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Abstract

In many practical scenarios, prediction for high-dimensional observations can be
accurately performed using only a fraction of the existing features. However, the set
of relevant predictive features, known as the sparsity pattern, varies across data. For
instance, features that are informative for a subset of observations might be useless for
the rest. In fact, in such cases, the dataset can be seen as an aggregation of samples be-
longing to several low-dimensional sub-models, potentially due to different generative
processes. My thesis introduces several techniques for identifying sparse predictive
structures and the areas of the feature space where these structures are effective. This
information allows the training of models which perform better than those obtained
through traditional feature selection.

We formalize Informative Projection Recovery, the problem of extracting a set
of low-dimensional projections of data which jointly form an accurate solution to a
given learning task. Our solution to this problem is a regression-based algorithm that
identifies informative projections by optimizing over a matrix of point-wise loss esti-
mators. It generalizes to a number of machine learning problems, offering solutions to
classification, clustering and regression tasks. Experiments show that our method can
discover and leverage low-dimensional structure, yielding accurate and compact mod-
els. Our method is particularly useful in applications involving multivariate numeric
data in which expert assessment of the results is of the essence. Additionally, we de-
veloped an active learning framework which works with the obtained compact models
in finding unlabeled data deemed to be worth expert evaluation. For this purpose, we
enhance standard active selection criteria using the information encapsulated by the
trained model. The advantage of our approach is that the labeling effort is expended
mainly on samples which benefit models from the hypothesis class we are consid-
ering. Additionally, the domain experts benefit from the availability of informative
axis aligned projections at the time of labeling. Experiments show that this results in
an improved learning rate over standard selection criteria, both for synthetic data and
real-world data from the clinical domain, while the comprehensible view of the data
supports the labeling process and helps preempt labeling errors.
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Chapter 1

Introduction

As we all know, the past decade has brought incredible advancements in terms of data acquisition.
Despite its immense benefits, Big Data is complex, noisy and utterly unusable by the general
public in its original form. The ML community has brought in a plethora of powerful, complex
and highly accurate models to handle the data. Sadly, while ML experts have a keen understanding
of the models, they are, too often, not accessible to regular users. Thus, the gap between users and
data is compounded by an ever increasing gap between users and models.

In this context, my research focuses on finding important aspects of the data and make them
accessible to many more users than currently possible. The methods we introduce build compact,
interpretable models that, through simple visualizations, put the data back in the hands of the users.
There are a number of applications where this is useful, in particular, for decision support systems,
where interpretability is key. In applications such as border control and medical diagnostics, a
design requirement is that the models should be understood by users, in order to aid them in
everyday decision making. The thesis which we put forth states that it is possible to identify low
dimensional structures in complex high-dimensional data, if such structures exist, and leverage
them to construct compact interpretable models for various machine learning tasks.

1.1 Thesis overview

The first part of the thesis focuses on Informative Projection Ensembles (IPEs), their construction
and their applicability to several practical problems. IPEs are compact models designed to obtain
high performance for a learning task such as classification or clustering, while ensuring that users
gain an understanding of the data. IPEs consist of several low-dimensional models obtained by
leveraging data partitioning and use query-specific information to handle samples. Next, we show
that query-specific handling of data can improve the accuracy of tree ensembles. Finally, we
introduce a tree structure which allows the dynamic re-allocation of samples and features, through
the use of back-propagation. The resulting ensemble, Back-Propagation Forests, uses both feature
bagging, subset selection and data partitioning, illustrating how the same concepts used to extract
informative projections can be leveraged toward improving the state of the art when combined with
a powerful representation learning mechanism.

Assume we have a heterogeneous dataset that is an aggregation of samples from a multitude of
sources. For instance clinical data coming from different patients. The typical approach to deter-
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mining sparse predictive structures is to learn a set of features that are globally informative. This
could be difficult because the sparsity pattern can change across the input space. At the other end
of the spectrum, there are local models which estimate the relevant features in the neighborhood
of different samples. However, there might be insufficient training data in the neighborhood of the
sample. We propose a tradeoff between the two: compact data partitioning models. The meth-
ods that we introduce automatically split the data into several groups based on the existence of
low-dimensional structure. The application requirements for compact, interpretable models led to
our formulation of the Informative Projection Retrieval (IPR) problem, which is used to train what
we call Informative Projection Ensembles, presented in Chapter [2] The IPR problem is relevant
to applications where both the model and its handling of queries need to be understood by users.
Given a learning task, informative projection retrieval is the problem of selecting a few subspaces
in which queries can be confidently resolved while maintaining low expected risk. Our methods
focus on axis-aligned projections, or sets of features. The methods presented are applicable to

2



other low-dimensional models, but making use of the informative features makes the models more
interpretable. In general, the datasets we are targeting have a multitude of redundant features,
which contain little useful information. We work under the assumption that one or several sets of
features, however, do contain structure. For each of these informative projections, the structure
may span only part of the samples. Jointly, the informative projections provide structure for all the
data.

The framework we introduce fulfills the design requirements for a broad range of learning tasks
semi-supervised classification, regression and clustering. The framework accepts a query point,
selects a low-dimensional subspace of the features on which to project the point, then applies a
task solver on the subspace. Finally, the outcome is shown in the context of the low-dimensional
projection. Given the structure we are attempting to learn, the training process needs to resolve
two issues. First, the samples are split across the informative projections. This of course includes
the task of narrowing down the set of projections. Second, there is the training of solvers on each
projection. There are of course many ways to assign the points to the projections, so determining
the best k set of projections by considering all possible point assignments is very difficult. Once the
set of projections and solvers is selected, they will be used to handle queries. There is a limit to the
number of projections we can pick, the difficulty being that there are many possible combinations
of projections. To keep the model simple, we keep the number of projections small. Clearly, an
ensemble of low loss projections guarantees good performance. We may include a projection using
all features for the difficult-to-classify points.

We express the problem of learning Informative Projection Ensembles as a combinatorial prob-
lem over elements of a loss matrix, as explained in Section The loss matrix L quantifies how
well the solver on each projection handles every sample point. One element L;j is the loss esti-
mator of projection j for point i. These estimators are specific to the learning task. The point is
that we need to decrease the loss while selecting one projection for every sample point. We could
select the best k projections by using the marginal loss for the decisions. However, this solution
might be very far from the optimum. Instead, our optimization procedures find a set of projections
for which the loss estimators are as close to the optimum as possible. To indicate the point-to-
projection assignment, we introduce B, a binary selection matrix of the same dimensionality as L.
B;; is 1 iff projection j is to be used to handle point i. Given L, B induces a loss over the training
data. We learn B to minimize the difference between the induced loss and the optimal loss, putting
a constraint on the number of non-zero columns. While the selection matrix indicates how training
points are assigned to submodels, determining the appropriate submodel for testing data is done
by either training a selection function based on the selection matrix or by selecting, for each test
point the submodel with the lowest estimated loss.

We present three solutions to learning the selection matrix. The first one, presented in Sec-
tion 2.3.1] relies on an integer linear program which directly minimizes the induced loss. The
column constraints of the ILP ensure that the selection matrix has up to k£ non-zero columns. The
ILP finds the best k£ sub-models for the training data, however, it has the highest computational cost.
The second method, called Regression for Informative Projection Recovery (RIPR), presented in
[2.3.2] uses a convex optimization procedure, related to the adaptive lasso. Through regularization,
it provides a solution that trades-off between getting close to the minimum loss and using a small
number of submodels. The third solution, introduced in Section is a greedy procedure which
iteratively adds submodels to the ensemble such that the loss decrease is maximal at each iteration.
The greedy procedure offers a guarantee on how close the loss is to the optimal k-submodel loss



obtained through the ILP.

We can apply either of the three procedures for classification, clustering, regression and other
tasks by simply replacing the loss function and appropriately computing the loss matrix. For k-
NN classification, presented in Section [2.4.1) we use a local estimator for conditional entropy,
which quantifies the heterogeneity of the output in the neighborhood of a point 7 on the projection
c;. If there are unlabeled samples in the dataset, we’ll select the lowest loss value across all
possible label assignments. We similarly devise losses for parametric classification, for instance,
in the case of SVM classifiers we use the hinge loss. Tests on the three selection procedures for
k-NN classification have shown that in terms of accuracy, the ILP performs the best, RIPR second-
best, Greedy version, though fast, yields least-accurate models. Performance is close to (or better
than) that of a global model although the Informative Projection Ensembles use considerably fewer
features.

For clustering, described in Section [2.4.4|we use a loss that is lower for densely-packed regions,
namely the negative KL divergence between the current data distribution and a uniform distribu-
tion over the same space. This loss function has the advantage that dimensionality issues due to
the different subspace sizes are eliminated. Our experiments show that, while standard k-means
fails to discover the low-d structure, applying the RIPR procedure reveals the hidden structure
in data and the clusters are clearly visible and homogeneous in the low-dimensional projections.
Presenting clusters that are clearly distinct in low-dimensions facilitates understanding by human
users. We evaluate the clusters by computing the distortion (mean distance to cluster centers) and
log-cluster-volume, which measures compactness in the fully dimensional feature space. Tested
on UCI data, RIPR clearly outperforms k-means in terms of compactness, obtaining drastic com-
pression according to both metrics.

The loss function for regression is the MSE of the regressor computed in the neighborhood of
the sample point, as shown in Section[2.4.5] We compared the MSE of SVMs with the MSE of IPEs
using SVM regressors which were obtained with RIPR. In many cases, the low-d model performed
better. Low-d structures are less apparent when data is more noisy, however, for low-noise settings,
the underlying patterns are detected.

Regardless of the learning task or the selection matrix learning procedure, once the optimal set
of projections projections is determined, test samples are assigned to the appropriate projection by
selecting the submodel in the ensemble that has the best chance of succeeding in classifying the
point. The query handling process is shown in Section This means we pick the submodel
which yields the lowest possible estimated loss for the point.

We have also extended the IPE learning framework to work in an active learning setting, as
described in Section We typically use RIPR to learn the selection matrix in this case, calling
the resulting procedure ActiveRIPR, as it provides the best trade-off between speed and accuracy,
though the ILP or the Greedy method can also be used. As far as the sample selection is concerned,
any of the popular scoring functions can be used, although we found Information Gain to be the best
performing in practice. Empirical results show faster convergence rates when compared to random
forests with active learning as only the relevant dimensions of the feature space are explored. In
addition, informative projections make adjudications easier and intuitive for users.

The theoretical results we obtained for IPE models are presented in Section [2.5| For IPEs
using parametric classifiers from hypothesis classes with finite VC dimensions, using selection
functions of finite complexity are also upper bounded in complexity. The growth function of the
ensemble class is upper bounded by the product of the growth functions of the hypothesis classes

4



for the submodels. Since the latter are low-dimensional, the complexity of the ensemble is, in
many cases, lower than that of a single classifier using all the dimensions. In addition, IPEs using
k-NN classifiers are consistent under certain assumptions concerning the existence of a predictive
sparsity pattern. The risk of the ensemble converges at faster rates compared to that of a k-NN
classifier trained on the entire feature space.

In addition to learning informative projections, we have also enhanced out framework to take
into account feature hierarchies in order to decrease the feature acquisition cost. For several of
our applications, complex features are designed and derived from base features, with the cost of
a complex feature depending on the cost of the features it was derived from. In Section we
introduce special penalties generated based on hierarchical structures, which result in the selection
of informative projections composed of features that have low acquisition cost overall.

We have applied several of the techniques, including classification IPEs, clustering IPEs and
the active learning framework to a medical application. These case studies are the focus of Chap-
ter ] Consider a vital sign monitoring system which issues healthcare alerts whenever one of the
patient’s vital signs is out of its normal range. The alerts are quite frequent, with a typical SDU
having one alert go off every 90 seconds. Luckily, some of them are false alerts, due to limitations
of the monitoring equipment. We have computed features from the vital signal time series and,
based on these, we attempted to find models that adjudicate the true alerts and that characterize
the artifacts. We trained classification models for each type of alerts, obtaining high accuracy. At
the same time the models can be visualized and were used by domain experts to derive artifact
filtering rules. Moreover, by applying RIPR with k-means to clustering artifactual alerts, we iden-
tified human interpretable archetypes (patterns) of false alerts as a preliminary step to corrective
action plans. In a separate experiment, two experts independently annotated 80 alerts (40 due to
the respiratory rate and 40 due to the oxygen saturation levels) which were automatically selected
by our ML system. Then these experts adjudicated the same alerts using the available chart time
series. We summarized the results to observe the consistency of adjudication.

We have applied our Informative Projection Retrieval framework to the problem of identifying
discrepancies between training and test data that are responsible for the reduced performance of a
classification system. Intended for use when data acquisition is an iterative process controlled by
domain experts, our method exposes insufficiencies of training data and presents them in a user-
friendly manner, through low-dimensional projections of data. The proposed process, introduced
in Section [3.3] begins with the construction of a classifier. Any plausible type of a classification
model can be used, though we employ the random forest method primarily due to its scalability to
high-dimensional feature spaces and the computable on-the-fly metrics that diagnose the reliability
of predictions being made. We use two metrics that characterize reliability of predictions made
by our random forest classifier: Dot-Product-Sum (DPS) and In-Bounds Score (IBS). The Gap-
Finding Module identifies where the original classification model experiences considerably low
accuracy. We extended the RIPR algorithm to facilitate improvements in training data generation,
primarily by leveraging its ability to detect low-dimensional patterns of low performance areas. As
a result of executing the Gap-Finding, the resulting low-dimensional subspaces are visualized. The
domain experts and data engineers gain intuition as to what data may be missing from the training
set and decide which parts of the feature space would most benefit from additional samples. We
have applied Gap-Finding to a radiation threat detection system, parts of which contain signatures
of threats that were synthesized by domain experts and injected into non-threat data. The data
is subject to iterative refinements in order to ensure that the training set is shaped into a faithful
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reflection of the test set, optimizing the performance of the threat adjudication system.

So far, we presented the concept of using query-specific classifiers selected from a predefined
pool to handle individual data points in classification tasks. We leveraged this concept for en-
sembles of generic classifiers, rather than just IPEs. The idea is rather straightforward: to train
meta-classifiers which determine which submodels should be used for each data point. We apply
this idea to improve the performance of existing forest ensembles, without modifying the actual
ensemble, in Section

The informative projection models as well as the optimized ensembles show that query specific
handling and subspace selection can be leveraged to improve the performance of classification sys-
tems. We aim to allow data shift across submodels in the ensemble. Allowing flexible assignment
of both features and samples can be done by training tree ensembles which admit a differentiable
global loss. To achieve this goal, we introduce a new structure called Back-Propagation Trees
(Section [5.2] which makes the the random forest ensemble amenable to back-propagation. Back-
propagation (BP) trees use soft splits, such that a sample is probabilistically assigned to all the
leaves. Also, the leaves assign a distribution across the labels. A BP tree has two types of parame-
ters: the splitting parameters 6 which determine how a sample is routed in each non-leaf node, and
the leaf parameters m which specify the label distribution in each leaf. The s are obtained through
SGD. © optimizes the log loss over the entire tree, which is differentiable but non-convex. After
each update of the s the optimal 7s are computed exactly as the maximizers of a log concave pro-
cedure. Results on public vision datasets show that back-propagation forests improve over random
forests and other tree ensembles.

We used BackPropagation Forests to develop Deep Convolutional Neural Decision Forests,
as illustrated in Section Our novel approach unifies classification trees with the representa-
tion learning functionality known from deep convolutional networks by training them in a joint
manner. To combine these two worlds, we introduce a stochastic and differentiable decision tree
model, which steers the representation learning usually conducted in lower level layers of a (deep)
convolutional network. Our model differs from conventional deep networks because a decision
forest provides the final predictions and it differs from conventional decision forests because we
propose a principled, joint and global optimization of split and leaf node parameters. We show
experimental results on benchmark machine learning datasets like MNIST and ImageNet and find
on-par or superior results when compared to state-of-the-art deep models. Most remarkably, we
obtain a Top5-Error of only 7.84% on ImageNet challenge data when integrating our forest in a
single-model GoogleNet architecture, without any form of training data set augmentation. The
resulting BeefNet architecture is described in Section [5.3.2]

My thesis introduces methods that extract intelligible models from data, thus helping turn ma-
chine learning models into an extension of human knowledge. The compact models extracted by
RIPR were useful in practical application such as artifact detection in clinical alerts. The low di-
mensional views facilitate decision support and can make data annotation faster. In addition, the
framework presented can be easily used for any learning task, such as the data acquisition guidance
system for nuclear threat detection. Finally, the compact models presented fulfill our objective of
making data accessible to human users.



1.2 Motivation and application requirements

Feature selection is an essential part of model learning for high-dimensional data, especially when
few samples are available. Standard approaches to feature selection do not always yield concise
models which accurately reflect the underlying structure of the data, mainly because they target the
selection of a globally-useful set of features without accounting for the characteristics of individual
samples. At the other end of the spectrum, recent advances into query-specific models with feature
selection such as localized feature selection and locally-linear embeddings leverage neighborhood
information in order to generate a plethora of models, each tailored to a diminutive portion of the
feature space.

There are cases in which neither of these two extremes provides a satisfactory solution. On
one hand, shoehorning the entire dataset into the same low-dimensional model through techniques
such as the lasso runs the risk of bringing unnecessary features into the prediction process for
some of the samples, which could hurt accuracy. On the other hand, local models are prone to
overfitting, have limited applicability and risk introducing needless complexity. All the while,
neither captures a compact but comprehensive picture of the dataset, as sought by domain experts.
My thesis explores the idea of building small ensembles of low-dimensional components (sub-
models) which are applicable to significant subsets of data.

To exemplify, consider a medical application where existing vital sign readings, signals derived
from them and a number of other contextual features are used to predict a potentially multivari-
ate output signal such as diagnostics or health-status change alerts. The input space is extensive,
containing, at the very least, the readings computed within a window of a few minutes with their
corresponding statistics. Each event of interest needs to be manually labeled by clinicians, which
requires considerable time and effort, yielding a short supply of labeled data. Given the high
feature-to-sample ratio (the problem could even be underdetermined), feature selection is nec-
essary. However, we expect that patients suffer from different underlying conditions and have
different characteristics, which is why having several sparse models which are used alternatively,
rather than a single generic one, makes more sense. Standard feature selection could pinpoint that
blood sugar level is relevant to predicting heart failures. In contrast, a small ensemble model can
also identify the conditions under which the feature affects the prediction. For instance, we might
find that blood sugar level is only a factor in heart failure prediction when an affine combination
of the blood pressure, heart rate and risk of diabetes is above a certain threshold.

As an added incentive, small ensembles of low-dimensional models are also amenable to vi-
sualization. This is particularly appealing for applications where human operators have to gain
an understanding of the data, and/or quickly validate the system-made predictions. An example
of such an application is the detection of nuclear threats at border control points based on vehicle
characteristics and measured characteristics of emitted radiation. The automated threat detection
system assigns a threat/non-threat label to each vehicle, but it is ultimately up to the border control
agents to permit/deny entry or submit the vehicle to further verification. Establishing confidence in
the system’s decision, if possible, is an important aspect of this application, and can be achieved by
providing a visual representation of the classification process. To our ensemble-building methods,
this translates as an upper bound on the dimensionality of the components.

Our proposed family of methods works under the assumption that groups of samples can be
classified with different small subsets of features. The aim is to uncover the informative spar-
sity patterns across the feature space, provided that the changes in feature relevance can also be
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characterized through sparse functions. We propose to achieve this by training ensembles of low-
dimensional components such that every sample can be handled using one of these sub-models
or using a sparse mixture of them. We assume no prior knowledge of the sample groups, which
could overlap. The assignment of samples to sub-models and the dimensionality reduction for the
learners on the sub-models are performed jointly, avoiding the pitfalls of EM-like approaches.

1.3 Scope and novelty of proposed approach

To address the demand for concise, interpretable and visualizable models, we develop a framework
which recovers compact ensembles, consisting of solvers (which can be regressors or classifiers)
trained on what we call ‘informative projections’ [34, [35]. An Informative Projection is a low-
dimensional transformation of the features, where the learning task can be accurately and reliably
solved for a group of samples. We obtain these models through convex procedures, avoiding the
issues typically encountered with mixture formulations by estimating the performance of low-
dimensional solvers on the training data. The low-dimensional projections responsible for each
part of the feature space are selected through an optimization which factors in the appropriate
sparsity, smoothness and cost constraints over the parameters. Conceptually, we are combining
the flexibility of hierarchical latent variable models [[11] and sparse mixture models [54] with the
convex formulations and the theoretical guarantees inherent to sparse structured learning [2, 56].

One of the novel aspects of our approach to building compact ensembles is the computation of
a matrix which estimates the performance of the low-dimensional solvers at each sample, typically
using some non-parametric divergence-based estimator. Once this loss matrix is obtained, it is
used in a convex program which optimizes the empirical risk given the established model class.
The procedure is detailed in the following chapter. A prerequisite for this type of method is that
the learning task admits risk-consistent loss estimators. The only other established methods which
learn models resembling those we seek involve non-convex learning procedures to obtain sparse
mixtures, such as the method introduced by Larsson and Ugander [68]] for MAP inference with a
sparsity-inducing generalization of the Dirichlet prior.

Since the overall objective is to obtain a compact representation of the data, the size of the
ensemble should be constrained. Determining the number of sub-models intrinsic to a dataset is
a key model-selection challenge, which we address through regularization by adding component-
wise sparsity penalties. To further compress the model, each component in the ensemble will be
low-dimensional, with sparsity being the most favorable option. Regularization is also used to re-
duce component dimensionality, with the caveat that, in some scenarios, additional restrictions will
be imposed. For instance, if human-interpretable visualization is desired, each component would
only use up to three features. The components learned with our method will differ significantly ei-
ther in terms of their sparsity patterns or their parameters, with the discrepancies increasing as the
number of sub-models becomes more limited. The range varies between ensembles with few, very
different components and larger ensembles where some characteristics (features) can be shared
across the components.

During the ensemble learning process, samples are assigned to the components as the sub-
models are being built. Each sample can be allocated to one sub-model, thus achieving a parti-
tioning of the feature space, or to a very small number of them, similar to sparse mixture models.
Conceptually, the partitioning variant makes it easier for human users to understand the trained
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model and to follow the handling of test queries. However, enforcing a hard division of samples
across sub-models could be contrary to the realities of the data. We explore and compare these two
design options, choosing the appropriate one depending on the application and dataset characteris-
tics.

1.4 Challenges in learning data partitioning ensembles

One of the main computational issues characteristic to this type of model is the ‘chicken and egg’
problem associated with assigning training samples to sub-models. This happens because the sub-
models themselves are built based on their assigned samples. While traditional methods would
rely on expectation-maximization, our methods avert this complication by formulating the learn-
ing problem as a convex program. The constants in the program are non-parametric estimates that
assess the benefit of different candidate models in the neighborhood of each sample of the dataset.
The parameters that need to be learned are the assignments of the samples to sub-models. A con-
sensus across the samples is reached concerning which set of models is most useful overall. The
benefit of this procedure is that it evaluates whole models rather than individual features. This
technique is inherently robust in that, in the neighborhood of any sample point, the model is less
sensitive to changes elsewhere in the feature space. The process of finding the models we are
targeting raises some issues, a notable one being identifiability. Namely, there could be several
very different, albeit accurate, alternatives which solve the learning problem under the settings de-
scribed above. While our methods work by formulating an objective function and selecting the best
performing one, we also take steps to ensure robustness of the selected model and derive necessary
conditions for identifiability. A related issue is the use of regularization and the trade-offs between
ensemble size and component complexity, which we investigate (so far, only empirically) in order
to determine how to best set the parameters (and constraints) to obtain optimal performance for a
given dataset.

Our method of learning ensembles of compact solvers improve on existing non-specialized
models, at least for data which complies with the assumption that any given query can be handled
using only a subset of the initial features. We primarily target classification, although the basic
concepts also apply to regression and clustering. We showed experimentally and are we looking to
prove that the models obtain faster learning rates, in terms of sample size, than (1) non-specialized
models with solvers from the same hypothesis space using all the features and (2) non-specialized
models with solvers from the same hypothesis space using the same number of features as the
ensemble. In the latter case, we also expect to obtain higher limiting accuracy (3)[]

1.5 Related work

Extensive research in dimensionality reduction has resulted in a number of techniques which we
use in the development and analysis of our algorithms. The problem we address is related to
structured sparse learning [S7]] and compressed sensing [[17]. Our method has an advantage over

'Points (2) and (3) are straightforward to show since, for partitions, the ensemble is a more generic class, implying
that it will fit the data better, but will take longer to train. The elimination of spurious features reduces the amount of
needed training samples.



them as it partitions the data, as opposed to building a universal model. Specifically, the analysis
of our methods relies on existing theoretical results in structured sparsity [49, [77, 87, 1110, [111],
as well as the optimization methods that make this type of learning possible [3, 4, [76]]. Also, low-
dimensional ensemble components can be learned under the assumption that subsets of the given
samples can be written as sparse signals in some basis and thus admit a compressed representation
(in the form of basis/matching pursuit), which can be determined through existing techniques [6,
44].

We also note some conceptual similarities to hierarchical latent variable models [11} [70] and
sparse mixture models [32, 98] — the notion of several underlying processes that determine the
output signal. However, our methodology remains very different from standard algorithms on
these topics, as we avoid non-convexity by directly operating on the feature space, without the use
of intermediaries such as latent variables or mixture components.

Currently, our approaches use axis-aligned subspaces (through lasso penalties) or linear com-
binations of features (via compressed sensing), but if these fail to deliver the required compact
ensemble, we will approach the problem from a nonlinear perspective [69, 92]. Given the multi-
model characteristics of the data we target, we use techniques which explicitly learn several mani-
folds before training the set of solvers [[107] or, alternatively, employ multiple kernel learning [48]].
Either way, these techniques assume that all data falls under the same model and extra mechanisms
are required to assign groups of samples to manifolds/kernels.

Currently, there exist several ensemble-based methods to which we can relate our work [26,
28,150, [103]]. Most of these are, however, purely empirical and not accommodating of theoretical
analysis. Our approach not only provides a model which is more representative of the underlying
processes and more communicative to the domain experts, but it does so in a manner that makes it
possible to obtain theoretical guarantees.
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Chapter 2

Informative Projection Ensembles (IPEs)

Intelligent decision support systems often require human involvement because of data limitations,
such as the absence of contextual information, as well as due to the need for accountability. The
stringency of the requirement usually escalates with the stakes of decisions being made. Notable
examples include medical diagnosis or nuclear threat detection, but the benefits of explainable
analytics are universal. To meet these requirements, the output of a regression, clustering, or a
classification system must therefore be presented in a form that is comprehensible and intuitive to
humans, while offering the users insight into how the learning task was accomplished. A desirable
solution consists of a small number of low-dimensional (not higher than 3D) projections of data,
selected from among the original dimensions, that jointly provide good accuracy while exposing
the processes of inference and prediction to visual inspection by humans.

Extracting compact and communicative models is fundamental to decision support systems.
Specifically, the use of Informative Projections has been shown to facilitate the decision process,
making automatic classification transparent and providing domain experts useful views of the data.
In this chapter, we provide guarantees for the previously introduced ensembles of classifiers trained
on low-dimensional Informative Projections. We analyze the theoretical properties of such ensem-
bles, presenting three methods of training them. We provide optimality guarantees for our algo-
rithms, under the assumption that the sample-specific information dictates the use of the classifiers
in the ensembles. Our experiments demonstrate that high classification accuracy can be obtained
using low-dimensional models extracted by our methods. Finally, we show how the query-specific
solver selection procedure can be applied to other ensembles, improving the performance of ran-
dom forest classifiers.

Predictive systems designed to keep human operators in the loop rely on the existence of com-
prehensible classification models, which present an interpretable view of the data [40, 81, 91].
Often, the domain experts require that the test data be represented using a small number of the
original features, which serves to validate the classification outcome by highlighting the similar-
ities to relevant training data [108]]. The user typically interacts with the system by providing a
query (test) point that needs to be labeled; the system then selects a submodel which can accu-
rately classify the query using a small subset of the features; finally, the decision is presented to
the user together with a representation of how the classification label was assigned in the projected
subspace.

Informative Projection Ensembles (IPEs), first introduced in [34], alternatively use one of sev-
eral compact submodels that ensure compliance with the stringent requirement on model size,
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while also attaining high performance through the use of specialized models. This concept is re-
lated to mixtures of experts [10, 59, 163]], with the notable difference that the final outcome for
any given query is due to only one of the ‘experts’, making it easier for users to understand and
validate.

2.1 Model class

Assume we are given a dataset X € R**", Y € ), typically, Y = {0, 1}", where a is the number
of features and n is the sample size. Let H, represent hypothesis classes for classifiers on R", for
some r € N. We now introduce M, ;, the model class for Informative Projection Ensembles of k&
axis-aligned projections that have up to d features.

Definition 2.1.1. Given d, k € N, an Informative Projection Ensemble belongs to the following
class

Map={M = (C,H,g)| C={cile: C{1...a},a; L |e;],a; < d,i € {1...k}},
H = {hilhi € Ha,, b : R% — {0,1},i € {1...k}}, (2.1)
g:R*—={1...k}}

Above, for an informative projection model M, C'is the set which determines the features used
by the submodels in the ensemble. Each set ¢; for i € {1...k}, represents the indices of the a;
features which constitute the informative projection of the i submodel. Each discriminator h; €
H classifies the samples assigned to it based on the features in the set ¢;. The model uses g, which
we will refer to as the selection function, to determine which discriminator needs to be applied to
a given sample. Under the IPE model M, the assigned label of a sample x is §j = hy(,) (xcg(z)).

IPEs have proven useful for applications where data is heterogeneous in nature. In such cases,
the vast amount of data available belies the relatively small percentage of it which is actually useful
in learning, as the samples typically come from several distributions and are affected by noise [35].

For instance, consider a patient monitoring system built for the classification of health alerts.
As the risk of false negatives is high, the predictions have to be ultimately validated by clinicians,
requiring comprehensible models. Moreover, this is a typical example of multi-source data as it
was collected under different circumstances, from different patients and using multiple sensing
modalities [36]. In such cases, frequently encountered in the medical domain, the iid assumption
rarely holds, and nor do other typical suppositions concerning the sample distribution or noise.
However, there exist groups of samples which exhibit similarities, with the outcome that models
tuned to one group will behave poorly on samples from other groups. The use of Informative Pro-
jection Ensembles constitutes a solution to both of these issues (i.e. the requirement for simplicity
and the heterogeneous nature of the data) because the model partitions the data and uses different
low-dimensional projections to classify the points within the context of their group [38]].

The clear utility of IPEs in many practical instances, including the clinical alert classification
[37]] and nuclear threat detection [46, 47], prompts us to analyze the theoretical characteristics of
such models in order to highlight their discriminative capabilities and illustrate scenarios in which
they are superior to contending models. We also present several ways of learning them from data,
with different guarantees in terms of optimality and sample complexity, essentially showing that,
under a set of non-stringent assumptions, it is possible to efficiently train near-optimal models.
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We make two assertions: (1) that IPEs are the right choice of model in many cases; (2) that
informative IPE models can be learned successfully through several techniques. To make an anal-
ogy to statistical machine learning: (1) is the 'modeling’ error; we show that this model class is
rich enough to capture most aspects of data; (2) is the ’approximation’ error; we “approximate’ the
optimal model training through a greedy/suboptimal procedure.

One could apply decision trees or rule learning to the IPE problem [15]. However, while these
models make interpretable classification possible, visualization is difficult without a hard constraint
on the number of features to be used. Standard feature selection techniques could also be used
[12} [78]] though visualization could be difficult for any set of data with more than 3-5 features.
It is also unlikely that the same set of features will be relevant for different groups of samples.
Instead, our model accounts for the possible existence of several underlying patterns in data. Our
approach partitions the data using a specific and dedicated low-dimensional projection to classify
each point. This does not only facilitate comprehension, but it can also increase classification
accuracy compared to standard feature selection due to reduced model complexity. The solution,
be it exact — if finding it is feasible — or approximate, is applicable without the need for post-
processing.

In addition to the theoretical findings, our experiments show that the methods we introduce can
discover and leverage low-dimensional structure in data, if it exists, yielding accurate and compact
models. Our method is particularly useful in applications involving multivariate numeric data in
which expert assessment of the results is of the essence.

2.2 Construction of Informative Projection Ensembles

This section describes how the ensemble construction can be reduced to a combinatorial problem
by optimizing over a matrix of loss estimators computed for every data point. We introduce three
ways of solving this combinatorial problem. First, we formulate an integer linear program which
computes the optimal point-to-projection allocation for the training sample given a limited number
of projections. An alternative is a two-step procedure, similar to the adaptive lasso, which replaces
the constraint on the number of projections with a ¢; penalty with adaptive weights. Finally, we
consider greedy projection selection, which is a great option in this case because of the super-
modularity of the loss.

We formulate Informative Projection Recovery (IPR) as the problem of identifying IPEs which
encapsulate enough information to allow learning of well-performing models. Each such feature
group, equivalent to a low-dimensional axis-aligned projection, handles a different subset of data
with a specific model. The resulting set of projections, jointly with their corresponding models,
form a solution to the IPR problem. We have previously proposed such a solution tailored to
non-parametric classification. Our RIPR algorithm [33]] employs point estimators for conditional
entropy to recover a set of low-dimensional projections that classify queries using non-parametric
discriminators in an alternate fashion — each query is classified using one specific projection from
the retrieved set.

Solving the IPR problem is relevant in many practical applications. For instance, consider a
nuclear threat detection system installed at a border check point. Vehicles crossing the border
are scanned with sensors so that a large array of measurements of radioactivity and secondary
contextual information is being collected. These observations are fed into a classification system
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that determines whether the scanned vehicle may carry a threat. Given the potentially devastating
consequences of a false negative, a border control agent is requested to validate the prediction and
decide whether to submit the vehicle for a costly further inspection. With the positive classification
rate of the system under strict bounds because of limitations in the control process, the risk of false
negatives is increased. Despite its crucial role, human intervention should only be withheld for
cases in which there is reason to doubt the validity of classification. In order for a user to attest
the validity of the decision, the user must have a good understanding of the classification process,
which happens more readily when the classifier only uses the original dataset features rather than
combinations of them and when the discrimination models are low-dimensional.

2.2.1 Formulation of IPE learning

Intuitively, the aim is to minimize the expected classification error over M, however, a notable
modification is that the projection and, implicitly, the discriminator, are chosen according to the
data point that needs to be classified. Given a query z in the space X, g(x) will yield the subspace
Cy(z) Onto which the query is projected and the discriminator ) for it. Distinct test points can be
handled using different combinations of subspaces and discriminators. We consider models that
minimize the loss function ¢. For a sample x, the label is § = hy()(z.,,,,), which we can use to
express the risk for a loss (7, y).

R(M) = Ef(@ y) = El(hyw (e, ,))s v)

= Z El(hi(x.,),

The estimated risk can be expressed in terms of the losses of the individual solvers, evaluated
at the data points assigned to them. Below, x_; is a vector representing the i sample in the dataset,
while x; .. represents the projection of this sample on the set of variables c;.

~ 1 ]
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Hence, the IPR problem for learning classification IPEs can be stated as follows:

M* = argmin Ex yl(hy)(co@) (7)), y) (2.2)
MeMgy

There are limitations on the type of selection function ¢ that can be learned. A simple example
for which g can be recovered is a set of signal readings x for which, if one of the readings z;
exceeds a threshold ¢;, the label can be predicted just based on z;. A more complex one is a dataset
containing regulatory variables, that is, for z; in the interval [a,,b,] the label only depends on
(xl...2"). Datasets that fall into the latter category fulfill what we call the Subspace-Separability
Assumption.
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2.2.2 Classifier selection as a combinatorial problem

There are several problems which need to be addressed in order to learn the IPE models. First, a set
of candidate models need to be established, then, k£ of them are selected and assigned to individual
data points. Typically, the set of projections is limited by utility requirements. For instance, in the
case of visualization, combinations of 2 or 3 features are considered, so d < 3. If larger submodels
are acceptable, then informative projections can be built through more traditional techniques such
as forward or backward feature selection or separate feature evaluation. Although determining the
projections of the candidate models is relatively straightforward, there is the additional requirement
of estimating their classification performance in order to select the appropriate k-subset. This can
be done by either training classifiers and evaluating their performance or computing how much
information the projection encodes about the output in the neighborhood of each training data
point.

We consider the existence of m candidate submodels, out of which k will be selected. We can
re-write the estimated risk in terms of two matrices, the loss matrix L € R™ ™ and the selection
matrix B € {0,1}"*™. The loss matrix quantifies the loss of each candidate submodel for each
of the data points. The selection matrix represents the assignment of data points to submodels,
B, ; = 1if point 7 is assigned to submodel j and 0 otherwise.

B, Y I(g(x)=j) Vie{l..n}), je{l..m) 2.3)
Lij = (i), yi) (2.4)

The loss matrix can be computed whereas B needs to be learned. We propose several methods to
learn B, and thus determine the best set of submodels, as well as the training points assignment. For
the test data, we select the classifier in the model with the lowest estimated loss. The procedure
to estimate loss depends on the hypothesis classes being considered. For SVM classifiers, for
instance, the margin is an appropriate estimator, whereas for nearest-neighbor classification, it
could be a ratio between distances to data points of different classes. Since submodel selection
is typically not problematic once an informative set of submodels is captured, we first focus on
learning the selection matrix B.

For each training point, we compute the best loss amid all the projections, which is simply
E = minje[m] L’L]

The objective can be then further rewritten as a function of the elements of the loss matrix:

2 ; Tlg(w:) = j1Li (2.5)

From the definition of 7, it is also clear that

n

amin > > Hg(wi) = 1Ly = YT (2.6)

i=1 j=1 i=1

Considering form (2.5)) of the objective, and given that the estimates L;; are constants, de-
pending only on the training set, the projection retrieval problem is reduced to finding ¢ for all
training points, which will implicitly select the subset of projections to be contained by the model.
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Naturally, one might assume the best-performing classification model is the one containing all the
axis-aligned subspaces. This model achieves the lower bound for the training set. However,
the larger the set of projections, the more values the function g takes, and thus the problem of
selecting the correct projection becomes more difficult. It becomes apparent that the number of
projections should be somehow restricted to allow generalization. Assuming a hard threshold of at
most k projections, the optimization becomes an entry selection problem over matrix L where
one value must be picked from each row under a limitation on the number of columns that can be
used. This problem cannot be solved exactly in polynomial time. Instead, it can be formulated as
an optimization problem under ¢, constraints.

Selection of Estimators from Loss Matrix

Projections g 1. Projections
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Figure 2.1: Using the loss matrix for projection selection.

Figure shows how the projection selection works using the loss matrix. Without regular-
ization, the minimum over each row would be selected. However, by imposing a constraint on the
number of columns used, some points have to be re-assigned to sub-optimal projections, though
still maintaining the loss as small as possible.

2.3 Learning the selection matrix

2.3.1 Optimal submodel selection through an Integer Linear Program

Learning B is simply a combinatorial problem of selecting an element from each row of the
loss matrix and only from at most k£ of the columns, while minimizing the sum of the losses over
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Algorithm 2.3.1 Learning IPEs through an Integer Linear Program

maximize — Z b;{&’,
i=1
subject to Zbid =1, Vie{l...n},
j=1
Zbi’j < npj, Vi € {1m},
i=1

> py <k,
j=1

OgblyJSpng, VZG{ln}, VJE{lm},
and pj,bi;€Z

Algorithm 2.3.2 Learning IPEs through an Integer Linear Program which determines &

kmaz n

maximize  — Z Zbg‘.,k&:-
k=1 =1
subjectto Y by =1, Vie{l..n},  Vke{l.. knau}
j=1

Zbi,j,k < NPjk; Vie{l...m},
=1

> pi<k  VEE{l. kma}
j=1

OSbLj’kgpj,kgskgl, VZE{ln}, VJG{lm},

and  pjk, bijk,sk € Z

the selected elements. We formulate an ILP, shown in Algorithm that finds the optimal
matrix B for a computed matrix L, given that the final IPE can have at most k£ submodels. For
the purpose of the ILP, /; ;, the elements of L, are constant. The variables of the LP are b j, the
elements of the selection function, and p;, which specifies whether the j™ candidate submodel is
used in the IPE.

The ILP ensures that the optimal loss is obtained for an ensemble with £ submodels. Setting
an appropriate value for £ is not always straightforward, and one potential solution is to run the
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ILP for different values of £ and select the best tradeoff between loss and model size. On the
other hand, we can ensure that, if there are several models with the same value of the objective
function, the model with the smallest number of projections is selected. We slightly modify the
ILP as presented in Algorithm by maintaining one set of variables b and p for each £ and
introducing the binary variables sy, Vk € {1...kpnae}t- Kmae < m is the maximum number of
projections in the IPE.

We will refer to the solution B* of the ILP (whichever of the two suits the problem) as the
k-optimal selection matrix given the dataset X and it will serve as a point of comparison with the
other methods of learning the selection matrix.

2.3.2 Convex formulations for submodel selection

The problem of learning the selection matrix, and implicitly the informative projection ensemble,
can be transformed to a regression problem. We consider T, the minimum obtainable value of the
entropy estimator for each data point, as the output which a egress ion model needs to predict. We
typically use an entropy estimator as the loss function L, with each row ¢ of the parameter matrix
B representing whether the entropy estimates on each projection contribute to the total entropy
estimator for the data point ;. The regression model that selects the optimal submodel for each
data point, given the matrix of loss estimates, is

1<j<m b9 and (B.* L);; = By jLij. (2.7)

B =argmin ||T — (B. x L)1]|3, where T} “ min B
B

Typically, only one element in each row of B is 1, corresponding to the submodel that is
assigned to the data point. Clearly, the regression procedure above, used without regularization
would select all the submodels that are optimal for at least one data point. The appropriate reg-
ularization term to be used would be a penalty on the total number of non-zero columns in B
under the constraint that the sum over each row of B is 1. The sum of ¢; norms of each column is

Ay (B) = A3 1Bl

B =argmin ||T — (B. x L)1[]? 4 A, (B) subjectto ||B; |1 =1,V1<i<n  (2.8)
B

The challenge with this optimization problem is that it is not convex. A typical work-around
for this issue is to use a convex relaxation, the ¢; norm. This would transform the penalized term:

m
Ay (B) = 1Bl
j=1
However, under the row constraints,

m n
MBI =Y lIBilh =n,
j=1 i=1

which means that the penalty has no effect when the row constraints are enforced.
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Two-step convex submodel selection

An alternative is to bias the non-zero elements in 5 towards a small number of columns, such
that fewer submodels are used overall. The mechanism we propose to achieve this is similar to
the adaptive lasso. Adding a penalty of the form BJ, where § is an m-sized column vector with
each element representing the penalty for a column in B. The penalty is lower for submodels
that are useful for a large subset of data, which correspond to denser columns in B, and higher
for less useful submodels. To determine submodel usefullness, we get an initial estimator for B
using only the row constraints, which themselves ensure a bound on the ¢; norm. Next, we refine
the selection by adapting the regularization weights for each of the submodels according to the
previously determined B. The results in this section refer to the 2-step procedure presented in
Algorithm[2.3.3]

Algorithm 2.3.3 Two-Stage IPE learning (Regression for Informative Projection Recovery [33]])

B =argmin ||T — (B. * L)1]||3 subject to || B;. ||y = 1,V1 <i<n (2.9)
B
B =argmin ||T — (B. % L)1||2 4+ \||Bd||, (2.10)
B
1
where §; = ———— (2.11)
1Bl

Iterative convex submodel selection — the RIPR framework

The process could be iterated until the convergence of §. With no prior information about which
subspaces are more informative, § starts as an all-1 vector. An initial value for B is obtained
through the optimization (2.9). Since our goal is to handle data using a small number of projec-
tions, ¢ is then updated such that its value is lower for the denser columns in B. The matrix B
itself is updated, and this 2-step process continues until convergence of 4. Once ¢ converges, the
projections corresponding to the non-zero columns of B are added to the model. The procedure
is shown in Algorithm [2.3.4] In theory, there are no guarantees so far with respect to whether the
process converges or the time to convergence. In practice, however, the method has converged for
every dataset on which we tested it.
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Algorithm 2.3.4 Framework for Informative Projection Recovery
d=1[1...1]
repeat

B:arg HliIlB ||T—(L * B)1||§+)\1 Z;n:l |B_7j|1+/\2|B(5|1

subjectto |B; |y =1, Vie{l...n}
B;; >0

d; =|B jh j =1...d" (update multiplier)

0= (|0]1 = 0)/Iok
until ) converges
return C = {¢;; |B|i >0 Vj=1...d"}

2.3.3 Greedy submodel selection

For a model M = (C, H, g), the simplest selection function is the one which assigns a sample =
the projection with the lowest estimated loss for it.

Gmin(T) xf argmin /(h;, ) (2.12)
je{l...k}
UM, z) = i(H,z) < min i(h;, z) (2.13)
hjEH
- dif s o .
(M, X) =Y UM, z) = min ((h;, x) (2.14)
zeX zeX

Below, we show that the loss we are minimizing under g,,;, is supermodular. This, in turn,
means that greedy selection can be applied to construct an ensemble, resulting in a near-optimal
ensemble.

As a reminder, a set function F' is submodular if, V sets A, B s.t. A C B and for every set
element x

F(AU{z}) — F(A) > F(BU {z}) — F(B). (2.15)

Let M, = (Ch, H1, gm), My = (Cs, Hy, g) with C; C Cy and H; C H,. Since there are more
sub models in H,, we have that, for any sample x € X

. > . < . ) .
Jmin l(h;,x) < Jmin l(h;,x) and (2.16)
/ in /(D < I in 0(h
It(h,x) < hIirgI%E(hz,x)] < I[l(h,x) < Juin U(h;, x)]. (2.17)

We now study the behavior of the loss function when a new classifier / is added to the ensem-
ble. First, we show that the min function over a set is supermodular.

Proposition 2.3.1 (Supermodularity of min function). For all sets A, B with A C B and elements
x

min(AU{z}) — min(A) < min(B U {z}) — min(B). (2.18)
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Proof. From A C B, we have that min(B) < min(A). We show that the proposition holds for all
values of z. If z < min(B) < min(A), then

min(AU {z}) — min(A) = z — min(A) < x — min(B) = min(B U {z}) — min(B).
If min(B) < x < min(A), then

min(AU{z}) — min(A) = x — min(A) < 0 = min(B U {z}) — min(B).

If min(B) < min(A) < x, then

min(A U {z}) — min(A) = 0 = min(B U {z}) — min(B).

Adding a classifier / to an ensemble H; yields the following loss difference

((Hy U{h},z) —((Hy,z) = min  0(h;,x) — min (h;,z), (2.19)

hl‘EHlU{h} h;€H1

for which, by applying Proposition[2.3.T we get the following lemma:

Lemma 2.3.2 (Supermodularity of ensemble loss). Given a model class for which the selection
function assigns each sample to the submodel with the lowest loss, the loss over the IPEs is super
modular for any dataset X, in other words, for any My = (Cy, Hy, gm), Mo = (Cs, Hs, gy,) With
C1 C Cy and Hy C Hy, we have that

S(H, U {h}, X) = S(H, X) > S(Hy U {h}, X) — S(Hs, X). (2.20)

Proof. The proof follows by simply applying the proposition to the loss function, given its equiv-
alence to a min function over a set expressed in (2.19), to obtain

O(Hy U{hY, x) — 0(Hy,z) < 0(Hy U{R}, ) — ((Hy, x). (2.21)

The result follows since the loss is additive w.r.t the samples in X, according to (2.14). O

Since the loss 1s supermodular, the opposite of the loss, which we call the score SE s
submodular.

S(Hy U{h},z) = S(Hy, ) > S(Hy U {h}, ) = 5(Hs, x) (2.22)

According to the result of Nemhauser et al. [82], by applying a greedy selection procedure to
obtain k submodels from m candidates, we have that

S(MIeW Xy > (1—1 S(M;. X). 2.23
(M}, , X) > ( /6){M* (CHgE}n}fn)HHKk} (M, X) ( )
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2.3.4 Query handling

Once the projections are selected, the second stage of the algorithm deals with assigning the pro-
jection with which to classify a particular query point. An immediate way of selecting the correct
projection starts by computing the local entropy estimator for each subspace with each class as-
signment. Then, we may select the label/subspace combination that minimizes the loss.

(7%, y*) = arg min < Vk(cj(x)’cj(Xy))>>cjl(la) j=1l..m , a=l (2.24)

b k(e(@),¢(Xoy)

Figure shows the procedure of labeling a test sample given a RIPR model with - ]C |
projections. The framework accepts a query point x, selects the low-dimensional subspace of the
features c,(,) on which to project the point, then applies the classifier i, of the subspace. Finally,
the classification outcome is shown in the context of the low-dimensional projection, highlighting
the projection c¢,(;)(z) of the test point as well as its neighbors.

c,(x) h,(c4(x))
: _ (] OO ]
Capg(X) 2] hgga (S (¥) © o
. i ) e ©
cx) hy(ci(x)) ()

Figure 2.2: The sample labeling procedure.

2.4 Customized IPE construction for different learning tasks

2.4.1 Classification IPEs using conditional entropy

To solve the IPR problem for classification, we need means by which to ascertain which projections
are useful in terms of discriminating data from the two classes. Since our model allows the use
of distinct projections depending on the query point, it is expected that each projection would
potentially benefit different areas of the feature space. A; refers to the area of the feature space
where the projection ¢; is selected.

Ai={x e X :g(x) =1} (2.25)
The objective becomes
Jmin Exy|y 7 o) (¢ (@ ] = Mngkgdcgcp i) Eaea, [y 7# hg(a)(Co(a) () . (226)



The expected classification error over .4; is linked to the conditional entropy of Y| X. Fano’s
inequality provides a lower bound on the error while Feder and Merhav [30] derive a tight upper
bound on the minimal error probability in terms of the entropy. This means that conditional en-
tropy characterizes the potential of a subset of the feature space to separate data, which is more
generic than simply quantifying classification accuracy for a specific discriminator. In view of this
connection between classification accuracy and entropy, we adapt the objective to

min Y p(A)H(Y|a(X); X € A)). (2.27)

The method we propose optimizes an empirical analog of which we develop below and
for which we will need the following result.
Proposition 2.4.1. Given a continuous variable X € X and a binary variable Y, where X is
sampled from the mixture model.

f(@) =ply =0)fo(x) +ply =1)f1(x) = pofo(x) + prfi(z),
then H(Y|X) = —pologpo — p1logpr — Dkr(follf) — Drr(fillf)
Next, we will use the nonparametric estimator presented in [83] for Tsallis c-divergence. Given

samples u; ~ U, with¢ = 1...n and v; ~ V with 7 = 1...m, the divergence is estimated as
follows:

7o (o) = — [% Zn: ((" = D, U\ “i)d)laBm - 1] : (2.28)

11—« mug(u;, V)4

where d is the dimensionality of the variables U and V' and v (z, Z) represents the distance from z
to its k" nearest neighbor of the set of points Z. For o = 1 and n — oo, T, (u||[v) ~ Dy (ul|v).

Projection with low loss for sample x Projection with high loss for sample x
® O
\ ¢ ® ®
O ® 0@
o S—@ ® ® e
® ® ®
H,(y[x) ~ B (vi/p)) < Hy(y[x) ~ B (vo/,)

Figure 2.3: Estimating entropy through distance ratios.

We use the divergence estimator to estimate the conditional entropy at every sample point. The
entropy estimation is based on the ratio of the distances to the k-nearest point of the same class
and the k-nearest point of the opposite class. An illustration of this is presented in Figure 2.3
Intuitively, the smaller the ratio, the closer the point is to other samples of the same class, which
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means that the neighborhood is homogeneous. If the ratio is close to or higher than 1, it means that
the points of different classes are about the same distance with respect to the sample considered,
so the neighborhood is heterogeneous.

We will now plug (2.28)) in the formula obtained by Proposition 2.4.1]to estimate the quantity
(2.27). We use the notation X, to represent the n samples from X which have the labels Y equal to
0, and X to represent the n; samples from X which have the labels set to 1. Also, X, represents
the set of samples that have labels equal to the label of x and X, the data that have labels
opposite to the label of x.

H(Y|X; X € A) = —Clpo) — Cpr) = T(f5IIf*) = T(FENFY)  axl (2.29)

— 1)Vk(.1'i,X0 \ flﬁi)d l-a
nvg(x;, X \ z;)?

1 .
— Iz, € A
> no ; [= ) nvg(z;, X1\ ;)¢
1 = (TLl — 1)1/],3(271 X1 \xl)d 1-a
— Ilz; € A ’
+ ny ; @ ] nvg(zi, Xo \ ;)¢

1 (n — D@y, Xy \ )%\ -
“n ZI[% © A]< Tiy Xoy(ar) \ ) >

3

AN
=
—~

As expected, an important aspect of the Informative Projection model is the selection of the
area of applicability for each projection. Clearly, the risk increases drastically if the projection
allocated to a certain neighborhood of the feature space does does not contain all the relevant
features for accurate classification in that neighborhood. The active projection is chosen separately
for each point in the training set, thus yielding the empirical area of applicability. There are several
possible ways to generalize the selection for test data. A first option is to estimate the loss of each
submodel for the sample, then select the projection/classifier pair that corresponds to the lowest
loss, as shown in Section[2.3.4] An alternative is use the training set assignment in order to build an
additional classifier that determines, for each sample, the submodel to which it should be assigned.
Such a strategy is used in Section ??.

By applying the previous estimator to all activation areas, we obtain an estimator for the entropy
of the data classified with submodel j (projection c;, classifier h;):

(n — Dwilc(wi), ¢ (Xy@) \ ¢j(@))
nvg(cj (i), ¢ ( Xy \ i))?

~ 1 " l1—a
H(Y|ej(X): X € Aj) o =3 I € Ajl( ) o
=1

From (2.30) and using the fact that I[z; € A;] = I[g(x;) = j], we estimate the objective as

min Y 1 S Ilg(es) = ] ((n — Dwr(cj(@i), m(Xyay) \ ¢j(2i)) >l—a 231

n nvg(cj (i), ¢ ( Xy \ 24))?

Cj eC i=1
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Therefore, the contribution of each data point z to the objective corresponds to a distance ratio
on the projection ¢, where the class of the point is obtained with the highest confidence (data is
separable in the neighborhood of the point). We start by computing the distance-based metric of
each point on each projection of size up to d - there are d* such projections.

This procedure yields an extended set of features L, which we name local entropy estimates:

arl je{l..d} (2.32)

= Vi (cj(:), ¢ (Xy(n) \ (@) 40—
Lz] ( Vk(Cj(IL'i), Cj(Xﬁy(xi) \;L'Z)) )

2.4.2 Generalized IPE models

We now substantially extend the Informative Projection Recovery (IPR) problem using a formal-
ization applicable to any learning task for which a consistent estimator of the loss function exists.
To solve the generalized IPR problem, we introduce the Regression-based Informative Projection
Recovery (RIPR) algorithm. It is applicable to a broad variety of machine learning tasks such
as semi-supervised classification, clustering, or regression, as well as to various generic machine
learning algorithms that can be tailored to fit the problem framework. RIPR is useful when (1)
There exist low-dimensional embeddings of data for which accurate models for the target tasks
can be learned; (2) It is feasible to identify a low-dimensional model that can correctly process
given queries. We formulate loss functions that can be used to implement IPR solutions for com-
mon learning problems, and we introduce additive estimators for them. We empirically show that
RIPR can succeed in recovering the underlying structures. For synthetic data, it yields a very good
recall of known informative projections. For real-world data, it reveals groups of features con-
firmed to be relevant by domain experts. We observe that low-dimensional RIPR can perform at
least as well as models using learners from the same class, trained using all features in the data.

Assume we are given a dataset X = {z;...x,} € X" where each sample z; € X C R*
and a learning task on the space X with output in a space ) such as classification, clustering or
regression. The learner for the task is selected from a class 7 = {f : X — Y}, where the risk for
the class 7T is defined in terms of the loss ¢ as

R(t,X) =Exl(z,t) VteT. (2.33)

The optimal learner for the task is ¢* = argmin,.+ R(t, X'). We indicate by ¢ the learner from
class 7 obtained by minimizing the empirical risk over the training set X .

n

e A 1
tixy £ argmin R(7, X) = arg min — Z O(x;,t) (2.34)

teT teT N
=1

The class M of models constructed by our IPR framework is formalized as having a set C' of
projections with dimension at most d, a set 7" of learners and a selection function g:

M={C={c¢:¢ C{l...a},|c| <d},
T:{tltle'ﬁh,tcléy, Vze{l]C’\}}, (235)
ge{f:Xx=>{1...|C|}} }.
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2{1--a} contains all axis-aligned projections; the subset C' C 21~} in M contains only projections
with at most d features. The value d is application-specific; usually 2 or 3, to permit users to view
the projections. Function g selects the adequate projection c¢; and its corresponding learner ¢; to
handle a given query .

Based on this model, we derive a composite learner which combines the learners operating on
the individual low-dimensional projections. The loss of this learner can be expressed in terms of the
component losses: tp(z) = t;(cj(x)), (z,tm) = U(cj(x),t;), where g(x) = j represents the
index of the learner which handles data point = and ¢;(z) is the projection of = onto ¢;. Optimizing
over the model class M, the IPR problem for learning task 7 can be formulated as a minimization
of the expected loss:

M* = argmin Exl(cy() (), ty()) (2.36)
M

Thus, every sample data z; can be dealt with by just one projection c¢;. Recall that g(z;) = j.
We model this as a binary matrix B: B;; = I[g(z;) = j].
The minimizers of the risk and empirical risk are:

|C]
M = arg/&ninEXZ Ilg(z) = jll(c;(z),t;)
j=1
n |C]
M* = argmln—zz_f () = jll(cj(xi), t;) (2.37)

i=1 j=1

Assume now that we can consistently estimate the loss of a task learner 7 at each available sample,
that is

st VeeX teT plimpol(z,7)=10(21) (2.38)

Plugging (2.38) into (2.37)) yields the final form used to obtain the estimated model:

The loss estimators L;; are computed for every data point on every subspace of up to the user-
specified dimensionality d. B is learned through a regularized regression procedure that penalizes
the number of projections |C'| used in the model. This translates to an ¢, penalty on the number of
non-zero columns in B, relaxed to /. The ¢, penalty is written as /[| B. ;| # 0], while its relaxation
is [|B|[1.1-

B—argm1n||T L®B||2+>\ZIB # 0] (2.39)

j=1
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. . o def . .
where m is the number of candidate projections, 7; & min; L;; and the operator © is defined as

©:R" xR" - R" (LO®B);= ZLijBij

j=1

The basic optimization procedure remains the same one shown in Algorithm 2.3.4]for all learn-
ing tasks, the key difference here is in the computation of the loss matrix L. The technique re-
sembles the adaptive lasso. It gradually reduces the number of non-zero columns in B until con-
vergence to a stable set of projections. As illustrated in Algorithm the procedure uses the
multiplier ¢ to gradually bias selection towards projections that not only perform well but also suit
a large number of data points.

Next, we show how to compute the loss function for different learning tasks. When the aim
is to find informative projections without knowing the class of learners to be used, we employ
nonparametric estimators of loss. The performance of the algorithm will depend on their rates of
convergence.

2.4.3 Semi-supervised classification IPEs

While the case of classification has been handled in the previous section, RIPR does allow an ex-
tension to semi-supervised classification. Consider a problem with labeled samples X, and X_
and unlabeled samples X, where each sample belongs to R*. The objective is to find a discrim-
inator in a low-dimensional sub-space of features that correctly classifies the labeled samples and
simultaneously allows substantial separation for unlabeled data, i.e., very few unlabeled data points
remain between the clusters of data from different classes. We choose a loss function that penal-
izes unlabeled data according to how ambivalent they are to the label assigned. This is equivalent
to considering all possible label assignments and assuming the most ‘confident” one — the label
with the lowest loss — for unlabeled data. The estimator for labeled data is the same as for super-
vised classification. The estimators use distances to the k™ nearest neighbors of each sample. The
score for a projection is computed by using the same estimator for KL divergence between class
distributions, to which we add a metric for unlabeled data which penalizes samples that are about
equidistant from the point-clouds of each class: R(X,,t*). We use the notation ¢(X) to represent
the projections of a set of data points X:

In these learning tasks, typical convergence issues encountered with nearest-neighbor estima-
tors can often be remedied thanks to low dimensionality of the projections.
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2.4.4 Clustering IPEs

It is not always straightforward to devise additive point estimators of loss for clustering since
some methods rely on global as well as local information. Distribution-based and centroid-based
clustering fit models on the entire sets of data. This is an issue for the IPR problem because it
is not known upfront how data should be assigned to the submodels. To go around this, we first
learn a RIPR model for density-based clustering, and then cluster each projection using only data
assignment provided by it. Of course, that is not required if density-based clustering is the method
of choice. To solve IPR for density-based clustering, we consider the negative divergence, in the
neighborhood of each sample, between the distribution from which the sample X is drawn and the
uniform distribution on X'. Let U be the size n sample drawn uniformly from X’. Again, we use
the nearest-neighbor estimator converging to the KL divergence. ¢ is some clustering technique
such as k-means.

A

Renu(ci(), 1) = — KL(ci(X)||es(U))

) cuy d(CZ(m),CZ(X)) lei|(1—a)
Edu(ci(@iﬁ)”( d(ci(z),U) )

We now illustrate how RIPR clustering with k-means can improve over applying k-means to the
entire set of features. Synthetic data used has 20 numeric features, and contains three Gaussian
clusters on each of its informative projections. The informative projections comprise the following
sets of feature indices: {17,12}, {10, 20, 1} and {4, 6,9}. Clusterings obtained by k-means shown
in those projections are depicted in the left part of Figure 2.4, The right part of it shows results
obtained with RIPR. Every cluster is colored differently, with black representing data not assigned
to that projection. The number of clusters is selected with cross-validation for both £-means and
RIPR. The clustering obtained with k-means on all dimensions looks very noisy when projected on
the actual informative features. The explanation is that the clustering might look correct in the 20-
dimensional space, but when projected, it no longer makes sense. On the other hand, RIPR recovers
the underlying model enabling the correct identification of the clusters. Naturally, recovery is only
possible as long as the number of incoherent data points (that do not respect the low-dimensional
model) stays below a certain level.

2.4.5 Regression IPEs

Our intent is to enable projection retrieval independently of the type of a regressor used, so the
natural choice for a loss metric is a non-parametric estimator. We consider £-NN regression -
computing the value at a query point by averaging the values at the k-nearest neighbors of the
query. To factor in spatial placement, we weigh the values by their inverse distance from query,
then estimate predicted value as normalized weighted average of the neighbor values.

lreg(cil@), tilci(@))) = (H(ci(2)) = 9)*  lreg = 0
k
~ WY 1
fi(ei(x)) = M’ where w(;) = ————
2ie1 W) |z — 2|2
Concerning the selection function, we identify two possible approaches. The first is to label each
training data point according to the projections in the set used to solve it, then train a classifier using
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Figure 2.4: Projections of k-means clusters on the informative features and RIPR low-dimensional
clusters induced from synthetic data.. Each cluster determined by the algorithm is shown in a
different color.

these labels. The second is to simply estimate, based on the regressor accuracy at neighboring data,
the probability that the regressor is appropriate for this data point. We opt for the latter because it
avoids the issues with an additional training step and it is consistent with the regressors themselves
in the usage of neighborhood information.

k
> ie1 Wiy B 1

g(x) = argmin R T

JE{L...IC[} Ele W(4)

Interestingly, because of the consistency properties of the nearest-neighbor methods [25], the com-
posite regressor is also consistent under the assumption of existence of embedding.

2.5 Properties of Informative Projection Ensembles

The flexibility of IPEs stems from the choice of the hypothesis class #, as well as from the prop-
erties of the selection function. We first analyze the VC dimension and Rademacher complexity
of the informative projection ensemble model class. These results apply in the case when the hy-
pothesis classes considered for the classifiers and the selection function have finite VC dimension,
for instance, for parametric models such as half-spaces. Next, we provide consistency results for
IPEs which use kNN classifiers. In both cases (parametric and non-parametric), we compare the
ensemble to a single classifier of that type and show that: (1) the complexity of the ensemble can
be controlled as easily as the complexity of a single predictor; (2) an ensemble using sparse linear
solvers has comparable sample complexity bounds to a single sparse linear solver; (3) an ensem-
ble using kNN classifiers preserves the consistency properties of a single kNN classifier using all
features.
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2.5.1 VC Dimension of classification IPEs

In order to obtain bounds on the VC dimension of the informative projection ensemble, the VC
dimension of the submodel classifiers as well as that of the selection function needs to be fi-
nite. To argue why the latter is required, assume that there were no bounds on the complexity
of the selection function and k, the number of submodels, was greater or equal to |)/|, the num-
ber of classes. Under these conditions, we could construct a model with || classifiers such that
hi(z) = v;, Yz € R*, where v; € ), in other words, each submodel assigns a specific label
to its corresponding samples. Since there is no constraint on the complexity of g, any given set
{(z1,y1) ... (xn,yn)}, where n can be infinitely large, can be shattered by setting g(z;) = i, where
y; = v;. Thus, one cannot bound the VC dimension of IPEs without assuming a complexity bound
on g.

We will impose a restriction that the selection function splits the feature space into convex
subsets. We refer to the set of all the functions that fulfill this requirement as the Convex Partition
class, formally introduced in Def. Examples of selection functions that fulfill this criterion
are linear classifiers, rectangular bounding boxes and Voronoi diagrams based on the Euclidean
distance.

Definition 2.5.1. The Convex Partition class corresponding to M, is defined as

G={g: X CR* > {1.. k}st.VX CX.Vije{l.. k}i#j (2.40)
C({z € X;g(z) =i}) NC({z € Xs.t. g(z) = j}) = 0},

where C(A) represents the convex hull of the set A.
Lemma 2.5.2. Under the following assumptions for a model from the class Mg, which has base
classifiers on R*, with

(A1) The classifiers and the selection functions are limited in complexity, so for v; “yeo (H*) <
00, V4 = VC(g) < o0

(A2) The base classifiers, from the hypothesis classes ‘H,, are affine invariant

(A3) The selection function is a convex partition, in other words g € G

It can be shown that VC(M) > S VC(H ) and

k
C(My) < (D) VO(H™) +v,)** Y (2.41)
i=1

Proof. First, we need to show that there exists a set of size v = Zle vy, that can be shattered by
functions from the model class M ;. From (A1), we know that there exist sets X; ... X}, of size
v1 ... v respectively, which can be shattered by solvers from the base classes. These sets can be
translated such that their convex hull do not overlap and according to (A2), base classifiers with
the same shape as the original ones can be constructed. Since the sets are non-overlapping, the

partition function simply assigns data points from each set to its corresponding classifier.
To prove the second part, let us first consider the case when & = 2. We will consider the
growth function, that is the number of ways (configurations) in which the model assigns the n
point sample set. Since h; has the VC dimension vy, according to Sauer’s Lemma [90], it can

v1
provide up to <f}—’f) configurations, where n is the number of samples and e is the base of the
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V2
en

natural logarithm. Similarly, hy provides (E) configurations. Now, we consider g and the
placement of samples in either of the sets corresponding to h; or hy. Since g also has a finite
VC dimension and it is capable of fully splitting only v, points, and, the set of n points can be
split into, at most, (%) ’ configurations. By combining these ways of splitting the samples, we

have an upper bound on the splitting capability of a 2-classifier model in terms of the number of
configurations as

s (2)°(2)"(2)°

(1 (%) Vg

Since this is an upper bound growth function, we then obtain an upper bound on the VC di-
mension of the 2-classifier model by using the definition of the VC dimension:

VC(Mjy) = max {n > 0|lIpg,(n) = 2"} (2.43)
< max {n > 0|Ipg,(n) = 2”} (2.44)
EN\ Yl fEN\ Y2 /€N Yo

< — — — =2" .

_max{n>0]<v1) (vg) (Ug) 2 } (2.45)
en en en

< — — —) = :
< max {n > 0|v; log, <U1) + vy log, (02) + v, log, (vg) n} (2.46)

< max {n > 0[(v1 + vy + vy) logy(en) — logy(v1) — logy(va) — logy(vy) = n}
(2.47)
< max {n > 0|BIn(n) + A > n} (2.48)
< max {n > 0|Bg(n/? — 1) + A > n} (2.49)
< max {n S 012B(vn—1) + A > n} (2.50)
< A-2B+2B? (2.51)

v? v
< 22 2 where v = v; + vy + 7, (2.52)
v 2 v 2

< (—— <(—) < 2 :

- (ln2 1/4> - (ln2> _(U1+U2+Ug) (2.53)

where M, is the 2-classifier IPE model class and IT is its growth function.

For a model using more than £ classifiers, we can consider a multi-stage selection process,
working as a decision list. Ateach stage i, the selection function g/ picks either the current classifier
h; or an alternative model consisting of classifiers h; ... h;_;. Because g.(z) = 1 iff g(x) =i and
gi(z) = 0 otherwise, we have that VC(g.) < VC(g). An upper bound on the VC dimension of
such a multi-stage selection model would be an upper bound on the VC dimension of the original
model. By applying we have that VC(My) < (v, + v + VC(My—1))?. We can use this
formula recursively, which yields the result.

]

Additionally, we can use the growth function as an upper bound for the Rademacher complexity
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by applying the formula in (2.42).

en en

k kv k v;
k-1 g !
R(Mas) < agyy <157 [ Ml < (5) I1 (%) 2.54)
The bound in Lemma 1s not tight, at least in the case of linear classifiers and rectangular
bounding-box classifiers. However, when the submodels are associated with interval classifiers and
the partitioning of the samples can be done based on a single dimension, the upper bound matches
the lower bound and we have that VC'(M) = 2% VC(H™).

2.5.2 Consistency of ensembles using nearest-neighbor classifiers

An alternative to ensembles of parametric classifiers, such as linear separators, is to use nearest-
neighbor predictors. Asymptotic consistency of nearest-neighbor classification has been studied
in [20, 24} 139, 99]]. Rates of convergence and finite sample guarantees have been introduced in
(19,143,167, 101, 106].

In order to study the consistency of neighbor-based IPE models, we start with a result obtained
by Kulkarni et al. [67]. Assume that our samples z; ...z, are iid from a distribution p, with
X € R® The result requires that (X', p) be a metric space with totally bounded support /C(p). We
also assume that the output y is conditionally independent of all other outputs, given the sample x:

Given X = z, Y is drawn from a conditional distribution F'(y|X = z). The risk bounds we
provide are based on squared error loss, with the conditional Bayes risk 7 and Bayes risk Rp
defined as

rp() = E[IIY = Y*(2)|"|X = a] (2.56)
Ry, = /r*(x)u(x)dw (2.57)
We introduce the conditional mean and conditional variance of Y given X = x as
m(z) = E[Y|X = z] (2.58)
o*(z) = E[[[Y]PIX = 2] — [Jm()||* (2.59)

The Bayes estimator is actually the conditional mean, Y*(z) = m(z), which yields
ry =o(r)> and Ry = Eo(z)?.

An additional assumption is that F'(y|z) satisfies the following Lipschitz conditions: there exist
C1,Cy > 0and 0 < a < 1 such that Vi, 29 € X,

[[m(z1) = m(z2)|| < V/Ciplar, x2)% 0% (21) — 0*(22)| < Coplar, 22)**. (2.60)

For a sample z, with label yy, x(®) is the k-nearest neighbor of z, selected from the set
{x1...2,} with label y*). We refer to the loss and the risk of the nearest-neighbor predictor
as

n(z0) = Eyoo[|lyvo — ¥ ||?|z0] and R, = Ery,(z0) (2.61)
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The limiting value of the risk is defined as R, = lim,, oo Ry.

The risk also depends on the total volume of the support or, more specifically, on how easily
it can be covered with e-balls. To quantify this concept, we need the metric covering radius,
N~=1(p, K), which is the smallest radius such that there exist p balls of this radius which cover the
set.

p
N p,K)=inf{e:3bi...b, € Xst. K S| JB(bie)}, (2.62)
=1

where B(b, €) is the e-ball centered at b.
Theorem 2.5.3 (Kulkarni and Posner). Under the assumptions (2.55) and (2.60), for o < a /2, we

have that
8a n—1
< _ —1/s 2a 2.
—1 1 «
Rn S Roo 4 (Cl 4 02)CL(8NCL (_7212([1’))) n—2a/a (264)
R = 2R, (2.65)

It is possible to provide a finite sample bound, in terms of the Bayes optimal risk, on the risk of
IPE models which use nearest-neighbor predictors. We will first define the activation support of a
sub model as the subset of the input space where the sub model is used for classification.

Definition 2.5.4. The activation support of a submodel ¢ of an ensemble M, is defined as

A Y v e X gx) =i} (2.66)

We introduce the quantities n; which specify the number of samples in each submodel :. Given
the selection function g, ;, learned based on a finite sample, we have the corresponding activation
support A, ;. Thus, the loss and the risk for the submodel : with support A,, ; are

rni(10) = By lllyo — y"I]*|zo] and  R,; = / roi(T)dp, (2.67)

xE-An,i

where submodel i uses a s-nearest-neighbor classifier and z*) is the neighbor of z, on the pro-
jection ¢; of the IPE model, while y™® is its label. The risk of a model M & M will then
be

k k
o Vol(A) o Vol(A) / |
fin = Zl Vol(X) Finsi = Zl Vol(X) Jreu, . ri(2)dpz (2.68)

In order to obtain bounds on the risk we have to consider the predictive capabilities of the in-
formative projection of a submodel on its activation support. Specifically, we introduce the notions
of predictive feature subset and sparsity pattern which delineate the features that are required to
appropriately predict the output variable Y when X belongs to a compact set or neighborhood.
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Definition 2.5.5. For a given input X with features {1...a}, drawn from a set 4 € X, a set
¢ C {1...a} is a predictive feature subset for the output variable Y if the variables X, contain
all the predictive information for Y. Let X_. be all the features of X that are notin c. If cis a
predictive feature subset, then Y is independent of X_. given X, and that X takes values in A.

YL X X, XeA (2.69)
ViVWCY PY eV|X,X € A) =Py, € VIX., X € A). (2.70)

Definition 2.5.6. The sparsity pattern for the prediction of a variable Y based on a variable X
taking values in a set .4 is defined as the predictive feature subset of minimal size.

Spa xf arg min |c| st. YL X X, XeAd (2.71)
cC{1l...a}

In order for the risk of the IPE model M = (C, H, g) to approach the Bayes risk, the submodels
must jointly encapsulate all the predictive information. For each neighborhood in the feature set,
at least one of the submodels contains all the variables that encapsulate information about the
samples in that neighborhood. In order words, the sparsity pattern of each neighborhood needs to
be included in at least one of the projections of the model.

VB = {(z.,€)|0 < ¢, eissmall} C X, Jc€ Cs.t. spg C ¢ (2.72)

This assumption can be easily fulfilled by including a classifier that uses all the features as one of
the candidate sub models, though a higher submodel dimensionality will result in a lower rate.
Lemma 2.5.7 (Consistency of IPE models using nearest-neighbor predictors). Assume that
holds for IPE models using nearest-neighbor classifiers, with a selection function that always picks
the submodel with the lowest estimated risk also computed based on nearest-neighbors.

If the Lipschitz conditions over F(y|x) hold for each of the submodels with constants C ;, Cs
then, for a sufficiently large n, where |A,, ;| = n; and Zle n; = n we have that

L Vol(A)

< R s A )
R, < R + ; <VOZ(X) (Chi+ Cay)

a;(8NTH(1, Api))®

a; — 2«

[l 727%). 2.73)

Proof. The risk of the IPE model depends on the risks of the individual classifiers on their respec-
tive activation supports. In some neighborhoods within the activation support of the submodel ¢,
the set ¢; is a predictive subset for Y. In other words, over these neighborhoods, the Bayes risk of
only the features in ¢;, RTB,ci’ is the same as the Bayes risk of all the features, R};.

B, Y {BCA;Y L X |X., X eB) (2.74)

5% B B = A\ B; (2.75)
BeB;

Ry(B;) = Ry ., (B)) (¢; is a predictive subset over 15;) (2.76)

The set B; covers the neighborhoods of .4; where ¢; is a predictive subset, while B; covers every-
thing else in A4;. Clearly, the risk of submodel ¢ decomposes over the two sets.
" Vol(A)T Y Vol(Ay)

Rn,i([;)i) 2.77)
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We now point out that if F'(y|x) is Lipschitz continuous with constants C ; and Cs; over 3;, the
conditions for Theorem [2.5.3]are met. Thus, we can apply the bound in equation (2.64)) as follows

ai(&/\/'_l(l, B

LB g e a78)

R.i(Bi) — Ry, (Bi) = Ry i(B;) — Rp(B;) < (Cri + Cyy)

This leaves the risk on the part of A; for which ¢; is not a predictive subset, Rn,i(Bi). However,
according to assumption , for each neighborhood in B3;, there exists a least one classifier j in
the model for which ¢; is a predictive subset. For classifier j, the risk converges to the Bayesian
risk at the rate in (2.64). Function g selects the submodel based on the minimum risk estimator,
which means that, for each neighborhood, the selection risk (and thus the risk of misclassification)
is also subject to the bound. Let B, be some disjoint set of neighborhoods of B;. Then for each
B € B,, we have that

, a;(SNTHL, B)* o
B) — Ry(B) < ; ) : B2l 2.
Fn(B) = Bp(B) < _muin (Cuy+ Cog) == =5~ IDI (2.79)
(8N 71(1, B))~ .
< (Chi+ Cz,i)a ( (1, B)) | B|~2/ai (2.80)
a; — 2x
Summing over the previous equation yields the risk bound over B;
_ — CL1<8./\/’_1(1 B))a -2 .
R (B) — R%(B:) < . ‘ ’ a/a; _
ni(B) = Rp(B) < 3 (Cui+ Cay) ppr U2l (2.81)
BeB;
2a/a;
< (Cuit Coi) - 2a< SN B)Y Bl ) (2.82)
BEB;

< (Cri+ Cog)— 2 (N 1(1,|B:)) (Z 1B~ 20/%) (2.83)

@ @ BE€B;
< (Cra+ Coi) —— (/\/ 11, |By> (Z |B|—2a/‘“) (2.84)

i « BeB;

a; 8 N _

< (Crit O (N (LIBD) ) (B (2.85)

The last equation holds since (2.84)) is true for every partition B; of 5;, is is also true for the case
when B; contains a single set. By combining and (2.85), which offer bounds of the risk over
subsets of A;, we obtain (2.73]). ]

2.6 Experiments

2.6.1 Comparison of classification IPEs

Table [2.1] shows the performance of IPEs using K-NN classifiers and standard K-NN on UCI
datasets. We present the performance of IPEs trained through each of the three techniques. We also
test the methods on a Cell dataset containing a set of measurements such as the area and perimeter
of the cell and a label which specifies whether the cell has been subjected to treatment or not. In the
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Vowel dataset, a nearest-neighbor approach works exceptionally well, even beating random forests
(0.94 accuracy), which is an indication that all features are jointly relevant. For some d lower than
the number of features, our models pick projections of only one feature, but if there is no such
limitation, the space of all the features is selected as informative. For the MiniBOONE dataset,
also from the UCI repository, none of the IPE learning methods were able to extract an ensemble
of low-dimensional k-NN classifiers that performs as well as the fully dimensional £-NN. This is
mainly because we explored models with a very small number of features and, on the other hand,
the dataset contains sufficient samples for £-NN to achieve high accuracy.

Table 2.1: Accuracy of K-NN and K-NN IPEs

Dataset KNN | IPE (optimal) | IPE (2-stage) | IPE (greedy)

Breast Cancer Wis || 0.8415 0.8415 0.8275 0.8275
Breast Tissue || 1.0000 1.0000 1.0000 1.0000

Cell || 0.7072 0.7640 0.7640 0.7260

MiniBOONE | 0.7896 0.7728 0.7396 0.7268
Spam || 0.7680 0.7680 0.7680 0.7680

Vowel || 0.9839 0.9839 0.9839 0.9839

We also compared the performance IPEs with £-NN on larger datasets, with multi-class out-
puts. The results are reported in Table 2.2] We also compared against other feature selection
methods (PCA, lasso, forward feature selection and backward feature selection). For each dataset,
we only report the top performing result in the column titled FS + k-N N.

Experiments on artificial data, showing that our procedures are effective are recovering infor-
mative projections, are shown in the Appendix. This essentially shows that, when low-dimensional
structures exist, our procedures will recover them, which means that the conditions necessary for
Lemma [2.5.3] are satisfied and accuracy can be improved.

Table 2.2: Accuracy (%) of k-NN models on letter data.

Dataset | Features | Samples | Classes | k-NN | FS + IPE
k-NN | Greedy
Chars74k 85 3410 62 3431 | 352 | 35.78
G50C 50 550 2 70 76 84
Letter 16 16000 26 94.37 | 95.08 | 95.55
MNIST 784 60000 10 60.11 | 60.11 | 62.36
USPS 256 11000 10 96.2 | 864 96.8

2.6.2 RIPR framework applied to clustering

RIPR can be wrapped around virtually any existing clustering, regression, or classification algo-
rithm, maintaining their high performance while satisfying the requirement of working with only
a few dimensions of data at a time. Below we show that RIPR combined with k-means, which
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we informally call Ripped k-means, performs better than the standard k-means by leveraging the
low-dimensional structure in data.

We trained RIPR and k-means models and evaluated their performance on datasets from the
UCT repository. Meta-parameters for both methods were optimized via cross-validation. The data
was scaled to [0, 1) before clustering. We used distortion as the evaluation metric as it is native to
k-means. We opt against using Rand index since in its standard form it requires the actual labels
that are unavailable in most real-world clustering data sets. As shown in Table [2.3] the distortion
results for the RIPR model are better than for plain k-means.

Table 2.3: Results of clustering on real-world datasets.
UCI | Avg Dist Avg Dist LogVol  LogVol
RIPR k-means  RIPR Fk-means

Seeds 16 107 7.68 9.70
Libras 9 265 -5.80 7.26
Boone 125 1.15e6 240.00 248.15

Cell 40,877 8.18¢6  54.69 67.68
Concrete 1,370 55,594 49.24 52.75

The resulting cluster dimensionalities vary as well, which is why we also considered another
metric of success: the volume of the resulting clusters measured in full feature space. This com-
parison is fair because the volumes are computed in the same dimensionality. For k-means, we
approximated the volume of each cluster by its enclosing hyper-ellipsoid. For RIPR, the approxi-
mation for each cluster used its enclosing cylinder, the base of which was the ellipsoid correspond-
ing to the actual identified low-dimensional cluster. This comparison is also provided in Table 2.3]
It is apparent that RIPR obtains slightly more compact models than k-means, but has the advantage
that only a fraction of the features are used by it. The total number of centroids is roughly the same
for k-means and RIPR, so the difference in volume is genuinely due to the improvement fidelity of
clustering.

We present the RIPR clustering models obtained from two datasets from the UCI repository to
demonstrate how patterns in data can be mined with our approach. Figure shows the model
recovered from the Seeds dataset. The clustering that RIPR constructs uses the size and shape of
seeds to achieve their placement into three categories, clearly visually separated in the figure. The
separation according to their aspect ratio is something that one might intuitively expect.

Figure [2.6] shows the two informative projections mined from the Concrete dataset. Here, dif-
ferent concrete mixtures are grouped by their content. While the first projection generates clusters
according to the high/low contents of cement and high/low contents furnace residue, the second
projection singles out the mixtures that have (1) No fly ash, (2) No furnace residue or (3) Equal
amounts of each. The clusters seem to capture what an experimenter might manually label.

2.6.3 RIPR framework applied to regression

As with clustering, RIPR regression is meant to complement existing regression algorithms. We
exemplify by enhancing SVM and comparing it with the standard SVM. The synthetic data we use
contains 20 features generated uniformly with Gaussian noise. The first feature and ¢ pairs of other
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Furnace Residue

Table shows that ‘Ripped Kernel SVM’ achieves better accuracy that Kernel SVM trained
on all features. The explanation is that RIPR actively identifies and ignores noisy features and
useless data while learning each submodel. Additionally, we tested whether the underlying pro-
jections are correctly recovered by computing precision and recall metrics. Recall is always high,
while precision is high as long as the projections do not overlap significantly in the feature space.
It is because partially-informative projections can also be recovered if feature overlaps exist. This
behavior can be controlled by adjusting the extent of regularization.
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Table 2.4: RIPR SVM and standard SVM compared on synthetic data
w# 2 3 5 7 10] 2 3 5 7 10]
MSE RIPR MSE SVM

0 0.05 0.27 0.05 0.02 0.23{0.27 1.16 0.11 0.1 043
100 042 1.26 034 145 052] 0.8 1.02 0.6 299 0.94
200 05 086 0.8 033 099097 127 0.29 0.68 1.44
400 0.63 147 134 161 011 04 126 1.64 1.71 0.08
800 0.69 038 1.12 068 1.1]|0.52 0.06 091 09 1.16

RIPR Precision for IPR RIPR Recall for IPR

0 1 1 04 043 0.3]0.67 1 0.67 1 1
100 1 067 06 043 0.2|0.67 0.67 1 1 0.67
200 1 1 06 043 03]0.67 1 1 1 1
400 1 I 06 043 0.1|0.67 1 1 1 0.33
800 1 067 04 029 0.3)|0.67 067 0.67 0.67 1

2.7 Discussion of IPE learning efficiency

2.7.1 Computational complexity of IPE learning

The IPE learning methods rely on the construction of the loss matrix, that is estimating the loss
for every data point, for every combination of features. For nonparametric loss functions, this
requires finding the k™ nearest neighbors. We use k-d trees [42] for every projection of size d. The
time required to build the tree is O(dnlogn), where n is number of training samples. The time
needed to find the neighbors of one sample point is O(logn). Thus, for all m = O(a?) candidate
projections of up to size d, the total time required to compute the loss matrix is O(m(d+1)nlogn),
or, in terms of the number of features a, O(da’n logn).

The ILP uses m(n + 1) variables, one integer variable for each element in the matrix and an
additional variable for each column in the matrix. It contains n equality constraints, each summing
over m variables. There are also m inequality constraints over n+1 variables each, one inequality
constraint summing over m variables, m * n inequality constraints over two variables each and
m * (n + 1) inequality constraints over one variable each. Overall, the ILP is quite complex and,
since it yields an exact solution, in the worst case scenario it must consider all possible assignments.
In total, there are (T,:) ways of selecting the sub-models. For each configuration, each of the n
samples can be assigned to one of k projections, which yields on the order of k™ possibilities.
Therefore, there are (’,’;‘) k™ assignments to be considered in the worst case. While the average
run time encountered in practice is a lot more reasonable, as shown in the experiments, the ILP
remains the slowest of the methods, albeit conferring the best solution. To reduce runtime, it is
possible to relax the ILP into an LP and then apply rounding. However, we have observed that, for
artificial data, the solutions obtained in this way are less precise (i.e. further from the underlying
low-dimensional patterns) than the ones obtained with the two-step convex procedure.

For the complexity of Algorithm [2.3.4] we use the bounds in [5]. The optimization is over
a matrix of size N = mn. Computing the values and derivatives of the objective and the con-
straints requires M = O(mn) operations. The upper and lower bound on the number of operations
needed to obtain a solution ¢ away from the optimum are O(N M )in(%) and O(N(N®+ M))in(1)
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respectively. Thus, the worst case runtime for the optimization is O <a4dn4) In <%> Although

the complexity increases exponentially with d, for the applications we consider d is typically 2,
resulting in a worst case runtime of

O(a8n4> In (%) +0 <a2nlog n) (2.86)

In the adaptive lasso procedure, we can discount projections that are not informative for any of
the sample data points so the dimensionality of the optimization problem is reduced from n x m
to n x min (m,n). When a? > n, the runtime depends largely on n (2.87), which is beneficial
for datasets that are underdetermined (small sample size but large number of features) — a frequent
case in computational biology, for instance. In this case, the worst case runtime is

O(ns) In (%) + O(dn2 log n) (2.87)

The greedy selection procedure is the fastest and most scalable. At each of k iterations, we
must compute the loss decrease due to each projection, which can be done in O(mn). Therefore,
the runtime of the greedy method is just O(mnk), making it the most advantageous procedure to
use when the sample size is high. This is the case because, if there are enough training samples,
the greedy procedure

2.7.2 Comparison of methods in terms of running time

We have evaluated the running time of each of the three procedures, varying the number of features
and the number of samples. The data was generated artificially, to allow control of the experiment.
There are two underlying informative projections, each affecting roughly half of the data. The IPE
learning procedures we used for this experiment are Matlab prototypes. We used the cvx package
for the convex optimization. We also used a python script to generate the ILP from the loss matrix.
The ILP was then solved using the publicly available tool Lpsolve. We trained IPE models, timing
each matrix selection procedure. The experiments were ran on a MacBook with 2.6 GHz Intel i5
and 8 GB 1600 MHz DDR3 and the times, averaged over 5 runs, are reported in Table @ It must
be noted that the purpose of this experiment is to provide a comparison between the three methods,
rather than to establish a baseline on the size/complexity of the datasets for which these techniques
can be applied. Providing a faster implementation and running the experiments on a machine with
more computational power is conceptually possible, but outside the scope of the thesis.

According to the table, the greedy method is fast enough for all cases and, in fact, scales up
to much larger datasets. The precision and recall of the greedy method for this simulated data
are perfect as long as the noisy samples represents less than 50% of the data. To compare, the
ILP recovers the low-dimensional patterns even when the noise represents 75% of the data. The
RIPR method provides a more robust solution that the greedy version and faster than the ILP. The
ILP method only works for tiny datasets, or in the case that feature selection and/or subsampling
have already been performed. RIPR only works for small datasets on the order of tens/hundreds of
features and up to thousands of samples. The applicability of RIPR can be widened by combining
it with other feature selection methods and by reducing the set of candidate projections to only the
ones using informative features. We have applied such optimizations to obtain the 3-D projections
presented in Chapter [4]
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Table 2.5: Running time (seconds) of selection matrix learning procedures.

Features 100 samples 1000 samples
ILP RIPR | greedy ILP RIPR greedy
5 0.2955 | 2.4443 | 0.0051 || 13.2807 | 16.1068 | 0.0405
10 1.4064 | 3.0487 | 0.0084 | 233.6535 | 21.6976 | 0.0589
20 10.74 | 6.0532 | 0.0155 || 1637.5 | 56.0764 | 0.1217
50 2299.8 | 36.1182 | 0.0630 | > 2hrs | 587.5157 | 0.6433
100 > 2hrs | 281.103 | 0.2317 || > 2hrs 3926 2.3132
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Chapter 3

Extensions to the RIPR Framework

3.1 Learning IPEs in an active learning setting

We adapt standard active learning sample selection heuristics to work directly with the RIPR mod-
els and introduce new heuristics that find unlabeled data worth expert evaluation based on their
appearance in low-dimensional subspaces. We also modify the RIPR optimization to find contra-
dictory patterns in data, which is useful in the active learning context when the intent is to prompt
the domain experts into disambiguating samples which are difficult to classify automatically. This
method is part of the annotation system which doctors used to label a subset of alerts as real or
artifactual.

3.1.1 Overview of active learning with dimensionality reduction

We introduce an approach which recovers informative projections in the more challenging active
learning setting. Our framework selects samples to be labeled based on the relevant dimensions of
the current classification model, trained on previously annotated data. The effort is thus shifted to
labeling samples that specifically target performance improvement for the class of low-dimensional
models we are considering. An important outcome is that high accuracy is achieved faster than
with standard sampling techniques, reducing the data annotation effort exerted by domain experts.
An added benefit is that the compact models are available to experts during labeling, in addition
to the full-featured data. The informative projection highlight structure that experts should be
aware of during the labeling process, which helps prevent user errors, as illustrated in a case study.
Moreover, our active learning framework selects the most controversial, most informative and/or
most uncertain data yet unlabeled (depending on the selected sampling technique), presenting it to
the human experts in an intuitive and comprehensible manner, typically using 2 or 3-dimensional
projections, which further simplifies the annotation process.

We have previously formulated Informative Projection Retrieval (IPR) as the problem of find-
ing query-specific models using ensembles of classifiers trained on small subsets of features. The
Regression for Informative Projection Retrieval (RIPR) algorithm [35] provides a solution to this
problem in the form of compact models consisting of low-dimensional projections. We will call

'In this chapter, the focus is exclusively on axis aligned projections (sets of features), since domain experts have
no difficulty interpreting them.
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them RIPR models. This chapter presents a framework, called ActiveRIPR, which enables active
selection of yet unlabeled data which specifically targets the construction of accurate RIPR mod-
els. For this purpose, we adapt established active learning query criteria to the IPR task. Our
contributions are: (i) we solve the Informative Projection Retrieval problem in the active learning
setting; (i) we compare various querying strategies under different noise models; (iii) we apply
ActiveRIPR to alert adjudication leading to considerable reduction of labeling effort.

Active learning is an intensely-studied branch of machine learning, with many successful sam-
pling methods currently available [94]]. Adding to established methods such as uncertainty sam-
pling, information gain and query by committee, are recent developments such as the Kernel Query
by Committee [45], sampling based on mutual information [S1]] and the use of importance weight-
ing in a scheme which works with general loss functions to correct sampling bias [7]. Our sample
selection criteria take into account the utility of the samples for each of the projections in our en-
semble. Previous work considering ensembles include the approach of Korner and Wrobel [63]],
who compare different approaches that use ensemble disagreement adapted to the problem of mul-
ticlass learning and show that margins are the best performing for the purpose. Donmez et al. [27]
consider the existence of an ensemble of labeling sources and investigate how to jointly learn
their accuracy and obtain the most informative labels while minimizing labeling effort. Examples
of structured prediction being enhanced by active learning include the work by Culotta and Mc-
Callum [22]], introducing a selective sampling framework which considers not just the number of
samples requested for active learning in structured prediction, but also the effort required in label-
ing them. Liang et al. [[74] also investigate the interplay between structured learning and model
enhancement using contextual features, using unlabeled data to shift predictive power between
models. The algorithm they present interleaves labeling features and samples, which improves the
active learning performance. Bilgic proposes dynamic dimensionality reduction for active learn-
ing [8], a method which, during the query selection process, performs PCA on the data, selecting
the features with the largest eigenvalues and performing L. regularization on them. There are
some notable differences to their approach, the most important of which is that, in their setup, the
allowed number of features is increased as more samples become available. The method of Ragha-
van et al. [84] directly incorporates human feedback in the feature selection procedure through
feature weighting, while Rashidi and Cook [85] introduce a method that reduces the effort needed
for labeling by requesting, in each iteration, labels for all samples matching a rule.

A notable method focused on improving models from a specific class is Tong and Koller’s
approach [104] to Bayesian Network structure learning. Their interventional active learning setup
is different from the one we are considering in that the learner has the freedom of requesting
samples rather than selecting them from a batch.

Our main improvement over related work is that our framework is designed to train accurate
intelligible models which domain experts can use during the labeling process. ActiveRIPR not
only queries the samples which improve model accuracy, but also considers human involvement
and targets compact, user-friendly models, such that, at every step in the active learning procedure,
the experts can consult the current informative model. Access to this visualizable model can make
expert adjudication faster and more reliable. Also, clinicians can observe the classification model
in action and be better prepared to decide whether it is mature enough for deployment.
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3.1.2 Active informative projection recovery framework

Active learning iteratively selects samples for labeling until the model meets some accuracy cri-
teria. Assume now that, at iteration k, the samples X f are labeled as Yf and the samples Xﬁ
are available for labeling. Also let the RIPR model built so far be M k with its components C*,
T* and g*. The problem of selecting samples for IPR is reduced to finding a scoring function
s: M x X — R, used to select the next sample to be labeled:

2 = arg min s(M*, z)

zEXE

The expected error of a model M* = {C* T* g~} is
Err(M*) = Esex[I(tge (4 (Cor(ay (%)) 7 9)]

We use the notation M ¥ to refer to a model obtained after & iterations of labeling, using the scoring
function s. If the labeled samples are picked adequately, the training error will decrease (or at least
not increase) with each iteration: Err(MF1) < Err(MF). Given the maximum acceptable error
€, and a set S of scoring functions, selecting the optimal strategy can be expressed as follows:

§" = argmin mkln{k s.t. Brr(MF) < ¢} 3.1)
seS

ActiveRIPR starts by requesting the labels of a set of ry randomly selected samples. It then
builds a RIPR model from these samples. Using a function which scores yet-unlabeled data con-
sidering the current model, ActiveRIPR selects the next set of samples to be labeled. The next
section describes several such scoring functions. New models are trained as additional samples
are added to the pool. While it is possible to efficiently update the current model using the new
samples, we currently re-train from scratch, both for simplicity and to avoid any possibility of bias.
The Active RIPR procedure is shown in Algorithm[3.1.1] X, are the unlabeled samples, X are the
samples for which labels have been requested and Y are their provided labels. X; and Y; represent
a separate set of samples used for testing. M? is the model trained at iteration k, based on samples
queried using scoring function s. Err* is the error of model ME.

3.1.3 Active sample selection

Extensive research in the domain of active learning has led to a variety of algorithms which de-
termine which points should be labeled next. We do not seek to supplant these, but rather adapt a
subset of them to work with the class of model we target. The intuition is that, for data where most
of the features are spurious, adapting the scoring function to consider only the significant features
for each sample has the potential to improve the learning rate.

Uncertainty sampling

This score is used to pick the unlabeled data for which the label is the most uncertain, typically
this translates to selecting the samples with the highest conditional entropy of the output given
the features. Under the RIPR assumption, the label of a sample depends only on the projection to
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Algorithm 3.1.1 Active RIPR with scoring function s
X, (unlabeled samples), X; (test samples), Y; (test labels), £ = 0 (iterations)
X, = SelectRandom(.X,,)

Y, = LabelSamples(X,)
repeat
k=k+1
M S"“ = TrainRiprModel( X/, Y, X.,)
Err® = EvaluateRiprModel(MF, X, Y})
x; = argmin, oy s(MF, z;)
y; = LabelSample(z;)
Xo =X\ {z:}, Xo = X, U {2}, Yo =Y U {wi}
until Err® < eor|X,| =0
return M

which the point is assigned. Using a RIPR model M* = {II* 1*}, the corresponding projection
for a sample z and its label §(z) are determined as follows:

o) = argmin h(t(c(e)|c(x))
(c,t)e(I1k k)

A

where / denotes the conditional entropy estimator for a label given a subset of the features and
y(x) is the prediction made for a sample z. The score for ActiveRIPR using uncertainty sampling
simply considers the lowest conditional entropy on the projections of the model AM*

uncrt*®

Sunert(¥) = min_h(t(c(x))]c(x)) 3.2)

ceCk teTk

uncrt?

Query by committee

Query by committee selects the samples on which the classifiers in an ensemble disagree. For
a RIPR model bec, this is simply obtained by comparing the labels assigned by each of the

. . k
classifiers in T}, ..

Sqpe() = max  [(ti(c;(w)) # t;(c;(x))) (3.3)

k
Lit; ETqu

Information gain

The information gain criterion sorts unlabeled data according to the expected reduction in condi-
tional entropy upon labeling each point. We use the notation H §(07Y0 (X1) to represent the estimated
conditional entropy of the samples X given the samples X, and their labels Y{,. Assuming that, at
iteration k, ActiveRIPR based on Information Gain has selected samples X fz ;, While samples X K

uyig
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are available for labeling, the information gain score can be expressed as follows:

Va € X’iig, Sig(2) :ﬁf(byz(Xk )

u u,ig

- p(y = O)H%u{x},nu{o}(){im)
—p(y = DHY, sy v,00y (X i)

Low conditional entropy

Selecting samples with high uncertainty makes sense when there are aspects of the model not yet
discovered — in the case of RIPR models, there might be projections that are informative, but are
only relevant for a small subset of the data. However, once the informative projections have been
discovered, selecting samples with high uncertainty often leads to the selection of purely noisy
samples. In this case, selecting the data for which the classification is the most confident improves
the model, as it is more likely that these points satisfy the model assumptions and can be used in
the classification of their neighboring samples. This claim is verified experimentally, and the score
for this query selection criteria is simply the opposite of the uncertainty sampling score:

Sme() =1—  min  h(t(c(x))|c(x))

ceCE, teTk .

3.2 Informative Projection learning for feature hierarchies

We improve budget-constrained feature selection by leveraging the structure of the feature depen-
dency graph and information about the cost required to compute each feature. We consider the
process used to generate the features, as well as their cost, reliability and interdependence. Typ-
ically, our applications rely on a core set of features obtained through expensive measurements,
enhanced using transformations derived (cheaply) from one or several core features. Also, some
measurements can be obtained through more than one procedure. This structure, which is not con-
sidered in our previous work, could make our classifiers more powerful for the same total cost.
Our proposed method works by generating, based on the feature dependencies, a regularizer which
ensures that, once the cost for a feature is paid, all the features it depends on add no extra penalty.
Thus, we leverage the cost and the redundancy of the features by generating penalties according
to the structure of the dependency graph. This improves accuracy compared to a model obtained
using the lasso at no increase in cost.

3.2.1 Cost-sensitive feature selection

We are given a dataset (X € R™™ Y € R") with features A = {a;...a,,}, a cost function
¢ : A — R and information about feature dependencies in the form of the directed graph (A, D),
where (a;,a;) € D iff feature j depends on feature ;. Learning the set of parameters w € R™
involves minimizing a convex loss function f with a regularizer g which penalizes according to the
feature cost.

w* = arg minz fw,z;,y:) + g(w) (3.4

w i=1
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A standard way of using the cost in performing feature selection is the weighted lasso gy, (w) =

Z c¢(a;)|w;|. The issue with this procedure is that it considers only the total cost for each feature
i=1

ignoring the manner in which the cost decomposes across the dependency graph, which results in
a potentially suboptimal selection of the sparsity pattern for a fixed cost in terms of accuracy, since
some features that are virtually free are ignored.

3.2.2 Exploiting the feature dependency graphs through /; and ¢/, penalties

Our procedure links each feature to their children in a dependency graph through /5 norms instead
of penalizing them separately. Define the index set of children of a feature a; as

é(a;) = {1 < j < m|(ai,a;) € D}. (3.5)

m
The modified regularizer becomes g. p(w) = Z c(aq)||wi g2 -

For features that have no children, the terrr; slimply equals the ¢; norm. For the rest, however,
the /5 penalty decreases the weight magnitude, but only actually encourages sparsity on the parent
feature to be 0 when the weights of all child features are 0. In this case, the ¢, norm simply becomes
an /1 norm and the feature is penalized as in the standard lasso case.

In some applications, the information can be relayed through several different sources, resulting
in highly correlated — or even identical — features in the dataset. An example when this situation
may occur is health monitoring. For many vital signs, there exist multiple means of obtaining
measurements: invasive, non-invasive and computed indirectly from other vitals. Such correlated
features are also present in data which holds responses to queries sent to several servers. Although
features in the same series are all informative, it is clear that only one of them is needed at a time,
including in the construction of child features. This leads to an ’OR’ constraint — the presence of
one of the features is necessary and sufficient to derive child features.

We enforce this constraint through a penalty which distributes the weight across the redundant
features. Assume that a; . .. al is a series of features, either of which can be used to obtain a;. The
parameter w; corresponding to a; decomposes into the auxiliary components w; . ..w?, only one
of which is non-zero. Let ¢(i) denote any child features of a;. The additional penalty for w; is

L . . A 1
gor(w;) = c(a)[wi gl + Y Y cla))|[w], wh|ly, where @] = max (———— —0.5,0),
pasirwy w; + 0.5

r
with the following constraint added to the optimization procedure: Z wg = w;.
j=1
3.2.3 Leveraging feature hierarchies in vital sign monitoring

We applied our method to a classification problem involving clinical data obtained from a cardio-
respiratory monitoring system. The system is designed to process multiple vital signs indicative of

47



the current health status of a critical care patient and issue an alert whenever some form of instabil-
ity requires medical attention. In practice, a substantial fraction of these alerts are not due to real
emergencies (true alerts), but instead are triggered by malfunctions or inaccuracies of the sensing
equipment (artifacts). Each system-generated alert is associated with the vital sign that initiated it:
heart rate (HR), respiratory rate (RR), blood pressure (BP), or peripheral arterial oxygen saturation
(SpO2). We extracted multiple temporal features independently for each vital sign over the dura-
tion of each alert and a window of 4 minutes preceding its onset. The 150 interdependent features
included metrics of data density, as well as common moving-window statistics computed for each
of the vital timeseries. Here, the cost of all base features is a unit, and one cost unit is added for
each additional operation which needs to be performed to obtained derived features. The dataset
has a total of 812 samples (alerts). Our type of regularization increases performance for the same
cost when compared to the lasso.

Table 3.1: Comparison of our procedure against the lasso on the clinical data.

Cost | MSE (CFS) MSE (lasso) Cost | MSE (CFS) MSE (lasso)
0| 0.777094 0.777094 41 0.244362 0.250995
1| 0.343564 0.435285 6 | 0.244267 0.250995
2| 0.245647 0.250995 12 | 0.243772 0.243772

3.3 Projection-based gap-finding for data engineering

3.3.1 Guided data acquisition

We consider the problem of identifying discrepancies between training and test data which are
responsible for the reduced performance of a classification system. Intended for use when data
acquisition is an iterative process controlled by domain experts, our method exposes insufficiencies
of training data and presents them in a user-friendly manner. The system is capable of working
with any classification system which admits diagnostics on test data. We illustrate the usefulness
of our approach in recovering compact representations of the revealed gaps in training data and
show that predictive accuracy of the resulting models is improved once the gaps are filled through
collection of additional training samples.

Consider an incident classification task in a radiation threat detection and adjudication system.
As vehicles travel across international borders, they may be scanned for sources of harmful radia-
tion, such as improperly contained medical or industrial isotopes, or nuclear devices. A substantial
number of potential threats flagged by radiation measurement devices that may be used in such
applications are actually non-threatening artifacts due to naturally occurring radioactive materials
(e.g. ceramics, marble or cat litter). We have been using machine learning methodology to dismiss
alerts that are confidently explainable by non-threatening natural causes, without increasing the
risk of neglecting actual threat [29].

A robust alert adjudication system must be trained and validated on data that includes the actual
threats. However, such data is (luckily) hard to come by. Therefore, it is practical and common to
place the bulk of the available empirically gathered positive incident examples into a testing data
set, and create training data using benign measurements mixed with a carefully chosen selection of
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simulated threat. Nonetheless, the volumes and complexities of the feature space in data typically
encountered in radiation measurement applications makes synthesizing a robust, sufficiently large,
and (most importantly) comprehensive set of training data difficult and prone to omissions.

3.3.2 Finding meaningful gaps with RIPR

We present an engineering framework that facilitates data quality audits by automatically detecting
gaps in training data coverage. These gaps denote differences in distributions of select variables
between training and testing samples or point to areas of the feature space where the observed
performance of the threat adjudication system appears suboptimal. The findings are presented in
the form of human-readable, low-dimensional projections of data, in order to ensure interpretability
of results and to simplify planning of corrective actions. The resulting iterative data improvement
procedure boosts threat adjudication accuracy while reducing the workload of data engineers and
application domain experts, when compared to using uninformed data gathering process.

The proposed process involves: (1) Building a threat classifier (any plausible type of a clas-
sification model can be used, we employ the random forest method primarily due to its scalabil-
ity to highly-dimensional feature spaces, but also because of the computable on-the-fly metrics
that diagnose reliability of predictions being made, which it provides), (2) Gap Retrieval Module
(GRM), and (3) Human-driven procedure of addressing the identified gaps. Of particular rele-
vance are two metrics that attempt to characterize reliability of predictions made by our random
forest classifier: Dot-Product-Sum (DPS) and In-Bounds Score (IBS). DPS measures consistency
of predictions made independently by the individual trees in the forest. IBS is perfect if for each
node of a classification tree, the query fits within the range of the bounding box of the training
data. Otherwise, it returns the value proportional to the fraction of nodes where the query was
in-bounds. The GRM identifies where the original threat classification model performs well and
where it performs poorly. It does this in one of two ways: (a) By finding low-dimensional pro-
jections where the testing and training data distributions differ significantly, and (b) By finding
low-dimensional regions of data space where the original classifier experiences considerably low
accuracy. The GRM leverages a previously published algorithm called Regression for Informative
Projection Retrieval (RIPR) [35]]. This algorithm discovers a small set of low-dimensional projec-
tions of possibly highly multivariate data which reveal specific low-dimensional structures in data,
if such structures exist. RIPR’s primary application is to improve understandability of classifica-
tion, regression, or clustering tasks by explaining their results in a human-readable form. Here we
extend the algorithm to facilitate improvements in training data generation, primarily by leveraging
its ability to detect low-dimensional patterns of unexpected discrepancy between training and test-
ing data, as well as low-dimensional structures of low performance areas. As a result of executing
the GRM, the resulting low-dimensional subspaces are visualized and the domain experts and data
engineers gain intuition as to what data may be missing from the training set and decide which
parts of the feature space would most benefit from additional samples. The expanded training data
will reflect these changes in the next machine learning iteration, and the process can continue until
the training set is shaped into a faithful reflection of the test set, and the performance of the threat
adjudication system is optimized.
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3.3.3 Experimental Results

To find data gaps directly, our algorithm simply looks for mismatches between the training and test-
ing data distributions in all 2 or 3 dimensional projections of data, to enable visually interpretable
output. In this scenario, the algorithm returns the most prominent gap, even if it is located in a
projection that yields relatively little information to support model predictions. Our results show
that GRM is able to identify potentially irregularly shaped areas of mismatch between the training
and test sets. The set up of our experiments involves the selection of two random samples: one of
an arbitrary number of data points in the training set composed of semi-synthetic data and another
similarly sized sample of data from the testing set. By taking these uniformly random samples, any
mismatch we find is representative of the entire dataset with high probability, as the process does
not change the training and testing data distributions. The leftmost graph in Figure shows an
overlay mismatch where the test set seems to simply be a shifted version of the training set. After
conferring with the data engineers who built the data, we determined that the cause of the over-
lap is actually a single scalar parameter that was changed between two successive artificial data
builds. Visualization provided by our framework allows data engineers to easily gather succinct
information about the variations of the underlying structure of data.

Next, we tied in a cost function that determines which gaps are more meaningful in terms
of the impact they may have on the threat classification performance. We can achieve this by
incorporating diagnostic measures resulting from the original classifier performance evaluation, as
observed on the test samples. The middle graph in Figure [3.1] shows a projection retrieved using a
nonparametric loss estimator. We see that our random forest makes the most confident predictions
(high DPS) for blue points which occupy a densely packed T-shaped space in the projection. Red
points, which correspond to predictions which were not fully consistent among the trees in the
forest (low DPS), indicate test data which may benefit from additional nearby training samples.
They are far more spread out within the projection, and often reside near the edges of the gray
point cloud which represents all of the training data.

Humans are good at understanding how to fill in gaps in low dimensional projections that
retain some sort of a regular structure (i.e. a box or triangle), which is why we also devised a
parametric loss estimator. It enables extraction of projections that contain regularly-shaped gaps
which may cause considerable loss of threat classification performance. In the rightmost graph in
Figure we use linear Support Vector Machine model to separate high- and low-performance
areas. Our goal here is to find projections of data where misclassified queries occupy one side of
the classification boundary, while correctly classified queries occupy the other side. This is a useful
type of a gap to look at because it identifies sets of features that jointly emphasize a controversy
on how test data should be classified.

To show our framework increases model accuracy, we train random forest models using differ-
ent subsets of training data. We start by taking our original data set and removing samples which
fall within a certain region of a 2D projection, thus creating an artificial hole in the data. The
random forest trained from this data set achieves 75.0% classification accuracy. We then run RIPR
which identifies this gap and we add excluded samples back to the training set, which fills the gap
that RIPR identified. Now training a new random forest, we achieve 75.7% accuracy. This shows
we are able to improve model performance by filling in gaps that the GRM identifies. Additionally,
we trained a model with a random subset of the original training set and obtain 75.2% accuracy.
This shows us that filling in gaps in the training set is more efficient at improving model accuracy
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than just adding more samples which may or may not help fill the gap.
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classifier.
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Chapter 4

Detection of artifacts in clinical alerts from
vital sign data

We outline a novel approach to distinguish correct alerts from artifacts in multivariate non-invasive
vital signs data collected at the bedside of critical care patients. The framework selects informative
low-dimensional projections of data that allow easy identification and interpretation of artifacts by
humans. The results enable the construction of reliable decision rules which can be used to identify
and ignore false alerts in real time. The proposed approach aims at reducing the tedious effort
of expert clinicians who must annotate training data to support development of decision support
systems. Using our method, the expert intervention is reduced to simply validating the outcome
produced by an automated system using a small part of the available data. The bulk of the data can
then be labeled automatically. The framework we present makes the decision process to aid the
expert adjudication transparent and comprehensible. The projections jointly form a solution to the
learning task. The method works under the assumption that each projection addresses a different
subset of the feature space. The purpose is to determine which of the subsets of data correspond
to genuine clinical alerts and which are artifacts due to particularities of the monitoring devices or
data acquisition processes. We show how artifacts can be separated from real alerts in feature space
using a small amount of labeled samples and present our system’s utility in identifying patterns in
data that are informative to clinicians.

4.1 Clinical alert adjudication

Clinical monitoring systems are designed to process multiple sources of information about the cur-
rent health condition of a patient and issue an alert whenever a change of status, typically an onset
of some form of instability, requires the attention of medical personnel. In practice, a substantial
fraction of these alerts are not truly reflective of the important health events, but instead they are
triggered by malfunctions or inaccuracies of the monitoring equipment. Accidentally disconnected
ECG electrodes, poorly positioned blood oxygenation probe, and many other such problems un-
related to the patient’s clinical condition may in practice yield instability alerts. Frequency of
such false detections may cause the “alert fatigue” syndrome, pervasive among medical personnel,
particularly in critical care environments. Alert fatigue may have adverse effects on the quality of
care and patient outcomes. To maintain and enhance effectiveness of care, it is important to reliably
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identify and explain these non-consequential artifacts. We outline a novel approach to distinguish
correct alerts from artifacts in multivariate non-invasive vital signs data collected at the bedside of
critical care patients. The approach selects informative low-dimensional projections of data that
allow easy identification and interpretation of artifacts by humans. The results enable designing
reliable decision rules that can be used to identify and ignore false alerts on-the-fly. They can also
reduce data review and annotation efforts by expert clinicians.

The outlined problem can be generalized to any system designed to provide decision support
to human users. Typically, this involves automating tasks such as grouping or classification while
offering the experts insight into how the learning task was solved and how the model is applied to
new data. An ideal scenario for a multitude of practical applications is the following: a domain
expert provides the system with preliminary training data for some learning task; the system learns
a model for the task (which uses only simple projections); the user provides queries (test points);
for a given query point, the system selects the projection that is expected to be the most informative
for this point; the system displays the outcome as well as a representation of how the task was
performed within the selected projection.

We have previously formalized the problem of recovering simple projections for classification.
The RIPR algorithm proposed there uses point estimators for conditional entropy and recovers a
set of low-dimensional projections that classify queries using non-parametric discriminators in an
alternate fashion - each query point is classified using one of the projections in the retrieved set.
It can retrieve projections for any task that can be expressed in terms of a consistent loss function.
RIPR is designed to work with any type of model or algorithm suitable to the particular task. For
the application discussed here, we consider linear classifiers (SVM) and nonparametric clustering
models (K-means). A classifier or a clustering model is trained for every recovered projection and
used for the subset of data assigned to that projection.

The focus of this chapter is the application of RIPR to artifact identification. We illustrate the
projections recovered for the task of discriminating artifacts from genuine clinical alerts. Since
the types of alerts we focus on are triggered by excessive values of one of the vital signals at a
time, we build separate artifact discrimination models for alerts on respiratory rate, blood pressure,
and oxygen saturation. We evaluate the performance of these models at annotating unlabeled data.
We also show, through case studies, how the models can help physicians identify outliers and
abnormalities in the vital sign signals. Finally, we outline an active learning procedure meant to
reduce the effort of clinicians in adjudicating vital sign data as healthy signal, artifact or genuine
alarm.

4.2 Description of SDU patient vital sign data

A prospective longitudinal study recruited admissions across 8 weeks to a 24-bed trauma and
vascular surgery stepdown unit. Non-invasive vital sign (VS) monitoring consisted of 5-lead elec-
trocardiogram to determine heart rate (HR) and respiratory rate (RR; bioimpedance), non-invasive
blood pressure (oscillometric) to determine systolic (SBP) and diastolic (DBP) blood pressure, and
peripheral arterial oxygen saturation by finger plethysmography (SpO2). Noninvasive continuous
monitoring data were downloaded from bedside monitors and analyzed for vital signs beyond local
stability criteria: HR < 40 or >140 beatsmin-1, RR< 8 or > 36 breathsmin-1, systolic BP < 80
or > 200, diastolic BP > 110 mmHg, SpO2 < 85% persisting for at least 4 out of 5 minutes of
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continuous data. Each alert is active for the duration of the signal abnormality. The alert is asso-
ciated with the first VS that is out of the normal range. VS time plots of patients whose vital sign
parameters crossed the instability thresholds for any reason were visually assessed to judge them as
patterns consistent with physiologically plausible instability, or as physiologically implausible and
therefore artifactual. Artifact adjudication is challenging, even ground truth elicitation requiring
the input of several expert clinicians.

Each alert is associated with a category indicating the type of the chronologically first VS signal
that exceeds its stability limits. As a result, an alert with labeled as ‘respiratory rate’ may also
include other VS outside of the bounds that have escalated shortly after the abnormal respiratory
rate is recognized. We extracted a number of features to characterize each of the 813 alert events
found in our data. The features are computed for each VS signal independently during the duration
of each alert and a short window (of 4 minutes) preceding its onset. The list of features includes
common statistics of each VS signal such as mean, standard deviation, minimum, maximum and
range of values. It also includes features that are thought to be relevant (by domain experts) in
discriminating between artifacts and true alerts.

There are a total of 147 features, shown in Table [6.5] derived from all VS as follows: The
data density or duty cycle is the normalized count of signal readings during the alert period. A
low value of this metric indicates the temporal sparseness of the data, while a value of zero simply
means there was no data captured in that period. We also record the minimum and maximum of the
first order difference of VS value during alert window. Extreme values of these statistics typically
indicate a sharp increase/decrease of the VS value. The difference of means of VS values for the
4-minute window before and after the alert is also used, as is the value of the slope which results
from fitting linear regression to the VS values versus the time index.

4.3 Performance of classification IPEs for artifact adjudication

We now show the classification models obtained to distinguish between artifacts and alerts corre-
sponding to different VS. A description of the collected data, including hours of monitoring and
number of patients is shown in Table[6.4] We considered alerts associated with different VS as sep-
arate classification tasks. Out of the 813 labeled alert samples, expert clinicians have identified 181
artifacts. The artifacts were adjudicated separately by two expert clinicians and a consensus was
reached with respect to the labeling. Aside from the 813 labeled samples, there is a large amount
of data, roughly 8000 samples, that remain unlabeled. The goal now is to train a separate model
for each alert type such that other potential artifacts can be detected in the unlabeled data. Since
domain experts will review the classification results, we rely on the RIPR framework to extract
simple and intuitive projections, which will make it easy for clinicians to validate the results.

The majority of labeled alerts in our data are associated with the respiratory rate (RR). There
are 362 such cases and a significant proportion of these (132 samples) are actually artifacts. Fig-
ure .1 shows the set of 2-dimensional projections retrieved by RIPR for the true alarm vs. artifact
classification task. All the data points are represented in the plot as dots - the true alerts are shown
in blue while the artifacts are shown in red. Recall that each point is only classified using one
projection. To illustrate this, we plotted the data assigned for each projection with red circles (for
artifacts) and blue triangles (for true alerts).

We apply the same procedure for alerts related to BP signals. There are 96 labeled examples
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Figure 4.1: 2-D informative projections (top, middle) and sample vital signs (bottom) for RR
(Respiratory Rate) alerts. Artifacts are represented with blue circles, while the true alerts are red
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of such alerts out of which 24 are artifacts. The 2-D projections are displayed in Figure Since
in this case using two-dimensional projections appears insufficient to provide a convincing model,
we also identified informative 3-dimensional projections. The figure shows the model resulting
from this procedure. Only the alerts assigned to the specific projection were shown, in order to
avoid overloading the figure.
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Figure 4.2: 2-D (top) and 3-D (bottom) informative projections for BP (Blood Pressure) alerts.
Artifacts are represented with blue circles, while the true alerts are red triangles.

The training set for SpO2 consists of 259 samples out of which only 24 are labeled as artifacts.
Figure 4.3 shows the 2-dimensional projections recovered for this problem. As there is substantial
class overlap, we also trained 3-D models.

The remaining 96 alarms are associated with the HR, though the reviewers adjudicated only one
of these an artifact. Predictive accuracy of the presented RIPR models is summarized in Table
The results are obtained through leave-one-out cross-validation.

The plots in Figure4.T|show a good separation between artifacts and true alerts, which was one
of our objectives. Also, the projections retrieved use data density features for the RR, SpO2 and
HR signals as well as the minimum value RR. The use of these features is consistent with human
intuition about what may constitute a respiratory rate artifact. For instance, a lot of missing data
often signifies that the probe was removed from the patient for a period of time. The same can
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Figure 4.3: 2-D (top) and 3-D (bottom) informative projections for Oxygen Saturation (SPO2)
alerts. Artifacts are represented with blue circles, while the true alerts are red triangles.

be said about minimum values for a VS - the measuring device could have been disconnected or
misplaced. A good indication of the invalidity of a RR alert is the lack of HR data. So a simple
decision rule - as stated by the clinicians - would be just to see whether there is HR data, if there is
HR data, then the RR alert is an artifact, otherwise, it could be real. In classifying RR-based alerts,
the algorithm correctly picked HR data density as the most important dimension.

The top right of the second graph in Figure |4.1| contains two blue circles representing samples
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Table 4.1: Classification accuracy of RIPR models. Precision and recall in recovering the genuine
alerts.

Alarm Type | RR BP SPO2
2D 2D 3D 2D 3D
Accuracy 098 0.833 0.885 0911 09151
Precision  0.979 0.858 0.896 0.929 0.9176
Recall 0991 0.93 0958 0.945 0.9957

that would be classified as non-artifact according to the projection. Both of them have continuous
stream of data, but the RR signals are irregular. This is a different type of artifact. Because
there are very few alerts with this type of artifact, and the algorithm is designed to retrieve a
small set of projections, they end up being misclassified. The vital signs corresponding to these
two samples are presented in the bottom graph as Figure Further investigation showed that
variance of the signal values provides a reliable way to detect these outliers. Thus, expert attention
was focused on this more problematic type of artifact rather than on the type that represents the
majority of cases and is relatively easy to handle automatically. On the other hand, some samples
were classified by the system as artifacts while the domain experts considered them true alerts. On
closer inspection, they seemed to exhibit artifact-like features - with little or no recorded values in
the HR signal. When we drilled down to look at the data, we found that the samples were actually
labeled incorrectly in the training set. Therefore, the RIPR approach can also be useful in detecting
inconsistencies due to human error.

For BP alert classification, for which the model is shown in Figure #.2] though the features
used are known to be informative, the class separation is not very clear. This is visible especially
in the top right corner of the first plot, where we can observe a substantial overlap between artifacts
and true alerts. In some cases, the algorithm provides two-dimensional projections, as required,
but only one of the features is informative. This happens because that single feature has more
discriminative capacity than other 2-dimensional projections where features might be correlated.
Such occurrences are represented in plots the second and third plots of Figure d.2] It is also
noticeable from Figure {.2] that the addition of the third dimension greatly improves the class
separation. Again, the sparsity of data readings is an important feature, though this time the data
density of three different VS needs to be considered for the subset of data presented in the first
projection of Figure [4.2] The second 3-D projection uses the maximum and minimum values of
HR and RR to classify artifacts and there exists a hyperplane separating the two classes.

The alerts based on SpO2 are more difficult to classify. Figure confirms this, since both
3-D projections of the model use data sparsity features to isolate artifacts, though we must note
that the separation is still somewhat noisy.

4.4 Clustering IPEs for identifying artifact archetypes

Additionally, by applying RIPR with K-means to clustering artifactual alerts, we identified human
interpretable archetypes of false alerts as a preliminary step to corrective action plans. The intuition
derived from these patterns is presented in the Discussion section.
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4.5 Annotation framework for the classification of clinical alerts

Recovery of meaningful, explainable models is fundamental for the clinical decision-making pro-
cess. We work with cardio-respiratory monitoring systems designed to process multiple vital signs
indicative of the current health status of a critical care patient. The Step Down Unit (SDU) pa-
tients are connected to monitors, which continuously track the variability of multiple vital signs
over time. The system issues an alert whenever some form of instability requires attention, that is,
when any of the vitals exceeds pre-set control limits. Typically, such deviations indicate serious
decline in patient health status. In practice, a substantial fraction of the issued alerts are not due
to real emergencies (true alerts), but instead are triggered by malfunctions such as probe disloca-
tion or inaccuracies of the sensing equipment (artifacts). Each system-generated alert is associated
with the vital sign that initiated it: heart rate (HR), respiratory rate (RR), blood pressure (BP), or
peripheral arterial oxygen saturation (SpO-).

In order to reduce alarm fatigue in clinical staff, the ideal monitoring system would dismiss
artifactual alerts on-the-fly and allow interpretable validation of true alerts by human experts when
they are issued. As expected, the preparation of a high-quality and comprehensive sample of
data needed to train an effective artifact adjudication system could be a tedious process in which
important parts of the feature space are easy to neglect. This strenuous effort is often compounded
by the sheer complexity of the involved feature space. Without a framework similar to the one
presented here, precious expert time would be spent primarily navigating the dimensions of the
data to establish grounds for labeling specific instances. We propose to not only select the minimal
set of unlabeled data for human adjudication, but to also concurrently determine and present the
informative small projections of this otherwise high-dimensional data.

We use ActiveRIPR to predict oxygen saturation alerts, treating the existing labeled data as
the pool of samples available for active learning. There are 50 features in total. Roughly 10% of
the data has been manually labeled and the aim is to use that subset to determine which of of the
unlabeled samples are worth the experts’ attention. We performed 10-fold cross validation, train-
ing the ActiveRIPR model on 90% of the labeled samples and using the remainder to calculate
the learning curve. Table 4.2] shows the number of samples required to reach an accuracy of 0.85
(a value deemed acceptable by clinicians) and 0.88 (the maximum achievable accuracy). Infor-
mation Gain performs considerably better than the rest and uncertainty sampling, despite having
performed poorly in simulations, is also competitive. The results indicate that an accuracy of 0.88
can be achieved by labeling less than 25% of the total samples using the InfoGain scoring function.

Table 4.2: Percentage of samples needed by ActiveRIPR and ActiveRIPRssc to achieve accuracies
of 0.85 and 0.88 in oxygen saturation alert adjudication.
ActiveRIPR  ActiveRIPRssc
Target Accuracy 0.85 0.88 0.85 0.88
Score Function
Uncertainty 18.33 18.33 36.67  50.00
ObC 46.67 46.67 86.67 86.67
InfoGain 21.67 25.00 25.00 51.67
CondEntropy 43.33 46.67 48.33  63.33

Table summarizes the proportion of samples needed by ActiveRIPR and ActiveRIPRssc to
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achieve 0.85 or 0.88 accuracy on the hold out test data of the oxygen saturation alert dataset.

Given the success of ActiveRIPR using the InfoGain selection criterion for the oxygen satura-
tion alert adjudication, we proceeded to apply it to detecting blood pressure alerts. This time, we
compared it against other classification methods using uncertainty sampling. This type of sampling
differs from the uncertainty score used by ActiveRIPR in that it considers the entire feature space
as opposed to only low-dimensional projections when making the selection. Also, the classifiers
are trained on all features as opposed to only a subset, so it is expected that they would perform
well. Random Forests and KernelSVM are some of the well-performing classifiers, which we se-
lected because we aim to assess how accurate the system can be when there are no restrictions on
model dimensionality.

Samples K-nn K-SVM RF ActiveRIPR
20 0.61 0.64  0.65 0.65
50 0.58 0.66 0.71 0.70
75 0.6 0.63 0.71 0.75

Table 4.3: Active learning for blood pressure alerts

Table d.5|presents the mean leave-one-out accuracy of after 20, 50 and 75 labels. ActiveRIPR’s
performance approaches that of Random Forests and, at times, outperforms KernelSVM, while
maintaining compactness of representation and performing drastic feature reduction. The RIPR
models used, at any time, at most two 3-dimensional projections, so 6 features in total. ActiveRIPR
wins by a sizeable margin over K-NN which we tested because of its potential for interpretability.

Applying clustering on Informative Projections has yielded the archetypes presented in Fig-
ure 4.4} Clinician review of the patterns aided the clinicians in formulating the following conjec-
tures. A cluster of RR artifacts on features RR mean (0,4) and RR standard deviation (2,5) likely
suggests a loose ECG lead, while a pattern RR mean (33,40) and RR standard deviation of (0,10) is
likely due to insufficient bioimpedance. For SpO?2 artifacts, features SpO2 min and SpO2 slope ex-
pose patterns suggesting motion, sensor reattachment and loose lead or low perfusion. The patterns
identified for RR artifacts (HR-DD =0, SPO2-DD bimodal with peaks at 0.1 and 0.01) suggest the
lack of ECG electrode integrity. For SpO2, decreases in both HR-DD and RR-DD appear associ-
ated with artifact and suggest an overall problem with signal pickup in both SpO2 and the ECG/RR
sensors. These artifact archetypes agree with clinical intuition and can potentially be used to guide
corrective actions in practice.

4.6 Studies of expert labeling using time series and informative
projections

In order to ascertain the effectiveness of the informative projection models in assisting domain
experts, we have performed a user study in which two expert clinicians were asked to adjudicate
alerts based on the projection models and, separately, based on vital signals. The experiment was
performed in two stages, each of the stages dealing with 20 RR alerts and 20 SpO2 alerts. In the
first stage, the projections display each query against the background of the entire sample space.
In the second stage, the projection provides a zoomed-in view of the area close to the query. In
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total, 80 samples were labeled, each sample being assigned four scores, two by each clinician, one
based on the projection as well as one the vital sign time series for the alert. The scores range
from -3, indicating high reviewer confidence that the alert constitutes an artifact, to 3, indicating
high reviewer confidence that the alert is real. Based on the scores assigned by each reviewer, the
alert falls into one of three confidence categories, represented in Tabled.4] If there is disagreement
between reviewers, or a reviewer is uncertain, the sample is marked as ambiguous and no label can
be assigned.

Table 4.4: Annotation scoring matrix. Category and label assignment based on reviewer scores.

Cl Strong agreement
C C2 Weak agreement, need 3rd reviewer
ategory .
C3 Disagreement
A Artifact
Label R . ‘ Rea.1 alert
- Ambiguous artifact. No label assigned.
Reviewer 1 Confidence
Category 3 5 1 ¢ .1 2 -3
3 R R R - -
2 R R R - - - -
1 R R R - - - -
0 - - - - - _ _
Reviewer 2 Confidence -1 - - - - A A A
2 - - - - A A A
3 - - - - A A A

An example of the visual representations shown to clinicians for adjudication is in Figure 4.5]
The RR alert that needs to be adjudicated, identified with a star symbol, is projected on the features
value_RR _max and value_RR _median, amid previously labeled data. It is located in a cluster of data
that were labeled as artifacts. Based on this informative projection, it was labeled as a real alert
by both clinicians. Based on the time series corresponding to this alert, which is also represented
at the top of Figure {.5] the alert was also labeled as real. In this case, the outcome of using the
compact representation using Informative Projection is the same as that of using the full time series
representation with the added benefit that adjudication can be performed faster/easier by domain
experts and that the labels can be automatically assigned by the system.

By merging the reviewer scores as shown in Table {.4], each of the samples is assigned a
label and confidence category from the projection-assisted annotation, and a separate one from the
adjudication based on vital signs. The latter is considered the ground t