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Abstract

Partial types allow the reasoning about partial functions in type theory. The partial functions

of main interest are recursively computed functions, which are commonly assigned types using

�xpoint induction. However, �xpoint induction is valid only on admissible types. Previous work

has shown many types to be admissible, but has not shown any dependent products to be admissible.

Disallowing recursion on dependent product types substantially reduces the expressiveness of the

logic; for example, it prevents much reasoning about modules, objects and algebras.

In this paper I present two new tools, predicate-admissibility and monotonicity, for showing types

to be admissible. These tools show a wide class of types to be admissible; in particular, they show

many dependent products to be admissible. This alleviates di�culties in applying partial types to

theorem proving in practice. I also present a general least upper bound theorem for �xed points

with regard to a computational approximation relation, and show an elegant application of the

theorem to compactness.
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1 Introduction

One of the earliest logical theorem provers was the LCF system [12], based on the logic of partial

computable functions [21, 22]. Although LCF enjoyed many groundbreaking successes, one problem

it faced was that, although it supported a natural notion of partial function, it had di�culty

expressing the notion of a total function. Later theorem provers based on constructive type theory,

such as Nuprl [5], based on Martin-L�of type theory [19], and Coq [3], based on the Calculus of

Constructions [10], faced the opposite problem; they had a natural notion of total functions, but

had di�culty dealing with partial functions. The lack of partial functions seriously limited the

scope of those theorem provers, because it made them unable to reason about programs in real

programming languages where recursion does not always necessarily terminate.

This problem was addressed by Constable and Smith [8], who introduced into their type theory the

partial type T , which is like a \lifted" version of T . The type T contains all members of T as well

as all divergent terms. Using the partial type, partial functions from A to B may be given the type

A! B. That is, when applied to an argument in A, such a function either diverges or converges

to a result in B.

In a partial type theory, recursively de�ned objects may be typed using the �xpoint principle: if

f has type T ! T then �x(f) has type T . However, the �xpoint principle is not valid for every

type T ; it is only valid for types that are admissible. This phenomenon was not unknown to LCF;

LCF used the related device of �xpoint induction, which was valid only for admissible predicates.

When the user attempted to invoke �xpoint induction, the system would automatically check that

the goal was admissible using a set of syntactic rules [16].

Despite their obvious uses in program analysis, partial types have seen little use in theorem proving

systems [9, 4, 2]. This is due in large part to the fact that too few types have been known to be

admissible. Smith [24] gave a signi�cant class of admissible types for a Nuprl-like theory, but his

class required product types to be non-dependent. The type �x:A:B (where x appears free in B)

was explicitly excluded. Later, Smith [23] extended his class to include some dependent products

�x:A:B, but disallowed any free occurrences of x to the left of an arrow in B. Partial type extensions

to Coq [2] were also restrictive, assuming function spaces to be the only type constructor. These

restrictions are quite strong; dependent products are used in encodings of modules [18], objects [20],

algebras [17], and even such simple devices as variant records. Furthermore, ruling out dependent

products disallows reasoning using �xpoint induction as in LCF [24, 11]. Finally, the restriction is

particularly unsatisfying since most types used in practice do turn out to be admissible, and may

be shown so by metatheoretical reasoning.

In this paper I present a very wide class of admissible types using two devices, a condition called

predicate-admissibility and a monotonicity condition. In particular, many dependent products may

be shown to be admissible. Predicate-admissibility relates to when the limit of a chain of type

approximations contains certain terms, whereas admissibility relates to the membership of a single

type. The term \predicate-admissibility" stems from its similarity to the notion of admissibility

of predicates in domain theory (and LCF), where there has been considerable research (this work

was in
uenced by Igarashi [16], for example), but I will not discuss the connection in this paper.

Monotonicity is a simpler condition that will be useful for showing types admissible that do not

involve partiality.
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Type Formation Introduction Elimination

universe i Ui type formation

(for i � 1) operators

disjoint union T1 + T2 inj
1
(e) case(e; x1:e1; x2:e2)

inj
2
(e)

function space �x:T1:T2 �x:e e1e2
product space �x:T1:T2 he1; e2i �1(e)

�2(e)

natural numbers N 0; 1; 2; : : : assorted operations

equality t1 = t2 in T ?

partial type T

convergence t in! T ?

Figure 1: Type Theory Syntax

The paper is organized as follows: In Section 2 I lay out the theory for which these results are

formalized. In Section 3 I prove some computational lemmas needed for the admissibility results.

The primary result is a least upper bound theorem for �xed points with regard to a computational

approximation relation. This result is quite general, and may be applied more widely than just to

the purposes for which I use it. I present my main results in Section 4, beginning with a summary

of Smith's original admissibility class and then widening the class using predicate-admissibility and

monotonicity. Concluding remarks appear in Section 5.

2 The Type Theory

The type theory in which I formalize the results of this paper is a variant of the Nuprl type theory

[5] extended with partial types (that is, types containing possibly divergent objects). This theory is

a subset of the type theory of Crary [11] and is similar to Smith's theory [24]. The major di�erence

between the theory used here and Smith's is that the latter does not provide a notion of equality;

the rami�cations of handling equality are discussed in Crary [11].

2.1 Preliminaries

As data types, the theory contains natural numbers (denoted by N), disjoint unions (denoted by

T1+ T2), dependent products
1 (denoted by �x:T1:T2), and dependent function spaces (denoted by

�x:T1:T2). When x does not appear free in T2, I write T1�T2 for �x:T1:T2 and T1!T2 for �x:T1:T2.

As usual, alpha-equivalent terms are considered identical. When t1 and t2 are alpha-equivalent, I

write t1 � t2.

Types themselves are terms in the theory and belong to a predicative hierarchy of universes,

1These are sometimes referred to in the literature as dependent sums, but I prefer the terminology to suggest the

connection to the non-dependent type T1 � T2.
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U1;U2;U3; etc. The universe U1 contains all types built from the base types only (i.e., built

without universes), and the universe Ui+1 contains all types build from the base types and the

universes U1; : : : ;Ui. In particular, no universe is a member of itself. Propositions are interpreted

as types using the propositions-as-types principle [14], but that will only be relevant in Section 4.3.

Each type T comes with an intrinsic equality relation denoted by t1 = t2 2 T . Membership is also

derived from this relation; t 2 T when t = t 2 T . The equality relation is introduced into the type

theory as the type t1 = t2 in T , which is inhabited by the term ? when t1 = t2 2 T and is empty

otherwise, provided that t1; t2 2 T . If either of t1 or t2 does not belong to T , then t1 = t2 in T is

not well-formed. (Note that t1 = t2 2 T is a metatheoretical assertion whereas t1 = t2 in T is a

type in the theory.) The empty type Void is de�ned as 0 = 1 in N.

The partial type T is like a \lifted" version of T ; it contains all the members of T as well as all

divergent terms. Partial functions from A to B may then be given the type A!B. Two terms are

equal in T if they both diverge, or if they both converge and are equal in T .

Convergence is expressed within the type theory by the type t in! T , which is inhabited by the

term ? when t 2 T and t converges, and is empty if t 2 T but t does not converge. If t 62 T then

t in! T is not well-formed. (Again, note that t in! T is a type in the theory, but convergence, which

is de�ned formally below, is a metatheoretical assertion.)

2.2 Computation

Underlying the type theory is the computation system shown in Figure 2. The computation system

is de�ned by a small-step evaluation relation (denoted by t1 7! t2), and a set of canonical terms.

Whether a term is canonical is governed by its outermost operator; the canonical terms are those

appearing in the �rst and second columns of Figure 1. The computation system is call-by-name

and contains operators for constructing and destructing functions, pairs and disjoint unions. The

computation system also contains various standard operations for computing and analyzing natural

numbers, but these are not particularly interesting and are omitted from Figure 2. Of particular

interest is the operator �x , which allows the recursive de�nition of objects is evaluated by the rule

�x(f) 7! f(�x(f)).2 Two important properties of evaluation are that evaluation is deterministic

and canonical forms are terminal:

Proposition 1 If t 7! t1 and t 7! t2 then t1 � t2. Moreover, if t is canonical then t 67! t0 for any t0.

If t 7!� t0 and t0 is canonical then I say that t converges (abbreviated t#) and t converges to t0

(abbreviated t + t0). Note that if t + t1 and t + t2 then t1 � t2 and that if t is canonical then t + t.

The computation system is used in Figure 3 to de�ne the relation t1 = t2 2 T , which speci�es

the memberships of types and when terms are equal in those types.3 This equality relation is

constructed to respect evaluation: if t 2 T and t 7! t0 then t = t0 2 T .

2The use of a �x operator greatly simpli�es the presentation of these results (particularly the proof of Theorem 8),

but it could be eliminated and replaced with the Y combinator. Similarly, the choice of a call-by-name computation

system simpli�es the formalism, but is also not critical to the results.
3Since the de�nition contains negative occurrences of t1 = t2 2 T , it is not immediately clear that it is a valid

de�nition. Allen [1] and Harper [13] have shown how such a de�nition may be converted to a conventional inductive

de�nition.
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f 7! f 0

f e 7! f 0 e

t 7! t0

�i(t) 7! �i(t
0)

t 7! t0

case(t; x:e1; x:e2) 7! case(t0; x:e1; x:e2)

(�x:e)t 7! e[t=x] �i(ht1; t2i) 7! ti case(inj i(t); x:e1; x:e2) 7! ei[t=x]

�x(f) 7! f �x(f)

Figure 2: The Computation System

2.3 The Fixpoint Principle

The central issue of this paper is the �xpoint principle:

f 2 T ! T ) �x(f) 2 T

The �xpoint principle allows us to type recursively de�ned objects, such as recursive functions.

Unfortunately, unlike in programming languages, where the principle can usually be invoked on

arbitrary types, expressive type theories such as the one in this paper contain types for which the

�xpoint principle is not valid. I shall informally say that a type is admissible if the �xpoint principle

is valid for that type and give a formal de�nition in Section 4. To make maximum use of a partial

type theory, one wants as large a class of admissible types as possible.

In Section 4 I will explore two wide classes of admissible types, one derived from a predicate-

admissibility condition and another derived from a monotonicity condition. But �rst, it is worth-

while to note that there are indeed inadmissible types:

Theorem 2 There exist inadmissible types.

Proof Sketch

This example is due to Smith [24]. Let T be the type of functions that do not halt for all

inputs, and let f be the function that halts on zero, and on any other n immediately recurses

with n� 1. This is formalized as follows:

T
def
= �h:(N! N): ((�x:N: h x in! N)! Void)

f
def
= �p:h�x: if x = 0 then 0 else �1(p)(x� 1); �y: ?i

Intuitively, any �nite approximation of �x(f) will recurse some limited number of times and

then give up, placing it in T , but �x(f) will halt for every input, excluding it from T . Formally,

the function f has type T ! T , but �x(f) 62 T . (The proof of these two facts appears in

Appendix A.) Therefore T is not admissible.

3 Computational Lemmas

Before presenting my main results in Section 4, I �rst require some lemmas about the computational

behavior of the �xpoint operator. The central result is that �x(f) is the least upper bound of the
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t 2 T i� t = t 2 T

T type i� T = T

T1 = T2 i� 9T 0

1
; T 0

2
: (T1 + T 0

1
) ^ (T2 + T 0

2
) ^ (T 0

1
= T 0

2
)

t1 = t2 2 T i� 9t0
1
; t0

2
; T 0: (t1 + t0

1
) ^ (t2 + t0

2
) ^ (T + T 0)^ (t0

1
= t0

2
2 T 0)

n = n0 2 N (n, n0 natural numbers) i� n � n0

inj
1
(a) = inj

1
(a0) 2 A+ B i� A+ B type ^ a = a0 2 A

inj
2
(b) = inj

2
(b0) 2 A+ B i� A+ B type ^ b = b0 2 B

ha; bi = ha0; b0i 2 �x:A:B i� �x:A:B type ^ (a = a0 2 A)^ (b = b0 2 B[a=x])

�x:b = �x:b0 2 �x:A:B i� �x:A:B type ^ 8a = a0 2 A: b[a=x] = b0[a0=x] 2 B[a=x]

t = t0 2 T i� T type ^ (t# , t0#) ^ (t# ) t = t0 2 T )

? 2 (a = a0 in A) i� (a = a0 in A) type ^ (a = a0 2 A)

? 2 (a in! A) i� (a in! A) type ^ a#

For T ' T 0 i� T = T 0, and for T ' T 0 i� T = T 0 2 Ui:

N ' N

A+ B ' A0 +B0 i� A ' A0 ^B ' B0

�x:A:B ' �x:A0:B0 i� A ' A0 ^ 8a = a0 2 A: B[a=x] ' B0[a0=x]

�x:A:B ' �x:A0:B0 i� A ' A0 ^ 8a = a0 2 A: B[a=x] ' B0[a0=x]

T ' T 0 i� T ' T 0 ^ 8t 2 T: t#

(a1 = a2 in A) '

(a0
1
= a0

2
in A0) i� A ' A0 ^ a1 = a0

1
2 A ^ a2 = a0

2
2 A

(a in! A) ' (a0 in! A0) i� A ' A0 ^ a = a0 2 A

Ui type

Ui 2 Uj i� i < j

Figure 3: Type De�nitions

�nite approximations ?; f(?); f(f(?)); : : : with regard to a computational approximation relation

de�ned below. The compactness of �x (if �x(f) halts then one of its �nite approximations halts)

will be a simple corollary of this result. However, the proof of the least upper bound theorem is

considerably more elegant than most proofs of compactness.

3.1 Computational Approximation

For convenience, throughout this section we will frequently consider terms using a uni�ed repre-

sentation scheme for terms: A term is either a variable or a compound term �(x11 � � �x1k1 :t1; : : : ;

xn1 � � �xnkn :tn) where the variables xi1; : : : ; xiki are bound in the subterm ti. For example, the term

�x:T1:T2 is represented �(T1; x:T2) and the term ht1; t2i is represented hi(t1; t2).

Informally speaking, a term t1 approximates the term t2 when: if t1 converges to a canonical form

then t2 converges to a canonical form with the same outermost operator, and the subterms of

t1's canonical form approximate the corresponding subterms of t2's canonical form. The formal
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de�nition appears below and is due to Howe [15].4 Following Howe, when R is a binary relation

on closed terms, I adopt the convention extending R to possibly open terms that if t and t0 are

possibly open then t R t0 if and only if �(t) R �(t0) for every substitution � such that �(t) and �(t0)

are closed.

De�nition 3 (Computational Approximation)

� Let R be a binary relation on closed terms and suppose e and e0 are closed. Then e C(R) e0

exactly when if e + �(~x1:t1; : : : ; ~xn:tn) then there exists some closed e00 = �(~x1:t
0

1
; : : : ; ~xn:t

0

n)

such that e0 + e00 and ti R t0i.

� e �0 e
0 whenever e and e0 are closed.

� e �i+1 e
0 if and only if e C(�i) e

0

� e � e0 if and only if e �i e
0 for every i

The following are facts about computational approximation that will be used without explicit

reference. The �rst two follow immediately from the de�nition, the third is easy using determinism

(Proposition 1) and the last is proven using Howe's method [15].

Proposition 4

� � and �i are re
exive and transitive.

� If t 7! t0 then t0 � t and t0 �i t.

� If t 7! t0 then t � t0 and t �i t
0.

� (Congruence) If e � e0 and t � t0 then e[t=x] � e0[t0=x].

3.2 Finite Approximations

With this notion of computational approximation in hand, we may now show that the terms

?; f ?; f(f ?); : : : form a chain of approximations to the term �x(f). Let ? be the divergent term

�x(�x:x). Since ? never converges, ? � t for any term t. Let f i be de�ned as follows:

f0
def
= ?

f i+1 def
= f(f i)

Certainly f0 � f1, since f0 � ?. By congruence, f(f0) � f(f1), and thus f1 � f2. Similarly,

f i � f i+1 for all i. Thus f0; f1; f2; : : : forms a chain; I now wish to show that �x(f) is an upper

bound of the chain. Certainly f0 � �x(f). Suppose f i � �x(f). By congruence f(f i) � f(�x(f)).

4Howe's de�nition actually di�ers slightly from the one here; he de�nes � as the greatest �xed point of the

operator C. It is not di�cult to show that the two de�nitions are equivalent, as long as the computation system is

deterministic (Proposition 1). If the computation system is nondeterministic, the de�nition here fails to be a �xed

point, and the more complicated greatest �xed point de�nition must be employed.
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Thus, since �x(f) 7! f(�x(f)), it follows that f i+1 � f(f i) � f(�x(f)) � �x(f). By induction it

follows that �x(f) is an upper bound of the chain. The following corollary follows from congruence

and the de�nition of approximation:

Corollary 5 If there exists j such that e[f j=x]# then e[�x(f)=x]#. Moreover, the canonical forms

of e[f j=x] and e[�x(f)=x] must have the same outermost operator.

3.3 Least Upper Bound Theorem

In this section I summarize the proof of the least upper bound theorem. The full proof appears

in Appendix A. To begin, we need a lemma stating a general property of evaluation. Lemma 6

captures the intuition that closed, noncanonical terms that lie within a term being evaluated are

not destructed; they either are moved around unchanged (the lemma's �rst case) or are evaluated in

place with the surrounding term left unchanged (the lemma's second case). The variable x indicates

positions where the term of interest is found and, in the second case, the variable y indicates which

of those positions, if any, is about to be evaluated.

Lemma 6 If e1[t=x] 7! e2, and e1[t=x] is closed, and t is closed and noncanonical, then either

� there exists e0
2
such that for any closed t0, e1[t

0=x] 7! e0
2
[t0=x], or

� there exist e0
1
and t0 such that e1 � e0

1
[x=y], t 7! t0 and for any closed t00, e0

1
[t00; t=x; y] 7!

e0
1
[t00; t0=x; y].

It is worthwhile to note that Propositions 1 and 4 and Lemma 6 are the only properties of eval-

uation used in the proof of the least upper bound theorem, and that these properties are true in

computational systems with considerable generality. Consequently, the theorem may be used in a

variety of applications beyond the computational system of this paper.

Lemma 7 shows that �x terms may be e�ectively simulated in any particular computation by

su�ciently large �nite approximations. The lemma is simpli�ed by using computational approx-

imation instead of evaluation for the simulation, which makes it unnecessary to track which of

the approximations are unfolded and which are not, an issue that often complicates compactness

proofs.

Lemma 7 (Simulation) For all f , e1 and e2 (where f is closed and x is the only free variable of

e1), there exist j and e0
2
such that if e1[�x(f)=x] 7!

� e2 then e2 � e0
2
[�x(f)=x] and for all k � j,

e0
2
[fk�j=x] � e1[f

k=x].

Theorem 8 (Least Upper Bound) For all f , t and e (where f is closed), if 8j: e[f j=x] � t, then

e[�x(f)=x] � t.
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Proof Sketch

By induction on l that e[�x(f)=x] �l t. (The complete proof in Appendix A addresses free

variables.) Suppose e[�x(f)=x] evaluates to some canonical form e0[�x(f)=x] (where e0 is chosen

by Lemma 7). Let e0 be of the form �(~x1:t1; : : : ; ~xn:tn). Using Lemma 7, the assumption

8k: e[fk=x] � t, and transitivity, we may show that e0[f j=x] � t for all j. Therefore t +

�(~x1:t
0

1
; : : : ; ~xn:t

0

n) and ti[f
j=x] � t0i for all j. Now, by induction, ti[�x(f)=x] �l t0i. Thus

e[�x(f)=x] �l+1 t.

There are two easy corollaries to the least upper bound theorem. One is that �x(f) is the least

�xed point of f , and the other is compactness.

Corollary 9 (Least Fixed Point) For all closed f and t, if f(t) � t then �x(f) � t.

Proof

Certainly f0 � ? � t. Then f1 � f(f0) � f(t) � t. Similarly, by induction, f j � t for any j.

Therefore �x(f) � t by Theorem 8. 2

Corollary 10 (Compactness) If f is closed and e[�x(f)=x]# then there exists some j such that

e[f j=x]#. Moreover, the canonical forms of e[�x(f)=x] and e[f j=x] must have the same outermost

operator.

Proof

Suppose there does not exist j such that e[f j=x]#. Then e[f j=x] � ? for all j. By Theorem 8,

e[�x(f)=x] � ?. Therefore e[�x(f)=x] does not converge, but this contradicts the assumption,5

so there must exist j such that e[f j=x]#. Since e[f j=x] � e[�x(f)=x], the canonical forms of

e[f j=x] and e[�x(f)=x] must have the same outermost operator. 2

4 Admissibility

I am now ready to begin specifying some wide classes of types for which the �xpoint principle

is valid. First we de�ne admissibility. The simple property of validating the �xpoint principle

is too speci�c to allow any good closure conditions to be shown easily, so we generalize a bit to

de�ne admissibility. A type is admissible if the upper bound t[�x(f)] of an approximation chain

t[f0]; t[f1]; t[f2]; : : : belongs to the type whenever a co�nite subset of the chain belongs to the type.

This is formalized as De�nition 12, but �rst I de�ne some convenient notation.

Notation 11 For any natural number j, the notation t[j]f means t[f j=w], and the notation t[!]f

means t[�x(f)=w]. Also, the f subscript is dropped when the intended term f is unambiguously

clear.

5Although this proof is non-constructive, a slightly less elegant constructive proof is derivable directly from Lemma

7.
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De�nition 12 A type T is admissible (abbreviated Adm(T )) if:

8f; t; t0: (9j: 8k � j: t[k] = t0[k] 2 T )) t[!] = t0[!] 2 T

As expected, admissibility is su�cient to guarantee applicability of the �xpoint principle:

Theorem 13 For any T and f , if T is admissible and f = f 0 2 T ! T then �x(f) = �x(f 0) 2 T .

Proof

T type since T!T type. Note that f j = f 0j 2 T for every j. Suppose �x(f)#. By compactness,

f j# for some j. Since f j = f 0j 2 T , it follows that f 0j# and thus �x (f 0)# by Corollary 5.

Similarly �x(f 0)# implies �x(f)#. It remains to show that �x(f) = �x (f 0) 2 T when �x(f)#.

Suppose again that �x(f)#. As before, there exists j such that f j# by compactness. Hence

f j = f 0j 2 T . Since T is admissible, �x(f) = �x(f 0) 2 T . 2

A number of closure conditions exist on admissible types and are given in Lemma 14. Informally,

basic compound types other than dependent products are admissible so long as their component

types in positive positions are admissible. Base types|natural numbers, convergence types, and

(for this lemma only) equality types|are always admissible. These are essentially the admissible

types of Smith [24], except that for a function type to be admissible Smith required that its domain

type be admissible.

Lemma 14

� Adm(A+B) if Adm(A) and Adm(B)

� Adm(�x:A:B) if 8a 2 A:Adm(B[a=x])

� Adm(A�B) if Adm(A) and Adm(B)

� Adm(N)

� Adm(a = a0 in A)

� Adm(A) if Adm(A)

� Adm(a in! A)

Proof

The proof follows the same lines as Smith's proof, except that handling equality adds a small

amount of complication to the proof. I show the function case by way of example.

Let f , t and t0 be arbitrary. Suppose j is such that 8k � j: t[k] = t0[k] 2 �x:A:B. I need to show

that t[!] = t0[!] 2 �x:A:B. Since �x:A:B is inhabited it is a type. Both t[j] and t0[j] converge

to lambda abstractions, so, by Corollary 5, t[!] + �x:b and t0[!] + �x:b0 for some terms b and

b0. Suppose a = a0 2 A. To get that b[a=x] = b0[a0=x] 2 B[a=x] it su�ces to show that t[!]a =

t0[!]a0 2 B[a=x]. Since Adm(B[a=x]), it su�ces to show that 8k � j: t[k]a = t0[k]a0 2 B[a=x],

which follows from the supposition. 2
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Unfortunately, Lemma 14 can show the admissibility of a product space only if it is non-dependent.

Dependent products do not have an admissibility condition similar to that of dependent functions.

This reason for this is as follows: Admissibility states that a single �xed type contains the limit of

an approximation chain if it contains a co�nite subset of that chain. For functions, disjoint union,

partial types, and non-dependent products it is possible to decompose prospective members in such

a way that admissibility may be applied to a single type (such as the type B[a=x] used in the proof

of Lemma 14). In contrast, for a dependent product, the right-hand term's desired type depends

upon the left-hand term, which is changing at the same time as the right-hand term. Consequently,

there is no single type into which to place the right-hand term.

However, understanding the problem with dependent products suggests a solution, to generalize

the de�nition of admissibility to allow the type to vary. This leads to the notion of predicate-

admissibility that I discuss in the next section.

4.1 Predicate-Admissibility

De�nition 15 A type T is predicate-admissible for x in S (abbreviated Adm(T j x : S)) if:

8f; t; t0; e: e[!] 2 S ^ (9j: 8k � j: e[k] 2 S ^ t[k] = t0[k] 2 T [e[k]=x])) t[!] = t0[!] 2 T [e[!]=x]

The term \predicate-admissibility" stems from its similarity to the notion of admissibility of pred-

icates in domain theory (and LCF). If one ignores the inhabiting terms t and t0, which may be

seen as evidences of the truth of the predicate T [ ], then predicate-admissibility is saying T [e[!]] if

T [e[k]] for all k greater than some j. This is precisely the notion of admissibility of predicates in do-

main theory. Indeed, the results here were in
uenced by the work of Igarashi [16], who established

conditions on admissibility of domain-theoretic predicates.

To show the admissibility of a dependent product type, it is su�cient to show predicate-admissibility

of the right-hand side (along with admissibility of the left):

Lemma 16 The type �x:A:B is admissible if Adm(A) and Adm(B j x : A).

Proof

Let f , t and t0 be arbitrary. Suppose j is such that 8k � j: t[k] = t0[k] 2 �x:A:B. It is necessary

to show that t[!] = t0[!] 2 �x:A:B. Since �x:A:B is inhabited it is a type. Both t[j] and t0[j]

converge to pairs, so, by Corollary 5, t[!] + ha; bi and t0[!] + ha0; b0i for some terms a, b, a0 and

b0. To get that a = a0 2 A it su�ces to show that �1(t
[!]) = �1(t

0[!]) 2 A. Since Adm(A), it

su�ces to show that 8k � j: �1(t
[k]) = �1(t

0[k]) 2 A, which follows from the supposition.

To get that b = b0 2 B[a=x] (the interesting part), it su�ces to show that �2(t
[!]) = �2(t

0[!]) 2

B[�1(t
[!])=x]. Since Adm(B j x : A), it su�ces to show that �1(t

[!]) 2 A, which has already

been shown, and 8k � j: �1(t
[k]) 2 A ^ �2(t

[k]) = �2(t
0[k]) 2 B[�1(t

[k])=x], which follows from

the supposition. 2

The conditions for predicate-admissibility are more elaborate, but also more general. I may immedi-

ately state conditions for basic types other than functions. Informally, basic compound types other

10



than functions are predicate-admissible so long as their component types are predicate-admissible,

and base types are always predicate-admissible. (The proof for these conditions, and all other

remaining proofs, appear in Appendix A.)

Lemma 17

� Adm(A+B j y : S) if 8s 2 S: (A+B)[s=y] type and Adm(A j y : S) and Adm(B j y : S).

� Adm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and �y:S:A type and Adm(A j y : S) and

Adm(B[�1(z); �2(z)=y; x] j z : (�y:S:A))

� Adm(N j y : S)

� Adm(a1 = a2 in A j y : S) if 8s 2 S: (a1 = a2 in A)[s=y] type and Adm(A j y : S)

� Adm(A j y : S) if 8s 2 S:A[s=y] type and Adm(A j y : S)

� Adm(a in! A j y : S) if 8s 2 S: (a in! A)[s=y] type

Predicate-admissibility of a function type is more complicated because a function argument with

the type A[e[!]=x] does not necessarily belong to any of the �nite approximations A[e[j]=x]. To

settle this, it is necessary to require a coadmissibility condition on the domain type. Then a

function type will be predicate-admissible if the domain is weakly coadmissible and the codomain

is predicate-admissible.

De�nition 18 A type T is weakly coadmissible for x in S (abbreviated WCoAdm(T j x : S)) if:

8f; t; t0; e: e[!] 2 S ^ (9j: 8k � j: e[k] 2 S)^ t = t0 2 T [e[!]=x])

(9j: 8k � j: t = t0 2 T [e[k]=x])

A type T is coadmissible for x in S (abbreviated CoAdm(T j x : S)) if:

8f; t; t0; e: e[!] 2 S ^ (9j: 8k � j: e[k] 2 S) ^ t[!] = t0[!] 2 T [e[!]=x])

(9j: 8k � j: t[k] = t0[k] 2 T [e[k]=x])

Lemma 19 Adm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and WCoAdm(A j y : S) and

8s 2 S; a 2 A[s=y]:Adm(B[a=x] j y : S)

Clearly coadmissibility implies weak coadmissibility. A general set of conditions listed in Lemma

20 establish weak and full coadmissibility for various types. Weak and full coadmissibility are

closed under disjoint union and dependent sum formation, and full coadmissibility is additionally

closed under equality-type formation. I use both notions of coadmissibility, rather than just adopt-

ing one or the other, because full coadmissibility is needed for equality types but under certain

circumstances weak coadmissibility is easier to show (Proposition 21 below).
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Lemma 20

� A + B is (weakly) coadmissible for y in S if 8s 2 S: (A + B)[s=y] type and A and B are

(weakly) coadmissible for y in S

� WCoAdm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and WCoAdm(A j y : S) and 8s 2

S; a 2 A[s=y]:WCoAdm(B[a=x] j y : S)

� CoAdm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and �y:S:A type and CoAdm(A j y : S)

and CoAdm(B[�1(z); �2(z)=y; x] j z : (�y:S:A))

� N is strongly or weakly coadmissible for y in any S

� CoAdm(a1 = a2 in A j y : S) if 8s 2 S: (a1 = a2 in A)[s=y] type and CoAdm(A j y : S)

� A is (weakly) coadmissible for y in S if 8s 2 S:A[s=y] type and A is (weakly) coadmissible

for y is S

� a in! A is strongly or weakly coadmissible for y in S if 8s 2 S: (a in! A)[s=y] type

When T does not depend upon S, predicate-admissibility and weak coadmissibility become easier

to show:

Proposition 21 Suppose x does not appear free in T . Then:

� Adm(T ) if Adm(T j x : S) and S is inhabited

� Adm(T j x : S) if Adm(T )

� WCoAdm(T j x : S)

There remains one more result related to predicate-admissibility. Suppose one wishes to show

Adm(T jx : S) where T depends upon x. There are two ways that xmay be used in T . First, T might

contain an equality type where x appears in one or both of the equands. In that case, predicate-

admissibility can be shown with the tools discussed above. Second, T may be an expression that

computes a type from x. In this case, T can be simpli�ed using untyped reasoning [15], but another

tool will be needed if T performs any case analysis.

Lemma 22 Consider a type case(d; x:A; x:B) that depends upon y from S. Suppose there exist

T1 and T2 such that:

� 8s 2 S: d[s=y] 2 (T1 + T2)[s=y]

� 8s 2 S; t 2 T1[s=y]: A[s; t=y; x] type

� 8s 2 S; t 2 T2[s=y]: B[s; t=y; x] type

� �y:S:T1 type and �y:S:T2 type

12



Then the following are the case:

� Adm(case(d; x:A; x:B) j y : S) if Adm(A[�1(z); �2(z)=y; x] j z : (�y:S:T1)) and Adm(B[�1(z);

�2(z)=y; x] j z : (�y:S:T2))

� WCoAdm(case(d; x:A; x:B) j y : S) if WCoAdm(A[�1(z); �2(z)=y; x] j z : (�y:S:T1)) and

WCoAdm(B[�1(z); �2(z)=y; x] j z : (�y:S:T2))

� CoAdm(case(d; x:A; x:B) j y : S) if CoAdm(A[�1(z); �2(z)=y; x] j z : (�y:S:T1)) and

CoAdm(B[�1(z); �2(z)=y; x] j z : (�y:S:T2))

4.2 Monotonicity

In some cases a very simple device may be used to show admissibility. We say that a type is

monotone if it respects computational approximation, and it is easy to show that all monotone

types are admissible.

De�nition 23 A type T is monotone (abbreviated Mono(t)) if t = t0 2 T whenever t 2 T and

t � t0.

Lemma 24 All monotone types are admissible.

Proof

Let f , t and t0 be arbitrary and suppose there exists j such that t[j] = t0[j] 2 T . Since t[j] � t[!]

and t0[j] � t0[!], it follows that t[j] = t[!] 2 T and t0[j] = t0[!] 2 T . The result follows directly. 2

All type constructors are monotone except universes and partial types, which are never monotone.

The proof of this fact is easy [15].

Proposition 25

� Mono(A+B) if Mono(A) and Mono(B)

� Mono(�x:A:B) if Mono(A) and 8a 2 A:Mono(B[a=x])

� Mono(�x:A:B) if Mono(A) and 8a 2 A:Mono(B[a=x])

� Mono(N), Mono(a1 = a2 2 A) and Mono(a in! A)

4.3 Set and Quotient Types

In addition to the type constructors discussed so far, the Nuprl type theory also contains two fairly

novel types, Constable's set and quotient types [6]. These types allow the use of logical predicates

13



a = a0 2 fx : A jBg i� fx : A jBg type ^ a = a0 2 A ^ 9b: b 2 B[a=x]

a = a0 2 xy:A==B i� (xy:A==B) type ^ a 2 A ^ a0 2 A ^ 9b: b 2 B[a; a0=x; y]

For T ' T 0 i� T = T 0, and for T ' T 0 i� T = T 0 2 Ui:

fx : A jBg ' fx : A0 jB0g i� A ' A0 ^ 8a = a0 2 A: B[a=x] ' B[a0=x]^

8a = a0 2 A: B0[a=x] ' B0[a0=x] ^

(B if and only if B0)

9t: t 2 �x:A:B! B0 ^ 9t: t 2 �x:A:B0 ! B

(xy:A==B) ' (xy:A0==B0) i� A ' A0 ^

8a1 = a0
1
2 A: 8a2 = a0

2
2 A: B[a1; a2=x; y] ' B[a0

1
; a0

2
=x; y]^

8a1 = a0
1
2 A: 8a2 = a0

2
2 A: B0[a1; a2=x; y] ' B0[a0

1
; a0

2
=x; y]^

(B if and only if B0)

9t: t 2 �x:A:�y:A:B! B0 ^ 9t: t 2 �x:A:�y:A:B0!B ^

(re
exivity)

9t: t 2 �x:A:B[x=y]^

(symmetry)

9t: t 2 �x:A:�y:A:B! B[y; x=x; y]^

(transitivity)

9t: t 2 �x:A:�y:A:�z:A:B! B[y; z=x; y]! B[z=y]

Figure 4: Set and Quotient Type De�nitions

(encoded as types using the propositions-as-types principle [14]) to re�ne or coarsen types in various

ways.

The set type fx:T j Pg is the subtype of T that contains all t 2 T such that P [t=x] is inhabited

(i.e., such that the proposition corresponding to P [t=x] is true). The quotient type xy:T==E[x; y]

(when E[�;�] corresponds to an equivalence relation on T ) is the supertype of T that coarsens the

equality on T as follows: t1 = t2 2 xy:T==E if and only if t1; t2 2 T and E[t1; t2=x; y] is inhabited

(i.e., true). The set and quotient types are de�ned formally in Figure 4.

The set type fx:A jB[x]g is much like the dependent product type �x:A:B[x] in that both provide

a member a of A such that B[a] is inhabited, but di�er in that the dependent product provides

that inhabitant and the set type suppresses it. Given this parallel between the dependent product

and set types, it is natural to expect that set types would have a similar admissibility rule: that

fx : A j Bg if A is admissible and B is predicate-admissible for x in A. Somewhat surprisingly,

this turns out not to be the case. Suppose that t[k] 2 fx : A j Bg for all k � j. Then for every

k � j, there exists some term bk 2 B[t[k]=x]. We would like it to follow by predicate-admissibility

that there exists b! 2 B[t[!]=x], but it does not. The problem is that each bk can be a completely

di�erent term, and predicate-admissibility applies only when each bk is of the form b[fk=w] for a

single �xed b.

Intuitively, the desired rule fails because the set type fx : A j Bg suppresses the computational

content of B and therefore B can be inhabited non-uniformly, by unrelated terms for related

members of A. In contrast, if the chain t[j]; t[j+1]; t[j+2]; : : : belongs to �x:A:B, then the chain

�2(t)
[j]; �2(t)

[j+1]; �2(t)
[j+2]; : : : uniformly inhabits B.
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For a concrete example, consider:

T
def
= fg : N!N j 9n:N: (gn in! N)! Voidg

f
def
= �h: �x: if x = 0 then 0 else h(x� 1)

t
def
= �y: wy

The type T is not admissible: For all k, (t[k]f )k diverges, so t[k]f 2 T ; but t[!]f converges for all

arguments, so t[!]f 62 T . However, 9n:N: (gn in! N)!Void is predicate-admissible for g in N! N.

The problem is that the inhabiting integers are not related by computational approximation; that

is, they are not uniform.

To show a set type admissible, we need to be able to show that the selection predicate can be

inhabited uniformly:

Lemma 26 The type fx : A jBg is admissible if:

� Adm(A), and

� Adm(B j x : A), and

� there exists b such that b[a=x] 2 B[a=x] whenever a 2 A and 9b0: b0 2 B[a=x].

We may give a similar predicate-admissibility condition:

Lemma 27 Adm(fx : A j Bg j y : S) if 8s 2 S: (fx : A j Bg)[s=y] type and �y:S:A type and

Adm(A jy : S) and Adm(B[�1(z); �2(z)=y; x] jz : �y:S:A), and there exists b such that b[a; s=x; y] 2

B[a; s=x; y] whenever s 2 S and a 2 A[s=y] and 9b0: b0 2 B[a; s=x; y]

Coadmissibility and monotonicity work on single terms, not chains, so the uniformity issue does

not arise, resulting in conditions fairly similar to those for dependent products:

Lemma 28

� WCoAdm(fx : A j Bg j y : S) if 8s 2 S: fx : A j Bg[s=y] type and WCoAdm(A j y : S) and

8s 2 S; a 2 A[s=y]:WCoAdm(B[a=x] j y : S)

� CoAdm(fx : AjBgjy : S) if 8s 2 S: fx : AjBg[s=y] type and �y:S:A type and CoAdm(Ajy : S)

and WCoAdm(B[�1(z); �2(z)=y; x] j z : (�y:S:A))

� Mono(fx : A jBg) if Mono(A)

The conditions for quotient types are similar to those for set types:
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Lemma 29

� Adm(xy:A==B) if Adm(A) and Adm(B[�1(z); �2(z)=x; y] j z : A�A), and there exists b such

that b[a; a0=x; y] 2 B[a; a0=x; y] whenever a 2 A and a0 2 A and 9b0: b0 2 B[a; a0=x; y].

� Adm(xy:A==B jz : S) if 8s 2 S:(xy:A==B)[s=z] type and �z:S:(A�A) type and Adm(A jz : S)

and Adm(B[�1(z
0); �1(�2(z

0)); �2(�2(z
0))=z; x; y] j z0 : �z:S:(A� A)), and there exists b such

that b[a; a0; s=x; y; z] 2 B[a; a0; s=x; y; z] whenever s 2 S and a 2 A[s=z] and a0 2 A[s=z] and

9b0: b0 2 B[a; a0; s=x; y; z].

� WCoAdm(xy:A==B j z : S) if 8s 2 S: (xy:A==B)[s=z] type and WCoAdm(A j z : S) and

8s 2 S; a 2 A[s=z]; a0 2 A[s=z]:WCoAdm(B[a; a0=x; y] j z : S)

� CoAdm(xy:A==Bjz : S) if 8s 2 S: (xy:A==B)[s=z]type and �z:S:(A�A)type and CoAdm(Ajz :

S) and CoAdm(B[�1(z
0); �1(�2(z

0)); �2(�2(z
0))=z; x; y] j z0 : �z:S:(A� A))

� Mono(xy:A==B) if Mono(A)

4.4 Summary

Figure 5 provides a summary of the basic admissibility results of this chapter. It is worthwhile

to note that all these results are proved constructively, with the exception of (weak and full)

coadmissibility of partial types. The following theorem shows that the proofs of coadmissibility

of partial types are necessarily classical; if a constructive proof existed then one could extract an

algorithm meeting the theorem's speci�cation, which can be used to solve the halting problem.

Theorem 30 There does not exist an algorithm that computes an integer j such that 8k � j: t =

t0 2 T [e[k]=x], when given S, T , f , t, t0, e and i such that:

� 8s 2 S: T [s=x] type

� CoAdm(T j x : S)

� e[!] 2 S

� 8k � i: e[k] 2 S

� t = t0 2 T [e[!]=x]

Recall the inadmissible type T from Theorem 2. That type fails the predicate-admissibility con-

dition because of the negative appearance of a function type, which could not be shown weakly

coadmissible, and it fails the monotonicity condition because it contains the partial type N.

5 Conclusions

An interesting avenue for future investigation would be to �nd some negative results characterizing

inadmissible types. Such negative results would be particularly interesting if they could be given
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For T �

A +B �x:A:B �x:A:B

Adm(T ) if

T type and Adm(A) ^Adm(B) 8a 2 A:Adm(B[a=x]) Adm(A) ^Adm(B j x : A)

Adm(A j y : S) ^

WCoAdm(A j y : S) ^ Adm(B[�1(z); �2(z)=y; x]

Adm(T j y : S) if Adm(A j y : S) ^ 8s 2 S; a 2 A[s=y]: j z : (�y : S:A)) ^

8s 2 S: T [s=y] type and Adm(B j y : S) Adm(B[a=x] j y : S) �y:S:A type

WCoAdm(A j y : S) ^

WCoAdm(T j y : S) if WCoAdm(A j y : S) ^ 8s 2 S; a 2 A[s=y]:

8s 2 S: T [s=y] type and WCoAdm(B j y : S) | WCoAdm(B[a=x] j y : S)

CoAdm(A j y : S) ^

CoAdm(B[�1(z); �2(z)=y; x]

CoAdm(T j y : S) if CoAdm(A j y : S) ^ j z : (�y : S:A)) ^

8s 2 S: T [s=y] type and CoAdm(B j y : S) | �y:S:A type

Mono(A) ^ Mono(A) ^

Mono(T ) if Mono(A) ^Mono(B) 8a 2 A:Mono(B[a=x]) 8a 2 A:Mono(B[a=x])

For T �

N; a in! A a1 = a2 in A A

Adm(T ) if

T type and yes yes Adm(A)

Adm(T j y : S) if

8s 2 S: T [s=y] type and yes Adm(A j y : S) Adm(A j y : S)

WCoAdm(T j y : S) if

8s 2 S: T [s=y] type and yes CoAdm(A j y : S) WCoAdm(A j y : S)

CoAdm(T j y : S) if

8s 2 S: T [s=y] type and yes CoAdm(A j y : S) CoAdm(A j y : S)

Mono(T ) if yes yes |

Figure 5: Admissibility, coadmissibility and monotonicity conditions

a syntactic character, like the results of this chapter. Along these lines, it would be interesting to

�nd whether the inability to show coadmissibility of function types represents a weakness of this

proof technique or an inherent limitation.

The results presented above providemetatheoretical justi�cation for the �xpoint principle over many

types. In order for these results to be useful in theorem proving, they must be introduced into the

logic. One way to do this, and the way it is done in my implementation of partial types in the

Nuprl proof assistant [11], is to introduce types to represent the assertions Adm(T ), Adm(T jx : S),

etc., that are inhabited exactly when the underlying assertion is true (in much that same way as

the equality type is inhabited exactly when the equands are equal), and to add rules relating to

these types that correspond to the lemmas of Section 4. This brings the tools into the system in

a semantically justi�able way, but it is unpleasant in that it leads to a proliferation of new types

and inference rules stemming from discoveries outside the logic. It would be preferable to deal

with admissibility within the logic. A theory with intensional reasoning principles, such as the one

proposed in Constable and Crary [7], would allow reasoning about computation internally. Then

these results could be proved within the theory and the only extra rule that would be required
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would be a single rule relating admissibility to the the �xpoint principle.

However they are placed into the logic, these results allow for recursive computation on a wide

variety of types. This make partial types and �xpoint induction a useful tool in type-theoretic

theorem provers. It also makes it possible to study many recursive programs that used to be

barred from the logic because they could not be typed.
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A Proofs

Theorem 2 There exist inadmissible types.

Proof

This example is due to Smith [24]. Let the type T and the function f be de�ned as follows:

T
def
= �h:(N!N): ((�x:N: h x in! N)! Void)

f
def
= �p:hg; �y: ?i

g
def
= �x: if x = 0 then 0 else �1(p)(x� 1)

It is easy to verify that T type . We wish to show that f has type T ! T . Suppose t = t0 2 T .

We need g[t=p] = g[t0=p] 2 N! N and �y: ? 2 (�x:N: (g[t=p])x in! N)! Void . The former is

easily shown; to show the latter, I assume that (g[t=p])n converges for every natural number n

and draw a contradiction. It follows that �x:N: (g[t=p])x in! N is empty and �y: ? is vacuously

a function from any empty type to Void . Suppose (g[t=p])n converges for every natural number

n. Then the term if n = 0 then 0 else �1(t)(n � 1) also converges for every natural number

n. It follows that t#, since �1(t)(0)#, and hence t 2 T . Thus (�x:N: �1(t)(x) in! N)! Void

is inhabited (by �2(t)) and consequently it cannot be the case that �1(t)(n)# for every natural

number n. But this is a contradiction since �1(t)(n�1)# for every n > 1. Therefore f 2 T!T .

However, it is not the case that �x (f) 2 T . Suppose �x(f) 2 T . Then �x(f) 2 T since �x(f)

converges (in two steps). Thus �2(�x(f)) 2 (�x:N: �1(�x(f))(x) in! N)! Void , which implies

that �1(�x(f)) is not total on N, but it is easy to show by induction that �1(�x(f)) is in fact

total (on N). Therefore �x(f) 62 T and hence T is not admissible. 2

Lemma 6 If e1[t=x] 7! e2, and e1[t=x] is closed, and t is closed and noncanonical, then either

� there exists e0
2
such that for any closed t0, e1[t

0=x] 7! e0
2
[t0=x], or

� there exist e0
1
and t0 such that e1 � e0

1
[x=y], t 7! t0 and for any closed t00, e0

1
[t00; t=x; y] 7!

e0
1
[t00; t0=x; y].

Proof

Suppose e1 � x. Then t � e1[t=x] 7! e2. Let e
0

1
= y and t0 = e2. Then e0

1
[t00; t=x; y] � t 7! t0 �

e0
1
[t00; t0=x; y]. The remaining cases are by induction on the derivation of e1[t=x] 7! e2. I show

the lambda rules; the other cases are similar.

Suppose the rule used is:

(�z:b)a 7! b[a=z]

The term e1[t=x] must have the form of a lambda abstraction applied to an argument. Thus e1
must be of the form (�z:b)a, since e1 � x is already handled and e1 � x a is impossible because

t is noncanonical. Let e0
2
= b[a=z] and suppose t0 is closed. Then:

e1[t
0=x] � (�z:b[t0=x])(a[t0=x])

7! b[t0=x](a[t0=x]=z)

� b[a=z][t0=x] (since t0 is closed)

� e0
2
[t0=x]
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Suppose the rule used is:
f 7! f 0

f a 7! f 0 a

Then it must be the case that e1 is of the form f1 a (since e1 � x is already handled) and

f1[t=x] 7! f2 (for some f2). Hence the induction hypothesis holds for f1. Suppose the �rst case

holds: there exists f 0
2
such that for any closed t0, f1[t

0=x] 7! f 0
2
[t0=x]. Let e0

2
= f 0

2
a and suppose

t0 is closed. Then:
e1[t

0=x] � (f1[t
0=x])(a[t0=x])

7! (f 0
2
[t0=x])(a[t0=x])

� e0
2
[t0=x]

Suppose the second case holds: there exist f 0
1
and t0 such that f1 � f 0

1
[x=y], t 7! t0 and for any

closed t00, f 0
1
[t00; t=x; y] 7! f 0

1
[t00; t0=x; y]. Let e0

1
= f 0

1
a and suppose t00 is closed. Then:

e0
1
[t00; t=x; y] � (f 0

1
[t00; t=x; y])(a[t00; t=x; y])

� (f 0
1
[t00; t=x; y])(a[t00; t0=x; y]) (since y is not free in a)

7! (f 0
1
[t00; t0=x; y])(a[t00; t0=x; y])

� e0
1
[t00; t0=x; y]

2

Lemma 7 For all f , e1 and e2 (where f is closed and x is the only free variable of e1), there exist

j and e0
2
such that if e1[�x(f)=x] 7!

� e2 then e2 � e0
2
[�x(f)=x] and for all k � j, e0

2
[fk�j=x] �

e1[f
k=x].

Proof

I show the lemma for evaluations of length exactly one. The result then follows by induction

on the length of the evaluation sequence, summing the numbers j.

Use Lemma 6. Suppose the �rst case holds: there exists e0
2
such that for any closed t,

e1[t=x] 7! e0
2
[t=x]. Then e1[�x(f)=x] 7! e0

2
[�x(f)=x] and, for any k, e1[f

k=x] 7! e0
2
[fk=x].

Thus e0
2
[fk�0=x] � e1[f

k=x]. Suppose the second case holds: there exists e0
1
such that e1 �

e0
1
[x=y], and for any closed t, e0

1
[t; �x(f)=x; y] 7! e0

1
[t; f(�x(f))=x; y]. Let e0

2
= e0

1
[f x=y].

Then e1[�x(f)=x] 7! e0
2
[�x(f)=x]. Suppose k � 1, then e0

2
[fk�1=x] � e0

1
[fk�1; fk=x; y] �

e0
1
[fk; fk=x; y] � e1[f

k=x]. 2

Theorem 8 For all f , t and e (where f is closed), if 8j: e[f j=x] � t, then e[�x(f)=x] � t.

Proof

By induction on l that for all f , t and e (where f is closed), (8j: e[f j=x] � t)) e[�x(f)=x] �l t.

The result follows by the de�nition of �. The basis is trivial.

Assume the induction hypothesis for l and 8j: e[f j=x] � t. Let � be a substitution such that

�(e[�x(f)=x]) and �(t) are closed and suppose, without loss of generality, that � does not

substitute for x. Then �(e[�x(f)=x]) � �(e)[�x(f)=x], �(e[f j=x]) � �(e)[f j=x] (for any j), and

the only free variable of �(e) is x. Suppose �(e[�x(f)=x]) + e0. By Lemma 7, e0 � e00[�x(f)=x]

and, for some j and all k � j, e00[fk�j=x] � �(e)[fk=x]. Then, by assumption and transitivity,
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8k � j: e00[fk�j=x] � �(t). Therefore, changing variables to replace k�j with k, e00[fk=x] � �(t)

for any k.

Let e00 = �(~x1:t1; : : : ; ~xn:tn) (and suppose, without loss of generality, that x does not appear

in any ~xi). Then �(t) + �(~x1:t
0

1
; : : : ; ~xn:t

0

n) where, for 1 � i � n and any k, ti[f
k=x] �

t0i. By induction, ti[�x(f)=x] �l t
0

i, for any i. Therefore �(e[�x(f)=x]) �l+1 �(t) and hence

e[�x(f)=x] �l+1 t. 2

Lemma 17

� Adm(A+B j y : S) if 8s 2 S: (A+B)[s=y] type and Adm(A j y : S) and Adm(B j y : S).

� Adm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and �y:S:A type and Adm(A j y : S) and

Adm(B[�1(z); �2(z)=y; x] j z : (�y:S:A))

� Adm(N j y : S)

� Adm(a1 = a2 in A j y : S) if 8s 2 S: (a1 = a2 in A)[s=y] type and Adm(A j y : S)

� Adm(A j y : S) if 8s 2 S:A[s=y] type and Adm(A j y : S)

� Adm(a in! A j y : S) if 8s 2 S: (a in! A)[s=y] type

Proof

I show the product and equality cases; the other cases are similar but easier.

Case 1: For the product case, let f , t, t0 and e be arbitrary. Suppose e[!] 2 S and j is such

that 8k � j: e[k] 2 S ^ t[k] = t0[k] 2 (�x:A:B)[e[k]=y]. It is necessary to show that t[!] = t0[!] 2

(�x:A:B)[e[!]=y]. Since e[!] 2 S, it follows that (�x:A:B)[e[!]=y]type. Both t[j] and t0[j] converge

to pairs, so, by Corollary 5, t[!] + ha; bi and t0[!] + ha0; b0i for some terms a, b, a0 and b0. To get

that b = b0 2 B[e[!]=y][a=x], it su�ces to show that �2(t
[!]) = �2(t

0[!]) 2 B[e[!]=y][�1(t
[!])=x].

Rearranging, it su�ces to show equality in B[�1(z); �2(z)=y; x][he; �1(t)i
[!]=z].

Since Adm(B[�1(z); �2(z)=y; x] j z : (�y:S:A)), it su�ces to show that he; �1(t)i
[!] 2 �y:S:A

and 8k � j: he; �1(t)i
[k] 2 �y:S:A^ �2(t

[k]) = �2(t
0[k]) 2 B[�1(z); �2(z)=y; x][he; �1(t)i

[k]=z]. The

former will follow from a 2 A[e[!]=y] and the supposition. The left half of the latter also follows

from the supposition. Rearranging the right half, it su�ces to show that �2(t
[k]) = �2(t

0[k]) 2

B[e[k]=y][�1(t
[k])=x], which follows from the supposition. The proof that a = a0 2 A[e[!]=y] is

similar but easier. Hence t[!] = t0[!] 2 (�x:A:B)[e[!]=y].

Case 2: For the equality case, again let f , t, t0 and e be arbitrary. Suppose e[!] 2 S and j

is such that 8k � j: e[k] 2 S ^ t[k] = t0[k] 2 (a1 = a2 in A)[e[k]=y]. It is necessary to show that

t[!] = t0[!] 2 (a1 = a2 in A)[e[!]=y]. Since e[!] 2 S, it follows that (a1 = a2 in A)[e[!]=y] type.

Both t[j] and t0[j] converge to ?, so, by Corollary 5, t[!] and t0[!] converge to ?. It remains to

show that a1[e
[!]=y] = a2[e

[!]=y] 2 A[e[!]=y]. Since Adm(A j y : S), it su�ces to show that

8k � j: e[k] 2 S ^ a1[e
[k]=y] = a2[e

[k]=y] 2 A[e[k]=y]. This follows since (a1 = a2 in A)[e[k]=y] is

inhabited for all k � j. 2

Lemma 19 Adm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and WCoAdm(A j y : S) and

8s 2 S; a 2 A[s=y]:Adm(B[a=x] j y : S)
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Proof

Let f , t, t0 and e be arbitrary. Suppose e[!] 2 S and j is such that 8k � j: e[k] 2 S^ t[k] = t0[k] 2

(�x:A:B)[e[k]=y]. I need to show that t[!] = t0[!] 2 (�x:A:B)[e[!]=y]. Since e[!] 2 S, it follows

that (�x:A:B)[e[!]=y] type. Both t[j] and t0[j] converge to lambda abstractions, so, by Corollary

5, t[!] + �x:b and t0[!] + �x:b0 for some terms b and b0. Suppose a = a0 2 A[e[!]=y]. To get that

b[a=x] = b0[a0=x] 2 B[e[!]; a=y; x] it su�ces to show that t[!]a = t0[!]a0 2 B[e[!]; a=y; x].

Since e[!] 2 S, it follows that Adm(B[a=x] j y : S). Therefore, it su�ces to show that for some

j0 and all k � j0, t[k]a = t0[k]a0 2 B[e[k]; a=y; x]. Since WCoAdm(A j y : S), there exists j00 such

that 8k � j00: a = a0 2 A[e[k]=y]. Therefore j0 = max(j; j00) su�ces. 2

Lemma 20

� A + B is (weakly) coadmissible for y in S if 8s 2 S: (A + B)[s=y] type and A and B are

(weakly) coadmissible for y in S

� WCoAdm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and WCoAdm(A j y : S) and 8s 2

S; a 2 A[s=y]:WCoAdm(B[a=x] j y : S)

� CoAdm(�x:A:B j y : S) if 8s 2 S: (�x:A:B)[s=y] type and �y:S:A type and CoAdm(A j y : S)

and CoAdm(B[�1(z); �2(z)=y; x] j z : (�y:S:A))

� N is strongly or weakly coadmissible for y in any S

� CoAdm(a1 = a2 in A j y : S) if 8s 2 S: (a1 = a2 in A)[s=y] type and CoAdm(A j y : S)

� A is (weakly) coadmissible for y in S if 8s 2 S:A[s=y] type and A is (weakly) coadmissible

for y is S

� a in! A is strongly or weakly coadmissible for y in S if 8s 2 S: (a in! A)[s=y] type

Proof

The proof is largely similar to the preceding proofs, but inverted. I show the proofs for full

coadmissibility of products and partial types.

Case 1: For the product case, let f , t, t0 and e be arbitrary. Suppose e[!] 2 S, j is such that

8k � j: e[k] 2 S, and t[!] = t0[!] 2 (�x:A:B)[e[!]=y]. It is necessary to show that there exists j0

such that 8k � j0: t[k] = t0[k] 2 (�x:A:B)[e[k]=y]. For any k � j, (�x:A:B)[e[k]=y] type. Both t[!]

and t0[!] converge to pairs, so, by compactness, there exists some j00 such that for all k � j00, t[k]

and t[k] converge to pairs. Thus it su�ces to show that for some j0 � max(j; j00) and all k � j0,

�1(t
[k]) = �1(t

0[k]) 2 A[e[k]=y] and �2(t
[k]) = �2(t

0[k]) 2 B[e[k]; �1(t
[k])=y; x]. I show the latter;

the former is similar.

Rearranging, it su�ces to show equality in B[�1(z); �2(z)=y; x][he; �1(t)i
[k]=z]. By coadmissi-

bility, it su�ces to show he; �1(t)i
[!] 2 �y:S:A and 9j000: 8k � j000: he; �1(t)i

[k] 2 �y:S:A and

�2(t
[!]) = �2(t

0[!]) 2 B[�1(z); �2(z)=y; x][he; �1(t)i
[!]=z]. The �rst follows from the supposi-

tion and the second will follow from �1(t
[k]) 2 A[e[k]=y] and the supposition. Rearranging the

third, is su�ces to show that �2(t
[!]) = �2(t

0[!]) 2 B[e[!]=y][�1(t
[!])=x], which follows from the

supposition.
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Case 2: For the partial type case, let f , t, t0 and e be arbitrary. Suppose e[!] 2 S, j is

such that 8k � j: e[k] 2 S, and t[!] = t0[!] 2 A[e[!]=y]. I need to show that there exists j0

such that 8k � j0: t[k] = t0[k] 2 A[e[k]=y]. For any k � j, A[e[k]=y] type . Suppose t[!] does not

converge. (Note the non-constructivity of this argument.) Then t0[!] does not converge and

neither does t[k] or t0[k] for any k (since t[k] � t[!] and t0[k] � t0[k] for all k). Thus for all k � j,

t[k] = t0[k] 2 A[e[k]=y].

Suppose t[!] converges. Then t[!] = t0[!] 2 A[e[!]=y]. By coadmissibility, there exists j0 such

that 8k � j0: t[k] = t0[k] 2 A[e[k]=y]. Hence 8k � max(j; j0): t[k] = t0[k] 2 A[e[k]=y]. 2

Lemma 22 (Predicate-admissibility and weak and full coadmissibility of case analysis.)

Proof

The proof follows the same lines as those of Lemmas 17 and 20.

Lemma 26 The type fx : A jBg is admissible if:

� Adm(A), and

� Adm(B j x : A), and

� there exists b such that b[a=x] 2 B[a=x] whenever a 2 A and 9b0: b0 2 B[a=x].

Proof

Let f , t and t0 be arbitrary. Suppose j is such that 8k � j: t[k] = t0[k] 2 fx : A j Bg. Since

fx : A j Bg is inhabited it is a type. Since Adm(A), t[!] = t0[!] 2 A. By set membership, for

all k � j there exists b0 such that b0 2 B[t[k]=x]. Thus b[t[k]=x] 2 B[t[k]=x] for all k � j. Hence

b[t[!]=x] 2 B[t[!]=x] follows by predicate-admissibility. 2

Lemma 27 (Predicate-admissibility of set types.)

Proof

The proof follows the same lines as Lemma 26.

Lemma 28 (Weak and full coadmissibility and monotonicity of set types.)

Proof

The proof follows the same lines as Lemma 20 and Proposition 25.

Lemma 29 (Admissibility, predicate-admissibility, weak and full coadmissibility and monotonicity

of quotient types.)
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Proof

The proof follows the same lines as the proofs for the set type.

Theorem 30 There does not exist an algorithm that computes an integer j such that 8k � j: t =

t0 2 T [e[k]=x], when given S, T , f , t, t0, e and i such that:

� 8s 2 S: T [s=x] type

� CoAdm(T j x : S)

� e[!] 2 S

� 8k � i: e[k] 2 S

� t = t0 2 T [e[!]=x]

Proof

Suppose such an algorithm exists. Let g be an arbitrary term that computes a total function

on integers; that is, g 2 N! N. Given the algorithm, we may e�ectively determine whether g

iterated on 1 ever computes 0, which is certainly undecidable. Let f = �h: �n: if n =N 0 then

0 else h(gx) and let h = �x(f). Note that f 2 N!N!N!N and h 2 N!N. By construction,

g iterated on 1 computes 0 if and only if h(1)#.

We will use the algorithm to determine an upper bound on the number of recursive calls needed

to simulate h. Let
S = N

T = x in! N

f = as above

t; t0 = let y = h(1) in ?

e = w(1)

i = 0

Observe that e[!] = h(1) and e[k] = (fk)(1), so the �rst four preconditions of the algorithm are

satis�ed. Moreover, CoAdm(T j x : S) can be shown constructively. For the �nal precondition,

suppose t#. Then h(1)# so t 2 h(1) in! N.

Therefore let j be the result computed by the algorithm. I show that f j(1)# exactly when

h(1)#. Since f j(1) approximates h(1), it follows that f j(1)# implies h(1)#. By the algorithm

speci�cation, t 2 f j(1) in! N. If h(1)# then t#, so t 2 f j(1) in! N and consequently f j(1)#.

Let h0 =

j times

z }| {

f(f � � �f(�y:1) � � �), and observe that f j(1)# exactly when h0(1) + 0. Consequently

h(1)# exactly when h0(1) + 0. However, h0 is total, so we may decide whether h(1)# by running

h0(1). 2
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