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Abstract

As probabilistic computations play an increasing role in solving various problems, researchers have de-
signed probabilistic languages that treat probability distributions as primitive datatypes. Most probabilistic
languages, however, focus only on discrete distributions and have limited expressive power. In this paper, we
present a probabilistic language, calledλ©, which uniformly supports all kinds of probability distributions –
discrete distributions, continuous distributions, and even those belonging to neither group. Its mathematical
basis is sampling functions,i.e., mappings from the unit interval(0.0, 1.0] to probability domains. We also
briefly describe the implementation ofλ© as an extension of Objective CAML and demonstrate its prac-
ticality with three applications in robotics: robot localization, people tracking, and robotic mapping. All
experiments have been carried out with real robots.
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1 Introduction

As probabilistic computations play an increasing role in solving various problems, researchers have designed
probabilistic languagesto facilitate their modeling [11, 7, 29, 22, 25, 15, 21]. A probabilistic language
treats probability distributions as primitive datatypes and abstracts from their representation schemes. As
a result, it enables programmers to concentrate on how to formulate probabilistic computations at the level
of probability distributions rather than representation schemes. The translation of such a formulation in a
probabilistic language usually produces concise and elegant code.

A typical probabilistic language supports at least discrete distributions, for which there exists a repre-
sentation scheme sufficient for all practical purposes: a set of pairs consisting of a value in the probability
domain and its probability. We can use such a probabilistic language for problems involving only dis-
crete distributions. For those involving non-discrete distributions, however, we usually use a conventional
language for the sake of efficiency, assuming a specific kind of probability distributions (e.g., Gaussian dis-
tributions) or choosing a specific representation scheme (e.g., a set of weighted samples). For this reason,
there has been little effort to develop probabilistic languages whose expressive power is beyond discrete
distributions.

Our work aims to develop a probabilistic language supporting all kinds of probability distributions –
discrete distributions, continuous distributions, and even those belonging to neither group. Furthermore
we want to draw no distinction between different kinds of probability distributions, both syntactically and
semantically, so that we can achieve a uniform framework for probabilistic computation. Such a proba-
bilistic language can have a significant practical impact, since once formulated at the level of probability
distributions, any probabilistic computation can be directly translated into code.

The main idea in our work is that we can specify any probability distribution by answering“How can we
generate samples from it?”, or equivalently, by providinga sampling functionfor it. A sampling function is
defined as a mapping from the unit interval(0.0, 1.0] to a probability domainD. Given a random number
drawn from a uniform distribution over(0.0, 1.0], it returns a sample inD, and thus specifies a unique
probability distribution. For our purpose, we use a generalized notion of sampling function which maps
(0.0, 1.0]∞ to D × (0.0, 1.0]∞ where(0.0, 1.0]∞ denotes an infinite product of(0.0, 1.0]. Operationally
it takes as input an infinite sequence of random numbers drawn independently from a uniform distribution
over(0.0, 1.0], consumes zero or more random numbers, and returns a sample with the remaining sequence.

We present a probabilistic language, calledλ©, whose mathematical basis is sampling functions. We
exploit the fact that sampling functions form a state monad, and base the syntax ofλ© upon the monadic
metalanguage [17] in the formulation of Pfenning and Davies [23]. A syntactic distinction is drawn between
regular values and probabilistic computations through the use of two syntactic categories:termsfor regular
values andexpressionsfor probabilistic computations. It enables us to treat probability distributions as first-
class values, andλ© arises as a conservative extension of a conventional language. Examples show that
λ© provides a unified representation scheme for probability distributions, enjoys rich expressiveness, and
allows high versatility in encoding probability distributions.

An important aspect of our work is to demonstrate the practicality ofλ©by applying it to real problems.
As the main testbed, we chooserobotics[28]. It offers a variety of real problems that necessitate probabilistic
computations over continuous distributions. We implementλ©as an extension of Objective CAML and use
it for three applications in robotics: robot localization [28], people tracking [20], and robotic mapping [30].
We use real robots for all experiments.

λ© does not support precise reasoning about probability distributions in that it does not permit a precise
implementation of queries on probability distributions (such as expectation). This is in fact a feature of
probability distributions that precise reasoning is impossible in general. In other words, lack of support for
precise reasoning is the price we pay for rich expressiveness ofλ©. As a practical solution, we use the
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Monte Carlo method to support approximate reasoning. As such,λ© is a good choice for those problems in
which all kinds of probability distributions are used or precise reasoning is unnecessary or impossible.

This paper is organized as follows. Section 2 gives a motivating example forλ©. Section 3 presents
the type system and the operational semantics ofλ©. Section 4 shows how to encode various probability
distributions inλ©, and Section 5 shows how to formally prove the correctness of encodings, based upon the
operational semantics. Section 6 demonstrates the use of the Monte Carlo method for approximate reasoning
and briefly describes our implementation ofλ©. Section 7 presents three applications ofλ© in robotics.
Section 8 discusses related work and Section 9 concludes. Appendix shows figures from experiments in
Section 7.

Notation

If a variablex ranges over the domain of a probability distributionP , thenP (x) means, depending on the
context, either the probability distribution itself (as in “probability distributionP (x)”) or the probability of a
particular valuex (as in “probabilityP (x)”). If we do not need a specific name for a probability distribution,
we useProb. Similarly P (x|y) means either the conditional probabilityP itself or the probability ofx
conditioned ony. We write Py or P (·|y) for the probability distribution conditioned ony. U(0.0, 1.0]
denotes a uniform distribution over the unit interval(0.0, 1.0].

2 A Motivating Example

A Bayes filter[9] is a popular solution to a wide range of state estimation problems. It estimates the states
of a system from a sequence of actions and measurements, where an actiona makes a change to the state
and a measurementm gives information on the state. At its core, a Bayes filter computes a probability
distributionBel(s) of the state according to the following update equations:

Bel(s) ←
∫
A(s|a, s′)Bel(s′)ds′(1)

Bel(s) ← ηP(m|s)Bel(s)(2)

A(s|a, s′) is the probability that the system transitions to states after taking actiona in another states′,
P(m|s) the probability of measurementm in states, andη a normalizing constant ensuring

∫
Bel(s)ds =

1.0. The update equations are formulated at the level of probability distributions in the sense that they do
not assume a particular representation scheme.

Unfortunately the update equations are difficult to implement for arbitrary probability distributions.
When it comes to implementation, therefore, we usually simplify the update equations by making additional
assumptions on the system or choosing a specific representation scheme. For instance, with the assumption
thatBel is a Gaussian distribution, we obtain a variant of the Bayes filter called aKalman filter[31]. If we
approximateBel with a set of samples, we obtain another variant called aparticle filter [3].

Even these variants of the Bayes filter are, however, not trivial to implement in conventional languages,
not to mention the difficulty of understanding the code. For instance, a Kalman filter requires various
matrix operations including matrix inversion. A particle filter needs to manipulate weights associated with
individual samples, which often results in complicated code.

An alternative approach is to use an existing probabilistic language after discretizing all probability
distributions. This idea is appealing in theory but impractical for two reasons. First, given a probability
distribution, we cannot easily choose an appropriate subset of its support upon which we perform discretiza-
tion. Even when such a subset is fixed in advance, the process of discretization may require a considerable
amount of programming; see [4] for an example. Second there are some probability distributions that cannot
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be discretized in any meaningful way. An example is probability distributions over probability distributions,
which do occur in real applications (see Section 7). Another example is probability distributions over func-
tion spaces.

If we had a probabilistic language that supports all kinds of probability distributions without drawing
a syntactic or semantic distinction, we could implement the update equations with much less effort. We
present such a probabilistic languageλ© in the next section.

3 Probabilistic Languageλ©

In this section, we develop our probabilistic languageλ©. We begin by explaining why we choose sampling
functions as the mathematical basis ofλ©.

3.1 Mathematical basis

The expressive power of a probabilistic language is determined to a large extent by its mathematical basis,
i.e., which mathematical objects are used to specify probability distributions. Since we intend to support all
kinds of probability distributions without drawing a syntactic or semantic distinction, we cannot choose what
is applicable only to a specific kind of probability distributions (e.g., probability mass functions, probability
density functions, or cumulative distribution functions). Probability measures are a possibility because they
are synonymous with probability distributions. They are, however, not a practical choice: a probability
measure on a domainD maps notD but the set of events onD to [0.0, 1.0], and may be difficult to represent
if D is an infinite domain.

Sampling functions overcome the problem with probability measures: they are applicable to all kinds of
probability distributions, and are also easy to represent because a global random number generator supplants
the use of infinite sequences of random numbers. For this reason, we choose sampling functions as the
mathematical basis ofλ©.1

It is noteworthy that sampling functions form a state monad [16, 17] whose set of states is(0.0, 1.0]∞.
Moreover sampling functions are operationally equivalent to probabilistic computations because they de-
scribe procedures for generating samples. These two observations imply that if we use a monadic syntax
for probabilistic computations, it becomes straightforward to interpret probabilistic computations in terms
of sampling functions. Hence we use a monadic syntax for probabilistic computations inλ©.

3.2 Syntax and type system

As the linguistic framework ofλ©, we use the monadic metalanguage of Pfenning and Davies [23]. It
is a reformulation of Moggi’s monadic metalanguageλml [17], following Martin-Löf’s methodology of
distinguishing judgments from propositions [14]. It augments the lambda calculus, consisting of terms, with
a separate syntactic category, consisting of expressions in a monadic syntax. In the case ofλ©, terms denote
regular values and expressions denote probabilistic computations. We say that a termevaluatesto a value
and an expressioncomputesto a sample.

Figure 1 shows the abstract syntax forλ©. We usex as variables.λx : A.M is a lambda abstraction,
andM M is an application term.(M,M) is a product term, andfst M andsnd M are projection terms;
we include these terms in order to support joint distributions.fix x : A.M is a fixed point construct for
recursive terms. Aprobability termprob E encapsulates an expressionE; it is a first-class value denoting a

1Note, however, that not every sampling function specifies a probability distribution. For instance, no probability distribution
is specified by a sampling function mapping rational numbers to0 and irrational numbers to1. Thus we restrict ourselves to those
sampling functions that determine probability distributions (i.e., measurablesampling functions).
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type A,B ::= A→ A | A×A | ©A | real
term M,N ::= x | λx :A.M |M M | (M,M) | fst M | snd M |

fix x :A.M | prob E | r
expression E,F ::= M | sample x from M in E | S
value/sample V,W ::= λx :A.M | (V, V ) | prob E | r
real number r
sampling sequence s ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

Figure 1: Abstract syntax forλ©

x : A ∈ Γ
Γ ` x : A

Var
Γ, x : A `M : B

Γ ` λx :A.M : A→ B
Lam

Γ `M1 : A→ B Γ `M2 : A
Γ `M1 M2 : B

App

Γ `M1 : A1 Γ `M2 : A2

Γ ` (M1,M2) : A1 ×A2
Prod

Γ `M : A1 ×A2

Γ ` fst M : A1
Fst

Γ `M : A1 ×A2

Γ ` snd M : A2
Snd

Γ, x : A `M : A

Γ ` fix x :A.M : A
Fix

Γ ` E ÷A
Γ ` prob E : ©A

Prob Γ ` r : real
Real

Γ `M : A
Γ `M ÷A

Term
Γ `M : ©A Γ, x : A ` E ÷B

Γ ` sample x from M in E ÷B
Bind Γ ` S ÷ real

Sampling

Figure 2: Typing rules ofλ©

probability distribution. Real numbersr are implemented as floating point numbers, since the overhead of
exact real arithmetic is not justified in the domain where we work with samples and approximations anyway.

There are three kinds of expressions: termsM , bind expressionssample x from M in E, andsampling
expressionsS. As an expression,M denotes a probabilistic computation that returns the result of evaluating
M . sample x from M in E sequences two probabilistic computations (ifM evaluates to a probability term).
S consumes a random number from asampling sequence, which is an infinite sequence of random numbers
drawn independently fromU(0.0, 1.0].

The type system employs a term typing judgmentΓ ` M : A and an expression typing judgment
Γ ` E ÷A (Figure 2).Γ `M : A means thatM evaluates to a value of typeA under typing contextΓ, and
Γ ` E÷A thatE computes to a sample of typeA under typing contextΓ. The ruleProb is the introduction
rule for the type constructor©; it shows that type©A denotes probability distributions over typeA. The
rule Bind is the elimination rule for the type constructor©. The ruleTerm means that every term converts
into a probabilistic computation that involves no probabilistic choice. All the remaining rules are standard.

3.3 Operational semantics

Sinceλ©draws a syntactic distinction between regular values and probabilistic computations, its operational
semantics needs two judgments: one for term evaluations and another for expression computations. A term
evaluation is always deterministic and the corresponding judgment involves only terms. In contrast, an
expression computation may consume random numbers and the corresponding judgment involves not only
expressions but also sampling sequences. Since an expression computation may invoke term evaluations
(e.g., to evaluateM in sample x from M in E), we first present the judgment for term evaluations and then
use it for the judgment for expression computations. Both judgments use capture-avoiding substitutions
[N/x]M and[N/x]E defined in a standard way.
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For term evaluations, we introduce a judgmentM 7→ N in a call-by-value discipline. We could have
equally chosen call-by-name or call-by-need, butλ© is intended to be embedded in Objective CAML and
hence we choose call-by-value for pragmatic reasons. We useevaluation contextswhich are terms with a
hole[] indicating where a term reduction may occur. We useM 7→R N for term reductions:

evaluation context κ ::= [] | κ M | (λx :A.M) κ |
(κ, M) | (V, κ) | fst κ | snd κ

(λx :A.M) V 7→R [V/x]M
fst (V1, V2) 7→R V1

snd (V1, V2) 7→R V2

fix x :A.M 7→R [fix x :A.M/x]M

M 7→R N

κ[M ] 7→ κ[N ]

We useM 7→∗ V for a term evaluation where7→∗ denotes the reflexive and transitive closure of7→. A term
evaluation is always deterministic.

For expression computations, we introduce a judgmentE @ s⇒ F @ s′ which means that the compu-
tation ofE with sampling sequences reduces to the computation ofF with sampling sequences′. It uses
computation contextswhich are expressions with either a term hole[]term or an expression hole[]exp. []term
expects a term and[]exp expects an expression. We useE @ s⇒R F @ s′ for expression reductions:

computation context ι ::= []exp | []term |
sample x from []term in E |
sample x from prob ι in E

sample x from prob V in E @ s ⇒R [V/x]E @ s
S @ rs ⇒R r @ s

M 7→ N
ι[M ]term @ s⇒ ι[N ]term @ s

E @ s⇒R F @ s′

ι[E]exp @ s⇒ ι[F ]exp @ s′

We useE @ s ⇒∗ V @ s′ for an expression computation where⇒∗ denotes the reflexive and transitive
closure of⇒. Note that an expression computation itself is deterministic; it is only when we vary sampling
sequences that an expression exhibits probabilistic behavior.

An expression computationE @ s ⇒∗ V @ s′ means thatE takes a sampling sequences, consumes a
finite prefix ofs in order, and returns a sampleV with the remaining sequences′:

Proposition 3.1. If E @ s⇒∗ V @ s′, thens = r1r2 · · · rns′ (n ≥ 0) where

E @ s⇒∗ E1 @ r2 · · · rns′ ⇒∗ · · · ⇒∗ En−1 @ rns′ ⇒∗ V @ s′

for a sequence of expressionsE1, · · · , En−1.

Thus an expression computation coincides with the operational description of a sampling function when
applied to a sampling sequence, which implies that an expression represents a sampling function.

The type safety ofλ© consists of two properties: type preservation and progress. The proof of type
preservation requires a substitution lemma, and the proof of progress requires a canonical forms lemma.

Lemma 3.2 (Substitution).
If Γ `M : A andΓ, x : A ` N : B, thenΓ ` [M/x]N : B.
If Γ `M : A andΓ, x : A ` E ÷B, thenΓ ` [M/x]E ÷B.

Proof. By simultaneous induction on the structure ofN andE.
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Theorem 3.3 (Type preservation).
If M 7→ N and· `M : A, then· ` N : A.
If E @ s⇒ F @ s′ and· ` E ÷A, then· ` F ÷A.

Proof. For the first clause, we letM = κ[M ′] and proceed by induction on the structure ofκ. For the
second clause, we letE = ι[M ′]term or E = ι[E′]exp and proceed by induction on the structure ofι; we use
the result from the first clause.

Lemma 3.4 (Canonical forms). If · ` V : A, then:
(1) if A = A1 → A2, thenV = λx :A1.M .
(2) if A = A1 ×A2, thenV = (V1, V2).
(3) if A = ©A′, thenV = prob E.
(4) if A = real, thenV = r.

Proof. By case analysis ofA.

Theorem 3.5 (Progress).
If · `M : A, then eitherM is a value (i.e., M = V ), or there existsN such thatM 7→ N .
If · ` E ÷A, then eitherE is a sample (i.e., E = V ), or for any sampling sequences, there existF and

s′ such thatE @ s⇒ F @ s′.

Proof. For the first clause, we show by induction on the structure ofM . For the second clause, we show by
induction on the structure ofE; we use the result from the first clause.

Thesyntacticdistinction between terms and expressions inλ© is optional in the sense that the grammar
does not need to distinguish expressions as a separate non-terminal. On the other hand, thesemanticdis-
tinction, both statically (in the form of two typing judgments) and dynamically (in the form of evaluation
and computation judgments) appears to be essential for a clean formulation of our probabilistic language.

λ© is a conservative extension of a conventional language because terms constitute a conventional lan-
guage of their own. In essence, term evaluations are always deterministic and we need only terms when
writing deterministic programs. As a separate syntactic category, expressions also provide a framework
for probabilistic computation that abstracts from the definition of terms. For instance, the addition of a
new term construct does not change the definition of expression computations. When programming inλ©,
therefore, the syntactic distinction between terms and expressions aids us in deciding which of deterministic
evaluations and probabilistic computations we should focus on. In the next section, we show how to encode
various probability distributions and further investigate properties ofλ©.

4 Examples

When encoding a probability distribution inλ©, we naturally concentrate on a method of generating samples,
rather than trying to calculate the probability assigned to each event. If the probability distribution itself is
defined in terms of a process of generating samples, we simply translate the definition. If, however, the
probability distribution is defined in terms of a probability measure or an equivalent, we may not always
derive a sampling function in a mechanical manner. Instead we have to exploit its unique properties to
devise a sampling function.

Below we show examples of encoding various probability distributions inλ©. These examples demon-
strate three properties ofλ©: a unified representation scheme for probability distributions, rich expressive-
ness, and high versatility in encoding probability distributions. The sampling methods used in the examples
are all found in simulation theory [2].
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We assume primitive typesint andbool, arithmetic and comparison operators, and a conditional term
constructif M then N1 else N2. We also assume standardlet-binding, recursivelet rec-binding, and pattern
matching when it is convenient for the examples. While we do not discuss here type inference or polymor-
phism, the implementation handles these in the manner familiar from ML. We use the following syntactic
sugar for expressions:

unprob M ≡ sample x from M in x
eif M then E1 else E2 ≡ unprob (if M then prob E1 else prob E2)

unprob M chooses a sample from the probability distribution denoted byM and returns it.eif M then E1 else E2

branches to eitherE1 or E2 depending on the result of evaluatingM .

Unified representation scheme

λ© provides a unified representation scheme for probability distributions. While its type system distin-
guishes between different probability domains, its operational semantics does not distinguish between dif-
ferent kinds of probability distributions, such as discrete, continuous, or neither. We show an example for
each case.

We encode a Bernoulli distribution over typebool with parameterp as follows:

let bernoulli = λp : real.
prob sample x from prob S in x ≤ p

bernoulli can be thought of as a binary choice construct. It is expressive enough to specify any discrete
distribution with finite support. In fact,bernoulli 0.5 suffices to specify all such probability distributions,
since it is capable of simulating a binary choice construct [5].

As an example of continuous distribution, we encode a uniform distribution over a real interval(a, b] by
exploiting the definition of the sampling expression:

let uniform = λa : real. λb : real.
prob sample x from prob S in a + x ∗ (b− a)

We also encode a combination of a point-mass distribution and a uniform distribution over the same domain,
which is neither a discrete distribution nor a continuous distribution:

let point uniform = prob sample x from prob S in
if x < 0.5 then 0.0 else x

Rich expressiveness

We now demonstrate the expressive power ofλ©with a number of examples.
We encode a binomial distribution with parametersp andn0 by exploiting probability terms:

let binomial = λp : real. λn0 : int.
let bernoullip = bernoulli p in
let rec binomialp = λn : int.

if n = 0 then prob 0
else prob sample x from binomialp (n− 1) in

sample b from bernoullip in
if b then 1 + x else x

in
binomialp n0
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Herebinomialp takes an integern as input and returns a binomial distribution with parametersp andn.
If a probability distribution is defined in terms of a recursive process of generating samples, we can

translate the definition into a recursive term. For instance, we encode a geometric distribution with parameter
p as follows:

let geometric rec = λp : real.
let bernoullip = bernoulli p in
let rec geometric =

prob sample b from bernoullip in
eif b then 0
else sample x from geometric in

1 + x
in

geometric

Note that a geometric distribution has infinite support.
We encode an exponential distribution by using the inverse of its cumulative distribution function as a

sampling function, which is known as theinverse transform method:

let exponential1.0 = prob sample x from S in −log x

Therejection method, which generates a sample from a probability distribution by repeatedly generating
samples from other probability distributions until they satisfy a certain condition, can be implemented with
a recursive term. For instance, we encode a Gaussian distribution with meanm and varianceσ2 by the
rejection method with respect to exponential distributions:

let bernoulli0.5 = bernoulli 0.5
let gaussian rejection = λm : real. λσ : real.

let rec gaussian =
prob sample y1 from exponential1.0 in

sample y2 from exponential1.0 in
eif y2 ≥ (y1 − 1.0)2/2.0 then

sample b from bernoulli0.5 in
if b then m + σ ∗ y1 else m− σ ∗ y1

else unprob gaussian
in

gaussian

We encode the joint distribution between two independent probability distributions using a product term.
If MP denotesP (x) andMQ denotesQ(y), the following term denotes the joint distributionProb(x, y) ∝
P (x)Q(y):

prob sample x from MP in
sample y from MQ in
(x, y)

For the joint distribution between two interdependent probability distributions, we use a conditional
probability, which we represent as a lambda abstraction taking a regular value and returning a probability
distribution. If MP denotesP (x) andMQ denotes a conditional probabilityQ(y|x), the following term
denotes the joint distributionProb(x, y) ∝ P (x)Q(y|x):

prob sample x from MP in
sample y from MQ x in
(x, y)
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We compute the integrationProb(y) =
∫

Q(y|x)P (x)dx in a similar way:

prob sample x from MP in
sample y from MQ|P x in
y

Due to lack of semantic constraints on sampling functions, we can specify probability distributions over
unusual domains such as infinite data structures (e.g., trees), function spaces, cyclic spaces (e.g., angular
values), and even probability distributions themselves. For instance, we add two probability distributions
over angular values in a straightforward way:

let add angle = λa1 :©real. λa2 :©real.
prob sample s1 from a1 in

sample s2 from a2 in
(s1 + s2) mod (2.0 ∗ π)

With the modulo operationmod, we take into account the fact that an angleθ is identified withθ + 2π.
As a simple application, we implement a belief network [26]:

We assume thatPalarm|burglary denotes the probability distribution that the alarm goes off when a burglary
happens; other variables of the formP·|· are interpreted in a similar way.

let alarm = λ(burglary , earthquake) :bool× bool.
if burglary then Palarm|burglary
else if earthquake then Palarm|¬burglary∧earthquake

else Palarm|¬burglary∧¬earthquake

let john calls = λalarm :bool.
if alarm then PJohn calls|alarm
else PJohn calls|¬alarm

let mary calls = λalarm :bool.
if alarm then PMary calls|alarm
else PMary calls|¬alarm

The conditional probabilitiesalarm, john calls, andmary calls do not answer any query on the be-
lief network; they only describe its structure. In order to answer a specific query, we have to imple-
ment a corresponding probability distribution. For instance, in order to answer “what is the probability
pMary calls|John calls that Mary calls when John calls?”, we useQMary calls|John calls below, which essen-
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tially implements logic sampling [8]:

let rec QMary calls|John calls =
prob sample b from Pburglary in

sample e from Pearthquake in
sample a from alarm (b, e) in
sample j from john calls a in
sample m from mary calls a in
eif j then m else unprob QMary calls|John calls

in
Qburglary|John calls

Pburglary denotes the probability distribution that a burglary happens, andPearthquake denotes the probability
distribution that an earthquake happens. Then the mean ofQMary calls|John calls givespMary calls|John calls .
We will see how to calculatepMary calls|John calls in Section 6.

We can also implement most of the common operations on probability distributions. An exception is
the Bayes operation] (the second update equation of the Bayes filter uses it).P ] Q results in a probability
distributionR such thatR(x) = ηP (x)Q(x) whereη is a normalization constant ensuring

∫
R(x)dx =

1.0; if P (x)Q(x) is zero for everyx, thenP ] Q is undefined. Since it is difficult to achieve a general
implementation ofP ] Q, we usually make an additional assumption onP andQ to achieve a specialized
implementation. For instance, if we have a functionp and a constantc such thatp(x) = kP (x) ≤ c for a
certain constantk, we can implementP ] Q by the rejection method:

let bayes rejection = λp :A→ real. λc : real. λQ :©A.
let rec bayes =

prob sample x from Q in
sample u from prob S in
eif u < (p x)/c then x else unprob bayes

in
bayes

We will see another implementation in Section 6.

High versatility

λ© allows high versatility in encoding probability distributions: given a probability distribution, we can
exploit its unique properties and encode it in many different ways. For instance,exponential1.0 uses a
logarithm function to encode an exponential distribution, but there is also an ingenious method (due to von
Neumann) that requires only addition and subtraction operations:

let exponential von Neumann1.0 =
let rec search = λk : real. λu : real. λu1 : real.

prob sample u′ from prob S in
eif u < u′ then k + u1

else sample u from prob S in
eif u ≤ u′ then unprob (search k u u1)
else sample u from prob S in

unprob (search (k + 1.0) u u)
in

prob sample u from prob S in
unprob (search 0.0 u u)

10



The recursive term ingaussian rejection consumes at least three random numbers. We can encode a
Gaussian distribution with only two random numbers:

let gaussian Box Muller = λm : real. λσ : real.
prob sample u from prob S in

sample v from prob S in
m + σ ∗

√
−2.0 ∗ log u ∗ cos (2.0 ∗ π ∗ v)

We can also approximate a Gaussian distribution by exploiting the central limit theorem:

let gaussian central = λm : real. λσ : real.
prob sample x1 from prob S in

sample x2 from prob S in
· · ·

sample x12 from prob S in
m + σ ∗ (x1 + x2 + · · ·+ x12 − 6.0)

The three examples above serve as evidence of high versatility ofλ©: the more we know about a proba-
bility distribution, the better we can encode it.

All the examples in this section just rely on our intuition on sampling functions and do not actually prove
the correctness of encodings. For instance, we still do not know ifbernoulli indeed encodes a Bernoulli
distribution, or equivalently, if the expression in it generatesTrue with probabilityp. In the next section, we
investigate how to formally prove the correctness of encodings.

5 Proving the Correctness of Encodings

When programming inλ©, we often ask“What probability distribution characterizes outcomes of comput-
ing a given expression?”The operational semantics ofλ© does not directly answer this question because
an expression computation returns only a single sample from a certain, yet unknown, probability distribu-
tion. Therefore we need a different methodology for interpreting expressions directly in terms of probability
distributions.

We take a simple approach that appeals to our intuition on the meaning of expressions. We writeE ∼
Prob if outcomes of computingE are distributed according toProb. To determineProb from E, we
supply an infinite sequence of independentrandom variablesfrom U(0.0, 1.0] and analyze the result of
computingE in terms of these random variables. IfE ∼ Prob, thenE denotes a probabilistic computation
of generating samples fromProb and we regardProb as the denotation ofprob E.

We illustrate the above approach with a few examples. In each example,Ri means thei-th random
variable andR∞

i means the infinite sequence of random variables beginning fromRi (i.e., RiRi+1 · · ·). A
random variable is regarded as a value because it represents real numbers in(0.0, 1.0].

As a trivial example, considerprob S. The computation ofS proceeds as follows:

S @ R∞
1 ⇒ R1 @ R∞

2

Since the outcome is a random variable fromU(0.0, 1.0], we haveS ∼ U(0.0, 1.0].
As an example of discrete distribution, considerbernoulli p. The expression in it computes as follows:

sample x from prob S in x ≤ p @ R∞
1

⇒ sample x from prob R1 in x ≤ p @ R∞
2

⇒ R1 ≤ p @ R∞
2

⇒ True @ R∞
2 if R1 ≤ p;

False @ R∞
2 otherwise.
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SinceR1 is a random variable fromU(0.0, 1.0], the probability ofR1 ≤ p is p. Thus the outcome isTrue
with probabilityp andFalse with probability1.0− p, andbernoulli p denotes a Bernoulli distribution with
parameterp.

As an example of continuous distribution, consideruniform a b. The expression in it computes as
follows:

sample x from prob S in a + x ∗ (b− a) @ R∞
1

⇒∗ a + R1 ∗ (b− a) @ R∞
2

Since we have

a + R1 ∗ (b− a) ∈ (a0, b0] iff R1 ∈ (
a0 − a

b− a
,
b0 − a

b− a
],

the probability that the outcome lies in(a0, b0] is

b0 − a

b− a
− a0 − a

b− a
=

b0 − a0

b− a
∝ b0 − a0

where we assume(a0, b0] ⊂ (a, b]. Thusuniform a b denotes a uniform distribution over(a, b].
The following proposition shows thatbinomial p n denotes a binomial distribution with parametersp

andn, which we write asBinomialp,n:

Proposition 5.1. If binomialp n 7→∗ prob Ep,n, thenEp,n ∼ Binomialp,n.

Proof. By induction onn.
Base casen = 0. We haveEp,n = 0. SinceBinomialp,n is a point-mass distribution centered on0, we

haveEp,n ∼ Binomialp,n.
Inductive casen > 0. The computation ofEp,n proceeds as follows:

sample x from binomialp (n− 1) in
sample b from bernoullip in
if b then 1 + x else x @ R∞

1

⇒∗ sample x from prob xp,n−1 in
sample b from bernoullip in
if b then 1 + x else x @ R∞

i

⇒∗ sample b from prob bp in
if b then 1 + xp,n−1 else xp,n−1 @ R∞

i+1

⇒∗ 1 + xp,n−1 @ R∞
i+1 if bp = True;

xp,n−1 @ R∞
i+1 otherwise.

By induction hypothesis,binomialp (n− 1) generates a samplexp,n−1 from Binomialp,n−1 after consum-
ing R1 · · ·Ri−1 for somei (which is actuallyn). SinceRi is an independent random variable,bernoullip
generates a samplebp that is independent ofxp,n−1. Then we obtain an outcomek with the probability of

bp = True andxp,n−1 = k − 1 or
bp = False andxp,n−1 = k,

which is equal to
p ∗ Binomialp,n−1(k − 1) + (1.0− p) ∗ Binomialp,n−1(k) = Binomialp,n(k).

Thus we haveEp,n ∼ Binomialp,n.
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As a final example, we show thatgeometric rec p denotes a geometric distribution with parameterp.
Supposegeometric 7→∗ prob E andE ∼ Prob. The computation ofE proceeds as follows:

E @ R∞
1

⇒∗ sample b from prob bp in
eif b then 0
else sample x from geometric in

1 + x
@ R∞

2

⇒∗ 0 @ R∞
2 if bp = True;

sample x from prob E in 1 + x @ R∞
2 otherwise.

The first case happens with probabilityp and we getProb(0) = p. In the second case, we compute the same
expressionE with sampling sequenceR∞

2 . Since all random variables are independent,R∞
2 can be thought

of as a fresh sequence of random variables. Therefore the computation ofE with sampling sequenceR∞
2

returns samples from the same probability distributionProb and we getProb(1+k) = (1.0−p)∗Prob(k).
Solving the two equations, we getProb(k) = p ∗ (1.0− p)k−1, which is the probability mass function for a
geometric distribution with parameterp.

The above approach can be thought of as an adaption of the method established in simulation theory [2].
An alternative approach would be to develop a denotational semantics. For instance, if we ignore fixed
point constructs, it is straightforward to translate expressions into probability measures because probability
measures form a monad [6, 25] and expressions already follow a monadic syntax.2 In practice, however,
the translation does not immediately reveal the probability measure corresponding to a given expression
and we have to go through essentially the same analysis as in the above approach. Ultimately we have to
invert a sampling function represented by a given expression (because an event is assigned a probability
proportional to the size of its inverse image under the sampling function), but this is difficult to do in a
mechanical way in the presence of various operators. Therefore it seems to be reasonable to analyze each
expression individually as demonstrated in this section.

6 Approximate Computation in λ©

We have explored both how to encode probability distributions inλ© and how to interpretλ© in terms of
probability distributions. In this section, we discuss another important aspect of probabilistic languages:
reasoning about probability distributions.

The expressive power of a probabilistic language is an important factor affecting its practicality. Another
important factor is its support for reasoning about probability distributions to determine their properties. In
other words, it is important not only to be able to encode various probability distributions but also to be able
to determine their properties such as means, variances, and probabilities of specific events. Unfortunately
λ© does not support precise reasoning about probability distributions. That is, it does not permit a precise
implementation of queries on probability distributions. Intuitively we must be able to calculate probabilities
of specific events, but this is essentially inverting sampling functions.

Given that we cannot hope for precise reasoning inλ©, we choose to support approximate reasoning by
the Monte Carlo method [13]. It approximately answers a query on a probability distribution by generating a
large number of samples and then analyzing them. For instance, in the belief network example in Section 4,
we can approximatepMary calls|John calls by generating a large number of samples and counting the number

2In the presence of fixed point constructs, expressions should be translated into a domain-theoretic structure because of recursive
equations. While the work by Jones [10] suggests that such a structure could be constructed from a domain-theoretic model of real
numbers, we have not investigated in this direction.
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of True’s. Although the Monte Carlo method gives only an approximate answer, its accuracy improves with
the number of samples. Moreover it can be applied to all kinds of probability distributions and is therefore
particularly suitable forλ©.

In this section, we apply the Monte Carlo method to an implementation of the expectation query. We
also show how to exploit the Monte Carlo method in implementing the Bayes operation. Then we briefly
describe our implementation ofλ©.

6.1 Expectation query

Among common queries on probability distributions, the most important is the expectation query. The
expectation of a functionf with respect to a probability distributionP is the mean off overP , which we
write as

∫
fdP . Other queries may be derived as special cases of the expectation query. For instance, the

mean of a probability distribution over real numbers is the expectation of an identity function.
The Monte Carlo method states that we can approximate

∫
fdP with a set of samplesV1, · · · , Vn from

P :

lim
n→∞

f(V1) + · · ·+ f(Vn)
n

=
∫

fdP

We introduce a term constructexpectation which exploits the above equation:

term M ::= · · · | expectation Mf MP

Γ `Mf : A→ real Γ `MP : ©A

Γ ` expectation Mf MP : real
Exp

Mf 7→∗ f MP 7→∗ prob EP

EP @ si ⇒∗ Vi @ s′i f Vi 7→∗ vi 1 ≤ i ≤ n

expectation Mf MP 7→R

∑
i vi

n

ExpR

The ruleExpR says that ifMf evaluates to a lambda abstraction denotingf andMP evaluates to a probability
term denotingP , thenexpectation Mf MP reduces to an approximation of

∫
fdP . A runtime variablen

specifies the number of samples to be generated fromP . The runtime system initializes sampling sequence
si to generate sampleVi.

A problem with the above definition is that althoughexpectation is a term construct, its reduction is
probabilistic because of sampling sequencesi in the ruleExpR. This violates the principle that a term
evaluation is always deterministic, and now the same term may evaluate to different values if it contains
expectation. In practice, however, this is acceptable becauseλ© is intended to be embedded in Objective
CAML in which side-effects are already allowed for terms. Besides, mathematically the expectation of a
function with respect to a probability distribution is always unique (if it exists).3

Now we can calculatepMary calls|John calls as:

expectation (λx :bool. if x then 1.0 else 0.0) QMary calls|John calls

6.2 Bayes operation

The previous implementation of the Bayes operationP ] Q assumes that we have a functionp and a constant
c such thatp(x) = kP (x) ≤ c for a certain constantk. It is, however, often difficult to find the optimal
value ofc (i.e., the maximum value ofp(x)) and we have to take a conservative estimate ofc. The Monte
Carlo method, in conjunction with importance sampling [13], allows us to dispense withc by approximating

3We defineexpectation as a term construct only for pragmatic reasons. For instance, examples in Section 7 become much more
complicated ifexpectation is defined as an expression construct.
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Q with a set of samples andP ] Q with a set of weighted samples. We introduce a term constructbayes for
the Bayes operation and an expression constructimportance for importance sampling:

term M ::= · · · | bayes Mp MQ

expression E ::= · · · | importance {(Vi, wi)|1 ≤ i ≤ n}

In the spirit of data abstraction,importance represents only an internal data structure and is not directly
available to the programmer.

Γ `Mp : A→ real Γ `MQ : ©A

Γ ` bayes Mp MQ : ©A
Bayes

Γ ` Vi : A Γ ` wi : real 1 ≤ i ≤ n

Γ ` importance {(Vi, wi)|1 ≤ i ≤ n} ÷A
Imp

Mp 7→∗ p MQ 7→∗ prob EQ

EQ @ si ⇒∗ Vi @ s′i p Vi 7→∗ wi 1 ≤ i ≤ n

bayes Mp MQ 7→R prob importance {(Vi, wi)|1 ≤ i ≤ n} BayesR

∑k−1
i=1 wi

S < r ≤
∑k

i=1 wi

S where S =
∑n

i=1 wi

importance {(Vi, wi)|1 ≤ i ≤ n} @ rs⇒R Vk @ s
ImpR

The ruleBayesR approximatesQ with n samplesV1, · · · , Vn, wheren is a runtime variable as in the rule
ExpR. Then it appliesp to each sampleVi to calculates its weightwi and creates a set{(Vi, wi)|1 ≤ i ≤ n}
of weighted samples as an argument toimportance. The ruleImpR implements importance sampling: we
use a random numberr to probabilistically select a sampleVk by taking into account the weights associated
with all the samples.

As with expectation, we decide to definebayes as a term construct despite the fact that its reduction
is probabilistic. The decision also conforms to our intuition that mathematically the result of the Bayes
operation between two probability distributions is always unique.

6.3 Implementation ofλ©

We have implementedλ© by extending the syntax of Objective CAML. The runtime system uses a global
random number generator for all sampling sequences. Hence it generates fresh random numbers whenever
it needs to compute sampling expressions, without explicitly initializing sampling sequences. The runtime
system also allows the programmer to change the runtime variablen in the rulesExpR andBayesR, both
of which invoke expression computations during term evaluations. Thus the programmer can control the
accuracy in approximating probability distributions.

7 Applications

In this section, we present three applications ofλ© in robotics: robot localization, people tracking, and
robotic mapping. The goal is to estimate the state of a robot from sensor readings, where the definition of
state differs in each case. In order to cope with uncertainty in sensor readings (due to limitations of sensors
and noises from the environment), we estimate the state with a probability distribution. We use a Bayes filter
as a framework for updating the probability distribution.

There are two kinds of sensor readings: action and measurement. As in a Bayes filter, an action induces a
state change whereas a measurement gives information on the state. An action is represented as an odometry
reading which returns the pose (i.e., position and orientation) of the robot relative to its initial pose. A
measurement includes range readings which return distances to objects at certain angles (see Figure 6 in
Appendix).
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We first consider robot localization, since it directly implements update equations (1) and (2) in Sec-
tion 2.

7.1 Robot localization

Robot localization [28] is the problem of estimating the pose of a robot when a map of the environment is
available. If the initial pose is given, the problem becomespose trackingwhich keeps track of the robot
pose by compensating errors in sensor readings. If the initial pose is not given, the problem becomesglobal
localizationwhich begins with multiple hypotheses on the robot pose (and is therefore more difficult than
pose tracking).

We consider robot localization under the assumption that the environment is static. This assumption
allows us to use a Bayes filter over the robot pose. Specifically the state in the Bayes filter is the robot pose
s = (x, y, θ), and we estimates with a probability distributionBel(s) over three-dimensional real space.
We computeBel(s) according to update equations (1) and (2) with the following interpretation:

• A(s|a, s′) is the probability that the robot moves to poses after taking actiona in another poses′. A
is called anaction model.

• P(m|s) is the probability that measurementm is taken at poses. P is called aperception model.

Given an actiona and a poses′, we can generate a new poses from A(·|a, s′) by adding a noise toa
and applying it tos′. Given a measurementm and a poses, we can also computeκP(m|s) whereκ is an
unknown constant: the map determines a unique measurementms for the poses, and the difference between
m andms is proportional toP(m|s). Then, ifMA denotes conditional probabilityA andMP m returns a
functionf(s) = κP(m|s), we can implement update equations (1) and (2) as follows:

let Belnew = prob sample s′ from Bel in
sample s from MA (a, s′) in
s

 (1)

let Belnew = bayes (MP m) Bel } (2)

Now we can implement pose tracking or global localization by specifying an initial probability distri-
bution of robot pose. In the case of pose tracking, it is usually a point-mass distribution or a Gaussian
distribution; in the case of global localization, it is usually a uniform distribution over the open space in the
map.

7.2 People tracking

People tracking [20] is an extension of robot localization in that it estimates not only the robot pose but
also the positions of people (or unmapped objects). As in robot localization, the robot can take an action
to change its pose. Unlike in robot localization, however, the robot must categorize sensor readings in a
measurement by deciding whether they are caused by objects in the map or by people. Those sensor readings
that correspond with objects in the map are used to update the robot pose; the rest of sensor readings are
used to update the positions of people.

A simple approach is to maintain a probability distributionBel(s, ~u) of robot poses and positions~u of
people. While it works well for pose tracking, this approach is not a general solution for global localization.
The reason is that sensor readings from people are correctly interpreted only with a correct hypothesis on the
robot pose, but during global localization, there may be multiple incorrect hypotheses that lead to incorrect
interpretation of those sensor readings. This means that during global localization, there exists a dependence
between the robot pose and the positions of people, which is not captured byBel(s, ~u).
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Bel(s, Ps(~u)) ←
∫
A(s, Ps(~u)|a,m, s′, Ps′(~u′))Bel(s′, Ps′(~u′))d(s′, Ps′(~u′))(3)

Bel(s, Ps(~u)) ← ηP(m|s, Ps(~u))Bel(s, Ps(~u))(4)

A(s, Ps(~u)|a,m, s′, Ps′(~u′)) = Prob(s|a,m, s′, Ps′(~u′)) Prob(Ps(~u)|a,m, s′, Ps′(~u′), s)(5)

= Arobot(s|a,m, s′, Ps′(~u′)) Prob(Ps(~u)|a,m, s′, Ps′(~u′), s)
Ps(~u) ←

∫
Prob(~u|a, ~u′, s, s′)Ps′(~u′)d~u′(6)

=
∫
Apeople(~u|a, ~u′, s, s′)Ps′(~u′)d~u′

Ps(~u) ← η′Prob(m|~u, s, s′)Ps(~u)(7)

= η′Ppeople(m|~u, s)Ps(~u)

Figure 3: Equations used in people tracking. (3) and (4) for the Bayes filter computingBel(s, Ps(~u)). (5) for
decomposing the action model. (6) and (7) for the inner Bayes filter computingPs(~u).

let Belnew = prob sample (s′, Ps′(~u′)) from Bel in

sample s from MArobot
(a,m, s′, Ps′(~u′)) in

let Ps(~u) = prob sample ~u′ from Ps′(~u′) in

sample ~u from MApeople
(a, ~u′, s, s′) in

~u

 (6)

in
let Ps(~u) = bayes (MPpeople

m s) Ps(~u) in } (7)
(s, Ps(~u))


(5)


(3)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPpeople
m s) Ps(~u)) Bel } (4)

Figure 4: Implementation of people tracking inλ©. Numbers on the right-hand side show corresponding equations in
Figure 3.

Hence we maintain a probability distributionBel(s, Ps(~u)) of robot poses andprobability distribution
Ps(~u) of positions~u of people conditioned on robot poses. Ps(~u) captures the dependence between the
robot pose and the positions of people.Bel(s, Ps(~u)) can be thought of as a probability distribution over
probability distributions.

As in robot localization, we updateBel(s, Ps(~u)) with a Bayes filter. The difference from robot local-
ization is that the state is a pair ofs andPs(~u) and that the action model takes as input both an actiona and
a measurementm. We use update equations (3) and (4) in Figure 3 (which are obtained by replacings by
s, Ps(~u) anda by a,m in update equations (1) and (2)).

The action modelA(s, Ps(~u)|a,m, s′, Ps′(~u′)) requires us to generates, Ps(~u) from s′, Ps′(~u′) utilizing
actiona and measurementm. We generate firsts and nextPs(~u) according to equation (5) in Figure 3. We
write the firstProb in equation (5) asArobot(s|a,m, s′, Ps′(~u′)). The secondProb in equation (5) indicates
that we have to generatePs(~u) from Ps′(~u′) utilizing actiona and measurementm, which is exactly a
situation where we can use another Bayes filter. For this inner Bayes filter, we use update equations (6) and
(7) in Figure 3. We writeProb in equation (6) asApeople(~u|a, ~u′, s, s′); we simplify Prob in equation (7)
into Prob(m|~u, s) becausem does not depend ons′ givens, and write it asPpeople(m|~u, s).

Figure 4 shows the implementation of people tracking inλ©. MArobot
andMApeople

denote conditional
probabilitiesArobot andApeople, respectively.MPpeople

m s returns a functionf(~u) = κPpeople(m|~u, s) for
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let Belnew =
prob sample (s′, Ps′(~u′)) from Bel in

sample s from

bayes λs : . (expectation (MPlandmark
m s) Ps′(~u′)) (MArobot

(a, s′)) in

}
(8)

let Ps(~u) = bayes (MPlandmark
m s) Ps(~u) in } (7)

(s, Ps(~u))

 (5)


(3)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPlandmark
m s) Ps(~u)) Bel } (4)

Figure 5: Implementation of robotic mapping inλ©. Compared with the implementation in Figure 4, it omits equation
(6) and uses equation (8).

a constantκ. In implementing update equation (4), we exploit the fact thatP(m|s, Ps(~u)) is the expectation
of a functiong(~u) = Ppeople(m|~u, s) with respect toPs(~u):

P(m|s, Ps(~u)) =
∫
Ppeople(m|~u, s)Ps(~u)d~u

We can further simplify the models used in the update equations. For example, we can useArobot(s|a, s′)
instead ofArobot(s|a,m, s′, Ps′(~u′)) as in robot localization. In our implementation, we useApeople(~u|~u′)
on the assumption that the positions of people are not affected by the robot pose.

7.3 Robotic mapping

Robotic mapping [30] is the problem of building a map (or a spatial model) of the environment from sensor
readings. Since measurements are a sequence of inaccurate local snapshots of the environment, a robot
must simultaneously localize itself as it explores the environment so that it can correct and align the local
snapshots to construct a global map. For this reason, robotic mapping is also referred to as simultaneous
localization and mapping (or SLAM). It is one of the most difficult problems in robotics, and is under active
research.

We assume that the environment consists of an unknown number of stationary landmarks. Then the goal
is to estimate the positions of landmarks as well as the robot pose. The key observation is that we can think
of landmarks as people who never move in an empty environment. It means that the problem is a special
case of people tracking and we can use all the equations in Figure 3. Below we use subscriptlandmark instead
of people for the sake of clarity.

As in people tracking, we maintain a probability distributionBel(s, Ps(~u)) of robot poses and prob-
ability distributionPs(~u) of positions~u of landmarks conditioned on robot poses. Since landmarks are
stationary andAlandmark(~u|a, ~u′, s, s′) is non-zero if and only if~u = ~u′, we can skip update equation (6) in
implementing update equation (3).Arobot in equation (5) can usePlandmark(m|~u′, s) to test the likelihood
of each new robot poses with respect to old positions~u′ of landmarks, as in FastSLAM 2.0 [19]:

Arobot(s|a,m, s′, Ps′(~u′))(8)

=
∫
Prob(s|a,m, s′, u′)Ps′(~u′)d~u′

=
∫

Prob(s|a, ~u′)Prob(m, s′|s, a, ~u′)

Prob(m, s′|a, ~u′)
Ps′(~u′)d~u′

=
∫

η′′Prob(m, s′|s, a, ~u′)Ps′(~u′)d~u′ where η′′ =
Prob(s|a, ~u′)

Prob(m, s′|a, ~u′)
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=
∫

η′′Prob(s′|s, a, ~u′,m)Prob(m|s, a, ~u′)Ps′(~u′)d~u′

=
∫

η′′Prob(s′|s, a)Prob(m|s, ~u′)Ps′(~u′)d~u′

= η′′Arobot(s|a, s′)
∫
Plandmark(m|~u′, s)Ps′(~u′)d~u′

Givena ands′, we implement the above equation with a Bayes operation onArobot(·|a, s′).
Figure 5 shows the implementation of robotic mapping inλ©. MArobot

andMPlandmark
are interpreted in

the same way as in people tracking. Since landmarks are stationary, we no longer needMAlandmark
.

7.4 Experimental results

We have implemented the above three systems inλ©. To test the robot localizer and the people tracker, we
use a mobile robot Nomad XR4000 in Wean Hall at Carnegie Mellon University. We use CARMEN [18]
for controlling the robot and collecting sensor readings. To test the mapper, we use the a data set collected
with an outdoor vehicle in Victoria Park, Sydney [1]. All the systems run on Pentium III 500Mhz with 384
MBytes memory.

We test the robot localizer for global localization with 8 runs in Wean Hall (each run takes a different
path). For an initial probability distribution of robot pose, we use a uniform distribution over the open space
in the map. In a test experiment, it succeeds to localize the robot on 5 runs and fails on 3 runs (see Figures 7
and 8 in Appendix for a successful run). As a comparison, the CARMEN robot localizer, which uses particle
filters, succeeds on 3 runs and fails on 5 runs.

The people tracker uses the implementation in Figure 4 during global localization, but once it succeeds
to localize the robot and starts pose tracking, it maintains an independent probability distribution for each
person in sight (because there is no longer a dependence between the robot pose and the positions of people).
Figures 9 and 10 in Appendix show some results from the people tracker.

We test the mapper with a data set in which the vehicle moves approximately 323.42 meters (according
to the odometry readings) in 128.8 seconds. Since the vehicle is driving over uneven terrain, raw odometry
readings are noisy and do not reflect the true path of the vehicle, in particular when the vehicle follows a
loop (see Figure 11). The mapper successfully closes the loop, building a map of the landmarks around the
path (see Figure 12). The experiment takes 145.89 seconds.

Our finding is that the benefit of implementing probabilistic computations inλ©, such as readability
and conciseness of code, outweighs its disadvantage in speed. As a comparison (although not particularly
meaningful), our robot localizer is 1349 lines long (868 lines of Objective CAML code and 481 lines of
C code), and the CARMEN robot localizer, written in C, is 3397 lines long. The speed loss is also not
significant. For example, while the CARMEN robot localizer processes 100.0 sensor readings, our robot
localizer processes on average 54.6 sensor readings (and nevertheless shows comparable accuracy).

8 Related Work

There are a number of probabilistic languages that focus on discrete distributions. Such a language usu-
ally provides a probabilistic construct that is equivalent to a binary choice construct. Saheb-Djahromi [27]
presents a probabilistic language with a binary choice construct(p1→ e1, p2→ e2) wherep1 + p2 = 1.0.
Koller, McAllester, and Pfeffer [11] present a first order functional language with a coin toss construct
flip(p). Pfeffer [22] generalizes the coin toss construct to a multiple choice constructdist [p1 : e1, · · · , pn : en]
where

∑
i pi = 1.0. Gupta, Jagadeesan, and Panangaden [7] present a stochastic concurrent constraint lan-

guage with a probabilistic choice constructchoose x from Dom in e whereDom is a finite set of real
numbers. All these constructs, although in different forms, are equivalent to a binary choice construct and
have the same expressive power.
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An easy way to compute a binary choice construct (or an equivalent) is to generate a sample from the
probability distribution it denotes, as in the above probabilistic languages. Another way is to return an
accurate representation of the probability distribution itself, by enumerating all elements in its support along
with their probabilities. Pless and Luger [24] present an extended lambda calculus which uses a probabilistic
construct of the form

∑
i ei : pi where

∑
i pi = 1.0. An expression denoting a probability distribution

computes to a normal form
∑

i vi : pi, which is an accurate representation of the probability distribution.
Jones [10] presents a metalanguage with a binary choice constructe1 orp e2. Its operational semantics uses a
judgmente⇒

∑
pivi. Mogensen [15] presents a language for specifying die-rolls. Its denotation semantics

(calledprobability semantics) is formulated in a similar style, directly in terms of probability measures.
Jones and Mogensen also provide an equivalent of a fixed point construct which enables programmers

to specify discrete distributions with infinite support (e.g., geometric distribution). Such a probability distri-
bution is, however, difficult to represent accurately because of an infinite number of elements in its support.
For this reason, Jones assumes

∑
pi ≤ 1.0 in the judgmente ⇒

∑
pivi and Mogensen usespartial prob-

ability distributionsin which the sum of probabilities may be less than1.0. The intuition is that we allow
only a finite recursion depth so that we can omit some elements in the enumeration.

There are a few probabilistic languages supporting continuous distributions. Kozen [12] investigates the
semantics of probabilisticwhile programs. A random assignmentx := random assigns a random number to
variablex. Since it does not assume a specific probability distribution for the random number generator, the
language serves only as a framework for probabilistic languages. The third author [29] extends C++ with
probabilistic data types which are created from a templateprob<type>. Although the language supports
common continuous distributions, its semantics is not formally defined. The first author [21] presents a
probabilistic calculus whose mathematical basis is sampling functions. In order to encode sampling func-
tions directly, the calculus uses asampling constructγ�e whereγ is a formal argument ande denotes the
body of a sampling function. As inλ©, the computation ofγ�e proceeds by generating a random number
from U(0.0, 1.0] and substituting it forγ in e.

The idea of using a monadic syntax inλ© was inspired by Ramsey and Pfeffer [25]. They present a
stochastic lambda calculus (with a binary choice constructchoose p e1 e2) whose denotational semantics
is based upon the monad of probability measures, or the probability monad [6]. In implementing a query
for generating samples from probability distributions, they note that the probability monad can also be
interpreted in terms of sampling functions, both denotationally and operationally. In designingλ©, we take
the opposite approach: first we use a monadic syntax for probabilistic computations and relate it directly to
sampling functions; then we interpret it in terms of probability distributions.

9 Conclusion and Future Work

We have presented a probabilistic languageλ© whose mathematical basis is sampling functions.λ© sup-
ports all kinds of probability distributions without drawing a syntactic or semantic distinction. We have
demonstrated the practicality ofλ© with three applications in robotics. To the best of our knowledge,λ©
is the only probabilistic language with a formal semantics that has been applied to real problems involving
continuous distributions. There are a few other probabilistic languages that are capable of simulating con-
tinuous distributions (by combining an infinite number of discrete distributions), but they require a special
treatment such as the lazy evaluation strategy in [11, 22] and the limiting process in [7].

λ© does not support precise reasoning about probability distributions. Note, however, that this is not
an inherent weakness ofλ© due to its use of sampling functions as the mathematical basis; rather this is a
necessary feature ofλ© because precise reasoning about probability distributions is impossible in general.
In other words, ifλ© supported precise reasoning, it could support only a small number of probability
distributions and operations on them.
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The utility of a probabilistic language depends on each problem to which it is applied.λ© is a good
choice for those problems in which all kinds of probability distributions are used or precise reasoning is
unnecessary. Robotics is a good example, since all kinds of probability distributions are used (even those
probability distributions similar topoint uniform in Section 4 are used in modeling laser range finders) and
also precise reasoning is unnecessary (sensor readings are inaccurate at any rate). On the other hand,λ©may
not be the best choice for those problems involving only discrete distributions, since its rich expressiveness
is not fully exploited and approximate reasoning may be too weak for discrete distributions.

We are investigating how to generate a large number of samples quickly, which is important for im-
proving accuracy of approximate reasoning inλ©. For instance, instead of computing a given expression
repeatedly (as in the current implementation ofλ©), we could run through it only once by performing mul-
tiple, either independent or correlated, computations simultaneously.
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Appendix

Figure 6: Range readings produced by laser range finders in a mobile robot Nomad XR4000. The robot is shown in
the center. An occluded region is colored in light blue.
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Figure 7: Probability distribution of robot pose after processing the first batch of range readings in Figure 6. Red
crosses represent samples generated from the probability distribution. The open space in the map is colored in white.
We use 500 samples. The robot starts right below character A, but there are relatively few samples around the true
position of the robot.
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Figure 8: Progress of a real-time robot localization run that continues with the probability distribution in Figure 7.
The first two pictures show that the robot localizer is still performing global localization. The last picture shows that
the robot localizer has started pose tracking.
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Figure 9: Progress of a real-time people tracking run that uses the same sequence of sensor readings as the previous
robot localization run. The first picture is taken after processing the first batch of range readings in Figure 6; red
crosses correspond to robot poses and green diagonal crosses correspond to positions of people. The second picture
shows that the people tracker is still performing global localization. The last picture shows that the people tracker has
started pose tracking; the position of each person in sight is indicated by a green dot.
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Figure 10: Range readings when the third picture in Figure 9 is taken. The right picture shows a magnified view of the
area around the robot. A person may be occluded by another person, so green dots do not always reflect the movement
of people instantly.

Figure 11: Raw odometry readings in the robotic mapping experiment. Green crosses represent the true positions of
the vehicle measured by a GPS sensor. The GPS sensor readings are available only for part of the entire traverse. The
odometry readings do not follow the true path of the vehicle.
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Figure 12: Result of the robotic mapping experiment. The mapper successfully closes the loop. The circles represent
landmark positions (mean of their probability distributions).
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