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Abstract

We discovered a surprising law governing the spatial join sdectivity across two sets of points. An
example of such a spatial join is "find the libraries that are within 10 miles of schools'. Our law
dictates that the number of such qualifying pairs follows a power law, whose exponent we call "pair-
count exponent” (PC). We show that this law also holds for self-spatial-joins ("find schools within
5 miles of other schools") in addition to the general casethat thetwo point-sets aredistinct. Our law
holds for many real datasets, including diverse environments (geographic datasets, feature vectors
from biology data, galaxy data from astronomy).

In addition, weintroduce the concept of the Box-Occupancy-Product-Sum (BOPS) plot, and we
show that it can compute the pair-count exponent in atimely manner, reducing therun time by orders
of magnitude, from quadratic to linear. Dueto the pair-count exponent and our analysis (Law 1), we
can achieve accurate sdectivity estimates in constant time (O(1)) without the need for sampling or
other expensiveoperations. Therdativeerror in sdectivity isabout 30% with our fast BOPS method,
and even better (about 10%), if we use the slower, quadratic method.



1. INTRODUCTION

Multi-dimensional and spatial database management systems (DBMS) have attracted alot of interest. One of
the most important operationsin a spatial DBM S [eures iSthe spatial join, which isthe counterpart to the equi-
joininarelational DBMS.

Thetypical query isalso calledthe‘all pairs’ query or ‘spatial distancejoin’, asin the example, ‘ Estimate
the number of schools that are within 5 miles from libraries'. Spatial distance joins are considered to be
among the most exxential joinsin application areas, like data mining [cmnog [nHeg. They are useful in multiple
settings, such as the following.

* In geographicinformation systems (GIS) under thenameof overlay queries: for example, ‘' Find all houses

within 2 milesof ariver’.

¢ Inurban planning, business planning, commercial intelligence: * How many households arewithin 1 mile

of our branches and from our competition’s branches'.

* In spatial data mining to detect corrdations and test hypotheses: for example, ‘ Find 4-bedroom houses

that arewithin 5 miles of a school’, or ‘Howmany luxury apartmentsarewithin 2 milesof alake’ [nHe4.

* In temporal data mining: ‘ Find economic embargos that were followed by war within a year’, or ‘Find

networ k-switch failures that were within 5 seconds of a power surge’ [wrv es [Hkm+es].

* In multimedia and traditional databases: ‘Find pairs of stock price changes that are within $10 of each

other’ [rrw o).

The spatial distancejoin is defined using two spatial data sets, A and B, and a distancefunctionL. For a
givenradiusr, the spatial distancejoin computes{<a,b>|acAandb B, L(a,b) < r}. A special casearises
when the two datasets, A and B areidentical. Such joins will be qualified as *self spatial joins’. Wewill use
theterm ‘cross spatial joins', when we need to emphasize that the two point sets are distinct. Otherwise, we
will simply use the term * spatial join’ to denote a spatial distance join between two distinct datasets.

The goal of thiswork is to estimate the selectivity of spatial joins among two datasets as opposed to only
one. Thejoin sdectivity represents the size of the resultant set of the spatial distance join divided by the size
of the Cartesian product of thewholedata. Estimation of thejoin sdlectivity isimportant for thefollowing two
reasons.

* An accurate estimation is necessary to optimize complex queries. Though there has been quite a lot of

work done on how to estimate the sdectivity of equi-joins, the problem of estimating the size of spatial joins

has received only minimal attention up to now.

* In application areas like the ones mentioned earlier, the size of the spatial distancejoin (as a function of

theradius) isimportant for evaluating the correlation between datasets. Notethat it is generally too costly

to obtain the size of the spatial join by simply computing the spatial distance join itsdf. Therefore, an
accurate and inexpensive method is required to estimate the size of spatial distancejoins.

Our main contribution is that we observe a ‘power law’, which holds for many pairs of real datasets. We
show how to usethis power law to accurately estimatethe spatial join selectivities efficiently (in constant time,
0O(1)).

Therest of the paper is organized as follows. Section 2 presents the related work. Section 3 describes our
main contribution, the pair-count exponent ¢ and the fast way to estimate it, through the proposed box-
occupancy-product-sum (BOPS). Section 4 discusses implementation and speed issues of the proposed
methods. Section 5 gives experimental results, and Section 6 discusses issues for practitioners. Section 7
presents the conclusions.



2. RELATED WORK

There has been quite alot of work on spatial joins recently. See, for example [oress, [Brso3], [LRo4], [PD o], [KS97],
[arr+9g @Nd [mpog. Most of the mentioned work has dealt with developing efficient methods to process spatial
intersection joins for two-dimensional data Sets [ssw g [pnsen [s« 96 With little emphasis on the estimation of
sdlectivity. Recently, methods have al so been examined and developed for processing spatial distancejoinson
multidimensional point Sets [ssao7, [kseg. Theterm“similarity join” has frequently also been used for spatial
distancejoinsintheliterature. For one-dimensional data, thespatial distancejoin correspondstothe* band-join’
[DNso1).

Although not directly related to our spatial join sdectivity, we mention earlier attempts to estimate the
sdlectivity of rangequeries. Typical methodsincludethemilestone* uniformity and independence’ assumptions
[sac+79. Although simple to usein a query optimizer, these assumptions are pessimistic and unrealistic [crs4.
M odern methods include histograms [roos7, Kernd estimators [exsee, Wavelets [vwee, and hybrid methods using
query feedback [xweg. Methods for sdectivity estimation of range queries in spatial datasets use multi-
dimensional histograms [rssg, Or arguments from the theory of fractals [sres. It should be noted that most of
these methods are susceptible to the * dimensionality curse’ [si s [scosz.

Analytical estimates of spatial distancejoin seectivitiesarefew. The very recent work presented in [purog
assumed the data are uniformly distributed in the address space. As mentioned earlier, the uniformity
assumption was discredited long ago [cwrs4, [Fceq as unredlistic and unfeasible. Our experimentsin Section 5
indeed show that it is unrealistic. The cost modd presented [rsssg Was built for datasets not uniformly
distributed datasets using R-tree-based structures.

In the next sections we proceed with our proposed solution. The major observation is that the selectivity
of spatial distancejoins follows a power law surprisingly well.

3. PROPOSED METHOD

Our main contribution and its corollaries are discussed below. The problem to be solved is the following.
Given: two point-sets A and B and aradiusr
Find: the distribution of the count of pairs, as a function of the radiusr .
That is, isthis distribution Gaussian? Is it Poisson? Is it Welbul? It turns out that real datasets do not follow
any of the traditional statistical distributions. Instead, we show that the distribution of the pair-wisedistances
follows a power law. Table 1 lists symbols used in this document. Next, we describe our power law, aswell
as several useful properties of its exponent.

3.1. Pair-count function and the PC exponent

We propose to study the probability distribution function of the number of pairs as a function of the distance
between those pairs. Specifically, we define and study the pair-count function PC, (r), or simply PC(r), of
two point-sets A and B used in a spatial join query. It is defined as follows.

Definition 1: For two point-sets A and B, we define PC, g (r) as the pair-count function, that is, the count of
pairs within distance r or less. Thefirst member of the pair should belong to point set A, and the second
member to point set B.

PCag (r) = count( of A-B pairs, within distance < r)
Some observations are helpful:
* Our PC(r) function roughly corresponds to the ‘ cumulative probability density function’ from statistics.
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» We typically omit the subscripts A, B for simplicity.
* Theimplied distance function can be any L, norm. We use the L, Norm unless otherwise specified.
Thereasonisthat all the upcoming results hold for any L, norm, but theformulas are simpler for the Ly,

norm.

* For asdf spatia join (i.e., A== B) we omit the sdlf-pairs, and we count each pair only once. That is, if
there are N poaints in the set, we consider N*(N-1)/2 pairs. Again, the upcoming results can be easily
adapted to handle any of the omitted cases.
For reasons that will soon be obvious, we define the concept of the pair-count plot:

Definition 2: Thepair-count plot, or simply PC-plot, for two point sets A and B istheplot of PC, g (1) versus
r, inlog-log scales.
Figure 1 presents (a) a pair-count plot for real datasetsin linear scales, and (b) the same pair-count plot

in log-log scales (b). The datasets are explained in Section 5. The question is whether functions obey any

rules? It turns out that many of them indeed follow a law, specifically a power law, as we discuss next. The
experiments we have done with many real datasets show that many of them result in a PC-plot that is almost
linear (within 1.5% MLS error and typically less) for a suitable range of distancesr (radius fromr, tor, ).

Considering this, we present our magjor result.
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Law 1 (PAIR-COUNT): For several real datasets and for a usable range of scales, the pair-count PC(r) of

pairs within distancer or less follows a power law:
PC(r)=K@”

where K is a proportionality constant. Equivalently Definition 3 follows.

Definition 3: The exponent of the law is defined as the pair-count exponent & as

o = 2(0g(PC(r)))

Alog(r))

@
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Figure 1(b) shows the pair-count plot for the same pair of datasets as Figure 1(a) in log-log scales. The
plots areclearly linear, for a significant range of scales. Thisrange is usually most sought after for queries;

we are not interested in radii much smaller or larger than the typical distances involved in the dataset.

Figure 2 shows PC-Plots and fitting lines for two cross-joins of California datasets, a streets cross joined
with railroads and b streets cross joined with water. The description of these datasets and additional PC(r)

plots are shown later in Section 5, which deals with our experiments.
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Figure 2 - PC-Plots and slopes of the fitting lines and the pair-count exponent ¢ for two
pairs of California datasets: (a) streets cross joined with railroads; (b) streets cross joined
with water.

3.2. Properties of the pair-count exponent &

The following observations show some of the interesting properties of the pair-count exponent <.
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» Observation 1: The pair-count exponent & includes the * correlation fractal dimension” D, asa

special case.

Justification: When the second dataset isidentical to thefirst, the PC exponent is, by definition, equal to
the“ correlation fractal dimension” [seuss_os1. Intuitively, thisisthe‘intrinsic’ dimensionality of the dataset.

* Observation 2: The pair-count exponent #isinvariant to affine transformations, namely to translation,
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dev and X exp.



rotation, and uniform scaling.

Justification: By ‘uniform scaling’ we mean that all the axes are scaled by the same amount. Tranglation
and rotation do not affect the distances and thus leave the plots unchanged. Uniform scaling scalesall the
distances, and thus shifts the plot to the left or theright. Its slope, however, remains the same.

* Observation 3: The pair-count exponent & isinvariant to sampling.
Justification: Samplingisuseful whenwedeal with large datasets, although our upcoming BOPSalgorithm
can handle huge datasets even better. It is useful that our power law holds for subsets of our data. The
intuitive argument isasfollows. Consider adataset A withN points and a sampling ratep, (0<p,<1), that
is the sample has N*p, points. Similarly, let M be the number of points in dataset B, and let p, be its
sampling rate. Consider a point a, from the dataset A and let a,(r) be the number of its B-type neighbors
within distancer. After sampling, it will have p,(r)* p, neighbors on theaverage. Thus, the total number
of pairs in the two samples within distance r will bethe original PC(r) times p,*p, on the average. This
will not change the slope of the PC-plot: it will only lower the position of the plot, by log(p.*p,)-

Figure 3 shows the PC(r) plots for two pairs of datasets. In (@) it shows California political cross joined
with Californiawater andin (b) it shows Galaxy-dev cross-joined with Galaxy-exp, aswell astheir 20%, 10%
and 5% samples. Notice that the plots are linear, and those corresponding to samples are paralld to the full
dataset. Tables 3 and 4 summarizetheir #values.

* Observation 4: Thepair-count exponent # isinvariant tothe L, distance I
used. J
Justification: Consider the‘sphere’ that each L, metric defines (see Figure L S
4). Letvol(p,r) bethevolume of an n-dimensional L-*sphere’ of radiusr. L

For p=2, this is indeed a sphere; for p=infinity this is an n-dimensional r ?
cube, etc. Our power law states that the number of type-B neighbors of a \\ /\

type-A point grows as r” or, equivalently it grows as volume”®. Then, if

PC,(r) denotes the number of neighbors within L, distance r, we have: Figure 4 - The shapes of
L., L, and L, normsin 2-d.
P
PCps(r,Lp) =PC(r, L) EQVOI(p,r)/voI(p,r))/E )

therefore, the number of pairswill only differ by a multiplicative constant for different valuesof pinthel,
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metric. Figure5 shows the effect of norm invariance on the cross join of two California datasets (political
and water). Itisclear that thethree L, metrics chosenresult in paralle lines. Therefore, for therest of this
work, wewill only focusontheL;; metric. Wecan concludethat the pair-count exponent showsanintrinsic
property of the two point-sets, and it is independent of the particular L, distance function used to build the
PC plot.

4. IMPLEMENTATION AND SPEED ISSUES

By thedefinition of the ' pair-count exponent’, we need to estimatethe pair-countsfor several distancesr. Each
of them requires O(N* M) operations, which are quadratic on the size of the input datasets. Thisis prohibitive
for large datasets. The question becomes: how we can acce erate the computation of #. Thisis precisdy the
topic of this Section.
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Figure6- A grid superimposed over a point-
set to count C,; and Cy,

4.1. A faster way to computethe ‘pair-count exponent’ &

Here we give a Lemma, which computes of the pair-count exponent O(N+ M) and thus performs dramatically
faster for huge datasets. A crucial concept that we introduce is the Box-Occupancy- Product-Sum (BOPS),
whichisdefined asfollows. Consider the address space of two point-setsin an-dimensional space, and impose
an n-grid with grid-cells of sides (or, equivalently, radiusr=g/2). Focusingonthei-thcel, let C,; , Cg; be
the counts (*occupancies') of points from the first and from the second point-set, respectively, as illustrated in
Figure 6.

Definition 2: The " Box-Occupancy-Product-Sum” (BOPS) of a grid with cdl side sis defined as the sum

of products of occupancies as

BOPS(s) = ) C,, * Cy, @
and the BOPS plot is the plot of BOPS(s) as a function of the grid side s, in log-log scales.

Lemma 1 (BOPS): Thepair-count exponent @ for a given radiusis equal to the box-occupancy- product-sum
(BOPS) for the doubled radius; that is

PC(s/2) = BOPS(s) ®)

6



Proof: The fundamental assumption is that the densities of points are smooth functions. Thus, if a point p,
of set A has x neighbors from the set B within radiusr, so does a close-by neighbor p, that also belongs to
set A.

Thus, for agiven cdl sides and another given cell (say, thei-th one), consider one of the points of the set
A. This point has a number of neighbors proportional to Cg; neighbors from the set B within radius §/2.
Thus, thei-th cell contributes with

CA,i * CB,i (6)

pairs. Adding up the contributions of all the cdls, we have

PC(s/2) = ZCA,i [Cs; )

which completes the proof.
QED

Corollary: The BOPS follows a power law with its exponent equal to the "pair-count exponent”.

BOPS(s) = s ®

Proof: Trivial, fromLemmal and Law 1.
QED
We are going to use the estimation PC(r) = BOPS2r) for therest of thiswork. The ‘BOPS' Lemma has
important efficiency implications which arevital for large datasets. Next we show how to use this Lemmafor
fast sdectivity estimations.

4.2. Algorithms

The problem is defined as follows.

Given two point-sets A and B in n-dimensional space,

Estimate their pair-count exponent & and the proportionality constant K.
We developed a single-pass algorithm to obtain the BOPS plot. Specifically, thealgorithmislinear O(N+M)
over thetotal number of pointsin both datasets. If | isthe number of pointsthat wewant inthe BOPSplot (ie.,
number of grid-sizes), then the complexity of our algorithm is O((N+M)*[*n), where n is the dimensionality
of theinput point-sets. Below isabrief algorithmto generatethe BOPS-plot and the estimate of the pair-count
exponent.

4.3. Estimation of selectivity

Here we describe exactly how to estimate the spatial join selectivities, exploiting our two major observations,
the pair-count law and the BOPS lemma. More specifically, the problemis as follows.
Given two point-sets A and B, and aradiusr,
Estimate the count of pairs PC(r).
We distinguish the following methods, depending on what else we are given:
* PC plot estimation: Through previously kept statistics on the PC plot, suppose that we already know the
pair-count exponent ¢ and the proportionality constant K. Then we estimate immediately the PC plot as



PC(r) =K *r*
* BOPS plot estimation: We assume that we are given only the dataset, without any statistics about the
data. Then, we generate the BOPS plot for several values of grid-side s, and we estimate the slope #and

the constant K, as explained in the algorithmin Figure 7. Notice that we not only obtain our estimate, but
we also provide #and K for future upcoming queries.

Without loss of generality, due to Observation 2,
Normalize the address space of the datasets to the unit hyper-
cube;
For each desirable grid-size s=1/2, j=1, 2, ..., |;
For each point a of dataset A
Decide which grid cell it falls in (say, the i-th cell);
Increment the count C,i;
For each point b of dataset B
Decide which grid cell it falls in (say, the i-th cell);
Increment the count Cg;
Compute the sum of product occupancies ;
BOPS(s) = JC,, *C,
Print the values of log(s/2) and log(BOPS(s)) as the BOPS-
plot;
Perform a linear interpolation and report the slope P and the;
proportionality constant K.

Figure 7 - Algorithm for calculating BOPS plots.

An obvious trick to approximate the BOPS plot is to do sampling first. We discuss its relative merit in
Section 5.

5. EXPERIMENTS

We implemented our method and checked whether the power law holds for different data sets. For the sake of
clarity we named the datasets used in the experiments. Point-sets come in groups; thus, each dataset is

ia Pol + Wat .
(b) (C) Galaxy Dev + Exp
IRIS Setosa + Virginica + Versicolor : S De‘\/ﬁt‘lsoq[eur‘s‘ﬂ’-

F F

Virginica=1 o .
Versicolor=2 08
Setosa=3 o :

Figure 8 - Real data used in the experiments. (a) California: CA-pol and CA-wat, (2-dimensional point-sets),
(b) Iris: setosa, versicolor and virginica (4-dimensional point-sets) and (c) Galaxy: class dev and exp (2-
dimensional point-sets).



characterized by its group name, adash ‘-* and the dataset name. Their characteristics are as follows.

Califor nia- Two-dimensional setsof points, they refer to geographical coordinatesin California(seeFigure
8(a)). Thefour files contain data featuresfrom streets (CA-str with 62,933 points), railways (CA-rai with
31,059 paints), palitical borders (CA-pol with 46,850 points), and natural water systems (CA-wat, with
1172,066 points) [censg.

Iris- This set contains threefiles, each of which describes afew properties of a specific flower typeof Iris.
The points are 4-dimensional (sepal length, sepal width, petal length, petal width); the species are
‘virginica', ‘versicolor’ and ‘setosa’, and there are 50 points from each species. Thisis a well-known
dataset in the literature of machine learning and statistics, which we obtained from the UC-Irvine
Repository (see Figure 8(b)).

Galaxy - Galaxies come from the SLOAN telescope: (x,y) coordinates, plus class labe (see Figure 8(c)).
Thereare 82,277 inthe‘dev’ class (deVaucouleurs), and 70,405 in the ‘exp’ class (exponential).

Eigenfaces- Twodatasets (‘lyf” with 11,900 points; and ‘ tyf’ with 3,456 points) comefromthelnformedia
project [wks+o6 at Carnegie Mdlon University. Each face was processed with the eigenfaces method [rro1,
resulting in 16-dimensional points.

Our experiments are designed to answer the following questions.

log(count-of-pairs)
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» How often do real datasets follow the proposed power law?

* How good is the linear fit?

» How accurate is our ‘ box-occupancy-product-sum’ Lemma?

» What are the effects on sampling and affine transformations on them ?

* How fast is the BOPS method, compared to other estimations of PC(r)?
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Figure9 - PC plots and the pair-count exponents @ of geographical data. First row: Galaxy datasets (a) cross
joinof ‘dev’ and ‘exp’, (b) sdf join of ‘dev’, (c) sdf join of ‘exp’. Second row California datasets (d) cross
join of CA-pol and CA-wat, (€) sdf join of CA-pal, (f) sdf join of CA-wat.



5.1. Accuracy of ‘PC’ Law

We present our experiments in two groups, two-dimensional geographical datasets (California and Galaxy
data), and higher-dimensionality ones (Iris, Eigenfaces).

5.1.1 - Geographical datasets

The immediate application for the pair-count exponent is to estimate the selectivities for cross spatial joins.
Thus, thenatural candidatesto show that thismethod works aregeographical datasets. Figure9 showsthepair-
count exponent for Californiaand Galaxy datasets, and it can be seen that the PC plotsarelinear for asuitable
rangeof r. Theslopesof thefitting lines are also shown, and thesegive ustheproportionality constant that will
be used to estimate the selectivities in cross or sdf joins.

5.1.2 - Higher Dimensional datasets

Figure 10 presents the PC-plots, the fitting lines and the pair-count exponent @ for the Eigenfaces datasets
which are 16-dimensional data. 1t can be seen that our power law remains quite accurate for high-dimensional
datasets. Recurring conclusions from all the above experiments are:
1. Thelinear fit implied by our ‘pair-count’ law is extremely precise, for awidevariety of diverse datasets.
2. For sdf-joins, aswell asfor cross-joins, the correation coefficient of thefit isat least 0.995 (where*1'
is the value of perfect linear correation).
3. Especialy for the high-dimensional datasets, the sdf-join exponent is significantly lower than the
embedding dimensionality of thedata. For example, in Eigenfaces, theintrinsic dimensionality is between
4.51t0 6.7 (values of @ varies from 4.49 for sdlf-join of ‘lyf’ to 6.73 for the cross-join of ‘tyf’ and ‘lyf’),
while the embedding dimensionality E was 16. Thisimplies that these n-dimensional points are not even
close to being uniformly distributed (if they were, then ¢ = 16). Thus, any analysis making the uniform
assumption will be very inaccurate, since the dimensionality of thedata (9 or E) isin the exponent!

Eigenfaces tyf
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>

=
>

S

@=5 41

§=6.73
PC-Plot

=

. [ J—
PCPlot o ot PCPlot o

=

S

*
« ¥
*
@ X
¥

s
3

log(count-of-pairs)
3

3
log(count-of-pairs)

log(count-of-pairs)

©w » o ® N ® ©

o ©)

0
75I dist 8 58 8 62 64 66 68 7 72 74 78 78 8 58 6 62 64 66 68 7 72 74 78 .78 8
og(dist) log dist) log(dist)

Figure 10 - PC Plots and the pair-count exponent ¢ of the Eigenfaces datasets, (a) sdlf join of ‘lyf’ dataset,
(b) sdf join of ‘tyf" dataset, (c) crossjoin of ‘lyf” and ‘tyf’ datasets.

55 [ 6.5 7

5.2. Sampling

We present further experimentsin order toillustrate Observation 3, which states that PC plots areinvariant to
sampling. Figure 11 presentsthepair-count exponents obtained from PC plots (points) and BOPS plots (lines).
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All plotsareclearly paralld. Table2 shows theresults for the Galaxy and California datasets when the pair-
count exponent was calculated for self-joins. Sampling clearly has negligibleeffects onthe PC exponent. Table
3 showstheresultsfor the samedatasets using the pair-count exponent obtained from PC plots and from BOPS
plots.

Conclusions from the above experiments are as follows.

1). Thepair-count exponent #is practically unaffected by sampling, for reasonable samplesizes(e.g., equal

or higher than 10%).

2). Whatever the sampling rate, the corresponding BOPS plot on the samplesis very close to the pair-

count plot of the samples. This means that whatever thetimethat sampling can save, BOPS applied on the

samples will outperform, with practically the same accuracy.

The estimation of ¢ obtained from BOPS results on relative error practically always less than 5%. Only
when the sampled size of a dataset is very small, the BOPS plot resultsin a 9% error; indeed, 9% of error is
also a reasonable value.

» (a) California pol X wat: PCPlots x BOPS (b) Galaxy dev X exp PCPlots

I
=3

100% PC ot PCP full datasets & oot
2 100% BOPS o 8 | BOPS ful datasets R
o . N
18 16 BOPS20% ot

unt-of-pairs)

o
N

log(count-of-pairs)
=

Iog(co

=)

’0

% 8 7 6 5 4 3 2 4 0 4. 2 5 4 3 2 4 0
log(dist) log(dist)

Figure 11 - PC-plots and corresponding BOPS plots for (a) California datasets; (b)
Galaxy datasets. Both plots are shown for the full datasets and three levels of sampling.

Galaxy California
Sampling dev exp pol wat str
rate
100% 1876 | 1.928 | 1.650 | 1.529 1.838
20% 1875 | 1932 | 1.643 | 1.562 1.701
10% 1873 | 1952 | 1631 | 1.694 1.661
5% 18380 | 2146 | 1515 | 1.711 1.623

Table 2: The pair-count exponents @ for samples of Galaxy (‘' dev’
and ‘exp’) and California (CA_pol, CA_wat and CA_str) datasets
for sdf-joins.
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Sampling || Galaxy California California
rate dev X exp pol x wat pol x str
@ from | @ from| ¢ from |9 from |9 from | ¢ from
PC BOPS | PC BOPS |[PC BOPS
100% 1.915 1.963 || 1.835 1.819 1.783 1.743
20% 1.915 1.963 || 1.833 1.825 1.776 1.759
10% 1.902 1.965 || 1.839 1.816 1.783 1.715
5% 1.918 1.736 || 1.856 1.786 1.752 1.725

Table 3: The pair-count exponent ¢ values (PC and BOPS) for joins on sampled data
from Galaxy (‘dev’ and ‘exp’) datasets and also on California_pol, California_wat,
California_str datasets.

5.3. Accuracy of Selectivity Estimations

We seethat the pair-count Law is obeyed (Figures 9 and 10). We also havejust seen (Figure 11 and Table 3)
that our BOPS Lemma leads to very close approximations for the pair-count exponent. The question now
becomes how precise the sdlectivity estimation PC(r) can be by using,

(a) our Law 1 and

(b) our estimates from BOPS.
PC(r) — PC(r)

PC(r)

geometric average values for several values of r. Thetop row estimates |5C(r) asfollows.

Step (@): Compute the PC plot.

Step (b): Fit the line to obtain the estimation.
Inorder tomeasuretherdativeerror in estimating the s ectivities of queries, wecompared pair-count exponent
methods to thereal prediction given by Law 1. Table4 presents the geometric average of thereative error of
the PC plot by the pair-count exponents 9 when we comparethe values obtained from PC and BOPS plotswith
the actual figures given by Law 1.

Table 4 shows the rlative error for the selectivities calculated by and we report the

Galaxy California
dev x | devx exp X pol pol x wat X
exp dev exp X wat pol wat
PC plot 0.02 0.01 0.02 0.02 0.02 0.06
estimation
BOPSplot | 0.13 0.24 0.25 0.16 0.30 0.34
estimation

Table 4 - Geometric average of thereative error of sdlectivity estimation.
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Datasets PC-Plot BOPS
(timeinsec.) | (timeinsec.)
pol x wat 7,752.50 3.44
(100% of data)
pol x wat 73.36 0.5
(10% of data)
Cdifornia Str x rai 4,434.27 2.55
(100% of data)
Str X rai 42.64 0.47
(10% of data)
pol x str 7,664.28 3.44
(100 % of data)
pol x str 66.58 0.53
(10% of data)
dev X exp 13,078.38 5.27
Galaxy (100% of data)
dev X exp 126.98 0.72
(10% of data)
setosa x virginica 5.32 0.01
Iris virginicax 4.98 0.01
versicolor

Table 5 - Clock time in seconds to obtain the pair-count exponent by
PC-plots and BOPS-plots.

5.4. Timing results

The question now becomes: (a) how long it takes to estimate the PC exponent with the PC plot and (b) how
long it takes to obtain the estimation from the BOPS plot. Table 5 reports the wall clock times for each plot
on an Intel Pentium 11 450 MHz, running Windows NT. Both methods were implemented in C++ language.

We can seein Table 5 that thereis a huge difference in the CPU time when calculating the PC plots and
BOPS plots. Calculating the pair-count exponent using BOPS method save orders of magnitude. Moreover,
BOPS plots giveafast and accurate approximation of . Sampling also gives a close approximation of &, but
is much more time-consuming because all the dataset must be scanned in order to generate the sample before
to apply the PC plot. When we compare the time needed to obtain the pair-count exponent for a dataset
sampled to 10% of thedata (alimit to preservetheaccuracy of the estimation), BOPS still remains much faster
than sampling technique, from 5.27 seconds for the whole dataset for BOPS to 2.11 minutes for a 10%
sampling for the PC plot.

Table 5 reports the times needed to build each plot for several pairs of datasets. It also shows the times,
when only samples are fed into the two algorithms. The sampling rate is reported on each row, and it is the
same for both datasets. The observations are the following:

1). Our BOPS method is up to four order of magnitude faster.

2). Infact, BOPS on thefull setsis still faster than the PC plots on the samples (10% sampling rate), up
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to 20 times! Thus, we conclude that the BOPS plot is afast and accurate tool for seectivity estimation of
gpatial joins.

6. DISCUSSION

Our discussion addresses two questions, which are
a) How often should we expect the * pair-count’ law to hold?
b) How can we useit to do other extrapolations?

6.1. How often?

We mention that power laws regularly occur in real datasets. Infact, our ‘pair- count’ law is obeyed by the
sdf-join of any sdf-similar dataset, in which case the ‘pair-count’ exponent is exactly the correation fractal
dimension D, of that dataset. It is well-known that vast majority of real datasets are sdf-similar [er os,
coastlines, withfractal dimension 1.1-1.3, stock prices(fractal dimension=1.5), rain patches(fractal dimension
=1.3), brain surface of mammals (fractal dimension= 2.6-2.7). Aswe havejust seen, thesameistruefor the
sdf-joins of our real datasets (1.9 for the GALAXY datasets, 1.5-1.8 for the CA datasets, 1.9-2.9 for the 4-
dimensional IRIS datasets, and 4.5-5.4 for the 16-dimensional Eigenfaces datasets).

6.2. Other extrapolations

Thereis awesalth of estimationsthat we can performwhenever apair of real datasets obeysthe pair-count law,
and the invariant properties of the pair-count exponent 2. One extrapolation is to estimate the minimum
distancer,;, between the closest pair of points. The formulais

—_ — F
PC(r..,) =1=Kr_._ ”

ro=K e

The justification comes straightforward from Law 1. We can also estimate the distancer . of the c-th closest
pair and theformulais

PC(r,) = Kr.” (12
Additional extrapolations can beperformed for subsetsand supersets of thetwo original datasets sincethepair-
count exponent 9 is not affected by sampling.

7. CONCLUSIONS

The main contribution of this work is the identification of a power law, namely the ‘pair-count’ law. Thisis
the first and only published law that governs the distribution of pair-wise distances between two real, n-
dimensional point-sets. Thislaw leads to the estimation of spatial join sdectivities through a simple formula,
whichisextremdy accurate, lessthan 9% of error. Giventhe pair-count exponent &, the selectivity estimations
can be performed in constant time (O(1)) without the need for sampling or any other costly operations.
Additional contributions include the following:
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* Theidentification of several invariant properties of the pair-count exponent . It isinvariant to rotation,
translation, scaling, sampling. Moreover, this holds for any L, norm.

* Efficiency issues: the introduction of the BOPS concept (box-occupancy-product-sum). It allows a fast
estimation of the pair-count exponent £ Its response time is orders of magnitude better than the
straightforward estimation using thepair-count function PC(r). Thankstothe BOPS plot, thewholeconcept
of the pair-count exponent becomes practical. Infact, our method used on thefull sets, is still significantly
faster than the PC plots on samples.

» Experiments on many, diverse datasets. The experiments show that (a) the pair-count law holds for a
surprisingly large number of real datasets and (b) that our BOPS approximation is highly accurate. The
error is less than 9% for the pair-count exponent ¢ and less than 35% for the sdectivity estimation.

Future research could focus on the discovery of additional power lawsinreal, spatial datasets, aswdl as
on explaining the reasons why these laws hold.
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