
 1

Coordinating Multi-Attribute Procurement Auctions in
Finite Capacity Assembly Environments

Jiong Sun and Norman M. Sadeh

April 2004
CMU-ISRI-03-105

e-Supply Chain Management Laboratory

Institute for Software Research International

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3891, USA

Email Addresses: jiongs@andrew.cmu.edu, sadeh@cs.cmu.edu

Also appears as Computer Science Technical Report

CMU-CS-03-182

The research reported in this paper has been funded by the National Science

Foundation under ITR Grant 0205435.

 2

Keywords: Supply Chain Management, Procurement, Reverse Auction, Finite

Capacity Scheduling

 3

Abstract

Research on reverse auctions for procurement has traditionally ignored the temporal

and finite capacity constraints under which manufacturers operate. We consider the

problem faced by a manufacturer that procures multiple key components from a

number of possible suppliers through multi-attribute reverse auctions. Bids submitted

by prospective suppliers include a price and a delivery date. The manufacturer has to

select a combination of supplier bids that will maximize its overall profit. The

manufacturer’s profit is determined by the revenue generated by the products it sells,

the costs of the components it purchases as well as late delivery penalties it incurs if it

fails to deliver products in time to its own customers. We provide a formal model of

this important class of problems, discuss its complexity and introduce rules that can

be used to efficiently prune the resulting search space. We proceed to show that our

model can be characterized as a pseudo-early/tardy scheduling problem and use this

observation to build an efficient heuristic search procedure. Computational results

show that our heuristic procedure typically yields solutions that are only a few percent

from the optimum. They further indicate that taking into account the manufacturer’s

capacity significantly improves its bottom line.

 4

1. Introduction
Today’s global economy is characterized by fast changing market demands, short

product lifecycles and increasing pressures to offer high degrees of customization,

while keeping costs and lead times to a minimum. In this context, the competitiveness

of both manufacturing and service companies will increasingly be tied to their ability

to identify promising supply chain partners in response to changing market

conditions. With the emergence of e-business standards, such as ebXML, SOAP,

UDDI and WSDL, the Internet will over time facilitate the development of more

flexible supply chain management practices.

Today, however such practices are confined to relatively simple scenarios such as

those found in the context of MRO (Maintenance, Repair and Operations)

procurement. The slow adoption of dynamic supply chain practices and the failure of

many early electronic marketplaces can in part be attributed to the one-dimensional

nature of early solutions that forced suppliers to compete solely on the basis of price.

Research in the area has also generally ignored key temporal and capacity constraints

under which reverse auctioneers typically operate. For instance, a PC manufacturer

can only assemble so many PCs at once and not all PCs are due at the same time.

Such considerations can be used to help the PC manufacturer select among bids from

competing suppliers.

In this paper, we present techniques aimed at exploiting such temporal and

capacity constraints to help a reverse auctioneer select among competing multi-

attribute procurement bids that differ in prices and delivery dates. We refer to this

problem as the Finite Capacity Multi-Attribute Procurement (FCMAP) problem. It is

representative of a broad range of practical reverse auctions, whether in the

manufacturing or service industry. This article provides a formal definition of the

FCMAP problem, discusses its complexity and introduces several rules that can be

used to prune its search space. It also presents a branch-and-bound algorithm, a

simulated annealing procedure and an efficient pseudo-early/tardy heuristic search

procedure that all take advantage of these pruning rules. Computational results show

that accounting for the reverse auctioneer’s finite capacity can significantly improve

 5

its bottom line, confirming the important role played by finite capacity considerations

in procurement problems. Results are also presented that compare the performance of

our heuristics search procedures both in terms of solution quality and computational

requirements under different bid profile assumptions. These results suggest that our

pseudo-early/tardy procedure is generally capable of generating solutions that are just

within a few percent of the optimum and that it scales nicely as problem size

increases.

The balance of this paper is organized as follows. Section 2 provides a brief

review of the literature. In section 3, we introduce a formal model of the FCMAP

problem. Section 4 identifies three rules that can help the reverse auctioneer (or

manufacturer) eliminate non-competitive bids or bid combinations. Section 5

introduces a branch-and-bound algorithm that takes advantage of our pruning rules.

This is followed by the presentation of two heuristic search procedures that also take

advantage of our pruning rules. In particular, Section 6 details a randomized pseudo-

early/tardy heuristic that exploits a property of the FCMAP problem introduced in

Section 4. In Section 7, a second heuristic search procedure is presented that

combines Simulated Annealing (SA) search with a cost estimator based on the well-

known “Apparent Tardy Cost” rule first introduced by Vepsalainen and Morton [25].

Section 8 also introduces a post-processing procedure that can further improve the

quality of a solution. An extensive set of computational results are presented and

discussed in Section 9. Section 10 provides some concluding remarks and discusses

future extensions of this research.

2. Literature Overview
Surprisingly little research has been reported on coordinating procurement and finite

capacity production planning. A notable exception is the work of Bassok and Akella

[3] who explore a single-period, single-machine model that integrates production and

raw material ordering decisions in a manufacturing facility with a single type of raw

material and one or more finished products with stochastic demand. Raw material

delivery is assumed to be stochastic: the manufacturer typically receives just a

 6

fraction of what it orders. The authors focus on determining the quantities in which

products are released into the system, taking into account the system’s capacity and

expectations about the fraction of ordered raw materials likely to arrive. The objective

is to minimize the sum of backlog costs, production costs, ordering costs, as well as

raw material and finished goods holding costs. Gurnani et al. [12] study a similar

problem, where a manufacturer faces stochastic demand for a single finished product

that requires two critical components. A computational study is used to demonstrate

the benefits of coordinating procurement and production decisions over a more

traditional approach that relies on non-coordinated procurement and production

policies. In contrast to these earlier studies, the research we present in this paper

integrates procurement and finite capacity production planning problem in

environments where orders are placed for different types of finished products, each

possibly requiring a different combination of components. An important aspect of

solving this more general problem involves coordinating the procurement of the

multiple components required by a given order. For instance, there is no point in

paying a premium for having one component delivered early, if the other components

can only be acquired much later. Another distinguishing feature of our work is the

granularity at which we model demand, with each order having its own delivery date

and its own marginal penalty for not meeting that date. By differentiating between

different orders, their individual due dates, tardiness costs and component

requirements, it becomes possible to develop solutions that capture the finer tradeoffs

associated with their procurement requirements.

Another relevant body of literature revolves around research that has looked at

procurement decisions subject to uncertain demand or supply conditions. For

instance, Song et al. [23] have studied an assembly environment with a single finished

product type requiring components, each procured from a pre-identified supplier and

delivered subject to a random lead time. There is a one-time demand of random

quantity with a known delivery date for the single finished product. The assembler

has to decide how much to order of each component and at what time without

knowing the demand quantity for the finished product. The objective is to minimize

the sum of procurement costs, holding costs and backlog costs. In this research,

 7

assembly time is assumed to be zero, thereby eliminating the need for finite capacity

production planning. Gurnani et al. [11] consider a product with a single random

demand and two components; there is an independent supplier for each component

and a joint supplier that can supply the components in pairs. Components arrive in the

current period with some probability or in the subsequent period otherwise. Once

again, the assembly stage takes no time. The key decisions are how much to purchase

from each supplier to minimize the sum of purchasing costs, component holding costs

and backlog costs. Other related research includes the work of Gallien and Wein [10]

who study the production of a product whose single component has a stochastic

procurement lead time. Production is assumed to take no time (which amounts to

having infinite capacity). Yano [26] considers the assembly of a product requiring

two components subject to stochastic procurement and production lead times. Kumar

[16], Hopp and Spearman [13] and Shore [22] consider an environment with multiple

components, random procurement lead times and instantaneous production. Chu et al.

[4] consider multiple components with random procurement lead times and a

deterministic production lead time. In contrast to the above, the work we present in

this paper models the finite capacity of the manufacturer/assembler and allows for

environments with multiple finished products, each requiring a possibly different set

of components. In addition, for each component, the manufacturer has to select from a

number of bids from different sets of prospective suppliers with each bid possibly

differing in price and delivery date. The present paper also assumes deterministic

conditions.

A third line of relevant research has been concerned with multi-period finite

capacity production planning models. For instance, Ciarallo et al. [5] study a multi-

period aggregated production planning problem with a single-product single-stage

manufacturer. The manufacturer faces a stationary random demand and has a

stochastic capacity that varies from one period to the next. The manufacturer has to

select the quantity of the product to release into the system to minimize the sum of

holding and backlog costs. The authors show that the optimal finite horizon policy is

of the “order-up-to-level” form. Jain and Silver [14] consider a single-period variant

of the problem studied by Ciarallo et al. where the manufacturer can pay a premium

 8

to purchase dedicated capacity from a supplier. Karmarkar and Lin [15] consider a

multi-period production planning problem in which demand and yield is random.

Zipkin [27] also considers a combined inventory and production problem for a facility

facing stochastic demand. Production is assumed to be organized in large, discrete

batches and is modeled as a queueing system, where production times can be product-

specific and batch-size-dependent. Standard inventory and queueing submodels are

combined into a classical optimization over batch sizes and safety stocks with respect

to holding cost of finished goods plus penalty cost of backlogged orders under

different possible control policies (e.g., First-Come First-Served). More recent work

has also looked at models, where additional capacity can be purchased (e.g.

outsourcing). For instance, Angelus and Porteus [1] consider a combined capacity and

production planning problem for a make-to-stock product under stochastic demand.

Rajagophalan and Swaminathan [19] report results for a combined capacity and

production planning problem involving multiple finished products and demand

growth. Van Mieghem [24] studies the coordination between subcontracting and

production decisions in a two-stage, two-player stochastic game with uncertain

demand. The above research results all rely on different combinations of aggregate

demand, capacity and procurement models. In contrast, the work presented in this

paper models demand, capacity and procurement requirements at a more detailed

level, enabling for the development of solutions that exploit finer tradeoffs between

different procurement and production options. This paper also focuses on

deterministic scenarios.

3. The Finite Capacity Multi-Attribute Procurement
Problem

The Finite Capacity Multi-Attribute Procurement (FCMAP) problem revolves around

a reverse auctioneer – referred below as the “manufacturer”, though it could also be a

service provider. The manufacturer has to satisfy a set of customer commitments or

orders },...,1{, mMiOi =∈ (see Figure 1). Each order i needs to be completed by a

 9

due date idd , and requires one or more components (or services), which the

manufacturer can obtain from a number of possible suppliers. The manufacturer has

to wait for all the components before it can start processing the order (e.g., waiting for

all the components required to assemble a given PC). For the sake of simplicity, we

assume that the processing required by the manufacturer to complete work on

customer order iO has a fixed duration idu , and that the manufacturer can only

process one order at a time (“capacity constraint”).

Formally, for each order iO and each component compij, j∈ Ni={1,…,ni}, the

manufacturer organizes a reverse auction for which it receives a set of multi-attribute

bids },...,{ 1
ij
n

ij
ji ij

BB=β from prospective suppliers. Each bid ij
kB includes a bid price

ij
kbp and a proposed delivery date ij

kdl . Below we use the notation).,(ij
k

ij
k

ij
k bpdlB =

Failure by the manufacturer to meet an order iO ’s due date results in a penalty

ii Ttard × , where iT is the time by which delivery of the product or service is late, and

itard is the marginal penalty for missing the delivery date. Such penalties, which are

commonly used to model manufacturing scheduling problems, reflect actual

Figure 1. Finite capacity multi-attribute procurement problem

(Price, Delivery Date)

(Delivery Date, Late Penalty)

Production
Facility

 Order 1
Supplier Bid

Component
11

 Order 2

Customers

Component
12

Component
21

Component
22

Supplier Bid

Supplier Bid

Supplier Bid

 10

contractual terms, loss of customer goodwill, interests on lost profits or a combination

of the above [18].

A solution to the FCMAP problem consists of:

• a selection of bids: Bid_Comb={Bid_Comb1,…,Bid_Combm}, where Bid_Combi

(Mi∈) is a combination of in bids - one for each of the components required by

order iO , and

• a collection of start times: ST={st1,…,stm}, where ist is the time when the

manufacturer is scheduled to start processing order iO , and ,,..,1, i
ij

i njdlst =∀≥

since orders cannot be processed before all the components they require have been

delivered by suppliers.

Given a solution (Bid_Comb, ST), the profit of the manufacturer is the difference

between the revenue generated by its customer orders (once they have been

completed) and the sum of its procurement costs and tardiness penalties. This is

denoted:

 ∑∑∑∑ ×−−

=

∈ ∈∈ i
ii

Mi Nj

ij

Mi
i Ttardbprev

STCombBidprof

i

),_(
 (1)

where,

• irev is the revenue generated by the completion of order iO (i.e., the amount

paid by the customer),

• ijbp is the price of component compij in Bid_Comb, and

•),0(iiii dddustMaxT −+= with ist being the start time of order iO in ST.

Note that because we assume a given set of orders, the term ∑
∈Mi

irev is the same across

all solutions. Accordingly, maximizing profit in Equation (1) is equivalent to

minimizing the sum of procurement and tardiness costs: cost(Bid_Comb,ST)

= ∑∑∑
∈∈ ∈

×+
Mi

ii
Mi Nj

ij Ttardbp
i

.

It is worth noting that the above model contrasts with earlier research in dynamic

supply chain formation, which has generally assumed manufacturers with infinite

 11

capacity or fixed lead times and ignored delivery dates and tardiness penalties ([6],

[7], [9], [20]).

From a complexity standpoint, it can easily be seen that the FCMAP problem is

strongly NP-hard, since the special situation where all components are free and

available at time zero reduces to the single machine total weighted tardiness problem,

itself a well known NP-hard problem [8].

An example of an exact procedure to solve FCMAP problems involves looking at

all possible procurement bid combinations and, for each such combination, solving to

optimality a single machine weighted tardiness problem with release dates (e.g., using

a branch-and-bound algorithm). A release date is a date before which a given order is

not allowed to be processed. Given a combination of procurement bids Bid_Combi, an

order iO has a release date:

 ir =][ij

Nj
dlMax

i∈
 (2)

where ijdl denotes the delivery date of component compij in Bid_Combi. In other

words, the component that arrives the latest determines the order’s release date.

Clearly, with the exception of fairly small problems, the requirements of the above

procedure are computationally prohibitive. Below, we identify a number of rules that

can be used to efficiently prune the search space associated with FCMAP problems.

4. Pruning the Search Space
Pruning Rule 1: Eliminating Expensive Bids with Late Delivery Dates

Consider an FCMAP problem P with an order iO requiring a component compij for

which the manufacturer has received a set of bids },...,{ 1
ij
n

ij
ji ij

BB=β from prospective

suppliers. Let),(ij
k

ij
k

ij
k bpdlB = and),(ij

l
ij
l

ij
l bpdlB = be two bids in jiβ such that:

ij
k

ij
l dldl ≥ and ij

k
ij
l bpbp ≥ .

Then problem P′ with }{\ ij
ljiji Bββ =′ admits the optimal solutions with the exact

same profit as problem P .

 12

The correctness of this rule should be obvious. Its application is illustrated in Figure

2, where an order requires two components: component 1 and component 2. The

manufacturer has received bids for each component. Using Rule 1, it can be determined,

for instance, that bid14 is not competitive given that it is more expensive than bid13 and

arrives late. Similarly, bid22 and bid24 can also be pruned.

Pruning Rule 2: Eliminating Expensive Bids with Unnecessarily Early

Delivery Dates

Consider an FCMAP problem P with an order iO requiring a set of components

compij, },...1{ ii nNj =∈ . Let },...,{ 1
ij
n

ij
ji ij

BB=β be the set of bids received by the

manufacturer for each component compij with).,(ij
k

ij
k

ij
k bpdlB = We define earliest

ir as

the earliest possible release date for order iO . It can be computed as:

ij
knknj

earliest
i dlMinMaxr

iji ≤≤≤≤
=

11

Let ij
kB and ij

lB be two bids for component compij such that:

ij
k

ij
l bpbp ≥ and earliest

i
ij
k

ij
l rdldl ≤≤ .

Figure 2. From 20 bid combinations to 4 non-dominated ones

Bid price

Bid price

Total procurement
cost

Bid delivery time

Bid delivery time

Order release date

Component 1

Component 2

bid11
bid12 bid13

bid14

bid15

bid21
bid22

bid23

bid24

(b
id

12
, b

id
21

)

(b
id

13
, b

id
21

)

(b
id

13
, b

id
23

)

(b
id

15
, b

id
23

)

rearliest

 13

Then problem P′with }{\ ij
ljiji Bββ =′ admits the exact same set of optimal solutions as

problem P .

An intuitive explanation should suffice to convince the reader. While bid ij
lB has

an earlier delivery date than bid ij
kB , this earlier date is not worth paying more for: it

does not add any scheduling flexibility to the manufacturer since the start of order iO

remains constrained by ij
l

earliest
i dlr ≥ . A formal proof can easily be built based on this

observation.

Note that, in general, it is not possible to prune bid ij
kB . This is because other bids for

component compij may have delivery dates that are after earliest
ir , which would reduce the

number of available scheduling options possibly leading to lower quality solutions.

Application of this rule is also illustrated in Figure 2, where it results in the pruning of

11bid . This is because both bid11 and bid12 arrive before the order’s earliest release date,

rearliest, and bid11 is more expensive than bid12.

Pruning Rule 3: Eliminating Expensive Bid Combinations with

Unnecessarily Early Delivery Dates

Consider an FCMAP problem P whose search space has already been pruned using

Rule 1. In other words, given two bids),(ij
k

ij
k

ij
k bpdlB = and),(ij

l
ij
l

ij
l bpdlB = , lk ≠ , for

the same component compij, if ij
k

ij
l dldl > , then ij

k
ij
l bpbp < .

Let },...,{_ 1 iin
a

i
a

a
i BBCombBid = be a combination of bids for the in components

required by order Oi. Suppose also that there exist two bids =ik
aB

a
i

ik
a

ik
a CombBidbpdl _),(∈ and b

i
ik
b

ik
b

ik
b CombBidbpdlB _),(∈= , and a component

compil, kl ≠ such that il
a

ik
b

ik
a dldldl ≤< , then a

iCombBid _ is dominated by

b
iCombBid _ , where b

iCombBid _ = a
iCombBid _(}{}){\ ik

b
ik
a BB ∪ . By “dominated”

we mean that, for every solution to problem P involving a
iSelBid _ , there is a better

solution where a
iCombBid _ is replaced by b

iCombBid _ .

 14

Given that a
iCombBid _ includes a bid for a second component compil that gets

delivered at time ik
a

ik
b

il
a dldldl >≥ , replacing bid ik

aB with bid ik
bB will not delay the

start of order iO and can only help reduce the cost of its components since ik
b

ik
a bpbp >

(as indicated earlier, we assume that Rule 1 has already been applied to prune bids). It

is straightforward to build a formal proof based on the above observation. Note also

that Rule 3 actually subsumes Rule 2 – Rule 2 is easier to visualize and also

introduces the notion of earliest possible release date, which we use later in this

article.

The three pruning rules we just identified can be used to prune the set of bids to be

considered. This is illustrated in Figure 2, where the combination of the three rules

brings the number of bid combinations to be considered from 20 to just 4 non-

dominated combinations. In particular, the application of Rule 3 helps us prune bid

combination (bid12, bid23). This is because this combination is dominated by (bid13,

bid23), which results in the same release date but is cheaper. Another bid combination

pruned using Rule 3 is (bid15, bid21).

It should be clear that, for each order, Rules 1 and 2 can be applied in

)log(bbcO ⋅⋅ time, where b is an upper-bound on the number of bids received for a

given component and c an upper-bound on the number of components required by a

given order. It can also be shown that, for a given order iO , Rule 3 can be applied in

)log(tbtbO ⋅ time, where tb is the total number of bids received for order iO across all

the components it requires. This is done as follows:

1. For each component compij, create a sorted list >=< ij
n

ij
ji ij

BB ,..,1λ such that

ij
k

ij
k dldl 1+< . Create an overall list of delivery dates for all the bids received for

iO (i.e., for all the components required by the order) and sort the delivery

dates in increasing order. Let iΛ be this sorted list

2. For each date ir in iΛ , keep only those non-dominated combinations of bids

that are compatible with having ir as order iO ’s release date. Note that such

bid combinations are of the form },...,{ 1 iin
a

i
a BB where jrdl i

ij
a ∀≤ , , and there is

 15

no other bid ij
bB such that i

ij
b

ij
a rdldl ≤< . In other words, for each component

compij, ij
aB is the latest bid compatible with release date ir (and hence also the

cheapest such bid). Finding such bids requires very little time, given the

sorted bid lists jiλ created in step 1.

As a parenthesis, it is worth noting that the three pruning rules we just introduced

apply to scenarios with more complex constraints, as they only take advantage of the

release constraint that requires each order to have all its components before it can be

processed. For instance, this includes problems where the manufacturer is modeled as

a job shop, the capacity of some machines is greater than one and there are sequence

dependent setup times. It can also be shown that the pruning rules can be extended to

accommodate problems with inventory holding costs, as long as orders are not

allowed to be shipped before their due dates – this assumption corresponds to having

finished goods inventory and is representative of many supply chain situations.

Consider the non-dominated bid combinations resulting from the application of

our three pruning rules to an FCMAP problem. Let the non-dominated bid

combinations of order iO be denoted:

*_ iCombBid =)},(_),...,,(_{ 11
1

ii

i
imim

m
iiii pcrCombBidpcrCombBid == ,

where ikr is the release date of bid combination k
iCombBid _ , as defined in Equation

(2), and ikpc is its total procurement cost, defined as the sum of its component bid

prices. It follows that:

Property 1: For each order iO , Mi∈ , it must hold that, if ibia rr < , then ibia pcpc > ,

bamba i ≠∈∀ },,...,1{, . In other words, the total procurement costs of non-dominated

bid combinations strictly decrease as their release dates increase.

Proof:

We have already shown that, following the application of Rule 1, the bids that remain

for a given component have prices that strictly decrease as their delivery dates

increase.

Let a
iCombBid _ be a non-dominated bid combination for order iO – following the

application of Rules 1 through 3. Let its release date iar be determined by the delivery

 16

date of component j, namely ij
aia dlr = . Note that, by definition, the release date of a

bid combination is always determined by one or more of its components. Given that

Rule 3 has already been applied, the delivery date ik
adl of any component k must be

the latest delivery date among those bids for component k that satisfy ij
a

ik
a dldl ≤ .

Consider another non-dominated bid combination b
iCombBid _ for order iO such that

iaib rr > . Let l be the index of one of the components determining the release date of

bid combination b
iCombBid _ , namely ij

aia
il
bib dlrdlr =>= . Just as for bid

combination a
iCombBid _ , the fact that Rule 3 has been applied implies that the

delivery date ik
bdl of any component k in b

iCombBid _ must be the latest delivery date

among those bids for component k that satisfy il
b

ik
b dldl ≤ . Given that

ij
aia

il
bib dlrdlr =>= , it also follows that, for any component k, we have ik

a
ik
b dldl ≥ with

a strict inequality for at least one component, namely component l. Given that Rule 1

has been applied, it also follows that, for any component k , ik
a

ik
b bpbp ≤ with a strict

inequality for at least one component (component l). Hence, ∑ ≤≤
=

ink
ik
aia bppc

1

∑ ≤≤
=>

ink
ik
bib bppc

1
.

Figure 3. Illustration of Property 1

Delivery time

Component i1

Component i2

Component i3

Bid price

Bid a
iCombBid _∈

Bid b
iCombBid _∈

11 i
a

i
b dldl =

ia
i
a

i
b rdldl == 22

3i
adl ib

i
b rdl =3

 17

Property 1 is illustrated in Figure 3, where we have two bid combinations
a
iCombBid _ and b

iCombBid _ for an order iO that requires three components. In this

particular example, iar is determined by the delivery date of component 2, while ibr is

determined by that of component 3. The two bid combinations share the same

delivery dates for two out of three of the components required by order iO :

components 1 and 2. The difference in procurement cost comes from the lower price

associated with the later delivery of component 3 in bid combination b
iCombBid _

(namely, 33 i
aib

i
b dlrdl >=).

Note also that, if after application of the pruning rules there exist two non-

dominated bid combinations, a
iCombBid _ and b

iCombBid _ , such that ibia rr = , it

must hold that ibia pcpc = .

In the following sections, we introduce a branch-and-bound algorithm to solve the

FCMAP problem along with two (significantly faster) heuristic search procedures. All

three procedures take advantage of the pruning rules we just introduced. One of the

two heuristic procedures also takes advantage of Property 1.

5. A Branch-and-Bound Algorithm
Following the application of the pruning rules introduced in the previous section,

optimal solutions to the FCMAP problem can be obtained using a branch-and-bound

procedure. Branching is done over the sequence in which orders are processed by the

manufacturer and over the release dates of non-dominated bid combinations of each

order. Specifically, the algorithm first picks an order to be processed by the

manufacturer then tries all the release dates (of non-dominated bid combinations)

available for this order. Note that, as orders are sequenced in this fashion, some of

their available release dates become dominated, given prior sequencing decisions. For

instance, consider two orders 1O and 2O , with 2O having two release dates 21r and

22r with 2221 rr < - following the application of Pruning Rules 1 through 3. Suppose

that, at the current node, 1O is sequenced before 2O and that 1O ’s earliest completion

 18

date is greater than 22r . It follows that release date 21r is strictly dominated by release

date 22r at this particular node. Release dates that become dominated as a result of

prior assignments can be pruned on the fly, thereby further speeding up the search

procedure. Given a node n in the search tree, namely a partial sequence of orders and

a selection of release dates for each of the orders already sequenced, it is possible to

compute an lower-bound for the profit of all complete solutions (i.e., leaf nodes)

compatible with this node:

)(ii
OSi

in TtardpcLB
n

×+= ∑
∈

]),0max([i
OSi

iiOSi mpcddducdtard
n

n
+−+×+ ∑

∉

,

where:

• nOS is the set of orders sequenced at node n;

• ipc is the total procurement cost associated with the non-dominated release

date (or bid combination) assigned to order ni OSO ∈ and iT is its tardiness.

Note that each order is scheduled to start as early as possible, given prior

sequencing decisions and the release date assigned to it: there are no benefits

to starting later;

•
nOScd is the completion date of the last order in nOS ;

• impc is the minimum possible procurement cost of order iO – this cost is

node-independent.

If the lower bound of a node n is greater than the best feasible solution found so far,

the node n and all its descendants are pruned.

6. An Early/Tardy Heuristic
Property 1 tells us that, following the application of the pruning rules, the

procurement costs of non-dominated bid combinations strictly decrease as release

dates increase. Figure 4 plots the total procurement cost and tardiness cost of an order

for different possible start times. While tardiness costs increase linearly with start

times that miss the order’s due date, procurement costs vary according to a decreasing

 19

step-wise function. Specifically, the circles in Figure 4 represent the order’s non-

dominated bid combinations. For instance, if the order starts at time st, its

procurement cost is pci, namely the procurement cost of the latest non-dominated bid

combination compatible with this start time (iCombBid _). Its tardiness cost is equal

to ×tard),0max(dddust −+ , where tard is its marginal tardiness penalty, dd its due

date and du its duration (or processing time). The resulting problem can be viewed as

a pseudo early/tardy scheduling problem. It bears a lot of similarity to a traditional

early/tardy scheduling problem (e.g., [17]) but is also slightly different because

procurement costs associated with different bid combinations lead to:

1) Step-wise earliness costs – in contrast to linear earliness costs found in a

traditional early/tardy problem; and

2) Potential savings for completing the order past its due date, to the extent that there

are late bid combinations that are so cheap that it is worth finishing the order late.

Again this is different from a traditional early/tardy problem, where finishing an

order on time always leads to the lowest cost for that order.

Figure 4. An order’s tardiness and procurement costs

Cost

Release time

Procurement cost Tardiness cost

dd - du

iCombBid _

duk

jCombBid _

ipc

jpc

st rlatest rearliest O

 20

Ow and Morton [17] have introduced an early/tardy dispatch rule for one-machine

scheduling problems subject to linear earliness and tardiness costs. Because our

earliness costs are not linear, this heuristic can not readily be applied. Below, we

briefly review some of its key elements and discuss how we have adapted it to

produce a family of heuristic search procedures for the FCMAP problem.

Ow and Morton’s dispatch rule interpolates between two extreme cases. The first

situation is one where all orders are assumed to have plenty of time and where only

earliness costs need to be minimized. The second case is one where all orders are

assumed to be late and where only tardiness needs to be minimized. In the former

case, it can be shown that an optimal solution can be built by sequencing orders

according to a Weighted Longest Processing Time dispatch rule, where each order

receives a priority:

iii duearlP −= ,

where iP is the priority of order Oi, dui is its processing time and earli is its marginal

earliness cost – namely the penalty incurred for every unit of time the order finishes

before its due date. Conversely, in the latter case, when all jobs are assumed to be

tardy, it can be shown that an optimal solution can be built by sequencing orders

according to a Weighted Shortest Processing Time dispatch rule of the form:

Pi(Si)

O

i

ii

du
earltard 0−

Figure 5. Priority function for Pseudo-Early/Tardy heuristic

i

i

du
earl

−

i

iii

earl
earlearltardduk

0

ln −+

-Si Si

 21

iii dutardP = ,

where tardi is its marginal tardiness penalty.

Like Ow and Morton’s, our early/tardy heuristic interpolates between two extreme

cases: one where all orders have plenty of time and one where all orders are late. The

priority associated with this latter situation is different however from the one in Ow

and Morton’s rule. This is because later start times for orders that are late may still

result in reductions in procurement costs. Accordingly, the priority associated with

this latter situation is:

iiii duearltardP)(0−= ,

where 0
iearl is the earliness weight at ii duddst −= .

The resulting early/tardy heuristic assigns each order a priority that varies with its

slack Si:

]
)(

exp[)(
0

duk
S

du
earlearltard

du
earl

SP i

i

iii

i

i
ii ⋅

−×
−+

+−=
+

 (3)

where du is the average processing time of an order, k is a look-ahead parameter. (X)+

denotes Max (X, 0), and slack Si at time t is defined as:

tduddS iii −−= .

The above formula can easily be seen to reduce to the Weighted Shortest Processing

Time dispatch rule with a marginal tardiness cost of 0
ii earltard − when slack 0≤iS

and to the Weighted Longest Processing Time dispatch rule when ∞→iS . The look-

ahead parameter k can intuitively be thought of as the average number of orders that

would be tardy if order Oi is selected to be scheduled next. The value of k basically

controls the transition between the two extreme scenarios between which this rule

interpolates. Higher values of k make the transition start earlier. This can be

interpreted as being more sensitive to tardiness when a larger number of orders stand

to be late.

In the FCMAP problem, an order iO cannot start before its earliest possible

release date earliest
ir (see Pruning Rule 2 – it should be clear that this release date is

never pruned by Rule 2). In addition, earliness costs vary according to a step function.

 22

A marginal earliness cost can however be obtained through regression, whether

locally or globally. Specifically, we distinguish between the following two

approaches to computing marginal earliness costs for an order in the FCMAP

problem:

1) Local Earliness Weight: At time t, the local marginal earliness cost associated with

an order O (see Figure 4) can be approximated as the difference in procurement costs

associated with the latest non-dominated bid combinations compatible with

processing the order at respectively time t (namely iCombBid _) and time dukt ⋅+

(namely jCombBid _):

duk

pcpc
earl jiL −

= ,

2) Global Earliness Weight: An alternative involves computing a single global

marginal earliness cost for each order. This can be done using a Least Square

Regression:

∑
∑

⋅−

⋅⋅−⋅
=

22 rdnrd

rdpcnrdpc
earl G ,

where pc is the average procurement cost of non-dominated bid combinations for the

order, and rd is their average release date.

The simplest possible release policy for the FCMAP problem involves releasing

each order iO at its earliest possible release date, namely earliest
ir . We refer to this

policy as an Immediate Release Policy. It might sometime result in releasing some

orders too early and hence yield unnecessarily high procurement costs. An alternative

is to use an Intrinsic Release Policy, which releases orders when their early/tardy

priority)(ii SP becomes positive.)(ii SP can be viewed as the marginal cost incurred

for delaying the start of order iO at time t. As long as this cost is negative, there is no

benefit to releasing the order. The tipping point, where 0)(=ii SP , is the order’s

intrinsic release date:

 0lnˆ
iii

i
iii earlearltard

earl
dukduddr

−+
⋅+−= . (4)

 23

Here again, one can use either the local or global earliness weights associated with an

order. Intuitively, one would expect the global earliness weight to be more

appropriate for the computation of an order’s release date and its local earliness

weight to be better suited for the computation of its priority at a particular point in

time. This has generally been confirmed in our experiments. In Section 9, we only

present results where priorities are computed using local earliness weights. We do

however report results, where release dates are computed with both local and global

earliness weights, and we found our heuristic performs better with global earliness

weight.

Rather than limiting ourselves to deterministic adaptations of Ow and Morton’s

dispatch rule, we have also experimented with randomized versions, where order

release dates and priorities are modified by small stochastic perturbations. This

enables our procedure to make up for the way in which it approximates procurement

costs, sampling the search space in the vicinity of its deterministic solution. The

resulting pseudo-early/tardy search heuristic operates by looping through the

following procedure for a pre-specified amount of time. As it iterates, the procedure

alternates between the immediate and intrinsic release policies discussed earlier and

successively tries a number of different values for the heuristic’s look-ahead

parameter k. The following outlines one iteration – i.e. with one particular release

policy and one particular value of the look-ahead parameter.

1. For each order kO , k ∈ M = {1,2,…,m}, compute the order’s release date. When

using the immediate release policy, this simply amounts to setting the order’s

release date earliest
kk rRD = . When using the intrinsic release policy, the order’s

release date is computed as }ˆ)1(,{ k
earliest

kk rrMaxRD ×+= α , where α is randomly

drawn from the uniform distribution [–dev1, +dev1] (dev1 is a parameter that

controls how widely the procedure samples the search space);

2. Dispatch the orders, namely let kMk
RDMint

∈
=0

1) For all those orders kO that have not yet been scheduled and whose release

dates are before 0t , compute the order’s priority at time 0t as:

 24

)()1()(00 tduddPtPR kkkk −−⋅+= β ,

where Pk is the pseudo-early/tardy priority defined in (3) and β is randomly

drawn from the uniform distribution [–dev2, +dev2] (dev2 is a parameter that

controls how widely the procedure samples the search space);

2) Let order iO be the order with the highest priority. Schedule iO to start at time

0t ;

3) If all orders have been scheduled, then Stop. Else, let idutt += 01 and 2t be

the earliest release date among those orders that have not yet been scheduled.

Set },{ 210 ttMaxt = and repeat Steps 1-3.

4) Compute the profit of the resulting solution. If it is higher than the best

solution obtained so far, make this the new best solution.

A deterministic version of this procedure simply amounts to setting dev1 and dev2 to

zero.

7. A Simulated Annealing Search Procedure
A second heuristic search procedure for the FCMAP problem involves using

Simulated Annealing (SA) to explore different combinations of bids. Given a

selection of non-dominated bid combinations ,...,_{_ 1CombBidCombBid =

}_ mCombBid – one combination per order, the procedure computes the release date

ir of each order iO and sequences the orders, using the Apparent Tardiness Cost

(ATC) dispatch rule first introduced in [25]. ATC is known to generally yield high

quality schedules for the one-machine total weighted tardiness problem and has a

O(m·logm) complexity. As such it is an excellent estimator for the best solution

compatible with a given selection of bid combinations. The following further details

the SA procedure:

Step 1 – Initialization:

 Set an initial temperature Temp=Temp0, and an initial bid selection =1_ CombBid

}_,...,_{ 11
1 mCombBidCombBid ;

 25

Use the ATC dispatch rule to build a schedule. Let cost1 = cost(Bid_Comb1, ST1),

where },...,{ 11
1

1
mststST = is the set of start times assigned by ATC to orders 1O

through mO . Set Bid_Combopt=Bid_Comb1 and costopt=cost1.

Step 2 – Search:

Perform the following step N times:

Select Bid_Comb =neighbor(Bid_Comb1) (randomly or through some heuristic),

and compute cost = cost(Bid_Comb, ST), where ST is the set of order start times

assigned by the ATC dispatch rule;

If cost1≥ cost≥ costopt, set Bid_Comb1=Bid_Comb;

Else if cost>cost1 and rand()≤ exp((cost1-cost)/Temp), set Bid_Comb1=

Bid_Comb;

Else if cost<costopt, set Bid_Combopt=Bid_Comb1=Bid_Comb.

If Bid_Combopt was not modified in the last N iterations, decrease the

temperature α⋅= TempTemp . Go to Step 3.

Step 3 – Termination Condition:

If Bid_Combopt has not been improved over the past K steps, then STOP and return

(Bid_Combopt, STopt) as the best solution found by the procedure, otherwise go to Step

2.

The initial bid combination Bid_Comb1 is randomly generated. Note also that the

ATC dispatch rule is itself a parametric dispatch rule with a look-ahead parameter

[25]. In our experiments, we systematically run ATC with values of the look-ahead

parameter equal to 0.5, 1.0, 1.5, …, 6.0 and pick the best of the 12 solutions we have

generated.

We have studied variations of this procedure that rely on different movesets. In

particular, we have considered a one-bid moveset variation, where we modify the

selection of a single bid (for a given component), and a two-bid moveset variation,

where two bid selections (for two different components) are modified at once. For

both types of movesets, we have also experimented with two ways of selecting

moves:

• a random mechanism, where a move in the moveset is randomly selected, and

 26

• an organized mechanism that replaces the bid(s) that reduce most the profit of

the current solution (Bid_Comb1, ST1), namely, those bids for which

ii
ij Ttardbp ⋅+ is the greatest.

The experiments presented in Section 9 use the organized mechanism, as we found it

to generally yield higher quality solutions than the random one. We have not found a

great difference between variations of our procedure using one-bid movesets and two

bid movesets.

8. Right-Shifting Solution Improvement Procedure
Since the total cost function of each order is the sum of a linearly increasing tardiness

cost function and a step-wise non-increasing earliness cost function, the total cost

function has multiple local minimum points, as shown in Figure 6. Meanwhile, the

above pseudo-early/tardy heuristic dispatches orders as soon as the machine becomes

available. Hence, the solution produced by the pseudo-early/tardy heuristic can

sometimes be further improved by right-shifting orders to lower local minimum

points without changing the order processing sequence. Let <1,2,…,m> denote an

order processing sequence produced by the above algorithm, sti denote the start time

of order Oi, i∈{1,2,…,m}. As shown in Figure 6, the local minimum points have a

one-to-one correspondence with the non-dominated bid combinations. The

improvement method processes each order i from m to 1 as follows:

1. Right-shift early orders: If sti < ddi – dui and sti < sti+1 – dui, right-shift order Oi

until Min{ddi – dui, sti+1 – dui}, i.e., let sti = Min{ddi – dui, sti+1 – dui}. Even if

its cost remains the same, right-shifting Oi creates more room to right-shift

earlier orders, and therefore may allow to decrease the costs of the other

orders. Go to Step 2.

2. Under any of the following situations, stop right-shifting:

• sti = sti+1 – dui;

• There is no local minimum point between sti and sti+1 – dui; or

 27

• All the local minimum points between sti and sti+1 – dui have higher

costs than the current cost, tci, of order Oi.

Otherwise, let j* be a local minimum point, the cost of which is the lowest

among all the points between sti and sti+1 – dui. Right-shift order Oi to the local

minimum point j*, i.e., let sti =stj* – dui.

9. Computational Evaluation
A number of experiments have been run to evaluate the impact of our pruning rules,

the performance of our heuristic search procedures, and the benefits of our FCMAP

model over traditional reverse auction models that ignore the manufacturer’s finite

capacity. These experiments are further detailed below.

Empirical Setup
Problems were randomly generated to cover a broad range of conditions by varying

the distribution of bid prices and bid delivery dates as well as the overall load faced

by the manufacturer. Results are reported for 2 groups of problems:

1. Problems with 10 orders, 5 required components per order and 20

supplier bids per component: These problems were kept small enough so

Cost

Start time: st

Total cost

dd - du

Figure 6. An order’s total cost

Local minimum point

 28

that they could be solved to optimality with our branch-and-bound algorithm.

Two sets of problems were designed. Key parameter values of the first set

were drawn from the following uniform distributions:

• Order processing time: U[5,25]

• Order marginal tardiness cost: U[1,10]

• Order due dates: 2 distributions:

i. Medium Load (ml) problems: U[100,300]

ii. Heavy Load (hl) problems: U[100,200]

• Component bid deliveries: 2 distributions:

i. Narrow bid delivery distribution (nd): U[0,50]

ii. Wide bid delivery distribution (wd): U[0,100]

• Component bid prices: 2 distributions:

i. Narrow bid price distribution (np): U[5,35]

ii. Wide bid price distribution (wp): U[5,65]

The other set of problems has all the same distributions except for the

component bid deliveries distributions:

i. Narrow bid delivery distribution (nd): U[0,150]

ii. Wide bid delivery distribution (wd): U[0,200]

The first set of problems represents relatively easy problem instances, and in

almost all cases, it holds that latestrdudd >− , where rlatest is the latest release

date determined by the cheapest non-dominant bid combination. Namely, the

cost function is quasiconvex and has no local minimum point after dd – du.

We call this set of problems Early-Bid problems. The other set of problems,

which we call Mixed-Bid problems, represents relatively hard problem

instances, where, in many situations, latestrdudd <− , i.e., the cost function has

multiple local minimum points after dd – du (see Figure 6). A total of 20

problems were generated in each category (ml/hl, nd/wd, np/wp), yielding a

total of 320 problems.

2. Problems with 500 orders, 5 required components per order and 20

supplier bids per component: While these problems were too large to be

solved with branch-and-bound (even with our pruning rules), they were used to

 29

validate results obtained on the smaller sets of problems. This includes,

determining how our heuristic search procedures scale up and evaluating the

benefits of our FCMAP model over traditional reverse auction models and

policies that ignore the manufacturer’s finite capacity – these latter being

simply referred to below as “infinite capacity” policies. Key parameter values

were drawn from the following uniform distributions:

• Order processing time: U[1,5]

• Order marginal tardiness cost: U[1,10]

• Order due dates:

i. Medium Load (ml) problems: U[500,1500]

ii. Heavy Load (hl) problems: U[500,1000]

• Component bid deliveries: 2 distributions:

i. Narrow bid delivery distribution (nd): U[0,800]

ii. Wide bid delivery distribution (wd): U[0,1000]

• Component bid prices: same 2 distributions as 10-order problems

(np/wp)

A total of 20 problems were generated in each category for a total of 160

problems.

Note that order revenues are irrelevant, since the orders to be produced are fixed. In

other words, all solutions admit the same overall revenue and overall profit is solely

determined by the sum of tardiness and procurement costs associated with a given

solution – see equation (1). Accordingly, we report overall costs rather than overall

profits.

Distance from the Optimum
Tables 1 and 2 summarize results obtained on 10-order/Early-Bid problems. Tables 3

and 4 summarize 10-order/Mixed-Bid problems. These tables provide the average

distance from the optimum of solutions obtained with different variations of our

search heuristics across 16 problem sets (four medium load, Early-Bid problem sets in

Table 1, four heavy load, Early-Bid problem sets in Table 2, four medium load,

Mixed-Bid problem sets in Table 3, and four heavy load, Mixed-Bid problem sets in

 30

Table 4) with each problem set including a total of 20 problems. This distance from

the optimum was computed as:

[cost(solution)–cost(optimal_solution)] ⁄cost(optimal_solution).

Standard deviations are provided between parentheses. Optimal solutions were

obtained using the branch-and-bound procedure introduced in Section 5. Results are

reported for the following techniques:

• Infinite capacity: This is a technique that reflects traditional reverse auction

practices, where the manufacturer’s capacity is ignored. Specifically, for each

order and each component, the manufacturer selects the cheapest bid compatible

with the order’s due date. Orders are then scheduled according to the ATC

dispatch rule, namely the same rule used in our Simulated Annealing procedure

(See Section 7).

• Finite capacity: Results are reported for a number of variations of our search

heuristics:

o Simulated Annealing (SA) procedure: This is the procedure introduced

in Section 7 with 0Temp =300, α =0.95, N=60 and K=40. The procedure

was run five times on each problem and we report both average

performance and best performance over 5 runs.

o Pseudo-Early/Tardy (PET) Procedure: this is the pseudo-early/tardy

heuristic introduced in Section 6. Here again we report results for

several variations of this heuristic:

 G-L uses global earliness weights in its release policy and local

earliness weights in its priority computations,

 L-L uses local earliness weights for both release date and

priority computations,

 Det is a deterministic variation of the pseudo-early/tardy

heuristic described in Section 6, namely dev1 = dev2 = 0,

 Rand is a stochastic variation of the same heuristic with dev1 =

0.3 and dev2 = 0.3. For comparison sake, the CPU time given to

this heuristic was the same CPU time required by an average SA

run in the same problem category,

 31

 Rand-RS improves the solutions produced by Rand using the

post-processing procedure described in Section 8,

 Hybrid is a heuristic that runs SA once, PET/L-L/Rand-RS

once, PET/G-L/Rand-RS once and takes the best of the resulting

solutions.

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand. Rand-

RS

Hyb.

np/nd 35.04
(36.84)

26.68
(24.04)

22.39
(21.29)

1.82
(333)

0.29
(0.64)

0.19
(0.57)

1.89
(4.69)

0.03
(0.12)

0.00
(0.00)

0.00
(0.00)

wp/nd 37.57
(26.42)

30.87
(20.14)

23.04
(14.21)

2.06
(4.36)

0.03
(0.12)

0.03
(0.12)

2.71
(5.28)

0.04
(0.18)

0.03
(0.18)

0.00
(0.00)

np/wd 92.25
(84.21)

42.43
(38.62)

25.76
(24.71)

7.31
(5.25)

3.45
(4.12)

1.88
(2.42)

3.01
(2.86)

0.48
(0.81)

0.46
(0.79)

0.37
(0.61)

wp/wd 76.58
(72.95)

39.01
(28.34)

24.79
(18.88)

9.74
(9.20)

4.08
(5.70)

3.19
(4.97)

4.75
(5.52)

1.14
(2.52)

1.03
(2.51)

0.80
(2.45)

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 37.16
(34.79)

25.40
(22.56)

20.12
(18.84)

7.85
(5.76)

2.31
(2.71)

2.15
(2.55)

8.21
(6.62)

2.65
(3.91)

2.39
(3.67)

1.24
(1.64)

wp/nd 47.83
(41.49)

37.97
(31.14)

33.00
(26.83)

14.64
(12.11)

3.59
(6.32)

3.51
(6.28)

13.75
(12.34)

3.13
(4.46)

3.07
(4.31)

1.93
(2.92)

np/wd 131.11
(80.67)

56.17
(25.44)

36.53
(19.36)

14.51
(7.84)

6.50
(4.03)

4.92
(3.11)

10.23
(8.74)

3.09
(4.04)

3.02
(4.09)

2.28
(2.16)

wp/wd 165.93
(100.54)

77.20
(36.86)

52.08
(23.56)

20.65
(8.90)

10.34
(6.33)

9.47
(6.04)

18.74
(8.33)

6.13
(5.12)

5.75
(4.36)

5.23
(3.63)

Table 1. Percentage deviation from the optimum – 10-order/early-bid/medium-load
problems (Standard deviations are provided between parentheses)

Table 2. Percentage deviation from the optimum – 10-order/early-bid/heavy-load
problems (Standard deviations are provided between parentheses)

 32

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg.
of 5

Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 89.73
(78.07)

52.86
(40.77)

30.24
(22.09)

16.92
(7.87)

8.75
(6.81)

6.30
(5.02)

3.90
(4.25)

0.85
(1.25)

0.62
(1.13)

0.57
(1.14)

wp/nd 59.71
(52.40)

36.41
(26.04)

24.23
(16.98)

17.78
(9.38)

11.06
(8.85)

7.30
(6.15)

4.72
(5.03)

2.04
(3.10)

1.94
(3.08)

1.41
(2.01)

np/wd 86.09
(84.32)

55.73
(58.56)

35.44
(42.25)

17.80
(10.17)

10.40
(7.29)

7.92
(6.82)

5.66
(3.36)

2.29
(2.41)

1.65
(1.80)

1.62
(1.82)

wp/wd 106.61
(79.84)

81.53
(65.82)

61.93
(59.13)

22.60
(10.25)

15.24
(10.17)

11.29
(7.82)

8.46
(5.58)

4.30
(3.61)

3.44
(2.80)

3.22
(2.80)

Finite Capacity
SA PET

L-L G-L

Inf.

Cap. Avg. of
5 Runs

Best of
5

Runs
Det Rand Rand-

RS
Det Rand Rand-

RS

Hyb.

np/nd 187.43
(112.91)

79.69
(43.21)

41.71
(17.80)

19.04
(6.10)

13.82
(5.94)

13.29
(6.17)

14.13
(8.44)

4.17
(4.02)

4.10
(3.87)

3.98
(3.62)

wp/nd 126.71
(74.62)

71.04
(53.18)

40.29
(30.19)

21.37
(9.47)

12.45
(5.93)

10.74
(5.36)

15.18
(7.68)

6.32
(5.01)

6.06
(5.01)

5.68
(4.46)

np/wd 253.74
(170.31)

146.23
(127.82)

76.65
(82.99)

17.91
(5.77)

12.68
(5.29)

12.37
(5.31)

11.65
(6.52)

5.08
(4.69)

4.93
(4.55)

4.41
(3.60)

wp/wd 126.73
(104.02)

93.21
(77.45)

72.92
(71.58)

28.07
(10.77)

16.67
(9.13)

15.84
(9.24)

15.74
(8.71)

6.47
(5.11)

6.41
(5.09)

6.41
(5.09)

Tables 1-4 yield a number of observations:

• Importance of the FCMAP Model: All finite capacity heuristics yield solutions

with significantly lower costs than the infinite capacity one, thereby confirming

the importance of the FCMAP model. Taking into account finite capacity

considerations and tightly coordinating the procurement of the multiple

components required by each order subject to these finite capacity considerations

significantly improve the manufacturer’s bottom line. The results are generally

most impressive on problem categories np/wd and wp/wd, where our hybrid

Table 3. Percentage deviation from the optimum – 10-order/mixed-bid/medium-load
problems (Standard deviations are provided between parentheses)

Table 4. Percentage deviation from the optimum – 10-order/mixed-bid/heavy-load
problems (Standard deviations are provided between parentheses)

 33

heuristic respectively reduces total costs by at least 70% on Early-Bid problems

and 80% on Mixed-Bid problems.

• Distance from the Optimum: Our hybrid heuristics yields solutions that are

respectively less than 3.3% from the optimum on medium-load/Mixed-Bid

problems and 6.5% from the optimum on heavy-load/Mixed-Bid problems. Also,

our solutions are respectively less than 0.8% from the optimum on medium-

load/Early-Bid problems and 5.3% from the optimum on heavy-load/Early-Bid

problems. In particularly, our PET-GL-Rand-RS gets the optimal solutions on all

40 randomly generated Early-Bid ml/np/nd and ml/wp/nd problems.

• Effectiveness of Property 1: Even deterministic versions of the PET heuristic

using G-L yields solutions that are respectively within 4.8% from the optimum on

medium-load/Early-Bid problems and 18.8% from the optimum on heavy-

load/Early-Bid problems. Even without right-shifting improvement, our stochastic

version of the PET heuristic using G-L yields solutions that are respectively

within 1.2% from the optimum on medium-load/Early-Bid problems and 6.2%

from the optimum on heavy-load/Early-Bid problems. This strongly suggests that

Property 1 and the way in which our PET heuristic approximates earliness costs

are rather effective. Note also that this deterministic version of our heuristic takes

only a tiny fraction of a second on these problems.

• PET heuristic versus SA heuristic: Given the same amount of CPU time, the

PET heuristic performs significantly better than the SA search procedure.

• Effectiveness of Right-Shifting to Improve PET: Even for the Early-Bid

problems, PET-Rand-RS respectively improves the solutions given by PET-

Rand by 0.47% in average using L-L and 0.12% in average using G-L. A look at

the results on Mixed-Bid problems confirms the effectiveness of PET-Rand-RS in

the cases where dd – du > rlatest, and the improvements are respectively 2.00% in

average using L-L and 0.29% in average using G-L.

• Global versus Local Earliness Weights: The G-L variation of the PET heuristic

generally performs much better than L-L on both medium and heavy load

problems, particularly on category wp/wd: respectively as much as 3.7% better on

Early-Bid problems and 9.4% better on Mixed-Bid problems (L-L performs

 34

slightly better than G-L only on category Early-Bid/hl/np/nd). Additional results

not reported here show however that local earliness weights yield significantly

better results than global earliness weights when it comes to priority

computations. These results confirm our intuition that local earliness weight

computations better capture the changing profiles of non-dominated bid

combinations, and is better suited for the computation of its priority at a particular

point in time, while the global earliness weight is more appropriate for the

computation of an order’s release date.

Impact of Ignoring the Manufacturer’s Capacity on Larger Problems
Figure 7 and Table 5 summarize results evaluating the impact of ignoring the

manufacturer’s finite capacity on larger problems with 500 orders in medium load

situations. Similar results for heavy load situations are provided in Figure 8 and Table

6. It can be seen that the PET-Rand-RS systematically yields much better results than

the infinite capacity policy. A look at the cost breakdowns provided in Table 5 and 6

indicates that PET is capable of selectively sacrificing procurement costs to yield

significant reductions in tardiness costs. On some problems, PET reduces overall

costs by more than 90%. These results further validate the benefits of the FCMAP

model advocated in this paper and the way in which our PET heuristic leverages

Property 1.

0

100

200

300

400

500

600

C
os

t p
er

 o
rd

er

 Figure 7. Infinite capacity policy vs. PET-Rand-RS heuristic:

average overall cost per order (500-order/medium-load)

- Infinite capacity policy - PET-Rand-RS

np/nd wp/nd np/wd wp/wd

 35

Table 5. Cost breakdown (500-order/medium-load)

ML Total Cost per
Order

Procurement
Cost

Tardy Cost

Inf. Cap. 469.2 (42.9) 30.6 (0.1) 438.6 (42.8)
np/nd

PET-Rand-RS 39.6 (3.0) 36.6 (0.4) 2.9 (3.0)

Inf. Cap. 475.9 (43.8) 38.2 (0.3) 437.7 (43.7)
wp/nd

PET-Rand-RS 52.1 (2.6) 49.6 (1.0) 2.5 (2.3)

Inf. Cap. 482.1 (40.9) 31.4 (0.2) 450.7 (41.0)
np/wd

PET-Rand-RS 41.2 (2.9) 38.5 (0.5) 2.8 (2.3)

Inf. Cap. 508.2 (43.0) 40.0 (0.5) 468.2 (43.1)
wp/wd

PET-Rand-RS 57.7 (2.9) 54.0 (1.0) 3.6 (2.6)

0

200

400

600

800

1000

1200

C
os

t p
er

 o
rd

er

Figure 8. Infinite capacity policy vs. PET-Rand-RS heuristic:
average overall cost per order (500-order/heavy-load)

- Infinite capacity policy - PET-Rand-RS

np/nd wp/nd np/wd wp/wd

 36

Table 6. Cost breakdown (500-order/heavy-load)

ML Total Cost per
Order

Procurement
Cost

Tardy Cost

Inf. Cap. 922.8 (81.6) 31.1 (0.1) 891.6 (81.6)
np/nd

PET-Rand-RS 301.3 (36.8) 37.0 (0.7) 264.3 (36.6)

Inf. Cap. 895.8 (62.2) 39.2 (0.3) 856.6 (62.2)
wp/nd

PET-Rand-RS 307.5 (31.1) 49.1 (0.8) 258.5 (31.2)

Inf. Cap. 936.4 (60.5) 32.7 (0.2) 903.7 (60.5)
np/wd

PET-Rand-RS 304.8 (30.0) 39.2 (0.7) 265.6 (30.1)

Inf. Cap. 953.2 (78.4) 42.3 (0.4) 910.9 (78.4)
wp/wd

PET-Rand-RS 328.0 (33.4) 53.5 (0.8) 274.4 (33.4)

Effectiveness of Pruning Rules
To test the effectiveness of pruning rules, the CPU times used by our branch-and-bound

algorithm to solve to the optimality are reported in Figure 9 respectively with and without

applying the three pruning rules. As can be seen in Figure 9, without pruning the search

space, the CPU times increase super-exponentially respectively with the number of

orders, the number of components per order and the number of bids per component. If the

three pruning rules are applied, the CPU times increase much more slowly with the

problem size, and are only around 0.1 second in all tested problems. This confirms the

effectiveness of our three pruning rules in reducing the search space. CPU times here

were obtained using a 1GHz Pentium-III computer.

 37

0

5

10

15

20

25

30

2 3 4 5

orders

C
PU

 ti
m

e
(s

ec
on

ds
)

0

20

40

60

80

100

120

2 3 4 5

components

C
PU

 ti
m

e
(s

ec
on

ds
)

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10

bids

C
PU

 ti
m

e
(s

ec
on

ds
)

Computational Requirements
Our computational results suggest that the CPU time required by the SA procedure

increases almost linearly with problem size, while that of branch-and-bound grows

exponentially (see Figure 10). By design, the CPU time allocated to the PET-Rand

heuristic was set to be equal to that of the SA procedure. CPU times of Infinite Capacity

Policy, PET-Rand and PET-Rand-RS on large problems of 50 to 500 orders are reported

in Figure 11. As expected, the infinite capacity heuristics is the fastest one, though PET

does not require more than 12 seconds on these large problems and almost no time in

improving the solutions.

Without pruning rules With pruning rules

(a) # components = 3, # bids = 5 (b) # orders = 3, # bids = 5

Figure 9. Effectiveness of pruning rules

(c) # orders = 3, # components = 3

 38

0

2

4

6

8

10

12

50 100 150 200 250 300 350 400 450 500

orders

C
PU

 ti
m

e
(s

ec
on

ds
)

Infinity capacity
policy
PET-Rand

PET-Rand-RS

10. Concluding Remarks
Prior work on dynamic supply chain formation has generally ignored capacity and

delivery date considerations. In this paper, we have introduced a model for finite

capacity multi-attribute procurement problems faced by manufacturers who have to

select among supplier bids that differ in terms of prices and delivery dates. We have

Figure 11. CPU time on large problems

CPU Time in
seconds

(Log scale)

Orders

1000

10

1

 0.1

 0.01

6 10 14

BNB

SA/PET-Rand

4 8 122

100

Figure 10. CPU time on small problems

 39

identified several dominance criteria that enable the manufacturer to quickly eliminate

uncompetitive combinations of bids and have shown that the resulting problem can be

modeled as a pseudo-early/tardy problem with stepwise earliness costs. A branch-and-

bound algorithm, a randomized pseudo-early/tardy search heuristic and a Simulated

Annealing procedure have been introduced to help the manufacturer select a

combination of bids that maximizes its overall profit, taking into account its finite

capacity as well as the prices and delivery dates associated with different supplier

bids. We have shown that these procedures greatly improve over simpler infinite

capacity bid selection models. Comparison with optimum solutions obtained using

branch-and-bound, suggest that a hybrid heuristic that combines our PET and SA

procedures generally yields solutions that are within 6-7% of the optimum.

It should also be noted that the model and techniques presented in this paper can

easily be generalized to accommodate situations where the manufacturer can process

multiple orders at the same time (non-unary capacity) or where the manufacturer

incurs setup times for switching production between different product families. This

is true for the pruning rules we introduced as well as the branch-and-bound procedure

and two heuristic search procedures. At the same time, we have not attempted to

evaluate our techniques on these problems and hence do not know, for instance, how

far our heuristic search procedures would be from the optimum. It is also worth

noting that our pruning rules also apply to situations where the manufacturer is

modeled as a more complex job shop environment, where each order has to flow

through a (possibly different) succession of machining (or service) centers. It can also

be shown that our model and techniques can be extended to accommodate those

problems with inventory holding costs, as long as orders are not allowed to be

shipped before their due dates – this assumption corresponds to having finished goods

inventory and is representative of many supply chain situations.

Future work will aim to refine our model in support of dynamic profitable-to-

promise functionality, where the manufacturer needs to determine how to respond to

requests for bids from prospective customers while also selecting among procurement

bids from prospective suppliers [2, 20].

 40

Acknowledgements
The research reported in this paper has been conduced as part of the MASCHINE project,

a joint research effort between Carnegie Mellon University and the University of

Michigan funded by the National Science Foundation under ITR Grant 0205435.

References
[1] A. Angelus and E.L. Porteus, Simultaneous capacity and production management of

short-life-cycle, produce-to-stock goods under stochastic demand, Management Sci

48(3) (2002), 399-413.

[2] R. Arunachalam and N.M. Sadeh. Design of the supply chain trading competition.

Proceedings of Workshop on Trading Agent Design and Analysis, IJCAI-03,

Acapulco, Mexico, August 2003.

[3] Y. Bassok and R. Akella, Ordering and production decisions with supply quality

and demand uncertainty, Management Sci 37(12) (1991), 1556-1574.

[4] C. Chu, J.M. Proth, Y. Wardi and X. Xie, Supply management in assembly systems:

the case of random lead times. Lecture Notes in Control and Information Sciences

199: 11th International Conference on Analysis and Optimization of Systems:

Discrete Event Systems (1994), 443-448.

[5] F.W. Ciarallo, R. Akella and T.E. Morton, A periodic review production planning

model with uncertain capacity and uncertain demand optimality of extended myopic

policies, Management Sci 40(3) (1994), 320-332.

[6] J. Collins, C. Bilot, M.L. Gini and B. Mobasher, Decision processes in agent-based

automated contracting, IEEE Internet Computing 5 (2001), 61-72.

[7] R. Davis and R.G. Smith, Negotiation as a metaphor for distributed problem

solving, Artificial Intelligence 20 (1983), 63-109.

[8] J. Du and J.Y.T. Leung, Minimizing total tardiness on one processor is NP-hard,

Mathematics of Oper Res 15 (1990), 483-495.

 41

[9] P. Faratin and M. Klein, Automated contract negotiation as a system of constraints,

Proceedings of the Workshop on Distributed Constraint Reasoning, IJCAI-01,

Seattle, WA, August 2001, 33-45.

[10] J. Gallien and L.M. Wein, A simple effective component procurement policy for

stochastic assembly systems, Working Paper, Sloan School of Management,

Massachusetts Institute of Technology (1998).

[11] H. Gurnani, R. Akella and J. Lehoczky, Optimal order policies in assembly systems

with random demand and random supplier delivery, IIE Trans 28 (1996), 865-878.

[12] H. Gurnani, R. Akella and J. Lehoczky, Supply management in assembly systems

with random yield and random demand, IIE Trans 32 (2000), 701-714.

[13] W. Hopp and M. Spearman, Setting safety lead times for purchased components in

assembly systems, IIE Trans 25 (1993), 2-11.

[14] K. Jain and E.A. Silver, The single period procurement problem where dedicated

supplier capacity can be reserved, Naval Res Logist, 42 (1995), 915-934.

[15] U. Karmarkar and S. Lin, Production planning with uncertain yield and demand,

Working Paper, William E. Simon Graduate School of Business Administration,

University of Rochester (1986).

[16] A. Kumar, Component inventory costs in an assembly problem with uncertain

supplier lead-times, IIE Trans 21 (1989), 112-121.

[17] P.S. Ow and T.E. Morton, The single machine early/tardy problem, Management

Sci, 35 (1989), 177-191.

[18] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Upper

Saddle River NJ, 1995.

[19] S. Rajagopalan and J.M. Swaminathan, A coordinated production planning model

with capacity expansion and inventory management, Management Sci 47(11)

(2001), 1562-1580.

[20] T.W. Sandholm, An implementation of the contract net protocol based on marginal

cost calculations, The Eleventh National Conference on Artificial Intelligence

(AAAI-93), Washington DC, July 1993, 256-262.

[21] N.M. Sadeh, R. Arunachalam, R. Aurell, J. Eriksson, N. Finne and S. Janson,

TAC’03: a supply chain trading competition, AI Magazine 24 (2003), 92-94.

 42

[22] H. Shore, Setting safety lead-times for purchased components in assembly systems:

A general solution procedure, IIE Trans 27 (1995), 634-637.

[23] J. Song, C.A. Yano and P. Lerssrisuriya, Contract assembly: dealing with combined

supply lead time and demand quantity uncertainty, Manufacturing and Service Oper

Management 2(3) (2000), 287-296.

[24] J.A. Van Mieghem, Coordinating Investment, Production, and Subcontracting,

Management Sci 45(7) (1999), 954-971.

[25] A. Vepsalainen and T.E. Morton, Priority rules and lead time estimation for job

shop scheduling with weighted tardiness costs. Management Sci 33 (1987), 1036-

1047.

[26] C. Yano, Stochastic lead times in two-level assembly systems. IIE Trans 19 (1987),

371-378.

[27] P. Zipkin, Models for design and control of stochastic, multi-item batch production

systems, Oper Res 34(1) (1986), 91-104.

