on these observations, we quantized the degrees of the low, medium,

and high speed hosts to 0, 2, and 10. The degree 0 nodes are termed non-contributors. We

note that for higher speed connections, the degree is likely to be bounded by some policy (in

view of the shared nature of the links) rather than the actual outgoing bandwidth. While

host access link bandwidths are likely to change over time, we believe that there will still

be a significant range of bandwidths and that application data rates will still be significant

relative to host bandwidths.

• Bandwidth resources in the environment: We define the Average Degree of the system

to be the the total degree of all nodes (including the source) divided by the number of

receivers (all nodes but the source). An average degree less than 1 indicates that the

system is fundamentally constrained and that some receivers would have to be rejected. On

the other hand, an average degree greater than or equal to 1 indicates that it is feasible to

86



build a tree. The larger the index, the greater is the “excess capacity” of the system. In this

chapter, we focus on environments with an average degree greater than 1. One could deal

with more constrained environments by employing a multi-rate model where the source rate

is lowered, sacrificing quality, to accommodate all receivers, but we do not consider such

adaptation in this chapter.

• Group Dynamics: We use a Poisson arrival pattern and a Pareto-distributed stay time

for clients. These choices have been motivated by group dynamics characteristics observed

from our deployment experience described in Chapter 4, and Mbone measurement traces [5].

Unless otherwise mentioned, our experiments last for a duration of 1000 seconds, and assume

a mean arrival rate of 10 joins per second. Further, our experiments assume a mean stay

time of 300 seconds, a minimum stay time of 90 seconds, and a parameter of α = 1 in the

Pareto distribution. We note that this corresponds to a steady state group size of about

3000 members.

• Network Model: Given that our focus is on bandwidth-sensitive and non-interactive

applications, we consider a uniform-delay network model throughout this chapter.

5.2.2 Metrics

Our primary metric for evaluating protocols in this chapter is the depth of the multicast

distribution trees. We believe this metric significantly influences application performance.

As discussed in Chapter 4, the performance seen by a node in an overlay multicast appli-

cation depends on two factors: (i) the frequency of interruptions due to the failure of an

ancestor, or due to congestion on an upstream link; and (ii) the time it takes a protocol to

recover from the interruptions. The frequency of interruptions a node experiences in turn

depends on the number of ancestors the node has, or the depth of the node in the tree.

In addition to the depth metric, we have considered several other metrics in this chapter.

Section 5.3.2 considers the loss rate metric,1 and the impact of reducing depth on loss. We

consider a metric called rejection rate in Section 5.3.2, and a metric related to the fraction

of non-DHT links in DHT-based solutions in Section 5.4. We will define these metrics in

the appropriate sections.

5.3 Performance-Centric Protocols

In this section, we discuss the issues raised by heterogeneous node constraints to protocols for

overlay multicast. We also consider and evaluate the feasibility of extending performance-

centric protocols with appropriate techniques to address the issues. We study the same

issues in the context of DHT-based approaches in Section 5.4.

While much of the insight in this section applies to any performance-centric protocol,

we demonstrate our ideas using HMTP [76]. HMTP is a performance-centric protocol that

honors per-node bandwidth constraints, but does not treat nodes differently based on their

bandwidth constraints. We further justify our choice in Section 5.3.1.

1When interruptions are only due to node departures, we can show Loss Rate ≈
depth

stay time ∗

reconnection time, where stay time is the mean duration of a node’s participation in the multicast tree.
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5.3.1 Honoring per-node constraints

Our choice of HMTP was motivated by two reasons: (i) it is designed for large-scale groups

and has scalable algorithms for group management unlike Narada (Chapter 2); and (ii)

it has clear well-defined heuristics to honor per-node degree constraints of nodes. We de-

scribe NICE [57] and Overcast [34], two influential protocols that do not honor per-node

constraints, and then describe the mechanisms that HMTP [76] adopts to deal with the

issues.

To understand the impact of degree constraints on overlay tree construction, consider

Figure 5.2(a) that shows a snapshot of an overlay tree. Assume that each node has a

degree constraint of 2. If node P dies, one of its children (say C) can take its spot and

choose G as its parent. However, node L can neither choose G, nor choose C as its parent.

Similarly, when a node joins the group, it might contact the source, but find the source

saturated. Thus, any protocol designed with the requirements of per-node constraints must

have appropriate mechanisms for dealing with these scenarios.

The NICE protocol, targeted for low latency (rather than high bandwidth) data stream-

ing applications constraints, organizes receivers into a set of layers. Hosts in each layer are

partitioned into a set of clusters, each of which has a size between k and 3k − 1. Due to

the fact that: (i) a host is a cluster-head at every layer below its top-most cluster; and (ii)

a head of a cluster must forward traffic to every member of the cluster, the NICE protocol

places an uneven burden on its nodes. For example, the root of the tree forwards data
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Figure 5.4: Rejection-rate Vs. fraction of non-contributors for various average degree values

to O(logN) ∗ k participants. An example structure that NICE may construct is shown

in Figure 5.3. To see how the lack of per-node degree constraints simplifies the design of

NICE, consider a situation where node A dies. This results in the promotion of one of its

siblings (say B) to the next higher level. B supports its existing children (X, Y ), as well

as other children of A (say C), because the promotion of B to a higher level enables it to

accommodate additional children.

The Overcast protocol [34] designed for infrastructure-centric (as opposed to application

end-point) environments, does not enforce any hard degree constraint. For example, in

Figure 5.2(a), the failure of node P results in both C and L choosing grand-parent G.

When a parent is overloaded, a “lazy migration” procedure is adopted where nodes become

children of their old siblings. Such an approach can involve transient overloads that can be

of concern in application end-point environments.

We now describe the mechanisms HMTP [76] adopts to handle per-node constraints. A

node that joins the source conducts a depth-first style search beginning from the root until

it can locate a node with free capacity to attach to. When a node is disconnected from

the overlay, for example due to the death of its parent, it contacts the grandparent and

conducts a similar depth-first search. For example, in the example above, node L begins

a depth first search operation at G, picking F as parent. HMTP also contains heuristics

to optimize the overlay for delay, but these details are not relevant to our discussion. The

reader is refered to [76] for further details.

One concern with the approach adopted by HMTP is that it could result in a tail in

depth. The above example results in an increased depth for L and its descendants. We

consider this further in Section 5.3.3.
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5.3.2 Issues with heterogeneous constraints

There are two key concerns with heterogeneous node constraints:

• Rejections: The tree constructed by a protocol could attain sub-optimal configurations,

as for example shown in Figure 5.2(b). Here, the system as a whole has sufficient bandwidth

resources to enable connectivity to all nodes. However, the subtree rooted at the source is

saturated with non-contributors, and the bandwidth resources of nodes in the disconnected

subtrees remains unutilized. Nodes in the disconnected subtrees eventually are rejected, or

forced to exit the multicast session.

• High Depth: An optimal configuration in terms of depth is one where the nodes that

contribute the most (i.e. highest degree) form the highest levels, with lower degree nodes

at lower levels. In the absence of mechanisms that explicitly favor construction of such

trees, a protocol would produce trees of high depth such as shown in Figure 5.2(c), and

consequently poorer performance as discussed in Section 5.2.2.

We evaluate these concerns using simulations with the HMTP protocol, for practical settings

summarized in Figure 5.1. Further, we consider the sensitivity of our results to: (i) the

average degree of the system; and (ii) the fraction of non-contributors in the system. Note

that increasing the fraction of non-contributors while holding the average degree constant

increases the variance (a measure of heterogeneity) in node degree.

Figure 5.4 plots the fraction of rejected participants as a function of the fraction of

non-contributors. We assume that a rejection occurs if a host is unable to reconnect to

the source within 30 seconds. For each constitution of participants (i.e., average degree and

fraction of non-contributors), we plot the mean and standard deviation across 10 runs. Each
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curve corresponds to configurations with the same average degree. We notice two trends.

First, as the fraction of non-contributors increases, the rejection rate increases. Second, for

the same fraction of non-contributors, the rejection rate decreases as the average degree

increases. Overall, the rejection rates are highest in regimes where there is a combination

of constrained bandwidth environments (low average degree), and a high fraction of non-

contributors. Further, the rejection rates are high under realistic settings of Table 5.1: over

10% in the Slashdot configuration, and over 40% in the Gnutella configuration. Finally,

the standard deviations are high. This is because the occurance of rejections is sensitive to

the particular run, and depends on the particular sequence of joins and leaves.

Figure 5.5 plots the depth as a function of the average degree, assuming that 65% of

hosts are non-contributors. We compute the mean depth of the node by sampling its depth

at different time instances in the session, and compute the 50 and 90 percentiles across all

the nodes. We also plot the 50 and 90 percentiles of the optimal depth trees. As the average

degree decreases, the depth of the HMTP trees increases. However, the depth of the optimal

tree remains unaffected because even with a low average degree (close to 1), there are a

sufficient number of high-degree (degree 10) nodes to ensure a low depth. We also considered

varying the fraction of non-contributors while keeping the average degree fixed. While the

optimal depth could decrease with a higher fraction of non-contributors, the constructed

trees have depths that remain largely independent of the fraction of non-contributors.

5.3.3 Techniques for differential treatment

We considered the following key techniques for differential treatment which we incorporated

into HMTP to address the concerns related to rejections and high depth raised in Section

5.3.2.

• Preempt-Degree: When a node, say A, joins the system, or has been disconnected

because of a parent leave or preemption, it adopts the same Depth-First-Search procedure

as described in the HMTP protocol. However, during its search for a parent, if it finds a

node P having a child C with a lower degree than A, it can displace C and take its slot. The

preempted node C treats the situation like a parent failure and does a DFS beginning at

its grandparent. We note that C may not be directly able to choose A as a parent, because

A might itself be saturated with existing children.

• Preempt-Zero: This technique is similar to Preempt-Degree except that only non-

contributor hosts are preempted. In particular, nodes with degree 10 or 2 can preempt

degree 0 nodes, but a node with degree 10 cannot preempt a node with degree 2.

In addition to these techniques, we consider a heuristic called Preempt-Degree-Height, which

is motivated by the fact that even under homogeneous degree constraints, HMTP can result

in imbalanced trees. For example, in Figure 5.2(a), if P fails, only one of the children (say

C) can attach itself to the grandparent G. The other child L conducts a depth first search

and connects to the first node with available capacity (say F ). This results in an increased

depth for L and its descendants. In the Preempt-Degree-Height heuristic L may preempt
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a node that has a lower height, provided L has an equal or greater degree than that node.

The height of a node is its distance to the farthest leaf in its subtree, and is maintained in

a distributed fashion by having each node periodically send its height upstream.

While preemption can avoid sub-optimal configurations and help improve depth, it in-

troduces additional disruptions to the tree structure. Of the heuristics above, intuitively we

would expect Preempt-Zero to perform well as it completely eliminates rejections, and the

only preemptions it causes are to non-contributor nodes who do not have any descendants.

However, both Preempt-Degree, and Preempt-Degree-Height result in the disruption of

entire sub-trees, and further Preempt-Degree-Height can cause O(logN) preemptions in

each search. Thus, to understand the trade-offs involved with the use of Preempt-Degree

or Preempt-Degree-Height as compared to using Preempt-Zero, we focus our evaluation

around the following questions:

• Are the benefits of preemption significant in terms of the improvement in metrics like

rejection rates, loss and depth?

• Do the gains in stability from constructing lower depth trees offset the instability incurred

by the preemptions themselves? Are there any benefits to adopting Preempt-Degree as

compared to Preempt-Zero ?

• Does preemption improve the performance of the system as a whole, or does it penalize

nodes in the lower degree classes?

5.3.4 Results

In this section, we evaluate the performance of Preempt-Zero, Preempt-Degree, and

Preempt-Degree-Height. In all the graphs in this section, we present results for various
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values of average degree, but keep the fraction of non-contributors fixed at 50%. We discuss

the impact of varying fraction of non-contributors in Section 5.3.5.

We first consider the depth metric. We compute the mean depth of the node by sam-

pling its depth at different time instances in the session. We compute the median across

all the nodes. Figure 5.6 plots the median as a function of average degree with 50%

non-contributors. As expected, Preempt-Degree lowers the depth as compared to No-

Preemption. Further, Preempt-Degree does better than Preempt-Zero, and the benefits

are more prominent at lower values of average degree. Finally, Preempt-Degree seems to

perform similar to Preempt-Degree-Height - this is because the latter heuristic improves

only the tail in depth and not the median value.

We study the impact of preemption on the loss rates seen by the application. We

consider a model where hosts gracefully leave, informing children about their departure,

but not forwarding data in the interim time. This allows typical recovery times of the

order of a few hundred milliseconds. We note however that the recovery times with No-

Preemption can be significantly higher when sub-optimal configurations such as shown in

Figure 5.2(b) are created. We compute the mean session loss seen by receivers, measured

as the fraction of the session duration for which a node is disconnected from the source.

We consider the median across receivers. Figure 5.7 plots the loss rates seen with various

schemes. The loss rates with all preemption schemes is lower than No-Preemption. Further,

at low average degrees, Preempt-Degree is more effective at reducing loss than Preempt-

Zero, while Preempt-Degree-Height does not appear to improve loss much compared to

Preempt-Degree. The reduction in loss with preemption is due to both a reduction in tree

depth, and an elimination of longer recovery times that may occur with No-Preemption .

We have also conducted experiments with non-graceful leaves, which result in a higher

recovery time. Here, the loss rates increase for all schemes, but the loss rate with Preempt-
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Figure 5.8: Loss rate distribution for different receiver classes. Avg. Degree = 1.34, 50%

non-contributors.

Degree is much lower than other schemes. The exact magnitude depends on the fraction

of leaves that are non-graceful and the time to detect the failure of a parent. While these

experiments demonstrate the potential benefits to minimizing depth by employing Preempt-

Degree, we expect the technique to complement rather than substitute other mechanisms

to improve protocol resiliency such as redundancy [8, 14, 43] or error recovery [60].

It is particularly interesting that the loss rate with Preempt-Degree is lower than that

with Preempt-Zero, despite the fact that Preempt-Zero only causes disruptions to non-

contributor nodes that have no descendants, while Preempt-Degree can affect nodes with

large subtrees. Our results show that the reduction in depth with Preempt-Degree and

the consequent reduction in disruption due to ancestor departures more than offsets the

disruption due to preemption itself. This benefit of preemption is likely to be even greater

when there are other sources of disruption such as transient congestion on upstream links,

or failure of ancestors.

We provide a possible informal explanation for why the disruptions caused by preemp-

tions could be low. The disruption caused due to preemption of nodes of a particular class

depends on: (i) the rate at which nodes of that class are preempted; and (ii) the number of

affected descendants per preemption which in turn depends on how “high” in the tree the

preempted node is located. The rate of preemption is likely to be high only if there is a

substantial fraction of nodes of higher degree classes. But, the larger the fraction of nodes

of higher degree classes, the lower the location of the preempted node in the tree. This is

because preemption constructs trees with nodes of higher degree placed higher in the tree.

Finally, we consider the performance seen for different categories of receivers with

Preempt-Degree. We compute the mean session loss seen by each receiver, and compute

the median and higher percentiles across receivers. Figure 5.8 plots the distribution of
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mean session loss across receivers, for a configuration with average degree 1.34, and 50%

of participants being non-contributors. The top-most line corresponds to No-Preemption.

Over 50% of the users see a loss above 10%, while 10% of the users see loss above 20%.

The lower 3 curves corresponds to the loss rate distributions for the 3 classes of receivers

of different degrees. While the lowest class of receivers does see worse performance than

the higher classes, its performance is much better than the No-Preemption scheme. This

indicates that preemption helps improve the performance of the system as a whole.

5.3.5 Sensitivity

We investigate key factors that affect our conclusions:

Effect of Scale: To study the scaling behavior, we keep the mean stay time fixed, and

increase the join rate. This results in larger group sizes in steady state. We consider the

mean session loss rates seen by receivers, and compute the median across receivers. Figure

5.9 plots the median as a function of the join rate (and hence group size). The loss rates

without preemption increase sharply with group size. The loss rate with Preempt-Zero also

slightly increases, but with Preempt-Degree and Preempt-Degree-Height losses grows very

slowly.

Varying Constitution: Our results so far have been conducted by fixing the fraction of

non-contributors at 50% and varying the average degree. We conducted experiments with

a fixed average degree of 2.28, and varying the constitution. We consider the mean session

loss rates seen by receivers, and compute the median across receivers. Figure 5.10 plots the

median as a function of the fraction of non-contributors. We find that the benefits of using
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Preempt-Degree as opposed to Preempt-Zero becomes more significant as the fraction of

non-contributors (degree 0) nodes decreases. This is because in these regimes the fraction

of lower degree nodes (degree 2) becomes large enough that it becomes important to ensure

these nodes do not occupy the highest positions in the tree structure.

Heterogeneity Model: We considered how sensitive this result is to the ratio of the

degrees between the larger and smaller contributors. We consider a simple two class model,

fix the degree of the upper class at 10 and vary the degree of the lower class. While

we omit detailed results, we find that Preempt-Degree always performs better than No-

Preemption and the benefits are most significant in regimes where there is significant

disparity in contribution levels of the nodes.

5.3.6 Summary

In this section, we showed that it is critical to incorporate techniques for differential treat-

ment based on bandwidth constraints of nodes. Further, it is feasible to extend performance-

centric protocols with heuristics for differential treatment of nodes. We introduced the

Preempt-Degree technique in the HMTP protocol, and showed that it can eliminate rejec-

tions and reduce interrupt rates and loss. Our detailed simulation study demonstrates that

Preempt Degree performs better than Preempt-Zero in environments where the overall frac-

tion of lower degree nodes among all contributors is high, where the number of nodes in the

system is large, and where the disparity in contribution levels is high. In such regimes, the

benefits gained by constructing trees with lower depth using degree preemption outweigh

the additional instability due to preemptions. This results in a net decrease in the loss rate.

We also find that preemption improves the performance of even the worst class of receivers,

and hence is beneficial to the system as a whole. While our results our promising, an actual
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design will need to consider other dimensions of heterogeneity such as the duration a node

stays, and include heuristics to prevent preemption by nodes with high degree but poor

geographical location. We defer these issues to future work.

5.4 DHT-based protocols

In this section, we consider the implications of heterogeneous bandwidth constraints for

DHT-based protocols. All the issues pertaining to performance-centric protocols presented

in Section 5.3 also apply to DHT-based protocols. However, in this section, we focus on

additional issues unique to DHT-based approaches.

While there have been several DHT-based proposals for multicast in recent years [36,

49, 66, 37], we choose to focus on Scribe. Scribe is one of the more mature proposals among

DHT-based approaches with well-defined mechanisms to honor per-node degree constraints.

A more recent follow-up work SplitStream [8] builds on top of Scribe and considers data

delivery along multiple trees, rather than a single tree to improve the resiliency of data

delivery. While we draw on some of the extensions proposed in Splitstream, we only consider

single tree data delivery in this chapter. We discuss some of the implications of multiple-tree

solutions in Section 5.4.5.

5.4.1 Pastry/Scribe

Scribe [37] is a decentralized application-level multicast protocol built on top of the Pastry

DHT protocol [55]. Pastry is targeted at settings which involve support of a large number

of multicast groups. Each group may involve only a subset of the nodes in the Pastry

system, but members in Pastry not part of a particular multicast group may be recruited

to be forwarders in any Scribe tree. In this chapter however, our evaluation is conducted

assuming all participating members in Pastry are also part of the Scribe tree.

Each node within Pastry is assigned a unique 128-bit nodeId which can be thought of as

a sequence of digits in base 2b (b is a Pastry parameter.) A Pastry node in a network of N

nodes maintains a routing table containing about log2b N rows and 2b columns. The entries

in the rth row of the routing table refer to nodes whose nodeIds share the first r digits with

the local node’s nodeId. The routing mechanism is a generalization of hypercube routing:

each subsequent hop of the route to the destination shares longer and longer prefixes with

the destination nodeId.

Scribe utilizes Pastry’s routing mechanism to construct multicast trees in the following

manner: each multicast group corresponds to a special ID called topicId. A multicast

tree associated with the group is formed by the union of the Pastry routes from each group

member to the topicId. Messages are multicast from the root to the members using reverse

path forwarding [15].

A key issue with Scribe is that the number of children of a node A in the Scribe tree

can be as high as the in-degree of the node in the underlying Pastry infrastructure – that

is, the number of nodes in Pastry which use A as the next hop when routing towards the

topicId. In general, this may be greater than the bandwidth constraints of the node. In
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order to tackle this overloading of nodes, the authors of Scribe/SplitStream have proposed

two mechanisms:

• Pushdown: Whenever an overloaded node A receives a request from a potential child X,

it can drop an existing child C, if X is found to be more “desirable” as a child than C. The

orphaned node (either C or X) can contact one of the children of A as a potential parent,

and this process goes on recursively. Choosing the criteria to determine which child of A

(if any) that X should displace is an important issue. We discuss this in greater detail in

Section 5.4.3.

• Anycast. If all nodes in the system have non-zero degree constraints, pushdown is guar-

anteed to terminate since leaf nodes will always have capacity. However, in the presence of

non-contributor (degree 0) nodes, pushdown could end at a leaf that does not have capacity.

The authors encountered this issue in the context of Splitstream [8]. This is tackled by an

anycast procedure which provides an efficient way to locate a node with free capacity.

5.4.2 Issues with heterogeneous constraints

DHT-based approaches like Scribe need to deal with many of the issues that were raised with

performance-centric protocols in Section 5.3, such as avoiding rejections and constructing

low-depth trees. However, in addition, they need to address key concerns with regard

to preserving the structure of the DHTs. In particular, while the pushdown and anycast

operations described in Section 5.4.1 help Scribe deal with heterogeneous node bandwidth

constraints, they may result in the creation of parent-child relationships which correspond

to links that are not part of the underlying Pastry overlay. We term such links as non-DHT

links. We believe these non-DHT links are undesirable because: (i) the route convergence

and loop-free properties of DHT routing no longer apply if non-DHT links exist in significant

numbers; and (ii) they require explicit per-tree maintenance which reduces the benefits of

DHTs in terms of amortizing overlay maintenance costs over multiple multicast groups (and

other applications).

Our evaluation with Scribe thus measures both the depth, and the fraction of non-DHT

links in the trees constructed. While the depth captures performance of the tree, the fraction

of non-DHT links measures the extent to which we need to deviate from the DHT structure

while constructing Scribe trees and honoring node bandwidth constraints. A large fraction

of non-DHT links diminishes the benefits of using Pastry.

5.4.3 Techniques Evaluated

We present two variants of the pushdown algorithm that we evaluated in Scribe. The

first policy, Preempt-ID-Pushdown is based on the policy implemented in [8], and is not

optimized to minimize depth in heterogeneous environments. The second policy, Preempt-

Degree-Pushdown, is a new policy that we introduced in Scribe to improve depth in hetero-

geneous environments.
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• Preempt-ID-Pushdown: When a saturated node A receives a request from a potential

child X, X preempts a child C of A if X shares a longer prefix with the topicID than C.

Further, the orphaned node (X or C) contacts a child of A and continues the pushdown if

the orphaned node shares a prefix match with the child. However, if no child of A shares

a prefix with the orphaned node, we continue with the pushdown operation by picking a

random child of A.2 An anycast operation is employed if a leaf node is reached without a

parent being found.

• Preempt-Degree-Pushdown: Here, node degree rather than node id is the primary criterion

in the pushdown. When a saturated node A receives a request from a potential child X,

X preempts the child (say C) of A which has the lowest degree, provided X itself has a

higher degree than C. The orphaned node (X or C) picks a random child of A that has a

degree equal to or greater than itself and continues the pushdown. An anycast operation is

employed if a leaf node is reached without a parent being found.

While Preempt-Degree-Pushdown can improve the depth of trees produced by Scribe

compared to Preempt-ID-Pushdown, it can lead to the creation of a larger number of non-

DHT links given that the id is no longer a key criterion in pushdown. Further, Preempt-

Degree-Pushdown itself cannot create perfectly balanced trees - for example, if node A has

a lower degree than node X, there is no mechanism in place for X to displace A. Doing so

would require further deviation from the DHT-structure, and in particular would involve

the creation of additional non-DHT links. In fact, we believe it is not easy to construct trees

with both low depth, as well as a low fraction of non-DHT links. We discuss this further in

Section 5.4.4.

5.4.4 Empirical Results

We present the results of experiments with Scribe with both homogeneous and heteroge-

neous degree constraints. We use the Scribe and Splitstream implementation [56] obtained

from the authors for our experiments. We refer the reader to [62] for certain implemen-

tation issues that we found with the code-base and the precautions we took to ensure our

results are not affected by implementation artifacts.

Homogeneous Environments: We assume that all nodes have a degree H. Figure 5.11

plots the fraction of non-DHT links within the Scribe tree as a function of H. Each curve

corresponds to a different value of b, the base of the node IDs in Pastry. We find the fraction

of non-DHT links is high and over 40% for all configurations we evaluate.

We now discuss factors that contribute to the creation of non-DHT links in Figure 5.11.

Consider a topicID of 00...00. Let 0∗ represent the nodes that have their first digit match

the topicID (that is, the first digit is 0 and the rest of the digits are arbitrary). A join

or reconnect request from any node in Scribe should be routed in the first hop to a 0∗

2This is a slight departure from [8], where an anycast operation is employed if no child of A shares a

prefix with the orphaned node. We have observed better performance in depth in homogeneous environments

with our optimization. The intuition is that pushdown tends to do better at filling up nodes higher in the

tree, while anycast tends to choose parents at more random locations in the tree.
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Figure 5.11: Fraction of non-DHT links (mean over the session) in homogenous environments

for various values of node degree and b, the base of the node IDs in Pastry.

node, since we would like to match at least the first digit of the topicID. So, if there were

no pushdown operations, given the reverse-path nature of tree construction in Scribe, all

parents in a Scribe tree would be 0∗ nodes.

A key factor leading to the creation of non-DHT links is that the total bandwidth

resources at the 0∗ nodes may not be sufficient to support all nodes in the tree. Let b

be the base of the node IDs in Pastry, and AD be the average degree of the nodes in the

system. Then, the 0∗ nodes represent a fraction 1
2b of the total nodes of the system, and

we expect them to only be able to support a fraction AD
2b of the nodes in the system. Thus,

we expect to see 1 − AD
2b links that have non-0∗ nodes as parents. Such links are likely to

be non-DHT links. This is because: (i) these links must have been created by pushdown

operations as described above; and (ii) there are no explicit mechanisms in place to prefer

choosing DHT links during a pushdown.

From this discussion, we expect the number of non-DHT links to be equal to 1− H
2b in a

homogeneous environment, where all nodes have a degree H (as the average degree AD =

H). While this partially explains Figure 5.11, the fraction of non-DHT links is significantly

higher than our estimate. In particular, if H ≥ 2b, then we would not expect to see any

non-DHT links. However, even when H = 16 and b = 2 so that H ≫ 2b, non-DHT links

constitute over 40% of the links in the tree.

Further investigation revealed that the additional non-DHT links were created due to

a sharp skew in the fan-ins of the 0∗s in the system. The fan-in of a node is the number

of other nodes in the system that have this node as a neighbor in Pastry. Due to the skew

observed, Scribe join requests hit the 0∗s non-uniformly, causing a much larger number of

pushdowns, and hence non-DHT links. This also results in poor utilization of the available

bandwidth resources at many of the 0∗ nodes. We believe that the skew arises due to Pas-
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try’s join and repair mechanisms in which a new node picks up routing table entries from

other nodes in the system, which makes nodes that joined earlier far more likely to be picked

as neighbors as compared to other nodes. We defer to future work an examination of how

fundamental the skew is to the design of Pastry/Scribe, and whether it can be eliminated

using simple heuristics.

Heterogeneous Environments: Figure 5.12 compares the depth of the Scribe multicast

tree created with the Preempt-ID-Pushdown and Preempt-Degree-Pushdown in heteroge-

neous environments. The experiments assume 50% of the nodes are non-contributors (degree

0), and are repeated for various average degree values. The optimal median depth for any of

the plotted configurations (not shown in the graph) is about 4. The top 2 curves correspond

to Preempt-ID-Pushdown and Preempt-Degree-Pushdown. Preempt-ID-Pushdown performs

significantly worse than optimal, which is as expected given that there are no mechanisms

in place that optimize depth in heterogeneous environments. Preempt-Degree-Pushdown

performs better than Preempt-ID-Pushdown but is still not optimal. This is consistent with

our discussion in Section 5.4.3.

Figure 5.13 shows the fraction of non-DHT links from our simulations for Preempt-

Degree-Pushdown, and Preempt-ID-Pushdown. The fraction of non-DHT links is over 80%

for a range of average degrees. We believe both factors that we discussed with homogeneous

environments – insufficient resources at 0∗ nodes, and the skew in the in-degree of Pastry –

have contributed to the creation of non-DHT links. Further, as discussed above, even if the

skew could be completely eliminated, we would still expect to see 1 − AD
2b non-DHT links

due to insufficient resources at 0∗ nodes, where AD is the average degree of the nodes in
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Figure 5.13: Fraction of non-DHT links Vs. Average Degree in heterogeneous settings. The

fraction of non-contributors is fixed at 50%.

the system.

In addition to these factors, policies that optimize the depth of trees in Scribe in hetero-

geneous environments may potentially result in an even higher fraction of non-DHT links.

For example, in an environment with nodes of degree H, L, and 0 (H > L), the optimal

depth tree requires having all nodes of degree H at the highest levels in the tree, and thus

as interior nodes. However, only a fraction 1
2b of nodes of degree H are likely to be 0∗

nodes and using the other nodes would likely result in non-DHT links. This leads us to

expect that Preempt-Degree-Pushdown would have a higher fraction of non-DHT links as

compared to Preempt-ID-Pushdown, given that it results in better depth trees. However,

both policies perform similarly (Figure 5.13). We believe this is because the other factors

causing non-DHT links dominate in our experiments resulting in an already large fraction

of non-DHT links for Preempt-ID-Pushdown.

5.4.5 Discussion of Potential Solutions

We considered the impact of heterogeneous bandwidth constraints on DHT protocols. Our

evaluation focused on Scribe, one of the more mature DHT-based proposals for overlay mul-

ticast, which has clear and well-defined mechanisms for dealing with per-node constraints.

These mechanisms can result in the creation of non-DHT links in the Scribe tree, that is,

links which are present in Scribe but not in Pastry. We believe that it is important to ensure

a low fraction of non-DHT links in order to leverage the benefits of DHTs (loop avoidance

and id-based routing, amortizing overhead involved in constructing multiple trees). Our

experiments with Scribe reveal a significant fraction of non-DHT links.

There are three factors that can cause this result. First, the bandwidth resources of

nodes that share a prefix with the topicId may not be sufficient to sustain all nodes in the
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system. Second, minimizing depth of trees in Scribe requires utilizing higher degree nodes,

even though they may not share a prefix with the topicId. The third factor is a skew in

the in-degree of Pastry. We believe the skew is a result of specific heuristics employed in

Pastry, and can potentially be minimized. However, we believe the first two factors are

fundamental to the mismatch of node bandwidth constraints and node ids with DHT-based

designs. While we do not breakdown the contribution of each factor in our experiments,

simple analysis shows that the first factor alone could lead to the creation of 1 − AD
2b non-

DHT links, where AD is the average degree of the system, and b is the base of the node

IDs in Pastry. In the rest of the section, we discuss potential ways of addressing the issue.

ID-Degree Correlation: A natural question is whether changing the random id assignment

of DHTs, and instead employing an assignment where node ids are correlated to node band-

width constraints can address the issue. To evaluate the potential of such techniques, we

consider the Correlated-Preempt-ID heuristic, where nodes with higher degrees are assigned

nodeIds which share longer prefixes with the topicId. Figure 5.12 shows that this policy

indeed is able to achieve depths close to the optimal depth of 4, while Figure 5.13 shows

it can significantly lower the fraction of non-DHT links. However, while such a solution

could work in scenarios where the DHT is primarily used for a specific multicast group,

disturbing the uniform distribution of DHT nodeIds can be undesirable. Further, DHT’s

are particularly useful in scenarios where there is a shared infrastructure for a wide variety

of applications including multicast sessions. In such scenarios, it is difficult to achieve a

correlation between node id and node degree assignments across all trees.

Multiple Trees: Another question is whether the issues involved can be tackled using the

multi-tree data delivery framework [8, 43] employed in SplitStream to improve the resiliency

of data delivery. In this framework, 2b trees are constructed, with the topicIds of every

tree beginning with a different digit. Each node is an interior node in the one tree where

it shares a prefix with the topicId, and is a leaf node in the rest. We note that a direct

application of the multi-tree approach cannot solve the problem - if nodes belong to multiple

degree classes to begin with, then, each of the trees will continue to have nodes of multiple

degree classes, and the issues presented in this chapter continue to be a concern.

Multiple Trees with Virtual Servers [19]: One potential practical direction for solving the

issues with DHTs is to combine the multi-tree data delivery framework with the concept of

virtual servers proposed in [19]. The idea here is that a node can acquire a number of ids

proportional to its degree, and then use the multi-tree data delivery framework above. The

trade-off then is that we are not completely concentrating the resources of a higher degree

node in one tree, rather, we are distributing it across several trees, thereby giving up on

the policy of interior disjointness. We believe this may be a promising direction, and the

implications of this trade-off would be interesting to evaluate.

5.5 Summary and Conclusions

Our experience with a broadcasting system (Chapter 4) highlighted the importance of lever-

aging the heterogeneity in node capabilities while deploying ESM in environments where
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the overall bandwidth resources in the system are scarce. In this chapter, we systematically

consider the impact of heterogeneous outgoing bandwidth capabilities of nodes on protocol

designs for overlay multicast. We consider the implications of this issue on representative

examples from two classes of protocol designs – performance-centric and DHT-based.

Our key contributions are:

• We demonstrate that differential treatment of nodes based on their bandwidth capabilities

must be a first-order criterion in protocol design. We show that techniques for differential

treatment can be incorporated in performance-centric protocols, and demonstrate their

benefits in reducing depth, and overall losses using a detailed simulation study. To our

knowledge this is the first systematic analysis of the trade-offs involved with an approach

based on differential treatment.

• We show that the id-based structure of DHT-based protocols complicates differential

treatment. We consider the fraction of non-DHT links to help quantify the trade-offs.

Our analysis indicates that the fraction of non-DHT links could be significant due to the

mismatch between the id space that underlies the DHT structure and node bandwidth con-

straints. We evaluated and discussed some possible ways of improving the design.

Our future work involves evaluating techniques for differential treatment in actual Internet

implementations of overlay protocols, and considering additional dimensions of heterogene-

ity such as the duration that nodes stay. We also hope to further explore the trade-offs

between performance-centric and DHT-based protocols.
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Chapter 6

Related Work

End System Multicast was the first published proposal that argued for and demonstrated

the viability of an overlay approach to multicast [11]. Since our initial proposal [11], there

has been a significant interest in architectures and protocols for overlay multicast. The field

of overlay multicast has emerged as an important one of its own right. In this chapter, we

discuss some of the advances in the field.

Mirroring the three broad areas in which this thesis makes contributions, we will organize

our discussion by covering related work in:

• Overlay Multicast Architectures

• Protocol Designs for Overlay Multicast

• Broadcasting/conferencing systems

While there have been works that have investigated one or two of the above broad

dimensions, this thesis is unique in that it makes contributions to all three of the dimensions.

Further, it has adopted an integrated approach to architecture, protocol design and

system building. The primary goal of validating the End System Multicast architecture has

motivated us to build a system, and this in turn has influenced an empirical approach to

protocol design.

6.1 Architectures for Multicast

The research community has been cognizant of issues with the IP Multicast architecture.

In this section, we discuss other work that has proposed alternate architectures for multicast.

Application end-point based overlays: Yoid [24] and ALMI [45] are the architectural

proposals closest in spirit to End System Multicast. Both these efforts were conceived in-

dependently of End System Multicast in work concurrent to our own [11]. Both proposals

have explored pushing multicast functionality to end systems participating in the group,

and propose protocols for constructing overlay structures. While this thesis shares the ar-

chitectural vision of these proposals, it has since then gone much further to validating the
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vision, by pursuing a systems approach to protocol design. This has led the thesis to ex-

plore issues such as bandwidth adaptation, heterogeneity of nodes and ultimately to a fully

operational and extensively deployed broadcasting system based on ESM.

Infrastructure-based Overlays Scattercast [10] and Overcast [34] also looked at an

overlay approach to multicast. However, they have chosen to investigate another end of

the architectural spectrum, infrastructure-centric architectures. Here, an organization that

provides value-added Internet services deploys powerful hosts on the Internet at strategic

locations, and end systems merely receive data from these hosts. Both Scattercast and

Overcast provide protocols that can be used to organize hosts of service providers into

efficient overlays. Such an approach is also being employed by commercial providers such

as Akamai [2], Fast-Forward [30], and Real Broadcasting Networks [50].

The key reason we are motivated to explore an application end-point architecture is the

goal of ubiquitous deployment of broadcasting and conferencing applications. An appli-

cation end-point architecture is instantaneous to deploy, and one can set up a broadcast

with minimal set-up overhead and low cost. Further, such an architecture is completely

distributed, and leverages the bandwidth resources of end systems actually participating in

the group. It can thus scale to support a very large number of multicast groups. In contrast,

while an infrastructure service can potentially deal with a smaller number of well-defined

groups, it is unclear whether it can support millions of groups associated with ubiquitous

deployment.

While application end-point architectures have the promise to enable ubiquitous deploy-

ment, infrastructure-centric architecture can potentially provide more robust data delivery.

Infrastructure architectures involve better provisioned proxy hosts that can be located at

strategic locations on the Internet. Further, the probability of failure of such hosts is low.

In contrast, application end-point architectures potentially involve a wider range of end

systems that may not provide as good performance, and must deal with the failures of end

systems and the dynamic join/leave behavior of such hosts. Finally, infrastructure-based

architectures may scale better to very large group sizes given the better robustness proper-

ties they provide.

Other overlay multicast architectures: Application end-point, and infrastructure-

based architectures represent two ends of a rich spectrum. However, there are several other

possible architectural choices in this space. One interesting possibility for the longer term is

waypoint-based architectures that we mentioned in Chapter 4. These architectures do not

depend on pre-provisioned infrastructure nodes, but can dynamically invoke and leverage

resources of waypoints to gracefully improve performance. One other hybrid architecture

that has recently been explored is I3 [31]. This architecture relies on infrastructure nodes

for the data path, but allows application end-points to control the tree construction process.

Finally, there has been work that has argued for combining IP Multicast and an overlay

approach to multicast [76]. Here, a multicast group consists of various multicast islands,

each with designated members. An overlay protocol is used to connect designated members,

and IP Multicast is used within each domain.

106



Refinements to IP Multicast framework: There have been proposals that have at-

tempted to alleviate some of the concerns with IP Multicast but still retain the basic ideas

of the IP Multicast architecture. Express [29] investigated a single-source multicast model

where only a designated source can multicast to a group. The work also provided mecha-

nisms for access control and charging. Reunite [68] investigated mechanisms for reducing

the forwarding state in routers by requiring only routers that split and forward data along

multiple interfaces to maintain per-group state. However, none of these works address fun-

damental concerns with IP Multicast - violation of the stateless architectural principles of

Internet design, and support for higher level functionality such as congestion control and

reliability.

MBone: The MBone [7] was a static and manually configured overlay, which was not

meant as an alternative to IP Multicast, rather aimed at enabling the incremental deploy-

ment of IP Multicast. Organizations join the MBone by configuring a machine as an MBone

router, which in turn is manually configured to an upstream router using an overlay tun-

nel. The key technical aspects that distinguish the MBone from overlay multicast proposals

is the self-configuring and performance-aware aspect of the overlay construction, and the

construction of the overlay among participating end systems without involving any other

dedicated hosts.

6.2 Protocol Design

Narada was the first published protocol for overlay multicast. There were other indepen-

dently conceived protocol designs published shortly after Narada such as [24, 34, 10, 45].

Since these early works, there have been several newer protocols in the community that have

investigated different aspects of the design space. In particular, there has been significant

work on algorithms for scalable group management, and improving the resiliency of data

delivery through the construction of richer data-delivery structures rather than trees.

The thesis research may be distinguished from this body of work by the systems, or

empirical, approach to protocol design. The protocol designs have been driven by the

objective of being deployed in operational systems involving real applications and real users.

This has led us to a focus on an orthogonal and complementary set of issues such as adaption

to dynamic network metrics, issues pertaining to adaptation to available bandwidth, and

issues related to the heterogeneity in node capabilities.

In the rest of this section, we discuss some of the advances in protocol design, and

organize the discussion around the particular issues handled in the work.

6.2.1 Scalable Group Management

The Narada protocol was targeted at smaller-scale multi-source conferencing applications,

and adopted a two-step approach to constructing data delivery trees. In the first step,

it constructs a mesh among participating members, and in the second step, it constructs
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spanning trees of the mesh. A key issue with adopting Narada to larger group sizes is

that it requires members to maintain complete membership state about all other members.

Several protocol designs have since evolved in the community that were driven by the focus

of constructing larger-scale overlays.

Yoid [24] was one of the earliest protocols that had more scalable group management

algorithms. In contrast to the two-step mesh-based approach of Narada, Yoid construct trees

directly, in that members choose parents from other members they know. Yoid adopted a

shared tree approach, where a single overlay tree is constructed for all sources. A key concern

with the shared tree approach however is that it is difficult to maintain connectivity of the

tree structure. A shared tree approach involves the need to elect a root of the shared tree -

handling failure of the root is not easy and it is difficult to analyze the robustness properties

of the resulting designs. One potential way to simplify the design is to assume the existence

of stable nodes (rendezvous points) that are present throughout the broadcast.

Overcast [34] was another early protocol that constructed trees directly, and which

required members to know only a subset of group members. In contrast to Yoid however,

Overcast was explicitly targeted at single source broadcasting applications. Given that the

broadcast is relevant only as long as the source is alive, Overcast does not need to deal with

concerns pertaining to failure of the core, and direct approaches to constructing trees are a

natural solution in such cases.

Since these early works, there have been other protocols that have employed scalable

group management algorithms [76, 28, 57, 33]. NICE [57] was one of the more representa-

tive of these protocols, and was targeted at large-scale and low latency (rather than high

bandwidth) applications. NICE organizes receivers into a set of layers. Hosts in each layer

are partitioned into a set of clusters, each of which has a size between k and 3k − 1, where

k is a protocol parameter. Each cluster elects a head, and the heads form the next layer.

NICE was perhaps one of the earliest works to systematically evaluate the scaling prop-

erties of the algorithm. Detailed performance comparisons with Narada demonstrate that

NICE [57] achieves competitive performance in metrics likes stress and latency, and signifi-

cantly reduces control overhead for larger group sizes. However, NICE has similar concerns

as with shared tree approaches like Yoid - it is difficult to analyze the robustness of the

design in the presence of failures of the root of the hierarchy. Another important concern

with NICE is that nodes higher in the hierarchy are required to support a greater number

of children in a manner that does not consider their outgoing bandwidth constraints. This

issue is partially addressed by modifications to the NICE algorithm in Zigzag [17].

Among other protocol designs, [33] constructs a 2-level hierarchy, and employs a variant

of the Narada protocol on each level of the hierarchy. HMTP [76] is built around a depth-

first-search like algorithm. Nodes that join conduct a search in this style to locate a parent

with free capacity. When a parent dies, the children contact the grand-parent and again

conduct a similar depth-first-search algorithm.

The Sparta protocol (Chapter 4) too employs scalable algorithms for group management,

and draws on some of the work discussed above. It too uses a direct tree-construction

algorithm, given that it is targeted at single-source broadcasting applications, and does

not need to deal with robustness concerns of shared-tree approaches. In our broadcasting
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protocol, members maintain information about a random set of hosts that are uncorrelated

to the tree, in addition to path information. This is in contrast to protocols like Overcast

[34] and NICE [57], where group membership state is tightly coupled to the existing tree

structure: Yoid [24] also maintains group membership information decoupled from the tree

structure - however the mechanisms they adopt are different. Sparta uses a gossip protocol

adapted from [52], while Yoid builds a separate random control structure called the mesh,

and Scribe constructs a topology based on logical identifiers.

Finally, in contrast to all these proposals, ALMI [45], advocates a centralized approach

to overlay construction. Here, a central entity (typically the source) maintains knowledge

of the entire group. When a node needs to look for a new parent, it requests the source

and who assigns it an appropriate candidate. While centralized approaches can simplify

coordination in tree construction, and can greatly simplify design, a natural concern is the

control overheads with large group sizes, and robustness concerns with failures close to the

central server.

6.2.2 DHT-Based Approaches

In all the protocols we have described so far, the focus is on constructing overlay topologies

where neighbor relationships are primarily governed by performance. Such protocols typi-

cally incorporate special group management mechanisms to maintain knowledge of a subset

of group members. When a parent dies, or bad performance is observed, nodes switch to

a parent they believe can provide better performance. Nodes may also perform periodic

probes for locating better parents. We term such protocols as being performance-centric.

In contrast to these approaches, a whole new class of approaches for overlay multicast

which include designs such as Delaunay Triangulations [36], CAN-multicast [49], Bayeux

[66] and Chord [67] have emerged. We term these protocols as DHT-based protocols. In

these protocols, members are assigned addresses from an abstract coordinate space such as a

ring, torus or hypercube. By creating neighbor links based on these addresses, a structured

overlay is created which enables scalable and efficient unicast routing based on the node

identifiers. These unicast routes are used for creating multicast distribution trees (using

flooding or reverse path forwarding.)

DHT-based approaches originally evolved in the context of the design of large-scale

content location systems such as Gnutella [25]. Since then, they have been viewed as

providing attractive properties that can help in the design of scalable group management

algorithms for overlay multicast. Two principal reasons have been advocated for a DHT-

based approach. In the last few-years, advocates of DHT-based approaches believe that the

approach provides a generic primitive that can benefit a wide range of applications including

overlay multicast, and file-sharing. A second argument advanced for these approaches is

that the same DHT-based overlay can be used to simultaneously support and maintain a

large number of overlay applications and multicast trees. This could help keep the costs

low as compared to constructing and maintaining many individual overlays.

A natural concern with DHT-based approaches is performance, given that selection of

overlay links is not dictated by performance alone. Studying the performance potential of
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DHT-based overlays, and mechanisms to enable good performance with DHTs is an active

and ongoing area of research. Much of the work to date has focused on delay-based metrics.

However, several other dimensions that affect protocol design including network dynamics,

heterogeneity in host characteristics, and issues related to NATs and firewalls are yet to be

considered.

6.2.3 Richer structures for data delivery

Another dimension in which we can taxonomize protocols for Overlay Multicast is on the

structure used to deliver data to receipients. All the protocols in this thesis disseminate

data using tree like structures. Trees have also been the standard structure for data delivery

in a wide range of protocols [24, 11, 34, 10, 36, 66, 37, 57, 73]. Trees are the most natural

way of delivering data, and in the absence of specialized coding algorithms, do not incur

any additional redundancy. However, they suffer from the concern that failure of a member

can affect a large number of other members in the overlay. To improve the overall resiliency

of data delivery, recent years has seen the emergence of more redundant structures for data

delivery.

CoopNet [43] and Splitstream [8] have investigated delivering data using multiple trees,

rather than a single tree. In these protocols, the source uses a custom codec to encode the

multimedia stream into many sub-streams using multiple description coding, and distributes

each sub-stream along a particular overlay tree. The quality experienced by a receiver

depends on the number of substreams that it receives. Further, each node is an interior

node in exactly one tree, so that the failure of a node only affects its descendants in a

given tree. This approach has several attractions. First, it improves the overall resiliency

of the system. Second, it enables support for heterogeneous hosts by having each receiver

subscribe to as many layers as its capacity allows. Third, such an approach may help make

application end-point architectures viable in more extreme environments where all nodes are

behind limited bandwidth connections like DSL and cable modems. For example, consider

a scenario where the source rate is 100 Kbps, and all participating hosts have an out-going

bandwidth of 100 Kbps. A single tree solution will result in a linear chain of participating

hosts. In contrast, a multiple tree solution can result in the construction of two trees, with

each node being an interior node in one tree, and capable of supporting two children in that

tree.

Bullet [14] is another approach for improving the resiliency of data delivery where a

mesh is constructed among participating receivers. Individual receivers are responsible for

locating and retrieving data from multiple points in parallel, and there are mechanisms

present which ensure data received from multiple parents is disjoint. However, it is not

clear how effective these mechanisms are in suppressing duplicate packets. Further, the

interaction between the overlay construction and coding algorithms have not been discussed.

6.2.4 Protocol Taxonomy

Figure 6.1 summarizes the discussion in this section, by presenting a taxonomy of the pro-

tocol designs. At the highest level protocols can be classifed as centralized or distributed,
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Figure 6.1: Taxonomy of protocol proposals

depending on whether the algorithms for group management are run in a distributed fash-

ion or centralized at the source. ALMI [45] and Coopnet [43] represent such centralized

protocols. Distributed protocols can be further classified as performance-centric or DHT-

based, depending on the primary criterion in parent selection. Bayeux [66], CAN [48] and

Scribe [37] are some of the DHT-based protocols. Among the performance-centric proto-

cols, Narada and Gossamer are targeted at multi-source applications, and adopt a 2-step

mesh-based approach for constructing overlays. Yoid [24] employs a shared-tree approach,

while Overcast [34] and the protocol in the ESM broadcasting system are explicitly tar-

geted at single-source broadcasting applications. Figure 6.1 also shows that an orthogonal

dimension in which we can taxonomize protocols is based on the structure used for data de-

livery. While most protocols discussed above adopt tree-based structures, Coopnet [43] and

SplitStream [8] adopt multi-tree based approaches, and Bullet [14] employs a mesh-based

approach.

6.3 Broadcasting Systems

To our knowledge, the ESM broadcasting system is the only operationally deployed sys-

tem in the research community that uses an application end-point based overlay multicast

architecture. Recently, several peer-to-peer broadcast systems have been built by commer-

cial entities [4, 9, 69] and non-profit organizations[44]. To our knowledge, many of these

systems focus on audio applications which have lower bandwidth requirements. However,

given the limited information on these systems, we are unable to do a detailed comparison.

Commercial entities, such as Akamai [2] and Real Broadcast Network [50], already

provide Internet broadcasting as a charged service. They rely on dedicated, well-provision

infrastructure nodes to replicate video streams. Such an approach has some fundamental

advantages such as security and stable performance. However, these systems are viable only

for larger-scale publishers, rather than the wide-range of low budget Internet broadcasting

applications we seek to enable.

The MBone [7] Project, and its associated applications such as vic [39], vat [32], and

MASH [38] made a great effort to achieve ubiquitous Internet broadcasting. However, the

MBone could only touch a small fraction of Internet users (mostly networking researchers)

due to the fundamental limitations of IP Multicast and dependence on the special MBone
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infrastructure. In contrast, our system has over a short time already reached a wide range

of users, including home users behind a range of access technologies, and users behind NATs

and firewalls.
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Chapter 7

Conclusions and Future work

In this chapter, we summarize our key contributions, and present new research directions

that are motivated by this thesis.

7.1 Contributions

Enabling the ubiquitous deployment of broadcasting and conferencing applications on the

Internet has been a long-standing vision in the networking community. For much of the

1990’s, the conventional wisdom was that such applications are best supported using the

IP Multicast architecture. However fundamental challenges like per-group control state in

routers, and support for higher level functionality like congestion control and reliability,

have prevented IP Multicast from being widely deployed. Migrating multicast functionality

from routers to end systems has the potential to address the issue - however a key challenge

is performance.

We summarize the key contributions and distinctive highlights of this thesis below:

Architecture: The primary contribution of this thesis is demonstrating that multicast

functionality can be efficiently supported without router support. We demonstrated this

thesis in the context of the End System Multicast architecture. The thesis has been vali-

dated by extensive evaluation using simulations, Internet test-beds, and the deployment of

an ESM-based broadcasting system that has been used by several thousand users.

Protocol Design: This thesis has made important contributions to the design of self-

organizing protocols for overlay multicast. The scale of nodes involved, the dynamics of

participation (group dynamics and Internet congestion), and the heterogeneity in the Inter-

net make the design of these protocols very different than traditional distributed algorithms.

The specific contributions of the thesis include:

• The design and implementation of Narada, perhaps the first self-organizing protocol

for overlay multicast, the design of which was motivated by multi-source conferencing

applications (Chapter 2).

113



• The design and implementation of Sparta, a protocol for single-source broadcasting

applications that forms part of the operationally deployed broadcasting system. This

is perhaps the only self-organizing protocol in the community that has seen real user

experience (Chapter 4).

Empirical Approach to Protocol Design: The protocol designs in this thesis have

been motivated by real applications, and by issues that arose while deploying such appli-

cations in real Internet settings using ESM. The thesis has identified and highlighted such

issues, considered techniques to address them, and demonstrated the effectiveness of the

techniques using systematic empirical evaluations. We summarize some specific contribu-

tions below:

• The thesis demonstrated that it is critical for self-organizing protocols targeted at con-

ferencing applications to dynamically adapt to both bandwidth and latency. We presented

techniques to achieve this, and showed how they could be incorporated in the Narada pro-

tocol. A detailed evaluation on a wide-area Internet test-bed demonstrated the heuristics

worked well. We also considered light-weight probing techniques, and showed that tech-

niques based on round trip time and bottleneck bandwidth are effective in guiding parent

selection(Chapter 3).

• Experience implementing a protocol for a real broadcasting system has provided further

insight into issues associated with bandwidth adaptation. Our experience reveals the need

to consider loss rates to deal with VBR streams, and the need for dynamic tuning of the

detection time (time taken to detect poor application performance) to the resources avail-

able in the environment and network connectivity at clients. While the performance with

the ESM broadcasting system was satisfactory on the whole, the experience highlighted

challenges with resource-constrained regimes. The experience also indicated the poten-

tial to meet these challenges through design refinements involving exploiting heterogeneity

in node capabilities through differential treatment, and NAT-aware overlay construction

(Chapter 4).

• The deployment experience led to a systematic study of the impact of heterogeneous

out-going bandwidth contraints of nodes on existing protocols of two different classes for

End System Multicast. We showed that differential treatment of nodes based on their

bandwidth capabilities must be a first-order criterion in protocol design. We showed that

techniques for differential treatment can be incorporated in performance-centric protocols,

and demonstrated their benefits using a detailed simulation study. With DHT-based ap-

proaches however, straight-forward extensions are not sufficient to address the issue, owing

to the mismatch between the ID space that underlies the DHT and the outgoing bandwidth

constraints on nodes. (Chapter 5).

Influential role in new research area: This thesis has influenced significant follow-up

work in the research community since the initial proposal of End System Multicast [11].

Overlay multicast has evolved into a field of its own right, as demonstrated by a rich body

of work [24, 11, 34, 10, 36, 49, 66, 37, 57, 43, 73, 14, 8] that has emerged. The Narada pro-

tocol has been extensively used as a benchmark for comparison (for example, [57]). Metrics
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such as Stress and Relative Delay Penalty introduced by this thesis in [11] have been

extensively used in the research community to evaluate overlay protocols.

System Artifacts: The self-organizing protocols developed in this thesis have been

implemented and deployed in a fully operational broadcasting system based on End System

Multicast. The system is satisfying the needs of real content publishers and viewers. It has

been used to broadcast tens of events, and has been used by several thousand users. The

extensive and sustained usage of the system are proving it to be an important contribution

in its own right.

7.2 Future Work

We present research directions that are opened by this thesis research. The research direc-

tions include: (i) directions related to the viability of the End System Multicast architecture;

(ii) hybrid architectures combining the ideas of End System Multicast with infrastructure-

based architectures; (iii) issues related to protocol design; and (iv) issues related to the

design of the ESM system.

7.2.1 Bandwidth Constrained Environments

Our experience with deploying the ESM broadcasting system revealed the challenges in-

volved in deploying ESM in environments with a large fraction of hosts behind access tech-

nologies like cable modem and DSL, that have limited outgoing access bandwidth. In the

long run, it is likely that access technology bandwidth will improve with higher speed con-

nections to the home. However, in the foreseeable future, it is important to design solutions

that can work in these environments.

One key direction is application level adaptation. For example, recent work [43, 8]

have proposed a solution that involves delivering data using multiple trees, rather than a

single tree. The source uses a custom codec to encode the multimedia stream into many

sub-streams using multiple description coding, and distributes each sub-stream along a

particular overlay tree. The quality experienced by a receiver depends on the number of

substreams that it receives. Each node is an interior node in exactly one tree, so that the

failure of a node only affects its descendants in a given tree. While originally proposed

to improve resilience of data delivery, such an approach may help make application end-

point architectures viable in more extreme environments where all nodes are behind limited

bandwidth connections like DSL and cable modems. For example, consider a scenario where

the source rate is 100 Kbps, and all participating hosts have an out-going bandwidth of 100

Kbps. A single tree solution will result in a linear chain of participating hosts. In contrast,

a multiple tree solution can result in the construction of two trees, with each node being an

interior node in one tree, and capable of supporting two children in that tree.

We believe the multi-tree solution represents just one point in a rich design spectrum

that involves interplay between video coding and overlay construction, and many more

interesting solutions may appear if we investigate further.
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7.2.2 User Cooperation and Security Issues

In this thesis, we have focused on the performance concerns with ESM. However, there are

other factors besides performance that may affect the viability of End System Multicast.

We consider two such issues below:

• User Cooperation: ESM relies on users co-operating with each other to share their out-

going bandwidth resources, and it is unclear how willing they would be do so. Further, in

environments with heterogeneous node capabilities, achieving good performance with ESM

potentially requires unequal contributions from different participants. The questions are

even more pertinent in environments where users pay based on their bandwidth usage as

opposed to a flat Internet connectivity fee. To an extent, our system deployment has helped

us gauge user behavior, and we find there is significant willingness among users to cooper-

ate. One important direction for future research is to look at policies that provide explicit

incentives for users to contribute more resources e.g. better quality to users who contribute

more through differential treatment). From a system perspective, it would be interesting

to explore APIs that enable users to customize and control the bandwidth contributed by

them

• Security: The protocols proposed in this thesis are entirely dependent on cooperative and

non-malicious behavior by participating end systems. In larger-scale real world deployments,

it would be critical to systematically consider the behavior of the protocol in the presence

of malicious hosts. An issue that is potentially easy to tackle is authenticating content from

the source which can prevent an intermediate node from replacing original content with

false content. However, a harder issue involves hosts that do not co-operate on the control

path. For example, consider a gossip-based group management algorithm where a host feeds

other hosts names of non-existent members. Possible starting points would involve building

reputations of end-systems over time, and potentially adopting a more centralized design

involving a trusted source.

7.2.3 Hybrid Architectures

This thesis has primarily focused on application end-point architectures that do not involve

support from infrastructure. A natural direction involves exploring hybrid architectures

that both utilize resources at application end-points as well as infrastructure nodes. A

particularly interesting design point that we discussed in Chapter 4 involves waypoint ar-

chitectures. Waypoints refer to machines that may be employed in addition to end systems

actually participating in our broadcast. The waypoints are not statically provisioned nodes,

however the system can invoke them dynamically, and leverage them to improve perfor-

mance. Waypoints can improve the performance of the system by increasing the resources

available, providing more stable nodes, and by providing nodes that can provide better

performance quality. Several interesting questions arise with waypoints: when should a sys-

tem dynamically invoke waypoints? should waypoints be invoked at particular geographical

locations? Designing a waypoint service that can be shared among a large number of appli-

cations raises very interesting issues. How should the resources of waypoints be distributed
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among competing applications? What kind of charging model could be used to charge a

particular application instantiation for the use of a set of resources?

7.2.4 Protocol Design Enhancements

The design of protocols for End System Multicast is still an evolving field. There are a large

number of dimensions which protocol designs must further consider. As one example, we

have shown the importance of considering heterogeneity in node capabilities as part of pro-

tocol design through techniques for differential treatment. Further issues involve considering

heterogeneity in other dimensions such as the duration nodes stay and the performance the

nodes provide as parents. Interesting issues arise with having to simultaneously consider

a range of metrics that may be in conflict with each other. On the other hand, there are

several issues that need to be tackled with the design of very large scale groups. These

include group management algorithms for tackling flash crowds, algorithms for clustering

nodes based on geographical location by relying on techniques such as GNP [71], and repair

mechanisms to improve quality for data delivery.

7.2.5 Understanding Trade-offs between Protocol Design Choices

While there has been a plethora of designs for overlay multicast, and overlay networks in

general, there is relatively little insight on how protocols compare, and how various design

alternatives compare. Several questions of this nature remain yet to be answered. What

are the trade-offs between performance-centric and DHT-based protocols? What does it

mean for a protocol design to be scalable? How to characterize the benefits of an approach

that employs redundancy compared to one does not? What are the limitations of multi-

tree data delivery approaches [43, 8]? How do they compare to alternate mesh-based

approaches such as [14]? The answers to these questions are linked to simulation and

emulation methodologies that can help scientifically analyze and compare overlay designs.

An associated challenge is developing simulation and emulation models at an appropriate

level of realism - while current simulators are often too far removed from reality and can

potentially mislead, it is next to impossible to model all the complexity inherent in the

Internet. One direction is to see how best to make use of the traces and data obtained as

part of our deployment experience in running trace-driven simulation experiments that can

enhance the realism of current simulators.

7.2.6 System Issues

There are several research questions that have originated from our effort to build a full-

fledged broadcasting system. One question relates to the transport protocol in the system.

It is clear from our experience that there is need to use a UDP-based transport protocol,

both from the perspective of supporting NATs, and given that we are dealing with streaming

media applications However, we believe traditional TCP-friendly UDP-based congestion

control protocols may not be appropriate, and there is need to explore protocols that adapt

at coarser time-scales. Another direction is to explore mechanisms such as buffering to
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improve the resilience of the system, given that we are dealing with broadcasting applications

that are real-time but not interactive, and can tolerate higher latencies. A third direction is

the design of techniques that can accurately determine the access bandwidth of hosts rather

than relying on user configurations. Such a technique must also consider hosts in sites that

are multi-homed and potentially have different access bandwidths along different Internet

connections.

7.2.7 Management of Large-scale Distributed Systems

The deployment of a large-scale distributed and self-organizing broadcasting system raises

important concerns regarding how such a system can be monitored. Accidental bugs in code

can lead to serious implications given that we are dealing with high bandwidth traffic being

exchanged between hosts without explicit control on who they are communicating with.

Similar concerns apply in the context of other deployments of distributed systems, such

as Planetlab [46]. Interesting research directions include the development of distributed

monitoring infrastructures, that monitor a large range of invariants concerning the overall

health of the system such as the total traffic going out of a node and high volumes of traffic

being sent to a node from many different nodes.
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