Minimizing Weighted Flow Time

N. Bansal ! K. Dhamdhere 2
April 2002
CMU-CS-02-128

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We consider the problem of minimizing weighted flow time on a single machine in the
preemptive setting. Our first result is an online algorithm which achieves a competitive
ratio of k if there are k weight classes. Even for the special case of k = 2 this gives the first
O(1)-competitive algorithm. Our algorithm also directly gives an O(log W) competitive
algorithm when the maximum to the minimum ratio of weights is W. Our second result
deals with the non-clairvoyant setting where the job sizes are unknown (but the weight of
the jobs are known). In this case, we give a resource augmented algorithm. In particular,
if the non-clairvoyant online algorithm is allowed a (1 + €) speed-up, then it is (1 + 1/¢)
competitive against an optimal offline, clairvoyant algorithm.

!School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. nikhil@cs.cmu.edu
Supported by IBM Research Fellowship.

2School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. kedar@cs.cmu.edu
This research was supported in part by NSF ITR grants CCR-0085982 and CCR-0122581.

Keywords: Weighted flow time, response time, online algorithms, job scheduling,
single machine, preemption, non-clairvoyance, resource augmentation.

1 Introduction

We consider the problem of scheduling a collection of dynamically arriving jobs over time
so as to minimize the total weighted flow time. The flow time of a job (also known as
the response time) is the total time it spends in the system, thus it is the sum of times
the job is waiting and its processing time. In the case when jobs have different degrees of
importance, indicated by the weight of the job, the total (average) weighted flow time is
one of the simplest and natural metrics that measures the quality of service received by the
jobs.

For the unweighted case, a well known result [18] is that the online algorithm that at
any time schedules the job with the shortest processing remaining time (SRPT) minimizes
the flow time on a single machine. However, not much is known for the weighted case. If
W is the ratio of the maximum and minimum weight of the jobs, it is easy to see that
SRPT is O(W) competitive since it minimizes the number of jobs in the system. Chekuri
et al. [8] recently gave the first non-trivial algorithm for minimizing the total weighted flow
time. Their algorithm is semi-online’ and achieves a competitive ratio of O(log? P), where
P is the ratio of the maximum and minimum processing times of the jobs. However, the
situation for the the weighted case is still far from satisfactory. For example, a natural
question is how well can we do if there are just two weight classes (i.e. the jobs have weight
1 or w). Even for this simple case, no efficient algorithms were previously known. It turns
out that the algorithm of [8] is 2(log P) competitive in this case.

Our main result is an online algorithm which is k£ competitive if the jobs belong to
at most k different arbitrary weight classes. As a corollary, this yields a 2-competitive
algorithm for the 2 weight case. This also gives us a O(log W) competitive algorithm, since
we can simply round the weights up to a power of 2. This rounding can affect our solution
by a factor of at most 2, and since we have log W classes, this yields a 2log W competitive
algorithm. Our result is not directly comparable with the result of Chekuri et al. [8] since
their bounds are in terms of P. However, our algorithm is fully online, in that it does not
assume the knowledge of W or P while scheduling the jobs. Secondly, if the job weights
do not vary as much as the job sizes or if there are a few number of weight classes, our
algorithm gives the best known performance guarantee.

Our second result deals with the non-clairvoyant setting where the job sizes are unknown
throughout its execution, i.e. the size of a job becomes known only when the job finishes
its service requirement and leaves the system. The non-clairvoyant scenario, introduced by
Motwani, Phillips and Torng [15], realistically models many situations, for example, in the
case of Unix jobs it not clear what is the CPU requirement of the job when it arrives. As
can be expected, the performance of non-clairvoyant algorithms is quite bad as compared
with the optimum clairvoyant and offline adversary. Motwani et al. [15] show that even
for the problem of minimizing unweighted flow time, every deterministic non-clairvoyant
algorithm is Q(n%) competitive and every randomized algorithm is 2(logn) competitive.

Kalyanasundaram and Pruhs [11] introduced the idea of augmenting the resources of the

1t is semi-online in the sense that it uses the knowledge of P while scheduling the jobs.

non-clairvoyant scheduler by increasing its speed. They consider the problem of minimizing
the total unweighted flow time and give an online algorithm which is (14 1/¢) competitive,
when provided with a (1 + €) times faster processor than the optimum offline clairvoyant
algorithm. Resource augmentation has also been applied in clairvoyant settings. In partic-
ular, Becchetti et al. [4] recently gave a (1 + 1)-speed, (1 + €)-competitive algorithm for
minimizing the weighted flow time in the clairvoyant setting.

In this paper, we give a (1 + €)-speed (1 + %)—Competitive algorithm for minimizing the
total weighted response time in the non-clairvoyant setting. Thus our result can be viewed
as an extension of the Kalyanasundaram—Pruhs [11] result for the weighted case, as well as
an extension of Becchetti et al. [4] for the non-clairvoyant case. What is interesting is that
our algorithm matches the performance of the algorithm of Becchetti et al. [4], while being
non-clairvoyant.

Related Previous Work: We first discuss unweighted flow time. Smith showed the
optimality of SRPT for unweighted flow time for a single machine [18]. Later, Schrage
showed that SRPT in fact minimizes the number of jobs in the system at any time [17].

In the model of non-clairvoyant scheduling initiated by Motwani et al. [15], Kalyanasun-
daram and Pruhs [11] gave a (1+€)-speed, (1+ %) competitive resource augmented algorithm
for unweighted flow time. There analysis was later improved by Berman and Coulston, who
showed that their algorithm is in fact a (1 + €)-speed, (2) competitive (which yields better
bounds than [11] if € > 1) [6]. In the absence of resource augmentation, Kalyanasundaram
and Pruhs later gave a O(lognloglogn) competitive randomized algorithm [12]. This was
recently improved to O(logn) by Becchetti and Leonardi [2], which is the best possible

competitive ratio achievable [15].

For the weighted case, Lenstra et al. showed that the problem is strongly NP — hard
[13]. Chekuri et al. gave the first non-trivial semi-online algorithm with an O(log? P)
competitive ratio, where P is the ratio of the maximum to minimum job size. They also
give a lower bound of 1.618 on the competitive ratio achievable by any online algorithm.
Under the model of resource augmentation, Becchetti, Leonardi, Spaccamela and Pruhs give
a (14 €)-speed (1+ %) competitive clairvoyant algorithm for minimizing weighted flow time
[4]. They also consider a closely related problem, which they call the deadline scheduling
problem and give an O(1) algorithm for it. The problem involves minimizing the weight of
jobs unfinished by some unknown deadline D.

In the context of approximation algorithms, Chekuri and Khanna, [7] gave an O (nO(n WP/ 63))

time algorithm which computes a (1+¢) approximate solution. In fact, they show that when
either W or P is polynomially bounded in 7, their algorithm is a quasi-polynomial time ap-
proximation scheme. Surprisingly, the existence of a polynomial time O(1) approximation
algorithm is still unknown.

More work has been done for the special case when the weight of a job is the inverse of
its processing time. This metric is commonly referred to as stretch or slowdown and is used
widely to measure the performance of computer systems [9, 10, 14]. Muthukrishnan et al.

showed that SRPT is 2-competitive for minimizing total stretch in the single machine case,
and 14-competitive for the case of multiple machines [16]. Subsequent improvements and
extensions to their work can be found in [1, 3, 5, 8].

Model: We are given a set J of n jobs that are released over time. For a job z € J,
the quantities r(z), |z| and w(z) denote the release time, processing time (or size) and
the weight respectively. The flow time of z is F(z) = C(z) — r(z), where C(z) is the
completion time of job z in the schedule. Our objective is to minimize) _;w(z)F(z),
the total weighted flow time. We consider a single machine setting where job preemptions
are allowed. In the clairvoyant setting we assume that processing time of a job is known
upon its arrival, while in the non-clairvoyant setting we assume that the processing time is
unknown throughout the time the job is present in the system. In either setting, the weight
of a job is known when it arrives.

Organization: The rest of the paper is organized as follows. In Section 2 we give the
intuition for the problem and describe our algorithm. In sections 3.1 and 3.2 we analyze
the 2 weight case and then for the general case, where we show that our algorithm is k-
competitive. Finally, in section 4 we give a non-clairvoyant algorithm that is (1 + 1/¢)
competitive with a (1 + €) speed up.

2 The Online Algorithm

Intuition: To get a feel for the problem, we first describe some simple algorithms and
describe why they perform poorly. Secondly, we show by an example that the algorithm of
Chekuri et al. [8] has a competitive ratio of 2(log P) even in the case when the job weights
are either 1 or 2. We then give intuition for our approach and describe our algorithm.

Let O be the optimum algorithm and A some other algorithm. Let w,(t) and wq(¢)
denote the total weight of jobs present in O’s and A’s system respectively at time ¢. The
total weighted flow time under A is given by [w,(t)dt. Notice that if w,(t) < cw,(t) for
some ¢ at all times ¢, then A is c-competitive. In this case we say that the A is locally
¢ — competitive. While local c-competitiveness is sufficient for global c-competitiveness, it
also turns out to be necessary [4]. The idea is that if w,(t) > cw,(t) at some time ¢, then
the adversary can starting giving a stream jobs of size ¢ — 0 and weight 1 every e units of
time. This forces both O and A to work on the new stream. By making the stream long
enough, a competitive ratio of greater than ¢ can be achieved.

Thus it is essential to keep the total weight of the jobs in our algorithm low at all times.
A natural strategy to consider is greedy, which at any time instant schedules the job with
the highest weight to remaining time ratio. However this is easily shown to be Q(v/P)
competitive [8]. The idea is that breaking ties adversarially, the naive greedy algorithm
can get stuck with a huge job while the optimum is not. Similarly, the algorithm which
simply disregards the size of the job and works on the highest weight job is easily shown to

be P — competitive [8]. The O(log? P) competitive algorithm of Chekuri et al. deals with
this problem by striking a balance. It processes a large weight job without regard to its
ratio as long as the total weight of jobs with a strictly better ratio does not get too large.
However, even when the job weights are just 1 or 2, it can be shown that their algorithm is
Q(log P) competitive?. For completeness, their algorithm is described in Appendix A. We
now describe our example.

Consider the following scenario: At time t = 0 two jobs, one of size P and weight 2
and other of size P/2 and weight 1 are released. For i ranging from 1 to logP — 1, at
each time instant P(1 —27%) a job of weight 1 and size P/2!*! is released. Finally, at time
t = P(1 — 2t1), another job of size P/2!*! is released.

At time ¢t = 0, their algorithm will schedule the job of weight 2 and continue executing
till time P. At this stage the weight of the jobs in the Q(¢) will be (log P+1). The optimum
algorithm on the other hand works only on jobs of weight 1 and hence finishes all jobs except
the one of weight 2 by time P. Thus the ratio of weights in the queues of the algorithm to
that of the optimum will be %(logP + 1) at time ¢. At this stage the adversary can give
a stream of jobs of weight 2 and size 1 forcing both the algorithms to work on new jobs.

Thus, the algorithm has a competitive ratio of 2(log P) even for the 2 weight case.

The reason for the bad performance of the algorithm above is that it continues to work
on the high weight job even when a lot of smaller weight jobs keep accumulating. Our
algorithm will be careful in this respect and will in fact be 2-competitive for the 2 weight
case. We next describe our algorithm and analyze it in Sections 3.1 and 3.2.

2.1 Algorithm Description

We present an k-competitive algorithm, that we call Balanced SRPT for minimizing weighted
flow time. We assume that the weights of the jobs are drawn from the set {a1,aq,..., a5},
where a1 < ag... < ax. We will refer to these as weight classes 1,...,k. We also assume
that a;/a; 1 is integral for 1 < i < k. 3 Let X be a set of jobs. We use Wg(X) to mean
the sum of the weights of the jobs in X.

We partition the sets of jobs that are alive at a specific time based on the weight class.
Let Q;(t) (or just Q; when the time ¢ is evident from the context) denote the set of alive
jobs of class j at time £.

Balanced SRPT: At all times, pick a @; which has maximum Wg(Q,(t)). (Break ties
in favor of higher weight class j). Execute the job with shortest remaining processing time
from @;.

Informally speaking, the algorithm tries to balance the weight in various weight classes,

*Their algorithm rounds up the weights of incoming jobs to an integral power of 4(log P + 1). Hence, it
is trivially loses a 4(log P + 1) factor in competitive ratio. However, our example does not use this rounding
to prove Q(log P) competitiveness.

3 Arbitrary weights can be rounded up to an integral power of 2 and we get the required property of
integral ratios, while losing only a factor of 2 in competitive ratio.

while running SRPT algorithm within each weight class.

3 Analysis

While our algorithm is extremely simple to describe, its analysis is quite involved. We first
give an analysis for the special case for only 2 weight classes. Then we give a proof sketch
for general case with k weight classes (Appendix B contains the full proof for the general
case).

3.1 Analysis for the 2 Weight Case

Notation: Throughout the discussion, we will denote the Balanced SRPT algorithm by B
and the optimum algorithm by Opt. Since preemptions are allowed, we assume without loss
of generality that Opt is work conserving, i.e. it doesn’t unnecessarily idle the processor.
Let’s assume that the two weight classes have weights 1 and w respectively. w is assumed
to be an integer.

The idea of our proof will be as follows: We will form groups of jobs in B and also of
those of jobs in Opt. The groups in B and Opt will be formed differently. In particular,
a group in B can contain upto twice as more weight as a group in Opt. We will consider
“prefixes”, where prefix ¢ will consist of the sum of remaining times of jobs in the first ¢
groups in B and Opt. We then show that the prefixes of B always dominate those of Opt
(the notion of domination will be made precise below). This will allow us to prove that the
total weight at any time in B is not more than 2 times than the total weight in Opt.

In B, we form groups of jobs as follows: In each weight class sort all jobs in decreasing
order of remaining time. In each group we greedily put 1 job of weight w and w jobs of
weight 1. Thus if there are n; and n,, jobs of weight 1 and weight w respectively, then for
1 <4 < min([%-],ny), group i contains w jobs of weight 1 and 1 job of weight w. The
groups with index higher than min([%*],n,) contain either weight 1 or weight w jobs only.

In Opt, the groups are formed in a different way: In each weight class, we sort the jobs
in decreasing order of remaining time. For weight 1 jobs, w jobs taken together form a
group. For weight w jobs, each job forms a separate group. Thus each group in Opt has
weight w, except possibly for the last group of weight 1 jobs.

Let S;j(w) denote the “prefix” for a weight w job in B defined as: sum of the remaining
times of all jobs in first 4 groups. Let S;(1,j) denote the “prefix” for a weight 1 job in B
defined as: sum of the remaining times of all jobs in first 4 — 1 groups plus the remaining
times of first j weight 1 jobs in ¢th group.

Note: S;(1,7) < S;(w) since S;j(w) includes all the jobs that are included in S;(1,j) and
some more (viz. from j + 1 to w of weight 1 jobs and a weight w job)

For Opt we define prefixes as follows: First consider an arbitrary ordering of groups

of weight 1 jobs and groups of weight w jobs. An ordering is wvalid if the groups of any
particular weight class are in the order of decreasing remaining time. Thus, in a valid
ordering if we consider only groups containing jobs of weight w then these are present in
the decreasing order of remaining time, similarly for groups containing jobs of weight 1. Let
O denote some valid ordering of groups. Then, given this valid ordering, T;(w) (if i** group
is a job of weight w) is defined as the sum of remaining times of all jobs in first 4 groups.
On the other hand, if i group contains weight 1 jobs, then we define T;(1, j) and the sum
of remaining times of all jobs from first 1 — 1 groups along with j jobs from group . Strictly
speaking the T;’s depend on O, but we will drop this in the notation, since O will always
be explicitly mentioned whenever T;’s are used.

Abuse of notation: we use S;’s and T;’s to mean the sum of remaining times as well as
the collection of jobs whose remaining time is being added.

Lemma 1 Consider any arbitrary valid ordering O of Opt’s groups, then at all times t and
for all valid orderings O the following invariant holds: S;(w) > T;(w) and S;(1,5) > T;(1,7)
(whichever one applies depending on whether group i in the ordering O contains weight w
or weight 1 jobs).

Proof: The proof involves showing that the conditions hold through various events in the
system.

1. Neither arrival or departure: In this case, both B and Opt are working on jobs:
If B is working on a weight w job in group [, then [is the last group and only S;(w)
is decreasing. Moreover, S;(w) is total work in the system, thus S;(w) > T;(w). If B
was working on a weight 1 job, identical argument holds.

2. Departure: If B finishes a job, this is trivial since all other prefixes in B remain
unchanged.

If Opt finishes a job: Supposed it finished a job z of weight w job, then to prove that
invariant holds for any arbitrary valid order O after x is finished we consider the valid
order O appended with an additional group containing = at the end. Note that this
is a valid order for jobs of Opt just before z finishes. Since the invariant was true at
that time, it will still be true.

Similarly, if Opt finishes a weight 1 job z then to prove the invariant for any arbitrary
valid order O after z is finished we consider the valid order O’ obtained from O by
appending z in the end of the last group in O containing weight 1 jobs. Note that
O’ is a valid order unless the last group in O containing weight 1 jobs is full (i.e. has
w jobs). Invoking the invariant on O’ gives the result. In the case where the last
group in O containing weight 1 jobs is full, we simply define O’ to be O appended
with another group in the end which just contains z. Again, invoking the invariant
on O gives the result.

3. Arrival: Let us denote the new job by z. We will also use z to denote its size. Let’s
suppose we want to argue the invariant after the arrival for an valid order O.

Observation 1 If = is included in a prefiz S;(w), then S;(w) > Si(w) (where Si(w)
denotes the old prefiz, just before the arrival.) Similarly, if © € S;(1,7), then S;(1,7) >
Si(1,4). This follows from the fact that we keep the jobs sorted according to decreasing
time.

Observation 2 If z ¢ S;j(w), then S;(w) remains unchanged (i.e. Si(w) = Sj(w)).
This is true for Si(1,7), Ti(w) and T;(1,7) as well.

From observations 1 and 2, it’s evident that, in the case when = ¢ T;(w) or z & T;(1, j),
the invariant holds trivially. So, hereafter we assume that z € T;(w) or z € T;(1,)
(whichever one applies depending on the valid order O)

Let = denote the new job. Let O be the old order obtained by O by deleting = and
possibly shifting the jobs upwards to fill up the hole created in O. Note that O’ was a
valid order just before the arrival of z. Let us denote B’s prefixes after the arrival by
S; and just before the arrival by S;. To denote Opt’s prefixes, we use T; for the order
O after the arrival and 7] for the order O'.

Let us first consider arrival of a job of weight w. Fix an index i. If z is included in
both Sj(w) and T;(w). Then, from old valid order O, we know S;_, (w) > T}_, (w) (or
S j(w) > 8S_1(1,w) > T; ,(1,w)). Also, Sij(w) > S;_;(w) + = (inequality because
also include remaining times of weight 1 jobs in level i) and T}(w) = T]_,(w) + z or
T!(w) =T;_,(1,w) + x. Thus, S;(w) > T;(w).

If z is included in Tj(w) but not in S;(w). In this case, Tj(w) = T}_;(w) + = (or
T! ,(1,w) + z, whereas S;j(w) > Si_;(w) + w;, where w; is the weight of weight w
job in i** group (the inequality holds because we include remaining times of weight 1
jobs in level 7). Now w; > z (as z wasn’t included in S;(w) and S]_,(w) > T,_;(w)
or §;_,(w) >8] (1,w) >T! (1,w)). It follows that S;(w) > T;(w).

Now we argue that S;(1,7) > T3(1, 5).

If z is included in Tj(1,5), but not in S;(1,5). Then T;3(1,5) = T} ,(1,5) + =. And
Si(1,7) = Si(1,7) > Si_; + w;_1 (where w;_; is remaining time of weight w job in
group ¢ — 1, again inequality holds since we also include some weight 1 jobs in going
from S!_,(1,7) to Si(1,7). Combine these with w;_; > z (since z was not included in
Si(1,7)). Thus we get S;(1,7) > T;(1,).

If z is included in both T;(1, j) and S;(1, j). Then once again, T;(1,j) =1} _,(1,) +=.
Note that, S;(1,7) includes all the jobs of weight w from S; ,(1,7) and job z. Thus
Si(1,7) > Si—1(1,7) > Si_,(1,7) + = and the invariant follows.

Thus we have shown that the invariant continues to hold for the case when the new
job has weight w.

We now discuss the arrival of a job of weight 1: Let O be an valid order of Opt’s
groups for which we want to argue the invariant. As previously, let O’ be the old valid
order just before the arrival of the new job z. That is, to obtain O’ from O, delete
the job z and move up all the weight 1 jobs by one place while keeping the weight w
jobs at the same place (If the number of groups of weight 1 decreases on deleting z,
we might also have to move up some weight w jobs to obtain O').

Fix an index i. Consider S;(1,5) and T;(1, j).

When z is included in S;(1,7), we have S;(1,7) = Si(1,j —1) + = (for j > 1) and
Si(1,7) = Si_1(w) +z > Si_;(1,w) + z (for j = 1, inequality holds since there is an
extra job of weight w getting counted in S;(1,1)).

Similarly, if z is included in T;(1,), then T;(1,5) = T/(1,7 — 1) + z (for 7 > 1 and
when j =1, T;(1,5) = T;_;(1,w) + z or T}_,(w) + = (as the case may be).

If z is included in both S;j(1,) and T;(1,7). If j > 1, then Si(1,5 — 1) > T/(1,j — 1),
thus giving us S;(1,5) =z + Si(1,j —1) >z +T](1,5 — 1) =T;(1,5 — 1). If j =1,
then Sj(1,1) = S;_,(w) + =z > T} ,(w) + z = T;(1,1) or Sj(1,1) > S;_,(1l,w) +z >
T, (1,w) + 2 =T;(1,1) (as the case may be)

If z is not included in S;(1,), but included in T;(1,7). Then S;(1,j) = Si(1,j) =
Si(1,7 — 1) +wij for j > 1 and S;(1,5) = Si_;(w) + w;; (where w;; denotes remaining
time of j weight 1 job in i*" group). Note that w;; > z since z is not included in
Sij. Thus, it follows that S;(1,5) > Ti(1,).

Now, let us compare S;(w) and T;(w). Consider the following valid order O": rear-
range first ¢ groups of O such that all the groups corresponding to weight w precede
all the groups of weight 1. All the groups after i are kept as in O. Let’s use T}’ to
denote Opt’s prefixes in O”. Note that 7}'(1,w) = T;(w), since rearrangement won’t
change the sum. Now for O" we can argue as above that S;(1,w) > T/(1,w). And
we know that S;(w) > S;(1,w), which gives the desired result.

Thus we have showed that the invariant continues through all possible events and thus holds
at all times ¢. O

We now use the lemma to prove 2-competitiveness of the Balanced SRPT algorithm.

Theorem 1 If the jobs come from 2 weight classes, Balanced SRPT is 2-competitive.

Proof: Consider the ordering of groups in Opt where all the groups of weight w are
preceded by the groups containing weight 1 jobs. Let ¢ denote the number of groups in Opt.

If there are no weight 1 jobs in Opt, then T;(w) equals the total work in system and the
total weight of jobs contained in Opt is 4w. Lemma 1 gives us that S;(w) > T;(w). Since
T;(w) is also the total remaining work in Opt (which is the same as the total remaining
work in B), we get that S;(w) = T;(w) and hence total weight in B is at most 2iw.

If group 7 contains j > 1 jobs of weight 1, then since the total remaining work in Opt is
T;(1,7), by Lemma 1 we get that S;(1,j) contains all the jobs in B. Now the total weight
in Opt is (i — 1)w + j where as the total work in B is at most 2(i — 1)w + j.

Thus, overall B is locally 2-competitive, which ensures global 2-competitiveness. O

3.2 Analysis for the General Case

In the general case, we have k different weight classes {a1,...,a;}. We will show that our
algorithm Balanced SRPT is k competitive. To prove this we need to modify the analysis for
the 2 weight case in a few ways. Firstly, the idea of forming separate groups of jobs for each
weight class in Opt does not give us a strong enough invariant to prove k-competitiveness.
So we extend the idea of groups so that Opt’s each group can contain jobs from different
classes. Moreover, we allow fractional inclusion of a job in a group and we impose the
condition that at most one of Opt’s group can have weight less than ay. For B we form the
groups in the same way as for the 2 weight case. That is, in each weight class, sort all jobs
in decreasing order of remaining time and greedily put ax/a; jobs of class j. We then define
a notion of “domination” between the prefixes and show that the groups of B dominate
the groups of Opt. To prove this dominance we will also need a new notion of a “dummy”
job (made precise below). Finally, we note that the idea of groups in the analysis for the 2
weight case was just used to give intuition for our analysis. In the following discussion we
do not explicitly define the groups, but these will be implicit in the new notation and the
arguments that follow.

We now give some notation for describing some useful quantities in the general case.

Define an order on 2-tuples of integers: (j,1) < (j',!') iff aj -1 < aj -1 for j < j' or
aj-l <aj-l'for j > j'. Also, wesay (j',1') < (4,1) if (4,1) £ (5',1'). Note that (5',1") < (5,1)
and (7,1) < (4',1') holds iff j = j" and [= ', and that < defines a total order on the 2-tuples.

Intuitively, the notion < formalizes the order in which our algorithm B executes the
jobs. If there were [jobs of class j and I’ jobs of class j/, then (4,1) < (j',1') means that
algorithm B will execute a job of class j' first.

Let @Qp(t) denote the set of jobs that aren’t finished by algorithm B by time t. We
define a set of jobs B(j,1,t) as follows:
B(j,1,t) = {z € Qp(t) | class(z) = j' & x has I'th largest remaining time in class j'&(j',1') <

(450}

Let |B(j,1,1)| = Xzep(jp rem(, t), where rem(z,t) is the remaining time of job z at
time t. (For clarity of notation, we will drop ¢ from the expressions when it is clear from
the context)

We want to compare the “prefixes” |B(j,[)| with suitable prefixes of Opt.

Let Qopt(t) denote the set of jobs that are not finished by Opt by time ¢. Along with
these jobs, we also want to include some “dummy” jobs in the Opt’s prefixes. A dummy job
of class j, is a job with remaining time 0. Let Qopt(t) denote the set Qopi(t) along with
some dummy jobs thrown in. These dummy jobs play a role only in simplifying the proofs.

Consider a permutation 7 of jobs in Qop¢(t). Call w a valid ordering of Qoy(t) if jobs
i & j belong to same class then 7 (i) < 7(j) = rem(w(i)) > rem(n(j)). We don’t impose
this condition if the jobs 4 and j don’t belong to same class. Intuitively, all the jobs from

same class in Qopt(t) appear in 7 in descending order of their remaining times.

For a job z € Qopt(t) and a valid ordering 7 of Qopt, we define Opt,(z,t) = {y €
Qopt(t) | ©(y) < w(x)}. In other words, Opt,(z,t) contains the jobs that precede z in the
valid ordering m. We call Opt,(z) a “prefix” of Opt under the valid ordering 7. Let j be
the class of job z and let | = [Wg(Optr(z))/w(z)]. We will frequently use Opt,(j,1,t) as
a synonym for Opt,(z,t). And |Opt.(j,1)| just denotes the sum of remaining times of the
jobs in Opt,(j,1). It’s important to note here that, Opt,(j,]) may not be defined for all
pairs (7,1) unlike that for B(j,[).

Finally, let Rem(B,t) =} ¢, rem(z,t) and Rem(Opt,t) = erQom(t) rem(z,1).
With this notation in place, we can now state the “domination” property of prefixes as
follows.

Lemma 2 At all times t, for any valid ordering m of Qopt(t), for1<j<kandl>1, the
following holds
|B(5,1)] = |Optr(5,1)]

whenever the latter is defined.

The proof of this lemma goes along the similar lines as that of lemma 1 with some mod-
ifications required to prove the stronger invariant. A complete proof is given in Appendix
B. In particular, the lemma is also true for any valid ordering = of Qopi(t). We use this
lemma, to prove our following main result.

Theorem 2 Balanced SRPT is a k-competitive online algorithm for minimizing total weighted
flow time.

Proof: We will prove that B is locally k-competitive, which gives us the desired result.

Fix a time t. Suppose algorithm B was working on a job z at the time ¢. Let j = class(z).
For 1 < i <k, let n; denote the number of jobs of class ¢ in Qp(t). In particular, z is njth
job of class j. For # j, we know that (i,n;) < (j,n;). Thus a; - n; > a; - n; for all i s.t.
1 <4 < k. Hence we get,

Wg(B) <k-nj-aj (1)

Now we derive a lower bound on Wg(Opt). Consider an ordering m of Qopt in which jobs
are ordering from the highest weight class to the lowest one. In particular, if y is the last
job in 7, then y has the lowest weight class (and smallest remaining time among it’s weight
class). Let i = class(y), and let [= [Wg(Opt)/a;]|. Note that since i is the smallest weight
class in Opt, Wg(Opt) is an integral multiple of a; and hence [= Wg(Opt)/a;.

We first note that (¢,1) = (j,7n;). This follows since, if (7,1) < (j,n;) then z ¢ B(j,n;)
and hence B(i,1) < B(j,n;), thus Rem(B) = B(j,n;) > B(i,l) > Opt(i,1) = Rem(Opt)
and we get a contradiction. The third inequality above follows from Lemma 2 and final
equality follows from our choice of 7.

We can now show that Wg(Opt) > n;-a;. Suppose Wg(Opt) < n;-a;, then a;l < a;n;.
For either case, when 7 < j or i > j, the definition of the relation < gives us that (i,1) <

10

(4,mj). Thus we have,
Wg(Opt) = n; - a; (2)

From equations (1) and (2), local k-competitiveness of Balanced SRPT follows. O

Finally, we show that the competitive ratio for the Balanced SRPT algorithm is tight.
Consider following job instance, in which for 1 < j < k, 277 jobs of weight 2/ arrive at
time 0. The job of weight 2* has size 1 while rest of them have sizes ¢ = 27*. Balanced
SRPT would start working on the job of weight 2¥ and continue working on it till the job
finishes.

Consider the scenario at time ¢t = (2¥ — 2)e < 1. At ¢, the total weight under Balanced
SRPT is k2%. Where as, the optimal algorithm can finish all the jobs of size € first and then
work on the job of class k. In this case, the optimal algorithm has a weight of a;. Since
the algorithm is locally & competitive, we can make it globally k& competitive, but giving a
long stream of weight 2% and size 27% jobs.

4 Non-clairvoyant scheduling for weighted response time

In this section, we consider the non-clairvoyant case where the processing time of a job
becomes known only when it finishes. We now give a resource augmented (1 + €) speed
(1 +1/€) competitive algorithm. We call it the Weighted Foreground Background (WFB)
algorithm as it resembles the commonly used Foreground Background (FB) algorithm. Note
that the competitive ratio is independent of the number of weight classes and also of the
ratio of the jobs sizes. Moreover, it generalizes the results of [11] and [4] while still matching
their bounds both in terms of resource augmentation and competitive ratio. In terms of
proof techniques, our analysis builds up on the ideas in [11].

4.1 Algorithm Description

For a job J;, let p;(t) denote the amount of work done on that job by time ¢. And let w;
denote the weight of the job J;. We define a norm of job J; as ||Ji||: = IZ]—:)
Algorithm WFB: At all times, WFB splits the processor, proportional to weights of the
jobs, among the jobs J; that have the smallest norm ||J;||;. So, if Ji,...,J; are the jobs
with WFB that have the smallest norm. Then the job J; will receive w;/ (Ele w;) fraction
of the processor.

Note that, for all jobs J; which WFB executes, the norm increases at the same rate and
thus stays same. Moreover, if at some point of time ¢', we have ||J;||¢ > ||J;||#, then for all
times ¢ in future (i.e. ¢ > t'), while both jobs are alive, we have ||J;[|s > ||+

11

4.2 Analysis

For an algorithm A with a speed s processor, let W4(t, s) denote the sum of weights of the
jobs that have arrived before time ¢, but have not been finished by time .

The analysis of WFB algorithm hinges on proving the following lemma:

Lemma 3 At any point t in time, we have the following relation:
1
Wwrp(t,14+¢€) < (1+ ;)Wom(t, 1)

In other words, (1 + €)-speed WFB is locally (1 + 1/¢)-competitive w.r.t. an adversary with
a unit speed processor.

The lemma, will be proved in argument that follows.

Let’s fix a time ¢t. Let V denote the set of jobs which WFB has in its queue but the
adversary has finished by time ¢. And let U denote the set of jobs which the adversary has
in its queue at time ¢. Let Wg(V) = 3,y w; and Wg(U) = 3,y wj-

We want to bound Wg(V') in terms of Wg(U).

We say that a job J; can immediately borrow from a job J; (J; <= J;) if WFB ran J; at
some time t' satisfying r; < t' < ¢;. We define the borrow relation as the transitive closure
of immediately borrow. (We also denote this by J; < J;)

Lemma 4 If J; < J;, then we have ||J;||¢ > ||J;]|¢-

Proof: It suffices to prove the assertion for immediately borrow relation. So assume that
J; immediately borrows from J;. From the property of WFB, ||J;|ly > ||J;]|¢ must have
been true at some time #'. Thus from the observation we made above, the lemma follows.
O

We partition the set V into Vi,V5,...,V, such that J;, J; € Ve <= ||Jills = ||J;ll+-
We also require that, if J; € Vi, J; € Vjr and i’ < j' iff || Ji||s > || J;]¢. Let ||Vi|| denote || 5|,
where J; € V;.

Intuitively, all jobs with same norm are in the same partition. Also, V; has the jobs
with largest norm, V5 has jobs with second largest norm, and so on.

Let U' = {J; € U | 3i € V s.t. J; borrows from J;}. These constitute the jobs among
U, on which WFB worked while it had some jobs from V still in queue.

We note that, WFB has a faster processor with speed (1 + %) And while adversary
finished all jobs in the set V' by time ¢, WFB spent at least),y € - [|J;||; amount of work
on jobs in U. In fact, the definition U’ is such that, it contains all the jobs from U on which
WEFB worked when there was some job from V' in WFB’s queue.

12

Let us define U] = {J; € U’ | |Vills > ||J;ll¢ > ||Vit1ll¢} (for notational convenience,

assume that ||Viy1]|: = 0). By virtue of lemma 4, we know that ||Vi|; > ||J;]|¢, for all jobs
J; € U'. Thus, |J, U] is indeed U’.

Moreover, note that for J; € V; and J; € U]'-, J; borrows from .J; is possible only if ¢ < j.
Let t; was the time when a job from V; arrived first. Note that ¢; < to < ... <.

Consider an arrival time ¢,,. Since the time %,,, Opt has finished all jobs from V that
arrived after time ¢,,. So the amount of work done by Opt > Z?:m Zz‘evj wi||Ji|l¢- So

the amount of work done by (1 + ¢)-WFB > Z;“:m Eiev;- (1 + e)w;||J;||;- WFB hasn’t
finished any of the jobs from V. So work done by WFB on the jobs from UmSjSk V;is
< Zf:m Zievj wi||Ji||¢- Thus WFB has worked at least Zf:m Zievj ew;||Ji||¢+ on jobs in
Um<j<k UJ'- after time t,,. Call this work Tj,.

For 1 < m < k we have

T >=Y) ewi||Vj, (3)

j=1 ’LEV]‘

For a job I € Uj, work done on I, by time ¢ is ||J[|+ < |[[Vjl|¢, by the definition of UJ.
Thus summing up over jobs in UJ,, <<y Uj, we get

k
Ty <> wil[Vjlle (4)

i /
Jj=m lEUj

We now use following inequality in conjunction with 3 and 4 to derive desired result.
Lemma 5 Let y; > yo > ... > yp > 0. Let j,2z; > 0 for 1 < m < k and Zf:mxiyi >
K k
Zf:m ziyi. Then D ;@i > 0 2.

Proof: Let X, = Zf:m z;y; and Zy, = >, ziy;- We know, X, > Z,,. For notational
convenience let yo = co. Then,

k koo 1 koo 1 k
T; = ——)Xn > (- —)Zm = z
; ' ; Yi-l o Yio ; Yi-1 Y ; '
(Each (1/y;—1 —1/y;) > 0 since y; < y;—1 for 1 <13 <k.) O

Now, we set ; =) . w;, zi = > .1, €ew; and y; = |[|V;||;. The lemma 5 tells us that
’ J zEUj [1€V J J

k k
Wo(U) =) > wi>e) Y wi=eWg(V)

j=1 ieU]f j=11i€V;

13

Proof:(Lemma 3) Let Ug(t) denote the set of jobs that WFB has at time ¢ and U 4(¢) denote
the set of jobs with Opt. Then from the preceding discussion, Wg(Ug —Uy4) < 1/eWg(Uy).
In other words, we have proved Wiy rp(t,1+¢€) < (14 1/e)Wop(t, 1). 0

Thus we have proved the following theorem.

Theorem 3 WFB is a (1 + €)-speed (1 + 1/¢)-competitive non-clairvoyant algorithm for
minimizing weighted flow time.

5 Open problems

Regarding the weighted flow time, it will be very interesting to obtain a constant competitive
online algorithm or to provide a better lower bound, since the best known lower bound is
only 1.618. The existence of a constant factor approximation algorithm is also open for the
offline case.

Another natural problem is to minimize the weighted flow time in the non-clairvoyant
without speedup. The randomized algorithms of [12] and [2] for the unweighted case can
be shown to achieve a competitive ratio of O(W lognloglogn) and O(W logn) for the
weighted case. We believe that it should be possible to obtain an O(log W logn) competitive
randomized algorithm using our techniques.

Finally, in the non-clairvoyant weighted response time case, it might be possible to prove
a better competitive ratio than (1 4+ 1/e€), as done by [6] for the unweighted case.

References
[1] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without
migration. In ACM Symposium on Theory of Computing, pages 198205, 1999.

[2] L. Becchetti and S. Leonardi. Non-clairvoyant scheduling to minimize the average flow
time on single and parallel machines. In ACM Symposium on Theory of Computing
(STOC), pages 94-103, 2001.

[3] L. Becchetti, S. Leonardi, and S. Muthukrishnan. Scheduling to minimize average
stretch without migration. In Symposium on Discrete Algorithms, pages 548-557, 2000.

[4] L. Becchetti, S. Leonardi, A. M. Spaccamela, and K. Pruhs. Online weighted flow time
and deadline scheduling. In RANDOM-APPROX, pages 36-47, 2001.

[5] M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch
scheduling. In 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

[6] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. Nordic Journal
of Computing, 6(2):181-193, 1999.

14

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

C. Chekuri and S. Khanna. Approximation schemes for preemptive weighted flow time.
In ACM Symposium on Theory of Computing (STOC), 2002.

C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weighted flow time. In ACM
Symposium on Theory of Computing (STOC), 2001.

M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling in web
servers. In USENIX Symposium on Internet Technologies and Systems, 1999.

R. Jain. The Art of Computer Systems Performance Analysis. John Wiley, New York,
1991.

B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4):617-643, 2000.

Bala Kalyanasundaram and Kirk Pruhs. Minimizing flow time nonclairvoyantly. In
IEEE Symposium on Foundations of Computer Science, pages 345-352, 1997.

J. Lenstra, A. Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:343-362, 1977.

M. Mehta and D. J. DeWitt. Dynamic memory allocation for multiple-query workloads.
In International Conference on Very Large Data Bases, pages 354-367, 1993.

R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Com-
puter Science, 130(1):17-47, 1994.

S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Online scheduling to
minimize average stretch. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 433-442, 1999.

L. Schrage. A proof of the optimality of the shortest processing remaining time disci-
pline. Operations Research, 16:678-690, 1968.

W. Smith. Various optimizers for single-stage production. Nawval Research Logistics
Quarterly, 3:59-66, 1956.

Appendix A

The O(log? P) algorithm of Chekuri et al. [8]:

Let

the set of jobs have weights drawn from the set {wi,ws,..., Wmnas}. Assume w; = 1

and w; = (4(log P + 1))*~!. For a job z, let p;(x) denote the remaining time of z at time
t, and let w(z) denote the weight of z. If w(z) = w;, we say that the weight indez of z is
i. The class of a job is |log(pi(z)/w(z))]. A job z belongs to the set Qp4(t) if the weight
index of z satisfies p and the class of z at time ¢ satisfies g. W) 4(t) denotes the total weight
of jobs in Qp 4(t). Their algorithm works as follows.

At each discrete time step ¢, choose a job in Q(¢) to execute by the following rules:

15

1. i < largest weight index in Q(%).
2. k <+ smallest class in job of weight w; in Q(%).
3. If Wi <k(ry < wj, schedule a job of weight w; and class & (a job from Q; k(%))

4. Else i < largest weight index in Q(t) strictly less than 7. Go to step 2.

Appendix B

Proof:(Of lemma 2) We want to prove that, at all times ¢, for any ordering 7 of Qopt(t) ,
for 1 <j <k and ! > 1, the following holds

|B(4,1)| = |Optx(5,1)]

whenever the latter is defined. Note that Opt,(7,1) is defined only if Jy € Qopt(t) such that
Optw(y) = Optﬁ(ja l)

We prove the inequalities by induction over time. We know that the invariant holds
when there are no jobs present just before time ¢ = 0. Now we need to verify that, it still
continues to hold at various events. We analyze following possible cases:

(1) Neither arrival nor departure If in an interval [¢1,%2) there are no arrivals and
neither algorithm B nor Opt finishes any job. Let x be the job on which B is working. We
observe that |B(j,1,t2)| < |B(j,1,t1)| iff x € B(j,1,t1). For t € [t1,t2), © € B(j,1,t) means
that Vo' € Qp(t),2' <z = z’' € B(j,1,t). Thus |B(j,l,t)| = Rem(B,t). Thus, we can say
tha'ta |B(.7, la t?)‘ = mln(|B(.7’ la tl)'a Rem(B, t2))'

and a job y € Qopt(tl) we have |Optr(y,t2)| <

For a fixed ordering 7 of Qopt(tl)
| < Rem(Opt,ts). Therefore, we have |Optr(j,1,12)]

|Optr(y,t1)|. Moreover, |Opt,(y,t2)
S mln(|0pt7r(]a lat1)|) Rem(optatQ))

Putting the two together, it follows that |B(4,1,t)| > |Opt,(4,1,t)|, for t € [t1,t2).

(2) Departure At time ¢, algorithm B finishes a job. Let ¢’ < ¢. Observe that, Vz €
Qp(t'),rem(z,t') is left continuous. Hence |B(j,[,t')| is left continuous. If Opt hasn’t
finished a job at ¢, |Opt,(4,1,t)| is clearly left continuous. The inequality then follows.

If at time ¢, Opt finishes a job y. Let ¢’ < ¢, — t. Consider
Qopt(t") = Qopt(t) U{y} — {a dummy job of same class that of y}. (If there is no dummy
job with same class as that of y, then Qopt(t") = Qopt(t) U{y}. Let 7’ be the ordering
of Qopt(t') obtained by appending y at the end of w. (If there were any dummy jobs
in 7w in the same class as that of y, then y takes the place of the first such dummy
job). Since rem(y’,t') is left continuous for every iy’ € Qopt(t). Therefore, we have
|Opt (v, t")| = |Optr(y',)|, in limit. (If there was a dummy job in Qopt(t) — Qopt(t'), then

16

we also have |Opt.(y,t')| = |Opt;(dummy,t)| in limit). This proves the left-continuity of
all |Opt,(j,1,t)|. If algorithm B hasn’t finished a job at time . |B(j,[,t)| is also clearly left
continuous since each of rem(z,t) is left continuous for z € B(j,1,t).

(3) Arrival The most troublesome case is the arrival of a new job. In this case, neither
|B(4,1,t)| nor |Opt.(4,1,t)| will be left-continuous, in general.

Let = denote the newly arrived job. Let |z| denote its size. And let ¢ = class(z). Let
t' < t,t' = t. So that by |B(j,l,t')| etc, we mean the left limits. Since we arrange the jobs
in decreasing order of remaining times within a class, we have the following:

Observation 3 If z € B(j,l,t), then |B(j,1,t)| > |B(4,1,t")|. And if x & B(j4,1,t), then
|B(j’l’t)| = |B(jal’tl)|-

Using this observation, we can handle the case when = ¢ Opt(j,1,t). Consider

Qopt(t'") = Qopt(t) U{a dummy job of class ¢} —{z}. And let 7’ be an ordering on Qop:(t)
s.t. Vi > 1, class(n(i')) = class(n(i)). * Then, z & Opt.(4,1,t) means that |Opt,(j,1,t)| =
|Opt,:(j,1,¢')|. And hence using the inequality at time ¢’ for the ordering 7', we get
BGIL1| > |Opta (1, 1))

Therefore, we only need to consider the case when = € Opt,(j,1,t). We split this in
three different cases (j > ¢, j = ¢ and j < ¢). For each of these sub-cases, we use the
inequality at time ¢ with a different ordering on Qopt(t').

Observation 4 If B(j,1,t) contains atleast one more job x' of class ¢ = class(x) than
B(j',l',t"), then |B(j,1,t)| > |B(4",U',t")| + |z|.

Proof: If x ¢ B(j,1,t), then rem(z’,t) > |z|, thus giving us required result. Otherwise
if £ € B(j,1,t), then B(j,1,t') = B(4,1,t') J{z} — {z"} for some job z" s.t. class(z") =
class(z) and rem(z") is the smallest among all the jobs of same class in B(4,,t'). Thus
rem(z’,t) > rem(z”,t) and the result follows. O

case (a) j = c. Let y be the job such that Opt,(y) = Opt.(j,1,t). First, consider a different
ordering 7’ of Q(t), which reorders the jobs that precede y in the ordering 7, so that in 7,
they are are in decreasing order of weight class (and within each class, in decreasing order of
remaining times). Let z be the job in 7’ just preceding y. Let Opt.(z,t) = Opt (5,1, t).
Then, Wg(Optr (2,t)) = Wg(Optr (y,t) — aj.

Now, if j' < j, it’s easy to see that (5/,1) < (4,I—1) < (4,1). On the other hand, if j' > 7,
then all the jobs preceding y have weight integral multiple of a;. Hence Wg(Opt, (z,t))
is an integral multiple of a;. Thus it follows that, (j',1') < (j,1). It means that B(j,1,1)
contains atleast one more job of class j than B(5',1',t'). And |B(j,1,t)| > |B(5',l',t")| + |z|
follows from observation 4.

“Note that, specifying class of jobs at each place in n’ defines it uniquely, as we require the jobs within
each class to be in descending order of remaining time.

17

With this knowledge, we are now ready to use the inequality at time t'. Let
Qopt(t'") = Qopt(t) {a dummy job of class ¢} — {z}. And let o be an ordering of Qop:(t)
s.t. Vi > 1, class(o(i)) = class(n'(i)). It’s easy to see that |Opt,(y,t) = |Opty(y,t)| =
Opto (3,1, 8)| + || < [B(" 1V, 8] + || < |B(5,1,1)]-

case (b) j < c. Let y be the job such that Opt,(y,t) = Opt,(4,l,t). We also have z €
Opt,(y,t). x is not same as y. Now consider Qopt(t’) = Qopt(t) —{z}. Let o be an ordering
of Qopi(t') obtained by just deleting x from 7. Therefore, we have |Opt,(y,t') + |z| =
|Optr(y,t)|. Let Opts(y,t') = Opts(j,1',¢"). Then, we have (4,I') < (¢, [(a;l)/ac]) < (4,1).
This means that, B(j,[,t) contains atleast one extra job of weight ¢ than B(j,l',t). By
applying, observation 4 we get the desired result.

case (c) j > c. Let y be the job such that Opt,(y,t) = Opt,(j,1,t). Consider an ordering
7' of Qopt(t) which reorders the jobs in Opt,(y,t) s.t. jobs of class ¢ in Opt,(y,t) are all
preceded by all other jobs. 7' retains the order of the jobs not in Opt,(y,t) same as in 7.
Let z be the job of class ¢ that ends up last among the jobs from Opt,(y,t) in ordering 7'

Clearly, |Opt,(y,t)| = |Optw(z,t)| = |Optr(c,l',t)| for some I'. From case (a), we get
|B(c,l',t)] > |Optp(c,l',t)|. And we can easily prove that (c,l') < (4,1), whereby we get
|B(j,1,)] = |B(c, U, t)| = Optr(4,1,1).

Thus in all possible cases we have shown that the inequality holds.

18

