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Abstract

The task of learning models for many real-world problems requires researchers to incorporate prob-
lem Domain Knowledge into the learning algorithms because there is rarely enough training data
to enable accurate learning of the structures and underlying relationships in the problem. Domain
Knowledge comes in many forms. Domain Knowledge about relevance of variables (Feature Selec-
tion) can help us ignore certain variables when building our model. Domain Knowledge specifying
conditional independencies among variables can guide our search over possible model structures.
This thesis presents a theoretical framework for incorporating a different kind of knowledge into
learning algorithms for Bayesian Networks: Domain Knowledge about relationships among param-
eters.

We develop a unified framework for incorporating general Parameter Domain Knowledge con-
straints in learning procedures for Bayesian Networks by formulating this as a constrained opti-
mization problem. We solve this problem using iterative algorithms based on Newton-Raphson
method for approximating the solutions of a system of equations. We approach learning from both
a frequentist and a Bayesian point of view, from both complete and incomplete data.

We also derive closed form solutions for our estimators for several types of Parameter Domain
Knowledge: parameter sharing, as well as sharing properties of groups of parameters (sum sharing
and ratio sharing). While models like Module Networks, Dynamic Bayes Nets and Context Spe-
cific Independence models share parameters at either conditional probability table or conditional
distribution (within one table) level, our framework is more flexible, allowing sharing at parameter
level, across conditional distributions of different lengths and across different conditional probabil-
ity tables. Other results include several formal guarantees about our estimators and methods for
automatically learning domain knowledge.

To validate our theory, we carry out experiments showing the benefits of taking advantage of
domain knowledge for modelling the fMRI signal during a cognitive task. Additional experiments
on synthetic data are also performed.
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Chapter 1

Introduction

1.1 Motivation

Probabilistic Modelshave become increasingly popular in the last decades because of the need
to characterize the non-deterministic nature of relationships among variables describing many real
world domains. Among these modeBayesian Networkkave received a tremendous amount of
interest because of their ability to compactly encode uncertainty about random variables and to ef-
ficiently deal with missing data. Another major advantage of Bayesian Networks is that they are
relatively easy to interpret by a non-expert, unlike Neural Networks or Support Vector Machines.
Applications of Bayesian Networks include medical diagnosis, stock market prediction, fraud de-
tection, intelligent troubleshooting and language modelling.

A Bayesian NetworkHec99 Pea83is a model that compactly represents the probability dis-
tribution over a set of random variables. It consists of two components: a structure and a set of
parameters. The structure is a Directed Acyclic Graph where one can think of the edges as cause-
effect relationships. The parameters describe how each variable relates probabilistically to its par-
ents. Intuitively, the parameters describe how probable each effect is given a combination of direct
causes.

Figurel.1shows a simplified version of a Bayesian Network that can be used for disease diag-
nosis. Typically, a diagnosis is reached by looking at a combination of risk factors and symptoms.
Risk factors likeSmoking(whether or not the patient smokeBKxMI (whether or not the patient
has a family history positive for heart attacRpllution (whether or not the area where the patient
lives has high air pollution) can all determine the presence of a disease. Given a disease is present,
the patient may or may not show certain symptofeer, Chest PainVomiting

The task of learning models for many real-world problems requires researchers to incorporate
problemDomain Knowledgento the learning algorithm because there is rarely enough training
data to enable the learning of the structures and underlying relationships in the problem. Domain



P(S) P(FHXx) P(P)

P(D|S,FHx,P)

P(Fv|D) P(CP|D) P(V|D)

Figure 1.1:A simplified version of a Bayesian Network which models the interaction between risk factors,
diseases and symptoms for the purpose of disease diagnosis in Emergency Room patients. The variables in-
volved are:Smoking(S)Family History of Heart AttackEHxMI (FHx), Pollution(P), Disease(D)Fever(Fv)

Chest Pain(CPandVomiting (V)

Knowledge comes in many forms. A domain expert can provide Domain Knowledge about rele-
vance of certain variables, also called Feature Selection, that can help us ignore certain variables
when building our model. Domain Knowledge specifying conditional independencies among vari-
ables can both guide our search over possible Bayesian Network structures and speed up inference.
Both these forms of Domain Knowledge have been extensively studied.

This thesis presents a theoretical framework for incorporating a different kind of knowledge
into Parameter Learninglgorithms for Bayesian Networks: Domain Knowledge about relation-
ships among paramete®arameter Learningn a Bayesian Network is defined as the problem of
estimating the parameters of that network from a dataset of training cases. These cases can be either
fully or partially observable.

To see why one would need to take advantagPasbmeter Domain Knowledgeonsider the
network in the above example. In a real world situation, we can have tens of potential risk factors and
hundreds of potential symptoms. Also, theseasevariable can take values in very large set. With
only 20 binary risk factors, the number of parameters of the diagnosis Bayesian Network easily
runs in the millions. Unfortunately, clean and complete medical data is extremely hard to come
by in a quantity sufficient to allow us to estimate these parameters accurately. However, medical
Domain Knowledge is plentiful and it can come directly from physicians or can be extracted from
written/online medical material. For example, a doctor may gdljthe other risk factors can be
ignored (have little additional influence) when deciding on a diagnosis of Heart Attack given that the



patient is a Smoker with a positive Family History of Heart Attd€kowledge coming from medical
books may stateA patient with Heart Attack exhibits chest pain and, very frequently, vomiting
While in the first case, domain knowledge asserts equality of a large number of parameters, in the
second case it asserts a deterministic relation betieant AttackandChest Pain

First, Parameter Domain Knowledgean help by shrinking the space in which the parameters
can take values. In the case of equality constraints, we achieve dimensionality reduction in this
space (as we noticed in the above examples). Inequality constraints can significantly reduce the
volume of the feasible region in the space of parameters in the case when this region is bounded.
This is the case with Bayesian Networks that model only discrete variables, because each parameter
is a probability betweef and1. Second, since Parameter Domain Knowledge has the effect of
shrinking the space of allowed parameters and since the amount of training data does not change,
intuitively one would expect that algorithms that know how to take advantage of Parameter Domain
Knowledge will produce lower variance estimators, which would be a great plus when training data
is scarce.

Currently, most popular ways of representiRgrameter Domain Knowledgare: Dirichlet
Priors and their variants anBarameter SharingHMMs, Module Networks, Context Specific In-
dependence), each of them having serious limitations. With Dirichlet Priors, one can not represent
even simple equality constraints between parameters. Generalizations would allow this simple kind
of constraint by using priors on the parameters of the Dirichelet Prior but in this case the marginal
likelihood can not be computed in closed anymore. Second, when the Bayesian Network has a very
large number of parameters, it is often beyond the expert’s ability to specify a full Dirichlet Prior.
In models like Module Networks or HMMs, parameter sharing happens at the level of conditional
probability table while Context Specific Independence can specify parameter sharing at the level of
conditional probability distribution within the same table. No such model allows sharing at param-
eter level of granularity nor it is able to represent more complicated parameter constraints. We will
discuss these forms of Parameter Domain Knowledge in more detail in CRapter

In this thesis we will present a unifying framework for incorporating Parameter Domain Knowl-
edge to perform automatic Parameter Learning in Bayesian Networks. While this framework uses
an iterative procedure to approximate the parameters, we will also illustrate it with several Domain
Knowledge types where we can compute the estimators in closed form. In particular, we define a
Parameter Sharing Domain Knowledge type and show how current models that use Parameter Shar-
ing assumptions can all be represented by this type. Examples on both real world and synthetic data
will demonstrate the benefits of taking advantage of Parameter Domain Knowledge when compared
to baseline models.



1.2 Research Approach

The derivation of our results relies heavily on optimization and approximation techniques. We will
formulate maximum likelihood parameter learning from complete data as a constrained maximiza-
tion problem. We will solve this optimization problem using Karush-Kuhn-Tucker theorem. This

is a generalization of Lagrange Multipliers theorem, which looks for a set of inequality constraints
that become equalities at the local optimum. As expected, the system of equations which results
from Karush-Kuhn-Tucker theorem may be difficult to solve in closed form in the general case.
However, this system has the same number of equations as variables and its solutions can be found
using the Newton-Raphson iterative method. For this method to work, we require that our Parame-
ter Domain Knowledge constraints be represented as twice differentiable functions with continuous
second derivatives.

The dimensionality of the optimization problem can make the above approach prohibitive. For-
tunately, in practice, most given constraints involve only a small fraction of the total number of
parameters. In addition, the objective function (likelihood function in general) is nicely decom-
posable and therefore we will be able to split the initial maximization problem into a set of many
independent maximization subproblems, each with its own set of constraints. These subproblems
have much lower dimensionality and therefore can be solved more easily with the above mentioned
method.

There are several approaches to parameter learning: from either a frequentist or a Bayesian
point of view, from either complete or incomplete data. The above method performs learning from
complete data from a frequentist point of view. In the case of incomplete data, we present several
ways to perform Maximum Likelihood estimation based on methods similar to the ones for complete
data. In particular, we notice that extending the Expectation Maximization algorithm for discrete
Bayesian Networks in the presence of Parameter Domain Knowledge constraints is just a matter
of applying in the M-Step the Maximum Likelihood estimators on the expected counts computed
in the E-Step. From a Bayesian point of view, we defiwnstrained Parameter Priorthat obey
the Parameter Domain Knowledge and show how the normalization constant can be computed via
a sampling algorithm. Based on these priors, we then discuss how one can perform Maximum
Aposteriori estimation and Bayesian model averaging for both complete and incomplete data.

While the above methods work for general constraints, it would be preferable to be able to
compute, in one step, closed form solutions for both the parameter estimators and the normalization
constants of th&onstrained Parameter PriorsUnfortunately, this task is not always possible,
simply because of the fact that there is no known closed form solution for polynomial equations of
degree higher than four. Three chapters of this thesis will be dedicated to the derivation of closed
form estimators for several types of domain knowledge. We study Parameter Domain Knowledge
constraints for both discrete and continuous variables, with a special emphasis on parameter sharing.



However, we also investigate constraints between sets of parameters (sum sharing, ratio sharing). In
one of these three chapters, we compute closed form Maximum Likelihood estimators in the case
when the domain knowledge comes as inequality constraints. These derivations will be performed
by directly solving the system of equations that characterize the maximum point instead of resorting
to the iterative method.

To validate our approach, we perform experiments on both synthetic and real world data. We
compare our models with standard baseline models usinglttievergencen the case of synthetic
data and théverage Log Scoréwvhich converges to the negative of cross-entropy on the long run)
in the case of real world data.

1.3 Contributions

In this thesis we isolated the problem of incorporating Parameter Domain Knowledge in learning
procedures for Bayesian Networks and developed mathematically sound methods to help solve this
problem. We feel that we barely scratched the surface of this new area and that further research
is needed to improve the methods described here. The main contributions of this research are the
following:

e We developed a unified framework for incorporating general Parameter Domain Knowledge
constraints in parameter learning procedures for Bayesian Networks by formulating this as
a constrained optimization problem. We developed sound methods to solve this problem
from both a frequentist and a Bayesian point of view and from both complete and incom-
plete data. Main contributions here include: computing Maximum Likelihood and Maximum
Aposteriori estimators via a Newton-Raphson iterative algorithm, computing the normaliza-
tion constant forConstrained Parameter Priorand presenting several algorithms to deal
with incomplete data. All these methods work with arbitrary Parameter Domain Knowledge
constraints that are twice differentiable and with continuous second derivatives.

e We derived closed form solutions for our estimators in several cases. Parameter Domain
Knowledge types for which this is possible include different variants of parameter sharing, as
well as sharing properties of groups of parameters: sum sharing or ratio sharing. We created
a Parameter Sharing framework that can describe a broad class of models: Module Networks,
Dynamic Bayes Nets, Context Specific Independence models (Bayesian Multinetworks and
Bayesian Recursive Multinetworks). While in these models parameter sharing happens at
either conditional probability table or conditional distribution (within one table) level, our
framework is much more flexible, allowing sharing at parameter level, across conditional dis-
tributions of potentially different lengths and across different conditional probability tables.



We would like to point out the unexpected result that closed form estimators were also found
even in the case of several inequality Parameter Domain Knowledge constraint types.

e We developed methods to automatically learn Parameter Domain Knowledge constraints
based on two scores. The first score is similar to the marginal likelihood. This measure is
feasible in practice only if a domain expert can specify restrictions on the set of possible do-
main knowledge assumptions. The second score for a set of Parameter Domain Knowledge
constraints is computed as the cross-validation log-likelihood of the observed data based on
Maximum Likelihood Estimators.

e As an application of our methods, we developed a generative model for the activity in the
brain during a given cognitive task, as it is observed by an fMRI scanner. We employ the
second score described above to find clusters of voxels which can be learnt together using
Hidden Process Models with shared parameters. Our models taking advantage of parameter
sharing far outperform the baseline model.

e Several formal guarantees are presented about our theoretical results. We show that with
infinite amount of training data, our Maximum Likelihood Estimators converge td#se
distribution (closest in terms of KL distance with the true distribution) that factorizes ac-
cording to the given Bayesian Network structure and obeys the expert’'s parameter sharing
assumptions, even in the case when incorrect knowledge is supplied. In the case when cor-
rect parameter sharing assumptions are provided, we prove that our models will yield lower
variance estimates than standard learning methods that ignore this kind of domain knowledge.

1.4 Thesis Statement

Standard methods for performing parameter estimation in Bayesian Networks can be naturally ex-
tended to take advantage of domain knowledge that can be provided by a domain expert. These
new methods can help lower the variance in parameter estimates by reducing the number of degrees
of freedom in the space of allowed parameters. While with an infinite amount of training data one
would expect standard parameter estimation methods to perform very well, we show that the impact
of incorporating Domain Knowledge constraints is quite noticeable when training data is scare.

1.5 Thesis Outline

Chapter2 describes work related to this research. There we investigate several types of domain
knowledge and models that make certain domain knowledge assumptions. We discuss Dirichlet Pri-
ors (and their variants), Markov and Hidden Markov Models, Dynamic Bayesian Networks, Context



Specific Independence (and models that use it) and Probabilistic Rules. Also, that chapter provides
a brief tutorial on parameter estimation in standard Bayesian Networks, with both discrete and con-
tinuous variables.

In Chaptei3 we formulate parameter learning in the presence of Parameter Domain Knowledge
as a constraint optimization problem and show how to solve this problem using an iterative Newton-
Raphson method. We study both a frequentist and a Bayesian approach, from both complete and
incomplete data.

Chapter#l)5 and6 present the main theoretical contributions of this research. In chales
5 we derive methods that perform parameter estimation in Bayesian Networks involving discrete
random variables. Chaptdrshows how domain knowledge in the form of equality constraints can
be incorporated in learning procedures for Bayesian Networks. Here we show how to compute close
form estimators for several types of domain knowledge: known parameters, parameter sharing, pa-
rameter sum sharing and parameter ratio sharing. Both a frequentist and a Bayesian perspective are
investigated, using both complete and incomplete data. Ch8mteals with domain knowledge
given by inequality constraints involving groups of parameters. In particular, we show how to esti-
mate parameters when the aggregate probability mass of a certain group of parameters is bounded
from above by a constant or by the aggregate probability mass of another group of parameters (e.g.
frequency of adjectives is less than frequency of nouns in a language). In cBapéetook at
continuous random variables and equality constraints involving the parameters of these variables.
We derive maximum likelihood estimators in the case when certain parameters are shared and in the
case when certain parameters are proportional to given constants. There we also show an iterative
algorithm to perform maximum likelihood estimation for Shared Hidden Process Models.

Chaptel7 provides some formal guarantees about our estimators. Here we present a theorem
proving that our parameter estimators based on domain knowledge provided by an expert have a
lower total variance than the ones computed with standard methods. This result assumes the domain
knowledge is correct. We also derive a theorem stating how well our model can perform when the
domain knowledge provided by the expert is not entirely correct.

To validate our models, in chapi8mwe present experimental results on both synthetic and real
world data. There we model the fMRI signal using Hidden Process Models that are shared across
clusters of neighboring voxels. This is a very high-dimensional problem, for which we only have
several examples available. Since Domain Knowledge is not readily available, we automatically
learn the clusters from our data using a cross-validation approach.

In chapter9 we present a brief summary of this research and we conclude by listing several
interesting ideas for future work.






Chapter 2

Related Work

In this chapter we present previous work which we will build on in this thesis, along with work

on models that use certain types of domain knowledge. First we give a brief tutorial on parameter
learning, from both a frequentist and a Bayesian point of view, from both complete and incomplete
data and for both discrete and continuous variables. In the second part of this chapter we present
several models that use parameter domain knowledge assumptions along with several of their short-
comings. We discusBirichlet Priors and related parameter priotdidden Markov ModelsDy-

namic Bayesian NetworkKalman Filters Context Specific IndependenBayesian Multinetworks
andRecursive MultinetworkModule NetworksObject Oriented Bayesian Networlrobabilistic
Relational ModelsBilinear Modelsand Probabilistic Rules Let us start by introducing several
important theoretical results that we will rely on subsequently.

2.1 Some Useful Results

In parameter learning we maximize a measure which depends on the parameters of a Bayesian
Network. This can be thought of as a constrained optimization problem. Therefore, we will first
state two theorems that characterize the optimum point of a constraint optimization problem. We
will start with Lagrange Multiplierstheorem Arf85, BNOOSZ [Zwi03], which deals with equality
constraints:

Theorem 2.1.1.(Lagrange Multipliers) If theregular pointz* is a local maximizer of the function
f(x) of n variables with respect to constraingg(x) = 0 for 1 < i < m, then there exist3* =
(A7, ..., A% such that(z*, \*) is the solution of the following system of+ m equations with
n + m variables:

{ Vaf (@) = 3, A - Vagi(z*) = 0
gi(z*) =0



A similar characterization of the optimum points exists when certain constraints come in the
form of inequalities. In this case, the optimum satis@sush-Kuhn-Tuckeconditions [Kar3€,
KT51], which represent an extension loigrange Multiplierstheorem. The main idea here is that
any of the inequality constraints can be eithight (satisfied) at the optimum arot tight The
Karush-Kuhn-Tucketheorem basically looks for a set of constraints that are tight, describes the
optimum point for those constraints in a fashion similailLagrange Multiplierstheorem, then
checks if this point satisfies the rest of the inequality constraints.

Theorem 2.1.2.(Karush-Kuhn-Tucker) If theregular pointx* is a local maximizer of the function
[ of n variables with respect to constraingg(x) = 0 for 1 <i <mandh;(z) < 0forl < j <k,
then there existe* = (A],...,\;,) and p* = (uf,...,p;) > 0 such that(z*, \*, *) is the
solution of the following system af+ m + k equations witm + m + k variables:

Vaf(a™) =22 A7 - Vagi(a™) = 22, 15 - Vehi(z™) = 0
gi(x*) =0
Wi - hi(z®) =0

Both theorenf.1.1and theoren2.1.2work for regular points. A pointx is aregular point if
the gradients of the equality atight inequality constraints at are linearly independent. If we ap-
proximate the constraints with linear functions by using a Taylor expansion arquihe gradients
of the constraints at would provide the coefficients of these lines. Therefore, if the gradients are
linearly dependent at, one can intuitively think of these approximate linear constraints as either
redundant or contradictory at In real world optimization problems, it very frequently happens that
all points are regular. If non-regular points exist, they are only few and they almost never provide a
maximum solution for the constrained optimization problem. When deriving closed form solutions
for several types of domain knowledge in the subsequent chapters, we noticed that all feasible points
are regular points.

It is important to mention that the above theorems describe only optimum points strictly inside
the region on which the objective functighhand the constraints are defined. Indeed, consider
f(z) = 2z on|0,1]: fis maximized forz* = 1, but the derivative off does not cancel ifD, 1].

If the domain of f is a topologically open set (e.g. the interyal 1)), then this problem does

not exist. Otherwise, one must be careful to consider potential maxima on the boundary of the
domain of the objective function. When performing parameter estimation in a standard Bayesian
Network using Lagrange Multipliers, one can deal with this problem either enforcing the fact that

all observed counts are strictly positive (which might not be the case in real world situations) or by
using Dirichlet Priors.

Note that the above theorems state conditions that the optimum point must satisfy. While these
conditions are necessary, they are not sufficient. Next we state two propositions describing suffi-
ciency conditions for bothagrange MultipliersandKarush-Kuhn-Tucketheorems.

10



Proposition 2.1.1. (Sufficiency Criterion 1) Letz* be a partial solution of the system of equations
in either theoren®.1.1or theoreni2.1.2 Thenxz* is a global maximum provided that:

e The objective functiorf is concave.

e The equality constraints are linear functions and the inequality constraints are convex func-
tions.

This first sufficiency criterionBV04] is a well known result in optimization theory. Its main
drawback is that it makes very restrictive assumptions about the equality constraints. In our research
we also deal with non-linear equality constraints. Below we present another set of sufficiency
conditions, along with a quick proof:

Proposition 2.1.2. (Sufficiency Criterion 2) Letz* be a partial solution of the system of equations
in either theoren®.1.1or theoren2.1.2 Thenz* is a global maximum provided that:

e All partial solutionsz of the system of equations satigfyi:) = f(z*).
e There exists a topologically closed regifrthat containg:* such thatf (z) < f(z*) Vo & B.

e The constraints define a compact set (the set is bounded and contains the limit of any sequence
of points from it).

In particular, if the above system has only one solution, then the last two conditions are sufficient
for that unique solution to be a global maximum.

Proof. Let C' be the compact set defined by the constraints andilet B N C. SinceB is a
closed set and’ is a compact set, it follows that is a compact set and therefore the continuous
function f would reach a global maximum a# in a pointz’ € A. We havef(z) < f(z*) <
f(@') Ve & B)and f(y) < f(a') Yy € A = Bn C. This impliesz’ is a global maximum

of the constrained optimization problem. Therefefenust be the partial solution of the system
given by either theorer2.1.1 or theorem2.1.2 From the first sufficiency condition it follows
that f(2’) = f(z*) and consequently;* is a global maximum for the constrained optimization
problem. O

We have seen that the optimum of a constrained optimization problem is characterized by a sys-
tem which has the same number of equations and variables. For arbitrary constraints and objective
function, such a system might be difficult to solve in closed form. Fortunately, several numeric
techniques are available. Next we are going to present one of them, namely the Newton-Raphson
method:
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Algorithm 2.1.1. (Newton-Raphson)Consider the following system afequations withn vari-
ables:

f1($1,...,$n) =0

falz1,...xn) =0

If 20 = (1:50), e z%o))T is an initial guess, the Newton-Raphson algorithm looks for a root of the
above system using the following recurrence until convergence is reached:

24 = ) = J@) T (@), S0 )T

In this method,J(z) denotes the Jacobian of the system of equations evaluated at the point

T = (33'1,...,:1,’”):
%($17-~7$n> ng;(:cl,...,xn)
J(l‘la"' 71'71) =
Ofn 9fn
Bjxvl(xla-“al‘n) Bi‘cn(xl""axn)

For the interested reader, we recommeBNOO0Z BV04] and [PTV9J to learn more details
about the Newton-Raphson method as well as alternative optimization methods. As the authors point
out in [PTV9Y, all these methods have limitations in the case when the constraints are arbitrary,
non-linear functions.

This concludes our quick review of the optimization methods that we are going to employ in
this thesis. In the next section we will see some of these methods at work on the task of developing
parameter estimators for standard Bayesian Networks.

2.2 Parameter Estimation in Bayesian Networks

2.2.1 Bayesian Networks - The Basics

Bayesian Networks were introduced [lPda8Bas a means of representing probability distributions
over a set of random variables in a compact fashion. A Bayesian Network consists of a structure,
which is a Direct Acyclic Graph, and a set of parameters. The parameters are stGautitional
Probability Tables (CPTs)one for each variable. These tables describe how a variable in the net-
work depends probabilistically on its parents (one can think of these parents as direct causes). In
other words, for each possible value that the par@a$X) of a variableX can take, the table will
contain aConditional Probability Distribution (CPDpver the values ok .

In a Bayes Net, random variables will be denoted by capital letters while small letters will be
used for the values that these variables can takeXlket. . , X, be the variables in the network and
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let PA; be the set of parents of;. Note that specifying the sef3A; is equivalent to specifying
the structure of the Bayes Net. Given this notation, the structure of a Bayesian Network encodes the
following conditional independence assumption:

Property 2.2.1. Local Markov Assumption: A variabl&; is conditionally independent of its non-
descendants given its parem®s;.

Taking advantage of this property, one can derive all conditional independencies between groups
of variables in the Bayesian Network by using a criterion catleskparatiorfPea83 or its equiv-
alent variant, théBayes Ballalgorithm [Sha98. If we think of the example we described in the
Introduction, the Bayes Net in figufel encodes the assumption that the symptoms are condition-
ally independent of risk factors given the disease of the patient.

Property2.2.1also allows us to obtain a factor representation of the joint probability distribution
overXy,..., Xu:

P(X1,...,Xn) = [ [ P(X:|PA)

The problems of interest concerning Bayesian Networks 8taicture LearningParameter
Learning InferenceandFinding Hidden VariablesStructure Learnings the task of automatically
learning the structure of a Bayesian Network given a dataset of observed cases. This is a NP-
Hard problem/CGH94. Common approaches to perform Structure Learning make use of certain
heuristics. ThdC Algorithm [Pea00PV9]] and thePC Algorithm[SGSO0() are both looking for
conditional independencies in the observed data, then build a network structure consistent with these
independencies. Other methods perform hill climbing on the structure space by using measures like
the Bayesian Dirichet(BD) ScorfCH9Z] or the Bayesian Dirichlet Likelihood-Equivalent (BDE)
Score[HGC9Y. The Structural EM Algorithm[Fri98] allows structure learning in the case of
missing data.

Inferencein Bayesian Networks is the task of estimating the posterior probability of a set of
guery variables in the network given the value of a vector of evidence variables. It can be shown
[Co087] that Inference is a NP-Hard problem. Methods to carry out inference inchaleéable
Elimination [Dec9¢, Message Passing on Junction Trdden96 SS9(), Markov Chain Monte
Carlo (MCMC)sampling methods3G84 GRS96 Jor99 Mac98§ Nea93. In [Zha98aZP9f the
authors show methods to exploit conditional independencies in a Bayes Net to perform inference.

Learning Bayesian Networks in the presence of hidden variables was perfornt&®irj yia
an EM style algorithm, very similar to Structural EM.

Parameter Learnings the task of estimating the parameters in the Conditional Probability Ta-
bles of a Bayesian Network giveh = {d;, da, . . .}, a set of potentially partially observed examples
assumed to be drawn independently at random from our Bayesian Network. We denQ(tdé the
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value of the variableX; and byPAl(.d) the value of the parents d&; for exampled € D. Once pa-
rameters are estimated, one can use the Bayesian Network to perform inference on future examples.
In the following subsections we give a brief tutorial on parameter learning in Bayesian Networks,
concentrating on the parts that we extended in this research. In particular, we assume the structure
of the Bayes Net is provided. We focus on parameter learning for models that involve discrete
variables, but we discuss the same task on particular types of models made of Gaussian random
variables. Before we continue, we would like to suggest several additional references on Bayesian
Networks for the interested reade€DL 98, IDHSO0J, Edw0( Hec99Jen96Jen01/Lau96 Mit97,
PeaO)RN9E Whi9(].

2.2.2 Frequentist Approach from Complete Data for Discrete Variables

A frequentist tries to estimate a "best set” of paramefiertn general, this translates into finding

the set of parameters that maximize fata Likelihood L(6) = P(D|#). Equivalently, one

can maximize th®ata Log-Likelihood [(§) = log P(D|#). This measure has the following nice
property:

Property 2.2.2. Decomposability of Log-Likelihood. The Log-likelihood function can be writ-

ten as the sum ai components, one for each variable in the Bayesian Network. The component
corresponding to variableX can be decomposed further into a sum of subcomponents, one for
each instantiation of the parents &f. If there are no constraints between parameters describing
different subcomponents, then this decomposability will allow us to efficiently perform parameter
estimation in Bayesian Networks by solving a collection or smaller optimization problems, one for
each subcomponent.

Below we show how to derive the Maximum Likelihood Estimators for the parameters in a
Bayes Net since we are going to extend this framework in the subsequent chapters of this thesis.
Before getting to the main result, we need to introduce additional notations that will be used subse-
quently.

For a discrete variabl¥, let{z1, 29, .. .} be its values. If the variable is indexed, then the index
will be also kept. For example, the variablg will have values{z;, x;2,...}. To represent the
parameters in the network we follow the notationliifo7]. Let %k = P(X; = z4j|PA; = pay,).

Denote byd,,, the set of parameters that appear in the Conditional Probability Fapig| P A;).
In this table, rows are associated with values{@fnd columns with values a?A;. Let6,,, be the
set of parameters in columin(P A; = pa;;) in this table.

Let us define the following indicator function over the training datdset

5. (d) . 1 ifX,;,= Tij andPA; = pa;
LA ) otherwise
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In our training set, letV;;;, = >, d;;x(l) be the number of examples which hayg =
z;; and PA; = pa;,. Further, letN;, = Zj N;ji. be the number of cases in the training set
which haveP A; = pa;;,. One can think ofV;;;, as the observed count correspondin@iy,g and of
N as the cumulative observed count associated with the parameters in dohfrire Conditional
Probability Table forX;.

With these notations, the data likelihood can be writtenf26D|0) = []; ; Hfjkjk It is easy
to see that, at the poiftthat maximizes(D|#) we can not havé, ;, = 0 unlessN;;;, = 0. If all
the observed counts are positive, the maximum likelihood estimators are strictly positive and can be

found by maximizing log P(D|0) = >, ; . Nijk - log 0, ;.. We have the following theorem:

Theorem 2.2.1.1f all N;;;, are strictly positive, the Maximum Likelihood Estimators of the param-
eters in a Bayesian Network are given by:

. Ny
Oije = 3.
(A

Proof. Because of properi®.2.2, the problem of maximizing the data log-likelihood can be broken
down into a set of independent optimization subproblems:

P o argmaz hiy(0,,) = Z Nijk. - log 0,5,
J

{ gik(gi*k) = (E] Hijk) -1=0

The domain of the functiona;;, and g;;; is given byd, , € [[;(0,1), which is a topologi-
cally open set. Therefore, if a maximum exists, it must lie inside the region determined by the
domains ofh;; and g;. and thus we try to find the solution d?; using Lagrange Multipliers
theorem. Introduce Lagrange Multipligg;, for the above constraint ift;,. Let LM (6,,,, \ir) =
hir(0,.1.) — Nik- 9:k(0,,,. ). Then the point which maximizes,, is among the solutions of the system

VLM (0,,.., \ik) = 0. Let(0,,,., \ix) be a solution of this system. We hawe:= ggi‘i - g:: — ik

for all j. Therefore:éijk = ]\;” Summing up for all values of, we obtain:
ik

OLM A Nijk Ny,
0= —— — h..)—1= WEy 1= _1

Nijk
N, - Because

From the last equation we compute the valudgf= Ny;. This gives us,;,, =
all the counts are positive, the pothts well defined.
Until now we only showed that, if a maximum point exists, it must beftheund above. Using

the sufficiency criterioi2.1.], it follows thatd must be a global maximum. O

15



In the case when some, but not all, of the observed counts in subprétleare zero, the corre-
sponding parameters don’t even appear in the likelihood function. TherBfpleas an inequality
constraint but eventually the Maximum Likelihood Estimators are given by the same formulas. If
all of the observed counts in subprobldfy. are zero, any probability distribution over the values
of X; will be a solution forPy,.

2.2.3 Frequentist Approach from Incomplete Data for Discrete Variables

When training data is not fully observable, one can still perform approximate maximum likelihood
estimation via théexpectation Maximization (EMglgorithm [DLR77, MK96]. Assume we have
some incomplete datX” which is described by a set of parametérsThe EM algorithm is an
iterative procedure that improves the data log-likelihbgg P(X|0) at each step. I¥ is the set of
missing data, the parametéts , (at iterationt + 1) are estimated from parametéxs(at iteration

t) using the following formula:

0141 = argmay Ep(z|x,) [log P(X, Z|0)] (2.1)

This algorithm works in two steps. In tHe-Stepit computesP(Z| X, 6,), the posterior prob-
ability of missing data given observed data and current parameter estimates. MAStepit re-
estimates the parameters by maximizing P(X, Z|0), the expected log-likelihood of complete
data, assuming the missing data comes from the distribution computed E:Skep The EM is
guaranteed to converge to a zero of the log-likelihood function’s gradien®NH®8§] the authors
present an alternative formulation of the EM algorithm where each step is maximizing over a subset
of variables of a certain energy function. Based on that formulation, they derive a modified version
of the EM algorithm which allows for partial E-Steps.

In the case of Bayesian Networks, when the data is incomplete, we cannot compute the counts
N andN;,. However, they can be treated as random variables. The eqizatibecomes:

0,1 = argmay > Ey, [Niji] - log0,, (2.2)
ik

The above equation yields the following iterative EM algorithm for computing the Maximum
Likelihood Estimators for the parameters in a Bayes Net in the case when data is incomplete:

The EM Algorithm. Repeat the following two steps until convergence:

E-Step Use any sound inference algorithm to compute the expected caiiitg,] and E[V;;]
under the current parameter estimatés|f just starting, assignﬁ randomly or according to some
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domain knowledge.

M-Step: Re-estimate the parameters by maximizing the data likelihood using Th2o2elnas-
suming that the observed counts are equal to the expected counts given by the E-Step:
s E[Nij
eijk =
E[N]

2.2.4 Bayesian Approach from Complete Data for Discrete Variables

From a Bayesian point of view, each choice of parameters is possible, but some choices have higher
prior probability of occurring. Therefore, to do model averaging, we need to specify priors over
the space of parameters. It can be prov@t97], that under certain conditions, choosing Dirichlet
Priors over the parameters of a Bayesian Network is inevitable. Below we define Dirichlet Priors
and show how to perform Maximum Aposteriori and Bayesian estimation.

2.2.4.1 Dirichlet Distribution

Assume we have a distributid?(X') over the finite set of valuese;, 2o, . .., 2, }. Letd, = P(X =
x;) be the parameters of this discrete distribution. Before seeing any data from this distribution we
may or may not know what the parameters are. In the case when we do not know them, for all
purposes, the parameters of distributiBrran be seen as a random vedtos (6,,6,,...,6,). A

Dirichlet Distribution is a way of representing the uncertainty one has abbefore seeing any
data sampled fron®. It has the following formula:

P(f) = % 1T G?i_l if >,0,=1and6, >0Vi
B 0 otherwise

Here are some properties of the Dirichlet Distribution:

e The normalization constatt can be computed by enforcing the fact that this is a valid prob-
ability distribution. In other words, we must ha}féooo P df = 1. This yields:

[T I'(e) -
Z === wherea = » «;
I(a) E

HerelI'(-) represents th&amma Functionalso known as thExtended Factorial

E[0;] - (1 — E[6,])
a+1

El9] = and Varlg,] =
(6%
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Intuitively one can think of a Dirichlet Distribution as an expert's guess of the paranteters
Basically, the expert is telling us that he/she beliefles= %, but is not completely sure,
therefore allows these parameters to vary around the guess with the variance given above.
Parameters; can be thought of as how many times the expert believes he/she will observe
X = x; in a sample otx examples drawn independently at random from distributfori he
biggera is, the lower the variance in each parameter and consequently, the larger the number
of observed cases needed to overturn expert’s belief.

e AssumeP(6) is a Dirichlet Distribution. GivenD, a dataset of samples that are drawn in-
dependently at random frofi(X ), it is easy to see thd® (0| D) « P(D|f) - P(0) is also a
Dirichlet Distribution. Because of this fact and becauyé|0) is a Multinomial Distribu-
tion, Dirichlet Distribution is also referred to #%e conjugatef Multinomial Distribution.

2.2.4.2 Dirichlet Priors in Bayesian Networks

We saw above how one can define a prior over the parameters of a discrete probability distribution.
One can think of the parameters of a Bayesian Network as a set of conditional probability distri-
butions. Each table contains a subset of conditional probability distributions, one for each column
0,..- One can specify a probability distribution over the space of parameters in a Bayesian Net-
work by first specifying a Dirichlet Distribution for each conditional probability distribution in the
Graphical Model, then describe the way these Dirichlet Distributions are dependent on each other.
For the first part, let the Dirichlet Distribution associated to paramétgrde:

S
Z*k Z ik ’L]k}

To relate these Dirichlet Distributions to each other,$.9( the following assumptions are
made:

e Global Independencassumption: parameters corresponding to different variables in the
Graphical Model are independent of each other. In other wéds,L 6., for all i # j.

_]**

¢ Local Independencassumption: parameters associated with different configurations of the
parents of the same random variable are independent of each other. This is equivalent to
0, L0, forallk#1.

ixl

Based on the considerations above, we can define a Dirichlet Prior over the space of parameters

HP ixk) ZHQZ%IC '

i,5,k

in the Bayes Net:

where the normalization constant is given &= [, ;. Zi.
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Property 2.2.3. AssumeP(6) is a Dirichlet Prior. GivenD a dataset of fully observable cases
drawn independently at random from the probability distribution represented by a Bayes Net, one
can easily see tha®(0|D) o< P(D|0) - P(0) is also a Dirichlet Prior.

2.2.4.3 Maximum Aposteriori Estimators

In Maximum Aposteriori estimation we are looking for the parameters with the maximum posterior
probability given a dataset of observed cases:

P(0|D) o P(D|9) - P(60) o ] 070

(N

Note that, for the purpose of computing the maximum a posteriori estimates for parameters in
our Bayes NetworkP (D) and the normalization constagtdo not matter. A theorem similar to
the one describing Maximum Likelihood Estimators can be derived in this case:

Theorem 2.2.2. The Maximum Aposteriori Estimators in a standard Bayes Net are given by:

é” Nz]k+az]k_1
igk — 1l~c + Z (az]’k )

Proof. Given the formula for? (6| D) above, one can see that the Maximum Aposteriori Estimators
are equal to the Maximum Likelihood Estimators of the same Bayes Net structure where the ob-
served countsV;;;, are incremented with;;;, — 1. The result now follows from theoreh2.1. [

2.2.4.4 Bayesian Averaging

From a Bayesian point of view, we are interested in predicting the next data point given a set of
previously observed data points= {D, ..., D,}. This can be written as follows:

PldralD) = [ P(dal0) - PlOID) do

1, dn
_ /Hewgf( +). P(8|D) db
(N

= 1(Er@ip 05D+ o
,7,k

One can easily see that the above prediction formula using Bayesian averaging will yield the
same results as predicting the next example using the Bayes Net model with para’mgtefs
Ep9|p)[0;;,]- We have the following theorem:
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Theorem 2.2.3.The Bayesian Averaging Estimators in a standard Bayes Net are given by:

Nijk + aiji

O:jx = Epo|D) [%‘k] - Nip + ir

where «;;, = Z Qi
j/

Proof. As stated in propert2.2.3 P(6|D) « P(D|0) - P(0) is also a Dirichlet Prior. Our result
now follows from the basic properties stated above for Dirichlet Distributions. O

2.2.5 Bayesian Approach from Incomplete Data for Discrete Variables

When data is incomplete, the MAP Estimators can be computed by slightly modifying the EM
Algorithm for computing the Maximum Likelihood Estimators. In order to do Bayesian Averaging
we write:

[ P(duti, .. da]0) - P(0)d0
= [ P(dn,...,d1|0) - P(6)d6

P(dpy1ldy, ..., dy) (2.3)

Let us take a look at the denominator. Denote bthe set of missing values such thHatu U
is a complete dataset. Thefi,P(D|6) - P(8)d0 = >, [ P(D,U|f) - P(8)dh. It is easy to see
that [ P(D,U|9)- P(6)dd is the normalization constant for a Dirichlet Prior. Therefore, in the case
of incomplete data/ P(D|¢) - P(6)d6 is a sum of normalization constants for certain Dirichlet
Priors (one for each completion @#). Since we know how to compute normalization constants
for Dirichlet Priors, we therefore know how to compute the denominator of the the eq2agion
In a similar way we can compute the nominator and thus we just showed how to perform Bayesian
Averaging in the case when we are dealing with incomplete data.

The above procedure for performing Bayesian Estimation is computationally expensive because
the number of terms in the summation grows extremely quickly. If only one binary value is missing
in each of then training examples, there will B terms in the summation. Instead, techniques that
approximateP(D|6) with a Dirichlet Prior ICDS96 TI76] are used when data is incomplete.

2.2.6 Learning with Continuous Variables

If a variable X; is continuous, it can take any value in an open set of the canonical topological
space defined over the real numbers. In this case we have to specify several parameters describing
the continuous conditional probability distribution &f given each instantiation of the parents. A
continuous random variabl¥; is characterized by several parameters that describe the conditional
probability distribution for each instantiation of the parents. Learning procedures differ depending
on the type of continuous random variable. Because of this fact, here we are only going to present
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learning in the setting when the conditional probability distributions correspondiig soe Gaus-
sians whose means are linear combinations of the values of the parents. In other words, we have
X;|PA; ~ N(PA;-6;,0?) whered, is a column vector of parameters of length equal to the number
of parents of variable;.
Let us denote byX! the value ofX; and byP A! the value ofP A; in training example/;. Define
A; to be theParents Matrixandb; to be theVariable Vectoifor variableX; such that each has a row

corresponding to each example in the training set:

PA!} be
PA? X?
A = ! and b; = i
PA™ xm

With these notations, we have the following theorem:

Theorem 2.2.4.1f AT - A; is non-singular, the Maximum Likelihood Estimators of the parameters
for gaussian variableX; are given by:

0; = (AT - A1 AT -,
52 = 140~ bil?
m
Proof. We remind the reader that, because of prop2r&z, the problem of maximizing the data
log-likelihood can be broken down into a set of independent optimization problems, one for each
conditional probability distribution. The component of the log-likelihood corresponding to variable

X; can be written as:

! 2'Z(X5—PA§'92‘)2

1
= 5 -log(2m) —m-log(07) = 5 - [|4i - 6; — b’
o

1;(0;,0:) = —% -log(2m) —m - log(o;) — 5

2

1

It is easy to see that the value &fthat maximizeg; for a giveno; is the same for all values
of ;. Therefore we can first maximize with respect tad,, then maximize with respect te;.
Maximizing with respect td, is equivalent to solving for the least squares solution of the system
A; - x = b;. The solution to this problem is given i7" - A4;)~1 - AT . b,. Therefore we have:

6, = argmay || A; - 6, — i[> = (AT - A1 AT -y,

Now that we computed the Maximum Likelihood estimatorégmwe can maximize with respect

' . Y, Ay SN . . c oo ||A0,—bi])? o
to o; by simply solving (6;,6;) = 0. The solution of this equation & = ——i——anditis

easy to see that this is a maximum. O
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If AiT - A; is singular,f, can still be estimated by minimizing4,; - = — b;||* using an SVD
approach. Oncéi is computed, the estimatof can be found using the same formula as in the
above theorem.

A Bayesian Network where all variables in the network are gaussian is caledissian Net-
work. In this case, the joint probability distribution is also a Gaussian. Learning in Gaussian Net-
works was studied inGH94]. A different approach to deal with continuous variables is presented
in [FG96a FGL9¢ where the authors show how discretization of continuous random variables can
help on classification tasks.

In order to perform Maximum Aposteriori estimation and Bayesian Averaging in a Gaussian
Network, one has to define priors on the paramefgendo;. Common choices ar@RD Priors
[LCTO2] and Normal-Wishart Priors]Min00b]. When data is incomplete, parameter estimation
becomes very difficult. IfGH94] it is suggested that missing values can be filled with their expec-
tation under the current parameter estimates, an approach very similar to the EM algorithm. We are
not going to provide more details here because we did not extend the results in these papers to take
advantage of parameter related domain knowledge.

2.2.7 Estimating Performance in a Bayesian Network

In the previous subsections we showed how to perform parameter estimation in Bayesian Networks.
However, we provided no way of assessing the quality of the learnt parameters. The purpose of this
subsection is to describe ways to estimate the performance of a Bayesian Network.

A Bayesian Network is a compact way to represent a joint probability distribd@iaver a
set of random variables. This distribution may or may not reflect accurately the true probability
distribution P that we are trying to estimate. A standard way to measure the distance between two
distributions over the same values is to compute tKeiDivergence

P(z)
Q(x)

KL(P,Q) = P(x) log ~ = H(P,Q) — H(P)
P

Here H (P) stands for thé&Entropy of a probability distribution” and H (P, Q) stands for the
Cross-Entropybetween two probability distribution® and Q over the same values. We sug-
gest ICT9]] for a comprehensive review of Information Theory concepts. It is easy to see that
KL(P,P) = 0 and that this measure is not symmetric. Using KL divergence to compute the per-
formance of our learnt distribution assumes we have access to the true distribution of the data. This
is possible only in a controlled environment. In the real world however, we rarely have access to the
underlying distribution of the data. In this case it is common to usé\tlezage Log-Score (ALS)
on atest seD:
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ie1 log (P1(d;))
m

As a consequence of the Law of Large Numbers, it is easy to see that the Average Log-Score
is a measure that approximates the negative of cross-entrafgy ¢, (0)) when the number of test
examples goes towards infinity. This score is negative and, the better the model, the higher the
score is. If the model is perfect, then the ALS score will be close ) P) given enough testing
examples.

Now let us see how the improvement in the Average Log-Score translates in terms of improve-
ment in data likelihood. Assume we have two probabilistic models, one describiéddmd one by
P,. Also, assumé = {dy,...,d,,} is a test set withn examples drawn independently at random
from the true distribution we are trying to estimate. The differenteALS can be written as:

ALS:Z

5= iz 108 (Pi(di)) 3%, log (Po(dy)) _ 2.i=1108 7a
m m m

This can be rephrased equivalently as: on the avetag% is equal tod. This means on the
average% is equal tae?. To summarize, on the average (over the test &thutperformsP, by
a factor ofe® in terms of data likelihood.

This concludes our mini-tutorial on learning parameters in Bayesian Networks. We remind
the reader that we focused only on the parts that we are going to extend in this research. A more
comprehensive tutorial on learning Graphical Models can be fouridumd2].

2.3 Parameter Related Domain Knowledge: Previous Research

The standard way of representing Parameter Domain Knowledge in Bayesian Models is by using
Dirichlet Priors, which were presented in the previous sectionGid7], it is shown that Dirichlet

Priors are the only possible priors provided certain assumptions hold. As mentioned before, one
can think of a Dirichlet Prior as an expert’s guess for the parameters in a Bayes Net, allowing room
for some variance around the guess. For example, when we want to create a language model for a
specific topic, we can take a global language model and "guess” that the word probabilities in the
topic specific model are the same are as the ones in the global model before seeing any documents
on that specific topic. The total size of the documents in the global model will determine how
confident we are in this guess.

A Dirichlet Prior assumes a guess on all parameters in the model. However, in many real world
problems, a domain expert might not be able to specify a useful guess for all the parameters in the
model. In this case, one common use of Dirichlet Priors is to make sure all the counts corresponding
to parameters in the model become positive to overcome problems that may appear in Maximum
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Likelihood estimation with zero observed counts. Moreover, for the task of structure learning,
assigning Dirichlet Priors for all possible structures can be prohibitive. Uninformative Dirichlet
Priors are used inQH9Z] in order to derive theK2 score, a version of th& D score used in
learning Bayes Net structures. An alternative is providedi@ C95 where the authors show that,

if several conditions are satisfied, one can build informative Dirichlet Priors starting from a prior
Bayes Net. The problem of estimating the parameters of a Dirichlet Prior from a set of observed
probabilities coming from that prior is also difficult: there is no known closed form solution for
the maximum likelihood estimators, biMIin00g] presents an iterative method to estimate these
parameters.

Even though an expert can provide very useful information, this information might not be rep-
resentable as a Dirichlet Prior. Because a Dirichlet Prior consists of a collection of independent
Dirichlet Distributions, one for each column in each Conditional Probability Table, it can repre-
sent neither constraints among parameters in different columns of a table nor constraints among
parameters in different tables. Moreover, Dirichlet Priors can not even represent simple equality
constraints between two parameters in the same conditional distribution. They can represent equal-
ity constraints liked,;; = 6,5, = 0.1, but not the less restrictive,;; = 6,5,. In order to help
enforce such constraints, one can place priors on the parameters of the Dirichlet Prior. To illustrate,
we can consider that11; = aj121 = p wherep ~ U(0,1). The problem with this approach is
that the marginal likelihood can not be computed in closed form anymore, even though approximate
sampling and iterative methods can be conceived, depending on the type of constraints one wants to
represent.

Dirichlet Tree Priors[Den9], Min99] are extensions of standard Dirichlet Priors. These pri-
ors work on a different parametrization of the Bayesian Network. Each parameter in a conditional
probability distribution in a standard Bayes Net is seen as a leaf of a tree and its value is equal to the
product of the probabilities assigned to the edges on the path from the root to the corresponding leaf.
For each node in the tree, the Dirichlet Tree Prior basically assigns a Dirichlet Prior on the proba-
bilities corresponding to edges coming out of that node. Even though Dirichlet Tree Priors allow a
little more correlation (between the parameters within one conditional probability distribution) than
standard Dirichlet Priors, they inherit the same problems with representing parameter constraints.
In addition, a Dirichlet Tree Prior may require up to twice as many parameters to represent.

Dirichlet Priors can be considered to be part of a broader category of methods that employ
parameter domain knowledge, called smoothing methods. A comparison of the common smoothing
methods for language models can be foundZhdi]. In all the methods presented there, the
word probability model for each document is a combination of the document specific Maximum
Likelihood estimators with a global word model.

In subsectior®.2.4we introduced_ocal IndependencandGlobal Independencassumptions
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that allowed us to define Dirichlet Priors on the parameter space of a Bayes Net. However, these
are very restrictive assumptions which often do not hold in the real world. An approach to relax the
local independence assumption for binary variables is investigat®@NtCR9, but the reported
results seem minimal on relatively simple network3ependent Dirichlet PriordHoo04 are a
generalization of Dirichlet Priors that allow for certain dependencies among different conditional
probability distributions in the same conditional probability table for a given variable the
network. These priors can be written as functions of independentma random variables. The
dependence among conditional probability distributions is due to the fact that, for each valye of
there are three types of su€tumma distributions: one corresponding to the specific instantiation

of the parents ofX, one corresponding to the specific value of each parent and one corresponding
to the variable itself. It can be shown tBependent Dirichlet Priorswhen restricted to a specific
instantiation of the parents of, are standard Dirichlet distributions. Thd3ependent Dirichlet

Priors can cover the case when all the conditional probability distribution¥ @fre independent

and also the case when all are equal. In this case, Bayesian estimators cannot be computed in closed
form, but in Hoo04, the author presents a method to compute approximate estimators, which are
linear rational fractions of the observed counts and Dirichlet parameters, by minimizing a certain
mean square error measure.

Context Specific Independence (OBIFG9€ states conditional independencies that hold only
in certain contexts i.e. of the forR[X|Y, Z,C = ¢| = P[X|Z,C = c| and therefore can specify
that some conditional probability distributions (the ones with= ¢ whereC' C PA(X)) in the
conditional probability table for a variabl€ are the same (they share all parameters in those distri-
butions). Context Specific Independence can be exploited to efficiently encode and learn conditional
probability tables using decision trees and decision graphs as descrilf&dMol/, FG96l]. The
role of Context Specific Independence for the task of probabilistic inference in Bayes Nets is dis-
cussed inZha98h ZP99.

The Dependent Dirichlet Priors defined iHdo04 can represent a very restrictive set of Con-
text Specific Independence assumptions: for each context given by a suliseP A;, X; and
PA;\ C are independent in the context= c for all values ofc. In other words,X; is indepen-
dent of PA; \ C givenC. Other models that use Context Specific Independence assumptions are:
Bayesian Multinets, Bayesian Recursive Multinets and Similarity NetwoBes/esian Multinets
[GH9€] describe probability distributions as mixture distributions, where each mixture component
is represented using a Bayes Net. Each mixture determines a subpopulation. More precisely, a
Bayesian Multinet consists of an subpopulation indicator varidtded a collection of Bayes Nets,
one for each value of. Using the indicator variabl® as the class variable, Bayesian Multinets
have been applied ildG01, FGG97 \GH9€] for classification purposes. The conditional indepen-
dence relations among variables may differ from one subpopulation to another i.e. they hold within
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the context given by the value ¢f. Dynamic Bayes Multinets temporal extension of Bayesian
Multinets, have been presentedBiIDO]. Similarity NetworkgHec9(} were the basis for develop-

ing Bayes Multinets. They also encode different independence assumptions for different values/set
of values of the distinguished (class) variabRacursive Bayesian MultingiBLL0O2] are an exten-

sion of Bayes Multinets where the contexts are represented using a decision tree’s edges and each
leaf represents a Bayesian network over the variables not involved in the context.

A widely used form of parameter domain knowledge employed by Graphical Modedsas-
eter Sharing Context Specific Independence (explained above) is used to represent assumptions
that certain conditional probability distributions which are part of the same conditional probability
table share all their parameters. Dynamical Models Higden Markov Models (HMMgRab89,
Input-Output HMMgBF9€], Factorial HMMs[GJ97 andCoupled Hidden Markov ModelBra9¢
are all part oDynamic Bayes Ne{®1ur02], a broader category of models that make the parameter
sharing assumption that the conditional probability tables corresponding to a given variable are the
same at each point in tim&alman Filters[Kal60, May79 WB95], a particular subclass tfinear
Gaussian ModelfRG9Y, express the current state of the system as a linear function of the previ-
ous state with zero mean gaussian noise while the current measurement/observation is modelled as
a linear function of the current state with zero mean gaussian noise. The assumption behind Kalman
Filters is these state-to-state and state-to-observation matrices are shared across all time instances.

Object Oriented Bayes Ne[&P97] make the assumption that objects belonging to a certain
type class can be modelled using a single fragment Bayes Net. Each object can be influenced
from the outside via its input variables and can influence other objects via its output variables.
However, internal variables of an object are not accessible outside that object. A bigger Bayes
Net may involve multiple instances of the same type class, and therefore their inner conditional
probability tables can be learned jointly. The task of learning Object Oriented Bayes Nets was
addressed inBLNOZ1, LB0O1]. Similar models are presented iBAVOC, LM97] and an extension
to Dynamic Object Oriented Bayes Nétsdescribed inFKP9§. Probabilistic Relational Models
[FGK9¢ [Pfe0(] are a more general class of models, where objects of a certain type class also share
the way they depend on related objects of other type classes. The assumption of independence of
examples given the model does not hold anymore for Probabilistic Relational Models: all objects
coexist and can influence each other. Learning a Probabilistic Relational Model is performed by
first unfolding the model as a Bayes Net and then by estimating the parameters from a single "huge”
training example which contains all objects. This turns out to be a feasible approach because of the
parameter sharing assumption stated above.

Module Network§SPRO3'SSR03, can be used in domains where many variables exhibit sim-
ilar behavior. A Module Network is a Bayes Net where the variables have been partitioned in
modules. The variables in a module all share the same set of parents, same set of values and they

26



depend probabilistically on their parents in the same way. This fact allows their corresponding
conditional probability tables to be learned together.

A different type of parameter sharing is foundBilinear Models[TFO(. Here, each instance
of the observed data vectdt of dimensionn is assumed to have a "style” and a "content”. An
observed examplE,. in styles and content: can be written a¥s. ~ N (A; - b., o2 - I,,) where all
A, arenXk matrices, alb, arek dimensional vectors ansf is the variance (in the error) which
does not depend anandc. As one can easily notice, all observations in a certain stgleare the
matrix A while all the observations with contemnthare the vectdr,.. In addition, all observations
share the variance in the error.

Another type of parameter related domain knowledge comes in the foRrobabilistic Rules
Using this kind of domain knowledge in the medical field was address&®R03 RSNO2 RSNOJ.
There, the authors present an approach for modelling disease state using probabilistic rules to spec-
ify the posterior probabilities of certain disease related outcomes given some phrases that appear
in doctors’ dictations. Each such rule generates a probabilistic observation about a certain variable
in a Bayes Net. The observations corresponding to a variable are then combined in a Naive Bayes
fashion to allow to estimate the most likely disease state for a specific patient. Probabilistic rules
can be used to assign values to certain parameters, but we are not aware of them being used beyond
that purpose for estimating the parameters of a Bayesian Network.

To summarize, the main methods to represent parameter related domain knowledge fall into
two categories: Dirichlet Priors and their variants (including smoothing techniques) and Parameter
Sharing of several kinds. One of the main problems with Dirichlet Priors and related models is
that it is impossible to represent even simple equality constraints between parameters without using
priors on the parameters of the Dirichelet Prior, in which case the marginal likelihood can not
be computed in closed form anymore and expensive approximate methods are required to perform
parameter estimation. A second problem is that it is often beyond the expert’s ability to specify a full
Dirichlet Prior on the parameters of a Bayes Net. Parameter Sharing methods can only represent
equalities among parameters, but no other, more complicated, constraints. Current models use
parameter sharing at either the level of conditional probability table (Module Networks, HMMs) or
at the level of conditional probability distribution (Context Specific Independence) within the same
table. No such model allows sharing at parameter level of granularity.

The main contribution of this thesis is an unified framework that allows us to incorporate any
kind of domain knowledge constraints (that obey certain differentiability assumptions) in parameter
learning procedures for Bayesian Networks. We present closed form solutions for several types of
Parameter Domain Knowledge which the methods described in this chapter can not represent. We
show how widely used models including Hidden Markov Models, Dynamic Bayesian Networks,
Module Networks and Context Specific Independence are just particular cases of one of our Pa-
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rameter Domain Knowledge types, namely the General Parameter Sharing Framework described in
sectiord.7. This framework is able to represent parameter sharing assumptions at parameter level of
granularity, which previous models were not able to do. While the domain knowledge presented in
this chapter can only accommodate simple equality constraints between parameters, we also derived
closed form solutions for Parameter Domain Knowledge types that involve relationships between
groups of parameters (sum sharing, ratio sharing). Moreover, we show how to compute closed form
Maximum Likelihood estimators when the domain knowledge comes in the form of several types of
inequality constraints. Along with our estimators come a series of formal guarantees that show the
benefits of taking advantage of the available domain knowledge and also study the performance in
the case when the domain knowledge might not be entirely accurate. Finally, we developed meth-
ods to automatically learn the domain knowledge, which we illustrate in Ch8ptera task of
modelling the fMRI signal during a cognitive task.
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Chapter 3

Approach

In this chapter we present a unified framework that allows us to take advantage of Parameter Domain
Knowledge constraints in order to perform parameter learning in Bayesian Networks. There are
two approaches to parameter learning. A frequentist tries to estimate one set of parameters that best
explain the data, while a Bayesian assumes that different sets of parameters are possible, but some
of them are more likely to occur. In the sections below we develop sound methods to incorporate
Parameter Domain Knowledge in learning, from both a frequentist and Bayesian point of view, from
both complete and incomplete data. The constraints that we deal with here do not need to have any
specific form, but should satisfy certain differentiability assumptions. In the subsequent chapters
we will develop more efficient methods tuned to specific types of Parameter Domain Knowledge.

3.1 The Problem

In this section we describe the problem and state several assumptions that we are making when de-
riving our estimators. These assumptions will also apply to most of the types of domain knowledge
presented in the following chapter, unless otherwise specified.

The Problem. Our task is to perform parameter estimation in a Bayesian Network where the struc-
ture is known in advance. To accomplish this task, we assume a dataset of examples is available. In
addition, a set of Parameter Domain Knowledge equality and/or inequality constraints is provided
by a domain expert. Lef;(x) = 0 for 1 < i < m be the equality constraints and lef(x) < 0 for

1 < j < k be the inequality constraints, wheteepresents the set of parameters of the Bayesian
Network.

In our parameter estimation methods we assume the domain knowledge provided by the expert
is correct (in chapter, we investigate what happens if this knowledge is not entirely accurate).
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Therefore, the space of feasible parameters is given by:

PDK = {0 | gi(6)=0Viec{l,...,m}, hj(0) <0 Vje{l,... k}}

Next we will enumerate several assumptions that must be satisfied for our methods to work.
These are similar to common assumptions made when learning parameters in standard Bayesian
Networks. First of all, we consider that the examples in the training dataset are drawn independently
at random from the underlying distribution. In other words, examples are conditionally independent
given the parameters of the Graphical Model. Note that this assumption can be violated in the case
of specific Graphical Models such as Probabilistic Relational Models, where objects are related to
each other and the structure of the model varies depending on how many objects are in the dataset
used for training.

Second, we assume that all the variables in the Bayesian Network can take at least two different
values. This is a safe assumption since there is no uncertainty in a random variable with only one
possible value. If there are such variables in our Bayesian Network, we can safely delete them,
along with all the arcs that go in and out of the nodes corresponding to those variables.

Another important assumption that we will be using when computing parameter estimators in
the discrete case later in this thesis is that all observed counts corresponding to parameters in the
Bayesian Network are strictly positive. It is easy to see why we enforce this condition. Consider the
case when all the observed counts associated to parameters in one conditional probability distribu-
tion are equal to zero. In this case we will havdiade by zeran the derivation of the maximum
likelihood estimators in standard Bayesian Networks. It turns out that in this case any valid dis-
tribution would be a maximum likelihood estimator for the conditional probability distribution to
estimate. This can be easily fixed by imposing the more relaxed constraint that the total observed
count corresponding to that conditional probability distribution is strictly positive. This will ensure
that there is a unique maximum likelihood estimator. However, if some of the observed counts (not
the total observed count) are zero in that distribution, the maximum likelihood estimators will be
zero for some parameters. Assumg;, = 0 for fixed values ofi andj, but for all values oft.

In other words X; = z;; was not observed wheRA(X;) = pa;; for all values ofk. This means

éijk = P(X; = x;;|PA(X;) = paix) = 0 for all £ and consequentliP(X; = z;;) = 0. Therefore
anything that is conditional oX; = z;; is not defined. This impacts inference negatively. Even
though these considerations are about parameter estimation in standard Bayes Nets, we are going
to face the same kind of problems with the domain knowledge enhanced estimators. Therefore
we decided to enforce the condition that all the observed counts are strictly positive when we are
computing estimators in the discrete case. However, in the real world there will be observed counts
which are zero. In this case we must use Dirichlet Priors and compute MAP estimators instead.
Dirichlet Priors have the effect of adding a positive quantity to the observed count and essentially
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create strictly positive new counts.

Finally, in order for the results in this chapter to hold, the functigns. ., g, andhq,..., kg
must be twice differentiable, with continuous second derivatives. This will allow for certain Tay-
lor series expansions that justify the Newton-Raphson method on the gradient of the Lagrangian
function.

3.2 Frequentist Approach from Fully Observable Data

A frequentist tries to learn one single model that "best” fits the data. When the structure of the model
is known in advance, this often translates into findinghMtaximum Likelihood (MLgstimators for

the parameters in the model. Subsequently, we are also going to didexgmum Aposteriori
(MAP) estimators.

In Chapter2 we showed how one can derive Maximum Likelihood parameter estimators in
standard Bayesian Networks by using the Lagrange Multipliers theorem. When training data is
scarce, these estimators may have extremely high variance and therefore may violate the domain
knowledge provided by the domain expert. In this section we will extend the result in Theorem
2.2.1to an iterative procedure that computes Maximum Likelihood estimators that obey the domain
knowledge specified by the expert. Without loss of generality, we will consider that parameter
constraints that do not go into the log-likelihood function represent parameter domain knowledge.
For example, in the case of standard Bayesian Networks, the equality constraints state that the
parameters corresponding to a conditional probability distribution should sum up to one and the
inequality constraints state that all parameters are positive.

Using the notations in the previous section, Maximum Likelihood estimators can be found by
maximizing data log-likelihoodbg P(D|6) whered € PDK. In the case of fully observable data,
this is equivalent to solving the following Maximum Likelihood optimization problem:

6= argmaxi(§) =log P(D|0) = Y > log P(X\”|PAL",6) (3.1)
deD 1
91(0) =0
gm(e) =0
hi(6) <0
hi(60) <0

This maximization problem can be solved using Karush-Kuhn-Tucker theorem that we intro-
duced in Chapte?2. The maximum point (if it exists), can be found by solving a system of equa-
tions. With potentially arbitrary complex parameter domain knowledge constraints, the solution of
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this system might not be computed in closed form. To see that, it is sufficient to note that there is no
general closed form solution for a polynomial equation of degree higher than four. Fortunately, the
Karush-Kuhn-Tucker theorem yields a system of equations with the same number of equations as
variables, to which one can apply the Newton-Raphson iterative method (also described in Chapter
2) to compute its solutions. Putting the pieces together, the algorithm for computing Maximum
Likelihood parameter estimators in the presence of Parameter Domain Knowledge is as follows:

Algorithm 3.2.1. (Maximum Likelihood estimation with Parameter Domain Knowledge)

STEP 1. Build the following system of equations based on Karush-Kuhn-Tucker theorem:

Vol(0) =32, Xi - Vogi(0) — 325 15 - Voh;(6) =0

STEP 2. Compute the solution@, 5\,/1) of the above system using the Newton-Raphson method
(potentially using random restarts to deal with local optima or possible divergence of this method
when the initial guesstimate is far from a solution).

STEP 3. For the solutions withi > 0, check if they are maximizers for the Maximum Likelihood
optimization problem. The sufficiency criteria in propositidh$.1and2.1.2 might prove useful

here. If the domain on which the log-likelihood and the constraints are defined is not a topologically
open set, also check for potential maxima on the boundary. If multiple local maxima are found, keep
the one that achieves the highégt) value.

With a large number of parameters in the Bayesian Network, the procedure described above
can be extremely expensive because it involves potentially multiple runs of the Newton-Raphson
method and each such run involves several expensive matrix inversions. Other methods for finding
the solutions of a system of equations can be employed here, but, as noteBTVE, all these
methods have limitations in the case when the constraints are arbitrary, non-linear functions. The
worst case happens when there exists a constraint that explicitly uses all parameters in the Bayesian
Network. Fortunately, in practice, domain knowledge constraints may often only involve a small
fraction of the total number of parameters. Also, the data log-likelihood can be nicely decomposed
over examples, variables and values of the parents of each variable (in the case of discrete vari-
ables). Therefore, the Maximum Likelihood optimization problem can be split into a set of many
independent, more manageable, optimization subproblems, on which we can apply the algorithm we
just described. For example, in Theor@m2.], each such subproblem was defined over one single
conditional probability distribution. In general, in the discrete case, each optimization subproblem
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will span its own set of conditional probability distributions, as we will see later, in Chdpfene
set of Maximum Likelihood parameters will be the union of the solutions of these subproblems.

3.3 Frequentist Approach from Incomplete Data

When data is only partially observable, we cannot write data log-likelihood as a double sum (equa-

tion3.1) as we did in the previous section. However, one can represent the log-likelihood as the

logarithm of a combination of sums and integrals over the missing values, depending on whether
these values correspond to either discrete or continuous variables. Using this new objective function,
we can still perform Maximum Likelihood estimation as described by Algorighzal.

Because of the increase in complexity of the expression for data log-likelihood, this procedure
can be prohibitively expensive. To see why this happens, let us take a look at the case when all
variables are discrete and there is no additional domain knowledge (except for standard constraints
that parameters in a conditional probability distribution should be positive numbers that sum up to
one). If only one value is missing in every example, the complexity of performing Maximum Likeli-
hood estimation using the above algorithm becomes slower by a factor exponential in the number of
examples in the training dataset because the objective function will contain an exponential number
of summands under the logarithm. Moreover, in this case, the system provided by Alg8r&2dm
doesn’t have a closed form solution anymore, as it did in when the data was fully observable (see
Theoreni2.2.1).

If continuous variables have missing values, additional complexity is incurred when evaluating
the integrals over missing data, in the formula of the log-likelihood function. A common approach
is to use the trapezoid metho@adro€, which approximates the function under the integral with a
piecewise linear function.

An alternative to the approach described in the first paragraph of this section is to move the com-
bination of sums and integrals over missing values outside the logarithm by taking the expectation
of the log-likelihood of completed dataset over the missing values. If we restrict our search space
to parameters that obey the Parameter Domain Knowledge constraints §.€.D K), we obtain
the following Expectation Maximization algorithm:
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Algorithm 3.3.1. (Expectation Maximization with Parameter Domain Knowledge constraints)
Iterate using Algorithn8.2.1until convergence is reached:

f,.,= argmay F log P(D, Z|0)]

(21D, |
91 (9) = 0

gm<6) =

0
hi(0) <0

IN

hk(en).ﬁ 0

This EM algorithm has the advantage that the data log-likelihood of the completed dataset is
cheap to compute. However, we still have a very expensive algorithm because of the expectation
taken over the missing data. To overcome the complexity issue, BIH94], the authors suggest
that missing values in a Gaussian Bayesian Network can be filled with their expectation given their
parents under the current parameter estimates. Adapting this idea for parameter estimation in the
presence of Parameter Domain Knowledge constraints yields the following algorithm that approxi-
mates (but is not guaranteed to find) the Maximum Likelihood estimators:

Algorithm 3.3.2. (Maximum Likelihood estimation by filling missing values) Repeat the follow-
ing two steps until convergence is reached:

STEP 1. Fill in the missing values with their expectations given their parents and current param-
eter estimateét . Start with the variables that do not have any parents and end with the leaves of
the Bayesian Network. By the end of this step, each exainpl® is a completed example.

STEP 2.Use Algorithm3.2.1to re-estimate the Maximum Likelihood solution given the completed
dataset from the previous step:

b= argmay log [] [T P(x\”1PA”, 6)
deD i

91(0) =0
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Unlike the previous two algorithms, in the above procedure each iteration is as complex as the
fully observable case. Unfortunately, this procedure is a greedy approach that is not guaranteed to
converge to a local maximum of the likelihood function because at each iteration the missing data
is instantiated to one value, while all other possible values are ignored. An even cheaper method
would be to directly fill the missing values with their observed unconditional expectations, then
directly resort to the full data case described in previous section. Even though the last approach is
also not guaranteed to find the Maximum Likelihood estimators, it is frequently used in practice not
only in models like Bayesian Networks, but also in Decision Trees and Neural Networks to fill in
missing data.

In the discrete case, the complete data log-likelihood can be writtelttds= >, ; ; Nijk -
ik while in the incomplete data case, the objective function of the EM algorithm can be ex-
pressed asEP(Z‘D,ét) log P(D, Z10)] = Y=, ; x E[Niji|0] - 1og 8, . Itis easy to see that both
complete data log-likelihood and the objective of the EM algorithm have the same structure and
therefore, in the discrete case, each iteration of the EM algorithm will be same as expensive as Al-
gorithm3.2.], provided that the expected counts are known. The EM algorithm in the discrete case
becomes:

log 6.

Algorithm 3.3.3. (Expectation Maximization for discrete Bayesian Networks)Repeat the fol-
lowing two steps until convergence is reached:

E-Step Use any inference algorithm to compute expected coEmjk|ét] and E[N;|6,] under
the current parameter estimatés

M-Step: Re-estimate the paramet@?ts,rl using Algorithm3.2.1, assuming that the observed counts
are equal to the expected counts given by the E-Step.

We have seen that, because of its simplicity, our extended version of the EM algorithm can be
favored in the case of discrete Bayesian Networks. However, for Bayesian Networks that involve
both continuous and discrete variables, one should carefully consider picking one of the four ap-
proaches mentioned in this section based on the complexity versus potential estimation inaccuracy
trade-off.

3.4 Bayesian Approach from Fully Observable Data

To perform parameter learning from a Bayesian point of view, we need to define priors over the
parameters of the Bayesian Network. In Cha@eve mentioned that these priors are Dirichlet
priors in the case of discrete Bayesian Networks and Normal-Wishart priors for Gaussian Bayesian
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Networks. When additional parameter constraints present, the region where parameters can vary is
restricted further and therefore the above standard priors no longer reflect the Domain Knowledge.
In this section we see how one can define parameter priors that are both consistent with the domain
knowledge provided by the expert and allow developing procedures for Bayesian parameter learn-
ing. We will first describe these priors, then we will argue how Maximum Aposteriori estimators
can be computed and finally we show how Bayesian model averaging can be performed for the
purpose of predicting a new data point.

3.4.1 Constrained Parameter Priors

In the previous chapter we have seen that the Dirichlet prior is well suited for performing Maxi-
mum Aposteriori estimation of the parameters in a Bayesian Network because it is the conjugate
of the probability distributionP(D|#). In other words,P(D|6) and P(0|D) « P(DI0) - P(0)

are the same type of functions @for all complete dataset®, but with different hyperparameters.

In the discrete case, faP(D|f), the hyperparameters are the observed counts corresponding to
each parameter while faP(0| D) the hyperparameters are the observed counts incremented with
the Dirichlet exponents. Following the same idea, we deflnastrained Parameter Priorahen
Parameter Domain Knowledge constraints are provided.

Definition 3.4.1. A Constrained Parameter Prior for a Bayesian Network with a set of Parameter
Domain Knowledge constraints is a probability distribution such that:

P(o) :{ 7 f(0) if 0 € PDK

0 otherwise

and f(0) is chosen such tha?(#) is the conjugate of (D|0) for all possible complete datasels
ConsequentlyP(#|D) is also a Constrained Parameter Prior.

In general, choosing the functigf{d) is very intuitive, as he have seen in the previous chapter.
For example, one can defindd) = P(D’|#) whereD' is a fixed complete dataset of examples.
Under the assumption that examples are drawn independently at random from the distribution de-
scribed by the Bayesian Network, we obtdti¢|D) « P(D U D’|#) and therefore”(f) defined
by f above is a validConstrained Parameter Prior

Computing the normalization constatipp i is the most difficult part about dealing with Con-
strained Parameter Priors. We h&epx = feePDK f(0) df. One may be tricked into thinking
that this is a very simple task since there are many methods to either compute or approximate an
integral. There are indeed many ways to accomplish this, but they rely on the fact that the region
to integrate on is explicitly given (for example a one-dimensional interval, a rectangle or a sphere).
In our case, the integration region is the intersection of regions described by potentially arbitrary
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equality and inequality constraints. In the general case it is impossible to parameterize the region
PDK and that makes the task of computing the normalization congtapic very difficult. An-

other difficulty arises because the regiB X may not have the same dimension as the space of
parameters and therefore the integral is a surface integral instead of being a volume integral. In this
case, if we try to use a variant of trapezoid method by splitting the space in hypercubes, we cannot
assume that the surface integral is additive over these hypercubes. The worst case happens when
the surface has a part of positive area included in one of the faces of such a cube.

Here we present a method that will allow us to complite, - under the assumption that all
Parameter Domain Knowlewdge constraints can be extended to well defined constraints over the
whole multidimensional space of real numbers. This assumption allows us to consider, without
loss of generality, that the domain of the Parameter Domain Knowledge constraints is the whole
multidimensional space of real numbers because we can add any relationship that defines the domain
of Parameter Domain Knowledge constraints as a separate constraint. With these considerations,
one can approximate the constaftpx using a sampling approach. The idea is to reduce the
surface integral to a volume integral which can be computed by sampling. To perform this reduction,
the constraints are approximated with linear functions on small hypercubes.

First, let us see how one can express a surfaparameterized by non-strict linear constraints
as a non-zero volume. We will eliminate a variable if it can be expressed as a linear function of the
other variables. After repeating this procedure for as long as possible, we are left with a region in
a lower dimensional space that has positive volume. The dimension of the initial surface is defined
as the dimension of this space. One can transform the surface integral into a volume integral of a
new function by making the corresponding substitutions in the formulg.fGihe procedure looks
is follows:

Algorithm 3.4.1. Computing the dimension of a surfaceS given by a set of linear constraints.

STEP 1. Write each equality constraint as two inequality constraints such that the suffaes
be described by = {0 |al -0 —b; <OV 1<i<m}.

STEP 2.Use the simplex metho®hn64 to solve:

;= minal -0 —b
a{-&—blgo

al -0 —b, <0

STEP 3.If any of the above problems returns no feasible point, then the constraints are contradic-
tory and we STOP. Ify; < 0V 1 < i < m, then STOP and declaw&m(S) = m because there
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exists a point strictly in the interior of the region defined by the remaining constraints. Otherwise,

if there existg such thatn; = 0, this means the constraints tight and we can express one of the
variables as a linear combination of the others. We therefore obtain a system of linear inequalities
with one less variable and one less constraint. Also, it might happen that the coefficients of some of
these new inequalities are all zeros (except for a negative free term), in which case we discard those
constraints as redundant. We adjustb; andm accordingly and then GO TO STEP 2.

Next we will see how one can compute the value of an integral over a bounded surface defined
by non-strict linear constraints. We assume that the bound is given by a hypéfcUite idea is to
reduce the surface integral to a volume integral which can be computed using a sampling technique
based on the Law of Large Numbers. We use the notefiéh to denote the piece of the surface
S that lies inH. In terms of content, this is the same &) H, but should not be confused with
the surface of potentially lower dimensionality that is obtained by the intersection of the constraints
that describes' and H. In other wordsS|H should be seen as a piece of surfacas opposed to a
new surface to integrate on.

Algorithm 3.4.2. Computing feesu{ f(0) df when S is a surface given by a set of linear con-
straints and H is a hypercube.

STEP 1. Use Algorithni3.4.1to computen = dim(S) andm’ = dim(S N H). If m’ < m then
STOP and declar%es‘H f(0) do = 0. This happens because the areaSofy H is zero within
surfaceS. If m’ = m, it means thaSN H is a positive area surface withifi and, using the elimina-
tion method described in Algorithf4.], we can characteriz8 N H as a region of positive volume
in a space described by a subdét,...,0,,} C 6. We now reduced the initial surface integral
faesu{ f(9) db to a volume integraylf(elmam)ev f6,,...,6,,)do, ...ds,, where positive volume

V is described by a series of constraints of the fefm (0,,...,6,,)7 —d < 0. Itis obvious that

rvm

V C Hi.m, the m-dimensional hypercube which is the projectiodfobn dimensiong, ..., m.
The second integral can now be computed using the sampling method described in STEPS 2 and 3.

STEP 2.(Computing V) Draw N uniform samples fronté,,...,6,,) € Hi . Let Ny be the
number of times a sample falls in. Approximatel” = % -V (Hi.m)-

STEP 3.(Computing the integral)lt is easy to see that
_ 1 -
E[f(Um'form(V))]:/ — - f(6,,...,0,,)do,...do,,
0,,..0,)ev V

We can comput&|[f’(Uniform(V'))] using The Law of Large Numbers based on a sufficiently
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large number of samples and let
/ £(0) o = / FO4,-..0. Y d0, ..o, =V - B[f(Uniform(V))
0eS|H (01,-0,)EV

Note that we could not use directly the sampling method on a surface which had volume zero
and therefore we needed to reduce the surface integral to a volume integral defined on a region of
positive volume. Also, the method breaks if the volume is infinite and that is why we required that
the integral be computed within the limits of a hypercube. However, if the surface is unbounded,
we can still use the above algorithm by taking the limit when the size of the bounding hypercube
increases towards infinity. We are now ready to present a method to compute the normalization
constantZpp i for arbitrary, non-linear constraints that obey the two assumptions discussed earlier
in this section.

Algorithm 3.4.3. Computing the Normalization Constant Zppg.

STEP 1. Run Steps 2 and 3 to compute= f@ePDK\H(l) f(0) doforl € {1,2,...}. Here H(I)
represents the hypercube of sizeentered at the origin of the axes. We h&ep x = lim;_. I;.
In practice, we will stop once very little progress is made.

STEP 2. For a fixed small, split H(l) in hypercubes of size Hy,...,H.. Run Step 3 to
computel; e = > <y<(e) fGEPDKlHt f(0) do. We havel; = lim._.q I; .. In practice, we will use
€€ {%, %, ...} and we will stop once the progress made is below a certain threshold.

STEP 3. Within the hypercubé{;, approximate the constraints with linear constraints obtained
via a first order Taylor expansion around any point Hy. Apply Algorithm3.4.2to compute

f@ePDK\Ht f(0)do.

In the above algorithm, Step 1 is only needed in the case when the sixfakeis not bounded.
In Step 2 the Parameter Domain Knowledge constraints are approximated by linear constraints
within each small hypercube. This approximation allows us to transform the surface integral into
a volume integral within each small hypercube so that we can apply AlgoBthre. We choose
not to approximate the constraints with the same linear functions faf @)l because a first order
Taylor expansion can potentially be very inaccurate on large regions of the space.

Figurel3.1 illustrates the above algorithm on the task of estimating the normalization constant
for the unnormalized priof (u, o) (for example,f can be an unnormalized Normal-Wishart prior)
on parameterg ando of a Gaussian. The domain knowledge constraints are givep(pyo) =
4024+ (2u—1)2 -1 =0, hy(n,0) = —p < 0 andhz(p,0) = —o < 0. The figure shows what
happens wheh= 1 ande = % In Step 2 of algorithn8.4.3 H(1) is split in 16 smaller squares of
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H(1) o
H, H, H, H,
/ HN
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H13 H14 H15 H16

Figure 3.1:Algorithm(3.4.3at work. The goal is to estimate the normalization constant for an unnormalized
prior f(u, o) on parameterg ando of a Gaussian, given the constraipts, o) = 402 + (2u—1)2 -1 =0,
hi(p,0) = —u < 0andhg(p,0) = —0 < 0.

sizee and then, in Step 3, the non-linear constrains approximated with a line segment in each
of these squares. The only two squares where the approximation is non-empty anel Hs. In
Hy, using a Taylor expansion arouig, ?), we haveg(u, o) ~ —2(u — 1) + 84ﬁ(0 - @). In
Hg, using a Taylor expansion arougd, %2), we havey(u, o) ~ 2(u — 3) + 83 (o — ¥2). The
algorithm then proceeds by substitutimdn f with a linear function ofu (see algorithn8.4.1) to
obtain f (). Within either of the squared~ or Hg, the integral off is therefore simplified to the
integral of f(x) wherey varies within an interval. To compute these two integrals gf), the

sampling technique described in algorit@md.2is then used.
Note that, in order to have additivity in Step 2 of Algoritl8®.3 we assumed that the intersec-
tion of surfaceP D K with the boundaries of the hypercubes has area zero. However, for particular
constraints and for particular values«fit may happen thaP D K has some positive area subsur-
face that lies on a boundary of some of the hypercubes. Note however, that in Step 2 we are taking
a limit whene — 0 and therefore our algorithm still works if there exists a sequence 0 that
obeys our assumption. Alternatively, when positive areaBOfK’ are found on the boundaries of
the hypercubes, one may subtract the value of the integrals on these areas from the sum in Step 2 so
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that they are counted only once.

In practice, the likelihood can be decomposed nicely and therefore the configredérained
Parameter Priorswill inherit the same property. Also, as mentioned before, each constraint will
only relate a small fraction of the total number of parameters and therefore the integsal =
feePDK f(0) df can be written as a product of several, easier to compute, independent integrals.
As we will see in the following chapter, in many cases we will be able to compute the normaliza-
tion constant in closed form and therefore we do not need to go through the expensive procedure
described above.

3.4.2 Maximum Aposteriori Estimators

In chaptei2, we have seen that the problem of computing Maximum Aposteriori estimators can be
reduced to the problem of computing Maximum Likelihood estimators in the case of fully observ-
able data for standard Bayesian Networks. Let us see what happens in the presence of arbitrary
Parameter Domain Knowledge constraints. To compute Maximum Aposteriori estimators, we need
to maximize the posterioP(0|D) « P(DI0) - P(6) subject to Parameter Domain Knowledge
constraints. If we piclConstrained Parameter Prioras described in the previous subsection, then
P(D|6) and P(6|D) are the same type of functions éffor all complete dataset®. Therefore,

we can carry out Maximum Aposteriori estimation exactly in the same fashion with Maximum
Likelihood estimation described earlier in this chapter.

3.4.3 Bayesian Model Averaging

From a Bayesian point of view, we are interested in predicting the next data point given previous
data points by averaging over all possible models. This task can be written as follows:

_ Joeppi Pldnt1s- .., d1]0) - P(0)do

P dn dna"'7d -
(dn1] 1) Joeppi Pldn, ..., d1]0) - P(0)do

If P(0) is a Constrained Parameter Priorthen it follows from the definition that both the
integrals above are normalization constants for diffef@mstrained Parameter PriorsWe have
seen previously that these constants can be computed using sampling AlgdAtBand therefore
we have a method to perform Bayesian model averaging.

3.5 Bayesian Approach from Incomplete Data

When data is incomplete, one can easily adapt the methods described in Scgtiorperform
Maximum Aposterior estimation by multiplying the objective function by @enstrained Param-
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eter Prior P(#). For example, the iteration performed by a modified version of the Expectation
Maximization algorithm will be :

b= AOM@%eppy Epyyp g, log (P(D. Z]6) - P(6))

From the definition ofConstrained Parameter Priorst follows that P(D, Z|0) - P(0) are the
same type of functions @f and therefore there is no additional complexity incurred when running
the modified version of the EM algorithm to perform Maximum Aposteriori estimation subject to
Parameter Domain Knowledge constraints.

The problem of performing Bayesian model averaging in the presence of Parameter Domain
Knowledge constraints becomes more difficult when data is incomplete. In this case both integrals
Joeppr Pldnit;...,di]0) - P(9) df and f,_pp e Pldn,...,d1|0) - P(6) dd are no longer nor-
malization constants fo€onstrained Parameter Prioyut they are a combination of sums and
integrals (which can be evaluated using the trapezoid method) over the missing data of such nor-
malization constants, depending on whether the missing values correspond to discrete or continuous
variables. The amount of missing data determines the complexity of computing the above two inte-
grals. If every example is missing at least one value, then the computation of the two integrals may
require evaluating the normalization constants for an exponential num@enstrained Parameter
Priors. This approach is again very expensive. One idea to lower its exponential complexity is to
incrementally approximate the posterior of parameters wiftoastrained Parameter Priogvery
time we observe a new example. However, investigating this approach is beyond the scope of this
research.

3.6 Comparing Different Parameter Domain Knowledge Schemes

Define aParameter Domain Knowledge Scheme PiK&r a Bayesian Network as a set of Parame-
ter Domain Knowledge constraints for that network. As mentioned before, we denét® bythe
set of feasible parameters for such a scheme. We remind the reader that in all our work, the structure
of the model is given and does not change. ThuRaidmeter Domain Knowledge Schemésbe
defined over the same structure and parameter sets. Learning structure in the presence of parameter
sharing is a subject for future work.

Later in this thesis we will see that taking advantage Bdemeter Domain Knowledge Scheme
helps reduce the variance in parameter estimates. We will also show experimentally that parameter
estimators based on Parameter Domain Knowledge yield distributions closer in KL distance to the
true underlying distribution than the ones estimated without taking advantage of such knowledge.
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Therefore it is important to recover as much Domain Knowledge as possible, even when the expert
can specify only a limited part of it. Also, if two experts provide two different, potentially incorrect

or inconsistent with each othdfarameter Domain Knowledge Schem&s would like to be able

to decide in a principled fashion which one (or which combination of the two) to use. To be able to
do this, we need to come up with a method to sdefekK S, a givenParameter Domain Knowledge
Scheme We propose a metric similar to the one used for structure search i.e. we try to find the
PDKS (among our possible choices) that maximiZz&®D|PDK S). Averaging over all sets of
feasible parametetsc PDK for PDK S, we obtain:

P(D|PDKS) — / P(D|0, PDKS) - P(6|PDKS) df
9ePDK

Assuming that the prioP (0| PDK S) is aConstrained Parameter Prigit is easy to notice that
the above integral is the normalization constant for a diffe@mistrained Parameter Prioand
therefore it can be computed using Algoritl8.3under the assumption that the ddas com-
plete. In the case of incomplete data, the score is a combination of sums and integrals (over missing
values) of normalization constants fGonstrained Parameter Priorsvhich can be computed as
mentioned in the previous section.

One drawback of this score is that it tries to find tPerameter Domain Knowledge Scheme
that best fits the training data. An alternative is to comparameter Domain Knowledge Schemes
based on their cross-validation log-likelihood. Briefly, the idea is to split the datakdbids, then
train a model form a frequentist point of view usihg- 1 folds and théParameter Domain Knowl-
edge Schemeéhen use that model to compute the log-likelihood of the remaining fold. Repeating
this procedure for each fold yields the log-likelihood for all datd3etomputed in such a way that
test data was not used in training. Because of this fact and because it is much faster to perform
frequentist parameter learning, we suggest this measure is to be preferred ingt¢ay BD K .S)
when comparing differerRarameter Domain Knowledge Schemgsis cross-validation score was
employed in our experiments on fMRI data in Chajié¢o derive the optimal clustering of brain
voxels during a cognitive task.

The scores defined above can be used to choose between several different eRaitabketer
Domain Knowledge Scheme&3ne can also imagine an automated approach to learning an optimal
Parameter Domain Knowledge Schefram training data via some hill climbing techniques. We
can derive the current scheme candidate from previous one by using small modifications, in a fashion
similar to the one employed by structure search. The search space however is prohibitively large, so
restricting the set of potential candidates can be extremely useful. For instance, in module networks
one can restrict the variables that can belong together in a module. In addition, an expert who knows
a subset of Parameter Domain Knowledge constraints can restrict further the search space.
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Chapter 4

Equality Constraints for Discrete
Variables

In the previous chapter we developed general methods to perform parameter learning in Bayesian
Networks when a domain expert specifies in advance a set of Parameter Domain Knowledge con-
straints. While these methods can deal with arbitrary parameter constraints that obey several smooth-
ness assumptions, they can potentially be very slow since they involve expensive iterative and sam-
pling procedures. However, for certain particular types of Parameter Domain Knowledge, we do
not need to go into the Newton-Raphson iterative procedure because the system of equations in
Algorithm|3.2.1 can be solved in closed form. Also, in some of these cases we might be able to
find a closed form formula for the normalization constant of the corresponding Constrained Param-
eter Prior. This and the following two chapters address the problem of finding such closed form
solutions for several types of Parameter Domain Knowledge.

In the next sections we look at incorporating parameter equality constraints in learning algo-
rithms for discrete Bayesian Networks. We have already shown in Chapiet, in the discrete
case, the Expectation Maximization algorithm to deal with missing data as well as the Bayesian
approach for learning from both complete and incomplete data can be derived in a straightforward
fashion from the Maximum Likelihood estimators procedure and based on the normalization con-
stant of the Constrained Parameter Prior. Therefore, for all types of domain knowledge that we
introduce in this chapter, we only need to come up with closed form solutions for the Maximum
Likelihood estimators from complete data and for the normalization constant for the correspond-
ing Constrained Parameter Priors. The conjugate of the multinomial distribution is the Dirichlet
distribution and therefore our Constrained Parameter Priors willdvestrained Dirichlet Priors

The results in this chapter build on work previously presentedNMR05]. We start by an-
alyzing several types of Parameter Domain Knowledge equality constraints that span only inside
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conditional probability distributions and then we extend these results to domain knowledge types
that involve parameters across multiple such distributions. A set of conditional probability distribu-
tions will form the scope of a Parameter Domain Knowledge constraint. Different constraint types
can be defined over disjoint sets of conditional probability distributions, but only one constraint
type can be applied to any such set. Because of the decomposability of data log-likelihood, one can
learn independently the parameters involved in each type of domain knowledge constraint. Also,
the normalization constant for the Constrained Dirichlet Prior can be computed over the scope of a
certain constraint and then all such constants are multiplied to obtain the normalization constant for
the prior over the whole set of parameters of the Bayesian Network.

4.1 A Note on Normalization Constants and Dirichlet Integrals

When computing the normalization constant of a Dirichlet distribution éver (¢, ...,0,), the
idea is to write,, = 1 — "7~/ §, and compute the normalization constéahtfor:

n—1 n—1
OSSR S | U
=1 =1
If we eliminatedd, instead of¢,,, we would have estimated the normalization constant for a

distribution over(d,, . . ., 6,) instead. Luckily, all these constants are equal no matter which variable
we eliminate. However, with Constrained Dirichlet Priors, this will not be the case anymore. For
example, consider learning with the constrainb; - ¢, = 1, which may appear in the case when
certain parameters are shared within the same distribution. Here par@pagipears i; different

known places in the distribution. We are looking f&eneralized Dirichlet Priorof the form:

poy< | ZTE 60T T 620,55-6,=1
B 0 otherwise

If we eliminated,,, we have to estimate tt@eneralized Dirichlet Integral

1-S" 10, nlo
n = / (o2 ot T g0 ag, o, . o, (4.1)
0>0,5 b;-0,=1 bn palet

This integral is reduced to a standard Dirichlet Integral by making the substitttiend; - 6,
for1 <i¢ <n— 1. We obtain:

bn, H?:l I'(v) (4.2)

Ln = n a; n
Hizl b; F(Zizl ;)
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If we eliminatedd, first, we would have obtained a potentially different normalization constant
Z, over the remaining: — 1 parameters. In the case of standard Dirichlet Distributionp;all
were equal to 1. Even though thepossible distributions over — 1 have different normalization
constants, they are essentially the same distribution as they can be obtained from one another via a
variable substitution.

In general, when coming up with Constrained Parameter Priors, we eliminate several parameters
and we actually compute a distribution over a smaller subset of parameters that determine the elim-
inated ones in a deterministic fashion. Depending on the elimination order, we may obtain different
normalization constants. Note however, that the elimination order does not matter for any of our
learning procedures. Therefore it will be enough to show that we can compute the normalization
constant for any elimination order.

4.2 Known Parameters

The simplest type of Parameter Domain Knowledge consisknofvn Parameters The domain

expert directly specifies the values of certain parameters in the Bayesian Network. The correspond-
ing constraints have the forfi);, = c wherec is a known value. For example, an expert can state:

"If a patient has a heart attack (Disease = "Heart Attack”), then there i8@% probability that the

patient will experience chest pain.”

4.2.1 Maximum Likelihood Estimation from Complete Data

The above constraints do not span across multiple conditional probability distributions and there-
fore, because of the decomposability of log-likelihood, we can break the bigger Maximum Likeli-
hood optimization problem into a set independent subproblems, one for each conditional probability
distribution. If¢, are the unknown parameters of a conditional probability distribufigriheir cor-
responding countsy = ). N; the total observed counts astithe sum of known parameters of

this distribution, we have the following theorem:

Theorem 4.2.1.The Maximum Likelihood Estimators for parametgia our distribution are given
by:

A~

6, =(1-85)-

==

Proof. Our optimization problem becomes:

P :argmazx {h(0) ]| g(0) =0}

whereh(6) = >, N;log6, andg(§) = (>,6,) — (1 —=S5) =0
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When all counts are positive, it can be easily proved fhdtas a global maximum which is
achieved in the interior of the region determined by the constraints. In this case the solufion of
can be found using Lagrange Multipliers. Introduce Lagrange Multiplifar the constraint inP.

Let LM (0,\) = h(0) — X\- g(#). Then the point which maximizeB is among the solutions of the
systemVLM (0, ) = 0. Let (6, \) be a solution of this system. We have:

0=9LM — Ji _ \foralli. Therefore:d; = 5i. Summing up for all values af we obtain:

0=250 = (T;6) - (1-8) = (T X -(1-9) =5 -(1-9) A
From the last equation we compute the value\o&= N;. This gives us:§, = % From
Sufficiency CriteriorR.1.], it follows thaté is the set of Maximum Likelihood estimators. O

4.2.2 Constrained Dirichlet Priors

For this type of domain knowledge, the Constrained Dirichlet priors have the following form:

P(6) = LT, 00 i 0>030=1-S5
N 0 otherwise

This a Generalized Dirichlet Prior with = 15 and therefore the normalization constant is
given by:

= — 2 o‘i_l.M
D= (=8 RS )

4.3 Parameter Sharing within One Distribution

Here we allow certain parameters to be shared within the same conditional probability distribution.
This corresponds to statements lik&iven this combination of causes, several effects are equally
likely”. Since the scope of these additional constraints does not go beyond the conditional proba-
bility distribution level, the problem of maximizing the data likelihood can again be split in a set of
independent optimization subproblems, one for each such conditional probability distribution. Let's
look at one of these subproblems (for a variakiland a specific valu® A(X') = pa of the parents).
Assume that a domain expert is stating that certain parameters are equal: pafaaears irk;
different positions in our distribution. Denote By; the cumulative observed count corresponding
to §,. The cumulative observed count is the sum of all the observed counts corresponding;to the
positions wherd, appears in the distribution. L&f = . N; be the sum of all observed counts in
this conditional probability distribution i.e. the total number of observed casesRMIK ) = pa.

One may believe that Maximum Likelihood estimation can be performed using standard meth-
ods by introducing new variables that describe what group of shared parameters a given param-
eter belongs to. To see that this is not the case, consider the following example. Assume a
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variable X with values{1,2,3,4} depends ort”. Moreover, assume the expert is stating that
P(X =1]Y =0) = P(X =2|Y = 0)andP(X = 3]Y = 0) = P(X = 4]Y = 0). Then

one can introduce variabl&;, which is1 if X € {1,2} and0 otherwise. This variable is as-
sumed dependent dri and added as a parent &f. It is easy to see tha?(X|X12 = 0,Y = 0)

must be equal to the distribution dr, 2, 3,4} that assigns half probability to each ®fand 4.
Therefore, ifY takes only one value, the task of finding Maximum Likelihood estimators with
Parameter Sharing is reduced to the one of finding standard Maximum Likelihood estimators for
X12lY = 0. However, ifY takes only one value, then we can safely remove it as a parent of
X. WhenY can take two valued) and1, assume the expert states the additional assumption that
P(X=1Y =1)=P(X =3|Y =1) = P(X =4|Y = 1). Now we need to introduce a new
variableX 34 that depends ol and add it as a parent &f. It is straightforward to see that in this
case, the conditiondP(X| X2 = 0, X134 = 1,Y = 1) is not a constant distribution anymore and
therefore the above approach of reducing our parameter sharing problem to a Maximum Likelihood
optimization problem in standard Bayesian Networks fails. Also, the structural assumptich that

and X34 are conditionally independent givénis not true. Same argument holds for all types of
Parameter Domain Knowledge presented in this chapter.

4.3.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.3.1. The Maximum Likelihood Estimators for the parameters in the above conditional
probability distribution are given by:

N NZ-
ei_ki-N

Proof. Our optimization subproblem can be restated as:

P :argmazx {h(0)]|g(0) =0}
whereh() = >, N;log6, andg(0) = (D, ki -6,) —1 =0

When all counts are positive, it can be easily proved fhdtas a global maximum which is
achieved in the interior of the region determined by the constraints. In this case the solution of
can be found using Lagrange Multipliers. Introduce Lagrange Multiplitar the constraint inP.

Let LM (0,\) = h(0) — - g(#). Then the point which maximizeB is among the solutions of the
systemV LM (0, )\) = 0. Let (0, \) be a solution of this system. We haves= 2LM = Ji )\ . f,
for all i. Thereforek; - 6, = NT Summing up for all values af we obtain: l Z

)

OLM . Ni, N
0= Ton Tkl m1= 0T m =R

7
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From the last equation we compute the value ef N. This gives uséi = kNN The fact that
0 is the set of Maximum Likelihood estimators follows again from Sufficiency CriteZidrd. [
4.3.2 Constrained Dirichlet Priors

For this type of domain knowledge, the Constrained Dirichlet priors have the following form:

poy= | 2T 67 i 6205k -6,=1
B 0 otherwise

As we have seen in secti@nl, the normalization constant depends on the elimination order. If
0,, is eliminated first, we get:

Ky ' [[imy T(en)
[Tim ki TR )

Ly =

4.4 Proportionality Constants within One Distribution

This is a slight generalization of Parameter Sharing. We partttiothe set of parameters of a
conditional probability distribution in subset = {6,;,6,,, ...} such that the parameters i

are proportional to given constantg, ¢;2,.... This corresponds to statements lik&iven a
combination of health risk factors, disease A is twice as likely to occur than disease B $&t of

shared parameters are proportional with a set of ones. An unconstrained parameter can be thought
of as a parameter that is shared in just one place.clet Zj ci; be the sum of the constants
corresponding t®; and N; = Zj N;; the sum of the observed counts of parameterS;inAlso,

let N = >, ; Vi; be the total number of observations we have about our conditional probability
distribution. With these notations, we are ready to present the main result of this section.

4.4.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.4.1. The Maximum Likelihood Estimators for the parameters in the above distribution
are given by:

j = i i

) C; N
Proof. Let ~; be the proportionality factor for s&;. We are going to make a change of variable
from 6 to~. We have),; = ¢;; -v; for all 4, j. Therefore maximizing _; ; N;; - log 6, ; is equivalent
to maximizingzm. Nij -logvy; = Y, N; - logv;. The constraind | = 1 is equivalent to
DG vi=2 ¢ =1

i3 %
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Our optimization subproblem can be restated as:

P argmaz {h(7) | g(v) = 0}
whereh(y) = >, N; - log~; andg(y) = (3 ;¢i-vi) —1=0

In this case the solution aP can be found using Lagrange Multipliers. Introduce Lagrange
Multiplier A for the constraint inP. Let LM (vy,\) = h(y) — A - g(7v). Then the point which
maximizesP is among the solutions of the syst&iL M (v, ) = 0. Let(~, \) be a solution of this

system. We have:

0= %M = N X.cforalli. Therefore:c; - v; =
obtain:0 = %M — (S ¢ ) —1= (3, J) —1=4 1
From the last equation we compute the value\gE N. This gives usry; = C%. Therefore

the estimators for the parameters in our model can be compuﬁ;g ascij -y = 2L % From

Cq

Sufficiency Criterior2.1.], it follows thatd is the set of Maximum Likelihood estimators. [

i, Summing up for all values af we

4.4.2 Constrained Dirichlet Priors

For this type of domain knowledge, we define priors on the hyperparameters

P9) = %anl%aiil if v>0,>c-vi=1
(0) = ;
0 otherwise

This is again &eneralized Dirichlet Distributiomnd therefore the normalization constant given
that we first eliminatey,, is:

Cn [T T(ew)
[Iim 6" T2 )

Ly =

4.5 Sum Sharing within One Distribution

Sum Sharing is similar to Parameter Sharing, but here several sets of parameters within one dis-
tribution have the same aggregate probability mass. If two sets of pararetard B have this
property we will write A = B. This corresponds to statements liRK& patient who is a smoker

has the same chance of having a Heart Disease (Heart Attack or Congestive Heart Failure) as
having a Pulmonary Disease (Lung Cancer or Chronic Obstructive Pulmonary Diseas®y-

mally, suppose a domain expert tells us that within one of the distributions in the graphical model,
St = S12 = ... = Sigy, -4 Sn = Sip = ... = Si, where the sets of paramete$s; are
mutually disjoint. Equivalently, the expert can state that the se$s.ig= {Si1, Sz, - . ., Sik, } have
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the same sum and that holds for aletweenl and!. We can consider that each parameter in the
given distribution belongs to one 6f;. Otherwise we can create a néjy., y; which contains all
these parameters. Denote dd;/ the k" parameter inS;; and by .V, ’f its corresponding observed
count. Again, letnv = >_ be the total number of samples from this conditional probability
distribution.

z]k

4.5.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.5.1. The Maximum Likelihood Estimators for the parameféysare given by:

o Nb TN
Y Zk/Nkl ki- N

Proof. Denote bys; the sum of parameters in any of the sts The constraints of our problem
can be rewritten a§ Hfj = s; foralli, jand)_, k; - s; = 1. Our optimization subproblem can be
restated as:

P argmax {h(eas) |g(978) = 07 gl](evs) = O}

whereh (0, s) = Z”k log9 ), 9(0,8) =(>_;k1-s;)—1=0and
913(975) (Zk 0f —si) =0

In this case the solution aP can be found using Lagrange Multipliers. Introduce Lagrange
Multiplier X for the constraing and lagrange Multipliers;; for constrainiy;;. Let LM (0,5, A, 7) =
h(6,s) —A-g(0,s) = >, ; 7ij - 9i5(0, s). Then the point which maximize8 is among the solutions
of the systenW LM (0, s, A\, 7) = 0. Let (0, s, \, 7) be a solution of this system. We have:

OLM  NE
0= o0% 9/;7 TV, j (4.3)
OLM .
0= Bs: = —k;- A+ E TijVZ (44)

J

R Nk ) .
Therefore:@fj = —<. Summing up for all values df, we obtain:
¥}

LM _ N
0_8 ZQ —5i) = si L

871] Tij

Therefore: .
Zk Nzg

Tij =
J s;
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k
Summing this up for all values gfwe get:0 = %M = — Xk + 3. 75 = =X - ki + %

0s;
Therefore
> NV
A

ki-Si:

. Summing this for all values Q’fyields:
k
From the last equatlon we compute the valua ef N. ThIS gives us:

k
5 = >k Nij
ki - N

ki - N
E Z ij

ék_ Nk Zj,kNil;'
Y Zk,N’“’ ki- N

The fact thad is the set of Maximum Likelihood estimators is again a consequence of sufficiency
conditions2.1.1. O

4.6 Ratio Sharing within One Distribution

Ratio Sharing is similar to the Proportionality type of Domain Knowledge defined in s@cdgout
here several equally sized sets of parameters are proportional to each other. In other words, these
sets of parameters can be obtained from one another by multiplying with a constant. If two sets
of parametersd and B have this property we will writed ~ B. This type of domain knowledge
corresponds to statements likén a bilingual corpus, the relative frequencies of certain groups of
words are the same, even though the aggregate frequencies of these groups may be d8terknt.”
groups of words can be: "words about computers” ("computer”, "mouse”, "monitor”, "keyboard” in
both languages) or "words about business”, etc. In some countries computer use is more extensive
than in others and one would expect the aggregate probability of "words about computers” to be
different. However, it would be natural to assume that the relative proportions of the "words about
computers” are the same within the different languages.

Formally, suppose a domain expert tells us that within one of the distributions in the Bayesian
Network,T11 ~ Tio ~ ... ~ Ty, ..., Tin ~ Tjg ~ ... ~ Ty, where the sets of parametef’y
are mutually disjoint. Equivalently, the expert can state that the séfs in- {T;1, T}2, ..., Ti, }
are proportional to each other and that holds for &létweenl and/. We can consider that each
parameter in the given distribution belongs to ondgf Otherwise we can create a nély, ),
which contains all these parameters. Denote‘)@yparameter in positiork in T;;. Because of
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our ratio sharing assumption, the position of a parameter within @;sehatters. As before, let
N=3", ik Ni’} be the total number of observed counts corresponding to our conditional probability
distribution.

4.6.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.6.1. The Maximum Likelihood Estimators for the parameters in the above distribution
are given by:

N -3, N

Proof. Becaus€;; ~ Tz ~ ..., there must exist a vectpr = (pi1, pi2, pis, - - -.) and multiplication
factorsc;i, ¢;o, . . such thatl}; = c;; - p; or, equivalentlyﬁfj = ¢;; - pix, for all ¢, j, k. Therefore
maximizing _, gk, log 6% is equivalent to maximizin@m,k Ni’} -log (¢ij - pir). The constraint
S xbl=1is equwalent tozi,j,k cij - pik = L.

Our optimization subproblem can be restated as:

Ak N

P :argmax {h(c,p) | g(c,p) = 0}
whereh(c,p) =3, i . N;; - log (cij - pix) andg(c,p) = (3_; ;. cij - pik) —1 =0

In this case the solution aP can be found using Lagrange Multipliers. Introduce Lagrange
Multiplier A for the constraint inP. Let LM (¢, p, \) = h(c,p) — X - g(c, p). Then the point which
maximizesP is among the solutions of the syst&iL M (¢, p, A) = 0. Let (¢, p, A) be a solution of
this system. We have:

OLM >N,

0= Py = o — A szkw j (4.5)
OLM Z

0= - A c;ivVi, k 4.6
apzk: Z J ( )

NE. . .
Therefore: ¢;; - > . pir = % Summing up4.E for all values ofi and j, we obtain:
NE
0_8LM (Zcz] pzk)_l (Zz ”)_1:¥_1

k
From the last equation we compute the valuelo= N. This gives us:.c;; = N'gj:p'k.
k
Consequentlyzj Cij = %z N . Using4.6 we getp;, = EZ]J' ]jvk - > piy. For each value of
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> Piry We will obtain a stationary point of //. However, for all these stationary points we get
X, N, N

. Let (p, ¢) be one such maximizer férand let:
N'Zj,k lej (p7 C)

B = {(pa C) | Cij * Pik > 82.h(ﬁ7é) \V/Za]’k:}

Itis obvious that(b) < h(p, ¢) forall b ¢ B. Now, from Sufficiency Criterio2.1.2, it follows that
0 is the set of Maximum Likelihood estimators. O

4.7 A General Parameter Sharing Framework

Here we present a General Parameter Sharing Framework that describes learning in a broad category
of graphical models. ASeneral Parameter Sharingssumption is specified by an expert over a set

C of conditional probability distributions. Multiple such assumptions can be provided for disjoint
sets of distributions, potentially covering all the set of conditional probability distributions in the
Bayesian Network. Every assumption states that some parameters (denote theilGggtang
shared (appear exactly once in each of the different distributions) within th&, $®it not shared
within the same distribution or outside. For example, if we consider the Bayesian Network in
Figurel.l, a parameter sharing assumption may stafée probability that a person will have a

heart attack given that he/she is a smoker with a family history of heart attack is the same no matter
whether or not the patient lives in a polluted ared’et L. = C'\ G be the set of local (not shared)
parameters. LedV, represent the cumulative count corresponding to shared parafpeted N,

be the count corresponding to local paraméfe(in distributionc € C).

We now discuss several graphical models which all fit within our framework and s&sfgral
Parameter Sharin@assumptions. For instance, in HMMs and Dynamic Bayesian Networks, the
same variable has the same conditional probability table at different time instants. Therefore, in this
case( is made out of the distributions in the tables which correspond to a given vaiXadhel the
same instantiation of the paren®A(X) = pa across all time instants. In Module Networks, all
variables in the same module share the same set of parents and have the same conditional probability
tables. Consequentlg; consists of the set of distributions corresponding to all variables in a module
for a given instantiation of the parents of those variables. Context Specific Independence is used to
specify conditional independencies that hold in certain contexts and therefore is useful to specify
which distributions should be equal in a conditional probability table for a fixed random variable. In
this case( contains those distributions which are assumed to be equal in a specific table. However,
note that our framework allows for much more flexibility in parameter sharing. We can share at the
level of each parameter, not just at the whole distribution or table level. Also, the distributions in
C do not need to be the same size. Moreover, a shared parameter does not need to be in the same
position in different distributions withid'.
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4.7.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.7.1. The Maximum Likelihood Estimators for the parameter€’iare given by:

Ny

T 2o ea N+ 2, e Nie

0

Eel/c/EL NZ,C/ ) Nlc
ZegeG Ng + Z9z/cr€L Ny ZGZ,CEL Ny

élc =
Proof. Our optimization problem can be stated as:
P :argmazx g{h(0) | g.(0) = 0,Vc e C}

We are searching for the solution Bfusing Lagrange Multipliers. Introduce Lagrange Multi-
pliers X = (\;)ccc for each distribution irC. Let LM (0, X) = h(0) — > cc Ae - g¢(0). Then the
point which maximizes” is among the solutions of the systeWil. M (6, A\) = 0. It turns out that
this system has a unique solution which is in fact the one in the statement of the theorem. Accord-
ing to Sufficiency Criterior.1.], it follows that this solution provides the Maximum Likelihood
Estimators for the parameters in the distribution€’in O

Note that the Maximum Likelihood estimators for shared parameters look similar to the ones
in the case of standard Bayesian Networks. However, the estimators for local parameters are a
product of two factors. First factor represents the probability mass that remains after subtracting the
shared parameters. The second factor basically says that this remaining "local” probability mass in
a distribution inC' is split into values proportional to the observed counts corresponding to the local
parameters in that distribution.

4.7.2 Constrained Dirichlet Priors

We consider Constrained Dirichlet Priors defined by:

-1 o—1
TIC ) HegeG 02‘5] ) Helcegcec elog

P(C) = if> 0,ec 0 + 20, el =1 Vcel
0 otherwise
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It is easy to evaluate the normalization constant. We have:

oo T60e"t do

/zeg+29 -1 vceCH 2 H R

— /Zeqne%‘l H/ [Io0" do..) dog
g

ceC > 0,.=1->0,

Zo =

wheref; . represents the set of local parameters in distributieh C' and, denotes the set of
shared (global) parameters. First, we note that the portion of the integral over the local parameters
in each distributiore € C' is a Generalized Dirichlet Integralwhich can be computed using the
resultind.l. Then, itis easy to see that the remaining part of the integral over the shared parameters
is a standard Dirichlet Integral. We obtain:

HF alc F(Zl Al — |C‘ + 1)
Zo = I'(a : c
¢ H e ) Tt 0 -0 7D

There are several interesting properties of this Constrained Dirichlet Prior. First, the joint prob-
ability distribution over the shared parameters is a standard Dirichlet. Second, with no parameter
sharing, this distribution is a product of independent standard Dirichlet distributions, one for each
distribution inC. However, if there are both shared and local parameters, then the joint probability
(obtained by marginalization) over a distributiore C'is not a standard Dirichlet.

4.8 Hierarchical Parameter Sharing Framework

Here we present a hierarchical extension of the framework in the previous section. This will address
some of the limitations of the constraints that could be incorporated in the parameter sharing frame-
work described before. In hierarchical parameter sharing, several parameters are shared across a set
of distributions, then this set is partitioned and shared parameters are further specified for each sub-
set of distributions. For example, the frequency of "international words” (for instance "computer”)
may be shared across both Latin languages (Spanish, Italian) and Slavic languages (Russian, Bul-
garian). Other Latin words will have the same frequency only across Latin languages and the same
holds for Slavic Languages. Finally, other words will be language specific (for example names of
country specific objects) and their frequencies will not be shared with any other language.

In order to derive our main results, we need to make some simplifying notations. We will denote
by#d,,...,0, the distinct parameters involved in the conditional probability distributions on which
Hierarchical Parameter Sharing is specified. gt represent the cumulative observed count for
parametet; (which may appear in multiple places in the Bayesian Network).
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We are now ready to describe our Hierarchical Parameter Sharing learning framework. First of
all, we present Parameter Sharing Trees as a way to encode hierarchical parameter sharing assump-
tions and second we show how one can take advantage of such a Parameter Sharing Tree in order to
alleviate learning.

4.8.1 Parameter Sharing Trees

Let C represent a set of conditional probability distributions in our Bayesian Network. Each such
distribution introduces a constraint on the possible values that the parafhetergake. AParam-
eter Sharing Tree (PST$ a tree with the following properties:

e Each nodev of the tree consists of a pafiScope(v), Shared(v)), whereScope(v) is a
subset of distributions fror@’ and Shared(v) represents a non-empty set of parameters that
are shared across these distributions. A parameter Fbared(v) is a parameter that is
known to appear exactly once in each of the distributionSdope(v), but it is not shared
multiple times within one distribution, nor with distributions outside Hwepe.

e By convention,Scope(Root) = C' (this amounts to the fact that we would like to allow for
the situation when a parameter is shared by all distributiodg)in

e The Scopes of the direct descendants of a nodéorm a partition ofScope(v). Therefore,
the Parameter Sharing Tree will describe a recursive way of partiti@njmgth the leaf level
being the finest grain of such patrtition.

e A parameter cannot be shared in multiple places (different nodes of the tree). Because of
the recursive partitioning of’, this amounts to the fact th&thared(v) is disjoint with all
Shares on the path fronv to the root of the tree.

e Each parametérin a distribution inC' is shared exactly once i.e. there exists exactly one node
v such that € Shared(v). One may argue that there are parameters which are not shared at
all, but for all nodes that have distributions in the#cope such that there remain unshared
parameters, one can partition those nodes further in leaves that have only one distribution
in their Scope, for which previously unshared parameters become shared at the level of that
single distribution.

Denote by Ancestors(v) the set of nodes on the path fromto the root of the tree and

Shared(Ancestors(v)) = U, ecancestorsw) Shared(v'). Let Desc(v) be the set of descendants
of nodev (included) in and leShared(Desc(v)) = U,y e pese(n) Shared(v”).
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4.8.2 Maximum Likelihood Estimation from Complete Data

Assume we are given a graphical model with known structure that satisfies a set of hierarchical
parameter sharing assumptions given by a Parameter Sharin@ Trikethis section we present

a theorem that will justify an algorithm for finding the Maximum Likelihood Estimators for the
parameters in such a graphical model.

Theorem 4.8.1.Letv be a node of” and§; € Shared(v). The following equality holds:

éi: (1— Z éj)

' N,
0,€Shared(Ancestors(v)) Zek €Shared(Desc(v)) * "0y,

Ny,

Proof. By definition,

0 = argmazy {Z Ny, -log 0, | 0 satisfies T'}
0.

7

Each conditional probability distribution € C' represents a constraint on the space of param-
eters:g.(0) = (Zejec ¢;) — 1 = 0. Because of parameter sharing, these constraints can involve
some common variables. It is easy to show that, if all the cumulative counts are positive, the likeli-
hood function has a global maximum inside the region determined by the constrdintSiimce the
maximum is reached in the interior of the domain, one can apply Lagrange Multipliers to optimize
for P;;. Therefore, let us introduce new variablesfor each constraint (CPD) € C. The new
function to optimize will be:

LM(0,0) =Y N, -log; — > A ge(9)
0; ¢

According to Lagrange Multipliers theory, any point that is a local maximum or minimum for
the initial optimization problem and it is NOT on the border of the region defined by the constraints
will be obtained as a (partial) solution of the system of equations:

VLM(0,)) =0
o N
Therefored verifies the above system for some valueaoBecaus@% = stand%e =\,
if distribution ¢ containsg, (otherwise the partial derivative is zero) , we get:
. Ny,
0; = < V0, € Shared(v) 4.7)

ZCGSCO})E(U) Ac

LetS(v) = Eejes,med([)esc(v)) éj. We will prove by induction the following stronger claim:
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S('U) _ ZG]-EShared(Desc(v)) Ngj

ZcGScope(v) Ac

and

) . N,
b= (1- 3 6, ) ‘s

‘ N,
0,€Shared(Ancestors(v)) Zek €Shared(Desc(v)) * 0

Base caself v is a leaf, then the distributions ificope(v) are equal. The first part of the claim is
verified directly from4.7 and the second part follows because of the fact that the probabilities that
add up toS(v) are proportional to their corresponding counts.

Induction Step:Assumev is not a leaf and has direct descendafts . ., d;. for which the claim
holds. It is obvious thaf(d;) = ... = S(dx). Now, using the induction hypothesis, we obtain
Zk: Z . rare esc N y - . . . .
S(dy) =...=8(di) = = GZ]:ES; d(“; 5 “) % This combined witht.7 gives us the first part
ceScope(v) ¢
of the claim. The second part of the claim now follows frdf and the fact that

1 B S(v)
ZcEScope(v) Ac ZGjGShared(Desc(v)) Ngj

O]

The above theorem yields an obvious recursive top-down, breadth-first algorithm to compute
the ML Estimates of the parameters. The correctness of the algorithm is justified by ti#e8c&m
and the fact that a nodeis processed sometime after all the nodes on the path drtmthe root
are processed. The algorithm uses a qu@ue perform breadth-first traversal of the tree.

Algorithm 4.8.1. (Maximum Likelihood Estimators with Hierarchical Parameter Sharing)

STEP 1.Enqueue the root of the tree in Q.

STEP 2.If Q = (), STOP. Elsey «— Dequeue(Q).
STEP 3.Compute), for all 6, € Shared(v).

STEP 4.Enqueue all children of. GO TO STEP 2.
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4.8.3 Constrained Dirichlet Priors

We again choose our priors of the following form:

P(9) = Z(lT) ITe!

Note that these priors are defined over the whole space of parameters and that a péja@aeter
appear in multiple places in the graphical model (according to the dfaesimeter Sharing Trge
In addition, the normalization constant depends heavily on the structure of the parameter sharing
tree sincel’ describes the constraints among parameters (the sum of parameters shared on the path
from the root to any leaf should sum up to 1).

Z(T) = [, obeys THOZ?”‘ldH can be recursively computed as follows. First, note that this
integral can be evaluated starting with the parameters from the leaf level. For each tbaf
integral over the parameters involvedihared(v) is aGeneralized Dirichlet IntegralThe effect of
computing this integral is to get the constant given by the Standard Dirichlet and propagate upwards
a single parametef(v) with cumulative Dirichlet paramete ,  pqrea(w) @) — 1. Now, it is
easy to see that this parameter is the same for all leaves that belong to the same. pidvsnivill
make the integral over the parameters$tured(p) and the new parameter to be alsGeneralized
Dirichlet Integral and the procedure continues as described above until we end the computation at
the root level. This concludes or sketch of showing how one can recursively codfilijeusing
Generalized Dirichlet Integrals

4.9 Probability Mass Sharing

Here we show how to perform Maximum Likelihood learning in the case when the aggregate prob-
ability mass of a certain parameter type is the same across all distributions in a giveén Bet
example, we would like to show how to take advantage of constraints like: "The frequency of nouns
in Italian is the same as the frequency of nouns in Spanish”, when modelling the word probability
in each of the two languages. In these case, types would be: nouns, verbs, etc.

Before stating the main result of this subsection, let us introduce a few notations. Assume the
parameters i’ may have the following typesl’, ..., T;. Denote byﬁf the i'" parameter inj’
distribution inC'. Let Nij represent the observed count for paramé;ferEach parameter has ex-
actly one type. For example, in the above exampl&, omputer|Italian) has type Noun, while
P(Bluel|ltalian) has type Adjective. We would like to stress the fact that in our framew@rk,
is an arbitrary subset of conditional probability distributions in our Bayesian Network. These dis-
tributions can have different numbers of parameters and they can belong to different conditional
probability tables. Formally, thBrobability Mass Sharing Assumptiatates that for all type$;
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and for anyjt* and;i" distributions inC, we have:

> o=y e
ol eT 07%eT;

Back to our example, this translates into: "The aggregate probability of Nouns is the same in
all modelled languages and the same holds for other grammatical categories/types.” It might seem
a little restrictive to have each parameter belong to one type because, for instance, one may argue
that maybe only the probability of Nouns is being shared across languages. However, even if one
specifies the Probability Mass Sharing Assumption only for Nouns, the rest of the parameters (non-
nouns) must obey the same constraint and therefore that is equivalent to introducing a new dummy
type that contains every other paramete’in

With these considerations we are now ready to compute Maximum Likelihood estimators for
the parameters in our model.

4.9.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.9.1. The maximum likelihood estimatéf fora parameter@f in C that has typ€l; is
given by:

, _ i
g N Zeyen

TN J 7’
Zej.,eTl Ny Zgzj Ny
1

Proof. We introduce new variabled = (A;);. s that represent the probability mass associated
with typeT; in any of the distributions ilt’. With the newly introduced variables, our optimization
problem can be restated as maximizifig, 4) = >_ Nij - log 6{ subject to the constraints that
Zegen Hf = A, for all typesT; and for any;*" distribution inC.. In addition to these constraints,

we also havéey , 9{ = 1. Similarly to the previous theorems, it is easy to show that, if all counts
are positive, then the functiofi reaches a maximum inside the region on which the constraints
and f are defined. In this case, we also apply Lagrange Multipliers theory, introducing a lagrange
multiplier for each constraint?\{ for the first type of constraints (probability mass equalities) and
M for the second type (distributions should sum up to 1). Therefore, differentiating with respect to
f and A, the point that maximizeg inside the region given by the constraints should also verify:

NI =67 - (VW +X)vol e, (4.8)

> X =0vI (4.9)
J
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For a fixedj andl, summing up.8 for all i such thaﬁ{ € T; we get:

Z Nz'j = A - (N + )\{) (4.10)
0len

For a fixedl, summing upt.10for all j and using.S we obtain:

SON =4, N (4.11)
J

0] €T,

Further, summin@.11over all values of and using the fact that the distributions sum up to 1,
we can compute:

YN/ =NV (4.12)
ij j

Now we can us#.12in 4.11to getA; which is further used i@.10to obtain\’ + X/ which,
substituted inl.8 will yield the formulas in the statement of the theorem. From Sufficiency Criterion
2.1.], it follows thatd represents the set of Maximum Likelihood estimators. O

4.10 Probability Ratio Sharing

In the previous section, we showed how to compute parameter estimators when certain parameter
types share their aggregate probability mass across different distributions. Now assume we want
instead to enforce the constraint that the relative proportions of parameters in a certain type are
the same for every distribution withif¥. This corresponds to statements likén two different
countries (A and B), the relative frequency of Heart Attack to Angina Pectoris as the main diagnosis
is the same, even though the the aggregate probability of Heart Disease (Heart Attack and Angina
Pectoris) may be different because of differences in lifestyle in these counltnighis example,

the types ardisease TypesHeart Disease (Heart Attack, Angina Pectoris), Pulmonary Disease
(Pneumonia, Chronic Obstructive Pulmonary Disease, Lung Cancer), etc.

We keep the same notations as in the previous section. However, there are two major differences
from the setting presented in the previous section. First, in this case, we must have the same number
of parameters of typ&; in each of the distributions i¥’. For example, we must have the same
number of "Heart Diseases” in both countries. This allows us to permute the parameters in the
distributions inC' such that corresponding parameterjmare located on the same position in each
of the distributions. For example, we can assuMél cart Attack|A) andP(H eart Attack|B) are
both on the first position in the two diagnosis distributions. This allows us to write that a specific
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position: € T;. Second, now there may be parameters that do not belong to anyftydeor
example, the expert may specify that only the "Heart Diseases” preserve their relative probability
ratios across the two countries.

Formally, theProbability Ratio Sharing Assumpticstates that for any fixed tygg and for
fixed iy, i € Ty, the following holds:

— = constant V j
12
Next we derive Maximum Likelihood estimators that take advantage of the Ratio Assumptions
provided by the domain expert.

4.10.1 Maximum Likelihood Estimation from Complete Data

Theorem 4.10.1.The maximum likelihood estimatéj fora parameteﬁff in C'is given by:

./ X

. . A ) N] Z N‘j

a)ifi e T Qg: 2 j/_z’eleZ/
Zi’eTl,j’ Ni’ Do Ni/

b) if 6/ does not have a typ# = =i

Proof. Again, we use Lagrange Multipliers theory to derive our estimators. Parameters in each
distribution should sum up to 1 and that translates in the const(r@g‘ﬂf) —1 = 0. Letthe
corresponding lagrange multiplier bé. The Probability Ratio Sharing Assumptidmplies that

there existA] and 7; such thaty) — A7 . 7, = 0 for all i € T;. AJ represent proportionality
constants for distribution for parameters of typd; and r; are reference constants that, when
multiplied with the proportionality constants yield the parameters on posiiioeach distribution.

Let )\{ be the lagrange multipliers corresponding to the last type of constraints. Our new objective
function becomeg (6, A, 7) = >_ Nij -log 0{ When applying Lagrange Multipliers theory to our
optimization problem, differentiating with respect doand the newly introducedl{ andr;, we
obtain:

NI =67 - (VW +X)vieT (4.13)

N} = 6] - N Vi ¢ UT (4.14)

SN Al =00r Y N6 =0VieT (4.15)
J J
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Z)\gw'i:()or Z)\g'ég:OVj,l (4.16)
j €Ty

For fixedj andl, summing up.13for all ¢ € T3, then using.16we get:

SN =N 0! (4.17)

i€T; €Ty

If we further sum over all and usé&t.14we obtain:

N =Y N (4.18)
7
o1 Al o . ,
Becaus% = A—{Z for all j1,j2, [ andi € T}, we can write:

J1 A1 ; J1
A >ier, 07 A > iem, N

e = T 2 (4.19)
Al ZieTl 91‘ ZieTl N;
For a fixedi € T; summing upd.13over allj and usingd.15we have:
S .67
SN/ =0 (V)N 57) (4.20)
J J'#3 t

Using4.18and4.19in4.20proves part a) of the theorem. Part b) follows frdm4and4.1&
The fact tha#) are the Maximum Likelihood Estimators follows from Sufficiency Criteith.2,
with an argument similar to the one in the proof of Theokref 1 O
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Chapter 5

Inequality Constraints for Discrete
Variables

While in Chapteid we have seen how to derive closed form Maximum Likelihood estimators for
the parameters in a discrete Bayesian Network when the domain knowledge constraints come in
the form of equalities, here we investigate how to perform the same task when Parameter Domain
Knowledge is provided as inequality constraints. Unlike in the case of equality constraints, we
were not able to compute the normalization constant for the corresponding Constrained Dirichlet
Priors in closed form and therefore we will limit our presentation to the derivation of the Maximum
Likelihood estimators.

5.1 Inequalities between Sums of Parameters

Briefly, this type of Parameter Domain Knowledge states that the sum of several parameters within
one conditional probability distribution is bounded by the sum of other parameters in the same
distribution of the Bayesian Network. Intuitively, one can think of this constraint in terms of the
parts of speech of a language. Usually, an adverb comes along with a verb and therefore it is
reasonable to assume that a language expert can specify that the aggregate probability mass of
adverbs is no greater than the aggregate probability mass of the verbs in a given language. Formally,
in this type of domain knowledge, the parameters of a conditional probability distribution, denoted
by d,,...,0,, can be partitioned int6 = U;_, A, U;_, By UC suchthab_y ., 0; < >y cp, 0;

forall1 < k < s. Letus denote by 4, the sum of the observed counts corresponding to parameters

in A,. Similar definitions hold forNg, and Nc. Let N be the sum of all observed coung

corresponding to parameteétsWe have the following theorem:
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Theorem 5.1.1.1f all V; are strictly positive, the Maximum Likelihood Estimators of parameters
are given by:

Na, +Np .
Na, +Np .

if 0, € Ay UB,andNy, < Np,
if ,eC

K1)
D
|
|z 22 2z 2=

Proof. Finding Maximum Likelihood estimators is equivalent to maximizit®) = >, N; - log 6,
subject to the domain knowledge constraints, including the constraingtpt= .6, — 1 = 0.

Since this problem contains inequality constraints, we can attempt to solve it using Karush-Kuhn-
Tucker theorem. We introduce the Lagrange Multipllefor ¢ and yy, for inequality constraint

hi(0) = 229 ea, 0i—2 9 e, 0; < 0. According to Theorer@.1.2 we are looking for the optimum

6 among the solutions of the system:

Vol(0) = A~ Vog(0) = Xy - Voh(0) =
g9(6) =0
f - hio(6) =0
he(0) <0
\ p =0
From the first equation we obtain:
A +“
0, = N# if 9 € By
Siif g,eC
Therefore,y", c 4, 0; = ﬁ“‘:k andy > cp, 0; = ﬁi‘k Based on whether constraihis tight
or not we have:
o If hy,(8) = 0, then e = AN . This implies Ak = ANJZ = NAkf\NB’C and therefore
S can, b = m In this case, we also ha\)e (Na, —Np,) = pg- (Na, +Np,).

Sincepy, > 0, we also must havé/,, > Np, in order for constraink to be tight.

o If hi(0) < 0, thenp, = 0 and therefore we again ha¥e, .4, 0; = ~25~2& . In this

Na

case we also have, (/) = %NB" and sincéu, (f) < 0, we must also have/,, < Np,.
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The above observations allow us to conclude that a constraint is tight if and dvily it Np, .
Now, summing up over all parameters in the conditional probability distribution we get:

1:Zéi:NC+Ek(NAk+NBk) _N

A A

This gives us:A = N and therefore:

Ni H
A E if 91 € A
_ N
Ni 1
N ifo,eC
Assume now thatV,, > Np,. According to the observations above, it means constfaint
. . N, N, N. N, . . . . A
is tight and we haveiy7k = g7b = A TP - From this we immediately derived; =
N4, +Ng, . -  Nu, +Ng, .

nig ?TA,:% if 0, € A, andNa, > Np, andd, = & - ‘;’@TB;" if 0, € ByandNa, > Ng,.

If Na, < Np,, then, as discussed aboyg, must be0 and thereford), = Liif 0, €

AyUBy andN4, < Np,. From Sufficiency Criterio.1.], it follows that is the set of Maximum

Likelihood estimators. This concludes the proof of our theorem.
O

5.2 Upper Bounds on Sums of Parameters

Here the domain expert provides upper bounds on the sum of several parameters within one con-
ditional probability distribution in the Bayesian Network. Consider the same language example
described in the introduction of the previous section. Here the expert may state that the aggre-
gate probability of nouns is no greater thé&d, the aggregate probability of verbs is no greater
than0.4 and the aggregate probability of adjectives is no greater @ttanEven though the com-

bined probability mass of all words equals one, the sum of the upper bounds provided by the expert
can be greater than one. Formally, in this type of domain knowledge, the parameters of a condi-
tional probability distribution, denoted W, ..., 0, can be partitioned ifi = U; _, A;, such that
ZaieAk 0, < ar forall1 < k < s, whereqy, is a given positive constant. Again, denote/gy,

the sum of the observed counts corresponding to parametets and by N be the sum of all
observed count®/; corresponding to parametets If there are parameters not involved in any of
these constraints, then we can consider they belong to their owt), seith o, = 1.

In the previous section we found an easy way to decide whether a constraint is tight or not at
the optimum point. For the type of constraints that we deal with in this section, we are not able
to derive such a simple criterion. However, we show a simple, linear algorithm that computes the
set of tight constraints at the optimum point. This algorithm starts with an empty set and at each
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step adds one of the final tight constraints. Let us start with the theorem describing the Maximum
Likelihood estimators:

Theorem 5.2.1. Assume all observed coum§ are strictly positive and also assume we know the
setK = {ki,...,k;} of constraints that are tight at the point given by the Maximum Likelihood
estimatorsd). Then, we have:

a)0; = o - g if 6, € A, andk € K
k
b)@i:(l—zjeKaj).%if 0, € Ay andk ¢ K

Proof. We can approach the problem of finding the Maximum Likelihood estimators in a similar
fashion as in Theoreif.1.1 The data log-likelihood is given byf) = . N; - log 6, which we

have to maximize with respect to the domain knowledge constraints, including the constraint that
g(0) =>,60, — 1 = 0. Again, we use Karush-Kuhn-Tucker theorem. We introduce the Lagrange
Multiplier X for g and p, for inequality constraint, () = ZgieAk 9, — aq; < 0. According to
Theoreni2.1.2 we are looking for the optimuré among the solutions of the system:

Vol(0) — X-Vog(0) — X ik - Vohi(8) = 0

\ -

From the first equation we obtain:

~ N

0. = L ifoeA

D
NAk

Therefore,ZeieAk 0; = s

Based on whether constraints tight or not we have:

o Ifhi(f)=0iekekK, thenﬁ*‘;k = ay. This impliesf; = %ﬂk = o

o If hy(8) < 0ie. k ¢ K, thenyy, = 0 and therefore we havE, ., 0, = “5%.

Summing up over all parameters not involved in the tight constraints, we get:

(1—Zaj): Z Qi:ZJW;NAj

jeK 0,€Ag, ke K
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: Yomer Nam, A
We obtain\ = l_fj‘m and further:0;, = (1 — 3" ) - W if 0, € A, and
k ¢ K. From Sufficiency Criterior.1.], it follows that is the set of Maximum Likelihood

estimators. This concludes our derivation of the Maximum Likelihood estimators when we know in

advance which constraints are satisfied by our estimators. O

Next we describe the algorithm that finds the Eetf tight constraints:

Algorithm 5.2.1. (Finding the set of tight constraints if Zj aj #1)

STEP 1. Start with K = () and at each step add a constraint to K.

>

STEP 2.1f K = {ki,...,ki},let\, = ”i’f‘fij’t as in the above theorem.
JE

STEP 3. If there existsk; ¢ K such that ’“l > A\, let K = K U {k} and GO TO Step 2.
Otherwise STOP and declaf€ the set of tlght constraints.

Proof. (Correctness of Algorithm) We start by making the following observation, based on the
proof of Theorenb.2.1:

o If by tight, thens; Ak = qy. Becausegu, > 0, we must havej\c%k > A

e If hy not tight, theru,, = 0 and therefore we have > hk(é) = N‘;k
must havej\(%’“ < A. Itis obvious that\ > 0 must hold, otherwise we would have negative
parameters.

We have just developed a criterion to test if a Betf constraints is the set of tight constraints:

Lemma 5.2.1. Given\ computed as in Theorem2.], K is the set of tight constraints if and only
if Y >/\forallkeKand <)\forallk§ZK

Before proving that our algorithm produces the set of tight constraints, let us prove another
useful result:

Lemma 5.2.2. If Zj a; #1thenN = X\ > A\; > ..., and the quantityl — ZjeK a; is always
strictly positive.

Proof. (of lemma) Since initially K* = 0, it is obvious thatl — 3., a; > 0. Itis also obvious
Ao = N. Let us verify the induction step.

Na,
1
From o

> A\ and becausé — ., o; > 0 we get:
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Nag, - (1—og, =Y aj)>ak - >, Na, (5.1)
jEK m@KU{k;}

It follows (1 — ZjeKukl a;) > 0 with equality if and only if we processed all constraints, in
which case we have = Zj a;; and it is obvious that all constraints must be tight. However, since
we assumed _; a; # 1, we must havél — 3.y, @;) > 0 and the first part of the induction
step is proved.

If in both sides of inequalit$.1we add the quantityl — ay, — >=.cx @) - Xomgrugry NVAm:
we obtain:

(I—ap =Y o)) Y Na, >(1=> aj)- >  Na,

jeEK mgK JEK mgKU{k; }
which, given thatl — «y,, — ZjeK a; > 0, is equivalent to\; > A, 1. This concludes the proof of
our lemma. 0

Applying Lemmg5s.2.2, it follows that, in the case WheEj a; # 1, the Algorithm5.2.1ends

Na
t i
ay

>N > Nforallk; € K and% < N forallk ¢ K. From Lemma
5.2.1it follows that K is the set of tight constraints in the case wien a; # 1 and therefore
Algorithm|5.2.1is correct. Another case is when all constraints are processed and we are not left
with a \; to compare with. This situation can not happen, because, at the last step, we would have:

at a stef such tha

Na,, < Na,,
L=2 ik, 0~ o,
and therefore eith€y_; a; = 1 or}_; a; < 1. In the second case, the constraints are contradictory,
which can not happen because we assume the domain expert provides accurate domain knowledge.
If Zj a; = 1 (case which is not covered by Algorithi?2.J), it is obvious that the all constraints
must be tight not only for the Maximum Likelihood estimators, but for every feasible valie dfl
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Chapter 6

Equality Constraints for Continuous
Variables

In this chapter we illustrate how to efficiently compute Maximum Likelihood estimators that take
advantage of Parameter Domain Knowledge in the case of Bayesian Networks with continuous
random variables. Unlike in the discrete case, there are many different types of continuous random
variables, each parameterized in a different way, so we decided to focus our investigation on the
most commonly used type: Gaussian random variables. We study parameter sharing and parameter
proportionality for learning in Gaussian Bayesian Networks as well as parameter sharing in Hidden
Process Models that involve Gaussian random variables.

6.1 Parameter Sharing in Gaussian Bayesian Networks

Here we look at Gaussian Bayesian Networks, where the conditional probability of each variable is
a Gaussian whose mean is a linear combination of the value of the pardnts; # (Y7,...,Yy)is
the set of parents of variabl&;, we can writeX;| PA; ~ N(PA;-0,,02) whered, = (0,1,...,0,,.)T
is a column vector of parameters of length

In this section we will present Maximum Likelihood estimators for the paraméfepsovided
that the domain expert is telling us thidhe parameters in coefficient vectéy can be partitioned
in subsetd, ..., T, such that all parameters in any given subset are equHla parameter is not
shared, then its corresponding §&thas only one element. Intuitively, one can think of the coef-
ficientsd,, as the magnitude of the contribution of paréptto the value ofX;. Consequently, the
above parameter sharing assumptions specify that the contribution of several of its parents is same
as important to the value of;. For example, one can predict the stock of computer mBlkeL
as a weighted sum of the stocks of software makerosoft (MSFT)and chip makemtel (INTL).
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Parameter sharing corresponds to the statementMB&T and INTL have the same importance
(weight) for predicting the value of stodkELL.

Let 0;]- be the common value of parametersiin Therefore, the new vector of parameters
to estimate will be#; = (6;,,...,6,,)". Similar constraints can be independently specified on
variables other tharX;. Let us introduce a new variablg; to denote the sum of parents af;
corresponding to parameters in subggti.e. Z; = Z%GTJ_ Y,. We call PA, = (Zi,...,Z;)
the vector ofAbstracted Parentsf X;. If we denote byX! the value ofX; and by PA! the value
of PA! in training examplel;, we can defined; to be theAbstracted Parents Matriandb; to be
the Variable Vectorfor variable X; such that each has a row corresponding to each example in the

training set:

PA} X}
PA? X2
A; = ! and b; = !
PAM™ xm

With these notations, the Maximum Likelihood estimators are given by the following theorem:

Theorem 6.1.1.1f AT - 4; is non-singular, the Maximum Likelihood Estimators of the parameters
for Gaussian variableX; are given by:

0/ = (A7 -A)~- AT b
0. — b2
52 _ l14i 0= b

’ m

Proof. The decomposability of log-likelihood, allows us to compute Maximum Likelihood estima-
tors by solving a set of independent optimization problems, one for each conditional probability
distribution in the Gaussian Bayesian Network. Becaligé’ A; ~ N(PA; - 0,,0%), based on the
parameter sharing assumptions provided by the expert, weXgg®A; ~ N(PA; - 0;, o?). Com-

bined with the independence of the optimization problems corresponding to different variables in
the network, this allows us to substitute the parentX pfvith its Abstracted Parentand therefore

the result follows directly from Theoregh2.4 O

6.2 Parameter Proportionality in Gaussian Bayesian Networks

Parameter Proportionalityn Gaussian Bayesian Networks is a straightforward extension of Param-
eter Sharing. In this type of domain knowledge, parameters are not necessarily equal to each other,
but they are proportional to some constants given by the domain expert. In other words, the expert
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knows the relative strengths of the contributions of several parents to the value of a vaTjable
the network. Let us extend the example in the previous section. Here we want to predict the stock
of computer makeDELL as a weighted sum of the stockt&SFT, INTL and the stock of &ower
Supply Maker (PSUPPLYWhile the expert is stating thidSFTandINTL have the same impor-
tance (weight) for predicting the value of stdBELL, he also states thRSSUPPLYhas 3 times less
importance (weight).

The Parameter Proportionality constraints supplied by the expert will look liKee param-
eters in coefficient vectdt; can be partitioned in subsefs, . .., T, such that the parameters in
T; are proportional to some known constantsif 7; = {6, ,...,0,;,} then there exists an un-
known valueegj such thatT; = 0;j -{¢j,,-..,cj, ;. The set of parameters to estimate becomes

!

9;. = (0;1, ...,0..)T. Parameter Sharing presented in the previous section can be seen as a particu-

’ 7S
lar case when all constantsre equal to one.
Inthis case, lety, .. ., Z, be theAbstracted Parentdefined asZ; = Z%peTJ, cj, Yp. Itisnow
easy to see that the Maximum Likelihood estimators in the presence of Parameter Proportionality
constraints within one conditional probability distribution can be found by using The6r&rm
based on our neWbstracted Parents

6.3 Parameter Sharing in Hidden Process Models

A Hidden Process Model (HPM} a probabilistic framework that predicts the value daget
variable X at a given point in time as the sum of the values of certfitiden Processethat are

active. This model is inspired from observations of the fMRI signal in the brain when a subject
performs a cognitive task. One can think of the target variable as the value of the fMRI signal in
one small cube inside the brain (also called a voxel). A hidden process may be thought of as the
fMRI activity that happens as a response to an extestimulus For example, 8Picture” process

may describe the fMRI signal that happens in the brain starting when the subject is presented with
a picture. A"Sentence”process may provide the same characterization for the situation when a
subject is reading a sentence. In the real world several stimuli may be active at some point in
time and it is conjectured that the observed fMRI signal is the sum of the corresponding processes,
translated according to their starting times.

Formally, aHidden Process Modés$ a collection of time series (also called hidden processes):
Py, ..., Pgx. For each procesB, with 1 < k < K, denote byP.; the value of its corresponding
time series at time after the process started. Also, I8t be the value of the target variahlé at
timet. If processP; starts at timey, then a Hidden Process Model is predicting figusing the
following distribution:
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X~ N(Z Pk(tfthrl)a 02)
k

whereo? is considered to be the variance in the measurement and it is kept constant across time.
For the above formula to make sense, we consitlee= 0 if ¢ < 0. While in the real world it may
happen that the subject is presented with the same kind of stimulus multiple times across time, here
we make the assumption that each process is active at most once within each examples.Figure
shows an example of a Hidden Process Model for the fMRI activity in a voxel in the brain during a
cognitive task involving reading a sentence and looking at a picture.

In an fMRI experiment, the subject may perform the same cognitive task multiple times and
that leaves us with multiple observations abd&ijt the value ofX at timet. In our framework
we denote byX,,; the value ofX; and byt,,; the starting point of proces, in examplen in the
dataset of observations abalit where each observation tracks the valueXohcross time given
a combination of processes that can start at any timesNLie¢ the total number of observations.
Now we can write:

Xnt ~ N(Z Prtt—t,+1) o?)
%

While not entirely necessary for our method to work, several assumptions will allow us to make
a more compact presentation of Hidden Process Models, based on some characteristics of the fMRI
dataset that we are going to use in ChaBieFirst, we assume that is tracked across the same
time length in each observation. L€&tbe the length of every such observation (trial). Since we
are not modelling what happens wher T', we can also consider that each process has léhgth
Second, in our fMRI dataset, we know in advance when the stimuli are presented and therefore in
our model we assume thaj, the starting times of the processes, are fully observable.

The same stimuli may influence the activity in multiple voxels of the brain during one cognitive
task. For example, looking at a picture may activate many voxels in the visual cortex. The activation
in these voxels may be different at each given point in time. Intuitively, that means the same stimulus
may produce different hidden processes in different voxels. However, certain groups of voxels that
are close together often have similar shape time series, but with different amplitude. In this case,
we believe it is reasonable to assume that the underlying hidden processes corresponding to these
voxels are proportional to each other. Experiments performed in Ch@pté prove that this
assumption will help learn better models than the ones that choose to ignore it.

In the above paragraph we explained intuitively that sometimes it makes sense to share the same
base processes across several time-varying random variables, but allow for different scaling factors.
Formally, we say that time-varying random variabs . .., X share their correspondittjdden
Process Model# there exist base processEs, . . ., Pk and constantg] for 1 < v < V such that:

76



“Picture”

(L) t-t,

X, ~N@By,y +B

t 2t ,)°

fMRI Signal

Figure 6.1:A Hidden Process Model for the cognitive task when a subject is asked to read a sentence and
to look at a picture. In half of the observations, the sentence is presented first, then the picture is shown.
In the other half of the observations, the picture is presented first. The activity in a givenXdrethe

brain is modelled as a Hidden Process Model with two processes: "Sentdh¢aind "Picture” (). Each
observation has length = 32 fMRI snapshots (16 seconds) and the same holds for both processes. This
figure shows an observation where the sentence is presented at; timel and the picture is shown at

to = 17 (8 seconds after;). After timet,, the two processes overlap and the fMRI sighal is the sum

of the corresponding values of the two processes P(& o2) measurement variance. The blue dotted line
represents the fMRI activity that would happen after tifhe
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and the values of different variablés’ are independent given the parameters of the model. Here
o? represents the variance in measurement which is also shared across these variables.

Next we will study how to efficiently perform Maximum Likelihood estimation of the param-
eters of the variableX!, ..., XV, assuming that they share their corresponding Hidden Process
Model parameters as described above. We make the additional assumption that we know the start-
ing times and identities of the hidden processes (HPMs have been studied under this assumption in
[Dal9g). The parameters to estimate are the base process parafigterserel < k£ < K and
1 <t < T, the scaling constantg (one for each variabl®” and procesg) wherel < v <V and
the common measurement variance Let P = {Py; |1 < k < K, 1 <t < T} be the set of
all parameters involved in the base processes and let{c} |1 < k < K, 1 < v < V} be the
set of scaling constants. We remind the reader Maepresents the number of observations. The
log-likelihood of the model is given by:

(P,C.o) = ~20 log(am) ~ NTV -log(o) — 5y - 2wy~ 32 e} - Pugporg, o0’
n,t,v k

It is easy to see that the value @, C') that maximizes is the same for all values of. There-
fore, in order to maximizé, we can first minimizé' (P, C) = >, , ,(zp, — > p ¢} - Pk(t—tzk+1))2
with respect ta P, C') and then maximizé with respect tor based on the minimum point faf.
One may notice that is a sum of squares, where the quantity inside each square can be seen as a
linear function in both? andC'. Therefore one can imagine an iterative procedure that first min-
imizes with respect td®, then with respect t@' using the Least Squares method. Once we find
M =minl'(P,C) =I'(P,C), the value ofr that maximizes is given bys? = 2. This can be
derived in a straightforward fashion by enforci%(ﬁ C, ) = 0. With these considerations, we
are now ready to present an algorithm to compute Maximum Likelihood estin(a?g)ﬁa o) of the
parameters in the shared Hidden Process Model:

Algorithm 6.3.1. (Maximum Likelihood Estimators in a Shared Hidden Process Model)
Let X be the column vector of value§,. Start with a random guess”, C') and then repeat Steps
1 and 2 until they converge to the minimum of the functioR, C').

STEP 1.Writel(P,C) = ||A- P — X||> whereA is a NTV by KT matrix that depends on current

estimatorC' of the scaling constants. Minimize with respecftaising ordinary Least Squares to
geta new estimatoP = (AT - A)~1. AT . X,
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STEP 2Writel(P, () = ||B-C — X||?> whereB is a NTV by KV matrix that depends on current
estimatorP of the base processes. Minimize with respec tasing ordinary Least Squares to get
anew estimato€' = (BT . B)~'. BT . X.

. , "(P.C
STEP 3.0nce convergence is reached by repeating the above two ste@%,ie%.

It might seem that this is a very expensive algorithm because it is an iterative method. However,
we applied it in our experiments of modelling the fMRI signal during a cognitive task and it turns
out it usually converges in 3-5 repetitions of Steps 1 and 2. We believe that the main reason why
this happens is because at each partial step during the iteration we compute a closed form global
minimizer on eithet? or C instead of using a potentially expensive gradient descent algorithm. In
Chaptei8 we will experimentally prove the benefits of this algorithm over methods that do not take
advantage of parameter sharing assumptions, i.e. the shared Hidden Process Models corresponding
to neighboring voxels in the brain when the subject is performing a cognitive task.
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Chapter 7

Formal Guarantees

In the Introduction, we motivated that taking advantage of Parameter Domain Knowledge can be
beneficial to learning because, intuitively, it has the effect of lowering the variance in parameter
estimators by shrinking the degrees of freedom of the model. In this chapter we provide a formal
proof of this fact on Parameter Sharing within One Distribution type of domain knowledge, which
was introduced in sectic#.2 In order for our proof to work, we make the assumption that the
true distribution factorizes according to the given Bayesian Network structure and that it obeys the
parameter sharing assumptions. The second interesting result presented in this chapter will give
theoretical guarantees in the case when the Parameter Domain Knowledge provided by the expert
might not be entirely accurate. We will prove this result on another type of domain knowledge:
Parameter Sharing across Multiple Distributions, first introduced in sedtibnWhile we only
investigate two different types of Parameter Domain Knowledge, we strongly believe that the same
kind of formal guarantees describe all other types of domain knowledge presented in this thesis.

7.1 Variance Reduction by Using Parameter Domain Knowledge

Assume we want to learn a Bayesian Network in the case when a domain expert provides Param-
eter Domain Knowledge constraints specifying that certain parameters appear multiple times (are
shared) within a conditional probability distribution (see secfid). Each conditional probability
distribution in the Bayesian Network can have its own such constraints. Also, the case when all
parameters are distinct within one such distribution may be seen as a particular case of Parameter
Sharing within One Distribution, where each parameter is shared exactly once.

We have two ways to perform Maximum Likelihood parameter learning in the above Bayesian
Network. First, we may choose to ignore the domain knowledge given by the expert and use The-
orem2.2.1to estimate parameters. A second option is to incorporate the domain knowledge in the
learning method, in which case we can use the results described in S&&ichne would intu-
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itively expect that taking advantage of the domain knowledge provided by the expert would reduce
the variance in parameter estimates when compared to the first approach.

Let us first derive the variance in standard Maximum Likelihood parameter estimators in a
Bayesian Network, ignoring any additional Parameter Sharing assumptions:

Lemma 7.1.1. Let # be the true parameters of a Bayesian Network describing a distribution
that factorizes according to that network. Létbe the maximum likelihood estimators of these
parameters as given by Theor@2.1. Then the variance of}ijk is given by:

A 1
Var(,] = 0,5 - (1 —0:) - E[m|Nik # 0]

Proof. According to Theorer.2.], él.jk = ]X/: and it is well defined conditioned on the fact that
N, # 0. To compute the variance of a random variailave use:Var(X) = E[X?] — E?[X].

Given thaw”k = P(X; = x;j|PA; = pa;;), it follows that the number of times that we are

going to observeX; = z;; in b independent trials wheR A; = pa;;, is a binomial random variable

P(N;jk|Nir = b) ~ Binomial(b,0, ). Using this observation, let us first compute the expected

X ' Vigk
value off, ;;:
~ z ik
a
= Z 7 P(Niji = a, Nix = b| Ny, # 0)
b>1,0<a<b
a
b>1,0<a<b
a b a b—a
- ¥ 5 )0 (1= 0,50 - PNy = b Nig # 0)
b>1,0<a<b
a b a —a
= Y P(Nyp=bNip #0)- Y b <a) fik (1= Oy)"
b>1 0<a<b
b—1 a b—a
= ZP ik = b| Ny # 0) - Z a—1 ik (1= 04)
b>1 1<a<b
b— o —1)—(a—
_ ZP(Nik = b|Njj, #0) - %k ) Z (a B 1)9%1 (1-— eijk)(b —(a—1)
b>1 1<a<b
= z]k ZP k—b‘Nzk#O) ( z]k+(1_0ijk))b71
b>1
b>1
= Oy
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The formula forE[§2

+;x] can be computed in a similar fashion:

2
%] = Bt |Ny £0
ik
a2
b>1,0<a<b
az [b\ ., b—a
b>1 0<a<b
1 b - 1 a b—a
b>1 1<a<b
Oiin b=1Y a1 (b=1)—(a-1)
= Y P(Ny =bNy #0)- b (2 a—1 O+ (1= Biji) +
b>1 1<a<b

b—2\ ,_ ) (4
+(b_1)'9ijk' Z <a_2>9ijk2'(1_9ijk)(b 2~ 2))

2<a<b

ei'k
= Y P(Ny =b|Ni #£0) - ; (L4 (b—1)- 0
b>1
1 0,
= Oy > P(Nip = DNy, #0) - (5 + 0k — =)
b>1

1
= 0%+ 0 (1= 0,) - E[m|Nik # 0]
Therefore, we havar(0,;,,] = E[02,] — E2[0,;,) = 0,5, - (1 — 0,5,) - E[3=|Naw #0] O

We have just seen how to compute the variance in standard Maximum Likelihood estimators
in a Bayesian Network. The following lemma gives us a way of calculating the variance in Maxi-
mum Likelihood parameter estimators that take advantage of parameter sharing constraints that hold
within one conditional probability distribution:

Lemma 7.1.2. Assume a domain expert is specifying constraints of the fawmithin distribution
Xi|PA; = pa, parametersf,; ,,...,0,; , are shared (have equal value)” If we computeﬁ, the
Maximum Likelihood estimators that take advantage of this domain knowledge via Th&8rdém

then the variance i is given by:

A 1
Var[eijtk] = gijtk (

S

1
= Oijer) - E[m!Nzk A0 V1<t<s

Proof. When the expert reveals us that true probability distribution described by the Bayesian Net-

works satisfie®,; , = ... =0,; ,, we denote byV;;, . the sum of observed counts corresponding
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to these parameters i.&;;, . = > ;<;<, Nijk- In other words,N;;, ; is the number of times
Xi € {xij,, ..., 245, whenPA; = p;i;. Theoren4.3.1yields the following Maximum Like-
lihood estimator:éijtk = ]\if]{,kk Given thatP(X; € {@jy,..., 2, }[PA; = paix) = 50,5,
we conclude that, in independent trials in whicl?A; = pa, is observedN;;, x|Ny. = bis a
binomial variable distributed®(N;j, .x|Nix = b) ~ Binomial(b, sb,;,,). With this observation,
let us first compute the expected value981‘ :

. Nij, .
B0l = El . ]}\, | Nix, # 0]
a
= Y. 3 PWi_k=a,Nix =bNix #0)
b>1,0<a<b
a
= 3 P Wik = alNig = b) - P(Nik = b|Niy; # 0)
b>1,0<a<b
a b b—a
- Z s-b \a (503,6)® - (1= 50;5,)"" - P(Nig = b| Nig # 0)
b>1,0<a<b
1 a (b
= 5 - PNk =b|Ni #0) - ) 3 (a> (56:,0)" - (1 = 50;5,)° ¢
b>1 0<a<b
1 b—1 —a
= s : ZP(Nzk = b|N2k’ 7é 0) : Z a— (Sezjtk) ’ ( Sel]tk)
b>1 1<a<b
1 _
= 5 D P(Nig = bINig #0) -5 - O - (50,55, + (1= 50,55,)" ™"
b>1
= Ok~ ZP(Nz‘k = b|Ni, # 0)
b>1
0ijiok

Using the same approach, we can compute the formulﬂéfgk]:

2
BIi2,) = Bl Ny £0
ijk - 2 N2 ik
ik
CL2
= > 2. P Wik = a, Ny = b|Nig, # 0)
b>1,0<a<b
1 a® b
= ? ZP ik — b‘N’Lk 7& 0) Z b7 : a (Sezjtk) : ( Sez]tk)
b>1 0<a<b
1 b1 )
= ? Z P ik = b|NZk # 0) b Z a- a — 1 (ngjtk) ' ( Seljtk)
b>1 1<a<b
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‘91th
= Z P ik — b|le 7& 0) (1 + (b ) S‘gzgtk)

b>1

0 1 S0, .
— ijk ijek
- s ZP ik = b|le’ # O) ( + SGZth b )

b>1

) 1 1

= Ok T 0,k (g = Oijur) - E[m\Nik # 0]
Therefore, we have ar(0,;, ] = E[07,,] — E*[0;;,] = 0,5, (5 = 03,0 - El g [Niw # 0] O

Combining the above two lemmas, we obtain the following theorem:

Theorem 7.1.1. Assuming a domain expert can specify parameter sharing assumptions that take
place inside the conditional probability distributions of a Bayesian Network, the Maximum Like-
lihood estimators that use this domain knowledge as computed with ThdoBelrhave lower
variance than standard Maximum Likelihood estimators computed with Theagd) ignoring
the domain knowledge. More specifically, for one param@ig%rthat is shareds > 1 times within
P(X;|PA; = pa;), denote by?ML the Maximum Likelihood estimator that ignores domain knowl-
edge and bﬁwk the Maximum Likelihood estimator that uses the parameter sharing assumptions
specified by the expert. We have the following identity:

1 1
Var[emk ] Var[ez]k] 01]]{ ( g) ’ E[Nk ‘le’ 7& 0] >0

Proof. From Lemmeé/.1.land Lemm&/.1.2we obtain:
A 1
Var[0E] =0, - (1= 0,) - E[NTk|Nik # 0]
and

1 1
V(ITWUk} 0zjk ( - ezgk) ’ E[Nik‘Nzk 7é 0]

The difference in variance is then given by:

1 1
Var[emk ] Va'r[ez]k] 01]]{ ( g) ’ E[N7k|Nzk: 7& 0] >0

with equality whens = 1 i.e. §,;, is not shared multiple times. O
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7.2 Performance with Potentially Inaccurate Domain Knowledge

Sometimes it may happen that the Parameter Domain Knowledge provided by an expert is not
completely accurate. In all our methods so far, we assumed that the domain knowledge is correct
and therefore errors in domain knowledge can prove detrimental to the performance of our learned
models. In this section we investigate the relationship between the true, underlying distribution of
the observed data and the distribution estimated using our methods based on Parameter Domain
Knowledge. In particular, we come up with an upper bound on how well our estimated model can
perform given a set of potentially incorrect Parameter Domain Knowledge constraints. While in the
previous section we illustrated the main result via Parameter Sharing within One Distribution type
of domain knowledge, here we will prove our results for the general Parameter Sharing framework
described in sectiod.7. In this type of domain knowledge, a parameter can be either shared once
in every conditional probability distribution in a given set or it is local within its corresponding
probability distribution. Shared parameters are also called global parameters.

In order to present these results, we will follow the notations in se@tianAssume an expert
specified a set of Parameter Sharing assumptions across a set of conditional probability distribu-
tions in our Bayesian Network as described above. Let us introduce the notitmefProba-
bilistic Counts(TPC)SupposeP is the true distribution from which data is sampledg|lf, is the
local parameter of the graphical model that is supposed to dese(ile = z|PA(X) = pa),
then letT'PCy, = P(X = z,Pa(X) = pa). If 0, is the global parameter of the graphical
model that is supposed to describe the setliegedlyequal parameter§P (X, = x1|PA(X;) =
pai),...,P(Xs = x| PA(Xs) = pas)}, let TPCy, = >°7 | P(X; = z;, PA(X;) = pa;). Let
P* be the distribution that factorizes according to the structure provided by the expert and has pa-
rameters given by theorem?7.1where the observed counts are replaced byTtiie Probabilistic
Counts

Theorem 7.2.1. P* is the closest distribution t&(in terms of K L( P, -)) that factorizes according
to the given structure and obeys the expert’s parameter sharing assumptions.

Proof. Let @ be such a distribution. Minimizingl (P, (0) is equivalent to maximizing _;, P(d) -
logQ(d). Letd be the set of parameters that describe this distribuffonAfter breaking the
logarithms into sums of logarithms based on the factorization given by the provided structure, our
optimization problem reduces to the maximizatioryofl" PCyy, - log 0 ;. + > TPCicy, - 1og ;..

This is exactly the objective function used in theo#m.1. This is equivalent to the fact that*(see

the definition above) minimize& L(P, -) out of all the distributions that factorize according to the
given structure and obey the expert’s sharing assumptions. O
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Theorem 7.2.2.With an infinite amount of data, the distributidghgiven by the Maximum Likeli-
hood estimators in Theorefn?7.1converges taP* with probability 1.

Proof. Assume the number of data points in a dataset sampled fragrdenoted by:. According
to the Law of Large Numbers, we hau'ennﬁoo% =TPCjy andlimnﬂw% = TPCy, with

probability 1. This is equivalent to the fact tiieconverges td* with probability 1. O

Corollary 7.2.1. If the true distributionP factorizes according to the given structure and if the
parameter sharing provided by the expert is completely accurate, then the distritigoren by
the Maximum Likelihood estimators in Theordrid.l.converges ta® with probability 1.

Again, we mention that we analyzed the formal guarantees presented in this chapter using only
two different types of Parameter Domain Knowledge. We are confident that these results can be
extended to all other types of Parameter Domain Knowledge for which we derived closed form
solutions in this thesis.
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Chapter 8

Experiments

In this chapter we present experiments that demonstrate the benefits of Bayesian Network models
that take advantage of Parameter Domain Knowledge when compared to similar models which
choose to ignore this kind of knowledge. We present experiments on both synthetic and real world
data. The purpose of creating artificial data is threefold. First, it allows us to control and know
the Parameter Domain Knowledge involved in the model, in the absence of a Domain Knowledge
expert. Second, we are able to assess the performance of our models in terms of KL divergence from
the true underlying distribution, which would be impossible in a real world situation. Finally, we
can control and study the effect of variations of different parameters in the true distribution (e.g. the
fraction of parameters that are truly shared) as well as the effect of varying the size of the training
set. However, for real world data, we do not have access to the true underlying distribution and
therefore we cannot compute the KL divergence. In this case we will assess our models using the
Average Log Score described in ChapzrA reason to use this measure is that, according to the
Law of Large Numbers, this score converges to the negative of the Cross-Entropy between the true
and estimated distributions when the number of test examples goes to infinite. Another reason to
use the Average Log Score is that it is proportional to the Log-Likelihood of the test data.

Previously published experiments involving learning with Module Networks, HMMs, DBNs or
Context Specific Independence all support the theory presented in this thesis since they are particular
cases of our Parameter Sharing Framework. However, the parameter sharing assumptions in these
earlier models are at the level of either entire conditional probability table or entire conditional prob-
ability distribution. In the first two sections of this chapter we present experimental results showing
the benefits of incorporating finer-grained parameter sharing assumptions when training Bayesian
Networks on a task of learning a discrete probability distribution and on a task of modelling email
coming from various sources. Third section will show how parameter sharing in the case of Hidden
Process Models can help to better describe the fMRI signal associated with a cognitive task.
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8.1 Synthetic Data - Estimating Parameters of a Discrete Variable

In this section we present experiments on one of the simplest forms of Parameter Domain Knowl-
edge: Parameter Sharing within One Distribution. The purpose of these experiments is purely
demonstrative and more complicated scenarios will be presented in the following sections of this
chapter.

8.1.1 Experimental Setup

Our task is to estimate the set of parameters of a Bayesian Network which consists of one discrete
variableX. We assume that the distribution &f shares some parameters and that the sharing can
be provided by a domain expert. Without loss of generality, we may consider that the Parameter
Domain Knowledge states that the parameters to estimate are given=by6,,...,0, } where
eachd, appears irk; > 1 known places in the distribution of.
Let us see how our synthetic dataset was created. First, we randomly generated a distribution
T (the "true distribution”) that exhibits parameter sharing. This distribution described a vakable
with 50 values, which had a total of roughip’% shared parameters i.@_, ki ~ >, _; ki.
Each distinct parameter appeared at most 5 times. We start with an empty distribution and generate
a uniformly random parameterbetween 0 and 1. Then we generate a random integetween 2
and 5 and sharein the firsts places of the distribution. We continue to generate shared parameters
until we reach 2550% of 50 parameters). After that, we generate the rest of parameters uniformly
randomly between 0 and 1. After all 50 parameters are obtained using this procedure, we normalize
to yield a valid probability distribution. Once this distribution was generated, we sampled it to
obtain a dataset of 1000 examples which were used subsequently to perform parameter estimation.
In our experiments we compare two models that estimate the parameters of distribotien
X. One is a standard Bayesian Network (STBN) that is learnt using standard Bayesian Networks
estimators from Theore®@.2.1. The second model (PDKBN) is a Bayesian Network that is learnt
by using the results id.3assuming the correct parameter sharing was specified by an oracle. While
STBN needs to estimatg " , k; parameters, PDKBN only needs to estimatparameters. To
deal with potentially zero observed counts, we used priors on the parameters of the two models and
then perform Maximum Aposteriori estimation. For STBN we introduced a Dirichlet count of 2 for
each parameter while for PDKBN we used a Constrained Dirichlet count-pfl for each distinct
parametep,.

8.1.2 Results and Discussion

We performed parameter estimation of models STBN and PDKBN by varying the number of ex-
amples in the training set from 1 to 1000. Since we were using synthetic data, we were able to
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assess performance by computing KL(T,STBN) and KL(T,PDKBN), the KL divergence from the
true distributionT .

0.25
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Figure 8.1:KL divergence of PDKBN and STBN with respect to correct model T.

Figure8.1 shows a graphical comparison of the performance of the two models. It can be
seen that our model (PDKBN) that takes advantage of Parameter Domain Knowledge consistently
outperforms the standard Bayesian Network model. The difference between the two models is
higher when the learning is performed from a smaller number of examples. The highest observed
difference between KL(T,STBN) and KL(T,PDKBN) was 0.05 and was observed when the two
models were trained using 30 examples. As expected, when the amount of training data increases,
the difference in performance between the two models decreases dramatically, since both STBN
and PDKBN are unbiased models that will eventually converge to the true distriliition

Training Exampleg KL(T,PDKBN) | Examples needed by STBN
5 0.191 16
40 0.094 103
200 0.034 516
600 0.018 905
650 0.017 > 1000

Table 8.1:Equivalent training set size so that STBN achieves the same performance as PDKBN.

To get a better idea how beneficial Parameter Domain Knowledge is in this case, we want to see
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"how far STBN is behind PDKBN"For a model PDKBN learnt from a dataset of a given size, this
can be measured by the number of examples that STBN needs to be learnt from in order to achieve
the same performance. Tal8€l provides these numbers for several training set sizes for PDKBN.
For example, STBN uses 16 examples to achieve same KL divergence as PDKBN at 5 examples,
which is a factor oB.2 (the maximum observed) increase in the number of training samples required
by STNB. On the average, STBN need86 times more examples to perform as well as PDKBN.

As mentioned previously, this section was intended to be only a proof of concept. Next we
will see experimental results on much more complex tasks involving multiple random variables and
Parameter Domain Knowledge constraints across several conditional probability distributions.

8.2 Semi-synthetic Data - Email Experiments

Automatic modelling of email documents is a problem of considerable interest, and has been studied
as a means of automatically sorting email into a user’s email subfolders, or into other topical cate-
gories such as “email spamSDH9¢]. Given a set (population) of email, one natural way to model

it is by using a Bayesian Multinetwork where each distinct emaihoris regarded as a generator

of email from a different distribution, forming a different subpopulation. This is reasonable because
different people use somewhat different vocabularies and figures of speech. At the same time, there
are many content words that are shared (used in a similar proportion) by all authors when emails
address specific topics. The conditional probabilities of these words given that the email is about a
certain topic should therefore be specified as globally shared parameters across the subpopulations
in the Bayesian Multinet.

8.2.1 Experimental Setup

In our experiments we generated synthetic data that captures the characteristics of a real email data
set: the PW CALO email corpus, produced by people in a role-playing game at SRI. During four
days, a group of six players assumed different work roles (e.g. project leader, finance manager,
researcher, administrative assistant, etc), and communicated via email. The number of emails sent
per author varied from 19 to 52, forming a total corpus containing 215 distinct emails. One common
task performed through these email exchanges was to setup a meeting and so the emails were man-
ually labelled in emails about or not about meetings. Of the 215 emails, 68 were about meetings,
with the per-author fraction of meeting emails varying from 0.17 to 0.47. After eliminating stop
words, the entire email corpus contained a vocabulary of 1070 distinct words. With few exceptions,
the emails contained less than 150 words each.

Consider the task of scheduling a meeting. In this case, each email author may have a different
style of wording meeting invitations. Some authors may use more formal wording (“would you
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please meet with me ..."), whereas others may use a different more informal phrasing (“let’s get
together ...”). Given these different styles, it is reasonable to model incoming email in terms of a
Multinetwork of author-specific Bayesian networks. Notice there are certain words whose probabil-
ity given a meeting email is likely to be globally shared across users, such as the words “monday”
or “tuesday”. The conditional probabilities of these words should therefore be specified as globally
shared parameters across the Bayesian Multinetwork.

Based on the corpus mentioned above, we generated several artificial datasets. Each data point
consists of a triple: Author, Email and Topic/Clas$. The Topic says whether or not the email is
about a meeting. In all experiments we generated simulated email from six authors, using the same
prior probabilities of an email belonging to an author as in the PW CALO corpus, and generating
emails from each author to match that author’s topic priors in this corpus. For each given author
and topic, we generate emails according to a "Bag of Words” probability model, where each email
contains between 0 and 150 words (to be consistent with the data observed in PW, even though we
are not including stop words in our artificial dataset). The words are chosen from a vocabulary of
1070 words (same size as in PW). The word given topic probability models are generated randomly
and differ from user to user, but also have some fraction of parameters in common (the so called
shared parameters in our framework). The fractfoof shared parameters was varied from 0 to
1. First we uniformly randomly pick arf fraction of the word given topic parameters that are
going to be shared across all email authors. We uniformly at random generate the word given topic
probability distributions for the first author (we generate randomly parameters between 0 and 1
and then normalize to obtain valid probability distributions), then we copy the shared parameters
across the distributions corresponding to all authors. After this step, for all authors except the first
one, the non-shared (local) parameters are generated uniformly randomly between 0 and 1 and
then normalized so that, when summed up with the shared parameters, they yield valid probability
distributions.

In our experiments we compare three models. First, a General Naive Bayes model (GNB)
learned from all training examples. Second, a Bayesian Multinet (SSNB) in which each compo-
nent network is a Naive Bayes model, and for which an oracle has indicated which parameters are
shared when generating the data. Finally, a Bayesian Multinet (PSNB) identical to SSNB, but with
no parameters shared among component networks. Note all three models are essentially Bayesian
Multinets, conditioned on the email author which is observed in the header of the email. Each com-
ponent network in each Bayes Multinet is a full naive Bayes model including both the Class/Topic
variable and the word features in the email. One can think of GNB as a Bayesian Multinet where
the component Bayes nets are copies of the GNB learned model. The only difference among the
three is in the training procedure. They differ in their sharing of parameters (all shared in GNB,
some shared in SSNB, not shared in PSNB). There is also a slight difference in the way we assign
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Dirichlet priors (we train all three models using MAP estimates, as is common when training Naive
Bayes models from sparse data). In the case of GNB the effect is to increase each word count by
one (equivalent to Dirichlet priors with all parameters equal to 2). In the case of PSNB and SSNB,
for each subpopulation the effect is to increase that subpopulation’s word counts by one. For PSNB,
this is equivalent to Dirichlet priors with all parameters equal to 2 for each subpopulation, while for
SSNB this is equivalent to assigning subpopulation-specific Dirichlet priors with parameters equal
to 7 for shared parameters (7 is the number of subpopulations plus 1 in our experiments), and equal
to 2 for local parameters.

Notice also that whereas the GNB model is biased (i.e., unable to represent precisely the distri-
bution used to generate the data), both the SSNB and PSNB models are unbiased. Furthermore, the
SSNB model has the additional benefit that it mixes global and local parameters in modelling the
generating distribution, resulting in lower variance parameter estimates than PSNB.

8.2.2 Results and Discussion

We trained the three different models while varying the number of training examples, and the frac-
tion of word-given-class model parameters that were global (identical across authors). For each
model, we measured both the KL divergerd¢é (7', M) of the learned model/ to the true gener-

ating modell’, and the accuracy of the correspondingeting versus non-meetintassifier.
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Figure 8.2:KL divergence of learned models with respect to correct model T.

Figurel8.2 shows a plot of the KL divergence for each of the three models, as the number of
training examples varies, keeping the fraction of general parameters constant at 0.5. As expected,
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KL(T,*) decreases with increasing training set size for all three models ¢hstands for any
possible model we are studying). However, SSNB outperforms the other two models across the
entire range of training set size. It dominates PSNB especially at small training set sizes, because its
shared global parameters allow it to produce lower-variance parameter estimates, especially when
data is sparse. The highest difference between KL(T,PSNB) and KL(T,SSNB) was 0.045 and was
observed for a training set of 160 emails. SSNB dominates GNB especially with larger training sets,
because it is capable of representing the correct model, whereas GNB considers a strictly smaller
model class that does not contain the correct model. The highest difference between KL(T,GNB)
and KL(T,SSNB) was 0.092 and was observed for a training set of 5000 emails. Note that asymp-
totically, as the training set size approaches infinity, the SSNB and PSNB models will both converge
to the correct model, whereas GNB will not.

We also study the impact of varying the fraction of global parameters in the true underlying
probability model from 0 to 1, while holding the training set size constant at 1000 emails. Here the
KL(T,PSNB) is essentially constant as the fraction of true global parameters varies, because PSNB
does not take advantage of parameter sharing. In contrast, both GNB and SSNB improve con-
siderably with an increasing fraction of global parameters. However, GNB performs poorly when
parameters are not shared, because it assumes all parameters are shared. Again, SSNB dominates
the other two methods, as it can mix global and local parameters in its model.

In addition to KL divergence, we also considered classification accuracies of the models, again
varying training set size and holding the fraction of global parameters at 0.5. Training accuracy
was measured over a set of 10,000 examples which was not touched by training. The relative per-
formance of GNB, SSNB, and PSNB followed the same trends as when measuring KL divergence,
although the margins separating the methods were less dramatic. In fact, accuracies of all three
methods were quite high, reaching .978, .988, and .985 respectively when training on 5000 exam-
ples. Similar trends with lower accuracies were observed when using a reduced number of words
per document. It is well known that the naive Bayes algorithm can in some cases achieve high
accuracies even when the underlying generative model of the data is inac@Raf} [

Another interesting way to analyze the results is to look at the training set size needed by PSNB,
the model that does not use Parameter Domain Knowledge, to achieve the same KL divergence or
accuracy as the SSNB model. TaBl€ shows these numbers for several training set sizes used by
model SSNB. For example, PSNB uses 670 examples to achieve same KL divergence as SSNB at
350 examples, which is a factor b1 (the maximum observed) increase in the number of training
samples needed by PSNB. As an another example, PSNB uses 1300 examples to achieve the same
accuracy as SSNB at 550 examples, which is a facta:.3#f (the maximum observed) increase
in training set size for PSNB. On the average, PSNB nédifstimes more examples than SSNB
to achieve the same KL divergence and it neeéd§ times more examples to achieve the same
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Training | KL(T,SSNB) | Examples needed Accuracy of SSNB| Examples needed
Examples by PSNB by PSNB

100 0.209 180 0.937 180

350 0.097 670 0.976 620

550 0.074 970 0.981 1300

1000 0.049 1690 0.983 2100

3000 0.018 4790 0.987 > 5000

Table 8.2:Equivalent training set size so that PSNB achieves the same performance as SSNB.

accuracy. Note that it does not make sense to perform a similar comparison between SSNB and
GNB because, on the long run, GNB can never catch up $&H B in terms of KL divergence.

To summarize, taking advantage of Parameter Domain Knowledge on this email modelling task
had not only the effect of obtaining much better estimators for small training set size, but also had
the effect of reducing by a big factor the number of examples that would otherwise be needed by a
model which does not use any Parameter Domain Knowledge to achieve the same performance.

8.3 Real World Data - fMRI Experiments

Functional Magnetic Resonance Imaging (fMRI) is a technique for obtaining three-dimensional im-
ages of activity in the brain throughout time. More precisely, fMRI measures the ratio of oxygenated
hemoglobin to deoxygenated hemoglobin in the blood with respect to a control baseline, at many
individual locations within the brain. This is often referred to as the blood oxygen level dependent
(BOLD) response. The BOLD response is taken as an indicator of neural activity.

An fMRI scanner records a 3D image of the brain as a collection of parallel slices. Each such
slice contains a collection of small cells, called voxels. A voxel has a resolution of few tens of cubic
milliliters and can contain hundreds of thousands of neurons. In our dataset, there are eight parallel
slices for each fMRI snapshot and the dimension of each voxel is few tens of cubic millimeters.
Typically, there are ten to fifteen thousand voxels in a human brain. However, only a part of them
are available in our dataset.

During an fMRI experiment, a subject is asked to perform several trials of a cognitive task
while the fMRI scanner is monitoring the BOLD signal. It is common for a trial to last few tens
of seconds, a shapshot of the brain being captured once or twice per second. A common use for
the data collected in these trials is to come up with regions of the brain that are active during the
performed cognitive task. A slightly different approach was takevid2, Mit03, IMit04], where
the authors used the fMRI signal to classify different cognitive states in which the subject may be at
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different points in time. As is the case with the Naive Bayes classifier, it is well known that models
that perform very well on a classification task may represent poorly the underlying structure of the
data.

As opposed to the approaches above, in this section we present a generative model of the activity
in the brain during a cognitive task based on parameter sharing assumptions for the Hidden Process
Models (see sectioBl.d) that describe the fMRI signal. These parameter sharing assumptions are not
readily available, but we successfully employ the methods described in s8dimnautomatically
discover clusters of voxels that can be learnt together using Shared Hidden Process Models. We
show that our methods far outperform the baseline Hidden Process Model that is learnt on a per
voxel basis.

8.3.1 Experimental Setup

We experimented using tH&tarPlusdataset [CJK99). The StarPlus experiment was designed to
engage several different cortical areas, in order to look at their interaction. In this dataset, each
subject first sees a sentence(semantic stimulus) for 4 seconds, such as “The plus sign is above on
the star sign.”, then a blank screen for 4 seconds, and finally a picture(symbol stimulus) such as

+

*

for another 4 seconds. At any time after the picture was presented, the subject may press a button
for “yes” or “no”, depending on whether the sentence matches the picture seen or not. The subject
is instructed to rehearse the sentence in his/her brain until the picture is presented rather than try to
visualize the sentence immediately. The second variant switches the presentations of sentences and
pictures, and the instruction is to keep the picture in mind until the presentation of the sentence.

In this dataset, the voxels are grouped in 24 ROIs (Regions of Interest, defined based on brain
anatomy), each voxel having a resolution of 3 by 3 by 5 millimeters. A snapshot of the brain is taken
every half second. In this dataset there are three main condifization (the subject is looking at
a point on the screen3entence followed by pictusndpicture followed by sentenc&Ve have 10
trials infixationand 20 in each of the other two conditions. For each trial, we kept 32 (16 seconds)
snhapshots of the brain.

Our goal is to come up with a model that best explains the activity in the brain when a subject is
either reading a sentence or looking at a picture. After we discard the fixation trials (they contain no
information relevant to our task), we are left with a total of 40 examples per subject, each example
consisting of activity generated by both stimuli. While there is data available for multiple subjects,
there are difficulties in merging this data for the purpose of parameter estimation. This happens
because different subjects have different brain shapes and because different subjects exhibit different
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intensity in activity when presented with the same cognitive task. Therefore we limited to analyzing
data separately for each subject. The results reported in this section are all based on the same subject
(04847). For this particular subject, our dataset tracked the activity of 4698 voxels.

We consider that the activity in each voxel is described by a Hidden Process Model with two
processes, corresponding to the two stimulsemtencg@rocess and Ricture process. The starting
time of these processes are known in advance, given the structure of the trials described above. In
half of the trials, theSentence@rocess starts at timeand in the other half it starts at tim&. The
same holds for th@icture process. We make the assumption that the activity in different voxels is
independent given the hidden processes corresponding to these voxels.

In our experiments we compare three models. Since the true underlying distribution is not
available in this case, we use the Average Log Score (see s&f0 to assess performance.
Because the data is scarce, we can not afford to keep a held-out testing set. Therefore we employ
a leave-two-out cross-validation approach to estimate the performance of our models. First model
StHPM which we will consider as a baseline, consists of a standard Hidden Process Model learnt
independently for each voxel. The second mdsleHPMis a Hidden Process Model, shared for
all the voxels in an ROI. In other words, all voxels in a specific ROl share the same shape hidden
processes, but with different amplitudes (see Se@i&ifor more details) ShHPMis learned using
Algorithm/6.3.1.

With only 40 training examples, the task of estimating the parameters can prove more than
challenging. Therefore we would definitely benefit from an expert's domain knowledge saying
which groups of neighboring voxels are described by a Shared Hidden Process Model. We have seen
thatShHPMmakes the assumption that each ROl is a Shared Hidden Process Model. However, this
assumption might not always be true. In the absence of a domain expert, we propose an algorithm
which allows us to both automatically discover clusters of voxels that form a Shared Hidden Process
Model and estimate the corresponding parameters. This third ntee¢iPM) uses a nested cross-
validation hierarchical approach to both come up with a partition of the voxels in clusters that form
a Shared Hidden Process Model and estimate its corresponding performance on examples not used
in training:

Algorithm 8.3.1. (Hierarchical Partititioning and Hidden Process Models learning)

STEP 1. Split the 40 examples in a set of 20 follls= {F7, ..., Fy}, each fold containing one
example where the sentence is presented first and an example where the picture is presented first.

STEP 2.Forall 1 < k < 20, keep foldF}, aside and learn a model from the remaining folds using
Steps 3-5.
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STEP 3. Start with a partition of all voxels in the brain by their ROIs and mark all subsetdats
Final

STEP 4. While there are subsets in the partition that &tet Final take any such subset and try

to split it using equally spaced hyperplanes on all three directions (in our experiments we split
each subset in 2 by 2 by 4 smaller subsets). If the cross-validation Average Log Score of the model
learnt from these new subsets using Algorii 1(based on foldg" \ F}) is lower than the cross-
validation Average Log Score of the initial subset for foldgin F}, then mark the initial subset
asFinal and discard its subsets. Otherwise remove the initial subset from the partition and replace
it with its subsets which then mark Biet Final

STEP 5. Given the partition computed by STEPS 3 and 4, based on the 38 data pokits iy,
learn a Hidden Process Model that is shared for all voxels inside each subset of the partition. Use
this model to compute the log score for the examples/trialg.in

STEP 6. In Steps 2-4 we came up with a partition for each féld To come up with one single
model, compute a partition using STEPS 3 and 4 based on all 20 folds, then, based on this partition
learn a model as in STEP 5 using all 40 examples. The Average Log Score of this last model can be
estimated by averaging the numbers obtained in STEP 5.

8.3.2 Results and Discussion

We estimated the performance of our models using the Average Log Score (described in section
2.2.7) based on a leave two out cross-validation approach, where each fold contains an example
where the sentence is presented first and an example where the picture is presented first.

Our first set of experiments, summarized in Te8l& compared the three models based on
their performance in the Visual Cortex (CALC). This is one of the ROIs actively involved in this
cognitive task and contains 318 voxels. The training set size was varied from 6 examples to all 40
examples, in multiples of two. As in the previous sections, sharing parameters of Hidden Process
Models proved very beneficial and the impact was observed best when the training set size was the
smallest. With an increase in the number of examples, the performastdH#fMstarts to degrade
because it makes the biased assumption that all voxels in CALC can be described by a single Shared
Hidden Process Model. While this assumption paid off with small training set size because of the
reduction in variance, it definitely hurt in terms of bias with larger sample size. Even though the
bias was obvious in CALC, we will see in other experiments that in certain ROIs, this assumption
holds and it those cases the gains in performance may be pretty big. Also, note that the Average Log
Score computed at small sample size may not be a very reliable measure of the true performance.
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Training | No Sharing| All Shared| Hierarchical Cells

Trials (StHPM) | (ShHPM) | (HieHPM) | (HieHPM)
6 -30497 -24020 -24020 1
8 -26631 -23983 -23983 1
10 -25548 -24018 -24018 1
12 -25085 -24079 -24084 1
14 -24817 -24172 -24081 21
16 -24658 -24287 -24048 36
18 -24554 -24329 -24061 37
20 -24474 -24359 -24073 37
22 -24393 -24365 -24062 38
24 -24326 -24351 -24047 40
26 -24268 -24337 -24032 44
28 -24212 -24307 -24012 50
30 -24164 -24274 -23984 60
32 -24121 -24246 -23958 58
34 -24097 -24237 -23952 61
36 -24063 -24207 -23931 59
38 -24035 -24188 -23921 59
40 -24024 -24182 -23918 59

Table 8.3:The effect of training set size on the Average Log Score of the three models in the Visual

Cortex (CALC) region.

However, it is the best we can do based on a small dataset.

As expected, the hierarchical mod¢ieHPM performed better than bo®tHPMand ShHPM
because it takes advantage of Shared Hidden Process Models while not making the restrictive as-
sumption of sharing across whole ROIs. The highest difference beti#edtPM and StHPMis
observed a6 examples, in which casetHPMbasically fails to learn a "decent” model while the
highest difference betweétieHPMandShHPMhappened with the maximum number of examples,
whenShHPMstarted to be hurt by its bias. As the amount of training data increasesStdftiv
andHieHPM tend to perform better and better and one can see that the difference in performance
given by the addition of two new examples tends to shrink as both models approach convergence.
While with infinite amount of data, one would expetttH PM and Hie H P M to converge to the
true model, atl0 examplesHieHPM still outperforms the baseline modstHPMby a difference
of 106 in terms of Average Log Score, which is an improvement'8f in terms of data likelihood.
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Probably the measure that shows best how much bettitielsPM than the baselin€tHPMis
given by how many more exampl&HPMneeds to achieve the same performancdiasiPM. It
turns out that on the averagetHPMneeds roughly 2.9 times more examples in order to perform
same as well aslieHPMin the Visual Cortex (CALC).

The last column of Tabl8.2 displays the number of clusters of voxels in whidleHPM parti-
tioned CALC. As one may notice, at small sample sitieHPM draws its performance from gains
in variance by using only one cluster of voxels. However, as the amount of data incid¢iasti3M
improves by finding more and more refined partitions. This number tends to stabilize around 60
clusters once the number of examples reaches 30, which means an average of more than 5 voxels
per cluster given that CALC is made of 318 voxels. For a training set of 40 examples, the largest
cluster has 41 voxels while a lot of clusters are made of only one voxels.

The second set of experiments (see T8 describes the performance of the three models on
all 24 ROIs of the brain as well on all the brain. While we have seenSh&tPMwas biased in
CALC, we may see here that there are several ROIs where it makes sense to characterize all voxels
by a Shared Hidden Process Model. In fact, in most of these regitiab|PM finds only one
cluster of voxels. ActuallyshHPMoutperforms the baseline modaeiHPMin 18 out of 24 ROIs
while HieHPM outperformsStHPMin 23 ROls. One may ask how can possiBiyHPMoutperform
HieHPM on a ROI, sinceHieHPM may also represent the case when there is no sharing? The
explanation is that the hierarchical approach can get stuck in a local maximum of the data log-
likelihood over the search space if it cannot improve by splitting at a specific step since it does not
look beyond that split for a finer grained partition. Fortunately, this problem is extremely rare, as
we have seen in our experiments.

Over the whole brainHieHPM outperformsStHPMby a factor ofe! 7?2 in terms of data likeli-
hood whileShHPMoutperformsStHPMonly by a factor ofe%6*. However, the main drawback of
the ShHPMis that it can be biased and therefore our experiments recomHhiiertPM as the clear
winner. Next we are going to give the reader a feel of what the mdatiPM looks like.

As mentioned aboveilieHPM automatically learns clusters of voxels that can be represented
using a Shared Hidden Process Model. Figufshows the portions of these learned clusters in
slice five of the eight vertical slices of the image of the brain taken by the fMRI scanner. Neighboring
voxels that were assigned IblieHPM to the same cluster are pictured with the same color. Note
that there are several very large clusters in this picture. This may be because of the fact that it makes
sense to represent whole ROIs using a Shared Hidden Process Model if the studied cognitive task
does not involve those areas of the brain. However, large clusters are also found in areas like CALC,
which we know is directly involved in any visual activity.

In Figurel8.4we can see the learn&kentencéidden process for the voxels in the Visual Cor-
tex (CALC). Again, the graphs corresponding to voxels that belong to the same cluster have been
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ROI Voxels | No Sharing| All Shared | Hierarchical Cells
(StHPM) | (ShHPM) | (HieHPM) | Hierarchical
CALC 318 -24024 -24182 -23918 59
LDLPFC | 440 -32918 -32876 -32694 11
LFEF 109 -8346 -8299 -8281 6
LIPL 134 -9889 -9820 -9820 1
LIPS 236 -17305 -17187 -17180 8
LIT 287 -21545 -21387 -21387 1
LOPER | 169 -12959 -12909 -12909 1
LPPREC| 153 -11246 -11145 -11145 1
LSGA 6 -441 -441 -441 1
LSPL 308 -22637 -22735 -22516 4
LT 305 -22365 -22547 -22408 18
LTRIA 113 -8436 -8385 -8385 1
RDLPFC| 349 -26390 -26401 -26272 40
RFEF 68 -5258 -5223 -5223 1
RIPL 92 -7311 -7315 -7296 11
RIPS 166 -12559 -12543 -12522 20
RIT 278 -21707 -21720 -21619 42
ROPER | 181 -13661 -13584 -13584 1
RPPREC| 144 -10623 -10558 -10560 1
RSGA 34 -2658 -2654 -2654 1
RSPL 252 -18572 -18511 -18434 35
RT 284 -21322 -21349 -21226 24
RTRIA 57 -4230 -4208 -4208 1
SMA 215 -15830 -15788 -15757 10
All Brain | 4698 | -352234 -351770 -350441 299
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Table 8.4:Per ROI performance of the three models when learned using all 40 examples.

painted in the same color, which is also the same with the color used in [Hduré make these

graphs readable, we only plotted the base process, disregarding the scaling (amplitude) constants
corresponding to each voxel within a given cluster (consult Se6t®for more details about Shared
Hidden Process Models).

A magnified example of the bagentencdidden process in one voxel from CALC is shown




Figure 8.3:Parameter Sharing found using motiéHPM. Slice five of the brain is showed here. Shared
neighboring voxels have the same color.
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Figure 8.4:Per voxel bas&entenc@rocesses in the Visual Cortex(CALC).

in figurel8.5. This curve is consistent with a typical BOLD response given a stimulus: when the
stimulus is presented, there is a surge in activity in a voxel which peaks after several seconds, then,
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Figure 8.5:Magnified example of th&entencgrocess in a shared voxel in the Visual Cortex (CALC). The
horizontal axis represents the fMRI snapshot (one each half second) after the sentence was presented and the
vertical axis represents the value of the fMRI signal corresponding t8e¢hé&enc@rocess.

after the stimulus is gone, the activity in that voxel will eventually drop back to the baseline rest
signal.
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Figure 8.6:Magnitude of the scaling constants corresponding tSi@encgrocess.
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While in Figure8.4 we presented the baSentenc@rocess for each voxel in CALC, in Figure
8.6we color coded the scaling/amplitude of thentencsignal in each of these voxels. Same color
amplitude for voxels that belong to the same cluster means those voxels exhibit the same activity
when the subject is reading a sentence. CBledcorresponds to higher values of the amplitude,
while Blue stands for low such values. It is easy to see there exists a slight grouping of the voxels
based on their amplitudes: within one cluster, there tends to exist a group of voxels with high
amplitude while when going farther away from that group, the amplitude decreases.

To summarize, in this section we learned three different generative models for the fMRI signal
during a cognitive task, all based on Hidden Process Models. We proved that Parameter Sharing for
Hidden Process Models (as defined in Sectdf) can greatly benefit learning. Our hierarchical
HieHPM model outperformed the other two models because it is both unbiased and able to reduce
variance in the parameter estimators by automatically finding clusters of voxels that can be described
by a Shared Hidden Process Model.
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Chapter 9

Conclusions and FutureWork

The research presented in this thesis is intended to be a first step in methods aimed at taking advan-
tage of Parameter Domain Knowledge for the task of learning Bayesian Networks. We foresee a lot
of potential for additional research in this area. In this chapter we summarize the contributions of
this thesis and we suggest several interesting directions for future work.

9.1 Conclusions

Building accurate models from a small amount of available training data can sometimes prove to
be a great challenge. Expert domain knowledge can be often used to alleviate this burden. In this
thesis we presented the basis of a sound mathematical framework for incorporating Parameter Do-
main Knowledge in learning procedures for Bayesian Networks. We proved both theoretically and
experimentally that the standard methods of performing parameter estimation in Bayesian Networks
can be naturally extended to take advantage of Parameter Domain Knowledge that can be provided
by a domain expert.

The most important contribution of this thesis was the development of a unified framework for
incorporating general Parameter Domain Knowledge constraints in estimators for the parameters
of a Bayesian Network by phrasing the goal as a constraint optimization problem. We showed
how to compute Maximum Likelihood estimators using an iterative procedure based on Newton-
Raphson method. This procedure can be computationally expensive, but fortunately, in practice, the
optimization problem can be broken down into a set of many smaller, independent, optimization
subproblems. Then, we discussed how to define Constrained Parameter Priors and perform learning
from a Bayesian point of view. We also demonstrated how our methods can be extended in the case
when the data is partially observable.

107



Parameter Domain Results
Knowledge Type

Known Parameters, Discrete| Closed Form MLEs, MAP, Normalization Const#nt

Parameter Sharing, One | Closed Form MLEs, MAP, Normalization Constant
Distribution, Discrete

Proportionality Constants, | Closed Form MLEs, MAP, Normalization Constant
One Distribution, Discrete

Sum Sharing, One Closed Form MLEs
Distribution, Discrete
Ratio Sharing, One Closed Form MLEs

Distribution, Discrete

General Parameter Sharing,| Closed Form MLEs, MAP, Normalization Constant
Multiple Distributions, Discrete

Hierarchical Parameter SharingClosed Form MLEs, MAP, Normalization Constant
Multiple Distributions, Discrete

Sum Sharing, Multiple Closed Form MLEs
Distributions, Discrete
Ratio Sharing, Multiple Closed Form MLEs
Distributions, Discrete

Inequalities between Sums Closed Form MLEs

of Parameters, One
Distribution, Discrete

Upper Bounds on Sums Closed Form MLEs
of Parameters, One
Distribution, Discrete

Parameter Sharing, One Closed Form MLEs
Distribution, Continuous
Proportionality Constants, Closed Form MLEs
One Distribution, Continuous
Parameter Sharing for Efficient Iterative Method
Hidden Process Models to Compute MLEs
Twice Differentiable with Iterative Methods: Frequentist, Bayesian,
Continuous Second Derivatives Complete and Incomplete Data

Table 9.1:Domain Knowledge Types studied in this thesis: description and results.
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The iterative procedure mentioned above can be quite expensive. Therefore, it is preferable to
derive closed form solutions for our estimators. This is not possible for general domain knowl-
edge constraints but fortunately it is possible for several types of constraints, including parameter
sharing of different kinds, as well as relationships among groups of parameters. 9Thblen-
marizes the results that we derived for these types of Parameter Domain Knowledge. Examples
for each specific type of domain knowledge were described in T&P=nd9.2. We approached
learning of both discrete and continuous variables, in the presence of both equality and inequality
constraints. While for most of these types of Domain Knowledge we can derive closed form Max-
imum Likelihood estimators, we come up with a very efficient iterative algorithm to perform the
same task for Shared Hidden Process Models. In many of these cases, for discrete variables, we
are also able to compute closed form normalization constants for the corresponding Constrained
Parameter Priors, which allows us to perform closed form MAP and Bayesian estimation when the
data is complete. We want to point out here that our General Parameter Sharing Framework can
encompass models including HMMs, Dynamic Bayesian Networks, Module Networks and Context
Specific Independence as particular cases, but allows for much finer grained sharing, at parameter
level, across different variables and across distributions of different lengths. It is also important to
note that we can mix different types of Parameter Domain Knowledge constraints when learning the
parameters of a Bayesian Network as long as the scopes of these constraints do not overlap.

Experimental results on fMRI data proved that taking advantage of domain knowledge can be
very beneficial for learning. Since the domain knowledge was not always readily available, we
developed methods to automatically uncover this knowledge. Using these methods we discovered
clusters of voxels that can be learned together using Shared Hidden Process Models. Our results
showed that the effect of the learned Parameter Domain Knowledge can be equivalent to almost
tripling the size of the training set on this task. This was a pessimistic estimate of the benefits
since we had to extract the domain knowledge from the training data itself via the cross-validation
approach described in secti@®. Experiments on synthetic data were also performed and they
exhibited the same beneficial effect of incorporating Parameter Domain Knowledge.

A very important result that we managed to prove was that the estimators taking advantage of
a simple form of Parameter Sharing achieved total variance lower than the one of estimators that
ignored such domain knowledge. We conjecture that similar results hold for other types of domain
knowledge, but their proof is left as future work.

In all the approaches above, we assumed the domain knowledge is correct. However, even when
the domain expert makes mistakes, we proved that, with infinite amount of data, our Maximum
Likelihood estimators would converge to the "best distribution” (the closest in terms of KL distance
from the true distribution) that obeys the expert’s assumptions and factorizes according to the given
structure.
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DK Type 1. Known Parameters, Discrete

Example: If a patient has a heart attack (Disease = "Heart Attack”), then thef®5s probability
that the patient will experience chest pain.

DK Type 2: Parameter Sharing, One Distribution, Discrete

Example: Given a combination of risk factors, several diseases are equally likely.

DK Type 3: Proportionality Constants, One Distribution, Discrete

Example: Given a combination of risk factors, disease A is twice as likely to occur than disease

DK Type 4: Sum Sharing, One Distribution, Discrete

Example: A patient who is a smoker has the same chance of having a Heart Disease (Heart Att
Congestive Heart Failure) as having a Pulmonary Disease (Lung Cancer or Chronic Obstructivg
Pulmonary Disease).

DK Type 5: Ratio Sharing, One Distribution, Discrete

Example: In a bilingual corpus, the relative frequencies of certain groups of words are the same,

1Y%

Bis.

ack or

even though the aggregate frequencies of these groups may be different. Such groups of words can be:

"words about computers” ("computer”, "mouse”,
about business”, etc. In some countries computer use is more extensive than in others and oneg

expect the aggregate probability of "words about computers” to be different. However, it would be

natural to assume that the relative proportions of the "words about computers” are the same wit
the different languages.

DK Type 6: General Parameter Sharing, Multiple Distributions, Discrete

Example: The probability that a person will have a heart attack given that he is a smoker with a
family history of heart attack is the same no matter whether the patient lives in a polluted area.

DK Type 7: Hierarchical Parameter Sharing, Multiple Distributions, Discrete

Example: The frequency of severaternational wordgfor instance "computer”) may be shared
across both Latin languages (Spanish, Italian) and Slavic languages (Russian, Bulgarian). Oth
Latin words will have the same frequency only across Latin languages and the same holds for §

Languages. Finally, other words will be language specific (for example names of country specific

objects) and their frequencies will not be shared with any other language.

monitor”, "keyboard” in both languages) or "words

would

hin

er

Slavic

DK Type 8: Sum Sharing, Multiple Distributions, Discrete

Example: "The frequency of nouns in Italian is the same as the frequency of nouns in Spanish.

Table 9.2:Domain Knowledge Types studied in this thesis: description and examples.
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DK Type 9: Ratio Sharing, Multiple Distributions, Discrete

Example: In two different countries (A and B), the relative frequency of Heart Attack to Angina
Pectoris as the main diagnosis is the same, even though the the aggregate probability of Heart
Disease (Heart Attack and Angina Pectoris) may be different because of differences in lifestyle in
these countries.

DK Type 10: Inequalities between Sums of Parameters, One Distribution, Discrete

Example: The aggregate probability mass of adverbs is no greater than the aggregate probability
mass of the verbs in a given language.

DK Type 11: Upper Bounds on Sums of Parameters, One Distribution, Discrete

Example: The aggregate probability of nouns in English is no greateithan

DK Type 12: Parameter Sharing, One Distribution, Continuous

Example: The stock of computer mak2ELL as a Gaussian whose mean is a weighted
sum of the stocks of software makdicrosoft (MSFT)and chip makemtel (INTL).
Parameter sharing corresponds to the statemenVi8&T andINTL have the same
importance (weight) for predicting the value of stdakLL.

DK Type 13: Proportionality Constants, One Distribution, Continuous

Example: Suppose we also throw in the stock of a Power Supply maker (PSUPPLY) in the [inear
mix in the above example. The expert may give equal weights to INTL and MSFT, but five times
lower to PSUPPLY.

DK Type 14: Parameter Sharing for Hidden Process Models

Example: Several neighboring voxels in the brain exhibit similar activation patterns, but
with different amplitudes when a subject is presented with a given stimulus.

Table 9.3:Domain Knowledge Types studied in this thesis: description and examples.

This research provided a new perspective of looking at learning procedures in the presence of
domain knowledge about relationships among parameters. We feel that there is a lot of room for
additional improvement in this exciting area of Parameter Domain Knowledge, an area which was
barely explored so far.

9.2 Future Work

9.2.1 Interactions among Different Types of Parameter Domain Knowledge

In chaptei3 we presented an iterative method for estimating parameters in the presence of arbitrary
constraints that respect some smoothness assumptions. Since this method can be expensive due
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to the dimensionality of the problem, it is of course preferable to be able to compute closed form
estimators whenever possible. In chap#Band6 we showed how this can be done for several
types of domain knowledge. It is easy to see that our results do not break if we have a mixture of
these types in the same Bayesian Network, in the case when different domain knowledge types are
specified over disjoint sets of parameters. However, our results do not hold anymore if, for example,
same set of distributions are constrained together by both a parameter sharing assumption and a ratio
sharing assumption. It would be interesting to see if our methods can be extended to compute close
form estimators for constraints of different domain knowledge types that have overlapping scopes
in the space of parameters.

9.2.2 Parameter Domain Knowledge for Learning Bayesian Network Structure

Whereas this research considered the task of parameter learning when the structure of the Bayesian
Network is known in advance, we believe that Parameter Domain Knowledge can also help perform
automatic structure learning of a Bayesian Network. This can prove challenging because when
the structure changes, other parameters are involved in the model. It would be very expensive to
make the expert specify Parameter Domain Knowledge for each intermediary structure in the search.
Ideally one would like the expert to specify a set of Parameter Domain Knowledge assumptions at
startup and then guide the search according to these constraints.

Assume the structure search is performed via a hill climbing algorithm using the Bayesian
Dirichlet (BD) score. The structure at a given step was obtained from the previous structure by ei-
ther adding or deleting or inverting an edge such that the marginal likelihood increases. We suggest
that the initial Parameter Domain Knowledge constraints can be adapted to the current parameteri-
zation of the Bayesian Network by using a simple change of variable. Most of the parameters will
be the same in the current and previous structure, except for the ones involving the two variables
involved in the transition. Additional research is needed to validate this approach.

9.2.3 Hard versus Soft Domain Knowledge Constraints

The Domain Knowledge constraints that we studied in this thesis ateall constraintsin the

sense that they are stated with0% confidence. However, in real life, even an expert may have

a certain amount of doubt about a constraint. We would like to be able to allow the expert to
assign confidences to the specified constraints, creating what vsoftatbnstraintsFor example,

such a constraint may statét am 90% confident that parameteks and b have equal values”
Incorporating soft constraints may prove to be a difficult task because it may require development
of probabilistic constrained optimization techniques, which are not readily available as far as we are
aware.
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9.2.4 Parameter Domain Knowledge for Undirected Graphical Models

Our research so far focused on Bayesian Networks, which are directed graphical models. We conjec-
ture it is much easier to specify domain knowledge about directed models because their parameters
are easier to interpret. Undirected graphical models describe the joint probability distribution over
a set of variables as the normalized exponential of an energy function. Commonly, this energy
function is a quadratic function in the values of the random variables, where a coefficient can be
thought of as the strength of relationship between two variables. Multivariate normal distributions
and Boltzmann Machines are some examples of such undirected graphical models. It would be in-
teresting to investigate if Parameter Domain Knowledge can help learn undirected graphical models,
to the extent that it is intuitive to acquire such knowledge from an expert.

9.2.5 Other Extensions

We would like to study the possibility of deriving closed form parameter estimators for other types

of Parameter Domain Knowledge constraints. Immediate candidates include hierarchical versions
of sum sharing and ratio sharing (which we expect are similar to the hierarchical variant of parame-
ter sharing), as well as domain knowledge about continuous variables of types other than gaussian.
In the case of gaussian variables, more work needs to be done to define proper Constrained Param-
eter Priors that allow us to derive closed form Maximum Aposteriori estimators. Another direction

to investigate would be to compute closed form estimators by taking advantage of inequality con-
straints involving more than one conditional probability distribution. Finally, we would definitely
benefit from algorithms that extend the results in sec8@to automatically learn Parameter Do-

main Knowledge constraints.
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