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Abstract

Representing videos with layers has important applications such as video compression, mo-
tion analysis, 3D modeling and rendering. This thesis proposes a subspace approach to extracting
layers from video by taking advantages of the fact that homographies induced by planar patches
in the scene form a low dimensional linear subspace. In the subspace, layers in the input images
are mapped onto well-defined clusters, and can be reliably identified by a standard clustering algo-
rithm (e.g., mean-shift). Global optimality is achieved since both spatial and temporal redundancy
are simultaneously taken into account, and noise can be effectively reduced by enforcing the sub-
space constraint. The existence of subspace also enables outlier detection, making the subspace
computation robust. Based on the subspace constraint, we propose a patch-based scheme for affine
structure from motion (SFM), which recovers the plane equation of each planar patch in the scene,
as well as the camera epipolar geometry. We propose two approaches to patch-based SFM: (1)
factorization approach; and (2) layer based approach. Patch-based SFM provides a compact video
representation that can be used to construct a high quality texture map for each layer.

We plan to apply our approach to generating Video Object Planes (VOPs) defined by MPEG-
4 standard. VOP generation is a critical but unspecified step in MPEG-4 standard. Our motion
model for each VOP consists of a global planar motion and localized deformations, which has a
closed-form solution. Our goals are: (1) combining different low level cues to model VOPs; and
(2) extracting VOPs that undergo more complicated motion (non-planar or non-rigid).
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1 Introduction

Decomposing an image sequence into layers has been proposed as an efficient video representation
for coding, motion and scene analysis, and 3D scene representation [35, 23, 3]. There are two types
of layers: 2D layer and 3D layer. A 2D layer consists of 2D sub-images such that pixels within
the same layer share some common model. The model could be defined based on low level cues
such as motion and texture. Motion model is often used (e.g., 2D parametric transformation [35],
or non-parametric model defined by dense smooth flow field [37]). A 3D layer consists of a 3D
plane equation, the texture of that plane, a per-pixel opacity map and depth-offset [3]. Extracting
3D layers usually requires the recovery of camera motion, which essentially reduces the problem
to a structure from motion (SFM) task, a non-trivial task for computer vision. In fact,2D layers are
suffice for the purpose of video compression. In the framework of MPEG-4 (content based video
coding standard), a 2D layer is defined as a Video Object Plane (VOP).

In this thesis, we study the problem of 2D layer extraction from uncalibrated image sequence.
The three major issues of layer extraction are: (1) determining the number of layers; (2) recovering
the model for each layer; and (3) assigning pixels to layers. We first propose a subspace approach to
extracting the layers based on 2D parametric motion model. As another application of the subspace
approach, we propose a patch-based scheme for structure from motion (SFM). Then we propose a
competition approach for extracting VOPs for MPEG-4 video coding. Since 2D parametric motion
model might not suffice for modelling some VOPs with complex motion (non-rigid or articulate),
we define a motion model with hierarchical complexity, and combine different low level cues to
model the VOPs.

1.1 Subspace Approach to Layer Extraction

Various approaches have been proposed for layer extraction based on motion. They include mixture
model estimation with Expectation-Maximization (EM) algorithm [20, 2, 38, 37, 32], and pixel or
region grouping based on a certain affinity criterion usingk-means algorithm [35] or normalized
graph cut [27].

Initialization (setting the number of models and the motion for each model) is an important
but difficult step for EM approach [27, 32]. Without good initialization, EM algorithm may not
converge to desired optimal solutions. A typical initialization method [2] is to divide the image
into a fixed number of tiles, and use them as the initial layers for the EM algorithm. Followed by
each EM iteration is the application of MDL principle to determine the number of models, which is
usually implemented as an exhaustive search [2]. The robust motion estimation in the M-step [2]
requires the inclusion of dominant motion inside each initial or intermediate layer1, which can
not be guaranteed by the regular tiling initialization. Moreover, if one real layer is divided into
different tiles, and if those tiles have different dominant motions (or without any dominant motion
at all), such an unlucky layer becomes hard to be extracted.

Grouping pixels based on local measurement does not have the similar initialization difficulty.
However, grouping based on pure local measurement ignores the global constraints. Moreover,

1The presence of dominant motion of the whole image is not required.
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grouping in a high dimensional space is often unreliable given noisy local measurements.
In this thesis, we present a low dimensional linear subspace approach which can exploit the

global spatial-temporal constraints. We formulate the layer extraction problem as clustering in the
low dimensional subspace, where clusters become denser, better-defined, and thus more reliably
identifiable.

Linear subspace constraints have been successfully used in computer vision. Tomasi and
Kanade [31] are the first that used the rank-3 constraint in structure from motion (SFM). Shashua
and Avidan [26] derived the linear subspace of planar homographies induced by multiple planes
between a pairs of views. Zelnik-Manor and Irani [39, 40] extended the results to multiple planes
across multiple views, and applied such constraints to estimate the homographies of small regions.

The subspace constraints to be exploited in this thesis are the ones that are derived from the
relative affine transformations collected from homogeneous color regions [22]. Our algorithm
assumes that each homogeneous color region is a planar patch. Such assumption is generally
valid for images of natural scenes, and has been extensively used in motion analysis and stereo
[5, 38, 13, 30].

Our subspace approach to layer extraction has the following advantages:

• Clusters in the subspace become denser and better-defined.

• As it is a multi-frame approach, both spatial and temporal global optimality are achieved by
simultaneously taking into account all valid regions across the image sequence. Previously
approaches in [34, 2] are essentially two-frame approach.

• Noise in estimated motion is reduced by the process of subspace projection, and global
geometry constraint is enforced.

• The existence of subspace enables outlier detection, thus making the subspace computation
robust.

1.2 Patch-Based SFM

We propose a patch-based scheme for affine structure from motion based on subspace constraints.
When constructing the texture model for layers (e.g., the mosaic image), the recovered structure
is useful if the scene is not strictly planar, which is often the case in the real world. For example,
when the non-planar effect is compensated by the recovered structure, we can construct a higher
quality mosaic image.

Previous approaches to SFM, either feature-based approach [31] or direct approach [19], have
been focused on the recovery of the 3D position of each single point. In patch-based SFM, we re-
cover the plane equation of each planar patch in the scene as well as the camera epipolar geometry.
Two methods for patch-based SFM will be considered:

• The first method is based on the factorization of a measurement matrix consisting of 2D
affine motion of each planar patch in the scene. Such method is a natural extension of [31],
where the measurement matrix consists of 2D position of each feature point, i.e., the 2D
motion model is translational.
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• The second method is layer based. A cloud of correspondences are either computed or hallu-
cinated [29] for each layer. Such approach has the advantage of avoiding the degenerate case
(correspondences come from a single plane) or ill-posed case (most of the correspondences
come from a single plane).

1.3 Competition Approach for VOP Generation

A VOP can not be extracted using the subspace approach when (1) it can not be approximated
by a planar patch, or (2) its motion can not be modelled by 2D parametric motion. To deal with
this problem, we propose a competition approach for VOP generation. In such framework, the
model of the VOP could combine different low level cues, and its motion model can be more
complicated than 2D parametric motion. Since some VOPs are simpler to model and easier to
identify than others, we use a progressive scheme to extract the layers. Simple VOPs (such as the
layers with 2D parametric motion model) are extracted first, which are then used to construct some
intermediate background representation (such as a sprite) to guide the extraction of foreground
VOPs that require more complex models.

2 Subspace of Relative Affine Homographies

This section shows that the homographies induced by 3D planar patches in a static scene, each
represented by a column vector in the parameter space, reside in a low dimensional linear subspace.
Such subspace comes from the fact that multiple planar patches in the scene share the common
global camera geometry. The redundancy exploited by the subspace is high since there exists a
large number of homogeneous color regions in real images, most of which can be approximated as
planar patches.

2.1 Planar Homography

Suppose we are given a planeπ 2 and two views ofπ. A point Xπ on π is projected ontox and
x′ on the two views respectively, wherex andx′ are 3-vectors (homogeneous coordinates). There
exist a unique non-singular3 × 3 matrix H such thatx′ = Hx. This 3 × 3 matrix H is called
thehomographyinduced by the planeπ. The explicit expression ofH is given by the following
theorem [17]:

Theorem 1 Given a plane defined byπTX = 0 with π = (vT, 1) , and its two projective views
with projection matrixP ∼= [I | 0] andP′ ∼= [A | −a], then the homography induced by planeπ is
x′ ∼= Hx with H ∼= A + avT

If we are given the fundamental matrixF = e′×A between two views, then we can choose the
two cameras to be[I | 0] and[A | − e′]. The homography induced by the 3D plane in the scene
can then be described as [17]:

2Not containing the camera optical center.
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H3×3
∼= A3×3 + e′vT (1)

Herev = (v1, v2, v3)
T defines the 3D plane3. [e′]×A = F is any decomposition of the funda-

mental matrixF, wheree′ is the epipole in the second view andA is a homography matrix induced
by someplane ([17], pp.316).

Givenk planes in the scene, we havek homography matricesHi, i = 1, 2, ..., k. Suppose we
construct a matrixW9×k by reshaping eachHi into a 9-dimensional column vector. The rank of
W is known to be at mostfour [26]. In other words, all homographies between two projective
views span afour dimensional linear subspace of<9. This result was extended to the case of
multiple projective views, and has been used to accurately estimate the homographies for small
pre-segmented planar patches [39].

2.2 Relative Affine Homographies

Affine camera [24] is an important model usable in practice. One advantage of affine camera is
that it does not require calibration. Moreover, when perspective effect is small or diminishes, using
affine camera model avoids computing parameters that are inherently ill-conditioned [25, 16].

Eq.(1) holds for affine camera as well ([17], pp.350, or see our proof in the appendix). Given
uncalibrated cameras, it is known that the projective homography can only be determined up to an
unknown scale. This is not the case for affine cameras. In affine camera, the 2D affine transforma-
tion can beuniquelydetermined, and we can rewrite Eq.(1) as (see the proof in appendix):

m2×3 = mr + e′vT . (2)

Here mr is the affine transformation induced by the reference plane.e′ = (e1, e2)
T , where

(e1, e2, 0) is the direction of epipolar lines in homogeneous coordinate in the second camera. A
3-vectorv representing the plane is independent of the second affine camera.

Notice an important difference between Eq.(1) and (2). Eq.(1) has an unknown scale while
Eq.(2) does not. Therefore, we can definerelative affine transformationas:

∆m = m−mr = e′vT . (3)

wheremr is the affine transformation induced by the reference plane. The reference plane can be
either a real plane or a virtual plane.

2.3 Subspace of Relative Affine Homographies

We will show that the collection of all relative affine transformations across more than two views
resides in a three dimensional linear subspace:

Result 1 Given a static scene withk planar patches, a reference viewψr and anotherF (F ≥ 1)
views{ψf |f = 1, ..., F} of this scene, the collection of all relative affine transformations induced
by thesek planar patches between the reference viewψr and any other viewψf resides in a three
dimensional linear subspace.

3We ignore the degenerate case where a plane is projected into a line in the image.
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Proof: between reference view and viewf , denote thek affine transformations asmf,1, ...,mf,k.
From Eq.(2) we have∆mf,i = mf,i −mf,r = e′fv

T
i , wherevi = [v1,i, v2,i, v3,i]

T . Reshape each

∆mi into a6× 1 column vector, and stack them into a matrixWf
6×k. The following factorization

is obvious [26]:

Wf
6×k =




ef,1 0 0
0 ef,1 0
0 0 ef,1

ef,2 0 0
0 ef,2 0
0 0 ef,2




6×3

∗



v1,1 ... v1,k

v2,1 ... v2,k

v3,1 ... v3,k




3×k

= Ef
6×3 ∗V3×k (4)

whereV is common to all views. Therefore, we have:

W6F×k =




W1

W2

...
WF




6F×k

=




E1

E2

...
EF




6F×3

∗V3×k (5)

The matrix dimension on the right-hand side of Eq.(5) implies that the rank ofW is at most 3.
¦

From Eq.(5) we can see that the subspace comes from the fact that multiple planes share the
common camera geometry, i.e., the direction of parallel epipolar lines. The matrixW is built from
the motions of planar patches. We can exploit high redundancy by using subspace since there exists
a large number of homogeneous color regions in real images, many of which are planar patches.
Multiple views have more redundancy. For the specialinstantaneoushomography, it is known that
there is a similar definition of relative projective homography and its subspace [40].

2.4 Subspace Dimensionality

The actual dimension of the subspace, i.e., the rank ofW in Eq.(5), depends on the scene and
the camera geometry, and could belower than three. For example, if all planes in the scene are
parallel to each other (not necessary front-parallel), or if there is only one plane in the scene, then
the subspace dimension isoneinstead of three.

Another important fact is that the assumption of static scenes for deriving Eq.( 5) is a sufficient
condition butnot a necessaryone. This means that even with moving objects in the scene, we may
still have a low dimensional linear subspace.

To verify the above observation, let us consider the following situations. A 3D scene consists of
three planes, with the table plane stationary and foreground and background planes moving upward
and downward independently. At the same time, a pinhole camera is undergoing simultaneously
zooming out, translating horizontally, and rotating about its optical axis. Under such camera mo-
tion, each plane in the scene will induce an affine transformation. Fig.(1) shows the two rendered
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(a) (b) (c)

449.0 261.2 0.006 0.0007 0.0002 0.0001
(d)

Figure 1: Results on synthetic sequence, where both camera and objects are moving independently: (a)
and (b) two frames of the synthetic sequence; (c) the layer map by clustering in the 2-D subspace; (d) the
eigenvalues of matrixW6×31.

frames. Notice each plane is made of many color patches. With two views (F = 1), andk = 31
patches (1 on foreground plane, 15 on background plane, 15 on table plane), the eigenvalues of
W6×31 are computed and shown in Fig.(1d). They clearly show that the dimension of subspace is
two.

2.5 Related Work

Linear subspace constraints have been successfully used in computer vision. Tomasi and Kanade [31]
are the first that utilized the rank-3 constraint in Structure from Motion (SFM). Shashua and Avidan
[26] derived the linear subspace of projective homographies induced by multiple planes between a
pairs of views. Zelnik-Manor and Irani [39, 40] extended the results to multiple planes across mul-
tiple views, and applied such constraints to estimate the projective homographies of pre-segmented
small regions.

There are several distinctions between our current work and previous work:

• In [39, 40], the subspace constraint is used to estimate the motion ofpre-segmentedregions
that are manually specified. We use the subspace to provide a better space to cluster regions
(e.g., homogeneous color segments) into layers. The high redundancy among larger number
of regions are exploited even these regions come from the same layer/plane, given as few as
two views of the scene.

• The approach to prove the existence of subspace in the previous work [39, 40] can not be
directly applied to affine camera case, because affine camera has singular projection matrix
(i.e., the up-left3 × 3 matrix of projection matrix is rank 2). Affine camera is an important
model that is widely used in practice. We proved the existence of 3-dimensional subspace
for relative affine homographies.

• The affine camera motion can undergo large rotation, while in [40] the camera motion needs
to be instantaneous (small rotation and forward translation).
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two or more frames

Layer refinement

Subspace projection

Computing the subspace

Two−pass region sampling

Color segmentation & motion estimation

Subspace clustering

by mean−shift algorithm

Extracted layers

Figure 2:Overview of layer extraction algorithm.

3 Algorithm for Layer Extraction Using Subspace

Fig.(2) shows the steps of layer extraction algorithm. The input is two or more images, with one of
them selected as the reference view frame. The reference image is segmented based on static color
information. It is in general safer to over-segment, so that each segment corresponds to a single
planar patch. Then an affine or translational motion is estimated with respect to each other frame
for each color segment. Then the region sampling algorithm will select valid color segments, and
the affine motions from these selected color segments are used to compute the linear subspace.
Data points in the subspace are then generated by projecting the affine motion into the subspace.
We use the mean-shift based clustering technique [7, 9] to derive the initial layers. Finally, the
un-selected color segments are assigned to layers in the layer refinement step.

3.1 Color Segmentation and Motion Estimation

Our layer extraction algorithm assumes that pixels inside each color segment belong to the same
layer, and the motion of each color segment can be described by a 2D parametric model, such as
affine or projective homography4. We use the color segmentation algorithm proposed by [8]. Since
color segmentation is not our final goal, over-segmentation has been used here in order to assure
the validity of the above assumption to the largest extent. Such assumption is generally valid for
over-segmented images of natural scenes, and has been successfully used in motion analysis and
stereo [5, 38, 30].

For every color segment in the reference frame, we directly estimate a parametric motion using

4Note that color segmentation is applied only on the reference image. We directly estimate the motion of each
region without doing region correspondence between reference image and other images.
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a simple hierarchical model-based approach with robust estimation [4, 2, 5]. In our experiment,
translational or affine model is estimated depending on the area support of each color segment.

Large color segments usually still have enough intensity variation to estimate affine motions.
For a segment with little intensity variation, a translational motion can still be reliably estimated
from the boundaries of color segment, if there is not occlusion.

3.2 Two-Pass Region Sampling

To derive the subspace, we must select regions to be used to build the matrixW in Eq.(5). Those
regions must be the ones for which affine motions are estimated, and in general, they should uni-
formly distribute over the reference frame, so that each layer in the image domain will have enough
samples and form a dense cluster in the feature space where clustering is performed.

A straightforward region sampling method is to divide the reference frame into smalln × n
blocks, and then select the blocks where an affine motion can be estimated [35]. Since affine
motions are usually not available or erroneous insmalltextureless blocks, a layer containing large
homogeneous color regions will not have enough number of samples to become a single dense
cluster in the feature space. On the other hand, a layer with rich texture may have much more
samples and the clustering algorithm may bias toward such layer.

To deal with the above problems while at the same time uniformly sample the reference image,
we design a two-pass sampling approach based on color segmentation, as illustrated in Fig.(3). In
the first pass, color segments for which affine motions have been estimated are selected as region
samples5. The remaining un-selected areas are used in the second pass. Such remaining areas
usually have rich texture and contain many small color segments where only translational motions
are available. In the second pass, the reference image is divided inton × n blocks (n = 20 in
our experiments). For each block containing more than 80% of un-selected pixels, we re-estimate
an affine motion using the un-selected pixels inside this block. If the intensity residual of such
estimated motion is small, the un-selected color segments inside such block are chosen as region
samples.

3.3 Computing Subspace

Computing the subspace of homographies involves building and factorizing the matrixW in
Eq.(5), which has been constructed from the affine transformations of thek selected region sam-
ples:mi, i = 1, 2, ..., k.

There are three important implementation details in buildingW:

• We can choose one color region with large area support and good motion estimation as the
reference plane. In practice, we found the average transformationm = 1

k

∑k
i=1 mi serves as

a good reference affine transformation induced by some “virtual” plane6.

5A simple outliers detection is applied here. Regions with large registration error are considered as outliers.
6Notice thatm is induced by some world plane (either real or virtual) if and only if there existsF = [e′]×m,

whereF is the fundamental matrix[17].
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A

B
C

D

E

H

GF

First pass Second pass

Figure 3:Two-pass sampling. Solid lines in the figures show the boundaries of color segments. In the first
pass, color segmentsA,B,C are selected. The remaining color segments are small. In the second pass,
the image is divided inton × n blocks. BlocksD-H are selected since they contain more than 80% of
un-selected pixels. Affine motion for each selected block is estimated based only on the unselected pixels
inside it.

• The area of each selected color segment is to be taken into account. For a selected color
segmentmi containingn pixels, we reshape∆mi into a6 × 1 column vector, and then put
n columns of∆mi into W7. In other words, regions with larger area have larger weights.
Obviously adding such weight does not change the rank ofW.

• We scale the different components in the affine transformation, such that a unit distance
along any component in the parameter space corresponds to approximately a unit displace at
the image boundaries [35]. Such scaling makes the subspace approximatelyisotropic. We
use the image width as the scale factor. Specifically, the matrixW6×k is left-multiplied by
the following scale matrix:

S =




w 0 0 0 0 0
0 w 0 0 0 0
0 0 1 0 0 0
0 0 0 w 0 0
0 0 0 0 w 0
0 0 0 0 0 1




Again, such linear transformation does not change the rank ofW, or the dimension of the
subspace. Let us denotẽW = SW. In practice, we found thatS is not a sensitive parameter.
The final results do not change for a wide range of thew in matrixS.

We use SVD algorithm to factorize the matrix̃W:

W̃6×k = U6×6Σ6×6V
T
6×k (6)

The diagonal ofΣ contains the eigenvaluesαi of W̃ in decreasing order. The actual rank ofW̃
depends on the camera and the planes in the scene, and is detected by [18]:

∑d
i=0 α2

i∑6
i=0 α2

i

> t (7)

7If we do not use the average transformationm as reference, we need to subtract mean from each column.
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whered is the rank ofW̃ , andt determines the noise level we want to tolerate.
The linear subspace is defined by the firstd columns ofU , which are the bases of the sub-

space. The motions of the region samples are projected into this subspace asΣd×dV
T
d×k, where

each column becomes a feature point in thed-dimensional subspace.

3.4 Layer Initialization by Subspace Clustering

We now apply a clustering algorithm to the data points in thed-dimensional subspace for initial
layers. The mean-shift based clustering algorithm, proposed by Commaniciu and Meer [8, 9], has
been successfully applied to color segmentation and non-rigid object tracking [8, 10]. We adopt
this algorithm because: (1) it is non-parametric and robust; (2) it can automatically derive the
number of clusters and the cluster centers. Refer to [8, 9] for a clear description and details on this
algorithm.

A critical parameter in this clustering algorithm is the window radiusr of mean shift. This
parameter determines the resolution of segmentation. We will show results over a range ofr.

3.5 Layer Refinement & Post-Processing

Once we have the initial layers given by subspace clustering, we re-estimate an affine motion for
each initial layer by using all of the region samples inside that layer. Then we re-assign every
color segment8 to the layer that predicts its motion best. This layer refinement is similar to one EM
iteration in its goal, but without the probabilistic notion.

There are some spurious small regions, largely due to outliers. We have an optional post-
processing step to remove such regions, by assigning them to their neighbors with similar motions.
Such post-processing is desirable since a small number of compact layers are preferable for appli-
cations such as video compression.

3.6 Experimental Results

This section presents the experimental results of two real image sequences:flower gardenand
mobile & calendar.

There are two parameters that need to be specified. One is the noise level parametert in Eq.(7)
for determining the dimension of the subspace. In the following experiments, both sequences were
found to have a two-dimensional subspace witht = 95%. The other parameter is the window
radiusr. It is a critical parameter in the mean-shift based clustering algorithm. The value of this
parameter can be derived from the covariance matrix ofW̃. According to [8], in our experiments

it is to be set proportional toσ =
√

trace(cov(W̃)). We have found by experiments thatr = 0.3σ
produces the desired results. We will also show different layer extraction results by varyingr over
a wide range of[0.3σ, 1.3σ].

8Including the color segments that are not selected in the two-pass region sampling step.

11



3.6.1 Flower GardenSequence

Fig.(4a) and Fig.(4b) show two frames of theflower gardensequence, where the scene is static and
the camera is translating approximately horizontally.

Fig.(4c) shows the color segmentation result on the reference image by applying the color
segmentation algorithm with over-segmentation class proposed in [8]. Fig.(4d) shows the region
samples selected by the two-pass sampling algorithm, and the initial layers via mean-shift cluster-
ing in the subspace. The black regions are un-selected regions. Notice that most of the occlusion
regions are not selected, perhaps due to the two-pass sampling algorithm. Four layers (which
roughly correspond to tree, branch, house, and flower bed) have been identified by the clustering
algorithm, with window radiusr = 0.3σgarden, whereσgarden = 4.5. The tree layer and the branch
layer contain large color segments and are easier to extract. Notice that the flower bed and the
house consist of mostly small regions. The subspace clustering successfully identifies them as two
separate layers.

Fig.(4e) shows the four layers after the layer refinement step but without post processing. Every
initially unselected color segments has been assigned to one of the layers.

Fig.(4g-j) shows the four layers where the small spurious regions are assigned to neighbor
regions based on motion affinity by the post processing step.

3.6.2 Mobi Sequence

The mobile & calendarsequence is used to show that static scene assumption in the analysis of
Section 2 is a sufficient condition butnot a necessary one. In this sequence, the train is pushing a
rotating ball leftwards, and the calendar is pulled upwards, while camera is panning and tracking
the train.

Fig.(5d) shows the region samples and initial layers by mean shift clustering withr = 0.3σmobi,
whereσmobi = 3.2. Again we notice that most of the occlusion regions are in the un-selected black
regions. Fig.(5e) shows the result of layer refinement but without post processing. Note that the
ball (in the lower middle) is extracted successfully. Although its area support is small, its motion
is distinct and it forms a separate cluster in the subspace. In previous work of layer extraction on
this sequence, for example in [2], the ball layer tends to be missed since its motion is not dominant
in any initial or intermediate layer.

3.6.3 Increasing Window Radius

In this experiment, we vary the window radiusr to see how the segmentations of different reso-
lutions are derived. Fig.(4k) and (4m) show the layer maps obtained when increasing the window
radius to0.7σgarden and1.3σgarden respectively9. Notice that in Fig.(4m), part of the branch layer
is erroneously merged into the background layer. Fig.(5k) and (5m) are formobisequence.

The functionality of parameterr is similar to the “coding length” of MDL [2]. However,r is
easier to understand and is more natural to set, in a way similar to the variance of Gaussian in [38].

9Further increasingr will eventually results in a layer map with only one layer in it.
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(a) input I0 (b) input I1 (c) color segmentation

(d) initial layers (e) 4 layers extracted (f) without subspace

(g) Layer 1 (h) Layer 2 (i) Layer 3

(j) Layer 4 (k) (m)

Figure 4:Results offlower gardensequence. (a) and (b) Two frames of the sequence; (c) Color segmenta-
tion map; (d) Selected regions and initial layer map by clustering in the 2D subspace, where black indicates
un-selected regions; (e) Layers after refinement; (f) Noisy layers extracted using the original six dimen-
sional parameter space instead of subspace; (g)-(j) Four layers extracted after post-processing; (k) & (m)
Layer maps by increasing the window radius of mean-shift algorithm.
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3.6.4 Comparison with Clustering without Using Subspace

To demonstrate the advantages of using subspace, we also show the results of layer extraction
without using subspace. To make the window radius comparable in both cases, we have scaled
them by the following factor:

s =
sqrt(α2

0 + α2
1 + ... + α2

5)

sqrt(α2
0 + α2

1)
(8)

whereαi’s are the eigenvalues of̃W.
Fig.(4f) and Fig.(5f) are the results of clustering in the original six-dimensional affine parameter

space, withr = s × 0.3σ. Some layers are split into two or more layers, possibly due to the fact
that in the high dimensional space, the data are sparser and the cluster are not as well defined as in
the low dimensional space. Also some regions are assigned to wrong layers.

3.6.5 Three-Frame Post-Processing

In some rare case, a color region may contain multiple motions. Such color region need to be
broken into smaller elements to be re-assigned to different layers. Given the reference frameIf

and another two framesIf−1, If+1, the following post-processing is applied:

• After the layers are derived, we re-compute affine motion for each layer10.

• A pixel p is marked if its corresponding layer motion can not predict its color in eitherIf−1

or If+1.

• Re-assign each marked pixel to the layer that predicts its color best ineither If−1 or If+1.

Note that if a pixel is occluded in frameIf−1, it is usually visible in the other frameIf+1, since
the movement of the camera tends to be continuous. Therefore, we assign the pixel to the layer
whose motion predicts its color best in one temporal direction, even such layer can not predict its
color in the reverse temporal direction.

Figure 6 shows the result of applying the above algorithm. As can be seen in Fig.(6d), part of
the background is in the same color region of the tree and is assigned to the tree layer. Such error
is corrected by applying the three-frame post-processing algorithm, as shown in Fig.(6e).

4 Robust Layer Extraction with Subspace

The subspace not only provides a space where data clusters are well defined but also provides a
mechanism for outlier detection.

The SVD of the measurement matrix̃W is:

W̃6F×k = U6F×6Σ6×6V
T
6×k

10We can compute a projective transformation now because we have enough area support at each layer.
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(a) input I0 (b) input I1 (c) segmentation

(d) initial layers (e) 4 layers extracted (f) without subspace

(g) Layer 1 (h) Layer 2 (i) Layer 3

(j) Layer 4 (k) (m)

Figure 5: Results ofmobile & calendarsequence. (a) and (b) Two frames of the sequence; (c) Color
segmentation map; (d) Selected regions and initial layer map by clustering in the 2D subspace, where black
indicates un-selected regions; (e) Layers after refinement; (f) Noisy layers extracted using the original six
dimensional parameter space instead of subspace; (g)-(j) Four layers extracted after post-processing; (k) &
(m) Layer maps by increasing the window radius of mean-shift algorithm.
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(a) I8 (b) I9 (c) I10

(d) initial layer map (e) three-frame post-processing (f) Layer 0

(g) Layer 1 (h) Layer 2 (i) Layer 3

Figure 6: Three-frame post-processing. (a)-(c) Three input frames, with (b) the reference frame;
(d) initial layer map by algorithm in Section 3; (e) layer map with three-frame post-processing;
(f)-(i) four layers extracted
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The firstd columns ofU are the bases of thed-dimensional subspaceS. The last three columns
form the bases of the residual space, which is orthogonal toS, and is denoted asS⊥. The first three
columns ofΣ6×6V

T are the projections of̃W onto the subspaceS, while its last three columns
are the projections of̃W onto the residual spaceS⊥.

There are two kinds of outliers:

• data with extreme values that inflate the covariance matrix ofW̃.

• data that can not be represented by the subspaceS, and have large projection values in the
residual spaceS⊥.

The detection of outliers is based on the Mahalanobis distanced2
i of thei-th data pointmi:

d2
i = (mi −m)TS−1(mi −m)

whereS is the covariance matrix of̃W.
Under the assumption that data are sampled from an underlying elliptic normal distribution

with covariance matrixS, d2
i follows χ2 distribution withN degrees of freedom [21].

Since

S−1 = UΣ−2UT

mi −m = UΣvi

m = UΣv

we have:

d2
i =

6∑

p=1

v2
i,p

All data samples withd2
i lie outside thep-th percentage point of the correspondingχ2

N distri-
bution (N = 6 is the degrees of freedom) are marked as outliers.

A problem with the above measurement is that it may not give enough weight to the last three
bases, which usually identify the outliers that violate the correlation structure imposed by the bulk
of data, but not necessarily inflate the covariance matrix. For this reason, we also look at the
residual spaceS⊥:

o2
i =

6∑

p=d+1

v2
i,p

whered is the rank ofW̃; ando2
i follows χ2

N distribution [14], with degrees of freedomN = 3.
Our algorithm for robust subspace computation consists of the following steps:

• Step 1: Use SVD to compute initial subspace.

• Step 2: Computed2
i ando2

i for each region. Mark regions whosed2
i ando2

i are outside the
p-th confidence interval ofχ2 distribution as outliers.
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• Step 3: Use weighted data to recompute the subspace. The weights vary between 0 and 1
according tod2

i ando2
i . The weight for outliers is 0.

• Step 4: Repeat Step 2 and 3 until the set of inlier stabilizes.

Note that an initial “outlier” may become an inlier later because the subspace is changing
during the iterations. We do not use RPCA proposed in [33], where the number of training images
is usually much smaller than the dimension of the original space (which is equal to the number
of pixels in one image). In such case, weighting or discarding a datum (the whole image) is a
big deal. Therefore, they weight each pixel across different images. In our case, the number of
measurements is much larger than six, the dimension of original space. We can apply a single
weight to each measurement, which is easier and more appropriate for our case.

Computing SVD of a large matrix̃W is expensive. In Section 3.3, for each region consisting of
N pixels, we putN identical columns of data intõW. Each column contains six parameters of the
corresponding affine transformation. To reduce the dimension ofW̃, we can just put one column
in W̃, but weigh this column by

√
N . The SVD of the weighted̃W will results in same subspace

as in Section 3.3. This simple trick greatly reduces the dimension of matrixW̃, and makes the
iteration in robust subspace computation feasible.

Figure 7 shows an example of robust subspace computation. We can see that regions or patches
containing few texture or dis-continuous motion are detected as outliers.

4.1 RANSAC

RANSAC is a general and successful robust method. The adaption of RANSAC[11] based on the
above algorithm is shown in the following:

• Step 1: Randomly selectp samples from the setS of regions and patches, and instantiate the
subspace from this subset.

• Step 2: Determine the set of data pointsSi which are inlier of this the subspace. A datum
point is classified as an inlier ifo2

i < t, wheret is theχ2
N value corresponding to confidence

intervalα.

• Step 3: If the number of inliers is larger than a thresholdT , recompute the subspace using
the inliers, and terminate.

• Step 4: If the number of inliers is less thanT , goto Step 1.

• Step 5: AfterN trials the largest consensus setSi is selected and the subspace is recomputed
usingSi.

The parameters in the RANSAC algorithm are:N , T , p, andt.
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(a) input I13 (b) input I14 (c) input I15

(d) detected outliers (e) final layer map (f) Layer 0

(g) Layer 1 (h) Layer 2 (i) Layer 3

Figure 7: Robust subspace computation. (a)-(c) input frames with (b) the reference frame; (d)
detected outliers; (e) final layer map; (f)-(i) four layers extracted.
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5 Patch-Based SFM

Previous approaches to Structure from Motion (SFM), either the classical feature-based or direct
approach (plane+parallax), have been focusing on the recovery of the 3D positions of points in the
scene. We propose patch-based SFM, which simultaneously recovers the plane equation11 of each
planar patch in the scene as well as the global camera epipolar geometry.

There are several motivations for using patch-based SFM:

• Patch-based representation is dense and thus more appropriate for video compression than
point-based representation. When constructing the texture model for layers (e.g., the mosaic
image), the recovered structure is useful if the scene is not strictly planar, which is often
the case in the real world. For example, when the non-planar effect is compensated by the
recovered structure, we can construct a higher quality mosaic image.

• It can be classified as “direct” approach. There exist some regions with enough texture
variation to compute an affine motion, but without any obvious feature points.

The estimated homography for each region is noisy, especially when the region is small and the
texture is not rich enough. We need to utilize both spatial and temporal redundancy to make the
algorithm robust to noise. We propose two approach to patch-based SFM: factorization approach
and layer-based approach.

5.1 Approach 1: Factorization

This method is based on the factorization of a measurement matrix consisting of relative 2D affine
motions of planar patches in the scene. Such method is a natural extension of [31], where the
measurement matrix consists of 2D position of each feature point.

Factorization approach can use multiples frames in a batch way to compute epipoles and plane
equation simultaneously. From Section 2, we know that each column in the measurement matrix
Wf

6×k is the relative affine motion of thek-th planar patch, between the reference frame and Frame
f . By applying SVD toW, we have the following decomposition in multi-frame case:

W6F×k =




W1

W2

...
WF




6F×k

= U6F×3Σ3×3V3×k =




Ê1

Ê2

...

ÊF




6F×3

∗ V̂3×k = Ê ∗ V̂

For any non-singular matrixQ3×3, ÊQ andQ−1V̂ is also a valid factorization ofW. We need
to find the matrixQ3×3 such thatEf = ÊfQ has the following standard form:




Ê1

Ê2

...

ÊF




6F×3

∗Q3×3 =




B1

B2

...
BF




11More precisely, we recover the three parameters that describe the plane with respective to the reference plane.
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whereBf
6×3 =

[
ef
1I3×3, e

f
2I3×3

]T
, with I the identity matrix and

[
ef
1 , e

f
2

]
the epipolar line in the

f -th frame. The epipoles are up to an unknown scale. Without loss of generality, we can sete1
1 = 1

or e1
2 = 1 to fix the scale. The above equation set is over-constrained and is linear inQ, which can

thus be solved by linear least-squares method.

5.2 Approach 2: Layer-Based Approach

If we are given two or more layers, we can use them to compute the epipolar geometry, and then
derive the plane equation for each planar patch in the scene using Equation (5). For each layer, we
can either hallucinate some point correspondences inside its support according to its affine motion,
as suggested in [29]. Or we can compute real correspondence by dividing the layer inton × n
patches, refine the patch alignment based on the layer affine motion, and then pick up the center of
the patches as the corresponding feature points. The epipolar geometry can be solved by the point
correspondences using the traditional approaches in [25].

The advantages of using layer-based approach to compute epipolar geometry are:

• Avoid degenerate case where points comes from a single plane.

• We can uniformly distribute points across different planes. In traditional approach, points
are usually selected according to texture, which might favor some plane with rich texture,
and results in ill-posed configuration, i.e., most points are from the same single plane with
rich textures and only a small percentage of the points are from different planes.

5.3 Projective SFM Using Subspace Constraints

If we scale the projective transformations associated with each planar patch, then we have a linear
algorithm for projective SFM, which recovers the camera geometry and plane equations.

5.4 Experiments with Synthetic Data

We have verified the above two approaches in two-frame case with synthetic data. Fig (8) shows
the results using layer-based approach. Fig (8a) is the reference image. In Fig (8b), the camera
is rotatedθ = 3◦ degrees around its optical axis, zoomed out by a factor ofs = 0.9, and trans-
lated to the left by0.2f , wheref is the focal length. Fig (8d, 8e) shows the hallucinated point
correspondences on two of the layers. The epipolar equation derived from the correspondences is:
ax+by+cx′+dy′+e = 0, with (a, b, c, d, e) = (0, 0.6689, 0.0389,−0.7422, 1.213). The direction
of the epipolar line computed from these correspondences are(0, 1) and(0.0523,−0.9986). The
rotation angle and scale factor derived from the epipolar equation areθ′ = 3◦, ands′ = 0.9, which
verifies the correctness of the computed epipolar equation. We show the rectified images according
to the derived epipolar equation. We can see that the rectified images have only horizontal parallax.

For the same data, we test the factorization approach and get the same results.
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(a) input I0 (b) input I1 (c) Layer map

(d) hallucinated points (e) hallucinated points

(f) rectified I0 (f) rectified I1

Figure 8: Layer-based approach. (a) and (b) two synthetic image; (c) layers extracted; (d) and
(e) hallucinated point correspondence on two layers; (f) and (g) I0 and I1 rectified by the derived
epipolar equation.
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6 A Competition Approach for Video Object Plane Generation

In this section we introduce theVideo Object Plane(VOP) defined by MPEG-4 standard. We
classify the VOPs into background VOPs and foreground VOPs. We then introduce the competition
framework for the extraction of both background and foreground VOPs.

6.1 VOPs in MPEG-4

MPEG-4, an ISO/IEC standard developed by MPEG committee, is an object-based video coding
standard. In MPEG-4, the scene is viewed as a composition of somevideo objects(VO) with
intrinsic properties such as texture, shape and motion. Avideo object plane(VOP) is formed by
projecting a video object in the scene onto the image plane. A video frame is thus composed by
layers of VOPs. Each VOP is encoded/decoded independently. Four types of VOPs are defined in
MPEG-4 according to how the VOPs are coded:

• Intra-coded VOP (I-VOP): coded using information only from itself.

• Predictive-coded VOP (P-VOP): coded using motion compensation from a past reference
VOP.

• Bidirectionally predictive-coded VOP (B-VOP): coded using motion compensation from a
past and/or future reference VOP(s).

• Sprite VOP (S-VOP): A VOP for a sprite object, or a VOP coded using prediction based on
global motion compensation from a past reference VOP. A sprite is a large object accumu-
lated from pixels in many frames of a video segment. For example, in themobile calendar
video segment, the mosaic image of the background (wall) layers forms a sprite.

We should notice that the above VOPs are defined according to their coding method. In general,
the definition of semantically meaningful VOPs is vague. Moreover, the extraction of such VOPs
from videos of natural scene, a hard problem that has attracted many researchers, is not specified
in MPEG-4.

6.2 Sprite VOPs

When the scene is static and the camera optical center does not move (only pan/tilt/zoom), a single
Sprite VOP can be used to represent the static scene. In more general cases, each rigid 3D plane in
the scene can be represented by a sprite, no matter how the camera or the plane moves.

Two types of sprites are used in sprite coding: (1) off-line static sprites, and (2) on-line dynamic
sprites.

Off-line sprites, sometimes called static sprites, are built off-line prior to encoding. A classical
example is the mosaic of background images taken by a pan-tilt camera. Such sprite is formed by
warping and then blending corresponding VOPs in the video frames under a reference view. The
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motion between the sprite and the VOPs in each frame is described by global 2D parametric trans-
formations, such as affine or projective transformations. In the decoder, such sprites are warped
and cropped to form the background VOP in each video frame. Since off-line sprites need to be
transmitted to the receiver only once, the transmitted bit rate is reduced enormously. Note that a
VOP created from an off-line sprite does not have an associated residual error signal.

On-line sprites are generated on-line during coding both in the encoder side and the decoder
side. In the encoder side, the existing sprite is warped to the current frame using the global motion
estimated between successive VOPs. Then the VOPs from the current frame are blended into the
warped sprite. On-line sprite is dynamically updated such that the reference view of the sprite is
always the view of current frame, and is therefore also called dynamic sprite. In the decoder side,
dynamic sprites are used for predictive coding.

6.3 Background and Foreground VOPs

In many real video sequences, the background scene can be approximated by one or more rigid
planes12. Their motions between two video frames can be represented by global 2D parametric
motions. The foreground objects are usually closer to camera and sometimes undergo non-rigid or
articulate movements. Simply approximating such foreground objects with planes and describing
their motions with 2D parametric motion may result in higher error signals, and therefore higher
bit rates.

In general, background objects are usually simpler to model and have larger areas in the images.
Therefore they are easier to extract than foreground objects. Based on such observation, we classify
VOPs into background VOPs and foreground VOPS. A background VOP can be modelled by a
plane and represented by a static sprite (mosaic images of layers). A foreground VOP might not
be modelled as rigid planar objects, and need to be represented as ordinary VOPs.

The observation that background VOPs are easier to extract than the foreground VOPs indicates
a progressive scheme for VOP extraction. The background VOPs are extracted first, which are
then used to construct some intermediate background representation (such as a mosaic) to guide
the extraction of foreground VOPs.

6.4 Modelling VOPs

Given the data (video sequence)D, our task is to compute:

• the pixel labelsL specifying the mask of each VOP.

• the modelM, one for each VOP.M contains the model parameters as well as a flag to
indicate if it is a background or foreground object.M may vary across time.

It is hard to define a semantic model for a VOP. We defineM using low level features such as
motion, texture, edge information, and spatial relationship between pixels.

12Static scene under pan/tilt/zoom camera corresponds to the plane in infinite.
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6.4.1 Motion Model for VOP

Motion is the most important cue for modelling the VOPs. 2D parametric motion (such as pro-
jective transformation) is sufficient for planar object. In order to model more complex foreground
objects, we define a hierarchical motion models with increasing complexity:

u(x, y) = T (x, y) +
L∑

i=1

ciBi(x− xi, y − yi) (9)

where:

• u(x, y) is the 2D motion at pixel(x, y).

• T (x, y) is a global 2D motion model.

• Bi(x − xi, y − yi) is theith basis function centered at(xi, yi). ci is the weight forBi. The
second term in Eq.(9) describes the local non-rigid or articulate motion.

• L is the number of basis used in the motion model.

There are two alternatives in designing the format of the basis functionBi(x− xi, y − yi):

1. Use global basis, where(xi, yi) is located at the center of VOP(xc, yc), and the support of
Bi(x−xc, y−yc) covers the whole VOP. Similar representation was used in [12] to represent
optical flow fields, and in [6] to represent non-rigid 3D shapes.

2. Use local basis based on kernel regression. The bounding box of VOP is subdivided into
n× n blocks. A local basisBi is then placed at the center of each block. The support ofBi

is concentrated inside its block, but could extends outside of the block, depending on a scale
parameterσ.

We prefer the second scheme since it is closer to the definition of Macro Block in MPEG-4.
The basisBi could be a constant function (corresponding to translational motion in each block), a
spline function [28], or a Gaussian function [37].

The number of basisL indicates the complexity of motion model.L = 0 gives the simplest
model, where the motion model is a 2D global motion model (T (x, y)). The most complex model
is whenL is equal to the number of pixels in the interested VOP. In such case, the above motion
model becomes theplane + parallaxmodel, where the first termT (x, y) is the model for theplane
and the second term indicates theparallax of every pixel. In general, the bounding box of VOP is
divided inton × n blocks (for example,n = 16 in the macro block of MPEG-4 standard). One
basis function is then assigned at the center of eachn× n block.
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6.4.2 Texture Model for VOP

For each background VOP, the texture is represented by a static off-line sprite accumulated over
time. To represent the texture of a foreground VOP, we use either dynamic sprite or just the texture
from the reference frame (ordinary VOPs).

Reconstructing sprite/mosaic image from multiple views usually involves the following two
steps:

1. Warp each source image to the destination view where mosaic will be constructed.

2. Blend the warped images to form the mosaic. Temporal median filter is often used in this
step.

We need to address several issues in order to construct a high visual quality mosaic image:

• Using bi-linear interpolation in Step 1 will blur the image. Instead, we should take into
account the texture structure in determining the interpolation weights. For example, one
would expect the interpolation happens along the edge but not across it, in order to maintain
the sharpness of edges in the image [1].

• The scene is not exactly planar, and the global 2D parametric transformations used to warp
the images may not be perfect. To compensate such error, in the temporal filter we may need
to consider an element larger than a single pixel, such as a color region.

• We should consider the geometry of the warping function [36], as well as the fact that some
frames may have higher resolution or SNR than the others (e.g., some frames may be out of
focus). The temporal weighting should favor frames with higher resolution or SNR.

Step 1 and 2 should be done in a batch way instead of sequentially. For a pixelp (or an element
such as a color region) in the destination mosaic image, warp it to each of the input views, denoted
asp′i in theith view. Stack the neighbor pixels ofp′i from each view into a 3D volume. We want to
design an optimal MMSE (minimum mean square error) interpolation filter to determine the value
of pixel p, based on its 3D neighborhood .

We also need to choose an optimal reference view under which the mosaics/sprites are con-
structed (such reference view is not necessary appeared in the video). We need to take into the
following two issues into account:

• image resolution, especially in zooming sequence.

• data amount to represent the mosaic/sprite. For example, if there are few frames containing
high resolution information, we do not need to construct the mosaic at the frame view with
highest resolution. Instead, we should construct the mosaic at a reasonable resolution plus
some enhancement layers.
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6.5 Competition Framework

The competition framework consists of the following three iterative steps:

• Model regression: each VOP computes its model based on its current support.

• Model prediction and competition: models compete for supporting pixels for their corre-
sponding VOPs13.

• Model merging/elimination according to some global criteria function (e.g., MDL).

The above steps are iterated until a global energy functional reaches its local minima. The
global energy is defined as:

E =
∑

i

(ED,i + EM,i) (10)

ED,i is the residual error between original VOPi and the synthesized/decoded VOPi:

ED,i =
∑

x∈VOPi

ρ(I(x)− I ′(x)) (11)

whereI is the original texture image, andI ′ is the texture image synthesized using the model of
VOPi.

EM,i is the amount of data used to encode the model of VOPi, including motion, texture, and
mask. For example, the following energy function favors smooth boundary and simple motion
model for each VOP:

EM,i =
1

2
λ

∮

∂Ri

ds + Ni × f(Li) (12)

where∂Ri is the contour of VOPi; λ is the coding length of unit arc length of the contour;Ni is
the number of pixels inside VOPi; Li is the number of basis used in representing the motion, as in
Eq.(9).

Under the competition framework, existing multiple models compete for pixels in the given
data, in a way that each pixel is assigned to the model so thatE will decrease. One advantage
of using competition approach is that the competition process is localized and independent of
the complexity of the global energy formulation. Therefore, we can design a complicated energy
function that combines different low level cues (e.g., motion, texture, edge information, and spatial
coherence), by adding a new energy term in Eq.(12) for each cue.

6.5.1 Model Initialization

Both semi-automatic and full-automatic have been proposed for VOP generation. In semi-automatic
approach (e.g., [15]), the user roughly segments the first frame. Then the algorithm will automati-
cally segment the following frames in the video segment. Sometimes semi-automatic approach is
desirable because only user can define semantic Video Objects (VO).

13This could happen either along the boundaries of VOPs or inside the VOPs, or both.
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In our semi-automatic scheme, we only require the minimum user interaction by drawing boxes
in the desired VOPs in the first frame, which is much simpler to do than specifying the VOP
boundary [15]. Then our competition approach will automatically segment all other frames.

We propose two approaches for full automatic initialization. The first scheme use RPCA in
Section 4. The second scheme uses a simple planar patch detection method based on rank 1
constraint.

• In RPCA scheme, we use a stringent threshold to classify regions/patches as inliers. Inliers
are initialized using the approach in Section 3. The outlier regions/textures will then be
initialized as foreground VOPs.

• In plane detection scheme, we divide the image inton × n overlap blocks. The 2D affine
motion between the reference image and other images are then estimated. For each group
of nine nearby blocks, we compute the rank ofW̃6F×9, whereF is the number of frames
(except the reference) used. Ifrank(W̃) = 1, then these 9 blocks are grouped into one
block, and the motion are re-estimated using these 9 blocks. The resulted blocks, including
grouped or original blocks, are considered to be planar patches, which are then input to a
survivability test:

– A block B derives its support by growing/shrinking around its boundary. A pixelp
at B’s boundary is assigned toB if the B’s motion predictsp’s motion. A block can
survive only if it has enough continuous support (both spatially and temporally).

The blocks that pass the test becomes the initial VOPs participating in the competition pro-
cess.

6.5.2 Model Regression

In model regression step, each VOP computes its model based on the pixels currently assigned to
it, such thatED,i is minimized. More specifically, it includes motion estimation and mosaic (sprite)
construction if it is a sprite VOP.

To estimation the motion in Eq.(9), we first estimateT (x, y) using robust multi-scale ap-
proach [4, 2]. Then ifLi > 0, we divide the bounding box of VOP inton × n blocks, and
then estimateci for eachBi:

• If Bi is a constant with support only inside its block, we simply compute a bounded transla-
tion or affine motion.

• If Bi is a spline function [28] or Gaussian function [37], the resulted motion is a smooth
optical flow field.

Typically L is equal to zero for background VOPs. For foreground VOPs, there is a choice
between using more VOPs, or fewer VOPs with largerL for each VOP.
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6.5.3 Model Prediction and Competition

Given a pixel or region, its appearance is predicted by each VOP using synthesizing/decoding
based on the VOP model. By using synthesis prediction, we achieve the goal of using information
accumulated from multiple frames, and being robust to outliers such as occlusion.

Different VOPs compete for pixels/regions along shared boundaries. A pixel/region is assigned
to the VOP that can best predict its appearance in the sense that the global energyE will decrease
most.

In order to construct the texture model for the background VOPs, we use a progressive scheme
in VOP generation. The assumption is that background VOPs are simpler to model and easier to
extraction. At this point, we only require a rough segmentation that identify the background pixels.
The texture model of each background VOP is then computed by constructing a mosaic/sprite.
Foreground VOPs are then initialized or refined by competing with the background VOPS.

6.5.4 Model Elimination, Merging and Splitting

A model is eliminated or merged with other model(s) if doing so decreases the global energy
significantly. Similarly, if a VOP’s model is too complicated, it is split into two VOPs with different
models, if doing so decreases the global energy significantly.

6.5.5 Related Work

Competition approach was used in color segmentation in [41], where a color segment is modelled
by a Gaussian distribution. The scheme in [41] can not be used in motion segmentation, because
pixels in a textureless region can be assigned to any model, and the competition process may result
in error segmentation. Moreover, Gaussian model is not an appropriate model for VOP.

In motion segmentation using EM algorithm [2, 38]), the E-step (pixel labelling step) also used
competition in that a pixel is assigned to a most likely model, usually a 2D parametric model. The
problems are:

• Use a single model formulation for all objects/layers. In general, for a foreground object
(with more complex motion) to be able to compete with the background objects, its model
should be more complex than that of the background object.

• Prediction is done by warping pixels from reference frame to other frame, which is subject
to error due to occlusion.

• Do not use segmentation information accumulated from multi-frames.

• Do not combine all available low level cues.

6.6 Preliminary Results

We show the preliminary results on two image sequences: themobile & calendar(50 frames) and
MPEG flower garden(28 frames). Currently, the implementation is based on affine motion model,
and the VOPs are defined based on motion only.
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Figure 9: Sprite VOPs of mobile & calendar sequence.

The robust subspace algorithm (full-automatic) works consistently on theflower gardense-
quence. On themobile & calendarsequence, the wall and the calendar are sometimes mixed with
each other using the current model initial approach (two-pass region sampling). The main reason
is that both layers contain similar white background color, and the color segmentation algorithm
outputs those backgrounds as a common region. The semi-automatic model initialization works
well with both image sequences.

Please seehttp://www.cs.cmu.edu/˜ke/proposal/ for the original video sequence
and the masks of VOPs onmobile & calendarsequence (50 frames) andMPEG flower garden
sequence (28 frames).

7 Application: Video Compression

MPEG-4 has defined how to encode the extracted VOPs. In this section we give some initial
experimental results.

7.1 VOP Encoding & Decoding

In MPEG-4, each VOP is encoded/decoded independently.

30



Figure 10: Sprite VOPs of flower garden sequence.

7.2 Preliminary Results

7.2.1 Mobile and Calendar

Fig. (9) shows the static sprites constructed using 28 frames from themobile & calendarsequence.
Note that each sprite is padded at its boundaries to avoid black breakages in the decoded frames.
Please see
http://www.cs.cmu.edu/˜ke/proposal/ for the original video sequence and decoded
video sequence.

7.2.2 Flower Garden

Fig. (10) shows the static sprites constructed using 28 frames from theMPEG flower gardense-
quence. Again each sprite is padded at its boundaries to avoid black breakages in the decoded
frames. Please see
http://www.cs.cmu.edu/˜ke/proposal/ for the original video sequence and decoded
video sequence.
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Appendix

(1) Planar affine:
Given a static 3D planeπ and a pair of affine cameras (or equivalently, a single static camera

with the 3D plane undergoes 3D affine transformation), the two images of planeπ is related by a
2D affine transformationm2×3 = {a2×2, t2×1}.

Proof: We only need to show that for any pointP ∈ π, its imaging pointsp andp′ in two
cameras observesp′ = ap+ t, wherem2×3 = {a2×2, t2×1} is the affine transformation induced by
π.

Let P1, P2, P3 denote three non-collinear points on planeπ. Let p1, p2, p3 andp′1, p
′
2, p

′
3 denote

the image points ofP1, P2, P3 under affine camera{M2×3,T2×1} and{M′
2×3,T

′
2×3} respectively.

We have:

[p1, p2, p3] = M [P1, P2, P3] + T1

[p′1, p
′
2, p

′
3] = M′ [P1, P2, P3] + T′

1

A 2D affine transformationm2×3 is uniquelydetermined by these three non-collinear matched
pairs such that[p′1, p

′
2, p

′
3] = a[p1, p2, p3] + t.

For any pointP ∈ π, we have:

P = αP1 + βP2 + γP3,

whereα + β + γ = 1. The image ofP under camera{M′,T′} is:

p′ = M′P + T′

= M′(αP1 + βP2 + γP3) + (α + β + γ)T′

= αp′1 + βp′2 + γp′3
= a(αp1 + βp2 + γp3) + t

= a(αMP1 + βMP2 + γMP3 + (α + β + γ)T) + t

= ap + t

Therefore, the image of any point on planeπ undergoes the same 2D affine motionm. ¦

34



(2) Parametric representation of affine transformation:
Given a pair of affine camerasψr, ψ

′, and a reference planeπr, we can represent any other
affine transformationm2×3 induced by a planeπm by:

m = mr + e′vT ,

wheremr is the affine transformation induced by reference planeπr, e′ = (e1, e2)
T , and the ho-

mogeneous coordinates(e1, e2, 0) is the direction of epipolar lines in cameraψ′. vT = (v1, v2, v3)
is a 3-vector independent of cameraψ′.

Proof: Without loss of generality, let us choose three non-collinear points[P0, P1, P2] on 3D
planeπr. We ignore the degenerate case where a plane projects onto a line in the camera imaging
plane.[P0, P1, P2] projects onto three non-collinear points[p0, p1, p2] in cameraψr, and[p′0, p

′
1, p

′
2]

in cameraψ′, wherepi = (x, y)T andp′i = (x′, y′)T are 2D image coordinates. There exist three
non-collinear points[P ′

0, P
′
1, P

′
2] on planeπm that will also project onto[p0, p1, p2] in cameraψr.

Denote the image points of[P ′
0, P

′
1, P

′
2] in cameraψ′ as[p′′0, p

′′
1, p

′′
2], as shown in Fig.(11).

Since an affine transformation is uniquely determined by three pairs of non-collinear corre-
sponding points, we have:

[
p′0 p′1 p′2
1 1 1

]
=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(13)

[
p′′0 p′′1 p′′2
1 1 1

]
=

[
m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
(14)

Since affine camera has parallel projection,
[
P0P ′

0, P1P ′
1, P2P ′

2

]
are three parallel line segments.

Parallelism is preserved by affine camera. Therefore,
[
P0P ′

0, P1P ′
1, P2P ′

2

]
will project onto parallel

line segments
[
p′0p′′0, p′1p′′1, p′2p′′2

]
(epipolar lines) in affine cameraψ′ whose projection matrix is

{M′
2×3,T

′}. Denotepipj = pj − pi. We have:

[
p′0p′′0, p′1p′′1, p′2p′′2

]
= M′ ∗

[
P0P ′

0, P1P ′
1, P2P ′

2

]

= M′ ∗D ∗ [k0, k1, k2] , (15)

whereD (unit 3-vector) denotes the direction of parallel linesP0P ′
0, P1P ′

1, P2P ′
2, and

[
P0P ′

0, P1P ′
1, P2P ′

2

]
=

D∗ [k0, k1, k2], with ki denoting the length of line segmentPiP ′
i . [k0, k1, k2] is independent of cam-

eraψ′.
Denotee′ = [e1, e2]

T = M′ ∗D (It is obvious that[e1, e2, 0]T is the direction of epipolar lines
in homogeneous coordinates in cameraψ′). From Eq.(15) we have:

[p′′0, p
′′
1, p

′′
2] = [p′0, p

′
1, p

′
2] +

[
p′0p′′0, p′1p′′1, p′2p′′2

]

= [p′0, p
′
1, p

′
2] + e′ ∗ [k0, k1, k2] (16)
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Figure 11:The relationship between 3D planes and affine cameras.

Substitute Eq.(16) and Eq.(13) into Eq.(14), we have:
[

m2×3

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]

=

[
mr

0 0 1

]
∗

[
p0 p1 p2

1 1 1

]
+

[
e′

0

]
∗ [k0, k1, k2]

(17)

Since[p0, p1, p2] are non-collinear points, the matrixP3×3 =

[
p0 p1 p2

1 1 1

]
is non-singular

andP−1
3×3 exists. Therefore, from Eq.(17), we have:

m = mr + e′ ∗ [v0, v1, v2] (18)

Here
[
e′T , 0

]
is the direction of epipolar lines in homogeneous coordinate in cameraψ′, and

vT = [v0, v1, v2] = [k0, k1, k2] ∗ P−1
3×3

. It is obvious that the 3-vectorvT is independent of the second cameraψ′. ¦

36


