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Abstract

We define a class of Markov chains that are called recursive foreground-background quasi-birth-
and-death (RFBQBD) processes, and describe approximate (nearly exact) analyses of an RF-
BQBD process. An RFBQBD process consists of a foreground QBD process whose transitions
depend on the level of a background QBD process, where the transitions of the background QBD
process may depend on the level of another background QBD process, and this dependency may
be repeated recursively. We also evaluate the running time and accuracy of the analyses numer-
ically by applying them to analyze the performance of a particular task assignment policy in a
multiserver system.
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1 Introduction

A stochastic process (specifically, a Markov chain) is often difficult to analyze when the pro-
cess is defined on a multi-dimensionally infinite state space. Such multi-dimensionally infinite
state spaces appear, for example, in the performance analysis of various scheduling policies in
multiserver systems with multiple classes of jobs, where the behavior of certain classes of jobs
has inherent dependencies on the state (e.g. number) of other classes of jobs. (See [2] for ex-
amples of such multiserver systems and existing analytic solution methods for Markov chains on
multi-dimensionally infinite state spaces.) Unfortunately, each existing analytic solution method
is limited in the class of Markov chains to which it can be applied, either due to an essential
restriction or due to computational complexity. Therefore, it is important to broaden the class
of Markov chains that can be analyzed by developing a new analytical solution method and to
identify which Markov chains can be analyzed by the new method.

A sequence of recent work [14, 15, 31, 32, 33, 34, 40] has developed an analytic solution
method, which we refer to as recursive dimensionality reduction (RDR)1, and applied RDR to the
performance analysis of various multiserver systems with certain dependencies between classes of
jobs. However, since individual models of computer systems are analyzed rather informally in
[14, 15, 31, 32, 33, 34, 40], it is so far unclear which Markov chains can be analyzed via RDR
and how. For example, [33] considers an M/PH/k queue with two priority classes, where high
priority jobs have preemptive priority over low priority jobs. Since the behavior of low priority
jobs depends on the number of high priority jobs in the system, the performance analysis of low
priority jobs involves a two dimensionally infinite (2D-infinite) state space, where each dimension
corresponds to the number of each class of jobs in the system. Utilizing the structure that the
behavior of high priority jobs can be analyzed independently of low priority jobs, [33] approximates
the 2D-infinite Markov chain by a 1D-infinite Markov chain (without truncating the state space),
which can be analyzed more efficiently. At the expense of increased computational complexity,
this approximation can be made as accurate as desired. When there are m > 2 priority classes,
the performance analysis of the lowest priority classes involves an m dimensionally infinite (mD-
infinite) state space. In [34, 40], the mD-infinite Markov chain is approximated by a 1D-infinite
Markov chain, using the approach in [33] recursively.

The first contribution of this paper is the formalization and generalization of RDR. We first
define a class of Markov chains called recursive foreground-background quasi-birth-and-death
(RFBQBD) processes. We then derive an analytical (approximate) expression for the stationary
probabilities in an RFBQBD process such that the expression can be evaluated efficiently. The
analysis of an RFBQBD process constitutes the formalization and generalization of RDR, since the
class of RFBQBD processes includes all the Markov chains analyzed in [14, 15, 31, 32, 33, 34, 40].
A “basic” RFBQBD process consists of a foreground quasi-birth-and-death (QBD) process and
a background QBD process, where transitions (both structure and rates) of the foreground QBD
process depend on the level of the background QBD process (there exists a certain level, d, such
that the transitions of the foreground process stay the same while the background process is in
levels ≥ d). More generally, the transitions in the background process may depend on another
background process, and this may be repeated recursively.

The formalization of RDR reveals an issue in the computational complexity of RDR. When
RDR is applied to an RFBQBD process, the growth rate of the running time can be double

1A part of the idea in RDR is also used for example in [36, 37].
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exponential in the number of background processes (i.e. the running time can be Θ(22m), where
m is the number of background processes). In [34, 40], this is not an issue due to a special
structure of the priority M/PH/k queue, where the running time is polynomial in m for any fixed
number of servers, k.

The second contribution of this paper is approximations of RDR to reduce its computational
complexity. We propose two new approximations of RDR: RDR with partial independence as-
sumption (RDR-PI) and RDR with complete independence assumption (RDR-CI). We show that
the running time of RDR-PI and RDR-CI is, in the worst case, exponential in the number of
background processes (i.e. O(2m)), and that there is a large subclass of RFBQBD processes for
which RDR-CI runs in polynomial time (while RDR takes Θ(22m) time).

The third contribution of this paper is a numerical study of the running time and accuracy of
RDR, RDR-PI, and RDR-CI. We apply RDR, RDR-PI, and RDR-CI to the analysis of a particular
task assignment policy in a multiserver system. In this example, we will see that RDR becomes
computationally prohibitive with more than three background processes, while the running time
of RDR-CI is less than a minute for up to 20 background processes. We will also see that RDR-CI
has accuracy comparative to that of RDR and RDR-PI.

In Section 2, we start by defining the RFBQBD process. We also provide interesting examples
of computer system models whose behavior can be captured by RFBQBD processes. In Section 3,
we briefly summarize related work on analytical solution methods for Markov chains on multi-
dimensionally infinite state spaces. In Section 4, we analyze the RFBQBD process. The analysis
of an RFBQBD process constitutes the formalization and generalization of RDR. We also intro-
duce two new approximations in RDR, namely RDR-PI and RDR-CI. In Section 5, we discuss
extensions to the RFBQBD process and the analysis of such extended RFBQBD processes. In
Section 6, we apply RDR, RDR-PI, and RDR-CI to the analysis of a particular task assignment
policy, and numerically evaluate their running time and accuracy.

2 Recursive foreground-background QBD (RFBQBD) process

In this section, we define the recursive foreground-background QBD (RFBQBD) process, and
provide examples of RFBQBD processes. Throughout the paper, we denote a matrix by a bold
face letter such as X and its (s, t) element by (X)s,t. Also, we use ~x to denote a vector and (~x)i
to denote its i-th element.

An RFBQBD process with parameters ((Q
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the generator matrix for the foreground QBD process, and let Qi denote the generator matrix
for the i-th background QBD process for 1 ≤ i ≤ m. In an RFBQBD process, Qi depends on
the level of the (i + 1)-th background QBD for 0 ≤ i ≤ m − 1. Hence, Qi can be expressed as a
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the following expression:

Q
(d)
i =




A
(d,0)
i,1 A

(d,0)
i,0

A
(d,1)
i,2 A

(d,1)
i,1 A

(d,1)
i,0

A
(d,2)
i,2 A

(d,2)
i,1 A

(d,2)
i,0

. . .
. . .

. . .




2



b2
(1) b2

(2) b2
(3)

b0
(0) b0

(1) b0
(2)

0 1 2 3

(a) A background QBD process

a0
(d,0) a0

(d,1) a0
(d,2)

a2
(d,1) a2

(d,2) a2
(d,3)

0 1 2 3

(b) A foreground QBD process when
the background process is in level d

a2
(0,2)

a0
(0,2)

b0
(0)b2

(1) a2
(0,1)

a2
(1,1) a2

(1,2)

a0
(1,2)

a0
(1,0)

a0
(0,0)

b2
(1)

b2
(2) b0

(1) b2
(2) b0

(1)

b0
(0)

a0
(1,1) b2

(1)

a0
(0,1)

b2
(2)

b0
(0)

b0
(1) a2

(1,3)

a2
(0,3)

b2
(1) b0

(0)

b0
(1)

b2
(2)

a2
(k,1) a2

(k,3)

b2
(k+1) b0

(k)

a0
(k,0)

b2
(k+1)

a0
(k,0)

a2
(k,1)

b0
(k)

a0
(k,1)

a2
(k,2)

a0
(k,1)

b2
(k+1) b0

(k)

a0
(k,2)

a2
(k,3)

a0
(k,2)

b2
(k+1) b0

(k)

b2
(k+2) b0

(k+1) b2
(k+2) b0

(k+1)a2
(k,2)

b2
(k+2) b0

(k+1) b2
(k+2) b0

(k+1)

0

1

k

k+1
ba

ck
gr

ou
nd

 Q
B

D
 p

ro
ce

ss

1

foreground QBD process

20 3

(c) An RFBQBD process

Figure 1: An RFBQBD process consisting of a foreground birth-and-death process and a back-
ground birth-and-death process.

for 0 ≤ i ≤ m − 1. In an RFBQBD process, Q
(d)
i , for 0 ≤ i ≤ m − 1, is assumed to have the

following characteristics:

• Q
(d)
i stays the same while the (i+1)-th background process is in levels ≥ ki+1; i.e., A

(d,h)
i,j =

A
(ki+1,h)
i,j if d > ki+1 for all j and h.

• The state space is independent of the (i+ 1)-th background process; i.e., the size of matrix

A
(d,h)
i,j is independent of d for all j and h.

To simplify the analysis of an RFBQBD process (description of RDR) in Section 4, we choose the
above simple and limited definition of the RFBQBD process. However, as we will see later in this
section, the class of RFBQBD process as defined above includes many processes that can capture
the behavior of interesting computer systems. In Section 5, we discuss possible extensions to the
above definition of the RFBQBD process. An analysis of such an extended RFBQBD process
follows immediately from the analysis in Section 4.

Example 0: Foreground-background birth-and-death process The RFBQBD process
having a single background QBD process can be modeled as a Markov chain on a 2D-infinite
state space. Consider a simpler case where the foreground and background processes are birth-
and-death processes. The background process does not depend on other processes, and hence has
a single generator matrix, Q1 (see Figure 1(a)):
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(a) server farm with dispatcher
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Long jobs always sent here.

Dispatcher

(b) size-based assignment with cycle stealing

Figure 2: (a) a server farm with a dispatcher and (b) size-based assignment with cycle stealing
when there are three servers.

On the other hand, the transitions of the foreground process depend on the level of the background

process, and hence its generator matrix, Q
(d)
0 , is a function of the level of the background process,

d, (see Figure 1(b)):
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.

The RFBQBD process assumes that there exists a level, k, of the background process such that

Q
(d)
0 = Q

(k)
0 for all d > k. Figure 1(c) shows the RFBQBD process consisting of the foreground

and background processes in Figures 1(a)-(b).

Below, we provide illustrative examples of computer system models whose behavior is captured
by RFBQBD processes.

Example 1: Size-based task assignment with cycle stealing [31] We consider a task
assignment policy in a server farm with a dispatcher (see Figure 2(a)), where jobs at each server
are served in first-come-first-serve order. When job sizes have high variability, it has been shown
that a size-based assignment policy provides lower mean response time than common assignment
policies [13]. The size-based assignment policy in [13] can be improved by size-based assignment
with cycle stealing (SBCS) [15] (see Figure 2(b)). Under SBCS, an arriving long job is always
dispatched to the long job server. An arriving medium job first checks to see if the long job server
is idle. If so, the medium job is dispatched to the long job server; otherwise, it is dispatched to
the medium job server. That is, medium jobs can steal idle cycles of the long job server. Likewise,
an arriving short job first checks to see if the medium job server is idle. If so, the short job is
dispatched to the medium job server; otherwise, it is dispatched to the short job server. After
being dispatched, a job is never reassigned.

More formally, consider m homogeneous servers and m classes of jobs. Class i jobs arrive at
a dispatcher according to a Poisson process with rate λi and have an exponential service time

4



distribution with rate µi (µi > µj if i < j) for 0 ≤ i < m. Under SBCS, class m− 1 jobs (largest
jobs) are always dispatched to server m− 1. For i < m− 1, a class i job first checks to see if the
(i+ 1)-th server is idle. If so, the class i job is dispatched to the (i+ 1)-th server; otherwise, it is
dispatched to the i-th server. Observe that the arrival process (of class i jobs) at server i depends
on whether server i+ 1 is idle or not.

The number of jobs in the system under SBCS can be modeled as an RFBQBD process. Here,
the foreground process, B0, is the number of jobs at server 0 (server for the smallest jobs), and the
first background process, B1, is the number of jobs (both class 0 and class 1) at server 1, which
determines whether an arrival of a class 0 job is dispatched to server 0 or server 1 and hence the
behavior of B0. Likewise, the i-th background process, Bi, is the number of jobs (both class i− 1
and class i) at server i, which determines whether an arrival of a class i− 1 job is dispatched to
server i − 1 or server i and hence the behavior of Bi−1. We will analyze the performance under
SBCS via RDR, RDR-PI, and RDR-CI in Section 6.

Example 2: Priority M/M/k queue [9, 25, 29, 40] Consider an M/M/k queue with m priority
classes, where class i jobs have preemptive priority over class j jobs for all 1 ≤ i < j ≤ m (i.e.
class 1 has the highest priority). The behavior of class 1 jobs is not affected by the jobs of other
classes. However, the behavior of class 2 jobs depends on the number of class 1 jobs in the system.
Specifically, when there are n1 jobs of class 1, max{k−n1, 0} servers are available for class 2 jobs.
Likewise, the behavior of class i jobs depends on the total number of class 1 to class i− 1 jobs for
i ≥ 2 (when there are n jobs of class 1 to class i− 1, max{k − n, 0} servers are available for class
i jobs).

When m = 2, the number of jobs in a priority M/M/k queue can be modeled as an RFBQBD
process where the foreground process, A, captures the number of class 2 jobs (low priority jobs)
and the background process, B, captures the number of class 1 jobs (high priority jobs). Here,
the level d of process B corresponds to the state with d high priority jobs. Note that the number
of servers available for low priority jobs (and hence the behavior of process A) is determined by
the number of high priority jobs (equivalently, the level of process B).

When m > 2, the number of jobs in a priority M/M/k queue can be modeled as an RFBQBD
process having m− 1 background QBD processes with a trivial extension to the above definition
of the RFBQBD process. The point of the extension is that the transitions in the i-th background
QBD process depend on the level of a QBD process, B̂i−1, that is equivalent to the (i − 1)-th
background QBD process, Bi−1. Here, the only difference between B̂i−1 and Bi−1 is how levels
are defined in these two processes. Specifically, the level of Bi−1 corresponds to the number of
class (m− i+ 1) jobs, while the level of B̂i−1 corresponds to the total number of class 1 to class
(m− i+ 1) jobs. We will discuss this extension of the RFBQBD process in Section 5.

Examples 1 and 2 illustrate two types of recursive dependency that RFBQBD processes can
have. In these examples, each of the foreground and background processes is quite simple. The
next example illustrates more complicated foreground and background processes.

Example 3: Threshold-based policy for reducing switching costs in cycle stealing [31]
We consider two processors, each serving its own M/M/1 queue, where one of the processors
(the donor) can help the other processor (the beneficiary) while the donor’s queue is empty (see
Figure 3). Typically, there is a switching time, Ksw, required for the donor to start working on
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Figure 3: A threshold-based policy for reducing switching costs in cycle stealing.

the beneficiary’s jobs, as well as a switching back time, Kba. We assume that Ksw and Kba have
exponential distributions. Due to non-zero switching times, the donor’s switching may pay only
when the beneficiary’s queue length, NB, is sufficiently long, and the donor’s switching back may
pay only when the donor’s queue length, ND, is sufficiently long.

Thus, we consider the following threshold-based policy. If NB > N th
B and ND = 0, the donor

starts switching to the beneficiary’s queue. After Ksw time, the donor is available to work on
the beneficiary’s jobs. When ND reaches N th

D , the donor starts switching back to its own queue.
After Kba time, the donor resumes working on its own jobs.

The number of jobs in the above system can be modeled as an RFBQBD process. Here, the
background process captures the number of the donor’s jobs and the state of the donor (whether
it is at its own queue, it is switching to the beneficiary’s queue, it is at the beneficiary’s queue,
or it is switching back to its own queue), and the foreground process captures the number of
the beneficiary’s jobs. Note that the number of the donor’s jobs (i.e. the level of the background
QBD process) is sufficient to determine whether the donor can work on the beneficiary’s jobs (and
hence the behavior of the foreground QBD process).

Note that in all the above examples arrival processes can be extended to Markovian arrival
processes (MAP) and job size distributions and switching time distributions can be extended to
phase type (PH) distributions.

3 Related work

Existing analytic solution methods for Markov chains on multi-dimensionally infinite state spaces
can be classified into two approaches: the direct approach and the approach via generating func-
tions. The direct approach solves the equilibrium equations directly (without transforming them).
This includes product form methods, compensation methods, power series methods, and matrix
analytic methods. On the other hand, the approach via generating functions solves the functional
equation for the generating function of the stationary probabilities. This includes uniformization
methods and boundary value methods. Below, we briefly summarize how the above methods can
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or cannot be applied to RFBQBD processes. See [2] for more extensive review on the analytic
solution methods for Markov chains on multi-dimensionally infinite state spaces.

Product form methods express the stationary probability as a product of stationary probabili-
ties for respective dimensions (see e.g. [5, 19, 38]). Although product form methods allow a simple
analysis of Markov chains on high dimensions, the class of Markov chains that have product form
solutions is limited. In particular, the RFBQBD process does not appear to have a product form
solution in general.

Compensation methods express the stationary probability as a sum of (an infinite number of)
product forms (see e.g. [1, 3, 4]). Compensation methods apply to a large class of Markov chains
on a two dimensional grid of the first (positive) quadrant. However, an essential limitation of
compensation methods is that transitions to the “north,” “north-east,” and “east” are prohibited.
In particular, compensation methods do not apply to RFBQBD processes in general. It is possible
to extend compensation methods to higher dimensions, but the limitation becomes more severe
in higher dimensions [39].

Power series methods express the stationary probability as a power series of a certain parameter
such as system load (see e.g. [7, 16, 21]). Power series methods can, in theory, be applied to any
Markov chains. However, the application of power series methods is often limited to simple
Markov chains on low dimensional state spaces due to its computational complexity.

Matrix analytic methods are algorithmic approaches for evaluating a broad class of Markov
chains, including QBD processes, M/G/1 and G/M/1 type processes, and tree processes (see e.g.
[22, 27]). Although the theory of matrix analytic methods has been developed for the broad class
of Markov chains, matrix analytic methods are most efficient (in evaluating the solution) and
simplest (in implementing the algorithm) when they are applied to QBD processes with a finite
(small) number of phases. Therefore, most papers that evaluate Markov chains on 2D-infinite state
spaces via matrix analytic methods first truncate the state space so that the resulting process
becomes a QBD process with a finite number of phases (see e.g. [18, 17, 23, 24, 28, 35]). Tree
processes are a class of Markov chains on multi-dimensionally infinite state spaces that allow an
efficient evaluation via matrix analytic methods (see e.g. [6, 22]). However, the RFBQBD process
does not appear to be modeled as a tree process. RDR [14, 15, 31, 32, 33, 34, 40] is an approach
for approximating a QBD process having a multi-dimensionally infinite number of phases by a
QBD process with a finite number of phases (without truncation), so that the approximate QBD
process can be evaluated efficiently via matrix analytic methods.

Finally, approaches via generating functions solve the functional equation for the generating
function of the stationary probabilities by uniformization (see e.g. [11, 20]) or by reducing the
functional equation to a boundary value problem (see e.g. [10, 12]). Although approaches via
generating functions apply to a broad class of Markov chains on a two dimensional state space,
they do not appear to be applicable to the case of higher dimensions. For example, an analysis
of an RFBQBD process having a single background QBD process can, in theory, be reduced to a
boundary value problem if the foreground process repeats after a certain level (i.e. there exists k

such that A
(d,e)
i = A

(d,k)
i for all e > k for i = 0, 1, 2 and d ≥ 0). However, an RFBQBD process

having m > 1 background processes does not appear to be solvable via a generating function.
Also, approaches via generating functions often experience numerical instability.
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4 Analysis of an RFBQBD process

In this section, we analyze the stationary probabilities in an RFBQBD process. In Section 4.1, we
start with an analysis of a basic RFBQBD process that consists of a foreground QBD process and
a single background QBD process. The analysis of this basic RFBQBD process constitutes the
primary part of the formalization of RDR. In Section 4.2, we introduce two new approximations
in RDR, namely RDR-PI and RDR-CI. In Section 4.3, we analyze a general RFBQBD process
(having an arbitrary number of background QBD processes) by applying the analysis in Section 4.1
(possibly with an approximation in Section 4.2) recursively. Due to the recursive structure of the
RFBQBD process, this recursive application of the analysis in Section 4.1 is straightforward, and
this completes the formalization of RDR.

4.1 Analysis of RFBQBD process: Single background QBD process

In this section, we analyze the stationary probabilities in a foreground QBD process whose tran-
sitions depend on the level of a background QBD process. Note that the background process is
simply a QBD process, and its stationary probabilities can be analyzed trivially. In Section 4.1.1,
we introduce the notation. In Section 4.1.2, we describe a standard approach of modeling an
RFBQBD process having a single background process as a QBD process with an infinite number
of phases. Although we can derive an analytical expression for the stationary probabilities of the
infinite-phase QBD process, there is a difficulty in numerically evaluating such an expression. In
Section 4.1.3, we approximate this infinite-phase QBD process by a QBD process with a finite
number of phases, so that the stationary probabilities in the approximate QBD process can be
evaluated more efficiently. This approximation of the infinite number of phases by a finite number
of phases is a key step in RDR.

4.1.1 Notation

Let QB be the generator matrix of the background QBD process:

QB =




B
(0)
1 B

(0)
0

B
(1)
2 B

(1)
1 B

(1)
0

B
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(2)
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0

. . .
. . .

. . .



.

Let S
(B)
i be the size of matrix B

(i)
1 for i ≥ 0; i.e., S

(B)
i is the number of phases in level i of the

background QBD process.

Let Q
(d)
A be the generator matrix of the foreground QBD process when the background QBD

process is in level d:

Q
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Recall that transitions in the foreground QBD process stay the same while the background QBD
process is in levels ≥ kB, i.e.

Q
(d)
A = Q

(kB)
A for all d > kB.

Also, recall that the state space of the foreground QBD process is fixed; i.e. the size of matrix

A
(d,i)
j does not depend on d for all i and j. Let S

(A)
i be the size of matrix A

(d,i)
1 ; i.e., S

(A)
i is the

number of phases in level i of the foreground QBD process.

4.1.2 Modeling as a QBD process with infinite phases

In this section, we describe a standard approach of modeling an RFBQBD process having a single
background process as a QBD process with an infinite number of phases. Figure 1(c) shows such
an infinite-phase QBD process when the foreground and background processes are birth-and-death
processes. Below, we consider a general case where the foreground and background processes are
QBD processes. We will see that it is hard to evaluate the stationary probabilities in a QBD
process with an infinite number of phases.

Let Q be the generator matrix of the RFBQBD process (i.e. a QBD process with an infinite
number of phases):

Q =
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Here, A
(i)
j is a matrix of an infinite number of rows and columns for any i and j. Let In denote

an identity matrix of size n, and let ⊗ denote a Kronecker product. Then, we can express A
(i)
j

as follows:
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2

⊗A
(2,i)
2

. . .




A
(i)
1 =




I
S

(B)
0

⊗A
(0,i)
1

I
S

(B)
1

⊗A
(1,i)
1

I
S

(B)
2

⊗A
(2,i)
1

. . .




+ QB ⊗ I
S

(A)
i
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except that the diagonal elements of A
(i)
1 are renormalized so that

∑∞
s=0(Q)s,t = 0 for all t.

Using matrix analytic methods [22], the stationary probability of being in level n, −→πn, is then
given recursively by

−→πn = −−→πn−1 ·R(n), (1)

where R(n) is given recursively by:

A
(n−1)
0 + R(n) ·A(n)

1 + R(n) ·R(n+1) ·A(n+1)
2 = 0, (2)

where 0 is a zero matrix of infinite size. Here, a row vector −→π0 is given by a positive solution of

−→π0

(
A

(0)
1 + R(1) ·A(1)

2

)
= ~0, (3)

normalized by

−→π0

∞∑

n=0

n∏

m=1

R(m) ·~1 = 1, (4)

where ~0 and ~1 are vectors with an infinite number of elements of 0 and 1, respectively. When
a QBD process has an infinite number of levels, there is an issue of where to truncate [8], since
R(n) needs to be calculated from a certain large enough integer n = N to n = 1 recursively via

expression (2). However, when the QBD process repeats after level k (i.e., A
(n)
j = A

(k)
j for all

n > k for j = 0, 1, 2), R(n) = R for all n > k, and R is given by the minimal solution to the
following matrix quadratic equation:

A
(k)
0 + R ·A(k)

1 + R2 ·A(k)
2 = 0. (5)

In any case, the expressions (1)-(5) are hard to evaluate, since the matrices A
(i)
j have infinite size.

4.1.3 Reducing infinite phases to finite phases

The infinite number of phases in the QBD process that models the RFBQBD process in Sec-
tion 4.1.2 stems from the infinite number of levels in the background QBD process. However,
recall that the transitions in the foreground QBD process are determined by whether the back-
ground QBD process is in level 0, level 1, ..., level k − 1, or levels ≥ k. The background QBD
process determines the transitions among these levels (0, 1, ..., k − 1, and ≥ k), the distribution
of the sojourn time in each level, and the dependencies among the transitions and the sojourn
time distributions. The key idea is to approximate the background QBD process (process B)
by a QBD process with a finite number of levels (process B̃), so that process B̃ captures the
transitions, the sojourn time distributions, and the dependencies among the transitions and the
sojourn time distributions in process B. Once process B is approximated by process B̃, it is easy
to establish a QBD process with a finite number of phases that models the RFBQBD process.

Figure 4 illustrates the idea of our analysis in the case where the foreground and background
processes are birth-and-death processes (recall the RFBQBD process in Figure 1). Figure 4(a)
shows process B̃ that approximates the background process (process B) in Figure 1(a). Here, the
sojourn time distribution in levels ≥ k of process B is approximated by a 2-phase PH distribution
(with Coxian representation) in process B̃. When process B is a QBD process (with more than
one phases), we will see that a collection of PH distributions is needed to capture the dependency
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Figure 4: An analysis of the RFBQBD process in Figure 1. (a) The background process in
Figure 1(a) is approximated by a QBD process with a finite number of levels. (c) The RFBQBD
process in Figure 1(c) is approximated by a QBD process with a finite number of phases.

in the sequence of sojourn times in levels ≥ k. Figure 4(c) shows a QBD process with a finite
number of phases that models the RFBQBD process when the background process is replaced
by process B̃ in Figure 4(a). Below, we formalize and generalize the above idea to a general
RFBQBD process where foreground and background processes are QBD processes.

When the background process (process B) is a QBD process, we approximate process B by
replacing levels ≥ k with a (finite) collection of PH distributions such that the approximate
process B̃ well captures the behavior of process B. Let Es,t be the event, in process B, that the
first state that we visit in level kB − 1 is in phase t given that we transitioned from phase s in
level kB − 1 to any state in level kB. We require that process B̃ has the following key properties:

• The probability of event Es,t in process B̃ is the same as that in process B.

• The distribution of the sojourn time in levels ≥ k given event Es,t in process B̃ well approx-
imates that in process B (e.g. the first three moments of the two distributions agree).

Observe that if the second property was also exact, then the foreground process with background
process B and the foreground process with background process B̃ would be stochastically equiva-
lent. In particular, B and B̃ would have the same autocorrelation in the sequence of the sojourn
time distributions between changing levels (0, 1, ..., k − 1, and ≥ k).

To construct process B̃, we first analyze the probability of event Es,t and (the moments of)
the distribution of the sojourn time in levels ≥ k given event Es,t (we denote this distribution as

Ds,t). Let N be the number of phases in level kB − 1 of process B (i.e. N = S
(B)
kB−1). Then, there

are N2 events Es,t.
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The probability of event Es,t is relatively easy to analyze. Let P be a matrix of size N ×N
whose (s, t) element is the probability of event Es,t. Matrix P is determined by B

(kB−1)
0 and G(kB),

where G(kB) is the G matrix of process B in level kB (i.e. G(kB) = (A
(kB−1)
0 )−1 ·R(kB) ·A(kB)

2 ).
Note that the (s, t) element of G(kB), (G(kB))s,t, is the probability that the first state that we
visit in level kB − 1 is in phase t, starting from phase s in level kB. Also, let F(kB−1) be a matrix
of size N ×N , whose (s, t) element is defined as

(F(kB−1))s,t =
(B

(kB−1)
0 )s,t

∑N
i=1(B

(kB−1)
0 )s,i

,

where 0
0 is defined as 0. Note that (F(kB−1))s,t is the probability that process B transitions to

phase t given that the transition is from phase s in level kB − 1 to any state in level kB. Matrix
P is then given by

P = F(kB−1) ·G(kB).

Next, we analyze the moments of Ds,t (the distribution of the sojourn time in levels ≥ k given
event Es,t). Let Mh be a matrix of size N ×N whose (s, t) element is the h-th moment of Ds,t

for h ≥ 1. Matrix Mh is related to G
(kB)
h , where G

(kB)
h is a matrix of size N × N whose (s, t)

element is (H
(kB)
h )s,t · (G(kB))s,t, where (H

(kB)
h )s,t is the h-th moment of the first passage time

from phase s in level kB to a state in level kB − 1 given that the first state that we visit in level

kB − 1 is in phase t. We can calculate G
(kB)
h by a trivial extension of Neuts’ algorithm [26] for

any h. Let

D = B
(kB−1)
0 ·G(kB)

Eh = B
(kB−1)
0 ·G(kB)

h

for h ≥ 1. The (s, t) element of Mh is then obtained by

(Mh)s,t =
(Eh)s,t
(D)s,t

for s = 1, ..., N , t = 1, ..., N , and h ≥ 1.
We are now ready to construct process B̃. We approximate Ds,t by a phase type (PH)

distribution, (−→τs,t,Ts,t), as defined in [22]2. For example, we can match the first three moments
of Ds,t by the approximate PH distribution:

(−→τs,t,Ts,t) = three moment matching((M1)s,t, (M2)s,t, (M3)s,t)

for all s and t. Here, three moment matching is a function, as defined in [30], that returns a PH
distribution whose first three moments match the input three moments. Let

−→
ts,t = −Ts,t ·~1,

2A PH distribution with parameter (−→τ ,T) is the distribution of the time until absorption into state 0 in a Markov

chain on the states {0, 1, ..., n} with initial probability vector (τ0, ~τ) and infinitesimal generator Q =

(
0 ~0
~t T

)
,

where T · ~1 + ~t = ~0 and τ0 + ~τ · ~1 = 1.
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where ~1 is a column vector with all elements 1 and has size equal to the number of columns in
Ts,t. For simplicity of exposition, we assume that Ts,t is an NPH ×NPH matrix for all s and t.

Using P and (−→τs,t,Ts,t) defined above, the generator matrix of process B̃ is defined as

Q
B̃

=




B
(0)
1 B

(0)
0

B
(1)
2

. . .
. . .

. . .
. . . B

(kB−2)
0

B
(kB−1)
2 B

(kB−1)
1 (~λ)1 · τ1 (~λ)2 · τ2 · · · (~λ)N · τN

t1 T1

t2 T2
...

. . .

tN TN




,

where

τi =




Oi−1,N

(P)i,1 · −→τi,1 · · · (P)i,N · −−→τi,N
ON−i,N




Ti =




Ti,1

. . .

Ti,N




ti =




−→
ti,1

. . .
−−→
ti,N




~λ = B
(kB−1)
0 ·~1

for i = 1, ..., N , where Os,t denotes a zero matrix of size s× t, and ~1 is a column vector with all

elements 1 and has size equal to the number of columns in B
(kB−1)
0 .

Once process B̃ is defined, the QBD process with a finite number of phases that models the

RFBQBD process can be easily defined. For any i and j, we can express A
(i)
j as follows:

A
(i)
0 =




I
S

(B)
0

⊗A
(0,i)
0

. . .

I
S

(B)
kB−1

⊗A
(kB−1,i)
0

IN2NPH
⊗A

(kB,i)
0




A
(i)
2 =




I
S

(B)
0

⊗A
(0,i)
2

. . .

I
S

(B)
kB−1

⊗A
(kB−1,i)
2

IN2NPH
⊗A

(kB,i)
2




13



A
(i)
1 =




ISH,0
⊗A

(0,i)
1

. . .

I
S

(B)
kB−1

⊗A
(kB−1,i)
1

IN2NPH
⊗A

(k,i)
1




+ Q
B̃
⊗ I

S
(A)
i

,

except that the diagonal elements of A
(i)
1 are renormalized so that

∑∞
s=0(Q)s,t = 0 for all t. Note

that expressions (1)-(4) can now be evaluated more efficiently, as the size of matrices A
(i)
j is finite.

4.2 New approximations

The analysis in Section 4.1.3 can still be computationally prohibitive, in particular when it is used
recursively as we do in Section 4.3. In this section, we introduce two new approximations in RDR,
namely RDR-PI and RDR-CI, which can significantly reduce the computational complexity while
keeping a reasonable accuracy. The key idea in our new approximations is that distributions Ds,t

(the distribution of the sojourn time in levels ≥ k given event Es,t) can be aggregated without
loosing too much information.

RDR-PI (RDR with partial independence assumption) ignores the dependency that the sojourn
time in levels ≥ kB has on how it starts. Specifically, we assume that Ds,t is independent of s.
Let D′t = Ds,t for all s for each t, and let B̃′ denote the process that is the same as process B̃
except that Ds,t is replaced by D′t for all s and t. Process B̃′ has two important properties:

• The probability of event Es,t is the same as that in process B̃.

• We choose D′t such that the marginal distribution of the sojourn time in levels ≥ kB well
approximates that in process B̃ (e.g. the first three moments of the two distributions agree).

Hence, although B̃′ and B̃ have different autocorrelation in the sequence of the sojourn times in
levels ≥ kB, they have stochastically the same total sojourn time in levels ≥ kB in the long run.

More formally, the generator matrix of process B̃′, Q
B̃′ , is determined as follows. Let (

−→
M ′h)t

be the h-th moment of D′t for h ≥ 1 and for 1 ≤ t ≤ N . (
−→
M ′h)t is determined so that B̃ and B̃′

have the same marginal h-th moment of the sojourn time in levels ≥ kB:

(
−→
M ′h)t =

∑N
s=1(−−−→πkB−1)s · (~λ)s · (P)s,t · (Mh)s,t∑N

s=1(−−−→πkB−1)s · (~λ)s · (P)s,t
,

where −−−→πkB−1 denotes the stationary probability that process B̃ is in level kB − 1, which can be

calculated via expressions (1)-(5). We approximate D′t by a PH distribution, (
−→
τ ′t ,T

′
t), for example,

by matching the first three moments of D′t by the approximate PH distribution:

(
−→
τ ′t ,T

′
t) = three moment matching((

−→
M ′1)t, (

−→
M ′2)t, (

−→
M ′3)t).
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Let
−→
tt = −T′t ·~1 as before. Q′

B̃
is then defined by

Q′
B̃

=




B
(0)
1 B

(0)
0

B
(1)
2

. . .
. . .

. . .
. . . B

(kB−2)
0

B
(kB−1)
2 B

(kB−1)
1 τ ′

t′ T′




,

where

τ ′ =




(~λ)1

. . .

(~λ)N







(P)1,1 ·
−→
τ ′1 · · · (P)1,N ·

−→
τ ′N

...
...

(P)N,1 ·
−→
τ ′1 · · · (P)N,N ·

−→
τ ′N




T′ =




T′1
. . .

T′N




t′ =




−→
t′1

. . .
−→
t′N


 .

Observe that the number of PH distributions used to approximate the sojourn time distributions
in levels ≥ kB is reduced from N2, in Section 4.1, to N . The next approximation, RDR-CI, uses
only one PH distribution.

RDR-CI (RDR with complete independence assumption) ignores not only the dependency that
the length of the sojourn time in levels ≥ kB has on how it starts but also the dependency on how
it ends. Specifically, we assume that Ds,t is independent of s and t. Let D′′ = Ds,t for all s and t,
and let B̃′′ denote the process that is the same as process B̃ except that Ds,t is replaced by D′′

for all s and t. We choose D′′ such that process B̃′′ has the above two important properties that
process B̃′ has. The difference between B̃′ and B̃′′ lies in the dependencies in the sequence of the
sojourn times in levels ≥ kB. Observe that the sequence of the sojourn times in levels ≥ kB is
i.i.d. in process B̃′′, while it has some dependencies in process B̃′.

More formally, the generator matrix of process B̃′′, Q
B̃′′ , is determined as follows. Let M ′′h be

the h-th moment of D′′ for h ≥ 1. (
−→
M ′′h ) is determined so that B̃ and B̃′′ have the same marginal

h-th moment of the sojourn time in levels ≥ kB:

M ′′h =

∑N
t=1

∑N
s=1(−−−→πkB−1)s · (~λ)s · (P)s,t · (M′

h)s,t∑N
t=1

∑N
s=1(−−−→πkB−1)s · (~λ)s · (P)s,t

.

We approximate D′′ by a PH distribution, (
−→
τ ′′,T′′), for example, by matching the first three

moments of D′′ by the approximate PH distribution:

(
−→
τ ′′,T′′) = three moment matching(M ′′1 ,M

′′
2 ,M

′′
3 ).
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Let
−→
t′′ = −T′′ ·~1 as before. Q′′

B̃
is then defined by

Q′′
B̃

=




B
(0)
1 B

(0)
0

B
(1)
2

. . .
. . .

. . .
. . . B

(kB−2)
0

B
(kB−1)
2 B

(kB−1)
1 τ ′′
−→
t′′ · −→ξ T′′




,

where
τ ′′ = transpose(~λ) · −→τ ′′,

and
−→
ξ is a row vector with i-th element:

(
−→
ξ )i =

∑N
s=1(−−−→πkB−1)s · (~λ)s · (P)s,i∑N

s=1

∑N
t=1(−−−→πkB−1)s · (~λ)s · (P)s,t

.

4.3 Recursive analysis of RFBQBD process: m ≥ 2 background QBD processes

Finally, we consider a general RFBQBD process that consists of a foreground QBD process and
m ≥ 2 background QBD processes, where the transitions of the foreground QBD process depend
on the level of the first background QBD process, and the transitions of the i-th background QBD
process depend on the level of the (i + 1)-th background QBD process for i = 1, ...,m − 1. We
analyze the stationary probabilities in the foreground and background processes by applying the
analysis in Section 4.1 (possibly with an approximation in Section 4.2) recursively. Note that if
we took the approach as in Section 4.1.2 to model the RFBQBD process having m background
processes as a QBD process, the number of phases within a level in such a QBD process would
now grow infinitely in m dimensions. RDR (RDR-PI, and RDR-CI) approximates the mD-infinite
phase QBD process by a QBD process with a finite number of phases. In Sections 4.1-4.2, we
have analyzed the case of m = 1.

The analysis for the case of m > 1 follows immediately from the analysis for the case of
m = 1. We argue, by induction, that all the m background processes and the foreground process
(the 0-th background process) can be approximated by QBD processes with a finite number of
phases via the approach in Section 4.1.3. Then, the stationary probabilities in the foreground and
background processes can be obtained by analyzing the stationary probabilities in the approximate
QBD processes. The m-th background process is a QBD process with a finite number of phases
by our assumption, which proves the base case. Suppose that the i-th background process is
approximated by a QBD process with a finite number of phases, Bi. The QBD process Bi
typically has an infinite number of levels. However, by the analysis in Section 4.1.3 (possibly
with an approximation in Section 4.2), Bi can be approximated by a QBD process with a finite
number of levels, B̃i, such that Bi and B̃i have stochastically similar effect on the (i − 1)-th
background process, Bi−1. Now, using B̃i, process Bi−1 can be modeled as a QBD process with
a finite number of phases. This completes our argument.

The running times of RDR, RDR-PI, and RDR-CI differ primarily due to the size of the subma-

trices, A
(j)
i , of the generator matrix for the QBD process (i.e. the number of phases in the QBD pro-
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Figure 5: Two equivalent QBD processes with different definitions of levels.

cess) that approximates the RFBQBD process. For simplicity, assume that the transitions in the i-
th background QBD process stay the same while the (i+1)-th background QBD process is in levels
k for all i (i.e. k = k1 = · · · = km), and that the foreground and background QBD processes have
the same number of phases, PQBD. In RDR, the size of the submatrices, SRDR(m), grows double-

exponentially with the number of background processes (i.e. O(22m)); specifically, SRDR(m) can
be determined by the following recursive formula: SRDR(m) = kSRDR(m−1) + (SRDR(m−1))

2NPH

for m > 0 and SRDR(0) = PQBD, where NPH is the number of phases used in a PH distri-
bution that approximates a (conditional) sojourn time in levels ≥ k (there are (SRDR(m−1))

2

sojourn times). In RDR-PI, the size of the submatrices, SPI(m), grows exponentially with m:
SPI(m) = (k + NPH)mPQBD. In RDR-CI, the size of the submatrices, SCI(m), grows exponen-

tially with m (but slower than SPI(m)) when k > 1: SCI(m) = km
(
PQBD + N

k−1

)
− NPH

k−1 , and it

grows linearly with m when k = 1: SCI(m) = mNPH + PQBD.

5 Extensions

The definition of the RFBQBD process in Section 2 can be extended such that it can still be
analyzed via RDR, RDR-PI, and RDR-CI with a slight modification. In this section, we discuss
two examples of such extensions.

The first extension concerns the way multiple background processes depend on each other. In
Section 2, the transitions of the i-th background QBD process, Bi, are assumed to depend on the
level of the (i + 1)-th background QBD process, Bi+1. Observe, however, that a QBD process
can have different definitions of levels and phases. Figure 5 shows two equivalent QBD processes
with different definitions of levels. Observe that the two QBD processes are exactly the same
with respect to the state space and the transitions among the states and that the only difference
lies in how levels are defined. Therefore, we can relax the assumption of the RFBQBD process
such that the transitions of Bi depend on the level of a QBD process, B̂i+1, that is equivalent
to Bi+1. Here, B̂i+1 and Bi+1 differ only in how their levels and phases are defined. One might
think that the above extension of the RFBQBD process is not essential since the levels in Bi+1

could be defined in the same way as in B̂i+1 from the beginning. However, there are cases where
the above extension is in fact essential.

Recall the priority M/M/k queue in Example 2 in Section 2, where class i jobs have preemptive
priority over class j jobs for all 1 ≤ i < j ≤ m. The number of jobs in a priority M/M/k queue
can be modeled as an extended RFBQBD process. We first try defining the i-th background QBD
process, Bi, (and the foreground process, B0) such that the level of Bi corresponds to the number
of class (m − i) jobs for 0 ≤ i ≤ m − 1. When there are only two priority classes (m = 2), this
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definition has no problem, i.e., the transitions in B0 is determined by the level of B1 (see Example
2 in Section 2). However, when m > 2, the transitions in Bi cannot be determined by the level
in Bi+1 (i.e. the number of class (m − i − 1) jobs). A solution to this problem is to define a
QBD process B̂i+1 which is equivalent to Bi+1 such that the level of B̂i+1 corresponds to the total
number of jobs of class 1 to class (m− i− 1). Now the level of B̂i+1 determines the transitions in
Bi. It is easy to see that there is such an equivalent QBD process B̂i+1, since any event (arrival
or job completion) in process Bi+1 changes the total number of jobs (and hence the level of B̂i+1)
by 1. Note that there is also a problem in defining the level of Bi such that it corresponds to the
total number of jobs of class 1 to class (m − i). In this case, when the level of Bi+1 changes, it
also changes the level of Bi, which is not allowed in our definition of the RFBQBD process.

The second extension allows a background process to depend on a foreground process. Recall
the basic RFBQBD process, process P , in Figure 1(c) and a QBD process with a finite number of
phases, process P̃ , in Figure 4(c) that approximates process P . It is intuitively clear that in order
to approximate process P by a QBD process with a finite number of phases such as process P̃ ,
the transitions in the top k rows in process P do not have to have any special structure as long as
process P is QBD. A similar observation holds for general RFBQBD processes, and the definition
of the RFBQBD process can be extended accordingly. An interesting subclass of such extended
RFBQBD processes is the one where transitions in levels < k of the background QBD process
depend on the level of the foreground QBD process. (Note that levels ≥ k of the background
QBD process must be independent of the level of the foreground process.) Further discussion on
such a subclass of extended RFBQBD processes is left as a future work.

6 Case study: Task assignment with cycle stealing

In this section, we apply RDR, RDR-PI, and RDR-CI to the performance analysis of a task
assignment policy, SBCS (recall Example 1 in Section 2). We consider m homogeneous servers and
m classes of jobs. Class i jobs arrive at a dispatcher according to a Poisson process with rate λi,
and their service time has an exponential distribution with rate µi for 0 ≤ i ≤ m−1. Class m−1
jobs are always dispatched to server m− 1. For i < m− 1, a class i job first checks to see if the
(i+ 1)-th server is idle. If so, the class i job is dispatched to the (i+ 1)-th server; otherwise, it is
dispatched to the i-th server. We analyze the mean queue length at each server, and numerically
evaluate the running time and accuracy of RDR, RDR-PI, and RDR-CI.

6.1 Modeling as an RFBQBD process

In this section, we model the number of jobs in the system under SBCS as an RFBQBD process.
The RFBQBD process can then be analyzed via RDR, RDR-PI, and RDR-CI to obtain the
stationary probabilities for the number of jobs (per class) at each server; the mean queue length
follows immediately from the stationary probabilities.

Figure 6 shows the Markov chains for the number of jobs at each server. There are two Markov
chains for server i, depending on whether there are any jobs at server i + 1, for 0 ≤ i ≤ m − 2.
There is only one Markov chain for server m−1, however, since the behavior (arrival and service)
at server m − 1 is independent of the other servers. Specifically, Figure 6(a) shows the Markov
chain for the number of jobs at server i when server i+ 1 has > 0 jobs, for 1 ≤ i ≤ m− 1 (“server
m” is defined to have > 0 jobs always). Nj denotes the number of class j jobs at the server. Since
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Figure 6: Markov chains for the number of jobs at each server. The top row shows the Markov
chains for server 1 ≤ i ≤ m − 1, (a) when server i + 1 has > 0 jobs (“server m” is defined to
have > 0 jobs always), and (b) when server i + 1 has 0 jobs. The bottom row shows the Markov
chains for server 0, (c) when server 1 has > 0 jobs, and (d) when server 1 has 0 jobs.

server i+1 has > 0 jobs, an arrival of a class i job is dispatched to server i. Figure 6(b) shows the
Markov chain for the number of jobs at server i when server i+ 1 has 0 jobs, for 1 ≤ i ≤ m− 2.
Since server i+ 1 has 0 jobs, an arrival of a class i job is dispatched to server i+ 1; hence there is
no transition due to class i job arrival. Figures 6(c)-(d) show the Markov chains for the number of
jobs at server 0 when server 1 has > 0 jobs and when server 1 has 0 jobs, respectively. Since “class
−1” does not exist, there are no transitions corresponding to λi−1 and µi−1 in Figures 6(c)-(d).

Now, it is easy to model the number of jobs in the system under SBCS as an RFBQBD
process. Here, the Markov chain at server i, Bi, corresponds to the i-th background process for
1 ≤ i ≤ m− 1, and the Markov chain at server 0, B0, corresponds to the foreground process (the
0-th background process). Recall that there is only one Markov chain for server m − 1, Bm−1.
Since Bm−1 is a QBD process, it can be seen as the (m − 1)-th background process. There are
two forms of transitions in Bm−2, depending on the number of jobs at server m−1, i.e. depending
on the level of Bm−1. Thus, Bm−2 can be seen as the (m − 2)-th background process. Likewise,
Bi, can be seen as the i-th background process, since its transitions are determined by the level
of Bi+1 for 0 ≤ i ≤ m− 2.

6.2 Numerical evaluation

We now evaluate the running time and accuracy of RDR, RDR-PI, and RDR-CI, when they are
applied to the analysis of SBCS. In all the plots, we assume that the load made up of each class is
fixed at 0.8 (i.e. λiµi = 0.8), and µi is chosen such that class 0 jobs are the shortest and class m− 1

jobs are the longest (“stealing idle cycles of a server for longer jobs”; specifically, µi = 2−i), or µi
is chosen such that class 0 jobs are the longest and class m − 1 jobs are the shortest (“stealing
idle cycles of a server for shorter jobs”; specifically, µi = 2i). For the analysis of a QBD process,
which we need in the analysis via RDR, RDR-PI, and RDR-CI, we use algorithms in Sections 8.4
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Figure 7: The running time of RDR, RDR-PI, and RDR-CI.

and 12.2 of [22], where the error bound, ε, is set at 10−6.
Figure 7 shows the running time (CPU time) of RDR, RDR-PI, and RDR-CI as a function

of the number of servers. The running time is measured on a 1 GHz Pentium III with 512 MB
RAM, using Matlab 6 running on Linux. In columns (a) and (c), the length of a (conditional) busy
period (sojourn time in levels ≥ 1) is approximated by an exponential distribution (NPH = 1),
while in columns (b) and (d) it is approximated by a 2-phase PH distribution (NPH = 2). In
all the cases, the evaluation of RDR becomes prohibitive when m ≥ 5. The running time of
RDR-PI also quickly grows: the evaluation of RDR-PI becomes prohibitive when m ≥ 9 in all
the cases. The running time of RDR-CI grows far more slowly than RDR and RDR-PI. We are
able to evaluate RDR-CI for up to 21-40 servers in less than a minute, depending on the input
instance and the number of phases used in an approximate PH distribution. The running time
of RDR, RDR-PI, and RDR-CI can be compared to the size of the submatrices (i.e. the number
of phases) of the QBD process that approximates the RFBQBD process. In RDR, the size of the
submatrices, SRDR(m), grows double exponentially; specifically, SRDR(m) can be determined by
the following recursive formula: SRDR(m) = SRDR(m−1) + (SRDR(m−1))

2NPH and SRDR(1) = 1.
In RDR-PI, the size of the submatrices, SPI(m), grows exponentially: SPI(m) = (1 + NPH)m−1.
In RDR-CI, the size of the submatrices, SPI(m), grows linearly: SCI(m) = 1 + (m− 1)NPH .

Finally, we evaluate the accuracy of RDR, RDR-PI, and RDR-CI. We compare the mean
queue length at each server predicted by RDR, RDR-PI, and RDR-CI against that predicted
by simulation. Simulation is kept running until the simulation error becomes less than 1% with
probability 0.95. The error of analysis is defined as a relative difference against simulated value:

error (%) = 100× (value by analysis)− (value by simulation)

(value by simulation)
.

Figure 8 shows the error of RDR, RDR-PI, and RDR-CI. The length of a (conditional) busy
period is approximated by an exponential distribution (NPH = 1) in columns (a) and (c) and by
a 2-phase PH distribution (NPH = 2) in columns (b) and (d). In the top row, the number of
servers is m = 4, and all of RDR, RDR-PI, and RDR-CI are evaluated. In the middle row, the
number of servers is m = 6, and here only RDR-PI and RDR-CI are evaluated, since the running
time of RDR is too long with m = 6. In the bottom row, the number of servers is m = 12, and here
only RDR-CI is evaluated3. The x-axis shows the “server name,” where server name i denotes the

3Although RDR-CI can be evaluated with m > 12 (see Figure 7), it is very hard to have simulation converge
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Figure 8: The accuracy of RDR, RDR-PI, and RDR-CI.

i-th server, and hence corresponds to the i-th background process (the 0-th background process
is the foreground process). Note that the scale of the y-axis is different for each column.

Overall, we can observe in Figure 8 that ignoring the variability (and the third moment)4 of
the sojourn time in levels ≥ 1 (see columns (a) and (c)) can lead to as high an error as 10%, while
the error due to ignoring the dependency in the sequence of the sojourn times in levels ≥ 1 is
bounded by 3% (see RDR-PI and RDR-CI in columns (b) and (d)). RDR tends to result in smaller
error than RDR-PI and RDR-CI, but this is not entirely clear from Figure 8, since RDR can be
evaluated only up to four servers. Also, from the top two rows, we can observe that RDR-PI and
RDR-CI have similar error. Finally, we see that the error is greater in columns (a) and (b), where
µi = 2−i, than in columns (c) and (d), where µi = 2i. We conjecture that this is primarily due to
the fact that the busy period of server i+1, which is the sojourn time in levels ≥ 1 in the (i+1)-th
background process, is relatively larger as compared to the service time and interarrival time at
server i in columns (a) and (b), and hence the error in approximating/ignoring the distribution
and dependency of the busy period has larger effect in predicting the mean number at server i.

with m > 12. Note that the fraction of arrivals of jobs with the largest size is very small: on average, there is only
one arrival of a job with the largest size while there are 2m−1 arrivals of jobs with the smallest size. When m = 12,
more than 1,000,000,000 events are needed for simulation to converge.

4In our instances, two phases are sufficient, in most cases, to match the first three moments by the approximate
PH distribution.
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7 Conclusion

In this paper, we have defined a class of Markov chains called recursive foreground-background
QBD (RFBQBD) processes, and analyzed the stationary probabilities in an RFBQBD process.
The analysis of an RFBQBD process constitutes a formalization and generalization of an analysis
approach called recursive dimensionality reduction (RDR), which is developed and applied in
a sequence of papers [14, 15, 31, 32, 33, 34, 40]. The formalization of RDR reveals that the
computational complexity of RDR can grow double-exponentially in the number of recursions
(the number of background processes). In fact, in the analysis of a task assignment policy (SBCS),
RDR becomes computationally prohibitive for a system with more than four servers (i.e. more
than three background processes).

Although RDR is not suitable for an RFBQBD process having a large number of background
QBD processes (unless it has a special structure as in a priority M/M/k queue [34, 40]), our
experience shows that RDR is computationally efficient and accurate when it is applied to an
RFBQBD process having a small number of background QBD processes. For example, we have
applied RDR to study the effectiveness of new task assignment policies [14, 15], to study the
optimal threshold values in threshold-based policies [31, 32], and to study the effect of job size
variability and priority on the performance of multiserver systems [31, 32, 33, 40]. Note that
even with only a single background QBD process an exact analysis of the RFBQBD process is in
general computationally difficult.

We have also proposed two new approximations in RDR, namely RDR-PI and RDR-CI, to
reduce the computational complexity of RDR. These approximations ignore the dependency in the
sequence of “lengths of busy periods,” while keeping their marginal distribution. In the analysis
of SBCS, the running time of RDR-CI is less than a minute for up to 21-40 servers (i.e. up to
20-39 background processes), depending on the settings. Furthermore, when the “length of a
busy period” is approximated by a 2-phase PH distribution, the error of RDR-PI and RDR-CI
is within a few percent, which is only slightly worse than that of RDR, for all the instances that
we evaluate. The speed and accuracy of RDR-PI and RDR-CI allows us to analyze RFBQBD
processes that cannot be analyzed via RDR due to computational complexity. Since there is
a tradeoff between the speed and accuracy in RDR, RDR-PI, and RDR-CI, we can choose the
degree of approximation (RDR, RDR-PI, or RDR-CI) depending on the size/type of the input.

Future work includes further approximations and evaluation of the error in the RDR-based
analyses, including RDR, RDR-PI, and RDR-CI. First, to analyze a “larger” RFBQBD process
(e.g. having more background QBD processes), one might want to introduce further approxima-
tions in RDR to reduce its computational complexity. In RDR, RDR-PI, and RDR-CI, only a
portion with an infinite number of levels of a background QBD process is approximated by PH
distributions with a small number of phases. A similar approach can be applied to a portion with
a finite but large number of levels so that the background QBD process has a smaller number of
levels. Second, since the RDR-based analyses involve approximations, it is important to study
the error in such approximations. Although we evaluate the accuracy of RDR-based analyses
numerically, no theoretical guarantee is proved. The formalization of RDR in this paper may be
useful in establishing such a guarantee mathematically.

RDR, RDR-PI, and RDR-CI as described in this paper have been largely implemented and
tested. The latest implementation is available at an online code repository5.

5http://www.cs.cmu.edu/∼osogami/code/
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