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Abstract

Programming languages can restrict state change by preventing it entirely (immutability) or by restricting which clients
may modify state (read-only restrictions). The benefits of immutability and read-only restrictions in software structures
have been long-argued by practicing software engineers, researchers, and programming language designers. However,
there are many proposals for language mechanisms for restricting state change, with a remarkable diversity of tech-
niques and goals, and there is little empirical data regarding what practicing software engineers want in their tools
and what would benefit them. We systematized the large collection of techniques used by programming languages
to help programmers prevent undesired changes in state. We interviewed expert software engineers to discover their
expectations and requirements, and found that important requirements, such as expressing immutability constraints,
were not reflected in features available in the languages participants used. The interview results informed our design
of a new language extension for specifying immutability in Java. Through an iterative, participatory design process,
we created a tool that reflects requirements from both our interviews and the research literature.





1 Introduction
Many designers of APIs and programming languages recommend using immutability in order to prevent bugs and
security flaws. For example, Bloch devoted a section of his book Effective Java [6] to minimizing mutability. He cited
the following benefits of immutability: simple state management; thread-safety; and safe and efficient sharing. Ora-
cle’s Secure Coding Guidelines for Java SE [33] states that immutability aids security. Microsoft’s Framework Design
Guidelines recommends against defining mutable value types in part because they are passed by copy, and program-
mers might write code that modifies copies but should instead modify the original structure [31]. Some programming
languages, such as Rust [32], take these recommendations into account by carefully managing mutability. The func-
tional programming language community is particularly concerned with state management, producing languages such
as Haskell, which segregates code that manipulates state from code that does not. Proponents of functional languages
argue that avoiding mutable data structures facilitates reasoning about behavior of programs because one can reason
equationally about behavior rather than needing to know about the global or even local program state [1].

There are questions, however, about what immutability should mean and how to express immutability in program-
ming languages, as evidenced by the myriad of different kinds of support that tools provide and the lack of empirical
data to justify specific design choices. Some languages support programmer-provided specifications of immutability
(expressing that certain data structures cannot be changed) or read-only restriction (expressing that certain references
cannot be used to change a data structure). For example, final in Java can express that a particular field cannot be
reassigned to refer to a different object, but the contents of the referenced object may still change. Furthermore, there
is no way to express class-level immutability directly.

In C++, const data can still refer to non-const data, which can then be changed. Furthermore, const provides
no guarantees regarding other references to the same object. This means that in addition to not providing the expected
benefits of immutability to programmers, such as thread safety and simple state management, these annotations also
do not provide the guarantees that would be needed for the many compiler optimizations that require all of an object’s
behavior to be guaranteed to be fixed.

This paper makes the following contributions:
• After reviewing the existing literature and implemented systems in this area, we develop a classification sys-

tem for mutability restrictions in programming languages (§2), show where some existing systems fit in this
classification (§3), and discuss possible usability implications of existing design choices (§4).

• We interviewed eight expert software engineers to find out how practitioners feel about existing language fea-
tures and tools, and what their perceived needs are. We show that existing programming language features and
research tools do not adequately address the issues encountered by practitioners. We extract design recommen-
dations from the results of our interviews (§5).

• IGJ is a Java extension that adds annotations specifying immutability and read-only restrictions [44]. We de-
scribe the design of IGJ-T, an extension to IGJ that enforces transitive immutability, which addresses problems
that our interview participants described. We iteratively evaluated IGJ-T with three pilot users and refined our
study based on the feedback (§6).

2 Overview of Concepts
In existing literature, the wide variety of approaches and subtle differences among the different goals can make it
difficult to understand which problems each system addresses. Thus, it is important to distinguish among the many
different meanings given to the term immutability and related concepts. In this section, we will give an overview of
the various mechanisms and issues. Up to this point, we have been using the term immutability informally; here we
synthesize definitions from existing literature to form a definition that will be used in the rest of the paper. A summary
of the concepts appears in Table 2.

We use object here to mean any kind of state, such as a C struct or a functional language ref cell. State is data
that is stored in memory. As an abbreviation, we will use function to refer to both functions and methods.
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2.1 Type of Restriction
Immutability restricts modification through all references to a given object (see §2.5 for exceptions). In contrast, read-
only restrictions disallow modification through read-only references to a given object, but not necessarily through all
references. The distinction between read-only restrictions and immutability is critical to the correctness of programs.
For example, an immutable object can be shared safely among threads without locks, but a function that has a read-
only reference to an object has no guarantee that the object cannot be modified, so that function must assume the object
may be mutable.

Assignability restrictions, such as final in Java, disallow assignment. In most imperative languages, variables
are backed by storage, so assignability restrictions represent non-transitive immutability (see §2.3). Java’s final
keyword on fields is an assignability restriction. Although a final field can never point to a different object than
the one it was initialized to point to, the referenced object’s fields may themselves still be modified. In contrast, the
C declaration const int *x provides read-only restrictions: x is a pointer to int and might later refer to some
other address, but the reference x cannot be used to change the value at any memory location to which x points.

Ownership systems define a system-specific notion of ownership and a way of specifying which objects a given
object owns. This enables enforcement of restrictions such as “an object may only directly modify objects it owns”.
Ownership types [10] use a notion of object context to partition the object store. This partitioning allows the systems
to ensure that aliases to objects do not escape their owners, ensuring representation containment and defining a notion
of abstract state, since the abstract state (§2.5) of an object includes only data it owns. Ownership is also useful for
ensuring thread safety of mutable structures by ensuring that locks are acquired in a correct order according to the
ownership structure before accessing objects [7].

2.2 Scope
Object-based restrictions apply to a particular object. Class-based restrictions apply to all of a class’s instances. For
example, final is object-based: it only applies to a specific reference and there is no way of specifying that all
references to instances of a particular class are final.

Class restrictions, while commonly either only supported as syntactic sugar for object restrictions (e.g. IGJ) or
unsupported entirely, are frequently needed in practice according to our interview participants. By necessity, many
programmers who want class immutability must improvise (§3.2).

2.3 Transitivity
Transitive restrictions pertain to all objects reachable from a given object, including objects captured by closures or
methods. Non-transitive restrictions pertain only to the immediate fields in a given object.

Non-transitive restrictions provide weak guarantees because they say little about the behavior of the abstraction
that the object’s interface provides. For example, if a list object is non-transitively immutable, then the number of
items in the list is fixed, and the list always refers to the same objects, but the contents of those objects can still be
changed. A function that needed to know that a list of integers only contained positive integers would need to re-check
all elements after every possible opportunity for mutation of list elements. However, in order to ensure that an object
is immutable, one must verify that all objects in the transitive closure of references from that object are immutable.

Though the assignability and read-only features provided in many popularly-used languages are non-transitive,
including Java’s final and C++’s const, researchers have proposed transitive restrictions in a variety of different
systems. Because of the important implications of this design decision and the discrepancy between research and
practice, we will focus on this question in §6.1.

2.4 Initialization
Systems might relax restrictions during initialization in order to facilitate initialization. A common method for creating
a cyclic data structure involves modifying an element after it is created. The cyclic data structure may be mutable
during initialization but immutable afterward. Alternatively, systems can enforce restrictions during initialization.
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Table 1: Summary of Some Existing Systems (abbreviations are from Table 2)

System Type Scope Trans. Init. Abstr. Compat. Enforcement Polymorph.

Java final a o n e N/A c s n
C++ const r o n e a c s1 n
Obj-C immutable collections i o n e N/A c s1 n
.NET Freezable [23] i o n e N/A o d n
Java unmodifiableList r o n e N/A o d n
Guava ImmutableCollection i o n e N/A o s, d2 n
IGJ [44] i, r c, o n e a c s p
JAC [20] r o t e c c s n
Javari [40] r c, o t e a c s p
OIGJ [45] i, r, o c, o n r a c s p
immutable [17] i, r, o c, o t r a o s p
C# isolation extension [14] i, r, o c, o t r a c s p
JavaScript Object.freeze i o n e c o d n
1 These approaches provide static enforcement to the extent possible in these languages.
2 Static deprecation warning, runtime exception

Table 2: Summary of Dimensions

Dimension Possible choices

Type immutability, read-only restriction,
assignability, ownership

Scope object-based, class-based
Transitivity transitive, non-transitive
Initialization relaxed, enforced
Abstraction abstract, concrete
Backward compat. open-world, closed-world
Enforcement static, dynamic
Polymorphism polymorphic, non-polymorphic
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2.5 Abstract vs. Concrete State
The abstract state of an object refers to the portion of the state of an object that is conceptually a part of that object.
For example, in a splay tree, sometimes during a read operation the internal tree structure will be rotated in order to
move frequently accessed elements closer to the root. Even though this is a change to the internal data structure, it is
not exposed to the caller and therefore read operations do not change the splay tree’s abstract state. In contrast, the
concrete state includes the object’s entire representation.

Caches are often excluded from the abstract state because the contents of the cache duplicate information available
elsewhere, and other than causing performance differences, the contents of the cache are invisible to clients. The
abstract state might also exclude state kept only for debugging purposes. By excluding the cache from the abstract
state of the object, writing to the cache can be considered a benign operation and can therefore be done by clients
without write access. However, this allows the possibility of race conditions if the cache is not thread-safe but a
programmer assumes it is because the object appears to be immutable.

Logical restrictions pertain to an object’s abstract state. Bitwise restrictions govern an object’s concrete state;
this term arose in C, where programmers consider how structures are arranged in memory. Some languages provide
features that let programmers differentiate these: in C++, for example, a mutable member variable can be modified
even through a const reference. Unfortunately, it may be tempting for a programmer to assume that if all references
to an object are const, the object is thread-safe, but the mutable members may be mutated in a thread-unsafe way.
Thus, an object that is only logically-immutable may not be thread-safe.

2.6 Backward Compatibility
When facilities for restrictions are added to a programming language after the language is created, code that uses the
extended features may need to interface with code that does not. If this is to be permitted, then there is a question
of what guarantees are made. For example, if a reference to an immutable object is passed as input to an function
whose interface does not specify restrictions, then the called function might mutate the object, violating the guarantee.
Systems that make a closed world assumption assume that all code that uses code with restrictions itself has any
restrictions declared. In contrast, the open world assumption is that there may be interfaces with un-restricted code and
that the system must provide guarantees for this code too, either by making conservative assumptions about these APIs
or by checking conditions dynamically. Open-world systems that support class immutability must ensure that instances
of immutable objects encapsulate their representations because otherwise clients may mutate the representation objects
directly. Furthermore, open-world systems that support object immutability must ensure that immutable objects are
not exposed to unchecked clients [17].

The closed-world assumption can be a significant impediment to adoption for language extensions, since in a
system that makes a closed-world assumption, adoption in new code requires that all clients of that code also adopt
the system.

2.7 Enforcement
Static restrictions are enforced at compile time. Dynamic restrictions are enforced at runtime.

Static enforcement typically has a problem of virality: in order to call a method on an object that has an immutabil-
ity or read-only restriction, the method typically must guarantee that it will not modify state, but if the method itself
calls methods, then those methods must also be so guaranteed, and so on for the transitive closure of methods called
by the first method. This can be burdensome if the guarantees must be annotated by programmers. In addition, the
static analysis must be conservative, and therefore may give errors on code that is actually safe. C++’s const is viral,
and programmers complain that “const-correctness” is therefore difficult to achieve.

Anders Hejlsberg, the lead C# architect, when asked to explain why C# did not offer C++’s const feature, stated
the problem quite bluntly:

We hear that complaint all the time too: “Why don’t you have const?” Implicit in the question is, “Why
don’t you have const that is enforced by the runtime?” . . .

The reason that const works in C++ is because you can cast it away . . . [43]
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2.8 Polymorphism
Restriction polymorphism would mean that the same function can operate on inputs with different restrictions. Para-
metric polymorphism in restrictions is the most relevant example: restrictions can be specified in a parameter rather
than explicitly so that one implementation can operate on inputs with different restrictions, while still obeying those
restrictions. Non-polymorphic restrictions require programmers to write implementations that statically assume par-
ticular restrictions.

In C++, const restrictions are always expressed without polymorphism in const: each method’s parameters
and result are either const or not. The result is a common pattern: the programmer must write const- and non-
const versions of many methods so that those methods can be invoked with both const and non-const inputs.
For example, in C++, it is impossible to write a single “identity” method that takes a const or non-const array
and returns the same array with the access restriction preserved; one must instead write two (typically overloaded)
different methods. In contrast, IGJ [44] supports immutability parameters @I so that the restrictions can be expressed
as a parameter of a type.

3 A Survey of Existing Systems
Table 1 contains a summary of some related systems.

3.1 Historical and Research Systems
The functional programming community was one of the first proponents of immutability: language features that ensure
that once a data structure is created it will always have the same value. In 1984 Abelson and Sussman [1] promoted
immutability on the grounds that it supports formal reasoning and makes concurrent programming easier. Programs
that use only immutable structures are called pure.

In contrast to functional languages, imperative languages emphasize mutation of program state. By adding features
that allowed restrictions on what data structures could be modified in each context, language designers hoped to
facilitate reasoning about programs. At first, languages provided features restricting what functions could do to their
parameters. In Pascal [4], var parameters were passed in by reference, but non-var parameters were passed by value,
preventing modification of the passed parameter. Modula-3 [9] provided a READONLY parameter annotation, which
prevented a function from using the formal parameter in a context that would require an l-value, such as the left-side
of an assignment statement. In Ada [3] parameters to functions could be declared in, out or in out to indicate
whether the function could read but not modify, modify but not read, or both read and modify each parameter.

Later, support for modularity led to features that controlled mutation in entire modules. In Turing [19], a variable
defined in module A could be imported non-var into module B which would prevent the variable from being changed
by B, although A could still mutate it. A common attribute of these features was that data structure mutation would
be permitted through some references but not others, i.e. these represented read-only restrictions. Notice that these
features are all weaker than immutability: immutability guarantees that a data structure will never change, whereas
read-only restrictions only state that changes will not occur via certain mechanisms or locations.

IGJ [44] provides Java annotations that implement immutability. For example, @Immutable Date d is a
reference to an immutable date. No fields can be modified on an @Immutable object; IGJ verifies that no non-
@Immutable references to an @Immutable object can be obtained. @Immutable specifies non-transitive im-
mutability: if an @Immutable object’s fields are not @Immutable, then those objects’ fields may still be assigned
to. @Mutable, the default annotation for unannotated fields, also grants exceptions permitting modification of fields
in @Immutable objects.

@Readonly in IGJ specifies a read-only reference. The holder of a @Readonly reference cannot use that
reference to modify the referenced object, but there may be other non-@Readonly references to the same object
(aliases). IGJ also supports a form of class immutability, in which specifying @Immutable on a class serves as
syntactic sugar in place of adding annotations in a variety of other places. Finally, IGJ supports an immutability
parameter @I, which takes the value of another annotation. For example, if @I is the immutability parameter for a
class and a field in that class is annotated with @I, then that field in a particular instance of the class will have an
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immutablity annotation according to the annotation of that instance. This is the sense in which IGJ supports transitive
immutability: if all fields are annotated with the class’s immutability parameter for all fields transitively included in
that class, then immutability specified by a reference to an object will be transitive.

Unkel and Lam [41] generalized final to define stationary fields, for which all writes occur before all reads, and
provided an algorithm to find them. Of fields in their corpus, 44-59% were stationary, but only 11-17% were final.

Haack et al. designed a Java-like language with a class modifier, immutable, which specifies that all class in-
stances are immutable, and uses ownership types (with ownership annotations) to enforce encapsulation [17]. Later
work by Haack and Poll [16] avoided the need for ownership types and supported object immutability, read-only refer-
ences, and class immutability. They also permitted temporary modification of read-only structures after initialization
by using stack-local memory regions to isolate new immutable objects.

Skoglund and Wrigstad [38] proposed a transitive read-only restriction system for Java, which includes the ability
to check for read-only restrictions at runtime. Zibin et al. [44] argued that allowing runtime checks of restrictions
hampers program understanding but there are no user studies confirming or refuting this claim. JAC [20] provides
readonly (a transitive read-only restriction) as well as readimmutable (a transitive read-only restriction that
also disallows reading of transitively mutable state) and readnothing (providing no access to state at all; suitable
for pure functions). JAC extracts a readonly portion of each class by restricting return types: methods return read-only
references when called on read-only objects. As a result, a programmer need only provide one implementation of a
class, and JAC can generate restricted versions of the class. However, this approach has not been adopted by the Java
community. In contrast, Javari [40] provides a simpler access rights system (for example, JAC includes three different
levels of read-only access, but Javari only has one).

One impediment to understanding and reasoning about programs is the general alias problem of determining what
references exist to a given object. With a precise alias analysis, one could find out whether a given object might be
modified by a particular call. Unfortunately, a precise may-alias analysis is undecidable [21]. Therefore, various
approaches have been developed that facilitate reasoning about aliases by restricting which aliases can exist.

Noble, Vitek, and Potter [28] presented a system for flexible alias protection that provides several aliasing mode
declarations that allow aliasing invariants to be checked statically. For example, one mode ensures that “a container’s
representation objects may be read and written, but must not be exposed outside their enclosing container. . . ”. Other
approaches for alias protection include balloon types [2] and islands [18], which prevent external references to objects
that are encapsulated by other objects’ interfaces.

Servetto et al. proposed placeholders as a technique for safely initializing circular immutable
Ownership types, introduced by Clarke [10], use a notion of object context to partition the object store. Many of

these, including Clarke’s original approach, restrict aliasing. Other approaches, such as universe types [12], restrict
mutation but not access to owned objects. In contrast, Rust [32] expresses ownership without explicit object contexts;
instead, it works at the level of variable bindings to ensure that no more than one binding exists to a given resource.
Rust provides facilities for borrowing ownership at function call boundaries in order to make function calls more
convenient. The ownership system OIGJ [45] extends IGJ with a notion of ownership so that objects cannot leak
outside their owners. Potanin’s chapter on immutability [29] gives more detail on ownership types and immutability
in general.

Gordon et al. [14] focused on providing safe parallelism by combining immutable and isolated types, with support
for polymorphism over type qualifiers. They provided writable, readable, immutable, and isolated qual-
ifiers. An isolated reference ensures uniqueness: “all paths to non-immutable objects reachable from the isolated
reference pass through the isolated reference.”

Another approach is to use capabilities, which pair pointers with policy information that specifies what access
rights accompany those pointers [8]. This changes the default on references from “no restrictions” to “all restric-
tions” but specifies all attributes positively, for example permitting writing. This approach is in contrast to all of the
approaches described above, which use language features to express restrictions relative to a default of no restrictions.

3.2 Popular Languages and Libraries
We show through examples below that despite the fact that some popular languages offer read-only restrictions, pro-
grammers still desire immutability guarantees and attempt to implement them using the features that they have avail-
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able. This often leads to misunderstandings, if not by the original programmer, then by other programmers that have
to read and maintain the code.

For example, the CERT C Secure Coding Standard [36] says “Immutable objects should be const-qualified.
Enforcing object immutability using const qualification helps ensure the correctness and security of applications.”
C does not have any features that guarantee immutability in general, though const does provide some guarantees for
fields. In particular, if one has a pointer allowing const access to an object, there may be other non-const pointers
to that same object. For example, consider this C code, which uses const to express constraints in an interface:

void threadUnsafePrintIfPositive(const int *x) {
if (*x > 0) {

printf("%d", *x);
}

}

Even though x is a pointer to a const int, this only means that threadUnsafePrintIfPositive cannot
modify the referenced int. This function is not thread safe because it dereferences x twice and *x may change
between the dereferences. If *x were immutable rather than just read-only, then the above code would be safe, but
such immutability cannot be expressed in C.

As we described in §2.1, the requirements for making a Java class immutable are complex. If a method returns a
reference to an internal data structure and cannot ensure that it cannot be modified by a caller, the structure must be
copied before being returned to prevent a caller from being able to mutate it. This is often easy for programmers to
ignore or forget, and the results in security-sensitive code can be serious. For example, Java’s “Magic Coat” security
bug was caused by the getSigners() method returning a reference to a mutable array holding the signers of a
class [22].

Rather than supporting immutability or read-only restrictions in programming languages, some authors have added
limited support in libraries. These typically convey these restrictions in names and documentation, resulting in ad hoc
(i.e. expressed informally, rather than formally in language constructs) class-based restrictions. The result is that a
client for whom immutability of a data structure is required cannot rely on the compiler to give an error if the data
structure is later made mutable.

For example, the Foundation framework [30] provided with Objective-C separates immutable and mutable classes
in many cases by making the mutable classes subclasses of the immutable classes: the subclasses have additional
methods that expose mutation. This ensures that mutating methods cannot be invoked on immutable objects (except
that Objective-C is not type-safe). Likewise, the Java JDK provides a collection of immutable classes, such as String
and Number, but these are not specified as being immutable in any formal way. In Java, to make a class immutable,
Bloch [6] recommends doing all of the following: provide no methods that modify an object’s state; prevent subclass-
ing; make all fields final and private; and ensure exclusive access to mutable components. If a programmer wants to
know whether a class is immutable, complicated manual (but mechanizable) verification is necessary, but even this
does not guarantee that the class will be immutable in the future, since a new version of the code can easily make the
class mutable in a way that does not cause the compiler to produce any error messages for clients.

The Java JDK provides Collections.unmodifiableList, which wraps a given collection object with a
wrapper that throws exceptions on modification. However, modifications to the original list are still permitted, so
this approach is an example of a read-only restriction, not immutability. Furthermore, the objects in the list may
still be modified, so the restriction is non-transitive. In contrast, Google’s Guava library copies all the elements
when constructing an ImmutableCollection from a Collection. However, ImmutableCollection
retains the mutating methods from its superclass, so though the compiler gives a deprecation warning, code
that attempts to modify an ImmutableCollection compiles and raises exceptions at runtime. Furthermore,
ImmutableCollection can contain mutable objects, so the immutability is non-transitive.

Microsoft’s .NET framework provides a Freezable class [23], which is a superclass for objects that can have a
state in which they are immutable. The author of a class that descends from Freezable must add calls to specific APIs
before and after modifying state, so enforcement is dynamic and semantics depend on the placement of those calls.
JavaScript includes Object.freeze, which dynamically enforces shallow immutability [24].
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3.3 Empirical Evaluation
Though empirical studies of the effects of mutability on programmer productivity and program comprehension have
been conducted, they have been quite limited. For example, Dolado et al. [13] provided initial empirical data regarding
the influence of side effects, which mutate data structures, on program comprehension. They compared pre- and post-
increment to explicit assignment in C, finding that programmers answered questions about program behavior more
accurately with explicit assignment than with pre- and post-increment (e.g. x=y+1; y=y+1 vs. x=++y). However,
this comparison was limited to properties of syntax and does not provide recommendations for other design questions,
such as on how to enforce encapsulation.

Stylos and Clarke [39] examined the process by which programmers write code that instantiates objects in C++, C#,
and VB.NET and found that users prefer and are more effective at instantiating mutable classes. When instantiating
immutable classes, the programmer must supply all parameters to the constructor at initialization time (the required
construtor pattern); in contrast, with mutable classes, it is possible to supply none or only some of the parameters
at initialization time and defer setting the rest until later (the create-set-call pattern). When figuring out how to
call the constructor of an immutable class, programmers must interrupt their work to figure out how to instantiate
the arguments, which may themselves have arguments, and so on. The create-set-call pattern, in contrast to the
required constructor pattern, lets participants defer understanding how to create the required arguments until after they
had finished calling the first constructor. The authors concluded that in contrast with the common advice to prefer
immutability over mutability, immutability sometimes interferes with usability.

The paucity of empirical work in this area motivated us to conduct our own interviews with programmers. Our
aim was to find out how immutability-related language constructs affect programmers (see §5 below). However,
significantly more work will be required in this area if we are to base language design decisions on empirical data.

4 Usability of Features
The large collection of different possible language features supporting state change restrictions presents an interesting
design problem. Many of the features are compatible with each other and, indeed, more recent systems have included
a collection of different features so that programmers can choose which features to use. However, including all of the
possible features at the same time makes a system more complex, and more complex systems are harder to use. For
example, one of our interview subjects mentioned that in C++, it is common practice to only use const for pointers
to const objects and never for const pointers to mutable objects because it’s too hard to keep the distinction
straight. const int * x, int const * x, int * const x, and int const * const x are all legal
C declarations; the first two denote pointers to const integers, the third denotes a const pointer to a variable integer,
and the fourth denotes a constant pointer to a const integer.

It might seem that a more expressive language — one that allows the programmer to be more precise about
what invariants should be checked — would always be better than a less-expressive language. However, this is not
necessarily the case. The Cognitive Dimensions of Notations framework [15] provides guidelines for evaluating
and comparing usability of different notations. The error-proneness dimension refers to the probability of making
mistakes, particularly ones where the consequences are hard to find. Language features for restricting state change
exist primarily to prevent bugs and clarify meanings. However, in many cases, using the wrong restriction results
in a weaker guarantee than intended but no obvious immediate problems. For example, in a situation that requires
object immutability, the programmer might specify a read-only restriction instead by mistake. This may typecheck
but not provide the needed guarantee. Likewise, a programmer might annotate an interface as returning a read-only
object when in fact the returned object is immutable. This might lead clients of the interface to go to extra trouble and
degrade performance, such as by adding locks to ensure thread-safety, when the object was already immutable.

In contrast to the disadvantages of complexity, the hidden dependencies dimension of Cognitive Dimensions,
which refers to problems that occur when dependencies are not obvious, confirms a positive aspect of state change
restrictions: when a reference to mutable state exists, a programmer may write code that mutates that state without
being aware of the reference. This situation reflects a hidden dependency, so this dimension suggests not only that
immutability is likely to be helpful, but also that transitive immutability is likely to be better than non-transitive
immutability.
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Nielsen’s heuristic evaluation technique [27] offers a collection of heuristics that can be applied when evaluating
user interface designs. These heuristics are particularly useful when user studies with real users cannot be conducted,
perhaps due to an incomplete implementation or cost constraints. The “be consistent” heuristic, which is also included
in the Cognitive Dimensions framework, suggests that features that correspond with different concepts should have
different names. When different features are given similar names, users may be confused; this problem can be seen in
C’s const syntax, where the position of const is significant but it is not obvious which position has which meaning.
The differences between proposed features can be subtle on the surface even though the features represent significantly
different meanings. For example, the system by Haack et al. includes qualifiers RdWr, Rd, and Any [16]. One might
guess that Any is equivalent to RdWr because read and write would seem to be the only available kinds of access,
but in fact RdWr corresponds to a mutable object, Rd corresponds to an immutable object, and Any corresponds to a
read-only restricted reference. Any means that the actual immutability invariant is either RdWr or Rd and therefore
a holder of a reference to an Any-object cannot write to it because it might be immutable (Rd). It is easy to imagine
users confusing these different terms, based on the heuristic evaluation evidence; we lack stronger evidence since
Haack and Poll did not publish a usability study of their system.

This problem of features with potentially confusing names is not limited to just one system. IGJ [44] supports an
object annotation @Immutable. However, in order to make immutability transitive, one must use the immutability
parameter on fields in the transitive closure of objects that are referenced by the @Immutable object. This means that
when a programmer has a reference to an @Immutable object, it is necessary to locate and read an arbitrary amount
of class implementation code to determine what immutability means for this particular object. Furthermore, a future
code edit may invalidate the programmer’s reasoning, resulting in the programmer making an immutability assumption
that is later violated by a programmer who was unaware of the previous reasoning. This is a hidden dependency and
may cause bugs. Systems that support removing fields from the abstract state, such as C++’s mutable, have a similar
problem. However, the real-world implications of these design choices have not yet been tested.

JAC [20] provides a larger collection of features: writable, readonly, readimmutable, and
readnothing. Readimmutable methods can only read the parts of an object’s state that are immutable after
initialization. The authors say that readimmutable may be useful for objects used as keys in hash tables, since the
parts of those objects that contribute to the hash code must not change while the objects are used as keys. However,
it is unclear whether this complexity is warranted; perhaps it would be better to simply require that the entire object
be immutable. We view this question as a tradeoff between flexibility and simplicity rather than assuming that more
flexibility is always better.

5 Interviews with Developers

5.1 Methodology
Given the large collection of immutability- and read-only restriction-related design choices that must be made in
order to construct a concrete programming language or language extension, we wanted to find out how practicing
software engineers think about state when writing software. We obtained IRB approval and conducted semi-structured
interviews with a convenience sample (N=8) of software engineers at several US- and Europe-based organizations. We
focused on software engineers who work on large software projects, with the assumption that these projects would be
the most likely (relative to smaller projects) to encounter interesting problems with state management. Likewise, due
to the participants’ expertise, any problems raised are likely to come up in a wide variety of situations and be relevant
problems for consideration in a language design. Our participants had spent a long time as software engineers, with a
mean professional experience of fifteen years and a minimum of seven years. They typically had worked on projects
with millions of lines of code and hundreds of people. Participants reported significant usage of immutable and
access-restricted interfaces and they had a multitude of strong opinions about state management in large software
systems. Their experience was primarily in C++, Java, and Objective-C. Each interview took between 45 minutes and
an hour and a half. We recorded the interviews and took notes of the participants’ answers to our questions; then, we
informally aggregated the responses to find common themes and interesting anecdotes. Because we conducted a small
set of interviews, our goal was to extract as much information as possible from the interviews rather than to gather
statistically significant quantitative data from the responses.
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5.1.1 Interview Questions

1. How long have you been programming professionally?
2. Can you give an order of magnitude estimate of the size of the largest project you’ve made significant contribu-

tions on? Number of people, lines of code?
3. In what programming languages do you consider yourself proficient?
4. How did you get into software development? Do you have a computer science background?
5. Let’s talk about changes that happen to state in software you’ve worked on. Many kinds of software maintain

state, such as object graphs, files, or databases, but there’s a possibility of corruption during changes due to
bugs. How do you make sure that state in running programs remains valid?

(a) Are there specific techniques do you use? If so, what are they?
(b) Do you sometimes want to make sure that some operations don’t change any state or don’t change certain

state?
i. Tell me about a recent time you did this.

ii. How often does this come up?
iii. Do you use language features to help?

(c) Do you sometimes want to make sure that some state never changes?
(d) Tell me about a recent time you did this.

i. How often does this come up?
ii. Do you use language features to help?

iii. Do you sometimes want to make certain kinds of modifications to state impossible for some users of
an API but not others? If so, how do you do that?

6. How often do you work on concurrent aspects of software? What mechanisms do you use to control concur-
rency?

(a) Do you use immutability to help address or prevent concurrency issues?
7. How much work have you done on security-related aspects of your software? Have you found or fixed any

vulnerabilities?
(a) Do you use immutability to help address or prevent security issues?

8. Can you recall a recent situation in which you created an immutable class or other data? If so, tell me about it.
9. Can you recall a recent situation where you changed a class from immutable to mutable? If so, tell me about it.

10. Can you recall a recent situation in which you changed a class from mutable to immutable. If so, tell me about
it.

11. Can you think of a bug you investigated or fixed that was caused by a data structure changing when it should
not have? What was the problem and how did you solve it (if you solved it)?

(a) Would const have prevented the bug?
12. Have you ever tried using an immutable class and had it not work? Why not?
13. When you create a new class, how do you decide whether instances should be immutable?
14. Have you ever been in a situation where you wanted to use const or final but it didn’t say what you wanted to

say?
(a) or where you discovered you couldn’t use it? What was the situation and why couldn’t you use it?

15. Have you been in a situation where you had to revise your plan because something you’d assumed could mutate
state was disallowed from doing so due to const?

16. Have you been involved in training new members of the team? What do you tell new members about immutabil-
ity or ensuring invariants are maintained?

17. Sometimes, though an object is mutable after creation, it only needs to be changed for a short amount of time.
For example, when creating a circular data structure, the cycle must be created after allocating all the elements.
After that, however, the data structure doesn’t need to be changed. Have you encountered situations like that?
Do you think it would help if you could lock the object after all necessary changes were made?

18. Now, I’d like to move on to API design in general. Think of a recent API you designed.
(a) Did you make any conscious design or implementation decisions, to make the API easier or more manage-

able for these users?
(b) Are there any recurring issues / challenges that users have had with your API? How did you handle those?
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(c) How do you differentiate between users of your API? Are there parts of the API that you expose some
users but not others? How do you manage that?

(d) Did you make any conscious design or implementation decisions to protect key data or data structures
from modification (inadvertent or malicious) from your users?

19. Thanks! Is there anything else you’d like to say?

5.2 Results
Relevance. Asked about bugs caused by state changing when it should not have, one participant exclaimed,

“Oh God, like, most of them!. . . my favorite is where you have data that is supposed to be immutable
and is only settable once in theory but that’s not well enforced and so it ends up getting re-set later either
because it gets re-initialized or because someone is doing something clever and re-using objects or you
have aliasing where two objects reference the same other object by pointer and you make changes. . . ”.

Another participant cited library boundaries as a problem: this engineer’s module depended on data that got
changed by a third-party library, resulting in half-updated or not-updated state. This resulted in mistrust among the
groups because it was frequently unclear which team was responsible for any given bug. All the participants who
worked on software with significant amounts of state said that incorrect state change was a major source of bugs.

General techniques. All of the participants reported using various techniques to ensure that state remained valid.
Techniques included ensuring that lifecycle and ownership are well-defined using conventions such as C++’s RAII;
restricting access with private variables and interfaces; using consistency checkers and writing repair code; unit and
manual testing; and assertions. According to one participant, good design is better than using const: “if you simply
do not depend on an object, there is no way you could possibly modify it directly.” Another participant uses immutabil-
ity as a key part of the architecture: “By design, we’ve made the key data structures immutable. We never update or
delete any data objects. This ensures that an error or problem can never put the system into an undesirable state.”

C++ const. Several participants used const in C++ to make sure state does not change, but it does not meet
their needs. First, there is no way to make special cases for fields on a per-method basis: either fields are part of
an object’s abstract state or not. One participant reported removing const from a collection of methods rather than
making a particular field mutable. Second, the viral nature of const makes using it a significant burden, since
declaring a method const requires transitively annotating all methods that the first method calls. One participant
wished for tools that automatically added const as needed in such cases; for Java, Vakilian et al. proposed a tool that
would help programmers add similar annotations [42].

One participant complained that const applies to methods and fields but not to whole classes. In contrast, another
participant said that marking methods const is very helpful, as is having two interfaces to every object: a mutable
interface and a const interface. The former approach corresponds to class immutability if all methods are marked
const; the latter approach implements read-only restrictions if all methods in one interface are const.

Participants said that there were many situations in which they wanted to use const but it did not express the
invariant they needed. One participant wanted to restrict access in a more fine-grained way than just mutability: for
example, by disallowing access to particular methods even though those methods did not change state, or permitting
some kinds of state changes but not others. Another participant cited the discrepancy between abstract and concrete
state: though one can mark particular fields as mutable in C++, it would be preferable to be able to show that the
value of a field has no effect on views of the object.

Thread safety. We were particularly interested in how participants used immutability to manage state that was
shared across threads, since free sharing across threads is a frequently-cited benefit of immutable data structures.
We asked participants what techniques they use to ensure state is safe when accessed concurrently. Two participants
described architectural techniques that hide concurrency from users, avoiding this problem. Immutability did not
seem to be a commonly used technique; participants cited traditional methods, such as serial queues and mutexes. One
participant, a framework designer, mentioned a focus on minimizing dependencies on mutable state across threads. A
major theme that arose was about reuse: when reusing existing structures, participants had to assume that structures
were mutable because they had no guarantees otherwise. One participant mentioned taking advantage of immutability
if it was already present. Another participant pointed out that it is rare to be able to design a component from the
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ground up, so there is usually some synchronization needed. This suggests that when designing components for reuse,
it is helpful to be able to specify to consumers of the components which aspects are immutable. We conclude that
existing techniques for specifying immutability in the languages these participants used are insufficient for facilitating
reuse in concurrent systems.

Immutable classes. We asked participants about their use of immutable classes and found that immutable classes
are used very frequently but that languages the participants use do not provide any explicit support for them. In
fact, one participant pointed out that some languages make immutable classes difficult to write and use. In C++,
copying objects is difficult and error-prone, so one company’s style guide recommends disabling copy and assignment
operations. As a result of the difficulty of copying objects, objects tend to be mutable.

Participants mentioned using immutable classes for copy-on-write situations; for objects that manage relationships
between other objects; and for wrapping an existing mutable class in order to enforce a particular invariant. One par-
ticipant mentioned avoiding changing classes from immutable to mutable because then anything holding a reference to
the object would suddenly depend on whatever could now cause mutations. This again is a notion of class immutabil-
ity, not object immutability. That is, instances of a class serve a particular role in an architecture, and the class defines
the role; making all instances mutable would violate invariants of many of the clients of that class.

Security. Since many recommendations in favor of immutability come from the security community [37] [33], we
asked participants about their experiences with security considerations in state management. One participant talked
about a security-related object that the team wanted to make immutable but which needed to be modified as part of
the teardown process, so it had to be made mutable instead. None of our participants had a focus on security in
their jobs, though most of them worked on software that could potentially have security problems. Their perspective
was generally that security was important in security-related components, such as authentication, but otherwise not
a primary concern. One participant, who worked in part on cloud-based software, mentioned that privacy is a more
difficult issue than security because the requirements are less clear and because privacy issues come up in more
contexts.

5.3 Implications on language design
From the above interview findings, we extracted the following observations that are relevant for the design of pro-
gramming languages and tools. Since the interviews were of programmers working on large, object-oriented systems,
our interview findings are most applicable to object-oriented languages that are intended to be used for large systems.
• Both read-only restrictions and immutability are used in practice for different purposes, but the languages that

our participants used do not reflect their needs.
• State management is a core issue that developers consider when designing architectures and APIs, and develop-

ers do use read-only references and immutability (when available) to enforce encapsulation.
• Existing mechanisms do not solve the problems that developers have when building concurrent systems, in part

because they frequently re-use existing code that does not provide immutability guarantees. Lack of transitivity
of existing mechanisms results in guarantees that are too weak to be useful.

• Incorrect state change is a frequent cause of bugs. As a result, programming language features that help de-
velopers manage state have a good chance of preventing many bugs and so research about such features is a
worthwhile endeavor.

• Even limited read-only restriction mechanisms, such as const, can be too hard for programmers to use effec-
tively. Designs must emphasize simplicity and usability, or the features will not get used.

• Facilitating immutability is a core issue in programming language design; languages that make copying objects
onerous or expensive discourage programmers from using immutability-related features.

5.4 Limitations
Our small sample size resulted in several limitations to our findings. We do not know whether programming languages
used for small projects or for short-lived projects would have the same design considerations, since many of the
justifications for the recommendations came from experiences with large, long-lived projects. It is unclear to what
extent the participants’ backgrounds biased our findings, since nearly all of them had formal computer science training,
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whereas across the industry, software engineers come from a variety of different backgrounds. Furthermore, our
participants were very experienced; novices may benefit from different language design choices than experts do.

6 Iterative Design of Features
Following techniques from the human-computer interaction community [26], we are conducting a user-centered, iter-
ative design process to create language features with which users can express state change constraints in a way that is
both usable and useful. Rather than assuming that users need all possible features, we are starting from the assumption
that the language should be as simple as possible while still providing what users need to address their problems. There
is a tradeoff between simplicity and completeness: adding keywords for all possible features that users might need
might make addressing more problems feasible but also make the system so complex that users cannot successfully
use those features correctly. By designing our system according to the needs that practitioners have expressed and
iteratively testing specific designs with users, we hope to arrive at a practical solution that addresses many, but likely
not all, of the problems that practitioners face in this space.

We must distinguish between requests from practitioners and their actual needs. Users frequently do not know what
features would benefit them most [5], so asking them what features they want is only the beginning of the process. We
grounded our interviews by asking primarily about their experiences and only secondarily about their feature requests;
by basing our designs on the requirements of the systems the users were building, we increase the chance that our
system is effective on real-life problems.

6.1 Transitivity
Based on our finding that some programmers want guarantees that can only be provided by transitive immutability
and the disparity in transitivity support between research languages and commonly-used languages, we focused on the
question of transitivity. We piloted a user study comparing a non-transitive subset of IGJ [44] with a modified version
that always enforces transitivity, which we call IGJ-T. We started with IGJ due to its availability and practicality: it
can be used by experienced Java programmers and requires learning only how IGJ annotations are processed, not a
whole new programming language. Initially IGJ was an extension to Java using generics [44], but we used a revised
version based on the Java annotation system [34].

Because we wanted to compare always-non-transitive immutability to always-transitive immutability in our study,
we only told our participants about the @Immutable annotation, not any of the others. This forced a non-transitive
approach to immutability for the participants in the control condition. For the transitive case, which we wanted to
be identical to IGJ except for transitivity, we created a version of IGJ, IGJ-T. In IGJ-T, if a class has a constructor
that returns an @Immutable result, then all fields of that class must be transitively @Immutable. The imple-
mentation of IGJ-T works by visiting all methods when typechecking; for methods that are constructors that are
annotated @Immutable, it recursively visits the types of the class’s fields and verifies that all of them are marked
@Immutable.

The design of IGJ greatly facilitated verification of transitive immutability relative to writing an analyzer from
scratch. IGJ is implemented as part of the Checker framework [35], which provides a collection of related facilities
for checking properties with annotations in Java. In particular, the Checker framework made it very easy to extend IGJ
with a new verification on constructors. IGJ-T gives error messages like the following example:

error: [transitivity.invalid] Cannot declare
Simple() with annotation @Immutable because Simple
transitively contains @Mutable Date d on path
@Immutable AContainer a -> @Mutable Date d

@Immutable Simple () {
ˆ

IGJ-T gives the full field path to the erroneous field so that programmers can easily find the cause of the problem.
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Figure 1: Class diagram of starter code

6.2 Study design and pilot results
We designed four tasks, intended to take 90 minutes total, in the context of a program to track outcomes of chess games
(Figure 1 summarizes the architecture). After obtaining IRB approval, we recruited a convenience sample (N=3) of
PhD students experienced in Java to pilot our study. Two participants completed a pre-test regarding their programming
experience and understanding of final. Of these, one participant with over a year of Java experience, on hearing an
explanation of the fact that final only applies to assignment but not to the referenced objects, exclaimed, “no one
ever highlighted that key thing [before]!” The tasks are summarized below:

1. Suppose your language has a feature that lets you specify that once a Game has happened, it should not be
changed. Please make any changes necessary to the existing program to express this using whatever language
feature you think would be best.

2. Now, we will show you the feature we have designed, which we call @Immutable. (Participants were then
given a description of IGJ or IGJ-T depending on the experimental condition to which they were assigned). For
the following sample code, please write which lines would give compile errors to test your understanding of
@Immutable. (The sample code included a Person class with fields for eye color and name; the eye color
was supposed to be fixed and the name could be changed. The instructions showed how @Immutable could
be used to make the eye color immutable and compared @Immutable with final, which would not suffice
when used only on the eye color field because the eye color was a reference to a Color object.)

3. Please implement the updatePlayerName() method to change the name of a player.
4. Please implement the changeGameOutcome() method to update the history for a corrected game outcome.

Game must remain @Immutable.
The first task was designed to elicit how the participants would want to express the immutability concepts, if given

free reign. This is a form of participatory design that we call the natural programming elicitation approach [25],
since it tries to reveal how users would naturally express these concepts. Note that the prompt (and the instructions
beforehand) did not use the word immutable in order to try to avoid biasing the participants’ vocabulary choice.

The second task introduced the design of the immutability construct that participants would be using and verified
that they understood it in a small test. All of the participants understood their version of @Immutable.

In the third task, we expected participants in the IGJ condition to erroneously mutate an object that was used as
a key in a hash table, resulting in a bug; we expected participants in the IGJ-T condition to spend longer on the task
but avoid the bug. In the fourth task, we expected participants in the IGJ-T condition to spend extra time solving the
problem but reap little benefit.

Though we have only begun our user study — so far we have piloted it with three participants and the first was only
given the first two tasks — we have learned helpful insights about Java programmers’ expectations. In the first task,
one participant used immutable as a qualifier on the Game class declaration; the other added a freeze qualifier
on a Game parameter to one of the constructors of GameList (neither participant used the Java annotation syntax).

The third task required participants in the IGJ-T case to essentially rewrite the entire game history; in the IGJ case,
a simpler rewriting was possible. In both cases, however, the participants were surprised that they had to rewrite data
structures rather than modifying them in place: “It seems complicated because even if you want to change the name
you have to reconstruct everything.” Some Java programmers appear to find immutable data structures confusing, and
encountering them forces a difficult problem-solving process. By completing the study, we hope to better understand
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the tradeoffs of immutability: in what situations is it beneficial to make structures immutable, and in what situations
do the costs of immutability outweigh the benefits?

One participant in the non-transitive case had recently been doing more functional programming, so we expected
that this experience might make immutability more intuitive. However, this participant modified Person in place, not
realizing that this would break various aspects of the data structures, in part because Person was being used as a hash
table key. When this participant discovered the problem while testing and debugging, the participant exclaimed, “this
is what happens when you mutate [stuff] in place!” and commented that maybe upon switching back to an imperative
programming context, it was hard to remember all the problems that are inherent in imperative programming.

Due to the time spent on the third task, one participant did not start the fourth task; the other two found it similar
to the third task. We plan to adjust the tasks to reduce the time required for the third task and make the fourth task
more meaningful.

Though we restricted our study to a small subset of IGJ, some participants had difficulty understanding its error
messages while trying to fix their bugs. For example, one participant spent over two minutes debugging this error
message:

error: [method.invocation.invalid] call to
setBlackPlayer((@org.checkerframework.checker.igj.
qual.Immutable :: t_starter.Player)) not allowed
on the given receiver.

game.setBlackPlayer(newPlayer);
ˆ

found : @Immutable Game
required: @Mutable Game

The participant kept checking the argument to setBlackPlayer, but the problem was that game was
@Immutable and the solution was to create a new Game object instead of modifying the existing one. Note that
this error was an existing part of IGJ. In our limited pilot, only one user used IGJ-T, and that user did not encounter
any transitivity error messages.

The pilot user studies we have completed so far are only the beginning; we are still refining the study. However,
threats to validity include the small set of tasks we used in comparison to the wide variety of tasks that real software
engineers perform; the small codebase and short timeframe of the study; and the relative inexperience of our partic-
ipants, who are mostly graduate students with small amounts of professional experience. Eventually, however, we
hope to compare effectiveness of the two language extensions across the different tasks and find out whether transitive
immutability prevents bugs and whether it imposes a significant time cost on programmers due to its complexity.

7 Future Work
The studies we are investigating are focused on comparing transitive to non-transitive immutability in Java, but as
can be seen from §2, there is large design space of features for immutability. Because of the potential large impact
of immutability on programmer productivity and software quality, it will be important in the future to develop an
empirical basis for designing and using immutability features in programming languages. We are also planning to
refine the design of IGJ-T to more easily facilitate class immutability. Finally, to mitigate the threats to validity and
improve external validity, we hope to follow our lab study with a more longitudinal study to evaluate to what extent
our findings generalize to real-world software projects.

8 Conclusions
Despite the vast design space for language features supporting immutability in programming languages and plentiful
advice regarding how programmers should use them, there is only scarce empirical evidence supporting these rec-
ommendations. We presented a classification of immutability features and an analysis of their tradeoffs, challenging
the notion that providing a very flexible feature set is best. We have begun experiments with users to find out how
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users interact with immutability features along the transitivity design dimension, but future work will be necessary to
understand what features and usage patterns best benefit users.
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