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Abstract 

Research on reverse auctions for procurement has traditionally ignored the temporal 

and finite capacity constraints under which manufacturers operate. We consider the 

problem faced by a manufacturer that procures multiple key components from a 

number of possible suppliers through multi-attribute reverse auctions. Bids submitted 

by prospective suppliers include a price and a delivery date. The manufacturer has to 

select a combination of supplier bids that will maximize its overall profit. The 

manufacturer’s profit is determined by the revenue generated by the products it sells, 

the costs of the components it purchases as well as late delivery penalties it incurs if it 

fails to deliver products in time to its own customers. We provide a formal model of 

this important class of problems, discuss its complexity and introduce rules that can 

be used to efficiently prune the resulting search space. We proceed to show that our 

model can be characterized as a pseudo-early/tardy scheduling problem and use this 

observation to build an efficient heuristic search procedure. Computational results 

show that our heuristic procedure typically yields solutions that are only a few percent 

from the optimum. They further indicate that taking into account the manufacturer’s 

capacity significantly improves its bottom line. 
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1.  Introduction 
Today’s global economy is characterized by fast changing market demands, short 

product lifecycles and increasing pressures to offer high degrees of customization, 

while keeping costs and lead times to a minimum. In this context, the competitiveness 

of both manufacturing and service companies will increasingly be tied to their ability 

to identify promising supply chain partners in response to changing market 

conditions. With the emergence of e-business standards, such as ebXML, SOAP, 

UDDI and WSDL, the Internet will over time facilitate the development of more 

flexible supply chain management practices.  

Today, however such practices are confined to relatively simple scenarios such as 

those found in the context of MRO (Maintenance, Repair and Operations) 

procurement. The slow adoption of dynamic supply chain practices and the failure of 

many early electronic marketplaces can in part be attributed to the one-dimensional 

nature of early solutions that forced suppliers to compete solely on the basis of price. 

Research in the area has also generally ignored key temporal and capacity constraints 

under which reverse auctioneers typically operate. For instance, a PC manufacturer 

can only assemble so many PCs at once and not all PCs are due at the same time. 

Such considerations can be used to help the PC manufacturer select among bids from 

competing suppliers.  

In this paper, we present techniques aimed at exploiting such temporal and 

capacity constraints to help a reverse auctioneer select among competing multi-

attribute procurement bids that differ in prices and delivery dates. We refer to this 

problem as the Finite Capacity Multi-Attribute Procurement (FCMAP) problem. It is 

representative of a broad range of practical reverse auctions, whether in the 

manufacturing or service industry. This article provides a formal definition of the 

FCMAP problem, discusses its complexity and introduces several rules that can be 

used to prune its search space. It also presents a branch-and-bound algorithm, a 

simulated annealing procedure and an efficient pseudo-early/tardy heuristic search 

procedure that all take advantage of these pruning rules. Computational results show 

that accounting for the reverse auctioneer’s finite capacity can significantly improve 
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its bottom line, confirming the important role played by finite capacity considerations 

in procurement problems. Results are also presented that compare the performance of 

our heuristics search procedures both in terms of solution quality and computational 

requirements under different bid profile assumptions. These results suggest that our 

pseudo-early/tardy procedure is generally capable of generating solutions that are just 

within a few percent of the optimum and that it scales nicely as problem size 

increases. 

The balance of this paper is organized as follows. Section 2 provides a brief 

review of the literature. In section 3, we introduce a formal model of the FCMAP 

problem. Section 4 identifies three rules that can help the reverse auctioneer (or 

manufacturer) eliminate non-competitive bids or bid combinations. Section 5 

introduces a branch-and-bound algorithm that takes advantage of our pruning rules. 

This is followed by the presentation of two heuristic search procedures that also take 

advantage of our pruning rules. In particular, Section 6 details a randomized pseudo-

early/tardy heuristic that exploits a property of the FCMAP problem introduced in 

Section 4. In Section 7, a second heuristic search procedure is presented that 

combines Simulated Annealing (SA) search with a cost estimator based on the well-

known “Apparent Tardy Cost” rule first introduced by Vepsalainen and Morton [25].  

Section 8 also introduces a post-processing procedure that can further improve the 

quality of a solution. An extensive set of computational results are presented and 

discussed in Section 9. Section 10 provides some concluding remarks and discusses 

future extensions of this research. 

 

2.  Literature Overview 
Surprisingly little research has been reported on coordinating procurement and finite 

capacity production planning. A notable exception is the work of Bassok and Akella 

[3] who explore a single-period, single-machine model that integrates production and 

raw material ordering decisions in a manufacturing facility with a single type of raw 

material and one or more finished products with stochastic demand. Raw material 

delivery is assumed to be stochastic: the manufacturer typically receives just a 
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fraction of what it orders.  The authors focus on determining the quantities in which 

products are released into the system, taking into account the system’s capacity and 

expectations about the fraction of ordered raw materials likely to arrive. The objective 

is to minimize the sum of backlog costs, production costs, ordering costs, as well as 

raw material and finished goods holding costs. Gurnani et al. [12] study a similar 

problem, where a manufacturer faces stochastic demand for a single finished product 

that requires two critical components. A computational study is used to demonstrate 

the benefits of coordinating procurement and production decisions over a more 

traditional approach that relies on non-coordinated procurement and production 

policies. In contrast to these earlier studies, the research we present in this paper 

integrates procurement and finite capacity production planning problem in 

environments where orders are placed for different types of finished products, each 

possibly requiring a different combination of components. An important aspect of 

solving this more general problem involves coordinating the procurement of the 

multiple components required by a given order. For instance, there is no point in 

paying a premium for having one component delivered early, if the other components 

can only be acquired much later. Another distinguishing feature of our work is the 

granularity at which we model demand, with each order having its own delivery date 

and its own marginal penalty for not meeting that date. By differentiating between 

different orders, their individual due dates, tardiness costs and component 

requirements, it becomes possible to develop solutions that capture the finer tradeoffs 

associated with their procurement requirements.  

Another relevant body of literature revolves around research that has looked at 

procurement decisions subject to uncertain demand or supply conditions. For 

instance, Song et al. [23] have studied an assembly environment with a single finished 

product type requiring components, each procured from a pre-identified supplier and 

delivered subject to a random lead time. There is a one-time demand of random 

quantity with a known delivery date for the single finished product. The assembler 

has to decide how much to order of each component and at what time without 

knowing the demand quantity for the finished product. The objective is to minimize 

the sum of procurement costs, holding costs and backlog costs. In this research, 
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assembly time is assumed to be zero, thereby eliminating the need for finite capacity 

production planning. Gurnani et al. [11] consider a product with a single random 

demand and two components; there is an independent supplier for each component 

and a joint supplier that can supply the components in pairs. Components arrive in the 

current period with some probability or in the subsequent period otherwise. Once 

again, the assembly stage takes no time. The key decisions are how much to purchase 

from each supplier to minimize the sum of purchasing costs, component holding costs 

and backlog costs. Other related research includes the work of Gallien and Wein [10] 

who study the production of a product whose single component has a stochastic 

procurement lead time. Production is assumed to take no time (which amounts to 

having infinite capacity). Yano [26] considers the assembly of a product requiring 

two components subject to stochastic procurement and production lead times. Kumar 

[16], Hopp and Spearman [13] and Shore [22] consider an environment with multiple 

components, random procurement lead times and instantaneous production. Chu et al. 

[4] consider multiple components with random procurement lead times and a 

deterministic production lead time. In contrast to the above, the work we present in 

this paper models the finite capacity of the manufacturer/assembler and allows for 

environments with multiple finished products, each requiring a possibly different set 

of components. In addition, for each component, the manufacturer has to select from a 

number of bids from different sets of prospective suppliers with each bid possibly 

differing in price and delivery date. The present paper also assumes deterministic 

conditions. 

A third line of relevant research has been concerned with multi-period finite 

capacity production planning models. For instance, Ciarallo et al. [5] study a multi-

period aggregated production planning problem with a single-product single-stage 

manufacturer. The manufacturer faces a stationary random demand and has a 

stochastic capacity that varies from one period to the next. The manufacturer has to 

select the quantity of the product to release into the system to minimize the sum of 

holding and backlog costs. The authors show that the optimal finite horizon policy is 

of the “order-up-to-level” form. Jain and Silver [14] consider a single-period variant 

of the problem studied by Ciarallo et al. where the manufacturer can pay a premium 
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to purchase dedicated capacity from a supplier. Karmarkar and Lin [15] consider a 

multi-period production planning problem in which demand and yield is random. 

Zipkin [27] also considers a combined inventory and production problem for a facility 

facing stochastic demand. Production is assumed to be organized in large, discrete 

batches and is modeled as a queueing system, where production times can be product-

specific and batch-size-dependent. Standard inventory and queueing submodels are 

combined into a classical optimization over batch sizes and safety stocks with respect 

to holding cost of finished goods plus penalty cost of backlogged orders under 

different possible control policies (e.g., First-Come First-Served). More recent work 

has also looked at models, where additional capacity can be purchased (e.g. 

outsourcing). For instance, Angelus and Porteus [1] consider a combined capacity and 

production planning problem for a make-to-stock product under stochastic demand. 

Rajagophalan and Swaminathan [19] report results for a combined capacity and 

production planning problem involving multiple finished products and demand 

growth. Van Mieghem [24] studies the coordination between subcontracting and 

production decisions in a two-stage, two-player stochastic game with uncertain 

demand. The above research results all rely on different combinations of aggregate 

demand, capacity and procurement models. In contrast, the work presented in this 

paper models demand, capacity and procurement requirements at a more detailed 

level, enabling for the development of solutions that exploit finer tradeoffs between 

different procurement and production options. This paper also focuses on 

deterministic scenarios. 

 

3.  The Finite Capacity Multi-Attribute Procurement 
Problem 

The Finite Capacity Multi-Attribute Procurement (FCMAP) problem revolves around 

a reverse auctioneer – referred below as the “manufacturer”, though it could also be a 

service provider. The manufacturer has to satisfy a set of customer commitments or 

orders },...,1{, mMiOi =∈  (see Figure 1). Each order i  needs to be completed by a 
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due date idd , and requires one or more components (or services), which the 

manufacturer can obtain from a number of possible suppliers. The manufacturer has 

to wait for all the components before it can start processing the order (e.g., waiting for 

all the components required to assemble a given PC). For the sake of simplicity, we 

assume that the processing required by the manufacturer to complete work on 

customer order iO  has a fixed duration idu , and that the manufacturer can only 

process one order at a time (“capacity constraint”).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, for each order iO  and each component compij, j∈ Ni={1,…,ni}, the 

manufacturer organizes a reverse auction for which it receives a set of multi-attribute 

bids },...,{ 1
ij
n

ij
ji ij

BB=β  from prospective suppliers. Each bid ij
kB  includes a bid price 

ij
kbp  and a proposed delivery date ij

kdl . Below we use the notation ).,( ij
k

ij
k

ij
k bpdlB =  

Failure by the manufacturer to meet an order iO ’s due date results in a penalty 

ii Ttard × , where iT  is the time by which delivery of the product or service is late, and 

itard  is the marginal penalty for missing the delivery date. Such penalties, which are 

commonly used to model manufacturing scheduling problems, reflect actual 

 
 

Figure 1. Finite capacity multi-attribute procurement problem 
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contractual terms, loss of customer goodwill, interests on lost profits or a combination 

of the above [18].  

A solution to the FCMAP problem consists of: 

• a selection of bids: Bid_Comb={Bid_Comb1,…,Bid_Combm}, where Bid_Combi 

( Mi∈ ) is a combination of in  bids - one for each of the components required by 

order iO , and 

• a collection of start times: ST={st1,…,stm}, where ist  is the time when the 

manufacturer is scheduled to start processing order iO , and ,,..,1, i
ij

i njdlst =∀≥  

since orders cannot be processed before all the components they require have been 

delivered by suppliers. 

Given a solution (Bid_Comb, ST), the profit of the manufacturer is the difference 

between the revenue generated by its customer orders (once they have been 

completed) and the sum of its procurement costs and tardiness penalties. This is 

denoted: 

         ∑∑∑∑ ×−−

=

∈ ∈∈ i
ii

Mi Nj

ij

Mi
i Ttardbprev

STCombBidprof

i

),_(
         (1) 

where, 

• irev  is the revenue generated by the completion of order iO  (i.e., the amount 

paid by the customer), 

• ijbp  is the price of component compij in Bid_Comb, and 

• ),0( iiii dddustMaxT −+=  with ist  being the start time of order iO  in ST. 

Note that because we assume a given set of orders, the term ∑
∈Mi

irev  is the same across 

all solutions. Accordingly, maximizing profit in Equation (1) is equivalent to 

minimizing the sum of procurement and tardiness costs: cost(Bid_Comb,ST) 

= ∑∑∑
∈∈ ∈

×+
Mi

ii
Mi Nj

ij Ttardbp
i

. 

It is worth noting that the above model contrasts with earlier research in dynamic 

supply chain formation, which has generally assumed manufacturers with infinite 
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capacity or fixed lead times and ignored delivery dates and tardiness penalties ([6], 

[7], [9], [20]). 

From a complexity standpoint, it can easily be seen that the FCMAP problem is 

strongly NP-hard, since the special situation where all components are free and 

available at time zero reduces to the single machine total weighted tardiness problem, 

itself a well known NP-hard problem [8].  

An example of an exact procedure to solve FCMAP problems involves looking at 

all possible procurement bid combinations and, for each such combination, solving to 

optimality a single machine weighted tardiness problem with release dates (e.g., using 

a branch-and-bound algorithm). A release date is a date before which a given order is 

not allowed to be processed. Given a combination of procurement bids Bid_Combi, an 

order iO  has a release date: 

         ir  = ][ ij

Nj
dlMax

i∈
            (2) 

where ijdl  denotes the delivery date of component compij in Bid_Combi. In other 

words, the component that arrives the latest determines the order’s release date.  

Clearly, with the exception of fairly small problems, the requirements of the above 

procedure are computationally prohibitive. Below, we identify a number of rules that 

can be used to efficiently prune the search space associated with FCMAP problems. 

 

4.  Pruning the Search Space 
Pruning Rule 1: Eliminating Expensive Bids with Late Delivery Dates 

Consider an FCMAP problem P  with an order iO  requiring a component compij for 

which the manufacturer has received a set of bids },...,{ 1
ij
n

ij
ji ij

BB=β  from prospective 

suppliers. Let ),( ij
k

ij
k

ij
k bpdlB =  and ),( ij

l
ij
l

ij
l bpdlB =  be two bids in jiβ  such that: 

ij
k

ij
l dldl ≥  and ij

k
ij
l bpbp ≥ . 

Then problem P′  with }{\ ij
ljiji Bββ =′  admits the optimal solutions with the exact 

same profit as problem P . 
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The correctness of this rule should be obvious. Its application is illustrated in Figure 

2, where an order requires two components: component 1 and component 2. The 

manufacturer has received bids for each component. Using Rule 1, it can be determined, 

for instance, that bid14 is not competitive given that it is more expensive than bid13 and 

arrives late. Similarly, bid22 and bid24 can also be pruned.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pruning Rule 2: Eliminating Expensive Bids with Unnecessarily Early     

Delivery Dates 

Consider an FCMAP problem P  with an order iO  requiring a set of components 

compij, },...1{ ii nNj =∈ . Let },...,{ 1
ij
n

ij
ji ij

BB=β  be the set of bids received by the 

manufacturer for each component compij with ).,( ij
k

ij
k

ij
k bpdlB =  We define earliest

ir  as 

the earliest possible release date for order iO . It can be computed as:  

ij
knknj

earliest
i dlMinMaxr

iji ≤≤≤≤
=

11
  

Let ij
kB and ij

lB be two bids for component compij such that: 

ij
k

ij
l bpbp ≥  and earliest

i
ij
k

ij
l rdldl ≤≤ . 

Figure 2. From 20 bid combinations to 4 non-dominated ones 
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Then problem P′with }{\ ij
ljiji Bββ =′ admits the exact same set of optimal solutions as 

problem P . 

An intuitive explanation should suffice to convince the reader. While bid ij
lB  has 

an earlier delivery date than bid ij
kB , this earlier date is not worth paying more for: it 

does not add any scheduling flexibility to the manufacturer since the start of order iO  

remains constrained by ij
l

earliest
i dlr ≥ . A formal proof can easily be built based on this 

observation.  

Note that, in general, it is not possible to prune bid ij
kB . This is because other bids for 

component compij may have delivery dates that are after earliest
ir , which would reduce the 

number of available scheduling options possibly leading to lower quality solutions. 

Application of this rule is also illustrated in Figure 2, where it results in the pruning of 

11bid . This is because both bid11 and bid12 arrive before the order’s earliest release date, 

rearliest, and bid11 is more expensive than bid12. 

 

Pruning Rule 3: Eliminating Expensive Bid Combinations with 

Unnecessarily Early Delivery Dates 

Consider an FCMAP problem P  whose search space has already been pruned using 

Rule 1. In other words, given two bids ),( ij
k

ij
k

ij
k bpdlB =  and ),( ij

l
ij
l

ij
l bpdlB = , lk ≠ , for 

the same component compij, if ij
k

ij
l dldl > , then ij

k
ij
l bpbp < .  

Let },...,{_ 1 iin
a

i
a

a
i BBCombBid =  be a combination of bids for the in  components 

required by order Oi. Suppose also that there exist two bids =ik
aB  

a
i

ik
a

ik
a CombBidbpdl _),( ∈  and b

i
ik
b

ik
b

ik
b CombBidbpdlB _),( ∈= , and a component 

compil, kl ≠  such that il
a

ik
b

ik
a dldldl ≤< , then a

iCombBid _  is dominated by 

b
iCombBid _ , where b

iCombBid _ = a
iCombBid _(  }{}){\ ik

b
ik
a BB ∪ . By “dominated” 

we mean that, for every solution to problem P  involving a
iSelBid _ , there is a better 

solution where a
iCombBid _  is replaced by b

iCombBid _ . 
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Given that a
iCombBid _  includes a bid for a second component compil that gets 

delivered at time ik
a

ik
b

il
a dldldl >≥ , replacing bid ik

aB  with bid ik
bB  will not delay the 

start of order iO  and can only help reduce the cost of its components since ik
b

ik
a bpbp >  

(as indicated earlier, we assume that Rule 1 has already been applied to prune bids). It 

is straightforward to build a formal proof based on the above observation. Note also 

that Rule 3 actually subsumes Rule 2 – Rule 2 is easier to visualize and also 

introduces the notion of earliest possible release date, which we use later in this 

article. 

The three pruning rules we just identified can be used to prune the set of bids to be 

considered. This is illustrated in Figure 2, where the combination of the three rules 

brings the number of bid combinations to be considered from 20 to just 4 non-

dominated combinations. In particular, the application of Rule 3 helps us prune bid 

combination (bid12, bid23). This is because this combination is dominated by (bid13, 

bid23), which results in the same release date but is cheaper. Another bid combination 

pruned using Rule 3 is (bid15, bid21). 

It should be clear that, for each order, Rules 1 and 2 can be applied in 

)log( bbcO ⋅⋅  time, where b  is an upper-bound on the number of bids received for a 

given component and c  an upper-bound on the number of components required by a 

given order. It can also be shown that, for a given order iO , Rule 3 can be applied in 

)log( tbtbO ⋅  time, where tb  is the total number of bids received for order iO  across all 

the components it requires. This is done as follows: 

1. For each component compij, create a sorted list >=< ij
n

ij
ji ij

BB ,..,1λ  such that 

ij
k

ij
k dldl 1+< . Create an overall list of delivery dates for all the bids received for 

iO  (i.e., for all the components required by the order) and sort the delivery 

dates in increasing order. Let iΛ  be this sorted list 

2. For each date ir  in iΛ , keep only those non-dominated combinations of bids 

that are compatible with having ir  as order iO ’s release date. Note that such 

bid combinations are of the form },...,{ 1 iin
a

i
a BB  where jrdl i

ij
a ∀≤ , , and there is 
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no other bid ij
bB  such that i

ij
b

ij
a rdldl ≤< . In other words, for each component 

compij, ij
aB  is the latest bid compatible with release date ir  (and hence also the 

cheapest such bid). Finding such bids requires very little time, given the 

sorted bid lists jiλ  created in step 1. 

As a parenthesis, it is worth noting that the three pruning rules we just introduced 

apply to scenarios with more complex constraints, as they only take advantage of the 

release constraint that requires each order to have all its components before it can be 

processed. For instance, this includes problems where the manufacturer is modeled as 

a job shop, the capacity of some machines is greater than one and there are sequence 

dependent setup times. It can also be shown that the pruning rules can be extended to 

accommodate problems with inventory holding costs, as long as orders are not 

allowed to be shipped before their due dates – this assumption corresponds to having 

finished goods inventory and is representative of many supply chain situations.  

Consider the non-dominated bid combinations resulting from the application of 

our three pruning rules to an FCMAP problem. Let the non-dominated bid 

combinations of order iO  be denoted: 

*_ iCombBid = )},(_),...,,(_{ 11
1

ii

i
imim

m
iiii pcrCombBidpcrCombBid == , 

where ikr  is the release date of bid combination k
iCombBid _ , as defined in Equation 

(2), and ikpc  is its total procurement cost, defined as the sum of its component bid 

prices. It follows that: 

Property 1: For each order iO , Mi∈ , it must hold that, if ibia rr < , then ibia pcpc > , 

bamba i ≠∈∀ },,...,1{, . In other words, the total procurement costs of non-dominated 

bid combinations strictly decrease as their release dates increase.   

Proof:  

We have already shown that, following the application of Rule 1, the bids that remain 

for a given component have prices that strictly decrease as their delivery dates 

increase.   

Let a
iCombBid _  be a non-dominated bid combination for order iO  – following the 

application of Rules 1 through 3. Let its release date iar  be determined by the delivery 
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date of component j, namely ij
aia dlr = . Note that, by definition, the release date of a 

bid combination is always determined by one or more of its components. Given that 

Rule 3 has already been applied, the delivery date ik
adl  of any component k must be 

the latest delivery date among those bids for component k that satisfy ij
a

ik
a dldl ≤ .  

Consider another non-dominated bid combination b
iCombBid _  for order iO  such that 

iaib rr > . Let l be the index of one of the components determining the release date of 

bid combination b
iCombBid _ , namely ij

aia
il
bib dlrdlr =>= . Just as for bid 

combination a
iCombBid _ , the fact that Rule 3 has been applied implies that the 

delivery date ik
bdl  of any component k in b

iCombBid _  must be the latest delivery date 

among those bids for component k that satisfy il
b

ik
b dldl ≤ . Given that 

ij
aia

il
bib dlrdlr =>= , it also follows that, for any component k, we have ik

a
ik
b dldl ≥  with 

a strict inequality for at least one component, namely component l. Given that Rule 1 

has been applied, it also follows that, for any component k , ik
a

ik
b bpbp ≤  with a strict 

inequality for at least one component (component l). Hence, ∑ ≤≤
=

ink
ik
aia bppc

1
 

∑ ≤≤
=>

ink
ik
bib bppc

1
. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Illustration of Property 1 
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Property 1 is illustrated in Figure 3, where we have two bid combinations 
a
iCombBid _  and b

iCombBid _  for an order iO  that requires three components. In this 

particular example, iar  is determined by the delivery date of component 2, while ibr  is 

determined by that of component 3. The two bid combinations share the same 

delivery dates for two out of three of the components required by order iO : 

components 1 and 2. The difference in procurement cost comes from the lower price 

associated with the later delivery of component 3 in bid combination b
iCombBid _  

(namely, 33 i
aib

i
b dlrdl >= ). 

Note also that, if after application of the pruning rules there exist two non-

dominated bid combinations, a
iCombBid _  and b

iCombBid _ , such that ibia rr = , it 

must hold that ibia pcpc = . 

In the following sections, we introduce a branch-and-bound algorithm to solve the 

FCMAP problem along with two (significantly faster) heuristic search procedures. All 

three procedures take advantage of the pruning rules we just introduced. One of the 

two heuristic procedures also takes advantage of Property 1.  

 

5.  A Branch-and-Bound Algorithm 
Following the application of the pruning rules introduced in the previous section, 

optimal solutions to the FCMAP problem can be obtained using a branch-and-bound 

procedure. Branching is done over the sequence in which orders are processed by the 

manufacturer and over the release dates of non-dominated bid combinations of each 

order. Specifically, the algorithm first picks an order to be processed by the 

manufacturer then tries all the release dates (of non-dominated bid combinations) 

available for this order. Note that, as orders are sequenced in this fashion, some of 

their available release dates become dominated, given prior sequencing decisions. For 

instance, consider two orders 1O  and 2O , with 2O  having two release dates 21r  and 

22r  with 2221 rr <  - following the application of Pruning Rules 1 through 3. Suppose 

that, at the current node, 1O  is sequenced before 2O  and that 1O ’s earliest completion 
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date is greater than 22r . It follows that release date 21r  is strictly dominated by release 

date 22r  at this particular node. Release dates that become dominated as a result of 

prior assignments can be pruned on the fly, thereby further speeding up the search 

procedure. Given a node n in the search tree, namely a partial sequence of orders and 

a selection of release dates for each of the orders already sequenced, it is possible to 

compute an lower-bound for the profit of all complete solutions (i.e., leaf nodes) 

compatible with this node: 

)( ii
OSi

in TtardpcLB
n

×+= ∑
∈

]),0max([ i
OSi

iiOSi mpcddducdtard
n

n
+−+×+ ∑

∉

, 

where: 

• nOS  is the set of orders sequenced at node n; 

• ipc  is the total procurement cost associated with the non-dominated release 

date (or bid combination) assigned to order ni OSO ∈  and iT  is its tardiness. 

Note that each order is scheduled to start as early as possible, given prior 

sequencing decisions and the release date assigned to it: there are no benefits 

to starting later; 

• 
nOScd  is the completion date of the last order in nOS ; 

• impc  is the minimum possible procurement cost of order iO  – this cost is 

node-independent. 

If the lower bound of a node n is greater than the best feasible solution found so far, 

the node n and all its descendants are pruned. 

 

6.  An Early/Tardy Heuristic 
Property 1 tells us that, following the application of the pruning rules, the 

procurement costs of non-dominated bid combinations strictly decrease as release 

dates increase. Figure 4 plots the total procurement cost and tardiness cost of an order 

for different possible start times. While tardiness costs increase linearly with start 

times that miss the order’s due date, procurement costs vary according to a decreasing 
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step-wise function. Specifically, the circles in Figure 4 represent the order’s non-

dominated bid combinations. For instance, if the order starts at time st, its 

procurement cost is pci, namely the procurement cost of the latest non-dominated bid 

combination compatible with this start time ( iCombBid _ ). Its tardiness cost is equal 

to ×tard ),0max( dddust −+ , where tard is its marginal tardiness penalty, dd its due 

date and du its duration (or processing time). The resulting problem can be viewed as 

a pseudo early/tardy scheduling problem. It bears a lot of similarity to a traditional 

early/tardy scheduling problem (e.g., [17]) but is also slightly different because 

procurement costs associated with different bid combinations lead to: 

1) Step-wise earliness costs – in contrast to linear earliness costs found in a 

traditional early/tardy problem; and 

2) Potential savings for completing the order past its due date, to the extent that there 

are late bid combinations that are so cheap that it is worth finishing the order late. 

Again this is different from a traditional early/tardy problem, where finishing an 

order on time always leads to the lowest cost for that order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. An order’s tardiness and procurement costs 
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Ow and Morton [17] have introduced an early/tardy dispatch rule for one-machine 

scheduling problems subject to linear earliness and tardiness costs. Because our 

earliness costs are not linear, this heuristic can not readily be applied. Below, we 

briefly review some of its key elements and discuss how we have adapted it to 

produce a family of heuristic search procedures for the FCMAP problem. 

Ow and Morton’s dispatch rule interpolates between two extreme cases. The first 

situation is one where all orders are assumed to have plenty of time and where only 

earliness costs need to be minimized. The second case is one where all orders are 

assumed to be late and where only tardiness needs to be minimized. In the former 

case, it can be shown that an optimal solution can be built by sequencing orders 

according to a Weighted Longest Processing Time dispatch rule, where each order 

receives a priority: 

iii duearlP −= , 

where iP  is the priority of order Oi, dui is its processing time and earli is its marginal 

earliness cost – namely the penalty incurred for every unit of time the order finishes 

before its due date. Conversely, in the latter case, when all jobs are assumed to be 

tardy, it can be shown that an optimal solution can be built by sequencing orders 

according to a Weighted Shortest Processing Time dispatch rule of the form: 

Pi(Si) 

O

i

ii

du
earltard 0−

Figure 5. Priority function for Pseudo-Early/Tardy heuristic 

i

i

du
earl

−

i

iii

earl
earlearltardduk

0

ln −+

-Si Si 
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iii dutardP = , 

where tardi is its marginal tardiness penalty. 

Like Ow and Morton’s, our early/tardy heuristic interpolates between two extreme 

cases: one where all orders have plenty of time and one where all orders are late. The 

priority associated with this latter situation is different however from the one in Ow 

and Morton’s rule. This is because later start times for orders that are late may still 

result in reductions in procurement costs. Accordingly, the priority associated with 

this latter situation is: 

iiii duearltardP )( 0−= , 

where 0
iearl  is the earliness weight at ii duddst −= . 

The resulting early/tardy heuristic assigns each order a priority that varies with its 

slack Si: 

   ]
)(

exp[)(
0

duk
S

du
earlearltard

du
earl

SP i

i

iii

i

i
ii ⋅

−×
−+

+−=
+

                   (3) 

where du is the average processing time of an order, k is a look-ahead parameter. (X)+ 

denotes Max (X, 0), and slack Si at time t is defined as: 

tduddS iii −−= . 

The above formula can easily be seen to reduce to the Weighted Shortest Processing 

Time dispatch rule with a marginal tardiness cost of 0
ii earltard −  when slack 0≤iS  

and to the Weighted Longest Processing Time dispatch rule when ∞→iS . The look-

ahead parameter k can intuitively be thought of as the average number of orders that 

would be tardy if order Oi is selected to be scheduled next. The value of k basically 

controls the transition between the two extreme scenarios between which this rule 

interpolates. Higher values of k make the transition start earlier. This can be 

interpreted as being more sensitive to tardiness when a larger number of orders stand 

to be late.  

In the FCMAP problem, an order iO  cannot start before its earliest possible 

release date earliest
ir  (see Pruning Rule 2 – it should be clear that this release date is 

never pruned by Rule 2). In addition, earliness costs vary according to a step function. 
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A marginal earliness cost can however be obtained through regression, whether 

locally or globally. Specifically, we distinguish between the following two 

approaches to computing marginal earliness costs for an order in the FCMAP 

problem: 

1) Local Earliness Weight: At time t, the local marginal earliness cost associated with 

an order O (see Figure 4) can be approximated as the difference in procurement costs 

associated with the latest non-dominated bid combinations compatible with 

processing the order at respectively time t (namely iCombBid _ ) and time dukt ⋅+   

(namely jCombBid _ ): 

duk

pcpc
earl jiL −

= , 

2) Global Earliness Weight: An alternative involves computing a single global 

marginal earliness cost for each order. This can be done using a Least Square 

Regression: 

∑
∑

⋅−

⋅⋅−⋅
=

22 rdnrd

rdpcnrdpc
earl G , 

where pc  is the average procurement cost of non-dominated bid combinations for the 

order, and rd is their average release date. 

The simplest possible release policy for the FCMAP problem involves releasing 

each order iO  at its earliest possible release date, namely earliest
ir . We refer to this 

policy as an Immediate Release Policy. It might sometime result in releasing some 

orders too early and hence yield unnecessarily high procurement costs. An alternative 

is to use an Intrinsic Release Policy, which releases orders when their early/tardy 

priority )( ii SP  becomes positive. )( ii SP  can be viewed as the marginal cost incurred 

for delaying the start of order iO  at time t. As long as this cost is negative, there is no 

benefit to releasing the order. The tipping point, where 0)( =ii SP , is the order’s 

intrinsic release date: 

  0lnˆ
iii

i
iii earlearltard

earl
dukduddr

−+
⋅+−= .        (4) 
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Here again, one can use either the local or global earliness weights associated with an 

order. Intuitively, one would expect the global earliness weight to be more 

appropriate for the computation of an order’s release date and its local earliness 

weight to be better suited for the computation of its priority at a particular point in 

time. This has generally been confirmed in our experiments. In Section 9, we only 

present results where priorities are computed using local earliness weights. We do 

however report results, where release dates are computed with both local and global 

earliness weights, and we found our heuristic performs better with global earliness 

weight.  

Rather than limiting ourselves to deterministic adaptations of Ow and Morton’s 

dispatch rule, we have also experimented with randomized versions, where order 

release dates and priorities are modified by small stochastic perturbations. This 

enables our procedure to make up for the way in which it approximates procurement 

costs, sampling the search space in the vicinity of its deterministic solution. The 

resulting pseudo-early/tardy search heuristic operates by looping through the 

following procedure for a pre-specified amount of time. As it iterates, the procedure 

alternates between the immediate and intrinsic release policies discussed earlier and 

successively tries a number of different values for the heuristic’s look-ahead 

parameter k. The following outlines one iteration – i.e. with one particular release 

policy and one particular value of the look-ahead parameter. 

1. For each order kO , k ∈  M = {1,2,…,m}, compute the order’s release date. When 

using the immediate release policy, this simply amounts to setting the order’s 

release date earliest
kk rRD = . When using the intrinsic release policy, the order’s 

release date is computed as }ˆ)1(,{ k
earliest

kk rrMaxRD ×+= α , where α  is randomly 

drawn from the uniform distribution [–dev1, +dev1] (dev1 is a parameter that 

controls how widely the procedure samples the search space);  

2. Dispatch the orders, namely let kMk
RDMint

∈
=0  

1) For all those orders kO  that have not yet been scheduled and whose release 

dates are before  0t , compute the order’s priority at time 0t  as: 
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)()1()( 00 tduddPtPR kkkk −−⋅+= β , 

where Pk is the pseudo-early/tardy priority defined in (3) and β  is randomly 

drawn from the uniform distribution [–dev2, +dev2] (dev2 is a parameter that 

controls how widely the procedure samples the search space); 

2) Let order iO  be the order with the highest priority. Schedule iO  to start at time 

0t ; 

3) If all orders have been scheduled, then Stop. Else, let idutt += 01  and 2t  be 

the earliest release date among those orders that have not yet been scheduled. 

Set },{ 210 ttMaxt =  and repeat Steps 1-3. 

4) Compute the profit of the resulting solution. If it is higher than the best 

solution obtained so far, make this the new best solution. 

A deterministic version of this procedure simply amounts to setting dev1 and dev2 to 

zero. 

 

7. A Simulated Annealing Search Procedure 
A second heuristic search procedure for the FCMAP problem involves using 

Simulated Annealing (SA) to explore different combinations of bids.  Given a 

selection of non-dominated bid combinations ,...,_{_ 1CombBidCombBid =  

}_ mCombBid  – one combination per order, the procedure computes the release date 

ir  of each order iO  and sequences the orders, using the Apparent Tardiness Cost 

(ATC) dispatch rule first introduced in [25]. ATC is known to generally yield high 

quality schedules for the one-machine total weighted tardiness problem and has a 

O(m·logm) complexity. As such it is an excellent estimator for the best solution 

compatible with a given selection of bid combinations. The following further details 

the SA procedure: 

Step 1 – Initialization: 

 Set an initial temperature Temp=Temp0, and an initial bid selection =1_ CombBid  

}_,...,_{ 11
1 mCombBidCombBid ; 
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Use the ATC dispatch rule to build a schedule. Let cost1 = cost(Bid_Comb1, ST1), 

where },...,{ 11
1

1
mststST =  is the set of start times assigned by ATC to orders 1O  

through mO . Set Bid_Combopt=Bid_Comb1 and costopt=cost1. 

Step 2 – Search:  

Perform the following step N times: 

Select Bid_Comb =neighbor(Bid_Comb1) (randomly or through some heuristic), 

and compute cost = cost(Bid_Comb, ST), where ST is the set of order start times 

assigned by the ATC dispatch rule; 

If cost1≥ cost≥ costopt, set Bid_Comb1=Bid_Comb; 

Else if cost>cost1 and rand()≤ exp((cost1-cost)/Temp), set Bid_Comb1= 

Bid_Comb; 

Else if cost<costopt, set Bid_Combopt=Bid_Comb1=Bid_Comb. 

If Bid_Combopt was not modified in the last N  iterations, decrease the 

temperature α⋅= TempTemp . Go to Step 3. 

Step 3 – Termination Condition: 

If Bid_Combopt has not been improved over the past K steps, then STOP and return 

(Bid_Combopt, STopt) as the best solution found by the procedure, otherwise go to Step 

2. 

The initial bid combination Bid_Comb1 is randomly generated. Note also that the 

ATC dispatch rule is itself a parametric dispatch rule with a look-ahead parameter 

[25]. In our experiments, we systematically run ATC with values of the look-ahead 

parameter equal to 0.5, 1.0, 1.5, …, 6.0 and pick the best of the 12 solutions we have 

generated. 

We have studied variations of this procedure that rely on different movesets. In 

particular, we have considered a one-bid moveset variation, where we modify the 

selection of a single bid (for a given component), and a two-bid moveset variation, 

where two bid selections (for two different components) are modified at once. For 

both types of movesets, we have also experimented with two ways of selecting 

moves: 

• a random mechanism, where a move in the moveset is randomly selected, and 
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• an organized mechanism that replaces the bid(s) that reduce most the profit of 

the current solution (Bid_Comb1, ST1), namely, those bids for which 

ii
ij Ttardbp ⋅+  is the greatest. 

The experiments presented in Section 9 use the organized mechanism, as we found it 

to generally yield higher quality solutions than the random one. We have not found a 

great difference between variations of our procedure using one-bid movesets and two 

bid movesets.  

 

8. Right-Shifting Solution Improvement Procedure 
Since the total cost function of each order is the sum of a linearly increasing tardiness 

cost function and a step-wise non-increasing earliness cost function, the total cost 

function has multiple local minimum points, as shown in Figure 6. Meanwhile, the 

above pseudo-early/tardy heuristic dispatches orders as soon as the machine becomes 

available. Hence, the solution produced by the pseudo-early/tardy heuristic can 

sometimes be further improved by right-shifting orders to lower local minimum 

points without changing the order processing sequence. Let <1,2,…,m> denote an 

order processing sequence produced by the above algorithm, sti denote the start time 

of order Oi, i∈{1,2,…,m}. As shown in Figure 6, the local minimum points have a 

one-to-one correspondence with the non-dominated bid combinations. The 

improvement method processes each order i from m to 1 as follows: 

1. Right-shift early orders: If sti < ddi – dui and sti < sti+1 – dui, right-shift order Oi 

until Min{ddi – dui, sti+1 – dui}, i.e., let sti = Min{ddi – dui, sti+1 – dui}. Even if 

its cost remains the same, right-shifting Oi creates more room to right-shift 

earlier orders, and therefore may allow to decrease the costs of the other 

orders. Go to Step 2. 

2. Under any of the following situations, stop right-shifting: 

• sti = sti+1 – dui; 

• There is no local minimum point between sti and sti+1 – dui; or 
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• All the local minimum points between sti and sti+1 – dui have higher 

costs than the current cost, tci, of order Oi. 

Otherwise, let j* be a local minimum point, the cost of which is the lowest 

among all the points between sti and sti+1 – dui. Right-shift order Oi to the local 

minimum point j*, i.e., let sti =stj* – dui. 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Computational Evaluation 
A number of experiments have been run to evaluate the impact of our pruning rules, 

the performance of our heuristic search procedures, and the benefits of our FCMAP 

model over traditional reverse auction models that ignore the manufacturer’s finite 

capacity. These experiments are further detailed below. 

Empirical Setup 
Problems were randomly generated to cover a broad range of conditions by varying 

the distribution of bid prices and bid delivery dates as well as the overall load faced 

by the manufacturer. Results are reported for 2 groups of problems: 

1. Problems with 10 orders, 5 required components per order and 20 

supplier bids per component: These problems were kept small enough so 

Cost 

Start time: st 

Total cost 

dd - du

Figure 6. An order’s total cost 

Local minimum point 
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that they could be solved to optimality with our branch-and-bound algorithm. 

Two sets of problems were designed. Key parameter values of the first set 

were drawn from the following uniform distributions: 

• Order processing time: U[5,25] 

• Order marginal tardiness cost: U[1,10] 

• Order due dates: 2 distributions: 

i. Medium Load (ml) problems: U[100,300] 

ii. Heavy Load (hl) problems: U[100,200] 

• Component bid deliveries: 2 distributions: 

i. Narrow bid delivery distribution (nd): U[0,50] 

ii. Wide bid delivery distribution (wd): U[0,100] 

• Component bid prices: 2 distributions: 

i. Narrow bid price distribution (np): U[5,35] 

ii. Wide bid price distribution (wp): U[5,65] 

The other set of problems has all the same distributions except for the 

component bid deliveries distributions: 

i. Narrow bid delivery distribution (nd): U[0,150] 

ii. Wide bid delivery distribution (wd): U[0,200] 

The first set of problems represents relatively easy problem instances, and in 

almost all cases, it holds that latestrdudd >− , where rlatest is the latest release 

date determined by the cheapest non-dominant bid combination. Namely, the 

cost function is quasiconvex and has no local minimum point after dd – du. 

We call this set of problems Early-Bid problems. The other set of problems, 

which we call Mixed-Bid problems, represents relatively hard problem 

instances, where, in many situations, latestrdudd <− , i.e., the cost function has 

multiple local minimum points after dd – du (see Figure 6). A total of 20 

problems were generated in each category (ml/hl, nd/wd, np/wp), yielding a 

total of 320 problems. 

2. Problems with 500 orders, 5 required components per order and 20 

supplier bids per component: While these problems were too large to be 

solved with branch-and-bound (even with our pruning rules), they were used to 
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validate results obtained on the smaller sets of problems. This includes, 

determining how our heuristic search procedures scale up and evaluating the 

benefits of our FCMAP model over traditional reverse auction models and 

policies that ignore the manufacturer’s finite capacity – these latter being 

simply referred to below as “infinite capacity” policies. Key parameter values 

were drawn from the following uniform distributions: 

• Order processing time: U[1,5] 

• Order marginal tardiness cost: U[1,10] 

• Order due dates:  

i. Medium Load (ml) problems: U[500,1500] 

ii. Heavy Load (hl) problems: U[500,1000] 

• Component bid deliveries: 2 distributions: 

i. Narrow bid delivery distribution (nd): U[0,800] 

ii. Wide bid delivery distribution (wd): U[0,1000] 

• Component bid prices: same 2 distributions as 10-order problems 

(np/wp) 

A total of 20 problems were generated in each category for a total of 160 

problems. 

Note that order revenues are irrelevant, since the orders to be produced are fixed. In 

other words, all solutions admit the same overall revenue and overall profit is solely 

determined by the sum of tardiness and procurement costs associated with a given 

solution – see equation (1). Accordingly, we report overall costs rather than overall 

profits. 

Distance from the Optimum 
Tables 1 and 2 summarize results obtained on 10-order/Early-Bid problems. Tables 3 

and 4 summarize 10-order/Mixed-Bid problems. These tables provide the average 

distance from the optimum of solutions obtained with different variations of our 

search heuristics across 16 problem sets (four medium load, Early-Bid problem sets in 

Table 1, four heavy load, Early-Bid problem sets in Table 2, four medium load, 

Mixed-Bid problem sets in Table 3, and four heavy load, Mixed-Bid problem sets in 
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Table 4) with each problem set including a total of 20 problems. This distance from 

the optimum was computed as:  

[cost(solution)–cost(optimal_solution)] ⁄cost(optimal_solution). 

Standard deviations are provided between parentheses. Optimal solutions were 

obtained using the branch-and-bound procedure introduced in Section 5. Results are 

reported for the following techniques: 

• Infinite capacity: This is a technique that reflects traditional reverse auction 

practices, where the manufacturer’s capacity is ignored. Specifically, for each 

order and each component, the manufacturer selects the cheapest bid compatible 

with the order’s due date. Orders are then scheduled according to the ATC 

dispatch rule, namely the same rule used in our Simulated Annealing procedure 

(See Section 7). 

• Finite capacity: Results are reported for a number of variations of our search 

heuristics: 

o Simulated Annealing (SA) procedure: This is the procedure introduced 

in Section 7 with 0Temp =300, α =0.95, N=60 and K=40. The procedure 

was run five times on each problem and we report both average 

performance and best performance over 5 runs. 

o Pseudo-Early/Tardy (PET) Procedure: this is the pseudo-early/tardy 

heuristic introduced in Section 6. Here again we report results for 

several variations of this heuristic: 

 G-L uses global earliness weights in its release policy and local 

earliness weights in its priority computations, 

 L-L uses local earliness weights for both release date and 

priority computations, 

 Det is a deterministic variation of the pseudo-early/tardy 

heuristic described in Section 6, namely dev1 = dev2 = 0, 

 Rand is a stochastic variation of the same heuristic with dev1 = 

0.3 and dev2 = 0.3. For comparison sake, the CPU time given to 

this heuristic was the same CPU time required by an average SA 

run in the same problem category, 
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 Rand-RS improves the solutions produced by Rand using the 

post-processing procedure described in Section 8, 

 Hybrid is a heuristic that runs SA once, PET/L-L/Rand-RS 

once, PET/G-L/Rand-RS once and takes the best of the resulting 

solutions. 

 

 

 

 

Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand. Rand-

RS 

Hyb. 

np/nd 35.04 
(36.84) 

26.68 
(24.04) 

22.39 
(21.29) 

1.82 
(333) 

0.29 
(0.64) 

0.19 
(0.57) 

1.89 
(4.69) 

0.03 
(0.12) 

0.00 
(0.00) 

0.00 
(0.00) 

wp/nd 37.57 
(26.42) 

30.87 
(20.14) 

23.04 
(14.21) 

2.06 
(4.36) 

0.03 
(0.12) 

0.03 
(0.12) 

2.71 
(5.28) 

0.04 
(0.18) 

0.03 
(0.18) 

0.00 
(0.00) 

np/wd 92.25 
(84.21) 

42.43 
(38.62) 

25.76 
(24.71) 

7.31 
(5.25) 

3.45 
(4.12) 

1.88 
(2.42) 

3.01 
(2.86) 

0.48 
(0.81) 

0.46 
(0.79) 

0.37 
(0.61) 

wp/wd 76.58 
(72.95) 

39.01 
(28.34) 

24.79 
(18.88) 

9.74 
(9.20) 

4.08 
(5.70) 

3.19 
(4.97) 

4.75 
(5.52) 

1.14 
(2.52) 

1.03 
(2.51) 

0.80 
(2.45) 

 
 
 
 
 

 

Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 37.16 
(34.79) 

25.40 
(22.56) 

20.12 
(18.84) 

7.85 
(5.76) 

2.31 
(2.71) 

2.15 
(2.55) 

8.21 
(6.62) 

2.65 
(3.91) 

2.39 
(3.67) 

1.24 
(1.64) 

wp/nd 47.83 
(41.49) 

37.97 
(31.14) 

33.00 
(26.83) 

14.64 
(12.11) 

3.59 
(6.32) 

3.51 
(6.28) 

13.75 
(12.34) 

3.13 
(4.46) 

3.07 
(4.31) 

1.93 
(2.92) 

np/wd 131.11 
(80.67) 

56.17 
(25.44) 

36.53 
(19.36) 

14.51 
(7.84) 

6.50 
(4.03) 

4.92 
(3.11) 

10.23 
(8.74) 

3.09 
(4.04) 

3.02 
(4.09) 

2.28 
(2.16) 

wp/wd 165.93 
(100.54) 

77.20 
(36.86) 

52.08 
(23.56) 

20.65 
(8.90) 

10.34 
(6.33) 

9.47 
(6.04) 

18.74 
(8.33) 

6.13 
(5.12) 

5.75 
(4.36) 

5.23 
(3.63) 

 

Table 1. Percentage deviation from the optimum – 10-order/early-bid/medium-load 
problems (Standard deviations are provided between parentheses) 

Table 2. Percentage deviation from the optimum – 10-order/early-bid/heavy-load 
problems (Standard deviations are provided between parentheses) 
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Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. 
of 5 

Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 89.73 
(78.07) 

52.86 
(40.77) 

30.24 
(22.09) 

16.92 
(7.87) 

8.75 
(6.81) 

6.30 
(5.02) 

3.90 
(4.25) 

0.85 
(1.25) 

0.62 
(1.13) 

0.57 
(1.14) 

wp/nd 59.71 
(52.40) 

36.41 
(26.04) 

24.23 
(16.98) 

17.78 
(9.38) 

11.06 
(8.85) 

7.30 
(6.15) 

4.72 
(5.03) 

2.04 
(3.10) 

1.94 
(3.08) 

1.41 
(2.01) 

np/wd 86.09 
(84.32) 

55.73 
(58.56) 

35.44 
(42.25) 

17.80 
(10.17) 

10.40 
(7.29) 

7.92 
(6.82) 

5.66 
(3.36) 

2.29 
(2.41) 

1.65 
(1.80) 

1.62 
(1.82) 

wp/wd 106.61 
(79.84) 

81.53 
(65.82) 

61.93 
(59.13) 

22.60 
(10.25) 

15.24 
(10.17) 

11.29 
(7.82) 

8.46 
(5.58) 

4.30 
(3.61) 

3.44 
(2.80) 

3.22 
(2.80) 

 

 

 

Finite Capacity  
SA PET 

L-L G-L 

 
Inf. 

Cap. Avg. of 
5 Runs 

Best of 
5 

Runs 
Det Rand Rand-

RS 
Det Rand Rand-

RS 

Hyb. 

np/nd 187.43 
(112.91) 

79.69 
(43.21) 

41.71 
(17.80) 

19.04 
(6.10) 

13.82 
(5.94) 

13.29 
(6.17) 

14.13 
(8.44) 

4.17 
(4.02) 

4.10 
(3.87) 

3.98 
(3.62) 

wp/nd 126.71 
(74.62) 

71.04 
(53.18) 

40.29 
(30.19) 

21.37 
(9.47) 

12.45 
(5.93) 

10.74 
(5.36) 

15.18 
(7.68) 

6.32 
(5.01) 

6.06 
(5.01) 

5.68 
(4.46) 

np/wd 253.74 
(170.31) 

146.23 
(127.82) 

76.65 
(82.99) 

17.91 
(5.77) 

12.68 
(5.29) 

12.37 
(5.31) 

11.65 
(6.52) 

5.08 
(4.69) 

4.93 
(4.55) 

4.41 
(3.60) 

wp/wd 126.73 
(104.02) 

93.21 
(77.45) 

72.92 
(71.58) 

28.07 
(10.77) 

16.67 
(9.13) 

15.84 
(9.24) 

15.74 
(8.71) 

6.47 
(5.11) 

6.41 
(5.09) 

6.41 
(5.09) 

 

Tables 1-4 yield a number of observations: 

• Importance of the FCMAP Model: All finite capacity heuristics yield solutions 

with significantly lower costs than the infinite capacity one, thereby confirming 

the importance of the FCMAP model. Taking into account finite capacity 

considerations and tightly coordinating the procurement of the multiple 

components required by each order subject to these finite capacity considerations 

significantly improve the manufacturer’s bottom line. The results are generally 

most impressive on problem categories np/wd and wp/wd, where our hybrid 

Table 3. Percentage deviation from the optimum – 10-order/mixed-bid/medium-load 
problems (Standard deviations are provided between parentheses) 

Table 4. Percentage deviation from the optimum – 10-order/mixed-bid/heavy-load 
problems (Standard deviations are provided between parentheses) 
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heuristic respectively reduces total costs by at least 70% on Early-Bid problems 

and 80% on Mixed-Bid problems. 

• Distance from the Optimum: Our hybrid heuristics yields solutions that are 

respectively less than 3.3% from the optimum on medium-load/Mixed-Bid 

problems and 6.5% from the optimum on heavy-load/Mixed-Bid problems. Also, 

our solutions are respectively less than 0.8% from the optimum on medium-

load/Early-Bid problems and 5.3% from the optimum on heavy-load/Early-Bid 

problems. In particularly, our PET-GL-Rand-RS gets the optimal solutions on all 

40 randomly generated Early-Bid ml/np/nd and ml/wp/nd problems. 

• Effectiveness of Property 1: Even deterministic versions of the PET heuristic 

using G-L yields solutions that are respectively within 4.8% from the optimum on 

medium-load/Early-Bid problems and 18.8% from the optimum on heavy-

load/Early-Bid problems. Even without right-shifting improvement, our stochastic 

version of the PET heuristic using G-L yields solutions that are respectively 

within 1.2% from the optimum on medium-load/Early-Bid problems and 6.2% 

from the optimum on heavy-load/Early-Bid problems. This strongly suggests that 

Property 1 and the way in which our PET heuristic approximates earliness costs 

are rather effective. Note also that this deterministic version of our heuristic takes 

only a tiny fraction of a second on these problems. 

• PET heuristic versus SA heuristic: Given the same amount of CPU time, the 

PET heuristic performs significantly better than the SA search procedure.  

• Effectiveness of Right-Shifting to Improve PET: Even for the Early-Bid 

problems, PET-Rand-RS respectively improves the solutions given by PET-

Rand by 0.47% in average using L-L and 0.12% in average using G-L. A look at 

the results on Mixed-Bid problems confirms the effectiveness of PET-Rand-RS in 

the cases where dd – du > rlatest, and the improvements are respectively 2.00% in 

average using L-L and 0.29% in average using G-L. 

• Global versus Local Earliness Weights: The G-L variation of the PET heuristic 

generally performs much better than L-L on both medium and heavy load 

problems, particularly on category wp/wd: respectively as much as 3.7% better on 

Early-Bid problems and 9.4% better on Mixed-Bid problems (L-L performs 
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slightly better than G-L only on category Early-Bid/hl/np/nd). Additional results 

not reported here show however that local earliness weights yield significantly 

better results than global earliness weights when it comes to priority 

computations. These results confirm our intuition that local earliness weight 

computations better capture the changing profiles of non-dominated bid 

combinations, and is better suited for the computation of its priority at a particular 

point in time, while the global earliness weight is more appropriate for the 

computation of an order’s release date.  

Impact of Ignoring the Manufacturer’s Capacity on Larger Problems 
Figure 7 and Table 5 summarize results evaluating the impact of ignoring the 

manufacturer’s finite capacity on larger problems with 500 orders in medium load 

situations. Similar results for heavy load situations are provided in Figure 8 and Table 

6. It can be seen that the PET-Rand-RS systematically yields much better results than 

the infinite capacity policy. A look at the cost breakdowns provided in Table 5 and 6 

indicates that PET is capable of selectively sacrificing procurement costs to yield 

significant reductions in tardiness costs. On some problems, PET reduces overall 

costs by more than 90%. These results further validate the benefits of the FCMAP 

model advocated in this paper and the way in which our PET heuristic leverages 

Property 1. 
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 Figure 7. Infinite capacity policy vs. PET-Rand-RS heuristic:  

average overall cost per order (500-order/medium-load) 

- Infinite capacity policy - PET-Rand-RS 
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Table 5. Cost breakdown (500-order/medium-load) 
 

ML Total Cost per 
Order  

Procurement 
Cost 

Tardy Cost 

Inf. Cap. 469.2 (42.9) 30.6 (0.1) 438.6 (42.8) 
np/nd 

PET-Rand-RS 39.6 (3.0) 36.6 (0.4) 2.9 (3.0) 

Inf. Cap. 475.9 (43.8) 38.2 (0.3) 437.7 (43.7) 
wp/nd 

PET-Rand-RS 52.1 (2.6) 49.6 (1.0) 2.5 (2.3) 

Inf. Cap. 482.1 (40.9) 31.4 (0.2) 450.7 (41.0) 
np/wd 

PET-Rand-RS 41.2 (2.9) 38.5 (0.5) 2.8 (2.3) 

Inf. Cap. 508.2 (43.0) 40.0 (0.5) 468.2 (43.1) 
wp/wd 

PET-Rand-RS 57.7 (2.9) 54.0 (1.0) 3.6 (2.6) 
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Figure 8. Infinite capacity policy vs. PET-Rand-RS heuristic:  
average overall cost per order (500-order/heavy-load) 

- Infinite capacity policy - PET-Rand-RS 
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Table 6. Cost breakdown (500-order/heavy-load) 
 

ML Total Cost per 
Order  

Procurement 
Cost 

Tardy Cost 

Inf. Cap. 922.8 (81.6) 31.1 (0.1) 891.6 (81.6) 
np/nd 

PET-Rand-RS 301.3 (36.8) 37.0 (0.7) 264.3 (36.6) 

Inf. Cap. 895.8 (62.2) 39.2 (0.3) 856.6 (62.2) 
wp/nd 

PET-Rand-RS 307.5 (31.1) 49.1 (0.8) 258.5 (31.2) 

Inf. Cap. 936.4 (60.5) 32.7 (0.2) 903.7 (60.5) 
np/wd 

PET-Rand-RS 304.8 (30.0) 39.2 (0.7) 265.6 (30.1) 

Inf. Cap. 953.2 (78.4) 42.3 (0.4) 910.9 (78.4) 
wp/wd 

PET-Rand-RS 328.0 (33.4) 53.5 (0.8) 274.4 (33.4) 

 

 

Effectiveness of Pruning Rules 
To test the effectiveness of pruning rules, the CPU times used by our branch-and-bound 

algorithm to solve to the optimality are reported in Figure 9 respectively with and without 

applying the three pruning rules. As can be seen in Figure 9, without pruning the search 

space, the CPU times increase super-exponentially respectively with the number of 

orders, the number of components per order and the number of bids per component. If the 

three pruning rules are applied, the CPU times increase much more slowly with the 

problem size, and are only around 0.1 second in all tested problems. This confirms the 

effectiveness of our three pruning rules in reducing the search space. CPU times here 

were obtained using a 1GHz Pentium-III computer. 
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Computational Requirements 
Our computational results suggest that the CPU time required by the SA procedure 

increases almost linearly with problem size, while that of branch-and-bound grows 

exponentially (see Figure 10). By design, the CPU time allocated to the PET-Rand 

heuristic was set to be equal to that of the SA procedure. CPU times of Infinite Capacity 

Policy, PET-Rand and PET-Rand-RS on large problems of 50 to 500 orders are reported 

in Figure 11. As expected, the infinite capacity heuristics is the fastest one, though PET 

does not require more than 12 seconds on these large problems and almost no time in 

improving the solutions. 

Without pruning rules With pruning rules 

(a) # components = 3, # bids = 5 (b) # orders = 3, # bids = 5 

Figure 9. Effectiveness of pruning rules 

(c) # orders = 3, # components = 3
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10.  Concluding Remarks 
Prior work on dynamic supply chain formation has generally ignored capacity and 

delivery date considerations. In this paper, we have introduced a model for finite 

capacity multi-attribute procurement problems faced by manufacturers who have to 

select among supplier bids that differ in terms of prices and delivery dates. We have 

Figure 11. CPU time on large problems 

CPU Time in 
seconds  

(Log scale)  

# Orders 
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Figure 10. CPU time on small problems 
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identified several dominance criteria that enable the manufacturer to quickly eliminate 

uncompetitive combinations of bids and have shown that the resulting problem can be 

modeled as a pseudo-early/tardy problem with stepwise earliness costs. A branch-and-

bound algorithm, a randomized pseudo-early/tardy search heuristic and a Simulated 

Annealing procedure have been introduced to help the manufacturer select a 

combination of bids that maximizes its overall profit, taking into account its finite 

capacity as well as the prices and delivery dates associated with different supplier 

bids. We have shown that these procedures greatly improve over simpler infinite 

capacity bid selection models. Comparison with optimum solutions obtained using 

branch-and-bound, suggest that a hybrid heuristic that combines our PET and SA 

procedures generally yields solutions that are within 6-7% of the optimum.  

It should also be noted that the model and techniques presented in this paper can 

easily be generalized to accommodate situations where the manufacturer can process 

multiple orders at the same time (non-unary capacity) or where the manufacturer 

incurs setup times for switching production between different product families. This 

is true for the pruning rules we introduced as well as the branch-and-bound procedure 

and two heuristic search procedures. At the same time, we have not attempted to 

evaluate our techniques on these problems and hence do not know, for instance, how 

far our heuristic search procedures would be from the optimum. It is also worth 

noting that our pruning rules also apply to situations where the manufacturer is 

modeled as a more complex job shop environment, where each order has to flow 

through a (possibly different) succession of machining (or service) centers. It can also 

be shown that our model and techniques can be extended to accommodate those 

problems with inventory holding costs, as long as orders are not allowed to be 

shipped before their due dates – this assumption corresponds to having finished goods 

inventory and is representative of many supply chain situations.  

Future work will aim to refine our model in support of dynamic profitable-to-

promise functionality, where the manufacturer needs to determine how to respond to 

requests for bids from prospective customers while also selecting among procurement 

bids from prospective suppliers [2, 20].  
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