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Abstract

The present article treats a distribution of random partitioning of the positive integer. Although
such a distribution is important concerning applications in many fields such as statistical ecology,
linguistics and statistical disclosure control, not very many models are known owing to the
difficulty caused by inevitable combinatorics. The present article shows that conditioning the
total frequency of an inverse Gaussian-Poisson population model leads to a new manipulatable
distribution of random clustering. We also give formulae that are necessary for the application
of this distribution.
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1 Introduction

Scientists observe various kinds of populations. In many instances a population consists of
diverse groups, and its property is hard to formulate. To comprehend the complex nature
of a population, it is often useful to focus upon its heterogeneity. This is a classical theme
in statistics, and we can for example date back to Neyman (1939). We shall later see more
examples, in which the measurement of heterogeneity possesses great importance. Statistically
we have utilized population models that are suited to such measurement, and the present article
proposes another population model.

In Section 1.1, we review the background of statistical population models. Section 1.2 derives
the model that we propose. Some theoretical results on this model are shown in Section 2, and
we discuss parameter estimation in Section 3. Finally Section 4 provides application results and
concluding remarks.

1.1 A population model

Let us consider the following population model: the total number of cells equals J, and F},j =
1,...,J, are the size of the j-th cell; the population size is denoted by N = Z}']:1 F;. Let S;
denote the number of cells of size 7. More specifically,

Si=Y I(F;=1i), i=0,1,...

J=1

where [(-) is the indicator function:

. 1, F, =4,
I(FJ:’):{ 0. F #i.

In literatures, (Sg,S1,...) are called size indices (Sibuya (1993)), frequencies of frequencies
(Good (1965)) or equivalence class (Greenberg and Zayatz (1992)).
Obviously

Y Si=J, > i-Si=N.
=0 =1

Note that J is the total number of cells including the number of the empty cells Sp. In the
following we denote the number of non-empty cells by

U=J-5=>_ 5

=1

Many authors have regarded Fj’s as random variables. Under such an assumption, we can
summarize the information of a population with only at most a few parameters. For example,
Fisher et al. (1943) developed the logarithmic series distribution to summarize a population
of Malayan butterflies, which commenced the vast studies of statistical ecology or stochastic
abundance models. In this situation, a population is composed of J species, and the number of
Jj-th species corresponds to Fj. See Engen (1978) for the context. In addition, there are myriads
of examples in linguistics. A writer is deemed to have a vocabulary of J words, and each Fj



corresponds to the frequency of the usage of j-th word in the writer’s text. Williams (1956)
provides an early review of this context.

In these applications, statistical interest lies in the y? test that determines whether one can
regard data as being subject to an assumed distribution, since the summary of that kind is
meaningless under an ill-assumed distribution. Thus most of researchers have investigated skew
distributions that fit empirically well to data in the sense of y%. As a result, their purpose
is just fitting to sample data, and there is little interest in the structure of the corresponding
population.

However, in some cases the objective of an analysis is to estimate the population structure
about size indices. Obviously some ecologists are interested in not samples but a whole popu-
lation. Let us mention other examples. When a statistical agency disseminates microdata, it
is very important to measure the risk of privacy invasion. An individual that is unique in a
population is considered to be unsafe to publish. Thus 57 is a typical index of the risk, and its
estimation is necessary unless data are of a census. See Willenborg and de Waal (1996) for the
context of statistical disclosure control. Also we can find a similar problem in database merging.
When databases have common individuals, it is necessary to identify how many individuals are
in common. Since a database is often composed of numerous records, it is valuable to estimate
such overlaps based on samples.

As regards the estimation of size indices, it is useful to assume a random population model,
even though the objective is not to summarize information. Let us assume simple random
sampling without replacement; if there is no assumption about a finite population, the unique
unbiased estimator of S;, if any, is useless because of its large variance. See Section 2.3 of
Engen (1978). The author would rather adopt the superpopulation model approach or the
empirical Bayes method. Namely the estimator of a size index is its expectation under F} given
the estimates of the parameters of F;. For example, Bethlehem et al. (1990) regarded F;’s as
gamma-Poisson mixture, which has two parameters; the parameters were estimated from data,
whence they calculated E(S7) as an index of the risk.

The present article assumes the superpopulation approach to estimate population size in-
dices. As we have mentioned, much attention has not been paid to the relationship between
samples and the population. Therefore we should clarify that our approach needs to treat ex-
plicitly such a relationship. In the following the sample size is denoted by n. Sample size indices
are similarly defined and denoted by (sg, s1,...). The number of non-empty cells is u = >,_; s;.
Assuming a population model, we can derive the sampling distribution in terms of (sg,...).
Then we construct estimators of the parameters of the population model. The estimator of S;
is its expectation given the estimates of parameters, and E(S;) depends on the total frequencies
N =3, F;.

In many cases, including Bethlehem et al. (1990), F;’s are regarded as independently iden-
tically distributed Poisson mixture. Then the population size IV is a random variable, and this
may be a problem because concerning the estimation of size indices the population size is given
and fixed. To ease this conflict, one may assume E(N) = Ny as in Bethlehem et al. (1990),
where the number of parameters was reduced to one. Under the restriction, we can immedi-
ately obtain the sampling distribution with Bernoulli sampling (Sdrndal et al. (1992)), in which
each individual is independently sampled with success probability ng/Ng. Namely, the sampling
distribution is the result of substituting Ny in the distribution of a population by the observed
number of samples ng. Such treatment is thus expedient.



However, simple random sampling without replacement requires the population size N to
be fixed at Ny. Hence population models where N = Ny are more realistic in cases such as
statistical disclosure control, where simple random sampling without replacement is employed.
Although Bernoulli sampling may be valid as an approximation of simple random sampling
without replacement, we ought to investigate models in which N = Ny also.

The difficulty of a model where its population size is fixed is that it involves combinatorics. In
fact it is equivalent to random partitioning of the positive integers, which is itself an interesting
subject of probability; see Hoshino (2001) for an application of a formula of this field. Although
we can utilize existing results, only a few models are treatable to the author’s knowledge. Hence
there is great need to develop useful models that satisfy the size restriction, in order to handle
various populations.

Among known models, the Dirichlet-multinomial model is obtained by conditioning the
gamma-Poisson model as N = Ny (Takemura, 1999). Similarly, if we can easily derive the
distribution of N under independently identically distributed F};’s, the construction of a size-
restricted model may be straightforward. Holla (1966) introduced inverse Gaussian-Poisson
mixture, which is closed under convolution; the present article investigates the conditional pop-
ulation model of inverse Gaussian-Poisson mixture.

The inverse Gaussian-Poisson mixture is a special case of the generalized inverse Gaussian-
Poisson mixture proposed by Sichel (1971), which is, however, less treatable than the inverse
Gaussian-Poisson mixture. See Jorgensen (1982) for the generalized inverse Gaussian distri-
bution. Concerning the (generalized) inverse Gaussian-Poisson mixture, there are a certain
number of applications in statistical ecology and linguistics. Here we only mention Sichel (1997)
as an example, though his population model is different from ours. Seshadri (1999) provides
an excellent review on the inverse Gaussian distribution; its Section 7.1 is devoted to the in-
verse Gaussian-Poisson mixture. Since the inverse Gaussian-Poisson mixture has been used to
describe populations, our approach seems to be promising about applications.

1.2 The derivation of a conditional inverse Gaussian-Poisson distribution

The inverse Gaussian distribution is defined as

gy OVIZ0/(00)T s o0
P\ a,0) = 21{7_1/2(04@) A exp(—(g - A - —) (1)

for 0 < 8 <1, >0, where
- T .
K1p(6) = [ 567 exp(-6) )

is the modified Bessel function of the third kind of order —1/2.
Suppose that a random variable Y is distributed as Poisson with mean A, and let A distribute
with its density (1). Then the distribution of Y is widely known to be

) [2a abd/2)Y
PIGP(Y :y,a,H) = 76)(})(0&\, 1_0)%1(11—1/2(04)7 y2071727"" (3)

See Chapter 7.1 of Seshadri (1999) for more detail. In the present article, we refer to (3) as the
inverse Gaussian-Poisson distribution and denote it by /GP(«, 6).



In fact we can obtain
y—1 .
- _ T 149t o
Ry—l/?(a)_ 20 e)“p( a)(; (y_ 1_1)%'(2&) )7 y= 1727"-7
from (2) and K_;/5(§) = Ky/3(§), by means of

. 2y .
Ko@) = =LK, (a) + Kyt ().

In addition, Ismail (1977) showed that

Ky (a) % 27 exp(—7)a™" [ (4)
when 7 is large. Equation (4) is useful because the modified Bessel function of the third kind may
overflow as v — oco. Consequently, computation on the inverse Gaussian-Poisson distribution is
not very hard. Consult Watson (1944) for the results of Bessel functions.

Henceforth we consider the population model that is discussed in Section 1.1 under the
assumption that F;, j = 1,...,J are independently identically distributed as /G P(«, 6). Namely,
we suppose that

J
P(Fi,...,Fy) = H \/?exp(a\/l—H %Kp_l/z( ),

or

P(So,...) = J'H{fe\p (0‘0/2) Koo )}Sis%z‘ (5)

One merit of the IGP model (5) is that we can evaluate the exact distribution of the popu-
lation size N. The probability generating function of (3) is shown as

G(z) = exp(a(vV1 -6 — V1 - z0)) (6)

by Sankaran (1968). Hence we can see that the sum of J random variables that are independently

identically distributed as /G P(«, #) is distributed as IGP(Ja,6). That is,

N
P(N) =4/ % exp(Jav1 — 0)%[&'1\74/2(1]&). (7)

We are interested in the conditional population model given its population size N; the model

(5) divided by (7) becomes

I (/22 exp(ayT—0) Y2, pa(@)} % 4
v 2J°‘ exp(Jay1 — )LJQ—%QLNKN_I/Q(JQ)
20, 51 JIN! ﬂ{lﬁ_l/z(a) poi L

- (7) ’ JN+1/21(N_1/2(JOZ) =0 Z! 52'

P(So,...,SN|N) =

(8)

The right hand side of (8) seems to be a new distribution with one parameter; it is worthy
of note that (8) is derived from the distribution with two parameters. We refer to (8) as the
Conditional Inverse Gaussian-Poisson distribution (CIGP(«)).



2 On the property of CIGP(«a)

In this section we will clarify a few properties of C'IG P(«), which are important in applications.
We rewrite the right hand side of (8) as

200, - IN! K,
Ps(So,...,Sn) = (_a)% J H 1/2(@)

T JNH2K N 1 5(J ) i!

1 ©
i=0 Z'
where we explicitly denote the dependence of CIGP(«a) on J. Note that a > 0.

First we see relationships among distributions connected with the CIGP model. When
we assume # = 1, the density of inverse Gaussian (1) equals the density of the reciprocal
gamma distribution. Since the derivation of C'IGP(«a) does not depend on the value of 6, the
conditional model of reciprocal gamma-Poisson mixture given N is CIGP(«). Takemura (1999)
clarified that the conditional model of gamma-Poisson mixture (=negative binomial) given N
equals Dirichlet-multinomial mixture, which is a multivariate generalization of beta-binomial
mixture. Therefore, in a sense, the CIGP model corresponds to Dirichlet-multinomial mixture.
See Hoshino and Takemura (1998) for more detailed discussion on distributions relating to
gamma-Poisson mixture.

Then we show the expectations of size indices.

Theorem 1 Suppose that size indices are distributed as (9). Then the factorial moments are

H 2a ;N'J'KN r-1/2((J = r)a)(J = )N~ Rz MK 1/2(@)
e T (N = R)\WJ = r)lINH2Ky_y h(Ja) J!

)"
7

i=1

where r = Zﬁ\;l r;, R= Zﬁ\;l jrj, and S](-rj) =5;(8;,-1)---(S; —r;+1).

Proof For simplicity, here we evaluate F/(S;). Let us write
S(N)={8=(S1,...,5n)|>_iS; = N}.
1>1

Note that for j =1,2,...,if S; > 1 then

Sj PJ(SO, .. .,SN|N) = PJ_l(SO, . Sj_l, S]' -1, Sj+17 .. .,SN|N — ])
/QQ(KJ 1/2(a ))N!KN—J'—UQ((J — Da)(J — 1)N-iF1/2
’ﬂ' b)

Ji (N = NINTPKy . (Ja)
else S; =0 and S; P;(So,...,Sn|N) = 0. Thus
Ej(SjIN) = > 5;Pi(So,...,SNIN)
Ses(N)
_ /Q_CY(K]‘—1/2(04))N!KN—j—l/z((J — Da)(J - NI+

T 7! (N —j)!JN—l/QKN_l/Q(Ja)

X Z Pj_l(S(),... S] 1,5 1 S]_}_l,,SNUV—])](S]Zl) (10)
Ses(N)



Because

> Pra(Sose-y 81,85 = 1,541, .- SNIN = §) I(S; > 1)

Ses(N)
= Z Py_1(So,...,Sn—;IN —7) =1,
SeS(N-j)
we obtain
B 2a I(j—l/Z(Q) N!I(YN_]'_I/Q((J — 1)&) (J — 1)N_j+1/2
EJ(Sle)_ _( ) \1 N_1/2 - (11)
from (10). Similarly, we can show the theorem. Q.E.D.
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Figure 1: The expectations of size indices with various parameter values of «

Figure 1 plots the expectations of size indices with parameter values o = 0.1,0.5,1,10,50
under N = 1000 and J = 10000. The vertical axis shows E(S;), and the horizontal axis
corresponds to 7 = 1,2,...,5. We can observe that the expectation of a size index is decreasing
with respect to the size; this is the pattern that we frequently find in applications. The difference
between the size indices of @ = 10 and o = 50 appears rather small compared to the difference
between the values of & = 0.1 and o = 0.5.

Now we discuss the sampling distribution of CIGP(«). Because the CIGP model does
not depend on the label of each individual, Lemma 1 of Takemura (1999) assures that we can
immediately derive the sampling distribution as a result of substituting N of the population
distribution by n. In other words, the distribution of n samples directly drawn from the infinite
population (CIGP(«)) is the same as that of n samples from the finite population of size N
that is from the infinite population.



Theorem 2 Suppose that the distribution of population size indices is (9) and n samples are
drawn with stmple random sampling without replacement. Then the sample size indices are
distributed according to

200, s-1 Jn! o Kisya(a)

Pi(sgy...,8,) =(—) 2

. 1
7! JHRK, L p(Ja) mgt ! o

s

(12)

3 Parameter estimation

This section treats the estimation of « from samples that are subject to CIGP(«). We can
provide the maximum likelihood estimator and two approximate estimators.

3.1 Maximum Likelihood (ML) estimation
We will denote the log likelihood of (12) by

-1 n
L= J log(2ar) —log K,y 5(J @) + Z s;log K;_q3() + Const.
=0
In the following we will use this notation:
_ Ky(e)
Ry(a) = W,
and it is widely known that
dlog K, (a) )
=— —~. 1
L Ry() + 1 (13)

See Seshadri (1999, p.125) for instance.
Now we construct the ML estimator: the solution of dL/do = 0. Equation (13) leads to the
following expression of the derivative of L:

dL J—1 1/2

= S {Reapla)+

M+ S sl Heale o)+ L1/

}

«
= JR,_ 1/2 (Ja) ESRz 1/2
by
Zsi:J and Zisi:n.
=0 =0

The ML estimate obviously requires numerical evaluation; we can adopt the Newton-Raphson
method using the second derivative:

d*L 9 2n 2 9
do? =J {Rn 1/2(Ja) + Ta —R,_ 1/2 JO‘ } ZSz{RZ 1/2 )+ ER’i—l/?(a)} —J°+
Note that 9B ()
—1/2 27
W(?oi Rw 1/2(@) — 3R7—1/2(04) - 1.

The estimators that are discussed in Section 3.2 can be used for the starting value of « in such
an iteration procedure.



3.2 Approximate estimation

The expectation of a sample size index is derived from substituting N of (11) by n. Therefore we
may be able to apply the method of moments. However, what is inconvenient is the evaluation
of polynomials of order n (i.e. K,_1/5(-)). Here we utilize estimators of the IGP distribution
to construct an approximate moment estimator of the CIGP parameter, because it is easy to
calculate. We also introduce another approximate estimator, which is a function of sg.

If Y is a random variable that is subject to /G P(«a, 6), equation (6) implies that

BY) = 5

and
V(Y) = 0‘0(27_03
4(1-6)2

We substitute E(Y') by sample average n/.J, and V(Y) by sample variance:

Z?:O(i B n/J)QSi .
J

v =

The solution of these simultaneous equations is given by

2n — 2Jv 2ny/1 — 6
= —  and a= ———.

 on—=2Jv’ Jo

We propose using above equation about « as our approximate estimator:

. ny/n(2Jv—n)
a= Jv—n) (14)
Although (14) is simple enough, its efficiency may not be enough. On the IGP distribution,
Sichel (1982) calculated asymptotic efficiencies for the joint estimation of « and 8 for the method
of moments. According to his result, the method of moments is ineflicient at « being as great
as 10 when # = 0.97, which is claimed to be a typical case of parameter values. Sichel (1973)
proposed another estimator of the IGP parameter «, whose efficiency was high for small « in
the Sichel (1982)’s experiment. It leads to

n n/J
n/J + log sy — log J

a= —%(log 50— log J)(1 ) (15)

in our setting. See Section 4 for an empirical comparison of these estimators.

4 Application results and conclusions

In this section we examine the applicability of the CIGP model to real data. We fit the CIGP
model to plankton data (Table 1), lice data (Table 2) and Japanese labor force survey data
(Table 3). The present article then concludes with some remarks.

Barnes and Marshall (1951) provided plankton data series; Reid (1981) fitted Log-Normal-
Poisson mixture (LNP, 2 parameters), Gamma-Poisson mixture (GP, 2 parameters) and Neyman



type A (NY, 2 parameters) distribution to a data set of n = 232 and J = 120 from the series. In
these models, the total frequency is not fixed. Namely, n is the sum of independently identically
distributed random variables. Now we apply CIGP(«a) to the same data set; the results are
shown in Table 1. Concerning the CIGP model, the ML estimate appears to be & = 10.35 in
this case, and the fitted values of size indices are the expectations under &. The approximate
moment estimate by (14) is @ = 4.49, and another estimate by (15) is @ = 6.50; these estimates
are not very close to the ML estimate. We observe that the fits of the models are satisfactory in
terms of the x? criterion. If n is regarded as known, it is reasonable to include the information
of the sample size in a model, whereby the degree of freedom increases without great loss of fit
as the case of the CIGP model.

Next we compare the CIGP model with the IGP model (3). Stein et al. (1987) fitted the
IGP distribution to lice data (William, 1964) wherein n = 7442, J = 1083. We apply the CIGP
model to the same data; see Table 2 for the results. These fits are bad, yet similar. We also
observe that ML estimates &;gp = 0.645 and &cjgp = 0.644 are similar. According to Sichel
(1982), aygp describes the shape of the distribution, whereas 6;gp controls the upper tail. This
seems to explain the similarity between &rgp and &orgp. The approximate moment estimate
is @ = 1.069, and another estimate is @ = 0.579 here.

Sichel (1982) evaluated the asymptotic covariance matrix of é;gp and éIGP. He remarked
that the correlation between &jgp and é[GP is negative, and is generally substantial in the useful
range of values. Hence Stein et al. (1987) proposed a reparameterization to avoid numerical
instability. However, as far as the CIGP model is concerned, n seems to determine the tail,
which is governed by # in the IGP model. We can thus regard the CIGP model as one way to
overcome aforementioned numerical instability without the arbitrariness of a reparameterization.

We then demonstrate the applicability of the CIGP model to the estimation of population
size indices in the field of statistical disclosure control. This is interesting because there seems to
exist no application of the IGP distribution in this field. Sai and Takemura (2000) calculated the
size indices of Japanese labor force survey data that were collected in December 1997. We apply
the CIGP model to their anonymized data of Akita prefecture; our interest lies in the number of
population uniques (S7) with respect to the degree of the anonymization. Each record contains
the information of variables such as sex or age; these variables are classified in some categories,
with the result that J is the product of the number of categories in the variables. In this case,
J = 5.644 x 1012 and n = 908. Observe Table 3 for the result of fitting. The ML estimate &
is 9.047 x 10719 & = 7.423 x 1071° and @ = 9.061 x 107!°. The numbers of nonzero-frequency
groups (u) are the same between the observed set and the fitted set.

Under the superpopulation approach, the estimator of Sy is E(51|V) of the CIGP distribu-
tion, where NV equals 1.028 million. However, the author could not compute the value within a
reasonable time. Here we only give an approximate value F(S;) &= 2553; this can be obtained
with the following proposition, which is an immediate consequence of (4) and (11).

Proposition 1 Suppose that size indices are distributed according to (9). Then, as N — oo,

Na(J —1) (N —3/2)N—2
2 (N —1/2)N-1"

E(S1|N) = exp(1 — )

Now we conclude the discussion with some remarks. The CIGP model can surely be used
in the estimation of population size indices, and it has merits particularly in being free from
the numerical instability that is reported on the ML estimation of the IGP parameters. The



i | si| LNP| GP| NY]| CIGP |
0 23] 233] 21.0| 214 20.6
1 28 | 340 | 331 | 327 33.3
2 34 | 279 292 289 29.5
3 17| 173 | 18.9| 189 19.0
4 8 9.7 101 10.2 10.0
5 7 4.6 4.7 4.7 4.6
6 3 2.1 1.9 2.0 1.9
7+ 0 1.1 1.1 1.1 1.1
| xX2(d.f) | [5.44(5) | 5.26(5) | 5.09(5) || 5.41(6) |

Table 1: Frequency distribution of Oithona similis nauplii (Barnes and Marshall, 1951)

estimate by (15) tends to be closer to the ML estimate in our experiments, which suggests that
& may be better than & on real data. According to Takemura (1999), we can derive the Ewens
distribution (See Chap. 41 of Johnson et al. (1997)) from Dirichlet-multinomial mixture by a
limiting argument. The same kind of limiting distribution of the CIGP model, where Jo is fixed
and o — 0, will be discussed in the author’s subsequent paper. The CIGP model needs the
information of sg, but many data in applications have no information of sg. In such a case, we
may be able to use that limiting distribution.

References

[1] Barnes, H. and Marshall, S.M. (1951). On the variability of replicate plankton samples and
some applications of contagious series to the statistical distribution of catches over restricted
periods. Journal of the Marine Biological Association of U.K., 30, 233-263.

[2] Bethlehem, J.G., Keller, W.J. and Pannekoek, J. (1990). Disclosure control of microdata.
Journal of the American Statistical Association, 85, 38—45.

[3] Fisher, R.A., Corbet, A.S. and Williams, C.B. (1943). The relation between the number of
species and the number of individuals in a random sample of an animal population. Journal
of Animal Ecology, 12, 42-58.

[4] Good, I.J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods.
MIT Press, Cambridge, Massachusetts.

[5] Greenberg, B.V. and Zayatz, L.V. (1992). Strategies for measuring risk in public use micro-
data file. Statistica Neerlandica, 46, 33-48.

[6] Holla, M.S. (1966). On a Poisson-inverse Gaussian distribution. Metrika, 11, 115-121.

[7] Hoshino, N. and Takemura, A. (1998). Relationship between logarithmic series model and
other superpopulation models useful for microdata disclosure risk assessment. Journal of the
Japan Statistical Society, 28, 2, 125-134.

10



Lice per head | Number of heads IGP | CIGP
0 622 | 585.50 | 585.70
1 106 | 188.49 | 188.18
2 50 | 77.36 | 77.18
3 29 | 41.85 | 41.75
4 33| 26.77| 26.71
5 20| 18.91 | 18.87
6 14 | 14.25 | 14.22
7 12| 11.22 | 11.20
8 18 9.12 9.10
9 11 7.60 7.59
10 11 6.45 6.45
11-12 13| 10.44 | 10.43
13-14 14 8.13 8.13
15-16 9 6.56 6.56
17-18 11 5.43 5.44
19-21 17 6.63 6.64
22-24 12 5.33 5.34
25-28 15 5.70 5.71
29-33 11 5.57 5.59
34-40 15 5.91 5.93
41-48 13 5.03 5.05
49-60 8 5.45 5.49
61-76 4 5.00 5.05
77-102 4 5.23 5.29
103+ 11| 15.15| 15.30
& by MLE 0.645 | 0.644
6 by MLE 0.998

Table 2: Frequency distribution of Lice (Williams, 1964)

1 1 2 3 4 6| 7+ U
85 771 46 3 6 1 0 1| 828
CIGP | 760.94 | 56.65 | 8.43 | 1.57 | 0.33 | 0.07 | 0.02 || 828

Table 3: Japanese labor force survey data (Sai and Takemura, 2000)

11



[8] Hoshino, N. (2001). Applying Pitman’s sampling formula to microdata disclosure risk as-
sessment. Journal of Official Statistics, 17, 499-520.

[9] Ismail, M.E.H. (1977). Integral representations and complete monotonicity of various quo-
tients of Bessel functions. Canadian Journal of Mathematics, 29, 1198-1207.

[10] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1997). Discrete Multivariate Distributions,
Wiley, New York.

[11] Jorgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribu-
tion. Lecture Notes in Statistics 9, Springer, New York.

[12] Neyman, J. (1939). On a new class of “contagious” distributions, applicable in entomology
and bacteriology. Annals of Mathematical Statistics, 10, 35-57.

[13] Reid, D.D. (1981). The Poisson lognormal distribution and its use as a model of plank-
ton aggregation. Statistical Distributions in Scientific Work, C. Taillie, G.P. Patil and B.
Baldessari Ed., 6, Proceedings of the NATO Advanced Study Institute, 303-316, D. Reidel
Publishing Company, Dordrecht.

[14] Sai, S. and Takemura, A. (2000). Some Models for Merging Groups in Microdata. Japanese
Journal of Applied Statistics, 29, 63-82 (in Japanese).

[15] Sankaran, M. (1968). Mixtures by the inverse Gaussian distribution. Sankhya, 30B, 455—
458.

[16] Sarndal, C.E., Swensson, B. and Wretman, J. (1992). Model Assisted Survey Sampling.
Springer, New York.

[17] Seshadri, V. (1999). The Inverse Gaussian Distribution. Springer, New York.

[18] Sibuya, M. (1993). A random clustering process. Annals of Institute of Statistical Mathe-
matics, 45, 459-465.

[19] Sichel, H.S. (1971). On a family of discrete distributions particularly suited to represent
long-tailed frequency data. Proceedings of the Third Symposium on Mathematical Statistics
(N.F. Laubscher, ed.), 51-97, S.A. C.S.I.R., Pretoria.

[20] Sichel, H.S. (1973). The density and size distribution of diamonds. Bull. Int. Statist. Inst.,
45, 420-427.

[21] Sichel, H.S. (1982). Asymptotic efficiencies of three methods of estimation for the inverse
Gaussian-Poisson distribution. Biometrika, 69, 467-472.

[22] Sichel, H.S. (1997). Modelling species-abundance frequencies and species-individual func-
tions with the generalized inverse Gaussian-Poisson distribution. South African Statistical
Journal, 31, 13-37.

[23] Stein, G.Z., Zucchini, W. and Juritz, J.M. (1987). Parameter Estimation for the Sichel
distribution and its multivariate extension. Journal of the American Statistical Association,
82, 938-944.

12



[24] Takemura, A. (1999). Some superpopulation models for estimating the number of popu-
lation uniques. Statistical data protection - Proceedings of the conference, Lisbon, 25 to 27
March 1998 - 1999 edition, 45-58, Office for Official Publications of the European Communi-
ties, Luxembourg.

[25] Watson, G.N. (1944). A Treatise on the Theory of Bessel Functions. 2nd ed., University
Press, Cambridge.

[26] Williams, C.B. (1956). Studies in the history of probability and statistics: IV. A note on
an early statistical study of literary style. Biometrika, 43, 248-256.

[27] Williams, C.B. (1964). Patterns in the Balance of Nature. Academic Press, London.

[28] Willenborg, L. and de Waal, T. (1996). Statistical Disclosure Control in Practice , Lecture
Notes in Statistics 111, Springer, New York.

13



