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ABSTRACT

To facilitate everyday activities, context-aware applications use sensors to detect what is happening
and use increasingly complex mechanisms (e.g., by using big rule-sets or machine learning) to infer
the user's context and intent. For example, a mobile application can recognize that the user is in a
conversation and suppress any incoming calls. When the application works well, this implicit
sensing and complex inference remain invisible. However, when it behaves inappropriately or
unexpectedly, users may not understand its behavior. This can lead users to mistrust, misuse, or
even abandon it. To counter this lack of understanding and loss of trust, context-aware applications

should be intelligible, capable of explaining their behavior.

We investigate providing intelligibility in context-aware applications and evaluate its usefulness to
improve user understanding and trust in context-aware applications. Specifically, this thesis
supports intelligibility in context-aware applications through the provision of explanations that
answer different question types, such as: Why did it do X? Why did it not do Y? What if 1 did W,
What will it do? How can I get the application to do Y?

This thesis takes a three-pronged approach to investigating intelligibility by (i) eliciting the user
requirements for intelligibility, to identify what explanation types end-users are interested in
asking context-aware applications, (ii) supporting the development of intelligible context-aware
applications with a software toolkit and the design of these applications with design and usability
recommendations, and (iii) evaluating the impact of intelligibility on user understanding and trust
under various situations and application reliability, and measuring how users use an interactive
intelligible prototype. We show that users are willing to use well-designed intelligibility features,
and this can improve user understanding and trust in the adaptive behavior of context-aware

applications.
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1 INTRODUCTION

Over the past 20 years, with the miniaturization and commoditization of computing power, we have
moved away from the desktop paradigm of computing to that of ubiquitous computing (Ubicomp).
This manifests Weiser's vision of a world with ubiquitous, invisible computing [Weiser, 1991]
embedded in smart ambient environments and carried by end-users in small devices. Anticipating,
adapting, and servicing user needs, these Ubicomp systems were envisioned to work calmly and
quietly, remaining in the background [Weiser and Brown, 1997], not getting in the way of the users’

work or activities.

An important part of this Ubicomp vision is context-aware computing [Dey, Abowd, and Salber,
2001; Schilit, Adams, and Want, 1994] with applications that automatically adapt and tailor their
behavior in response to the user’s current situation (or context), such as the user’s activity, location,
and environmental conditions. Using sensors to recognize or infer the user’s intent or situation,
context-aware applications do not need explicit user input to carry out their functions. Hence, these
applications implicitly determine what is happening and complement the user’s activity without

needing the user’s attention. Examples of context-aware applications include:

e DMobile tour guides, e.g., CyberGuide [Abowd et al., 1997], GUIDE [Cheverst et al., 2000]),

e Reminder systems, e.g., CybReminder [Dey and Abowd, 2000];

e Monitoring and awareness systems, eg., Digital Family Portrait [Mynatt et al, 2001],
embedded assessment of the elderly [Lee and Dey, 2010; 2011], domestic activity [van
Kasteren et al., 2008], coworker awareness [Lim, Brdiczka, and Bellotti, 2010];

e Interruption management, e.g., for Instant Messaging [Avrahami and Hudson, 2006], on the
mobile phone [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011], and in the office
[Tullio et al., 2007];

e Coordination, e.g., family transportation [Davidoff et al, 2011];

e Service or device automation, e.g., Intelligent Office System [Cheverst et al., 2005]
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Consider using context-awareness to manage interruption on a mobile phone. With the
proliferation of smart mobile phones, mobile applications can leverage embedded sensors in the
phones to provide context-awareness. A compelling application is for the phone to automatically
detect what the user is doing to determine whether it is an appropriate time for the user’s contacts
to call and interrupt her. For example, the application can detect if the user is in a conversation
(using the microphone for sensing and machine learning for inference) at the office (using Wi-Fi or
GPS sensing), or detect if she is driving a car (using the accelerometer for sensing and machine

learning for inference). Using a set of rules, it can infer whether the user is available.

In the previous example, as with many context-aware applications, the user does not need to
explicitly inform the application of her availability, or more generally, of her contextual situation,
and can expect the application to serve her need to be uninterrupted without her involvement. The
application uses implicit sensing, and complex inference to support context-awareness.

However, these designs and capabilities can lead to some user interaction issues.

1.1 THE PROBLEM — LACK OF INTELLIGIBILITY

Since context-aware applications sense implicitly and act quietly, these applications lack the
affordances [Gibson, 1979] to allow end-users to be aware of what they know or what they are
doing. Bellotti et al. [2002] point out that with the vision of Ubicomp making the interface invisible,
it would become difficult for these systems to manifest themselves and allow users to make sense of
them. Dourish [1996] argues that interactive systems should give “accounts” — reflective

representations of their operations and externally observable states.

The complex inference mechanisms employed by context-aware applications also increase the
difficulty of understanding how these applications reason and decide. Bellotti and Edwards [2001]
propose that context-aware systems must be intelligible — “able to represent to their users what
they know, how they know it, and what they are doing about it.” They believe that, along with
enforcing user accountability, intelligibility “must be present for context-aware systems to be
useable, predictable, and safe.” Bellotti et al. [2002] also challenge Ubicomp systems to support
alignment between the user and system, by making the system state perceivable, persistent, and
query-able, and providing timely and appropriate feedback. Indeed, this lack of intelligibility has
been empirically observed. Barkhuus and Dey [2003a, b] found that although end-users want to use

context-aware applications, they have serious issues with the lack of understandability, loss of
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control, loss of privacy, information overload; users find automatic behavior useful but difficult to

understand.

Trust in automation guides reliance when the complexity of the automation makes a complete
understanding impractical [Lee and See, 2004]. This lack of system intelligibility in context-aware
applications and user confusion can lead users to mistrust and misuse, and even abandon them
[Muir, 1994; Muir and Moray, 1996]. Therefore, ensuring end-users have sufficient user trust of
these systems is crucial to supporting their adoption. Lee and See [2004] described three attributes
of trust in automation: predictability, performance, and purpose. Predictability and performance are
particularly relevant to the problem of the lack of intelligibility. Without sufficient understanding of
context-aware applications, end-users will find these applications’ behaviors less predictable, and
this can compromise user trust. Furthermore, context-aware applications are prone to ambiguity
and uncertainty [Greenberg, 2001]. This can cause them to make wrong inferences and misbehave,
compromising their performance. A common strategy for improving the performance of context-
aware applications involves user mediation, where the user resolves uncertainty [Dey et al., 2002].
Nevertheless, without intelligibility, end-users will struggle to determine the causes for uncertainty

and may not be able to improve the system performance.

1.2 A SOLUTION — EXPLANATIONS FOR INTELLIGIBILITY

Providing explanations is a popular way to improve user understanding and user trust [Johnson,
1993] in Intelligent Systems. Dzindolet et al [2003] found that even though users lose trust in
intelligent decision aids which make occasional errors, providing a description of why the aid might
fail can help to increase users’ trust. Explanations have been shown to improve user understanding
and performance in expert systems (e.g., knowledge-base systems [Davis, Buchanan, and
Shortcliffe, 1977, Gregor and Benbasat, 1999], intelligent decision aids [Glass, McGuinness, and
Wolverton, 2008; Haynes, Cohen, and Ritter, 2009]) and end-user systems (e.g., recommender

systems [Herlocker, Konstan, and Riedl, 2000], intelligent user interfaces [Myers et al., 2009]).

We employ the same strategy of providing users with explanations of application state, inference
logic, and behavior for context-aware applications. For example, a context-aware application may
mis-infer the user’s availability to receive phone calls, and allow a colleague to call him at the

library. Intelligibility will allow the user to learn why this apparent mistake happened. It could tell
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him that the application correctly inferred his location at the library, but that he had forgotten to

set a rule to be unavailable, or that his colleague ignored social norms and called anyway.

1.2.1 THESIS STATEMENT

In this thesis, we explore how to provide intelligibility in context-aware applications through
explanation interfaces. We aim to support both developers to design and implement intelligible
context-aware applications, and evaluate the benefits and limitations of intelligibility on end-users.

With the intelligibility explanations we develop in this thesis, we claim that:

Intelligibility in context-aware applications can improve end-users’ understanding
of how these applications work and, consequently, increase end-users’ trust to use

these applications.

1.2.2 THESIS APPROACH

To prove this thesis statement, we approach the problem in three high-level stages. First, we (i)
explore what intelligibility is and define it through exploratory work, then we (ii) facilitate and
support intelligibility so that it is easier to provide it, and finally, (iii) we evaluate the usefulness of

intelligibility towards the thesis goals. Figure 1.1 outlines the chapters in this dissertation.

Requirements Support Evaluation
Literature Implementation Pilot
Review with Toolkit (Chapter 4)
(Chapter 2) (Chapter 6)

Elicitati + Q(;aSi;Fie};d
—P> fromlcslczn:gos Design and (Chapter 9)
) Usability

(Chapter 5)

(Chapter 7) 1 ‘Paper’ Prototype

¢ (Chapter 8)

Design
Recommendations

B R

Figure 1.1. Three-stage approach to thesis with various projects connected by progression.

Arrows indicate how findings and implications from one study applies to the next. We

summarize our taxonomy for Intelligibility in Chapter 3.
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1) REQUIREMENTS GATHERING AND SPECIFICATION

In the first stage, we sought to define a framework for intelligibility. We accomplish this with a
literature review of explanations in intelligent systems (Chapter 2), and empirical work eliciting
what explanations potential users of context-aware applications would like to know (Chapter 5). To

this end, we have defined a taxonomy of explanation question types.

1) FACILITATION, SUPPORT, AND GUIDELINES

The next stage implements the requirements as determined from the taxonomy of intelligibility,
and provides generalized support for implementing intelligibility in context-aware applications
through a software toolkit and design recommendations. We facilitate the implementation of
intelligibility with the Intelligibility Toolkit (Chapter 6), and also explored and evaluated design and

usability issues to derive guidelines for providing and presenting intelligibility (Chapter 7).

111) EVALUATION

In the final stage, we evaluate intelligibility in context-aware applications. Using the toolkit and
design guidelines, we can rapidly prototype intelligibility in context-aware applications to test our
hypotheses. We investigated the impacts of different explanation types on user understanding and
trust of context-aware intelligent systems (Chapter 4). Next, through questionnaires, we evaluated
the impact of intelligibility on user impression of context-aware applications that are uncertain or
certain of their inferences (Chapter 8). We followed this with an evaluation of an interactive
prototype of an intelligible context-aware mobile application, where we investigated the extent of
usage of intelligibility, how well or poorly users understood the application inferences, and their

perceived usefulness of the explanations (Chapter 9).

1.2.3 INTELLIGIBILITY AS EXPLANATION TYPES

We support intelligibility through an explanation query paradigm (e.g., [Wick and Slagle, 1989; Ko
and Myers, 2003], where users can obtain explanations to questions about the context-aware

applications, such as:

What is the current value of the context?
Certainty: how certain or confident is the application of this inference?

Why is this context the current value X?

B e

Why Not: why isn’t this context value Y, instead?
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5. How To: when would this context take value Y?

6. What if the conditions are different, what would this context be?

Categorizing explanations into these Explanation Types allows us to systematically investigate their
usefulness and how to support their provision in context-aware applications. We detail our

taxonomy of Explanation Types in Chapter 3.

1.3 ScoPE AND DEFINITIONS

There are several terms and concepts that are central to this dissertation and we define them here.

In this thesis, we focus on providing and evaluating explanations in context-aware applications
used by lay end-users for everyday computing activities. We use the definition of context-
awareness as defined in [Dey, Abowd, Salber, 2001; Schilit, Adams, and Want, 1994] regarding a
positivist, constructionist view of understanding of the environment and the user through
constituent contextual cues and signals that are sensed, aggregated, interpreted, and inferred.
These can include sensors around the house (e.g., thermostats, brightness sensors), in computer
software (e.g., keyboard and mouse activity), worn on the body or in mobile devices (eg.,
accelerometers, microphones); and inferred activities and intentions such as domestic activity (e.g.,
making breakfast, using the toilet), and mobile availability and activity (e.g., driving, talking in a
meeting). On the other hand, the use of intelligibility, especially in a social application (e.g., Laksa in
Chapter 7), can support the interactionist, phenomenological view of context [Dourish, 1994], where
context is relational, dynamic, depends on the social interactions, arises from activity, and is co-
constructed with the user. Intelligibility can provide users with more information to make better

sense of the situation.

There can be many different types of users of intelligent systems, with different relationships to the
systems and different domain expertise. We have scoped our investigation into context-aware
applications to cover “everyday” activities as defined in [Abowd, Mynatt, an Rodden, 2002;
Greenfield, 2006] (e.g., reminder systems, interruption management), rather than work task-
oriented or professional decision aids (e.g., medical diagnosis knowledge bases, task planning).
Finally, we target lay end-users as the consumers of the intelligibility features we seek to provide.
We do not expect these users to have technical or computer science expertise, nor will they

necessarily have deep interest in understanding the detailed operation of novel context-aware
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applications. Instead, we expect these users to primarily focus on their activities and pay attention

to intelligibility occasionally, e.g., when the applications misbehave or act unexpectedly.

We intend for context-aware applications to provide intelligibility to help end-users learn and
understand them. Much research has been performed on explanations in intelligent systems, using
different terms to describe an intelligible application, such as: explainable, interpretable [Mozina et
al., 2004], transparent [Cheverst et al., 2005; Cramer et al., 2008; Ho6k, 2000], scrutable [Assad et
al, 2007; Barua, Kay, and Kummerfeld, 2011], palpable [Rimassa, Greenwood, and Calisti, 2005],
“glass box” [Ho0k et al., 1996], white-box [Herlocker, Konstan, and Riedl, 2000], seamful [Chalmers
and MacColl, 2003], etc. Given the complex inference mechanisms and sensors used in context-
aware applications, there will be terms and concepts central to their operation that end-users may
not understand. Therefore, intelligibility can help end-users to learn the relevant terminology and
concepts, so that they may properly scaffold and form more accurate mental models [Johnson-Laird,
1983]. We do not intend for end-users to learn these concepts to the extent which students learn
from their coursework (as is the intention of Intelligent Tutoring Systems, e.g., [Anderson et al.,
1995]), nor do we expect end-users to understand the application to be able to debug their code
(e.g., Whyline [Ko and Myers, 2003]). We aim to use intelligibility to allow end-users to understand
the factors or sensors that influence the inference and decision making in context-aware
applications, so that they may be aware of and appreciate the competence of the applications’
complex inference (assuming reliable performance). We also want end-users to understand the

limitations of the applications.

) o«

We aim is to improve end-user trust by improving the end-user’s “ability to estimate predictability
of the [application’s] behaviors” by making the behaviors “observable” [Muir, 1994]. Lee and See
[2004] identified three processes underlying trust: analytic, analogical, and affective. Analogical
trust is influenced by the context, environment of use, and other social factors such as reputation.
Affective trust is influenced by the user’s emotional response and allows her to reduce her cognitive
burden when deciding how much to trust the application. Parasuraman and Miller [2004] found that
differences in machine etiquette (e.g., providing messages at appropriate or disturbing times, whether
polite or impolite) can influence user trust more than the automation reliability. This demonstrates
an influence of affect on user trust. Analytic trust relates to the user’s understanding of the logic of
the application and is influenced by the user’s cognition. Though we acknowledge the importance of
each type of trust, in this thesis, we focus on promoting analytic trust by improving the user’s

understanding of the application’s behavior. We also aim to help users to better calibrate their trust
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[Dzindolet et al., 2003] in context-aware applications with their increased understanding of the

competence and limitations of these applications.

Finally, Edwards, Newman, and Poole [2010] noted that low-level infrastructure on which
applications are built should also be made intelligible. Although we provide a toolkit to support

intelligibility, our focus in this thesis is to support intelligibility for end-user applications.

1.4 CONTRIBUTIONS

This dissertation makes a number of major contributions:

o Evidence that end-users want intelligibility in context-aware applications.

e A taxonomy of explanation types that end-users desire to have provided for context-aware
applications.

e Atoolkit for supporting the development of intelligibility in context-aware applications.

e Algorithms to generate multiple explanation types from several rules and machine learning
inference models.

e Design recommendations for intelligibility features.

e A prototype of an intelligible context-aware application developed through several
iterations.

e Investigation of caveats and limitations of providing intelligibility (usability issues and
intelligibility of uncertain systems)

e Evidence that end-users can use intelligibility features to learn about context-aware
inferences and behaviors

o Evidence that providing intelligibility can improve end-user understanding and trust in

context-aware applications

1.5 OUTLINE

The rest of the dissertation is organized as follows:

To give a background to this dissertation, in Chapter 2, we review explanations in intelligent
systems, various taxonomies of explanations, and systems that provide explanations to users. In

Chapter 3, we give an overview of intelligibility as defined in this dissertation. We describe research
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questions that drove various projects in the thesis and introduce a taxonomy of explanation types
that intelligible context-aware applications can provide. The following chapters are organized

chronologically and in the order that follows from the chain of reasoning in our research questions.

Chapter 4 describes early work demonstrating the usefulness of intelligibility to help end-users
understand and trust the output of a context-aware intelligent system. Particularly, we compare the
effectiveness among four explanation types. Subsequently, in Chapter 5, we describe our expansion
of the list of explanation types through an elicitation study by presenting questionnaires of various

applications and scenarios to participants.

Chapter 6 describes how we support the implementation of our taxonomy of explanation types with
an Intelligibility Toolkit to automatically generate and present explanations from multiple inference
models. However, the toolkit does not provide design recommendations on how to present
explanations to users. In Chapter 7, we describe a user study that explored design and usability

issues for intelligibility interfaces in a context-aware application prototype, Laksa.

Having designed a usable, intelligible context-aware application, we evaluate the impact of
intelligibility. Chapter 8 describes a questionnaire study that investigated the positive and negative
impact of intelligibility for application inferences with high or low certainty, respectively. Chapter 9
describes a quasi-field study evaluating the usage and usefulness of intelligibility in our Laksa
prototype, showing how usage of intelligibility helps end-users to better understand and

troubleshoot the application inference.

In Chapter 10, we conclude the dissertation with a summary of its contributions and a discussion of
its limitations. We include several appendices describing detailed technical aspects of the
Intelligibility Toolkit, descriptions of the intelligibility user interface of the Laksa prototype, and

experiment study materials.
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2 RELATED WORK:
EXPLANATIONS IN INTELLIGENT
SYSTEMS

In this chapter, we review the explanation taxonomies developed in several research domains of
different types of intelligent systems. Research in several domains have explored the impact of
explanations to improve user trust and acceptance of intelligent systems, including knowledge-
based systems (see a review in [Gregor and Benbasat, 1999]), task processing systems (e.g., [Glass,
McGuinness, and Wolverton, 2008; Haynes, Cohen, and Ritter, 2009; McGuinness et al.,, 2007;
Silveira, de Souza, and Barbosa, 2001]), intelligent tutoring systems (e.g., [Graesser, Person, and
Huber, 1992; Graesser, Baggett, and Williams, 1996]), recommender systems (e.g., [Herlocker,
Konstan, and Riedl, 2000; Cramer et al., 2008]), case-base reasoning (CBR) (e.g., [Kofod-Petersen,
Cassens, and Aamodt, 2008; Sgrmo, Cassens, and Aamodt, 2005]), end-user debugging (e.g., [Ko and
Myers, 2004; 2009; Myers et al, 2006]), and context-aware systems (e.g., [Assad et al., 2007;
Cheverst et al., 2005; Tullio et al., 2007; Vermeulen et al., 2009]), etc. These domains can be
categorized into two groups, namely, expert systems handling professional tasks and end-user
systems handling "everyday" activities. We discuss how we draw inspiration from these works that
have investigated explanations over the past several decades, and identify gaps and opportunities

for providing explanations for context-aware applications in ubiquitous computing (Ubicomp).

2.1 EXPLANATIONS IN EXPERT SYSTEMS

Much early research on explanations in intelligent systems were focused on expert systems to help
professionals to learn how the system makes decisions, or to help novices to learn about decision

making. As such, several frameworks of explanations have been developed.
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2.1.1 KNOWLEDGE-BASED SYSTEMS

Drawing from explanation facilities of many knowledge-based systems (KBS), Gregor and Benbasat
[1999] identify three classification methods of explanation type: content, presentation format,
and provision mechanism. They found that KBS systems provide four content types of

explanations:

1. Trace or line of reasoning. In response to the typical “why” question, this explanation type
describes the decision processes taken by the system, why or how it came to its result.
Explanations that EMYCIN [Van Melle, Shortliffe, and Buchanan, 1984] provided are of this
type.

2. Justification or support. Introduced in the XPLAIN system [Swartout, 1983], this type of
explanation provides deeper domain knowledge to justify the system’s process. These deep
explanations can incorporate different types of knowledge such as analogies, cases, and text
books.

3. Control or strategic. Introduced in NEOMYCIN [Clancey, 1983], this type of explanation
explains the “system’s control behavior, and problem solving strategy.” This provides the
user with the design rationale that the developers employed for the application logic.

4. Terminological. Distinguished by Swartout and Smoliar [1987], this type of explanation
familiarizes users with domain terms and concepts by providing terminologies and

definitions.

There are several factors, such as user expertise, that affect when certain explanation content
types are more important. For example, novice users would use justification and terminology
explanation types more as they learn how to use the expert system; expert users would mainly use
explanations to resolve anomalies and for verification, so they would prefer reasoning traces and

control types of explanations.

Presentation styles used in KBS systems have been identified to fall into two categories: Text-
based and Multimedia. Text-based explanations can either be in the form of programming
language syntax, a canned text of the programming logic, or natural language translations of the

logic. Multimedia explanations use graphics, images, animations, or sound.

Gregor and Benbasat have also identified three types of mechanisms to provide explanations: user-

invoked, automatic, and intelligent. User-invoked (also known as on-demand, optional, or
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voluntary) explanations can be provided through menus, commands, and hyperlinks, and users can
choose whether or when to invoke them. Automatic explanations are provided all the time, and
users do not get a choice of whether to receive them. To maximize exposure of certain explanations,
and minimize the perceived effort of obtaining these explanations, Everett [1994] recommends
making these explanations automatic. Intelligent provision of explanations depend on the system
determining when is most appropriate to provide the explanations. Gregor and Benbasat discuss
employing user modeling to track their expertise and mental model (and whether they are making

mistakes) for the system to determine when to provide explanations.

2.1.2 INTELLIGENT DECISION AID

The knowledge-based systems discussed by Gregor and Benbasat [1999] deal mainly with
supporting decisions, or helping users decide what to do, rather than acting on their behalf. On the
other hand, there is a growing number of systems that are being designed to be more proactive, and
have greater autonomy to carry out tasks. These systems, also called intelligent agents, would have
to gain the trust of users before they can be widely accepted. One way to increase user trust is to
increase transparency in these systems, such as by answering explanation questions. Haynes,
Cohen, and Ritter [2009] did an extensive review of explanations in intelligent agents (systems that
“make use a knowledge-base and algorithm to carry out its responsibilities”), using a wider scope of
systems than just KBS. They extend and reorganize Graesser et al.s [1992] classification of 13
explanation-seeking questions into a framework of four main explanation types: ontological,

mechanical and operational explanations, and design rationale.

e Ontological explanations provide “what” information to help users make sense of a concept

or a component of the system, including:

o What - identity. Basic ontological information about the existence of an agent or
agent component, or its identifier.

o What - definition. Information beyond simply identifying an agent or component
and involves providing it with some meaning in context through definitions.

o What - relation. Information about the static structural relation between agents or
their components, such as spatial information.

o What - event. Especially distinguished, this is information about entities that are

primitives in describing causal explanations, and can provide temporal information.
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e Mechanistic explanations deal with the how of agent behavior. The main type of question is
"How does it work?" This type of explanations provides information about how different
components interact to give rise to more complex actions.

e Operational explanations answer the question of "How do I (the user) use it (the system)?"
They provide instructions for the user or other agents to enact some agent behavior.

e Design rationale explanations deal with why questions at multiple levels from system
component constraints to designer intentions to law-like relations. In relation to the
taxonomy provided by Gregor and Benbasat, the design rationale spans reasoning trace and

strategic. Haynes et al. categorize design rationale into four parts:

o Deductive-Nomological (D-N). Explanations referring to some law or law-like
relation between entities and/or agents. This is based on the D-N model that
suggests that explanations should take the form of deductive statements predicated
on well-established truths [Hempel, 1965].

o Functional. Design intent of the function of a created agent or component.

o Structural. Explanations that refer to the structure of the system constraints that
cause an entity or event to happen.

o Pragmatic. Explanations to requests that depend on the user’s interest value. These

explanations are in response to either why not or what if questions.

In an empirical study using a virtual pilot cognitive model intelligent agent, Haynes et al. found that
most explanation seeking questions (58%) were ontological, followed by mechanistic (19%), then

operational (12%) and design rationale (11%).

McGuinness and colleagues have explored explanation needs for task processing systems,
particularly with the Cognitive Assistant that Learns and Organizes (CALO, 2007). Focusing on
temporal characteristics, McGuinness et al. [2007] articulated several types of explanation

questions that users of task processing systems are interested in:

e Motivation for tasks. In response to the question “why are you doing <task>?", answer
strategies can (i) include identifying the task requestor (attribution), (ii) indicating that the
task is a subtask that supertask depends on, (iii) indicating the task is next-in-step of a task

procedure, and (iv) indicating that certain terminating conditions have not yet been met.
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o Task status. This regards to (i) what tasks are being done, (ii) what the status of those
tasks are, (iii) whether certain tasks are not being done (what didn’t), and (iv) whether any
tasks are being hindered.

e Task history. This regards to (i) what the system has done recently, (ii) what it has started
recently, (iii) why it did a task (in the past, as opposed to why it is doing), (iv) why it didn’t
do a task, (v) how it did a task, and (vi) and variants of reasoning regarding what didn’t
questions.

e Task plans. While task history looked into past actions, task plans looks into the future
planned actions. This regards to (i) what the system will do next, (ii) when it will start the
task, (iii) why, and (iv) how it expects to do it.

e Task ordering. This regards to (i) why a task is being done before another, (ii) why some
other task has not yet been started, and (iii) what needs to be done to complete a task.

o Explicit time questions. This regards to (i) when a task will begin, or (ii) end, (iii) when a
task happened, (iv) how long it took to complete, (v) why a task took so long to complete,

(vi) why a task is already being done instead of later.

While users of task processing systems may have many questions regarding time, they have other
information requirements before they can appropriately trust these applications. Through
structured interviews with users of CALO, Glass et al. [2008] investigated several factors that
influence their level of trust. They used Silveira et al.’s taxomony [2001] of users’ frequent doubts

to derive a list of question types users are interested in:

e Choice: What can I do right now?

e Procedural: How can I do this?

o Informative: What kinds of tasks can [ accomplish?
e Interpretive: What is happening now? Why?

e Guidance: What should I do now?

e History: What have I already done?

e Descriptive: What does this do?

o Investigative: Did [ miss anything?

e Navigational: Where am I?
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These questions are ordered by the rated importance from the interviews. While question types
defined by McGuinness et al. [2007] were mainly about time, and about the system, these questions

are about the user and his activity.

2.1.3 INTELLIGENT TUTORING SYSTEMS

While not quite expert systems to aid workers in their work, Intelligent Tutoring Systems provide
expert knowledge (of the domain or concept being studied) to students. The knowledge or
information can be provided via explanations. Graesser et al. have explored how students ask
questions and derived several explanation types and reasons for question asking. Graesser and

McMahen [1993] four conditions when questions are asked:

o Anomalous event. Questions are asked about the causes and consequences of an unusual
event, e.g., if someone faints in a restaurant.

e Contradiction. Questions are asked to resolve a contradiction between two propositions,
e.g., two people who claim to be married but are not wearing wedding rings.

e Obstacle to a goal. Questions are asked to remove or circumvent an obstacle to a goal, e.g.,
when a car fails to start, the driver will ask why it will not start and how it can be fixed.

e Equally attractive alternatives. Questions are asked to break a tie between a set of

alternatives, e.g., pros and cons of switching jobs, choosing different products.

From empirical analyses of questions in educational settings, Graesser and Person [1994] grouped

Lehnert’s [1987] 16 question categories into three depth levels:

e Simple / shallow questions
o Verification: invites a yes or no answer
o Disjunctive: [s X, Y, or Z the case?
o Concept completion: Who? What? When? Where?
o Example: What is an example of X?
e Intermediate questions
o Feature specification: What are the properties of X?
o Quantification: How much? How many?
o Definition: What does X mean?

o Comparison: How is X similar to Y?
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e Complex / deep questions
o Interpretation: What does X mean?
o Causal antecedent: Why / How did X occur?
o Cause consequence: What next? What If?
o Goal orientation: Why did an agent do X?
o Instrumental / procedural: How did an agent do X?
o Enablement: What enabled X to occur?
o Expectation: Why didn’t X occur?
o Judgmental: What do you think of X?

While these questions are not specifically for end-users to ask of automated systems, many of them
are relevant (e.g., example, feature specification, comparison, causal antecedent, goal orientation,
expectation). Point and Query, an educational software [Graesser, Langston and Baggett 1993]

provides explanations to questions in terms of levels of knowledge:

e Taxonomic knowledge: What does X mean? What are the types of X? What are the
properties of X?

o Sensory knowledge: What does X look like? What does X sound like?

e Goal-oriented procedural knowledge: How does a person use / play X?

e Causal knowledge: What causes X? What are the consequences of X? How does X affect

sound? How does a person create X?

2.1.4 RELATION TO CONTEXT-AWARE APPLICATIONS

The aforementioned frameworks provide a rich design space for different types of explanations.
However, they cater to expert systems with users who carry out tasks that require expert decision
making. Context-aware applications in ubiquitous computing focus on helping lay end-users in
"everyday" activities [Abowd, Mynatt, and Rodden, 2002], so their users would require a different
set of explanations. For example, we expect the functional purpose of context-aware applications to
be clearer than expert systems because, as everyday products, their functional scope would be
limited. Therefore, we do not anticipate functional explanation types to be very necessary.

Nevertheless, some of these explanation types remain useful for context-aware applications.

In this thesis, the explanations we provide for intelligibility are mainly about the application's line

of reasoning, or mechanistic. We treat context-aware applications as inference and decision agents,



18 CHAPTER 2 | RELATED WORK: EXPLANATIONS IN INTELLIGENT SYSTEMS

and, through intelligibility, reveal their reasoning process. We take a user-centered approach, and
therefore, also provide pragmatic design rationale explanations to explain to end-users how the
application inferred in the context of the user's goals (why not) or present understanding of the
situation (what if). While users should not have to be overly bothered by technical terminology
when using everyday applications, to explain some of the low-lying contexts and reasoning traces,
terminological explanations may be needed to help users learn relevant explanatory concepts. We
also expect users to act on the information they learn from intelligibility, but they would need to
know how they can modify or control the context-aware application. Therefore, operational

explanations would also be relevant to provide in context-aware applications.

2.2 EXPLANATIONS IN END-USER SYSTEMS

Research into explanations for KBS or task processing systems tends to focus on trained or
reasonably knowledgeable users. However, explanations can be useful for novice end-users to

understand unfamiliar programs too, even those that help with their everyday tasks.

2.2.1 RECOMMENDER SYSTEMS

Currently, explanations of end-user systems are most accessible to people through online
recommender systems like Amazon's recommendation of products, Pandora.com's song selection,

etc. Herlocker, Konstan, and Riedl [2000] described two sources of errors: model/process, and data.

e Model/process errors are due to the limited feature space of the computational model
used;

e Data errors are due to (i) not enough data, (ii) poor or bad data, or (iii) high variance data.

To support explanations, Herlocker et al. discuss white-box and black-box models. The white-box
model divides the Automated Collaborative Filtering (ACF) system into three parts: user profile
ratings, similarity measures used to compare profiles, and the model or mechanism of how the
ratings are combined to form recommendations. These explanation capabilities may help users
understand the conceptual model of the system, but this may not be desirable all the time,
especially for guarding proprietary methods. The black-box model is appropriate for such
situations, and use alternative information to explain the system. Techniques include providing
information about past performance justification (e.g. that the system was 80% correct in the past

when recommending this), and using external supporting evidence (justification type explanations).
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Tintarev [2007] classifies the explanation types used in recommender systems in several types
such as case-based, content-based, collaborative, demographic, and knowledge-based. Much
of these explain the recommendations regarding the similarity of the attributes of the entities of
interest (e.g., speed of camera), of the user (e.g., demographic information), preference similarities

between users (e.g., the user preferring low prices).

To explore the impact of explanations on consumers’ trusting beliefs in online shopping (e-
commerce) recommendation agents (RAs), Wang and Benbasat [2007] examined the effects of three

types of explanations:

o How explanation to reveal the line of reasoning used by the RA. This increased perceived
benevolence that the RA acts in the consumer’s interest.

e Why explanation to justify the importance and purpose of the RA to consumers. This
increased perceived competence (performance) and benevolence in the RA.

o Trade-off explanation to offer objective decision guidance to help consumers identify
differences in features between products. This increased perceived integrity that the RA

adheres to a set of principles (e.g., honesty, justice, objectivity).

Note their use of the terms why and how differ from how they are used in the rest of this

dissertation.

Cramer et al. [2008a, b] investigated the effects of transparency in an art recommender, Cultural
Heritage Information Personalisation (CHIP) system, on user trust. They considered three versions
of CHIP: non-transparent, transparent (provides Why explanations listing properties the current
recommendation shares with artworks the user had previously rated positively, and ‘sure’
(showing a Confidence rating of the system’s recommendation). They found that providing Why
explanations increased user acceptance of the system, but did not improve user trust. Furthermore,

they found that Confidence (Certainty) explanations did not improve acceptance or trust.

Even though these similarity-based approaches are highly effective for recommender systems,
context-aware applications also use context information about the physical environment and
situation. Moreover, context-aware applications can use other types of models to make inferences.
From a literature survey of context-aware applications [Lim and Dey, 2010] and in Section 6.2, we

found that the most popular models are indeed different: rules, decision trees, and naive Bayes
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classifiers. Therefore, while explanations have been richly studied for recommender systems,

research into explanations for context-aware applications remains an open problem.

2.2.2 CASE-BASE REASONING

Given the focus on unique and similar products or entities that recommender systems have,
recommender systems can also be considered as systems operating on a collection of cases. This
lends itself nicely to applying techniques in Case-Based Reasoning (CBR). For example, Top Case
[McSherry, 2005] provides explanations to discriminate between different cases and explain why
one is better than another. It explains in terms of attributes of the cases, indicating whether they
are the same or different for different cases, and which attributes do not affect the

recommendation.

Some research has sought to provide frameworks for explanations in CBR. Roth-Berghofer [2004]

describes five explanation types of [Spieker, 1991] relevant to CBR:

e Conceptual explanations to describe the meaning of concepts

e Why explanations to describe the cause or justifications for an event

o How explanations as a special case of Why explanations to describe the causal chain of the
decision process

e Purpose explanations to describe the purpose of a fact or object

o Cognitive explanations as a special case of Why explanations. The previous four
explanation types explain the physical world in which the CBR system operates on, while

these explain the processing and behavior of the system.

Roth-Berghofer describes knowledge containers (vocabulary, similarity measures, adaptation
knowledge, and case-base) as components of the CBR system which contribute variously to these

explanations.
Sgrmo, F., Cassens, ]., and Aamodt [2005] identified five goals for explanations in CBR to satisfy:

e Transparency to explain how the system reached the answer

o Justification to explain why the answer is a good one

e Relevance to explain why a strategy is relevant

e Conceptualization to clarify the meaning of concepts and vocabulary

e Learning to teach the user about the domain
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Cassens [2008] employ problem frames [Jackson, 2000] to model explanation machines and system

knowledge to meet these goals.

CBR has also been applied to ambient intelligent systems (e.g., [Cassens and Kofod-Petersen, 2007;
Kofod-Petersen and Aamodt, 2003; Ma et al., 2005; Zimmermann, 2003]). For example, Cassens and
Kofod-Petersen [2007], added explanation capabilities the CREEK architecture [Aamodt, 2004] in a
simulated hospital ward domain. For user-centric explanations, they distinguish between context-
awareness (inferring the situation) and context-sensitivity (acting according to the situation) and

respectively provide different explanations:

o Elucidate why the system identifies a particular situation (context-awareness). This
explanation exposes the system’s assumptions of the environment to justify what it believes.
e Explicate why a certain behavior was taken (context-sensitivity). This explanation points

out the relevance of the system performing a particular action.

2.2.3 END-USER PROGRAMMING

End-user programming considers users whose primary task is not to program the application, but
who still do so to facilitate their task or configure the application. For example, people who use
spreadsheets to tabulate and calculate budgets can be considered end-user programmers. Ko and
Myers [2005] found that end-user programmers of the Alice programming environment [Conway et
al., 2000] asked questions when their expectations are unmet. They asked why did questions when
something unexpected occurs and why didn’t questions when something expected does not
happen. Ko and Myers subsequently develop the Whyline system [2004, 2009] that traverses the
program tree to generate reasoning traces within the program code to generate why did and why

didn’t explanations:

e  Why did the program do X?
e Why didn’t the program do Y?

Kulesza et al. [2011] developed the What You See is What You Test for Machine Learning
(WYSIWYT/ML) method that supports systematic testing of machine learning applications,
particularly for high criticality tasks. WYSIWYT /ML provides explanations of

e Confidence to indicate how certain the system was of its classification

e Similarity of how different the example is from previously trained data
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o Relevance of how able the system is to perform the classification

o History to help users track inference changes after the users make edits

This is complementary to our approach of supporting ad hoc testing of context-aware applications,
where end-users serendipitously learn about the applications’ behavior. It assumes that some end-
users will take the effort to perform such a rigorous test. We do not assume such enthusiasm and
effort of end-users, and explicitly measure their usage in our study described in Chapter 9. As
demonstrated with WYSIWYT /ML [Shinsel et al.,, 2011], explanation and testing facilities can also be
helpful for multiple stakeholders or “mini-crowds” that share the use of intelligent agents to
collectively improve the behavior of a machine learning system. However, we focus on single-user or

single-viewer use of intelligibility in this thesis.

Although machine learning is becoming popular for developers of intelligent adaptive systems, it still
remains difficult for developers to understand and debug their programs. Patel et al. has investigated
the classification pipeline [Patel et al.,, 2008], and developed several tools (e.g., Gestalt [Patel et al.,
2010], Prospect [Patel et al., 2011]) to help developers implement classifiers and analyze their data.
Although the applications investigated were for end-users, Patel et al. focused on supporting
programmers familiar with machine learning. We focus on end-users with no knowledge of machine

learning in this thesis.

2.2.4 INTELLIGENT AND ADAPTIVE USER INTERFACES

Intelligent and adaptive user interfaces are closely linked to context-aware, but typically describe
desktop-based applications, e.g., spam filters, email sorters, or office application assistants. They
typically perform user modeling to understand the user needs and adapt accordingly. To increase
their predictability to end-users, Hook [2000] argues for user-adaptive systems to be transparent.

She describes three glass box levels from [Brown, 1989]:

e Domain transparency for the user to see the application domain or concepts relevant to
the system,

o Internal transparency for the user to see the internal workings of the system, and

o Embedding transparency for the user to see a whole picture of how she relates to the

system.

Myers et al. [2006] apply the Whyline explanation types (why did and why didn’t) to end-user

“everyday” productivity tools with the Crystal framework to support these explanations in a sample
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text editor that has auto-correct features. Following this question-asking approach, Kulesza et al.
[2009] investigated the provision of why... and why not... explanations for an email client that uses
the naive Bayes machine learning classifier to sort email. Due to the probabilistic nature (rather
than deterministic or rule-based) of the naive Bayes classifier, reasoning traces were not used for
the explanations, but a representation of weights from various inputs (keywords). Explanations

were provided as a rich visualization of bar charts.

Kulesza et al. [2012] explored whether end-users can quickly build and recall sound structural mental
models of an intelligent music recommender system. They found that scaffolding with a human tutor
can help end-users to build mental models with greater soundness, and allow them to subsequently
better operate the system. Even though the scaffolding was not done through the system interface,
this gives evidence that end-users can learn to better and effectively understand such complex
systems. In this thesis, we minimize scaffolding via human tutors or instructions, such that end-users

learn about the system behavior and inference through the intelligibility provided via the interface.

2.2.5 RELATION TO CONTEXT-AWARE APPLICATIONS

It is intuitive that end-users would also ask why and why didn't questions for other "everyday"
applications, and, in the proposed thesis, we take this approach of providing explanations to these
questions, but generalize it for context-aware applications. Our work leverages some explanation
techniques from Kulesza et al., extending them to explain physical contexts that are more relevant
for context-aware applications. Furthermore, the overall approach in end-user programming is to
allow the end-user to debug the application when it behaves inappropriately. We broaden the use
of explanations to be used in more situations, even when the application is functioning

appropriately.

2.2.6 UBIQUITOUS AND CONTEXT-AWARE COMPUTING

Context-aware applications for ubiquitous computing present new challenges for providing
explanations to end-users. These applications would penetrate everyday life and have a wide
impact on end-users [Abowd, Mynatt, and Rodden, 2002]. Furthermore, many of these systems
would automatically gather information (contexts) about the user and environment and implicitly
take various actions [Dey, Abowd, and Salber, 2001]. However, such activity done “quietly” without
the user’s knowledge [Weiser and Brown, 1997], without much transparency, can be disconcerting

to users who may like to know how their information is being used.
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Bellotti and Edwards [2001] state that context-aware applications must be intelligible: being able to
“represent to their users what they know, how they know it, and what they are doing about it.” They

proposed a framework for intelligibility and accountability including four principles:

1. Inform the user of current contextual system capabilities and understandings.
2. Provide feedback including:
o Feedforward: What will happen if [ do this?
e Confirmation: What am I doing and what have I done?
3. Enforce identity and action disclosure particularly with sharing restricted information:
Who is that, what are they doing, and what have they done?
4. Provide control (and defer) to the user, over system and other user actions that impact her,

especially in cases of conflicts of interest.

In this thesis, we cover aspects of the first two principles exposing the application capabilities by
selecting relevant information and informing users of the systems’ understandings through

generating explanations. We also support feedback through various explanation types.

2.2.6.1 INTELLIGIBLE CONTEXT-AWARE APPLICATIONS

A simple form of intelligibility is to show the Certainty of the application’s inference. Antifakos and
colleagues showed that uncertainty improved task performance speed of participants when
certainty is high [2004], and that participants verified automatic settings made by a context-aware
system less often when its certainty was high or medium [2005]. In studies of presenting location
information [Dearman et al., 2007; Lemelson et al., 2008], visualizations of location certainty were

found to improve user performance with location-based services.

Some early intelligible context-aware applications provide end-users with a modest amount of
explanations to give them insight mainly by providing transparency (showing the application's
underlying state) and traceability (showing reasoning trace) information. Cheverst et al. [2005]
investigated how much users would want to know about rules governing a context-aware system
and whether to control it. The system takes actions depending on context changes (and history) and
the user model (e.g. preferences), and displays to users its rules of a fuzzy decision tree and its
certainty about the inference. McCreath, Kay, and Crawford [2006] explored the difference in
scrutability of different machine learning classifiers (sender identity, keywords, TF-IDF, decision

trees, naive Bayes) in their Intelligent-Electronic Mail Sorter. The Daily Activities Diarist [Metaxas et
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al, 2007], an awareness display to support aging in place (like the Digital Family Portrait [Mynatt et
al,, 2001]), employs narratives complemented with graphical visualizations to provide semantic cues
and explanations. Tullio et al.'s interruptibility displays [2007] explain how they determine a
manager's interruptibility by exposing the values of sensors in the manager's room. Panoramic
[Welbourne et al.,, 2010] provides reasoning trace, location status, and history explanations to
explain location events through a visualization of parallel timelines of sensed and rule-determined
events. Vermeulen et al. explored several interfaces to provide intelligibility in ambient intelligent
(AmlI) environments. They projected trajectory visualizations along the wall of an Aml room,
tracing the application operation from sensor input (e.g., camera motion sensor) to actuator output
(e.g., room light) [Vermeulen et al, 2009]. The PervasiveCrystal [Vermeulen et al., 2010] also
explains for processes in a smart environment by providing Why and Why Not explanations from a

mobile screen display.

2.2.6.2 FRAMEWORKS TO SUPPORT INTELLIGIBILITY IN CONTEXT-AWARE COMPUTING

Some frameworks and toolkits have also been developed to provide wider support for intelligibility
in context-aware applications. SpeakEasy [Newman et al., 2002] supports querying and displaying
of the states of devices (PCs, printers, projectors, etc.) in an environment, allowing users to
discover if they are available, they have failed, etc. PersonisAD [Assad et al.,, 2007] defines a
distributed framework to support explanations by resolving identities and associations of
devices, locations, people, etc. It makes user models scrutable so that users can control which parts
of their user model can be private or public and visible to the sensing environment. Personis-LF
[Barua, Kay, and Kummerfeld, 2011] extends this concept of scrutability to life-long personalization
and adds capabilities to control forgetting information. While this is important for deployed
systems, this thesis does not cover the scope of longitudinal use of intelligibility. Hardian et al.
[Hardian, 2006; Hardian, Indulska, and Henricksen, 2008] added a Logging and Feedback Layer
along with a Query Interface to the Pervasive Autonomic Context-aware Environments (PACE)
middleware [Henricksen and Indulska, 2006] to reveal elements that influence application
behavior. However, as pointed out by Fong [2010], these components expose information that is

too low-level and overly technical.

Dey and Newberger [2009] provide the Enactors toolkit to support intelligibility and control in
context-aware applications by adding the Enactor component to the Context Toolkit. For
intelligibility, it allows applications to provide input context values, and reasoning traces. For

control, it exposes parameters that the Ul layer of the application can allow users to interact with
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and manipulate. This thesis extends the scope of intelligibility to allow users to ask more questions
of the application's state and inference mechanism. For example, users would be able to ask about
an anomaly with a Why Not question, and ask about a possible future scenario with a What If

question.

Vermeulen [2010] proposed to explore the design space for providing and presenting intelligibility

in Ubicomp systems along the dimensions of:

e timing — before, during, or after an event

e generality — general, or domain-specific

o degree of co-location — whether intelligibility is provided in the same Ul or separately
o initiative — user, or system initiated

o modality — visual, auditory, haptic

o level of control — not controllable to fully programmable

This thesis takes a different approach to investigate intelligibility in context-aware applications.
Rather than explore multiple presentation styles for intelligibility, we have explored the provision
of intelligibility from an information-centric perspective. End-users are considered information
consumers of explanations, and intelligible applications as information providers through the
explanations they can generate, and present. Presentation styles are definitely important for the
effective assimilation of explanations and conveyance of intelligible information, but we have
treated finding the best solutions for presenting explanations in different applications mainly as a

design exercise.

Inspired by our taxonomy of explanation types (see Chapters 4 and 6), TOSExp (TinyOS Explained)
[Bucur, 2011] supports intelligibility in embedded context-aware applications by providing static
explanations to explain the Inputs values and Outputs range of the application, and What If and How
To explanations that describe hypothetical behaviors of the application. It operates at an embedded
systems level to provide bit-accurate explanations that while being very precise, may suffer from a
lack of user-friendliness by being too low level or too detailed. This thesis focuses on systems and
applications at higher programming abstraction layers (i.e., application logic) and also prioritizes

explanations that are more usable for end-users.

Targeting end-user preference models for context-aware systems, Fong et al. [2010, 2011] developed

an intelligible preference modeling approach that expresses preferences in terms of if-then-else rules.
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Their system can generate explanations to questions of What, Why, Why Not, How To, and Control.
As such, this is limited to preference modeling and rules. In this thesis, we do not restrict our
contributions to just rules and include machine learning models and models for other purposes, such

as activity recognition.

Metaxas [2010] investigated supporting intelligibility in the Contextual Range Editor (CoRE) for end-
users to configure rules for awareness systems. He consider rules presented in text templates and
whether to present the rules in disjunctive normal form (DNF) or conjunctive normal form (CNF)
depending on the affinity of logical terms (e.g., “driving” and “running” have higher affinity than
“running” and “talking”). In Chapter 6, we also consider DNF for representing explanations of rules,

and can integrate Metaxas’ findings within the framework of the Intelligibility Toolkit.

2.2.6.3 INTERPRETABLE MACHINE LEARNING

Machine learning is a popular technique to enable inference and activity recognition in many
context-aware applications (see review in Chapter 6). For example, machine learning is used to
recognize what activity an occupant in the home is performing [van Kasteren et al., 2008]. To
support intelligibility in these applications using machine learning models, these inference models
will need to be intelligible too. Indeed, much work in the artificial intelligence and machine learning
computing community have sought to make these models interpretable. In this thesis, we focus on

explanations for the inference process rather than the learning or training process.

Some learned models are trivial to explain (e.g., decision trees that can be transformed into rules)
by just traversing through the program branches to provide reasoning traces. Some learned models,
in particular additive classifiers (e.g., Naive Bayes, linear Support Vector Machine (SVM), and Linear
Regression), are less intuitive, but still relatively easy to make interpretable (e.g., Mineset [Brunk et
al. 1997], Nomograms [Mozina et al, 2004]; ExplainD [Poulin et al., 2006]). These explanation
methods present visualizations to users and indicate decision processes based on weights placed
on different features. There also remain several “black-box” classifiers (such as Artificial Neural
Networks) that are not directly interpretable. One way to try to make them reasonably
interpretable is by using case-base reasoning to provide an alternative explanation [Nugent and
Cunningham, 2005], and another way is to extract rules from them [Nufiez, Angulo, and Catala,

2002; Tickle et al., 1998].
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2.3 SUMMARY

In summary, much research investigating the provision of explanations in intelligent systems have
demonstrated a positive impact on user understanding and trust. Research in the domain of
context-aware computing is also nascent and has shown some promise, but more work is required
to provide stronger support for intelligibility and gain better insight about how intelligibility
impacts users. This thesis proposes to deepen this research, and provide concrete contributions
towards providing intelligibility in context-aware applications. In the Chapter 3, we describe how
the nature of context-aware applications pose research questions for providing intelligibility, and

describe the taxonomy of explanations we investigated to answer these questions in the thesis.
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3 EXPLANATION TYPES FOR
INTELLIGIBILITY

In Chapter 2, we reviewed the different types of explanations provided in various intelligent
systems. In this chapter, we introduce the research questions that have driven our investigation
and then describe the taxonomy of intelligibility explanation types we have developed to make

context-aware applications intelligible.

As mentioned in the earlier section, context-aware applications use implicit sensing, and intelligent
inference to determine the user's context so as to perform appropriate actions. For Ubicomp
systems, context-aware applications have been primarily developed to support everyday activities,
such as tracking the user's physical activity to monitor her exercise, recognizing activity in the
home to provide timely medical assistance, determining her availability to others, providing
recommendations based on where she is and what she is doing, reminding her to pick up the milk
when she is located at the grocery store, etc. They sense implicitly to minimize obtrusiveness and
interruption to the user; they automatically sense the situation rather than requiring the user to
manually tell them what is happening. Context-aware applications are increasingly using
sophisticated inference mechanisms due to the growing complexity of contexts they need to
understand, particularly for activity recognition. For inference, they use big rule sets and machine
learning algorithms to handle diverse situations, and to be more robust to exceptional cases. All

these improve the accuracy in properly and calmly understanding the user's context.

Unfortunately, these two factors of implicit sensing and intelligent inference also make context-
aware applications difficult for end-users to understand. This is particularly problematic when the
applications behave inappropriately or unexpectedly. In such cases, context-aware applications no
longer remain invisible to the user's experience; instead, they become a puzzle. The users become

frustrated if they cannot understand what has happened and why the application behaved
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unexpectedly. Eventually, this lack of understanding would lead to a loss in trust in the system's
inference and behavior, and the eventual abandonment of them. Without a proper understanding of
how context-aware applications work, users may also not be able to effectively control them to
improve their performance for subsequent situations. Therefore, it is crucial for context-aware
applications to be intelligible, so that they can explain what they sense and how they are inferring

about the users' contexts.

3.1 RESEARCH QUESTIONS FOR INTELLIGIBILITY

Starting with a broad idea of intelligibility from Bellotti and Edwards [2001], we defined
intelligibility for a context-aware application as the ability to answer or explain questions that users
could ask. Given the implicit actions that context-aware applications take, end-users may not know
what the application is doing, let alone assess whether it has performed appropriately. Hence, it is
important for applications to make their action state explicit and provide feedback of what they are

doing. This is supported by providing an explanation or answer to the question:
1. What s the current value of the context?

Continuing with the user-centric perspective of answering intuitive questions, we draw from the
question-answering approach of the Whyline [Ko and Myers, 2004, 2009], with just why and why
not questions. One can easily imagine a confused, exasperated, or inquisitive user asking the

following questions:

2. Why is this context the current value X?

3. Why Not: why isn’t this context value Y, instead?

Why asks what factors caused or influenced the inference outcome, and Why Not asks why an
alternative inference was not made. In a similar manner as the Whyline, we answer these questions
by providing mechanistic explanations that specifically describe the inference over the instance the
end-user is asking about. Note that we do not enforce a particular structure of explanations to
answer these questions. They could be answered with rule traces (line of reasoning) or some other
structures. We do not explain these in terms of design rationale or purpose, which relate to the

underlying assumptions, concepts, or objectives driving how the application behaves.
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As an extension of Why and Why Not questions, end-users may want to ask questions relating to
the general rules or model under which the application makes inferences. This can allow the users
to generalize their understanding of how the application works to better predict future behavior.

Specifically, we provide explanations for the questions:

4. How To: when would this context take value Y?

5. What if the conditions are different, what would this context be?

How To explanations are a generalization of Why explanations, but they do not specifically target
any instance. In terms of rule traces, this explanation type can be expressed by listing all traces that
achieve the desired inference. What If explanations support the feedforward type of feedback,

where end-users can investigate what the application will do in a future or hypothetical scenario.

We began our investigation of providing intelligibility in context-aware applications with this initial
set of five explanation types. This thesis aims to show that intelligibility can improve user
understanding and trust of context-aware applications. We would especially like to show this with
the scope of intelligibility that we have defined based on multiple question types. Specifically, our

first investigation sought to answer the research question:

RQI DOES INTELLIGIBILITY HELP USERS IMPROVE THEIR UNDERSTANDING AND TRUST OF CONTEXT-

AWARE INTELLIGENT SYSTEMS?

Even though this has been proven true with narrower forms of intelligibility (transparency,
scrutability, etc.) in related work, we explored how supporting the various question types
independently affect user understanding and trust in context-aware applications. Our work,
presented in Chapter 4, shows that providing some explanation types (Why and Why Not) are more

effective than others in improving user understanding and trust.

These successful results from our first study showed that providing intelligibility is a promising
avenue for research. Next, we sought to carefully explore the scope of questions that users would

ask of context-aware applications. Specifically:
R QZ . WHAT ARE THE INTELLIGIBILITY NEEDS OF END-USERS IN CONTEXT-AWARE APPLICATIONS?

Answering this question will help to ensure that the intelligibility we aim to provide will be relevant

to users and can better satisfy their informational needs. In work presented in Chapter 5, we
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conducted user-centered, empirical research to elicit what information users wanted to know of
context-aware applications, when the applications behaved under various situations. We identified

more explanation types, and expanded our taxonomy of explanation types.

To improve end-users awareness of what the application knows, much previous work in adaptive
or context-aware applications have investigated the principle of making the application
transparent. One way to support transparency is to fully reveal the internal input state of the

application. This answers the question:
6. Inputs: what factors and values affect this context?

One could distinguish between naming the input sources, and the value taken by each input at the
time of interest. Users are also interested in the range and diversity of actions or responses that
context-aware applications. Considering an application model as an input-output functional model,

this supports the explanation for the question:
7. Outputs: what other values can this context take?

Given the ambiguity and uncertainty in sensing and inference, context-aware applications are not

necessarily deterministic in their decision logic. Hence, users are also interested in asking:
8. Certainty: how confident is inference of this value?

With increased knowledge and understanding of the applications, users will also want to be able to

reconfigure or control the application to improve its behavior. This asks the question:
9. Control: how can I control the application to improve it?

Finally, we determined some circumstances in which users asked for information additional to
what the context-aware application may model for its function. For example, wanting to see a video
capture of the room where an elderly family member was detected to have fallen. Providing this

extra information helps answer the question:

10. Situation: what else is happening in this situation (not about the application, but about the

circumstance)?

Similarly, users want to know if the application has taken other actions meanwhile:
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11. What Else: what else did the application do?

With the study described in Chapter 5, we identified which explanation types users ask of context-
aware applications. However, it remains difficult for application developers to implement
intelligibility in context-aware applications, especially with such a wide range of explanation types.

This brings us to the next research question:

RQ.rJ’ How CAN WE SUPPORT THE IMPLEMENTATION OF INTELLIGIBILITY IN CONTEXT-AWARE

APPLICATIONS?

We chose to provide toolkit support for developers to easily add intelligibility to their context-
aware applications (Chapter 6). We developed the Intelligibility Toolkit that provides extensible
components to support the automatic generation of explanations, and mechanisms to process the
explanation information into simpler forms that end-users may easily interpret. However, this
technical contribution did not provide final solutions to how the explanations should be presented

to end-users. This leaves unaddressed the next research question:

R Q4 How CAN WE DESIGN INTELLIGIBILITY FOR CONTEXT-AWARE APPLICATION TO BE USABLE FOR END-

USERS?

We answer this question with a think-aloud usability study described in Chapter 7, where we
designed Laxsa, a complex context-aware application that uses multiple input contexts and various
rules and machine learning classifiers. This application was implemented as an interactive
prototype for participants to engage with. In this study, we explored several design principles for
intelligibility, and evaluated how users interpret explanations from an intelligible context-aware
application. Our findings provide insights and design recommendations for providing usable

intelligibility in context-aware applications.

We considered context-aware applications with inference models that infer a certainty distribution
over multiple Outcomes. Instead of a single What value, there can be a non-zero Certainty of
inferring each of the possible Output values. We support and later manifest this as an aggregation of
explanations Outputs + Certainties. An alternative point of view is that the What explanation is

extended to include a range of output values.

12. Outputs + Certainties: how confident is inference of all possible values?
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As we investigate providing explanations with a real-world interactive prototype, new explanation

types become more relevant and important, namely:

13. When: when was the context inferred as this value?
14. History: what was the inference at an earlier time, T? Why did it make that inference at

time T? Etc.

Historical explanations can help to provide users with a confirmation of what they and the
application have done in the past. Furthermore, explanations about history include not just the

inferred value at that time, but also any other event-dependent explanations about the event.

As context-aware applications begin to use esoteric sensors and features for inference, we also
include textual descriptive information to help end-users to learn the terminology used by the

application and key concepts.
15. Description: what is the meaning of the context terms and values?

Description explanations can also be used to justify the behavior of the application by describing the
implications of various context values, and describe the rationale for the application to consider

various features or inference mechanisms.

At this stage, we investigated how to provide intelligibility through gathering requirements,
providing technical support, and recommending design principles. This allows developers and
designers to more easily and carefully implement, provide, and present intelligibility in context-
aware applications. This also enables us to explore our hypotheses on the impact of intelligibility
with more realistic intelligible context-aware applications. Logically, we next address research
questions relevant to evaluation in light of realistic issues. One concern is that context-aware
applications are not always certain of what they infer, and providing intelligibility may not be
helpful when they are uncertain. This could be because users learn about the applications’

weaknesses. This brings up the research question:

R Q5 . WHEN IS INTELLIGIBILITY HELPFUL AND HARMFUL FOR CONTEXT-AWARE APPLICATIONS WITH

DIFFERENT CERTAINTIES?

We conducted a large online controlled study with a between-subjects experiment design to

investigate the interaction effect of providing intelligibility and of application certainty on user
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impression of two context-aware applications. This is described in Chapter 8. We found that above
a threshold of about 80% certainty, providing intelligibility improves user impression of the
application performance. However, below that threshold, providing intelligibility harms user

impression because it reveals the weaknesses of the application.

This result deepens our earlier findings in Chapter 4, and considers nuances in the impact of
intelligibility in context-aware applications. At this point, much of our work on evaluating
intelligibility has focused on questionnaire studies and ‘paper’ prototypes of realistic albeit
fictitious context-aware applications. With the Laxsa prototype (Chapter 7), we sought to increase
realism in investigating intelligibility with an interactive prototype. However, intelligibility was
shown “always on” to participants, so they were biased to look at the explanations. This brings

forward the question:

R Q6. EVEN IF INTELLIGIBILITY CAN IMPROVE USER UNDERSTANDING AND TRUST, WILL USERS WANT TO

USE IT, AND, IF SO, HOW MUCH?

We address this question with the study described in Chapter 9. Using a quasi-field experiment
with four scenarios, we let participants freely use a fully interactive intelligible context-aware
application on a mobile phone. We logged their usage of the intelligibility features, and interviewed
participants to evaluate their understanding of the application behavior. We found that participants
do use intelligibility without prompting, and that more extensive and deeper usage helps them to

better understand the application behavior.

3.2 TAXONOMY OF INTELLIGIBILITY EXPLANATION TYPES

We have introduced several explanation types in the previous section, and in our empirical study in
Chapter 5. Here, we summarize these into a framework of explanation types for intelligible context-

aware applications.



Explanation Type Question Explanation

What Top Value | What s the inferred value? Shows the value of the inferred output.

\(/0111tp)ut Outputs What are the inferred values? Lists multiple other likely alternative values.

alue
What Else | What else (other actions) did the application do? Informs what other actions the application is simultaneously

doing.

Certainty | Top What is the confidence of inferring the current value X? | Shows the Certainty of inference.

Certainties | What is the confidence of inferring all possible values? | May include certainties of inferring other values.

When When was value X inferred? Indicates the time that the inference was made.

Why Why was value X inferred? With the Intelligibility Toolkit, this explanation can be provided as a
Rule Trace or as Weights of Evidence.
Describes the triggered rule(s) or weights of evidence for the
inference.

Why Not Why was value Y not inferred? Same format as Why.
Describes the un-triggered rules or difference in weights of
evidence for why an alternative value Y was not inferred.

Input Values What are the factor values / What is the input state? Describes the values of all input factors.

Situation What else is happening with the situation? Provides a description or playback of the recorded ground truth to

What is the ground truth? convey a richer picture or experience of the situation.

E.g., showing a video of the sensed scene, providing an audio
recording of the sound recognition source.

History* *Provides the same range of explanations, but for a historical event or inference at a specific time in the past.

Table 3.1. Dynamic instance-based explanation types explaining the inference of a specific event. These explanations will differ

for every instance the application acts.
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Explanation Type Question Explanation
What If What will be the inferred value, if the input values are | Provides a hypothetical What or What Else answer given user-
w? queried input values.
Requires user input to specify / constrain some input values.
How To How can I get the application to infer ¥? Similar format as Why, but
Explains in terms of an alternative output value Y, instead of X.
How To If How can I get the application to infer Y, given a subset | Similar format as How To, but
of input values W? Requires user input to specify / constrain some input values.
Control | Parameter What parameters can I change to control the Describes how to control and adjust parameters or attributes to
Values application behavior? change the application behavior (e.g., in a manner exposed in [Dey
and Newberger, 2009]).
We do not cover this explanation type in this thesis
Rules / Model | What rules or settings can I change? Describes how to add/edit rules or the model.
We do not cover this explanation type in this thesis.

Table 3.2. Dynamic general explanation types explaining the inference model of the context-aware application.
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Explanation Type

Question

Explanation

Inputs Factors

What factors / sources influence this inference?

Lists all input factors / sources for the application.

Outputs (Options)

What are the possible output values for this
inference?

Lists all possible values or actions that the application may
produce or perform.

Description | Terminology

What does this term mean?

Provides a textual description of a term or concept.

Justification

What is the implication of this value?

Provides a textual description of the implication of a context value.

E.g., a high “Periods of Silence” in the sensed sound suggests
talking noise because speech has more relative silence than voices.

Rationale

What is the rationale for this inference?

Provides a textual description of the rationale of a process, rule, or
inference mechanism.

E.g., the application considers sound activity when inferring
availability because you may be in an impromptu meeting, and it
detects your talking, even though your calendar is open (no events
scheduled).

Table 3.3. Static general explanation types explaining the inference model of the context-aware application. For a static (fixed)

model, these explanations will always be the same.
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In the next chapters (4 to 9), we describe in detail the pieces of work that have been completed for

this thesis.
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4 INVESTIGATING THE
INTELLIGIBILITY OF QUESTION
TYPES

This chapter is an extension of the work presented in:

Lim, B. Y., Dey, A. K,, and Avrahami, D. (2009). Why and Why Not Explanations Improve the
Intelligibility of Context-Aware Intelligent Systems. In Proceedings of the 27th international
Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09, 2009).
CHI '09. ACM, New York, NY, 2119-2128.

This publication was a best paper honorable mention for a CHI '09.

ABSTRACT. Context-aware intelligent systems employ implicit inputs, and make decisions based
on complex rules and machine learning models that are rarely clear to users. Such lack of system
intelligibility can lead to loss of user trust, satisfaction and acceptance of these systems. However,
automatically providing explanations about a system’s decision process can help mitigate this
problem. In this chapter, we present results from a controlled study with over 200 participants in
which the effectiveness of different types of explanations was examined. Participants were shown
examples of a system’s operation along with various automatically generated explanations, and
then tested on their understanding of the system. We show, for example, that explanations
describing why the system behaved a certain way resulted in better understanding and stronger
feelings of trust. Explanations describing why the system did not behave a certain way, resulted in
lower understanding yet adequate performance. We discuss implications for the use of our findings

in real-world context-aware applications.
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4.1 INTRODUCTION

This chapter describes an investigation of a number of mechanisms for improving system
intelligibility performed using several controlled online lab experiments. To investigate these
intelligibility factors and their effects, we defined a model-based system representing a canonical
intelligent system underlying a context-aware application, and an interface with which users could
learn how the application works. We recruited 211 online participants to interact with our system,
where each one received a different type of explanation of the system behavior. Our findings show
that explaining why a system behaved a certain way, and explaining why a system did not behave in
a different way provided most benefit in terms of objective understanding, and feelings of trust and

understanding compared to other explanation types.

In this chapter, we first define a suite of intelligibility explanations derived from questions users
may ask of a context-aware system and that can be automatically generated. We then describe an
online lab study setup we developed to compare the effectiveness of these explanation types in a
quick and scalable manner. Next we describe the experimental setup used to expose participants to
our system with different types of intelligibility and the metrics we used to measure understanding,
and users’ perception of trust, and understanding. We present two experiments in which we
investigated these factors, elaborating on the results and implications. We end with a discussion of

all of our results and plans for future work.

4.2 [INTELLIGIBILITY

Context-aware systems can confuse users in a number of ways. For example, such systems may not
have familiar interfaces, and users may not understand or know what the system is doing or did.
Furthermore, given that such systems are often based on a complex set of rules or machine learning
models, users may not understand why the system acted the way it did. Similarly, a user may not
understand why the system did not behave in a certain way if this alternative behavior was
expected. Thus, our focus in the work presented here is on explanations that can be regarded as

reasoning traces.

While a reasoning trace typically addresses the question of why and how the application did
something, there are several other questions that end-users of novel systems may ask. We chose to

following initial set of intuitive questions (adapted from [Dourish, Adler, and Smith, 1996]):
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What: What did the system do?

Why: Why did the system do W?

Why Not: Why did the system not do X?

What If: What would the system do if Y happens?

“i s W e

How To: How can I get the system to do Z, given the current context?

Throughout this chapter we will refer to these as our five intelligibility question types, and the

explanation addressing each of them as an explanation type.

Norman described two gulfs separating users’ goals and information about system state [Norman,
1988]. Explanations that answer questions What, Why, and Why Not address the gulf of evaluation
(the separation between the perceived functionality of the system and the user’s intentions and
expectations), while explanations answering questions What If and How To address the gulf of
execution (the separation between what can be done with the system and the user’s perception of
that). With a partial conception of how a system works, users may want to know what would
happen if there were some changes to the current inputs or conditions (What If). Similarly, given
certain conditions or contexts, users may want to know what would have to change to achieve a

desired outcome (How To).

This chapter deals with providing and comparing the value of explanations that address four of
these intelligibility questions to investigate which of these explanations benefit users more. We
label these explanation types: Why, Why Not, What If, and How To. Since the system we developed
to evaluate the value of explanations, already explicitly shows the inputs and output of the system
(see next Section on Intelligibility Testing Infrastructure), we did not investigate the What

explanation.

4.2.1 HYPOTHESES

We hypothesize that different types of explanations would result in changes in users’ user
experience: understanding of the system and perceptions of trust and understanding of the system.

We will now present our hypotheses about each of these intelligibility questions.

Why explanations will support users in tracing the causes of system behavior and should lead to a

better understanding of this behavior. So, we expect:

H1: Why explanations will improve user experience over having no explanations (None).



A4  CHAPTER 4 | INVESTIGATING THE INTELLIGIBILITY OF QUESTION TYPES

Why Not explanations should have similar benefits to Why explanations; however, users’ ability to
apply Why Not explanations may not be as straightforward. There may be multiple reasons why a
certain outcome did not happen; while a why explanation may be a single reasoning trace (or at
least a small number of possible traces), a why not explanation is likely to contain multiple traces.
Given this complexity, users will require more cognitive effort to understand how to apply the

knowledge, and may do so poorly. As such, we expect:

H2: Why Not explanations will (a) improve user experience over having no explanations (None),

but (b) will not perform as well as Why explanations.

Explanations for How To and What If questions would have to be interactive and dynamic, as they
depend on example scenarios that users define themselves. Receiving these explanations should be
better than receiving none at all. However, given that novice end-users are unlikely to be familiar
with a novel system, they may choose poor examples to learn from, and learn less effectively than

the Why explanations. So we expect:

H3: How To or What If explanations will (a) improve user experience over having no explanations

(None), but (b) will not perform as well as Why explanations.

Hypotheses Experiment 1 Experiment 2
H1 None < Why None < Why None < Why
H2a None < Why Not None < Why Not None < Why Not
H2b Why Not < Why None  Why Not None < Why Not
H3a None < (How To, What If) None ~ (How To, What If)
H3b (How To, What If) < Why (How To, What If) < Why

Table 4.1. Summary of hypotheses and results regarding the effect of explanation type on
user experience (understanding and trust). ‘*’ means no significant difference (p=n.s.); ‘<’

means we hypothesize either a lower user experience or no difference.

To test these hypotheses (summarized in Table 4.1), we created a test-bed that allows simulating
different types of intelligent systems and testing different explanation types. We describe this

testing infrastructure next.
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4.3 INTELLIGIBILITY TESTING PLATFORM

We developed a generalizable web interface that can be applied to various application domains to
study the effect of the various mechanisms for providing intelligibility. Users interact with a
schematic, functional intelligible system that could underlie a context-aware application: it accepts
a set of inputs (e.g. Temperature, Humidity), and uses a model (for example, a decision-tree), to
produce a single output (e.g., Rain Likely, or Rain Unlikely). Users are shown different instances of
inputs and outputs and can be given various forms of explanations (or no explanations) depending
on what explanation type is being studied. To users who do not receive explanations, the system

appears as a black box (only inputs and the output are visible).

This infrastructure allows us to efficiently and rapidly investigate different intelligibility factors in a
controlled fashion and closely measure their effects; further, the online nature of the infrastructure
allowed us to collect data from over two hundred participants. The design also has the advantage of
being generalizable to a variety of different domains simply by relabeling its inputs and outputs to

represent scenarios for those domains.

4.3.1 TEST PLATFORM IMPLEMENTATION

The web interface was developed using the Google Web Toolkit [Google]. We leverage Amazon’s
Mechanical Turk infrastructure [Amazon] to recruit and manage participants and manage study
payments by embedding our study interface in the Mechanical Turk task interface. Users found our
study through the listings of Human Intelligence Tasks (HITs), and after accepting our HIT, they
participated in the study and interacted with the system.

The user encounters several examples of system inputs and output (see Figure 4.1). He first sees
the input values listed and has to click the “Execute” button so the system ‘generates’ the output.
When he is done studying the example, he clicks the “Next Example” button to move on. Depending
on the explanation condition the user is in, he may receive an explanation about the shown

example.
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Sensors Activity
(Inputs) Example 7 output Prediction)
t
Body Temperature [ 4 | (== 95% accuracy
& L Not
Heart Rate = (S Exercising
Pace L —
Mext Example
Explanation
Activity predicted as Not Exercising because Body Temperature = 5.0, and Pace =
30
Notes
Feel free to make notes as you work with the system_ It will remain from instance to
instance.
I

Figure 4.1. Screenshot of the interface for our intelligibility testing infrastructure.

We modeled our testing infrastructure on typical sensor-based context-aware systems that make
decisions based on the input values of multiple sensors. Many of these sensors produce numeric
values and the applications change their behaviors based on threshold values of the sensors. For
example, a physical activity recognition system could look at heart rate and walking pace. To keep
our experiments and the task reasonably simple for participants we restricted the system to three
input sensors that produce numeric values, we used inequality-based rules to define the output
value, and constrained the output to belonging to one of two classes. In Experiment 1, for example,
we defined two inequality rules that consider two inputs at a time (see Equation (4.1)). Since we
did not want the lack of domain knowledge (e.g., that the body temperature can rise from 36.8 to
38.3°C when weight lifting) to affect users’ understanding of the system, so the inputs use an
arbitrary scale of integer values: Body Temperature from 1 to 10, and Heart Rate and Pace from 1

to 5.

"Excercising" ,if Body Temperature > 6 AND Pace <2
Prediction = "Excercising”" , if Heart Rate = 6 AND Pace > 3 (4.1)
"Not Excercising" , otherwise

Equation (4.1): Inequality-based rules for the physical activity domain.
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Not

Exercising Exercising

Figure 4.2. Visualization of the learned decision tree model used in Experiment 1.

As machine learning algorithms are popular in context-aware applications, our system also uses
machine learning. Among the myriad of machine learning algorithms, decision trees and Naive
Bayes lend themselves to be more explainable and transparent, while others are black-box
algorithms that are not readily interpretable (e.g., Support Vector Machines and Neural Networks)
[Nugent and Cunningham, 2005]. We chose to start our investigation using decision trees because
they are easier to explain, especially to end-users who may not understand the probabilistic
concepts that underlie Naive Bayes algorithms. Using Weka'’s [Hall et al., 2009] J48 implementation
of the C4.5 Decision-Tree algorithm [Quinlan, 1993], our system learns the inequality rules from the
complete dataset of inputs (250 instances from the permutations of all inputs) and outputs and

models a decision tree (see Figure 4.2) that is used to determine the output value.

4.3.2 DECISION TREE EXPLANATIONS

While the decision tree is able to classify the output value given input values, we had to extend it to
expose how the model is able to derive its output. The decision tree model lends itself nicely to
providing explanations to the four intelligibility question types. Table 4.2 describes how the

explanations were implemented.
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Why: Traverse the decision tree to trace a path of decision boundaries and values that match the instance
being looked at. Return a list of inequalities that satisfies the decision trace of the instance (e.g., “Output
classified as Not Exercising, because Body Temperature<5 and Pace <3”; see Figure 2).

Why Not: Traverse the whole tree initially to store in memory all the traces that can be made. Walk the tree
to find the why-trace, and find differing boundary conditions on all other traces that return the alternative
output. A why-not trace would contain the boundary conditions that match the why trace and boundary
conditions where it is different (e.g., “Output not classified as Exercising, because Pace<3, but not Body
Temperature>5").

A full Why Not explanation will return the differences for each trace that produces the alternative output.
However, so as not to overwhelm the user, we use a heuristic to return the differences of just one why-not
trace, the one with the fewest differences from the why trace. Note that while this technique is suitable for
small trees, it is not scalable to large trees, and heuristics should be used to look at subsets of traces.

How To: Take user specified output value, and values of any inputs that were specified. Iterate through all
traces of the tree to find traces that end with the specified output value and has branches that satisfy the
specified input values. If any trace is found, it identifies the satisfying boundary conditions for the
unspecified inputs and returns them. Note that if there is a trace, there will only be one, since an instance
can only satisfy one trace in the tree. If there are no boundary conditions for the unspecified inputs, then
these inputs can take any value. If no trace is found, then there are no values for the unspecified inputs,
given values of the specified inputs, to produce the desired output value.

What If: Take user’s inputs and puts it through the model to classify the output. Return the output value, but
since this is a simulation, do not take any action based on this output value.

Table 4.2. Algorithms for generating different types of intelligibility explanations from a

decision tree model.

4.4 METHOD

Given the different factors we wanted to investigate and the flexibility of our testing infrastructure,
we were able to independently test different intelligibility elements in a series of experiments. We
ran Experiment 1 to explore providing different explanation types (Why, Why Not, and the control
condition with no explanations). The system was presented in the context of the domain of activity
recognition of exercising as described above. However, due to participants’ prior knowledge of the
domain, our results were difficult to interpret. So, we decided to subsequently run experiments
with an abstract domain. Experiment 2 compares explanations provided to address each of the four
intelligibility question types (Why, Why Not, How To, and What If) individually to investigate which
are more effective in helping users gain an understanding of how our intelligent system works

compared to not having explanations (None).

4.4.1 STUDY PROCEDURE

Our study consists of four sections. The first section (Learning) allows participants to interact with

and learn how the system works. Two subsequent sections test the participants’ understanding of
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the system (Fill-in-the-Blanks Test and Reasoning Test), and a final section (Survey) that asks users
to explain how the system works (to evaluate the degree to which participants have learned about
the system’s logic) and to report their perceptions of the explanations and system in terms of

understandability, trust and usefulness.

4.4.1.1 LEARNING SECTION

In the Learning section, participants are shown 24 examples with inputs and output values (see
Figure 1). These examples were chosen from all possible input instances, to have an even
distributed over all branches in the decision tree, and they appear in the same order to all
participants. Examples were arranged in ascending order of Body Temperature, then of Heart Rate,
then of Pace. Participants have to spend at least 8 seconds per example (controlled by disabling the
Next Example button). Explanations are provided depending on the experimental condition. If
participants receive explanations, they will receive them automatically when executing each
example. It is important to note that explanations are only provided during the Learning section.
Participants are provided with a text box to make notes in, which persist throughout the Learning
section. At the end of the Learning section, users are told to spend some time studying their notes

as those are not available during the rest of the study.

4.4.1.2 FILL-IN-THE-BLANKS TEST SECTION

This section tests users on their ability to accurately specify a valid set of inputs or output; they are
given a single blank in one of the inputs or the output, and are given the rest of the inputs/output.
There are 15 test cases, three with blank Body Temperature, three with blank Heart Rate, four with
blank input Pace, and 5 with blank output. These test cases different from the earlier examples, and
are randomly ordered, but in the same order for all participants. On seeing each test case, users
have to fill in the missing input or output with a value that makes the test case correct. If an input is
missing, they should provide a value that causes the given output value to be produced; if the
output is missing, they provide a value that would be produced with the given input values. After
providing the missing value, they are also asked to provide a reason for their response. Participants
are not given any explanations during this test and, are not given the answer or told whether they

are correct after they finish.
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4.4.1.3 REASONING TEST SECTION

This section shows users three complete examples, and, for each example, asked to give reasons
why the output was generated, and why the alternative output was not. These test case examples
are different from what users have encountered before, and are randomly ordered, but are in the
same order for all participants. To see if improved understanding can lead to improved trust, users
are also asked how much they trusted that the output of the system is correct for each example.
Participants are not given any explanations during the test and, are not given the answer after they

finish.

4.4.1.4 SURVEY SECTION

The final Survey section is used to collect self-report information from users. Users provide a more
detailed description of how they think the system works overall (i.e., an elicitation of their mental
models), and are asked 16 Likert-scale questions (see Table 4.4) to understand how users
perceived about using our system, including whether they trusted and understood the system and

explanations. The questions were randomly ordered to avoid order effects.

4.4.2 MEASURES

In order to see what types of intelligibility explanations would help users better understand the
system, and whether this improved understanding would lead to better task performance,
improved perception of the system, and improved trust in the system output, a number of measures

were collected.

Task performance was measured in terms of task completion time, and the Fill-in-the-Blanks Test
inputs and output answer correctness. Task completion time was measured with two metrics: total
learning time in the Learning section, and average time to complete each Fill-in-the-Blanks Test

question.

User understanding is measured by the correctness and detail of the reasons participants provide
when they give their answers (in the Fill-in-the-Blanks Test), explain examples (in the Reasoning
Test), or give an overall description of how the system works (mental model in the survey). The
reasons given for each answer in the Fill-in-the-Blanks Test were coded using a rubric (see Table
4.3) to determine how much the participant understands about how the system works. Reasons are
coded as Guess/Unintelligible if participants wrote they were guessing, did not write anything, or

wrote something not interpretable. Reasons are graded as Some Logic if participants provided
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some rules or probability statement or cited past experience (eg., saying they saw something
similar before) that were not inequalities with fixed numeric boundaries. This includes cases such
as “Body Temperature>Heart Rate”. Reasons are coded as Inequality if participants specified an
inequality of at least one of the inputs with a fixed numeric boundary (e.g., Body Temperature>7).
Reasons are coded as Partially Correct if participants provided only one rule with the correct input,
boundary value, and relation. Reasons are coded as Fully Correct if participants get only all the
sufficient rules correct, and did not list any extra ones. Each reason was coded with only a single

grade (i.e, the highest appropriate grade).

Understanding Code Description

GUESS/UNINTELLIGIBLE ~ No reason given, guessed, or reason incoherent
SoME LoGgIc  Some math/logic rules, probability, or citing past experience
INEQUALITY Correct Type of rules which are inequalities of inputs with fixed numbers
PARTIALLY CORRECT Some, but not all, of the correct rules, or extra ones
FULLY CORRECT  All correct rules, with no extra unnecessary ones
Table 4.3. Grading rubric for coding free-form reasons given by participants. Mental Models

were coded using this same rubric.

There are two inequality rules (e.g., Pace > 3, and Heart Rate > 6) for each test case or example, so
answer reasons for the Fill-in-the-Blanks Test have two components. We measure how many of
these components participants learn using three coding metrics that count (i) the number of inputs
the participant mentions as relevant in the reasons, (ii) the number of correct rules described, and

(iii) the number of extraneous rules mentioned (0 or 1).

The reasons for the Why and Why Not questions that participants provided in the Reasoning Test
were coded using a rubric similar to Table 4.3. We also recorded, on a five-point Likert-scale the

participant’s level of trust of the correctness of the outputs for each example in the Reasoning Test.

In the survey, we asked participants to describe their overall understanding of how the system
works. This mental model understanding is coded in a similar manner to why reasons, but not

applied to specific examples.

We did a factor analysis on the 16 Likert-scale questions of system and explanation perceptions in

the survey (see Table 4.4).
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Factor o Likert-scale Opinions (Strongly Disagree 1 to Strongly Agree 5)

Understood System .917 | I understood the relationship between inputs and output
[ understood how the system works

I found the system predictable

[ found the system easy to understand

I believe I did well in the test section

Found System Confusing .722 | I found the system confusing
(Negated) [ found the system complicated
[ found the system hard to remember
Liked System / Found it .648 | Ilearned something new from interacting with this system
useful I liked interacting with the system
Explanations Difficult .529 | I found the explanations insufficient
(Negated) [ found the explanations confusing

[ found the explanations too detailed

Explanations Useful .816 | I found the explanations appropriate
I found the explanations useful

Understood Explanations N.A. | I understood the explanations

Table 4.4. Likert-scale questions of perception grouped into six factors with Cronbach’s a
reliability computed. The former three factors are regarding the system, and the latter three

factors only apply to participants who viewed Intelligible versions of the system.

4.5 EXPERIMENT 1

Our first experiment focused on providing answers to hypotheses H1 and H2; whether Why
explanations would lead to improved user understanding, trust, perception, and performance more
than having no explanations, and H2 regarding providing Why Not explanations being better than
no explanations, but not as good as Why explanations. We chose the domain of activity recognition
of exercise, of which users would have a reasonable understanding. Mapping to the generalized
abstract system described earlier, the system takes on the role of a wearable device that can
measure the wearer’s Body Temperature, Heart Rate, and walking or running Pace, and classify
whether the wearer is exercising (Equation (4.1)). The first rule can be satisfied during strength
training (e.g., weight lifting) that does not require much walking about, but can raise body

temperature, while the second rule can be satisfied by running.




4.5 EXPERIMENT1 53

Participants in the no explanation (None) condition did not receive any explanations, and could
only execute each example and move on. Participants in the Why condition receive Why
explanations automatically along with the output value when they execute each example by clicking
the “Execute” button. Participants in the Why Not condition receive a Why Not explanation in place

of a Why explanation.

4.5.1 PARTICIPANTS

53 participants were recruited, aged from 18 to 57 (M=29.8). There were 18 participants in the
None condition, 18 in the Why condition, and 17 in the Why Not condition. We removed from the
analysis any responses of participants who took fewer than 15 minutes (one participant in the
None condition) or longer than 50 minutes to complete the four sections. This was done to filter out
participants who just click through the steps without thinking, and to leave out participants who
may be distracted while performing the task and take too long. On average, participants took 34
minutes to complete the study. Participants were each given $3 for completing the study ($1 base
and a $2 bonus to motivate performance). A further $2 was offered to a few participants who

participated in interviews conducted soon (up to a few days) after completing the task.

4.5.2 RESULTS

To analyze participants’ ability to apply their understanding, the number of correct answers per
participant was summed and a Tukey HSD pair-wise test was performed. The number of correct
answers was the dependent measure. The analysis showed significant differences in accuracy
between explanation types (F[2,84]=8.85, p<.001; see Figure 4.3). To analyze participants’ ability to
formalize their understanding, their reasons were coded using the coding scheme in Table 4.3 and
dummy variables were generated indicating: Inequality or better (0 or 1), Partially or Fully Correct
(0 or 1), and Fully Correct (0 or 1). The analyses were done with the reason coding as the
dependent measure and with condition as a fixed effect. Participants were modeled as a random
effect and nested within condition. A Tukey HSD pairwise test of the occurrences of each coded
score shows that providing explanations leads to more correct answers than not providing any
(contrast of None with Why and Why Not: F[1,50]=15.1, p<.001). However, there was no significant

difference in the number of correct answers between Why and Why Not explanation types.
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Figure 4.3. Participants receiving explanations (in the Learning section) answered

significantly more questions correctly in the Fill-in-the-Blanks section.
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Figure 4.4. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Reasoning Test section.

Using the grading coding scheme in Table 4.3 on the Why reasons provided in the Fill-in-the-Blanks
Test, we found that participants in the Why and Why Not conditions were able to produce more
Partially Correct reasons compared to those in the None condition (F[1,50]=27.4, p<.001) (see
Figure 4.4). Participants in the Why condition produced more Fully Correct reasons compared to
None and Why Not (F[1,50]=10.8, p<.002). There were no significant differences between Why and
Why Not. A similar pattern was found in the Reasoning Test section Participants in the Why
condition had a higher level of trust than those in None (F[1,49]=8.98, p<.005), while those in the
Why Not condition did not. The survey measures on overall mental model or perceptions of the

system and explanations did not reveal significant differences.

4.5.3 DISCUSSION AND IMPLICATIONS

The generally poor trust in the system could be due to occasional examples that follow the system

rules, but may not be ‘natural’ (e.g., high Body Temperature and low pace predicted as “Not
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Exercising”). The answer and reason results indicated that providing explanations lead to better
understanding and trust of the system with less disagreement about the system output. However, in
their provided why reasons, several participants alluded to the domain of physical activity and
physiology to explain how the inputs (Body Temperature, Heart Rate, and Pace) should relate to
whether the device wearer was “Exercising” (e.g., “moving & high [body temperature], looks like
running so I upped the [heart rate]”). Furthermore, most responses specified the inputs as “high” or
“low” rather than specifying numeric boundaries (e.g., “heart rate is low, so must be a high pace
along with high body temperature to predict exercising”). This suggests that having prior knowledge
would lessen participants’ effort to be precise about their understanding. To mitigate the effects of
prior knowledge, and to support more generalizability to other domains, we decided to anonymize

the inputs and outputs with an abstract system.

4.6 EXPERIMENT 2

Our second experiment focused on comparing the effectiveness of different explanations types for
each of the 4 intelligibility questions. Using the explanation algorithms described in Table 1, we can

isolate these explanations for each condition.

4.6.1 METHOD

This experiment followed the procedure of Experiment 1. For the None, Why, and Why Not
conditions, participants see the same interface as in Experiment 1, but with the inputs obfuscated

as 4, B, and C, and the output values relabeled to a and b.

What-If Facility

Ta interactively learn how the system behaves, fill in the input blanks to find out what
output would be produced for your chosen input values.

You may leave the inputs blank if you do not wish to use this facility.

Inputs Qutput
&
A |:| =y 96% accuracy
B[ J=p | [ ]
Execute What-If
c[ =

Figure 4.5. What If explanation facility. Participants would get to freely enter values for the

inputs A, B, and C, and get the system to simulate what the output would be.
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How-To Facility
This facility helps you learn how the system works by telling what input values are
needed to produce a particular output. To interactively learn how the system behaves,

1. Select which input to determine its value: [~ -]
2. Select what output value to produce: [ -]
3. Fill into blanks the values of the other inputs:

Inputs Output

= Ry,
= b=y 95% accuracy
- — | =]
c —

You may leave the inputs blank if you do not wish to use this facility.
Figure 4.6. Participants in the How To condition view this facility. By specifying two of the
input values and an output value, they can inquire the system to indicate possible values of

the remaining input.

Participants in the What If condition receive a What If interaction facility (see Figure 4.5) instead of
an explanation to let them see the output given their choice of inputs. Participants in the How To
condition received an interactive facility (see Figure 4.6) to determine how to get the system to
produce a chosen output value. To control for the number of examples encountered, participants in
the What If and How To conditions only get 12 complete examples (the even-numbered examples of
other conditions), and can invoke their respective intelligibility facilities 12 times to see a total of
24 examples (similar to the other conditions). For each condition, the explanations or explanation

facilities will always appear as each example is executed.

4.6.2 PARTICIPANTS

158 participants were recruited, aged from 18 to 72 (M=31.9). There were 26-37 participants in
each of the 5 conditions: None (31); Why (30); Why Not (31); How To (29); What If (37). On
average, participants took 33 minutes to complete the study (similar to Experiment 1, they were
required to complete the study within 15 to 50 minutes). Compensation was identical to

Experiment 1.

4.6.3 RESULTS

We analyzed the results by using the Tukey HSD pairwise test, looking for differences between
groups for our previously described metrics. Compared to participants in the None, What If and

How To conditions, participants in the Why and Why Not conditions had more correct answers in
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the Fill-in-the-Blanks tests, provided better reasons, and reported having a better understanding of
the system. Participants in the Why and Why Not conditions had an accuracy of 80.0% and 74.2%,
respectively, compared to 61.7% for the None condition (F[1,152]=51.6, p<.001; see Figure 4.7).
More of their answer reasons were coded as at least Inequality type rules (Inequality:
F[1,153]=198, p<.001), Partially Correct (F[1,153]=195, p<.001) and Fully Correct (F[1,153]=108,
p<.001). Finally, the self-reports of understanding for Why and Why Not were 3.14 and 2.79,
respectively (see Figure 4.10a).

Participants in the Why condition further distinguished themselves from Why Not by giving more
Fully Correct reasons (contrast of Why with Why Not: F[1,153]=23.2, p<.001), and trusting the
system output more (contrast of Why with None: F[1,153]=8.26, p<.001 vs. contrast of Why Not
with None: p=n.s.) with means of 3.26, 3.0 and 2.46 for Why, Why Not and None, respectively (see
Figure 4.10b). However, these participants also took the longest to answer each Fill-in-the-Blanks
test case (M=26.3 seconds, compared to M=22.0 and M=17.0 for Why Not and None, respectively)
(contrast of Why with None: F[1,145]=9.32, p<.003 vs. contrast of Why Not with None: p=n.s.).

Surprisingly, participants in the Why Not condition were not significantly better at providing Why
Not reasons than Why reasons. While participants in the What If condition were indistinguishable
from those in the None condition across all of our metrics, we did find that participants in the How
To condition were able to understand the types of rules used in the system better than participants

in the None condition (answer reasons coded as Inequality or better: F[1,153]=15.6, p<.001).

To identify why participants in the Why Not condition understood less about the rules than Why,
we coded the quality of answer reasons on the number of inputs and rules mentioned. Participants
in the Why condition provided more correct rules (M=1.19 vs. M=0.79; F[1,59]=6.16, p<.02) while
those in the Why condition provided fewer extraneous rules (M=0.11 vs. M=0.23; F[1,59]=8.276,
p<.006).
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Figure 4.7. Percent of correct answers in the Fill-in-the-Blanks test section, by condition.

Different colors indicate statistically significant differences.
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Figure 4.8. Percent of reasons coded as Inequality, Partially Correct, or Fully Correct in the

Fill-in-the-Blanks Test section for each condition.
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Figure 4.9. Overall understanding of the system was similar to the understanding in-situ of

individual examples, but responses were less precise (fewer correct descriptions).
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Figure 4.10. Self-reports of (a) understanding and (b) trust, by condition. Different colors

indicate significant differences.

4.6.4 DISCUSSION AND IMPLICATIONS

The results in Experiment 2 validate those in Experiment 1 with a more generalized abstract
domain, while not suffering from confounds due to prior domain knowledge. The Why and Why Not
explanations improved participants’ understanding, increased their trust in the system, and their
task performance. Examining the user reasons, we found that automatically generated Why
explanations allowed users to more precisely understand how the system functions for individual
instances compared to Why Not explanations. This is in spite of the Why Not explanations being
logically equivalent to Why explanations since flipping the not’s in the former can derive the latter.
Moreover, we found that the Why Not participants tended to provide fewer correct rules (more
participants could only provide one correct rule instead of two) for the answer reason, or provide
extraneous inputs and rules that the system did not consider for the respective test cases, as
compared to the Why participants. These indicate that Why Not participants tended to learn only
part of the reasoning trace, and did not associate the two rules together, but treated them
separately. This failure in rule conjunction could be due to the inclusion of negative wording (i.e.

“but” and “not”) in the Why Not explanation. The mental effort to understand the Why Not
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explanation and create such a rule conjunction is certainly more than those in the Why condition

had to expend, which could explain the differences we observed.

Neither the How To nor What If explanations showed much benefit over not having explanations.
Some participants expressed their difficulty in using these explanation types, e.g., “I really don’t
think I used it cause I did not understand it”; “The first few [times, I did] not even realize what the
facility was for.” Participants receiving What If explanations did not optimize their selection of
examples, with some users even selecting input values out of range (e.g., A=100). Given the abstract
and mathematical nature of the experimental setup, without any reasoning trace (unlike Why, Why
Not, How To), almost none of these participants proposed inequality rules as reasons, similar to
those in the None condition. However, as with the effect of domain knowledge (in Experiment 1),

participants who did not receive reasoning traces did consider the inequality rules, but just not

correctly (see Figure 4.5).

Our results suggest that developers should provide Why explanations as the primary form of
explanation and Why Not as a secondary form, if provided. Our results may suggest the
ineffectiveness of How To and What If explanations, but these explanation types may be more
useful for other types of tasks, particularly those relating to figuring out how to execute certain

system functionality, rather than interpreting or evaluating.

4.7 GENERAL DISCUSSION

We now discuss the findings of our two experiments and their implications for real world context-

aware systems.

4.7.1 IMPACT OF PRIOR KNOWLEDGE

We found in Experiment 1 that participants formed less accurate and precise mental models of the
system, compared to those in Experiment 2. This could be due to participants applying their prior
knowledge of exercising to understanding how the system works and not paying careful attention
to the explanations, as evidenced by the reasons they provided. This persistence of mental model
was also shown in [Tullio et al., 2007] where participants received explanations, over time, of how
an interruptibility system worked. As many real context-aware applications are based on common
everyday activities, users may have strong prior knowledge of the domains although weak

understanding of the applications, and may also not diligently learn from the provided
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explanations. One way to address this could be to learn from the knowledge-based systems
community, and provide deeper justification [Gregor and Benbasat, 1999] explanations to help

users understand why the system behavior may be different from typical everyday understanding.

4.7.2 FROM THE LAB TO THE REAL WORLD

Our intelligibility test infrastructure differs from real applications in that users would have
different goals when asking either of the intelligibility question types. In reality, users would ask
Why questions when they lack an understanding of how the application works, but Why Not
questions when they expect certain results that the application did not produce. This distinction in
user expectations and goals was not present in our lab study. Therefore, even if Why Not
explanations are found to be less effective than Why explanations, for real systems, users may
prefer the former explanation type to bridge gaps in their understanding and improve their trust

and acceptance of the system.

In order to investigate how our findings play in a real-world setting, we have developed an
intelligible, context-aware plugin [Lim and Dey, 2012a] for the AOL Instant Messenger (AIM) that
uses predictions of buddy responsiveness to instant messages (based on [Avrahami and Hudson,
2006]). In a future longitudinal deployment we plan to investigate how explanations affect usability

and acceptability.

4.7.3 IMPLICATIONS FOR CONTEXT-AWARE APPLICATIONS

While our intelligibility test infrastructure has some characteristics of context-aware systems, real
context-aware applications are more complex and several issues would have to be handled
regarding the provision of explanation types. Firstly, applications that use decision tree models
tend to have much larger trees learned from possibly hundreds of features, and it would not be
scalable to generate explanations from them. For example, a tree of depth 13 could lead to the Why
traces that have over 10 inequality relations. The explanations returned would be too long for users
to assimilate and remember. One way to deal with the larger tree size is to just provide subsets of
reasons in the explanations. For example, the Why trace could just provide the top 5 inequality
relations ranked by how much each relation affects the prediction accuracy. Providing subsets of
explanations would provide users with only partial understanding of each application behavior

instance, and users may have to interact with the system longer before understanding the system
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better. One way to reduce overall learning time may be to start new users with higher-detail

explanations, then progress to less detail the more they interact with the system.

While our setup dealt with decision tree learners, the naive Bayes classifier is another popular
learner used in context-aware applications. Even though they are not as intuitive as decision trees,
Naive Bayes models can be interpretable, and there are several visualizations to explain them (e.g.,
nomograms [Mozina et al., 2004]). However, some learners (e.g., Support Vector Machines with
Gaussian kernels, Neural Networks) are considered black-boxes [Nugent and Cunningham, 2005]
and are not inherently interpretable. Fortunately, there have been some attempts to make them
explainable using decision trees or rules (e.g., [Andrews, Diederich, and Tickle, 1995]). We can then

use the same techniques to provide explanations for systems based on decision tree models.

Another issue with real systems is that users may not like to receive explanations all the time, but
on demand instead, because the former may be too obtrusive. In Chapter 9, we performed a study to
compare if users can still benefit sufficiently from explanations if they get to choose when and how

often they can receive explanations, and if this usage of explanations can lead to improved learning.

Our results suggest the effectiveness and importance of providing Why and Why Not explanations
over How To and What If. The former two deal with Norman’s gulf of evaluation, while the latter
two deal with the gulf of execution [Norman, 1988]. While we feel that this dichotomy should
remain true for informative context-aware systems (e.g., applications to determine interruptibility
of others to inform onlookers [Avrahami and Hudson, 2006; Tullio et al., 2007]), systems that are
more pro-active (e.g., applications that send notifications based on the user’s interruptibility) may
benefit more with the How To and What If explanations. With those explanations, users would be

better informed of how they can carry out their tasks.

4.8 CONCLUSIONS AND FURTHER WORK

We have described a large controlled study comparing the provision of explanations addressing
four explanation type questions (Why, Why Not, How To, and What If). We developed a web-based
platform that provides a functional input-output interface of an intelligent system prototype that
provides different types of explanations. Our findings suggest that providing reasoning trace
explanations for context-aware applications to novice users, and in particular Why explanations,

can improve user’s understanding and trust in the system.
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Our results of the relative strengths and weaknesses of each explanation type came from a between-
subjects study, but to gain an insight into which explanation type individual users may prefer, we
wish to run a within-subjects study, where each participant sees multiple explanation types. In
Chapters 7 and 9, we investigate this with an intelligible context-aware mobile application, which

provides several explanation types.

Furthermore, though our results do not show the effectiveness of How To and What If explanations,
we believe they may be more useful given better motivating scenarios and better interface design.
Therefore, we continued to pursue our investigations into these explanation types in later work
(Chapters 5, 6, 7, and 9), and specifically sought out a user friendly interface for explanations in

Chapter 7.

We next sought to widen the scope of intelligibility to include more questions that users may ask of
context-aware applications. In Chapter 5, we expand on four intelligibility question types to include

11 question types for our taxonomy of Intelligibility.
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5 ASSESSING DEMAND FOR
INTELLIGIBILITY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2009). Assessing Demand for Intelligibility in Context-Aware
Applications. In Proceedings of the 11th international Conference on Ubiquitous Computing
(Orlando, Florida, USA, September 30 - October 03, 2009). Ubicomp '09. ACM, New York, NY,
195-204.

ABSTRACT. Intelligibility can help expose the inner workings and inputs of context-aware
applications that tend to be opaque to users due to their implicit sensing and actions. However, users
may not be interested in all the information that the applications can produce. Using scenarios of four
real-world applications that span the design space of context-aware computing, we conducted two
experiments to discover what information users are interested in. In the first experiment, we elicit
types of information demands that users have and under what moderating circumstances they have
them. In the second experiment, we verify the findings by soliciting users about which types they
would want to know and establish whether receiving such information would satisfy them. We
discuss why users demand certain types of information, and provide design implications on how to
provide different explanation types to make context-aware applications intelligible and acceptable to

users.

5.1 INTRODUCTION

In Chapter 4, we found that some types of explanation were more effective than others in improving
users’ understanding and trust of a context-aware intelligent system. However, it was not clear what

information users actually want to know and will ask about, and whether there are more explanation
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types than we had previously considered. In this work, we explored and assessed a taxonomy of user
demand for intelligibility: which types of questions users want answered, and how answering them
improves user satisfaction of context-aware applications. User satisfaction is obviously crucial for

adoption and acceptance of such technologies.

To make context-aware applications intelligible so that they can expose their inner functions to the
end-user, much research has looked into how to generate explanations from the underlying
application models and deliver them to users (e.g., [Cheverst et al., 2007; Ko and Myers, 2009;
Kulesza et al.,, 2009; Lim and Dey, 2009]). However, little work has been done to compare the
impact of different types of explanations or in the domain of context-aware computing. Users may
not be receptive to these explanations, especially when they end up using the applications in ways
for which they were not designed [Orlikowski, 2000], and when those explanations do not adapt to
varying situations of use. Thus it is important to explore information demand from the user’s

perspective lest effort is wasted in implementing explanations that would see little use.

Researchers have explored what users want to know in other domains. McGuinness and colleagues
[Glass, McGuinness, and Wolverton, 2008; McGuinness et al, 2007] have identified information
need factors that influence the level of trust in adaptive agents. They used interviews to identify
explanation requirements and rank question types according to their helpfulness. Gregor and
Benbasat's [1999] meta-review investigates explanation types that users of knowledge-based
systems (KBS) would like to have. While adaptive agents and KBS are similar to context-aware
applications (which may also use agents or knowledge bases and rules), they are work-oriented,
while context-aware applications are targeted for everyday use, for many more situations and a
wider range of users, and under more situations [Abowd, Mynatt, and Rodden, 2002]. Thus we need

to explore how these different requirements would lead to different intelligibility needs.

The chapter is organized as follows: we discuss how supporting intelligibility by providing
explanations that users want, has the potential to increase user satisfaction and thus acceptance of
context-aware applications. We then describe our experimental design that uses surveys and
scenarios to expose users to a range of experiences with context-aware applications. We present
two experiments that investigate what types of information users want. In the first experiment, we
elicit the types of information users are interested in and under what moderating circumstances. In
the second experiment, we validate our findings by presenting users with 11 information types as

intelligibility features in a controlled study and measure their impact on user satisfaction. We end
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with a discussion of why users of context-aware systems demand certain types of information in
different situation, and provide design recommendations for providing different information types

to make context-aware systems intelligible and acceptable to users.

5.2 HYPOTHESES AND APPROACH

We hypothesize that there are different types of information in which users are interested, for
different context-aware applications, and different situations. Since people ask information seeking
questions due to cognitive disequilibrium [Graesser and McMahen, 1993] and to correct knowledge
deficits [Van der Meik, 1987], we believe that satisfying these information demands through
intelligibility can lead to better satisfaction when using these applications and improved adoption
and acceptance. In order to elicit the information demands users have for context-aware
applications under various situations, we conducted a study of the demand for explanations and
different types of information in several scenarios users may find themselves in as they use context-

aware applications.

Using described scenarios instead of actual field deployments allows us to quickly and more
effectively study and understand the impact of different information on intelligibility and
satisfaction, without having to implement and deploy a variety of applications, any of which could
fail for reasons independent of our main focus. Next we describe four applications we use to focus
our scenarios. For each application, the scenarios intentionally span a range of incorrect,
appropriate and unexpected or anomalous, but not necessarily wrong behavior, to probe directly at

the issues of intelligibility and satisfaction.

5.3 SETUP: SCENARIOS OF FOUR CONTEXT-AWARE

APPLICATIONS

To investigate the demand for intelligibility in the space of context-aware applications, we selected
four prototypical context-aware applications: (i) a desktop interruption management application
(an Instant Messenger plugin), (ii) a remote person monitoring peripheral display (Digital Family
Portrait), (iii) a context-aware reminder application (CybreMinder), and (iv) a mobile context-
aware tour guide (CyberGuide). All applications in this study behave according to models of learned

decision trees.



68 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.3.1 INTERRUPTION MANAGEMENT
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Figure 5.1: (Left) Screen capture of a five-second video clip for the IM Auto-Notification

application survey, showing the user rushing to meet a deadline. (Right) Screenshot of a non-

work IM message which had been suppressed and delivered later.

We designed the instant messenger (IM) auto-notification plugin based on recent work on a
predictive model to determine how long a buddy would take to respond to a message [Avrahami
and Hudson, 2006]. Our application uses the responsiveness prediction to determine the subject’s
interruptibility [Fogarty et al., 2005], and either forwards or suppresses incoming IM messages. We

developed four main scenarios for this application where the subject is in various states of

availability:
1. Rushing to reach an imminent deadline,
2. Taking a break and surfing the Internet,
3. Reading a work-related book, and
4. Returning from a protracted informal meeting.

For each scenario, the user receives an IM message from

e A colleague regarding critical work, or

e Afriend regarding a fun video.

There are 16 scenarios (4 availability x 2 received messages x 2 application actions).
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5.3.2 REMOTE MONITORING
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Figure 5.2: (Left) Screen capture of a five-second video clip for the Elderly Remote
Monitoring application survey, showing the user casually glancing at the display.

Screenshots of a normal event (Middle) and an anomalous event (Right).

We used the Digital Family Portrait [Mynatt et al, 2001] as an example for remote monitoring
systems. It leverages a picture frame to present the current status of an elderly family member as
he or she goes through daily life living independently in her home, to remote loved ones. Our
rendition of the Digital Family Portrait is based on a decision tree model which we define as several
small subtrees, each addressing groups of scenarios. We present a subset of what the sensors on the

elder’s body and in the home are described as detecting:

1. Whether the family member has fallen,
Whether there is a fire;
2. How many times the toilet has been used recently,
Whether the usage frequency is anomalous,
Whether the system thinks this could be a symptom of incontinence;
3. Whether the family member is watching TV,
Whether the family member is sleeping
4. Whether the family member’s house is vacant,

Whether there is an intruder.

For this application, there are a total of 13 scenarios.
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5.3.3 REMINDER
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Figure 5.3: (Left) Screen capture of a five-second video clip for the Reminder application
survey, showing the phone triggering at the pantry. Screenshots of a work-related reminder

(Middle) and personal reminder (Right).

We used CybreMinder [Dey and Abowd, 2000] as an example for reminder systems. CybreMinder is
a context-aware reminder application that considers combinations of contexts, such as location,
time, and collocation, to trigger reminders. It is based on several personal and environmental
sensors, and triggers reminders based on the satisfaction of one of several rules (modeled as a

decision tree). We developed scenarios that would relate to three types of reminders (mentioned in

[Dey and Abowd, 2000]):

1. Reminder to discuss an important issue when the user and a colleague serendipitously meet

(collocation trigger);

2. Reminder to take the umbrella when it is forecasted to rain and the user is approaching the

front door (location and information trigger); and,

3. Reminder to discuss party planning with a friend when the user and the friend are free, and

the user is at the office (complex trigger).

We developed 13 scenarios based on these three reminders.

Sony Ericsson

CybreMinder
Discuss party
plans with
Johnny.



5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION TypEs 71

5.3.4 TOUR GUIDE RECOMMENDER
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Figure 5.4: (Left) Screen capture of a five-second video clip for the Tour Guide Recommender
application survey, showing the user walking by the museum, a point of interest. (Right)

Animated screenshots recommending a dinosaur exhibit at the museum.

We used CyberGuide [Abowd et al.,, 1997] as an example for tour guide systems. CyberGuide is a
mobile context-aware tour guide that uses context to recommend attractions to a user. Our
rendition of CyberGuide considers the contexts of location (where the user is currently located),
keywords (that the user has recently used), and navigation information like traffic. We use three

settings for a user with a keen interest in museums and dinosaurs visiting an unfamiliar city:

1. Walking by museum with a dinosaur exhibit;
2. Having a conversation with a friend talking about museums and dinosaurs; and,

3. Meeting a friend at his home with the application recommending a route to the destination.

We developed 12 scenarios based on these three settings

5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION

TYPES

Based on these four applications and the scenarios we developed, we conducted our first
experiment on the intelligibility of context-aware applications to investigate what questions users

want to ask in the various scenarios.
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5.4.1 METHOD

We created one survey for each of the four prototypical context-aware applications. At the
beginning of each survey, the respective context-aware application is described to the participant.
Its functionalities are described, but not explained or elaborated on (e.g., participants are not told
where it gets its information from). Depending on the application survey, participants are shown 3-
4 scenarios, described from a first-person perspective that places participants in certain
circumstances (e.g., rushing to complete a report due in half an hour for the IM application). The
scenarios are represented by short 5-second video clips (e.g., see Figure 5.1 left) and short textual
descriptions about what is happening. After a scenario is presented, participants are shown 2-5
(depending on the application and scenario) instances of the scenario, one at a time, with different
application responses, represented as screenshots along with text (e.g., see Figure 5.1 right), where
the behaviors may be appropriate, strange, or incorrect. For each application response, participants

are reminded about the scenario and can replay the video, if necessary.

To mitigate order effects, the order of scenarios was randomized for each participant. For each
scenario, we posed several questions (see Table 1) to ascertain what the participant thought and
felt about the application response, and what information they would want to know, if any, for the
situation. Except for a question on application satisfaction with a 7-point Likert scale response, the

rest of the questions were free text response.

Measure Survey Question Response
Application [ am satisfied with the application response 7-point Likert
Satisfaction scale

Action What will you do? Free text

User Feeling How do you feel about what the application did?

Information What information or knowledge would you like to know about what

Demand the application did or why it behaved this way?

Table 5.1: Questions posed to participants for each application response scenario to find out
what they think the application response, what they think is happening, and their

information demand for each scenario.

We recruited 250 participants (47% female; ages 18 to 61, M=29.5) from Amazon Mechanical Turk,
and paid them $4 for completing a survey. Participants were divided among the four applications

surveys, and survey analysis was conducted between-subject.
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5.4.2 CODING ANALYSIS: EXPLANATION TYPES AND MODERATORS
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Figure 5.5: Hierarchical representation of explanation types that users want to know.

We coded the participant responses to the free response questions to determine whether
participants wanted more information regarding the application or situation, and what type of
information they wanted. Using the open coding method of grounded theory [Strauss and Corbin,
1990], and drawing from question types employed previously in [Antifakos et al., 2005] and
Chapter 4, we derived a set of explanation types that users are interested in for context-aware
applications. In the rest of the chapter, we shall refer to these types as explanation types. Figure 5.5

presents them in terms of a hierarchy and Table 5.2 shows the coding scheme used.



Theme k |Values / Description Example Participant Text
Impression 91 | - |Negative “Angry” “Bad” “I'm pissed off it could have cost me my job” “I feel cheated”
(Useless / Dissatisfied / Irritated / Frustrated) | | m disappointed in the application”
0 |Neutral / equivocal “It's ok.” “fine”
+ | Positive (Useful / Satisfied) “Good. Positive.” “I love it, works like a charm.”
Trust of .91 | 0 |Abandon it, Complain, Lost Trust, Doubt it, “I wouldn't be paying attention to it anymore” “Something must be wrong
Device Dissatisfied / believe it is wrong with one of the sensors.” “It may have misinterpreted an action.”
1 |Satisfied / Believe / Trust “The application performed properly.” “I'm satisfied.” “It's okay, it was my
fault.”
Theme k |Values / Description Example Participant Text
Information .84 | 0 |None / Not necessary -
Demand . s »
1 | Too much info already / Overwhelmed It is more than [ would want to know.
2 |Yes / Not enough info/details (See below)
Domain of .95 | 0 |None -
Explanati
xplanation 1 | Application, Device, Sensors (includes logic) (See below)
2 |Situational / Event “My status and Johnny's priority.” “How often the person moved, or what
the rate of respiration was.” “Our locations and distance.”

Table 5.2: Coding scheme for Experiment 1. The first two themes indicate participants’ thoughts on the scenario, and the

remaining themes indicate their information needs. Most of the participant text responses were coded by one coder, with a 10%

random sample of responses coded by a second coder. Inter-coder reliabilities (k) for each theme are indicated.

* denotes high apparent reliability due to low occurrence of coded measure (i.e., too few affirmative counts).
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Theme k |Values / Description Example Participant Text
Inputs .95 |Sensor thresholds, ranges, sensitivity, limitations, |“I would like to know what triggers the alarm”
capabilities, coverage, etc “Where does it get its forecasting information? How did it know [ was leaving
rather than entering my house?”
Model .97 | Application conceptual model / Criteria / Heuristic | (See below)
/ Rules / Logic / How does it know / how it works
Outputs 1* | Options / Alternatives that the system could “I would like to know fully what type of things that it would be able to detect
produce. Distinguish from What Else [recognition output]” “I would want to know if there was a quicker route.”
Theme Kk |Values / Description Example Participant Text
Why Why did the application do X? “Why did it let [the message] through?”
“How does it know it is going to rain?”
Why Not .96 | Why did it not do Y? “I would like to know why the application did not filter out this message.”
“Why application failed to sense that I was free in the office and failed to trigger.”
WhatElse | .95 | What (else) is it doing? “What other message are in the queue” “My location, weather, and time.”
“How I could look up more specific details about the event.”
How .97 |How (under what condition) does it do Y? “I would be interested in knowing how it decides how long to suppress
messages.”
What If 1* | What if there is a change in conditions, what would | “I'd like to know in what will application do in certain situations”
happen?
Certainty 1* | Application confidence of its actions / decisions “How can I be sure it is accurate?”
“I'd like to know how accurate the chosen forecasting system was.”
Control 1* How to change settings / thresholds “I would want to know if [ could put a time limit on it.”

“I would like to know how to make it send the correct reminder.”

Table 5.2 (Continued).

SL SAdAL NOLLYINHOAN] 404 ANVINA [ ONISSHSSY T LNAWIHAdXH §°G



76 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

First, depending on the situation, participants may or may not have any information demand. If they
want more information, they may want to know more about how the application works, in terms of
functional inputs, outputs and conceptual model. A conceptual model describes the decision and
action processes performed by the application to use the inputs in producing output. Regarding the
conceptual model, the participant may ask for information that can be represented in the following

questions:

Why did the application do X?
Why Not: why did it not do Y?
How (under what condition) does it do Y?

What (Else) is it doing?

AN

What If there is a change in conditions, what would happen?

Why and Why Not questions seek situation-specific information, while How seeks more
comprehensive information of how the output can be obtained. Although context-aware
applications that sense and act implicitly may elicit questions on what the application is doing,
question 4 (What Else) does not ask this. Instead, participants were interested in knowing what
else the application was doing (e.g., whether the Digital Family Portrait had contacted emergency
services after detecting the elderly family member had fallen). Regarding non-functional
information about the application, users may want to know how certain the application is of its
actions, decisions, and inferences (Certainty). In agreement with past research [Barkhuus and Dey,
2003b; Bellotti and Edwards, 2001; Dey et al.,, 2006], users also want to be able to Control the
application (e.g., change settings for reminders), and want information on how to control it. In
addition to more information about the application, the user may also want to know more about the
current Situation. Regarding the situation, participants expressed their questions mostly in terms of

What Else, and sometimes as Why or Why Not.

We also used the survey responses to derive themes describing circumstances that moderate

demand for these explanation types:

Application Satisfaction. (7-pt Likert scale) How satisfied the user is with the application

behavior.

Impression. Coded response of whether the user has a positive, neutral, or negative impression of

the application, given the situation.



5.4 EXPERIMENT 1: ASSESSING DEMAND FOR INFORMATION TYPES /7

Trust / Reliance. Coded response of whether the user is satisfied (believes application, trusts it) or

dissatisfied (doubtful, lost trust, in disbelief, found fault, will abandon) with the application.

These measures were found to be correlated and so we combined them into a summed and
reversed measure of application Inappropriateness (a«=.68). We split the scenarios into 2 groups:

those with a high or low Inappropriateness score (using a Tukey pair-wise test; p<.001).

Based on the application functionality in various scenarios, we developed more moderators. For
example, because CybreMinder supports goals of pre-planned tasks, while the other three
applications do not, scenarios can be separated into whether they are goal-supportive or not. The

other moderators are:

Criticality. Whether the situation presented is critical. Situations involving accidents or medical
concerns with the Digital Family Portrait and work-related urgency for the IM Auto-Notification
were considered highly critical. Due to the profound influence of the high criticality of the fall and
incontinence scenarios in the Digital Family Portrait survey, these scenarios were excluded from

consideration of the other moderators.

Goal-Supportive. Whether the situation is motivated by a goal the user has (CybreMinder

scenarios only).

Recommendation. Whether the application is recommending information for the user to follow or

ignore (CyberGuide scenarios only).

Externalities. Whether the application is perceived to have high external dependencies (eg.,
getting weather information from a weather radio station) vs. being perceived as “self-contained.”

CybreMinder and CyberGuide had perceived high external dependencies.
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5.4.3 RESULTS: USER DEMAND OF INFORMATION TYPES

Results are shown in Table 5.3, describing the overall demand for various types of information, and
how the demand changes due to moderating circumstances. Discussion is deferred until after we

present the results of Experiment 2.

Table 5.3: Results of Experiment 1. The left

) )
g £ , i £ lumn shows th f partici
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Information | 72.5 ™ T ™
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Application | 59.8 T

arrows) or decreased demand. All results

Situation | 12.0 7| ™ 4
indicate Bonferroni-corrected (n=78)
Inputs | 19.8 l myn significant differences (p<.01; * denotes
Model | 33.6 (N T p<.05). Cohen’s d is reported to determine
Outputs | 2.9 4 T the size of differences rather than just

whether the differences are significant.
Why | 19.0 T

Single arrow indicates small effect size

Why Not | 8.2 () ) (N
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How | 13
medium effect size (.3 < |d| <. 8).
WhatIf | 0.5
WhatElse | 6.4 How to read: e.g., 72.5% of participants demand

. information, in general; participants demand
Certainty | 1.7 & p p

more information about why not when the
Control | 10.0 T

application behavior is more Inappropriate.
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5.5 EXPERIMENT 2: ASSESSING DEMAND FOR EXPLANATION

TYPES

While Experiment 1 sought to elicit the types of information users wanted for explanations of
context-aware applications under various moderating circumstances, Experiment 2 solicits user
demand for the types of information through explicit suggestion of questions and provision of
explanations and studies the impact of meeting this demand on user satisfaction. For each of the
explanation types identified in Experiment 1, we wrote corresponding questions and explanations
for each application situation response of Experiment 1. We added one more explanation type in
response to demand for more information about the application conceptual model. This
“Visualization” explanation type provides a diagrammatic representation of the underlying decision
tree. Table 5.4 shows examples of questions and explanations. We prepared 11 explanation types

for each of the 54 scenarios, for a total of 594 explanations; some are repeated for similar scenarios.

We hypothesize that: (i) when asked specifically about whether they want an explanation type
(heretofore called solicited information demand), users should reflect the same demands (elicited
information demand) as that of experiment 1; and providing information for demanded explanation

type will (ii) increase application satisfaction, and (iii) increase user rating of that explanation type.

5.5.1 METHOD

We reused the applications and scenarios from Experiment 1, with one application per survey.
Experiment 2 is designed as a between-subject study for the explanation types (11 conditions plus a
None condition). Participants are assigned to a version of the survey with only one Explanation
type provided (including None). To mitigate order effects, four versions of each survey were
deployed with a different random ordering of scenarios. On the survey, participants use a 7-point
Likert scale question to rate their satisfaction with the application. In the explanation type
conditions, participants were provided with a corresponding intelligibility question and
explanation. We posed additional queries regarding how important it was to get the question
answered, how much they are satisfied with the explanation and how useful they found it. We
recruited 610 participants (42% female; ages 18 to 61; M=28.9) from Amazon Mechanical Turk, and

evenly distributed them across the 12 conditions. Participants were paid $2.



Explanation Sample Question Sample Explanation
Certainty How certain is the system of this The system is 90% certain of this report.
report?
Inputs What does the system use to sense The system uses an accelerometer worn by the elderly family member, speakers around the
accidents? home, and smoke detectors.
Outputs What accidents can the system The system can sense the following accidents: Falls and Fire/Smoke.
sense?
Why Why did the system report a fall? The system reported a fall because there was a high acceleration from the accelerometer worn
by the family member, and there was a loud sound.
How How does the system distinguish a The system did not report a fire, because the smoke detector did not set off.
between a falling object and
person?
Why Not Why did the system not report a The system detects a fall through high acceleration detected from the accelerometer worn by
fire? the elderly family member, and a loud noise. The system detects a fall of an object through a
loud noise, but no high acceleration from the accelerometer.
What If If an object falls, would the system If an object falls, but the accelerometer worn by the family member does not report a high
report a fall? acceleration, the system would not report a fall.
What Else Did the system alert emergency The system has not alerted emergency services and is pending your approval.
(Application) services of the accident?
Conceptual What is the overall model of how The following diagram describes a simplified view Sroken
Tree Model the system works? of the conceptual model of how the system works. ¢
Visualization It works by tracing a decision tree and taking High Acceleration? Fire
branches at decision points to arrive at a {
conclusion. Red arrows indicate false conditions, Nothing LendSound?
and green indicates true. For example, if smoke is m— v
detected, then the system concludes there is a fire. Sitting Fall
Control How can I change settings to control | Some settings can be changed through a control panel accessed via the menu: Options >
the sensitivity for reports? Settings.
Situation What was the family member doing | The family member was preparing dinner in the kitchen.
(What Else) before the accident?

Table 5.4: Sample questions and explanations of various explanation types participants received for the Digital Family Portrait.
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5.5.2 RESULTS ANALYSIS

We report three metrics in experiment 2: (i) solicited intelligibility demand, (ii) satisfaction of the
application with and without intelligibility, and (iii) user rating of the usefulness of intelligibility.
Table 5.5 summarizes the results of Experiment 2 and compares them with Experiment 1. Results
are reported for explanation types across all scenarios, and by moderating circumstances (high vs.

low rating groups) as described in Experiment 1.

5.5.2.1 SoLICITED INTELLIGIBILITY DEMAND (sID)

Participant solicited intelligibility demand is measured from responses to the 7-point Likert scale
question on how important it is to receive an answer to the supplied explanation type question. All
described differences are significant (p<.05) using a Tukey pair-wise comparison test. As with
experiment 1, the moderating effects are measured by the effect size between low and high

moderator rating groups.

5.5.2.2 DIFFERENCE IN APPLICATION SATISFACTION (AAS)

To calculate relative application satisfaction from None, for each scenario, we subtracted the means
of satisfaction of the None condition from each response in the 11 explanation type conditions.
Across moderating circumstances, we calculate the effect size between the high and low moderator
groups. If the effect size is small or medium, we report the difference in scale value mean along with

the p value of a t-test between the groups.

5.5.2.3 INTELLIGIBILITY USEFULNESS RATING (IUR)

We derived an intelligibility usefulness rating based on the mean of responses regarding
explanation satisfaction and explanation usefulness (Cronbach’s a=.84). We used the same analysis

as described for siD.



Information

Application

Situation

Inputs
Model
Outputs

Why

Why Not
How
What If
What Else

Viz.

Certainty

Control

Average Inappropriateness Criticality Goal-Supportive Recommendation Externalities
Exp1l Exp2 Exp1 Exp2 Exp1 Exp2 Exp1l Exp2 Exp1 Exp2 Exp1l Exp2
eiD(%)| siD | AaS | iuR eiD | siD | AaS | iuR | eiD | siD | AaS | iuR | eiD | siD | AaS | iuR | eiD | siD | AaS | iuR | eiD | siD | AaS | iuR

72.5 |5.18 (0.11 [4.91 ) 0.47 |-0.47 0.81 0.45 i) )
59.8 (5.22|0.09| 4.9 ) 0.45 (-0.48 0.79 0.44 " )
12.0 [4.82|0.28 [4.92 0.76 T | 1.15 0.62 = -0.71(-0.75 4 -0.52
19.8 |5.61|0.15|5.17 0.44*(-0.45 l [0.50* 0.61 M |-0.66 )
33.6 |5.04(0.01( 4.7 ) 0.46 |-0.52 0.83 0.41 T 0.42 -0.45 -0.42
2.9 |5.62(0.06(5.11 0.59 0.75 0.53 4 -0.56] 11 -0.48+
19.0 |5.27 |-0.36|4.32 T -0.65 1.21 0 0.59
8.2 [4.57|-0.01|4.42 ) 0.68 0.91 T [0.95 0.74 -0.68 ) 0.44
13.4 |5.20(0.22|5.18 -0.48 0.54 0.73 -0.67|-0.80 |-1.11 -0.63|-0.75
0.5 |5.15(0.11 |4.64 0.49 0.97 -1.33 -1.16 -0.84 -0.88
6.4 [5.09|0.04|4.83 -0.83] 1T 0.81

5.29]0.29] 471 |-037] 0.53 |-0.56 | 0.84 | | 0.88 | |-062]-083 | | 0.54 | |
1.7 [5.25(0.33|5.13 -0.66 0.99 0.42* 0.60 -0.49*%-0.51% 0.62 -0.43
10.0 |5.37|0.23|5.42 T 0.79 0.54* 0.53 -0.80 -0.60

Table 5.5: Results of Experiment 2 and Experiment 1. eiD: elicited information demand. siD: solicited information demand. AaS:

difference in application satisfaction for providing explanation type. iuR: intelligibility usefulness rating of explanation received.

For Experiment 2, left columns under Average are the mean values of the Likert scale for siD and iuR, and AaS, the difference in

means between intelligibility-provided (various types) and non-intelligible. The right columns are differences in means or

differences between high and low moderator rating groups. All Experiment 2 results of each measure are Bonferroni corrected

(n=84) and significant (p<.01, * denotes p<.05).
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How to Read: e.g., for explanation type Situation, 12% of participants in experiment 1 were interested in knowing about the situation; in
experiment 2, participants wanted to know about it (M=4.82, above neutral); they rated it well, in general (M=4.92) and had a significant
improvement in application satisfaction (AM=0.28). When considering scenarios according to Criticality, participants want more
information about the situation (both elicited and solicited, both medium effects), experienced more satisfaction after receiving

explanations for more critical scenarios (p<.05), and rated situation explanations better for those scenarios (small effect).
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5.6 DISCUSSION

We discuss the meaning of the results from both experiments in terms of demand for intelligibility
and what they imply for design. Among the four context-aware applications we investigated and
their various scenarios, we have determined average demands for various explanation types.
However, these demands change depending on circumstance and function of the application.
Participant awareness to seek particular explanation types also increases their demand for these
types. We also found that explanations should be carefully tailored to be effective, otherwise, they

may be more detrimental than helpful.

Participants generally wanted information about the Application, and designers can anticipate this,
but they also moderately wanted information about the Situation in which the application acts.
When asking about the application, participants tend to focus on the application Model rather than
the Inputs or Outputs. Of the application model, they care most about Why the application behaved
as it did in specific situations, and How it works in general and How To produce certain actions or
decisions. Participants indicated a strong demand for Visualizations (with significant increase in
application satisfaction, and intelligibility explanation rating). This may be because participants
prefer graphical to textual explanations, so visualization-based explanations may be a better means
to deliver explanations. As in Chapter 4 [Lim, Dey, and Avrahami, 2009], Why Not explanations had
a significant but limited demand compared to why. As indicated by many researchers (eg.,
[Barkhuus and Dey, 2003b; Bellotti and Edwards, 2001; Dey et al., 2006]), our participants were
interested in knowing how to control applications. We found that users were more satisfied with
receiving this explanation type even though we only told them where they could find a control
panel. This echoes findings in [Glass, McGuinness, and Wolverton, 2008] of how users adopt a “trust

but verify” approach and just need to know they can override the settings, but not necessarily do so.

5.6.1 DEMAND FOR INTELLIGIBILITY VARIES WITH CIRCUMSTANCES

The Why Not explanation type is particularly effective for Inappropriate circumstances and Goal-
Supportive functions. Participants would tend to ask Why Not when encountering an inappropriate
behavior, especially if it deviates from their goals. Output information is desired more for
Recommenders and Inputs information for applications with high Externalities. Table 5.5 indicates

other explanation types that vary by circumstances.
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5.6.2 HIGH INTELLIGIBILITY DEMAND FOR CRITICAL CIRCUMSTANCES

Criticality is a particularly significant moderating circumstance as for highly critical scenarios,
participants want as much information about any explanation type (especially about the Situation
and What Else) as they can get if they are aware of its availability. However, it is hard to satisfy
participants with any explanation types in highly critical scenarios, possibly due to the stress

during the critical period, and preoccupation with the primary problem.

5.6.3 AWARENESS OF EXPLANATION TYPES CHANGES DEMAND

Just as in [McGuinness et al., 2007], we found that awareness of the existence of explanation types
plays an important factor where participants recognize the value of the various types and
subsequently had greater demand for them, resulting in higher application satisfaction; this created
higher demand and benefit than would have been predicted from Experiment 1. Though not in
demand when elicited, Inputs, Outputs, What If, What Else, and Certainty became particularly

desired when participants were informed or reminded about them.

5.6.4 VALLEY OF EXPECTATION

The elicited and solicited information demand measures indicate which explanation types are
desired and under what circumstances, but providing explanations matching these types in the
corresponding circumstance may lead to poorer intelligibility usefulness ratings instead. This is
particularly evident for Inappropriateness circumstances, but absent for highly Critical ones. This
suggests that when participants have a higher demand for intelligibility, they also expect better
explanations, and may rate explanations worse. However, when they become more desperate for
information (as in cases of high criticality), they readily accept the explanations, and rate them
more favorably. We refer to this drop then rise in expectation of explanation quality with respect to

information demand as the “valley of expectation” of intelligibility demand.

5.6.5 SATISFACTION VS. UNDERSTANDING

This work has explored the explanation types that users demand and that may satisfy them. We
compare and contrast our findings to our earlier work in Chapter 4 that explored how to improve
user understanding and trust of a context-aware intelligent system. Previously, we found that Why
and Why Not explanations were most effective, while interactive explanation types (How To and

What If), were less useful due to the difficulty of using them. In this study, we provide participants



86 CHAPTER 5 | ASSESSING DEMAND FOR INTELLIGIBILITY

with various explanation types without involving any user interaction, so we avoid the confound of
difficult user interfaces and, in fact, find that How (To) and What If explanations should not be
neglected. We also found that even though Why and Why Not explanations are intuitive and
particularly good at improving understanding, users have higher expectations on the informational

quality of such explanations, and may be biased against appreciating them as much.

5.7 DESIGN RECOMMENDATIONS

We present some recommendations to developers of context-aware applications about which
explanation types to provide and under what circumstances. Developers can identify which
moderators and situations apply for their applications and then use the suggested
recommendations. Implementing all the types of intelligibility we investigated is excessive and may
even be detrimental. We present the different types and offer advice about when and how they

should be implemented (summary in Table 5.6 and Table 5.7).

Application. When users want information, they will tend to want application-centric information,
so, in general, more effort should be concentrated on providing information about the application’s
workings and mechanism than on the situation. Explanations about the application should also be
provided for applications that are at risk of being easily abandoned (low trust), and when the

application is uncertain (high risk of Inappropriateness) of its action.

Situation. Though users are less interested about what else is happening when the application
responds, there is moderate interest in increasing their real-world situational awareness (what
else). This would involve making applications sense more related events and contexts (e.g., for a
monitoring application, what is the historical trace of events before an anomaly) than their primary
function, and to reveal such knowledge to the user. This is more important in cases when the

application acts in highly critical situations.

Inputs. Users may only have a moderate interest in knowing more about the application’s input
sources or sensor readings, but if they perceive the application is heavily dependent on external

sources (high externality), they may want to know more about the inputs.

Outputs. In typical application use, users are not interested in the output alternatives. However,
they may suspect that the application is capable of more action than it is exhibiting. Providing

intelligibility explaining the output (action) capabilities of the application is particularly important
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for applications that make recommendations (such as tour guides), especially when users want to
seek better options. This should be provided automatically during early stages of usage to improve

users’ awareness.

Model. Most of the questions users want to ask are about an application’s conceptual model. This is

elaborated with the following explanation types.

Why. Answering why questions is an essential intelligibility requirement as such questions are very
common. However, users may also have high expectations that the why explanations are very
informative and a simple reason trace may not be sufficient to fully satisfy the users’ enquiries.

Visualizations could be used to augment a trace.

Why Not. Such explanations are good for high risk (high chance of inappropriateness)
circumstances and goal-supportive functions. However, we caution against implementing it in all
types of context-aware applications because generating these explanations for all alternative

possibilities may be non-trivial.

How. Users are somewhat interested in knowing how the application arrives at its outcomes, and
particularly like such explanations. However, how explanations can get cumbersome to produce for
applications with complex or learned logic. Users may have to use an interactive facility to specify

the constraints in which to obtain an action (as was the case in Section 4.6.4).

What If. This explanation type also involves user interaction in specifying input conditions and the
application simulating what would happen. We recommend what if explanations for non-

recommenders and more self-contained applications, for which users indicated strongest demand.

What Else. The what else explanation provides information closely related to the situation
explanation. The latter provides situational awareness, while the former provides more
information about what the application has done. Unsolicited demand for what else information is
low, but becomes significant when participants are aware of its availability. This indicates an
intrinsic need for this type of explanation. What else explanations are also important in critical
situations when users hope that the application is doing more to remedy or handle the critical

situation.

Visualization (Viz.). Given the general demand and effectiveness for this explanation type, we

recommend providing visualizations to augment explanations.
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Certainty. Providing certainty information is particularly important for applications that are goal-
supportive where users want to know how certain the application is in its decision or action, and
for applications that rely heavily on external sources and sensors. Certainty values that we provided
for this study were over 90%, but we suspect that if low certainty accuracies are reported to the
user, this may hurt their impression of the application. As applications can have varying levels of

certainty when in use, it may not be wise to always show certainty information.

Control. For context-aware applications, this explanation type would support users changing
parameters in the conceptual model that were originally set by the developers or learned by the
system. However, when users adjust such parameters, they may be making poorer choices than the
developers or the underlying machine learning algorithm, and may ultimately hurt the application
accuracy. Nevertheless, it may be important to allow users to change these settings, but caution

them about the danger of doing so.



5.7 DESIGN RECOMMENDATIONS &9

5.7.1 DESIGN PRESCRIPTION

We synthesize our findings and discussion to produce an initial attempt at a design prescription on
what and how to provide and implement explanation types for context-aware applications. We
propose a four-step procedure, and use UbiGreen [Froehlich et al., 2009] as an example application
to illustrate this and for external validity. UbiGreen is a mobile context-aware application that uses
a wearable sensor to recognize physical activity relating to sustainability (green) actions. The
application tracks the accumulation of green actions and displays a corresponding rewarding

wallpaper on the phone throughout the week. The steps are as follows:

[.  Map application to moderating circumstances. Determine whether the application will
encounter high or low moderator rating values. Table 5.8 shows the mapping for UbiGreen.

II.  Referring to Table 5.6 and Table 5.8, determine which explanation types to provide and
prioritize them in order of recommendation.

[II.  Consider issues (such as obtrusiveness and privacy) that would lead to trade-offs with
when and how to provide intelligibility. Table 5.9 lists concerns for UbiGreen, and Table 5.7
presents ways to provide explanation types.

IV.  Summarize selections of explanation types with justifications. We provide Table 5.10 as a

template for this summary and filled it out with details for UbiGreen.
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Table 5.6: Design prescription of which explanation types to implement depending on the

circumstances encountered by and functionality of the candidate context-aware application.

Provision Type

Tradeoffs

Always on

Obtrusive and space consuming. Only suitable for displays that are persistent
(e.g. peripheral or kiosk displays).

Automatic Context-Based

Could be obtrusive for frequent events. May want to deactivate after a while.

Adaptive / Intelligent

The system uses context to determine when to provide explanations.
Applications with poor accuracy may provide or omit providing explanations
at inappropriate times.

This can be used to determine the most crucial time to send privacy-sensitive
information.

On Demand, Always

Least obtrusive, but may not expose user frequently enough to improve their
understanding.

On Demand. Context-Based

Allows users to get intelligibility features contextually.

Table 5.7: Reference of provision types to handle tradeoffs between providing intelligibility

and other issues.
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Moderator Lo Hi

Inappropriateness v v

Criticality 4

Goal-Supportive v Issues Concern
Recommendation 4 Obtrusiveness Med
Externalities v Personal Privacy Low

Table 5.8: Circumstances mapping for UbiGreen.

Table 5.9: Issues mapping for UbiGreen.

Explanation Type Provision | Priority Details / Comments
Situation -
Inputs -
Outputs -
Why On Med To support curiosity or deal with expectation
Demand. mismatches.
Why Not On High Needed to answer why certain activities were not
Demand, recognized and recorded.
How On Med Providing this explanation type may be
Demand. controversial, since this information allows users to
g game the system.
B
9]
= What If - Implementing this will also support gaming of the
= = system.
< | %
= What Else -
Visualization (with To augment textual explanations.
others)
Certainty Always Med Though important to have, it is more appropriate to
show certainty at the event level (e.g. detection of
various activities), than at the cumulative level (i.e.
wall paper display of progress).
Control On Med Expose user model and sensor thresholds to allow
Demand, tweaking.

Table 5.10: Design prescription for UbiGreen.




92 CHAPTER5 | ASSESSING DEMAND FOR INTELLIGIBILITY

5.8 LIMITATIONS

We acknowledge three limitations of our approach. First, we do not claim our list of moderating
circumstances to be comprehensive; there are other explanation types that could be important to
context-aware applications (e.g., history, similar examples), and other circumstances (e.g., more vs.
less autonomous systems). Second, our participants had to imagine using the various applications
through video and text. We used this approach to garner opinion from a larger pool of participants
and to investigate a range of multiple context-aware applications. However, this does not mitigate
the need to investigate the demand for intelligibility features in deployed systems, where users can
get real-time feedback, have internal motivations and goals, and can draw on past experience of
using the system. Third, since we drew our participants from the Internet, and a relatively new
platform, Mechanical Turk, our population is not a representative sample of the general public (see
[Schonlau et al., 2006]). Our sample (ethnicity 32% Asian / Pacific Islander, education 37% 4-year
college educated, 18% with post-graduate degree; 27% students) is more representative of an
internet-savvy population, and should be representative of technology early adopters. This

population is appropriate, as we are dealing with the adoption of novel technologies.

5.9 CONCLUSIONS AND FURTHER WORK

We have described two experiments about a wide range of scenarios with four context-aware
applications to assess user demand for intelligibility and the impact on user satisfaction when those
demands are met. From a question asking perspective, we have elicited a set of explanation types
(Application, Situation, Inputs, Outputs, Model, Why, Why Not, How, What If, What Else, Certainty,
Control) users of context-aware systems may be interested in, and several circumstances that may
moderate when this demand changes (Application Behavior Inappropriateness, Situation Criticality,
Application Goal-Supportiveness, Recommendation Role, Number of Externalities). Our findings
suggest that some explanation types (e.g., Why, Certainty, Control) should be made available for all
context-aware applications, while some are more useful for specific contexts (e.g., Why Not for goal-
supportive tasks). We believe that context-aware application developers can take these
recommendations on when and how to provide different types of intelligibility features and

dramatically improve user satisfaction with, and acceptance of, their context-aware applications.

We have found that even if certain explanation types are helpful to improve users’ understanding,

they may not necessarily want or seek them, and be more satisfied. We would like to investigate the
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interactions involved in increasing understanding and satisfying information demands to provide a
more cohesive framework for intelligibility. We wish to test our findings in a field study with a
deployed intelligible context-aware application. As an intermediate step, we designed, developed
and evaluated, Laksa, an intelligible context-aware mobile application (described in Chapters 7 and
9) as a research platform. This application provides 10 of these explanation types allowing us to
gain richer insights into how and when users interact with each type, and how that may improve

their understanding of the application behavior.

To support the implementation of Laksa and other intelligible context-aware applications, and to
make it easier to implement explanations that can explain the broad range of question types we

introduced in this Chapter, we developed the Intelligibility Toolkit, which we describe in Chapter 6.






95

6 INTELLIGIBILITY TOOLKIT

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2010). Toolkit to Support Intelligibility in Context-Aware
Applications. In Proceedings of the 12th ACM international Conference on Ubiquitous
Computing (Copenhagen, Denmark, September 26 - 29, 2010). Ubicomp '10. ACM, New York,
NY, 13-22.

ABSTRACT. Context-aware applications should be intelligible so users can better understand how
they work and improve their trust in them. However, providing intelligibility is non-trivial and
requires the developer to understand how to generate explanations from application decision
models. Furthermore, users need different types of explanations and this complicates the
implementation of intelligibility. We have developed the Intelligibility Toolkit that makes it easy for
application developers to obtain 12 types of explanations (e.g., Certainty, Why, Why Not, What If,
How To) from the several popular decision models (e.g., rules, decision trees, naive Bayes, hidden
Markov models) of context-aware applications. We describe its extensible architecture, and the
explanation generation algorithms we developed. We validate the usefulness of the toolkit with four

canonical applications that use the toolkit to generate explanations for end-users.

6.1 INTRODUCTION

Having elicited what questions users are interested to ask of context-aware applications in Chapter
5, we have found a reasonably large set of explanation types that applications may provide to be
intelligible. However, it would be a substantial effort for developers to implement these
explanations for all context-aware applications for which they would like to provide intelligibility.
To support the implementation of intelligibility, and lower the barrier to providing them in context-

aware applications, we developed the Intelligibility Toolkit. Its focus is to provide the automatic
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generation and processing of explanations from the underlying context model of a context-aware
application. The Intelligibility Toolkit provides an extensible, standardized framework with which
the explanations can be (i) selected, (ii) queried, (iii) generated, (iv) post-processed, and (v)

presented. Our contributions are:

1. An architecture for generating a wide range of 12 explanation types drawn from Chapter 5.
Our current implementation extends the Context Toolkit, a popular toolkit for building
context-aware applications [Dey, Abowd, and Salber, 2001] and supports at least 10 popular
inference models (e.g., rules, decision trees, naive Bayes, hidden Markov models).

2. Alibrary of reference implementations of explanation generation algorithms we developed
to extract any of the explanation types from any of the inference models we support.

3. Automated support for the recommendations from Section 5.7 that promotes good design
practice by making the most contextually appropriate explanations easy for developers to
acquire. Applications can automatically obtain the most appropriate explanations given the

contextual situation.

As we will show, these contributions satisfy the requirements laid out by Olsen [2007] for adding
value to user interface architectures: (i) importance, (ii) problem not previously solved, (iii) has
generality across a range of explanation types and decision model types, (iv) reduces solution
viscosity through increased flexibility for rapid prototyping of explanations, (v) empowers new
design participants by making it easier to provide explanations, and (vi) demonstrates power in

combination by supporting combinations of explanation types as building blocks.

This chapter is organized as follows: we review context-aware applications published in recent
years from a number of premier conferences to ascertain popular inference models. Then we
present a discussion of the explanation we seek to support. Next, we provide an overview of the
toolkit architecture and components, and implementation details and algorithms. We validate the
toolkit through demonstration applications and the application of Olsen’s infrastructure guidelines.
We then discuss other toolkit features that would be valuable to support, and compare the toolkit

with related work. We end with discussing opportunities for new research given the toolkit.

We have also included extensive appendices to this chapter, describing where the toolkit may be
downloaded (Appendix A), detailing more Explainer explanation generation algorithms (Appendix
B), and providing a tutorial on how to build an intelligible context-aware application with the

Intelligibility Toolkit (Appendix C).
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6.2 INFERENCE MODELS IN CONTEXT-AWARE APPLICATIONS

In [Lim and Dey, 2010], we identified the most popular context-aware inference models to support
in the Intelligibility Toolkit. We reviewed literature from three major conferences over at least five
years: CHI 2003-2009, Ubicomp 2004-2009, and Pervasive 2004-2009. We found the four most
popular models among the 114 context-aware applications reviewed: rules, decision trees, naive

Bayes, and hidden Markov models (see Figure 6.1).
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Figure 6.1: (Left) Counts of model types used in 109 of 114 reviewed context-aware
applications from 2003-2009. (Right) Counts for 50 recognition applications; classifiers are

used most often for applications that do recognition.

In this chapter, we extend the Intelligibility Toolkit in [Lim and Dey, 2010] to support more types of
inference models to provide developers with even more flexibility in choosing machine learning

classifiers and yet retain intelligibility features in the toolkit.

6.2.1 LoGIc RULES

We classify applications as rule-based if the authors state that their applications were based on
Boolean rules (e.g., if/else logic; AND and OR combinations), or that they were based on simple
mapping associations of IDs to entities (e.g., RFID). Developer specified rules are the most popular
decision models used in context-aware applications. They are popular in the following domains:
activity recognition (e.g., [Tsukada et al., 2004]), adaptation / personalization (e.g., [Terada et al.,
2004]), awareness / monitoring (e.g., [Dey and Guzman, 2006]), reminders (e.g., [Borriello et al,

2004]), location guides (e.g., [Newcomb et al.,, 2003]), and persuasion (e.g., [Froehlich et al., 2009]).
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Also, the number of rule-based toolkits for context-aware applications indicates the popularity of

rules (e.g., [Assad et al., 2007; Bardam, 2005; Dey and Newberger, 2009; Gu et al. 2005]).

6.2.2 DECISION TREES

Decision tree classifiers (e.g., C4.5 [Quinlan, 1993], Random Tree of a Random Forest [Breiman,
2001]) learn a decision tree from a dataset. A decision tree infers an output by deciding on a
specific input feature at each node as it traverses down and returns a decision once it reaches a leaf.
Decision trees are popular for their simplicity of use, interpretability, and good runtime
performance. Decision trees are popular in applications to recognize: identity / ability (e.g., [Chang
et al, 2009]), interruptibility (e.g., [Avrahami and Hudson, 2006; Tullio et al., 2007]), mobility (e.g.,
[Zheng et al., 2008]), etc.

6.2.3 FUNCTIONS

A simple form of functional relations is the direct of one or more inputs to an output. For example,
adjusting the color of an ambient display based on the current price of energy (Ambient Energy
Orb?1), or adjusting the length of a string based on the arrival times of buses (BusMobile [Mankoff et
al., 2003]). Other than programmer-defined functions, functions can also be learned using machine

learning algorithms.

Linear Regression learns a linear equation relating input features to a continuous-valued output.
Linear regression has been used to model: physical energy expenditure from wearable sensors (e.g.,
[Albinali et al, 2010]), step count prediction (e.g., [Sohn et al., 2006]), and in combination with
other classification methods for domestic utility inference (e.g., HydroSense [Froehlich et al., 2009],

GasSense[Cohn et al.,, 2010]).

Logistic Regression is similar to linear regression, but instead learns a sigmoid function for use in
classification instead of regression. Logistic regression has been used to model: availability from a
mobile phone (e.g., [Rosenthal, Dey, and Veloso, 2011]), physical activity monitoring (e.g, [Sun,
Zhang, and Li, 2011], and dietary activity recognition with wearable sensors (e.g., [Amft and

Troster, 2008]).

Support Vector Machine (SVM) classifiers are a popular machine learning classifiers that use a

maximum-margin hypothesis to learn a linear equation relating input features to classify a class

! Ambient Devices. http://www.ambientdevices.com/products/what-is-ambient. Retrieved 3 April 2012.
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value. A popular method to train SVMs is Sequential Minimal Optimization (SMO) [Platt, 1998].
SVMs have been used to model: eye movement tracking for activity recognition (e.g., [Bulling et al.,
2009]), visual memory recall (e.g., [Bulling and Roggen, 2011]) physical activity recognition (e.g.,

[Murao et al., 2009]), and gesture recognition using power-lines (e.g., [Cohn et al., 2011]).

6.2.4 BAYESIAN MODELS

Several inference models use Bayesian inference to determine the output given some input values.
Generally, they use Bayesian probability to determine the posterior probability of an outcome value
due to a prior probability and likelihoods due to some variables. These variables provide evidence

for the inference.

Naive Bayes is a probabilistic classifier that applies Bayes theorem to model the probability of the
output of a system given the inputs. It applies a naive assumption that features are conditionally
independent of one another. Training and runtime performance are fast. Naive Bayes classifiers
have been used to recognize: physical activity (e.g., [Chang et al., 2007]), domestic activity (e.g.,
[Tapia et al.,, 2004]), interruptibility (e.g., [Tullio et al., 2007]).

Hidden Markov models (HMM) [Rabiner, 1989] are Bayesian probabilistic classifiers that model
the probability of a sequence of hidden states given a sequence of observations (input features with
respect to time). First-order Markov models assume that only the previous state affects the next,
and only the current state influences the current observation. HMMs have been used to model:
physical (e.g., [Chang et al., 2007]) and domestic activity (e.g., [van Kasteren et al., 2008]), gaze (e.g.,
[Bulling et al., 2008]).

Bayesian Networks (also called Bayes Net, BN) are more general Bayesian probabilistic classifiers
that can model more dependencies between variables in the model. BNs have been used to model:
family transportation coordination [Davidoff et al, 2011], activity tracking of multiple home
occupants (e.g., [Wilson and Atkeson, 2005]), medication prompting (e.g., [Vurgun, Philipose, and
Pave, 2009]), and social sensing for epidemiological behavior change [Madan et al, 2010].
Explaining BNs have been extensively researched especially in the medical informatics literature
(e.g., see [Lacave and Diez, 2002]). As such, we do not currently support explaining BNs in the

Intelligibility Toolkit.
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6.2.5 SIMILARITY

Another approach to inferring an output value is to determine how similar the current inputs are to
previously seen examples. This is a common approach for recommender systems that recommend
based on items in which the user had expressed interest, and case-based reasoning systems, which

refer to specific cases. We describe two common similarity-based models.

k-Nearest Neighbors (kNN) is an instance-based learning method that classifies outcomes based
on the majority class value of the instances in the training set that are nearest to the test instance.
kNN has been used to model: context-based mobile search [Lane et al, 2010], single-point
electronic device sensing [Gupta, Reynolds, and Patel, 2010], EEG-based attention recognition [Li et

al., 2011], and physical activity recognition [Bicocchi, Mamei, and Zambonelli, 2010].

k-Means Clustering is an unsupervised learning method to group data instances into k clusters
based on how similar the instances are based on their input features. On its own, clustering does
not classify a label or output value. However, k-means has been used together with supervised
learning classifiers to model, e.g., smart phone energy consumption [Oliver and Keshav, 2011]. We
focus on supervised instead of unsupervised methods, and do not currently support explaining k-

means clustering in the Intelligibility Toolkit.

6.2.6 ENSEMBLE INFERENCE MODELS

Ensemble meta-classifiers are commonly used to improve the accuracy of classifiers. We describe

two popular ones.

Bootstrap Aggregation (also called Bagging) [Breiman, 1996] resamples a training dataset with
replacement to train multiple versions of a base classifier, which subsequently are used to vote on
an inference. Bagging has been used to model: cough detection using microphones [Larson et al,
2011], cooperative people-centric inference from data of multiple people [Lane et al., 2009], and

transportation mode [Zheng et al., 2010].

Adaptive Boosting (AdaBoost) [Freud and Shapire, 1995] is a popular Boosting method that
iterates a base classifier multiple times by updating the training dataset of each iterated classifier to
emphasize wrongly classified instances. Inference is performed through a weighted vote of the
classifier iterations. AdaBoost has been used to model: physical activity recognition with boosted

decision stumps (e.g., [Lester, Choudhury, and Borriello, 2009]), hand gesture recognition with
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boosted kNN (e.g., [Fukui et al., 2011]), mobility mode inference with boosted logistic regression
(e.g., [Sohn et al., 2006]).

Several applications also combine rules for higher level logic with classifiers for lower level
recognition (e.g., UbiFit [Consolvo et al., 2008], UbiGreen [Froelich et al., 2009], Laksa [Lim and Dey,
2011a]).

6.3 EXPLANATION QUESTION TYPES

As we focus on these four decision models, we need to generate the various explanations that users
want to receive. In Chapter 5 we enumerated ten explanation types that are important to end-users
of context-aware applications, and in this work we provide mechanisms to automatically extract

eight of them from the applications. We review the different explanation types and their definitions.

6.3.1 SYSTEM-BASED EXPLANATION TYPES

If we represent a context-aware application as sensing inputs, maintaining system state, and
producing an output, we can identify a set of explanations that are independent of the decision

model and how it makes its decisions.

1. What explanations inform users of the current (or previous) system state in terms of output
value; this makes the application state explicit. If the application performs multiple actions
per state, the user may ask What Else to learn of other actions or services that the
application may have performed simultaneously.

2. When explanations inform users when the inference made, ie, the time at which the
context changed its value.

3. Inputs explanations inform users what input sensors (e.g., thermostat, GPS coordinates)
and information sources (e.g., weather forecast, restaurant reviews website) that the
application employs so that users can understand its scope. Input values are obtained by
recursively asking What on the Inputs. When a user asks a why question, she may naively be
asking for the Inputs state. Inputs should be described by their name and possibly also with
some description of what they mean or refer to.

4. Outputs explanations inform users what output options the application can produce. This
lets users know what it can do or what states it can be in (e.g., activity recognized as one of

three options: sitting, standing, walking). This helps users understand the extent of the
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application’s capabilities. Outputs explanations can also be used to help ask model-based
explanations Why Not and How To (see below) by allowing the user to select an alternative
desired output.

5. What If explanations allow users to speculate what the application will do given a set of

user-set input values.

6.3.2 MODEL-BASED EXPLANATION TYPES

Explanations regarding the inference mechanism of the decision making process in the application

are model-dependent, and would vary depending on the model used.

6. Certainty explanations inform users how (un)certain the application is of the output value
produced. They help the user determine how much to trust the output value.

7. Why explanations inform users why the application derived its output value from the
current (or previous) input values. For rule-based systems, this returns the conditions
(rules) that were true such that the output was selected.

In terms of model generated explanations, a Why question asks for the reasoning trace(s)
for the rule(s) that triggered the inferred value, or evidence for why the inferred value was
inferred over alternative values

8. Why Not explanations inform users why an alternative output value was not produced
given the current input values. They could provide users with enough information to
achieve the alternative output value, but not necessarily so (e.g., the Weights of Evidence
style of explanation; see Section 6.4.2).

In terms of model generated explanations, a Why Not question asks for a pairwise
comparison between the inferred output value and an alternative output value.

9. How To explanations answer the question "In general, how can the application produce
desired output value X?" This contrasts with Why that asks in regards to a specific event.
Occasionally, providing a comprehensive How To explanation is infeasible, since there could
be infinite solutions. There are other variants of How To questions that can provide a finite
and tractable number of reasons, such as How To If, where the Input state is constrained

when asking How To.
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6.3.3 APPLICATION-BASED EXPLANATION TYPES

The following explanation types depend on the application and sensed or inferred context and are

thus application-dependent.

10. Situation explanations seek to demonstrate or illustrate what was happening to provide a
ground truth of what was being inferred, e.g., playing an audio clip of what was heard to
substantiate the application’s sound inference. The manifestation of this explanation will
depend on the physical context being explained.

11. Description explanations provide textual descriptions for teaching terminology and
concepts of terms, features, or feature values [Swartout and Smoliar, 1987]. With longer
text, description explanations can also support the design rationale explanation type of

Haynes et al. [2009] and justification explanation type of Swartout [1983].

We omit explaining Control because this is already covered by Enactor Parameters [Dey and
Newberger, 2009]. Description explanations may also be used to explain how to Control the

application.

6.3.4 HISTORY EXPLANATION

History explanations inform users about the application state at a previous time. This is not truly a
distinct explanation type, but a means to retrieve historical explanations of the aforementioned
explanation types. Rather than explaining about the current inference, History explanations allow
the user to learn about a past historical inference. Therefore, this may simply provide a historical
What explanation, or provide a means to ask other questions and obtain explanations (e.g., Why,

Why Not, Inputs) about that time instance.

To support History explanations, we require the application to store and retrieve historical
information at the application level or deeper at the system level. Furthermore, assuming that the
inference models are static, ie, do not change over time, Historical explanations can then be
generated by applying Explainers to the inference model with the specific historical state. If the
inference model changes over time, then historical versions of the model will also need to be stored

and retrieved to generate the corresponding explanation of the historical event.

Currently, the Intelligibility Toolkit does not specify any storage mechanisms, though the Context

Toolkit does support storage of context information. We have developed an intelligible application
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prototype, Laksa (see later Sections 7.2 and 9.3), which also supports storing and retrieving of

historical contexts, and so supports historical explanation types.

6.4 EXPLANATION STYLES OF MODEL-BASED EXPLANATIONS

The differences in inference models affect how an explanation may be generated. We support two
styles of explanations in the Intelligibility Toolkit that can be generated: rule traces and weights of

evidence.

6.4.1 RULE TRACES

Rule traces pertain to the trace or line reasoning content type of explanation described in [Gregor
and Benbasat, 2001]. They trace the line of reasoning that was executed to explain why an inference
was made. Conveying traces that were not executed explain why an alternative inference was not
made. For a logic inference model, a trace is just a conjunction (AND) of logic conditions. The
Intelligibility Toolkit provides Rule Trace explanations for Rules and Decision Tree inference

models.

6.4.2 \WEIGHTS OF EVIDENCE

Many models do not make inferences using rules (e.g., naive Bayes, SVM) and so rule traces are not
relevant for explaining them. Instead, we employ the Weights of Evidence concept also used in
[Kulesza et al., 2009; Poulin et al., 2006; Madigan, Mosurski, and Almond, 1996; Mozina et al., 2004].
This considers that the model computes a total evidence for each possible outcome value that may
be inferred, and that this total evidence is due to a sum of atomic weights of evidence due to various
factors. In the inference models we consider for the Intelligibility Toolkit, we consider input
features (e.g., sound volume, frequency) as the main factors. Therefore, the weights of evidence
explanation attempts to inform the user how much evidence each factor contributes towards or

against the inference.

6.5 REQUIREMENTS

We seek to provide an Intelligibility Toolkit that supports the automatic generation of the
aforementioned explanation types from various inference models. Context-aware applications built

with the toolkit freely receive the capability of providing these generated explanations to end-users.
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The toolkit is designed to satisfy requirements inspired from Olsen's writings about infrastructure

evaluation [Olsen, 2007]:

R1) LOWER BARRIER TO PROVIDING EXPLANATIONS

With the toolkit, application developers do not need to know how to generate explanations from
the most popular models used in context-aware applications. Explanation generation algorithms

and heuristics are encapsulated into the toolkit.

R2) FLEXIBILITY OF USING EXPLANATIONS

Given the simplicity of invoking various explanation types, all types can be generated with the same
level of ease. Developers can then concentrate on choosing the most suitable explanation for their
applications and users. This supports rapid prototyping of providing explanation solutions to see

which works best.

R3 ) FACILITATE APPROPRIATE EXPLANATIONS AUTOMATICALLY

Even with this rapid prototyping support, we encourage the use of appropriate explanations,
particularly following the recommendations from Section 5.7 of how different explanation types are

more appropriate in various contexts.

R4) SUPPORT COMBINING OF EXPLANATIONS

Some explanation types depend on other types to give a complete explanation to the user. For
example, a Why Not explanation needs to inform the user of the set of Output values so that she
would ask only about what is possible in the application. Other than nesting explanations,
explanations can also be combined to enhance user experience. For example, combining the How To
and What If explanations can expedite users in finding good examples to learn how an application

works (e.g., see Section 6.10.6.3).

R5) GENERALIZABILITY

Although the toolkit currently covers a range of eight explanation types, four popular decision
models and methods for simplifying and presenting explanations, like any toolkit, it is not

comprehensive. The toolkit can be extended to support:



106 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

a) New explanation types and new methods to explain the supported models (e.g., competing
methods to explain naive Bayes are presented in [Mozina et al., 2004; Poulin et al. 2006;
Robnik-Sikonja and Kononenko, 2008]),

b) New algorithms for explaining currently unsupported inference model types (eg., SVM,
clustering),

c) New heuristics for post-processing explanations,

d) New presentation styles for providing explanations, and

e) New heuristics for selecting explanations to provide.

6.6 TOOLKIT ARCHITECTURE

The Intelligibility Toolkit consists of four types of functional components, and three types of
structural components. The functional components implement processes for generating
explanations (Explainer), simplifying or reducing them (Reducer), and rendering or presenting
them (Presenter). The structural components support the encapsulation and transport of
explanations (Explanation Expression), and questions or querying (Query). Figure 6.2 shows how
these components relate to one another in a pipeline to produce explanations for end-users to

consume.

Selector

S

Querier

Explainer
Full
Explanation

y

Reducer
Reduced
. Presenter
Explanation
Rendered
Explanation

Figure 6.2: Architecture of the Intelligibility Toolkit showing functional and structural

components.
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To provide system-based explanations of context inference, we implemented the Intelligibility
Toolkit, extending the Enactor framework [Dey and Newberger, 2009] of the Context Toolkit [Dey,
Abowd, and Salber, 2001]. Enactors contain the application logic of the context-aware application

and contain References that monitor the state of input Widgets.

For the rest of this section, we describe the components of the Intelligibility Toolkit, focusing on
how to use them as library programmers (i.e., programmers who will use the Intelligibility Toolkit
components to make their applications intelligible [Hudson, 1997]). In later sections, we will
describe how toolkit programmers can extend the Intelligibility Toolkit to develop their own

components.

6.6.1 QUERY

To have an explainer generate an explanation, the program can pass a Query to the Explainer.
Queries encapsulate information about which context the user is interested to ask about, which

question the user is asking, and about which time the user is asking. The queries may be about

The base Query takes the current inputs and output values and is used for explanation types What,
Why, and Certainty. A1tQuery extends Query to include an alternative target output value to
facilitate explanation types Why Not, and How To. InputsQuery extends Query to allow the
setting of input values, supporting What If explanations. Query can be extended to employ

different constraining mechanisms, such as querying based on time.

6.6.2 EXPLAINER

The Explainer is the main component of the Intelligibility Toolkit that contains the mechanisms and
algorithms to generate explanations based on the inference model. There is a generic Explainer
that generates system-based explanations types, and subclasses of Explainer for each of the
inference model supported. System-based explanations are generated using the architecture of the
Enactor framework to provide the corresponding information. Model-dependent explanations are
generated from different Explainers for each model. Each Explainer takes a Query and the
application state as input, and generates the explanation as an Explanation Expression data
structure. Given the two styles of explanations supported in the Intelligibility Toolkit, we provide
Explainers for Rule Traces and for Weights of Evidence. See Section 6.10 for some explanation

generation algorithms.
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6.6.3 EXPLANATION STYLES AND DATA STRUCTURES

Explanations are generated in a standard format so that they can be reused in other components of

the Intelligibility Toolkit. However, they differ depending on the explanation style.

6.6.3.1 RULE TRACES IN NORMAL FORM

We define a rule trace explanation in terms of one or multiple reasons (e.g., multiple reasons for
Why Not). Each reason can be a singular conditional (e.g., one certainty value for a Certainty
explanation) or a conjunction (e.g., multiple conditionals for a Why explanation). The conditional is
the atomic unit of an explanation (e.g., certainty = 90%, temperature < 24°C). Furthermore, there

can be negated condition literals (e.g., ~(temperature > 24°C)).

Formally, for standardization, we define explanations in Disjunctive Normal Form (DNF), ie. a
disjunction (OR, U) of conjunctions (AND, N) of condition literals (see example in Figure 6.6, Right),
or Conjunctive Normal Form (CNF), ie. a conjunction of disjunctions of condition literals (see
example in Figure 6.6, Middle). The standardization of explanation information supports
Requirement R4 such that there is a consistent way to pipe different explanation types to other

components in the toolkit.

6.6.3.2 WEIGHTS OF EVIDENCE AS A MULTI-DIMENSIONAL ARRAY

For a simple inference model, we can attribute the total evidence for an inference as a sum of each
atomic weight of evidence due to an input feature. Note that the evidence is a continuous numeric
value, while the input feature value may be nominal or numeric. This set of evidence just requires a

one-dimensional array to represent the sum of weights.

However, some more complex inference models may have more factors that may ascribe evidence
for the inference. For example, the HMMs also model time sequence, so weights of evidence will be
due to input features over a range of time steps. In this case, we have time as a second dimension.
Another example is using an ensemble meta-classifier that has multiple base classifiers, each
performing an inference before the meta-level classification. In that case, we have classifier as the
second dimension. Explanations of these inference models will require a two-dimensional array to

represent the sum of weights of evidence.

In general, there may be any number of dimensions for the weights of evidence, so we represent it

using a multi-dimensional array (also called multi-array). The sum of weights gives the total
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evidence for the explanation, and each element gives an atomic unit of evidence. This is beneficial to

using a one-dimensional array as we do not lose information from each dimension.

6.6.4 REDUCER

Explanations generated from Explainers may be unwieldy to an end-user and lead to information
overload. Reducers simplify the explanation data structure so that the explanation is easier for
users to interpret. Reducers can also be used to post-process explanations before presenting them,
e.g., stripping privacy-sensitive information, when explaining contexts to a social contact. Given the
two styles of explanations the Intelligibility Toolkit has two kinds of reducers, one for rule traces

(see Section 6.11.1) and another for weights of evidence (see Section 6.11.2).

6.6.5 PRESENTER

Explainers produce explanations in the form of Explanation Data Structures, and Presenters
render them in a form presentable to end-users, e.g., as text, visualization, or interactive graphical
interface. Developers can build different Presenters to suit their target user and device form factor.
Furthermore, even if the explanation is large, a developer may elegantly present it (e.g., see Figure

6.12), instead of reducing it.

6.6.6 QUERIER

Queriers are to Queries what Presenters are to Explanations: they provide interfaces to
display questions that end-users may ask. This may involve using text input, drop-down menus,
buttons, etc., and specific implementations also depend on the platform the application is deployed

on, desktop, mobile, etc.

Rather than let end-users manually ask for explanations on demand, it may be useful to
automatically provide the explanations (see Table 5.7). Queriers that show explainers automatically

do not need to provide any user interface but just generate Queries to pass to Explainers.

6.6.7 SELECTOR

While the application may provide a range of explanations using the Intelligibility Toolkit, it may
not be appropriate or helpful to provide all explanations all the time. As we will show in Chapter 8,
providing explanations when the application is uncertain can harm a user’s impression of the

application. We have also seen how users prefer to ask different question types under various
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circumstances (Chapter 5). Therefore, it is important to allow the application to selectively provide
explanations under appropriate conditions. In fact, this contextual selectivity of intelligibility is a
specialized form of context-awareness. The Intelligibility Toolkit provides Selectors to support this

need for context-dependent intelligibility.

Selectors take contextual factors as inputs, and selects appropriate explanation types that should be
provided. They may select none, one, or multiple explanation types (i.e., any number). When
selecting multiple explanation types, they may also rank the selections to prioritize them. To

facilitate automatic provision of explanations, Selectors may

Selectors may also be extended to select Reducers to apply after Explainers generate explanations.
This way the application can control the level of detail to provide in explanations. This can facilitate
showing more explanation detail when useful (see Chapter 9), and showing less explanation detail

when too overwhelming to end-users (see Sections 7.3.1 and 7.10.1).

6.7 IMPLEMENTATION OF THE INTELLIGIBILITY TOOLKIT

We implemented the Intelligibility Toolkit in Java (JDK 7) with extensive use of generics. The
Intelligibility Toolkit does not perform inference on its own; its main purpose is to explain the
inference. Hence, it depends on third-party libraries for inference models. The Explainer
component depends on the inference model being explained. System-based explanations depend on
the system infrastructure for the inference. We implemented base Explainers for the Enactor
framework and also for the WEKA machine learning toolkit [Hall et al., 2009]. We implemented a
Rule explainer to explain rules in Enactors, and several explainers to explain classifications in

WEKA classifiers.

The Intelligibility Toolkit also does not enforce any particular user interface framework or
platform, and focuses on explanation generation. Therefore, specific implementations of the
Presenter component depend on the platform on which the context-aware application is deployed.
We have implemented Presenters for desktop graphical user interfaces (GUI) using the Java Swing

AP], and for mobile applications using the Android 2.2 APL

The Intelligibility Toolkit library binary and source code is downloadable from

http://www.contexttoolkit.org. We have also provided documentation and tutorials for developers.
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In the next few sections, we describe of how the Intelligibility Toolkit is integrated with the Context

Toolkit, implementation details of its core components, and how to extend each type of component.

6.7.1 EXTENDING THE ENACTORS FRAMEWORK OF THE CONTEXT TOOLKIT

The Context Toolkit was originally developed by Dey and colleagues to support the development of
context-aware applications by abstracting the connectivity issues of devices in a distributed
environment through the use of a discovery mechanism (blackboard) and by developing a widget
paradigm for context-aware applications to abstract the building of context-awareness functionality
and their use. We added support for machine learning and an XML-based method to define widgets

and enactors. See documentation at http://www.contexttoolkit.org for more details. In this section,

we describe some of the components of the Context Toolkit necessary to know how we have

extended it for use in the Intelligibility Toolkit.

Context Context Output
Inputs Outputs Actions
A Enactor Output ) A L, A N
Application Values P —
In-Widget Inference Model A Out-Widget Service
Attribute

Reference
Attribute

Attribute

Attribute -

Reference
Attribute
|
Figure 6.3: Architecture of Enactor framework of the Context Toolkit updated to include

output values and In and Out Widgets.

6.7.1.1 WIDGETS

Context widgets are responsible for separating the details of sensing context from actually using
it. They abstract away the details of how the context is sensed from applications and other context
components that need the context. Widgets here can be thought of as similar to GUI widgets (e.g.,
text fields, spinners), but applied to sensors and actuators that would be common in ubiquitous
computing systems. Each context widget is responsible for some small set of contexts that is

captured from a (hardware or software) sensor.

Widgets have Attributes to represent contextual information. An Attribute represents a type of

context, containing the name of the context and the data type of the context (float, int, string, etc).
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Attributes are used to describe context components, and to specify what context a component is

interested in. AttributeNamevalue extend Attribute to also encapsulate the value of the attribute.

There are also Interpreters and Aggregators, but we leave it to the diligent reader to read the

original papers describing them (e.g., [Dey, 2000; Dey, Abowd, and Salber, 2001]).

6.7.1.2 SERVICES

While widgets contain information about context state, they can also encode behavior, through
Services. Each Service object contains a service name and a FunctionDescriptions object

that describes what the service does.

6.7.1.3 ENACTORS

Introduced into the Context Toolkit by Dey and Newberger [2009], Enactors encapsulate the
application logic of context-aware applications. They contain EnactorReferences that specify
rules for matching the state of input Widgets. Each EnactorReference contains a rule and is
triggered when its rule is satisfied. This is managed automatically by the discovery mechanism of
the Context Toolkit. Enactors provide basic support for Intelligibility (with EnactorListeners)

and Control (with EnactorpParameters).

We added an output property and a list of its output values for the Enactor to represent its output
value, and output options. Each output value is associated with a Reference. Furthermore, while not
necessary, we chose to delegate all inference mechanisms only in Enactors and leave Widgets as
components for maintaining context state. Hence, for an Enactor, there is an In-Widget and an Out-
Widget. Inference is performed over the attribute values of the In-Widget, and the inferred output

value is assigned to the attributes of the Out-Widget.

6.7.1.4 GENERATORS

In some cases, there may not be an explicit In-Widget, such as when a raw signal is retrieved from
an accelerometer. We introduce the Generator component as a one-sided Enactor that only has an
Out-Widget. A Generator can be used to maintain the states of widgets using application-specific
code. They can be thought of as “black box” enactors that do not have a defined input widget. The
output widget gets its state updated.
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6.7.2 ADDING SUPPORT FOR MACHINE LEARNING CLASSIFICATION

Context Context Output
Inputs Outputs Actions
Enactor A A
/T r N T N
Application P
In-Widget Inference Model Output Out-Widget Service

Attribute

vattes

Classifier | Output Attribute
Reference WG
Oy

Figure 6.4: Architecture of Enactor framework updated to support classifiers. Only one

Attribute

Attribute

Attribute

Reference is used for the classifier; in contrast, for rules one Reference is needed per rule.

The original Enactors supported only rules for inference. However, machine learning classifications
are becoming more popular for use in context-aware applications. Therefore, we extended the
Enactor framework to support classifiers. We used the Weka toolkit [Hall et al, 2009] for the
several classifiers (e.g., ]48 decision tree, naive Bayes, logistic regression, SVM, kNN, AdaBoost) and

Jahmm [Francois, 2010] for HMM classifiers.

6.7.3 DECOUPLING FROM THE CONTEXT TOOLKIT

We have developed the Intelligibility Toolkit to be easily decoupled from the Context Toolkit.
Should developers choose to use other frameworks to build their applications, they will just need to

write an Explainer to generate system-based explanations.

6.8 EXPLANATION EXPRESSION

We describe specific components that make up the data structure for Explanations. An
Explanation consists of the Query passed to the Explainer to generate it and a corresponding
Expression containing the content of the explanation. Expressions come in two styles: logic

expressions for rule traces and multi-arrays for weights of evidence.
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6.8.1 RULE TRACE LOGIC EXPRESSIONS

Rule trace logic expressions consist of singular and compound expressions. They are able to
represent arbitrary rule expressions, and expressions structured in disjunctive normal form (DNF)

or conjunctive normal form (CNF).

6.8.1.1 TERMINAL EXPRESSIONS (CONDITION LITERALS)

We use terminal expressions to represent condition literals, which are atomic elements of Boolean

expressions. Presently, only nominal and numeric attributes are handled.

PARAMETER

Parameter represents a condition literal for a nominal or numeric attribute taking a specific value,

e.g. temperature = 25°C, room = "Living Room". It contains a name and a value.

COMPARISON AND DUALCOMPARISON

Comparison extends Parameter to be able to represent inequality (and equality) relations, e.g.,
temperature > 25°C, frequency < 1500Hz. Comparison adds a relation property. We also have

DualComparison to represent a double-bounded relation, e.g., 1000Hz < frequency < 1500Hz.

NEGATED

Negated represents a negated condition literal with the original Parameter as its child. It is useful

for representing Normal Forms (e.g., negated normal form, DNF, CNF).

6.8.1.2 CoMPOUND EXPRESSIONS

We have compound expressions to represent combinations of multiple conditions literals. These

are useful for parsing rules into the Expression format and subsequently converting to DNF or CNF.

CONJUNCTION AND REASON

We encode a Conjunction as a List of Expressions connected with the AND (N) operator.

Reasons are Conjunctions where each element is a condition literal.

DisJUNCTION AND CLAUSE

We encode a Disjunction as a List of Expressions connected with the OR (U) operator.

Clauses are Disjunctions where each element is a condition literal.
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NEGATION

Negation represents the negation of any Expression. Unlike Negated, the child expression does

not need to be a terminal literal.

DNF

To support standardization for post-processing, we require explanation expressions to be
converted into DNF (see Section 6.10.3) as opposed to leaving them in arbitrary structures. A DNF is

aDisjunction of Reasons.

CNF

Some explanations may be represented in CNF (e.g.,, Why Not, see Section 6.10.3.2). A CNF is a

Conjunction of Clauses.

6.8.2 WEIGHTS OF EVIDENCE ARRAYS

Weights of Evidence explanations consists of atomic weights that sum together to give a total

evidence for inference. We represent this summation of weights with arrays.

6.8.2.1 WEIGHTSEVIDENCE

weightsEvidence represents a one-dimensional weights of evidence. It extends Reason, so it is
easily amenable to Reducers that also apply to Reasons (see Section 6.11.2.1), or Presenters that

are originally designed for Reasons.

6.8.2.2 WEIGHTSEVIDENCEND

In general, weights of evidence may be multiple dimensional (e.g., input features and time for
HMM). We use WeightsEvidenceND to represent a multi-dimensional array (multi-array) of
weights of evidence. Using object-oriented design in WeightsEvidenceND, we provide capabilities
for arithmetic operations for multi-array weights of evidence (e.g., add, subtract, normalize). These
operations are necessary for computing Why and Why Not explanations (see Section 1.1.1).
Particularly important for explaining ensemble meta-classifiers, new dimensions can be added to

WeightsEvidenceND using the collate function (e.g., see Section 6.10.8).

WeightsEvidenceND can be reduced to WeightsEvidence using DimensionReducer (see Section

6.11.2).
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6.9 QUERY

We describe three types of queries currently implemented in the Intelligibility Toolkit to support

various question types.

6.9.1 BASE QUERY

The base Query provides an encapsulation for posing a question to an explainer by specifying a
question type, the context to ask, and about which time (to support asking about a historical event).
For example, to ask why availability was inferred as it was at 4pm, we create the query (in pseudo-

code):

new Query ("availability", Query.WHY QUESTION, "4pm")

6.9.2 ALTQUERY

AltQuery extends Query and includes an alternative target output value to facilitate explanation

types Why Not, and How To.

6.9.3 INPUTSQUERY

InputsQuery extends Query and allows the setting of input values; this supports What If

explanations.

6.9.4 EXTENDING QUERY

Basic Query AltQuery InputsQuery
What Why Not What If
Certainty How To
When
Why
Inputs

Outputs
Description
Situation

Table 6.1. Summary of currently supported question types grouped by the Query class that

supports them.



6.10 EXPLAINER ALGORITHMS 117

While the Queries already supports a wide range of question types, developers may want to provide
explanations for questions that we had not explored, or more esoteric explanation types relevant to
their specific applications. It is easy to support a question type by specifying a new name for the
question parameter in the Query. Unfortunately, none of the existing Explainers will recognize
and be able to answer the new question. This will require new code and algorithms. We discuss

how a toolkit programmer may allow Explainers to support new question types in Section 6.10.

6.10 EXPLAINER ALGORITHMS

We describe the algorithms to generate various explanation from five inference models, and defer a
more mathematically rigorous derivation in Appendix B. For system-based explanation types, we
focus on explanations from Enactors, and describe base explanations for the WEKA toolkit in
Appendix B.3. For model-based explanation types, we describe algorithms for explaining Rules,
Decision Trees, naive Bayes, and hidden Markov models, and Bagging. We defer descriptions of

algorithms for explaining other machine learning classifiers in Appendix B.

6.10.1 ENACTOR BASE EXPLAINER

Context Context Output
Inputs Outputs Actions
A Enactor Output A L, A N
Application Values P
In-Widget Inference Model =~ — A Out-Widget Service
Attribute
------------------ (o
Attribute Attribute
Reference [ ------\-"-------- Val
Attribute aue
oy
Selector »| Querier » Explainer » Reducer Presenter

Figure 6.5: Architecture of components of the Intelligibility Toolkit integrated into the

Enactor framework for a typical context-aware application built with the Context Toolkit.

We describe how system-based explanations are generated from Enactors in the updated Enactors
framework (Section 6.7.1). Figure 6.5 illustrates the relation of the components of the Intelligibility

Toolkit with the Enactor framework.
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6.10.1.1 WHAT EXPLANATION

This simply returns the Output value of the EnactorReference that is triggered.

6.10.1.2 WHEN EXPLANATION

This retrieves the timestamp of when the Widget Attribute value was changed.

6.10.1.3 INPUTS EXPLANATION

The Inputs explanation reports the name and value of each context (Widget attribute) used as

input in the Enactor model, i.e., from all References.

6.10.1.4 OUTPUTS EXPLANATION

The Outputs explanation reports a List of output values that the Out-Widget of the Enactor may
take.

6.10.1.5 WHAT IF EXPLANATION

A What If explanation sets input context values set by the user (through InputsQuery), and tests it
on all References. It reports the output value associated with the Reference that gets triggered.

Model-specific explanations are generated from different Explainers for each model.

6.10.1.6 DESCRIPTION EXPLANATION

We use the DescriptionExplanationDelegate (see Section 6.10.9) to maintain a map of textual

information for contexts used in the inference model.

6.10.2 MODEL-BASED EXPLAINERS

The base Explainer leaves model-based explanations unimplemented and defer to concrete
explainers to handle. In the next sections, we describe several Explainers and the algorithms to
generate explanations from various inference models. First, we cover Rule Trace explainers, then

Weights of Evidence explainers.
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6.10.3 DiSJUNCTIVE NORMAL FORM (DNF) TRACE EXPLAINER

Why Trace Why Not Traces How To Traces

Figure 6.6: Diagram representation of extracting Why explanation(s) and extracting Why
Not explanations from a system of DNF trees. (Left) Explains why ith class was inferred,
selecting conjunction traces that are satisfied by the current input values. (Middle) Negating
the DNF tree for rules inferring the jth class produces a tree in conjunctive normal form
(CNF) after applying De Morgan’s Laws. Note that condition literals are negated. All
disjunction traces in the CNF negated tree are satisfied, highlighting specific negated
condition literals that are satisfied by the current input values. (Right) Explains how to infer

the ith class by returning the full DNF tree that can infer that class.

We use the disjunctive normal form (DNF) as the core data structure from which to generate rule
trace explanations. We assume that for sufficiently simple context-aware applications, rules can be
converted into DNF (albeit not necessarily efficiently) and so can decision trees. We store the rules
as a system of DNF trees, one for each outcome value. Once we have the DNF trees, we can generate

Why, Why Not and How To explanations (see Figure 6.6). Detailed proofs are in Section B.5.
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6.10.3.1 WHY EXPLANATION

This explanation selects the rule(s) that was satisfied to produce the actual output (see Figure 6.6,

Left).

6.10.3.2 WHY NoT EXPLANATION

This explanation selects rules that would achieve the target output value and, for each trace,
identifies unsatisfied conditionals and returns a disjunction of traces containing these conditionals

(Figure 6.6, Middle).

6.10.3.3 How To EXPLANATION

This explanation returns the full DNF tree of the rule that achieves the target output, where each

trace is a rule of how to achieve the target output value (Figure 6.6, Right).

6.10.4 RULES EXPLAINER

We implement an explainer for rules in the Enactor framework that provides a Rule Trace style of

explanations.

The Enactor framework supports one rule per Reference and we enforce one Reference per output
state. A decision model with multiple output states will have multiple rules, one per state. We make
rules explainable by converting them into disjunctive normal form (DNF) by recursively applying
De Morgan's Law, double negative elimination, and the distributive law (see Figure B.2 and Figure
B.3 for a simple algorithm for the conversion). To illustrate how each explanation type is generated,

we shall use the set up described in Table 6.2 and Figure 6.7.

6.10.4.1 WHY, WHY NOT, AND HOW TO EXPLANATION

These explanations are generated from the converted DNF trees from Section 6.10.3.

6.10.4.2 CERTAINTY EXPLANATION

Enactor rules currently do not compute uncertainty, though uncertainty in inputs can be

propagated descriptively.

6.10.4.3 DecisioN TREE RULE TRACE EXPLAINER

We implement an explainer for decision trees that provides a Rule Trace style of explanations.
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This explainer generates explanations from the Weka [Mark et al, 2009] J48 implementation of the
C4.5 decision tree [Quinlan, 1993]. There are some differences between decision trees and Enactor
rules. Decisions for inferring the output are made from the top down, instead of from the bottom up
as for rules; and decision trees encode traces for multiple output values within a single tree, unlike
a rule-based structure. So DNF rules are created by traversing all paths in the tree and grouping
paths by output values at their leaves (see Figure B.5 and Figure B.6 for the parsing algorithms). In
DNF, we can generate explanations in the same way as for rules. To illustrate how each explanation

type is generated, we shall use the set up described in Table 6.2 and Figure 6.8.

6.10.4.4 WHY, WHY NOT, AND HOW TO EXPLANATION

These explanations are generated from the converted DNF trees from Section 6.10.3.

6.10.4.5 CERTAINTY EXPLANATION

Decision trees are built from statistical data, so they can model certainty from the probability

distribution of remaining data points at each leaf.
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Input Conditionals Output Values (Availability)
a: Location = Home ©= Available
b:  Sound = In a Conversation ® = Somewhat Unavailable
c: Time = Evening ®= Unavailable
d: Schedule = Meeting
e:  Contacter = Family/Friend

Table 6.2. Pedagogical example of input conditionals and output values for rule and decision
tree. This describes an application to infer a user's availability based on his Location, Sound

activity around him, the Time of the day, his Schedule, and who is Contacting him.

@O0O®C = WOWWE

Input state (a, -b, =i¢c, ~d, e): the user is at Home, not in a Conversation, not in a Meeting, and

is being contacted by a Family member or Friend.

i (1) To NNF (2) NNF To DNF
() | > ® |
0 e * Double negation * Depth-first
elimination traversal of NNF

®
©

0 * De Morgan s Laws i i * Constructone trace

(aub)=(-a per disjunctbranch

R ® - (5 P

How To

(1) To NNF
(2) NNF To DNF V)
— —
/@\ - > O =
@ o 3o
@

/

Why available (©)? Because the user is not in a Conversation (-b), is not in a Meeting (-d),
and being contacted by a Family/Friend (e).

Why Not unavailable (8)? Because he is not in a Meeting (~d) and is being contacted by a
Family/Friend (e).

How To infer unavailable (8)? It needs to be before Evening time (-c) and he needs to be in a Meeting
(d); or he is contacted by a Coworker (not Family/Friend; —e).

Figure 6.7: Conversion of a set of rule tree expressions into separate trees in disjunctive

normal form (DNF) to generate explanations from Rules.



6.10 EXPLAINER ALGORITHMS 123

o CNF To DNF

Why available (©)? Because the user is at Home (a), it is not Evening time (-c), and he is not
in a Meeting (~d).

Why Not unavailable (®)? Because he is not in a Conversation (-b) and he is not in a Meeting (~d).

How To infer unavailable (®)? He needs to be not at Home (-a) and in a Conversation (b); or at Home
(a), not during the Evening (-c), and be in a Meeting (d).

Figure 6.8: Conversion of a decision tree into separate trees in disjunctive normal form

(DNF) to generate explanations from Decision Trees.
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6.10.5 WEIGHT OF EVIDENCE EXPLAINER

This explainer forms the abstract basis of our subsequent weights of evidence explainers. It works
on the basis that an inference is due to a total evidence, where this evidence may support or oppose
the inference, and can be due to a sum of underlying atomic weights of evidence. These weights may
be due to the input feature values voting for or against an inference. Depending on the inference
model, there may also be more dimensions of atomic weights of evidence. For simplicity, we denote
an atomic weight as f;., and the space of all atomic weights as R. A total evidence can thus be

represented as the sum:

6= fo (6.1)

Equation (B.35) requires that the explainer is able to derive a linear additive expression of atomic
units. This is easy for linear classifiers (e.g., linear SVM), but in general, isotonic (monotonic
increasing) transformations may be required (e.g., see explainer for naive Bayes in Section B.15).

We defer these steps to later sections describing the concrete explainers.

We shall next show how with these absolute weights of evidence, we can derive weights of evidence

explanations for Why and Why Not questions.

6.10.5.1 ABSOLUTE EVIDENCE

This explains the confidence of inference, p;, as a total evidence due to the sum of atomic weights

9= f 62)

where f;; is the rth atomic weight of evidence.

6.10.5.2 WHY NOT EXPLANATION

This explains why the jth class was not inferred over the ith class. In other words, why the ith class

was inferred instead of the jth class, ie, p; = p;:

Agij=9i—9; = Z Afijr 2 0 (63)
T

where Af . = fir — fj» and we assume that the atomic weights of evidence are separable by each

atomic unit. Note that this is different from the Why Not explanation of a rule trace that explains
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why the jth class was not inferred. In this case, the jth class may have been inferred, but just not

with the highest certainty among all class values.

6.10.5.3 WHY EXPLANATION

This explains why the ith class was inferred over all m other class values j, ie, p; = p;, Vj.

Consequently, Equation (6.3) holds for Vj, such that we can sum over Vj to get the Why

explanation:

m m
Agiv = Z Agi; = Z Z Afijr 20 (6.4)
j=1 j=1 r

6.10.5.4 CERTAINTY EXPLANATION

Assuming that at the system level, the model will produce a distribution of certainty for inferring

each class value, the Certainty explanation returns this distribution:

p= 2,-=1pj (6.5)

where p is the total certainty (usually normalized as a probability to 1) and p; is the certainty for

inferring the jth class value.

6.10.5.5 How To EXPLANATION

This explanation depends on underlying model and we defer this to the later sections.

6.10.6 NAIVE BAYES EXPLAINER

We implement an explainer for naive Bayes that provides a Weights of Evidence style of
explanation. The naive Bayes classifier is a simple classifier that uses Bayes theorem to classify
values. It assumes that input features are conditionally independent of one another. Our
explanation for naive Bayes inference is an extension of [Poulin et al. 2006] for multi-class

problems.
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The posterior probability that the ith class is inferred (y = y;) from a set of m class values given the

observed instance input feature values x:

PO =yl = POl 3 x) 2 PO | | PGl (66)

where x, is an input feature of n possible values. The probability is calculated from the prior
probability that a class would be in, P(y;), and the conditional probabilities of each feature value

given the class, P(x,|y;). For notation convenience, let us define

pi = P(y;lx)

TEPOGly) >0

_{ Ply) r=0

Then Equation (6.6) becomes

n
pi = l_[ Dir (6.7)
r=0

Taking a log transform of Equation (6.7) gives the linear expression for the weights of evidence

explanation:

log(p;) = Z:;OIOg(pir)
(6.8)

n

gi = fir
=0

where fr = 10g(pir)-
With Equation (6.8), naive Bayes can be explained as the sum of evidence

1. Prior probabilities of selected class value, log(p;,) , v = 0

2. Due to each feature value, log(p;-) , v > 0

and we can derive a Why and Why Not explanation by substituting Equation (6.8) into Equation

and Equation , respectively.

6.10.6.1 How ToO EXPLANATION

This shows weights of all features due to normalized values of the features, so the user can make

sense of the general impact of each feature. (i) For nominal features, they only take a value of 0 or 1,
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so their evidence will either be 0 or f;,. (ii) For numeric features, they are commonly modeled by
the Normal distribution; we "normalize" numeric features to a value of one standard deviation, g;,,

from the feature mean given the class value: y;, + 0.

In terms of what the user can do with input values to get a desired target output, if all values are
nominal, we can permute all combinations and return those that achieve the target output. If
multiple inputs are numeric, this becomes intractable. Instead, we could use a How To If

explanation.

6.10.6.2 How To IF EXPLANATION

This provides a tractable form of How To explanations (for nominal and numeric features) by
constraining all feature values except one. For a numeric feature that is not fixed, we can vary the
input value as it deviates from the mean and determine the threshold at which the outcome is
achieved (or fails, if it is the opposite relation). A generalization of this with increased interactivity

is the How To + What If explanation.

6.10.6.3 How To + WHAT IF EXPLANATION

One way to help users appreciate the influence of each weight is to allow users to speculate on the
outcome with selected feature values. The What If explanation supports this, but does not
necessarily start with sensible values to help users learn. The How To + What If explanation starts
with the target ith class value, and provides a set of mean feature values that satisfies this output,
Uir- The user can then tweak the feature values to see if the target output value would still be

inferred.

6.10.7 HMMEXPLAINER

We implement an explainer for HMMs that provides a Weights of Evidence style of explanation.

A hidden Markov model (HMM) is a Bayesian network that models the probability of a sequence of
hidden states given a sequence of observations (input features with respect to time). First-order
Markov models assume that only the previous state affects the next, and only the current state
influences the current observation. For detailed information on HMMs, please refer to [Rabiner,
1989]. We can derive a weights of evidence explanation for HMMs in a similar manner as we did for

naive Bayes.
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We consider HMMs with observation vectors for each time step, specifically with n input features.

At time step t, the observation is X; = (X¢q, X¢2, - ) Xi)-

The probability of inferring state sequence s with length T, given the observation sequence x is:

Pt =P ([ pesdse) ([ peisn)
= s ([T _aesidseo) ([T 5Gs0)

where P(s;) = m(s;) is the prior probability that a state is 51, P(s¢|s¢—1) = A(S¢|s¢_1) the transition

(6.9)

probabilities from state s;_; to s;, and P(¥.|s;) = B(X;|s;) the emission probabilities of the

observations given the state sequence.

To allow features to individually provide evidence, we need to make a naive assumption (similar to

what is done for naive Bayes) that the features are independent of one another given any state, i.e.,
i n
P(Xlse) = P(xpq, Xez, o Xen |xE) = 1_[ 1P(xtrlst) (6.10)
r=

We define a new parameter for the HMM, B(x..|s;) = P(x.|s;), which is a naive emissions

probability matrix representing the probability of observing input value x;,- given hidden state s;.

Substituting Equation (B.97) into Equation (B.96) gives

Pt = s ([ | _acsddse) ([ Brolso) (611)

For notation convenience, we rewrite Equation (B.98) as:

T n
ps = 1_[ l_[ Dstr (6.12)
t=1 r=0

where

(sy) Jifr=0,t=1
Dotr = LA(StSe—1) Lifr=0,t>1
B(xylsy) Lifr>0
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Taking a log transform on Equation (B.96) gives the weights of evidence explanation:

5= > fu (6.13)

where

log(n(sl)) Jifr=0,t=1
foer = log(Pser) = log(A(stlst_l)) Jifr=0,t>1
log (E (xtrlst)) ifr >0

So, with the naive assumption of independence among features, HMMs can be explained as the sum

of evidence of:

1. Prior probabilities of selected state, (r = 0,t = 1)
2. Weights of Evidence due to each state transition, (r = 0,t > 1)

3. Weights of Evidence due to feature value at time sequence step, (r > 0)

6.10.7.1 INPUTS AND WHAT IF EXPLANATION

Though not formally an input, these explanations should also include state transitions. For the What
If explanation, the user may want to speculate if a previous state was different, even though hidden

states are actually inferred.

6.10.7.2 WHY, WHY NOT, HOw To, AND CERTAINTY EXPLANATIONS

Similar to the explainer for naive Bayes, but with added evidence for time.

6.10.7.3 REDUCING DIMENSIONALITY

If an application has many input features and/or a long sequence (i.e, large n and/or large T), there
may be too many weights of evidence to show to end-users. To reduce this dimensionality and
make this more interpretable, we can sum evidence by feature across time (see Figure 6.12), or
present evidence by time and sum evidence across features for each observation. Formally, this is

done using DimensionReducer (see Section 6.11.2).
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6.10.8 BOOTSTRAP AGGREGATION (BAGGING) EXPLAINER

Ensemble meta-classifiers are popular techniques to further improve the accuracy of classifiers.
Two popular ensemble methods are Bootstrap Aggregation and AdaBoost. We describe how to

generate explanations for Bagging in this section, and for AdaBoost in Appendix B.22.

Bootstrap aggregation (also called Bagging) [Breiman, 1996] takes a training dataset, D, and creates
C new training sets by sampling examples from D with replacement. This method is called boostrap
sampling. It then trains C versions of the base classifier, one classifier for each new training set.

Overall inference is done by voting the inference of each of the base classifiers:

1 C
P=3) P (614)
c=1

where p;. is the probability of the cth classifier inferring the ith class, and Z is a normalization

constant.

Using Equation (B.126), we can derive a weights of evidence explanation for inferring the ith class

in terms of classifiers:

Cc .
gi = Z Pie ——f__ (6.15)
c=1

 value(gic)

where g;. is the linearly separable weights of evidence expression for the cth base classifier and

value(g;.) = sgn(gi.)|gic| is the value of the total weights of evidence. The term ﬁ‘fg_), which has

value = 1 or — 1, allows us to normalize the magnitude of g;. such that we can retain the relative
weights of evidence due to each base classifier g;. and scale each of them to the certainty of that

classifier, pj.

Note that because this meta-classifier explainer requires weights of evidence explanations from the
base classifier, it will only work if the classifier has an Explainer that can generate weights of
evidence. To give an idea of what the atomic weights of evidence represent for several bagged
classifiers, we work out the expression for bagged naive Bayes, though they are automatically

generated using Equation (6.10).
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6.10.8.1 RANDOM (BAGGED) NAiVE BAYES

Adapting the weights of evidence explanation for naive Bayes within an ensemble classification,

Equation (6.8) becomes:
n
9ic =108Pic) = ) 10g(pic) (6.16)
r=

Substituting Equation (6.11) into Equation (6.10), we get

9":ZC Pic valugelggw) ZC 12 fier (6.17)

where

Dic

_gie .
value(log(pic)) 08(Picr)

fier =
Hence the weights of evidence for a bagged naive Bayes meta-classifier consists of two dimensions:

input features and classifier.

6.10.9 DESCRIPTIVEEXPLAINERDELEGATE

We use a delegate to manage textual descriptions to provide Description explanations. It uses a
system of hash maps to store various types of descriptions for each context (input or output). Using
insight gained from designing Laksa, a high-fidelity intelligible application prototype (see Sections
7.2 and 9.3), we developed the DescriptiveExplainerDelegate to include maps for textual

content such as:

e Descriptive text explaining terminology or describing concepts

e Pretty names to use in place of original technical terms for contexts or their nominal
(discrete) values

o Units of the context, e.g., seconds for time, Hz for frequency, Watts for power (energy/time)

e Longer text to provide the design rationale or justification for the context or the

implication of the context taking various values.

In general, this can be extended to include other types of textual descriptions that developers may

be interested to include in their applications.
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6.10.10 OTHER IMPLEMENTED EXPLAINERS

Rule Trace

Weights of Evidence

Rules

Decision Trees

Linear Regression

Logistic Regression

Naive Bayes
HMM
Decision Trees *
Random Forest
Linear SVM
kNN
AdaBoost

Bagging
Table 6.3. Summary of inference models supported by the Intelligibility Toolkit grouped by
style of explanation each explainer generates. * The toolkit provides Rule Trace and Weights

of Evidence explainers for decision trees, e.g., ]48 has J48RuleTraceExplainer and

J48EvidenceExplainer.

The Intelligibility Toolkit currently supports at least 11 types of explainers for popular inference
models in context-aware applications and machine learning applications (see Table 6.3).

Algorithms for generating explanations from these models are in Appendix B.

6.10.11 EXTENDING EXPLAINERS

System-based Model-based Application-based
What Certainty Description
When Why Situation
Inputs Why Not

Outputs How To
What If

Table 6.4. Summary of explanation types grouped by dependency. Toolkit programmers only

need to implement Model and Application-dependent explanation types.

New explainers can be developed to (i) explain new inference models, or (ii) support new

explanation types, which are currently unsupported in the Intelligibility Toolkit. The latter goal also
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includes providing new styles of explanations for explanation types that are currently supported.

Here, we focus on how developers may write new explainers to explain new inference models.

Given the 12 explanation types we seek to support (see Section 6.3 and summary in Table 6.4), it
can be cumbersome for each new explainer to implement algorithms for all of them. Fortunately,
there are common dependencies that developers may take advantage of. Six system-dependent
explanation types are automatically supported if developers build applications using the Enactors
framework [Dey and Newberger, 2009]. Otherwise, these explanation types can also be

implemented for different frameworks (e.g., for Android mobile programming).

Implementing the four model-dependent explanation types is also simplified with the
DnfTraceExplainer and weightsOfEvidenceExplainer, which implement these explanation
types. To provide explanations for a rule-based system similar to Enactor rules or for a decision
tree model, the inference model need only be parsed into DNF trees, one DNF tree per outcome
value. Explanations can then be automatically generated for Why, Why Not and How To using
DnfTraceExplainer as a delegate. To provide explanations in terms of weights of evidence, the
explainer need only implement the sum of atomic weights of evidence, g; (see Equation (6.2)), or
the sum of relative weights of evidence, Ag;; (see Equation (6.3)). Explanations can then be
automatically generated for Certainty, Why, Why Not and How To using

weightsofEvidenceExpTainer.

Finally, to support application-dependent explanation types, such as Description and Situation,
explainers will need to be hand-crafted to suit the application being built. Description explanations
require custom text content and Situation explanations may involve custom information and

representations.

Note that, though recommended, it is not necessary for explainers to implement all 12 explanation

types in Table 6.4.

6.11 REDUCER

Generated explanations may contain too much information and be overwhelming to end-users. In
this section, we describe the Reducer component to simplify the explanation data structures before
passing them on to Presenters. The Intelligibility Toolkit currently supports two types of reducers:

Logic Reducers for rule traces, and the Dimension Reducer for weights of evidence.



134 CHAPTER 6 | INTELLIGIBILITY TOOLKIT

6.11.1 LoGIC REDUCERS

Rule trace explanations can be overwhelming in two ways: (i) too many reasons (e.g., numerous
ways to achieve a target output value), and (ii) each reason being too long (e.g.,, numerous inputs
with required values to cause the output value). The latter case can happen when many sensors and
feature values are used to build the models, as is the case for accurate learned systems. The
Intelligibility Toolkit provides Disjunction Reducers to reduce the number of reasons via various
schemes, Conjunction Reducers to reduce the length of each rule trace reason, along with Reducers
that can handle any logical expression (e.g., QmcReducer that uses the Quine-McCluskey algorithm

to minimize logic expressions).

6.11.1.1 DISJUNCTION REDUCERS

We describe several DisjunctionReducers to reduce the number of Reason traces.

FIRSTDREDUCER

This reducer simply selects the first reason in the DNF structure of the explanation.

SHORTESTDREDUCER

This reducer selects the reason with the shortest length as the explanation.

6.11.1.2 CONJUNCTION REDUCERS

We describe several ConjunctionReducers to shorten the length of each Reason trace.

TRUNCATIONCREDUCER

This reducer simply truncates the Reason trace to a specified length.

FILTERCREDUCER

This reducer retains only the condition literals (Parameter) in the Reason that describe input
features specified in a list, dropping others. Input features can be selected for their saliency, easy of

understanding, or even for privacy sensitivity, depending on the application.

6.11.1.3 MINIMIZATION REDUCERS

In order to simplify the explanations, the previous Reducers unfortunately lose information by

discarding them. An alternative method to simplify explanations is to minimize the Boolean
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expression of the explanation. This discards only the redundant information and may both reduce
the number of reason traces and the length of each reason trace. Several methods exist for logic
minimization such as Karnaugh mapping, the Quine-McCluskey algorithm, the Espresso heuristic
minimization program. We currently support the Quine-McCluskey algorithm with the

QmcReducer.

NuMERIC CONJUNCTION REDUCER
This reducer selects condition literals in a reason and merges inequalities that relate to the same

numeric feature. For example,

(2 >5)N (x,. > 3)
(x, <5 n (x> 3)

X, >3
3<x,.<5

QUINE-MCcCLUSKEY REDUCER

This reducer, QqmcReducer, uses the Quine-McCluskey algorithm? to minimize a Boolean expression
by removing redundant condition literals. It can be applied to the rule structure in any Boolean
expression. We ported the implementation of the Quine-McCluskey algorithm in the Truth Table

Solver [Ahmed, 2011] to work with the Expression data structure.

6.11.1.4 ComMPOUNDREDUCER

We provide CompoundReducer to provide a convenient means to apply multiple reducers

sequentially on an Explanation.

6.11.1.5 EXTENDING LOGIC REDUCER

New logic reducers can be implemented to support other heuristics to simplify explanations. Simple
reducers, which assume that explanations are structured in DNF, can focus on reducing the number
of reasons by extending DisjunctionReducer, or focus on reducing the length of each reason by
extending ConjunctionReducer. More sophisticated reducers can be developed for reducing
explanations by directly extending the base Reducer. In particular, more efficient algorithms can be

implemented for logic minimization.

Reducers may be used in alternative manners that do not necessarily reduce the length of

explanations. For example, Metaxas [2010] suggested that users interpret explanations more

2 Quine-McCluskey algorithm. http://en.wikipedia.org/wiki/Quine-McCluskey algorithm Retrieved 1st March,
2012.
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quickly when terms have higher affinity (eg., “driving” and “running” have higher affinity than
“running” and “talking”). Therefore, we may implement an AffinityReducer that applies to
Conjunctions that re-arranges logical terms (Parameters) to group them by affinity, instead of

reducing their lengths.

6.11.2 DIMENSION REDUCER

Simple weights of evidence explainers can generate weights in terms of just the input features.
However, there may be multiple dimensions for the weights of evidence (e.g., the explainer for
hidden Markov Models (HMMs) has a dimension for input features and time), leading to an issue of
dimensionality explosion, where the number of weights of evidence equals the product the lengths
of each dimension. Once again this can overload end-users with too much information. One way to
reduce this complexity is to aggregate the weights of evidence along some dimensions. For example,
for HMM explanations, we may aggregate along time to sum all weights that are regarding the same
time step, or we may aggregate along input features to sum all weights that are regarding the same
input feature. The Intelligibility Toolkit provides this functionality with DimensionReducer, which
reduces a multi-dimensional weights of evidence array, weightsEvidenceND, to fewer dimensions

chosen by the developer.

A typical use of DimensionReducer may be to reduce a multi-dimensional weights of evidence,
weightsEvidenceND, to just the one dimension, WeightsEvidence, specifically the input features
dimension. This then resembles a single rule trace and we can apply ConjunctionReducers to

further simplify the explanations if needed.

6.11.2.1 CoNJUNCTION REDUCERS FOR WEIGHTS OF EVIDENCE

A typical use of DimensionReducer may be to reduce a multi-dimensional weights of evidence,
weightsEvidenceND, to just the one dimension, weightsEvidence, specifically the input features
dimension. This then resembles a single rule trace and we can apply some ConjunctionReducers

to further simplify the explanations if needed.

REMAINDERCREDUCER

This reducer truncates the Reason, but also accumulates remaining weights of evidence that were

removed into a remainder term.
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NEGLECTCREDUCER

This reducer removes each term from the weights of evidence if its absolute of its numeric value, f;,

is below a threshold, €, i.e, |f;-| < €. Itis useful to neglect weights that are approximately zero.

6.12 PRESENTER

Along with Querier (see Section 6.13), the Presenter component provides a separation of the
presentation of explanations from their content information to follow the principle of Model-View-
Controller (MVC) separation. Presenters need to implement the method render (Explanation)to
receive the generated Explanation to present. We describe several Presenters for different

platforms.

6.12.1 STRINGPRESENTER

StringPresenter is a basic presenter that just renders explanations as a String text. Together
with DescriptionExplainerDelegate, this presenter can print the explanation with pretty

names and units.

6.12.2 DESKTOP-BASED PRESENTERS (JAVA SWING)

We describe several Presenters implemented in Java Swing to build intelligible context-aware

applications with desktop-based GUIs.

TABLEPANELPRESENTER

TablePanelPresenter renders explanations in a table showing one Reason at a time. Each row
renders a Parameter (conditional literal) with the name in the first column and value in the

second column. See Figure 6.9 for an example of this presenter.

TYPEPANELPRESENTER

TypePanelPresenter extends TablePanelPresenter to render the explanation differently
depending on the explanation type. For example, Why and Why Not explanations render with a bar
chart with multiple rows, Inputs explanations render with just the numeric values for each input
feature, and What and Certainty explanations render with one value. See Figure 6.9 for an

implementation of this presenter.
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6.12.3 MOBILE-BASED PRESENTERS (ANDROID)

As part of the implementation for Laksa2, an intelligible mobile application prototype (see Figure
9.1), we have developed several Presenters on the Android phone to render explanations of various
context types and inference models: AvailabilityPresenter, PlacePresenter,

SoundPresenter,MotionPresenter.

6.12.4 BUILDING YOUR OWN PRESENTERS

To support Ul code of any framework, the base Presenter is a Java interface. While Presenters
provide convenient functionality to present explanations with only “glue” code, they are limited in
their design, and platform (e.g., only a few Java Swing and Android Presenters are currently
implemented). Furthermore, each application will likely require customized presentation and Ul
code. For example, a map-based application may use a map Ul to explain Place inference, while a
motion recognition application may draw physical diagrams to explain how accelerometer features

influenced the inference.

The main requirements for Presenters are to implement the interface method
render (Explanation), and update the Ul correspondingly. It is the responsibility of the Presenter
to parse the Explanation and understand how to interpret it. The Presenter may also render
explanations differently depending on the type of Query it is in response to. Presenters are also
tightly coupled to the source Explainer (pertaining to interpreting the generated Explanation
structure), and the individual input contextual factors (pertaining to domain information).
However, it is not necessary for toolkit programmers of Presenters to know how to generate the

explanations (that is for programmers of Explainers).

6.13 QUERIER

Queriers provide the control interface for the Model-View-Controller (MVC) architecture for
intelligibility. They facilitate end-users to ask questions types and generate Queries to be passed to

ExpTlainers. Similarly to Presenters, they depend on the application platform.

6.13.1 DESKTOP-BASED QUERIERS (JAVA SWING)

We describe a Querier implemented in Java Swing to build intelligible context-aware applications

with desktop-based GUIs.
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QUERYPANEL

In our demo applications (see Section 6.15), we implemented QueryPanel as a GUI element for the
Querier to allow users to ask questions for intelligibility. It consists of a drop-down menu
(JComboBox) to select the question to ask. This facilitates creating a base Query after the user
selects the question (e.g., see Figure 6.9). To facilitate creating an A1tQuery for asking Why Not and
How To questions, it displays a second drop-down menu showing the possible Output values (e.g.,
see Figure 6.11, Right). To facilitate creating an InputQuery for a What If question type, it also
provides WhatIfPanel, which allows end-users to choose values of Inputs (eg., see Figure C,

Right).

6.13.2 TEXT-BASED QUERIERS

Queriers need not be GUI-based to allow users to ask questions. Here, we describe a text-based

Querier.

QUERYPARSER

As an alternative to GUI-based interaction, QueryParser parses text input to interpret what
question the end-user is asking to create the corresponding Query. See Section 6.15.2 and Figure

6.10 for an example of this presenter.

6.13.3 BUILDING YOUR OWN QUERIER

Writing Queriers follows similar principles to writing Presenters. To support Ul code of any
framework, the base Querier is a Java interface. The application developer needs to implement
interaction code to determine what question the end-user is asking, and create the corresponding

Query.

6.14 SELECTOR

The Selector component allows the Intelligibility Toolkit to formally support context-aware
intelligibility, where question and explanation types are suppressed, provided, or promoted
depending on contextual factors. These contextual factors are input as a List of Parameters. Each

Selector encodes heuristics or design recommendations to appropriately provide explanations.
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6.14.1 QUERY SELECTORS

We provide QuerySelectors to limit or promote questions for which to generate explanations
given the input contexts. QuerySelectors operate before the Querier is rendered rather than after
the explanation is generated, so as to restrict the end-users from asking question types that may not
be suitable. After selection, a QuerySelector outputs a recommended Query or a list of Queries. We
describe some QuerySelectors drawn from design recommendations of our user studies in other
chapters. In this section, we refer to question types the way we refer to explanation types,

emphasizing on the question asking capability rather than the explanation content.

SITUATIONQUERYSELECTOR

The SituationQuerySelector implements the design recommendations of Section 5.7 for which
explanation types to show under various circumstances (e.g., application behavior appropriateness,
situation criticality, number of external dependencies). The selector starts with selecting no
question types and adds corresponding question types that are necessitated by the contexts.
Context values for these circumstances should be provided at design time or run time and supplied

as inputs to the selector.

STREAMLINEQUERYSELECTOR

The StreamlineQuerySelector implements the streamline questioning recommendations of
Section 7.10.3. It takes in the question type of the previously generated explanation at its input to
determine what limited set of explanations may be shown, perhaps in a drop-down menu or button

options.

CERTAINTYQUERYSELECTOR

The CertaintyQuerySelector implements the design recommendations in Section 8.12 for when
to show intelligibility given the certainty of the application. It takes in the application’s inference
Certainty as input and gives a Boolean response of whether to show intelligibility. If the Certainty is
below a threshold, say, 80%, then it will show a smaller subset of question types. On its own, this

Selector does not specify any particular question type to suppress or provide.

6.14.2 REDUCER SELECTORS

Selectors may also be used to select which Reducers to apply to Explanations after they are

generated by the Explainer. This allows for context-sensitive reduction or post-processing of
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explanations. ReducerSelectors output a recommended Reducer or list of Reducers. For example,
explanations may be selectively reduced when shared with various contacts due to privacy

concerns.

DETAILREDUCERSELECTOR

The  DetailReducerSelector  specifies the capability to choosing  different
ConjunctionReducers that reduce explanations to different lengths. It can be extended to follow
different criteria, such as the contextual dependency of how much time a user may have to view the
explanation. For example, in Section 9.7.2, we describe timing constraints for viewing intelligibility,
and this directly impacts how much information end-users can view in the constrained times. Users
are likely to have less time when they are unavailable than available. Hence, we can use inferred

Availability as a context for whether to reduce more or less.

6.14.3 CHAINING OF SELECTORS

As can be seen, each Selector provides a different recommendation and each basis of selection are
not mutually exclusive. Therefore, they can be chained together to apply multiple selection criteria.
QuerySelectors chain their selections to the smallest subset of Queries they all select (i.e., AND
selection). ReducerSelectors chain their selections into a CompoundReducer that will apply

multiple Reducers sequentially.

6.14.4 BUILDING YOUR OWN SELECTOR

We have presented a few Selectors that apply several criteria for selecting Queries or Reducers. All
Selectors take in contextual inputs as a List of Parameters. QuerySelectors use criteria to select

one or multiple Queries. QuerySelectors with new selection criteria need to satisfy the interface:
List<Query> select(List<Parameter> contexts);

Similarly, ReducerSelectors use criteria to select one or multiple Queries. ReducerSelectors with

new selection criteria need to satisfy the interface:
List<Reducer> select(List<Parameter> contexts);

We can also have Selectors for other components in the Intelligibility Toolkit, namely, Explainers

Queriers,and Presenters. These will implement the generic interface of Selector:

List<C> select(List<Parameter> contexts);
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where C is the component type to be selected. As an example, we describe a Querierselector.

PROVISIONSELECTOR

As a QueriersSelector, the ProvisionSelector selects the Querier interface component for
presenting how a user may ask questions. Specifically, it specifies the capability to select whether to
provide explanations On Demand (when the user explicitly asks), Automatic (context-dependent),
or Always On (shown all the time). These explanation provision types are distinguished in [Gregor
and Benbasat, 1999]. ProvisionSelector can be extended (or customized) to employ the
appropriate provision type depending on the application needs. For example, the selector could
switch from Always On to On Demand after the user has viewed the explanation more than a

threshold number of times.

6.15 VALIDATION: DEMONSTRATION APPLICATIONS

To demonstrate that we can easily generate a range of explanations from context-aware
applications using the Intelligibility Toolkit, we built three example intelligible applications. These
examples demonstrate the use of the Intelligibility Toolkit for a span of explanation types and model
types, and also cover a range of application domains for which the models are popular. While the
toolkit significantly contributes to lowering the bar to providing explanations in context-aware
applications, the explanations still need to be well designed (e.g., for various Ul, interaction, and
device modality), and crafted specifically for each application problem domain. Therefore, rather
than examining different explanation methods for the same model or application (e.g., [Stumpf et
al., 2009]), we built different applications for each model type to demonstrate the generality of the

Intelligibility Toolkit to provide explanations across application domains.

More examples and tutorials can be viewed and downloaded at the website we deployed for the

toolkit at http: //www.contexttoolkit.org.
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6.15.1 ROOM AUTO-LIGHTING — RULES
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Figure 6.9: Automatic Room Lighting application demonstrating explanations of a rule-based

application.

This demo application takes two factors (Presence and Brightness) to determine whether to turn
the light on in a living room. The light would be off if Presence = 0 (i.e. no one in the room) or the

detected brightness measure is less than 100 (out of 255). The application uses

e QueryPanel as a Querier to receive user interaction queries through a drop-down menu
o RulesExplainer to generate explanations from rules
e FilteredCReducer to filter out constant attribute terms in the rules

e StringPresenter to generate text output, which we simply display to a JLabe]l

We present a full tutorial on how to add intelligibility to a simplified version of this application in

Appendix C.
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6.15.2 IM AUTOSTATUS — DECISION TREE
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Figure 6.10: IM Autostatus demonstrating explanations from an instant messaging plug-in

that uses a decision tree to predict when a buddy may respond.

We built an Instant Messaging plugin that predicts when a buddy will respond to a message (Figure
6.10). It is trained on an existing dataset from [Avrahami and Hudson, 2006] to build a decision
tree. It takes desktop-based sensor inputs and makes response predictions (within, or after 1 min).

The application uses

e QueryParser as a Querier to receive user interaction queries through text commands

¢ J48RuleTraceExplainer to generate rule trace explanations from the decision tree

o FilteredCReducer to retain only terms that are easily interpretably by end-users

o ShortestDReducer to select only the shortest reason if there are multiple reasons in the
explanation

e ConsolePresenter which extends StringPresenter to generate text output and display it
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We describe how we built this application in detail (the following two applications were built in a

similar fashion) with the following procedure:

1. Create an Enactor for the overall application.

2. Create a Widget that tracks and updates all input features (extracted from the Subtle toolkit
[Fogarty and Hudson, 2007]).

3. Setapre-trained J48 decision tree classifier model to be the Enactor's classifier.

4. Setthe Enactor's list of output values to two values: WITHIN_1_MIN and AFTER_1_MIN.
Create two EnactorReferences

a. Associate them with the classifier and
b. Associate one output value with one Reference.
The developer implements what the application does when each Reference is triggered.

6. Create aRulesExplainer and associate with both References.

7. Set the DisjunctionReducer and ConjunctionReducer of the Explainer to
FirstDReducer and TruncationCReducer, respectively.

8. Create an IMAutostatusPresenter, a custom extension of RulesTextPresenter that
understands what each feature means to provide domain-specific textual explanations. It
also handles printing an AIM message.

9. Code Ul elements to invoke, on user prompt, various getExplanation() functions from
the Explainer. The corresponding Query needs to be supplied when invoking each

explanation type.

When the user asks for, say, a Why Not explanation about why not WITHIN_1_MIN:

1. The Ul parses his request, populates an AltQuerier with WITHIN_1_MIN, and invokes
getExplanation(WhyNot, AltQuerier).
2. The Enactor takes the returned explanation Expression and passes it to

RulesTextPresenter that renders it for the user as an IM response.
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6.15.3 MOBILE MOTION RECOGNIZER — NAIVE BAYES

Motion Enactor

Accelerometer
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Trained
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NaiveBayes Motion Panel
Explainer Presenter
WhatifQuery
ueryPanel ; o
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g Sit
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Context Value
Average 23.66
Likelihood 2.66
X_energy 20.05
X_mean 3.47
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Xy_corr 59.01
¥Z_corr 61.60
y_energy 1.97
y_mean 7.25
y_sd -10.88
yZ_corr 50.21
Z_energy 61.99
Z_mean -1.31
z_sd 66.31

Figure 6.11: Motion Recognizer demonstrating a weights of evidence explanation for a

mobile phone application inferring the physical activity of the user.

The naive Bayes application we built is a physical activity recognizer that uses the accelerometer on
a Google Android mobile phone to infer whether the user is sitting, standing, or walking (see Figure

6.11). It uses

e QueryPanel as a Querier to receive user interaction queries through a drop-down menu
o NaiveBayesExplainer to generate weights of evidence explanations from the naive Bayes

classifier



6.15 VALIDATION: DEMONSTRATION APPLICATIONS 147

No Reducer so that we can demonstrate how unreduced explanations may look overly
technical to end-users. We recommend using FilteredCReducer to retain only terms that
are easily interpretably by end-users

MotionPresenter which extends TypePanelPresenter to render weights of evidence as a

bar chartina JTable
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6.15.4 HOME ACTIVITY RECOGNIZER — HMM
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(Left) The bar chart visualization explains why the application inferred Breakfast i
row shows the weights of evidence for a sensor at a particular time step.

n the last minute. Each

(Right) The floorplan visualization explains why the application inferred a sequence of

Sleeping — Toilet — Toilet — Breakfast — Breakfast, in the last 5 minutes.

Evidence due to features (summed across the last 5 min) are indicated by the area
corresponding sensors in the floorplan. Evidence for each sensor across time is re
can see that the Hall Bedroom Door being open is a strong indicator of inferring t

of bubbles around the
vealed in a tooltip. We
he sequence. The door

being open is a stronger indicator than it being closed 4 min ago. The microwave is another strong

indicator (biggest bubble in top right corner).

Figure 6.12: Two Why visualizations for explaining a HMM to infer domestic activity.
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We demonstrate explanations from an HMM model using the dataset from [van Kasteren et al.,
2007] about domestic activity, and train a HMM with a sequence length of 5 min, and 1 min per
sequence step. The application takes 14 binary input sensors and infers which activity (out of

seven) the user is performing. It uses

e QueryPanel as a Querier to receive user interaction queries through text commands

e HmmExplainer to generate two-dimensional (inputs and time) weights of evidence
explanations from the HMM

e TimeReducer which extends DimensionReducer to aggregate the weights of evidence
along the dimension of time, showing weights of evidence due to input features

e SensorReducer which extends DimensionReducer to aggregate the weights of evidence
along the dimension of input features, showing weights of evidence due to time

o FilteredCReducer to select weights of evidence relevant to the input feature over time (for
a tooltip display)

e FloorplanPresenter to display the floorplan overlaid with bubbles, where their size
represents the weight of evidence due to the input feature over time

o TimeBarsPresenter to display a bar chart visualization, where each bar represents the

weight of evidence due at a specific time

6.15.5 LAKSA — AVAILABILITY INFERENCE MOBILE APPLICATION

We have developed, Laksa, a high-fidelity prototype of an intelligible context-aware mobile
application that further validates the Intelligibility Toolkit. It uses a version of the toolkit ported to
Android to generate explanations from rules, a decision tree, and naive Bayes to explain inferences
of availability, motion activity, and sound activity, respectively. Section 7.2 describes the first
version of Laksa with its intelligibility Ul implemented in Java Swing for a usability study prototype,
and Section 9.3 describes the second version of Laksa with its interface fully developed in Android

2.2.

6.16 LIMITATIONS AND DISCUSSIONS

While the Intelligibility Toolkit is extensible, the current implementation does not cover some

outstanding aspects.
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i.  There remain some types of explanations that users ask for that are not yet supported: e.g.,
how to Control an application to change its behavior (though this is supported with
Parameters in the Enactor framework [Dey and Newberger, 2009]), and Provenance
(source, credibility, and accuracy of the application inputs).

ii.  Often, sensed raw inputs of context-aware applications are pre-processed, e.g., using signal
processing or computer vision techniques. Although important, the toolkit does not
currently capture and explain these pre-processing mechanisms [Patel et al., 2008].

iii.  Similarly, the Intelligibility Toolkit focuses on explaining the inference of the application
model when it encounters situations, but not how the model was originally trained, or how
it continues to adapt itself (if using active learning). This may help end-users understand
how the training data may influence the application’s behavior, but may also pose a
cognitive burden on end-users to understand data-driven models.

iv.  Applications may encounter behaviors due to the infrastructure rather than the decision
model or inputs. For example, unexpected behavior may result from resources suddenly
being unavailable due to connectivity issues. The toolkit does not currently support
explanations about the infrastructure.

v.  The Intelligibility Toolkit provides components to facilitate the development of intelligible
applications, the automatic generation of explanations, and mechanisms for presenting the
explanations. However, it does not provide guidelines on how to present the explanations.

vi.  On a related note, this work did not seek to evaluation of the impact or effectiveness of
explanations that may be generated from the Intelligibility Toolkit, but provides tools for

such investigations in the future.

6.17 RELATED WORK IN EXPLAINING CONTEXT

The Intelligibility Toolkit supports a wide range of explanations for multiple decision models.
Previous systems only covered a subset of the explanation types, and only for one or one type of

decision model.

The most similar framework to our toolkit is the Enactor framework [Dey and Newberger, 2009],
on which we base our Intelligibility Toolkit. It can provide What explanations by exposing the state
of input Widgets, and Why explanations by reporting a relevant rule. However, it does not support
the other explanation types or any models beyond rules. The Crystal framework [Myers et al., 2006]

supports only Why / Why Not explanations for desktop-based applications to explain themselves
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through Command Objects. The Whyline [Ko and Myers, 2009] similarly explains Why / Why Not to
end-user programmers, by examining the program execution tree. PersonisAD [Assad et al., 2007]
defines a distributed framework to support What explanations by resolving identities and
associations of devices, locations, people, etc. The Intelligent Office System [Cheverst et al., 2005]
provides What explanations by showing the system state, History explanations by listing the states
across time, and Why explanations about the learned cut-points for its rules. Panoramic
[Welbourne et al., 2009] provides Why, What, and History explanations to explain location events

through a visualization of parallel timelines of sensed and rule-determined events.

While the aforementioned systems provide explanations for rules, Tullio et al. [2007] explained
interruptibility inferred from decision trees and naive Bayes with What explanations. The
Intelligibility Toolkit can provide deeper (e.g., Why, Why Not, How To) explanations from these
models. Kulesza et al. [2009] built an intelligible email sorter that uses naive Bayes for
classification. It provides Why, Why Not, and What If explanations based on the weights of evidence
approach [Poulin et al., 2006]. The Intelligibility Toolkit also uses this approach, and adds more
explanation types, supports numeric input features, extends it for HMMs, and has been developed

to be extensible.

6.18 CONCLUSION AND FUTURE WORK

We have presented the Intelligibility Toolkit that currently provides automatic generation of 12
explanation types for at least 10 popular inference models in context-aware applications. It

supports

i.  Generating explanation structures with Explainers,
ii.  Querying mechanisms to specify questions and constrain explanations with Queries,
iii. = Representing explanations with Explanation Expressions,
iv.  Simplifying complex explanations with Reducers,
v.  Presenting the explanations to end-users and other subsystems with Presenters,
vi.  Presenting interfaces to ask questions with Queriers, and

vii.  Providing context-sensitive intelligibility with Selectors.
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Explanations can be provided as either rule traces or weights of evidence. The toolkit is also
extensible to support new explanation types, model types, reduction heuristics, and presentation

formats.

The Intelligibility Toolkit aims to make it easier for developers to provide many explanation types
in their context-aware applications. This ease also allows developers to perform rapid prototyping
of different explanation types to discern the best explanations to use and the best ways to use them.
By standardizing the styles of explanations, developers have many more choices when choosing
classifiers to increase application accuracy and performance, while retaining the intelligibility
features of their application, and not even needing to change explanation interfaces (especially so

for weights of evidence explanations).

In addition to addressing the limitations outlined earlier, we can use the Intelligibility Toolkit, to
pursue further research questions regarding the intelligibility of context-aware applications. In
particular, we can investigate and compare the efficacy of various explanation types, by measuring
how well each type helps users to understand the application, and improve their trust in the
application. Using the Intelligibility Toolkit, we developed an intelligible context-aware mobile
application (described in Chapters 7 and 9) with multiple explanation types, and multiple context
types (e.g., location, physical activity, sound activity), and conduct a usability and usage evaluations
of the impact of intelligibility and how well intelligibility improves understanding or corrects

misunderstanding.
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7 DESIGNING FOR INTELLIGIBILITY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2011). Design of an Intelligible Mobile Context-Aware Application.
In Proceedings of the 13th International Conference on Human Computer Interaction with

Mobile Devices and Services (MobileHCI '11). ACM, New York, NY, USA, 157-166.

ABSTRACT. Context-aware applications are increasingly complex and autonomous, and research
has indicated that explanations can help users better understand and ultimately trust their
autonomous behavior. However, it is still unclear how to effectively present and provide these
explanations. This work builds on previous work to make context-aware applications intelligible by
supporting a suite of explanations using eight question types (e.g., Why, Why Not, What If). We
present a formative study on design and usability issues for making an intelligible real-world,
mobile context-aware application, focusing on the use of intelligibility for the mobile contexts of
availability, place, motion, and sound activity. We discuss design strategies that we considered,

findings of explanation use, and design recommendations to make intelligibility more usable.

7.1 INTRODUCTION

In Chapter 6, we had addressed the support of intelligibility at the underlying level by automatically
generating explanation types. In this chapter, we shift our focus to the user interface level of
providing intelligibility in context-aware applications. Indeed, there have already been several
context-aware applications that support some level of intelligibility. Cheverst et al.'s Intelligent
Office System [2005] exposes sensor values, and explains its fuzzy decision tree model that controls
office appliances. Tullio et al.'s interruptibility displays [2007] explain how they determine a
manager's interruptibility by exposing the values of sensors in the manager's room. Kulesza et al.

built an email sorting application [2009] that supports Why (ie., why the application took a
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particular action) and Why Not (ie., why the application did not take a different action)
explanations for its naive Bayes classifier. Vermeulen et al.'s PervasiveCrystal [2010] also supports
Why and Why Not explanations but for ambient environments. These systems support a limited set
of explanations users can ask for: What, Input values, Why, and Why Not. However, we found that
users ask a wider range of questions of context-aware applications (Chapter 5), and that different

explanations have different impacts on user understanding (Chapter 4).

We had developed the Intelligibility Toolkit to automatically support this wider range of
explanations. While this significantly helps facilitate the development of intelligible context-aware
applications, it remained unclear how to effectively present these explanations. In this chapter, we
advance the knowledge of how to design for intelligibility by investigating explanation design for a
real-world, mobile context-aware prototype. We focused on intelligibility for the mobile contexts of

availability, place, motion, and sound activity.
Our contributions in this chapter are the:

1. Exploration of design and usability issues in making a context-aware application intelligible,
and

2. Provision of design recommendations to address them.

The rest of the chapter is organized as follows: we describe the prototype that we developed to be
intelligible. We then describe our rationale for designing the explanations to make them more
interpretable. To discover how users use intelligibility and the usability issues that they face, we
ran an in-situ, scenario-driven, think-aloud study. We describe our experimental set up, method and
data analysis. We then describe how our participants used explanations, and discuss our
interpretations of some factors influencing their behavior. We observed how participants used
explanations differently depending on their goals, and how some participants encountered
difficulties due to their lack of prior knowledge or their chosen problem solving strategies. Finally,
we provide design recommendations arising from these observations, and describe our plans for

future work.

7.2 LAKSA — SOCIAL AWARENESS APPLICATION

Staying aware of others is an established need that people have [Oulasvirta, 2005]. Between close

friends and family members, this can help people feel a greater sense of connectedness as each
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person goes about their daily activities. Between coworkers, this can inform people of the most
suitable times to contact them. We have developed Laksa, a mobile application that shares people’s
availability status. Laksa is an acronym for Location, Activity, Connectivity (x), and Social
Awareness that describe its function. Availability is determined from six lower-level contexts: Place,
Motion, Sound activity, phone Ringer, Schedule, and who is enquiring (Contactor). While similar to
CenseMe [Miluzzo et al., 2008], it uses a slightly different set of contexts, aggregates them into an
availability context through rules (rather than just showing all contexts as presence information),

and is intelligible, such that it can explain its complex behavior.

Our focus in this chapter is the use of Laksa as a vehicle to explore the design, implementation, and
use of intelligibility in a sophisticated, multi-factor context-aware application. In the rest of this
section, we shall describe the various contexts that Laksa employs, briefly describing their
implementation. Laksa is designed to support the complexities of availability in social relations by
considering availability as multi-faceted, and multi-factored. One's availability depends on who is
asking (different facet for different viewer), and on contextual factors (e.g., Place, Motion, Sound).
Figure 7.1 describes Laksa's context hierarchy. We designed Laxsa to be sophisticated in using
many contexts, and complex sensing and inference mechanisms, to exemplify how context-aware
applications can manage many factors that users would find cognitively difficult. We anticipate
users will ask for explanations to determine or remember Laksa's complex mechanisms. Next we

describe the contexts Laksa models.

Top-tier Context Availability

Place, Motion, Sound, o
Lower-tier Contexts Intelligibility

Ringer, Schedule, Contacter Explanations

Latitude, Longitude; Energy, Mean,

Lower-tier Input Features Standard Deviation; MFCCs, etc.

GPS, Wi-Fi; Accelerometer; Microphone;

Sensors and Sources Phone State, Calendar, etc.

Figure 7.1. Laksa context architecture with different tiers of context used to infer higher-

level tiers. The user sees the Availability status, and the intelligibility explanations.

Availability: Available, Semi-Available, Unavailable — is determined based on rules regarding the
following six factors. The contactor interprets the availability and decides whether to contact and

how (call, text, email, etc.).
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Contactor (Who is Enquiring): Family, Friend, Coworker, and Default (to check user's default

status) — categorizes person contacting or enquiring about the user.

Place: Home, Office, Café, Library, etc. — represents the semantic location of the user. It is
computed by sensing latitude and longitude from the Skyhook Wi-Fi API (uses a hybrid GPS, Wi-Fi,
and cell tower positioning algorithm), and matching to a pre-determined named location that the
user specifies. To convey accuracy, it also reports the sensed distance error and detected number of

access points.

Motion: Sitting, Walking, Cycling, Placing the phone Flat, etc. — represents the user’s physical
activity inferred with the phone placed in a front pants pocket. Inferences are made with a decision
tree trained using activities from several users. Features extracted from the accelerometer are
similar to [Bao and Intille, 2004; Lester, Choudhury, and Borriello, 2006]: e.g., mean and standard

deviation for three axes, phone orientation angles, and signal powers.

Sound: Talking, Music, and Ambient Noise — represents the sound activity that Laksa recognizes
from what it can hear from the phone's microphone. Inferences come from a naive Bayes classifier
trained on sound samples. Features extracted are similar to [Lu et al, 2009]: eg., mean and
standard deviation of power, low-energy frame rate, spectral flux, spectral entropy, spectral

centroid, bandwidth, Mel-Frequency Cepstral Coefficients (MFCCs).

Phone Ringer: Silent, Vibration, or Normal — represents the volume state to which the phone

ringer has been set.

Calendar Schedule: Personal, Work, or Unscheduled — represents the user’s Google Calendar, and,

in particular, which calendar the current event is in.

While one could compare the use of explanations for different contexts (e.g., Place, Motion, Sound)
and different decision models (rules, decision trees, naive Bayes), for this formative work, we focus

on exploring the design and use of explanations across this breadth of factors.
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7.3 DESIGN OF INTELLIGIBILITY

Having defined the context types, we seek to make Laksa intelligible so that users can understand
what it knows and how it makes decisions about user availability. We employ explanations

supported by the Intelligibility Toolkit (Chapter 6):

What is the value of the context?

Why is this context inferred as the current value?

Why Not: why isn’t this context inferred as Y, instead?

How To: when would this context take value Y?

Inputs: what details affect this context? (Factors, input features, related details, etc.)

Outputs: what other values can this context take?

N o ok W=

What if the conditions are different, what would this context be? (Requires user
manipulation)
8. Certainty: how confident is Laxsa of this value?

9. Description: meaning of the context terms and values.

Explanations generated from the Intelligibility Toolkit contain the information content to answer
these nine questions and can be rendered using simple text templates. However, these may not be
easy for lay users to interpret or quickly assimilate. Therefore, we employed several design
strategies to help make the explanations more usable. Figure 7.2 and Figure 7.3 show some

explanation user interfaces resulting from the strategies described next.
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a) This is the core information to show the Availability status that Laksa has inferred. It shows the user
or buddy’s picture, name, and Availability status. It also shows the time since the last change.

b) To ask for an explanation, first select which context you would like to ask about by selecting one of
these seven Context Tabs. Each tab shows the current value of the context (What explanation), e.g.,

Sound = Talking.

c) Next, you ask a specific question from the drop-down menu. The Question Panel adapts to the
question selected (e.g., Why, Why Not, What If).

d) The resulting explanation is rendered in the Explanation Panel. List visualization: the left screenshot
shows a reason with a list of multiple factors. Some explanations have multiple alternative reasons,
shown in different sub-tabs.

Figure 7.2. Screenshot of the Laksa showing how to use the components in the core and

intelligibility user interface.

7.3.1 REDUCING AND AGGREGATING EXPLANATIONS

We expect that users of context-aware applications would rather be focused on their day-to-day

tasks than dedicate too much attention to technical details. Hence, it is important to simplify and

reduce the provided explanations to be concise and salient. We have done this for Laksa by

aggregating explanation types (e.g., What value and Certainty rating shown together), reducing the

number of reasons, length of reasons, and number of input features (e.g., omitting MFCCs for

sound); and combining explanations for simultaneous consumption (eg., presenting Xx-y-z

accelerometer values in 2D diagrams). While this may compromise comprehensiveness, it is

intended to make the explanations more interpretable.
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(b) Physical Diagram visualization illustrating
the interpreted mechanical motion of the phone
leading to its inference of cycling (two shown
here). Dotted lines and arrows or shading show
boundary conditions of rules of the decision tree
model. Users can mouse over the diagram to see
textual explanations with numerical values.

Why isn't Motion inferred as "Cycling"?
Because the phone is oriented more than the
drawn angle, the vigorousness detected is below
the illustrated value, etc.

(c) Metaphorical visualization of sound feature
values that was sensed and computed at a
specified moment (two shown here). This can
show current values sensed, or average values for
each possible outcome.

What details (Inputs) affected the Sound
inference? 48% of the sound heard was
relatively silent (Periods of Silence); the range of
pitches heard was from 1140 to 2623Hz (this can
be played aurally for the user to listen to), etc.

(d) Weights of Evidence visualization. Bar chart
visualization showing weights of evidence voting
for or against the inference of Talking. Weights
are represented by the length of each bar; color
and positioning indicate evidence for or against.
Not all factors shown.

Why isn't Sound inferred as "Talking"?
Because most of the factors vote for the inference
of Music (especially hidden features, the sound
Volume, Periods of Silence, etc); only Pitch
Fluctuation votes for Talking.

Figure 7.3. Explanation Visualizations rendered in the explanation panel. Some examples

and their interpretations. The Ul uses icons derived from [Fatcow].

7.3.2 VISUALIZING EXPLANATIONS

Users should more quickly assimilate visual explanations because of the higher bandwidth of
diagrams [Ware, 2000]. Hence, we provide several visual representations: icons for context and

feature values, dynamic diagrams that change when values change, and even animation and sound
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(to hear pitches and pitch ranges). Visualizations are customized for the context domains (e.g., map
for Place, physical 2D phone diagram for Motion). Since Sound is not visual, we chose to explain

sound by metaphor (e.g., showing a pan flute to represent pitches and ranges; see Figure 7.3c).

7.3.3 EXPLAINING IN SIMPLE AND RELATABLE TERMS

As we deploy intelligibility in real-world prototypes, users need to understand how the contexts
and recognition features relate to the real world, using lay concepts. Therefore, we simplify names
(e.g., "spectral entropy" renamed to "pitch pureness"”, "low-energy frame rate" renamed to "periods
of silence"), normalize numerical values to lay scales (e.g.,, 0 to 100), and include Description
explanations that describe what each context factor and feature mean. Descriptions are presented
in physical rather than system terms (e.g., there are more periods of silence for talking than ambient
noise, because there are significant pauses in speech that are relatively quiet). Furthermore,
features for Motion and Sound were scaled to physically meaningful names and values (eg.,
vigorousness to represent accelerometer signal power in Watts). We also chose to visualize
explanations for motion using first principles. For example, orientation information is shown as the
orientation of the phone relative to the ground (see Figure 7.3b). Note that ensuring that terms are
domain relatable may require significant domain knowledge, rather than just naively applying
effective features identified in the literature about activity recognition (e.g., [Lester, Choudhury, and

Borriello, 2009; Lu et al.,, 2009]).

7.3.4 PROVIDING EXPLANATIONS FOR CONTROL

We chose to provide explanation types for each context only if users could leverage the information
to improve Laksa, or change their behavior. What If explanations are only provided for the top-tier
Availability context. For other contexts, users would not be able to meaningfully change the input
features (e.g., changing the entropy or frequency to influence sound). Furthermore, we omit trivial
explanations, e.g., asking What If one is at a specific coordinate location to learn which semantic
place Laksa would infer the user being at; asking Why Not questions about manually set contexts

(e.g., schedule or ringer mode).

We iterated on the design of Laksa with these strategies and feedback from colleagues who are

active HCI researchers.
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7.4 LAKSA PROTOTYPE IMPLEMENTATION

We built Laksa using a client-server architecture. Sensing of low-level contexts (eg., latitude,
longitude coordinates, accelerometer, microphone) was performed on an Android mobile phone,
and some intermediate features (e.g., discrete Fourier transform, entropy, energy) were computed
on the phone. The extracted features are then sent via XMPP to a server for further processing. On
the server, we modeled the contexts for users with the Enactor framework [Dey and Newberger],
and used the Intelligibility Toolkit [Lim and Dey, 2010] to support the querying for various
questions, generation and reduction of explanations about the contexts, and presentation of the

explanations in various graphical and textual formats.

To measure how participants use the Laksa interface, and to support rapid prototyping, we
developed the interface on a touch screen tablet, rather than on the mobile phone. Users interact
with the Ul with a mouse, pen stylus, or finger. The latter interaction closely resembles cell phone

interaction.

7.5 LAKSA PROTOTYPE USAGE

Users ask for explanations by selecting a question from the drop down menu (see Figure 7.2a). Each
question only pertains to the particular context of focus (e.g., Availability). To ask about another
context, the user selects the context by its tab (Figure 7.2b), and asks the questions in the panel
(Figure 7.2c). The resulting explanation appears in the Explanation Panel (Figure 7.2d; Figure 7.3;
Table 7.1).



Description / Function Availability Place Motion Sound
What | Shows current value / state of context. Map
Value ) Value Value
(location bubble)
Why | Shows a model-based explanation of . Map Physical Diagram
. List

how Laksa inferred the current output (multiple conditions) (user & actual place (with boundary Weights of Evidence

value (outcome). P bubbles overlapping) conditions)

Why Not | Shows a model-based explanation . . Map Physical Diagram
distinguishing how Laksa did not infer Multiple Lists ; ; i i

istinguishing (multiple conditions) (user & desired place (with boundary Weights of Evidence
the alternative output value. bubbles separated) conditions)

How To | Shows a model-based explanation of Physical Diagram Metaphorical Viz.
how Laksa typically or generally infers List Map (of average input (of average input
the target output value. (required conditions) | (actual place bubble) values for desired values for desired

outcome) outcome)
Inputs | Shows the current values of input List List Physical Diagram Metaphorical Viz.
context / features. (current input (latitude, longitude) (of current input (of current input
values) ’ values) values)

Outputs igﬁgitp;zﬁﬁ{zumm values the List (possible output values)

What If | Shows a Ul to allow the user to specify Editable List
different input values and see what the )
output value would be. (of current input values)

Certainty | Shows the certainty or confidence of List 0 ) 0 .
Laksa ‘s inference of the current (distance error, % .Certamty % .Certamty
context value. M ints) (of inference) (of inference)

access points
Description | Shows terminology or description of Text (sentences)

context / feature.

Table 7.1. Explanation Visualization Types for each context, and question type. Only the What value is shown for Ringer,

Schedule, and Contactor. Note that Certainty is shown together with both What
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7.6 SCENARIO-DRIVEN THINK ALOUD USER STUDY

To explore the use of the intelligibility features in Laksa, we conducted a scenario-driven user study
where participants think aloud as they used it. This was an exploratory study where we
investigated how and why participants used intelligibility, and how this use impacts their
understanding of Laksa. We conducted an in-situ controlled study rather than a field deployment
for two main reasons: (i) to present participants with a lower-fidelity interface to elicit more
feedback from the think aloud study, and (ii) to avoid having serious usability issues that could
confound results in a field study, where it would also be harder to monitor participants' usage and

rationale.

7.6.1 PROCEDURE

The experiment began with the first scenario (see later) as a training session, where the
experimenter explained the function of the Laxsa prototype as an availability awareness
application, its sensing capabilities, and its intelligibility features. Participants verified that they
understood the interface and explanations by stepping through the interface themselves and
thinking aloud what they understood Each subsequent scenario involved participants moving
around the university campus to a respective location (e.g., library, café, office) and engaging in a
specific activity (e.g., walking, cycling). An experimenter shadowed the participants all the while.
The participants were then told of an incident (e.g., having one’s phone ring loudly while searching
for a book in the library) and the phone's subsequent behavior. They were asked for their opinion
of the situation, and of the behavior of the application. They were then asked to explore Laxsa to
find out what is really happening or to clarify the situation. The participants were prompted to
think aloud as they did this, and the experimenter probed for clarification. For each scenario, we
recorded what participants did and said during the think aloud. Finally, we interviewed them about

their opinion and understanding of how Laksa sensed and inferred contexts.

7.6.2 CONTROLLED IN-SITU SCENARIOS

The user study was scenario-driven to expose participants to a wide range of situations they may
encounter with Laxsa. To increase the visceral quality of the scenarios, we engaged the participants
in actually physically performing the tasks in-situ, rather than just imagining themselves in the
respective environments and situations. For example, we had participants go into a library to look

for a book (S4 below), and ride a stationary bicycle (S5). To better control conditions, we simulated
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the sensor data that Laksa used for each scenario. The data is based on previously recorded real
data of several users performing the respective scenarios. We asked participants to wear pants with
front pockets to facilitate placing the mobile there and to allow comfortable cycling. To further
control for experience, we provided participants with a fixed set of personal availability rules (see

Table 7.2).

Availability Location Motion Sound Ringer Schedule Wh_o S
Enquiring
&a L K Anyone
Unavailable Office Silent
&’ S @ Anyone
Unavailable Office Talking
| o
& = &5
Unavailable Work Friends
3"‘ [i[-. Anyone
Semi-Available Library
2 | & %
Semi-Available Home Coworkers
3"‘ ) Anyone
Semi-Available Cycling
& All other cases

Available

Table 7.2. Personal availability rules participants were told were pre-programmed into

Laksa for the user study scenarios.

We employed seven scenarios to span three situational dimensions: (i) Exploration / Verification
(S1, S2, S5) where Laksa behaved appropriately and participants are asked to explore and verify the
interface; (ii) Fault Finding (S3, S4, S7) where Laxsa apparently or actually behaved
inappropriately, and participants had to debug what really happened; (iii) Social Awareness (S6,
S7) where participants investigated information and explanations about hypothetical buddies that
they naturally had less awareness of. We measured their desire to contact their buddy in the latter

scenarios to gauge their trust of Laksa.

$1: Sitting in office talking. Training session where the participant learned Laksa’s core features
and explanations.
$2: Walking outdoors. Verification/exploration task where participants investigated explanations

of Place and Motion.
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$3: Missed contact. The participant was asked to find out why she was considered not available to
a friend, even though she was. This is a false-positive error condition where Laksa actually behaved
correctly, but given that availability is multi-faceted (i.e. different statuses to different viewers), the
participant may not realize this.

S4: Library interruption. The participant walked to a nearby library to search for a specific book.
She needed to squat to retrieve the book on the lowest shelf. As she was looking for the book, the
phone rang (the experimenter invoked a ringtone in the library), indicating a call from a coworker.
The participant was asked to determine why she was not seen as unavailable. This is a true-positive
error condition where we simulated Laksa making a mistake.

$5: Cycling in gym. Exploration task for participants to explore how Laksa tracks their cycling in a
gym location.

S6: Friend available. The participant was asked to check Laksa to help decide whether to contact a
friend.

S$7: Friend talking inferred as music. The participant was asked to find out why, when the friend
was actually in a meeting, Laksa made the error of telling her that the friend was Available, at the

office listening to music, and had nothing scheduled.

7.6.3 PARTICIPANTS

Using a local recruiting website, we recruited 13 participants (8 females) with a mean age of 26.4
years (range: 18 to 37). P2 was dropped because he did not continue beyond the training scenario.
Four participants were students (one undergraduate). Only P1 was trained in a computer-related
field (information systems), while the others spanned a wide range of areas (e.g., rehabilitation,
mathematics, materials science and engineering, human resources). We engaged each participant
for 2.5 hours on average (range: 2 to 3.5). Due to the length of each scenario, each participant
experienced between 3 and 6 scenarios (median=4), selected to try to balance coverage.

Participants were compensated $10/hr.

7.7 DATA ANALYSIS

We transcribed the think aloud and interview data, segmented by speaker (interviewer /
interviewee). The transcript was coded by question type (e.g., Why, Why Not, What If), goal /
intention / rationale (verified during interviews), feature requests, breakdowns / struggles (eg.,

too many questions to choose from), and extent of (mis)understanding. We formed sequence
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models of the usage of question types, and consolidated them (e.g., see Figure 7.4). We interpreted
the findings and models to identified causal factors. This was assembled into higher-level themes

using an affinity diagram (selection based on theme convergence, importance, and novelty).

Next, we describe our observations of how participants used Laksa, focusing on how they asked for
various explanation types. Table 7.3 summarizes how much participants understood Laxsa's

inference in each scenario.

M Gave up / Failed

l:‘ Misunderstood T_l
N Struggled to understand P3 P1
P3 P3 [] Effectively understood P4 P4
P1 P1 P6 P7
P9 P5 P4 P7 P8
P5 P6 P3 P8 P12
P6 P7 P6 P10 P5 P5
P11 P9 P8 P5 P11 P6
P13 P12 P12 P7 P13 P10
S2 S5 S7 S6 S3 S4
Walking Cyclingin Talking as Friend Missed Library
Outdoors Gym Music Available Contact Interruption
Exploration / Social Awareness
Verification Fault Finding

Table 7.3. Participant results in scenarios showing how each participant performed for each
scenario as he or she used explanations provided in Laksa. Note that columns are arranged

in categories, not by sequence of presentation.

7.8 FINDINGS — PATTERNS OF INTELLIGIBILITY USE

We found different usage of explanations for the three different situational dimensions presented in

the scenarios: exploration / verification, social awareness, and fault finding.

7.8.1 EXPLORATION / VERIFICATION

We observed that participants explored all explanation types as they tried to learn how Laxsa
functioned, and more about the scenarios. Naturally, participants used the Description explanations
to remind them what the terms and concepts meant, and used the Inputs explanation to examine

deeper states that affect inferences (e.g., for S3, P11 used the Inputs explanation of Availability to
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see a “summary of her statuses”). How To explanations were used in two ways: P11 appreciated
learning new concepts about inferring Sound (through periods of silence, pitch ranges, etc.); for S3,
P6 checked to see when she would be Unavailable. Finally, some participants asked What If to
preemptively test troublesome or critical situations to see how Laksa would respond under those
circumstances; e.g., for S3 during a lull period, P3 and P5 confirmed that they remained available to

family members in an emergency.

7.8.2 SoOcCIAL AWARENESS

For S6 and S7, participants had less first-hand knowledge of the actual situation about their buddy
than about themselves. We observed that they mainly focused on the Input explanation of
Availability (or equivalently, What explanations of the lower-level contexts). For example, P6 first
checked the Input values of Availability to determine the state of her friend (in S7). Participants
would then form stories about what they believed their buddy could be doing at the time; eg.,
having seen the Motion inferred as “Other” (placed flat) for S6, P9 presumed his friend was
“probably sleeping or taking a nap or eating or something that would probably involve not wanting
a phone call.” When he subsequently looked at the Sound inference, he said “sound is 78%, oh he is
listening to music, so [ guess I could intrude if I want to, but then I get he might be with someone
else too.” At this point, most participants did not continue by asking other questions. However, for
S6, P7 asked When would her friend be Semi-Available (How To) to learn the rules her friend had

set.

We found that once participants perceived that the availability status was inferred inaccurately or
erroneously, they explored other questions and investigated more deeply. This is similar to how

participants investigated anomalies with explanations about themselves (discussed next).

7.8.3 FAULT FINDING

Participants used explanations most when perceiving that Laksa behaved unexpectedly. Figure 7.4
summarizes the sequences of how participants asked for various explanations (labels refer to
observations described in the following text). The choices of questions were slightly different when

investigating the top-tier Availability than the lower-tier contexts (Place, Motion, and Sound).
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Top-tier Lower-tier
Rule-based Context Sensed / Inferred Contexts
(Availability) (Place, Motion, and Sound)

Outputs | Certainties

8a
Figure 7.4. Consolidated sequence models of explanation use for Fault Finding. Steps were

abstracted from individual actions that participants took across scenarios S3, S4, and S6.

7.8.3.1 ToP-TIER, RULE-BASED AVAILABILITY

When participants realized that the Availability was wrong, some instinctively first selected the Why
question (Figure 7.4: 1). P6 first asked why about her Availability in S3 and S4, and why her Place
was inferred as Office in S4. When explaining her rationale to first select why (S4), P12 said

"because | want to know why...why I'm available." This suggests a linguistic cue for asking Why first.

Alternatively, sometimes participants first inspected the state of the application by asking for Input
values (2). For S3, by examining the Input values, P11 discovered that “the Talking and possibly the

Work [category] in the schedule [were] the two that led my status to be unavailable.” For S4, P6 and



7.8 FINDINGS — PATTERNS OF INTELLIGIBILITY USE 169

P12 quickly discovered that the Place inference (as Office) was erroneous (should be Library

instead).

If participants had an expectation of what the availability should be, they would ask about the
expected outcome using Why Not or How To questions (3a, 3b). These represent different
strategies to address this goal-oriented query. Interestingly, some participants asked How To
instead of Why Not, even though the latter was more concise; e.g., for S4, P7 asked When would
status be Semi-Available (How To) to manually identify erroneous conditions out of three. Had she
asked “Why isn’'t status Semi-Available”, she would have seen the single condition that was
specifically identified to be relevant to the scenario. Unfortunately, some participants
misunderstood the How To explanation, e.g., for S7, when P4 asked “When would Sound be
Unavailable,” he interpreted the requirement that his friend has to be Talking to represent that his
friend was currently sensed as talking; for S4, P7 examined the rules for when she would be Semi-
Available (as she had expected status to be), found the condition Place = Library, and
misunderstood that to mean that Laksa had correctly inferred her location. Another reason for the
lack of use of Why Not could be that the explanations with contrapositives put off users from using

Why Not more: P6 complained about the “excessive use of negatives.”

Some participants simulated conditions they expected to be true with the What If explanation (4), to
see if Laksa would infer an expected Availability. For S4, P8 asked What If, setting Place to Library
(which she believed to be ground truth), and Ringer to Silent (which she believed she should have
set). This resulted in the status of Semi-Available, which was correct unlike the actual inference of
Available, and indicated that while the rule was executed correctly, possibly something was sensed
wrongly. Unfortunately, participants were prone to carelessness: while setting up the expected state
for S2, P6 changed three contexts (Place = Café, Motion = Sitting, Contacter = Friends), but failed to
notice her schedule was set to Work (a pivotal factor to determine her status to friends). She
expected her status to appear as Available, but it appeared as Unavailable instead; for S4, P13
forgot to set Place to Library (left as inferred value Office) when trying to verify the inferred

availability.

Using the aforementioned strategies, some participants may decide to add a new rule or modify one
to fix the anomaly, and this may be a satisfactory solution. However, most of the problems in the
scenarios are due to faults at the lower-tier context inference. To investigate further, they would

select the suspect context by clicking on the respective tab.
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7.8.3.2 LOWER-TIER, SENSED / INFERRED CONTEXTS

Once again, participants instinctively asked Why (5): e.g., for S2, P9 asked Why to see “that map
thing,” the Map visualization showing which place his location overlapped with; for S2, P6 asked
Why Motion was inferred as Walking, only paying attention to which features were listed, and not
paying attention to the boundary conditions; for S3, P6 first asked Why Sound was inferred as

Talking, but found that unhelpful.

Participants also paid attention to the inference Certainty (6). For S6, after noting a Sound certainty
of 73%, P10 mentioned that as long as it was above 50%, that was “good enough.” For S7, P12
accepted the inference for Sound as Music (93% certainty), because it was above 90%.
Subsequently, he was confused when this inference turned out to be wrong. When in doubt of the
current inference, some participants also made it a point to find out which other Output values
were plausible through their Certainties (7); e.g., for S6, P6 checked the certainty of inferring Sound
as Talking (8%), grew wary that the actual inference (Music at 73%) may be wrong, and became
hesitant to contact his buddy. For S4, P12 wanted to see whether Laksa recognized squatting, and
seeing Certainties of 67% for Standing and 33% for Cycling, he accepted that “cycling is kind of like

squatting” and “partially standing.”

When asking about an expected outcome or exploring an alternative outcome with a noticeably high
certainty, participants similarly demonstrated two dominant exploration strategies: asking Why
Not (8a), or How To together with Inputs (8b). Asking Why Not provides a concise explanation that
directly compares the actual inference with the desired outcome. For S4, immediately after noticing
a wrong Place inference, P5, P6, P12 asked Why Not to see why their location bubble did not
overlap with the bubble for Library. For S5, P5 used the Why Not Physical Diagram to explore how
Running was not inferred (Cycling was). For S7, P6 became uncertain after noticing, from the
Weights of Evidence visualization, that Pitch Fluctuation strongly voted for inferring that her friend
was Talking, while every other factor voted for Listening to Music (see Figure 7.3d). However, we
found that many participants disliked the explanations as being too technical, particularly, the
Physical Diagrams for Motion. In fact, for S5, focused on Cycling, P7 avoided the Motion diagrams of
the Input, Why, and Why Not explanations. For S6, P9 found the Weights of Evidence visualization
explaining “Why isn’t (Why Not) Sound Ambient Noise” confusing (difficult to remember what icons
meant), and preferred to just look at the Output Certainty of Ambient Noise. Other participants
alternatively used the How To explanation in conjunction with Inputs, by manually comparing the

two explanations; e.g., for S6, P9 repeatedly toggled between the How To and Inputs metaphorical



7.9 DISCUSSION — THEMES OF INTELLIGIBILITY UsE 171

diagrams for Sound. He studied Pitch Pureness to see if the current Input value (=29) was “just
about right” compared to the average value for Music (=34), and accepted the Sound inference of
Music. After several exposures to both techniques, P12 realized (in S5) that the Why Not
explanation for Motion provided similar information as How To + Inputs, and required less effort to

inspect.

7.9 DISCUSSION — THEMES OF INTELLIGIBILITY USE

We created an affinity diagram of our coded findings to map out core issues and patterns of use.
Here, we present the top three high-level themes of how, and why participants used or failed to use

the intelligibility features.

7.9.1 INFORMATION OVERLOAD AND EXPLANATION DETAIL

While we intend explanations to express a comprehensive view of what Laksa knows and how it
infers, we run into the problem of information overload. Comprehensive explanations are too long
and complicated for end-users. Even though we took several steps to reduce the explanation
complexity, participants still complained about the remaining complexity. P1 pointed out (as
expected) that there were too many questions to choose from, and she did not necessarily know
which was best for her goals. P3, P7, P8, and P9 also complained about the large number of reasons
provided for Availability explanations (up to 9), and the large number of Input features described
for Motion and Sound. In fact, P3 suggested showing up to 3-4 reasons, most participants only paid
attention to 1-3 features of Motion (especially just vigorousness and movement), and Sound
(periods of silence, pitch range, pitch pureness). When trying to determine her friend’s availability
for S6, P10 grew tired of asking for explanations. She felt “like it was information overload,” and
that she “started getting less information about what he was doing.” She started doubting whether
her friend was actually listening to music or sleeping instead. Clearly, our lay users did not want a

lot of explanation detail.

Furthermore, participants preferred Certainty explanations because of its single value (e.g., P9).
Similarly, P12 eventually showed a preference for the more concise Why Not instead of How To
explanation for explaining Sound. While participants found the Motion and Sound Input feature

details interesting, they also found them too technical for such a lay-user application (e.g., P3, P7).
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7.9.2 PRIOR KNOWLEDGE AND RELATABILITY

It is well-known that prior knowledge plays a role in learning and understanding, and we observed
how that influenced how participants used and interpreted explanations. For example, since Laksa
uses access points to sense location, the geographical distribution of these points affects the
inferred location, and the distance error. However, P4 did not know this, and had no idea in S4 that

Place was wrongly inferred as not being the Library.

This problem was more widely manifest in a usability issue: some participants wanted to see
explanations framed in terms relatable to their activity; e.g., for S5, P1 wanted Motion vigorousness
to be stated as “within the walking or running range” or in terms of exercise "high or low intensity".
She found forces and orientation unhelpful to understand her exercise. While this can clearly help
users in making sense of input values, this is less feasible if an input has multiple ranges of values
for certain outcomes (e.g., multiple ranges of orientation angles for sitting due to different resting

angles of the phone in a pocket).

The participants' use of Inputs and How To explanations for a comparative method to derive a Why
Not explanation also suggests this need to frame sensor features in terms of well-understood
activities. For S7, to convince themselves that a sound heard was really talking, participants looked
at the feature values in Inputs (representing the current state), and values typical of Talking (found

by asking How To).

7.9.3 DIFFERENT STRATEGIES IN PROBLEM SOLVING

We observed that some participants employed suboptimal problem solving strategies to try to
determine how Laksa made inferences. We observed a lack of strategy and logical fallacies such as
causal oversimplification. Even when provided with various explanation tools, some participants
did not know how to effectively use them. For S2, P11 sequentially explored questions in the drop-
down list of questions, while others (e.g., P6, P12) chose the Why explanation instinctively. Many
participants also asked How To to get a Why Not explanation. This required them to do manual

work to identify which reason was relevant, when Why Not would have automatically selected it.

Participants also exhibited common logical fallacies. Many participants exhibited causal
oversimplification [Damer, 2009], because as they looked at reasons (e.g., from Why, Why Not), they
mistakenly fixated on a single factor and ignored others. P6 and P11 felt that Schedule was the
“explicit way” of saying whether they were available (S2). P4 thought that since his friend was at
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the office (S7), then he must be Unavailable, even though he also would have needed to be talking.
Having formed this wrong belief that his friend must be busy, P4 persisted in looking for clues to
verify his hypothesis, rather than revise it. He was thus unable to identify the problem without help

from the experimenter.

7.9.4 BLAME SHIFTING

Figure 7.5: Blame shifting during S4 about mistakenly receiving a phone call in the library.

We observed participants shifting blame attribution in several scenarios, particularly, S4 where the
participant received a loud call while at the library (see Figure 7.5). Participants changed who or
what they attributed blame to after carefully considering what they knew, and viewing Laxsa’s
explanations. Immediately after receiving the interruption, P1, P7, P8, P12 reacted instinctively and
were annoyed with Laksa (1a), while P6, P13 were self-judgmental and felt they forgot to silence
the ringer appropriately (1b). On reflection, P7, and P12 realized their coworker should have seen
their Place and known not to call them. They would then blame their coworker for violating social
norms (2). After looking at the availability status displayed, participants realized Laksa was indeed
wrong, and all participants shifted blame to Laksa (3a, 3b). However, after viewing explanations
and finding out that the status error was due to a poor location sensing (and both Library and Office
in tight proximity), participants had different reactions. P8 and P12 continued to blame Laxsa for
its imprecise sensing, and even became harsher in their judgment, because they (incorrectly)
expected indoor location sensing to be as precise as contemporary GPS devices (4a). On the other
hand, P6, P7, and P13 forgave it because they understood how challenging it was to sense location
in the given circumstance, and understood that they would have to change a setting to improve
sensitivity (4b). This supports findings about reduced blame attribution when autonomous robots

explain their actions [Kim and Hinds, 2006]. While one might assume explanations improve
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perception and trust of Laksa, this observation reveals explanations to be a double-edged sword:

revealing the challenges of inference in some situations, or exposing the application’s weaknesses.

7.10 DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY

Drawing from our design exploration and user study, we present some recommendations on how to
improve the usability of intelligibility that can be applied more generally to context-aware

applications.

7.10.1 REDUCING AND AGGREGATING EXPLANATIONS

We had originally employed this strategy before the user study when designing Laksa, and found
this to be even more crucial based on our study results. In fact, participants demanded an even
lower level of detail, wanting to see more details only as needed. Hence we continue to recommend
this requirement. One compromise would be to allow incremental access to more detail on demand
and offer significantly reduced explanations initially. Alternatively, it could be even better to
present them in a form that is concise but does not compromise by omitting any reasons. Finding
How To explanations cumbersome due to the large number of tabs to see multiple reasons, P1
suggested just presenting the rules in a table instead. This would provide a bird's eye view of the
rules and yet be much easier to access. Furthermore, because some participants found some
features for Motion and Sound to be overly technical, it may be sufficient to filter them out of
explanations rather than make them physically meaningful, or provide metaphors to explain them.
However, it is unclear whether users want to see them when encountering more serious and

esoteric debugging problems.

7.10.2 RETOOLING EXPLANATIONS WITH SIMPLER COMPONENTS

Several participants (e.g., P6, P9, P13) referred to explanations of Place as "the bubble thing" or
"map thing" instead of noting which question they wanted to ask. They used the simple bubble
components of Place (e.g., see Figure 7.3a) to investigate various questions (Figure 7.6). Therefore,
it may be better to design simple explanation components that can be used to answer multiple
questions than to individually answer those questions through different automatically generated
representations: i.e., use explanation components with a smaller vocabulary set expressive enough

to convey most of the explanation types we have employed. Unfortunately, it is difficult to design
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reusable, simple explanation components for contexts like motion and sound, because they depend

on a wider and more diverse range of features that may not be represented equivalently.

Distance Error
+ Number of access points

What Place inferred as at place A.
Certainty Distance error and number of access points.
Inputs Latitude and Longitude coordinates of sensed current user location.
Outputs Place A, B, etc.
Why at A Because sensed location bubble overlaps with bubble of A.
Why Notat B Because sensed location bubble does not overlap with B.
How To be inferred at B Need location and B bubbles to overlap. Certainty of inference:
Figure 7.6. Simple "bubble"” components simultaneously for explaining seven questions

about Place.

7.10.3 STREAMLINING QUESTIONING

Aware of her lack of understanding to effectively use the explanation questions, P7 suggested a flow
chart to help guide users to ask optimal questions. We propose the streamlined flow of questions as
shown in Figure 7.7, where only 1-3 question types are accessible at any given time. This helps
reduce information overload when choosing explanations. Users first start with seeing What the
application has inferred, along with its Certainty (1). If they want to ask questions, they can seek the
mechanistic rationale by asking Why (2a), explore the system Inputs state (2b), or explore the
Certainties of alternative Output values (2c). If users want to know why an expected or alternative
output was not inferred, they may ask Why Not (3a), compare Inputs with How To (3b). These
support the two observed why-not strategies. Having observed how participants wanted to ask
questions from the Laksa Ul, we recommend convenient shortcuts: users can ask Why Not on
seeing alternative Output values (4), and simulate different Input values to ask What If (5). Finally,
users can also explore the values (6a) and Outputs (6b) of lower-tier contexts through Inputs and

What If, respectively.
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7.10.4 NON-MECHANISTIC EXPLANATIONS

We found that users need more types of explanations to properly ground them in the application
domain, and to educate them about good problem solving and debugging strategies to fully

understand the program functionality.

Given the deep knowledge that complex context-aware applications rely on to make decisions, and
the evidence that some participants lacked sufficient prior knowledge to relate technical behavior
to real-world and domain phenomena, we can see that simple textual descriptions are not sufficient
to scaffold the automatically generated explanations. This suggests context-aware applications
need to have access to information about complex real-world concepts that are not necessarily core

to the application.

Moreover, we found that since some users did not effectively leverage the explanation facilities
provided, intelligible applications may need to teach them problem solving strategies. One solution

may be to provide examples of end-user debugging with the explanation tools.

7.11 LIMITATIONS AND FURTHER WORK

We used an iterative design process where design decisions were based on careful consideration,
consultation with HCI experts, and user feedback. While we believe our designs are reasonably

interpretable, an alternative approach is to make comparisons between competing designs.
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We have limited our study to a manageable set of scenarios, chosen to aid exploration of
explanation use, rather than to comprehensively cover situations. Hence, our results are suggestive

rather than definitive, and we seek to validate them with further design iterations and user studies.

Our design recommendations are based on studying how and why users seek explanations given
several goal situations. While we expect that following them would improve the usability and thus
usage of explanations, they may not be the best to promote understanding. Future work will explore
how to design and provide explanations that are not only easier to interpret, but also effective in
improving the understanding of how context-aware applications work. In Chapter 9, we describe
follow-up work on the intelligible Laksa prototype to explore the usage of intelligibility and how

that affects end-user understanding of Laksa’s context inference.

7.12 CONCLUSION

We have described our first steps to building a real-world, intelligible mobile context-aware
application. We followed several design principles to improve the usability of explanations, and
conducted a user study to discover how users make use of explanations, and issues they
experienced. Particularly, we investigated the use of intelligibility for the mobile contexts of
Availability, Place, Motion, and Sound activity. Our findings emphasize the importance of making
explanations usable and quickly consumable (by reducing information overload), relating the
application behavior to the real world activity (to raise the relevance of the information), and
supporting effective problem solving and debugging strategies (so that users can quickly
understand the application issues before giving up). We suggest a need for streamlining
explanations while maintaining access to the rich explanation capabilities, and for integrating
domain knowledge in explanations. With a better understanding of how users use the question type
explanations, we can better design explanations to help understand sophisticated context-aware

applications.
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8 EVALUATING INTELLIGIBILITY
UNDER UNCERTAINTY

This chapter is an extension of the work presented in:

Lim, B. Y. and Dey, A. K. (2011). Investigating Intelligibility for Uncertain Context-Aware
Applications. In Proceedings of the 13th international conference on Ubiquitous computing

(UbiComp '11). ACM, New York, NY, USA, 415-424.

ABSTRACT. Context-aware applications use sensing and inference to attempt to determine users'
contexts, and take appropriate action. However, they are prone to uncertainty, and this may
compromise the trust users have in them. Providing intelligibility has been proposed to help
explain to users how context-aware applications work in order to improve user impressions of
them. However, we hypothesize that intelligibility may actually be harmful for applications that are
very uncertain of their actions. We conducted a large controlled study of a location-aware and a
sound-aware application, investigating the impact of intelligibility on understanding, and user
impression of applications with varying certainty. We found that intelligibility impacts user
impressions, depending on the application's certainty and behavior appropriateness. Intelligibility
is helpful for applications with high certainty, but it is harmful if applications behave appropriately,

yet display low certainty.

8.1 INTRODUCTION

In previous chapters, we have found that some explanation types were more effective than others in
improving understanding and trust (Chapter 4), and later investigated more explanation types that
end-users of context-aware applications are interested in (Chapter 5). However, even though these

studies show great promise for the efficacy of intelligibility in context-aware applications, they have
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assumed the use of systems that have reasonably high certainty in their actions, and that, while
fallible, generally take appropriate actions. Intelligibility would enhance the positive impression a
user may have of an application, and reveal how it intelligently tries to figure out what is happening
even for difficult sensing and inference situations. Unfortunately, because of these difficulties in
sensing and inference, applications can be uncertain of their actions, often resulting in users having
a negative impression of these applications. It is hoped that intelligibility would help bring up this
shortfall, and raise a user's impression of a context-aware application. However, is there a certainty
below which intelligibility would not help, but may actually harm a user's impression of the
application? If this were the case, the user could lose even more trust in the application's capability
and precision. So an application with sufficiently low certainty would not benefit from adding

intelligibility, and instead, the developer should focus on improving its certainty instead.

In this chapter, we present two scenario-driven lab studies where we investigate the interaction
between intelligibility and application uncertainty. For the first study, we manipulated the
provision of Intelligibility in three levels (None, Certainty-only, Full), and Certainty in six levels (50,
60, 70, 80, 90, 100%), in a between-subject design for an online survey. We designed two context-
aware applications (location-aware, and sound-aware) to explore the impact of certainty on
intelligibility for applications with differing complexity. In a follow-up study, we ran a think-aloud
study using a reduced form of the online survey, seeking to add greater context to our quantitative

findings. Our contributions are:

1. Understanding how users respond to intelligibility in context-aware applications under
different levels of certainty; and
2. Identifying when, how, and why intelligibility is helpful or harmful as a result of application

certainty.

8.2 INTELLIGIBILITY AND UNCERTAINTY

In this section, we provide background and related work on intelligibility, uncertainty in context-

aware applications, and the impact of showing uncertainty to end-users.

8.2.1 DISPLAYING UNCERTAINTY IN CONTEXT-AWARE APPLICATIONS

Context-aware applications are prone to uncertainty, and one common strategy for dealing with

this involves user mediation where the user resolves uncertainty [Dey et al., 2002]. Furthermore,
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these applications should represent to their users what they know [Bellotti and Edwards, 2001],
not hide this ambiguity or uncertainty [Greenberg, 2001], and reveal the "seams" of their
underlying systems [Chalmers and MacColl, 2003]. Currently, some context-aware applications are
able to model uncertainty due to their underlying probabilistic models (e.g., [Kulesza et al., 2009;

Tullio et al., 2007]), but few display the system certainty (e.g., [Cheverst et al., 2005]).

Conversely, many studies have also explored various ways to display uncertainty, and the benefits
of doing so. Antifakos and colleagues showed that uncertainty improved task performance speed of
participants when certainty is high [2004], and that participants verified automatic settings made
by a context-aware system less often when its certainty was high or medium [2005]. Similarly,
Rukzio et al. [2006] found that displaying uncertainty slowed down user performance, because
users would double-check fields with lower certainty. In studies of presenting location information,
visualizations of location certainty were found to improve user performance with location-based
services [Dearman et al., 2007; Lemelson et al., 2008]. Though not explicitly investigating about
uncertainty, Yan et al. [2010] found that displaying higher trust and reputation values of mobile

applications increased users' willingness to continue using them.

Our work adds to the research on displaying uncertainty by carefully varying uncertainty to identify
a certainty threshold below which displaying uncertainty becomes harmful instead of helpful, in
two different contexts — location and sound. Furthermore, we extend the displaying of uncertainty

to include other explanations that provide users with a fuller form of intelligibility.

8.2.2 INTELLIGIBILITY IN CONTEXT-AWARE APPLICATIONS

For this work, we use the definition of intelligibility defined Chapter 5, which classifies explanations
in terms of questions that users may ask of context-aware applications. Specifically, we developed

interfaces for explanations of the following questions:

What is the current value of the context?
Certainty: how certain is the application of this value?
Why is this context the current value?

Why Not: why isn’t this context value Y, instead?

AR S

Inputs: what factors affect this context?

We describe how to provide explanations for these questions later in Section 8.5 (Application

Platforms).
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8.3 HYPOTHESES

While we do not assert it here, we believe the user's impression of an application impacts her trust
of it. We define that a user has a good impression of a context-aware application when she perceives
it to be highly certain of its inference, feels that it generally behaves appropriately, and she

agrees with what it is doing. As illustrated in Figure 8.1, we hypothesize that:

H1a: Above a certainty threshold, intelligibility improves a user's impression of a context-aware

application.

H1b: Below the threshold, intelligibility harms the user's impression of the application. This could

be due to the user realizing how poorly the application is performing.

Non-Intelligible

- |ntelligible

Impression

Low High

Certainty
Figure 8.1. Hypothesis 1: Intelligibility will improve user impressions when an application is
certain of its actions, but it will harm impressions when it is uncertain. Only interaction

effect suggested, not linearity of trends.

We hypothesize that this effect on impression is due to the increased understanding provided by
intelligibility:

H2: Providing intelligibility helps increase a user's understanding of the application.

While H2 has been shown to be true in Chapter 4 [Lim and Dey 2009], we seek to verify those
results, as H1 depends on this. Thus, H2 in combination with H1b hypothesizes that a gain of
understanding about a low certainty application leads to a loss in impression. Next, we describe a

large-scale, between-subjects lab study to test these hypotheses.
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8.4 METHOD

We are primarily interested in the interaction between the provision of intelligibility, the certainty
of the application, and the impact on understanding and impression. We chose to investigate this
effect using a large-scale, controlled lab study. The study was deployed online through Amazon
Mechanical Turk (MTurk) to allow us to collect input from a large number of participants and span
many levels of certainty and intelligibility. For generality, we designed two context-aware
applications and varied their certainty, and intelligibility levels. We exposed participants to several

canonical situations of these applications through 10 different scenarios.

8.4.1 EXPERIMENTAL CONDITIONS

We varied Intelligibility and application Certainty as independent variables in a between-subject

experiment, across two applications, for a total of 3x6x2=36 conditions.

8.4.1.1 INTELLIGIBILITY (3 cONDITIONS: NONE, CERTAINTY-ONLY, FULL)

We varied whether participants were provided with explanations where they only saw the
application inference (None), or additionally saw a rich explanation visualization (Full). We
included an intermediate intelligibility level, where we provided just Certainty percentage only, to

investigate how much value the explanation visualizations add over just showing certainty.

8.4.1.2 CERTAINTY (6 CONDITIONS: 50%, 60%, 70%, 80%, 90%, 100%)

We varied certainty as six intervals (rather than a dichotomy) to be able to observe any trends that

may arise.

8.4.2 MEASURES

We are interested in measuring how much participants understand the application for each
intelligibility condition, and whether this affects their perception of certainty, feeling of whether the

application behaved appropriately, and how much they agree with the application's inference.

Understanding. For each scenario, we asked participants why the application inferred what it did,
and why not something else (free-text). We asked these questions for all scenarios to prime
participants to think about the underlying inference of the application. We analyzed the responses

from the sixth of 10 scenarios presented, as we expected participants to be sufficiently familiarized
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with the application through previous scenarios, but not overly tired of providing feedback. We

validated that this was true through a sampling of the responses.

Perceived Certainty. For each scenario, we asked participants how certain they believed the
application was in its inference (as numerical input 0 to 100%). After the scenarios, we asked for

their overall sense of the certainty.

Perceived Appropriateness. For each scenario, we measured what the participant felt about the
appropriateness of the application behavior, on a 7-point Likert scale from Very Inappropriate to

Very Appropriate.

Agreement. For each scenario, we measured how much the participant agreed with the
application’s inference, given the ease or difficulty of making the inference; on a 7-point Likert scale

from Strongly Disagree to Strongly Agree.

8.5 APPLICATION PLATFORMS

To investigate the interaction between intelligibility and uncertainty, we designed two applications
— LocateMe and HearMe — and varied their certainty and intelligibility levels. Derived from design
explorations of intelligibility in Chapter 7 [Lim and Dey, 2011a], both applications are mobile phone
applications, but deal with different contexts (location, and sound activity, respectively), different
inference mechanisms, and different explanation interfaces. While real, physical prototypes were
not used in this study, these applications have been prototyped, and their described functionality
are feasible and indicative of real applications and their associated uncertainty. We describe these
applications, how they sense and make inferences, their basis for uncertainty, and how they

visualize their inferences.

Each application has three different levels of intelligibility. The None version would just show the

output of the application (e.g., "You are at the Washroom", "You were in a Conversation"). The
Certainty version adds a certainty percentage (e.g., 89%, 62%). The Full version adds an

explanation visualization (see Table 8.1 and Figure 8.4).

8.5.1 LOCATEME

LocateMe is a location-aware mobile phone application that uses GPS, Wi-Fi and cellular networks

to triangulate where the user is, and match that to a predetermined set of locations to infer which
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place the user is at. It then uses this inference to take actions such as sending a reminder, or

identifying the nearest printer. In the scenarios, LocateMe is used for indoor and outdoor situations.

Basis for uncertainty. Due to the probabilistic model of the user's location (as a Gaussian area),
LocateMe infers the user being at places with varying levels of certainty. Its certainty depends on
how much the user's estimated area "overlaps" with the area of the named place, and is computed
into a probability. The larger the area of the named place, and/or the closer the user's area is to that
place, the higher the certainty. Uncertainty is also affected by sensing errors due to GPS signal

occlusion (e.g., being indoors), Wi-Fi or Cell network signal strength, etc.

8.5.2 HEARME

HearMe is a sound-aware mobile phone application that uses the phone's microphone to sense and
infer one of three activities: whether the user is (i) in a conversation, (ii) listening to music, or there
is mostly (iii) ambient noise. It uses several features extracted from processing the microphone
signal, such as: frequency bandwidth, spectral entropy, low-energy frame rate, Mel-Frequency
Ceptral Coefficients (see Section 7.2 for more details about features used). HearMe uses a trained

naive Bayes model to infer whether the sound heard was one of the three activities.

Basis for uncertainty. HearMe models uncertainty of its inference from the probabilistic
uncertainty of the naive Bayes model. This depends on the sound samples used to train the original

model. HearMe does not model the error due to the microphone signal for uncertainty.

Due to the ubiquity of GPS devices and location sensing in smart phones, LocateMe is likely more
familiar to users than HearMe which uses machine learning inferences that are less common-place

in devices available to consumers.

8.6 SCENARIOS

Similar to [Antifakos et al., 2004; Lim and Dey, 2009], we use scenarios to let participants learn
about and experience our applications. However, rather than present 5-second video clips to help
participants experience a scenario, we provided users with a precise representation to understand
the ground truth of each scenario. For LocateMe, we showed a map or floorplan indicating where
the participant would actually be in the scenario. For HearMe, we played an audio clip of what the

participant and her phone would supposedly have heard.
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LocateMe HearMe
Situation (a) You are in the washroom taking care of (d) At the coffee shop, you find Michelle, a
description some business, just before your meeting coworker, there, and have a chat with her.
and with your neighboring coworker, Damien.
Ground '/H P? = T ’ i Participant listens to an auto-started audio
truth - J[ N o f % clip of ambient noise in a coffee shop, with a
J L # ' J female voice occasionally talking.
- H6-groundtruth.mp3
Star denotes where you actually are at;
purple triangle denotes Damien'’s office >
(RM102).
Application | (b) You receive a text message from Damien, (e) You are not interrupted for 12 min, and
behavior who tells you he is waiting for you at his when the conversation ends, you receive a
Certainty office. You check LocateMe: notification message from HearMe:
90% Youare at the Youwere In a Conversation Youwere In a Conversation
Washroom Cameron tried to call you 7 min ago Cameron tried to call you 7 min ago
Certainty Certainty Certainty
89% 89% 89%
Evidence for
why Talking Sensed Factors
_ _ @ Periods ofSlIence @ Periods of Silence @
-‘ » i 11%
I J 'V* Pitch Range J#" Pitch Range @
= ! ) 1240H;
= q{ Pitch FIu:tuatlon 'lfu Pitch Fluctuation @
1.4W/Hz
¥ piteh Purlty ¥ Pitch Purity @
=ﬁ = .53bits
Other Factors
e
You see that Cameron had tried to call you,
but HearMe suppressed his call since it
interpreted you as uninterruptible.
Certainty (c) Damien calls to ask where you are since (f) You are not interrupted for 12 min, and
60% LocateMe said you are in his office, which is when the conversation ends, you receive a
Wrong obviously false. You check LocateMe: notification message from HearMe:
inference’ in You are at Damien’s
RS AT Office (RM102)

Certainty

Hearing Ambient Noise Hearing Ambient Noise
Allowing call from Cameron Allowing call from Cameron
Certainty Certainty
62% 62%

Evidence for
Talking vs. Ambience Sensed Factors
@ Periods of Silence @ Periods of Silence @
-3 I 2%
*9‘ Pitch Range J}~ Pitch Range @
- 6 1230Hz
'y Pitch Fluctuation ‘lfu Pitch Fluctuation @
=7/ - 1.1W/Hz
% Pitch Purity ¥ Pitch Purity '\i iw
- 17 A2bits
Other Factors
ey |




8.6 SCENARIOS 187

LocateMe

HearMe

Explanation
Ul
Description

LocateMe uses "bubbles"”, to determine and
show where the user is, rather than showing
pin-point positions. The user's sensed
location is represented by two blue
concentric circles, and a Gaussian blue area.
He is most likely to be in the center of the
area, but less likely the further away from it.
The bounds indicate thresholds of certainty
(50, 90%) that the user is within the bounds.
Places are represented with uniform
circular areas of varying size. Eg.,
Washroom is defined with a circle, with the
center where the room is, and the size is
how large the room is.

The user is inferred to be at a place if his
blue bubble "overlaps" with the place's
bubble. A green bubble indicates the place
where the user is inferred to be; a red
bubble indicates where he is not inferred to
be. (b) shows a green bubble over the
washroom overlapping with the user's blue
bubble to explain why he is inferred to be
there. The large overlap suggests a high
certainty (in this case, 89%). (c) explains
why the user is not inferred to be at the
washroom but at Damien's office instead, by
showing: a red bubble for the washroom, a
green bubble for Damien's Office. The blue
bubble overlaps with the green bubble more
than with the red bubble, indicating 62%
certainty.

HearMe uses two types of visualizations to
explain what it senses, and how it infers an
activity, with a Sensed State and Evidence
visualization, respectively. We substitute the
technical names of the input factors with
metaphorical terms (e.g., Periods of Silence
for low-energy frame rate, Pitch Purity for
spectral entropy), and aggregate the
remaining factors as Other Factors. We
explain the meanings of each factor and
implications of their values, e.g.: Periods of
Silence indicates what percentage of the
sound sample was relatively silent compared
to the rest of it; talking would have higher
percentage. The Sensed Factors viz (right
diagram) shows the values of the factors, and
a gauge icon indicating whether each value is
at, below, or above the average values for that
factor.

The Evidence visualization (left diagram)
shows a bar chart indicating if each factor
votes for (blue towards right) or against (red
towards left) the inference, and by how much.
This viz can be used to compare one output
against all others (e), or specifically contrast
between two outcomes (f). The balance of the
bars indicate how certain the application is
about its inference. If it is more certain, the
bars are weighted more towards the right,
and if less certain, the bars are equally
weighted to the right and left.

Table 8.1.

Scenario scripts, application interfaces showing Full intelligibility, and their

interpretation of Scenario 6.

We presented 10 scenarios as a chronological sequence of events happening through a single day.

As in Section 7.6.2 [Lim and Dey, 2011a], the scenarios were written to span five themes typical of

what context-aware applications are used for: interruption management, social awareness,

reminders, recommender, exploration / learning. Each theme is repeated twice (not consecutively)

to provide repeated exposure. Collectively, the scenarios are representative of the application

certainty (e.g., for 60%, the application behaved appropriately for 6 out of 10 scenarios). Hence,

participants in the None intelligibility condition could perceive the certainty of the application. The

certainties presented (for Certainty and Full intelligibility) also reflected the certainty condition,
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but with small randomized differences (e.g., 60, 63, 59, 60, 58, 62, 61, 57, 60, 60%), to prevent

participants from ignoring the values had they been constantly shown 60% repeatedly.

Table 8.1 shows the scripts and diagrams shown to participants in the LocateMe (left), and HearMe
(right) surveys for a scenario, Table 8.2 describes how different explanation types are provided in

both applications. S6. Next, we describe what participants were asked to do for each application

survey.

Description / Function LocateMe HearMe
What | Show the current inference of | Reports inferred place, and Reports inferred sound

the context and consequent shows blue bubble of the user | activity.

action. in map visualization.

Certainty | Show the certainty of the Shows a certainty percentage, | Shows a certainty percentage,
application's inference of the and and sense of balance of bars
current context value. size of bubbles in map in evidence visualization.

visualization (larger sizes (more balance show lower
show lower certainty). certainty).

Why | Show a model-based Shows the overlap between Shows weights of evidence for
explanation of how the the inferred place (as a green | the inference due to each
application inferred the bubble) and the user's blue input factor in a bar chart
current context value. bubble. visualization.

Why Not | Show a model-based In addition to the Why Shows the evidence
explanation distinguishing visualization, shows the lack visualization, contrasting the
how the application did not of overlap between the place current inference against the
infer the alternative inference. | (as ared bubble) and blue alternative inference.

bubble.
Inputs | Show the current values of Visually shows the user's Lists current input factor
input context / features. position by positioning the values, and provides a gauge
blue bubble in a map. of its relative value.

Table 8.2. Explanation types. LocateMe uses a map and bubbles visualization for its

explanations about its location inference. HearMe uses lists the current values of its sensed

factors, and their corresponding evidence to explain its sound activity inference.

8.7 PROCEDURE

After consenting to participate in the survey (either LocateMe or HearMe), the participant was
randomly assigned to a Certainty condition and an Intelligibility condition. He read instructions on
how the application works, and how to interpret its display. As recommended by [Kittur et al.,
2008], we then asked two verification questions (multiple-choice) to ensure comprehension. The

participant next went through 10 scenarios to experience the application under various situations.
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For each scenario, he read (i) a scenario description, and (ii) the subsequent response of the
application which may or may not be appropriate for the situation. He was then (iii) asked
verification questions to ensure he had carefully read and understood the scenario. Next we asked
questions for our measures of (iv) perception of certainty, (v) application behavior
appropriateness, and (vi) agreement. Finally, he was asked about his (vii) understanding of the
application inference. After the scenarios, the user was tested on his (viii) overall understanding of
the application and (ix) overall perceived certainty. Finally, he was asked about his background

with using smart phones, and for demographic information.

8.8 PARTICIPANTS AND DATA CLEANSING

We recruited participants from Amazon Mechanical Turk. There were 584 completed HITs (human
intelligence tasks), and 397 incomplete HITs. We rejected 76 HITs because each participant had low
verification score, rushed through the survey too quickly, and/or was unconscientious (gave
reasons that were gibberish, repetitive, or irrelevant). Of the remaining 508 participants, their
survey completion time was Median=33 minutes (8.9 to 109), and their verification score was
Median=20 (7 to 22) out of 22. Some participants had low verification scores, which indicates poor
understanding of the scenarios and application, but their free-text reasons indicated conscientious
effort in the survey. So they were included in our population sample to represent users who have
greater comprehension difficulty. We had participants across 36 conditions (3 Intelligibility x 6
Certainty x 2 Application) in our experiment (M=14.1, 11 to 17 in each condition). We paid each
participant $2.

8.9 DATA ANALYSIS AND RESULTS

In this section, we present the analysis we performed on the survey results, related to our
hypotheses. Before we investigate whether intelligibility influences users' impressions of a context-
aware application, first we analyze whether intelligibility improves understanding of how the
application works (H2). We assume that understanding is not influenced by the certainty of the

application.
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8.9.1 UNDERSTANDING OF APPLICATION INFERENCE
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Figure 8.2. Mean of number of correct and wrong reasons counted from participant free-text
responses of how the application made its inference in S6. Participants with Full
intelligibility gave more correct reasons when explaining about HearMe than those with
None (p<.01); this was only marginal for participants explaining LocateMe (p=.08).
Furthermore, participants explaining LocateMe offered more wrong reasons than those

explaining HearMe (p<.01), particularly when provided with some form of intelligibility

(p<.01).
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Figure 8.3. Mean number of correct Input factors in the top three choices of the Inputs
ranking task (Left), and number of fallacious factors given in all 10 choices (Right).
Participants with Full intelligibility chose more correct factors of HearMe as top three than
those with None (p=.014); this was not noticeable for LocateMe (p=n.s.). Moreover,
participants explaining HearMe chose fewer fallacious factors than those explaining

LocateMe, particularly when provided with Full intelligibility (p<.01).

As a measure of understanding, we coded the free-text responses about how they thought the

application made its inferences for S6. We counted how many of the reasons about the application
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that they provided were correct. A reason is considered correct if it relates to an actual factor that
the application uses (e.g., GPS, latitude, distance threshold, bubbles; Periods of Silence, Pitch Purity,
noisiness). We eliminated repeated and redundant reasons (i.e.,, paraphrasing of the same idea),

and accepted language that demonstrated an approximate idea of valid concepts.

We fit a mixed model with: correct reason count as the dependent variable, intelligibility and
application as independent variables, interaction x application as an interaction effect, certainty as
a control variable, and participant as a random variable (nested in intelligibility, application, and
certainty). We found that participants with Full intelligibility gave more correct reasons than those

with None, especially regarding HearMe (see Figure 8.2 and Figure 8.3).

Next, we analyze whether and how this increase in understanding influences how participants
perceived the certainty of the application. We annotate some figures to indicate notable findings in

our results (e.g., Ci, C-q1, Ad).

8.9.2 PERCEIVED OVERALL CERTAINTY

We asked each participant about their perception of the overall (average) certainty of the
application, after completing all 10 scenarios. To examine differences in this perception for each
application separately, we fit a mixed model with: perceived overall certainty as dependent
variable, intelligibility and certainty as independent variables, intelligibility x certainty as an
interaction effect, and participant as a random variable (nested in intelligibility and certainty). We
also combined data from both applications, and fit a similar mixed model but also with application

as a control variable. These results are presented in Figure 8.4 and Table 8.3.

Our results show that, for high actual certainty, participants with intelligibility perceived a higher
certainty than those without (Cy); for low actual certainty, participants with intelligibility perceived
a lower certainty than those without ((j). Alternatively, an interpretation may be participants with
intelligibility just copied the certainty displayed. Means testing suggests that this could be so (see

Table 8.4), but we further investigate this in a follow-up study (see later).
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Both Applications (Combined)

LocateMe

HearMe
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None
—a— Certainty

Perceived Certainty (%)

—e—Full

100 50 100 50
Actual Certainty (%)
F(10,489)=4.02, p<.001 F(10,489)=3.77, p<.001 F(10,489)=1.97, p<.05
Figure 8.4. Perception of Overall Certainty: combined analysis (Left), and for individual
applications (Middle and Right). Participants with Full intelligibility perceived a higher
certainty when the application had high actual certainty, but perceived a lower certainty

when it had low actual certainty.

Application Combined LocateMe HearMe
. Low High Low High Low High
Actual Certainty
50-70% | 90-100% | 50-60% 100% 50-70% | 80-100%
None vs. Full | p<.001 p<.05 p<.001 p<.05 p<.01 p=n.s.
None vs. Certainty | p<.001 p=n.s. p<.001 p<.05 p<.01 p=n.s.

Table 8.3. Pre-hoc contrast between Intelligibility types for low and high actual certainty.

These groups were chosen after visually inspecting the interaction graphs.

Certainty (%) 50 60 70 80 90 100
Certainty | <.01 n.s. n.s. n.s. .05 .01
Full .02 n.s. <.01 n.s. n.s. <.01

Table 8.4. Means testing of whether perceptions of overall certainty are different from actual

certainties. t-test p-values suggest copying if p=n.s.
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While our results show that participants' perceived overall certainty across different certainty
levels is influenced by intelligibility, we next show that their perception also varies based on how

the application behaved per scenario.

8.9.3 PERCEIVED CERTAINTY BY APPLICATION APPROPRIATENESS

To investigate perception of certainty across scenarios, we analyzed the repeated measure of how
certain participants felt the application was for each scenario. Figure 8.5 (Right) shows the
fluctuation of perceived certainty as participants with no intelligibility (None) go through the
scenarios, depending on whether the application behaved appropriately in the scenario. When
participants received Full intelligibility (Figure 8.5, Left), their perceived certainty was more

stratified, and less fluctuating.

We group our results by application appropriateness, and fit two mixed models with: perceived
certainty as dependent variable, intelligibility and certainty as independent variables, intelligibility
x certainty as an interaction effect, and participant as a random variable (nested in intelligibility
and certainty). Our results (see Figure 8.6 and Figure 8.7) show that, for appropriate application
behaviors, participants with intelligibility perceived lower certainty than those with None when
encountering actual low certainty (Cs;), and conversely perceived higher certainty when
encountering actual high certainty (C,). For inappropriate application behaviors, there was no
difference in perception for actual low certainty (C-41), but participants with intelligibility perceived

higher certainty for actual high certainty, than participants without (C-q4).
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Figure 8.5. Perceived certainty influenced by application appropriateness across scenarios.

The application behaved appropriately for at least one Certainty condition in S1, S4, S6, S8,

and S10, more so for lower certainty conditions.
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Figure 8.6. Perceived certainty across actual certainty by application appropriateness. Note:

no inappropriate scenarios for 100% certainty condition.
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App Behavior Appropriate Inappropriate
Actual Certainty| 50-70% | 80-90% | 50-70% | 80-90%

None vs. Full| p<.001 p<.05 p=n.s. p<.001

None vs. Certainty| p<.001 p=n.s. p=n.s. p<.001

Table 8.5. Contrast between Intelligibility types for low and high actual certainty grouped by

application behavior.

8.9.4 AGREEMENT BY PERCEIVED APPROPRIATENESS

Given the difference in perception due to application appropriateness, we are interested to see if
participants’ opinion of how appropriately the application behaved, and how much they agree with
its inference were affected by intelligibility. These self-reported, repeated measures for every

scenario were obtained with the following questions:

Perceived Appropriateness with "How appropriately or inappropriately did the application
behave in this situation?" (7-point Likert scale)
Agreement with "How much do you agree or disagree with the application's inference, given how

easy or difficult it is to infer this?" (7-point Likert scale)

We did not compare perceived certainty, because, as expected, it varied independently of

appropriateness.

We fit a mixed model with: agreement as dependent variable, appropriateness and agreement as
independent variables, appropriateness x agreement as an interaction effect, and participant as a
random variable (nested in appropriateness and agreement). Our results (see Figure 8.7 and Table
8.6) show that participants tended to agree with the application when they perceived it behaved
appropriately, and vice versa. When participants felt the application behaved inappropriately (<0),
those with intelligibility agreed with the application more than those with None (4-.). However,
when participants perceived the application behaved very appropriately (2-3), participants using
an application with low certainty and intelligibility agreed less with it than those with None (Figure

8.7, Right; Aq).
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Figure 8.7. Agreement across Perceived Appropriateness, grouped by actual certainty. The

effect of finding 4h is only significant for low actual certainty.

Actual Certainty All (50-100%) Low (50-70%)
Appropriateness| Not (<0) High (2-3) Not (<0) High (2-3)
None vs. Full p<.01 p<.05 p<.01 p<.01
None vs. Certainty p=.052 p=n.s. p=n.s. p<.05

Table 8.6. Contrast between Intelligibility types for low and high appropriateness grouped

by actual certainty.

8.9.5 SUMMARY OF FINDINGS

We summarize our findings in terms of our hypotheses. Participants with Full intelligibility gave
more correct reasons of how the application works, than those without (satisfies H2). Finding Cx
satisfies Hla that intelligibility improves user impression of a context-aware application if its
certainty is high. This is more pronounced when the application behaved inappropriately (C-4n)
than appropriately (C,n). Conversely, finding C; satisfies H1b that intelligibility harms user
impression if its certainty is low; particularly, when the application behaved appropriately (Cq, Aq)-

However, participants with intelligibility disagreed less with the application inference when they
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felt that it behaved inappropriately (A-q). To gain better insights into our results, we ran a follow-up

study where we engaged participants face-to-face.

8.10 FoLLow-UP: THINK-ALOUD STUDY

At this point, our results positively support our hypotheses that intelligibility exaggerates the
perception of certainty compared to not receiving any explanation. However, this could be because
our participants with intelligibility could just be copying the certainty value they were shown (see
Table 8.4). Do participants mindlessly copy these values, or do they weigh their opinion with
previous experiences with the application (from previous scenarios)? Furthermore, finding A
suggests that Full intelligibility provides some additional benefit of improving the perception of
certainty than showing Certainty-only. How does Full intelligibility help to reinforce the Certainty

information provided?

8.10.1 METHOD AND PROCEDURE

Answering these questions will help us examine the link between the information provided through
Certainty-only and Full intelligibility, the user's understanding, and their subsequent impression of
the application. It will also help us explore whether and how Full intelligibility influences the user
compared to Certainty-only. To explore this, we ran a follow-up think-aloud study where we
presented all three intelligibility conditions within-subject, focusing on a subset of Certainty
conditions (low: 50%; high 90%). We continued to use both applications (between-subject) due to
their differences in complexity, and participant reliance on their explanations. Hence, we have four
conditions. Due to the time-consuming nature of the think-aloud study (one-hour long), we
presented only two scenarios (S6, S9) to our participants, counter-balanced for application
correctness. S6 has been described in Table 8.1. For S9, LocateMe correctly infers the user in
Meeting Room B and automatically loads the meeting agenda; HearMe correctly infers conversation
during a group meeting, and allows the user to retrieve the audio and save it. In the follow-up study,

the application always behaves incorrectly for S6, but correctly for S9, regardless of certainty.

We recruited two participants per condition (total 8), 4 females, mean age 28.1 years old (21 to 58).
We presented three iterations of the survey starting with None, Certainty, then Full, so as to avoid a
training effect. Each scenario has the same format and questions as the original survey.

Additionally, we asked them to think-aloud and provide reasons for their answers. This way, we
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learned about how they thought the application made its inferences, and how they constructed
opinions of the application's behavior. We used paper surveys, so participants could refer to
previous surveys, compare previous phone displays, their previous answers, and discuss why they
changed or did not change their opinions. Table 8.7 shows which conditions participants P1 to P8

were in. We discuss our findings in the next section in the context of our original quantitative

results.
Low High
Certainty (S6:52%, S9:49%) (S6:89%, S9:92%)
Application LocateMe HearMe LocateMe HearMe
Participant 1 5 2 8 3 5 4 7

Table 8.7. Distribution of participants in think-aloud study. Each participant saw S6
(appropriate behavior) and S9 (inappropriate), iterated within-subjects with intelligibility
types in the order: None, Certainty, Full.

8.11 DISCUSSION

We discuss the results from both experiments in terms of how intelligibility affects understanding

(H2), and how it affects users' impression of context-aware applications (H1).

8.11.1 H2: INTELLIGIBILITY INCREASES UNDERSTANDING OF CONTEXT-AWARE

APPLICATIONS

As expected, Full intelligibility allowed participants to better express an understanding of the
applications. This was particularly significant for HearMe, because the explanations listed relevant
factors, increasing the participants’ vocabulary to describe how the application works. In the think-
aloud study, participants could analyze and interpret the values of HearMe's sensed factors, and
their corresponding weights of evidence, and LocateMe’s bubble visualization. However, because
the input factors were not explicitly stated in LocateMe as they were for HearMe, participants gave
reasons for how LocateMe works by describing names of technologies, e.g., GPS, “position-specific
sensing” (P3), a “grid in the building” (P6), or in terms of the situation, e.g., signal blocked by nearby
stairs (P5), or improved signal because of proximity to windows (P5). Full intelligibility only
marginally increased the correct ideas that participants had about how LocateMe works. For

HearMe, without Full intelligibility, participants considered the “noisiness” of the audio, along with
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speaker identification (especially that of the user) as the most important factors for inference, but
with Full intelligibility, they tended to discard their original understanding and described the
inference in terms of the factors shown. We can interpret the differences between the applications
as due to their complexity and the users’ familiarity with them. These findings reinforce those in
Section 4.7.1 [Lim, Dey, and Avrahami, 2009] that prior knowledge about an application domain (in

this case, LBS) reduces the impact of intelligibility on understanding.

By providing more information, intelligibility also helps provide participants with an increased
awareness of what the application was inferring, and what it understood. This consequently

impacted their impression of it.

8.11.2 H1:IMPACT OF INTELLIGIBILITY ON USER IMPRESSIONS

Without Intelligibility, MTurk participants are influenced by whether the application behaved
appropriately to perceive its certainty (see Figure 8.5, Right). They perceived a modestly high
certainty (~85%) when it is behaved appropriately, and how often it behaved appropriately (Figure
8.4), but perceived a low certainty otherwise (~60%). Their overall perceived certainty is also
impacted by the cumulative application behavior, gently increasing from ~70 to ~90% as actual
certainty increases from 50 to 100% (Figure 8.5). With intelligibility, participants' perceived

certainty aligned more closely with the actual certainty.

However, do participants just copy the application certainty (as suggested in Table 8.4)? In the
think-aloud study, though influenced by the displayed value, all participants did not outright adhere
to it. They continued to be influenced by their perception of how difficult it was to make the
inference, and whether the application behaved appropriately, but adjusted their certainty rating
depending on the presented value. Hence, if a low certainty was presented, participants lowered
their certainty estimate, and while if a high certainty was displayed, participants raised their
certainty estimate, but not all the way to the presented value for both cases. Furthermore,
participants reevaluated their certainty rating when given Full intelligibility. Next, we discuss and
interpret our results (shown in Figure 8.6 and Figure 8.7) in terms of hypotheses H1a and H1b. We
found a caveat to H1b which we denote as H1b'. Table 8.8 summarizes these positive and negative

impacts that intelligibility has on user impressions.
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Certainty
Low High
= Harmful (H1b) Helpful (H1a)
& . .
o Decreases perceived overall Increases perceived overall
o accuracy (finding C). accuracy (finding Cp).
i Harmful (H1b) Helpful (H1a)
@ 'E Decreases perceived accuracy Increases perceived accuracy
. s ? (finding Cq,), and (finding Cq,p).
-g % - Decreases agreement with
s g < inference (finding Aq).
=)
== [
= Helpful (H1b") Helpful (H1a)
<| B - -
= Increases agreement with Increases perceived accuracy
inference (finding A-q). (finding C-qn).

Table 8.8. Impact of Intelligibility on user impressions of a context-aware application

depends on application certainty and whether it behaved appropriately.

8.11.2.1 HI1A:INTELLIGIBILITY INCREASES USER IMPRESSIONS OF CONTEXT-AWARE

APPLICATIONS WITH HIGH CERTAINTY

For context-aware applications with high certainty, our results verify previous findings of
Chapters 4 [Lim, Dey, Avrahami, 2009] and 5 [Lim and Dey, 2009] that intelligibility improves
users' impression of the applications (finding Cy). With intelligibility, participants perceived a
higher certainty from the application, particularly when it behaved appropriately (finding Cq).
After seeing the Certainty-only intelligibility, P4 raised her original rating (85% with None) to "just
below" what was shown (92%), despite feeling that HearMe was “overconfident,” because of her
“overall understanding” of the conversation that she heard in the audio clip. With Full intelligibility,
participants felt the explanations “reinforced” the high certainty (P3), or even raised their certainty

of the application (P6).

Intelligibility had a more significant impact on perceived certainty if the application behaved
inappropriately, since MTurk participants had a lower baseline certainty rating (about 60%
instead of ~85%). Though not to as high a level for appropriate application behavior, intelligibility
raised their confidence rating by a larger margin (by 15% to ~75%; finding C-q5). With Certainty-
only intelligibility, P3 liked that LocateMe was "honest," and trusted it more. P4 felt that HearMe
"would know its own certainty better than [she] would" and raised her certainty to 75-85%, which

was between what she had imagined and what was presented. P6 insisted that LocateMe's certainty
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should not have been so high, but raised her rating by 5%. With Full intelligibility, participants
reevaluated their opinion. P4 and P7 were more accepting of HearMe’s certainty, and raised their

ratings.

8.11.2.2 H1B:INTELLIGIBILITY DECREASES IMPRESSIONS OF APPLICATIONS WITH Low

CERTAINTY WHEN THEY BEHAVE APPROPRIATELY

For context-aware applications with low certainty, intelligibility revealed how uncertain they
were, and compromised the impressions participants had of them (finding C)). This was particularly
notable when the application behaved appropriately (finding C,i). In the think-aloud study,
participants were surprised to discover the low certainty. For LocateMe, P5 thought that the
location in S9 was easier to infer than in S6, and felt that the certainty should have been higher
(60%) than the presented 49%. For HearMe, P2 felt that the conversation in S9 was “so clear” that
the certainty should be higher at 60-65%. Furthermore, the unexpectedly low presented certainty
caused participants to disagree more with the application inference (finding Ax). P1 and P5 lowered
their agreement rating from 7 (None) to 2 (Certainty), and P8 from 6 to 4. With Full intelligibility,
P8 became convinced by HearMe's displayed 50% certainty by examining the bar chart of weights

of evidence and noting they were very balanced; she consequently lowered her certainty rating.

8.11.2.3 H1s'": INTELLIGIBILITY INCREASES IMPRESSIONS OF APPLICATIONS WITH Low

CERTAINTY WHEN THEY BEHAVE INAPPROPRIATELY

Contrary to H1b, intelligibility was helpful for an application with low certainty when it behaved
inappropriately (finding A.), even though it did not influence perceived certainty (finding C-q1).
Participants appreciated the difficulty of inference, forgave the application, and disagreed less with
it (A1). P5 conceded that it was “very difficult” for LocateMe to estimate the certainty, and thought
“it got it almost right”; she agreed more with the application, changing her rating from 4 (None) to 5
(Certainty). With Full intelligibility, participants more clearly saw how uncertain the applications
were: large margins of error (LocateMe), or a high amount of ambiguity (HearMe). This allowed P8
to understand how HearMe "misjudged the environment," and "agree with its logic based on the

parameters."
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8.12 DESIGN RECOMMENDATIONS

Certainty
Low High

—_ None Intelligible

g Prioritize improving accuracy Provide Intelligibility.

5 instead of providing

intelligibility.

] )
§ _E Automatically Hide Automatically Show
% :g". User is unlikely to ask Provide intelligibility
= 5 questions if behavior is as automatically if certainty is
Q Q 1
S 2 expected. high.
g
f On Demand + On Demand
-§ ° User will likely ask questions Users may ask more
= z and receive helpful questions to receive more
2 explanations. helpful explanations.

Table 8.9. Summary design recommendations of when and how to provide intelligibility

given the uncertainty in a context-aware application.

There are two ways to apply our findings in terms of application certainty: regarding overall
certainty, or per situation certainty. Considering overall certainty, our findings recommend
providing intelligibility as long as the application usually has high certainty. However, our findings
caution that intelligibility is harmful if certainty is too low, so intelligibility should not be provided
for such applications; their certainty should be improved first. While the precise threshold for what
is a sufficiently high overall certainty depends on the application and domain, our results (see
Figure 8.4) suggest it falls within the range of about 80-90% for a non-critical, "everyday"

application. Table 8.9 summarizes our design recommendations from this study.

Considering certainty per situation, we note that an application that usually has high certainty may
still occasionally have situations with low certainty. Fortunately, in the majority of times with high
certainty, we still recommend providing intelligibility even if it is ultimately wrong and behaves
inappropriately. On the other hand, our recommendation is not immediately clear with low
certainty. The impact of intelligibility on impression also depends on whether the application

behaves appropriately.
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If the application behaves appropriately, showing intelligibility compromises the original good
impression the user may have had, causing her to lower her impression. If it behaves
inappropriately, intelligibility can help her realize how difficult the inference task is, and improve
her impression. Unfortunately, an application will not be able to know if it will act appropriately
beforehand. It will be safer to not show intelligibility before it acts, when certainty is low. After it
acts, if the user asks questions, especially if a why not question, it is likely the application behaved
inappropriately, where it is beneficial to show intelligibility. Therefore, just show intelligibility on
demand, when situation certainty is low. Our results (see Figure 8.6, Left) indicate that our
participants have a baseline belief that the application is about 80-85% certainty when it behaved
appropriately. This suggests that, for each situation, a context-aware application may safely provide
intelligibility automatically when it is at least 80% certain, but should provide intelligibility on

demand when it is less certain.

Carefully designing explanations can provide an alternative solution to deal with intelligibility as a
double-edged sword for low certainty. Intelligibility should focus on convincing the user how
difficult the inference task is, and how the application is intelligently tackling it, rather than
implying that the application is incompetent. This could mean not revealing the low certainty in
explanations. For example, HearMe's Sensed Factors visualization explains what input values it

knows, but does not betray HearMe's uncertainty.

8.13 CoNCLUSION AND FUTURE WORK

We have described a large controlled study investigating the impact of intelligibility on
understanding and user impressions of context-aware applications with varying certainty from low
to high. This was conducted using lab-based, scenario-driven surveys of two context-aware
applications (location-aware, and sound-aware). Our results show that intelligibility can positive or
negatively impact user impressions, depending on the application's certainty and behavior
appropriateness. Intelligibility is helpful for applications with high certainty, but it is harmful for
applications with low certainty, because the user loses even more trust in its capability. Stil],
intelligibility can help users appreciate and forgive applications if they behave inappropriately and
have low certainty. This work explicitly cautions the necessity for a context-aware application to be

sufficiently certain before it leverages intelligibility.
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In this study, we have focused on a passive display for intelligibility, and did not have users act on
the information; they could only use intelligibility to judge their impression of the application.
However, users could also interactively use intelligibility for debugging and finding out why the
application faltered (e.g. [Kulesza et al, 2009]). Perhaps, this could make intelligibility useful

instead of harmful to user impression.

This work provides a stepping stone to understanding how intelligibility affects a user's impression
of a context-aware application. For future work, we plan to gain more lucid and nuanced insights
into the use of intelligibility and how that affects users in real-world situations through deploying
an intelligible prototype in a longitudinal field trial. In preparation for a field deployment, we
evaluated a second version of Laksa, an intelligible context-aware mobile application, for its usage

and usefulness for improving user understanding. We describe this study in Chapter 9.
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9 EVALUATING THE USAGE AND
USEFULNESS OF INTELLIGIBILITY

ABSTRACT. Intelligibility has been proposed to help end-users understand context-aware
applications with their complex inference and implicit sensing. Usable explanations can be
generated and designed to improve user understanding. However, will users be willing to use these
intelligibility features? How much intelligibility will they use, and will this be sufficient to effectively
improve their understanding? We present a quasi-field experiment of how participants used the
intelligibility features of a fully-functional intelligible context-aware application. We investigated
how many explanations they willingly viewed, how that affected their understanding of the
application's behavior, and suggestions they had for improving its behavior. We discuss what
constitutes successful intelligibility usage, and provide recommendations for designing

intelligibility to promote its effective use.

9.1 INTRODUCTION

Much of our work on investigating the impact of intelligibility had focused on questionnaire studies
and ‘paper’ prototypes of realistic albeit fictitious context-aware applications (Chapters 4, 5, and 8).
With the Laksa prototype (Chapter 7), we sought to increase realism in investigating intelligibility
with an interactive prototype. While that work provides a crucial step for designing intelligibility to
be more usable and interpretable, it stopped short of evaluating the impact of intelligibility on
users. In Chapter 8 [Lim and Dey, 2011b], we investigated the impact of intelligibility on
understanding and impression, but this was studied with questionnaires and ‘paper’ prototypes
rather than an interactive prototype. Furthermore, intelligibility was shown “always on” to
participants, so they were biased to look at the explanations. This leaves open the research

questions: even if intelligibility can improve user understanding and trust, will users want to use it,
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and, if so, how much? Moreover, given how much they do use, how much will that improve their

understanding of context-aware applications?

Related work has explored the impact of explanations on end-users as they used context-aware
systems. Rukzio et al. [2006] evaluated a mobile phone automatic form filler in a lab study, and
found that “visualizing the uncertainty of the system was mostly not used nor was it helpful.” Tullio et
al. [2007] evaluated an intelligible interruption door display over six weeks, and found that users
were able to “attribute concepts of machine learning to their system,” but had difficulty remembering
relevant features. Cheverst et al. [2005] deployed the Intelligent Office System that provided
explanation visualizations of rules and confidence. However, regarding explanations, their
evaluation focused on eliciting user preference about visualization format, not on their impact.
Welbourne et al. [2010] investigated the use of Panoramic that is able to explain location with
timeline visualizations. However, their evaluation involved participants investigating realistic, but
fictitious, data. Vermeulen et al. [2010] conducted a pilot user study of PervasiveCrystal in a
simulated museum with five participants, who “were able to use the questions interface to find the
cause of events” of three tasks. Kulesza et al. [2009] evaluated the usage, debugging, and

understanding of the Why and Why Not explanations of email filtering application.

This chapter adds to this body of work evaluating intelligible context-aware systems by explicitly
measuring the usage of intelligibility in a high-fidelity prototype that provides over nine
explanation types (e.g., Certainty, Why, Why Not, What If) for three context types (Availability,
Place, Sound). We iterate on Laksa (see Section 7.2) to investigate usage under realistic situations
with real-time application behavior and automatically generated explanations. We also investigate
the impact of this usage on user understanding of the application’s inference. Our contributions

provide insight into the usefulness of intelligibility by investigating:

1. How much participants use intelligibility in a real context-aware application,
2. Their opinion of the usefulness of the explanations to understand application behavior and
situations, and

3. How useful their use of intelligibility is on understanding and handling of these situations.

The rest of the chapter is organized as follows: we articulate our objective to explore the usage of
intelligibility, and our hypothesis that increased intelligibility usage will improve user
understanding. We developed a functional intelligible context-aware prototype for this study,

which we describe next. Following that, we elaborate on the quasi-field experiment we conducted,
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where participants engaged in “everyday” scenarios in-situ using the prototype. We follow this with
the results showing how participants used intelligibility in our prototype and how that improved
their understanding of application inference for each scenario. Finally, we discuss design
implications due usage patterns and constraints, and how to encourage users to use more

intelligibility to further improve their understanding.

9.2 OBIJECTIVES AND APPROACH

We have two objectives for this study: one explorative and another hypothesis-driven.

1) Exploring the usage of Intelligibility. We aimed to investigate how users use intelligibility

when facing different scenarios, how much they use, and for how long.

2) Hypothesis: Increased usage of Intelligibility will improve user understanding. We
hypothesize that using intelligibility more will help users better understand application inferences

and the current situation.

To accomplish these objectives, we conducted a quasi-field study where participants used a fully
interactive, intelligible context-aware application under real-world, “everyday” situations (similar
to [Roto et al., 2004]). To improve ecological validity of our results, we minimized interference from
the experimenter by logging and analyzing Ul events [Hilbert and Redmiles, 2000] of intelligibility
usage (without thinking aloud), and post-incident interviews. This experimental set-up strikes a
balance between controlling for critical incidences, and allowing participants to use intelligibility
naturalistically. Note that in this work, we do not claim to cover a comprehensive set of situations
or motivations under which intelligibility may or may not be used significantly. However, we seek
to gain an initial insight into how intelligibility may be used in a context-aware application reacting

to a real physical environment.

We next describe the intelligible context-aware prototype we developed and employed to study

intelligibility usage.

9.3 LAKSA2 PROTOTYPE

Mobile phones allow people to keep in touch with others and be easily reachable. However, there

are times when receiving calls are inappropriate, as they are socially disruptive (e.g., in meetings
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and movie theatres), or they interrupt productive work. Users can manually silence their phones,
but they may forget to reset their phones to ring again afterwards [Milewski and Smith, 2000].
Hence, it will be useful if the phone can automatically set the ringer mode (e.g., [Kern and Schiele,
2006; Rosenthal, Dey, and Veloso, 2011]). Also targeting this compelling application problem
domain, we have developed Laksa2, a mobile application that senses various contexts (Place,
Sound, and Schedule) about the user to automatically infer her Availability, and set her phone’s
ringer mode. Our focus is the use of LaksaZ as a platform to explore the use of intelligibility in a

context-aware application. Next we describe Laksa2’s contexts.

Availability: Available, Semi-Available, Unavailable — is inferred from rules regarding the following

three factors.

Place: Office, Café, Library, etc. — represents the semantic location of the user. It is inferred by
sensing latitude and longitude from the Android Location API (uses GPS, Wi-Fi, and cell tower
positioning), and matching to pre-specified named places. The user’s sensed location is modeled as
a radial Gaussian, with decreasing likelihood further away from the latitude and longitude
coordinates (similar to LocateMe in Section 8.5.1). Laksa2 stores a list of named places with
coordinates and size (circle radius) to compare against to infer whether the user could be at each
place. Each Place is inferred with different certainty based on how much the user's estimated

location area "overlaps" with the area of the named place: more overlap leads to higher certainty.

Sound: Talking, Music, and Ambient Noise — represents the sound activity that Laksa2 recognizes
from what the phone's microphone hears. Inferences come from a naive Bayes classifier trained on
sound samples. Features extracted are similar to SoundSense [Lu et al, 2009]: e.g., mean of power,
low-energy frame rate, spectral flux, and bandwidth. These are renamed to lay terms that end-users

can understand.

Schedule: Personal, Work, Unscheduled or Other Event — represents the user’s Google Calendar,

and, in particular, which calendar the current event is in.

9.3.1 INTELLIGIBILITY FEATURES

Having defined the context types, we make LaksaZ intelligible so that users can understand what it
knows and how it makes inferences. Laksa2 provides explanations from the Intelligibility Toolkit

(Chapter 6) ported to Android:
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1. What is the inference for the context? With how much Certainty? When was this value
inferred?

2. History: what was the inference at time H?

3. Inputs: what details affect this context? (Factors, input features, related details, etc.)

4. OQOutputs: what values can this context be inferred as? With how much Certainties are these
values inferred?

5. Why was this value inferred?

6. Why Not (Why Alt): why wasn'’t this inferred primarily as Y, instead? (Note that alternative
values may have been inferred, but not necessarily as the first choice.)

7. What if the factors are different, what would this inference be? (Requires user manipulation)

8. Description: meaning of the context terms and values.

9. Situation of what was happening to affect the inference to provide a ground truth of what was

being inferred (e.g., playing an audio clip of what was heard).

Some explanation types have been aggregated to reduce the number of questions users need to ask
(e.g., What + Certainty + When, Outputs + Certainties). For simplicity, What If was only provided for
Availability. Also, Schedule does not have particularly expressive explanations, because it is easy to

understand calendars and events.

9.3.2 DESIGN ITERATIONS AND UPDATES

While this iteration bears many similarities to the original Laksa prototype (Section 7.2), its design
and functionality has been significantly refined and it uses streamlined questioning to be simpler
for users. Further feedback from colleagues, who are HCI researchers, helped make the user
interaction more consistent throughout the application, and reduced the application functionality
so that users can grasp its concepts within a two-hour study. Therefore, we removed the Motion
context of Laksa v1. Laksa2 also supports more explanation types that are relevant to realistic use,
such as History and Situation. Finally, LaksaZ is not a social-awareness application like its

predecessor, and it was fully deployed on a mobile phone instead of a Tablet PC.

For the rest of this chapter, we will refer to Laksa2 as Laxsa, unless otherwise stated.
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After getting an audible call in the Library, a participant may follow
these steps to troubleshoot why Laksa did not silence the phone.

0. After turning the screen on, she will see the current Availability
inference as a What explanation.

1. She can investigate about a specific past event with History.

2. After selecting the desired event, in this case, one at 5:50:36 PM,
shesees the What explanation of her Availability at that time.

3.She can see which rules were triggered and which were
unsatisfied via the Outputs explanation.
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9.3.3 IMPLEMENTATION AND USER INTERFACE

We developed Laksa2 for Android 2.2 Froyo (API level 8), and deployed it on the Motorola Droid for
the user study. Sensing for location, calendar events, and microphone audio were performed using
background services on the phone every 30 seconds. Higher-level inferences for Place, Schedule,
Sound, and Availability are computed in the background, in response to each sensed instance. To
recognize sounds, we used a port of Weka for Android3. We also partially ported the Intelligibility
Toolkit [Lim and Dey, 2010] to Android, to support the querying for various questions, generation
and reduction of explanations about the contexts, and presentation of the explanations in various
graphical and textual formats. Unlike Laksa v1 (see Section 7.4), the Laksa2 prototype is fully
implemented on the mobile phone for sensing, inferring, reacting, and displaying explanations.
Figure 9.1 shows several screenshots of the Laksa2 prototype with a walkthrough example of how
to use it. Appendix H shows more screenshots of the application and several explanation types.
Each explanation is viewed as a page view. Users can transition from one to another by clicking on
buttons, menu items (from the options menu), and flinging (swiping). Some explanations allow

scrolling to see more details.

9.4 SCENARIO-DRIVEN QUASI-FIELD STUDY

To explore the use of the intelligibility features in Laksa, we conducted a controlled scenario-driven
user study, where participants encountered situations that may arise with the use of Laksa. We
were interested in whether and how participants used the intelligibility features to understand the
application behavior. We conducted a quasi-field study rather than a field deployment to (i) present
participants with controlled critical incidences, and (ii) observe and measure their subsequent
behaviors due to these incidences. It otherwise would have been difficult to know when critical

incidences occurred in the field, or why.

9.4.1 PROCEDURE

An experimenter first briefed the participant about the study, and presented her with printed
instructions. These describe how to use the Android phone, Skype (for receiving or checking calls),

and Laksa’s functionality and interface. The experimenter gave a walkthrough of Laksa,

3 Weka for Android. https://github.com/rjmarsan/Weka-for-Android. Retrieved 26th August 2011.
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demonstrating its features and how to interpret them. We provided participants with availability
rules that Laksa was pre-programmed with: four rules setting availability to Unavailable and Semi,
and any other case as Available (e.g., if the user is in her office and Laxsa hears talking, her status is

set to Unavailable). Participants did not touch the phone until the first scenario (S1).

The participant was instructed that she works with equally ranked coworkers in several offices, and
that they work together on a team project. She was provided with the following motivation: she
needs to evaluate Laksa as a newly acquired application, which can improve her team’s productivity
by moderating interruptions. She is tasked with the overall goal of determining when Laxksa
behaved appropriately or not, and figuring out how to improve its future behavior by (i) editing
availability rules, (ii) changing lower-level settings (e.g., size of Place bubbles), or (iii) changing
behavior (e.g., lower the music volume). She would also be responsible for subsequently teaching
her coworkers how to best configure Laksa. After reading the instructions, the participant begins

the scenarios.

9.4.2 CONTROLLED IN-SITU SCENARIOS

The user study was scenario-driven to expose participants to situations they may encounter with
Laksa. To increase the visceral quality of the scenarios, each scenario is set up by bringing the
participant to the necessary places (Office, Library, or Café) and asking her to carry out an initial
task, e.g., looking for a library book (S3). The experimenter shadowed the participant for every
scenario. The participant engaged in the activity for a few minutes to become absorbed in the
situation. Critical incidences were triggered by the experimenter calling the participant’s phone (if
necessary), and presenting her with a printed flash card describing what was happening, and any
associated dialog with coworkers during the phone call. The participant was free to interact with
Laksa as much or as little as she wished, and prompted to not think aloud. For each scenario, after
she was done looking at Laksa, she turned off the screen, and the experimenter conducted a
structured interview with audio recording. She was asked about her opinion of the situation and
the application, her understanding of how Laksa was making inferences, and any suggestion she

may have for improving its behavior.

We employed four scenarios to span three situational dimensions: (i) Exploration / Verification
(S1) of Laksa’s functionality and explanations; (ii) Fault Finding (S2, S3), where Laksa behaved
inappropriately, and participants had to troubleshoot it; and (iii) Preemptive Exploration (54)

where participants investigated a potential future situation.
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$1: Talking in the office. Training session where the participant learned Laksa’s core features and
explanations. She could explore Laksa as much as possible to familiarize herself with the

application Ul and explanations.

$2: Missed call while reading news and listening to music. The

participant is asked to read any news articles they fancy from
www.cnn.com while they listen to a song* through the computer
speakers. Meanwhile, she received multiple calls from a coworker,
but she misses the first few calls. The experimenter actually called
the participant’s phone but it did not ring the first few tries since

Laksa automatically silenced its ringer. Near or at the end of the

song, the phone would ring again and the participant would notice

the call. Through a flash card, the participant learned that her coworker, Damien, was frustrated
from trying to call her repeatedly over the past three minutes; he would like her to check her email,
and fix her phone. The email pertained to finding a library book to review for their shared project.
Laksa had mis-inferred Sound as Talking instead of Music, and behaved inappropriately by

silencing the phone.

S$3: Phone interruption in the library. As a follow-up to
Damien’s email, the participant walked to a nearby library to
search for the book, and read it. Meanwhile, the experimenter
called her phone again, causing it to ring audibly in the quiet
library. This simulated a coworker calling. Laksa had mis-inferred
the participant’s Place as still in the Office instead of Library, and

behaved inappropriately by allowing the phone to ring.

* Sound of Silence by Simon and Garfunkel. http://youtu.be/eZGWQauQOAQ Retrieved 17 September 2011.
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S4: Preemptively checking
availability in café. The
participant received a flash card
describing that she frequents a
café (in a nearby building), and
should check whether she will be

able to receive calls there.

Participants could sit where they
were and check for explanations in such a hypothetical situation or visit the care, but they were not

prompted what to do to achieve this objective.

9.5 MEASURES AND DATA PREPARATION

We are interested in measuring how useful intelligibility was for the participants in terms of how
much they used, and how that impacted their understanding of Laksa, and their suggestions on how

to control it to resolve any issues.

9.5.1 SMARTPHONE OWNERSHIP

To control for technical experience among participants, we asked participants whether they owned
smart phones (Smartphone Ownership) and for how long. This measure may distinguish users
who are more technology savvy and more interested to explore new technologies, from those who

are not.

9.5.2 USAGE OF INTELLIGIBILITY

To measure intelligibility usage, we logged when participants viewed each explanation page in the
UL This allowed us to measure, for each scenario, which explanation types each participant viewed,
how many (# Explanation Types), when they were viewed, for how long (Duration), how often
(View Count), and their sequence order (Step number). We built a network graph for each
participant scenario to illustrate the sequence diagram of how he used intelligibility (e.g., Figure
9.1). With these we can observe general patterns of use, and identify errors in the logging. Since
participants may view certain pages only to get to another page (e.g., transitioning through
Availability Inputs to get to explanations about Place), they may only view them for a very brief

duration. Hence, we filtered out views with durations < 1 second. Additionally, intelligibility usage
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patterns may also affect what a user learns of the application. One such metric is the Context Ratio
of how many explanation types of deeper contexts (Place and Sound) are viewed compared to that
of the shallower context (Availability). Having generated these metrics, we wanted to investigate if

they influence user understanding.

9.5.3 USER UNDERSTANDING AND SUGGESTIONS FOR CONTROL

We measure how well participants understood the application behavior and scenario circumstance
by transcribing audio from interviews along with notes. To measure their understanding, we asked
them what they understood about what Laksa knew and how it was reasoning. The transcript was
coded into units of beliefs to characterize their mental models, using the coding scheme in Table 9.1.
Their statements are a lower bound of their understanding, since they may not have said
everything they believed. To derive a single metric of understanding, an Understanding Score is
calculated for each participant scenario by adding all 7 codes for both Place and Sound (Max=14).

This score represents the breadth and depth of understanding a user has for the scenario.

Another measure of how well participants understood Laksa is how many effective Control
Suggestions they provided to overcome any issues or problems in the scenarios. A weighted
Control Score is calculated from summing scores for each code in the scheme in Table 9.2. This
score represents the number and effectiveness of suggestions provided for the scenario. Partially
effective suggestions are given only half a score. These suggestions may have side-effects that
compromise application performance in other situations (e.g., adjusting the weights of a sound

factor to influence recognition).

Note that so as not to prime or mislead participants with knowledge about how Laksa makes
inferences, we do not ask multiple choice comprehension questions. Instead, we record open-ended

descriptions from participants, which we code to determine their level of understanding.



Code Description / Example Transcripts
Place | Sound
Us Value .83 .89 Indicated knowledge of the inferred value of the factor.
U, Alternative .78 .85 Indicated knowledge of other inferred (24, 314, etc.) or uninferred values.
Values Compared different values that were inferred differently,
e.g., P01S2 "Talking (evidence=85.4) very close to music (84.7). Could have gone any way."
Us Certainty 94 .87 Described certainty of inferred value,
e.g., P02S3: "It was 9.3% certain I was at the Office"; P03S3: "blue bubbles were too big."
Us Inputs .85 .94 Mentioned at least one input feature / factor of the context,
e.g., Pitch, Periods of Silence, "the blue bubble was directly over the Library building."
Us Model .86 1 Described the mechanism for inferring the factor,
e.g., P17S53: "It looked like it was actually probably closer to the library, but since the library bubble was very
small then it calculated the probability was very low.”
Us Technical .90 0* Provided a deep technical mechanism for the inference not explicitly described in the explanations,
e.g., P18S3: "It seems to be based on its Wi-Fi connection, and ... because it said networking and it gave the
location badly and we’re deep inside a bunch of concrete and metal, so the GPS shouldn't be working right now."”
U; Situation .80 94 Provided a situational justification for the phone's inference that was not from the intelligibility Ul,
Justification e.g., P02S2: "The music was much mellower, and they were really singing"; P07S3: "We were very close to
previous location [Office], not easy to pinpoint current place [Library]."

Table 9.1: Coding scheme for user understanding. Participants' mental models were decomposed into beliefs based on what they

explicitly said and tacitly implied. Each scenario may have multiple codes, each either 0 or 1 indicating whether the correct

corresponding beliefs were expressed. We only coded for Place and Sound factors, since participants’ understanding of

Availability can be derived from their understanding of these. Inter-coder reliabilities (k) for each code were calculated with a

35% random sample of the scenarios by a second coder. * denotes apparent low reliability due to low count.
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Code K Description / Example Transcripts
Ci Availability .89 | Proposed a new rule, editing an existing rule, or deleting one,
Rules e.g., delete rule "Someone's Talking"; add rule "Office + Music — Vibrate"
C Place Settings .90 | Suggested to adjust the bubbles of Places by enlarging, shrinking, or moving them.
Suggested to threshold blue bubbles to calculate overlap between sensed location and Places.
Cs Sound Settings .89 | Suggested to adjust a feature weight to tweak inference;
Suggested to expand training data, e.g., P10S2: "Teach it more about music by inserting iTunes catalog."
Cy Change .92 | Proposed to change behavior to ameliorate problems in the scenario,
Behavior e.g., "Reduce the volume of music"; "Have phone screen facing up (when on table) so that it will be visible when it lights
up during a call”

Table 9.2: Coding scheme for control suggestions. Participants' suggestions to improve Laksa for each scenario were coded with

values: O=Ineffective, 0.5=Partially effective, 1=Effective. Each code may be counted multiple times depending on how many

suggestions were made. Inter-coder reliabilities (k) were calculated with a 50% random sample by a second coder.
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9.5.4 PERCEPTION OF APPLICATION AND EXPLANATIONS

We were interested in how participants perceived Laksa and its explanations for each scenario. As a
manipulation check of the scenario designs, we asked participants how they perceived Laksa’s
Behavior Appropriateness (7-point Likert scale: -3=Strongly Inappropriate, 3=Strongly
Appropriate). We also asked if they agreed or disagreed that the explanations were useful in the

scenario (Explanation Usefulness; 7-point: -3=Strongly Disagree, 3=Strongly Agree).

Next, we describe how participants used intelligibility, and how that impacted their understanding.

We treated S1 as a warm up for participants and excluded its results from our analyses.

9.6 RESULTS

Using a local recruiting website, we recruited 19 participants (11 females) with ages 19 to 65
(Median=26) years. We dropped P13 because he did not continue beyond S2, and did not
understand the scenarios well. Nine participants were graduate students, and three were
undergraduates. P01, P16, and P17 were students in a computer-related field (Electrical and
Computer Engineering, Software Engineering, and Learning Technology). P18 was a web
programmer, while the others spanned a wide range of areas (e.g., actor, pianist, field interviewer,
hospital administrator, chemical engineering, retiree). 11 participants owned smart phones and
one participant did not even own a cell phone. We engaged each participant for 1h 44min on

average (range: 1h 29m to 1h 58m). Each participant was compensated $20.

While we strove to make all user experiences consistent for the experiment, we also strove to have
Laksa behave faithfully to the scenarios the participants were situated in, and what they did.
Consequently, there was some variability in what Laksa sensed and the resulting explanations. For
example, location sensing accuracy depended on where the participant decided to walk to, weather
conditions and other environmental factors affecting signal strength; when the participant walked

to the café in S4, she may heard background music, or found a seat nearby people who are talking.

For S4, participants exhibited two distinct behaviors to explore the hypothetical situation: they just
sat where they were and tried to use the What If explanation facility (S4-if, 10 cases), walked to the
café to test Laksa in-situ (S4-situ, 11 cases), or performed both activities. Hence, we treat these as

distinct scenarios.



220 CHAPTER 9 | EVALUATING THE USAGE AND USEFULNESS OF INTELLIGIBILITY

In this section, we report results of participants’ perception of Laksa's behavior and explanations,
how they used intelligibility, their understanding of Laksa's behavior, and how their usage affected
their understanding. We supplement the quantitative data with descriptions of what participants

did and said, and provide interpretations.

9.6.1 PERCEPTION OF APPLICATION BEHAVIOR AND EXPLANATIONS

A one-way ANOVA with Scenario as the factor found a difference in Behavior Appropriateness
(F325=3.90, p<.05), specifically, that Laksa's behavior was perceived as more inappropriate for S2
and S3 than for S4 (contrast test: p<.01). This verifies the manipulation check that participants felt
that Laksa behaved inappropriately for S2 and S3 (see Figure 9.2, Left).

Overall, participants perceived explanations as useful (M=1.52, Std.Err.=0.23), even though
perceived application behavior appropriateness varied (see Figure 9.2). A one-way ANOVA with
Scenario as the factor found a difference in Explanation Helpfulness (F325=3.90, p<.05), specifically,
that explanations were less helpful in S2 than S4, and S3 indistinguishable with S2 or S4 (Tukey
HSD test: p<.05; see Figure 9.2, Right).

Behavior Appropriateness
Explanation Usefulness
(e}

2 3 4-if 4-situ 1 2 3 4-if 4-situ
Scenario Scenario

Figure 9.2. Perceived Application Behavior Appropriateness (Left) and perceived
Explanation Usefulness (Right) across scenarios. We include S1 in the graph for comparison,

but not in our analysis. Error bars indicate standard errors.

Next, we characterize how participants used intelligibility: how often they looked at explanations,

and for how long.
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9.6.2 INTELLIGIBILITY USAGE

From usage logs combined across S2 to S4, we determined participants’ overall usage of
intelligibility (see in Table 9.3), and their usage for each explanation type (see Table 9.4). Most
participants actively looked at many Explanation Types (Median=8), many times (View Count
Median=21), for about 3 minutes per scenario. This suggests they valued intelligibility enough to
use it. They also tended to look more at deeper contexts (Place or Sound) than just Availability
(Context Ratio Median=1.4). Some participants were very engaged in using intelligibility (View
Count Max=65, Scenario Duration Max=12.5min), while some were conservative: min 2 views
(P08S4-if), 1 explanation type (P14S4-situ), scenario duration <1 min (P08S4-if), or not looking at
deeper contexts (Context Ratio=0, P02S2, 7 participants for S4-if, P05S4-situ, P14S4-situ).

From Table 9.4 Left, we identify which explanation types were more popular, i.e., higher view count.
The Availability What explanation was the first page that participants saw when they turned the
screen on, so it has the highest count. Availability Inputs is also high because most participants used
it as a gateway to see explanations of deeper contexts. Availability History was popular because
participants had to ask about specific events in the past. Participants viewed Outputs to see the
expected inferences that were not made (particularly for Availability, and Sound). Although
participants seldom viewed Definitions, they did so more for Sound because they were less familiar
with its concepts. Due to the temporal nature of Sound, 9 participants played audio clips of what
Laksa heard (Situation). 9 participants also used the Refresh function 30 times in total to get
immediate feedback about the inference. They used it mostly during S3 and S4-situ, about

Availability and Place, and for What, Inputs explanation types.

. Std. Std. . .
Per Scenario | Mean Min Median Max
Dev. Error

Steps (unfiltered) 27 16 2 2 23 71
View Count | 24 15 2 2 21 65

# Explanation Types | 7.9 34 0.4 1 8 19
Context Ratio | 1.8 1.8 0.2 0 1.4 8

Total Duration (s) | 205 136 18 52 196 749

Table 9.3. Summary statistics of intelligibility usage by participant scenario.
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Total View Count Median Duration (s)
2 =
E 2 E EE’ 3 E
- £ 2 8
What + Certainty [SWAYA 114 69 5.7 3.1 3.2
History | 130 5 3 7.5 -
Outputs + Certainty 84 102 33 6.4 5.6 4.9
Inputs WAV 45 60 7.1 6.4 6.0
Why 26 16 44 3.5 6.1
Why Not (Why Alt) 21 35 41 4.7 49
WhatIf | 31 - - - -
Definition 5 7 28 - - 6.1
Situation = = 15

Table 9.4. Usage of explanation types: total view count of explanation types for all
participant scenarios, and median durations for respective views (for Total View Count >
15). Mean View Count per scenario can be calculated by dividing by number of participant

scenarios, N=57. Colors show a heat map of values and relate to the numerical value.

We can also see how much time participants spent looking at each explanation type (Table 9.4,
Right). While What If was not used often, when it was, participants spent significant time with it.
This is because it is an interactive facility rather than a static display. For the other explanation
types, participants on average spent less than 10 seconds viewing them, and may even view them
as quickly as about 3 seconds. Furthermore, participants spent more time on explanation types that
were more complex or contained more information (e.g., Availability Inputs > Why, Place Why >

Inputs, Sound Inputs > What).

9.6.3 CORRELATIONS BETWEEN INTELLIGIBILITY USAGE AND ITS IMPACT

Given the variation in intelligibility usage, we next explored how that affected participant
understanding, control suggestions, and perception. We calculated correlations between our
metrics of intelligibility usage, user understanding, control suggestions, and perception (see Table
9.5). These suggest some relationships, which we interpret. When participants perceived the
application as behaving less appropriately, they viewed more explanations (a) and more types (b),
spent more time exploring explanations (c), provided more suggestions for controlling and fixing

the behavior (d), but perceived explanations as less useful (e). They had higher Understanding



9.6 RESULTS 223

scores when they viewed more explanations (f, h), viewed more about deeper contexts than
shallower ones (i), or spent more time looking at explanations (j). The same was true for their
Control score, perhaps due to their improved understanding (k). Strangely, explanation usefulness
was not correlated with intelligibility usage (g), and participants who perceived explanations as

more useful had fewer suggestions for effective control (1).

Usage Impact
¢ o 5| Z

2 =) =t S =
E 0 £tz g 4
o - = +© — s &
] X >< Aa Z S s =
: 5 £ T |2 £ |:3%
Pearson’sR | 2 = S o = S SR
- * &) = o) &) m D
App Behavior Appropriateness | -.372 -32b -02 -41¢< -11 -3494 40¢
View Count 81 .20 .63 43f 29 -17s
# Explanation Types 26 45 36" 30 -15
Context Ratio 06 421 .30 -.05
Scenario Duration 207 .13 -.08
Understanding 41k 05
Control -.23!

Table 9.5. Correlations between usage of, and impact due to intelligibility. Significant
correlations underlined (single: p<.05, double: p<.01). Superscript letters refer to

interpretations in text passage.

Now that we see some potential relationships between intelligibility usage and its impact, let us
explore how well participants understood Laksa, and conduct statistical tests of whether and how

usage affects understanding.

9.6.4 USER UNDERSTANDING AND CONTROL SUGGESTIONS

We first report the average understanding participants had. For each scenario, participants
articulated 0 to 8 correct beliefs about Laksa's behavior (Median=4). Figure 9.5 (Left) shows the
distribution of their correct beliefs. 41% of the beliefs were about the awareness of the inferred
Value for Place and Sound, 28% about a broader understanding of the inference (Alternative Values
and Certainty), 15% about the Inputs state and Model mechanism, and 2.5% about deeper
Technical details. 14% of the beliefs were drawn from the situation to justify Laksa's behavior.

While not coded, some participants expressed incorrect mental models, such as believing that the
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Place inference influences Sound inference, and vice versa (e.g., P14-S2: "[Laksa] infers location first

[Office], then uses that to infer sound is likely talking [, instead of music]").

Participants provided 0 to 6 correct Control Suggestions (Median=2) for each scenario, and had an
average Control Score of 2.10 (Std Err=0.29). This is significantly greater than 1 (i.e.,, Ho: Score>1,
p<.01). Figure 9.6 (Left) shows the distribution of effective and partial Control Suggestions to
improve Laxsa's behavior: Availability Rules (29%), Settings (27% Place, 8% Sound), Behavior
Change (36%).

Regardless of how participants used intelligibility, on average, they had non-zero Understanding
and Control scores (Figure 9.5, Left; Figure 9.6, Left). However, the extent and pattern of

intelligibility usage did affect how well participants understood Laksa, as we shall see next.

9.6.4.1 IMPACT OF INTELLIGIBILITY USAGE ON UNDERSTANDING AND CONTROL SCORES

From the correlations between usage and impact (Table 9.5), we chose View Count and Context
Ratio as factors of intelligibility usage. We split View Count into discrete intervals of 10 counts
(sample size: 9-16); we split Context Ratio into two groups Shallower (N=34) and Deeper (N=20),
where participants saw twice as many explanations about Place or Sound than Availability. We also

consider Smartphone Ownership as a factor which may influence understanding and control.

ImPACT ON UNDERSTANDING SCORE

We performed a mixed-model analysis of variance with Participant as the random effect, nested in
Scenario; View Count, Context Ratio, and Smartphone ownership as main effects; and
Understanding Score as the dependent variable (R2=.466). We found a marginal difference across
View Count groups (Fs45=2.54, p=.05; see Figure 9.3, Left), and a contrast test found that when View
Count <30 instead of 230, Understanding Score was lower (p<.05). Moreover, the score was higher
when participants viewed explanations of Deeper contexts =2 times more than Shallower ones
(F145=6.92, p<.05; see Figure 9.3, Right). There was no difference in Understanding across

Smartphone Ownership.

ImPACT ON CONTROL SCORE

We performed a similar mixed-model analysis of variance for Control Score as the dependent
variable (R2=.466). There was no difference across View Count groups (p=n.s.), but Control Score

was higher for Deeper context ratios than Shallower ones (F145=8.00, p<.01) and higher for
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participants who owned smart phones (F145=4.38, p<.01). See Figure 9.4, Right. To investigate
whether Context Ratio or Smartphone Ownership better explains the variance in the Control Score,
we fit three linear models varying the effects. Our results in Table 9.6 suggest that Context Ratio is a

more predictive factor than Smartphone Ownership.
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Figure 9.3. Participants had a higher Understanding Score when they viewed =30
explanations than fewer (p<.05, Left), and when they viewed explanations of Deeper

contexts 22 times more than Shallower ones (p<.05, Right).
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Figure 9.4. (Left) Control Score is higher when participants ask more explanations about
Deeper contexts (Place and Sound) than Availability. (Right) Participants who owned smart

phones also had higher Control scores. Control scores were not influenced by View Count.

Viewcous | Gpuext | Smarnhone |y
1 v v v 466
2 v v 413
3 v v 380

Table 9.6. Linear regression models with R2 values showing which factors better explain

Control Scores.
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Intelligibility usage also affected the depth of understanding participants expressed. Figure 9.5
(Right) shows that when participants had deeper Context Ratios, they described 2.0 times more
details about the factor inference (Alternative Values, Certainty, Inputs, Model, and Technical), but
mentioned fewer Situation Justifications. Similarly, they provided 2.2 times more types of Control

Suggestions, especially about Settings (Figure 9.6, Right).
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Figure 9.5. Distribution of belief types of Understanding overall, and by Context Ratio;

normalized per scenario. Similar distribution for low View Count (<30) vs. high.
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Figure 9.6. Distribution of effective suggestions participants made to improve Laksa's
behavior; normalized for each scenario. (-) denotes partially effective suggestions with side-

effects. Note this is not the weighted Control Score.

In summary, our results show how participants were willing to use intelligibility, and how quickly
or deeply they used it. This satisfies our hypothesis that more Intelligibility Usage (View Count and

Context Ratio) improves Understanding.



9.7 DISCUSSION, IMPLICATIONS, AND RECOMMENDATIONS 227

9.7 DIScuUsSION, IMPLICATIONS, AND RECOMMENDATIONS

We discuss what we have learned about how intelligibility is used, and how that affects user
understanding of context-aware applications. These have implications on how intelligibility should

be provided, and how we should design intelligibility to facilitate its more effective use.

9.7.1 USAGE AND USEFULNESS OF INTELLIGIBILITY

By the extent that our participants viewed the explanations, we can conclude that intelligibility was
useful for them to (i) engage with intelligibility (some participants deeply so), (ii) rate explanations
as useful, and (iii) gain better understanding of application behavior. We next discuss how they
used intelligibility, and how certain usage patterns were more effective in improving user

understanding.

9.7.1.1 SELF-REPORTED USEFULNESS OF INTELLIGIBILITY

Similarly to our previous results in Chapter 8, perceived explanation usefulness was also affected
by application behavior appropriateness (Section 9.6.1). Nevertheless, on average, participants
perceived intelligibility explanations as useful even when the application behaved inappropriately
(see Figure 9.2). Participants found the explanations interesting and viewed them to satisfy their
curiosity (e.g., P01S1: “for figuring out what the sensed factors are like”). In S4, P02 likes that the
What If explanation “enabled [him] to get a reading before even leaving [for the café].” Explanations
helped reinforce the appropriateness of application behavior by showing that the application also
correctly inferred other details (e.g., for S4, PO1 was satisfied that the Sound was correctly inferred

as Music and the Location was sensed correctly as the Café).

Even when the application behaved inappropriately, some participants found explanations useful.
For S2, P10 found the explanations “surely helpful” and was able to determine that the music heard
was recognized as talking, because the song “reminds [him]of people talking.” For S3, P18 felt that
the explanations were “very plain” and mentioned that “I could tell why the problem was that it did

not detect the location of the library.”

However, there were occasions when participants did not find explanations useful. For S1, P11
confessed that “phones, in general, makes [her] cranky” and felt that there was too much information
and too many details. In S2, P06 gave a compromise rating for explanation usefulness (Neither

Disagree Nor Agree), giving the reason: “I guess I understood like what setting it was in, but [Laksa]
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doesn’t really seem to sense its environment correctly.” For S3, P07 “was trying to figure out why it

sends out at to the office opposed to library and was having difficulty figuring that out.”

Finally, although explanations may not be useful for certain situations, some participants felt that,
in general, it is useful (eg. for S2, P08 felt that she would have “naturally looked at the
explanations,” in general, and although, “in this case [S2], it was like a waste of time, but I don’t regret

looking at it”).

9.7.1.2 DIVERSE USAGE OF EXPLANATION TYPES

Participants used a diverse range of explanation types (see Table 9.4) and in diverse ways. What
and Inputs were conduits to other explanations for participants to learn deeper reasons. However,
although some explanation types were used less than others, participants viewed them for longer
durations when they did (e.g., Place Why / Alt). Furthermore, as with Section 7.8 [Lim and Dey,
2011a], the sequence diagrams of our participants revealed a variety of usage styles (e.g., quick
comparison between Why and Why Alt reasons, diving into a deeper context after going straight to

Availability Inputs).

Unlike what was found in Section 4.6.3 [Lim, Dey, and Avrahami, 2009], our participants felt that
the What If explanation was easy to use and liked it (e.g., P11S1: “[Using] it was just more fun ... I like
to think of hypothetical things, but it also gives me a sense of what the phone is capable of, and helps
to develop trust when you know what to expect”). In fact, for S4, 10 participants chose to ask What If
instead of immediately walking to the café. However, this fascination with What If can also give
users false trust since it obscures potential pitfalls in sensing. Participants who used What If in S4
may not realize how noisy the café may be or that the Place inference was not particularly good
there. P11 did not bother to explore Laksa's inference in-situ because "technology is supposed to
make your life easier; you shouldn't have to waste time to make sure it works right." Perhaps
providing warnings that sensing can fluctuate due to environmental conditions may help users be

more careful when using What If.

While not explicitly an explanation, Refresh was used to understand what Laksa was sensing and
inferring in the moment. For S3, P12 and P17 anticipated Laksa would not sense its location well at
the Library, and refreshed the display to track the location sensing. They learned before arriving at
the Library that Place and Availability were wrong. Similarly, for S4-situ, 7 participants refreshed to
(impatiently) check if their status had been set to Available and/or Place as Café. In fact, because of

this sluggishness, some participants attributed mis-inferences to lag.
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Occasionally, participants forgot what had happened recently, e.g., for S2, P07 thought he was
talking to the experimenter at the time Laksa inferred Sound as Talking. Had he played the
recorded audio of that time (Situation), he would have learned that only singing was heard. Using
the played audio, P15 and P16 were able to identify guitar sounds when Sound was finally
recognized correctly as Music. Hence, in combination with History, Situation explanations can help
jog a user’s memory of what was happening, independent of the application’s inference. This helps
them form Situation Justifications for the application behavior. How may we also provide Situation
explanations for contexts other than Sound? For Place, perhaps by showing a photograph at the
location (if one was taken at the same time). For Motion recognition, perhaps by animating an

interpreted diagram of how the phone was moving (derived from accelerometer data).

While our earlier research into intelligibility sought to prioritize providing some explanation types
over others (Chapter 4 [Lim, Dey, and Avrahami, 2009] and Chapter 5 [Lim and Dey, 2009]), our
more recent findings in Chapter 7 [Lim and Dey, 2011a], and these findings suggest instead to
provide a diversity of explanation types will be helpful to support different learning and

troubleshooting strategies users have.

9.7.1.3 DEEPER USAGE OF INTELLIGIBILITY

Our quantitative results indicate that viewing more explanations, especially about deeper contexts
can lead to deeper understanding, and more effective control suggestions for improving the
application behavior. So, to promote user understanding, we need to encourage users to dig for
more explanations, and to dig deeper. Perhaps, if the user starts asking questions, the application
could hypothesize faults, and highlight which factors are probably causing them. These guesses
could come from a knowledge base of typical faults (Section 7.10.4), or be triggered when

inferences Certainty becomes too low (e.g., <80% as suggested in Section 8.12).

9.7.1.4 INTELLIGIBILITY AFFECTED BY FAMILIARITY WITH CONTEXT TYPE

Also observed in Section 8.9 [Lim and Dey, 2011b], our participants indicated less familiarity with
Sound than they did with Place, and this affected the usage and usefulness of intelligibility.
Participants had fewer Control Suggestions for Sound settings than for Place, despite higher View
Counts for explanations about Sound than Place (Table 9.4, Left). This lack of familiarity also
appears to influence their perception of Explanation Usefulness, where it was lower for S2 (Sound
misinferred) than for S3 (Place misinferred), even though participants perceived the application

behavior as equally poor in both scenarios. Perhaps providing easier access to Definitions and
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repeated exposures to the intelligibility features can promote familiarity, and allow users to gain

more understanding of more novel contexts.

9.7.1.5 INTELLIGIBILITY FOR CONTROL

The lack of familiarity with Sound also hindered our participants’ ability to provide Control
suggestion to improve its inference. Only a few suggestions were made: e.g., P10 suggested using
her iTunes music library as a training dataset, and P09 suggested “adjusting the levels for Periods of
Silence for conversation vs. music.” Clearly, we should provide intelligibility to facilitate control (as
recommended in Section 5.7 [Lim and Dey, 2009]), perhaps by just adding a Definitions-style

explanation that describes control mechanisms and some consequences of adjusting them.

9.7.2 CONSTRAINTS FOR INTELLIGIBILITY

While the upper bounds of our participants’ usage of intelligibility may give an indication of
engagement, the lower bound may portend the limits to which some users may be willing to use
intelligibility. Therefore, we derive some time and view constraints for intelligibility. Participants
only spent about 3-10 seconds viewing each explanation, so each explanation page needs to be
correctly and effectively interpreted within that short duration. Perhaps if an explanation cannot be
understood within that duration, it should be split into multiple parts where the user can ask for
more on demand. Furthermore, our quicker participants spared only about 1-3 minutes exploring
explanations for each incident. This may be even shorter without the experimenter demand effect
when users explore intelligibility outside of a user study. Hence, question asking should be

streamlined to facilitate multiple views (~20) within about 2 minutes before the user gives up.

With our scenarios, we have focused on investigating the usage of intelligibility about incidences in-
situ and in the moment (or shortly after), or a future hypothetical situation. However, users may
postpone investigating an incident until they have more time. Under those circumstances, the time
constraints for using intelligibility may not be so tight, but users may need more information to

remind them what happened (e.g., richer Situation and History explanations).

9.7.3 HOW MUCH INTELLIGIBILITY IS "GOOD ENOUGH?"

We have discussed how intelligibility can be beneficial to users by improving their understanding of
application inference and behavior. We have also discussed how to amplify these benefits through

deeper use of intelligibility. However, is this deeper use sufficient or excessive, i.e., what are the



9.8 LIMITATIONS AND FURTHER WOorRk 231

upper and lower bounds for how much intelligibility to provide? Our results suggest that users may
use intelligibility at least to the depth that was provided in Laxsa, and therefore it is not excessive.
To decide how much intelligibility usage will be sufficient for users (in terms of benefit,
independent of effort required), we can consider a model of how intelligibility influences
understanding, trust, and control (see Figure 9.7). This study covered the path from Usage to
Control (in black), while our previous work in Chapter 4 [Lim, Dey, and Avrahami, 2009], Chapter 5
[Lim and Dey, 2009], and Chapter 8 [Lim and Dey, 2011b] have also explored the link between
Understanding and Trust. In particular, in Section 8.12, we recommend when and how much
intelligibility to provide to help instead of harm user impression (Trust). From Figure 9.6 (Left), we
can see that our participants gave at least one effective Control suggestion on average. If one change
is sufficient to improve the application’s performance, then this should be good enough. However,
this depends on the type of suggestion (see Figure 9.6): changing a Rule is brittle and may not be a
robust solution in the long-run; changing Behavior puts extra strain on the user’s actions and
habits, so they may not favor this repeatedly too; changing Settings is more robust and less tedious,
but may suffer from side-effects (e.g., adjusting weights in a machine learning system). Therefore,
users may need more suggestions to be able to provide satisfactory control, which means that they

should explore explanations of deeper contexts more than of the shallower application context.

Control

Application s Application s | Intelligibility N
Usage “] Behavior d Usage

Understanding

Trust

Figure 9.7. Model of influence indicating how the usage of Intelligibility may influence a
user’s ability to Control, sense of Trust, and usage of the context-aware application. Lines in

grey were not explicitly explored in this study.

9.8 LIMITATIONS AND FURTHER WORK

While our quasi-field study with an interactive prototype and realistic scenarios can provide insight
into how users use and benefit from intelligibility, there are limitations due to its controlled set-up

and brief duration. Our study covered only a handful of situations where intelligibility is useful, but
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we expect more situations and even unanticipated ones as users use Laksa in their daily lives. Our
study presented a bias by selecting scenarios where participants are more motivated to use
intelligibility to troubleshoot the application behavior. Our purpose was to demonstrate that there
exist situations where users will and do use intelligibility. Under everyday usage, we expect there to
be many situations where users will not have an urgent need to use intelligibility, and may either

forego or postpone its use.

Furthermore, participants had only two hours to familiarize themselves with the U], and go through
four scenarios. As such, their experience only covered the initial transient usage of intelligibility, as
novices. We expect their usage patterns and knowledge of the application and its inference to
evolve as they use intelligibility over time. Therefore, for future work, we plan to deploy Laxsa in
the field and over a few weeks to overcome the aforementioned limitations. We intend to study how

prolonged use of intelligibility impacts long-term understanding and trust of context-awareness.

In order to focus on the usage of intelligibility in a free-form manner, we provided intelligibility on
demand instead of always on. Moreover, we did not include a baseline control condition where
participants did not see any intelligibility features, or saw a limited set of explanations. This can be
valuable to for evaluating the impact of intelligibility by comparing intelligible and non-intelligible
versions and also help control for personality traits that may have coupled a user’s ability to
understand Laksa2 and her propensity for using intelligibility more. Nevertheless, we refer to our
previous controlled studies in Chapters 4 and 8 that had explored the impact of providing

intelligibility on understanding and trust.

In this study, we have investigated the usage and impact of intelligibility in one context-aware
application. Although this is one data point in a sparse design space, Laksa2 was designed to cover a
range of contexts (Availability, Place, Sound) and inference models (Rules, Decision Tree, Naive
Bayes), so it spans many features of context-aware applications. This serves to increase the
generality of our results. While Laksa2’s Ul presentation was optimized for usability, we architected
Laksa2’s structure to be generalizable depth-wise from a multi-level context hierarchy (layering of

contexts as inputs and outputs) and breadth-wise by spanning explanation question types.
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9.9 CONCLUSIONS

We have presented a quasi-field study where we measured how participants naturalistically used
an intelligible context-aware application in scenarios representing real-world, "everyday"
situations. We investigated how that usage affects their understanding of the application behavior.
The application was an iteration over the Laksa prototype with more streamlined and usable
intelligibility features. We found that viewing more explanations, especially more about deeper
contexts can further improve user understanding of application inference in our experimental
scenarios. We provided potential implications for promoting more effective intelligibility usage,
time constraints within which users are willing to view intelligibility, and discussed how much
intelligibility should be provided to sufficiently improve user understanding of context-aware

applications.
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1 O DISCUSSION & CONCLUSION

This thesis has investigated how to provide intelligibility in context-aware applications and shown
that intelligibility can improve end-user understanding and trust in these adaptive applications. As
we conclude, we summarize the contributions made in this thesis, and discuss avenues for future

work.

10.1 SUMMARY OF CONTRIBUTIONS

We summarize our contributions in terms of the three high-level stages of the thesis approach: (i)
requirements for intelligibility, (ii) support for intelligibility, and (iii) evaluation of intelligibility in

context-aware applications.

10.1.1 TAXONOMY OF EXPLANATION TYPES FOR INTELLIGIBILITY

In Chapter 5, we elicited a range of question types end-users want to ask of context-aware
systems: What, What Else, Certainty, Why, Why Not, What If, How To, Inputs, Outputs, Control, and
Situation. This forms the basis of the taxonomy of explanation types we use to provide intelligibility
in context-aware applications. We believe that providing these explanation types will improve user

satisfaction and acceptance of context-aware applications.

In Chapter 3, we summarized all the explanation types that we have explored from our elicitation
study (Chapter 5), and from subsequent design exercises with higher fidelity intelligible prototypes

(Chapters 7 and 9). These additional explanation types include: When, History, and Description.

10.1.2 IMPLEMENTATION SUPPORT FOR INTELLIGIBILITY

In Chapter 6, we described the Intelligibility Toolkit, which we have developed to make it easier

for developers to provide many explanation types in their context-aware applications. The toolkit



236 CHAPTER 10 | DISCUSSION & CONCLUSION

provides automatic generation of 12 explanation types for at least 10 popular inference models in

context-aware applications. It consists of structural components:

e Queries to encapsulate questions about inferred contexts, and

o Explanation Expressions to represent explanations in data structures
and function components:

o Explainers to generate explanations,

o Reducers to simplify complex explanations,

e Presenters to render explanations for end-users to consume,

e Queriers to present interfaces for end-users to ask questions, and

e Selectors for contextually select queries or reducers to provide.

Explanations can be provided as either rule traces or weights of evidence. The toolkit is extensible to

support new explanation types, model types, reduction heuristics, and presentation formats.

10.1.3 DESIGN RECOMMENDATIONS FOR INTELLIGIBILITY

In Chapter 5, we identified which explanation types to provide to end-users and under which
circumstances (Application Behavior Inappropriateness, Situation Criticality, Application Goal-
Supportiveness, Recommendation Role, Number of Externalities) to best provide them. This is
encoded in a table of design recommendations (see Table 5.6) along with recommended provision

mechanisms (see Table 5.7). These findings help to inform us about context-sensitive intelligibility.

In Chapter 7, through design iteration and a usability study of Laksa, an intelligible mobile context-
aware application, we developed several design principles for usable intelligibility. We investigated
the use of intelligibility for the mobile contexts of Availability, Place, Motion, and Sound activity.

Our findings emphasize

e Visualizing explanations to allow quick interpretation, but also including textual
explanations to scaffold the graphics.

e Making explanations usable and quickly consumable (by reducing explanation volume or
detail, and aggregating explanations).

e Focusing on providing explanations that facilitate user control, and excluding explanation

details that do not allow users to improve or change the application behavior.
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e Streamlining questioning to reduce the number of options users have when seeking
explanations.

e Using terminology and descriptions more related to the real-world activity than technical
aspects of the application inference.

e Integrating domain knowledge in explanations (e.g., distinguish indoor and outdoor location
sensing via Wi-Fi and GPS respectively).

e Supporting effective problem solving and debugging strategies (so that users can quickly

understand the application issues before giving up).

In Chapter 8, drawing from our evaluation of the helpfulness and harmfulness of intelligibility
across an application certainty threshold of about 80-90%, we provided recommendations on when

and how to provide explanations (see Table 8.9):

e No intelligibility if the overall application certainty and accuracy is low (below the
threshold).

e Provide intelligibility automatically if overall application certainty and accuracy is high
(above the threshold).

o Provide intelligibility on demand to allow users to ask for explanations if the application

behaves inappropriately.

In Chapter 9, we draw some insights into design constraints for providing intelligibility for mobile

context-aware applications, from our evaluation of Laksa2:

e Enable users to acquire sufficient understanding with no more than 20 explanation views
per incident or session of use and within 2 minutes.

e Enable users to interpret each explanation view in within 3-10 seconds.

10.1.4 EVALUATIONS OF INTELLIGIBILITY

In Chapter 4, we found that providing reasoning trace explanations for context-aware applications
to novice users, and in particular Why and Why Not explanations, can improve users’
understanding and trust in the system. We also found that the complexity of How To and What If
explanations may have impeded their usefulness and efficacy. We therefore sought to improve the
usability and ease of understanding of How To and What If explanations to improve their

usefulness.
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In Chapter 8, we showed that intelligibility can positively or negatively impact user impression,
depending on the application's certainty and behavior appropriateness. Intelligibility is helpful for
applications with high certainty, but it is harmful for applications with low certainty, leading to the
user losing even more trust in its capability. Nevertheless, intelligibility can help users to appreciate

and forgive applications if they behave inappropriately and have low certainty.

In Chapter 9, through a quasi-field experiment with Laksa2, we showed how usage of intelligibility
affects user understanding of its behavior. We found that, in our experimental scenarios, users were
willing to use intelligibility in Laksa2, and that viewing more explanations, especially more about
deeper contexts can further improve user understanding of application inference. From our results,
we provided implications for promoting more effective intelligibility usage, time constraints within
which users are willing to view intelligibility, and insights for how much intelligibility should be

provided to sufficiently improve user understanding of context-aware applications.

10.2 LIMITATIONS

With the paucity of intelligible context-aware applications, and in order to conduct controlled user
studies, we conducted most of our user studies with online questionnaires. This format allows us to
collect a large amount of data and user perspectives regarding intelligibility. However, this
approach suffers from a lack of realism where users can experience the intelligibility features over
time and subtle effects and issues become manifested. Nevertheless, we have progressively shifted
our investigation from abstract context-aware applications, to richly described applications, to a

fully functional intelligible prototype.

10.3 ADDITIONAL RESEARCH OPPORTUNITIES

Through this dissertation work, we have begun to orientate our research of intelligibility from the
lab to the real world. This introduces many issues and factors that will interact with intelligibility,

and opportunities to investigate them. We describe a few future research opportunities.

10.3.1 INTELLIGIBILITY FOR CONTROL

Even though end-users of context-aware applications are expected to let the application function

seamlessly without direct user input, users still desire a sense of control (e.g., [Barkhuus and Dey,
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2003; Bellotti and Edwards, 2001; Dey and Newberger, 2009]). They will occasionally need to
control and configure the application to override its decision, or improve its performance for future
situations. We hypothesize that, with the increased understanding due to intelligibility, users will
more effectively control the context-aware application. By more effective control, we mean that the
user will know which parameters to adjust to improve the application's inference and behavior, and
that he can also change parameter values such that its inference for the current and, possibly, future

situations will be improved.

With appropriate control interfaces and learning algorithms, we can extend our study on the usage
of intelligibility to measure the impact of user control on application accuracy and performance.
One way to control rule-based context-aware applications is through selected Enactor Parameters
exposed by the Enactor framework [Dey and Newberger, 2009]. However, it is more challenging to
control machine learning-based applications, since manual editing of the learned model may not
guarantee improved performance or accuracy. Early work by Wong et al. [2011] shows promising

results that certain algorithms can improve accuracy with feedback from end-users.

10.3.2 SOCIAL INTELLIGIBILITY

Along with single-user applications, context-awareness is also being used for social applications
(e.g., [Lim and Dey, 2011a; Rosenthal, Dey, and Veloso, 2011]). Since providing intelligible contexts
is useful to users of single-user applications, it is likely to also be useful for users learning about
their social contacts or other relationships. However, intelligibility seeks to illuminate deeper levels
of context information and reasoning. While this can help users to better understand their
counterparts, the owner of this information may be less willing to share the information with
others. Future work can explore the trade-off between the need for intelligible contexts in a social
setting and the desire for privacy which will hinder providing such information. With such results,
we can recommend intelligible context information that users feel comfortable sharing and have

sufficient need to consume.

10.3.3 FIELD STUDY OF INTELLIGIBILITY

An important next step to validate our findings of the use and usefulness of intelligibility is to
conduct a field study of an intelligible application. This will allow us to investigate how real-world
concerns affect the use and impact of intelligibility, and how these measures change over time. By

allowing users to freely use the application in their everyday lives, we also minimize any
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experimenter demand effects which may bias users to use intelligibility. A longitudinal study will
also reduce the novelty effect of the early usage of intelligibility. We can also explore whether
intelligibility remains useful after users have learned and become familiar with how the application

inference works, and observe how the need for intelligibility changes over time.

As an early field exploration, we have conducted a pilot study in 2009 of IM Autostatus over 3-4
weeks [Lim and Dey, 2012a]. IM Autostatus is an intelligible instant messaging plugin that predicts
when a buddy will respond to the user’s message. We compared intelligible/non-intelligible
versions with high/low accuracies (~60/80%). We found that users receiving intelligibility agree
more with the application predictions, and had more detailed and correct mental models of the
application behavior. We also determined that users used intelligibility (on demand), but this

declined after a few days, especially for versions with low accuracy.

With further engineering of the LaksaZ prototype, we can deploy the application to the app
marketplace. This will allow us to explore intelligibility with a large pool of users over a longer

period of time.
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A INTELLIGIBILITY TOOLKIT
SOFTWARE

The Intelligibility Toolkit is released as open source under the GNU General Public License (GPL)>.
A website for the updated Context Toolkit and the Intelligibility Toolkit is located at:

http://contexttoolkit.orgé

It contains:

e A description of the Context Toolkit and Intelligibility research
e A list of publications related to Context Toolkit and Intelligibility in Context-Aware
Applications
e Documentation for the software, including
o Description of the Context Toolkit and Intelligibility Toolkit components
o Download and Installation
o Javadoc API Documentation
o Tutorials on how to use both toolkits
o Demonstration Applications

e Information on how to download the source code and binaries

® GNU General Public License. http://www.gnu.org/licenses/gpl.html. Retrieved 4 April 2012.
® Retrieved 4 April 2012.
" Circular Error Probable. http:/en.wikipedia.org/wiki/Circular_error_probable. Retrieved 27 April 2012.
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B INTELLIGIBILITY TOOLKIT
EXPLAINERS

We provide the theoretical definitions, mathematical proofs detailing the derivations and
explanation generation algorithms of the explainers implemented in the Intelligibility Toolkit. The

explainers explain inference, not how the models were learned.

B.1 ABSTRACT BASE EXPLAINER

To align with later terminology in this appendix, we use the term class to refer to a discrete (or
nominal) output value. We use the term feature to refer to an input. We shall also use the term infer
to refer to the concept of the context-aware model reasoning or deciding. These terms are

commonly used in the machine learning literature.

B.1.1 WHAT EXPLANATION

We describe the event that the ith class was inferred as
Vi y=uw
where y is the output variable, and y; is the output value of the ith class.

The What explanation returns y;.

B.1.2 INPUTS EXPLANATION

We denote the inputs to the inference model as a vector of n feature values:
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n X1
xzﬂzlxr=<5> (B.1)

Xn

where x, is value of the rth input feature.

B.1.3 OuUTPUTS EXPLANATION

We denote the output values from the inference model as a vector of m possible values:

m
y=\] v (B.2)
Jj=0
where y; is the jth class value.
B.2 ENACTOR BASE EXPLAINER
Context Context Output
Inputs Outputs Actions
A Enactor Output A L, A N
Application Values P —
In-Widget Inference Model A Out-Widget Service

Attribute

------------------ Lo
Attribute §
Reference [--—-—-—-—-\-——-——-—-—-—-- Output
Value

Reducer Presenter

Attribute

Attribute

Attribute

il

\ 4
\ 4

Selector Querier Explainer

The base Explainer generates explanation types that are model-independent. Particularly, these
explanations depend on the underlying architecture or toolkit for building the context-aware
application, but they do not depend on the inference model. Here, we describe the algorithms for

generating the explanation types from the Context Toolkit.
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B.2.1 WHAT EXPLANATION

Output
Value

v

Presenter

b

Reducer

The What explanation retrieves the triggered output value in the Enactor.

B.2.2 WHAT ELSE EXPLANATION

Val
alue Attribute

Reducer Presenter

\ 4

WhatElse Explainer

The What Else explanation traces the Attribute in the Out-widget that is changed, and the

associated FunctionDescriptions corresponding to the actions or services that were performed.

B.2.3 WHEN EXPLANATION

The When explanation retrieves the timestamp of when the value was updated.



272 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.2.4 INPUTS EXPLANATION

Attr Value

Reference |
Attr Value
Attr Value

Attr Value

v

Presenter

b

Reducer

The Inputs explanation selects the EnactorReference that was triggered, and the corresponding

widgetState of Attribute values from the In-widget.

B.2.5 OUTPUTS EXPLANATION

v

Presenter

b

Reducer

The Outputs explanation lists all output values that may be generated from the Enactor.
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B.2.6 WHAT IF EXPLANATION

IO, - - - - - -----————~—~- Quitput
Value

What If

Explainer

Reducer Presenter

\ 4

Attr Value

The What If explanation takes in a InputQuery with user specified input Attribute values,
combines them with the actual sensed attribute values that were unspecified, and triggers the

corresponding EnactorReference and output value.

B.3 WEKA BASE EXPLAINER

We implement some algorithms for model-independent explanations to support the use of the
Intelligibility Toolkit for developers who use the Weka framework, but not the Context Toolkit. It
supports explanations for What, What If, Inputs, Outputs, and Certainty, but does not implement

explanations for When, and History.

In fact, we have decoupled the Intelligibility Toolkit from the Context Toolkit to make it more

portable, e.g., such as porting to Android phones.

B.3.1 WHAT AND WHAT IF EXPLANATIONS

The What explanation is essentially the inference made on the input Instance. This is obtained by
calling the Classifier.classifyInstance(Instance) and Instance.value(double). On its
own a classifier model does not perform any action or service, so the What explanation is

equivalent to the What If explanation.
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B.3.2 INPUTS EXPLANATION

The Inputs explanation is obtained from taking the input Instance that was passed to the
classifier, and converting it to an Expression DNF form with one Reason consisting of input features

as each element.

B.3.3 OUTPUTS EXPLANATION

In the Weka framework, each Instance contains information about its class Attribute. This Attribute,
in turn, contains information about the possible values it can take. By calling
Attribute.values(), we can obtain the Outputs information that we present in the Outputs

explanation.

B.3.4 CERTAINTY EXPLANATION

For each classification a Weka classifier makes of an instance, it can provide the probability
distribution for all class values. This distribution can be retrieved by calling the
distributionForInstance(Instance) method, and it returns the probability of or certainty for

inferring the outcome of the input instance as each of the class values.

B.3.5 MODEL-BASED EXPLANATIONS

The remaining explanation types depend on the individual algorithms of each classifier. We have
implemented Weights of Evidence explainers for all currently-supported classifiers in the

Intelligibility Toolkit. Furthermore, the Decision Tree classifier, ]48, has a reasoning trace explainer.

B.4 RULE TRACE EXPLAINER

This explainer seeks to provide an explanation by tracing the inference path through a set of rules

and considering paths that were or were not triggered.

We consider rules consisting of condition literals (e.g., temperature < 10, volume > 55, x = 25x)
which may be combined with Boolean operators AND (represented with ‘N’ or as a product ', ‘X’ in
our notation) and OR (represented with ‘U’ or as a sum ‘+’). Hence, each rule or multiple rules can
be considered a Boolean expression, ¢. To be able to generate explanations from ¢, we choose to
convert them into disjunctive normal form (DNF), ¥, which is very suitable for automated

deduction:
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We define an explanation in terms of one or multiple reasons (e.g., multiple reasons for Why Not).
Each reason can be a singular conditional (e.g., one certainty value for a Certainty explanation) or a
conjunction (e.g., multiple conditionals for a Why explanation). The conditional is the atomic unit of
an explanation (e.g., certainty=90%, temperature<24°C). Furthermore, there can be negated
conditionals (e.g., not temperature=24°C). Formally, we define explanations in Disjunctive Normal
Form (DNF), ie. a disjunction (OR) of conjunctions (ANDs) of condition literals (see example in
Figure 6.7). The standardization of explanation information supports R4 such that there is a

standard way to pipe and feed different explanation types.

to DNF
¢ —9
(B.3)
p=1o0NF@) = | | &= ] [[) Xor
v v p
where
Y= Uv &, is the DNF tree form of the rules, (B.4)
& = ﬂ Xyp is the vth rule trace clause in that DNF, and (B.5)
pr=1

Xy is the p,th condition /iteral/in that rule trace.

Figure B.1 illustrates a diagrammatic representation of 1.

Output
Value

ni | |
1

Figure B.1: Diagram representation of the Explanation Data Structure in Disjunctive Normal
Form (DNF). Each circular node represents a condition literal, each vertical column

represents a conjunction of literals, and these are joined horizontally as a disjunction.
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We cover a naive algorithm to perform such a conversion in Section B.4.1.

B.4.1 NAIVE CONVERSION OF ARBITRARY BOOLEAN EXPRESSION TO DNF

A common strategy to convert an arbitrary Boolean expression to disjunctive normal form (DNF) is

to first convert it to negation normal form (NNF), ¢:

toNNF  to DNF
p——0—Y

(B.6)
% = NNFtoDNF(ToNNF(¢))

First, we convert the arbitrary Boolean expression, ¢, to Negation Normal Form (NNF) by “pushing

negations in” to the literal terms, then applying the following logical equivalences

A+B=A-B , AB=A+B
De Morgan’s laws (B.7)
Saells . [Tw=2m
v v v v
Double negative -
A=A (B.8)

elimination
Next, we convert the NNF to DNF by applying the logical equivalence:
A+BC=(A+B)(A+C)
Distributivity (B.9)

A(B +C) = AB + AC

To convert to DNF, we only need the first rule in Equation (B.9). Figure B.2 and Figure B.3 describe

the algorithms for converting an arbitrary Boolean expression to DNF.
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¢ = original Boolean expression
¢@ = ToNNF(¢) // Boolean expression in NNF

ToNNF(¢)
If ¢ = A for some A // negation
If A = B for some B // double negation, /e, ¢ = B = B
Return ToNNF(B) // double negation elimination
IfA=3%,B, forsome B, // disjunction
Return Hp ToNNF(B,,) // apply De Morgan’s law: >, B, =[l,B,
IfA =[], B, for some B, // conjunction
Return )., TONNF(B,,) // apply De Morgan’s law: [[, B, = 3., B,
Else
IfA=2Y,B,forsome B, // disjunction
Return )., TONNF(B,,) // recursively apply TONNF
If A =[], B, for some B,, // conjunction
Return [ [, TONNF(B,,) // recursively apply TONNF

// terminal literal
Return ¢ // return self

Figure B.2. Recursive algorithm to convert an arbitrary Boolean expression to NNF.

@ = Boolean expression in NNF

& := new empty trace clause

1 :=new empty DNF // gets updated in NNFtoDNF
NNFtoDNF (g, &, )

NNFtoDNF (¢, §,¢)
Ifp =Y, B, forsome B, // disjunction
For each B,
&, := Clone ¢ // duplicate trace to branch for each disjunction path
NNFtoDNF(B,, &, ,¥) // recurse for each disjunction branch
Else If ¢ =[], B, for some B,, // conjunction
Foreach B,
NNFtoDNF(B,, ¢ ,3) // recurse to extend this path
Else // ¢ is terminal literal = reached leaf
X := ¢ // convert terminal Boolean expression to condition literal
& : =&+ X //append literal X to trace clause &
Y =1 + & // append trace clause ¢ to DNF i

Figure B.3. Recursive algorithm to convert a Boolean expression in NNF to DNF.
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In general, converting an arbitrary Boolean expression into DNF can be expensive (e.g., converting
CNF to DNF can cause an exponential blow-up in size [Ngair, 1993]). However, we assume that
these rules will be handcrafted by end-users or designers of applications, so they should not be
overly complicated. For example, Motorola’s Smart Actions [Motorola, 2011] only allows end-users
to write individual rules with a set of triggers that may be activated, i.e., each rule is a conjunction of

condition literals.

B.4.2 LoGIC MINIMIZATION TO SIMPLIFY OF RULES

The conversion to DNF does not guarantee that the DNF tree, 1), will be simple or minimized. It may
contain much redundancy and repetition of literals or clauses. We can employ QmcReducer (see

Section 6.11.1.3), which uses the Quine-McCluskey algorithm to minimize Boolean functions
Y; « QmcMinimize(y;) (B.10)

To save on future computation when explanations are asked, this minimization may be performed
when parsing the rules into DNF. However, this compromises the original structure of the rules,
which end-users may have hand-crafted, and therefore may be more intelligible than in a

compressed, minimized form.

B.5 DisJUNCTIVE NORMAL FORM (DNF) EXPLAINER

We keep separate the rules that infer different classes, ie., ¢; N ¢; = @, for i # j. For an inference

model with m possible class values, we will store a DNF rule tree for each class value, j, in a map of

DNF trees:

W= W (B.11)
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where

Y= Uv,- &jy is the DNF tree for all rules that infer the jth class, (B.12)

$jw = ﬂ Xjyp is the vjth rule trace c/ausein that DNF, and (B.13)
Pjv

Xjyp is the pj,th condition /iteralin that rule trace.

The explanation generation algorithms also apply to explanations for decision trees (see Section

B.9), since we also convert decision trees to DNF.

B.5.1 NOTATION FOR EXPLANATIONS GIVEN INPUTS STATE

Given A as a Boolean expression that can be a literal or compound expression (conjunction,

disjunction, DNF, etc.), and x as an inputs state, we introduce the notation

TRUE ,ifxe& A
FALSE ,otherwise

TRUE ,if A istrue given x
Alx = {
where x € A denotes that b is not described in A. In probability theory, this is equivalent:

1 ,if Aistrue given x
[A|x] = P(A|x) = {1 Jifxeg A
0 ,otherwise

where for a deterministic, rule-based system, probability can only take values 0 or 1.
For an inference model, the ith class is inferred when
P(Yilx) = P(Yjlx) ,Vj (B.14)

For a rule-based inference model inferring the ith class, each ¥; is mutually exclusive

Lo
P(’Glx)=[[16'|x]]={0 ' (B.15)

Conversely, the negation of Y; yields the behavior:
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_ 1 ,ifj #i
Fid={o )2 (B.16)

B.5.2 CERTAINTY EXPLANATION

While it is possible to model rules with uncertainty (e.g., Fuzzy control systems with fuzzy logic

rules), currently, the rules of the Enactor framework does not provide certainty information.

B.5.3 WHY EXPLANATION

This explains why the ith class was inferred given the inputs x. We select a subset of the DNF tree

can infer the ith class, specifically, the traces that do infer the ith class given inputs x:

Yilx = Uwfiv[[fiﬂx]] = UW ﬂpUkavp[[Xivplx]] (B.17)

where

&y = ﬂ Xipp is a trace consisting of conditions X,
Piv

_ (1 ,if &, is true given inputs x
[Sivla] = {O , otherwise

n
Eivlx = | I Xiyplx = | | | I Xivp|xr is whether trace §;,, is satisfied by inputs x
Piv Piv r=1

TRUE ,if X;;, is true given x,.
Xiyplxr = {TRUE ,if x, & X;y, , is whether condition X;,,, is satisfied by inputs x
FALSE ,otherwise

We can also notate Equation (B.56) in terms of individual conditions:

Yilx = U ﬂ Xjvp (B.18)
véivlx

Pvk

where (v;, &;;,|x) denotes traces that are satisfied by the inputs state x.

B.5.4 WHY NOT EXPLANATION

Given that the ith class was inferred, this provides an explanation for why the jth class was not

inferred. First, we obtain traces that can infer the jth class under the relevant (not the current)
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input conditions. This selects all the traces in the DNF tree for the jth class, Y;|x = ¢; = Uvj ¢

Furthermore, the negation of this DNF tree is true given inputs x and this is equivalent to a

conjunctive normal form (CNF) using to De Morgan’s laws:

x = (U f,u>
=) &= GG

We define ¢, |x to indicate the filtered trace of §;;, = N piv Xjyp that only includes conditions, Xjy,),,

¥,

X

(B.19)

that were satisfied by x. For a trace that is fully satisfied by x, where Hfjv|x]] = 1, this returns the

full trace, i.e.,
vl = (€l [Elx] = &lEjlx] = &0 (B.20)
Now, we consider the case where fjk is not satisfied by x, i.e.,
[Solx] =0 = [Sulx] =1

Note that while ¢, is a conjunction, fj_k is a disjunction as derivable by De Morgan’s laws:

S = ﬂ Xyvp = U Xjvp

Py Pjv

fj_k|x indicates the partial disjunction of conditions, X),,, that are satisfied by x, or conversely, the

partial disjunction of conditions, X;

ivp» that are not satisfied by x:

Gobe={ ] ol (B21)

Pjv

where

(K] =0 = [Gylx]=1
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For the Why Not explanation, we perform this treatment for all traces, ¢, to get an expression in

CNF:

wbe= () Gt =[], U, Korluoi] (B22)

where

FALSE ,if X;,,, is true given x
Xpplx ={TRUE ,ifx, & X,
TRUE |, otherwise

Should purge duplicates.

B.5.5 HoOw To EXPLANATION

Suppose that the user is interested to know how the ith class may be inferred. The How To

explanation returns the full DNF tree that can infer ith class:

Y = ;r;ll/)j[[i =jl= Uwfz‘v = Uvi ﬂkavap (B.23)

Essentially, this explanation describes the various conditions that must be true for the ith class to

be inferred, either one of the rule traces ¢;,,.

Explanation algorithms for rule DNF is implemented in the explainer delegate

DnfTreeExplainerDelegate.

B.6 SEPARABLE-RULES DNF EXPLAINER

We may want to retain some semantic meaning in individual rules, rather than naively merge them
together. For example, rules may be given names to aid end-users to remember their purpose or

rationale, and to help them distinguish between other rules.



B.6 INTELLIGIBILITY TOOLKIT EXPLAINERS 283

For an inference model with m possible class values, we will store a map of DNF trees for each class

value, j, in a map of maps of DNF trees:

m
Y= Y; (B.24)
j=1
where
Y= Uk Yji is the map of all DNF trees for all rules that infer the jth class, (B.25)
J
Y = UUjk &jkyv is the kjth rule as a DNF tree, (B.26)
&y = X i : (B.27)
kv = ikvp 1S the vj th rule trace c/ause in that DNF, and
Pjkv
Xjkvp is the pj,th condition /iteralin that rule trace.
B.6.1 WHY EXPLANATION
Substituting Equation(B.24) into (B.17) gives:
vilr={J | Gwléuln (B.28)
kg v

which is a double disjunction of trace clauses, where traces due to each v, th rule is kept separate.

For the simple case where each rule has only one trace conjunction in its DNF form, i.e., |1/ij| =1,

Equation (B.28) is simplified to
bilx = Uk'fik[[x kSl (B.29)

So, the explanation only provides a disjunction of satisfied traces.
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B.6.1.1 WHY EXPLANATION OF MERGED RULES

Merging results from Equation (B.28) yields:

pir= ] golénl (B.30)

kivik

Note that this only adds satisfied (i.e., x + ;) traces from each DNF tree to the explanation, not

the whole DNF tree.

B.6.1.2 WHY EXPLANATION AS RULE NAME

This presents the same information as Equation (B.28), but allows incremental retrieval of

explanations. First, we retrieve the rule by name

U Vill$iwlx] (B.31)

where v; refers to the index or name for the v;th rule.

Later, the end-user may ask for details about that rule, and can see explanation:
(i = U Sllv=ul =&,
u;
Programmatically, this is equivalent to ¥. getDNFs(i). getDNF(v).

B.6.2 WHY NOT EXPLANATION

Substituting Equation (B.24) into (B.22) gives a conjunction of CNFs:

ll)_Jlx B ﬂkj ﬂv;fjjlx - ﬂkj ﬂvjk U XJTW[[X}TWI)C]] (B:32)

Pjkv
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B.6.3 HoOw To EXPLANATION

This is similar to Equation (B.23), but we retain separation of each DNF tree representing a

different rule:

Y = ;n:ll/Jj[[i =jl = Uki vaiv (B.33)

B.7 ENACTOR RULES EXPLAINER

This implements the algorithms in Rule Trace Explainer (see Section B.4) to explain the rules
executed in Enactors [Dey and Newberger, 2009] within the Context Toolkit [Dey, Abowd, and
Salber]. First, we parse the rule encoded as AbstractQueryItems into the Expression framework
of the Intelligibility Toolkit. We then apply algorithms in Figure B.2 and Figure B.3 to generate the

map of DNF trees, ¥, allowing us to generate explanations in Section B.5.

B.8 OTHER SYSTEM RULES EXPLAINERS

Other context-aware systems that use rules for inference may also be able to leverage the
algorithms in Sections B.4 and B.5 for explaining rules by parsing their rules into into the

Expression framework of the Intelligibility Toolkit.

B.9 DECISION TREE RULE TRACE EXPLAINER

We parse the decision tree structure into disjunctive normal form (DNF), from which we can more
easily generate explanations. Each conjunction represents a trace from the root node of the tree to a

leaf. Therefore, the number of conjunctions is equal to the number of leaves.

to DNF
T—Y

(B.34)
1) = TreeToDNF(7)
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Figure B.4. (Left) A simple decision tree illustrating the condition literal of each edge and the
class value that will be inferred at each leaf. (Right) DNF trees for each class value that is
built after traversing the tree and collecting traces with the same inferred class value at

their leaves. Although this diagram illustrates the conversion for a binary decision tree, the

conversion is applicable to trees with more than two branches at each node.

Figure B.4 illustrates the decision tree conversion to DNF, and Figure B.5 and Figure B.6 describes

the algorithm. Once in DNF, we generate explanations using techniques in Section B.5.

T, = root node of decision tree
& := new empty trace clause // stores a conjunction of condition literals, X,,
Y= U;-’;l Y; = map of DNFs of each class value // gets updated in TreetoDNF

TreeToDNF(ty, &, ¥)

TreeToDNF(t, &, W)
If T parent of ), 7, for some t,, // 7 has child nodes
For each child node 7,
X, := EdgeLiteral(t, t,) // define condition literal to represent edge {z, 7, } from 7 to 7,
&, :=Clone ¢ // duplicate trace to extend for each child path
&, =&, + X, // append literal X, to trace clause ¢,
TreeToDNF(z,, &, ¥)
Else // T is a leaf
P, = }jL1 P ; := read probability class distribution at node t
i == max; P, ; // inferred class value has the maximum class probability

Y, =W-[j =1i] // retrieve DNF 1; that infers the ith class
Y, :=1; +§ //append trace clause ¢ to1);

Figure B.5. Algorithm to traverse the decision tree depth-first to convert it into DNF.
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EdgeLiteral(z, t,,)
X, = attribute described in T
If x, is nominal // 7 describes a nominal attribute split
X,: x, = pth value of x,.
Else If x,. is numeric // 7 describes a numeric attribute binary split
Ifv=0
Xyp: Xp < Xy spuit // Xrspuie = learned split point for rth feature at this node 7
Elselfv =1
Xt Xp > Xy spuie
Return X,

Figure B.6. Algorithm to obtain the condition literal representing an edge transition in the
decision tree. This is specifically implemented for J48 in Weka, but can be generally

applicable for other decision tree implementations.

This algorithm is implemented in J48RuleTraceExplainer.

B.10 OTHER RULES EXPLAINERS

Other rule explainers may also be developed. For example, a more efficient algorithm to convert an
arbitrary Boolean expression to DNF is the EXPAND algorithm proposed in [Crama and Hamer,
2008, p. 22], which was inspired by Tseitin [1968] and [Blair, Jeroslow, and Lowe, 1986]. This
algorithm runs in polynomial time instead of exponential time of the previously described naive

method. This can be implemented in a rule explainer to speed up the explanation generation.

Aules can be extracted from inference models that are intrinsically not rule-based, such as Artificial
Neural Networks (ANN) [Tickle et al, 1998], and Support Vector Machines (SVM) [Nuiez, H.,
Angulo, C., Catala, 2002]. This allows other non-rule-based models to be explained using the rule

paradigm, which is familiar to lay end-users.

B.11 WEIGHTS OF EVIDENCE EXPLAINER

This explainer forms the abstract basis of our subsequent weights of evidence explainers. It uses
the underlying concept that an inference is due to a total evidence, where this evidence may
support or oppose the inference, and can be due to a sum of underlying atomic weights of evidence.

These weights may be due to the input feature values voting for or against an inference. Depending
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on the inference model, there may also be more dimensions of atomic weights. For simplicity, we
denote an atomic evidence as f;,, and the space of all atomic weights as R. A total evidence can thus

be represented as the sum:

9i = erRfir (B.35)

Equation (B.35) requires that the explainer is able to derive a linear additive expression of atomic
units. This is easy for linear classifiers (e.g., linear SVM), but in general, isotonic (monotonic
increasing) transformations may be required (e.g., see explainer for naive Bayes in Section B.15).

We defer these steps to later sections describing the concrete explainers.

We shall next show how with this absolute weights of evidence, we can derive weights of evidence

explanations for Why and Why Not questions.

B.11.1 ABSOLUTE EVIDENCE

This explains the value of p; as a total evidence due to the sum of atomic weights:

=31 839

where f;; is the rth atomic weight of evidence.

B.11.2 WHY NOT EXPLANATION

This explains why the jth class was not inferred over the ith class. In other words, why the ith class

was inferred instead of the jth class.
pi = pj

Note that this is different from the Why Not explanation of a rule trace that explains why the jth
class was not inferred. In this case, the jth class may have been inferred, but just not with the

highest certainty among all class values.
Agij=9i—9;= Z Afijr 20 (B:37)
r

where Af; = fir — fj» and we assume that the atomic weights of evidence are separable by each

atomic unit.
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B.11.3 WHY EXPLANATION
This explains why the ith class was inferred over all other class values j, i.e.,
pi2pj ,Vj

Consequently, Equation (B.37) holds for Vj, such that we can sum over Vj to get the Why

explanation:

m m
Agpy = z Agi; = Z Z Afir =0 (B.38)
j=1 j=14=dr

B.11.4 CERTAINTY EXPLANATION

Assuming that at the system level, the model will produce a distribution of certainty for inferring

each class value, the Certainty explanation returns this distribution:

m
p= Z pj (B.39)
Jj=1

where p is the total certainty (usually normalized as a probability to 1) and p; is the certainty for

inferring the jth class value.

B.11.5 How To EXPLANATION

The How To explanation depends on underlying model and we defer this to the later sections. Also
note that since this is a general explanation independent of specific instances, we do not provide the
explanation in terms of input feature values, x,. Generally, this explanation will be presented as a

multivariate inequality with the input features as variables.

Consider that the ith class was inferred and the user asks How To infer the hth class. First we

compute the current evidence for the hth class using Equation (B.36):

9n = erhr
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Substituting this into Equation (B.38), we get

Agpy(x) = Z;Agm (x) = Z;n:lerfhjr (xr) =0 (B.40)

where Agy;(x) is separable for each x, term and Af}, ;,-(x,) is a function of only the x, term. The

exact expression of Afy, ;- (x,) depends on the Explainer. We describe three common forms.

B.11.5.1 NUMERIC LINEARLY SEPARABLE

Some Explainers (e.g., for linear regression, logistic regression, SVM, kNN) produce expressions for

Agpj(x) which are linearly separable for each x,,, i.e,,

m m
Agnpy(x) = Z Z Afhjr(xr) = Z Z Awpjrxy 20
j=14=dr j=14=dr
m
= Z (Z Awhjr> Xy
r j=1

(B.41)

where
Afhjr(xr) = D@y jrxy (B.42)

is a linear function of x,. and Awy - is a coefficient, of which concrete Explainers will need to derive

expressions (or approximations).

The How To explanation expresses a linear equation of input feature values, x,- such that Agpy = 0.
For specific How To explanations of each Weights of Evidence explainer, we will just derive

expressions for Ag,y(x) in terms of input features, x = (xq, ..., X,)-

B.11.5.2 NuMERIC NORMAL DISTRIBUTION

Some Explainers (e.g., for naive Bayes) assume that numeric attributes follow a Normal distribution

given the class value, i, i.e.,

P(x,|1) = pi = ir (B.43)
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(xr - ﬂir)z

2
2 Oir

1
log(pir) = — EIOg(Zﬂ) —log(oyr) — (B.44)

where y;, is the mean value of the rth feature and oy, is its standard deviation.

An approximate How To explanation for inferring the hth class is just to return the mean value py,

of each rth input feature which maximizes P(x,|h), ie.,

argmax(p;-) = Uir (B.45)
Xr

B.11.5.3 NomMINAL INPUT FEATURE

If each x,. input feature is a nominal / discrete variable, then we can find all combinations of x such

that Agpy(x) = 0 through permutation.

B.11.6 How To IF EXPLANATION

We can provide a more operationally useful explanation with How To If that fixes (makes constant)
all but one input feature, xz. We consider the current total evidence for inferring the hth class,
Agpy(X), where the hat notation indicates current input feature values of the instance, X. Note that

the actual value of Ag,y(X) depends on whether the hth class was actually inferred, i.e.,

(=0 ,ifh=i
Ag’“’(x){<0 ifh#1i

The How To If explanation describes the range of values of x; to satisfy the condition Agpy = 0, i.e.:
m
Bgne@®) + ) (e () = My (%)) 2 0 (B.46)
j=
Similarly to the How To explanation, the How To If depends on the form of the input feature.

B.11.6.1 NUMERIC LINEARLY SEPARABLE

Substituting Equation (B.42) into Equation (B.46) gives the How To If explanation:

Agry (%) + (Zm Awhjr) (xzg—%:) =0

j=1
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(>xJr ifzm Awy - >0
| 7o . hjr
Jj=1
> m B.47
# i< x!if z Awpjr <0 (BA7)
j=t
(0] ,otherwise
where
Foa Agpy (%)
X; = X5 —

FTSm AL
Zj=1 AO‘)hjr

B.11.6.2 NuUMERIC NORMAL DISTRIBUTION

Considering atomic weights of evidence as log transformations of probabilities (e.g., Equation

(B.93)), we have:

Afhjr(xr) = frr (%) — f}'r (%) = log(pny) — log(pjr)

2 B.48)
(xr - #jr) (xr - #hr)z (
=log(gj) + ——=—— —log(op,) ————
b+ 0T,
EQUAL VARIANCE
Assuming equal variances, oy, ~ 0j,, Equation (B.48) becomes
(xr - :ujr)z (xr - .uhr)z
Afpjr(xy) = log(on,) + ez log(op,) — Tz
s? R
2
_ (xr - ﬂjr) - (xr - Mhr)z _ (#hr - .ujr)(zxr — Ujr — .uhr) (B_49)
207, 207,

_l"hr_lljr( _l"hr+ﬂjr
= T

o7, ) = Ange e = i)

where

Unr — :ujr £ _ Unr + :ujr
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Therefore, substituting Equation (B.49) into Equation (B.46):
m
Agpy(X) + Z , 1Ahjf(xf —%)=0 (B.50)
]:

Solving Equation (B.50), we get the range of values of x; for the How To If explanation:

m
>x; ,lf ] 1Ahj7~‘>0
]:
x m B.51
r <xT ,lf Ahjf‘<0 ( )
| ~°7 =1
k @ ,otherwise
where
t s Agpy(®) 2Agpy(X)
Xrp =XF—m 4 . XF T m
Zj=1Ahjf MUpy _ijllljr

1
and 7L, Apjr > 0 when pp, > EZ}”ﬂyﬁ.

UNEQUAL VARIANCE

We can also solve for a range of values for x; without assuming equal variance and, instead, solve a

quadratic equation. Equation (B.48) becomes:

1/1 1 , u? z o;
Dujr(Cer) = 5| = = — )% = M—];—ﬂ% xr + %—“—r; +10g(i>
2 0-] Opy 0-] Ohr O-jr Opy Ohr (B .5 2)

= Ahjrxz + thrxr + Chjr

where
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Substituting Equation (B.52) into Equation (B.46):

m 2 m
(Z 1Ahjf> xXi + <Z 1thf> X7+ Agnry(X) = 0
j= j=

(B.53)
Ahfxrg + Bthf + Ch =0
where
m m
A=), A Bie=) Bup Cn=Agy®
Solving Equation (B.53), we get the range of values of x; for the How To If explanation:
( VXF ,ifAhf = 0, Ch =0
xXp < xé_) or xz > xﬁ” JifAps = 0,6, <0
Xy o ) . (B.54)
L x50 < xp <X Jif Apz < 0,0, 20
) Jif Aps < 0,6, <0

where

o —Bpy — ,’szﬁ — 4Ap7Ch “® =By + "B}Zﬁ' — 4An7Ch

T 2An; o T 2A0;

B.12 LINEAR REGRESSION EXPLAINER

A common and simple way to model application behavior is using a linear function, where multiple
input factors influence an output value (e.g., outdoor temperature and number of occupants

influencing the heat output of a temperature control system). Formally, the function takes the form:

n
Y =0ay+ a1X; +azx, + -+ apx, = Z a Xy (B.55)
r=0

where a, is the scaling factor for each input, and x,. is the value of the rth input feature.
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For a given input state, {x,} = (x1, x5, ..., X;,), we can explain how each input feature value, x,,
influences the output due to the value f. = a,x,. Thus we can explain the outcome using the

Weights of Evidence explanation:

g=fothithtetfi=) £ (856)

where f, = a,x, is the evidence due to each input feature, and g is the total evidence.

Equation (B.56) forms the basis of the remaining Weights of Evidence explanations in terms of

input features.

B.12.1 CERTAINTY EXPLANATION AS MIEEASUREMENT UNCERTAINTY

While the most classification techniques covered in the Intelligibility Toolkit models the certainty
(or confidence) of inferring the output as various nominal class values, certainty in regression is a
different concept typically indicating the uncertainty or error of the numeric output. This is
particularly meaningful for inputs representing physical measures (e.g., temperature, energy).
Using the method addition in quadrature that calculates uncertainty due to sums and differences for

random and independent uncertainties, the uncertainty of the output is:

5y = J (6ag) + (8(arx1)” + +++ (8(anxn))” = JEZO(a(arxr))z (B57)

where 6z represents the error of the term z, specifically, §a, is the uncertainty in a,., and §x, is the
uncertainty in x,. dx, could be the conditional standard deviation or a confidence interval given the
inferred valuey, or the actual measurement error in x,. For manually defined functions, each da,
could be 0 or a constant value; for learned regression functions, da, could be the least squares

error.

Assuming independence between the estimated parameter a, and stochastic variable x,., there will

be no covariance or correlation between them, and Equation (B.57) becomes:

Sy = \/Zlo(d(arxr))z = \]Z:;O(Sarxr + a,6x,)? (B.58)
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For simplicity, if we assume no uncertainty in a,., Equation (B.57) then becomes:

Sy = Zn (a,6%,)? (B.59)

r=0

Note that this results represents the measurement uncertainty in the output value, not the certainty

that the output value is correct.

B.13 LOGISTIC REGRESSION EXPLAINER

Now that we have dealt with explaining functional outputs, we turn to explaining functions that are
used for pairwise categorical inference (two categorical states). In particular, Logistic Regression is
commonly used to transform weights output into a choice between two values (i.e., 0 or 1). We
begin by considering the simpler case of logistic regression for binary classification and then

discuss it for the multiclass problem.

B.13.1 BINARY LOGISTIC REGRESSION

The binary Logistic Regression models the probability of inferring class value 1 (instead of 0) as a

sigmoid function of a linear expression of input features:

1

= T (B.60)

p
where x, is the value for the rth input feature, 3, is the gain, and x, = 1 is constant term.
Alogit (log-odds) transform, logit(p) = log (1%)), on Equation (B.60) converts it to linear form:

logit(p) = anoﬁrxr (B.61)

Equation (B.61) is exactly the same form as Equation (B.55) for linear regression, and so we can

apply the same explanation techniques as for linear regression:

g= ijofr (B.62)

where f,, = B,x, is the evidence due to each input feature, and g = logit(p) is the total evidence.
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B.13.2 MULTINOMIAL LOGISTIC REGRESSION

Logistic Regression is intrinsically a binary classifier, so a multi-class extension approach needs to
be applied to support multiclass classification. The Weka toolkit uses a one-vs.-one approach and

models a multinomial Logistic Regression with m class values and n input features with:

e m — 1 pairwise classifiers are built that compares the first m — 1 class values against the

last class. The ith classifier learns the linear function

yi(x) = z:;oﬁirxr

e The probability of inferring the ith class value (i < m) for the current input state is

yi(x)
¢ 1w

Pl %) Z

e The probability of inferring the mth class value (i.e., the last class value) is

I _l.w

Pm = 1 Vo) Z

where Z = 1+ Y3(x) is the normalization factor, Y5(x) = Z}":_ll e¥i®, eym( =1, and y,,(x) =

Yo BmrXxr = 0. We choose By, = 0, Vr, Vx,. We can see that this satisfies Y/~ p; = 1.

Unfortunately, the total evidence for inferring the mth class is 0, and this can lead to problems
when we want to use this evidence to explain ensemble methods (see later, Section B.20), because
they may need to normalize a non-zero total evidence. We can work around this problem by

relaxing the requirement that y,,, (x) = 0, and defined y,,(x) = X7~ BmrXr = Bmo, Where

_[Bmo T=0
ﬁ””—{o r>0 TV

For simplicity, we can set 3,0 = 1. We also need to preserve the proportionality among each p;, i.e.:

P _ oymG-yi) = oBmo=iC)+Bimo)
bi

Pi _ o303 = o) +Bmo)~ G +Bmo)
bi

So B0 needs to be added to each pairwise classifier. This changes the probability of inferences:
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1. m — 1 pairwise classifiers are built that compares the first m — 1 class values against the

last class. The ith classifier learns the linear function

yi(x) = Z:lzo.girxr + Bmo

2. The probability of inferring the ith class value (i < m) for the current input state is

yi(x)
e _ 1w

Pi= B + Ys(x) Z

3. The probability of inferring the mth class value (i.e, the last class value) is
1 ey

Pm = oBmo + Ys(x) Z

where Z = ePmo + Yy(x) is the normalization factor, Ys(x) = Z}’;‘ll e¥i® and eYm®) = gfmo,
Y (%) = Y70 BmrXr = Bmo- We can see that this still satisfies Y/, p; = 1.

To get a linear additive Weights of Evidence, we take a log transform:

gi = logit(p;) = y;(x)
n B.63
=D, _Jr B
r=0

where

fir = Birxy

Bir i<mr>0
Bir = Bir + Bmo 1 <mr=0
w 0 i=mr>0
Bmo i=mr=0

'.BmO #0

_(x, >0
xr_{1 r=0

B.13.3 INPUTS FEATURE NORMALIZATION AND STANDARDIZATION

Often it is useful to pre-process the data before training or using an inference model (e.g., SMO,

kNN) by performing normalization:

7, =2 (B.64)
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or min-max normalization (called standardization in the Weka toolkit; scales the range to 0 to 1):

X, — min,
Zy = ———— (B.65)
max, — min,
This can reduce bias due to the relative value sizes of different features. The consequence of this is
that the model is trained and tested on the normalized/standardized features, which is not as
meaningful to end-users as the original features. Particularly, this affects the weights used in the

Weights of Evidence style of explanation. Therefore we need to invert these pre-processes in

generated explanation. To invert normalization:

n
9= f=b
r=1 (B.66)
T (-
r=1 \Oy Oy
n n
=Z Wr!xr_blzz f;-’_b’
r=1 r=1

where yu, is the mean value of the rth input feature, o, its standard deviation over the training

dataset, and

r_ ! _ Wr
ﬁ" - WT' x‘l" - xT
O-T

b'=2n 2l b
r=1 Opr

Similarly, to invert min-max normalization:

g= Z;fr’ - b (B.67)

where

Wy n w,min,
fTIZWr’xr:—-xr ’ b’:z ——+b
max, — min, r=1Max, —min,
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B.14 LINEAR SUPPORT VECTOR MACHINE (SVM) EXPLAINER

Linear support vector machines (SVM) use a maximum-margin hypothesis to train a linear classifier
to discriminate between two (binary) class values. In its simplest form, it outputs a continuous
numeric output, which can be calibrated to give a more accurate probability output for its inference.
Several techniques exist to extend linear SVMs to handle multiple class values, uncalibrated or
calibrated. We describe these algorithms and discuss explainer algorithms used in the Intelligibility

Toolkit to explain these four variants of Linear SVMs.

B.14.1 BINARY NON-CALIBRATED LINEAR SVM

Even though linear SVMs use a different learning approach than linear or logistic regression (e.g.,
Sequential Minimal Optimization (SMO) [Platt, 1998]), it produces a linear decision boundary that

takes the same form, i.e.

n
V= Z WXy (B.68)
r=0

where y is the functional output, X, is the value of the rth input feature, w, is the learned weight of
the feature, and there are n features. We can thus apply the same Weights of Evidence approach as

for Linear Regression to explain this linear decision boundary (Equation (B.56)).

n
g=> _ (B.69)
where f,. = w,x,.

B.14.2 BINARY PLATT-CALIBRATED LINEAR SVM

The simple linear SVM does not produce a probability output. Platt [1999] developed a calibration

method by fitting the SVM output to a logistic regression with the following model:

1

b=y (B.70)

p

where [ and y is the learned coefficient and constant, respectively, and y is the learned linear

model from Equation (B.68).
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Taking a logit transform on Equation (B.70) produces the similar expression as Equation (B.68) but

with a scaling factor § and translation y:

n n
9= pwx+r=) f (B71)
r=0 r=0
where f,, = w,x,,
_ {,Bwr Jifr >0
Or = Bwe +y Lifr=0

B.14.3 MULTICLASS NON-CALIBRATED LINEAR SVM

We consider multiclass inference as done in the Weka toolkit for linear SVM. The number of votes

for the ith class value is the sum of relevant pairwise classifiers that voted for the ith class, i.e.,

yi = ijl[[Yij > 0] (B.72)

where y;; is the SVM output of the pairwise classifier between i and j. y;; > 0 when the pairwise

classifier votes for the ith classifier, otherwise, it votes for the jth classifier, [-] indicates

_ (1 ifXtrue
[x] = {0 if X false

n
yij = Z wijrxr
r=0

s ={Wijr ,ifr>0
Ur=l-b ifr=0

where w;;,- and b are the original learned coefficients and constant from the pairwise classifier for

Yij-
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We want to express the weights of evidence in terms of input features, r = 0 ... n. We can multiple

Equation (B.72) with the normalized sum of weights of evidence due to features:

1 Zn
wijprxy =1 B.73
Value(yij) r=o T ( )

where value(*) = sgn(-)|'| and we denote the total evidence due to features as Value(yij). This
represents the number value of y;; rather than y;; as a series expansion. Multiplying Equation

(B.72) with Equation (B.73) and rearranging, we get
n
r=

where

wijr
Afi; = ——— ,
fur Value(yij)xr[[yu > O]]

o Wijr ,ifT>0
Dijr {—b Jifr =0

B.14.4 PAIRWISE COUPLING

Before we discuss multiclass calibrated linear SVMs, we discuss pairwise coupling, an important

method to support multiclass inference with binary classifiers.

Many inference models can only make classifications between two class values (e.g., Logistic
Regression, Support Vector Machines), but applications may want to infer over more than two value
(i.e., a multi-class problem). Several methods exist to help use binary classifiers (that deal with only
two values at a time) for multi-class problems. For example, n one-vs.-all classifiers can be used to
infer over n class values, and the value of the classifier with the highest certainty is chosen. An
alternative popular approach is to use Pairwise Coupling [Hastie and Tibshirani, 1998] that looks at
n one-vs.-one classifiers, and chooses the class value that is selected by the most classifiers. We
briefly introduce this algorithm in this section, and generate explanations for it. Refer to the original

paper for a more detailed discussion of the method.

For a multiclass problem with n class values, consider a system of n? pairwise classifiers covering

all pairwise comparisons. We index these classifiers as {ij} representing the binary classifier that
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will infer the ith class if the inference is positive, and the jth class instead if the inference is
negative. For pairwise classifiers that are calibrated, we can denote the probability of inferring the

ith class instead of the jth class with r;;. These probabilities can be represented in a matrix:

Nz = Tn ) T2 vt Tin

{rj} = rzsl rzsn = 1_sr12 Tzsn ={1-n} (B.75)

Th1 Thz ' 1-rp, 1-—1y

We wish to estimate the true probabilities for each class value, p; (estimated as p;) from this system
of pairwise comparisons. In terms of these true probabilities, the probability outcome of each

pairwise classifier can be modeled as:

Di
p; +pj

wij = E(ry) = (B.76)

where 1;; is the observed (measured) pairwise classification probability, and w;; is the model

(theoretical) pairwise probability. The Pairwise Coupling algorithm estimates p; by maximizing the
negative Kullback-Leibler distance between 7;; and the estimates of y;;, notated as fi;;. p; converges

iteratively with:

L 2j2iNijTij

p; < P; - B.77
Pi pleqtinij.uij ( )

where n;; is the weight for the {ij}th pairwise classifier. As shorthand, we drop the hat notation to

indicate the estimate:
,Llij zrij+€ij (B78)

where £;;(x) = y;; — 1;; is the minimized Kullback-Leibler distance between the estimate y;; from
the observed 7;;. ¢;; is a function of x and its value varies for each inference. We assume ¢;; is small,

but we want to retain this difference, because otherwise approximating it away can lead to

fallacious explanations.
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Rearranging Equation (B.76), we can derive an expression for p; in terms of the probability of

another class, pj:

pi = Ilij(Pi + Pj)

o\l w)

Note that, unlike how the multinomial logistic regression deals with the multiclass problem. we do

(B.79)

not have an expression for p; independent of other classes. We therefore cannot derive a one-vs.-

none Weights of Evidence explanation, i.e.,

g = {0} (B.80)

However, we can derive one-vs.-one Weight of Evidence explanations, Ag;;, about pairwise

comparisons. From this, we may derive the one-vs.-all explanation, Ag;y. To derive an explanation

for why the ith class was inferred over the jth we start with the fact

Taking a log transforms gives us a logit expression in terms of y;;:

log( Hij > = logit(uij) =0 (B.81)
1=y

At this point, we can express a one-vs.-one Weights of Evidence explanation for the inference of ith

class over the jth class in terms of estimated pairwise classifier probability ;;:

m
Agi; = Z logit(uy) (B.82)
]=

where y;; suggests some weight of evidence for p; > p;.
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Note that this method is agnostic to the base pairwise classifier, so even a "black box" classifier can

be used.

m
j=1

While we can generate explanations for the Pairwise Coupling step, we can leave the pairwise

classifier as unexplained, or explained as a separate layer. Fortunately, as long as the logit

expression logit(rij) can be expanded, we can provide closed explanation in terms of input features.

This is possible for multiclass SVMs, which we discuss next.

B.14.5 MULTICLASS PAIRWISE-COUPLED LINEAR SVM

Linear SVMs are often used for multi-class problems (i.e.,, where inferences need to be made over
= 2 class values). To handle multiple class values, pairwise coupling [Hastie and Tibshirani, 1998]
can be used on all the pairwise classifiers. In fact, this is what the Weka toolkit uses for multi-class
SVMs. We have already described how to generate explanations of pairwise coupling of classifiers
in Section B.14.4. For the multiclass case, we express Equation (B.70) for each pairwise classifier,

with a change in notation p = r;; and other additions of the {i;} subscripts:

1
" B.84
v 1+ e_(Bif PRLEN Wijrxr+yij) ( )
Similarly to Equation (B.71), the logit of Equation (B.84) is a linear expression:
n
loglt(ﬁ}) = Bl] Z OWiijT + )/l] (B85)
r=

Equation (B.85) only provides the weights of evidence explanation for a single pairwise classifier. In
order to explain the overall inference, we seek to expand on Equation (B.82), noting that while

Wij = 1ij, they are not equal (y;; # r;;), and

logit(,uij) = logit(rij)

B.86)
* logit(rij) (

We can address this discrepancy by treating it as a difference error or a scale error.
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B.14.5.1 DISCREPANCY BY DIFFERENCE

By considering the discrepancy as a difference, we have:

logit(u;;) = logit(r;;) + &

n (B.87)
= (Z BijwijrXy + Vij) + 6
r=0
Therefore, from Equation (B.82), we can produce the explanation:
n
Agij = logit(u;;) = Z Afiyr (B.88)
r=

where
Afijr = WijjrXy

W _{.Bijwijr ,ifT>0
ur .BijWijO+Yij+6ij ,ifT':O

6ij = loglt(,ul]) — lOglt(TU)
xO = 1

r;; is output from each pairwise classifier, and p;; is estimated from the pairwise coupling method.
For each inference, the values of 7;; and y;; are computed, so we can just use them as known values,
rather than functions in x. Notice that w;, is independent of #;; for r > 0, but w;, is dependent on

the test instance, x, used for inference. Thus, we can call w,, the evidence due to estimation.

Equation (B.88) reduces well to the binary class case:

n n
Agij = Z Afijr = Z Af,
r=0 r=0

where Af, = wyx, and ¢;; = 0,50 w, = fw, +.

This difference treatment may suffer from cases where the value of §;; may be very large in

magnitude. We can ameliorate this issue by considering the discrepancy as due to scaling.
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B.14.5.2 DISCREPANCY BY SCALING

By considering the discrepancy as due to scaling, we have:

logit(uij) = Kijlogit(rij)

n (B.89)
= Z KijBijWijrXr + KijYij
r=0
Therefore, from Equation (B.82), we can produce the explanation:
n
Agij = logit(u;;) = Z Afiyr (B.90)
r=

where

Afijr = WijjrXy

o = [EuBiwiir Jifr >0
o KijBijwijo + iy Lifr =20
logit(ﬂij)
Kij = —

B logit(rij)

B.15 NAIVE BAYES EXPLAINER

The naive Bayes classifier is a simple classifier that uses Bayes theorem to classify values. It
assumes that input features are conditionally independent of one another. Our explanation for
naive Bayes inference is an extension of [Poulin et al. 2006] for multi-class problems. The posterior
probability that the ith class is inferred (y = y;) from a set of m class values given the observed

instance input feature values x:

PO =3l = POl 3 x) = PO | | PGl (B9

where x, is an input feature of n possible values. We neglect the denominator term as it will cancel
out. The probability is calculated from the prior probability that a class would be in, P(y;), and the

conditional probabilities of each feature value given the class, P(x,|y;).
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For notation convenience, let us define

o { P(y) r=0
v P(xrlyi) r>0
pi = P(yilx)
Then Equation (B.91) becomes
n
pi = 1_[ Dir (B.92)
r=0

Taking a log transform of Equation (B.92) gives the linear expression for the weights of evidence

explanation:

log(p) = ). _log(pi)

n
gi = E fir
r=0

(B.93)

where f,. = log(p;).

B.16 HIDDEN MARKOV MODELS (HMM) EXPLAINER

A hidden Markov model (HMM) is a Bayesian network that models the probability of a sequence of
hidden states given a sequence of observations (input features with respect to time). First-order
Markov models assume that only the previous state affects the next, and only the current state
influences the current observation. For detailed information on HMMs, please refer to [Rabiner,
1989]. We can derive a weights of evidence explanation for HMMs in a similar manner as we did for

naive Bayes.
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B.16.1 SINGLE OBSERVATION PER TIME STEP

We consider a sequence of length T. The probability of inferring state (Output) sequence s, given

the observation (Inputs) sequence x is:

pesi =) ([ pessen) ([ peadso)
= o) ([ T_atsse) ([ T_ Boxlso)

where P(s;) = m(s;) is the prior probability that a state is 51, P(s¢|s¢—1) = A(S¢|s¢_1) the transition

(B.94)

probabilities from state s;_; to s;, and P(x.|s;) = B(x;|s;) the emission probabilities of the

observations given the state sequence.

Taking a log transform on Equation (B.94) gives the weights of evidence explanation:

gs = log(P(s|x))
1 T T
= thllog(n(sl)) + 2t=210g(A(st|St_1)) + 2t=1log(B(xt|st)) (B.95)

T
= fst

t=1

where

3 { log(m(s1)) + log(B(x.lsy) ,ift=1
st

f log(A(s¢lsi—1)) +log(B(x¢lsy)) ,ift>1

B.16.2 OBSERVATION VECTOR PER TIME STEP

Next, we consider HMMs with observation vectors for each time step, specifically with n input
features. At time step t, the observation is X; = (x¢1, Xt2, ..., Xt )- The probability of inferring state

sequence s, given the observation sequence x is:

Pt = ps) ([ pesdse) ([ peatso)
= s ([T _acsse) ([T pczso)

(B.96)
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To allow features to individually provide evidence, we need to make a naive assumption (similar to

what is done for naive Bayes) that the features are independent of one another given any state, i.e.,
i n
P(Xc|se) = P(xn:xtz: ---vxtn|xé) = | | P(xerlse) (B.97)
r=1

We define a new parameter for the HMM, B(x;|s;) = P(x;|s;), which is a naive emissions
probability matrix representing the probability of observing input value x;, given hidden state s;.

This can be computed with a labeled training set.

Substituting Equation (B.97) into Equation (B.96) gives

Pt = s ([ ] _acsdse) ([ Berolso) (8.98)

For notation convenience, we rewrite Equation (B.98) as:

T n
ps = 1_[ l_[ Dstr (B.99)
t=1 r=0

where
(s1) Jifr=0,t=1
Dstr = A(St|St_1) ,ifT = O,t >1

B(xylsy) Lifr>0

Taking a log transform on Equation (B.96) gives the weights of evidence explanation:

T n
5%5=) > fur (B100)
t=1 r=0

where

log(n(sl)) Jifr=0,t=1
fser = log(pstr) = log(A(Stlst—l)) Jifr=0,t>1
log (E (xtrlst)) ,ifr >0

So, with the naive assumption of independence among features, HMMs can be explained as the sum

of evidence of:

1. Prior probabilities of selected state, (r = 0,t = 1)
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2. Weights of Evidence due to each state transition, (= 0,t > 1)

3. Weights of Evidence due to feature value at sequence step, (r > 0)

B.16.3 EXPLANATIONS REGARDING THE LAST TIME STEP

Even though the HMM will infer over a time sequence, end-users may be interested only in the last
time step. In this case, explanations will pertain to the various n class values that the last state s
may take. Given the inferred state sequence, s = (54,53, ..., S, ..., ST), we consider the last state
inferred as the ith class value, ie, st = i. We want to present the evidence for s; =i, i € [1,m].
given sy, S,, ..., Sy_1; this explains the probability of inference, P(s; = i|sy, S5, ..., S7—1)- To use the
same notation as non-time-based explainers, we also define x, = xp,.. Fixing sq,5;,...,57_1,

Equation (B.100) becomes:

T n
5= > fu (B101)
t=1 r=0

where

log(n(sl)) Jifr=0,t=1
log(A(stlst_l)) Jifr=0,1<t<T
Fior = log(A~(l|sT_1)) Jifr=0,t=T
log (BCxirlsy) Lifr>01<t<T

klog(E(xrli)) Jifr>0,t=T

Equation (B.101) presents the weights of evidence in two dimensions, time step and input features.

We can now use the techniques for non-time-based explainers to derive explanations for Why, Why
Not questions. However, each weights of evidence, g;, explains the conditional probability

p; = P(sp = i|sy,S,, ..., S7—1) instead of P(s = i).

B.17 DECISION STUMP EXPLAINER

A decision stump is one-level decision trees (i.e., the root and leaves) [Iba and Langley, 1992],
which uses a single input feature for inference. Decision stumps are typically used as part of an

ensemble classifier, such as AdaBoost. It infers a probability distribution over the class values.
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Denoting the selected feature as the #th feature and the probability for inferring the ith class value

as p;, the weights of evidence explanation is:

9i = z;fir (B.102)

where f;, = p;[r = 7], and [-] is the Kronecker delta notation.

This explainer algorithm is implemented in DecisionStumpExplainer.

B.18 DECISION TREE EVIDENCE EXPLAINER

P(Yi) P(Yi)

P(X4)

‘P(Y,-nXl) P(YI)P(Xl)

P(XZ|Y1nX1) R S P(Xz)

| |
P(Y:NX1NX>) B(XinX; P(Y}) P(X1)P(X>)
I \_F L |

Figure B.7. (Left) A decision tree illustrating probabilities at each node due to the probability
distribution in the training set satisfying the feature conditions, X o, at the node, and
conditional probabilities of each edge between nodes. (Right) Probabilities of nodes and
edges of the reasoning trace, assuming conditional independence between feature

conditions. Edge probabilities are used in the weights of evidence explanation.

We had previously considered the decision tree deterministically as a combination of rules. Here,
we want to consider it probabilistically, where its structure is due to statistical treatment of a
training set. This will allow us to produce a Weights of Evidence explanation of the trace, where we
attribute atomic weights of evidence to each decision condition in the reasoning trace. Given a trace

with 7 conditions, we denote the pth condition as X,,. A condition may be an equality or inequality,

eg., x, = 10, x, > 7, where x,. refers to the rth input feature.
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A full trace is represented by the event

n
p=1

A learned decision tree encodes the probability distribution for inferring class values as the
probability distribution of the training instances at the leaf of the traced path in the tree. So the

probability of inferring the ith class (event denoted as ¥;: y = i) is

n n
pi =P, (ﬂp:1xp) = p (YL- n ﬂp:1xp> (B.103)

We will use the LHS notation for the rest of the working. We can similarly recover the probability of
inferring the ith class for a pruned tree (i.e., a truncated reasoning trace). Consider the reasoning
trace truncated to the pth node (condition). The probability of inferring the ith class can be

computed as

P n,(N?_, X,)
P; (ﬂqleq) =1L (B.104)

n (NG %o)

where ni(ﬂgleq) is the number of training instances satisfying the condition ﬂf;:qu and which

are labeled with the ith class.

Note that this does not represent the atomic weight of evidence due to the condition X,.. Instead, the

atomic weight is the probability of transition along the edge from X,._; to X,

P; (X P

Unfortunately, in this edge probability depends on X,,, due to conditional dependence. However, if

p-1 P(Ne_,Xx,)
Y, N l I X | = 9=1"4/ B.105
g=1 q) P (N2Z1X,) (5105

we take assume conditional independence between X,., Vr, as is the case for naive Bayes, then

P; (Xp

r—1
Y; N ﬂ 1Xp) = Pi(X,) = pip (B.106)
p:



314 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Substituting Equation (B.119) into Equation (B.116) gives

n
Pi = PioPirPiz - Pin = OPip (B.107)
p:

where p;o = P(Y;) = P(y = i) is the prior probability for inferring the ith class. p;, can be

calculated from the distribution of the full training set.

Taking a log transform of Equation (B.120) gives the Weights of Evidence explanations of a

reasoning trace inferring the ith class:

n

gi = fip (B.108)
p=1

where 7 is the number of conditions in the trace, p refers to the condition index in the trace,

fip = log(pip)

P(Y) Jifr =0
p. = 4 p-1
P PYinﬂ Xq /P Yinﬂ Xq) Sifr>0
q=1 q=1
Y y=y; = ithclassinferred

With this derivation, we will be able to provide alternative explanations in terms of Weights of
Evidence, instead of Reasoning Traces. This can be particularly insightful for the Why explanation
by identifying factors that are more influential. However, it may not be as meaningful for Why Not

and How To explanations, since it provides less actionable information than reasoning traces.

This method produces a different explainer than the deterministic decision tree one. It generates a
Weights of Evidence instead of a Rule Trace explanation, and has corresponding explanations for
Why, Why Not and How To, for the specific rule trace that was traversed. Note that while the Rule
Trace explanation can cover multiple traces, the Weights of Evidence explanation only handles one.
Figure B.8and Figure B.9 describe the algorithm for preparing the probability distribution in
Equation (B.107).
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T, = root node of decision tree
X, := condition literal representing edge {@, 7,} from null to root node
& := new empty trace clause

Y= U;Zl Y; = map of DNFs of each class value // gets updated in TreetoDNF
TreeToDNF(ty, Xo, @, &, ¥)

TreeToDNF(t, X, P,_1, &, W)
// compute edge probabilities from node probabilities; see Equation (B.105)
P._y = ¥JL; P._1j = probability class distribution of parent node 7 — 1
P, = Y%, P, j := read probability class distribution at current node 7
P(X) = Xj1 p; := EdgeProbabilities(P;_q, P;)
Store P(X) into X

If T parent of ), 7, for some t,, // 7 has child nodes
X, = attribute described in T
For each child t,,
X, := Edgeliteral(t, t,) // define condition literal to represent edge {z, 7,,} from 7 to 7,
&, = Clone ¢ // duplicate trace to extend for each child path
&, =&, + X, //append literal X,, to trace clause &,
TreeToDNF(t,, X, B, &, &)
Else // tis aleaf
i == max; P, // inferred class value
Y, =¥ -[j =il // retrieve DNF 1; that infers the ith class

Y, =1, + & // append trace clause § to );

Figure B.8. Modified algorithm (of Figure B.5) to traverse the decision tree depth-first to

convert it into DNF and store class probability distributions of edge conditions.

EdgeProbabilities (P;_4, P;)
P = Zzn=1 bi
For each class value index j
p; := P ;/P;_,; // implements Equation (B.105)
Return P

Figure B.9. Algorithm that implements Equation (B.105) to calculate the class probability

probability at each edge transition in the decision tree.
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This explainer algorithm is implemented in J48EvidenceExplainer. Furthermore, to support
weights of evidence explanations for the ensemble classifier RandomForest [Breiman, 2001], this

explainer algorithm is also implemented in RandomTreeExplainer to explain Random Trees.

B.18.1 WEIGHTS OF EVIDENCE OF INPUT FEATURES INSTEAD OF CONDITIONS

Equation (B.108) presents the weights of evidence explanation in terms of feature conditions of the
reasoning trace. This differs from other weights of evidence explainers (e.g., for linear SVM, logistic
regression, and naive Bayes) because some input features may be omitted or may occur in multiple
feature conditions in the trace. Fortunately, we can still provide an explanation in terms of input

features by summing weights of evidence of each condition, f;, = log(pl-p), that has the same input

feature, x,.:
n
g = 2 i (B.109)
r=
where
log(pio) ,ifr=0
fir = Zn Pip :
pzolog( - )[[xr € Xn]] Jifr>0

1 ,if X, describes x
x. €X | = { o T
[[ T "]] 0 ,otherwise

This formulation of the weights of evidence explanation in terms of input features will also be
useful when combining multiple explanations to explain an ensemble classification (see Section

B.20).
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B.19 K-NEAREST NEIGHBORS (KNN) EXPLAINER

The k-Nearest Neighbors algorithm (kNN) is an instance-based learning method that classifies
outcomes based on the instances in the training set that are “nearest” to the test instance, x,. These
training set instances are called neighbors, and we denote the kth nearest neighbor as x;. The

distance between instances depend on the differences between each input feature value,
Axyr = |xor — Xper|

where x,, is the value of the rth input feature for the test instance, and xy,. is the value of the rth

input feature for kth neighbor.

The total distance over n input features is calculated with a Distance function, §, most typically

n
( ’ E Ax?, Euclidean
i = 6(xo, xx) = { =t

n
LE Axyr Manhattan
r=1

Euclidean or Manhattan,

Up to k nearest neighbors that are selected will vote to assign the class value to the test instance
that matches the majority class value among the nearest neighbors. This depends on the Weighting

function,
1 None

wyr =w(6y) = {1 — 0, Similarity
1/6;, Inverse

Therefore, the probability for inferring the ith class is

1~
p=%) we=ln=1 (B110)
k=1

where Z is a normalization constant, / is the number of neighbors being considered for

classification, w;, = W(5(x0, xk)), and we use the Kronecker delta notation:

1 Ifthe kth neighbor is labeled with the ith class
0 Otherwise

[[}’k=i]]={
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We can also represent the inference as

p; ZREK‘WR (B.111)

where K; is the the set of neighbors labeled with the ith class.

We would like to produce an explanation in terms of two dimensions: input features (r =1 ...n),
and nearest neighbors (k=1..J). We will first derive an explanation for several Distance
functions, and then for the Weighting functions, combining them into a single explanation

expression, rather than separated layers.

B.19.1 DISTANCE FUNCTIONS

To produce a Weights of Evidence explanation in terms of input features, we need to derive a linear

additive expression for the distances.

B.19.1.1 MANHATTAN DISTANCE

The Manhattan distance (also called Taxi-Cab distance) is a simplest distance function that takes

the L1-norm:

n
6k = Z 6k1" (3112)
r=1

where 6y, = Axy, is the distance for the rth input feature. This is already a linear additive

expression of feature differences.

B.19.1.2 EucLIDEAN DISTANCE

The Euclidean distance is a common distance function used in kNN and it is also default in Weka. It
1
is an L2-norm non-linear expression in terms of input feature distances, &, = (Z?zl Ax,%r) /2.
To be able to express the Euclidean distance, &y, in terms of Weights of Evidence due to the distance
of each input feature, §;,, we seek a linear approximation for the Euclidean distance. In the field of
computer graphics and engineering applications, Celebi, Celikerb, and Kingravi [2011] compared
several linear approximation methods for the Euclidean distance of arbitrary dimensions, and
found that although Barni et al’s [1995; 2000] approximation was the most computationally

inefficient, it was the most accurate with the lowest maximum relative error (MRE). Since we are
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primarily interested in an accurate explanation than speed of computing it, we choose this

representation. For an Euclidean distance,

N n
5 =18 = Zr_l(srz

where 6, represents the rth orthogonal component distance, and 5 represents the distance vector,

the approximation, Dg, takes the linear form:
N n
5 ~ Dy(8) = yz a8) (B.113)
r=

where 6 is a permutation of {|6.|} =(|81],162],...,|6,]) such that &y =8 =+ =
(henceforth called value-ranked), and a, and y > 0 are approximation parameters, estimated with:
& =vr—Vr-1

2

=
14 X5, a?

These parameters are constant only depend on the number of input features, n. The maximum

relative error (MRE) for this approximation is ££ng =1-7.

Hence, we can provide the explanation for Euclidean distance as linear approximation:

n
6]( =~ Z 6k1" (B114)
r=1
where 8y, = 4,Axy ) and A, = y4@,.

B.19.1.3 FeATURE DISTANCES FOR NUMERIC AND CATEGORICAL FEATURES

Depending on the type of the input feature (numeric, normalized numeric, or categorical), distance

due to each input feature will differ:

Xor — Xgr NUMeric
norm(xy,) — norm(xy,) numeric, normalized
0 categorical, x, = xp,
1 otherwise

Axyy = (B.115)
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For normalization, Weka uses min-max normalization for its KNN implementation:

_ Xy — xr,min
norm(x,) = ———— (B.116)

Xmax — xr,min

Given the aforementioned linear expression for distance functions, we next turn our attention to

finding linear expressions for weighting functions.

B.19.2 WEIGHTING FUNCTIONS

We seek to derive linear expressions for in terms of distance and consequently get linear

expressions for weights of evidence in terms of feature distances:

9i= Z Wi
kEK;
n
k€EK; r=1

where wy, = Y-, wy, is the weighting function in terms of the distance &, and wy, represents the

(B.117)

atomic weight of evidence. We derive explanations for three weighting functions (None, Similarity,

and Inverse).

B.19.2.1 No WEIGHTING (NONE)

No weighting is done for this function, such that w, = 1, Vk. So we get the weights of evidence:

gi=) 1=IKi
kEK;

no1

_Zkel{izr=1n

This weighting function has no concept of explanation by input features.

(B.118)

B.19.2.2 SIMILARITY WEIGHTING

Similarity weights each farther nearest neighbor less with the function, w, = 1 — §. So we get the

weights of evidence:
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g=) (-8
k€EK;

n
kEK; r=1

(B.119)

1
where wy, = ~ = Okr-

B.19.2.3 INVERSE WEIGHTING

Similarity weights each farther nearest neighbor less with the function, w, = 1/6j. So we get a non-

linear expression for the weights of evidence:

- Z 1
9= kEK; 61{

B.120
5 . (B.120)
B kEK; Z?:l (Skr

1
where wy, = o——.
r=1 Skr
To get the linear expression of Equation (B.117), we can consider a multivariate Taylor series
expansion to the first order. We neglect higher order terms to avoid cross products of terms and

maintain linear separability. We expand about the point 6, = ¢ for Vr, and for some &, where

0 < € < 1. A multivariate Taylor series expansion for wy, gives the expression:

el (IO S (- B [
Wy = =—— =~ (Wi ls, =z —¢
k :-L:lé‘kr k 6k & re1 aé\kr 6k=7€) kr
o Z" Okr (B.121)
ne r=1(ne)?

_ 1 1 Z” 5
T ne (ne)?luyoy

This expression is similar to weighting by similarity (Equation (B.119)), which we can replicate

with a simple scaling and translation, since n and ¢ are constants:

1 ) n 1
wkr=5—ns+(ns) 6kr=Z 1(5_610")
r=

Therefore, under approximation, we can use the same expression as a surrogate for explaining

inverse weighting as for similarity weighting.
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B.19.3 WEIGHTS OF EVIDENCE FOR KNN

In summary, we can present the Weights of Evidence explanation as the linear additive expression:

J n
5= > fur (B122)
k=1 r=1

where
fier = Wier [y = 1]
g ah
n No Weighting 5 = Axy, Manhattan
Wikr 1 Similarity Weighting, or km = |9@,Axy -y Euclidean'
n " Inverse Weighting®
& =vr—Vr-1
R 2
y =

14 X5, a?
Axyy = |xir - xkrl

tindicates approximations.

B.19.4 HOw ToO EXPLANATIONS — NOT POSSIBLE

Since the classifier is built lazily by considering the test instance, it is not possible to provide this
explanation without a test instance from which to find neighbors. Furthermore, the explanation

expressions are not linearly expressed in terms of input feature values.

B.20 ENSEMBLE CLASSIFIER EXPLAINERS

To improve the classification accuracy of a single classifier, ensemble methods can be used where
multiple classifiers (henceforth called base classifiers) are combined to infer the class. We consider
the general case where C base classifiers are used in an ensemble for inference. Many ensemble
classifiers make inferences through a linear combination of base classifications, i.e., the probability

of inferring the ith class is
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1 C
b = ZZ AcDic (B.123)
c=1

where p;. is the probability of the cth classifier inferring value c;, and Z is a normalization constant.

We wish to derive a weights of evidence expression in terms of weights of evidence of the base

explanation:

C
9=, Acbic (B124)
c=

where g;. is the linearly separable weights of evidence expression of lower-level factors (e.g., input

features) and A, is a coefficient factor for the cth base classifier.

B.20.1 NORMALIZATION OF WEIGHTS OF EVIDENCE OF BASE EXPLANATION

Rather than propagating the probability of inference from a base classifier, some ensemble
classifiers discretize classification results of the base classifier to 0 or 1. This discretization neglects

much information from the inference in the base classifier ...

For base inferences that do influence the ensemble classification, we wish to present their weights

of evidence in a form normalized to 1. We do this with the expression:

YGic

value(gy) =1 (B.125)

where g;. is the linearly separable weights of evidence expression for the cth base classifier and

value(g;.) = sgn(gi.)|gic| is the value of the total weights of evidence.

We can then explain the weights of evidence of the ensemble classification as:

¢ Yic
gi = z Aje ——— (B.126)
c=1

fe value(g;.)

where A;. is a coefficient factor for the cth base classifier, which depends on the actual ensemble

classifier (see Section B.21 and B.22).
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B.20.2 TRANSFORMATION-INDEPENDENT NORMALIZATION

If the base explainer formulates g;. as a linear function of py, ie, g;c = Ap;c + B and p;. can be
formulated as a linear function of lower-level dimensions (e.g., input features), then g; can natively
present the Weights of Evidence in terms of those dimensions. This is the case for explanations of

Decision Stumps, Logistic Regression, binary linear SVM, and kNN.

However, some base classifiers require a transformation of p;. to obtain g;. as a linear additive
expression (e.g., explanations for naive Bayes, HMM, and multiclass SVM require a log transform),

Le.,
Jic = ¢(Pic)

where ¢ is a non-linear isotonic (monotonic increasing) function of p;; and transforms it into a

linear additive function. ¢ could typically be a log or logit function.
Although ¢ preserves the relative ordering of the probabilities, i.e.,

pi>p; o o®)>e(p))
generally, it does not preserve the relative scale between probabilities, i.e,,

o) | pi
¢ —_
§0(Pj) pj

We can mitigate this issue by scaling to preserve the scale relationships between iterations,

value(p;.)

mﬁl’(mc) (B.127)

@ (pic) =
where value(*) = sgn(*)|*|, ¢(pic.) = g;c is will be expanded to fully express the weights of evidence
for the one-vs.-none comparison, and value(qo(pic)) is its value sum, the total weight of evidence.
The explicit value value(p;.) is obtained from the probability distribution at inference, so it is also
known. Note that even though the full dimensional weights of evidence is linearly additive, the
weights for the base classifier dimensions (e.g., input features) are actually in the transformed
space, unlike the weights for the iteration dimension which are in the untransformed space.
Consequently, the weights across dimensions are not strictly comparable, but this discrepancy may

be unimportant to lay end-user, and this scaling may provide a sufficiently reasonable explanation.
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value(p;c)

will not affect the relative
value(@(p;c))

Notice that even if ¢ is a linear transformation, the factor

scale of probabilities between iterations, and will even normalize each g;. to probabilities. So, we

can equally apply this scaling to all forms of g;..

B.20.3 BASE EXPLANATIONS BEFORE ENSEMBLE

Recall that some explainers do not provide a weights of evidence explanation g;, such that g; = {0}
(e.g., explanations for SVMs). In such cases, we will not be able to obtain an ensemble explanation

using Equation (B.126). First, we simplify Equation (B.126) to

-=26 I [T Y (B.128)
gi c=1 " value(gy) ~ =1 © .

where we neglect weights of evidence of the lower-level dimensions in g;.. Next, we consider the

weights of evidence explanation for a pairwise comparison, Equation (B.37):

Cc
Agij=9i—9; = Z 1(Aic - ﬂja) (B.129)
c=

Similarly to Equation (B.125), we consider normalizing the weights of evidence for a pairwise
comparison:

Ag ic

— = B.1
value(Ag;.) (B.130)

and substitute Equation (B.130) into Equation (B.129) to get a weights of evidence explanation for

pairwise comparison:

¢ Agic
Ag:: = PRy [ [ —
gl} Zc=1(/1w A]C) Value(Agic)

Cc n _
= Z Z Afijcr
c=1 r=0

(B.131)

where

= (Aic = Aic)
Afo = T Af.
fl]cr value(AgiC) fl]CT



326 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

With Equation (B.129) we will still be able to generate Why and Why Not explanations. This
produces the explanation of the pairwise comparison of each base classifier, Af;;.., and collates
them to produce the ensemble explanation. Since Equation (B.129) can be used more generally than

Equation (B.126), we shall use it to derive subsequent explanations for ensemble classifiers.

B.20.4 SINGLE TYPE OF BASE CLASSIFIERS

Single level why:

1 m 1 m n
A.=_2 A~-=—z z Afiiy =0
Giv =— I 9ij = — ior Ly fijr

In Sections B.21 and B.22, we describe explainers for two popular ensemble classifiers, Bootstrap

Aggregation (Bagging) and AdaBoost.M1, respectively.

B.20.5 DIFFERENT TYPE OF BASE CLASSIFIERS

Some meta-classifiers (e.g., Democratic Co-Learning [Zhou and Goldman, 2004]) use base classifiers
of different types (e.g., decision tree, naive Bayes, kNN). These can lead to some inconsistency

issues when generating a coherent weights of evidence explanation:

Number of dimensions of weights of evidence. Explainers may provide explanations in a
different number of dimensions. For example, the naive Bayes explainer (Section B.15) provides
explanations only in terms of input features, x,, the kNN explainer (Section B.19) provides
explanations in terms of nearest neighbor and input features, x;,-, and the HMMs explainer (Section
B.16) provides explanations in terms of time step and input features, x;.. One simple way to
standardize the number of dimensions is to just reduce the explanations to the dimension of input
features. This is done using the DimensionReducer reducer component (see Section 6.11.2) that

can collate weights of evidence to just the input feature dimension.

Dimension number space. Another issue is whether a non-linear transformation was used to
derive the weight of evidence explanation in a base explainer. For example, log transforms were
required for the naive Bayes and decision tree explainers, and logit transforms were required for
the logistic regression and multiclass linear SVM explainers, but only a linear transform was
required for the kNN explainer. A consequence is the relative difference in magnitude of each

weight of evidence.
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Need to make each base classifier consistent in:

e Dimensions of weights of evidence

e Dimension space (e.g., whether log-transformed)

B.20.5.1 STANDARDIZATION OF BASE WEIGHTS OF EVIDENCE

Need to be more stringent than Equation (B.126). Other than just normalize the total weights of

evidence, we would like to normalize the spread of each weight of evidence. Equation (B.126)
makes the mean (average) of atomic weights of evidence equal to % Furthermore, we assume that
each atomic weight of evidence will be of comparable magnitudes across classifiers. As such, the
mean and standard deviation of the weights of evidence follow the distribution ~N (% 1). Consider

the rth atomic weight of evidence, f,.. The transformation for normalizing a distribution, ~N(0,1), is

NGO el H
g
where u is the average of the weights of evidence and ¢ is its standard deviation. Since we want to
normalize and then make the mean % we use the transformation
frimu 1

+—
n

standardize(g, f,) = N (1, 1): fr <
n

Note that atomic weights that were originally zero will be biased toward a positive value.

We present the weights of evidence explanation as:

c n o _
Ag; = Z Z Afijer (B.132)
c=1 r=0

where
Afijcr = (A — /'ch) standardize(AgijC,Afijcr)

Afijcr — Hijc 1

standardize(Ag;jc, Afijer) = +=

S

Oijc
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1 n 1 n 2
Hijc = _Z Afijcr » Oijc = _z (Afijcr - /-l)
n =0 n r=0

Due to the additional assumption of equal variance for atomic weights of evidence across base

explanations, we do not use this normalization technique for ensemble classifiers that use a single

type of base classifier.

B.21 BOOSTRAP AGGREGATION (BAGGING) EXPLAINER

Bootstrap aggregation (bagging) [Breiman, 1996] is an ensemble classification algorithm that can
improve the classification accuracy of base classifiers. It takes a training dataset, D, and creates C
new training sets by sampling examples from D with replacement. This method is called boostrap
sampling. It then trains C versions of the base classifier, one classifier for each new training set.

Overall inference is done by averaging the inference of each of the base classifiers:

T,
pi = 22 Pic (B.133)
c=1

where p;. is the probability of the cth classifier inferring the ith class, and Z is a normalization

constant.

Using Equation (B.126), we can express the weights of evidence for inferring the ith class in terms

of classifiers:

c
Yic
;= g — B.134
9i ZC=1pw value(g;.) ( )

where g;. is the linearly separable weights of evidence expression for the cth base classifier and

value(g;.) = sgn(gi:)|gic| is the value of the total weights of evidence.

In terms of a pairwise classification, the weights of evidence explanation is:

Ag--=zc (p: —p-)% (B.135)
N =1 ¢ Value(Agijc) '
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To illustrate the atomic weights of evidence for several bagged classifiers, we work out their

expressions in the next sections, though they are automatically generated using Equation (B.134).

B.21.1 RANDOM FOREST (BAGGED RANDOM TREES)

Formatting the weights of evidence explanation for the Random Tree classifier within an ensemble

classification, Equation (B.109) becomes:

n Ne
ic = log(pic) = Z OZ Olog(picp)ﬂxr € ch]] (B.136)
r= p=

where 1, is the length of the inferred trace of the cth classifier.

Substituting Equation (B.136) into Equation (B.134), we get

C
= gzc Z Z
9i = z Pic Value(gw) - flCT‘ (B.137)

where

Dic Me

fier = 108(P) Laps log(picp)[%r € Xcp]

B.21.2 RANDOM (BAGGED) NAIVE BAYES

Formatting the weights of evidence explanation for naive Bayes within an ensemble classification,

Equation (B.93) becomes:

= log(pic) = Zn Olog(picr) (B.138)

Substituting Equation (B.138) into Equation (B.134), we get

c
= glC Z Z
It _z Pic value(gy.) Lo Jier (B.139)

where

Pic

Jier = value(log(p;c))

log(picr)



330 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

B.21.2.1 BAGGED LINEAR SVM

Formatting the weights of evidence explanation for multiclass linear SVM within an ensemble

classification, Equation (B.90) becomes:
n
Agije = logit(uijc) = Z OAfijcr (B.140)
r=
where
Afijcr = WijerXr

A KijcBijcWijer ,ifr >0 - logit(jc)
Y KijeBijcWijeo T KijeYije 1T =10 Y€ logit(ryjc)

Substituting Equation (B.140) into Equation (B.135), we get

ZC Agije 2 2
Ag;: = —p. A B.141
gl] c=1(plc pjc)value(AgUC) o1 fl]CT ( )
where
Pic — Pjc
Afii ) = ——————— ;i X
fl]cr value(Agijc) ijertr

B.22 ADABOOST.M1 EXPLAINER

AdaBoost.M1 is the multiclass extension of Discrete AdaBoost [Freund and Shapire, 1996], and this
was extended for confidence-rated predictions in Real AdaBoost [Shapire and Singer, 1999]. We
will not cover in detail the algorithm, and defer the interested reader to the source papers.
AdaBoost.M1 defines the output inference of the meta-classification in terms of a weighted sum of

the output inferences of citerations of base classifier, i.e.,

(o
hy = Z achi, (B.142)
o~

where h;. represents the learned function of whether the cth classifier iteration infers the ith class

value, and a,. is the learned weight for the cth iteration.
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To obtain the probability distribution over class values, we will need to calibrate the output of the
boosted model (Equation (B.142)). Niculescu-Mizil and Caruana [2005] compared multiple
calibration methods, and found that a Logistic correction was more accurate than using the raw
weights, a;, because boosting can be viewed as an additive logistic regression model [Friedman,
Hastie, and Tibshirani, 2000]. This transformation applies an inverse logit transform (or expit or

sigmoid) and takes the form:

. it™1 I Y
p; « logit™*(2h;) 1T exp(—2h)

C
logit(p) e hy = ) achyc
c=1
The Weka toolkit performs a simpler calibration by applying an exponential transform instead:

p; < exp(h;)
c
log(p;) < h; = 2 1achic
c=

Similar to our previous treatments, our explanation will actually be about a monotonic transform

on the probability of inference, rather than the actual probability distribution.
The Weka implementation of AdaBoost.M1 takes another simplification by defining

hic =y =i (B.143)
where we use the Kronecker delta notation where

by, =i = {1 ,if cth classifier infers ith class
Ye =t =10 ,otherwise

Substituting Equation (B.143) into Equation (B.142) gives

c
h; = Z acly, =i] = Z . (B.144)
c=1 CEC;

where (; is the set of iterations where the classifier inferred the ith class value. This discards any
information we have regarding how underlying factors (e.g., input feature values, class values) that

influenced the base classifications. Nevertheless, this can help to simplify the explanations.
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Using Equation (B.126), we can express the weights of evidence for inferring the ith class in terms

of iterations:

¢ . Yic
9i = Zc:l aclly. = l]]m (B.145)
where g;. is the Weights of Evidence for a one-vs.-none comparison explanation of the base
classifier on the cth iteration, and value(g;.) = sgn(g;.)|gic| is the value of the total weights of
evidence. Notice that even if we had to transform p;. to derive g;., this does not influence the
resultant explanation at this level, since the relative ranking of inferring each class is preserved.
Note that the iteration dimension ¢ may not be particularly informative, so this should be

aggregated away before presenting to the end-user.

In terms of a pairwise classification, the weights of evidence explanation is:

A ..=ZC 2By B.146
94 c=1 Cvalue(Agijc) (B.146)

where
a. ,if cth classifier infers ith class
Ac=a.(ly, =il — Iy, =jD = {—ac ,if cth classifier infers jth class

0 ,otherwise

To give an idea of what the atomic weights of evidence represent for several boosted classifiers, we
work out their expressions in the next sections, though they are automatically generated using

Equation (B.145).

B.22.1 BOOSTED DECISION STUMPS

Formatting the weights of evidence explanation for decision stumps within an ensemble

classification, Equation (B.102) becomes:

n
Jic = Z Opic[[rc =] (B.147)
’r:

where 7. is the rth input feature of the th classifier, . is the input feature selected for inference, and

[r. = 7.] indicates that r is selected input feature for cth classifier.
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Substituting Equation (B.147) into Equation (B.145), we get

c
. glC
L= E = . E E B.148
gl c=1 aC [[l mlax(plc):” Value(gw) c=1 ]chT ( )
where
fior =« [[i = max(p; )]] _ P [r. =7.]
cr c i c Value(plc) c c

— {ac if (i = mlax(pic)) N =7)

0 ,otherwise

B.22.1.1 BoOOSTED DECISION TREE

Formatting the weights of evidence explanation for the Decision Tree classifier within an ensemble

classification, Equation (B.109) becomes:
n Nc
ic =1og(pic) = Z OZ o log(picp)[[xr € Xp]] (B.149)
r= p=

where 1, is the length of the inferred trace of the cth classifier.

Substituting Equation (B.149) into Equation (B.145), we get

gi = Zj_lac i = max(vio)| Valuil(c = ZC 12 fier (B.150)

where

ac [[i = max(pic)ﬂ
value(log(p;c))

e log(pl-cp)
_Ja. E o Tog(e) [[xr ch]] Jifi = miax(pw)

0 ,otherwise

fier = Z log(plcp)ﬂxr € ch]]
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B.22.1.2 BooOsSTED KNN

Formatting the weights of evidence explanation for the kNN classifier within an ensemble

classification, Equation (B.122) becomes:

B Zisz (B.151)

where
fickr = Wickr Ve = il
(1 —_
n No Weighting  (Axer Manhattan
Wickr 1 Similarity Weighting, or °kr = \9@,Ax.x ) Euclidean®
k" Inverse Weighting®

Ax ey = |xir - xckrl

Substituting Equation (B.151) into Equation (B.145), we get

c
= . _ Gic z : 2 Z 5150
9i ZC=1ac [[l ml,élX(plc) Value(gw) - re1 chkr ( .15 )

where

ac [[i = miax(pic)]]
value(g;.)

Wickr [[ka =]

fickr =

B.23 ENSEMBLE DECISION TREES RULE TRACES EXPLAINER

Given the popularity of using decision trees in ensemble classifiers [?], we can present richer
explanations of an ensemble of decision trees, where for each inference, there is a trace for each

decision tree.
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Extending Equation (B.11)

c Nc
- e
c=11 lp=0

Cc . c Ne
Yic 2
9i zc:1 e Value(gic) c=1 p:Ochr

where

Aic
ficr - mlog(picp)

Note that each trace, 1., may be of different length.

(B.153)
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B.24 SUMMARY OF EXPLAINERS FOR INFERENCE MODELS

We summarize the two main types of explainers: Rule Trace and Weights of Evidence.

B.24.1 DNF RULE TRACE EXPLAINER

These explainer methods apply to Rules and Decision Trees after conversion to disjunctive normal
form (DNF). We store rules as DNF trees, and separate based on which class value they infer. These

DNF trees are stored in a map of DNF trees:

m

j=1

where
Y = U Ejv is the DNF tree of traces that infer the jth class
v
v = Xjyp Is a trace consisting of conditions Xjy,
Pjv
Explanation Types Rule Trace Explanations
Why Il)ilx = U fiv[[file]] = U ﬂ vap[[Xivplx]]
vi Vi Pvk
where
[, 1x] = {1 ,if &, is true given inputs x
w470 ,otherwise

n
Evlx = ﬂ Xipplx = ﬂ ﬂ Xivp|xr is whether trace &;, is satisfied by inputs x
Piv Piv r=1
TRUE , if X;,,, is true given x,.
Xiyplxr = {TRUE ,if x, & X;,,,
FALSE , otherwise

Why N - Y Vv
y Not 1/)jlx = U E}le = U U vap[[X]vplx]]
vj vj Pjv

where
FALSE ,if X;,, is true given x
X,plx ={TRUE ,ifx, & Xy,
TRUE ,otherwise

How To Y, =@ [i=j]= szllpj[[i =l

= U $iw = U ﬂ vap
vi vi Pvk
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B.24.2 WEIGHTS OF EVIDENCE EXPLAINERS

Explanation Types Rule Trace Explanations
Wh
ySo gi = Z fir
(Absolute Why) TER
where f;,. is the rth atomic weight of evidence that votes for the ith class of the set of
all atomic factors, R.
Why Not Agyj = Z Afyr
(Pairwise TER
Comparison) where Af;;,. is the pairwise weight of evidence for inferring the ith instead of the jth
class.
For explainers where f;, is defined,
Agij=9i—9;= Z (fir = fir)
TER
Afijr = fir - fjr
Why Best m m
y . Agiv = Ag;j = Z Z Afijr
(Relative Why) j=1 j=14=rer
where weights of evidence consists of an extra dimension due to class value j = [1,m].
How To Depends on inference model

The following table describes how to generate the weights of evidence expression for specific

inference models.

Inference Model

Weights of Evidence Explanations

Functional

Linear Regression

n

Regression §=ry= r=0fr
where

fr = arxy
Function Multinomial . n
Classifica- | Logistic Regression 9i = logit(p) = Zr=0f1‘r
tion where

fir = Birxy

Bir i<mr>0
R s R

Bmo i=mr=0

_f{x >0
Xr {1 r=0




338 APPENDIX B | INTELLIGIBILITY TOOLKIT EXPLAINERS

Inference Model

Weights of Evidence Explanations

Uncalibrated I
Multiclass Linear Agy = Zr:OAfir
SVM where
Wijr
Afir = —2U" My >0
fl]r value(yij) ‘r‘[[yl] ]]
o Wijr ,lfT>0
Dijr {—b Jifr =0
Pairwise-coupled, o teait(n ) — Zn _
Platt-calibrated Bgiy = logit(u;;) = r=oAflr
Multiclass Linear where

SVM
Afijr - wurxr
xXo=1
By Difference By Scale
{ﬁijwijr ,ifT >0 K'ijﬁijwijr ,ifr >0
ur :BijwijO + YL] + 6[]'; ifr=0 Hr K,-j(,[?,-jwijo + Yij)' ifr=20
. . logit(u;)
61']' = loglt(u”) - lOglt(rL‘j) Kfl'j = m
ij
Multiclass Z" Z"
Ag:: = Af
Quadratic SVM 9ij q=04&=r=0 fijar
where
c?+ Yij + 0 ,ifg =0, =0 constant term
v
ZCZ QjjsrXijsr ,ifq = 0,7 >0 linear terms
Af:. = s=1
fijar 0 ,ifg>0,r=0

v

Z(aijsraijsq)xijsrxijsq ,ifq > 0,r >0 crossterms

s=1

Bayesian Naive Bayes

g; = log(p) = Z;fir
where
fir = log(pir)
P(y,) Jifr =0
Pir = {P(xrb}l.) Jifr >0
bi = P(yi|£)
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Inference Model

Weights of Evidence Explanations

Hidden Markov _\"T n
Models 9s = Zt:l Zr:Ofm
(HMM) where
fstr = log(pstr)
(sy) r=0,t=1
Dstr = S A(StlSe—y) T=0,t>1
B(xyrls)) r>0,t>1
Naive HMM model, 1 = (7, 4, B)
Decision Probabilistic = log(p;) = zn f
Tree Decision Tree gi &P p=0 "
where p indexes the trace node, rather than input feature,
fip = IOg(pip)
n
gi = z fir
r=0
where
]
fir = Z 110g(pir) er € Xp]]
p:
Similarity | k-Nearest - Z’ Z"
Neighbors (kNN) 9= Ly r=ofikr
where
fixjr = wier [vi = Ykl
1 No ‘_Neighting 5. = Ax;,, Manhattan
Wigr 1— 6y Similarity, or ikr = {yarAxik @ Euclidean
Inverse ’
2
ar =Vr=vr—1 y_1+ r=1F
Axikr = Xiy — Xgr Xir Iihormalized

For Euclidean distance, input feature ordered where x,-y is a permutation
of {|x,[} = (Ix1, ..., [x,|) suchthat xgy = -+ = xp

Ax,:ko =0
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Inference Model

Weights of Evidence Explanations

Ensemble

Bootstrap _ ZC Dic
Aggregation 90% Loy value(gy)
(Bagging) A ZC Pic —Pjc_,
gij B c=1value(Agijc) gijc
where g;. defined by base classifier, value(g;.) represents the value of
the evidence (i.e., total evidence).
AdaBoostM1

¢ aclye =1
9i = Zczlmgic
Agij _ ZC ac(ye =il — ly. = JjD
c=1 value(Agijc)
where g;. defined by base classifier.

Jijc
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c HELLO WORLD TUTORIAL FOR
INTELLIGIBILITY TOOLKIT

This tutorial is an adaptation of the tutorial at http://www.contexttoolkit.org/?p=197 about how to

add intelligibility to an existing context-aware application, HelloRoom. See the tutorial at
http://www.contexttoolkit.org/?p=50 to learn how to build that application with the Context
Toolkit.

This tutorial describes how to make a context-aware application intelligible, such that it can
explain, what it did, why, and how it works. We will be using the components of the Intelligibility

Toolkit. We will extend the HelloRoom context-aware application to make it provide explanations.

Explanations

What if... w | conditions are different 2

presence: 1

i of |v|? brightness: 160

1ynotpresence =0
ar
1) not brightness < 150| light = Off

Explanations

Ask

Why Not explanation What If explanation

Figure C.1. Screenshots of the Hello Room application showing some explanations.


http://www.contexttoolkit.org/?p=197
http://www.contexttoolkit.org/?p=50
http://www.contexttoolkit.org/?p=50
http://kettle.ubiq.cs.cmu.edu/~contexttoolkit/wp-content/uploads/2010/12/helloroom-intelligible-whynot.png
http://kettle.ubiq.cs.cmu.edu/~contexttoolkit/wp-content/uploads/2010/12/helloroom-intelligible-whatif.png
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We will be reusing the classes we had defined in the HelloRoom tutorial, and extending the main

application class, HelloRoom, with HelloRoomIntelligible:

1 public class HelloRoomIntelligible extends HelloRoom {
2

3 /** Intelligibility Ul */

4 protected JPanel iui;

5

6 public HelloRoomIntelligible() {
7 super(Q);

8

9 // set new UI component

10 iui = new IntelligibleuI(enactor);
11 jui.setvisible(false);

12 }

13

14 @override

15 pubTic void enactorsReady() {

16 super.enactorsReady();

17 jui.setvisible(true);

18 }

19

20

21

22 }

We retain the original He1ToRoomUI panel that contains the GUI elements to change brightness and
presence, and see the corresponding change in light level. We add IntelligibleUI to provide a
JPanel to show GUI elements for asking for and viewing explanations. We override
enactorsReady() to also set this to be visible only when the enactors are ready. It is in the
implementation of IntelligibleUI that we will employ the various components of the

Intelligibility Toolkit.


http://www.contexttoolkit.org/?p=50
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/apps/demos/helloroom/HelloRoomIntelligible.html
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1 public class IntelligibleUI extends JPanel {

2

3 // ... instance fields

4

5 public Intelligibleul(final Enactor enactor) {
6 super(Q);

7 setLayout(new BorderLayout());

8 setBorder (BorderFactory.createTitledBorder("Explanations"));
9

10

11 }

12

13 }

For the rest of the code in the constructor, we set up the components for the intelligibility features:

1 // UI for obtaining queries from the user

2 queryPanel = new QueryPanel(enactor, true);

3 add(queryPanel, BorderLayout.NORTH);

4

5 // reducer for showing only brightness and presence in explanations
6 creducer = new FilteredCReducer("brightness", "presence", "light");
7

8 // presenter for rendering explanations

9 presenter = new StringPresenter(enactor);

10

11 // UI for showing explanation

12 explanationArea = new JTextArea();

13 add(explanationArea, BorderLayout.CENTER);

We use the utility class QueryPanel provided in the toolkit to get a JPanel that provides a GUI for

getting a Query from the user. We then create a conjunction reducer, FilteredCReducer, to

simplify explanations that will be generated from the query. This particular reducer only provides

explanations about the attributes with names from the array {“brightness”, “presence”, “light"}. We

instantiate StringPresenter, a simple Presenter to render explanations into a String

representation. Finally, we create a GUI text area to show the explanation in. This will be populated

when an explanation is generated.

Next, we need to listen for when queries are created by the QueryPaneT, and we do this by adding

aQueryListener which implements queryInvoked(Query):



http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/query/Query.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/reducers/FilteredCReducer.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/presenters/StringPresenter.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/query/QueryListener.html
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1 queryPanel.addQueryListener(new QueryListener() {

2 @override

3 public void queryInvoked(Query query) {

4 // generate explanation

5 Explanation explanation = enactor.getExplainer().getExplanation(query);
6 System.out.printin("explanation = " + explanation);

7

8 // reduce

9 explanation = creducer.apply(explanation);

10

11 // render

12 String explanationText = presenter.render(explanation);
13

14 explanationArea.setText(explanationText);

15 }

16 s

Here, we take the Query that is passed and put it into an Explainer to get and Explanation. All
Enactors come with a default Explainer depending on their underlying model. The content of the
explanation is an Expressionin Disjunctive Normal Form (DNF), and this is often overly
complicated for end-users to interpret. So we apply our previously instantiated reducer to reduce
the explanation. With the final form of the explanation, we can render it to human-readable form

with our presenter to get an explanation text, which we display in the text area.

So that is all that is needed to add intelligibility capabilities to the HelloRoom application. The final

step is just to launch the application in a JFrame:


http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/Explainer.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/Explanation.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/expression/Expression.html
http://contexttoolkit.googlecode.com/svn-history/trunk/docs/apidoc/context/arch/intelligibility/expression/DNF.html

B.24 SUMMARY OF EXPLAINERS FOR INFERENCE MoDELS 345

1 public static void main(string[] args) {

2 contextModel.startDiscoverer();

3

4 HelloRoomIntelligible app = new HelloRoomIntelligible(Q);
5 app.startQ;

6

7 JFrame frame = new JFrame("Hello Room Intelligible™);
8 frame.add(app.ui, BorderLayout.NORTH);

9 frame.add(app.iui, BorderLayout.CENTER);

10 frame.setbefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 frame.setSize(new Dimension(320, 360));

12 frame.setLocationRelativeTo(null); // center of screen
13 frame.setvisible(true);

14 }

Source code for this tutorial is provided with the Context Toolkit distribution with the source code

for HelloRoom.


http://code.google.com/p/contexttoolkit/source/browse/trunk/src/context/apps/demos/helloroom/HelloRoomIntelligible.java
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D LAKSA INFERENCE MODELS

This appendix describes the reasoning and inference models used in Laksa (Chapter 7) and LaksaZ2

(Chapter 9).

D.1 AVAILABILITY

Laksa infers the user’s availability by applying rules (e.g., see Personal Availability Rules in
Appendices E.1 and Rules in 1.1) based on lower-level contexts. Multiple rules may be triggered

simultaneously, prioritized by availability from Unavailable first and Available last.

D.2 PLACE

Laksa infers whether the user is at a particular Place (denoted by semantic name, e.g., Home, Office)

by sensing the following attributes through:

e Measuring the user’s location Coordinates (Latitude, Longitude) via GPS or Network
on the Android phone,

e Estimating the Accuracy of the location fix as returned by Location.getAccuracy(),

e Retrieving Places that the user had saved and which are near to the coordinates; these are
modeled as circular regions (“bubbles”) with center position selected by the user (e.g., via a

map interface) and radius as defined by the user.

In Laksa (version 1), the user’s location is modeled as a circular region “bubble” with the
Coordinates as its center and the Accuracy as its radius. We define this as the “user bubble” and the
circular region for a Place as the “place bubble.” The user is inferred at a Place if the user bubble

overlaps with the place bubble (see Figure D.1).
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Place User Place
A Location B

Figure D.1. Bubbles model used in Laksa of the sensed user location and three semantic

places A, B, and C. This indicates that the user is inferred at A because of the overlap.

In Laksa2, the user bubble is defined as a Gaussian area, where we have interpreted the location
Accuracy as the 50% circular error probability (CEP)78 [CEP]. This indicates the circular region
within which there is a 50% probability the user is located. By mapping the location accuracy to
50% CEP, we can model the Gaussian area and derive the accuracy bounds for other CEP values

(see Figure D.2).

99.9%
95%

50%

Place Place
A B

Figure D.2. Bubbles model used in Laksa2 of the sensed user location and three semantic
places A, B, and C. The user location is modeled as a Gaussian area from the location
coordinates. Concentric circles indicate location accuracy bounds for: 15%, 50%, 95%,
99.9% CEP. This indicates that the user is inferred at A (most likely) followed by B, because

of the relative amounts of overlapping areas.

We can also determine the inference certainty of the user being at various places by calculating the
area overlap of the user Gaussian area with the place circle. For simpler computation on a mobile
phone, Laksa2 approximates the Gaussian area as four concentric rings, representing 15%, 50 - 15

=35%, 95 - 50 =45%, 99.9 - 95 = 5% probability of the user being each ring, respectively.

" Circular Error Probable. http:/en.wikipedia.org/wiki/Circular_error_probable. Retrieved 27 April 2012.

& GPS Accuracy. http://www.kowoma.de/en/gps/accuracy.htm. Retrieved 27 April 2012.
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D.3 SOUND ACTIVITY

Laksa infers sound activity by

1. Sampling from the microphone signal,
2. Extracting features from the signal, and

3. Applying machine learning to distinguish between different types of sound

We perform sampling and feature extraction using the methods similar to similar to SoundSense
[Lu et al., 2009]. However, the inference uses the simpler naive Bayes classifier which is explainable

with the Intelligibility Toolkit.

D.3.1 AUDIO SAMPLING FROM MICROPHONE

Time Frame

—r

h 4
Window

Figure D.3. Sampling of audio signal partitioned into Windows and Time Frames.

D.3.1.1 TiME SERIES SAMPLING

Laksa samples the audio signal at a rate of 8000 samples/sec in time windows of 1.6 seconds. After
which, the sample is pre-processed to extract features and classification for sound inference is
performed. Each window is divided into 25 time frames (see Figure D.3) each of duration 64 ms and
containing 512 samples. For each time frame, we denote the tth sample as x;. Independent of CPU
time for feature extraction and classification, Laksa requires at least 1.6 seconds to sample the

audio. Table D.2 summarizes the sampling characteristics for audio.
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D.3.1.2 FAST FOURIER TRANSFORM TO OBTAIN FREQUENCY SPECTRUM

We perform a Fast Fourier Transform (FFT) to obtain spectral information of the signal. Without

going into details, the transformation produces:

N FFT M
Z L X, (D.1)

t=1 k=1

where X, = a; +ib, is a complex number representing the kth bin in the frequency series,
Re(Xy) = ay is its real component and Im(X,) = by, is its imaginary component. Note that the
frequency series is only half as long (M = N/2) as the time series because the latter consists of only

real numbers and the frequency series is consequently symmetric.

By considering the FFT output of complex numbers, we can calculate the amplitude and phase of

each frequency bin:
Frequency amplitude: 4; = |X)| = m
Frequency phase: ¢, = arg(X,,) = arctan(b,/a;)
For spectral features, we normalize the amplitudes of each frequency bin: p, = A,/ ZQZZI Ap.

The characteristics? of the frequency spectrum is summarized in Table D.2.

Domain Characteristic Formula Value

Time Sampling rate S 8000 samples/sec

Series Sample duration (time frame length) T 0.064 sec (64 ms)
Number of samples N=SxT 512 samples
Number of time frames / window n 25 frames/window
Window length nxT 1.6 sec

Frequency | Number of bins M=N/2 256 bins
Maximum resolvable frequency Frnax = Fnyquist = S/2 4000 Hz
Frequency Resolution dF =S/N = F 0. /M 15.625 Hz

Table D.1. Sampling characteristics from the audio signal.

® FFT Fundamentals. http://zone.ni.com/reference/en-XX/help/372416B-01/svtconcepts/fft funda/. Retrieved 28
April 2012.
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D.3.2 FEATURES EXTRACTED FROM AUDIO SIGNAL

Laksa extracts several features from the audio signal by counting and statistical measures from the
sample measures of time frames and the window. Several features are based on time series data,

while others are based on the FFT spectrum.

D.3.2.1 POWER

Power, P, is a time frame measure which indicates the energy per unit time in the audio signal. This
can be represented as the root mean square (RMS), x5, of the signal in the time frame or
alternatively represented in a decibel scale. We use the dBFS10 scale calibrating X, s = Xjmax =
32767 to P4 = 0 as the maximum value and mapping x,.,s = 1 to Py, = —100. Note that we
cannot use X, = 0 to calibrate the dB scale, since the log is asymptotic. In Android, the audio
signal is read as an array of short numbers, so the maximum signed value is X4, = 32767. The

power of the audio signal for the time frame is:

X.
P =1log—= (D.2)

xmax

1 N )
Xrms _N 2t=1Xt

p= { 0 ,when X = Xpmax = 32767
~1-90.3 ,whenx,,; =1

where

We define ¥ = 20, such that

Since Power is a time frame measure, for frame f, we denote its power as Py.

D.3.2.2 Low-ENERGY FRAME RATE

Low-Energy Frame Rate (LEFR) is a window measure which indicates the proportion of time
frames with energy (power) less than half of the mean energy for all time frames in the window. A
higher LEFR value indicates more frames that have low energy compared to the whole window.

Speech typically has high LEFR values because of pauses between words. LEFR is calculated as:

19 Decibels relative to Full Scale [Price, 2007]
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LEFR—lzn p<t D.3
=22 <3 (D.3)

where

n
P = % E Pr is the mean power in the window, and
F=1

[[Pf < E]] = {1 Py < {3/2, where we use the Kronecker delta [[]
2 0 ,otherwise

D.3.2.3 Zero CROSSING RATE

Zero Crossing Rate (ZCR) is a time frame measure which indicates the number of times the signal
crosses the zero value. A crossing is measured when consecutive samples have different signs, i.e.,

X¢ " Xp—1 < 0. We calculate ZCR as:

t=1

1 N
ZCR =5 \/Z e xe-q < 0] (D.4)

D.3.2.4 SpPeCTRAL FLux

Spectral flux (SF) is a spectral time frame measure indicating the variability of the frequency profile

between consecutive frames. For the tth time frame in the window, its spectral flux is:

M
SF@) =1 ]Ekzl(pka) - Pt = D)’ (D5)

where py (t) is the normalized amplitude of the kth frequency bin of the tth time frame.

D.3.2.5 SPECTRAL ROLLOFF

Spectral rolloff (SRF) is a spectral time frame measure indicating the frequency at which a high

threshold of the spectrum energy is below.

K
SRF = f, = argmin [(Z pk> > threshold] (D.6)

k<M k=1

where f, is the frequency of the kth bin. For Laksa, we chose as 93% as the threshold, similar to

SoundSense [Lu et al., 2009].
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D.3.2.6 SPECTRAL CENTROID

Spectral Centroid (SC) is a spectral time frame measure indicating the “middle” of frequencies in the

spectrum in the time frame:
SC =fr ,wherek = — (D.7)

where we also denote the centroid with k.

D.3.2.7 BANDWIDTH

The Bandwidth, BW, is a spectral time frame measure which indicates the “spread” of salient

frequencies in the time frame:

S k-1 5
1 Pl (D.8)
2 e Pi

BW =dF - kBW ,Where kBW =

where k is the spectral centroid and dF is the frequency resolution.

D.3.2.8 NORMALIZED WEIGHTED PHASE DETECTION

Normalized Weighted Phase Detection (NWPD) is a spectral time frame feature which considers the
extent that all frequencies are in phase; if they are very out of phase, then they will destructively

interfere with one another and reduce the energy of the signal. We calculate NWPD as:

M
NWPD = Zk_lpk By (D.9)

d¢y
dt?

where ¢, = is the second derivative of the phase of the kth frequency bin.

D.3.2.9 RELATIVE SPECTRAL ENTROPY

Relative Spectral Entropy (RSE) is a spectral time frame indicating how the ‘shape’ (entropy) of the

spectrum changes over time; it helps to differentiate speech from other sounds. We calculate it as:
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M
Pi (¢)
RSE(t =—z t)log—————— D.10

( ) k:lpk( ) gmk(t_].) ( )
where m;(t) is the mean amplitude across time frames of the kth frequency bin for the tth time

frame, which we approximate only with the current and previous amplitudes:

_(0.9m(t — 1) +0.1p,(t) ,ift >0
my(6) = { p(0) ,ift =0

D.3.2.10 MEeL-FREQUENCY CEPSTRAL COEFFICIENTS

Mel-Frequency Cepstral Coefficients (MFCCs) are features further extracted from the FFT spectrum
which are popular for speech and speaker recognition. These coefficients can be derived from the

following procedure (adapted from [Crittenden and Evans, 2008]):

1. Take the FFT of a time frame of the signal to get the FFT spectrum.

2. Define a set of C triangular overlapping filters in the mel frequency scale to quantify the
power (energy) in various regions of the spectrum. This produces a set of mel ‘bins’.

3. Take the logs of powers at each filtered region.

4. Take the Discrete Cosine Transform (DCT) of the log mel powers, as if the mel bins
represent a signal. The result is a cepstrum.

5. The MFCCs are the amplitudes of the resulting cepstrum.

The mel frequency scale represents how people perceive sound frequency linearly with respect to

mel frequency. Frequency can be transformed to the mel scale with:

m = 1127 log, (% + 1) (D.11)

Note that the maximum resolvable frequency is 4000 Hz which is Nyquist frequency given the

sampling rate of 8000 samples/sec. The maximum mel frequency is thus m;, 4, = 2146 mel.

Rather than transform the frequency spectrum into mel frequency, we can alternatively first define
the triangular overlapping windows which we will use to filter the spectrum, inverse transform

them into the frequency domain:

f =700 (e% - 1) (D.12)
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For Laksa, we use C = 12 triangular filters to measure the power in various regions in the spectrum

uniformly distributed along mel scale (see Figure D.4).

1 - 1 4
0 T T T T - 0 T T T 1
0 500 1000 1500 2000 0 1000 2000 3000 4000
Mel Frequency (mel) Frequency (Hz)

Figure D.4. Triangular overlapping filters applied to the frequency spectrum: symmetric in

the Mel Frequency domain (Left) and distorted in the Frequency domain (Right).

In the mel frequency domain, the mid-point (apex) of each ith triangular filter is evenly spaced, i.e.,

m
m; = ——= | (D.13)

In the frequency domain, the ith triangular filter is defined as:

bi(f — f) Jiffia <f<f;
Yi(f) =4=bis1(f — fir) JIffi<f<fin (D.14)
0 ,otherwise

where f is the frequency variable, y; € [0,1] depends on f, f; is the middle of the ith triangular

1
fi—fi-1

filter defined by substituting Equation (D.13) into Equation (D.12), and the slope b; =
The power of the ith filtered window is a discrete sum of weighted (filtered) frequency bins:
Cc
P=) . yilfom (D.15)

Next, we scale these powers by performing a log tansform:

P; - log(P;) (D.16)
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Finally, we take the Discrete Cosine Transform (DCT) of all filtered and log powers to obtain the

MFCCs:

(o DCT c-1
Z log(P) —— MFCC, (D.17)
=1 0

i i=

where MFCC; represents the ith Mel-Frequency Cepstral Coefficient, and € = 12 for use in Laksa.
The resultant cepstrum with MFCCs as coefficients characterize the spectral nature of the FFT

spectrum.

D.3.2.11 SuMMARY OF INPUT FEATURES

Table D.2 summarizes the input features extracted for Sound inference.

Feature Pretty Name Icon | Conversion / Transformation Units
Power Volume ] Volume = max(P + 100, 0) 0to 100
Low-Energy Frame Rate Periods of Silence @ PeriodsOfSilence = 100 X LEFR percent %
Bandwidth ? Pitch Range \-.1}4, Hz
Spectral Flux Pitch Fluctuation Hf~ Hz/sec
Relative Spectral Entropy Pitch Purity Eé bits
Zero Crossing Rate Remaining Factors

Spectral Rolloff P

Spectral Centroid ?

Normalized Weighted

Phase Detection

MFCCs 0 to 11

Table D.2. Summary of input features for Sound inference with simplified names,
transformations, and units used in explanations to end-users. W Low-energy frame rate is a
window feature where we only measure counts; all other features are time frame features

where we measure both Means and Standard Deviations across time frames within the
window. P Spectral Centroid, Bandwidth, and Spectral Rolloff were aggregated in Laksa with

the pan-flute visualization (see Figure 7.3c), but were separated for LaksaZ2.
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D.3.3 MACHINE LEARNING TO INFER SOUND ACTIVITY

Feature Measure Speech Music Ambient

Power Mean High High Low
SD

Low-Energy Frame Rate Count High Low Low

Zero Crossing Rate Mean
SD High Usually Low Low

Spectral Flux Mean High Usually Low
SD

Spectral Rolloff Mean Low High Low
SD

Spectral Centroid Mean Low High Low
SD

Bandwidth Mean Low High Low
SD

Normalized Weighted Mean High Low Low

Phase Detection SD

Relative Spectral Entropy Mean High Low Low
SD

Mel-Frequency Cepstral Mean

Coefficients (0 to 11) SD

Table D.3. Summary of input features for Sound inference and expected values for different

class values (Speech, Music, and Ambient Noise).
Currently, Laksa and Laxsa2 use the naive Bayes classifier to infer three types of sound:

e Talking
e Music

e Ambient Noise

Note that the classifier was not trained to be particularly accurate, since the scenarios used in the

user studies (Chapters 7 and 9) tested failure cases.

Why and Why Not explanations of Sound inference are generated using NaiveBayesExplainer

and presented as Weights of Evidence bar chart visualizations. Inputs explanations are presented
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by describing the values of the input features with their pretty names and units. Description

explanations are used to describe and explain the concepts relevant for each input feature.

D.4 MOTION ACTIVITY

Laksa infers motion activity by

1. Sampling from the tri-axial accelerometer signals,
2. Extracting features from the signal, and

3. Applying machine learning to distinguish between different types of motion

We perform sampling and feature extraction using the methods similar to similar to [Bao and
Intille, 2004; Lester, Choudhury, and Borriello, 2006] with a focus on using intelligible features.
However, the inference uses the simpler J48 Decision Tree classifier which is explainable with the

Intelligibility Toolkit.

D.4.1 MOTION SAMPLING FROM ACCELEROMETER

h 4
Window

Figure D.5. Sampling of an accelerometer signal partitioned into a Window for sampling.

D.4.1.1 TiME SERIES SAMPLING

Laksa samples three signals of the tri-axial accelerometer at a rate of 20 samples/sec in time
windows of 6.4 seconds to measure 128 samples (see Figure D.5). We denote the tth sample in the
window as s; for a generic signal. We measure three signals representing linear acceleration (%, y,
Z) and calculate three other signals representing angular orientation (i, ¢, 8). Independent of CPU
time for feature extraction and classification, Laksa requires at least 6.4 seconds to sample the

accelerometer. Table D.4 summarizes the sampling characteristics for audio.
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D.4.1.2 FAST FOURIER TRANSFORM TO OBTAIN FREQUENCY SPECTRUM

Similarly to how we pre-processed the audio signal for Sound inference, we perform a Fast Fourier

Transform (FFT) to obtain spectral information of the signal, s:

N FFT M
Z s 0 St (D.18)

t=1 k=1

where S, = ag, + ibs, is a complex number representing the kth bin in the frequency series,
Re(Sy) = agy is its real component and Im(Sy) = by is its imaginary component. For Motion, we

compute the spectra for six signals: linear acceleration (¥, ¥, Z) and angular orientation (i, ¢, 6).

By considering the FFT output of complex numbers, we can calculate the amplitude of each

frequency bin:

Frequency amplitude: Ag, = |Si| = y/a%, + b2,

We use the frequency spectrum primarily to model motion instead of stationary orientation, so we

normalize the DC component (k = 1) to 0, i.e., Ag; = 0.

The characteristics of the frequency spectrum is summarized in Table D.4.

Domain Characteristic Formula Value

Time Sampling rate S 20 samples/sec

Series Sample duration (time frame length) T 6.4 sec
Number of samples N=SxT 128 samples

Frequency | Number of bins M=N/2 64 bins
Maximum resolvable frequency Frnax = Fnyquist = S/2 10 Hz
Frequency Resolution dF =S/N = FEp /M 0.15625 Hz

Table D.4. Sampling characteristics from each accelerometer signal.

D.4.2 FEATURES EXTRACTED FROM THE ACCELEROMETER

Laxsa extracts several features from the tri-axial accelerometer signal using statistical measures

from the time series data and the FFT spectrum.
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D.4.2.1 3D LINEAR ACCELERATIONS

The raw signal value, at time t, from the phone’s accelerometer represents the acceleration in three

7 = (y) (D.19)

This constitutes the basis for many of the subsequent features for recognizing motion. For each

dimensions:

linear signal, we measure their means and standard deviations over the sample time:

1 N 1 N
..:_E B G =— E % — 1)
223 N =1 t X N t=1( t #x)
1N 1 N 2
L= E V. On = — E V. — L (D.20)
Uy N t=13/t 5 N\/ t=1(3’t .uy)

1 ZN 1 ZN .
.= — VA O = — (Z — )
254 N =1 t z N =1 t 25

Diagrammatically, with respect to the phone, its x, y, and z axes are:

x Axis y Axis z Axis

Direction of positive x Direction of positive y Direction of positive z acceleration
acceleration acceleration (two views)

D.4.2.2 3D ANGULAR ORIENTATION
The accelerations can also be considered in angular frames instead of linear frames. If we assume
no or minimal actual motion, then the angular information from the accelerations can be

interpreted as the static orientation of the phone:



D.4 MoTioN AcTiviTy 361

Yaw = ¢, = atan(j, /%)

Roll = ¢, = atan(Z,/j;)

(D.21)

Pitch = 0, = atan(%,/Z;)

Diagrammatically, with respect to the phone, its yaw, roll, and pitch are:

Yaw Roll Pitch
I , I ,
I ’ I ’
1,7 1,7
d /
——

Rotation in xy plane,
about z axis

Rotation in yz plane,
about x axis

Rotation in zx plane,
about y axis

For each angular orientation, we measure their means and standard deviations in the window time:

Ky =

Uy =

He

1 N
sz‘pf

1 N
oy = N\]thl(wt - ﬂz/;)z

1 N 1 N 2
N t=1(pt Oyp = N\]thl(q’t - .u(p) (D.22)
1 N 1 N

=y t=19t o9 = N\/thl(gt — Ug)?

D.4.2.3 CORRELATIONS BETWEEN LINEAR ACCELERATIONS AND ANGULAR ORIENTATIONS

We compute the correlations between linear accelerations and between angular components:

pi = Ytea ¥eJe — Nuguy =
Piy (N — Doyoy P

= ZIﬁV:lj}tZt — Nugus _
= (N~ 1)0'3';0'2 Pyo

— Z?’:létjét —_ Nl’tz,ux ~

Pzx = poy

(N = 1)oz0;

Y1 e — Nyyiy
(N = Dayo,
Y190 — Ny
(N —1)a,04
thv=1 0 — N.ue.ulp
(N - 1)0'90'#,

(D.23)
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D.4.2.4 DEVIATION OF ACCELERATION FROM 1G

We define a variable to potentially indicate whether the phone is stationary or in motion:

AF, = 7, — (D.24)

where ¥, = |?t| = /xf +j'/f + 72 is the magnitude of the acceleration vector and #, = 9.81m/s? is

the constant of 1 G acceleration. If there is absolutely no motion in the phone, e.g., it is resting flat

on a table, then# = 1 G and A#; = 0, i.e,

A#, =0 ,likely stationary
A¥p = 0, likely in motion

Note that there may be certain cases when the phone is in motion and A#; = 0.

D.4.2.5 POWER (ENERGY PER UNIT TIME)

Taking the square of amplitudes in the frequency (FFT) spectrum, we can power spectral density

(PSD) of the signal, s:
E; = (s,s) = A%, (D.25)
1

where A%, is the power of the kth frequency bin. The area under the PSD curve represents the
energy in the signal over the sampling time (window length). To get the average power over time,
we divide by the window length (as was done in [Bao and Intille, 2004]). The average, normalized

power for each signal is:

1 M
R=r) A% (D.26)
k=1

computed for six signals: linear acceleration (¥, ¥, Z) and angular orientation (i, ¢, 6).

D.4.2.6 MobDAL AND MEAN FREQUENCIES

For each signal, we compute the mean frequencies:

_ 1M
fs = Mzk=1A5 (D.27)
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and modal frequencies:

fimode = f = argmax [(ZK AS) > _S] (D.28)

K<M

computed for six signals: linear acceleration (¥, ¥, Z) and angular orientation (y, ¢, 6).

D.4.2.7 SPECTRAL ENTROPY

Spectral Entropy (SE) indicates the shape of the frequency spectrum:

M
SEg = _Zk—lpSk log(psk) (D.29)

computed for six signals: linear acceleration (X, y, Z) and angular orientation (¥, ¢, 8). Spectral
Entropy may indicate whether a particular frequency has high amplitude while most others have

low amplitude (e.g., when cycling at a constant speed).

D.4.2.8 SUMMARY OF INPUT FEATURES

Table D.5 summarizes the input features extracted for Motion inference.

Feature Pretty Name Icon | Conversion Units

P; power l(\ﬁ(;\//e];r(l)(‘e/\rllr‘i)Vigorousness @ Watts

Py power ?ﬁ%‘i‘;?ﬁ:{ Vigorousness <) Watts

A7, Amount of Movement (Sideways) J:E[ Inches = m/39.37 Inches ”

6 pitch (Std. Dev.) Amount of Movement (Rotation) = | £=180°" Radians/m Degrees °

X acceleration (Mean) | x-Force

y acceleration (Mean) | y-Force "A Force = Accel/9.81 | G (=9.81m/s?)

Z acceleration (Mean) | z-Force g

Y yaw (Mean) £xy Rotation | Alsoshownasa 4

@ roll (Mean) 2yz Rotation g? g}f;C;Lg;af' ;am Ly; £ =180°- M Degrees °
orientation (see = n

6 pitch (Mean) £zx Rotation | Figure 7.3b). =

Other features were not shown in explanations to users.

Table D.5. Summary of input features in LaksaZ2 for Motion inference with simplified names,

transformations, and units used in explanations to end-users.
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D.4.3 MACHINE LEARNING TO INFER MOTION ACTIVITY

Currently, Laksa and Laxsa2 use the J48 Decision Tree classifier to infer seven types of motion:

e Sitting

e Standing
o Walking
e Running
o (Cycling

e Holding

e 'Flat Surface' (e.g., lying on a table)

Note that the classifier was not trained to be particularly accurate, since the scenarios used in the

user studies (Chapters 7 and 9) tested failure cases.

Why and Why Not explanations of Motion inference are generated using J48RuleTraceExplainer
and presented as inequalities (rule trace explanations). Inputs explanations are presented by
describing the values of the input features with their pretty names and units. Description

explanations are used to describe and explain the concepts relevant for each input feature.
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E LAKSA EXPERIMENT MATERIALS

This appendix describes the experimental materials used in the user study described in Chapter 7.

E.1 PARTICIPANT REFERENCE SHEET

Cheat sheet that participants can carry around as they performed activities during scenarios in the

experiment.
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Personal Availability Rules

Availability Location Motion Sound Ringer Schedule Wh_o S
Enquiring
& Sl K Anyone
Unavailable Office Silent
% L @ Anyone
Unavailable Office Talking
. A0
& B &
Unavailable Work Friends
#.\ [i[-. Anyone
Semi-Available Library
2 | @ &
Semi-Available Home Coworkers
#.\ el Anyone
Semi-Available Cycling
& All other cases
Available

Explanation Types

1. What is the value of the aspect?

2. When did this aspect change to this value?

3. Why is this aspect the current value? (This refers to the logic or method that Laksa used)

4. Why isn’t this aspect an alternative value?

5. When would (under what situations or circumstances) this aspect?

6. What else can this aspect be? (What other values can it take?)

7. What details affect this aspect? (Factors, related details, etc)

8 Vyhat if the conditions are different, what would this aspect be? (Requires your manipulation)
9

@ More information (e.g. meaning of some terms, values).
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F UNCERTAINTY STUDY
MATERIALS

This appendix describes experiment design notes and materials used in the user study described in

Chapter 8.



F.1 SCENARIOS

F.1.1 SCENARIO DISTRIBUTION BY THEME

Distribution of scenarios for learning phase (10 scenarios), and testing phase (3 scenarios).

F.1.1.1 LEARNING PHASE
S# Theme / Topic LocateMe (location-aware) HearMe (sound-aware)
1 | 1a | Social Awareness Morning, want to check if friend is home, to drop by | Morning, want to call friend: may be inferred as talking when
(he isn’t home): may not infer as home actually silent
2 | 2a | Awareness / In office: coworker wants to check if you are in | Talking to coworker, may be inferred as ambience: get call, or
Interruptibility office yet, to talk to you get notification msg of suppressed call.
3 | 3a | (Pre-set) Service A | In Meeting Room A: but may mis-infer that you're | After talking, want to review audio of conversation: may not
not at venue -> send reminder have recorded since inferred as Music.
4 | 4a | Recommender In corridor, want to print document from phone to | Detected silence for a long time; recommends music
Service B nearest printer: may print elsewhere
5 | 5a | Self check Visit coffee shop: make sure location noted Visit coffee shop: make sure sound noted as ambient, not talking
6 | 2b | Awareness / In washroom: coworker may wonder why you | Talking to coworker at coffee shop, may be inferred as music:
Interruptibility appear to be in his office get call, or get notification msg of suppressed call.
7 | 4b | Recommender In another corridor, want to print document from | Detected silence for a long time; recommends music
Service B phone to nearest printer: may print elsewhere
8 | 5b | Self check Walking outside to lunch, self-check: location may | Testing/checking app, listening to (vocal) music: may be
be still in office wrongly inferred as talking
9 | 3b | (Pre-set) Service A | In Meeting Room B: but may mis-infer that you're | After talking to team of coworkers, want to review audio of
not at venue -> send reminder conversation: may not have recorded since inferred as Music.
10 | 1b | Social Awareness Evening, want to check if friend is home, to drop by | Evening, want to call friend: may be inferred as talking when
(he is home): may not infer as home actually music

STVIdALVIN AANLS ALNIVLYAIN() | dXIONHddY 89¢



F.1.1.2 TeSTING PHASE

S# Theme / Topic LocateMe (location-aware) HearMe (sound-aware)

11 | 2¢ | No theme; Just show Map. Just play Audio clip.

12 | 5c | Just show ground

truth
13 | 4c

F.1.2 SCENARIO DISTRIBUTION BY APPLICATION BEHAVIOR

For each Certainty condition, scenarios were randomly selected where the application behaved appropriately (v') or inappropriately ().

Certainty values also have a “fudge” factor to introduce noise to their values so that they appear random to participants and less

predictable.
Both LocateMe and HearMe (%)

S# 50 60 70 80 90 100
1|1a] 48 = |60 x |72 x |79 x (8 v |100 V
2|25 Y |63 v |72 Y |8 Y |8 Vv |98 V
3 (32|48 Y |59 Y |67 Y [80 Y |9 Y |9 V
4 |4a|51 % |60 * |69 * |79 Vv |92 VY |99 V
5|5 |50 ¥ |58 Y |6 v [8 v |9 Y |10 VY
6 |2b| 52 % |62 x |70 * [79 x |8 x |100 VY
7 |4b]51 Y |61 v |72 VY |8 Y |8 Vv |98 V
8 |5b|49 x [57 x |73 Y |8 v |91 Vv |99 VYV
9 ([3b|49 v [60 v |68 Y |8 v |91 VvV |98 VYV

10|1b|51 % |e0 Y [68 Vv [78 Vv |92 Y |99 V

69€E SOMVNAEDS '
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F.2 SCENARIO SCRIPTS

We provide scripts and explanation visualizations for both applications LocateMe and HearMe for

all 10 scenarios.These are shown in sections:

Scenario introduction
Ground truth description

Script and diagram for correct behavior (for different Certainty conditions)

B N

Script and diagram for wrong behavior (for different Certainty conditions)

F.2.1 LOCATEME SCENARIOS

L1. Morning, want to check if friend is home, to drop by (he isn’t home): may not infer as home
Before you leave for work, you want to check if your friend, John, is still at home so that you can pick up a toolbox you had previously lent him.

You look at LocateMe to see his location:

John is at Other Place

Ittells youJohn has already left his home.
You decide to try again later in the day.

John is at Home

Ittells youJohnis still at home.
You call him, and discover he has already lefthome and is driving Natchez St. towards Gaskell St.

Ground Truth

his house is marked with a purple triangle on the following map).

< :" 7 /}" ‘\..V...! A ' h
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L2. In office: coworker wants to check if you are in office yet, to talk to you
Youare in your office getting some work done.

The star denotes where you actually are at for this scenario.

The triangle denotes where your office (RM101) is. T_NMWI _-I::

BN

Your coworker, Michelle, visits your office and remarks that it is good that you are in early preparing for the important meeting later.
You comment that she could check your location with LocateMe.
Youcheckyour statusand see:

You are at Your Office (RM101)
50% 60%

70% 80%

1@l || @l
%l |

1]
BEs

Yougeta call fromyour coworker, Michelle, who anxiously a:
You check your status and see:

sked you whetheryou were in your office yet, preparing for the important meetingin a few minutes.

You are in RM103

Youarrive in Meeting Room A five minutes early.
The star denotes where you actually are at for this scenario.
Thetriangle denotes where Meeting Room A is.

L3. In meeting room A: but may misrecognize that you're not at venue -> send reminder

LocateMe beeps and loads adocument containing the meeting agenda
You checkyour status and see:

You arein

70%

Il | Eallil]

&

Room A
60%

LocateMe beeps and sends you areminderto get to your meetingin Meeting Room A:

You are in RM113
Please go to your meeting in Meeting Room A

= Al _ﬁJ _ﬁJ callBl | EAs]]

g 1@ 1@ Iﬁ Iﬁ
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L4. In corridor, want to print email from phone to nearest printer: may print elsewhere

Afterthe meeting, you are checking your email as you walk along a corridor. TF
Youwant to print outan email from your phone to the nearest printer. l
The star denotes where you actually are at for this scenario.

LocateMe has the function to do this automatically.

You select "Printto nearest printer."

You check which printeryour email was printed to:
U
| printertis

Nearest Printer is Printer115
50%

J_L_( [ e

A=t

Satisfied with the destination, iou walk tothe nearest irinter, and collect iourirint out.
Nearest Printer is Printer111

_l_l_._{

50%

N.A.

Thisis not actually the nearestto you.

L5. Visit coffee shop: make sure location noted

Feeling sleepy, you visit a coffee shop nearyour office togeta cup of coffee.

Since LocateMe is a new application to you, you want to check whetherit can properly detectyou at the
coffee shop.

Youlookat LocateMe and see:

You are at Starbucks Coffee

50% 60% 70% 80%
= o = = i = = =
P
o 3
s,
™
50%
o £
P
o 3
e




L6 (L2b). In washroom: coworker may wonder why you appear to be in his office

F.2 SCENARIO ScrRIPTS 373

coworker, Damien.
The star denotes where you actually are at for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

Youare in the washroom taking care of some business, just before your meeting with your neighboring

You checkyour status and see:

Youreceive a text message from your coworker, Damien, telling you he is waiting at his office, awaiting yourarrival.

You are at the Washroom

You check your status and see:

Youreceive a call from your neighboring coworker, Damien, asking you where you are since LocateMe told him that you are at his office but he obviously does notsee youthere

You are at Damien’sOffice (RM102)

50%

a coworkerto sendit to you.
Youselect "Print to nearest printer.”

Note printers (with icons); nearest one is marked with triangle

You check which printeryour email was printed to:

document from pl

Nearest Printer is Printer123

80%

]

11

] 1
—r'-T .

Thisis not actually the nearest to you.
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L5b). Walking outside to lunch, self-check: location may be still in office

Itis lunch time and you leave the office to go to a nearby pizza restaurant.

Since LocateMe is a new application to you, you want to check how it checks your location.
While having lunch at the restaurant, you look at LocateMe and see:

Youlookat LocateMe and see:

You are at R & B's Pizza Place
50% 60% 70% 80%
] ] L L] L] e
b, W b W P, W b, W b, W S

You are at Jimmy’s Post Tavern
50% 60% 70%
L] L] L] L] L]
b, W b, W b, il b, 0 b

You arrive in Meeting Room B five minutes early for an afternoon meeting.
The star denotes where you actually are at for this scenario.

LocateMe beeps and loads adocument containing the meeting agenda.
You checkyour status and see:

You arein
50% 70%

Room B

74

i

.o

LocateMe beeps and sends you areminder to get to your meetingin Meeting Room B:
You are in Meeting Room C
Please go to your meeting in Meeting Room B
50% 60% 70%
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L10 (L1b). Evening, want to check if friend is home, to drop by (he is home): may not infer as home

Before you leave work, you wantto check if yourfriend, John, has returned home so thatyou can pick up a toolbox you had previously lent him.
Youlook at LocateMe to see his location:

John is at Home

Ittells youJohnis at home.
You call him, and let him know that you would be coming by his place.

John is at Other Place
50% 60% 70%

N.A.

Ittells youJohnis not home.
You call him to ask him what time he would be home, but he tells you he already is.

Ground Truth
Johnisactually at home 5 - < —
(his house is marked with a purple triangle on the following map). :‘l :\\ &> H {
T Sk -
& RSl
Nz
Koo
)
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F.2.2 HEARME SCENARIOS

H1. Morning, want to call friend: may be inferred as talking when actually silent
Once you arrive at workin the morning, you rememberyou want to contact your friend, John.

You wantto call John to ask to pick up, later in the evening, a toolbox you had previously lent him.

Before you do that, you want to check if he is available to be called.

You look at HearMe to see his status:

John is Talking

50% 60% 70% 80%
Evidence for Evidence for Evidence for Evidence for Evidence for Evidence for
why Talking why Talking why Talking why Talking why Talking why Talking
@ Pperiods of Silence @ Pperiods of Silence @ Periods of silence @ Periods of Silence @ Periods of Silence @ reriods of silence
. 4 I 2 . 6 6 4 9
N« pitch Range Yo Ppitch Range Jo  Ppitch Range - Ppitch Range - Pitch Range “J« pitch Range
-6 5 2 I -2 10 10
i Pitch Fluctuation i Pitch Fluctuation . Pitch Fluctuation . Pitch Fluctuation e pitch Fluctuation Y pitch Fluctuation
11 11 1 13 12 12
£ Pitch Purity ¥ Pitch Purity ¥ Pitch Purity ¥ Pitch Purity = Pitch Purity 3 Pitch Purity
-18 -10 - -10 -2 I -2 I I 2
Other Factors Other Factors Other Factors. Other Factors. Other Factors. Other Factors.
9 12 15 15 B 17
Sensed Factors Sensed Factors Sensed Factors Sensed Factors Sensed Factors Sensed Factors
@ Periods of Silence @ @  Periods of Silence @ @  Periods of silence @ @  Periods of silence @ @  Periods of Silence @ @ Periods of silence @
12% 12% 12% 44% 44% 44%
A+ Ppitch Range @ 4+ Pitch Range @ J+  Pitch Range ® < Ppitch Range @ “f+ Ppitch Range CD 4+ Pitch Range @
1330Hz 1330Hz 1330Hz 1390Hz 1390Hz 1390Hz
i Pitch Fluctuation ® Y Pitch Fluctuation @ i Pitch Fluctuation ® i Pitch Fluctuation @ i Pitch Fluctuation Y Pitch Fluctuation (D
0.9W/Hz 0.9W/Hz 0.9W/Hz 1.OW/Hz 1OW/Hz 10W/Hz
B ritchpurity @ & Pitch Purity @ B ritchpurity @ & Pitch Purity B Pitch Purity & Pitch Purity
-36bits .36bits -36bits. .45bits .45bits 45bits

You send him a text message to ask him to call

ou when he is done talking.

John is Silent

50%

60%

70%

Evidence for
Talking vs. Ambience

@ Periods of Silence

Sensed Factors

@ periods of Silence @

Evidence for
Talking vs. Ambience

@ Pperiods of Silence

Sensed Factors

@ reriods of silence @

Evidence for
Talking vs. Ambience

Periods of Silence

Sensed Factors

@  reriods of silence @

Evidence for
Talking vs. Ambience

@ reriods of silence

Sensed Factors

@  reriods of silence @

Evidence for
Talking vs. Ambience

@ Periods of Silence

-4 -2 I -2 I I 2 5
¢ Ppitch Range = Ppitch Range <+ Ppitch Range o Ppitch Range = Ppitch Range
6 5 5 7 7
e pitch Fluctuation W« pitch Fluctuation e pitch Fluctuation e pitch Fluctuation e pitch Fluctuation
ET 7 7 6 <l I
®  pitchpurity 4 pitchpurity §  Ppitch puri 4 pitchpurity B pitch purity
18 18 - 18 16 17
Other Factors Other Factors Other Factors Other Factors Other Factors
9 -4 6 1 12

Sensed Factors

@ periods of silence @

12% 12% 12% 5% 5%
= Ppitch Range @ o Pitch Range @ Mo Pitch Range. ® - Pitch Range @ Mo Pitch Range @
1330Hz 1330Hz 1330Hz 1310Hz 1310Hz
. pitch Fluctuation ® i Ppitch Fluctuation @ i pitch Fluctuation @ . Pitch Fluctuation ® . Pitch Fluctuation @
0.9W/Hz 0.9W/Hz 0.9W/Hz 0.8W/Hz 0.8W/Hz
¥ erenpury (1) B ereheuny (D) ¥ erenruiy (1) ¥ ercneuy (1) ¥ pichpuriy
36bits .36bits .36bits .33bits .33bits

N.A.

You call him, but he tells you he is busy talking to someone now, and asks you to call him back later in the day.

Ground Truth

<NOAUDIO>
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H2. Talking to coworker, may be inferred as ambience: get call, or get notification message of suppressed call.

Next, while atyour office, your coworker, Michael, comes by to have a conversation with you about a Here is an audio clip of what was actually heard at that time:
project. <AUDIO: h2-talking-work.mp3>

You are notinterrupted for 20 minutes, and when the conversation ends, you receive a notification message from HearMe:
You were In a Conversation

Jenny tried to call

ou 9 minutes ago

50%

60%

70%

80%

Evidence for
why Talking

Periods of Silence
21

A+ Pitch Range
3
e pitch Fluctuation
11

E Pitch Purity
-15

Other Factors

22

Sensed Factors

@ Periods of Silence @
9%
= Pitch Range @

1550Hz

. pitch Fluctuation @
1.4W/Hz

4 Ppitch Purity ®
.28bits

Evidence for

why Talking
@ Pperiods of Silence
19
A pitch Range

5
A pitch rlu!nlnn
1
H  pitch Purity
-10
Other Factors
23

Sensed Factors

@ Periods of silence @

9%
4 Pitch Range @

1550Hz

i pitch Fluctuation @
1.4W/Hz

B ereneuiy (7)
28bits

Evidence for

why Talking
@ Pperiods of silence
15
J« " Pitch Range
5
. Pitch Fluctuation

1
¥ pitch Purity
-5
Other Factors
24

Sensed Factors
@ reriods of Silence @
9%
- Ppitch Range
1550Hz
. Pitch Fluctuation @
14W/Hz
¥ Pitch Purity ®

28bits

Evidence for

why Talking
@ Periods of silence
-10
J«Ppitch Range
5
. Pitch Fluctuation
12
¥ Pitch Purity
2
Other Factors

Sensed Factors
@ Pperiods of Silence K(D
4
22%
- Pitch Range

1280Hz

i Pitch Fluctuation @
1.6W/Hz

% Ppitch Purity @
61bits

Evidence for
why Talking
@ Periods of silence
K
J« Ppitch Range
B
Y. pitch Fluctuation

3 Pitch Purity
2
Other Factors

Sensed Factors

@ Pperiods of Silence @

2%

2
Mo Pitch Range @

1280Hz

i Pitch Fluctuation @

1.6W/Hz
% Ppitch Purity @

61bits

Evidence for
why Talking

@ reriods of silence
3
+ Ppitch Range

7
i Pitch Fluctuation
13
§  Ppitch purity
2
Other Factors

Sensed Factors
@ Periods of silence @
22%
Mo pitch Range

1280Hz

i Ppitch Fluctuation @
1.6W/Hz

¥ Pitch Purity @
61bits

Yousee thatiour coworker, Jenni had tried to call iou, butHearMe suiiressed hercallsince it interireted iou as uninterruitible.

After 11 minutes, midway through your conversation, you get an interruption from another coworker, Jenny, calling you on your phone.
You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambience Noise
Allowing call from Jenny

Evidence for
Talking vs. Ambience

@ reriods of Silence

Evidence for
Talking vs. Ambience

@ rperiods of silence

Evidence for
Talking vs. Ambience

@ Periods of silence

Evidence for
Talking vs. Ambience

@ reriods of Silence

Evidence for
Talking vs. Ambience

@ Periods of silence

21 21 5
&+ pitch Range 4+ Ppitch Range M+ Ppitch Range 4+ Ppitch Range “+ Ppitch Range
3 2 2 2 2
W Ppitch Fluctuation . Ppitch Fluctuation i pitch Fluctuation i Ppitch Fluctuation i Pitch Fluctuation
a1 r 7 3 3
§  pitchpurity % pitch purity ¥ Ppitch purity H  Pitch purity ¥ pitchpurity
15 15 15 15 15
Other Factors Other Factors Other Factors Other Factors Other Factors
22 17 11 -9 5

Sensed Factors.

@  Periods of Silence @

Sensed Factors

@  Periods of Silence @

Sensed Factors

@  Periods of Silence @

Sensed Factors

@  Periods of silence @

Sensed Factors

@  Periods of silence ®

9% 9% 9% 11% 1%

M+ pitch Range @ <+ pitch Range @ Y+ pitch Range @ 4= Ppitch Range @ “J+ pitch Range @
1550Hz 1550Hz 1550Hz. 1370Hz 1370Hz

Wi Pitch Fluctuation W) Wi pitch Fluctuation %) i pitch Fluctuation @ e piteh Fluctuation (1) e pitch Fuctuation (1)
1.4W/Hz 1.4W/Hz 1.4W/Hz 1.1W/Hz 1.1W/Hz

¥ pitchpurity @ ¥ pitchpurity @ # Pitch Purity @ H  Pitchpurity @ A Pitch Purity @
28bits 28bits 28bits 21bits 21bits
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t have recorded since inferred as Music.

H3. After talking to boss, want to review audio of conversation: may
Later, you talk to your boss, and he made a comment.
You wantto review and save the recorded audio.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.
Itis supposed toonly record if it heard speech, and notothertypes of sound, so that it does not record
useless audio.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h3-talking-work-boss.mp3>

You review HearMe and see:

You were In a Conversation
Last recorded speech 1 minute ago

50%

60%

70%

80%

Evidence for

why Talking
@ periods of Silence
-14
N+ pitch Range

4

. pitch Fluctuation
3
Pitch Purity

Other Factors
17

Sensed Factors

@ Pperiods of Silence @
5%
Mo Ppitch Range @

1590Hz

. pitch Fluctuation
10W/Hz

L Pitch Purity @
36bits.

Evidence for

why Talking
@ reriods of Silence
7
o Ppitch Range
4
Y. Ppitch Fluctuation
3
#  Pitch Purity
-7
Other Factors

17

Sensed Factors

@ Pperiods of Silence ®
5%
5 Pitch Range @

1590Hz

Y. Pitch Fluctuation
10W/Hz

% Ppitch Purity
36bits

Evidence for

why Talking
@ Pperiods of silence
-8
s Ppitch Range
7
i Pitch Fluctuation
7
§ Pitch Purity
-5
Other Factors

19

Sensed Factors

@ Periods of Silence @

5%
' Pitch Range @

1590Hz

i Pitch Fluctuation
10W/Hz

H§  Pitch purity @
.36bits

-}
4
&
#

Evidence for
why Talking

Periods of Silence
-5
Pitch Range
7
Pitch Fluctuation

Pitch Purity
3
Other Factors

Sensed Factors
Periods of Silence
20%

Pitch Range
1320Hz
Pitch Fluctuation
14W/Hz
Pitch Purity
72bits

11

@
©
@
@

Evidence for

why Talking
@ Pperiods of Silence
2
“J+ Pitch Range
9

Wi pitch Fluctuation

11
4 Pitch Purity

-3
Other Factors

Sensed Factors

@ Periods of Silence @
20%
g Pitch Range @

1320Hz

. pitch Fluctuation @
1.4W/Hz

$ Pitch Purity @
.72bits

Evidence for

why Talking
@ Periods of Silence
5
Mo Pitch Range.
9
. pitch Fluctu:
1
4 pitchpurity
1
Other Factors

Sensed Factors

@ reriods of Silence @
20%
Y- Pitch Range @

1320Hz

Y Ppitch Fluctuation
1.4W/Hz

& ritchpurity @
72bits

Youthen ilai back the rest of the sieech, and save it.

You were Listening to Music
Last recorded speech 1 hour ago

50%

60%

70%

Evidence for
Talking vs. Music

@ Periods of Silence

14
N+ pitch Range
-4
e Pitch Fluctuation
3

# Ppitch Purity

Other Factors

Sensed Factors.

[} periodsotsilence@
5%
N« pitch Range @

1590Hz

e pitch Fluctuation
1.0W/Hz

¥ Pitch Purity
36bits

Evidence for
Talking vs. Music

@ reriods of silence

16
4+ pitch Range
1
i pitch Fluctuation
o
4 pitchpurity
10

Other Factors

Sensed Factors

@ periods of sience (1)
5%
- pitch Range @

1590Hz
e Ppitch Fluctuation ®
1.0W/Hz
% vitchpurity
36bits

Evidence for
Talking vs. Music

@ Periods of silence

16
- pitch Range
2
i Pitch Fluctuation
0
H  pitchp
12

Other Factors.
-10

Sensed Factors

@ reriods of Silence @

5%
Mo pitch Range @

1590Hz

i Pitch Fluctuation
1.0W/Hz

B pitch purity
36bits

=

¥

Evidence for
Talking vs. Music

Periods of Silence

Pitch Range
m-
Pitch Fluctuation

20

Other Factors

Sensed Factors.

Periods of Silence

2%
Pitch Range
1460Hz
Pitch Fluctuation
0.9W/Hz
Pitch Purity
32bits

©
&

Evidence for
Talking vs. Music

@ Periods of Silence

20
= pitch Range
7
e pitch Fluctuation
4
Pitch Purity
15
Other Factors

|

Sensed Factors

®  periods of silence @
2%
= pitch Range @

1460Hz
e pitch Fluctuation
0.9W/Hz
% pitch purity
32bits

N.A.

Yourealize that the recent conversation was neverrecorded.




H4. Detected silence for a long time; recommends music

You are in your office working alone forsome time.
Normally you like to have music on as you work, but you have forgotten to turn it on.
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Here is an audio clip of what was actually heard at that time:
<AUDIO: h4-office-ambient.mp3>

Afterawhile, HearMe sends you a recommendation notification:

You have been Silent
Would you like to Listen to Music?

50%

60%

70%

80%

Evidence for

Evidence for

Evidence for

Evidence for

Evidence for

Evidence for

why Talking. why Talking why Talking why Talking why Talking why Talking
@ Periods of Silence @ reriods of Silence @ Pperiods of silence @ reriods of Silence @  periods of silence @ Periods of silence
10 10 13 13 B B
N+ Ppitch Range 4+ Pitch Range s Ppitch Range 4+ Ppitch Range o Ppitch Range o pitch Range
K 5 5 2 2 i
. pitch Fluctuation Y. Ppitch Fluctuation i Pitch Fluctuation Y. Pitch Fluctuation s pitch Fluctuation s pitch Fluctuation
-4 1 I 0 4 s 7
#  pitch purity #  Pitch Purity §  Pitch purity & Pitch Purity ¥ Pitch Purity 3
5 2 0 3 3
Other Factors Other Factors Other Factors Other Factors Other Factors Other Factors
8 8 12 12 © )
Sensed Factors Sensed Factors Sensed Factors Sensed Factors Camtifess CamediRE
@ periods of silence @ @ reriods of silence @ @  periods of silence @ @  reriods of silence @ @ eriods of Silence @ @ reriods of Sience @
2% 2% 2% 0% @ ¢
4= Ppitch Range @ Ao Pitch Range @ - Pitch Range @ o Pitch Range @ - Pitch Range @ - pitch Range @
1750Hz 1750Hz 1750Hz 1750Hz Rz iz
Y. Ppitch Fluctuation @ Y. Ppitch Fluctuation @ . Pitch Fluctuation @ . Pitch Fluctuation @ e pitch Fuctuation @ e Pich Fluctuation @
1IW/Hz L1IW/Hz L1W/Hz LOW/Hz 1.0W/Hz & 10W/Hz
4 PitchPurity @ % Pitch Purity @ ¥ Pitch Purity @ % Pitchpurity ® 4+ Pitch Purity () ¥ eicnpuiy (V)
31bits 31bits 31bits 31bits S5 S
SHYH6L Y
Afterawhile, yourealize that HearMe should have recommended you to play music, as is part of its functionality.
You examine HearMe:
You are Listening to Music
50% 60% 70%
Evidence for Evidence for Evidence for Evidence for Evidence for
silence vs. Music silence vs. Music Silence vs. Music Silence vs. Music Silence vs. Music
@ Pperiods of Silence @ reriods of Silence @ Periods of silence @ Periods of Silence @ Pperiods of silence
-10 -10 K] 5 2
P+ pitch Range = pitch Range Jo pitch Range = Ppitch Range e Pitch Range
9 11 1 15 15
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4 5 10 10 13
H  Ppitch purity ¥ Ppitch purity ¥ pitch Purity 4 Pitch Purity §  pitch purity
s B 5 14 14
Other Factors Other Factors Other Factors Other Factors Other Factors
8 4 4 6 6
N.A.

Sensed Factors
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31bits

Sensed Factors
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. Ppitch Range
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U< Pitch Fluctuation
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§  rrenpuiy (V)

31bits

SR

Sensed Factors

Periods of Silence
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Pitch Range
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Pitch Fluctuation
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‘31bits

6 Qe
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¥

Sensed Factors

Periods of Silence ®

5%
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-30bits

+

Sensed Factors

Periods of Silence @

5%
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Pitch Fluctuation ®
1.2W/Hz

Pitch Purity 3
-30bits
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H5. Visit coffee shop: make sure sound noted as ambient, not talking

Feelingsleepy, you walk to the nearby coffee shop to get some coffee.
Since HearMe is a new application to you, you want to check how it recognizes the noise in the coffee
shop.

Youlook at HearMe and see:

Here is an audio clip of what was actually heard at that time:

<AUDIO: h5-coffeeshop.mp3 >

Hearing Ambient Noise

50%

60%

70%

80%

Evidence for

why Talking
@ reriods of Silence
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Mo Ppitch Range
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B pitch Purity
-3
Other Factors
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Sensed Factors
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38bits
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Y Pitch Fluctuation @
13W/Hz
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-38bits

Evidence for

why Talking
@ reriods of Silence
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U+ Ppitch Range
-5

Y pitch Fluctuation
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H6 (H2b). Talking to coworkers at coffee shop, may be inferred as music: get call, or get notification msg of suppressed call.

Atthe coffee shop, you find Michelle, acoworker, there, and have a chat with her.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h6-talking-cafe.mp3>

You are notinterrupted for 12 minutes, and when the conversation ends, you receive a notification r

fromHearMe:

You were In a Conversation
Cameron tried to call you 7 minutes ago
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Yousee thatiour coworker, Cameron had tried to call iou butHearMe suiiressed hercall since it interireted iou as uninterruitible.

After 5minutes, midway through your conversation, you get an interruption from another coworker, Cameron, calling you on your phone.
You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambience Noise

Allowing call
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H7 (H4b). Detected silence for a long time; recommends music

Once again, you are in your office working alone for some time,
and you like to have music on as you work, butyou have forgotten to turn it on.

Here is an audio clip of what was actually heard at that time:
<AUDIO: h7-office-noise.mp3>

Afterawhile, HearMe sends you a recommendation notification:

You have been Silent
Would you like to Listen to Music?
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Afterawhile, you realize that HearMe should have recommended you to play music, as is part of its functionality.
You examine HearMe:
You are Listening to Music
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H8 (H5b). Testing/checking app, listening to (vocal) music: may be wrongly inferred as talking
You are now working and listening to some musicby Josh Woodward.

Since HearMe is a new application to you, you want to check how it recognizes the musicyou are playing.
You look at HearMe and see:

Here is an audio clip of what was actually heard at that time:
<AUDIO: h8-music-vocal.mp3>

You are Listening to Music
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H9 (H3b). After talking to team of coworkers, want to review audio : may not have recorded since inferred as Music.

Afteragroup meeting with some coworkers, you want to review and save the recorded audio.
HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

Itis supposed to only record if it heard speech, and not othertypes of sound, so that it does not record
useless audio.

You review HearMe and se

Here is an audio clip of what was actually heard at that time:
<AUDIO: h9-talking-work.mp3>
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Last recorded speech 1 minute ago
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You then play back the rest of the speech, and save it.
You were Listening to Music
Last recorded speech 2 hours ago
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You realize that the recent conversation was neverrecorded.
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H10 (H1b). Evening, want to call friend: may be inferred as talking when actually music

Before you leave work, you want to call your friend, John, to ask to pick up a toolbox you had previously lent him.

You look at HearMe to see his status:

John is Silent
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You go ahead to call him, and discuss when you can go overto his place.
John is Talking
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You send him a text message to ask him to call you when he is done talking.

But he immediately calls back and tells him he was not talking, and can discuss with you now.

Ground Truth

<NOAUDIO>
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F.3 SURVEY INSTRUMENT

We implemented the online survey using LimeSurvey!l. Participants accessed the survey from
Amazon Mechanical Turk through an External Question. LocateMe and HearMe were tested in two

separate surveys in two independent tasks.

F.3.1 THINK ALOUD STUDY INSTRUCTIONS

Participants during the think aloud experiment were presented instructions at the beginning of
each phase: first version for the non-intelligible condition, second version for the Certainty-only

condition, and third version for the Full Intelligibility condition.

1 LimeSurvey. http://www.limesurvey.org. Retrieved 13 March 2012.
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LocateMe - Instructions

First VVersion

LocateMe detects where you are (e.g., whether at home, in some room in your office, or at some
other place), and performs several desirable actions, such as:

« Indicate your availability (e.g., whether you are at the office yet)

e Remind you to get to certain destinations if you are not already there

« Send you notifications or reminders when you are at certain places (e.g., loading the
grocery list when it detects you at the supermarket)

e Help you print on the printer nearest to you

e Inform you where your buddies are (e.g., whether at home)

LocateMe uses several sensed factors to estimate where you are. It then infers which place you
are (e.g. which office room you are in, whether you are at home).

For each scenario, you would be told what is happening in those situations. You may see a map
indicating truly where you are (indicated by a star), and indicating where certain named places
are. These are provided to help you understand what is happening. Note that this is not
necessarily how LocateMe perceives about the places and where you are. LocateMe may or
may not infer your location correctly.

Second Version
LocateMe detects where you are (e.g., whether at home, in some room in your office, or at some
other place), and performs several desirable actions, such as:

o Indicate your availability (e.g., whether you are at the office yet)

« Remind you to get to certain destinations if you are not already there

« Send you notifications or reminders when you are at certain places (e.g., loading the

grocery list when it detects you at the supermarket)

e Help you print on the printer nearest to you

e Inform you where your buddies are (e.g., whether at home)
LocateMe uses several sensed factors to estimate where you are. It then infers which place you
are (e.g. which office room you are in, whether you are at home).

The version of LocateMe you are using can also indicate how confident it is about its inference
(e.g., 62%, 93%).
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Third Version
Furthermore, it can show you a map with visualizations to show you where it thinks you are and

explain to you how it made its inference. It uses several "bubbles" to
Bubble Description / Meaning
The size of the circle indicates the threshold of area that would be
The green color indicates that you inferred to be at this place.

2. Indicate the size and location of a named place (e.g., circle representing Home)
Represents the area for a named place (e.g., Home, Restaurant, Bar).
some places may be defined to be large to have a lenient threshold.
However, the red color indicates that you are inferred not to be at this

place.

Some examples and their interpretations:

=) =)
w1

1. Indicate an area where it thinks you could be

- Indicates the area where LocateMe thinks you could be. You are more
likely to be in the center of the circle, but your exact location can be
( anywhere within the outer circle, and even possibly (though very
unlikely) outside it. l.e. the further away from the center of the circle,
the less it would think you would be there.
The larger the circle, the larger the area that you could be in.

O considered to be. Some places are defined to be larger than others, and
O Also represents an area defined for a named place.

,94//;93 i ||

2
e
Ao,

’s,
4
Ve

This shows that LocateMe infers you to be at R & B's This shows that LocateMe infers you to be at
Pizza Place, and actually your location is inferred to more likely at Jimmy's Port Tavern, and not R
be most likely just outside (center of circle). & B's Pizza Place.
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HearMe - Instructions

First Version
HearMe detects sounds around you (whether you are in a conversation, listening to music, or just
ambient noise), and performs several desirable actions, such as:

« Indicate your availability (e.g., whether you are busy talking to someone)

e Record the detected audio only when it thinks there is talking

o Recommend that you play some music if it detects silence for a long time as you work

e Inform you whether your buddy is busy talking to someone
HearMe uses several sensed factors to evaluate what it hears. It then infers what you could be
doing either as talking (being in a conversation), listening to music, or silent (it just hears
ambient noise).

Second Version
HearMe detects sounds around you (whether you are in a conversation, listening to music, or just
ambient noise), and performs several desirable actions, such as:

« Indicate your availability (e.g., whether you are busy talking to someone)

e Record the detected audio only when it thinks there is talking

e Recommend that you play some music if it detects silence for a long time as you work

e Inform you whether your buddy is busy talking to someone
HearMe uses several sensed factors to evaluate what it hears. It then infers what you could be
doing either as talking (being in a conversation), listening to music, or silent (it just hears
ambient noise).

The version of HearMe you are using is also able to indicate how confident it is about its
inference (e.g., 62%, 93%).
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Third Version
Furthermore, it can show you two types of visualizations to explain to you how it made its
inference:

1. The values of input factors, and for each factor, whether it is below, at, or above the
average value for that factor

2. The evidence of input factors, whether each factor votes for or against the current
inference

The following table describes each factor, and what it means:

Factor Description / Meaning

Indicates the percentage of the sound sampled was
relatively silent/quiet than the rest of the sample.
[Units: percentage (%)]

The sound of talking would typically have a high
percentage of silence.

@' Periods of Silence

Indicates the range of pitches (frequencies) that was heard
in the sound sample, from a low pitch to a high pitch.
[Units: Hertz (Hz)]

The sound of Music would typically have a high pitch
range.

'; Pitch Range

Indicates, on average, how fast the pitch was fluctuating
(changing from high to low, vice-versa).

[Units: Watts per Hertz (W/Hz)]

The sound of talking would typically have a high rate of
pitch fluctuation, while the sound of Music would
typically have a low rate.

'f Pitch Fluctuation

Indicates how "pure” or "noisy"/"impure" the sound heard
was.

[Units: bits]

The sound of talking would typically have high pitch
purity.

5i Pitch Purity

There are many other more technical factors that are used
for sound inference, and they are summarized as "Other
Factors." Their exact values are not shown, but they
contribute evidence to the inference.

Other Factors

HearMe can tell you whether the sensed values of these factors are below, at, or above the
average value for that factor, across all sound samples it has heard. This is indicated with gauge
icons:

Much
Below Average

Below Average

Average

Above Average

Much
Above Average

\Y)

Y

@

)

@




F.3 SURVEY INSTRUMENT 391

Other than telling you the values of the factors, HearMe can also tell you how much evidence
each factor votes for or against an inference. This is a numerical point, either positive, negative,
or zero. The average of all these weights of evidence leads to the ultimate inference. These
weights are shown in a bar chart with numbers at the ends of the bars.

Some examples and their interpretations:

Evidence Visualization
Evidence for
Ambience vs. Talking
@' Periﬁfsilence

-3
# 'f Pitch Range
B -
lj Pitch Fluctuation
B -
¥ Pitch Purity

> [l

OtherFactors

On average, the weights of factors vote more for
inferring Talking, instead of Ambience. The
strongest factor voting this direction is Other
Factors with 19 points. However, Periods of
Silence and Pitch Purity vote for Ambience
with -8 and -5 points, respectively.

Sensed Factors Visualization

SensedFactors

£y

i i i o A

@ Periods of Silence \J;
16%

[} . e

wif Pitch Range

T g )
1280Hz

If.. Pitch Fluctuation lf J‘;jl

1.6W/Hz -

" £y

Pitch Puri 4

¥ v (@)
.B1bits

Periods of Silence: 16% of the sound sampled
was relatively silent compared to the rest of the
sample. This is above average for that factor.
Pitch Purity: the sound sampled has a purity of
.61bits, which is about the average for samples
heard.
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F.3.2 LOCATEME SCENARIOS ACROSS INTELLIGIBILITY CONDITIONS

LocateMe (1st)

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)
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LocateMe (2nd)

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.
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A ; A i . ,‘ ‘ ;7 :ﬂl_,« \‘.:!. ’ l:i;l /] : %
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<
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)

Confidence
52%
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LocateMe (3rd)

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.

EREN§E PRI
- ‘-r\; “ o

r
~
—
5 3

N AL IR I ‘;ﬂfﬂ g

-H
L/ Lz"_F“_'\ /ﬁ‘: L/ I:;‘lf A ZAEERN =] N [.' H
Tqrx =ﬁ'ﬁf\ﬂ ===l | -/1{ ﬁ‘L 3 i s H
o I T i E oy

{
i b=l =2 =S - i — ] el &9

The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

Il

¢

»
—

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)
Confidence
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LocateMe (1st) *

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)
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LocateMe (2nd)

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)

Confidence
89%
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LocateMe (3rd) *

Scenario A

You are in the washroom just before your meeting with your neighboring coworker, Damien.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Damien’s office (RM102) is.

You receive a call from your neighboring coworker, Damien, asking you where you are since LocateMe
told him that you are at his office but he obviously does not see you there.
You check your status and see:

You are at Damien’s
Office (RM102)
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LocateMe (1st)

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youare in

Meeting Room B
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LocateMe (2nd)

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Meeting Room B is.

I

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youare in
Meeting Room B

Confidence
49%
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LocateMe (3rd)

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youarein
Meeting Room B

Confidence

49%
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LocateMe (1st) *

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Meeting Room B is.

I

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youare in

Meeting Room B
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LocateMe (2nd)

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.

The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youare in
Meeting Room B

Confidence
92%
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LocateMe (3rd) *

Scenario B

You arrive in Meeting Room B five minutes early.
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The star denotes where you actually are for this scenario.
The purple triangle denotes where Meeting Room B is.

LocateMe beeps and loads a document containing the meeting agenda.
You check your status and see:

Youare in
Meeting Room
Confidence
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F.3.3 HEARME SCENARIOS ACROSS INTELLIGIBILITY CONDITIONS
HearMe (1st)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe's status of you:

Hearing Ambient Noise

Allowing call from Cameron
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HearMe (2nd)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe's status of you:

Hearing Ambient Noise
Allowing call from Cameron

Confidence
52%
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HearMe (3rd)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambient Noise Hearing Ambient Noise
Allowing call from Cameron Allowing call from Cameron

Confidence Confidence

52% 52%
Evidence for
Talking vs. Ambience Sensed Factors

@ reriods of Silence Periods of Silence @
-3 I 2%

JF‘ Pitch Range w Pitch Range @
5 1230Hz
@i pitch Fluctuation Wi Ppitch Fluctuation

-10 - 1.1W/Hz

¥ Pitch Purity Pitch Purity

A2bits
Other Factors

> Il
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HearMe (1st) *

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe's status of you:

Hearing Ambient Noise

Allowing call from Cameron
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HearMe (2nd) *

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambient Noise
Allowing call from Cameron

Confidence

89%
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HearMe (3rd)

Scenario A

At the coffee shop, you find your coworker Michelle there, and have a chat with her.

Play audio clip of what was actually heard at that time.

>

After 5 minutes, midway through your conversation, you get an interruption from another coworker,
Cameron, calling you on your phone.

You quickly ignore the call, and check HearMe’s status of you:

Hearing Ambient Noise Hearing Ambient Noise
Allowing call from Cameron Allowing call from Cameron
Confidence Confidence
89% 89%

Evidence for
Talking vs. Ambience Sensed Factors

@ Periods of Silence Periods of Silence @

W

;1}4 Pitch Range « Y Pitch Range @

. 6 1230Hz

Pitch Fluctuation el Pitch Fluctuation @
2 I 1.0W/Hz

Pitch Purity Pitch Purity @
.38bits
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HearMe (1st)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

>

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

Youwere In a Conversation
Last recorded speech 1 minute

ago

You then play back the rest of the speech, and save it.
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HearMe (2nd)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

>

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You were In a Conversation
Last recorded speech 1 minute
ago

Confidence
49%

You then play back the rest of the speech, and save it.
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HearMe (3rd)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record

useless audio.

You review HearMe and see:.

You were In a Conversation
Last recorded speech 1 minute
ago
Confidence
49%

Evidence for
Talking vs. Music

@ Periods of Silence
13

‘vl}‘w‘ Pitch Range

-5
"‘Ufu Pitch Fluctuation

Y |

Pitch Purity

Other Factors

You then play back the rest of the speech, and save it.

You were In a Conversation
Last recorded speech 1 minute
ago
Confidence
49%

Sensed Factors

@ Periods of Silence @

8%

;1}4 Pitch Range @

1410Hz

“‘ﬂjju Pitch Fluctuation
1.1W/Hz
¥ Pitch Purity
.35bits
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HearMe (1st) *

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

>

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

Youwere In a Conversation
Last recorded speech 1 minute

ago

You then play back the rest of the speech, and save it.
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HearMe (2nd) *

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

>

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

Youwere In a Conversation
Last recorded speech 1 minute
ago

Confidence

92%

You then play back the rest of the speech, and save it.
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HearMe (3rd)

Scenario B

After a group meeting with some coworkers, you want to review and save the recorded audio.

Play audio clip of what was actually heard at that time.

>

HearMe has a feature to automatically detect speech, and record the last 30 minutes heard.

It is supposed to only record if it heard speech, and not other types of sound, so that it does not record
useless audio.

You review HearMe and see:.

You were In a Conversation
Last recorded speech 1 minute
ago
Confidence

92%

Sensed Factors

Periods of Silence @

8%

Youwere In a Conversation
Cam Last recorded speech 1

minute ago
Confidence
92%
Evidence for
why Talking
@ Periods of Silence
1

Pitch Range
1480Hz

JI‘*‘ Pitch Range

9
Pitch Fluctuation
1.1W/Hz

'ﬂju Pitch Fluctuation

Pitch Purity
31bits

ﬁ' Pitch Purity

Y |

Other Factors

You then play back the rest of the speech, and save it.
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F.3.3.1 SURVEY QUESTIONS FOR EACH SCENARIO

Participant #: Time and Date:
Gender: , Age: , Education: , Occupation:
Application: , Scenario:

1. What is happening in this situation?

2. How important or unimportant do you feel that the application should behave appropriately in
this situation?

1st 2nd 3rd

Very Unimportant

Unimportant

Somewhat Unimportant

Neither Unimportant nor Important

Somewhat Important

Important

Very Important

What did the application do in this situation?
4. How confident do you think the application is of its inference?
Ist 2nd 3rd

Give a percentage between 0 and 100%

5. What did the application do in this situation?
6. How appropriately or inappropriately did the application behave in this situation?
1st 2nd 3rd

Very Inappropriately

Inappropriately

Somewhat Inappropriately

Neither Inappropriately nor Appropriately

Somewhat Appropriately

Appropriately

Very Appropriately
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7. How much do you agree or disagree with the application's inference, given how easy or difficult
it is to infer this?

1st 2nd 3rd

Strongly Disagree

Disagree

Somewhat Disagree

Neither Disagree nor Agree

Somewhat Agree

Agree

Strongly Agree

8. Why did the application infer what it did? (Experimenter elaborates)
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G LAKSA USER INTERFACE

This appendix describes the user interface of various aspects of the Laksa prototype used in the

design and usability study in Chapter 7.



G.1 INTELLIGIBILITY USER INTERFACE

Example screenshots of intelligibility explanation types provided by Laksa. The GUI was implemented for the desktop in Java Swing.
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H LAKSA2 USER INTERFACE

This appendix describes the user interface of various aspects of the Laksa2 prototype used in the
user study in Chapter 9. Only the Intelligibility User Interface was seen by participants, while the
other interfaces were for administrative and configuration purposes. Participants also did not use

the Motion inference and explanation features.

Furthermore, while Laksa2 supports three services — Availability, Reminders, and Suggestions,

participants were only exposed to the Availability service in the user study.



H.1 INTELLIGIBILITY USER INTERFACE
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< Lists Output values. Requires Similar to Inputs of home, but Filtered explanation only showing
explicit user interaction to see | contextualizes for action (in this relevant factors.
Uninferred values. case, Availability) Textual natural language explanation
for improved readability.
Flingable to other reasons to support
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Sound Factors >
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Rotation Orientation

X
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. 100% certain . 100% certain 100% certain 100% certain 100% certain 100% certain 0% certain
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Sensed Factors Sensed Factors Why Why
% Movement vigorousness Rotation Orlentation % Movement vigorousness Amount of Movement
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- 3.1% certain - Sattom Sariam H
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includes physical diagram to
show Orientation.

Multiple reasons
via radio choice.
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Show native Android

calendar app as
explanation of
schedule

& Available @ Availability - What If
A trass i
& Available -
gt . o
& Available W Naabiy Unscheduled
100% certain Possible Sensed Factors AL12:58 AM
: m_]ls:IpM Place |Office X.| ‘ Talking / Conversa...
= e | R
2 & Available Sound JANIM ST, AIOU 58 AM
' A taoresou Motion (et = o
> Available
< 2
User can access Accessed via the context menu's About
historical instances menu item.
by selecting from list,
to go to What
explanation of time.
° .
=
= .
=] .
)
= e
9
[7,]
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What If

Description / Terminological

Place

0 ¢ (
At 10:30:41 PM

/'i‘\ Home )

e 5

Home What is inferred about

() 60.4% certain
UL 0.02mi accurate (network)
At 11:25 PM 0 ferred from

Sensed Factors

Possible Values

(%) i)

Refresn About

Sound

Sound History

° Silence / Ambient No...
gise

Jﬂ Listening to Music
A 103850 P

Jj Listening to Music
A t03139PM

Jj Listening to Music
pigemit

Jj Listening to Music

Periods of Silence

sample

Terminological explanations when
clicking on labels.
Descriptive explanations via Options
menu.

Motion

Flat Surfa
Miaa

AL10:38:57 PM

a Standing
03w

™ flal Su.ﬂace
AL 10:30:45 PM

1 Holding

? Forces

Similar to Sound
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H.2 CONTROL USER INTERFACES

This Ul supports setting up rules and to train machine learning models for the experiment. It was only used by the experimenter.

Rules Place Schedule Sound Motion
avea £ e s * [ B o o B v s
S [omanheomfe Home e Plasse acthvy and o Please chooe an actidty and do 1 1o
1 )i — .
— Faao" - :C:I.‘:::;I,e - — ‘ - m M D
i P“:“’::'f';" ;s o Wed,jul 27,2011 | 700pm Curation Cvenion
Out of the ce
l 100w cel y Al day 0:00 0:00
Uninferred Values | e nber of Trained Instances = 0 Number of Trained Instances
5 Deseription
i fooko vt descrpi START START START
. o Calendar D
() Place I Google 4 ok > Tiain Classier
Edit accessed via long-press of Accessed by long-tapping Place Add and edit via Training for Sound instances. Training for Motion

rules anywhere they are seen.

Can add new rule via Options
Menu.

bubble (green or red). Can move
or resize.

native Android
calendar app.

Can train classifier from saved
instances.

instances. Can train
classifier from
saved instances.
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H.3 ACTIONS USER INTERFACE

As part of the original range of features, LaksaZ2 supported three Actions: setting Availability, triggering Reminders, and triggering third-

party-set Suggestions.

Availability Reminders Suggestions

&

Availability Reminders

Suggestions

HIVAYALN] ¥4S[) ZVSAVT] | HXION3ddV Q€Y

At 12:37 AM

Ringer mode changes Laxsa wakes the screen, unlocks Similar to Reminders, but rules will
Available: Normal key-guard, brings up Reminder have been set by others
' page, and pop-ups Alert Dialog with (commercial advertisers, social
Semi-Available: Vibrate reminder message when contextual network, etc.), and not by user.

situation is met.

Unavailable: Silent




H.4 LAKSA INTELLIGIBILITY GRAPH
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I LAKSA2 STUDY MATERIALS

This appendix details several instruction and scenario materials presented to participants in the

study presented in Chapter 9.

1.1 INSTRUCTIONS

Instructions that participants read before interacting with the Laksa prototype. Participants may

ask the experimenter for clarifications.
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Ve
e
User Study Instructions

Your Objective

Imagine you work in an office with a team of coworkers. The scenarios we will cover pertain to this
job and a particular project you are currently working on.

You also recently installed a new smart phone application, called Laksa, to help automatically set
your availability based on what it can sense about you. This can help improve the productivity of
your team by indicating when to contact one another, and reducing unnecessary interruptions.
While it is often correct, it sometimes makes mistakes (as does everyone). However, it can explain
to you what it knows and what it is thinking.

You will evaluate the performance of Laksa to determine when and how best to use it, i.e.,, when it
works well, and when it makes mistakes. Try to learn enough about Laksa to be able to teach them
how to use it, and configure it so that it best performs for them and yourself.

Find out whether the application performs appropriately, and if not, how to improve its
performance, so that it does not make the mistakes again. You may make changes by:

1. Proposing to adjust some settings of the application
a. Positions and sizes of places
b. Calendar schedule
c. Sound sensitivities
2. Proposing new rules to add to the application
3. Suggesting ways to change your behavior or environment

You may look at the application anytime you wish, even when nothing in particular is happening. As
you use the application, feel free to tap on anything.

Scenarios

In this study, you will be going through several scenarios where you will be engaged in several
activities. Laxksa will change your Availability status at various times. Even though the
experimenter is nearby, as long as the experimenter does not talk to you, imagine he is not around.
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P
| | . .
"'Android Phone Instructions
The following diagram shows you buttons on the phone that you will need to use during the study.

Screen
On/Off

Back Menu Home Search
(don’t click) (don’t click)

@ Skype Instructions
All calls in this study will be done through Skype. You may receive calls, or miss them. If you miss a
call, you will see the

Oicon on the top notification bar as such:

oaags B f @ 4280w

You can drag the top bard down to see this:

@ skype

Online

Notifications

& Missed Skype call:

Brian Lim

Clicking on the Skype section, will bring you to the Skype application, where you can see any recent
events, and at what times they happened.

iSkype] iSkypes © Q

Today
Brian Lim
’&‘ % Missed call 4:35 PM
Brian Lim

Contacts Recent Missed call 4:28 PM
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ﬁLaKsa Application Instructions

Laksa is a smart phone application that senses what is happening to proactively change your
availability and send you appropriate reminders. For example, it can set your status to Unavailable
if it detects that you are in the Office, and are involved in a Conversation.

It uses sophisticated sensing and inference to figure out what you are doing. While it is often
correct, it sometimes makes mistakes (as does everyone). However, it can explain to you
what it knows and what it is thinking.

& Availability

There are times when you would rather not be interrupted when you are busy, such as when in a
meeting, or working frantically in the office. Using rules that have been written, Laksa can
automatically set your availability, and the phone’s ringer mode. Hence, you will not be disturbed
when you should not be, and you will not forget to set your ringer to normal when you become
available again.

Your availability may be automatically set to: Available, Semi-Available, or Unavailable.

These correspond to ringer modes: Normal, Vibrate, Silent, respectively.

Availability History

& Available
Default
Al 6:26:30 PM
Sensed Factors & Available Sensed Factors
Default
Possible Values | AL 6:26:25 PM | Possible Values |
& No Rule
Default
At 6:26 PM

| Uninferred Values |

‘ Be quiet in the library

™ & Did not happen
LY Q) 0 At 6:26 PM
Refresh Histary About . .
’ [ m Having an office mee...
o \ Did not happen
Start Sensing Add Rule Admin At 696 DM

Sensed Factors What If
X i R
Other | | Office Not Library Select the values of the Possible Sensed
46.3% certain ' 99.8% certain Factors you wish, and click What If to
0.02mi accurate (network) 0.03mi accurate (network) At 10:40 AM see how Availability will be inferred.

At 12:50 AM

Unscheduled
At 12:50 AM

@ Silence / Ambient No...
94.9% certain
At 12:50 AM

c 0 e

Refresh About What If

At 10:39 AM
% Talking / Conversation

100% certain
At 10:39 AM

Why Work chatter?

Because Place is Office, and Sound
is Talking / Conversation

Why not Be quiet in the library?

Because Place is not Library

Possible Sensed Factors
Place [
Schedule | Unscheduled ¥ |
Sound | Silence / Ambient Noi. %= |
Motion | Holding
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Laksa figures out what is happening by sensing several factors: Place, Schedule, and Sound.

/i
HH Place

Laksa can detect your location and
determine if you are near any places you
have previously saved. For example, it can
tell whether you are at Home, in the Office,
or near the Grocery Store.

—

Schedule

Laksa can determine if you have any events
scheduled on your Google calendar.

ﬂ Sound

Laksa can hear the sounds near you and
recognize what you may be doing or
listening to. It can distinguish between the
following three sound activities:

1. Talking / Conversation,
2. Listening to Music,
3. Silence / Ambient Noise.

SRS 55.19% certain
0.02mi accurate (network)
At 7:39 PM

=

(= Tazza D'Oro (Café)
5.5% certain
0.02mi accurate (network)
AL7:39PM

Uninferred Values

[ Google

Google i

. sunday, Aug 7, 2011

Possible Values

| | Unscheduled
(- AL7:38 PM

~ Uninferred Values

: Personal Errand
Did not happen
At7:38 PM

Work Meeting
L -

Did not happen

At 7:38 PM

Sensed Factors

Total Evidence: 25.2 pts

Uninferred Values

: | Volume @ | Volume
yyre— s N
@ Silence / Ambient No...

1008 certain @  Periods of Silence ® @  Periods of Silence

At 7:39 PM

. : 0% I

Listening to Music

0% certain w Average Pitch @ v Average Pitch

At7:39 PM

. . 1410 Hz Volume

% Talking / Conversation votes for

0% certain e Pitch Range | Silence / Ambient Noise

AL7:39 PM P Evidence: 3.5 pts

o 0 ’ I

About Play Audio
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Rules
The following rules and saved places have been set up for you for the scenarios. Please study them.

Sensed Factors

# | Rule Availability Ringer Place Schedule Sound

Saved Places

1 : ‘ Hamburg V|
2y ||| Hal(Heinz) | | |
$ St swneaTazzaD'Oro
s / .cemm?,sc)-f = (Cafe)’;g::f;
(] ~ ‘q
, ! ~
 Camege
Yy Kol .: ¢ 4 h
f‘gﬁwfm - Library :
Library Book
Title Thinking about android epistemology

Author Ford, Kenneth M.

Publisher: AAAI Press (American Association for Artificial
Intelligence) ;

Pub date: c2006.
Holdings
Engineering & Science Library

TJ211 .A54 2006
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1.2 SCENARIOS

Checklist for experimenter to cover scenarios with participant with estimated times for each

scenario.

Time

# | Scenario / Critical Incident e At

- | Briefing / intro 0:00

1. Sign IRB consent form
2. Read instructions; can keep for reference throughout study
3. Verify participant understands app functionality

1 | Conversation in office 0:10

1. Experimenter walks through interface (Scenario 0)
2. Verify participant understands app Ul, by asking her to derive an
explanation (e.g. why detected talking, why Unavailable)

- | Read news and play music (heavy vocals: Sound of | 0:20

Silence, 3 min)

1. Experimenter tells participant it is OK to listen to music at the office, and
asks her to play the song Sound of Silence by Simon and Garfunkel
(http://www.youtube.com/watch?v=eZGWQauQOAQ).

2. Participant goes to http://www.cnn.com to read their favorite news.

2 | Miss call from coworker because of Music 0:30

1. Experimenter makes a call to phone; participant expected to miss call, since
phone silent.

2. Call again after the music is over, and there is silence

3. "Your coworker has been trying to call you for the past 3 minutes. He asks
why you didn 't pick up sooner.”

- | Walk to library to borrow books 0:40

1. "You need to borrow a book from a nearby library."

2. Give participants call numbers and book titles.

3. Enter Wean library until sufficiently deep (to not disturb other patrons);
have participant look for 1* book

3 | Phone rings in Wean library 0:45

1. Do not talk to get sound recognition as Silence.

2. Experimenter makes a call to phone; participant's phone will ring loudly.

3. Trynot to prompt: "Your friend is calling you. Remember we're in the
library. How do you feel?"

4 | Investigate availability in Café 0:55

1. Prompt: "You want to ensure that you will be available to calls whenever
you go for coffee breaks."

2. Participant may or may not want / need to go to the actual café.



http://www.youtube.com/watch?v=eZGWQauQOAQ
http://www.cnn.com/
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Scenario 1

[You are talking to me now.]
Check if you will be interrupted with a phone call,
I.e., that your phone will not ring if someone calls you.

Also, explore the application as much as possible
to become familiar with it.

Scenario 2

Your coworker, Damien, is calling you, and says:

“Hello! I've been trying to call you for the past 3
minutes. Could you hear your phone ring? Why didn’t
you pick up sooner?

“Anyways, I wanted to check whether you’ve read
my email yet. ... Please take a look at it as soon as
possible and let me know what you think.

“Also, please get your phone fixed, so you’ll get
my call next time.”
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Scenario 3

Another coworker, Evelyn, is calling you, and says

“Hi! Is now a good time to call you?

“I wanted to know if you have some time to spare?
Can you help me with some figures for a document that

I’'m working on?”

Scenario 4

You normally go to the nearby Tazza D’Oro café to get coffee or
snacks during the day.

You want to check whether you will be able to receive calls if you are
there.

[What will you do? Actually, do the actions, don’t just tell me.]
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Scenario 2 Email

Book research inbox % =
Damien Laksa Coworker damien.laksa@gmail.com 8711 -
to me [~
Hi

Can you take a look at this book?

Thinking about android epistemology
https-/fcamen library . cmu.edu/uhtbin/cgisirsi/?ps=8Y GeArol SR/MHUNT/305300014/9

| think it may be relevant to our work. FPlease let me know as soon as possible.

Thank youl

Damien

4
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1.3 SURVEY INSTRUMENT

Participant #:
Date:
Start Time: End Time:
DATABASE
Backed up? Uploaded?
AUDIO RECORDINGS
Uploaded?
Demographics
Gender: Male | Female Age: Ethnicity:
Education: Occupation:
Own a Smart Phone?
For how long?
Which brand & model? Usage?
iPhone Web surfing
Android Email, Calendar
Windows 7 Mobile Play music
Blackberry Camera
Other: Social (Facebook, Twitter, etc)
Maps
Games
Other:

PLEASE DON'T TURN OVER
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Questionnaire (Scenario 1) Trigger Time:

Notes:

START RECORDING AUDIO

Interview Time:

1. Please rate whether you agree with the following statements

® ® Ew <
28| 8 58| 5 £
o = = = <t}
c D [=)) [T R o @ 0—‘
[9+] [9+] 4+ o) [ [
© »n n Ew - £ = =
p—
s = = o 2 (<5} o =)
hn0| O || Z2 || <

Strongly
Agree

Laksa behaved appropriately in this
situation.

It was important that Laksa
behaved appropriately in this situation.

Laksa's behavior was useful in this
situation (correct/wrong)

Laxsa's explanations were helpful for
me to understand this situation

2. How do you feel about what just happened?
3. What did you want to know in this situation?

4. What do you understand about what the application did and thought? Why?

To improve Laksa's behavior, how will you change:
5. The application settings? Rules?

6. Your behavior?
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j LAKSA2 USAGE DETAILS

We present some data of participant usage of Intelligibility features for the study in Chapter 9.

J.1 PARTICIPANT SEQUENCE MODELS

We extracted data logs from the Sqlite3 database of the Android smart phone (Motorola Droid)

which participants used during the study. This was cleansed for occasional errors such as

e User unintentional taps (identified by quickly tapping back within 0.5 sec)

o Repeated log entries due to lag

We parsed the logs into separate users and generated network graphs representing sequence
diagrams for each participant during each scenario. We present these sequence diagrams in this

section. How to read sequence diagrams:

o Rectangular Zone: context type of explanation being viewed
e Circular Node: explanation type of the context type viewed
o Hexagonal Node: start (screen turned on) or stop (screen turned off)
o Edge: view transition from source page to destination page
o Thickness: duration source (previous) explanation was viewed
o Number: sequence step
o Shade: corresponds to sequence step
o Solid Arrow: user explicitly selected explanation
o Hollow Arrow: user selected ‘Back’

o Cyclic Loop: user selected ‘Refresh’
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