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Abstract 

 

The performance of social network change detection (SNCD) is evaluated using a multi-

agent simulation of company level U.S Army Infantry organizations.  Agent interaction is 

probabilistic, with increased likelihood of communication based on similarity in skills, 

role, sub-unit of assignment, military rank, and general personality homophily.  Various 

social network measures are monitored for change over time with a Cumulative Sum 

(CUSUM) control chart, an Exponentially Weighted Moving Average (EWMA), a scan 

statistic, and a Hamming Distance.  Findings show that the average betweenness, the 

average closeness, and the standard deviation of eigenvector centrality are social network 

measures that are well-suited for SNCD.  This research further supports the efficacy of 

SNCD using statistical process control charts. 
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1 Introduction 

 

Social network analysis (SNA) has become an important analytic tool for friendly 

command and control structures.  SNA quantifies relationships between individuals and 

represents them in a network.  The mathematical, statistical, and qualitative analysis 

focuses on the relationships between individuals instead of traditional analysis that 

focuses on the attributes of individuals.  Important factors such as homophily, geographic 

distance, collective belief formation, access to knowledge, resources, and events are all 

considered in a more tractable form through SNA (Wasserman and Faust, 1994).   

 

This type of analysis continues to increase in importance to the U.S. military as it 

evolves into a more highly connected organization (McCulloh, et. al., 2007).  Subordinate 

leaders and soldiers at the lowest level, now have access to cellular phones, email, the 

internet, among other sources of information and communication.  This technology 

allows enhanced situational awareness and enables soldiers to solve problems at a much 

lower level in the chain of command.  Unfortunately, handling these problems at a lower 

level isolates senior leaders from much of the decision process.  The experience, 

judgment, and responsibility of these senior leaders are effectively divorced from many 

important problems.  SNA offers senior leaders a valuable tool for identifying potential 

problems and for monitoring communication within their organization. 

 

An important SNA tool for monitoring an organization is Social Network Change 

Detection (SNCD) (McCulloh, et. al. 2008).  SNCD applies methods of statistical process 

control used in quality engineering to detecting changes in social networks.  This 

approach was demonstrated to be effective in detecting change in a group of 24 graduate 

students as they prepared for their comprehensive exam as well as on a data set of Al-

Qaeda members (McCulloh, Carley, and Webb, 2007).  While SNCD has been effective 

in detecting change in a limited number of real-world data sets, the limitations and 

performance of this approach applied to different network measures has not been 

explored. 

 

Simulation offers a controlled environment to explore the performance and 

limitations of SNCD.  It is often very subjective to determine the true causes of change in 

real-world data.  In the real-world, potential factors have high covariance, and there are 

multiple and competing causes for different types of change.   For example, a major shift 

in Al-Qaeda was detected in 1997 (McCulloh, Carley, and Webb, 2007).  This 

corresponds to the time that they were expelled from the Sudan, re-established bases in 

Afghanistan, and began to form the Islamic Front.  If the change point had been identified 

as 1998, other causes could be identified.  In 1998, Al-Qaeda bombed embassies in 

Tanzania and Kenya, and formed the Islamic Front (Marquand, 2001).  In 1993, they 

were successful against the US in Somalia.  Which of these events is a real change?  With 

simulation, a virtual organization can experience a deliberate controlled change, and then 

the performance of an SNCD method can be objectively assessed.  Replications can 

provide investigators with an estimate of the variance of performance metrics.  When the 
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performance of SNCD is assessed and quantified in simulation, its usefulness and 

reliability for the real-world can be estimated. 

 

This paper has six remaining parts.  In the method section the logic of the simulation 

model is explained.  The simulation is then aligned or docked with comparable models in 

the literature.  Next, verification and validation are discussed, followed by several virtual 

experiments to simulate network change.  A brief overview of SNCD methods is 

presented.  The results section highlights SNCD performance before the conclusion 

section. 

 

 

2 Method 

 

A virtual experiment is set in the context of a military organization.  Military units 

have a formal hierarchical chain of command as well as informal leaders and social 

relationships that extend beyond formally designated units.  Both the formal and informal 

networks are used to share situational awareness, experience, skill development, and 

resources.  Isolation of certain individuals or subordinate elements within a unit, due to 

radio failure, enemy attack, or poor coordination, can cause serious impacts to the unit’s 

performance.   Reconnaissance units, especially Special Forces, will also sporadically 

communicate with military units as they drop off the network to conduct their mission 

and enter the network to report information or request resources.  The network can also 

experience change when new personnel or groups join the unit either permanently or for a 

particular phase of a military operation.  The ability of SNCD to detect these types of 

change will be explored in a virtual experiment. 

Using the social simulation program, Construct (Carley, 1990; Carley 1995; 

Schrieber and Carley, 2004), military units of varying size are simulated.  A variety of 

changes will be introduced to the network at a known point.  The Cumulative Sum 

(CUSUM) (Page, 1961), Exponentially Weighted Moving Average (EWMA) (Roberts, 

1959), and Scan Statistic (Fisher and Mackenzie, 1922), statistical process control charts 

will be applied to several social network graph level measures taken on the network at 

each time step.  The number of time steps between the actual change and the time that an 

SNCD method signals a change will be recorded as the Detection Length.  The Average 

Detection Length (ADL) over multiple independently seeded runs is then a measure of 

the SNCD method’s performance.  The ADL will be compared for different changes and 

different SNCD parameters. 

The basic military structure that will be simulated is an infantry training model.  This 

is the most basic US military unit and is used for training soldiers and officers across the 

US Army Training and Doctrine Command (HQ, Dept of the Army, 1992).  An 

organizational diagram is shown in Figure 1.  Within this model, soldiers are organized 

into four man teams.  Two teams and a squad leader form a 9 man squad.  Three squads 

and a three person headquarters form a 30 man platoon.  Three platoons and a 10 person 

command post form a company.  Each soldier is trained in various skills that are 
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distributed throughout the organization.  Each team for example will have an automatic 

gunner, a grenadier and two riflemen.  One member on a team will also be trained as a 

medic, another in demolitions, and two will be able to search enemy prisoners of war.  

Each soldier possesses individual skill in stealth, situational awareness, physical fitness, 

intelligence, military rank, and motivation.  Homophily in these individual skills create 

stronger bonds between members of a unit which will increase their probability of 

communication.  Organizational proximity will also affect communication, with 

individuals in the same sub-unit being more likely to communicate.   The objective of the 

simulation will be to model communication within the military unit. 

 

Figure 1. Platoon Organizational Diagram. 

 

2.1  Docking   

Other simulation studies have been performed on communication within military 

organizations (Kilduff, et.al., 2006; Rahimi, S., et.al., ).  The Future Combat System 

(FCS) initiative has made extensive use of simulation to evaluate many system design 

considerations to include communication flow.  The U.S.Army Research Laboratory’s 

Human Research and Engineering Directorate (ARL-HRED) uses a simulation tool called 

C3TRACE (command, control, and communication: techniques for reliable assessment of 

concept execution). C3TRACE is a simulation environment that models organizations of 

varying sizes as they complete simulated tasks under various levels of workload.  One 

study modeled communication within an infantry company very similar to the object of 

this paper’s study.  Some differences were introduced as part of the FCS revised 

personnel manning concept.  The model equipped soldiers with differing communications 

devices to evaluate the impact on communication flow.  The ARL-HRED focused on 

performance measures such as utilization, dropped messages, and decision quality.  Their 

study did not look at the communication network however.  The relationships between 



4 

 

the modeled agents were not investigated.  Change detection was not applied to the 

communication patterns in the simulated organization. 

Another study investigated wireless platoon communication alternatives through 

simulation (Rahami, Mohamed, and Paredes, 2007).  The focus of the study was on 

designing robust communication network topologies.  While this study considered the 

relationships between simulated agents, they were essentially static.  The model was a 

discrete event simulation created in Arena, which is better suited for process flow than it 

is for modeling relational network data.  More importantly, the simulation did not explore 

dynamic changes over time. 

The C3TRACE and Arena simulation models provide some insight into modeling a 

military organization, but they are not well suited to modeling dynamic network change 

over time.  Construct was specifically designed to model relational network data and 

evolve it over time.  In addition, Construct has the ability to vary the interactions of 

simulated agents based on their relative homophily, knowledge, and expertise.  Dynamic 

social networks are easily exported to social network analysis software, where change 

detection can be evaluated.  Construct’s ability to realistically simulate the social 

dynamics of an organization over time and provide network representations of 

communication makes this model uniquely well suited for SNCD exploration.  An 

extensive search of the literature did not reveal any other relevant, similar models.  Table 

1 shows a comparison or docking of the three simulations.  

While the three simulations are similar in terms of the organization being modeled, 

their objectives are different.  The C3TRACE and Arena models are focused on 

measuring and improving unit performance.  The purpose of this study is to realistically 

model the evolving social/communication network of an Army unit over time, so that 

methods of SNCD can be objectively compared to each other.  In addition, Construct is 

much more sophisticated than the other methods at modeling how humans actually 

interact in an organization.  This level of detail in modeling provides a much more 

rigorous test of the success of SNCD. 
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Table 1. Docking: Construct, C3TRACE, Arena 

 Construct C3TRACE Arena 

Simulated 

Organizations 

Squad, Platoon, 

Company HQ 

Squad, Platoon, 

part of 

Company HQ 

Squad, Platoon 

Size of Squad 9 men 9 men 9 men 

Size of Platoon 30 men 49 men undefined 

Agent Details Knowledge, 

expertise, 

beliefs, 

resources 

Information 

quality, 

expertise 

Knowledge 

How agents 

interact 

Uses an 

interaction 

sphere.  

Probability 

based on 

homophily or 

expertise. 

Fixed in 

advance, based 

on doctrine 

Interaction 

Strength is 

proportional to 

distance 

between agents 

Output Social network 

measures for 

each time step 

(Table 3). 

Soldier 

utilization, 

soldier 

performance, 

and decision 

quality 

Successful 

communication 

Type of 

Simulation 

Multi-Agent Multi-Agent Discrete Event 

Virtual 

Experiment 

Inject a change 

at a specified 

time point, to 

measure ARL 

Change the 

agent 

interactions that 

will occur 

No virtual 

experiment 

 

  

2.2  Verif icat ion and Validation  

Verification and validation will focus on the communication dynamics within the 

organization.  The input to the model is abstract communication.  The focus of the 

simulation is information sharing within a military organization.  Issues of varying social 

capital for differing information is not considered in this model.  Future research could 

investigate the effect of the importance of the information on communication dynamics.  

That type of investigation is beyond the scope of this study.  Therefore, the model inputs 

are very simple. 

There are several data sources that can be used to validate the process component of 

the simulation model.    The author has served as an instructor at the US Military 
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Academy at West Point.  During summer cadet training, he collected social network data 

on communication between soldiers ranging from team member to the company level.  

Data was collected for over 20 training missions from seven different company units.  

The communication within the simulation should be within the range of the real-world 

data.  Simulated communication was also presented to four Army subject matter experts 

(Johnson, 2008; Gauthier, 2008; Smith, 2008; Trent, 2008) with recent combat 

experience to provide qualitative validation of model accuracy.   The expert input was 

qualitative, where the soldiers were asked if a random sample of baseline (no change 

imposed) social networks appeared to reasonably describe communication patterns in an 

Army Infantry unit.  Adjustments were made to weights placed on socio-demographic 

variables such as rank and job title to accurately reflect military communication.  All four 

experts validated the final model. 

The simulation output is validated by calculating several graph level social network 

measures (see Table 2) for the baseline simulation and comparing those results to the data 

collected on cadet summer training.  There was no statistically significant difference in 

the average betweenness, average closeness, or density.  Unfortunately, more detailed 

information was not available.  The output validation coupled with subject matter expert 

review provides reasonable evidence of the model’s accuracy. 

 

2.3  Virtual  Experiment  

A virtual experiment is conducted using the Construct Infantry Model to provide a 

realistic data set for evaluating SNCD methods.  Three different size infantry units 

(squad, platoon, and company) are simulated for 500 time periods.  In these units, four 

changes are introduced.  This creates 9 independent data sets that can be used to evaluate 

SNCD performance.  Three of the changes are not feasible for the squad size element.  

The four network changes correspond to common military communication problems that 

might affect an infantry unit.   

The first type of network change is the isolation of the Headquarters section.  For a 

squad, this is simply the squad leader.  For a platoon, this consists of the Platoon Leader, 

Platoon Sergeant, and the Radio Telephone Operator (RTO).  For a Company, this 

includes the 10 person command post, also known as the headquarters element.  A 

military headquarters is most often isolated from the rest of the unit as a result of radio 

failure or a deliberate attack from enemy forces.  This is perhaps one of the most 

significant changes that commonly happen in a military situation, as it requires a rapid 

and efficient transfer of command and control, as the formal hierarchy is significantly 

adjusted.  In the simulation, this is modeled by isolating the Headquarters section 

beginning at time period 20.  These individuals remain isolated for the remainder of the 

simulation.  Network measures are calculated on the organization for all time periods. 

Another significant change in a military organization is the loss of a subordinate 

element.  A subordinate element might be lost as a result of a task organization change, 

radio failure, or enemy attack.  This change is not modeled for the infantry squad, since 
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this would mean losing half of the organization.  For the Platoon, this change is modeled 

by isolating a squad at time period 20 for the remainder of the simulation.  For the 

Company, this is also modeled by isolating a squad at time period 20 for the remainder of 

the simulation.  While it is conceivable to isolate any number of individuals in the 

simulation, these changes are used to demonstrate the performance of the SNCD 

methods.  Perhaps SNCD methods that have similar performance could be evaluated 

under greater conditions of change in a future paper.  For now, it is beyond the scope of 

this paper to exhaustively address all conceivable types of network change. 

A similar change is the addition of a new subordinate element.  This is usually a 

result of a task organization change.  This is modeled by adding a squad in both the 

Company and Platoon level models.  It is not modeled for a squad, because squad 

organizations are not usually capable of managing an additional subordinate element.  

Again, this simple change is used to evaluate SNCD and not meant to be an exhaustive 

comparison of different types of organizational change. 

The final type of change simulated, is sporadic communication.  Sporadic 

communication can be either deliberate, or unplanned.  An example of deliberate 

sporadic communication is a reconnaissance operation, where radio power must be 

conserved and noise discipline is important.  An example of unplanned sporadic 

communication is radio failure.  This is modeled in the simulation by introducing a squad 

from time period 20 to time period 30.  Network measures will be recorded throughout 

the simulation.  This change is only modeled for the Platoon and Company level 

simulations.   

The social network measures listed in Table 2 are measured for every simulated 

network.  Table 3 illustrates the combinations of the virtual experiment.  The outputs of 

the simulation are the graph level measures recorded for each simulated time step.  

Different SNCD methods are then used to identify possible changes in the network over 

time.  

 

Table 2. Social Network Measures 

Average Betweenness Standard Deviation of Closeness 

Maximum Betweenness Average Eigenvector Centrality 

Standard Deviation of 

Betweenness    

Maximum Eigenvector 

Centrality 

Average Closeness Minimum Eigenvector 

Centrality 

Maximum Closeness Standard Deviation of 

Eigenvector 
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Table 3. Virtual Experiment 

Variable 

Number 

/ Nature 

of 

Values Values 

    Network Size 3 9, 30, 100 

Network interaction sphere is fully connected.  Edge probability determined by 

simulation. 

Type of Change in Network 

Isolation of 

leadership 

2 Isolated headquarters after 20 time periods 

 

Sporadic 

communication 

(Reconnaissance) 

2 Initially absent, present for 10 time periods, then 

absent for remainder of simulation (omitted for squad) 

Loss of subordinate 

unit 

 2  Removal of the immediate subordinate unit after 20 

time periods (omitted for squad) 

Gain an attached 

unit 

2 Addition of a squad after 20 time periods. (omitted for 

squad) 

  

Cells 18 3 Network sizes x 4 Changes x 2 Levels – Squad 

omissions 

Replications 25  

Independent Runs 450  

 

 

2.4  The Hamming Distance  

The Hamming distance is a measure of change between two networks (Hamming, 

1950).  For an unweighted network, where edges are either present or absent, the 

Hamming distance can be used measure the similarity of two networks.  The Hamming 

distance is calculated by counting the percentage of possible edges that are different 

between two networks.  The Hamming distance is recorded between sequential time steps 

of simulated networks.  It is possible that a significant change in Hamming distance may 

indicate network change over time. 

 

 

2.5  The Cumulative Sum Control  Chart  

Statistical process control charts (Montgomery, 1996; Page, 1954, 1961) are used to 

detect changes in temporal data. The cumulative sum (CUSUM) control chart statistic has 

been shown to be effective in detecting changes in real-world social networks (McCulloh 

et. al, 2007; McCulloh et. al, 2008).  With control charts helping to distinguish process 

abnormality, graph level social network measurements from the simulation are recorded 

and used to compute a test statistic.  When the test statistic exceeds the limits of the 

control chart, the process is deemed abnormal. This indicates that a change in the process 
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may have occurred.  The process (in this case organizational behavior) can then be 

investigated to identify the potential cause of the change.  The CUSUM statistic is given 

by, 

 

1
2

,0max
ttt

CZC  

 

where Zt is the normalized social network measure, and δ is the magnitude of change that 

the CUSUM is optimized to detect.  For this study, δ = 1 for all calculations.  A control 

limit of 4.0 is used, which corresponds to a type I error of approximately 0.01.  

Therefore, this SNCD scheme would signal a false alarm every 100 observations on 

average, when used on an organization that does not experience change.  The type I error 

rate was estimated using Monte Carlo simulation of a baseline Construct Infantry Model 

(no change) with 2,500 independently seeded runs.  The standard deviation of the error 

estimate is 0.0002. 

 

2.6  The Exponential ly  Weighted Moving Average  

The exponentially weighted moving average (EWMA) was introduced by Roberts 

(1959) for monitoring changes in the mean of a process over time.  The EWMA 

associated with subgroup t is 
1

)1(
ttt

wxw , where 10  is the weight 

assigned to the current subgroup average and 
00

w .  Common values of λ are

3.01.0 .  Having observed a total of T subgroups, the statistic 
T

w  is plotted against 

the control limits  

,
2/12

0
11

2

T

x
L  

where L is a constant that scales the width of the control limits.   

 

Lucas and Saccucci (1990) investigated the impact of different combinations of L 

and λ on the ADL performance of the EWMA control chart.  The combinations that were 

investigated were chosen such that the each chart was calibrated for the same sensitivity 

to false alarm.  They found that EWMA charts with small values of λ perform well at 

detecting small changes in a process mean.  Conversely, EWMA charts with large values 

of λ perform well at detecting large changes in a process mean.  Hunter (1986) and 

Montgomery (1996) investigated the ADL performance of the EWMA chart and 

concluded that it is similar to the ADL performance of the CUSUM chart.  For this study, 

parameter values of λ = 0.1, 0.2, and 0.3 are used. The control limit parameter is set to L 

= 2.5, 2.6, and 2.7 respectively.  These combinations of L and λ are calibrated to have the 

same sensitivity to false alarm as the CUSUM settings indicated above based on Monte 

Carlo simulation as described above. 
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2.7  Scan Stat ist ics  

Scan statistics (Fisher and Mackenzie, 1922; Naus, 1965; Priebe, et. al., 2005), also 

known as moving window analysis, investigates a random field for the presence of a local 

signal.  A small window of observations is used to calculate a local statistic.  In this paper 

a window size of 7 observations proceeding the current time period is used, and the 

window mean is used for the local statistic.  If the statistic exceeds a control limit, then 

inference can be made that a change in the random field may have occurred.  A control 

limit of 1.0 is used to calibrate the scan statistic to have the same sensitivity to false alarm 

as the CUSUM and the three EWMA approaches.  The control limit was approximated 

using Monte Carlo simulation as described above. 

 

 

3 Results 

 

3.1  Isolation of  Headquarters  

Investigating the isolation of the headquarters element in three different 

organizations will provide insight into how the network size affects the performance of 

change detection measures.  In each organization, 30 man platoon, 100 man company, 

and 9 man squad; 10% of the network will be removed.  In a sense, the magnitude of 

change is the same, however, the network size is different. 

 

The isolation of the platoon headquarters is modeled by removing the three 

headquarters members at time period 20 for the duration of the simulation.  Social 

network measures are recorded for all time periods.  There was no significant change in 

the Hamming distance.  Table 4 displays the ADL performance of the SNCD methods.  It 

can be seen that the average of the betweenness is a better measure to use for SNCD than 

either the maximum of the standard deviation of betweenness.  This is generally true for 

all magnitudes of change and sizes of organization investigated.  For the closeness 

measure, both the maximum closeness and average closeness generally outperform the 

standard deviation of closeness.  However, for a EWMA with r = 0.3, the maximum 

closeness measure has relatively poor performance.  This might suggest that the average 

closeness measure is a more robust measure of change detection.  In a single variant 

application of the EWMA, the parameter, r, makes the control chart more or less 

sensitive to a particular magnitude of change (Lucas and Saccucci, 1990; McCulloh, 

2004).  It is reasonable to consider that for the isolation of a platoon headquarters, the 

maximum closeness EWMA with r ≤ 0.2 is sensitive to detecting the change, yet the 

maximum closeness EWMA with r ≥ 0.3 is less sensitive.  This will be explored with 

other magnitudes and types of changes throughout the paper.  For eigenvector centrality, 

the maximum eigenvector centrality and the standard deviation of eigenvector centrality 

appear to be more sensitive measures of change detection than the average or minimum 

of the eigenvector centrality.  It also appears that the eigenvector centrality measures 

dominate all other measures for performance in this case. 
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Table 4. ADL Performance of SNCD on Isolation of Platoon Headquarters 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 9.32 8.24 10.16 11.52 6.76 

Maximum Betweenness 14.36 14.72 15.72 17.08 13.24 

Std Deviation 

Betweenness 16.44 

16.24 16.92 18.52 15.24 

Average Closeness 10.68 9.08 13.60 17.52 10.48 

Maximum Closeness 8.76 6.00 10.60 37.96 8.64 

Std Deviation Closeness 34.48 34.72 34.52 35.68 27.08 

Average Eigenvector 

Cent 31.28 

31.28 31.28 31.28 24.00 

Minimum Eigenvector 

Cent 14.36 

14.36 14.28 15.56 14.88 

Maximum Eigenvector 

Cent 5.24 

5.40 5.80 7.52 4.00 

Std. Dev Eigenvector 

Cent 5.92 

4.88 6.40 6.96 3.64 

 

Statistical process control is a powerful statistical method for detecting the change.  

Figures 2 and 3 show the average betweenness score for a baseline simulation run (no 

change) and one of the simulation runs with the headquarters isolated.  It can be seen that 

there is no dramatic difference between the figures.  Figures 4 and 5 show the CUSUM 

statistic value for the baseline simulation run and the simulation run with the 

headquarters isolated.  The dramatic difference in the plots can clearly be seen, paying 

attention to the values on the y-axis of the plots. 

 

 
Figure 2. Baseline Betweenness Score 
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Figure 3. Isolation of HQ Betweenness Score 

 

 

 
Figure 4. Baseline CUSUM Statistic Value 

 

 

 
Figure 5. Isolation of HQ CUSUM Statistic Value 

 

The plot in Figure 5 clearly shows a sharp and sudden increase beginning at time 

period 20, which is when the isolation of the HQ element occurs.  There is a similar 
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performance for other types of change imposed on the network, and other SNCD schemes 

that are used.  The CUSUM is simply used to illustrate the power of the general change 

detection approach.  Other magnitudes and types of change will be compared by simply 

reporting the ADL from when a change occurs until the SNCD scheme signals. 

 

The isolation of the Company Headquarters was modeled by removing the 10 soldier 

headquarters section at time 20 for the remainder of the simulation.  This is very similar 

to the platoon example, in that 10% of the organization is removed.  Social network 

measures are again recorded for all time periods.  The Hamming distance was not 

effective at signaling a change in the network.  Table 5 displays the ADL performance of 

each of the SNCD methods applied to the 100 node network.  Again, it can be seen that 

the average of the betweenness is a more effective measure of change detection than the 

maximum or the standard deviation of betweenness.  The performance of the closeness 

measures behave as they did in the case of platoon headquarters isolation.  In this case, 

the maximum eigenvector centrality does not appear to be as effective of a measure for 

detecting change as does other measures.  However, the standard deviation of eigenvector 

centrality still dominates all other measures for change detection performance. 

 

Table 5. ADL Performance of SNCD on Isolation of Company Headquarters 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 11.16 11.08 10.20 13.48 6.96 

Maximum Betweenness 17.32 17.76 18.20 20.12 13.72 

Std Deviation 

Betweenness 18.08 

19.40 20.88 22.52 17.36 

Average Closeness 11.16 9.44 12.52 15.64 9.40 

Maximum Closeness 10.44 9.72 12.64 51.76 9.60 

Std Deviation Closeness 41.88 39.48 42.20 43.44 40.76 

Average Eigenvector 

Cent 35.84 

36.72 34.84 34.84 29.24 

Minimum Eigenvector 

Cent 16.00 

17.96 17.88 16.76 13.60 

Maximum Eigenvector 

Cent 26.40 

30.76 29.64 29.24 25.44 

Std. Dev Eigenvector 

Cent 10.40 

10.72 9.36 9.48 6.44 

 

The isolation of squad leadership was modeled by removing the squad leader at 

time 20 for the remainder of the simulation.  This is also similar in that 11% of the 

organization is isolated.  Table 6 shows the SNCD performance at the squad level, 9 node 

network.  It is not clear that certain measures perform better than others for change 

detection in the 9 node network.  It appears that the measures of average betweenness, 

average closeness, and the standard deviation of eigenvector centrality become better 

measures of network change as the size of the network increases.  However, they do not 

necessarily perform worse on a small network.  While an extensive study of the 
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sensitivity of each measure to the network size is beyond the scope of this paper, it holds 

the promise of fruitful future research. 

 

Table 6. ADL Performance of SNCD on Isolation of Squad Leader 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 16.12 15.76 16.32 17.92 12.32 

Maximum Betweenness 16.64 17.40 19.52 18.56 11.56 

Std Deviation 

Betweenness 17.68 

17.76 18.20 18.72 12.08 

Average Closeness 15.16 15.84 16.48 15.60 11.72 

Maximum Closeness 18.72 19.60 18.68 23.80 14.32 

Std Deviation Closeness 16.20 16.08 15.52 16.24 12.88 

Average Eigenvector 

Cent 24.12 

24.12 24.12 24.12 15.12 

Minimum Eigenvector 

Cent 17.84 

18.48 17.04 18.08 12.36 

Maximum Eigenvector 

Cent 19.36 

21.56 20.56 20.56 13.84 

Std. Dev Eigenvector 

Cent 17.08 

18.72 18.36 17.44 12.36 

 

 

3.2  Loss of  Subordinate Element  

 

The loss of a subordinate element provides insight into how the magnitude of change 

affects change detection performance.  For the 30 man platoon and the 100 man 

company, a nine man squad is isolated.  This represents 30% of the platoon and 9% of the 

company.  This change is obviously not feasible for the nine man squad, since it would 

involve removal of the entire organization. 

 

The infantry platoon had one squad removed from the simulation at time period 20, 

for the remainder of the simulation.  Social network measures were recorded for each 

time period.  There were no significant or marginally significant changes in Hamming 

distance between sequential networks.  The ADL for each measure is reported in Table 7.  

Again, it can be seen that the average of the betweenness outperforms other betweenness 

measures.  The closeness measures perform as in previously investigated cases.  The 

minimum eigenvector centrality outperforms the maximum eigenvector centrality for 

most of the SNCD schemes for this particular type and magnitude of change.  The 

standard deviation of eigenvector centrality still outperforms other eigenvector centrality 

measures, however, it is no longer dominates all other measures. 

 

 

 

 



15 

 

Table 7. ADL Performance for Loss of Subordinate Element in a Platoon 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 6.96 6.00 8.68 12.16 8.12 

Maximum Betweenness 9.52 7.44 11.12 13.24 7.80 

Std Deviation 

Betweenness 9.16 

7.40 9.48 12.72 6.84 

Average Closeness 9.64 8.36 12.72 19.28 11.40 

Maximum Closeness 9.32 9.16 12.36 31.56 9.52 

Std Deviation Closeness 18.96 16.44 19.40 26.24 17.04 

Average Eigenvector 

Cent 29.36 

29.36 29.36 29.36 20.60 

Minimum Eigenvector 

Cent 10.08 

9.64 12.24 12.60 10.28 

Maximum Eigenvector 

Cent 11.72 

12.04 11.88 20.60 10.84 

Std. Dev Eigenvector 

Cent 8.48 

6.28 9.80 10.44 6.88 

 

The Infantry Company also had one squad removed at time 20 for the remainder of 

the simulation.  The results for the Company network are shown in Table 8.  It generally 

takes longer to detect the changes in the Company network.  This was also observed in 

the isolation of the headquarters.  This implies that the size of the network could impact 

the speed of change detection.  The average betweenness, average closeness, and 

standard deviation of eigenvector centrality appear to outperform other measures for 

change detection performance.  The maximum closeness measure dominates other 

measures in all cases except for the EWMA with r = 0.3.   

 

Table 8. ADL Performance for Loss of Subordinate Element in a Company 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 13.64 11.72 13.80 20.60 12.68 

Maximum Betweenness 23.80 19.64 23.80 30.72 25.44 

Std Deviation 

Betweenness 24.84 

18.12 24.96 25.52 22.04 

Average Closeness 9.72 7.4 13.44 14.96 9.80 

Maximum Closeness 6.92 4.92 7.48 53.16 6.32 

Std Deviation Closeness 45.44 47.92 47.96 50.88 43.68 

Average Eigenvector 

Cent 34.72 

36.60 34.72 34.72 30.64 

Minimum Eigenvector 

Cent 18.68 

19.96 19.64 23.88 18.32 

Maximum Eigenvector 

Cent 18.28 

25.80 25.00 27.20 25.88 

Std. Dev Eigenvector 

Cent 9.52 

9.92 11.88 15.32 8.72 
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3.3  Addit ion of  New Subordinate Element  

Another type of change is the addition of a new subordinate element.  A squad is 

added to both the 30 man platoon and the 100 man company. 

 

The infantry platoon had one squad that was not present initially, and added at time 

period 20.  Social network measures were calculated for each time period.  SNCD 

methods were applied to the data.  Results are shown in Table 9.  Although the speed of 

change detection is much faster for this type of change, the same performance trends are 

seen as before.  For betweenness measures, the average outperforms the maximum or the 

standard deviation.  The average closeness and maximum closeness measure perform 

well, however, the maximum closeness does not perform well with an EWMA r =0.3 

scheme.  The standard deviation of eigenvector centrality almost completely dominates 

other measures. 

 

Table 9. ADL Performance for Addition of Subordinate Element in a Platoon 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 1.60 1.52 1.68 1.72 1.00 

Maximum Betweenness 2.32 2.16 2.20 2.00 1.00 

Std Deviation 

Betweenness 2.36 

2.36 2.40 2.24 1.00 

Average Closeness 1.48 1.52 1.56 1.52 1.00 

Maximum Closeness 1.24 1.28 1.20 5.00 1.00 

Std Deviation Closeness 3.44 4.60 4.20 3.48 2.64 

Average Eigenvector 

Cent 31.76 

31.76 31.76 31.76 25.56 

Minimum Eigenvector 

Cent 6.24 

5.6 6.16 6.80 4.20 

Maximum Eigenvector 

Cent 4.52 

4.88 4.80 4.80 3.56 

Std. Dev Eigenvector 

Cent 1.16 

1.60 1.24 1.24 1.00 

 

The company model had a squad added at time period 20 for the remainder of the 

simulation.  Again the platoon level performance is better than the company level 

performance, shown in Table 10.  The average betweenness, average closeness, and 

maximum closeness all perform well at detecting the change.  Surprisingly, the standard 

deviation of eigenvector centrality is not an effective measure for this type and magnitude 

of change. 
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Table 10. ADL Performance for Addition of Subordinate Element in a Company 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 9.64 9.52 9.84 10.28 5.04 

Maximum Betweenness 14.52 16.96 15.80 17.44 12.16 

Std Deviation 

Betweenness 12.88 

13.16 13.32 14.56 8.92 

Average Closeness 5.32 5.8 5.36 5.24 1.44 

Maximum Closeness 4.24 5.12 4.48 6.04 1.04 

Std Deviation Closeness 10.40 18.52 12.96 12.32 10.00 

Average Eigenvector 

Cent 35.56 

37.04 38.64 37.60 30.24 

Minimum Eigenvector 

Cent 38.16 

39.32 38.04 40.84 36.40 

Maximum Eigenvector 

Cent 30.20 

33.48 34.44 29.52 30.92 

Std. Dev Eigenvector 

Cent 33.88 

33.72 37.80 44.48 33.96 

 

 

3.4  Sporadic Communication  

Sporadic communication was modeled with a squad communicating from time 

period 20 to time period 30 only.  It can be seen in Table 11 that the performance of 

different measures is much more similar than in previous types of change.  It is also 

interesting that all of the ADL values are greater than 10, which means that the change 

was detected after the organization returned to its original state.  This might be a result of 

the SNCD statistic being moved closer to the decision interval from time period 20 to 

time period 30.  When the organization returned to its original state, the statistic is much 

closer to the decision interval than it was before the change occurred.  Therefore, the 

statistic is much more likely to signal a false alarm after the sporadic change than it was 

before the sporadic change.  This increased sensitivity can therefore provide an alert that 

a sporadic change may have occurred.  Another interesting affect of the sporadic change 

is that the Hamming distance was more effective at detecting this change than it was for 

detecting other types of change.  For 73% of the simulation runs the Hamming distance 

ADL was 8.00.  For the other 27% of the simulation runs the Hamming distance did not 

signal a change.  The increased performance of the Hamming distance for sporadic 

changes might be due to the fact that there are essentially two changes of equal 

magnitude.  At time period 20, a squad was added, and at time period 30 it was removed.  

The Hamming distance only looks at the difference between the networks of two 

consecutive time periods.  With two changes, the Hamming distance is twice as likely to 

detect the change.  Unfortunately, the Hamming distance method failed to detect change 

in 27% of the simulation runs.  This failure rate renders the Hamming distance an 

unreliable change detection method by itself. 
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Table 11. ADL Performance for Sporadic Communication 

 CUSUM 

k = 0.5 

EWMA 

r = 0.1 

EWMA 

r = 0.2 

EWMA 

r = 0.3 

Scan 

Statistic 

Average Betweenness 15.08 14.20 16.12 17.56 17.76 

Maximum Betweenness 15.24 16.52 16.88 18.24 17.84 

Std Deviation 

Betweenness 14.28 

14.80 16.04 17.40 17.48 

Average Closeness 13.72 13.68 16.84 16.80 17.52 

Maximum Closeness 12.44 12.16 15.32 18.32 17.20 

Std Deviation Closeness 23.16 19.96 21.76 21.36 17.24 

Average Eigenvector 

Cent 24.32 

24.32 24.32 24.32 18.84 

Minimum Eigenvector 

Cent 12.76 

14.32 11.92 12.80 14.56 

Maximum Eigenvector 

Cent 12.96 

12.68 14.36 14.36 18.84 

Std. Dev Eigenvector 

Cent 12.88 

14.20 16.80 16.48 21.28 

 

All methods of SNCD were ineffective for the Company network.  The sporadic 

change did not persist long enough to signal a possible change in most of the runs.  The 

squad level network was not investigated for this type of change, due to a lack of context. 

 

 

4 Conclusion 

Control charts are a critical quality-engineering tool that assists manufacturing firms 

in maintaining profitability.  The ability for control charts to identify changes in social 

networks has been demonstrated in a limited number of real world examples.  Introducing 

control charts to the field of network science allows one to allocate minimal resources to 

tracking the general patterns of a network and then shift to full resources when changes 

are determined. 

 

This paper contributes to the growing body of SNCD literature in two important 

ways.  Human social behavior simulation is used as a virtual experimentation platform.  

The simulation allows different SNCD schemes to be calibrated to have the same 

sensitivity to false alarms.  Once calibrated, the performance of different schemes and 

measures can be readily compared.  The simulation also allows a single and deliberate 

change to be introduced into the network.  This eliminates speculation in real-world data 

about whether and when a change actually occurred.  The virtual experiment removes 

collinear factors and allows the performance of SNCD to be studied more objectively. 

 

This particular virtual experiment provides insight into certain social network 

measures that are effective for change detection.  The average betweenness and average 
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closeness performed very well in the virtual experiment.  These two measures were also 

found to be effective for detecting changes in real-world data (McCulloh, et. al., 2007; 

2008; McCulloh and Carley, 2008).  The virtual experiments also suggest the standard 

deviation of eigenvector centrality as a powerful SNCD measure.  Perhaps future SNCD 

investigation will explore using this measure on real-world data.  While the maximum 

eigenvector centrality was an effective SNCD measure for certain changes, it was 

ineffective for others.  In all cases, the standard deviation of eigenvector centrality was 

either similar in performance to maximum eigenvector centrality or it performed better.  

Therefore, the recommended SNCD measures are average betweenness, average 

closeness, and the standard deviation of eigenvector centrality. 

 

These results do not imply that the question of SNCD is settled.  Instead, it provides 

early evidence that this type of change detection is effective.  Some thought must be 

devoted to determining what types of changes and magnitudes of change are of interest 

for applications of SNCD.  Further investigation is also required to determine the 

limitations of change detection in terms of network measures, SPC approaches, 

magnitude of change and type of change.  Some networks may also contain periodic 

effects.  Communication networks for example, may have different patterns of 

communication during daytime working hours than they have at night.  There may be 

more communication during a Monday through Friday work week than on the weekends.  

There also may be seasonal or annual trends.  Methods are required to control for this 

type of periodicity in network change detection.   

 

Future research should also focus on optimizing the parameters within SNCD 

schemes.  In the virtual experiment presented in this paper, it was seen that the efficacy of 

maximum closeness for the EWMA scheme, depended on the choice of the parameter, r.  

The ADL of a control chart scheme is also affected by the choice of parameter, as seen in 

the three different EWMA schemes in Tables 4-11.  A more complete analysis and 

construction of receiver operating characteristic (ROC) curves for different types and 

magnitudes of change would certainly benefit from the simulation approach taken in this 

paper.  It is likely that different parameterizations of SNCD will perform better or worse 

than others for certain types and magnitudes of change.   

 

Further investigation into SNCD using multi-agent simulation will likely reveal 

detection schemes that may be better for detecting certain types of changes such as 

sudden large changes or slow creeping shifts; changes in informal leaders or the isolation 

of a subordinate organization.  Usage of control charts on comparing models and 

observations should also be studied to see what specific conclusions can be obtained.  

Thus, the mathematical study of change detection in social networks is far from settled.  

These studies have a broad spectrum of possible applications in fields as diverse as 

monitoring terror networks to improving command and control of friendly military 

forces.  We will likely see a great deal of research in this area over the next several years. 
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