
An Adaptive Threshold-Based Policy
for Sharing Servers with Affinities

Takayuki Osogami
�

Mor Harchol-Balter
�

Alan Scheller-Wolf
�

Li Zhang
�

February, 2004
CMU-CS-04-112

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We evaluate the performance of threshold-based job allocation policies in a heterogeneous dis-
tributed computing system, where servers may have different speeds, and jobs may have different
service demands, importance, and/or affinities for different servers. We find that while threshold-
based policies typically yield low mean response time, these policies are not robust with respect
to fluctuations or misprediction of the load. We propose a new adaptive dual-threshold policy and
show that this policy yields low mean response time while also being robust.

�
Carnegie Mellon University, Computer Science Department, osogami@cs.cmu.edu

�
Carnegie Mellon University, Computer Science Department, harchol@cs.cmu.edu. This work was sup-

ported by NSF Career Grant CCR-0133077, by NSF Grant CCR-0311383, NSF Grant-0313148, and by IBM via
2003 Pittsburgh Digital Greenhouse Grant.

�
Carnegie Mellon University, GSIA, awolf@andrew.cmu.edu

�
IBM Research, Thomas J. Watson Research Center, zhangli@us.ibm.com

Keywords: load sharing, threshold policies, affinities, adaptive, multiserver systems, dimen-
sionality reduction, busy period transitions, ��� rule

1 Introduction

A common problem in distributed computing systems is the allocation of server time among
queues of jobs (allocation policy). Specifically, there may be jobs originating at one (heavily
loaded) server which are better off served by some other (more lightly loaded) server. Since
estimating the system load is a difficult task, and in fact the system load often fluctuates over time,
it is desirable that the allocation policy be robust against such mispredictions and fluctuations
of the system load. Allocation policies are necessary, for example, when migrating processes
in networks of workstations [10], when dynamically allocating resources in utility computing
[1, 4, 5], and when assigning tasks in multiprocessor systems [22, 24].

The goal of this paper is to design and evaluate allocation policies for a general heterogeneous
distributed computing system where (i) the jobs originating at different servers may have different
mean size (processing requirement), (ii) the servers may have different speeds, (iii) jobs may
have different affinities with different servers, i.e., a job may be processed more efficiently (have
shorter duration) if run on one server than when run on another server, and (iv) different jobs
may have different importance (weights). Our objective is twofold. First we seek to minimize
the weighted average mean response time (weighted response time), ��� � �������	��
��� , where � � is
the weight (importance) of jobs originating at server � , � � is the average rate of jobs originating at
server � (type � jobs), ����� � ��� ��� � � is the fraction of type � jobs, and ����
��� is the mean response
time � of type � jobs. Second, we want our policy to be robust against environmental changes,
such as changes in load.

Figure 1 shows the model we consider for the case of two servers. Jobs arrive at queue
1 and queue 2 with average rates � � and ��� , respectively. Server 1 processes jobs in queue 1
with average rate � � (jobs/sec), while server 2 can process jobs in queue 1 with average rate � � �
(jobs/sec) and can process jobs in queue 2 with average rate ��� (jobs/sec). We define � � � � � � � � ,� � � ��� � �!� , and "� � � � � �$# � ��% � � � #'&)(� �+*,* . Here, "� � is the load of type 1 jobs assuming server
2 helps server 1 as much as possible, while processing all the type 2 jobs. Note that ���.- &
and "� � - & are necessary for the queues to be stable under any allocation policy. Even in this
simple model of just two servers, the optimal allocation policy is not known, despite the fact
that this problem has been investigated in numerous papers [2, 13, 14, 29, 23, 21, 9, 11, 26, 27].
Below we will focus on two servers and two queues with Poisson arrivals and exponential job
size distributions. Extensions to more general cases are discussed in Section 5.

One common allocation policy is based on the � � rule [7], where a server processes jobs
from the nonempty queue with the highest ��� value, biasing in favor of jobs with high � (high
importance) and high � (small expected size �). Under the � � rule, server 2 in Figure 1 serves
jobs from queue 1 (rather than queue 2) if � � � � �0/ �+� �!� , or queue 2 is empty. The � � rule is
provably optimal in the limit as job size approaches zero (fluid model) [25]. However Squillante
et. al. [23] as well as Harrison [13] have shown that ��� rule may lead to instability even if "� � - &
and �1�2- & . For example, the � � rule may force server 2 to process jobs from queue 1 even
when many jobs are built up at queue 2, leading to instability in queue 2 and under-utilization of
server 1. More recently, the generalized � � rule, which is based on greedily minimizing the delay

�
Here response time refers to the total time from when a job is requested until the job is completed – this includes

queueing time and service time.
�
Note that the average size of a job is 1/ 3 , where 3 is the average service rate.

1

λ1

µ2µ12µ1

λ2

=λ 2 /µ 2ρ2/(µ 1+µ 12=λ 1ρ1 (1−ρ))2

Figure 1: A two server model.

functions at any moment, has been applied to related models [18, 17]. However, in our model,
the generalized ��� rule reduces to the � � rule and hence has the same stability issues.

Squillante et. al. [23] have proposed a threshold-based policy that, under the right choice of
threshold value, improves upon the � � rule and guarantees stability whenever "� � - & and � � - & .
We refer to this threshold-based policy as the T1 policy, since it places a threshold value,

�
� , on

queue 1, so that server 2 only processes jobs from queue 1 (type 1 jobs) when there are at least�
� jobs of type 1, or if queue 2 is empty. The rest of the time server 2 works on jobs from queue

2 (type 2 jobs). The motivation behind placing the threshold on queue 1 is that it ‘reserves” a
certain amount of work for server 1, preventing server 1 from being under-utilized and server 2
from being overloaded. More formally,

Definition 1 The T1 policy is characterized by the following set of rules, all of which are enforced
preemptively (preemptive-resume):

� Server 1 serves only its own jobs.

� Server 2 serves jobs from queue 1 if either

1. � �
� �

� , or

2. � � ��� & � �
���

Otherwise server 2 serves jobs from queue 2. �

Figure 2(a) shows which jobs server 2 processes as a function of the number of jobs in queue
1 (� �) and queue 2 (� �). Bell and Williams prove the optimality of the T1 policy for a model
closely related to ours in the heavy traffic limit, where "� � and � � are close to 1 from below [2].
Williams conjectures that the T1 policy is optimal for more general models in the heavy traffic
limit [29].

�
To achieve maximal efficiency, we assume the following exceptions. When queue 2 is empty and queue 1 has

only one job, i.e. 	 ��
 �
and 	 ��
� , the job is assigned to the server with a higher service rate; namely, the job is

processed by server 2 if and only if 3 ��� 3 � � . Also, when � ��
 �
and 	 ��
 �

, the job in queue 1 is processed by
server 2 if and only if 3 ��� 3 � � regardless of the number of type 2 jobs.

2

T1 policy

N2

N1

T1

���

���0 1
0

work on queue 2

work on queue 1

(a) Server 2 behavior

0 10 20 30 40
0

5

10

15

20

25

30

35

40

T1

w
e

ig
h

te
d

 r
e

s
p

o
n

s
e

 t
im

e

(b) Sensitivity to
�
�

0.6 0.7 0.8
0

20

40

60

80

100

ρ2

w
e
ig

h
te

d
 r

e
s
p
o
n
s
e
 t
im

e

T1=2:opt
T1=20

(c) Sensitivity to �1�

Adaptive (ADT) policy

N2

N1

T2

T1
(1)

T1
(2)

���

���0 1
0

work on queue 2

work on queue 1

(d) Server 2 behavior

0 10 20 30 40
0

5

10

15

20

25

30

35

40

T1(1)

w
e

ig
h

te
d

 r
e

s
p

o
n

s
e

 t
im

e

ADT policy
T1 policy

(e) Sensitivity to
��� � ��

0.6 0.7 0.8
0

20

40

60

80

100

ρ2

w
e
ig

h
te

d
 r

e
s
p
o
n
s
e
 t
im

e

ADT policy
T1 policies

(f) Sensitivity to � �
Figure 2: Comparison of the T1 policy and ADT policy.

Despite its conjectured heavy traffic optimality, the T1 policy still has two problems. The first
is how to determine

�
� . Figure 2(b) shows the weighted average mean response time (weighted

response time) as a function of
�
� . The figure shows a common “V shape,” where the optimal�

� is very close to the
�
� values that lead to instability (infinite response time). This is quite

problematic, as an exact analysis has never been derived. Squillante et. al. [23] only provide
a coarse approximation; they then advocate choosing

�
� conservatively (higher than what their

analysis predicts) at the cost of a higher mean response time. A second problem is the sensitivity
of performance to a change in load. It is often the case that the load of a system changes over
time, and even if it does not, estimating the correct average system load is often a difficult task [8].
Figure 2(c) shows the weighted response time as a function of � � (only ��� is changed) under T1
policies with two different threshold values. The T1 policy with optimal

�
� (=2) at an estimated

load (� � � &	� & � and � � � �
���) quickly becomes unstable at higher � � values (solid line). The T1
policy is not robust against a change in � � , either. One can choose a higher

�
� (=20) to guarantee

stability at higher loads, but this will result in worse performance at the estimated load (dashed
line). Thus, the T1 policy exhibits a tradeoff between good performance at the estimated load
and stability at higher loads.

In this paper we will introduce a new policy that allows us to get the best of both worlds, good
performance at the estimated load and increased robustness. To derive our new policy, it helps to
first better understand the T1 policy. Since the T1 policy has only been evaluated by simulation
or by coarse approximation in the prior literature, we begin by introducing a computationally ef-
ficient and accurate evaluation method for threshold-based policies, including both the T1 policy
and our new policy. Together these constitute contributions of this paper.

3

Contribution 1: We provide a computationally efficient and accurate analysis of the
mean response time under the T1 policy as a function of job size and interarrival time dis-
tributions, server speeds, affinity, and weights. (See Sections 2-3.) Our analysis is technically
an approximation, but can be made as accurate as desired, and appears exact when validated
against simulation. Accurate analysis allows us to quickly find optimal threshold values for the
T1 policy.

The same analysis technique can be applied to other threshold-based policies. For example,
one might argue that the stability issue of the T1 policy with too small

�
� is resolved simply by

placing an additional threshold,
� � , on queue 2, so that if the number of type 2 jobs, � � , exceeds� � , server 2 works on type 2 jobs regardless of the number of type 1 jobs. We refer to this policy

as the T1T2 policy, since it operates as the T1 policy only when ����� � � . This natural extension
to the T1 policy surprisingly turns out to be in general no better than the T1 policy. That is,
the optimal value of

� � is usually � , reducing the T1T2 policy to the T1 policy. The intuition
obtained through the extensive analysis of these policies leads us to propose a new, adaptive,
threshold-based policy.

Contribution 2: We propose the Adaptive Dual-Threshold (ADT) policy that achieves
performance similar to the optimal T1 policy and is robust to changes in load (See Section 4.)
The key idea in the design of the ADT policy is the use of two thresholds,

� � � �� and
� � � �
� , on queue

1 with a threshold,
� � , on queue 2. The ADT policy behaves like the T1 policy with threshold� � � �� if the number of jobs in queue 2 is less than

� � and otherwise like the T1 policy with a higher
threshold,

��� � �
� . Thus, in contrast to the T1T2 policy above, the ADT is always operating as a T1

policy, but unlike the standard T1 policy, the value of
�
� adapts, depending on the queue at server

2; the different thresholds on queue 1 allow server 2 to help queue 1 less when there are more
type 2 jobs, preventing server 2 from becoming overloaded. This leads to the increased stability
region. The dual thresholds also make the ADT policy adaptive to a change in load (changes in
� � and � �), in that it operates like the T1 policy with threshold

� � � �� at the estimated load and like
the T1 policy with a higher threshold

� � � �
� at a higher load.

Formally, the ADT policy is characterized by the following rule.

Definition 2 If � ��� � � , the ADT policy operates as the T1 policy with threshold
�
� � ��� � �� ;

otherwise, it operates as the T1 policy with threshold
�
� �

� � � �
� .

Figure 2(d) shows which jobs server 2 processes under the ADT policy as a function of � � and
� � . When

� � � �� � � � �
�

� or when
� � � � , the ADT policy reduces to the T1 policy with threshold� � � �� . Also, when

��� � �
� � � , the ADT policy reduces to the T1T2 policy.

The remaining figures illustrate the robustness of the ADT policy. Figure 2(f) shows the
weighted response time as a function of � � . Here, the ADT policy (solid line) performs just as
well as the optimal T1 policy at the estimated load (� � � &	� & � and �1� � �
���), and has stability at
higher � � . We will show later that the ADT policy is also robust against changes in � � . Figure 2(e)
shows the weighted response time as a function of

� � � �� . The figure suggests that once
� � � �
� is

chosen to guarantee the stability at the estimated load, the response time is finite for any
� � � �� . As

we will see, since the performance at the estimated load is relatively insensitive to
� � � �
� , we can

choose a high
��� � �
� to guarantee a large stability region. In addition, since the stability region is

4

insensitive to
��� � �� and

� � , we can choose these values so that the performance at the estimated
load is optimized.

In conclusion, the ADT policy is more robust than the T1 policy in two ways. (i) The response
time under the ADT policy is less sensitive to changes in � � and � � . (ii) The settings of the three
threshold values under the ADT policy are less likely to lead to instability or increased response
time, as compared to the T1 policy.

2 Analysis and validation of analysis

In this section, we first describe our analysis of the T1 policy. The analysis can be extended to
other threshold-based policies, including the ADT policy, as illustrated in Section 2.2

2.1 Analysis of T1 policy

The difficulty in analyzing the mean response time under the T1 policy comes from the fact that
the state space required to capture the system behavior grows infinitely in two dimensions; i.e., we
need to track both the number of type 1 jobs and the number of type 2 jobs. In the literature, there
are two types of approaches to analyze a process such as ours with two dimensionally infinite
state space. The first approach is to resort to coarse approximation. For example, Squillante
et. al. derive an approximate analysis of the T1 policy based on vacation models [23]. This type
of analysis is computationally very efficient, but the accuracy of the solution is typically poor. For
example, the error in the approximation by Squillante et. al. is unbounded, since it mispredicts
the stability region. The second approach includes computational methods that can, in theory,
be made as accurate as desired, but require more computational time. Such methods include
reduction to a boundary value problem [6] and the matrix analytic method [16] possibly with
state space truncation (e.g. [27]). Reduction to a boundary value problem is a mathematically
elegant approach but often experiences numerical instability. The matrix analytic method can be
computationally very expensive without state space truncation, and it is very difficult to determine
where to truncate the state space to guarantee sufficient accuracy [3].

Our analysis of the T1 and ADT policies is a near exact method, which can be made as ac-
curate as desired, based on the approach of dimensionality reduction that we introduce in [12].
Advantages of dimensionality reduction include its computational efficiency, accuracy, and sim-
plicity; these allow us to extensively investigate the performance characteristics of the policies
under consideration. The dimensionality reduction technique reduces a 2D-infinite Markov chain
(hard to analyze) to a 1D-infinite Markov chain (easy to analyze) by using busy period transitions.
Figure 3 shows the resulting 1D-infinite Markov chain for the T1 policy. This chain tracks the
exact number of type 2 jobs. With respect to the number of type 1 jobs, the chain tracks this in-
formation only up to the point where there are

�
� (& jobs of type 1. At this point a type 1 arrival

starts a “busy period � ,” which ends when there are once again
�
� (& jobs of type 1. During this

busy period, both servers are working on type 1 jobs, and type 2 jobs receive no service. State
���� ��� * denotes there are at least

�
� jobs of type 1 and there are � type 2 jobs for � � � � & � � � � � � .

The key point is that there is no need to track the number of type 1 jobs during this busy period.
�
This busy period is equivalent to an M/M/1 busy period serving at rate 3 ��� 3 � � .

5

λ2
µ2

λ2
µ2

λ2
µ2

λ2
µ2

λ2
µ2

λ2
µ2

µ2
λ2

µ2
λ2

λ1

λ1 λ1

µ1 µ1 λ1

λ1µ1µ1

λ1

µ +µ1 12

3 ,0+ 3 ,2++3 ,1

λ1λ1λ1

λ2λ2λ2

µ2
λ2

 1 12(µ ,µ)max

0,0 0,1 0,2

1,11,0 1,2

2,22,0 2,1

BBB

Increasing number jobs in queue 2

T =31In
cr

ea
si

ng
 n

um
be

r
jo

bs
 in

 q
ue

ue
 1

Figure 3: Markov chain used for analyzing the T1 policy (
�
� ���).

We approximate the distribution of the duration of this busy period by a 2-phase phase type (PH)
distribution with Coxian representation � by matching the first three moments of the distributions
[19]. We find that this suffices to achieve a high level of accuracy. Figure 4 validates our analysis
against simulation; we show two of many cases we computed. Note that generating a single data
point via simulation requires 30 minutes, since ten iterations, each with 1,000,000 events, are
needed to stabilize. By contrast, our analysis takes less than a second.

The limiting probabilities of the Markov chain in Figure 3 can be used to calculate the mean
number of jobs of each type, �	� � � and ��� � � , which in turn gives mean response time via
Little’s law [15]. The limiting probabilities of the 1D-infinite Markov chain can be obtained
efficiently via the matrix analytic method [16]. Deriving �	� � � from the limiting probabilities is
straightforward, since we track the exact number of type 2 jobs. We derive �	� � � by conditioning
on the state of the chain. Let ��� � � �� � denote the expected number of type 1 jobs given that the
chain is in state # � � � * . For � � � � � � � � � � (& , �	� � � � � � � for all � . For � � ���

� , �	� � � �����	� � is
the mean number of jobs in an M/M/1 system given that the service rate is the sum of the two
servers, � � % � � � , and given that the system is busy, plus an additional

�
� jobs.

2.2 Analysis of ADT policy

The analysis of the mean response time under the ADT policy follows an approach similar to
the analysis of the T1 policy. Figure 5 shows the 1D-infinite Markov chain used for analyzing
the ADT policy. Again, the chain tracks the exact number of type 2 jobs, but with respect to the

A PH distribution is the distribution of the absorption time in a continuous time Markov chain. The figure illus-

trates a 2-phase PH distribution with Coxian representation, where the � th state has exponentially-distributed sojourn
time with rate 3� for �
 ��� �

. The absorption time is the sum of the times spent in each of the states, starting at state 1.

1µ 2µ
Exp Exp absorptionp

1−p

6

0 10 20 30 40
0

10

20

30

40

50

T1

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

simulation
analysis

(a) �!� � � �

0 10 20 30 40
0

10

20

30

40

50

T1

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

simulation
analysis

(b) �!� � � � ���

Figure 4: Validation of analysis, where we set "� � � �
��� , � � � �
��� , and � � � � � � � & .

number of type 1 jobs it tracks this information only up to the point where there are
� � � �
� (&

jobs. A type 1 arrival at this point starts a “busy period,” which ends when there are
� � � �
� (& jobs

of type 1. State # ��� � �
�
�
� � * denotes that there are at least

� � � �
� jobs of type 1 and there are � jobs

of type 2 for � � � � & � � � � � � . The mean response time is again obtained via the matrix analytic
method.

3 Results: T1 Policy

Our analysis of Section 2 allows, for the first time, efficient and accurate analysis of the T1 pol-
icy. In this section we extensively evaluate the weighted average mean response time (weighted
response time) under the T1 policy for various cases, and find the following characteristics of the
T1 policy performance.

1. Setting the threshold
�
� higher yields a larger stability region.

2. When � � � � � � � � �!� , the optimal threshold with respect to minimizing the weighted re-
sponse time is

�
� � � , which at the same time achieves the largest stability region. This

is the policy of following the � � rule, as in this case server 2 “prefers” to run its own jobs
in a � � sense.

3. When � � � � � / � � �!� , the optimal
�
� threshold is typically finite; in this case there is a

tradeoff between good performance at the estimated load # � � � � � * and possible instability
at higher � � and/or �1� . This is the case where server 2 “prefers” to run type 1 jobs in a ���
sense, but following the � � rule leads to instability.

4. The lower the value of � � � � , the lower the optimal threshold tends to be, i.e. the closer it
tends to be to the instability region. Hence, the tradeoff between good performance and
stability is more dramatic at smaller � � � � .

7

µ1 λ1 µ1 λ1λ1

4 ,0+ +4 ,1 λ2λ2 λ2 4 ,4+

λ1λ1 λ1B λ1B

µ1 λ1

µ1 λ1λ1µ +µ1 12

1
(2)T =4

1
(1)T =2

µ1 λ1

2T =2

λ2

µ1 λ1

µ +µ1 12

µ +µ1 12

µ1 λ1

λ2

λ2λ2

λ1µ +µ1 12

µ2
λ2 λ2µ2

λ2 λ2µ2

λ2

λ2

λ2 λ2

λ2

λ2

µ2
λ2

 1 12(µ ,µ)max

λ2µ2 µ2

µ2 µ2

µ2

µ2 µ2

µ2

0,0 0,1

1,1

0,2

1,2

0,3

1,31,0

2,32,12,0

4 ,2+

BB

3,33,23,13,0

In
cr

ea
si

ng
 n

um
be

r
jo

bs
 in

 q
ue

ue
 1

2,2

Increasing number jobs in queue 2

λ1

λ1

2λ

Figure 5: Markov chain used for analyzing the ADT policy (
� � � �� � �

,
� � � �
� � � ,

� � � �
).

3.1 Characterizing the optimal threshold

Figure 6 shows the weighted response time when type 1 jobs and type 2 jobs have the same
weight, i.e., � � � � � � & . Different rows correspond to different � � ’s and different columns cor-
respond to different � � ’s, as labeled. Here, � ��� is fixed at 1. The weighted response time is evalu-
ated at three loads, "� � � � �

� � �
� � � �
����� (only � � is changed), and � � is fixed at 0.6 throughout. � We
also discuss the effect of lower/higher � � , though not shown in the figure. We consider relatively
high loads, since system performance needs to be improved most in these cases.

Rule 1: If � � � � � and � ��� � � � , 	 � � � is optimal. In the third and fourth columns of
Figure 6, where �+� �!� � � � � � � � & , the weighted response time is a nonincreasing function of

�
� ;

hence
�
� � � minimizes the weighted response time. As we will see in Section 3.2,

�
� � �

also maximizes the stability region. Hence,
�
� � � (i.e., following the � � rule) is the best choice

with respect to both performance at the estimated load, # � � � � �+* , and stability at higher � � and/or
� � . The condition � � � � �!� is achieved when type 1 jobs are large, type 2 jobs are small, and/or
when type 1 jobs do not have good affinity with server 2 (e.g., when type 1 jobs require to access
data stored locally at server 1). The following theorem formally characterizes Rule 1. We provide
its proof in [20].

Theorem 1 If � � � �+� and � � � � �!� , � � � � minimizes the overall mean response time.

Rule 2: If � � � � � and � �
� / � � , finite 	 � is typically optimal. In the first and second
columns of Figure 6, where � � � � � / � � �!� , the weighted response time has minimum at some
finite

�
� . Since a larger value of

�
� leads to a larger stability region, there is a tradeoff between

�
Note that � �
 �� � � �� � � �� ��� corresponds to �
���� � � ��� � ��� ��� � �

when 3 �
 ��� �
�
(row 1), �

� � �� � � � � � � � � � �
when 3 �
 ��� �

(row 2), �
 � � � � � � � ��� � � � � �
when 3 �
 �

(row 3), and �
 �� ��� � �� ��� � � � � �
when 3 �
 �

(row 4).

8

good performance at the estimated load, # � � � � �+* , and stability at higher � � and/or � � . (Note
that the curves have sharper “V shapes” in general at higher "� � .) Choosing the right

�
� is further

made difficult by the steep curve to the left of the optimal
�
� : as

�
� becomes smaller, the weighted

response time quickly diverges to infinity. Therefore, even when � � and � � are fixed and known,
past works advised choosing

�
� conservatively, as they could not perform accurate analysis. Our

accurate and efficient analysis now allows us to choose the optimal
�
� in such a situation. Though

not shown, we have also investigated other values of � � . When �1� is lower (and hence � � is
higher for a fixed "� �), the optimal

�
� tends to become smaller, and hence the tradeoff between the

performance at the estimated load and stability at higher loads is more significant. This makes
intuitive sense, since at lower � � , server 2 can help more. The condition � � ��/ ��� is achieved
when type 1 jobs are small, type 2 jobs are large, and/or in the pathological case when type 1 jobs
have good affinity with server 2.

Rule 3: If � � � � � , lower � � typically implies lower optimal threshold. In the upper rows
in Figure 6, the optimal

�
� ’s are smaller and at the same time the “V shapes” are sharper. Since

smaller
�
� results in a smaller stability region and larger

�
� values significantly deteriorate the

performance at the estimated load, the tradeoff between the performance and stability is most
significant here. Small � � is achieved when type 1 jobs are large or when server 1 is slow.

In the above rules we have assumed equal weights; Figure 7 shows the effect of changing the
weights. Here �+� is changed as labeled, � � is fixed at 1, and the service rates are now fixed at � � �
� � � � �!� � & . In terms of ��� values, the figure corresponds to the third row of Figure 6. Observe
that the curves in Figure 7 have shapes similar, but not identical, to the corresponding curves
in Figure 6. The ��� rule provides a good basis but does miss some, potentially crucial, system
changes. We find that as a whole, the above three rules continue to characterize the optimal

�
�

values in the case of different weights when we replace � � by � � � � , � � � by � � � � � , and �!� by � � �!�
in the rules. In particular, when � � is small, i.e., type 1 jobs are more important, the optimal

�
�

is smaller and the “V shape” is sharper, and hence the tradeoff between the performance at the
estimated load, # � � � � � * , and stability at higher � � and/or � � is most significant.

3.2 Stability of T1 policy

Figure 8 shows stability regions under the T1 policy as � � and �1� vary; the queues are stable if and
only if � � is below the curve. The figure illustrates that higher

�
� values yield a larger stability

region, and in the limit of
�
� � � , the queues under the T1 policy are stable as long as "� � - &

and � � - & . The next theorem formally characterizes the stability of the T1 policy. We provide
its proof in [20].

9

Evaluation of T1 policy

� � � � � �� �

0 10 20 30 40
0

20

40

60

80

100

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

20

40

60

80

100

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

20

40

60

80

100

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

20

40

60

80

100

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � � � � �
�

0 10 20 30 40
0

10

20

30

40

50

60

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

10

20

30

40

50

60

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e
ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

10

20

30

40

50

60

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

10

20

30

40

50

60

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � � � � &

0 10 20 30 40
0

5

10

15

20

25

30

T1

w
e

ig
h

te
 r

e
sp

o
n

se
 t

im
e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

5

10

15

20

25

30

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

5

10

15

20

25

30

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

0 10 20 30 40
0

5

10

15

20

25

30

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � � � � �

0 10 20 30 40
0

2

4

6

8

10

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �� �

0 10 20 30 40
0

2

4

6

8

10

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �
�

0 10 20 30 40
0

2

4

6

8

10

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � &
0 10 20 30 40

0

2

4

6

8

10

T1
w

e
ig

h
te

d
 r

e
sp

o
n

se
 t

im
e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �

Figure 6: The weighted response time under the T1 policy as a function of
�
� , where type 1 jobs

and type 2 jobs have the same weight, � � � �+� � & . Here, � � � � � � & and �1� � �
��� are fixed. In
all figures the three lines correspond to three different "� � ’s.

� � � � � &

0 10 20 30 40
0

2

4

6

8

10

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �� �

0 10 20 30 40
0

5

10

15

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �
�

0 10 20 30 40
0

5

10

15

20

25

30

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � &
0 10 20 30 40

0

10

20

30

40

50

60

T1

w
e

ig
h

te
d

 r
e

sp
o

n
se

 t
im

e

ρ̂1=0.95
ρ̂1=0.9
ρ̂1=0.8

� � �!� � �

Figure 7: The weighted response time under the T1 policy as a function of
�
� , where type 1 jobs

and type 2 jobs have different weights (service rates are fixed at � � � � � � � �!� � &). Here,
� � � � � � & and �1� � �
��� are fixed. The three lines correspond to three different "� � ’s.

10

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ
1

ρ 2

T1=1
T1=5
T1=50

(a) � � � � � �

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

ρ
1

ρ 2

T1=1
T1=5
T1=50

(b) � � � �
� ��

Figure 8: Stability region of the T1 policy for different threshold values. Upper bounds on ��� are
plotted as functions of � � .

Theorem 2 Queue 1 is stable under the T1 policy if and only if � � - � � % � � � � Queue 2 is stable
under the T1 policy, when

�
� / & , if and only if

� � -

���������� ���������

�����
	 ��
����� 	 �� ��� ���� ��� � 	 � ���� � ��� ���� � � if � ���� & �

� � � � � � � ��� �
� � � � � � � ��� � � � 	 � ���� � � � ���� � � if � � � &	�

(1)

When
�
� � & and � �

�
� � � , queue 2 is stable if and only if equation (1) holds with

�
� � �

.
When

�
� � & and � � - � � � , queue 2 is stable if and only if

� � - &
& %�� �� ��� % � ��� � ���� � � � � � ��� � � � ���

�

Corollary 1 The right hand side of equation (1) is an increasing function of
�
� ; i.e., stability

increases with
�
� .

4 Results: ADT policy

In this section we examine the adaptive dual-threshold (ADT) policy, which achieves both good
performance at the estimated load and stability at higher loads. Recall from Section 3 that small�
� achieves good performance at the expense of stability, and large

�
� achieves stability at the

expense of good performance. The ADT policy places two thresholds,
� � � �� and

��� � �
� , on queue 1,

and as shown in this section:

11

1. Performance at the estimated load is well characterized by
� � � �� , and

2. Stability is characterized by
� � � �
� .

Thus we get the best of both worlds. Since the ADT policy requires specifying three thresholds,� � � �� ,
��� � �
� , and

� � , one might want to avoid searching the space of all possible triples for the
optimal settings. We show that threshold values set by the following sequential heuristic can
achieve performance comparable to the optimal settings.

1. Set
� � � �� as the optimal

�
� of the T1 policy at the estimated load.

2. Choose
��� � �
� so that it achieves stability in a desired range of load.

3. Find
� � such that the policy provides both good performance and stability.

4.1 Stability of the ADT policy

We first consider the stability of the ADT policy. At high enough � � and � � , � � usually exceeds� � and the policy behaves similar to the T1 policy with
�
� �

� � � �
� ; the stability condition for the

ADT policy is in fact the same as the stability condition for the T1 policy when
�
� is replaced by� � � �

� . The following corollary can be proved in a similar way as Theorem 2.

Corollary 2 The stability condition (necessary and sufficient) for the ADT policy is given by the
stability condition for the T1 policy (Theorem 2) by replacing

�
� by

��� � �
� .

4.2 Characterizing the optimal thresholds

Corollary 2 suggests that
� � � �
� should be chosen so that the policy can achieve stability in a

desired range of load. One might argue that setting
� � � �
� too high degrades the performance at

the estimated load, as does the T1 policy with large
�
� threshold; however, it turns out that this

is not the case for the ADT policy. Figure 9 shows the weighted average mean response time
(weighted response time) as a function of

� � � �� (solid or dashed lines); it also shows the weighted
response time under the T1 policy as a function of

�
� (dotted lines). We set

� � � �
� and

� � as labeled.
The figure shows that choosing high

� � � �
� (=40) degrades the performance at the estimated load

(� � � � � � � , "� � � �
��� , and �1� � �
���) only if
� � is too small (dashed line). With a sufficiently

large
� � , the ADT policy achieves performance very comparable to the optimal T1 policy at the

estimated load (solid line). Note also that for
� � � �� values below the optimal

�
� , the performance

of the ADT remains stable, in contrast to the simple T1 policy.
Figure 9 also suggests that when

� � is appropriately set, the weighted response time is min-
imized by setting

��� � �� close to the
�
� that minimizes the weighted response time, achieving

performance very close to the optimal T1 policy at the estimated load.
However, determining the appropriate

� � is a nontrivial task. If
� � is set too low, the ADT

policy behaves like the T1 policy with threshold
�
� � � � � �

� , degrading the performance at the
estimated load, since

��� � �
� is larger than the optimal

�
� . If

� � is set too high, the ADT policy
behaves like the T1 policy with threshold

�
� � � � � �� . This worsens the performance at loads

12

0 5 10 15 20
0

20

40

60

80

100

T1(1)

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=10)
ADT policy (T2=30)
T1 policy

� � � �
�
�����

0 5 10 15 20
0

20

40

60

80

100

T1(1)

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=10)
ADT policy (T2=30)
T1 policy

� � � �
�
�����

Figure 9: The weighted response time under the ADT policy as a function of
� � � �� (solid or dashed

lines) and the weighted response time under the T1 policy as a function of
�
� (dotted lines). Here

we assume "� � � �
��� , � � � �
��� , � � � � � & � � , � � � � � � & , and �+� �!� � & � & � , corresponding to the
second graph in the first column of Figure 6.

higher than the estimated load. Although a larger stability region is guaranteed by setting
� � � �
�

higher than the optimal
�
� , the weighted response time at higher loads can be quite high, albeit

finite.
Our efficient and accurate analysis of the ADT policy in Section 2 can be used as the kernel

of a search algorithm to determine a good value of
� � swiftly and easily, once we determined

� � � ��
and

��� � �� . Figure 10 shows the weighted response time for different � � values, as a function of "� �
in column (a) and as a function of � � in column (b). Dashed lines show the weighted response
time under the T1 policy, using the threshold

�
� that minimizes the weighted response time at

the estimated load ("� � � �
��� and �1� � �
���). Dotted lines show the weighted response time under
the T1 policy with

�
� �

� � . Solid lines show the weighted response time under the ADT policy,
where

��� � �� is set at the optimal
�
� at the estimated load,

��� � �
� � � � , and

� � is chosen so that it
achieves good performance both at the estimated load and at higher "� � and higher �1� . We find
“good”

� � values manually by trying a few different values, which takes us a few minutes.
Figure 10 shows that the ADT policy has at least as good performance as the better of the T1

policies throughout the range of loads ("� � and � �). When � � is large relative to � � � (bottom rows),
the difference in the weighted response time at the estimated load is small between the optimal�
� ’s and larger

�
� ’s. Therefore a high threshold, such as

�
� �

� � , is a reasonable choice in this
case, implying that a good

� � is typically small. This case corresponds to the case when type 1
jobs have good affinity at server 1, or the case when server 1 is faster.

When � � is small relative to � � � (top rows), stability region is less sensitive to
�
� , since small�

� can achieve relatively large stability region. Therefore, the optimal
�
� at the estimated load

is a good choice, and
� � is typically large. These rows correspond to the case when server 2 is

faster, or type 1 jobs have good affinity on server 2.
The advantage of the ADT policy over the T1 policy is most significant when � � is close

13

� � � � � �� �

0.75 0.8 0.85 0.9 0.95 1
0

100

200

300

400

ρ1^

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=60)
T1 policy (T1=2:opt)
T1 policy (T1=20)

0.55 0.6 0.65
0

100

200

300

400

ρ
2

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=60)
T1 policy (T1=2:opt)
T1 policy (T1=20)

� � � � � �
�

0.75 0.8 0.85 0.9 0.95 1
0

50

100

150

200

ρ1^

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=40)
T1 policy (T1=3:opt)
T1 policy (T1=20)

0.55 0.6 0.65 0.7
0

50

100

150

200

ρ
2

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=40)
T1 policy (T1=3:opt)
T1 policy (T1=20)

� � � � � &

0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

ρ1^

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=15)
T1 policy (T1=6:opt)
T1 policy (T1=20)

0.6 0.7 0.8
0

20

40

60

80

100

ρ
2

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=15)
T1 policy (T1=6:opt)
T1 policy (T1=20)

� � � � � �

0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

ρ1^

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=5)
T1 policy (T1=11:opt)
T1 policy (T1=20)

(a) sensitivity to "� �

0.6 0.7 0.8 0.9
0

2

4

6

8

10

ρ
2

w
ei

gh
te

d
re

sp
on

se
 ti

m
e

ADT policy (T2=5)
T1 policy (T1=11:opt)
T1 policy (T1=20)

(b) sensitivity to � �
Figure 10: The weighted response time under the ADT policy (solid lines) and T1 policy (dashed
and dotted lines) as functions of (a) "� � (only � � is changed; �1� � �
� �) and (b) � � (only ��� is
changed; "� � � � � �). Threshold

�
� is chosen so that the weighted response time is minimized at

"� � � �
� � and � � ���
� � (dashed lines) or
�
� �

� � (dotted lines). For the ADT policy,
� � � �� is set as

the optimal
�
� ,
� � � �
� � � � , and

� � is chosen so that it achieves good performance and stability.
All graphs assume � � � � � � & , �+� ��� � & � & � , and � � � � � � & , corresponding to the first column
of Figure 6.

14

to � � � . In this case, small
�
� provides good performance at low "� � and at low �1� but has a

significantly smaller stability region, while large
�
� provides a larger stability region but has

significantly worse performance at low "� � and at low �1� . The ADT policy performs just as well
as the T1 policy with small

�
� at low "� � and �1� , just as well as the T1 policy with large

�
� at high

"� � and �1� , and better than any of the two T1 policies at intermediate values of "� � and � � .

5 Conclusion

Providing good performance at the estimated environment parameters such as loads, arrival rates,
and job sizes has been a central goal in designing allocation policies and schedules in computer
systems. However, estimating environment parameters is a difficult task, and furthermore these
parameters typically fluctuate over time.

We propose the Adaptive Dual-Threshold (ADT) policy that provides good performance in
the estimated environment and yet is also robust against changes in load. The key idea in the
design of the ADT policy is the use of dual thresholds; autonomously choosing the right threshold
depending on the system state, and hence adapting to changes in the environment. We show the
effectiveness of the ADT policy in the case of two servers; however, the ADT policy could be
applied to any more general distributed computing system where a threshold-based policy is
effective. We hope that the intuition obtained in our study of the two server case is also useful in
choosing the correct threshold values in more general systems.

We also provide a computationally efficient and accurate performance analysis framework
that is widely applicable to threshold-based policies, including the ADT policy. This analysis
allows us to determine threshold values so that the policy provides good performance and ro-
bustness. Our analysis is useful in investigating the characteristics of threshold-based policies
in general; in fact we have studied many threshold-based policies, including the T1 and T1T2
policies. The intuition obtained in the study of these degenerate cases led us to propose the ADT
policy.

We have described our analysis in the case of two servers and two queues with Poisson ar-
rivals and exponential jobs sizes, but this can be extended to more general cases. Job size and
interarrival time distributions can be extended to general distributions using PH distributions as
approximations (see [11]). It is also straightforward to extend our analysis to more than two
servers but with only two queues. Extension to more than two queues is not trivial, but in certain
cases the recursive dimensionality reduction that we propose in [28] may be applied.

References

[1] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, and S. Krishnakumar.
Oceano - SLA based management of a computing utility. In Proceedings of the IFIP/IEEE
Symposium on Integrated Network Management, pages 855–868, May 2001.

[2] S. Bell and R. Williams. Dynamic scheduling of a system with two parallel servers in
heavy traffic with complete resource pooling: Asymptotic optimality of a continuous review
threshold policy. Annals of Probability, 11:608–649, 2001.

15

[3] L. Bright and P. Taylor. Calculating the equilibrium distribution in level dependent quasi-
birth-and-death processes. Stochastic Models, 11:497–514, 1995.

[4] J. Chase, L. Grit, D. Irwin, J. Moore, and S. Sprenkle. Dynamic virtual clusters in a grid site
manager. In Proceedings of the International Symposium on High Performance Distributed
Computing, pages 90–103, June 2003.

[5] J. S. Chase, D. C. Anderson, P. N. Thankar, and A. M. Vahdat. Managing energy and server
resources in hosting centers. In Proceedings of the ACM Symposium on Operating Systems
Principles, pages 103–116, October 2001.

[6] J. Cohen and O. Boxma. Boundary Value Problems in Queueing System Analysis. North-
Holland Publ. Cy., 1983.

[7] D. Cox and W. Smith. Queues. Kluwer Academic Publishers, 1971.

[8] P. A. Dinda and D. R. O’Hallaron. Host load prediction using linear models. Cluster
Computing, 3(4):265–280, 2000.

[9] L. Green. A queueing system with general use and limited use servers. Operations Re-
search, 33(1):168–182, 1985.

[10] M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for dynamic
load balancing. ACM Transactions on Computer Systems, 15(3):253–285, 1997.

[11] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Task assign-
ment with cycle stealing under central queue. In Proceedings of The 23rd International
Conference on Distributed Computing Systems (ICDCS 2003), pages 628–637, May 2003.

[12] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Task assign-
ment with cycle stealing under immediate dispatch. In Proceedings of The Fifteenth ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 274–285, June
2003.

[13] J. Harrison. Heavy traffic analysis of a system with parallel servers: Asymptotic optimality
of discrete review policies. Annals of Applied Probability, 8(3):822–848, 1998.

[14] J. Harrison and M. Lopez. Heavy traffic resource pooling in parallel server systems. Queue-
ing Systems, 33(4):339–368, 1999.

[15] L. Kleinrock. Queueing Systems, Volume I: Theory. A Wiley-Interscience Publication,
1975.

[16] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic
Modeling. ASA-SIAM, Philadelphia, 1999.

[17] A. Mandelbaum and A. Stolyar. Scheduling flexible servers with convex delay costs: Heavy
traffic optimality of the generalized � � -rule. Operations Research, to appear.

[18] J. V. Miegham. Dynamic scheduling with convex delay costs: the generalized ��� rule.
Annals of Applied Probability, 5(3):809–833, 1995.

[19] T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general distri-
butions to minimal PH distributions. In Proceedings of the Performance TOOLS, pages
200–217, September 2003.

16

[20] T. Osogami, M. Harchol-Balter, A. Scheller-Wolf, and L. Zhang. An adaptive threshold-
based policy for sharing servers with affinities. Technical Report CMU-CS-04-112, School
of Computer Science, Carnegie Mellon University, 2004.

[21] R. Schumsky. Approximation and analysis of a call center with specialized and flexible
servers. working paper, 2004.

[22] M. Squillante and D. Lazowska. Using processor-cache affinity information in shared-
memory multiptocessor scheduling. IEEE Transactions on Parallel and Distributed Sys-
tems, 4(2):131–143, 1993.

[23] M. Squillante, C. Xia, D. Yao, and L. Zhang. Threshold-based priority policies for parallel-
server systems with affinity scheduling. In Proceedings of the IEEE American Control
Conference, pages 2992–2999, June 2001.

[24] M. S. Squillante and R. D. Nelson. Analysis of task migration in shared-memory multipro-
cessors. In Proceedings of the ACM SIGMETRICS, pages 143–155, May 1991.

[25] M. S. Squillante, C. H. Xia, and L. Zhang. Optimal scheduling in queuing network models
of high-volume commercial web sites. Performance Evaluation, 47(4):223–242, 2002.

[26] D. Stanford and W. Grassman. The bilingual server system: A queueing model featuring
fully and partially qualified servers. INFOR, 31(4):261–277, 1993.

[27] D. Stanford and W. Grassmann. Bilingual server call centers. In D. McDonald and S. Turner,
editors, Analysis of Communication Networks: Call Centers, Traffic and Performance.
American Mathematical Society, 2000.

[28] A. Wierman, T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analyzing the effect
of prioritized background tasks in multiserver systems. Technical Report CMU-CS-03-213,
School of Computer Science, Carnegie Mellon University, 2003.

[29] R. Williams. On dynamic scheduling of a parallel server system with complete resource
pooling. In D. McDonald and S. Turner, editors, Analysis of Communication Networks:
Call Centers, Traffic and Performance. American Mathematical Society, 2000.

17

A Proofs of theorems

A proof of Theorem 1

By Little’s law, minimizing the mean number of jobs in system results in minimizing the mean
response time. Thus, it is sufficient to prove that the number of jobs completed under the T1
policy with

�
� � � is stochastically larger than those completed under the T1 policy with�

� - � at any moment. Let �
����� #�� * � # � �����

� #�� * � � �����
� #�� * * be the joint process of the number of

jobs in queue 1 and queue 2, respectively, at time � when
�
� � � ; Let �

� � #�� * � # � � �
� #�� * � � � �

� #�� * *
be defined analogously for

�
� - � . With

�
� � � , server 2 processes type 2 jobs as long as

there are type 2 jobs, and thus �
�����
� #�� * is stochastically larger than �

� �
� #�� * for all � . This implies

that the number of jobs completed by sever 1 is stochastically smaller when
�
� - � than when�

� � � at any moment, since server 1 is work-conserving.
As long as server 2 is busy, the number of jobs completed by sever 2 is stochastically smaller

when
�
� - � than when

�
� � � at any moment, since � � � � �!� . The only time that server 2

becomes idle is when there are no jobs to be processed in either queue; at these epochs �
�����
� #�� * �

�
���	�
� #�� * � �

�����
� #�� * � �

���	�
� #�� * � � , and the number of jobs completed (either by server 1 or by

server 2) becomes the same for
�
� � � and

�
� - � . This implies that the number of jobs

completed (either by server 1 or by server 2) under the T1 policy with
�
� � � is stochastically

larger than that completed under the T1 policy with
�
� - � .

A proof of Theorem 2

We prove only the case when
�
� / & . The case when

�
� � & can be proved in a similar way. Let

� � # � � � � � * be the joint process of the number of jobs in queue 1 and queue 2, respectively.
Consider a process

� � #
� � �

� � * , where

� behaves the same as � except that it has no transition

from

� � � & to

� � � � . Then, � � and � � are stochastically smaller than

� � and

� � , respectively.

It suffices to prove the stability of

� .

First consider

� � . The expected length of a “busy period,” during which

� �

� �
� , is finite if

and only if � � - � �!% � � � . This proves the stability condition for queue 1.
The strong law of large numbers can be used to show that the necessary and sufficient con-

dition for stability of queue 2 is � � -�� , where � denotes the time average fraction of time that
server 2 processes jobs from queue 2. Below, we derive � . Consider a semi-Markov process
of

� � , where the state space is (0,1,2,...,

�
� (& , ����). The state denotes there are jobs in

queue 1 for � � � & � � � � � � � (& , and the state
� �
� denotes there are at least

�
� jobs in queue

1. The expected sojourn time is & � � � for state 0, & ��# � � % � � * for states � & � � � � � � � (& , and� � � � � � � � � ��� ���� � � � � � � � � ��� � for state
� �
� , where

�
is the mean duration of the busy period in an M/M/1

queue, where the arrival rate is � � and the service rate is � � % � � � . The limiting probabilities for
the corresponding embedded Markov chain are ��� � #'& % � � *'�

� ���� ��� for � & � � � � � � � (& and
� ���� � � � �� ��� , where

��� �
��� �� �
� � � � 	 � � �� � � � � � � � ���� � 	 � � ���� � � if � � �� &

�
� � � � 	 � � �� � � � � � � � � � � ��� � if � � � &	�

18

In

� , server 2 can work on queue 2 if and only if

� � -

�
� . So, the fraction of time that server 2

can work on queue 2 is

� � ��� � � � % # & (��� (� ���� * ��# � �!% � � *
��� � � � % #'& (��� (� ���� * ��# � � % � � * %

� � ����

�

���������� ���������

����� 	 ��
����� 	 �� ��� ���� ��� � 	 � ���� � � � ���� � � if � � �� &

� � � � � � � ��� �
� � � � � � � ��� � � � 	 � ���� � � � ���� � � if � � � &	�

This proves the stability condition for queue 2.

19

