
Implementing the TILT Internal Language

Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone

December 2000

CMU-CS-00-180

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

The TILT compiler for Standard ML represents programs internally using a predicative lambda

calculus based on Girard's F! . At the kind level, this language is notable for containing singleton

kinds and dependent product and function kinds. Previous work [SH99] established the decidability

of type equivalence for this language.

This paper presents a typechecking algorithm for the full TILT internal language and discusses

some of the more interesting features of the language. The particular use of intensional type

analysis to handle arrays of unboxed oating point numbers is described. An extended calculus

is also introduced which permits unlabelled singletons at higher kind, in order to allow for more

compact program representation. The extended calculus is related to the restricted calculus via a

transformation that eliminates the unlabelled singletons, and the decidability of the typechecking

algorithms for both the original and extended calculus is shown.

This research was sponsored by the Advanced Research Projects Agency CSTO under the title \The Fox

Project: Advanced Languages for Systems Software", ARPA Order No. C533, issued by ESC/ENS under Contract

No. F19628-95-C-0050. The views and conclusions contained in this document are those of the authors and should

not be interpreted as representing o�cial policies, either expressed or implied, of the Defense Advanced Research

Projects Agency or the U.S. Government.



Keywords: singleton kinds, typed compilation, intensional polymorphism, type theory



1 Introduction

1.1 Background

The past years have seen a great deal of interest in the idea of \typed compilation": that is,

maintaining type information throughout the compilation process. This type information can be

exploited by the compiler internally to allow for optimized data representations and to do tag-free

garbage collection, as well as providing the compiler with a basis for internal correctness checks.

This work was pioneered in the TIL compiler at CMU [TMC+96]. Other recent work has also

suggested the possibility of maintaining type information through to the machine code as a form

of certi�cation [MWCG97].

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable.

However, TIL compiled only the core language of Standard ML: the powerful modular features

that are one of the most important elements of SML were not dealt with. The TIL Two (TILT)

compiler was aimed at addressing this shortcoming.

The TILT architecture is based around two typed intermediate languages. The initial elabora-

tion from SML source targets a structures calculus called the HIL (High Intermediate Language).

This language is relatively close to SML, and among other things provides the interface language

used for separate compilation. After elaboration (and hence typechecking), the HIL is translated to

a second typed language called the MIL (Middle Intermediate Language) through a process called

phase splitting [HMM90]. The phase splitting process maps each SML structure into separate type

and term level records, representing the static and dynamic portions of the structure. Similarly,

SML functors are mapped to type and term level functions. In this fashion, modular programs are

translated into programs containing only lambda calculus terms.

We will not address the details of phase splitting here, except to note that serving as a target of

this translation is the primary motivation for the type theory of the MIL. The MIL must be able to

express within a single lambda calculus all of the constructs of both the module language and the

core language. Singleton kinds are used to express type de�nitions in signatures, and dependent

product and function kinds serve to express signatures which contain de�nitions in terms of previous

�elds.

The MIL is also the language in which almost all of the optimization passes are done. This

constrains the design of the MIL, since it must be possible to express the results all of the desired

optimizations in a typed fashion. In particular, it is important that the necessary primitives for

data representation optimizations be present at this level.

1.2 Overview

This paper gives a detailed overview of the MIL largely as implemented in the TILT compiler. The

major omission is that closure conversion and the typing of closures is not treated here.

In [SH99], Stone and Harper present an algorithm for deciding type equivalence in a lambda

calculus with singleton kinds. Section 2 of this paper describes the extension of this calculus to

the full MIL language. Design issues motivating the extensions are discussed, and algorithms for

typechecking are given along with proofs of termination.

Section 3 addresses a major practical shortcoming of the MIL: the inability to represent kinds

compactly. We present an extended calculus called the NIL which addresses these shortcomings

by providing unlabelled singletons at higher kind. The MIL algorithms and proofs are extended to

the NIL.

1



The main technical results of the paper are the creation of an algorithm for deciding typechecking

in a language with unlabelled singletons at higher kind, and the proofs of the decidability of

typechecking in both the core and the extended system.

Appendices A and B contain the full static semantics for the MIL and NIL, respectively.

2 Mil

2.1 Relation to �
��S
�

The constructor and kind level of the MIL has been studied separately by Harper and Stone [SH99].

That paper presented a core MIL-like language called ���S� and gave an a sound and complete

algorithm for determining constructor equivalence.

Kinds � ::= T Kind of simple constructors

j ST (c) Singleton kind

j �(� :: �):� Dependent function kind

j �(� :: �):� Dependent product kind

Constructors c ::= bi Base types

j � Variables

j ��::�:c Function

j c c Application

j hc; ci Pair

j c:i Projection

Contexts � ::= � Empty context

j �[�::�] Context extension

Figure 1: ���S� Syntax

The syntax of the ���S� calculus is given in �gure 1. This calculus makes up the core of the MIL

language discussed here. The major type theoretic ideas of the MIL are for the most part already

present in ���S� . From a practical standpoint however, many essential components are missing

from ���S� : in particular, ���S� does not deal with the term level structure of the language. This

section will esh out the term level extensions necessary, and will discuss their typing properties.

The kind level remains unchanged from ���S� to MIL, but the set of constructors increases.

2.2 Constructors and types

The syntax for the constructor and kind levels of the MIL is given in �gure 2. In contrast to

���S� , the MIL language includes base constructors such as Int that are used to classify terms.

All of these base constructors are standard, with the exception of the use of the known sum type,

corresponding to the type of a sum for which the branch inhabited is known.

The MIL also includes an explicit let construct, although technically this is de�nable in the

calculus [SH99]. Let binding provides a means for expressing constructors more compactly, as well

as to name and reuse the results of type computations. This serves both to help make compilation

faster and to improve runtime performance, since constructors may be needed at runtime. In order

to reduce the size of programs, we elide the classi�ers on the let bound variables. While this

2



Kinds � ::= T Types

j ST (c) Singleton kinds

j �(� :: �):� Dependent pair kinds

j �(� :: �):� Dependent function kinds

Constructors c ::= � Constructor variable

j Int Integers

j Boxedoat Boxed oating point numbers

j �(�; �):(c; c) Recursive constructor

j c� c Pairs

j c! c Monomorphic functions

j c+ c Sums

j c+i c Known sums

j c array Polymorphic arrays

j ��::�:c Function

j c c Application

j hc; ci Constructor pairing

j �i c Projection

j let � = c in c end Constructor de�nition

Types � ::= T (c) Constructor inclusion

j (� :: �; �)! � Polymorphic functions

j Float Unboxed oating point numbers

j � � � Pair type

j let � = c in � end Constructor de�nition

Contexts � ::= � Empty context

j �[x : � ] Constructor extension

j �[�::�] Kind extension

The notation �1 � �2 indicates �(� :: �1):�2 where � =2 fv(�2).

Figure 2: MIL Kinds, constructors and contexts

3



information is easily reconstructed from the de�nition itself, this imposes some additional work on

the compiler.

Also given in �gure 2 is the syntax for the type level. Unlike the constructor level which

corresponds to the notion of types as data, the type level in a predicative system corresponds to the

notion of types as classi�ers. The constructor level is included into the type level via an explicit

inclusion T (c). The type level also contains classi�ers for polymorphic functions, unboxed oating

point numbers, and pairs of terms. The duplication of the the pair type at the type level indicates

the possibility of constructing pairs containing arbitrary terms (such as unboxed oats) which is

not provided for by the constructor level. For similar reasons a constructor let form is also included

in the type level so that constructors (but not types!) can be bound in types.

For presentational purposes, the static semantics of the MIL calculus is initially described using

a straightforward declarative approach which is more easily understood. This approach does not

correspond naturally to an algorithm, and hence it is will be necessary in subsequent sections to

develop an equivalent algorithmic presentation of the static semantics. The complete declarative

static semantics for the MIL language is de�ned in appendix A.1, but for the most part this section

will concentrate on the key non-standard elements that make the MIL theory interesting.

� ok Well formed-contexts.

� ` � Well-formed kinds.

� ` �1 � �2 Subkinding.

� ` c1 � c2 :: � Constructor equivalence.

� ` c :: � Well-formed constructors.

� ` � Well-formed types.

� ` e : � Well-formed terms.

Figure 3: MIL declarative judgements

The judgements used to de�ne the MIL static semantics are described in �gure 3. In addition

to the expected well-formedness judgements, there is also a sub-kinding judgement. The presence

of singleton kinds means that a constructor may have multiple kinds: for example, the judgements

� ` Int :: T and � ` Int :: ST (Int) are both derivable in the system. The sub-kinding judgment

reects the fact that a singleton kind gives more information than does a simple kind, and hence

should be viewed as a subtype. In particular, the key rule from the sub-kinding judgment is the

singleton rule:

� ` ST (c)
SingletonL

� ` ST (c) � T

which says that any well-formed singleton kind is a sub-kind of T. The sub-kinding judgment a�ects

constructor well-formedness via a subsumption rule

� ` c :: � � ` � � �0

Subkind

� ` c :: �0

which says that a constructor is well-formed at kind � if it is well-formed at a subtype of �.

4



The main non-standard typing rules are the extensionality rules and the self rule of the con-

structor well-formedness judgement [HL94]. The self rule is the introduction rule for singleton

kinds, and says that any constructor c which is well-formed at kind T is well-formed at kind ST (c).

� ` c :: T
Sel�fy

� ` c :: ST (c)

Accompanying this rule are the extensionality rules:

� ` c :: �(� :: �1):�2 � ` c:1 :: �01
SigmaExt1

� ` c :: �(� :: �01):�2

� ` c :: �(� :: �1):�2 � ` c:2 :: �02
SigmaExt2

� ` c :: �1 � �02

� ` c :: �(� :: �1):�2 �[�::�1] ` c � :: �02
PiExt

� ` c :: �(� :: �1):�
0
2

These rules essentially extend the notion of the self rule to higher kinds via eta-expansion: that

is, they allow derivations such as [�::�(� :: T ):T ] ` � :: �(� :: T ):ST (� �) For a more detailed

discussion of these rules see [SH99, HL94].

2.3 Terms

The term level MIL syntax is given in �gure 4. In addition to the standard lambda calculus

constructs the MIL also provides for expression and constructor let bindings, again with the classi�er

elided for reasons of program size. Unlike most lambda calculi though, the MIL also includes low

level data representation primitives (such as oat boxing and unboxing primitives). In addition to

serving as the target language of phase-splitting, the MIL also serves as the object of most of the

compiler optimization phases, including inlining, common subexpression elimination, and function

specialization. These optimizations may expose opportunities for data-layout optimization, such

as eliminating redundant boxing and unboxing of oats which can only be performed if the boxing

and unboxing operations are present at the MIL level.

For similar reasons, the sum case construct in the MIL is also somewhat non-standard, as can

be seen from the sum elimination rule [HS97].

� ` e : T (c1 + c2)

�[x : T (c1 +
1 c2)] ` e1 : � �[x : T (c1 +

2 c2)] ` e2 : �
Sum elimination

� ` case� e of finl(x)) e1; inr(x)) e2g : �

Notice that the case construct does not destructure its argument - rather, it will bind the argument

in the appropriate branch to a variable whose type is a known sum indicating the inhabited branch.

The known sum projection construct can then be used to project out the value if it is actually

required by that particular branch.

� ` e : � � ` � � T (c1 +
i c2)

Known sum elimination

� ` proji(e) : T (ci)

5



Exps e ::= x Term variables

j n Integers

j f Floating point numbers

j boxoat(e) Float boxing

j unboxoat(e) Float unboxing

j arrayc(e; e) Polymorphic array

j sub[c](e; e) Polymorphic subscript

j fsub(e; e) Float subscript

j he; ei Polymorphic pairing

j �i[c] e Polymorphic selection

j rec f = �(�::�; x : �) : �:e Recursive function abstraction

j e[c]e Application

j inlc;ce Sum injection left

j inrc;ce Sum injection right

j case� e of finl(x)) e; inr(x)) eg Sum case

j proji(e) Known sum projection

j rollc(e) Recursive type introduction

j unroll(e) Recursive type elimination

j let x = e in e end Expression binding

j let� = c in e end Constructor binding

Figure 4: MIL expressions

2.3.1 Type analysis

A key optimization that the original TIL compiler implemented was the use of non-uniform data

representation. Many implementations of languages with polymorphism require that all values �t

into a word. In particular, array elements must always be word-sized, which means that arrays of

64 bit oats (for example) must actually be arrays of pointers to oats. This is highly undesirable,

both because of the extra pointer indirections implicit in each lookup and because of the consequent

loss of data locality.

TIL pioneered the use of intensional polymorphism to avoid this overhead. By passing types at

runtime and allowing code to dispatch on them, unboxed oating point arrays could be used with

the appropriate subscript stride chosen at runtime. Di�erent pieces of code could be run based on

the runtime type of polymorphic data.

The MIL calculus di�ers from the �ml
i calculus of [HM95] in that it does not contain an explicit

type analysis construct such as typerec or typecase. This does not mean however that the idea

of intensional type analysis has been abandoned: rather, the type analysis has been hidden inside

the primitives which need to use it. For example the constructor argument to the polymorphic

subscript operator sub[c](e; e) is actually used at runtime to determine the appropriate stride.

This polymorphic subscript in the language without a typecase can be thought of as a derived

form in an underlying language with typecase: that is, subscript is a polymorphic function which

internally uses typecase to choose the appropriate monomorphic subscript operator.

6



2.3.2 Floating point numbers

TILT deals with oating point numbers by using two di�erent types, Boxedoat and Float corre-

sponding to the types of boxed and unboxed oats, with appropriate term level coercions between

them. This allows the optimizer to deal directly with data representation optimizations, even at

the relatively high level of the MIL. To prevent unboxed oats from being passed to polymorphic

functions or to polymorphic primitives (such as pair injections and projections), the Float type is

restricted to the type level. The predicativity restriction therefore enforces the uniform represen-

tation of polymorphic arguments. In non-polymorphic argument positions on the other hand, the

compiler is free to use the unboxed oating point type. This is more e�cient because it avoids

repeatedly boxing and unboxing arguments, and also since it allows oating point arguments to be

passed in oating point registers.

One obvious problem with this is that the type of arrays of unboxed oats cannot be constructed

in this system, since the argument to the array constructor must be a constructor (not a type).

This would seem to mean that we are unable to implement attened oat arrays. However, by using

type analysis in the array constructor as well as the subscript operator, we can avoid at least some

of the di�culty. There is nothing that prevents the Boxedoat array type from being implemented

using unboxed oats, even though the Boxedoat type itself may be boxed.

The downside of this is that the subscript operation will therefore actually have to do a runtime

typecase in order to determine the stride of an array of unknown types. Moreover, even when

the type is known, the subscript operation will be forced to rebox the oat before returning it,

since subscripting into an array of boxed oats returns a value of type Boxedoat . To avoid this

problem, we provide a specialized oating point subscript fsub(e; i) which is well typed only when

its argument is a Boxedoat array , but which returns a value of type Float. This primitive avoids

the problems with using the standard polymorphic subscript in cases where the element type is

statically known to be Boxedoat , since it need not dispatch on its constructor argument, and since

it does not need to rebox its return value.

2.4 Algorithmic typechecking

In addition to using types for runtime optimization, TILT was also designed with the idea that the

type annotations can provide a degree of self-checking within the compiler: just as a programmer

pro�ts from the degree of error checking imposed by the typechecker, so should a compiler. With

this in mind, a good deal of work went into designing e�cient algorithms for typechecking the MIL.

Modulo the constructor equivalence algorithm which is treated separately in [SH99], the com-

plete typechecking algorithm for the MIL is presented in appendix A.2. The algorithm is presented

as an alternative set of typing rules which are intended to express the structure of the algorithm: in

the few cases where more than one rule might apply the result of a single common premise indicates

which rule is applicable. The algorithmic judgements are listed in �gure 5. The most noticeable

presentational change is that the constructor and term well-formedness rules have been split into

synthesis and analysis rules. For the term level, the intension is that the synthesis algorithm cor-

responds to synthesizing a type for a term: given a well-typed term, the algorithm will return

its type. In the case of the analysis algorithm the type is an additional argument: the algorithm

checks that the term argument is well formed at that type. The constructor level algorithms work

in the same manner, with the additional constraint that the kind returned by the kind synthesis

algorithm is principal.

7



� j= � Well-formed kinds.

� j= �1 � �2 Subkinding.

� j= c + � Kind analysis

� j= c * � Kind synthesis

� ` c1 � c2 :: � Constructor equivalence.

� j= � Well formed type

� j= e + � Type analysis

� j= e * � Type synthesis

� j= c 7! c0 Constructor weak head normal form

Figure 5: MIL algorithmic judgements

2.4.1 Sel��cation

Unlike the declarative system, the algorithmic MIL has no extensionality rules and no explicit

self rule. Instead, the base-cases for the kind synthesis algorithm include implicit applications of

the self-rule. For the most part this is very straightforward: for example, the rule for the Int

constructor.

Int

� j= Int * ST (Int)

In the variable rule however, it is not necessarily possible to apply the self rule directly, since the

variable may be bound at a higher kind. For variables, it is necessary to inline implicit applications

of the extensionality rules as well. This is done in the form of an auxilliary judgement called

sel��cation: j= c :: �
:
= �0.

j= � :: �
:
= �0

Variable

�[� :: �] j= � * �0

Sel��cation takes a constructor and a kind and replaces the abstract components of the kind

with singletons containing projections from and applications of the constructor. So for example,

j= � :: �(� :: T ):T
:
= �(� :: ST (�1 �)):ST(�2 �). The resulting kind is therefore principal for the

variable in question.

It is interesting to note here that there are some apparently arbitrary choices to be made in

the manner in which sel��cation is done that are nonetheless signi�cant from an implementation

standpoint. In particular, the singleton rule could be implemented in either of two ways.

Singleton 1

j= c :: ST (d)
:
= ST (c)

Singleton 2

j= c :: ST (d)
:
= ST (d)

From a theoretical standpoint, either choice gives a correct and equivalent kind. From an imple-

mentation standpoint however, the �rst choice which replaces the contents of singletons tends to

yield smaller kinds. The reason for this is straightforward: since sel��cation always starts with

a variable as the constructor argument, the new singletons created via sel��cation with the re-

placement strategy always contain only paths which are relatively quite small. In practice, the

8



pre-existing contents of the singletons are often quite large, and are almost never smaller than a

projection from a variable.

The rule for the dependent pair kind presents a related choice. It is equally possible to retain

or eliminate occurrences of the dependent variable in the second kind, since the constructor gives

us a de�nition for this variable.

j= c:1 :: �1
:
= �01 j= c:2 :: fc:1=�g�2

:
= �02

Sigma

j= c :: �(� :: �1):�2
:
= �(� :: �01):�

0
2

By choosing to substitute for the free occurrences of the variable, we ensure that sel��cation never

generates dependent pair kinds. This property extends naturally through the rest of the kind

synthesis algorithm: it is possible never to generate dependent pair kinds as the result of kind

synthesis. This means that the constructor projection rule

� j= c * �(� :: �1):�2
Second projection

� j= �2 c * f�1 c=�g�2

need not perform substitution. Eliminating this substitution yields signi�cant e�ciency gains. This

can be further improved by noticing that a side e�ect of using the replacement strategy for the

singleton case is that the only place that the dependent variable can occur is in the argument

decoration of function kinds. Therefore, the notion of substitution can be specialized further to

avoid the unnecessary traversal of the rest of the kind.

2.5 Termination Proofs

In this section, we show the decidability of the typechecking algorithm for the MIL calculus mod-

ulo constructor equivalence. The decidability of the constructor equivalence algorithm is proved

separately for the ���S� calculus in [SH99]. This result extends trivially to the full MIL language.

Note that the decidability of the formal system corresponds to termination of the algorithm.

In section 2.5.1 the proof of the decidability of sub-kinding is given, followed in section 2.5.2

by the proof of decidability of the well-formed kind, kind analysis, and kind synthesis judgements.

All of the proofs follow essentially the same form:

1. De�ne a size metric mapping kinds and constructors into the natural numbers (basically

textual size)

2. Extend the metric to derivations

3. Show that the judgements only permit derivations which only use smaller sub-derivations as

hypotheses.

4. Observe that an in�nite derivation contradicts the well-foundedness of the natural numbers

2.5.1 Termination of sub-kinding.

Consider the relation � on sub-kinding derivations J de�ned as follows: J1 � J2 i� J1 is an

immediate sub-derivation of J2. It su�ces to show that the � relation is well-founded, since if

there are no in�nite descending chains in the relation, then clearly there are no in�nite derivations

(notice that all rules have a �nite number of hypotheses). To show that this is the case, we

9



exhibit a mapping SZ which maps derivations to natural numbers, and show that this map is order

preserving. For notational simplicity, we write SZ(� j= �1 � �2) for SZ(J) where J is a derivation

the conclusion of which is � j= �1 � �2.

De�nition 1

SZ(� j= �1 � �2) = sz(�1) + sz(�2), where

sz(�) =

8>>><
>>>:

1 if � = T

1 if � = ST (c)

sz(�1) + sz(�2) if � = �(� :: �1):�2
sz(�1) + sz(�2) if � = �(� :: �1):�2

It is fairly easy to see that SZ is a function (lemma 1). This establishes that SZ serves as a

metric mapping derivations into the natural numbers. A less obvious result is that SZ preserves

the ordering � - that is, that the immediate sub-derivations are always smaller according to the

metric SZ (lemma 2). Given this lemma, the main result (theorem 1) follows almost immediately.

Lemma 1

SZ is a function.

Proof. It is easy to see that 8�9!n s:t: sz(�) = n by induction over the structure of �. The lemma

follows immediately.

Lemma 2

SZ is order preserving. That is,

J1 � J2 ) SZ(J1) < SZ(J2)

Proof. The proof proceeds by cases on the last rule used in J2. See appendix A.3.1 for details.

Theorem 1

The algorithm for checking subkinding always terminates. That is, the algorithmic rules for sub-

kinding do not permit any in�nite sequences of rule applications.

Proof. By the previous lemmas, every derivation has as immediate hypotheses only sub-

derivations that are strictly smaller according to a well-founded ordering. Therefore, there can be

no derivations of in�nite depth, since such a derivation would correspond to an in�nite descending

chain in the well-founded ordering.

2.5.2 Termination of the well-formed kind, kind analysis, and kind synthesis algo-

rithms

The proof of decidability of the well-formed kind, kind analysis and kind synthesis algorithms

proceeds in much the same fashion as above. The only signi�cant di�erence is that the measure

function for derivations maps into lexicographically ordered pairs of natural numbers. This arises

because of the form of the kind analysis judgement, and is mostly a technicality: it is easy to see

that all uses of the single kind analysis rule could be inlined into the other judgements allowing the

proof to proceed as before.

We start by de�ning measure functions which map derivations to pairs of natural numbers

ordered lexicographically below. These functions are de�ned as before in terms of inductively

de�ned functions sz�() and szc(), which act as measures on kinds and constructors, respectively.

10



De�nition 2

sz�(�) =

8>>><
>>>:

1 if � = T

szc(c) + 1 if � = ST (c)

sz�(�1) + sz�(�2) if � = �(� :: �1):�2
sz�(�1) + sz�(�2) if � = �(� :: �1):�2

szc(c) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1 if c = �; Int;Boxedoat

szc(c1) + szc(c2) if c = �(�; �):(c1; c2)

szc(c1) + szc(c2) if c = c1 � c2; c1 ! c2; c1 + c2
szc(c

0) + 1 if c = c0 array

szc(c
0) + sz�(�) if c = ��::�:c0

szc(c1) + szc(c2) if c = c1 c2
szc(c1) + szc(c2) if c =< c1; c2 >

szc(c
0) + 1 if c = c0:1; c0:2

szc(c1) + szc(c2) if c = let � = c1 in c2 end

SZ(J) =

8><
>:

(sz�(�); 0) if the conclusion is � j= �

(szc(c); 1) if the conclusion is � j= c + �

(szc(c); 0) if the conclusion is � j= c * �

The proof then proceeds almost exactly as in the sub-kinding case, except that there is an

additional lemma observing that the sel��cation judgement used by the kind synthesis algorithm

is also decidable.

Lemma 3

SZ is a function.

Proof. It su�ces to show that szc(), and sz�() are well-de�ned. This follows by induction over

the structure of � and c.

Lemma 4

The sel��cation judgement j= c :: �1
:
= �2 is decidable.

Proof. Follows by induction over the structure of �.

Lemma 5

SZ is order preserving. That is,

J1 � J2 ) SZ(J1) < SZ(J2)

where < is the lexicographic ordering on N �N .

Proof. The proof proceeds by cases on the last rule used in J2. See appendix A.3.2 for details.

Theorem 2

The kind synthesis, kind analysis, and kind well-formedness judgements are decidable.

Proof. By lemma 5, any in�nite sequence of rule applications corresponds to an in�nite

descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well-

foundedness of (N �N;<).

11



2.6 E�ciency concerns with the MIL

In the previous sections we de�ne a language su�ciently expressive for our purposes and give

algorithms for checking the well-formedness of terms in this language. This language is very close

to the original MIL calculus that was �rst used in the TILT implementation. While su�cient from

a theoretical perspective, this turns out to su�er from some practical de�ciencies.

An early challenge in the TILT implementation was to keep the size of the compiler intermediate

forms manageably small. In some cases relatively small programs increased in size dramatically

when translated into the MIL, and larger programs became simply unmanageable. Surprisingly,

measurements suggested that a good deal of the program size was due to kinds.

One of the major reasons for this becomes apparent upon closer inspection of the MIL typing

rules. Because singleton kinds are restricted to contain only constructors of kind T , constructors of

higher kind end up being duplicated in their principal kinds. For example, if c is a large constructor

of kind T � T then principal kind of c is ST (�1 c)� ST (�2 c): the kind is more than twice as large

as the constructor it classi�es. The duplication of constructors in kinds is quite pernicious: since

structures and functors turn into constructor records and functions, kinds may contain many copies

of entire structures. This becomes especially bad in the case of nested structures, a common ML

programming idiom.

2.6.1 Singletons at higher kinds

S(c::T ) := ST (c)

S(c::ST (c
0)) := ST (c)

S(c::�(� :: �1):�2) := �(� :: �1):S(c �::�2)

S(c::�(� :: �1):�2) := �(� :: S(�1 c::�1)):S(�2 c::�2)

Figure 6: De�nability of singletons at higher kind

An obvious solution to the constructor duplication problem is to permit the use of singletons at

higher kind. This is not at all di�cult so long as the singletons are labeled with the kind of their

contents: in fact, as �gure 6 shows, this is de�nable in the original calculus. This allows for kinds

of the form ST (�1 c) � ST (�2 c) to be replaced with an equivalent kind of the form S(c::T � T ),

which contains only one copy of the classi�ed constructor.

In practice however, this solution is not su�cient: kinds still account for too much of the space

used by the intermediate forms. In this system, the decorations on the singletons themselves now

occupy a signi�cant amount of the space saved - the kinds used are generally smaller, but there

are more of them. Moreover, it is hard to systematically avoid the creation of kinds of the form

S(c::S(c::T )): a perfectly legitimate kind, but not desirable from an e�ciency standpoint.

As a result of these observations, it became clear that what was needed was a system containing

unlabelled singletons at higher kind: S(c) instead of S(c::�). In such a system, the principal kind

of a constructor c is always S(c). This kind is both small, and fast to synthesize, but does not

provide any useful structural information. An attempt to use this kind (for example, to determine

if a projection from a variable of this kind is well-formed) requires additional work. The system

with unlabelled singletons introduces a signi�cant measure of type reconstruction into the language

in addition to that already introduced by the decision to elide classi�ers on let bindings. (In fact,

if we view the binding let � :: � = c1 in c2 end as syntactic sugar for ��::S(c1::�):c2 [SH99], then

12



it becomes clear that eliding the classi�er on let bindings is merely a special usage of unlabelled

singletons: i.e. let� = c1 in c2 end corresponds to ��::S(c1):c2.)

Because of this additional burden of type reconstruction, it is not immediately clear that the

language with unlabelled singletons is decidable: unlike labelled singletons, there is no simple

inductive de�nition that tells what the corresponding simple singleton kind is. The next section

de�nes a language with unlabelled singletons, presents an algorithm for typechecking, and proves

its decidability.

3 NIL (Extended MIL)

The relatively simple core calculus described above is su�cient from the standpoint of serving as a

target language for the elaboration phase. However, from the standpoint of e�cient implementation,

it is somewhat de�cient. This section describes the extension of the MIL language to permit

unlabelled singletons at higher kinds. For clarity, we use the term NIL to describe this extended

calculus.

3.1 Syntax

k ::= S(c) j T j ST (c) j �(� :: k):k j �(� :: k):k

c ::= : : : j ��::k:c

t ::= T (c) j (� :: k; x : t)! t j Float

j t � t j let� = c in t end

p ::= � j p:1 j p:2 j p c

e ::= x j let x = e in e end j let� = c in e end

j rec f = �(�::k; x : �) : �:e

j e[c]e j< e; e >j e:1 j e:2 j n j r j boxoat(e) j unboxoat(e)

j inlc;ce j inrc;ce j case� e of finl(x)) e; inr(x)) eg

j rollc(e) j unroll(e) j proji(e)

j arrayc(e; e) j sub[c](e; e) j fsub(e; e)

� ::= � j �[x : � ] j �[�::�]

Figure 7: NIL Syntax

The syntax for the NIL language is given in �gure 7: the only change from the MIL is the addition

of the unlabelled singleton, S(c). For the sake of clarity, we write kinds in this extended calculus

as k instead of �, which we reserve for the core calculus.

13



There are two points of importance to the extended system that are already evident in the

syntax. The �rst is that the addition of unlabelled singletons does not replace the core singleton

at kind T : the original singleton form is still present in syntax. The second point is that typing

contexts are restricted to contain kinds � from the core calculus only: there are no unlabelled

singletons allowed in the context. These two facts are the key to making the algorithm terminate.

3.2 Algorithmic judgments

New judgements
� j= kn� Kind standardization

� j= cnc0 Constructor standardization

New versions of old judgements

� j= k Well-formed kinds.

� j= c + � Kind analysis

� j= c * � Principal kind synthesis

� j= � Well formed type

� j= e + � Type analysis

� j= e * � Type synthesis

Unchanged

�ok Well-formed context

� j= �1 � �2 Subkinding.

� ` c1 � c2 :: � Constructor equivalence.

Figure 8: Nil declarative judgements

The judgements used to de�ne the NIL typechecking algorithm are listed in �gure 8, and are

described in full in appendix B.1. The major change is the addition of two new judgements:

kind standardization and constructor standardization. We call a kind standard if it contains no

occurrences of unlabelled singletons. A constructor is standard if it contains only standard kinds.

Notice that every standard kind is a MIL kind. These new judgements implement the process of

putting a kind or constructor into standard form.

The kind standardization algorithm traverses compositionally over the structure of kinds until it

reaches a singleton type. In the case that the singleton is not standard it is necessary to reconstruct

the principal standard kind by calling the kind synthesis algorithm on the constructor.

� j= c * �
Singleton Any

� j= S(c)n�

If the singleton is already standard, all that remains to be done is to standardize the constructor.

� j= cnc0

Singleton Type

� j= ST (c)nST(c
0)

The labelled singleton is important here: it provides a way of marking singletons which do not

require further type reconstruction e�orts.

14



Notice that the kind synthesis algorithm is designed to synthesize standard kinds for non-

standard constructors. This mixing of the two systems is important for a number of reasons, but

here we see how it comes into play during kind standardization: if kind synthesis returned non-

standard kinds we would not have made progress here. This intertwining of the two systems is

essential to the algorithm.

The constructor standardization algorithm is straightforward: it simply traverses the construc-

tor, standardizing any kinds that it �nds.

� j= kn� �[�::�] j= cnc0

Lambda

� j= ��::k:cn��::�:c0

It is also possible to generalize the system slightly by using an intermediate form wherein non-

standard constructors are allowed inside of standard singletons so that constructor standardization

is no longer necessary. This is a relatively straightforward extension, and for the sake of brevity we

do not elaborate on it here.

The kind synthesis algorithm now proceeds much as before, but with additional calls to the kind

standardization algorithm where necessary to preserve the property that all kinds in the context

are standard.

� j= k � j= kn�

�[�::�] j= c * �0 � =2 Dom(�)
Lambda

� j= ��::k:c * �(� :: �):�0

In the variable rule we can see the importance of this property.

j= � :: �
:
= �0

Variable

�[�::�] j= � * �0

Because the contents of the context are already standard, it is not necessary to call back to the

kind-standardization algorithm here. Much as with labelled singletons in the kind standardization

algorithm, this gives the algorithm a place to stop.

The fact that the kind synthesis algorithm returns standard kinds is also important internally

to the algorithm in cases where it must inspect kinds. In the projection rule, the fact that the kind

returned is standard means that the only possible form for the kind of the constructor is that of a

pair, and hence no further work need be done to determine if the projection is well formed.

� j= c * �(� :: �1):�2
First projection

� j= �1 c * �1

The rest of the judgements change from the MIL only in minor ways: either additional cases to

handle the new construct, or additional calls to kind standardization where needed. Interestingly,

the subkinding and constructor equivalence algorithms carry over intact to the new system: it

naturally falls out that the only calls to these algorithms are made with standardized arguments.

3.3 Soundness and Completeness

It is important for the purposes of the compiler that the extended system be complete with respect

to the core system: that is, that all programs which could be typechecked in the core system can

15



still be typechecked in the extended system. This property holds, as stated in theorem 3. The

proof of this theorem follows almost trivially, since the NIL is a syntactic superset of the MIL and

since the well-formedness judgements of the NIL closely parallel those of the MIL. For clarity in

the statement of the theorems, we write the NIL well-formedness judgements with a superscripted

turnstyle, as such:
+

j=.

Theorem 3 (Completeness)

The extended system is complete with respect to the core system.

1. if �ok and � j= �, then �
+

j= �.

2. if �ok and � j= c * �, then �
+

j= c * �.

Proof. First observe that every MIL kind is a syntactically valid standard NIL kind. Then

observe that the kind standardization algorithm is the identity on standard kinds. The proof then

follows easily by induction over the structure of typing derivations.

While completeness is the most important property, it is desirable that the system be sound with

respect to the core system as well: that is, that it does not allow us to typecheck more programs

than before. Theorem 4 states this property. The proof of this theorem is less obvious, but not

signi�cantly more di�cult.

Theorem 4 (Soundness)

The extended system is sound with respect to the core system.

1. if �ok and �
+

j= k then there exists a � such that � j= kn� and � j= �

2. if �ok and �
+

j= c * � then there exists a c0 such that � j= cnc0 and � j= c0 * �

Proof. By induction over the structure of typing derivations

These two basic theorems show that from a theoretical standpoint the NIL is a sensible extension

of the MIL. The next section will show that in addition to being sound and complete with respect

to the core system, the extended system is also decidable. This is the last and in some ways the

most important property that the extended system must hold.

3.4 Termination Proofs

The proof of decidability of the extended system proceeds much as with the core system, de�ning

measure functions which map derivations to pairs of natural numbers ordered lexicographically and

using these to argue that the system is well-founded.

De�nition 3

szk(k) =

8>>>>><
>>>>>:

1 if k = T

szc(c) + 1 if k = ST (c)

szc(c) + 1 if k = S(c)

szk(k1) + szk(k2) if k = �(� :: k1):k2
szk(k1) + szk(k2) if k = �(� :: k1):k2

16



szc(c) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

1 if c = �; Int;Boxedoat

szc(c1) + szc(c2) if c = �(�; �):(c1; c2)

szc(c1) + szc(c2) if c = c1 � c2; c1 ! c2; c1 + c2
szc(c

0) + 1 if c = c0 array

szc(c
0) + szk(k) if c = ��::k:c0

szc(c1) + szc(c2) if c = c1 c2
szc(c1) + szc(c2) if c =< c1; c2 >

szc(c
0) + 1 if c = c0:1; c0:2

szc(c1) + szc(c2) if c = let � = c1 in c2 end

SZ(J) =

8>>>>><
>>>>>:

(szk(k); 0) if the conclusion is � j= kn�

(szc(c); 0) if the conclusion is � j= cnc0

(szk(k); 0) if the conclusion is � j= k

(szc(c); 1) if the conclusion is � j= c + �

(szc(c); 0) if the conclusion is � j= c * �

As before, we argue that the measure is a well-de�ned function. Note that the sel��cation result

of lemma 4 still holds, since sel��cation is only performed on standard kinds.

Lemma 6

SZ is a function.

Proof. It su�ces to show that szc(), and szk() are well-de�ned. This follows by induction over

the structure of k and c.

Lemma 7

SZ is order preserving. That is,

J1 � J2 ) SZ(J1) < SZ(J2)

where < is the lexicographic ordering on N �N .

Proof. The proof proceeds by cases on the last rule used in J2. See appendix B.2.1 for details.

The main result then follows easily as before.

Theorem 5

The kind standardization, constructor standardization, kind synthesis, kind analysis, and kind

well-formedness judgements are decidable.

Proof. By lemma 7, any in�nite sequence of rule applications corresponds to an in�nite

descending chain of pairs of natural numbers ordered lexicographically, which contradicts the well-

foundedness of (N �N;<).

4 Conclusion

This paper presents a language very close to that actually used in the internals of the TILT compiler:

a language whose design was driven not by the usual concerns of programer usability, but by the

new concern of compiler usability. This di�erence in purpose leads to very di�erent concerns

than those normally encountered by language designers. We have discussed here some of the

more important design decisions resulting from this in the original core calculus, and we have also

described the extension of the calculus to allow unlabelled singletons for the purpose of providing

17



compact representations of internal forms. This extension has been shown sound and complete,

and decidable.

The work described here was a key part of making the TILT compiler run e�ciently, and well.

It is of particular interest because it presents a theoretical approach to solving a practical problem.

This is indicative of the overall design philosophy of the TILT project: that a systematic and

theoretically sound approach to practical problems provides signi�cant engineering bene�ts. The

use of a new language construct (unlabelled singletons) to achieve an engineering goal (better space

e�ciency) is an excellent example of how this can work.

References

[HL94] Robert Harper and Mark Lillibridge. A type-theoretic approach to higher-order mod-

ules with sharing. In Twenty-First ACM Symposium on Principles of Programming

Languages, pages 123{137, Portland, OR, January 1994.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type

analysis. In Twenty-Second ACM Symposium on Principles of Programming Lan-

guages, pages 130{141, San Francisco, CA, January 1995.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the

phase distinction. In Seventeenth ACM Symposium on Principles of Programming

Languages, San Francisco, CA, January 1990.

[HS96] Robert Harper and Chris Stone. A type-theoretic account of Standard ML 1996 (ver-

sion 2). Technical Report CMU{CS{96{136R, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, September 1996. (Supersedes [SH96]. Also pub-

lished as Fox Memorandum CMU{CS{FOX{96{02R.).

[HS97] Robert Harper and Chris Stone. An interpretation of Standard ML in type theory.

Technical Report CMU{CS{97{147, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, June 1997. (Supersedes [HS96] and [SH96]. Also published

as Fox Memorandum CMU{CS{FOX{97{01.).

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed

Assembly Language. Technical Report TR97-1651, Department of Computer Science,

Cornell University, 1997.

[SH96] Chris Stone and Robert Harper. A type-theoretic account of Standard ML 1996 (ver-

sion 1). Technical Report CMU-CS-96-136, School of Computer Science, Carnegie Mel-

lon University, School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213-3891, May 1996. (Also published as Fox Memorandum CMU-CS-FOX-96-

02).

[SH99] Christopher A. Stone and Robert Harper. Deciding Type Equivalence in a Language

with Singleton Kinds. Technical Report CMU-CS-99-155, Department of Computer

Science, Carnegie Mellon University, 1999.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter

Lee. TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference

18



on Programming Language Design and Implementation, pages 181{192, Philadelphia,

PA, May 1996.

A MIL

A.1 Declarative judgements

Well Formed Context �ok

Empty

� ok

�ok � ` � � =2 Dom(�)
Kind

�[�::�] ok

� ok � ` � x =2 Dom(�)
Type

�[x : � ] ok

Well Formed Kind � ` �

�ok
Type

� ` T

� ` c :: T
Singleton

� ` ST (c)

� ` �1 �[�::�1] ` �2
Pi

� ` �(� :: �1):�2

� ` �1 �[�::�1] ` �2
Sigma

� ` �(� :: �1):�2

Sub-Kinding � ` �1 � �2

�ok
Type

� ` T � T

� ` ST (c)
SingletonL

� ` ST (c) � T

19



� ` c � d :: T
Singletons

� ` ST (c) � ST (d)

� ` �01 � �1 �[�::�01] ` �2 � �02
Pi

� ` �(� :: �1):�2 � �(� :: �01):�
0
2

� ` �1 � �01 �[�::�1] ` �2 � �02
Sigma

� ` �(� :: �1):�2 � �(� :: �01):�
0
2

Well formed constructor � ` c :: �

�ok
Variable

� ` � :: �(�)

� ok
BoxFloat

� ` BoxFloat :: T

�ok
Int

� ` Int :: T

�[�::T ][�::T ] ` c1 :: T �[�::T ][�::T ] ` c2 :: T
Mu

� ` �(�; �):(c1; c2) :: T

� ` c1 :: T � ` c2 :: T
Pair

� ` c1 � c2 :: T

� ` c1 :: T � ` c2 :: T
Arrow

� ` c1 ! c2 :: T

� ` c1 :: T � ` c2 :: T
Sum

� ` c1 + c2 :: T

� ` c1 :: T � ` c2 :: T
KnownSum

� ` c1 +
i c2 :: T

� ` c :: T
Array

� ` c array :: T

20



� ` � �[�::�] ` c :: �0

Lambda

� ` �(� :: �):c :: �(� :: �):�0

� ` c1 :: �(� :: �1):�2 � ` c2 :: �1
App

� ` c1 c2 :: fc2=�g�2

� ` c1 :: �1 � ` c2 :: �2
Record

� ` hc1; c2i :: �1 � �2

� ` c :: �(� :: �1):�2
Proj1

� ` c:1 :: �1

� ` c :: �(� :: �1):�2
Proj2

� ` c:2 :: fc:1=�g�2

� ` c1 :: �1 �[�::�1] ` c2 :: �2
Let

� ` let� = c1 in c2 end :: fc1=�g�2

� ` c :: T
Sel�fy

� ` c :: ST (c)

� ` c :: � � ` � � �0

Subkind

� ` c :: �0

� ` c :: �(� :: �1):�2 � ` c:1 :: �01
Sigma Ext1

� ` c :: �(� :: �01):�2

� ` c :: �(� :: �1):�2 � ` c:2 :: �02
Sigma Ext2

� ` c :: �1 � �02

� ` c :: �(� :: �1):�2 �[�::�1] ` c � :: �02
Pi Ext

� ` c :: �(� :: �1):�
0
2

21



Well-formed Type � ` �

� ` c :: T
Constructor

� ` T (c)

� ` � �[�::�] ` �1 �[�::�] ` �2
Arrow

� ` (� :: �; �1)! �2

�ok
Float

� ` Float

� ` �1 � ` �2
Float

� ` �1 � �2

� ` c :: �1 �[�::�1] ` �
Let

� ` let� = c in � end

Well-typed term � ` e : �

�ok
Variable

� ` x : �(x)

� ` e1 : �1 �[x : �1] ` e2 : �2
LetE

� ` let x = e1 in e2 end : �2

� ` c :: � �[�::�] ` e : �
LetC

� ` let� = c in e end : let� = c in � end

� ` � �[�::�] ` �1 �[�::�] ` �2
�[f : (� :: �; �1)! �2][�::�][x : �1] ` e : �2

Rec

� ` rec f = �(�::�; x : �1) : �2:e : (� :: �; �1)! �2

� ` e1 : (� :: �; �1)! �2 � ` c :: �

� ` e2 : fc=�g�1
App

� ` e1[c]e2 : fc=�g�2

� ` e1 : �1 � ` e2 : �2
Pair

� ` he1; e2i : �1 � �2

22



� ` e : �1 � �2
Proj1

� ` e:1 : �1

� ` e : �1 � �2
Proj2

� ` e:2 : �2

�ok
Float

� ` r : Float

�ok
Int

� ` n : T (Int)

� ` e : Float
Box

� ` boxoat(e) : T (BoxFloat)

� ` e : BoxFloat
Unbox

� ` unboxoat(e) : Float

� ` e : T (c1 + c2)

�[x : T (c1 +
1 c2)] ` e1 : � �[x : T (c1 +

2 c2)] ` e2 : �
Sumswitch

� ` case� e of finl(x)) e1; inr(x)) e2g : �

� ` c1 :: T � ` c2 :: T

� ` e : T (c1)
inl

� ` inlc1;c2e : T (c1 + c2)

� ` c1 :: T � ` c2 :: T

� ` e : T (c2)
inr

� ` inrc1;c2e : T (c1 + c2)

� ` c :: T � ` c � �(�; �):(c1; c2):i :: T

� ` e : T (fc:1; c:2=�; �gci)
roll

� ` rollc(e) : T (c)

� ` e : � � ` � � T (�(�; �):(c1; c2):i)
unroll

� ` unroll(e) : T (f�(�; �):(c1; c2):1; �(�; �):(c1; c2):2=�; �gci)

� ` e : � � ` � � T (c1 +
i c2)

proj

� ` proji(e) : T (ci)

23



� ` e1 : Int � ` c :: T

� ` e2 : T (c)
array

� ` arrayc(e1; e2) : T (c array)

� ` e1 : T (c array) � ` e2 : T (Int)
sub

� ` sub[e1](e2; ) : T (c)

� ` e1 : T (BoxFloat array) � ` e2 : T (Int)
fsub

� ` fsub(e1; e2) : Float

A.2 Algorithmic judgements

Well Formed Kind � j= �

Type

� j= T

� j= c + T
Singleton

� j= ST (c)

� j= �1 �[�::�1] j= �2
Pi

� j= �(� :: �1):�2

� j= �1 �[�::�1] j= �2
Sigma

� j= �(� :: �1):�2

Sub-Kinding � j= �1 � �2

Assume that �, �1 and �2 are well-formed. Check that �1 is a subkind of �2.

Type

� j= T � T

Singleton

� j= ST (c) � T

� j= c � d :: T
Singletons

� j= ST (c) � ST (d)

� j= �01 � �1 �[� :: �01] j= �2 � �02 � =2 Dom(�)

� j= �(� :: �1):�2 � �(� :: �01):�
0
2

� j= �1 � �01 �[� :: �1] j= �2 � �02 � =2 Dom(�)

� j= �(� :: �1):�2 � �(� :: �01):�
0
2

24



Sel��cation j= c :: �
:
= �0

Assume c and � are well-formed with respect to some context. Return the most precise kind of c.

Intuitively, this is the de�nition of a singleton at the higher kind.

Type

j= c :: T
:
= ST (c)

Singleton

j= c :: ST (d)
:
= ST (c)

j= c � :: �2
:
= �02

Pi

j= c :: �(� :: �1):�2
:
= �(� :: �1):�

0
2

j= c:1 :: �1
:
= �01 j= c:2 :: fc:1=�g�2

:
= �02

Sigma

j= c :: �(� :: �1):�2
:
= �(� :: �01):�

0
2

Kind Analysis � j= c + �

Assume � and � are well formed. Check that c is well formed and can be given kind �.

� j= c * �0 � j= �0 � �
Analysis

� j= c + �

Kind Synthesis � j= c * �

Assumes that � is well-formed. Check that c is well-kinded, and construct � s.t. � j= � and c has

kind �.

j= � :: �
:
= �0

Variable

�[� :: �] j= � * �0

BoxFloat

� j= BoxFloat * ST (BoxFloat)

Int

� j= Int * ST (Int)

�[�::T ][�::T ] j= T + �[�::T ][�::T ] j= T + �; � =2 Dom(�)
Mu

� j= �(�; �):(c1; c2) * ST (�(�; �):(c1; c2):1)� ST (�(�; �):(c1; c2):2)

� j= c1 + T � j= c2 + T
pair

� j= c1 � c2 * ST (c1 � c2)

25



� j= c1 + T � j= c2 + T
Arrow

� j= c1 ! c2 * ST (c1 ! c2)

� j= c1 + T � j= c2 + T
Sum

� j= c1 + c2 * ST (c1 + c2)

� j= c1 + T � j= c2 + T
KnownSum

� j= c1 +
i c2 * ST (c1 +

i c2)

� j= c + T
Array

� j= c array * ST (c array)

� j= � �[� :: �] j= c * �0 � =2 Dom(�)
Lambda

� j= ��::�:c * �(� :: �):�0

� j= c1 * �(� :: �1):�2 � j= c2 + �1
App

� j= c1 c2 * fc2=�g�2

� j= c1 * �1 � j= c2 * �2
Record

� j= hc1; c2i * �1 � �2

� j= c * �(� :: �1):�2
Proj1

� j= c:1 * �1

� j= c * �(� :: �1):�2
Proj2

� j= c:2 * fc:1=�g�2

� j= c1 * �1 �[� :: �1] j= c2 * �2 � =2 Dom(�)
Let

� j= let� = c1 in c2 end * fc1=�g�2

Well-formed Type � j= �

Assume � is well-formed. Check that � is well-formed.

� j= c + T
Constructor

� j= T (c)

26



� j= � � =2 Dom(�)

�[�::�] j= �1 �[�::�] j= �2
ArrowType

� j= (� :: �; �1)! �2

Float

� j= Float

� j= �1 � j= �2
PairType

� j= �1 � �2

� j= c * �1 �[�::�1] j= � � =2 Dom(�)
Let

� j= let� = c in � end

Type Analysis � j= e + �

Assume � and � are well-formed. Check that e is well-typed, and has type � .

� j= e * � 0 � j= � 0 � �
Analysis

� j= e + �

Type Synthesis � j= e * �

Assume � is well-formed. Check that e is well-formed and construct its type � , where � j= �

Variable

�[x : � ] j= x * �

� j= e1 * �1 �[x : �1] j= e2 * �2 x =2 Dom(�)
lete

� j= let x = e1 in e2 end * �2

� j= c * � �[�::�] j= e * � � =2 Dom(�)
letc

� j= let� = c in e end * let� = c in � end

� j= � �[�::�] j= �1 �[�::�] j= �2
�[f : (� :: �; �1)! �2][�::�][x : �1] j= e + �2 f; x; � =2 Dom(�))

rec

� j= rec f = �(�::�; x : �1) : �2:e * (� :: �; �1)! �2

� j= e1 * (� :: �; �1)! �2 � j= ci+1 + fc
i

=�
i

g�i+1 � j= e2 + fc
n

=�
n

g�1
app

� j= e1[c]e2 * let � = c in �2 end

� j= e1 * � � j= � 7! T (c1 ! c2) � j= e2 + T (c1)
MonoApp

� j= e1[]e2 * T (c2)

27



� j= e1 * �1 � j= e2 * �2
pair

� j= he1; e2i * �1 � �2

� j= e * � � j= � 7! ��1 � �2
type proj1

� j= e:1 * �1

� j= e * � � j= � 7! �1 � �2
type proj2

� j= e:2 * �2

Float

� j= r * Float

int

� j= n * T (Int)

� j= e + Float
box

� j= boxoat(e) * T (BoxFloat)

� j= e + T (BoxFloat)
unbox

� j= unboxoat(e) * Float

� j= e * �e � j= �e 7! T (c1 + c2) � j= �

�[x : c1 +
1 c2] j= e1 + � �[x : c1 +

2 c2] j= e2 + �
sumswitch

� j= case� e of finl(x)) e1; inr(x)) e2g * �1

� j= c1 + T � j= c2 + T

� j= e + T (c1)
inl

� j= inlc1;c2e * T (c1 + c2)

� j= c + T � j= c2 + T

� j= e + T (c2)
inr

� j= inrc1;c2e * T (c1 + c2)

� j= c + T � j= c 7! �(�; �):(c1; c2):iT

� j= e + T (fc:1; c:2=�; �gci)
roll

� j= rollc(e) * T (c)

� j= e * � � j= � 7! T (�(�; �):(c1; c2):i)
unroll

� j= unroll(e) * T (f�(�; �):(c1; c2):1; �(�; �):(c1; c2):2=�; �gci)

28



� j= e * � � j= � 7! T (c1 +
i c2)

proj

� j= proji(e) * T (ci)

� j= e1 + T (Int) � j= c + T

� j= e2 + T (c)
array

� j= arrayc(e1; e2) * T (c array)

� j= e1 *]� � j= � 7! T (c0 array) � j= e2 + Int
sub

� j= sub[e1](e2;*)T (c
0)

� j= e1 + T (BoxFloat array) � j= e2 + T (Int)
fsub

� j= fsub(e1; e2) * Float

Natural Kind Extraction � j= p; �

Assumes that � and p are well-formed. Returns the unsel��ed kind of p.

Variable

�[�::�] j= �; �

� j= p; �(� :: �1):�2
Proj1

� j= p:1; �1

� j= p; �(� :: �1):�2
Proj2

� j= p:2; fp:1=�g�2

� j= p; �(� :: �1):�2
App

� j= p c; fc=�g�2

Weak Head Beta Short Form � j= c ,! c0

� j= c1 ,! �� :: �:c1 � j= fc2=�gc1 ,! c
App

� j= c1 c2 ,! c

� j= c ,! hc1; c2i � j= c1 ,! c01
Proj1

� j= c:1 ,! c01

� j= c ,! hc1; c2i � j= c2 ,! c02
Proj2

� j= c:2 ,! c02

29



� j= fc1=�gc2 ,! c
Let

� j= let� = c1 in c2 end ,! c

Otherwise

� j= c ,! c

Constructor Weak Head Normal Form � j= c 7! c0

Assumes that � and c are well-formed. Returns the head normal form of c.

� j= c ,! p � j= p; ST (c
0) � j= c0 7! c00

Pathequation

� j= c 7! c00

� j= c ,! p � j= p; � � 6= ST (c
0)

Pathnoequation

� j= c 7! p

� j= c ,! c0 c0 not a path
NonPath

� j= c 7! c0

Type Weak Head Normal Form � j= � 7! � 0

� j= fc=�g� 7! � 0

Let

� j= let� = c in � end 7! � 0

� j= c 7! c1 � c2
Conpair

� j= T (c) 7! T (c1)� T (c2)

� j= c 7! c0

Inclusion

� j= T (c) 7! T (c0)

Otherwise

� j= � 7! �

A.3 Termination Proofs

A.3.1 Proof of Lemma 2

To show: SZ is order preserving. That is, J1 � J2 ) SZ(J1) < SZ(J2)

Proof. We proceed by cases on the conclusion of J2.

1. � j= T � T . Vacuously true: J2 is minimal. and hence has nothing smaller than it.

2. � j= ST (c) � T . Vacuously true: J2 is again minimal.

30



3. � j= ST (c) � ST (d). The rule for this judgement has no sub-kinding derivations, and hence

has nothing smaller than it. The only subgoal is an equivalence derivation, which has been

shown to be decidable separately [SH99].

4. � j= �(� :: �1):�2 � �(� :: �01):�
0
2. Suppose J1 � J2. From the subkinding rule for the �

kind, we see that there are two possibilities for the conclusion of J1:

(a) � j= �01 � �1

SZ(J1) = sz(�01) + sz(�1)

< sz(�01) + sz(�1) + sz(�02) + sz(�2)

= SZ(J2)

(b) �[�::�01] j= �2 � �02

SZ(J1) = sz(�02) + sz(�2)

< sz(�01) + sz(�1) + sz(�02) + sz(�2)

= SZ(J2)

5. � j= �(� :: �1):�2 � �(� :: �01):�
0
2. Suppose J1 � J2. From the subkinding rule for the �

kind, we see that there are two possibilities for the conclusion of J1:

(a) � j= �1 � �01.

SZ(J1) = sz(�01) + sz(�1)

< sz(�01) + sz(�1) + sz(�02) + sz(�2)

= SZ(J2)

(b) �[�::�1] j= �2 � �02.

SZ(J1) = sz(�02) + sz(�2)

< sz(�01) + sz(�1) + sz(�02) + sz(�2)

= SZ(J2)

A.3.2 Proof of Lemma 5

To show: SZ is order preserving. That is, J1 � J2 ) SZ(J1) < SZ(J2) where < is the lexicographic

ordering on N �N .

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each

immediate subderivation is strictly smaller according to the given metric. We ignore subderivations

that correspond to judgements which are independently known to be decidable, such as subkinding

and constructor equivalence. Technically, this may be viewed as using the constant measure that

always returns zero for these judgements.

1. Well Formed Kind � j= � We proceed by subcases on the form of �.

(a) T No premises.

31



(b) ST (c)

SZ(� j= c + T ) = (szc(c); 1)

< (szc(c) + 1; 0)

= SZ(� j= ST (c))

(c) �(�1 :: �2):

i.

SZ(� j= �1) = (sz�(�1); 0)

< (sz�(�1) + sz�(�2); 0)

= SZ(� j= �(� :: �1):�2)

ii.

SZ(�[�::�1] j= �2) = (sz�(�2); 0)

< (sz�(�1) + sz�(�2); 0)

= SZ(� j= �(� :: �1):�2)

(d) �(�1 :: �2):

i.

SZ(� j= �1) = (sz�(�1); 0)

< (sz�(�1) + sz�(�2); 0)

= SZ(� j= �(� :: �1):�2)

ii.

SZ(�[�::�1] j= �2) = (sz�(�2); 0)

< (sz�(�1) + sz�(�2); 0)

= SZ(� j= �(� :: �1):�2)

2. Kind Analysis � j= c + �.

SZ(� j= c * �0) = (szc(c); 0)

< (szc(c); 1)

= SZ(� j= c + �)

3. Kind Synthesis � j= c * �

Variable By lemma 4

BoxFloat No premises

Int No premises

Mu

(a)

SZ(�[� :: T; � :: T ] j= c1 + T ) = (szc(c1); 1)

< (szc(c1) + szc(c2); 0)

= (szc(�(�; �):(c1; c2)); 0)

= SZ(� j= �(�; �):(c1; c2) * �)

32



where � = ST (�(�; �):(c1; c2):1)� ST (�(�; �):(c1; c2):2).

(b) Similar

Pair

(a)

SZ(� j= c1 + T ) = (szc(c1); 1)

< (szc(c1) + szc(c2); 0)

= (szc(c1 � c2); 0)

= SZ(� j= c1 � c2 * ST (c1 � c2))

(b) Similarly for the second premise.

Arrow As with the Pair case.

Sum As with the Pair case.

Array

SZ(� j= c + T ) = (szc(c); 1)

< (szc(c) + 1; 0)

= (szc(c array); 0)

= SZ(� j= c array * ST (c array))

Lambda

(a)

SZ(� j= �) = (sz�(�); 0)

< (sz�(�) + szc(c); 0)

= (szc(��::�:c); 0)

= SZ(� j= ��::�:c * �(� :: �):�0)

(b)

SZ(�[� :: �] j= c * �0) = (szc(c); 0)

< (sz�(�) + szc(c); 0)

= (szc(��::�:c); 0)

= SZ(� j= ��::�:c * �(� :: �):�0)

App

(a)

SZ(� j= c1 * �(� :: �1):�2) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (szc(c1 c2); 0)

= SZ(� j= c1 c2 * fc2=�g�2)

(b)

SZ(� j= c2 + �1) = (szc(c2); 1)

< (szc(c1) + szc(c2); 0)

= (szc(c1 c2); 0)

= SZ(� j= c1 c2 * fc2=�g�2)

33



Record

(a)

SZ(� j= c1 * �1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (; szc(< c1; c2 >); 0)

= SZ(� j=< c1; c2 >* �1 � �2)

(b)

SZ(� j= c2 * �2) = (szc(c2); 0)

< (szc(c1) + szc(c2); 0)

= (szc(< c1; c2 >); 0)

= SZ(� j=< c1; c2 >* �1 � �2)

Proj1

SZ(� j= c * �(� :: �1):�2) = (szc(c); 0)

< (szc(c) + 1; 0)

= (szc(c:1); 0)

= SZ(� j= c:1 * �1)

Proj2 As with Proj1

Let

(a)

SZ(� j= c1 * �1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (szc(let� = c1 in c2 end); 0)

= SZ(� j= let� = c1 in c2 end * fc1=�g�2)

(b)

SZ(�[� :: �1] j= c2 * �2) = (szc(c2); 0)

< (szc(c1) + szc(c2); 0)

= (szc(let� = c1 in c2 end); 0)

= SZ(� j= let� = c1 in c2 end * fc1=�g�2)

B NIL (Extended MIL)

B.1 Algorithmic judgments

Kind Standardization � j= kn�

Type

� j= TnT

34



� j= cnc0

Singleton Type

� j= ST (c)nST(c
0)

� j= c * �
Singleton Any

� j= S(c)n�

� j= k1n�1 �[�::�1] j= k2n�2
Pi

� j= �(� :: k1):k2n�(� :: �1):�2

� j= k1n�1 �[�::�1] j= k2n�2
Sigma

� j= �(� :: k1):k2n�(� :: �1):�2

Constructor standardization � j= cnc0

All cases proceed compositionally over the structure of the constructors except for the following

cases:

� j= kn� �[�::�] j= cnc0

Lambda

� j= ��::k:cn��::�:c0

� j= c1nc
0
1 � j= c1 * �

�[�::�] j= c2nc
0
2 Let

� j= let� = c1 in c2 endnlet� = c01 in c
0
2 end

Type standardization � j= tn�

� j= cnc0

Constructor

� j= T (c)nT (c0)

� j= kn� �[�::�] j= t1n�1
�[�::�][x : �1] j= t2n�2

Arrow

� j= (� :: k; x : t1)! t2n(� :: �; �1)! �2

Float

� j= FloatnFloat

� j= t1n�1 � j= t2n�2
Pair

� j= t1 � t2n�1 � �2

35



Well Formed Kind � j= k

The Type and Singleton Type rules are as before.

� j= c + T
Singleton Any

� j= S(c)

� j= k1 � j= k1n�1
�[�::�1] j= k2 Pi

� j= �(� :: k1):k2

� j= k1 � j= k1n�1
�[�::�1] j= k2

Sigma

� j= �(� :: k1):k2

Sub-Kinding � j= �1 � �2

We do not need to rede�ne subkinding for the extended NIL - all queries will be restricted to core

syntax.

Kind Analysis � j= c + �

Note that we restrict this judgement to core kinds. Assume � and � are well formed. Check that

c is well formed and can be given kind k.

� j= c * �0 � j= �0 � �
Analysis

� j= c + �

Kind Synthesis � j= c * k

Assumes that � is well-formed. Check that c is well-kinded, and construct � s.t. � j= � and c has

kind �.

j= � :: �
:
= �0

Variable

�[� :: �] j= � * �0

BoxFloat

� j= BoxFloat * ST (BoxFloat)

Int

� j= Int * ST (Int)

�[�::T ][�::T ] j= c1 + T �[�::T ][�::T ] j= c2 + T

�[�::T ][�::T ] j= c1nc
0
1 �[�::T ][�::T ] j= c2nc

0
2 a; b =2 Dom(�)

�

� j= �(�; �):(c1; c2) * ST (�(�; �):(c
0
1; c

0
2):1)� ST (�(�; �):(c

0
1; c

0
2):2)

36



� j= c1 + T � j= c2 + T

� j= c1nc
0
1

� j= c2nc
0
2 Pair

� j= c1 � c2 * ST (c
0
1
� c02)

� j= c1 + T � j= c2 + T

� j= c1nc
0
1 � j= c2nc

0
2 Arrow

� j= c1 ! c2 * ST (c
0
1 ! c02)

� j= c1 + T � j= c2 + T

� j= c1nc
0
1 � j= c2nc

0
2 Sum

� j= c1 + c2 * ST (c
0
1 + c02)

� j= c + T � j= cnc0

Array

� j= c array * ST (c
0 array)

� j= k � j= kn�

�[� :: �] j= c * �0 � =2 Dom(�)
Lambda

� j= ��::k:c * �(� :: �):�0

� j= c1 * �(� :: �1):�2 � j= c2 + �1
� j= c2nc

0
2 App

� j= c1 c2 * fc
0
2=�g�2

� j= c1 * �1 � j= c2 * �2
Record

� j=< c1; c2 >* �1 � �2

� j= c * �(� :: �1):�2
Proj1

� j= c:1 * �1

� j= c * �(� :: �1):�2 � j= cnc0

Proj2

� j= c:2 * fc0:1=�g�2

� j= c1 * �1�[� :: �1] j= c2 * �2
� j= c1nc

0
1 � =2 Dom(�)

Let

� j= let� = c1 in c2 end * fc
0
1=�g�2

Well-formed Type � j= �

Assume � is well-formed. Check that � is well-formed.

� j= c + T
Constructor

� j= T (c)

37



� j= k � j= kn�

�[�::�] j= �1 �[�::�] j= �1n�
0
1

�[�::�][x : � 01] j= �2 � =2 Dom(�)
ArrowType

� j= (� :: k; x : �1)! �2

Float

� j= Float

� j= �1 � j= �2
PairType

� j= �1 � �2

Type Analysis � j= e + �

Note that we restrict this to core types. Assume � and t are well-formed. Check that e is well-typed,

and has type � .

� j= e * � 0 � j= � 0 � �
Analysis

� j= e + �

Type Synthesis � j= e * �

Assume � is well-formed. Check that e is well-formed and construct its type � , such that � j= �

variable

�[x : � ] j= x * �

� j= e1 * �1 �[x : �1] j= e2 * �2 x =2 Dom(�)
lete

� j= let x = e1 in e2 end * �2

� j= c * � � j= cnc0

�[�::�] j= e * � � =2 Dom(�)
letc

� j= let� = c in e end * fc0=�g�

� j= k � j= kn�

�[�::�] j= �1 �[�::�] j= �1n�
0
1

�[�::�] j= �2 �[�::�] j= �2n�
0
2

�[�::�][x : � 01][f : (� :: �; � 01)! � 02] j= e + � 02
f; x; � =2 Dom(�)

rec

� j= rec f = �(�::k; x : �1) : �2:e * (� :: �; � 01)! � 02

� j= e1 * (� :: �; �1)! �2 � j= c + �

� j= cnc0 � j= e2 + fc
0=�g�1

app

� j= e1[c]e2 * fc
0=�g�2

38



� j= e1 * T (ce) � j= ce 7! c1 ! c2 � j= e2 + T (c1)
Monomorphic app

� j= e1[]e2 * T (c2)

� j= e1 * �1 � j= e2 * �2
pair

� j=< e1; e2 >* �1 � �2

� j= e * �1 � �2
type proj1

� j= e:1 * �1

� j= e * T (c) � j= c 7! c1 � c2
con proj1

� j= e:1 * T (c1)

� j= e * �1 � �2
type proj2

� j= e:2 * �2

� j= e * T (c) � j= c 7! c1 � c2
con proj2

� j= e:2 * T (c2)

oat

� j= r * Float

int

� j= n * T (Int)

� j= e + Float
box

� j= boxoat(e) * T (BoxFloat)

� j= e + T (BoxFloat)
unbox

� j= unboxoat(e) * Float

� j= e * T (c) � j= c 7! c1 + c2
�[x : T (c1 +

1 c2)] j= e1 * �1 �[x : T (c1 +
1 c2)] j= e2 * �2

� j= �1 � �2
sumswitch

� j= casee x of finl(e1)) e2; inr(e1))*g�1

� j= c1 + T � j= c2 + T

� j= c1nc
0
1 � j= c2nc

0
2

� j= e + T (c01) inl

� j= inlc1;c2e * T (c01 + c02)

39



� j= c + T � j= c2 + T

� j= c1nc
0
1

� j= c2nc
0
2

� j= e + T (c02) inr

� j= inrc1;c2e * T (c01 + c02)

� j= c + T � j= cnc0

� j= e1 + T (Int) � j= e2 + T (c0)
array

� j= arrayc(e1; e2) * T (c0 array)

� j= e1 * T (c) � j= c 7! c0 array � j= e2 + Int
sub

� j= sub[e1](e2;*)T (c
0)

� j= e1 + T (BoxFloat array) � j= e2 + T (Int)
fsub

� j= fsub(e1; e2) * Float

B.2 Termination Proofs

B.2.1 Proof of Lemma 7

To show: SZ is order preserving. That is, J1 � J2 ) SZ(J1) < SZ(J2) where < is the lexicographic

ordering on N �N .

Proof. The proof proceeds by cases over the conclusion of J2, demonstrating that each

immediate subderivation is strictly smaller according to the given metric. We ignore subderivations

that correspond to judgements which are independently known to be decidable, such as subkinding

and constructor equivalence. Technically, this may be viewed as using the constant measure that

always returns zero for these judgements.

� Kind standardization � j= kn�

Type No premises

Singleton Type

SZ(� j= cnc0) = (szc(c); 0)

< (szc(c) + 1; 0)

= SZ(� j= ST (c)nST (c
0))

Singleton Any

SZ(� j= c * �) = (szc(c); 0)

< (szc(c) + 1; 0)

= SZ(� j= S(c)n�)

Pi

40



1.

SZ(� j= k1n�1) = (sz�(k1); 0)

< (sz�(�(� :: k1):k2); 0)

= SZ(� j= �(� :: k1):k2n�(� :: �1):�2)

2.

SZ(�[�::�1] j= k2n�2) = (sz�(k2); 0)

< (sz�(�(� :: k1):k2); 0)

= SZ(� j= �(� :: k1):k2n�(� :: �1):�2)

Sigma As with the Pi case.

� Constructor standardization (All cases except those below are just decomposition of the

constructor)

Lambda

1.

SZ(� j= kn�) = (sz�(k); 0)

< (szc(��::k:c); 0)

= SZ(� j= ��::k:cn��::�:c0)

2.

SZ(�[�::�] j= cnc0) = (szc(c); 0)

< (szc(��::k:c); 0)

= SZ(� j= ��::k:cn��::�:c0)

Let The size of the original derivation is

SZ(� j= let � = c1 in c2 endnlet� = c01 in c
0
2 end) = (szc(c1) + szc(c2); 0)

1.

SZ(� j= c1nc
0
1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

2.

SZ(� j= c1 * �) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

3.

SZ(�[�::�] j= c2nc
0
2) = (szc(c2); 0)

< (szc(c2) + szc(c1); 0)

41



� Well Formed Kind � j= k

Type, Singleton Type As before

Singleton Any

SZ(� j= c * �) = (szc(c); 0)

< (szc(c) + 1; 0)

= SZ(� j= S(c))

Pi

1.

SZ(� j= k1) = (sz�(k1); 0)

< (sz�(k1) + sz�(k2); 0)

= SZ(� j= �(� :: k1):k2)

2.

SZ(�[�::�1] j= k2) = (sz�(k2); 0)

< (sz�(k1) + sz�(k2); 0)

= SZ(� j= �(� :: k1):k2)

Sigma As with the Pi case.

� Kind Analysis remains unchanged.

� Kind Synthesis � j= c * �

Variable By lemma 4. Note that kinds in the context are restricted to the core syntactic

forms.

BoxFloat No premises

Int No premises

� Let � = ST (�(�; �):(c
0
1; c

0
2):1)� ST (�(�; �):(c

0
1; c

0
2):2)

1.

SZ(�[�::T ][�::T ] j= c1 + T ) = (szc(c1); 1)

< (szc(c1) + szc(c2); 0)

= (szc(�(a = c1; b = c2)); 0)

= SZ(� j= �(�; �):(c1; c2) * �)

2.

SZ(�[�::T ][�::T ] j= c1nc
0
1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (szc(�(�; �):(c1; c2)); 0)

3. The cases for c2 are exactly the same.

42



Pair

1.

SZ(� j= c1 + T ) = (szc(c1); 1)

< (szc(c1) + szc(c2); 0)

= (szc(c1 � c2); 0)

= SZ(� j= c1 � c2 * ST (c
0
1 � c02))

2.

SZ(� j= c1nc
0
1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= SZ(� j= c1 � c2 * ST (c
0
1 � c02))

3. Similarly for the c2 premises.

Arrow As with the Pair case.

Sum As with the Pair case.

Array

1.

SZ(� j= c + T ) = (szc(c); 1)

< (szc(c) + 1; 0)

= (szc(c array); 0)

= SZ(� j= c array * ST (c array))

2.

SZ(� j= cnc0) = (szc(c); 0)

< (szc(c) + 1; 0)

= SZ(� j= c array * c0 array)

Lambda

1.

SZ(� j= k) = (sz�(k); 0)

< (sz�(k) + szc(c); 0)

= (szc(��::k:c); 0)

= SZ(� j= ��::k:c * �(� :: �):�0)

2.

SZ(� j= kn�) = (sz�(k); 0)

< (szc(��::k:c); 0)

= SZ(� j= ��::k:c * �(� :: �):�0)

3.

SZ(�[� :: �] j= c * �0) = (szc(c); 0)

< (szc(��::k:c); 0)

= SZ(� j= ��::k:c * �(� :: �):�0)

43



App

1.

SZ(� j= c1 * �(� :: �1):�2) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (szc(c1 c2); 0)

= SZ(� j= c1 c2 * fc
0
2=�g�2)

2.

SZ(� j= c2 + �1) = (szc(c2); 1)

< (szc(c1 c2); 0)

= SZ(� j= c1 c2 * fc
0
2=�g�2)

3.

SZ(� j= c2nc
0
2) = (szc(c2); 0)

< (szc(c1 c2); 0)

= SZ(� j= c1 c2 * fc
0
2=�g�2)

Record As before

Proj1 As before

Proj2

1.

SZ(� j= c * �(� :: �1):�2) = (szc(c); 0)

A < (szc(c) + 1; 0)

= (szc(c:1); 0)

= SZ(� j= c:1 * fc0:1=�g�2)

2.

SZ(� j= cnc0) = (szc(c); 0)

< (szc(c:1); 0)

= SZ(� j= c:1 * fc0:1=�g�2)

Let

1.

SZ(� j= c1 * �1) = (szc(c1); 0)

< (szc(c1) + szc(c2); 0)

= (szc(let� = c1 in c2 end); 0)

= SZ(� j= let� = c1 in c2 end * fc
0
1=�g�2)

2.

SZ(�[� :: �1] j= c2 * �2) = (szc(c2); 0)

< (szc(c1) + szc(c2); 0)

= (szc(let� = c1 in c2 end); 0)

= SZ(� j= let� = c1 in c2 end * fc
0
1=�g�2)

44



3.

SZ(� j= c1nc
0
1) = (szc(c1); 0)

< (szc(let� = c1 in c2 end); 0)

= SZ(� j= let� = c1 in c2 end * fc
0
1=�g�2)

45


