Scheduling explicitly-speculative tasks

David Petrou, Gregory R. Ganger, Garth A. Gibson

November 2003
CMU-CS-03-204

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Large-scale computing often consists of many speculadisiestto test hypotheses, search for insights, and review
potentially finished products. For example, speculatigisaare issued by bioinformaticists comparinga sequences
and computer graphics artists adjusting scene properfiéss paper promotes a hew computing model for shared
clusters and grids in which researchers and end-users exgicearch spaces disclose sets of speculative tasks,
request results as needed, and cancel unfinished taskdyfreaults suggest no need to continue. Doing so matches
natural usage patterns, making users more effective, ssmle@hables a new class of schedulers.

In simulation, we demonstrate hdwvatchactive schedulesignificantly reduce user-observed response times relativ
to conventional models in which tasks are requested one aha (interactively) or requested in batches without
specifying which are speculative. Over a range of simulasat behavior, for 20% of our simulations, user-observed
response time is at least two times better under a batchastiieduler, and about 50% better on average. Batchactive
schedulers achieve such improvements by segregatingitéskisvo queues based on whether a task is speculative
and scheduling these queues separately. Moreover, we sbevuder costs can be reduced under an incentive cost
model of charging only for tasks whose results are requested

Keywords: Operating Systems, Scheduling

1 Introduction

Large-scale computing often consists of many speculatiskstto test hypotheses, search for in-
sights, and review potentially finished products. This wadkiresses how to reduce or eliminate
user-observed response time by prioritizing work that tber us waiting on and wasting fewer
resources on speculative tasks that might be canceledyiEltide response time is the time that a
user actually waits on a result, which is usually less thartitne that a speculative task has been
in the system. Our target architecture is a shared clustetrqR distributed server, or computa-
tional grid [5]. Our deployment plan is to replace or augnitet extensible scheduling policies
in clustering software such as Condor, Beowulf, Platfars®, Globus, and the Sun ONE Grid
Engine [7, 4, 17, 10, 21].

Imagine a scientist using a shared computing cluster talaadia hypothesis. She issues a
list of tasks that could keep the system busy for hours ordantasks listed earlier are to answer
pressing questions while those later are more specul&iady results could cause the scientist
to reformulate her line of inquiry; she would then repriaettasks, cancel later tasks, issue new
tasks. Moreover, the scientist is not always waiting foksat® complete; she spends minutes to
hours studying the output of completed tasks.

This paper promotes a new computing model for such sceneriaghich researchers and
end-users exploring search spaces disclose sets of speetdaks, request results as needed, and
cancel unfinished tasks if early results suggest no needrtince. We call this théatchactive
modelin contrast to users that interactively submit needed tasksat a time and users that submit
batches of both needed and speculative tasks withoutilatp@hich tasks are which.

In the batchactive model atmtchactive scheduletbat order speculative tasks with respect
to conventional tasks and to one another toward maximizimgdn productivity and minimizing
resource costs. Batchactive schedulers achieve improwsrbg segregating tasks into two queues
based on whether a task is speculative and scheduling thieses| separately, resulting in better
response time at lower resources usage. This organizatgimivn in Figure 1, in contrast to the
interactive and batch models.

The approach applies best to domains in which several toenpally unbounded number of

intermediate speculative tasks are submitted and eanjtseme acted on while unfinished tasks

requests
— r|r —

interactive model

re'quests & al dO
disclosures

batch model

requests

priority
ririr —
T

\ alaldla use idle
disclosures

batchactive model

Figure 1: Models of user and scheduler behavior. Usersreaitigiest needed tasks one at a time
(interactive), or both request needed and disclose speautasks together (batch and batchac-
tive). In the batchactive case, requested and disclosks &as segregated into different queues, in

which the requested queue has priority.

remain. Considerable performance improvements are fouad when the average depth across

users of disclosed speculative tasks is 3 or 4. The follownegseveral highly-applicable domains:

¢ Bioinformaticists explore biological hypotheses, seargramongbDNA fragments, using
similarity search tools likesLAST [1] and FASTA. These tools differ on whether they are
fast and inaccurate or slow and accurate. These scierttists a workstation farm — such
as the 30 machines dedicated for such work by the Phylogesd@rioup at the University
of California at Berkeley — and issue series of fast, inaataisearches that are followed
speculatively by slow, accurate searches to confirm irfiti@ings. The batchactive sched-
uler would enable scientists to explore ambitious ideasmg@lly requiring an unbounded
amount of resources without fear that resources would béediam speculative tasks that

might be canceled after early results were scrutinized.

e Teams of artists creating a computer-animated film, such Rssmamworks or Pixar, submit
frames for rendering; each frame, having roughly 50 layarstake up to an hour to render.
An artist needs to see intermediate rendered versions ofreedo decide on the finished
product. The artist submits the entire scene at once ancesexjliey frames, those with
more action, for example. With a batchactive scheduleratiist would be confident that

the scheduler would prioritize the key frames over the slagige, remaining frames. If

upon seeing the output of a key frame the artist changesrighttributes or moves objects,
speculative frames would not have unnecessarily compefaidst the key frames of other

artists on the team.

e Computer scientists routinely use clusters to run simaetiexploring high dimensional
spaces. Exploratory searches for feature extractionclsear function optimization, can
continue indefinitely, homing in on areas for accuracy odwanly sampling points for cov-
erage. In our department, clusters are used for, among thiings, trace-driven simulation
for studying microarchitecture, computer virus propagatiand storage patterns related to
I/O caching and file access relationships. With a batchaacheduler, such simulations
could occur in parallel with the experimenter analyzing pteted results and guiding the
search in new directions, with the speculative work opegain the background when re-

guested tasks are queued.

Augmenting a shared scheduler with speculative tasks megjuethinking the metrics and
algorithms. In particular, when the system is aware of slatiee tasks, the traditional response
time metric should be refined. We introduesible response timehe time between requesting
and receiving task output, or the time ‘blocked on’ outputuger only accrues visible response
time after requesting a task that may or may not have alreaéy lhlisclosed. In contrast, and
less usefully, response time accrues as soon as a task gr@esstem. Beyond the base value of
batchactive scheduling, we think the batchactive modeloofifputing creates an interesting new
challenge for scheduling theory and practice: how does @sé srhedule speculative, abortable
tasks to minimize visible response time?

The batchactive model also suggests a new cost model. Thencakels at deployed com-
puting centers charge for resource usage irrespective efheh a task was needed [13]. We in-
troduce an incentive cost model which charges for only nessuused by tasks whose results are
requested. This encourages users to disclose speculatrkedgeply, and prevents the type of
gaming in which users mark all tasks as high-priority, rextei@ tasks. We show that user costs are
actually reduced under this cost model.

We show in simulation that a scheduling algorithm shouldariisinate between speculative

and conventional tasks and that such a scheduling algonitipmoves on time and resource metrics

compared to traditional schedulers. Over a broad rangeailated user behavior, we show that
for 20% of our simulations, visible response time is at |east times better under a batchactive

scheduler, and that on average, visible response time i®irag by about 50%.

2 User and task model

This section describes how our simulator models users @kd.tdvhile we detail speculation, the
reader should keep in mind that the full power of speculasamly leveraged with the batchactive
model. In the interactive model, a user only submits one gsktime, and in the batch model,
the scheduler does not discriminate between requested(akdriven) and speculative work. The
performance implications are described later.

We model a closed loop of a constawimber of usermteracting with the system. The number
of users is a parameter varied across simulations.

Usersdisclosespeculative work asask setsyhich are organized as simple ordered lists of
tasks. When a user needs a result from a task set, theaugegstghe task. After som#éhink time,
the user may request the next taslcancelall unrequested tasks and issue a new task set. The act
of cancelation models a user that doesn’t need any moresdsuh the task set.

Figure 2 depicts this user interaction with the scheduled, the scheduler’s interaction with
the computing system. Any number of users disclose, regaiedicancel any number of tasks. The
scheduling policy decides which and when disclosed andesiqd tasks run. If a disclosed task
is canceled, itis no longer a candidate. The scheduler conuates decisions to the conventional
clustering software which handles the details of runnirgksaon the servers and provides task
statistics to the scheduling policy, such as how long a tagk to run.

Figure 3 details the states that a task can be in. Each taskdmsespondingervice timeand
resource usagthat increases as the task runs. When a task’s resourceecpagjs its service time,
the task is considerezkecutedlf a task is both executed and requested, then the task igdeved
finishedand the task’s output is supplied to the requesting usetalaexecutes and was disclosed
but not requested, then the task’s output is stored untilgstggd or canceled.

The probability that a given task’s results will cause a wearancel and issue a new task set

is a parameter. Thitask set change probabilitg modeled by a uniform random variable whose

disclosures,| requests, task

& cancelations control

supply or \ processor

drop outputs stats control
start, preempt,

& remove tasks

output store

aropped X
uipus outputs ') '

outputs
users task control cluster resources

Figure 2: Interaction between users, the scheduler, ancoitmg@uting center’s resources.

disclose request request

Y
runs for

runs for
service
time

executed &
finished

request (supply output)

service
time

executed

(store output)

Figure 3: Task state transitions.

0.5

_8' 0.4 R
5 spec. degree‘> 0.9
S 0.3}

c :

©

S spec.

g 0.2 | \degree < 0.1

X

3

= 01y “unlikely range:

5 10 15 20

tasks in a task set
Figure 4: A contour plot of a user’s probability of canceliagask set. This degree of specula-
tion is a function of the number of tasks in a task set and tbatility that the results of one

task causes the user to cancel unrequested tasks. The thightagree across users, among other

considerations, the more a batchactive scheduler is beefic

lower bound is always 0 and whose upper bound varies acrossEach user is assigned a change
probability from this distribution for all the user’s tasls® that we simulate users who are more or
less certain about whether they will request their disdpspeculative work.

The number otasks per task sas another simulation parameter and is also drawn from a
uniform random variable for each user. Here, the lower basiativays 1, reflecting no disclosure.
A low upper bound reflects shallow disclosure; a scientiahping up to five or so experiments
ahead. A high upper bound, deep disclosure in the thouseefts;ts task sets submitted by an
automated process for users searching high-dimensioaaésp

Service time and think time for all tasks, irrespective adryare varied simulation parameters
drawn from the exponential distribution.

One way to reason about speculation is to combine the chaodealglity, p, and number of
tasks in a task set,. The probability that a user will cancel a task set befor@rmpletes, which
reflects thelegree of speculatiois 1 — (1 —p)"~1. Assuming that users either practice speculation,
with a degree of speculation exceeding 0.9, or don’t practjmeculation, with a degree less than
0.1, then the combinations of task set sizes and task segehamobabilities will not be in the

middle of Figure 4.

3 Batchactive scheduling

People wish to batch their planning and submission of tasispgpeline the analysis of finished
tasks with the execution of remaining tasks. Conventiamaractive and batch models are obsta-
cles to this way of working.

The salient difference between the batchactive and toaitimodels is that, in the batchac-
tive model, users are free to disclose speculative taskseanebsted tasks take precedence over
disclosed tasks.

In the batchactive model, contrary to the interactive madsks can execute while task output
is consumed. Contrary to the batch model, distinguishing/é&en disclosed and requested tasks
enables the user to disclose deeply, knowing that the stdredili give precedence to users wait-
ing on requested tasks. Endowing servers with knowledgetafé work in the form of disclosed
tasks gives the servers an early start, rather than beiagTitus, users can observe lower visible
response times, making them more productive and lessdtastrThe profound effect on schedul-
ing metrics exhibited by scheduling in a batchactive maméetailed by the simulation results in
the evaluation section.

Note that if a user attempts to gain scheduling priority byuesting instead of disclosing
speculative tasks, then, according to our cost model, ttewidl be charged for those speculative
resources.

Before discussing our batchactive scheduler, we introdueenetrics that we are interested

in and list several restrictions in scope that are in effect.

3.1 Metrics

Meanvisible response times our main metric. A task with service time is requested at time
t, and is executed (completes) at time Each requested and executed task has a corresponding

visible response timeéenoted by

def | 0 if ¢, > t.,

‘/rcsp =
te —t, ift, <t..

Recent work [9, 3, 11] argues that mean slowdown is impottantinimize for the following

reasons: (1) slowdown expresses the notion that users biregwo wait longer for larger amounts
of work, and (2) mean slowdown often better reflects the perémce of most jobs instead of just a

few large jobs. Thus, in addition to visible response time also studyisible slowdowrdenoted

by
V;es
‘/slow d:ef S P .

Note the differences between these two metrics and theitradi response time and slow-

down metrics. Because disclosed tasks can run before theg@uested, visible response time can
be less than service time and visible slowdown can be lessahe. (Of course, assumig> 0,
both visible metrics are at least 0.)

We also measure task throughput. Specifically, we measemutmber of finished tasks (tasks
that were requested and executed) over the duration of puraiion. One of our results is that
we improve visible response time without hurting task tlgtmout, and in many cases we improve
both visible response time and throughput.

We introduce a metric that reflects the billed resourceseuash disclosed tasks that were
never requested. In the interactive and batchactive moaigigrequested tasks are billed, thus this
metric is irrelevant. However, for the batch model, whichgdisclosed tasks but does discriminate
between them and requested tasks, it is important for thigemM® be measure&caled billed
resourcess the ratio of the billed resources to the requested ressukor example, if a scheduler
charged for ten seconds of resource time but the user onlested five seconds of resource time,
then his scaled billed resources will be two. Across all sisge report mean scaled billed resources
for the batch model.

For any server, ittbad (also known as device utilization) is the fraction of timattithe server
was running a task.

For any serverequested queue lengththe number of tasks in the requested quéusclosed
gueue lengtls defined analogously. We count running tasks as in the queue

Finally, when comparing schedulers, we sometimes repoitnarovementactor between a
new, batchactive scheduler and some baseline. For exarimpli@etric is better when lower and if
the baseline scheduler simulation gave 50 as the metridengeiw scheduler simulation gave 25,
then the improvement is 2.

We summarize these metrics in Table 1.

metric description

visible response time | blocked time

visible slowdown blocked time over service time
task throughput number of finished tasks
scaled billed resourcesbilled over requested resources
load fraction of server busy time

gueue length # of queued and running tasks

Table 1: Metrics reported among schedulers.

3.2 Scope

We make some simplifying assumptions in our evaluation.

Service time is required byrPTand, thus, we assume that it is predictable with some preci-
sion. There exists much work detailing successful preatistof service time from task parameters.
Spring, et al. show that the service time of thenpl i b biological sequencing library is highly
predictable from input size[19]. The service time for #1eAST DNA similarity searcher is de-
pendent on the sizes of the sequences under comparisonesdaitch accuracy. Kapadia et al.
use regression to predict the resource requirements atapiphs over their parameters and these
predictions are used for allocating resources on a comipuatdtgrid [12].

A task can only use one resource significantly. For exampbeoeessor-intensive task might
use the disk to load a dataset, but those disk accesses mastibsignificant part of the task’s
work. Moreover, we assume that preemption costs are lows,Tou example, tasks with out-of-
core memory requirements are not ideal candidates. Fuktlieeassume no complex interactions

among tasks, like tasks that contend for shared locks.

3.3 Policies

Any scheduler that behaves differently based on whethesk isarequested or disclosed is a
batchactive scheduler. Thus, there are many possible dzted schedulers, such as using any
combination of traditional policies for requested and ldised tasks.

We wish to minimize the mean visible response time acrostasks. Recall that there are

two queues: the queue of requested tasks and the queue lfsdiddasks. Our approach is to
give the requested queue priority. That is, when there isoagssor available and a requested
task available to run, that requested task runs before amilable disclosed task. Simply stated,
requested (demanded) work is more important than speeeilatirk. Therefore, borrowing a well-
known result [8, ch. 8], requested tasks are scheduled S®HT (shortest-remaining-processing-
time).

What remains is to answer how disclosed tasks should be sldted he batchactive results
in the evaluation section are from a scheduler that runsstaskhe requested queue according
to srpTand tasks in the disclosed queue accordingdes (first-come-first-serve). We term this
schedulersrRPT x FCFS The motivation behindcrs for the disclosed queue is to quickly run
tasks that will be requested first. Recall that task sets atered lists of disclosed, speculative
tasks. Since our simulated users request tasks in this, din@erapplying-CFsto the task set order
is a perfect estimate of request order within one user, arat eampletely unreasonable estimate
across all users.

Under certain selections of user and task parameters, exatiff batchactive schedulgerpT
X SRPTdoes better thasrRPT x FCFsfor mean visible response time. However, for this paper
we felt it clearer to only advocate one batchactive schedOliecourse, when we compare against
baseline schedulers, we pick the scheduler that we havel fimath provides the most competition
to SRPT x FCFsfor the metric under examination.

Figure 5 illustrates batchactive scheduling by showingé¢hgths of the queues of requested
and disclosed tasks. The length of the requested queueagasavhen users request tasks and
decreases when these tasks run. The length of the disclose gncreases when users submit
task sets and decreases when tasks in this set executegaestexl, or are canceled. Moreover,
disclosed tasks only run when there are no requested taakalde to run on an idle server.

In this paper, we focus on demonstrating our central thbsissegregating requested and dis-
closed tasks is highly beneficial. Thus, our choice for aldss task scheduler is not critical.
More refined task schedulers for disclosed tasks is an sttagetopic for future research. In par-
ticular, there appears to be little existing theory regagdihe proper scheduling of speculative,
cancellable tasks with respect to visible response time.

We have implemented two schedulers closer to optimal sovikatould estimate what im-

10

5 — requests
S -+ disclosures

10} -

gueue length

°- Ay At

0 2000 4000 6000 8000 10000
time

Figure 5: Shown are the lengths of the queues of requestediscidsed tasks over a three-hour
simulation ofSRPT x FCFS Batchactive schedulers only take from the disclosed quéwes there

are no requested tasks available to run on an idle server.

provements can be had by replacing the disclosed task demnedth something more sophisti-
cated.

The impractical optimal algorithm for tasks in the discldspieue selects the task that will
eventually be requested with the lowest+ S\, wheret, is when the user will request the task
and Sy is the remaining service time before completion. Intuliyéhis algorithm gets the most
tasks which will be requested soonest out of the systemh&ythe impractical optimal algorithm
would ignore disclosed tasks that will never be requestéé.réason why this algorithm cannot
be implemented is because a scheduler cannot know with etenpértainty whether or not a
disclosed task will be requested, nor, if so, when it woulddzpiested.

It is difficult to assume task request times for even simatathe impractical optimal algo-
rithm because request times are dependent on when usens g@ri think times. Instead, we
implemented two algorithms)FCcFs and OSRPT, that give a better lower bound on the perfor-
mance of the impractical optimal algorithm tharPT x FCFsand they work likerFCFsandsSRPT
except that disclosed tasks that will never be requestedeses runOFCFSis based on the request
time estimate described earlier and ignores remainingcetvne.osrRPTschedules according to
remaining service time without attempting to estimate waéask will be requested. Across most
parameterssRPT x OFCFSoutperformssrRPT x OSRPTfor time metrics, thus we only use this

scheduler in our measurements.

11

model scheduler

interactive | SRPT
batch FCFS
batch SRPT

batchactivel SRPT x FCFS

batchactive] SRPT X OFCES

Table 2: Evaluated schedulers. There are two batch schredudeler consideration because one
outperformed the other under different circumstances.SHrer x FCFsbatchactive scheduler is

implementable whilssRPT x OFCFsis idealized.
4 Evaluation

We demonstrate that the batchactive user behavior modédbding speculative tasks combined
with the batchactiveRPT x FCFsscheduler that segregates requested and disclosed taskson
gueues provides better visible response time, visibleddown, task throughput, and scaled billed
resources. These metrics were described in Section 3.1ludm is a scheduling simulation fed
the synthetic tasks and user behaviors described in Seztibhe evaluated schedulers are listed
in Table 2. Time, such as a service time parameter or visgdpanse time metric, is measured in
seconds.

We use simulation in place of an analytic model due to the dexitges of our user model
which includes task cancelation and which is based on theegdneg realistic scenarios.

Our simulation runs explore a variety of user load, the simelaow speculative tasks sets are,
how big tasks are, and how long users think about task ougforé making their next requests.
Each run ran for two weeks of simulated time after two simadatiays of warmup time were
ignored. (See Section 4.3.1 for details about the warmupggr

The choice of simulation parameters is key to arguing forbiehactive computing model.
We can make batchactive computing look arbitrarily bettemtcommon practice by selecting
parameters most appropriate to the batchactive schethaeever, this would not be a convincing
argument. Instead, we have chosen parameter ranges thatlponhclude what we believe to be

reasonable uses of speculation for our target applicatimnsalso ranges that include little or no

12

parameter range

number of users 4-16

task set change prob.0.0 to 0.0-0.4 (uni.)
tasks in atask set | 1to 1-19 (uni.)
service time (Ss) 20-3,620 (exp.)
think time (s) 20-18,020 (exp.)

Table 3: The parameter ranges used in simulating users.araengeters were defined in Section 2.
Parameters with parentheses indicate random variablésrfurand exponential). Uniform distri-

butions are described by ‘lower bound to upper bound, wheeaupper bound is a range.

speculation. We show that under no speculation, we do noenthes conventional models.

4.1 Summarizing results

The parameter ranges listed in Table 3 were used for thetsesgdorted in this section unless
otherwise specified. For each parameter, we sampled sgards in the parameter range. All
told, each of the five schedulers were evaluated againsB 3dléctions of parameters.

We simulate one server, and restrict the maximum numberekus 16 concurrently active
users that are issuing task sets into the server. Furthemake the think time range up to about
five hours while the service time reaches only about one hdigher think times are better for
batchactive scheduling. The probability that after eash thae rest of the task set is canceled ranges
from users that always need their disclosed speculativ& vaothose who cancel task sets 40%
of the time after receiving a requested task’s output antkthg about it. Higher task set change
probabilities is better for batchactive scheduling. Tgséstask sets range from no disclosure to
about twenty disclosures deep, reflecting users usingdoenain-specific experience to manually
plan small to medium-sized task sets. Again, higher valueetter for batchactive scheduling.

Service times, which vary from a third of a minute to about boer are modeled after a
BLAST DNA similarity search run. This application usually takes tehsinutes, but service time
can vary by significantly based on the sizes of the sequenmmey gomparison and how accurate
the search is, which is determined by different convergetgerithms. Think times, which vary

from a third of a minute to roughly five hours, were selectekftect a user who can make a quick

13

—— over interactive SRPT
- — - over batch SRPT

0.8f

fraction where improvement > x

i 2 3 4 5
improvement of mean visible resp. time
Figure 6: Cumulative factor improvement 8RPT x FCFS over interactive and batcerpT for
visible response time. Against both schedulers, batolagirforms at least twice as better for
about 20% of the simulated behaviors. The mean improveradnbP5 over interactive and 1.537

over batch.

decision about a task’s output to one that needs to grapldgooor discuss results with colleagues
before deciding to request the next task or cancel and stesivaask set.

The first set of results summarize the improvement of usiadpttchactive schedulsrpPT x
FCFsover other schedulers for several metrics. The figures anellative improvement graphs that
show the fraction of runs in which performance was at leasttamn factor better than the baseline.
The x-axes are factor improvements and the y-axes are thecemdtor example, in Figure 6,
the solid line intersection with the x-axis of 3 says that @¥d.of all simulation parameters, the
ratio of the mean visible response time for interact®®Tto the mean visible response time for
SRPT x FCFSwas at least 3. Because the improvements are not Gaussan,dhaphs reflect the
improvement distribution better than reporting the meathstandard deviation.

As an overall summary of visible response time in the batovexmodel, Figure 6 shows how
SRPT x FCFScompares to interactiveRPT and batchsRPT. SRPT x FCFSand interactivesRPT
perform the same for about 65% of the runs, wisikeeT x FCFsdoes better than batgrpTfor
many more situations. However, there are more situatiomioh the batchactive scheduler is be-
tween two and four times better than the interactive scleeddiainst both schedulers, batchactive
performs at least two times better for about 20% of the sitedl@dehaviors. The mean improve-

ment is 1.525 over interactive and 1.537 over batch.

14

0.8

067

047

027

fraction where improvement > x

0

2 4 6 g 10
improvement of mean scaled billed resources
Figure 7: Cumulative factor improvement®RPT x FCFSover batchFCcFsfor mean scaled billed
resources. The batchactive scheduler charges much leseqmerrce than batch because under
batchactive, only requested tasks are charged. Batchattarges at least four times less for about

40% of the runs. The mean improvement is 3.647.

We now turn to resource cost. The interactive and batchewstdels only charge for requested
tasks. However, the batch model runs both requested tasksliaolosed tasks that will never
be requested. Since the batch scheduler does not disctenbeaveen requested and disclosed
tasks, it must charge for them all. We compare batchactitie vatch in Figure 7 for scaled billed
resources (the ratio of the billed resources to the reqdestources) and show that the cost for
using resources is considerably lower under the batcleactodel. Batchactive charges at least four
times less for about 40% of the runs. The mean improvemerff#3Recall that in the batchactive
model, only requested resources are charged and thatsksidasks are only run when the server
would otherwise be idle. Enabling the user to run disclossig that are never requested for free
encourages users to disclose deeply, which provides tlee stheduling benefits in this section.

We expect that a batchactive model can provide more toladhiésources over the same time
period compared to the interactive model. Both models @hardy for requested resources. But
since the batchactive model provides better task throughipere can be more requested tasks
completed in the same time.

We then seSRPT x FCFSto be the baseline scheduler and compare the oracleskirer
X OFCFSagainst it for visible response time in Figure 8. We see #rRH#T x FCFS although

very simple, performs similarly to a scheduler that knows toorun disclosed tasks that won’t

15

0.8

0.6

0.4

0.

1 1.2 1.4 1.6 1.8 2
improvement of mean visible resp. time

fraction where improvement > x

Figure 8: Cumulative factor improvement 8RPT x OFCFSover SRPT x FCFSfor mean visible
response time. This shows thegPT x FCFSperforms close to a scheduler that ignores disclosed
tasks that won't be requested. Yet there is potential forawgment for approximately 20% of the

runs.

be requested. Note, however, that the upper bound of bateb@erformance is unknowisRPT
X OFCFsdoes not take into account task size nor does it know whenkawdisbe requested.
Designing superior schedulers for disclosed tasks willrbmteresting area for future research.
For less than 10% the of runs (sometimes less than 0.1%, ametisoes never), batchactive
did roughly 10% worse than the baseline schedulers. Ermnitigduced due to variations in the
number of finished tasks across runs: While all simulatiamsfor the same amount of virtual
time, during that time different schedulers complete défeé numbers of tasks. Thus, the mean of
visible response time among two different schedulers nmmiith the user and task parameters
are often comprised of a different number of finished taskthodigh we do not have confidence
intervals across all of our data, a look at the confidencevate for a small subset in Section 4.3.2
suggest that for all the cases in which batchactive’s meamise, the 95% confidence intervals

between batchactive and baseline scheduler overlap.

4.2 Per-parameter investigations

At this point we provide a closer look at what affects perfance. The following data consists of

slices of the scheduling models, user behaviors, and reetric

16

parameter setting

number of users 8

task set change proi.0.0 to 0.2 (uni.)
tasksinatask set | 1to 15 (uni.)
service time (s) 600 (exp.)
think time (s) 6000 (exp.)

Table 4: The base parameters used in comparisons betwesstusets. For each run, all save one
of these parameters was held constant at the listed valaesmBters with parentheses indicate

random variables. Uniform distributions are describedlbyeér to upper bound.’

The graphs in this section have the same format. Each pazapwht is associated with a set
of three bars. The leftmost bar is the batch model, the midaltas the interactive model, and the
rightmost bar is the batchactive model. The goal is for tgatrmost bar to be lowest (or highest,
depending on the metric) as much as possible. Each grapdsvame parameter. The parameters
that are not varied are taken from the base parameters ims@&ble 4 unless otherwise noted.

Figure 9 demonstrates the effect of varying the number ofsuse visible response time.
Batch is suited to a small number of users because execirierand think time can be pipelined,
and the load is sufficiently low that one’s disclosed but negquested tasks won't interfere with
the requested tasks of others. Interactive is more suitedhigh number of users, in which the
load is higher, because the server is always busy with reggi¢éssks. Even though these models
alternate on which is best suited to which scenario, in ges#ry case, batchactive performs best,
exhibiting adaptability.

Batchactive is better than batch under low numbers of userause requested tasks never
wait for disclosed tasks; it is better than interactive & busier end because it consumes any
otherwise idle time by executing disclosed tasks. At thedstipart, interactive and batchactive
are equivalent, because the requested task queue is nepgt em

Figure 10 looks at how the number of users affects mean eisiblvdown. Recall that visible
slowdown can be less than one (Section 3.1). Batchactill@stperforms the alternatives. The
difference compared to visible response time is that \esgddwdown equalizes batch and inter-

active when there are many users. This occurs because thie vissponse time of the large jobs

17

5000
[SRPT (batch)
40001 [SRPT (inter)
Bl SRPT x FCFS (ba)
3000

2000

visible resp. time ()

Ltttk

number of users

Figure 9: The effect of varying the number of users while hhajdbther parameters constant on
visible response time. At low numbers of users, interadtiveetter than batch, which at high num-

bers, batch is better than interactive. In nearly all casRBT x FCFSwins, exhibiting adaptability.

have less of an effect on the visible slowdown.

Figure 11 looks at how the number of users affects task thmowig(the number of finished
tasks) over the two weeks of simulated time. Batchactivélis & finish more tasks while provid-
ing the better visible response times and visible slowdatesvn in Figures 9 and 10. Only toward
the highest number of users does the throughput of inteeagteet, but not exceed, batchactive.

Additional insight into batchactive scheduling is found ciymparing Figures 9, 10, and 11
with Figure 12, which is the same run except that load is etbtThe load under the batch and
batchactive models are similar. As their loads increasehlaative does better than batch with re-
spect to visible response time because batchactive fagqreested tasks. Batchactive does better
than interactive with respect to visible response time amddown because batchactive pipelines
disclosed tasks with think time. Counterintuitively, whigstchactive’s load is higher than inter-
active, it performs better than interactive. What matten& imerely load, but the fraction of load
made up of tasks that have been or will be requested. Only Wieebatchactive and interactive
loads approach one (near 14 users), do their visible resgones slowdowns begin to match.

In Figure 13, we vary the upper bound of the task set changeapility from 0.0-0.4. As
expected, this parameter has no significant effect on tieediative model, since it does not submit
disclosed tasks. We notice a greater dependence on thisigtaby the batch model compared

to the batchactive model because the batchactive modedsgpeculative tasks when requested

18

N
o

[SRPT (batch)
| [SRPT (inter) -
Bl SRPT x FCFS (ba)

visible slowdown (u)
|_\
[3])

o
o

5 10 15
number of users

Figure 10: The effect of varying the number of users on visgbdbwdown, holding other parameters

constant. Note: visible slowdown can be under one.

[SRPT (batch)
20001 mmm SRPT (inter.)
Bl SRPT x FCFS (ba)

1500

1000 ¢

number of tasks

500

5 10 15
number of users

Figure 11: The effect of varying the number of users on tagkuthput (number of finished tasks)

over the simulation run, holding other parameters consBatthactive provides the best or equals

the best task throughput.

19

load

- - SRPT x FCFS (ba)
-O- SRPT (batch) -
—+— SRPT (inter.)

5 10 15
number of users
Figure 12: The effect of varying the number of users on lodilifation). This graph illustrates

that load in itself does not fully convey batchactive bebawvhat matters is the fraction of load

that is made up of tasks that have been or will be requested.

work remains.

Now we show the effect of large task sets, such as those siglonlny an automated process
reflecting users searching high-dimensional spaces. VilesdMdne upper bound of the tasks per task
set uniform distribution from 1-1024 in multiples of 2. Wsalset the task set change probability
to 0.1 so that task sets are not canceled as often.

The results with respect to visible slowdown are in Figure\A#4hen all task sets have only
one task, then all models provide the same visible slowddask sets as small as several tasks,
which is easily realizable by users performing explorateegrches, provide good improvement
over interactive. As the task set size increases, both katdhbatchactive provide visible slow-
downs less than one. This occurs because there is now ugskrtitme that can be leveraged to
run disclosed tasks. Soon batch performance becomes ueasats single queue is overwhelmed
with speculative tasks. The interactive model is immundéotask set size because each user will
only have one task (a requested task) in the system at any time

In Figure 15, we vary service time to see its effect on visibponse time. As the service time
increases, the load increases and the performance ofatiterand batchactive become the same.
As a limiting case, this shows that when a server is alwaysingrequested work, the batchactive
model does not help performance.

The remaining parameter is think time. It works inverselgéovice time: the more think time,

20

25007
[SRPT (batch)
[SRPT (inter.)

20001 g’ SRPT x FCFS (ba)

=
[8)]
o
o

1000 -

visible resp. time ()

500

0 0.05 0.1 0.15 0.2
task set change prob. (midpoint of uni.)

Figure 13: The effect of varying the task set change proltgloh visible response time. The
probability is a uniform random variable and shown on theis-& the average of the lower and
upper bounds of this distribution. The interactive modelnaffected by this parameter, while the

batchactive model is affected less than the batch model.

Sy S A
—-O- SRPT (batch) AR o
al —+— SRPT (inter.) S
= - % - SRPT x FCFS (ba) |, ::-:: ol
s ol oot ol
] S N S Lo
° oo N A ol
o 20 vorTiiinoo O R
is) O, sl RS
2 f e @ e
) T e L

Lo Ry X T

0 0 VVVH”;l 2

10 10 10

tasks per task set (midpoint of uni.)

Figure 14: The effect of varying the tasks per task set orbMsslowdown. Note that this graph
is log-linear. The tasks per task set is a uniform randomatéei and shown on the x-axis is the
average of the lower and upper bounds of this distributi@icB is unusable at a task set size with
an upper bound of 100. (At an upper bound of 1024 tasks pesttskhe batch visible slowdown

is over 170.)

21

[SRPT (batch)
8000 { - [SRPT (inter.) -
[SRPT x FCFS (ba)

6000 -

4000 |

visible resp. time ()

2000}

200 600 1000 1400 1800
service time (U of exp.)

Figure 15: The effect of varying service time visible respotime. At low service times, there is

more opportunity for the batchactive model to improve peniance.

the more opportunity for the batchactive scheduler to otaleks to reduce visible response time.
Of course, once the ratio of think time to service time is sidfitly high, which results in a low

load, batchactive performs no better than batch. We omjilggan think time to save space.

4.3 Simulation details
4.3.1 Warmup period

When the simulation starts, all users begin submittingga€kly after task results are received
do users enter their think times. Thus the queue length meastart of the simulation is not
representative of the behavior of the system over steadg-sSihe most extreme example that we
found after looking at several runs is illustrated in Figlie We avoid including such warmup-
data in our reported metrics by conservatively droppinglath in the first two days of simulation

time. Since each run simulates 16 days, our metrics refleciw@eks at steady-state.

4.3.2 Confidence intervals

Varying simulation parameters clearly indicate that theapeeters have a significant effect on
scheduling metrics and that batchactive scheduling peddyest nearly all of the time. To rein-
force these observations, we took confidence intervals @ihnvésible response time for a small

interactivesrRPT run in which service time was varied in six minute incremesksle other pa-

22

queue length

0 2 4 6 8

time X 104

Figure 16: The queue length of requested tasks for an extseteetion of simulation parameters
only stabilizes after approximately 10 hours of simulatetet For this reason, all reported metrics

ignore the first two days of simulated time.

rameters were held constant (Figure 17). Each reportebleistsponse time mean and confidence
interval was the result of 40 simulations that were starté different random seeds. Out of ten
selections of service times, only one pair of 95% confidemtervals overlapped, and all con-
fidence intervals were less than 5% of their respective mésihle response times. A normal
probability plot (not shown) of the response times for eaaivise time was sufficiently Gaussian

to suggest that the confidence intervals are reliable.

4.3.3 Implementation

Our scheduler simulator was written in C and runs on Linux Badvin. The simulator is broken
up into modules that simulate user, task, and server behavibcontains a large number of checks
which give us confidence that the results are accurate andhigr@ are no bugs in its operation.
One Perl script executes large numbers of this program tmexthe simulation parameter space
and stores its results into a MySQL relational databaseeiGitripts query this database, analyze
the results in conjunction witlATLAB , and process them for visualization.

All runs were performed on a set @f4 GHz Pentiumiv machines each with12 MB of

memory. Most runs took tens of seconds and less thamniB of memory to simulate 16 days of

Yronically, we found ourselves desiring a computing clusteuipped with a batchactive scheduler during the

exploration of our simulator’s five-dimensional parametaaice.

23

12000 | &
10000 | 7

8000 1 a4

6000 |

4000

=l

380 1190 2000 2810 3620
service time (u of exp.)

visible resp. time ()

Figure 17: Confidence intervals for a small run suggest thatesults are significant. Plotted is
the mean visible response time across ten service times99%econfidence intervals were from

40 runs using different random seeds at each service time.

virtual time. A small percentage of runs with parametersscazimany more tasks to be created

took roughly ten minutes to run.

5 Related work

Speculation to improve performance is a pervasive con@@psa all areas of computing including

architecture, languages, and systems. Speculation iglfatithe level of I/O requests, program

blocks, and instructions. We bring this notion to the levielasks for the processor resource. In
this section, we focus on the closest related work in systehtse experience and potential have
inspired our work.

In the storage realm, Patterson et al. have shown immthesystem how application perfor-
mance can increase if the application discloses storage nreadvance of when data is needed [15].
While their work focussed on storage questions, such as bowalance cache space between
prefetches andru caches, our work applies the same concepts and terminaddpe tprocessor
resource at the granularity of tasks.

In the network realm, researchers have sought to discrimipatween speculative and re-
guested network transmissions. Padmanabhan et al. hawe sihtoadeoff in visible response time

and fractional increase in network usage when varying tipehdef their web prefetcher [14]. In

24

the approach of Steere et al., people manually construsto$eteb prefetch candidates and the
browser prefetches as much as three such candidates sienutgly until all are fetched, or until
the person initiates new activity [20].

In the database realm, Polyzotis et al. built a speculatdrtibgins work on database queries
during the user think time in constructing complex queri&8]

We have not found a direct analogue of our work for the pramesesource. Speculation has
been used for process scheduling in the context of estimméask runtime and deciding when to
power down low-powered devices to maximize battery power ggrformance metrics. But we
have not found approaches explicitly for scheduling ameugiested and disclosed tasks.

One way to organize speculative approaches is by whetherdlyeire a user or agent working
on behalf of the user to disclose speculative work, or whetthe system automatically generates
speculative work. In our work, Steere’s system, andTttiresystem, speculative work is generated
externally. In the systems of Padmanabhan et al. and P@y&iodl., the system constructs spec-
ulative work in addition to scheduling between discloswaed requests. An extensiontee by
Chang et al. introduces automatic 1/0O disclosure gener§ip As opposed to these automatically
speculating storage, network, and database examplegstrai seem possible to do the same for

the processor resource without domain-specific knowledgpecialized user agents.

6 Conclusion

Ideally, a cluster task scheduler would run speculativiestaghile users were analyzing completed
tasks, minimizing the blocked time that the users expeeeibe catch is that speculative tasks
will take contended resources from users who are waitingeguested tasks unless the two types
of tasks can be discriminated.

The solution we promote is a new computing model of users wbdase sets of specula-
tive tasks, request results as needed, and cancel unfinigieslif early results suggest no need
to continue. We observe that not all tasks are equal — onkstakcking users matter — lead-
ing us to introduce theisible response time metrighich measures the time between a task be-
ing requested and executed, independent of when it was Ispigely disclosed. Oubatchactive

schedulesegregates requested and disclosed tasks into two quéteg gyiority to the requested

25

gueue, toward minimizing mean visible response time.

We simulated a variety of user and task behaviors and havelfthat for several important
metrics our batchactive model nearly always does better tbaventional models in which tasks
are requested one at a time (interactively) or requestedtichbs without specifying which are
speculative. We have found that for 20% of the runs, our sdieegberforms at least two times
better for visible response time. Compared to a batch sébedar about 40% of the runs, the
average simulated user pays for a fourth of the resources.

Given the benefits of task speculation we have presentednagevonder why this idea is not
widely deployed. We surmise that the enabling technoldgge® only recently been in place, and
that there is an initial learning curve to be surmountedstFthe benefits of speculation require
that not all resources are consumed by requested tasksstimsreasingly true in resourceful
cluster and grid environments. Second, users must be aatgitdpate, with a minimum degree of
accuracy, tasks that they might need. These points aredelfie better users separate disclosures

from requests, the more resources are available to a baétehacheduler.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.aBic local alignment search toaJournal of Molecular Biology215:403-10,
1990.

[2] T.E. Anderson, D. E. Culler, D. A. Patterson, and the NG A case for NOW (networks of workstation$EEE Micro, 15(1):54—64,
Feb. 1995.

[3] M. A.Bender, S. Chakrabarti, and S. Muthukrishnan. Fovd stretch metrics for scheduling continuous job stredmBroceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms (08),'Pages 270-279, San Francisco, CA, Jan. 1998.

[4] Beowulf.Org — The Beowulf Cluster Sitént t p: / / www. beowul . or g/, Nov. 2003.
[5] F.Berman, G. Fox, and T. Hegrid Computing: Making the Global Infrastructure a Realifohn Wiley & Sons, 2003.

[6] F.Chang and G. A. Gibson. Automatic I/O hint generatibrotigh speculative execution. Rroceedings of the 3rd USENIX Symposium on
Operating Systems Design and Implementation (OSDI {88)es 1-14, New Orleans, LA, Feb. 1999.

[7] Condor project homepagétt p: // ww. cs. wi sc. edu/ condor/ , May 2003.

[8] R.W. Conway, W. L. Maxwell, and L. W. MillerTheory of SchedulingAddison-Wesley Publishing Company, Reading, MA, 1967.

[9] D. G. Feitelson and M. A. Jette. Improved utilization am$ponsiveness with gang scheduling. Pimceedings of the 3rd Workshop on
Job Scheduling Strategies for Parallel Processing (IPP®DB '97), pages 238-261, Geneva, Switzerland, Apr. 1997. LectutesNia
Computer Science, vol. 1291, Springer-Verlag.

[10] The Globus toolkitht t p: / / ww«+ uni x. gl obus. or g/ t ool ki t/, Nov. 2003.

[11] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymjtatonvergence of scheduling policies with respect to stomm InIFIP WG 7.3
International Symposium on Computer Modeling, Measuré¢med Evaluation (Performance '02Rome, Italy, Sept. 2002.

[12] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Pradictpplication-performance modeling in a computationé gnvironment. In

Proceedings of the 8th IEEE International Symposium on Higtformance Distributed Computing (HPDC '99)ages 47-54, Redondo
Beach, CA, Aug. 1999.

26

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

The Lemieux Supercomputer. Pittsburgh Supercompésrter,ht t p: / / www. psc. edu/ machi nes/ tcs/ | em eux. ht ni ,2003.

V. N. Padmanabhan and J. C. Mogul. Using predictiveqioking to improve world wide web latencxCM SIGCOMM Computer Commu-
nication Review (CCR '9626(3):22-36, July 1996.

R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolskyd J. Zelenka. Informed prefetching and cachingPrioceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSPf@5)es 79-95, Copper Mountain Resort, CO, Dec. 1995.

G. F. Pfister.In Search of ClustersPrentice Hall, Upper Saddle River, NJ, 1995.
Platform Computing — Products — Platform LSt t p: / / www. pl at f or m cont pr oduct s/ LSF/ , Nov. 2003.

N. Polyzotis and Y. loannidis. Speculative query pasirg. InProceedings of the 1st Biennial Conference on Innovativea [3ystems
Research (CIDR '03)Asilomar, CA, Jan. 2003.

N. Spring and R. Wolski. Application level schedulinggene sequence comparison on metacomputer®rdoeedings of the 12th ACM
International Conference on Supercomputing (SC, @8pes 141-148, Melbourne, Australia, July 1998.

D. C. Steere. Exploiting the non-determinism and akyowy of set iterators to reduce aggregate file /0 lateneyroceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSPS@mt Malo, France, Oct. 1997.

Sun ONE Grid Engine Softwardat t p: / / wws. sun. coni sof t war e/ gri dwar e/ , Nov. 2003.

27

