

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:

A. Nico Habermann, deceased, Co-Chair
David Garlan, Co-Chair

Jeannette Wing
Mahadev Satyanarayanan

Lori Clarke, University of Massachusetts at Amherst

Submitted in partial fulÞllment of the requirements
for the Degree of Doctor of Philosophy

© 1997 by Charles W. Krueger

Modeling and Simulating a
Software Architecture Design Space

Charles W. Krueger

December 1997
CMU-CS-97-158

This research was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, and the Defense
Advanced Research Projects Agency (DARPA) under grant number F33615-93-1-1330; by the Defense Advanced Research Projects Agency, and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-2-0031; by the Defense Modeling and Simulation
OfÞce; by ZFE of Siemens Corporation; and by National Science Foundation Grant No. CCR 9357792.

Views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the ofÞcial pol-
icies, either expressed or implied, of the US Department of Defense, Wright Laboratory, Rome Laboratory, the United States Government, Siemens
Corporation, or the National Science Foundation.

The U.S. Government is authorized to reproduce and distribute reprints for Government purposes, notwithstanding any copyright notation thereon.

Keywords:

 software engineering, software architecture, domain-speciÞc software architecture, parameterized soft-
ware architecture, software framework, software reuse, requirements engineering, object-oriented database, simula-
tion

page i

Table of Contents

Chapter 1. Introduction .1

1.1. Overview . 1
1.2. The Problem . 1
1.3. Classes of Similar Systems . 3
1.4. The Thesis . 3

1.4.1. Overview of the Solution . 4

1.5. Challenges . 9
1.6. Contributions . 9

Chapter 2. Related Work .11

2.1. Software Architecture . 11
2.2. Domain-speciÞc Software Architectures . 12
2.3. OODB Toolkits and Extensible OODBs . 12
2.4. Requirements and Software Architecture . 13
2.5. Simulation of Software Architectures . 14
2.6. Software Engineering Environments . 15

Chapter 3. Overview of Approach .17

3.1. Software Development Cycle using Software Architecture Modeling and Simulation 17
3.2. DeÞning Requirements . 18
3.3. Mapping Requirement Variables to Architectural Parameters . 20
3.4. Instantiating the Parameterized Software Architecture . 22
3.5. Realizing the Software Architecture Simulator . 25
3.6. Validation of the Technology . 27

Chapter 4. Case Study .29

4.1. Introduction to the Problem . 29
4.2. Part 1: Prototyping OODB Requirements for the Graphical Editor . 30

4.2.1. Prototype Application Source Code and Simulation Scripts . 30
4.2.2. Defining the Requirement Variable Values . 30
4.2.3. Mapping Requirement Variables to Architectural Parameters . 34
4.2.4. Mapping Architectural Parameters to Software Architecture Instances . 36
4.2.5. Mapping Software Architecture Instances to Executable Simulations . 39
4.2.6. Evaluating Requirements with Modeling and Simulation Feedback . 39

4.3. Part 2: Selecting an Off-the-Shelf OODB for the Graphical Editor . 43

4.3.1. Objectivity Evaluation . 43
4.3.2. ObjectStoreLite Evaluation . 48

4.4. Wrapping up the OODB Evaluation . 51

Chapter 5. High-Level System Design Rationale .53

5.1. Capturing the Class of OODB Systems in the UFO Parameterized Software Architecture 53

5.1.1. OODB Domain Analysis . 54
5.1.2. Generalized OODB Concepts in UFOÕs Virtual OODB Language . 56
5.1.3. Generalizing OODB Implementations in the UFO Reference Architecture 61
5.1.4. Discriminating Among OODB Instances . 65
5.1.5. Architectural Building Blocks: UFO Configuration Nodes . 67
5.1.6. Abstracting Architectural Variability: Architectural Parameters . 72

page ii

5.1.7. Mapping Architectural Parameters to Configuration Nodes . 74
5.1.8. Abstracting Architecture Requirements Variability: Requirement Variables 75
5.1.9. Mapping Requirement Variables to Architectural Parameters . 78

5.2. Design of the OODB Architecture Modeler and Simulator . 79

5.2.1. The Modeler . 80
5.2.2. The Simulator . 81
5.2.3. Dynamic Simulation Profiles . 83
5.2.4. Inconsistency Detection . 86

5.3. Adapting Software Architecture Modeling and Simulation Techniques to OODB Architectures 87

5.3.1. Conventional Application Development with OODBs . 88
5.3.2. Application Development with UFO . 88

Chapter 6. Implementation of the UFO Tool Set . 93

6.1. Overview of the Implementation . 93

6.1.1. Objectives . 93
6.1.2. Base Technology . 94

6.2. The Integrated Data Model and Tools . 94
6.3. Brief Introduction to the Gandalf System . 96

6.3.1. Data Management . 96
6.3.2. Data Visualization . 97
6.3.3. Computation . 98

6.4. UFO Language Editor . 98

6.4.1. Data . 99
6.4.2. Visualization . 99
6.4.3. Computation . 99

6.5. Static Semantic Analysis . 100

6.5.1. Data . 100
6.5.2. Visualization . 100
6.5.3. Computation . 100

6.6. UFO Language Interpreter . 103

6.6.1. Data . 103
6.6.2. Visualization . 103
6.6.3. Computation . 103

6.7. Requirements DeÞnition Editor . 104

6.7.1. Data . 104
6.7.2. Visualization . 104
6.7.3. Computation . 104

6.8. Requirement Variable to Architectural Parameter Mapping . 105

6.8.1. Data . 105
6.8.2. Visualization . 105
6.8.3. Computation . 105

6.9. Off-the-Shelf OODB Inconsistency Detection and Feedback . 105

6.9.1. Data . 105
6.9.2. Visualization . 106
6.9.3. Computation . 106

6.10. Architectural Parameter to Software Architecture Instance Mapping . 106

6.10.1. Data . 106
6.10.2. Visualization . 106
6.10.3. Computation . 106

6.11. OODB Architecture Model Generator . 107

6.11.1. Data . 107
6.11.2. Visualization . 107
6.11.3. Computation . 107

6.12. Software Architecture Instance to Simulator Initialization . 107

page iii

6.12.1. Data . 108
6.12.2. Visualization . 108
6.12.3. Computation . 108

6.13. UFO Architecture Simulator . 108

6.13.1. Data . 109
6.13.2. Visualization . 109
6.13.3. Computation . 109

6.14. Simulation ProÞle Generator . 110

6.14.1. Data . 110
6.14.2. Visualization . 110
6.14.3. Computation . 110

6.15. Automated ProÞle Analysis and Feedback . 111

6.15.1. Data . 111
6.15.2. Visualization . 111
6.15.3. Computation . 111

6.16. Boundaries . 112

Chapter 7. Experiments and Results .113

7.1. Experiment 1: An OODB for a Workßow Diagram Editor . 113

7.1.1. The Classes in the Application Driver Code . 114
7.1.2. The Simulation Scripts . 117
7.1.3. Prototyping OODB Requirements for the Workflow Diagram Editor . 118
7.1.4. Selecting an Off-the-Shelf OODB for the Workflow Diagram Editor . 128

7.2. Experiment 2: An OODB for a Workßow Management System . 141

7.2.1. .Additional Classes and Components in the Workflow Manager Application 142
7.2.2. The Simulation Scripts . 145
7.2.3. Prototyping OODB Requirements for the Workflow Management System 145
7.2.4. Selecting an Off-the-Shelf OODB for the Workflow Management System 158

Chapter 8. Analysis .165

8.1. Supporting the Hypothesis for Requirements DeÞnition . 165

8.1.1. Requirements Definition Cost Estimates . 166
8.1.2. Requirements Definition Conformance Estimates . 167

8.2. Supporting the Hypothesis for Off-the-Shelf OODB Selection . 168

8.2.1. Off-the-Shelf OODB Selection Cost Estimates . 168
8.2.2. Off-the-Shelf OODB Selection Conformance Estimates . 169

Chapter 9. Evaluation and Discussion .171

9.1. Capturing Relationships Between Requirements, Architectures and Properties 171

9.1.1. The Triad of System Requirements, Architectures, and Properties . 171
9.1.2. Relationship between Requirements and Architectures . 172
9.1.3. Relationship between Architectures and System Properties . 172
9.1.4. Relationship between Properties and Requirements . 173
9.1.5. Discovering Relationships prior to Encoding . 174

9.2. Choosing the Discriminators for OODBs . 174
9.3. Effectiveness of Abstractions in Software Architecture Modeling and Simulation 175
9.4. Practicality . 176

9.4.1. Level of Expertise Needed for Users . 176
9.4.2. Level of Expertise Needed for Implementors . 177

9.5. Extensibility . 177

9.5.1. Generalizing the OODB Work to Other Classes of Systems . 177
9.5.2. Scaling Software Architecture Modeling and Simulation Technology . 178

9.6. Lessons from the UFO Design and Implementation . 180

9.6.1. UFOÕs Virtual OODB Language . 180

page iv

9.6.2. Static Declaration of Locality Clusters . 180
9.6.3. Defining Configuration Nodes . 181

Chapter 10. Conclusions . 183

10.1. Justifying the Hypothesis . 183
10.2. Contributions . 184

Chapter 11. Future Work . 187

11.1. Validation of UFO . 187

11.1.1. Validating the UFO Modeler and UFO Simulator . 187
11.1.2. Validating the Effectiveness of the UFO Tool . 189

11.2. Software Architecture Realizations . 190

11.2.1. Generating a Design from a Software Architecture Instance . 190
11.2.2. Generating an Executable System from a Software Architecture Instance 190

11.3. Evaluating and Comparing Off-the-Shelf Instances . 193
11.4. Automated Architectural Evolution . 194
11.5. Creating Software Architecture Modeling and Simulation Tools . 195
11.6. Composite Software Architectures . 196

References . 197

page v

Abstract

Frequently, a similar type of software system is used in the implementation of many different software applica-
tions. Databases are an example. Two software development approaches are common to Þll the need for
instances from a class of similar systems: (1) repeated custom development of similar instances, one for each
different application, or (2) development of one or more general purpose off-the-shelf systems that are used
many times in the different applications. Each approach has advantages and disadvantages. Custom develop-
ment can closely match the requirements of an application, but has an associated high development cost. Gen-
eral purpose systems may have a lower cost when amortized across multiple applications, but may not closely
match the requirements of all the different applications.

It can be difÞcult for application developers to determine which approach is best for their application. Do any
of the existing off-the-shelf systems sufÞciently satisfy the application requirements? If so, which ones provide
the best match? Would a custom implementation be sufÞciently better to justify the cost difference between an
off-the-shelf solution? These difÞcult buy-versus-build decisions are extremely important in todayÕs fast-
paced, competitive, unforgiving software application market.

In this thesis we propose and study a software engineering approach for evaluating how well off-the-shelf and
custom software architectures within the design space of a class of OODB systems satisfy the requirements for
different applications. The approach is based on the ability to explicitly enumerate and represent the key
dimensions of commonality and variability in the space of OODB designs. We demonstrate that modeling and
simulation of OODB software architectures can be used to help software developers rapidly converge on
OODB requirements for an application and identify OODB software architectures that satisfy those require-
ments.

The technical focus of this work is on the circular relationships between requirements, software architectures,
and system properties such as OODB functionality, size, and performance. We capture these relationships in a
parametrized OODB architectural model, together with an OODB simulation and modeling tool that allows
software developers to reÞne application requirements on an OODB, identify corresponding custom and off-
the-shelf OODB software architectures, evaluate how well the software architecture properties satisfy the
application requirements, and identify potential reÞnements to requirements.

page vi

page vii

Acknowledgments

This work is dedicated to the spirit of two individuals who provided tremendous inspiration and motivation to
me during its creation, but sadly were not able to celebrate with me in its culmination Ð Nico Habermann, my
Þrst thesis adviser, and Herbert Krueger, my father.

Nico was more than an adviser to me, he was a ÒmentorÓ in every sense of the word. Intellectually, profession-
ally, and personally he became the most signiÞcant model in my life. His strength, vision, and kindness will
live on through those who were fortunate enough to grow under his guidance.

My father was an inspiration to me in the way that he deÞned and achieved personal success using simple yet
deep values. Selßess dedication, boundless optimism, and uncompromising ethics were the things for which he
was widely admired and the things which I will always remember.

There are many people who shared, willingly or otherwise, in the sacriÞces necessary to make my personal
dream a reality. The greatest of these is Aaron, who until now has never had a father that didnÕt need to Òtake
some time to work on the thesisÓ. Your unconditional support and love, keen intellect, limitless enthusiasm,
and best of all your friendship have provided me the perspective needed to persevere.

It has been said that the most important thing in the long-term success of a marriage is friendship. It is this spe-
cial friendship that has kept our marriage strong through the perturbations offered over the years by this work.
Thank you, Debbie, for always being there for me.

My mother showed me how to be a free-thinking individual. She always supported me and allowed me to Ògo
against the grainÓ to pursue the things that were important to me. This spirit allowed me to believe in myself
and not be deterred when so many others said it couldnÕt be done.

And Þnally I need to acknowledge the critical role that David Garlan played in accepting the role of thesis
advisor after Nico died. While I was 1200 miles away from CMU, David was my advocate. I can truly say that
this never could have happened without his hard technical and diplomatic work.

page viii

page 1

Chapter 1. Introduction

1.1. Overview

Frequently, a similar type of software system is used in the implementation of many different software applica-
tions. Databases are an example. Two approaches are common to Þll the need for instances from a class of sim-
ilar systems: (1) repeated custom development of similar instances, one for each different application, or (2)
development of one or several general purpose off-the-shelf systems that are used many times in the different
applications. Each approach has advantages and disadvantages. Custom development can closely match the
requirements of an application, but has an associated high development cost. General purpose systems may
have a lower cost when amortized across multiple applications, but may not closely match the requirements of
all the different applications.

It can be difÞcult for application developers to determine which approach is best for their application. Do any
of the existing off-the-shelf systems sufÞciently satisfy the application requirements? If so, which ones provide
the best match? Would a custom implementation be sufÞciently better to justify the cost difference between an
off-the-shelf solution? These difÞcult buy-versus-build decisions are extremely important in todayÕs fast-
paced, competitive, unforgiving software application market.

In this thesis we propose and study a software engineering approach for evaluating how well off-the-shelf and
custom software architectures within the design space of a class of OODB systems satisfy the requirements for
different applications. The approach is based on the ability to explicitly enumerate and represent the key
dimensions of commonality and variability in the space of OODB designs. We demonstrate that modeling and
simulation of OODB software architectures can be used to help software developers rapidly converge on
OODB requirements for an application and identify OODB software architectures that satisfy those require-
ments.

Different OODBs typically serve a similar role, but generally each OODB is focused on a specialized market
niche and has a corresponding architecture that is unique in one or more ways. No single software architecture
for OODBs is generally applicable across the broad range of applications found in practice. We develop a mod-
eling and simulation tool for OODB architectures and demonstrate how this tool can help software developers
quickly identify the OODB requirements for an application, to Þnd a custom OODB architecture that satisÞes
those requirements, and to determine which of the off-the-shelf OODB architectures most closely satisfy the
requirements.

The technical focus of this work is on the circular relationships between requirements, software architectures,
and system properties such as OODB functionality, size, and performance. We capture these relationships in a
parametrized OODB architectural model, together with an OODB simulation and modeling tool that allows
software developers to reÞne application requirements on an OODB, identify corresponding custom and off-
the-shelf OODB software architectures, evaluate how well the software architecture properties satisfy the
application requirements, and identify potential reÞnements to requirements.

1.2. The Problem

It is often the case in the software industry that many different instances from a class of similar software sys-
tem are independently developed. Sometimes this duplication of effort is intended and desirable, such as in the
case of competitive products. However, in other cases repeated development is a distinct disadvantage, such as
independent development of similar software systems within a single large organization or repeated develop-
ment of common software subsystems that do not contribute to the value-added in product development
efforts. The cost of repeated development in these cases is unnecessary and wasteful.

page 2

One approach to avoiding the repetitive effort of building similar systems is to build a general purpose, reus-
able system that provides the union of functionality in that class of systems. Since a general purpose system
can be used in many different products, its development cost is amortized across all the different uses.

Object-oriented databases (OODBs) are a good example of this type of general purpose system. OODB tech-
nology came about in response to the many custom-built object management systems being developed for
applications with complex data management requirements. Developers needing object management function-
ality in their applications typically will Þnd that it is less expensive to buy an OODB than it is to develop and
maintain a custom OODB with the required functionality.

However, there are several problems with the general purpose system approach. First is excess functionality.
General purpose systems are designed to support all of the functionality that might be needed in all possible
deployments, but for a particular application much of the functionality may be extraneous, leading to excessive
size or reduced performance. Second is missing functionality. A general purpose system might not support
some functionality that is required for a particular application. Third is average case performance. Performance
in general purpose systems is tuned to satisfy the average case. However, for a particular application, the aver-
age case performance may be inappropriate due to performance priorities on a speciÞc system function.

General purpose OODBs exemplify these problems. For example, ITASCA is one of the most fully featured
OODBs, aimed at very large-scale, distributed, multi-user applications needing object versioning, long trans-
actions, security, and related advanced functionality. Because of the complex interactions of these functions,
the system is relatively large and performance is relatively slow. For example, in our modeling we found that
for the same application, ITASCA required nearly three times as much runtime space and 40% greater execu-
tion time as less ambitious OODBs. Some applications not requiring all of the ITASCA functionality may Þnd
the excess size and slower performance associated with the excess functionality to be unacceptable. In con-
trast, ObjectStore is aimed at large-scale, distributed, multi-user applications, but focuses on high performance
rather than advanced functionality. Although it is fast, the footprint of ObjectStore is relatively large for some
applications and may have missing functionality for other applications. ObjectStoreLite is an OODB for sin-
gle-user, single-CPU applications, particularly those running on small portable computers. Without functional-
ity for distribution and multiple users, the footprint for the OODB is relatively small and performance is good,
but the limited functionality is a problem for many applications. The average case performance for all of these
OODBs can be a problem for applications with speciÞc performance proÞle requirements.

Developers attempting to identify and satisfy requirements for a particular application are faced with all of
these price, performance, size, and functionality issues associated with off-the-shelf systems and with custom
development. Will all of the available off-the-shelf systems work adequately? Will one work better than
another? Are none of them sufÞcient, implying that custom development is needed?

For example, it is difÞcult to select the best commercial, share-ware, or free-ware OODB for a given applica-
tion. First, it is not obvious what features of an OODB will determine a good or bad match for an application.
Second, it is very difÞcult to compare existing literature on the various products and predict how well each will
satisfy application requirements. Third, published benchmarks may not address the performance issues that are
relevant for an application. And fourth, prototyping and benchmarking with evaluation software can be very
expensive, both in terms of time and money, offsetting some of the advantage of using off-the-shelf products.

Further complicating the problem that developers face as they evaluate and select OODBs is the question of
what their requirements really are. Without some application prototyping experience using a set of require-
ments, there is always concern that the requirements are incomplete, inaccurate, or have unexpected side-
effects, leading to the selection of an OODB that does not conform well to the application.

page 3

1.3. Classes of Similar Systems

We have used the phrase Òclass of similar systemsÓ several times, relying on the readerÕs intuition about what
this might mean. This concept is central throughout the remainder of this study, so it deserves attention up
front.

The notion of a

class of similar systems

 is not new. According to Campbell[1], Dijkstra introduced the concept
of

program families

 in 1972[2] and Parnas next elaborated on the idea in 1976[3], both arguing that individual
instances from a family of similar systems should not be developed as unique artifacts, or even as successive
versions, but rather should all be derived from a common abstraction for the family. More recently, Lane char-
acterizes a

design space

 for user interface software and shows how to derive instances from the design
space[4].

Garlan and Shaw discuss architectural styles that are common across many different software sys-
tems[5]. Campbell presents business and technical models that organize software development around

pro-
gram families

[1]. Johnson presents a collection of common object-oriented design patterns as a basis for
classes of software systems[6].

Similarly, we use the terms

class of similar systems

, or simply

class of systems

, to refer to a collection of soft-
ware systems such as OODBs that share similar sets of requirements, similar architectures, and similar sets of
system properties. We use the term

instance

 when referring to an individual member from a class of similar
systems. The notion of

similar

 in this context depends on the intended use of the class of systems. In one case
ÒsimilarÓ may have a very speciÞc deÞnition and encompass a small number of instances, while in another
case ÒsimilarÓ may have a very general deÞnition and encompass a large number of instances.

1.4. The Thesis

Our goal is to develop an effective software engineering technology to identify off-the-shelf and custom
instances from the OODB class of software systems that match the requirements for a particular application.
This technology would help software application developers reÞne OODB requirements, make informed eval-
uations of off-the-shelf OODBs, and make informed buy-versus-build decisions.

First we apply the notion of software architecture as a means of modeling the class of OODB systems and the
instances within the class. Then we postulate that architectural modeling and simulation can be used as an
effective mechanism to deÞne and reÞne application requirements on OODBs and to identify OODB architec-
ture instances that satisÞes the requirements.

Hypothesis:

 It is possible to apply an engineering approach, based on the modeling and simulation
of OODB architectures, to efÞciently guide developers in making principled choices within the
architectural space for the class of OODB software systems, such that we improve our ability to
identify OOBD architecture instances with high conformance to application requirements.

We evaluate this hypothesis in the context of custom and off-the-shelf OODBs and show that we can inexpen-
sively and accurately match different OODB architectures to applications with different requirements, ranging
from a simple single-user OODB for a laptop application to a sophisticated multi-user OODB in a networked
workstation environment.

page 4

1.4.1. Overview of the Solution

1.4.1.1. The Foundation

Our solution exploits the relationships between

application requirements

,

software architectures

, and resulting

systems properties

. In this section we introduce these concepts and relationships in general software engineer-
ing terms and relate them to the speciÞc case of OODBs.

Figure 1. illustrates how requirements, architectures, and system properties are related for todayÕs typical
application development. The application requirements specify constraints that must be satisÞed in order for an
application implementation to be considered acceptable. For example, requirements on an OODB might
include a requirement to support multiple concurrent users and a size requirement to Þt on a desktop PC. A
software architecture is selected in an attempt to best satisfy the application requirements. The system proper-
ties are measurable characteristics of the implemented software architecture operating under typical applica-
tion scenarios. System properties can then be used to determine whether or not the software architecture
conforms to the application requirements and whether or not the requirements should be reÞned or modiÞed.

Note that the

application requirements

 in this model are the desired properties for a system instance, while the

system properties

 are the measurable properties of an actual instance. Ideally, the application requirements are
a subset of the system properties, though other forms of intersection are possible. Conformance is then infor-
mally deÞned as the degree to which the application requirements intersect with (i.e., are a subset of) the sys-
tem properties. If conformance is too low, a different software architecture can be adopted so that the system
properties intersect to a greater degree with the application requirements.

Figure 2. shows a similar diagram for multiple instances in a class of similar systems. Each of the instances has
the triad of related requirements, architecture, and properties. Each triad is slightly different from the others,
indicating the variations within that class of systems. For example, this diagram might represent a collection of
applications using different OODBs with different architectures and with differing size, functionality, and per-
formance properties.

Application
Requirements

Software
Architecture

Instance

System
Properties

Figure 1. Application Requirements, Software Architecture, and System Properties

Select or
Implement

Measure

Test for Conformance

page 5

Typically, the relationships between application requirements, system architecture, and system properties Ð
and also the relationships between multiple triads Ð are dealt with in ad hoc ways. In particular, there is often
no attempt to capitalize on the commonality among the different instances within the class of similar systems.
Relationships among instances might only be found in marketing literature comparisons or limited amounts of
published benchmarks.

1.4.1.2. The Approach

In contrast to this ad hoc treatment, we capitalize on the commonality among the different instances within the
class of OODB systems by capturing in a software engineering tool the relationships between application
requirements, system architecture, and system properties. This is illustrated in Figure 3.

¥ We use a

parameterized software architecture

 to capture the commonality and variance among the
instances for the class of OODB systems.

¥ We capture the relationship between application requirements and OODB architecture instances in
a mapping that instantiates the parameterized software architecture based on a requirements deÞni-
tion.

¥ We capture the relationship between OODB architecture and system properties with OODB archi-
tecture modeling and simulation that proÞles system properties.

¥ We capture the relationship between system properties and back to requirements with tests on how
well system properties satisfy the requirements.

Figure 2. Requirements, Architectures, and Properties for a Class of Systems

Requirements
for System D

Architecture
for System D

Properties
for System D

Requirements
for System C

Architecture
for System C

Properties
for System C

Requirements
for System B

Architecture
for System B

Properties
for System B

Requirements
for System A

Architecture
for System A

Properties
for System A

Select or
Implement

Measure

Test for Conformance

page 6

This approach provides the two key capabilities needed to help developers as they explore their requirements
and architectural options in the OODB domain:

Iteratively reÞne a set of OODB requirements.

 This capability focuses developers on accurately deÞning
requirements. Starting with an initial best estimate at the application requirements, developers iterate through
the cycle of instantiating a software architecture, modeling and simulating the software architecture, testing for
conformance, and reÞning requirements until the simulated system properties satisfy the application require-
ments. After the Þnal iteration, the resulting set of requirements are referred to as the

baseline requirements

 for
the application.

Identify an off-the-shelf architecture that best satisÞes the baseline requirements.

 This capability allows
developers to select an off-the-shelf OODB system with system properties that best satisfy the baseline
requirements. Starting with the baseline requirements (from the previous paragraph), developers select an off-
the-shelf system to evaluate and then iterate through the cycle. During the instantiation of the parameterized
architecture, inconsistencies between the baseline requirements and the off-the-shelf system are detected and
reported to the developer. If there are major inconsistencies, then developers may choose to abandon the evalu-
ation for that off-the-shelf system. If there are minor inconsistencies, developers can resolve the inconsisten-
cies and continue with the architecture instantiation. Then the properties for the off-the-shelf system can be
approximated by modeling and simulating the architecture instance. At this point, developers can compare the
baseline requirements, architecture, and properties with the off-the-shelf system architecture and properties.
The complete cycle can be repeated for other candidate off-the-shelf OODBs until a good match is found for
the baseline requirements.

Requirements
for System D

Requirements
for System C

Requirements
for System B

Requirements
for System A

Properties
for System D

Properties
for System C

Properties
for System B

Properties
for System A

Figure 3. Engineering Tool Support for OODB Requirements, Architectures, and Properties

Architecture
for System D

Architecture
for System C

Architecture
for System B

Architecture
for System A

Parameterized
Software

Architecture

Modeler
and

Simulator

Instantiate
Parameterized

Software
Architecture

Model
and

Simulate

Test for Conformance

page 7

Figure 4. provides a more detailed view of how we implemented support for the approach in an engineering
tool. The ovals in the diagram represent actions and tasks, while the rectangles represent output products from
the tasks. This diagram has the same cycle of relationships among requirements, architectures, and properties
as Figure 3., but there are some additional intermediate steps in these relationships that are relevant to the tool
implementation. We illustrate these steps by reviewing the two key capabilities of the tool: iteratively reÞning a
set of OODB requirements and identifying an off-the-shelf architecture that best satisfies requirements.

To iteratively reÞne a set of OODB requirements, an initial best estimate of the application requirements is
needed. As illustrated in the upper left of Figure 4., the requirements come from two sources,

prototype appli-
cation source code

 and the

developer

. The prototype code is a representative implementation of the application
that requires an OODB. Our tool will extract some requirements by scanning the prototype source code. The
remainder of the requirements are provided by the developer using a requirements deÞnition editor.

With the initial requirements deÞned, the next objective is to instantiate a software architecture instance for
modeling and simulation. This instantiation is relatively complex, so we partition it into three smaller tasks in
the tool. The Þrst task is to

map requirements to architectural parameters

. The next task,

map architectural
parameters to architecture instance

, results in a

software architecture instance

, which is a model of a software
architecture. The Þnal task,

realize architecture instance

, conÞgures a software architecture simulator for the
instance.

The relationship between the software architecture instance and the system properties is provided by three
tasks in Figure 4.,

detect inconsistencies

,

determine static properties

, and

determine static properties

, all of
which contribute to the

feedback on system properties

. The inconsistencies identify differences between base-
line requirements and an off-the-shelf OODB. The static properties derived from the software architecture
instance include functionality and approximate size. The dynamic properties derived from the simulation
include execution times and runtime locality proÞles.

Figure 4. Selecting and Evaluating Software Architectures

DeÞne
Requirements Requirements

Map Requirements
to Architectural

Parameters

Architectural
Parameters

Software
Architecture

Instance

Realize Architecture
Simulator

Architecture
Instance
Simulator

Map Architectural
Parameters to

Architecture Instance

Determine Static
Properties

Determine Dynamic
Properties

Feedback on
System

Properties

Developer

Detect
Inconsistencies

Prototype
Application

Source Code

page 8

The Þnal relationship in the cycle between system properties and requirements is provided by comparing the

feedback on system properties

 with the requirements. If this comparison indicates problems with the require-
ments deÞnition, developers can reÞne the requirements and make another iteration through the cycle.

To identify an off-the-shelf system that best satisÞes the baseline requirements, developers start with the base-
line requirements in the

deÞne requirements

 task, select a particular off-the-shelf OODB for the tool to use in
the evaluation, and then

map requirements to architectural parameters

. The resulting architectural parameters
are used to

detect inconsistencies

 between the off-the-shelf system and the baseline. The feedback to the devel-
oper is used to either modify the architectural parameters to be consistent with the off-the-shelf system (also
illuminating the baseline requirements that cannot be fully supported) or abandon the evaluation of the off-the-
shelf system. Once the inconsistencies are resolved, then the complete cycle is traversed to produce a software
architecture instance, a simulation, and feedback about the static and dynamic properties about the off-the-
shelf system.

Elaborating further on Figure 4., the requirements elicited by the tool in the

deÞne requirements

 task are those
that discriminate among the instances in the class of systems. That is, the requirements that are common to all
instances do not need to be speciÞcally enumerated. In our OODB implementation we use 18 discriminating
requirements. Examples include requirements for locality, concurrent access, and support of long transactions.

In the

map requirements to architectural parameters

 task, architectural parameter values are derived from the
requirements. Architectural parameters express the varying architectural features in the class of systems. They
discriminate among the architecture instances. In our OODB implementation we use 26 architectural parame-
ters. Examples, include alternatives for lock support, partitioning data among servers, distributed transaction
support, and locality.

When the tool is used to evaluate off-the-shelf OODBs, inconsistencies in the architectural parameters can be
detected by the tool (shown with a bold arrow pointing upward from the

architectural parameters

). The type of
inconsistencies that can be detected in the architectural parameters are combinations of parameter values that
are not supported by off-the-shelf architecture instances. These inconsistencies serve as early warnings to
developers of a mismatch between the baseline requirements and the off-the-shelf system.

In the

map architectural parameters to architecture instance

 task, a software architecture instance is derived
from the architectural parameter values. The architecture instance is similar to a software design description. It
denotes a conÞguration for a collection of software architecture components. In our implementation for
OODBs there are over 250,000 possible architectural conÞgurations. Some of these conÞgurations represent
off-the-shelf systems while others represent custom systems. Note that in the tool implementation for the thesis
we model the architecture instances, but we do not implement the software architecture components.

Finally, in the

realize architecture simulator

 task, an architecture simulation is conÞgured based on the soft-
ware architecture instance. In the implementation of our OODB simulator, the internal representation of the
software architecture instance is augmented with simulation constants such as processor speed, disk access
speed, inter-process communication costs, and so forth. An architecture-independent simulation engine uses
the software architecture instance with the simulation constants to perform the simulation on the

prototype
application source code

.

1.4.1.3. Roadmap for the Remainder of the Thesis

In Chapter 2, we consider related work in Þeld. Chapter 3 provides a detailed overview of the key points in our
modeling and simulation solution to the software architecture instantiation problem. Chapter 4 presents a prac-
tical example scenario of a software development team faced the problem of selecting an OODB that best
meets their application requirements, and how this team might use our engineering tool to converge on the best
choice. Chapter 5 is a high-level design description of the OODB parameterized architecture modeling and
simulation tool. Chapter 6 provides the low-level implementation details for the tool. Chapter 7 describes
experiments with the tool, applied to the problem of reÞning OODB requirements and selecting an off-the-

page 9

shelf OODB for two different applications. Chapter 8 presents our conclusions, based on the experiments,
about how well our parameterized architecture modeling and simulation techniques satisfy our hypothesis. In
Chapter 9 we explore some of the lessons learned throughout our work. Chapter 10 discusses potential areas
for continuing and extending our research.

1.5. Challenges

The fundamental challenge in this work is to capture the traditionally ad hoc relationships between application
requirements, software architectures, and system properties for a class of similar software systems. Further-
more, these relationships must be expressed in an engineering mechanism that allows developers to make prin-
cipled choices within the architectural space for that class of systems.

A self-imposed challenge is to devise an engineering mechanism that is practical and understandable to a
broad range of software developers rather than a complex mechanism targeted for highly skilled and trained
software engineers. The difÞculty here is in controlling the inherent complexity of the relationships and map-
pings between requirements, architectures, and system properties. This applies both to the construction and use
of the mappings and simulators for OODB architectures.

To address these challenges, we decompose the problem into modular sub-problems and then design extensive
tool support for each sub-problem. Our tool helps to deÞne requirements on OODBs, to automate the mapping
between requirements and OODB architecture instance models and simulators, to simulate architecture
instances in the context of a particular application, to collect static and dynamic system properties, and to sup-
port the comparative analysis of different OODB architecture instances relative to a particular application.

1.6. Contributions

The primary contribution of this work is the tool that demonstrates how principled engineering choices can be
effectively and efÞciently made within the design space for a class of OODB systems. We show how these
choices can be based on concepts at the requirements level, such that application requirements are used as the
input language for discriminating among system instances and then automated mappings can derive software
architecture instances from the requirements. We demonstrate that by decomposing this mapping into multiple
tasks, the independent concerns are isolated, thereby simplifying development of the tool. We also demonstrate
how modeling and simulation play an important role in reÞning the requirements and in discriminating among
instances within the class of OODB systems.

A secondary contribution of the work is a general software engineering approach that can be applied to other
classes of software systems. We have deÞned, implemented, and described our tool and techniques so that they
are generally applicable to software architectures rather than being tightly coupled to only the domain of
OODB architectures.

page 10

page 11

Chapter 2. Related Work

In this chapter we discuss areas of research and previous results that relate to our work.

2.1. Software Architecture

This thesis Þts within the broad context of research generally referred to as software architecture[26]. The
study of software architecture deals with large-scale components within a software system, the composition of
components, the relationships, constraints, and interfaces among components, the system properties attributed
to the composition of components, scalability, ease of structural evolution, structural relationships within a
class of similar of systems, rationale behind structural compositions, and so forth[5][25]. The objective of soft-
ware architecture research is to enable the systematic reuse of large-scale software system structures and
designs.

Areas of study within software architecture can be characterized along two dimensions, domain and implemen-
tation[17]. The domain dimension ranges from domain-independent to domain-speciÞc. A domain-indepen-
dent software architecture expresses architectural features for a class of similar systems useful in many
application domains, while a domain-speciÞc software architecture expresses architectural features for a class
of similar systems in one application domain. The implementation dimension ranges from concrete to abstract.
Concrete implementations are executable implementations while abstract implementations are analysis or
design representations. Following are four major areas of study within software architecture research and
where they lie along these two dimensions:

¥ Frameworks (domain-independent, concrete). Frameworks provide common, application-indepen-
dent, executable software subsystems with build-time conÞgurable architectures. For example,
CORBA is a software architecture framework for distributed, object-oriented applications[12]. The
CORBA architecture can be ÒboundÓ to different object-oriented languages such as Smalltalk and
C++. Once conÞgured, a framework provides an executable subsystem that is used directly in the
implementation of a larger application. Frameworks are conÞgured to best satisfy the requirements
of a particular application.

¥ Architectural styles (domain-independent, abstract). Architectural styles capture high-level idioms
for design structure of software applications. Examples of architectural styles include blackboard
systems, pipes and Þlters, rule-based production systems, repository-based systems, and object-ori-
ented systems[5][18][19][20]. Given a collection of architectural styles, application developers can
evaluate which style most effectively supports the implementation of their application. Each archi-
tectural style is largely domain-independent and can be applied to multiple domains. Architectural
styles are not expressed in an executable implementation language, but rather are expressed as
either formal or informal design speciÞcations for high-level system structure.

¥ Kits (domain-speciÞc, concrete). Kits are like frameworks in that they capture build-time conÞg-
urable, executable software systems. However, unlike frameworks, kits are speciÞc to an applica-
tion domain. Once conÞgured, a kit provides an executable application. ConÞguration of the kit
architecture is based on the requirements for a particular application instance. SEI produced a bibli-
ography of different domain-speciÞc software architecture publications, including papers describ-
ing software architecture kits for various domains such as space launch payload software, missile
systems, and cartographic applications[24].

page 12

¥ Domain models (domain-speciÞc, abstract). Domain models capture high-level software system
structures for a speciÞc application domain. Much of the early work in software architecture
focused on domain-speciÞc architecture analysis and modeling[10][21][22][23][24]. The intent of
domain modeling is to capture knowledge about domain concepts and corresponding architectural
constructs that can be disseminated and reused across different implementation efforts within a
well-deÞned application domain. Examples of application domains for which domain analysis and
modeling have been applied include aircraft navigation systems, databases, interactive video serv-
ers, industrial process control systems, and telecommunication servers.

Our work in this thesis lies within the general area of the last item in the preceding list Ð domain models. We
explore requirements mappings, architecture models, designs, and simulators in the OODB domain. That is,
our work is speciÞc to the OODB domain and abstract in the sense that we deal more with designs, modeling,
and simulation of OODBs rather than their executable implementations.

2.2. Domain-speciÞc Software Architectures

Research on domain-speciÞc software architectures focuses on large-scale software reuse in well understood
application domains. The motivation behind this approach is that narrow, well understood domains have
numerous existing software systems that can be studied in detail and the results captured, generalized, and dis-
seminated for reuse[7][13][21].

Although we use the concept of domain-speciÞc software architectures as a general area of study, an ARPA
program also was given this name (DSSA)[27][28]. The DSSA program focused on software architectures in
domains of military control systems such as avionics, command and control, and intelligent vehicle con-
trol[29][30].

The study of domain-speciÞc software architectures addresses domain analysis, requirements, software archi-
tecture deÞnition, and the implementation of executable components[29]. Because domain-speciÞc software
architectures deal with a collection of similar applications, their study focuses on the generalizations (or com-
monality) and the variants (or differences) within the domain. Generalizations and variants exist in the domain
models, requirements, architectures, and executable components.

We share the central premise of domain-speciÞc software architectures that high-leverage software reuse can
result from the study of a narrow application domain. However, our work extends and differs from projects
such as DSSA in the following ways. First, we focus on the simulation of software architectures to provide
feedback for reÞning requirements. Our work, therefore, could be used as a front-end technology for providing
accurate application requirements to a DSSA system instantiation technology. Second, we deÞne modular
mappings to assist in selecting the best software architecture candidates from a set of application requirements.
These modular mappings clarify the separation of concerns in mapping domain-speciÞc requirements to
domain-speciÞc architecture instances. And Þnally, we focus on the evaluation and selection of off-the-shelf
systems rather than assembling and implementing custom systems.

2.3. OODB Toolkits and Extensible OODBs

There have been several efforts at developing ßexible OODB systems that can be conÞgured in different ways
to satisfy the requirements of different applications. These types of systems are typically referred to as OODB
toolkits or extensible OODBs[31][36]. OODB toolkits and extensible OODBs provide some or all of the archi-
tectural components needed to create a speciÞc OODB instance. Developers select, specialize, extend, and
integrate components in an attempt to create an OODB that best satisÞes their application requirements.

page 13

One approach taken by systems like Exodus[32][35] and ObServer[41] is to provide major low-level architec-
tural subsystems such as the persistent storage manager and let developers implement the other high-level
architectural subsystems such as language compilers and language runtime systems. This approach provides a
loose architectural framework for implementing OODBs, plus off-the-shelf implementations for one or more
OODB major subsystems. Developers using these types of systems must have considerable knowledge about
OODB requirements, architectures, implementations, and resulting system properties in order to effectively
develop application-speciÞc OODBs. Although, considerable development effort is required, it can be signiÞ-
cantly less than developing a complete custom OODB from scratch.

Another more aggressive approach is to provide a complete collection of reusable architectural Òbuilding
blocksÓ that can be selected, specialized, and configured to create an operational database for a particular
application. Dadiasm[37] and Genesis[33][34] are early initiatives using this approach for relational DBMS
systems. KALA[38] and TI's Open OODB[39][40] provide building block collections for OODBs. Since these
types of systems provide a complete collection of architectural components, less implementation effort is
required to create an executable database. However, developers still must have considerable knowledge about
OODB requirements, architectures, implementations, and resulting system properties in order to effectively
create databases that satisfy a speciÞc set of application requirements.

While OODB toolkits and extensible OODBs focus primarily on executable architectural components, our
work is more oriented towards the relationships between OODB requirements, architectures and properties.
We focus on requirements definition, OODB modeling and simulation, and the conformance between a set of
application requirements and a set of OODB properties.

OODB toolkits and extensible OODBs require knowledge about OODB analysis, design, and implementation
in order to create an executable OODB that satisfies application requirements. In contrast, we focus on devel-
opers that may not be experts in OODB implementations. We assist developers in defining and refining
requirements with a requirements definition tool, mappings from requirements to OODB models and simula-
tions, and automated analysis of OODB modeling and simulation results. We also focus on selecting off-the-
shelf OODBs that best satisfy application requirements. Our work, therefore, could help provide front-end
requirements definition and architectural analysis prior to using OODB toolkits and extensible OODBs.

2.4. Requirements and Software Architecture

Lane did some early work on the relationship between application requirements and software architecture
structures[4]. In that study he demonstrated that the relationship between an applicationÕs functional require-
ments on the user interface subsystem and the software architecture structures that satisfy the requirements
could be captured in a set of rules. Lane implemented a tool in which these rules were used to conÞgure an
executable user interface subsystem based on a stated set of functional requirements.

Our work supports LaneÕs notion that the relationship between requirements and software architecture is an
important one. Our work is similar to LaneÕs in that we capitalize on the architectural commonality in a
domain and that we encode expertise about the domainÕs architectural designs in a software engineering sup-
port tool.

Our work differs from LaneÕs in the following important ways:

1. LaneÕs work assumes a well deÞned set of requirements prior to using his tool. In contrast, we
address the problem of deÞning and validating requirements through the cycle of requirements def-
inition, software architecture modeling and simulation, and conformance tests between system
properties and requirements.

page 14

2. This cyclic prototyping of requirements is particularly important since, in addition to the functional
requirements considered by Lane, we also consider performance requirements. The trade-offs and
side-effects associated with performance requirements make them very difÞcult to accurately
deÞne without some type of prototyping and validation.

3. We study the domain of OODB architectures while Lane studied the domain of user interfaces.

4. Lane focused on implementing architectural components and assembling them into executable sys-
tems while we focus on implementing and conÞguring a modeling and simulation tool. This differ-
ence reßects our emphasis on prototyping and validating requirements.

5. Lane deÞned a software architecture generalization based on existing user interface systems, but his
tool didnÕt relate the generalization back to the off-the-shelf systems. Our work relates a software
architecture generalization of OODB systems back to the off-the-shelf systems from which the gen-
eralization is modeled. This allows us to evaluate how well different off-the-shelf systems satisfy
the architectural requirements of a given application.

6. Lane used a rule-based system to implement the relationships between requirements and software
architecture. We observed that there is a separation of concerns in these types of relationships, lead-
ing us to partition into four different mappings rather than a single mapping like LaneÕs. One of the
contributions of our work is the decomposition of this mapping in four distinct sub-mappings with
different concerns: concepts to requirement variables, requirement variables to architectural param-
eters, architectural parameters to software architecture instance models, and software architecture
instance models to executable systems.

7. These four smaller, simpler sub-mappings from requirements to software architectures allow us to
use simpler algorithmic mappings rather than encoding a single, complex mapping with a rule-
based system similar to LaneÕs. This algorithmic approach simpliÞed the implementation of our
tool.

2.5. Simulation of Software Architectures

The Simulation and Modeling for Software Acquisition (SAMSA) project was a study in using simulation and
modeling technology to aid in requirements deÞnition, evaluation, purchase, scheduling, projection, develop-
ment, deployment, and other software engineering related issues in acquiring major software systems[42][43].
The objective of this project was to improve the predictability of acquiring software systems by identify and
promoting near-term and long-term research activities for the modeling and simulation of software develop-
ment projects (costs, risks, elapsed time, stafÞng, and so forth) and simulating software systems during the
early stages of analysis and design.

The SAMSA project consisted of two workshops. Participants were invited from academia, government, and
industry. The end-product was a set of research recommendations and example descriptions of potential tools
and scenarios based on modeling and simulation of various software engineering tools and tasks.

The Þnal report from SAMSA had a broad scope, considerably larger than the modeling and simulation focus
of this thesis. However, the notion of using modeling and simulation to clarify requirements and to evaluate
and select off-the-shelf systems was identiÞed as an important area of study. Therefore, this thesis can be
viewed as advancing speciÞc topics identiÞed in the SAMSA recommendations.

page 15

2.6. Software Engineering Environments

Research in software engineering environments explores ways of providing an integrated collection of soft-
ware engineering tools to support part of the software engineering life-cycle[11]. Although our work is not a
software engineering environment study, our implementation is the most extensive software engineering envi-
ronment implemented using the Gandalf software engineering environment generator[11]. Our implementation
contains twelve different tools integrated around seven modular data collections. Example tools include:

¥ language-sensitive editors

¥ semantic analysis tools

¥ mappings from requirements to architectures

¥ architectural inconsistency detection tool

¥ language interpreter

¥ architecture simulator

¥ proÞle report generator

¥ proÞle analysis tool

Our application of the software engineering environment generator helps to validate its practicality. First, the
Gandalf environment generator allowed us take on an aggressive implementation and validation effort relative
to the limited scope of a thesis implementation. Second, our success in integrating a large number of tools into
a single environment supports the claim that software engineering environments can effectively support a wide
range of software engineering tasks within a uniform environment.

page 16

page 17

Chapter 3. Overview of Approach

In this chapter we detail our approach for modeling and simulating software architectures to reÞne require-
ments and identify off-the-shelf systems with architectures that satisfy those requirements. We also describe
how we will validate the claim that this technology does indeed improve our ability to deÞne and reÞne appli-
cation requirements and to identify software systems with architectures that satisfy the requirements. In Chap-
ter 4. we will illustrate the practical aspects of the concepts presented in this chapter through a case study.

3.1. Software Development Cycle using Software Architecture Modeling
and Simulation

Two problems that application developers are faced with when they attempt to select an instance from a class
of systems such as OODBs are (1) deÞning and reÞning an accurate set of requirements for the system instance
and (2) selecting the system instance that best meets those requirements. We use the software development
cycle shown in Figure 3. and Figure 4. to address both of these problems:

¥ DeÞning and reÞning requirements. Developers traversing this cycle one or more times to itera-
tively converge on an accurate set of OODB requirements, referred to as the baseline requirements.

¥ Selecting among off-the-shelf systems. Then, using these reÞned requirements, developers again
traverse the cycle one or more times in order to evaluate and compare an off-the-shelf OODB sys-
tem with the baseline requirements. Additional iterations can be made to evaluate additional off-
the-shelf systems. The results from these comparisons help developers to determine the degree to
which different off-the-shelf systems meet the baseline requirements and help developers to make
an overall buy-versus-build decision.

The cycle from requirements to software architecture to system properties and back to requirements is impor-
tant in the same sense that prototyping cycles are important in conventional software development Ð with com-
plex software systems it is difÞcult to fully understand the requirements and architectural implications the Þrst
time through. Following are examples of where multiple cycles of requirements deÞnition, architecture model-
ing and simulation, and proÞle analysis are valuable:

¥ There may be a difference between what developers specify as a requirement and their actual intent.
It is only after an instance is simulated that developers recognize that one of the requirements is
invalid and needs to be modiÞed.

¥ There may be side-effects in the architecture when satisfying a requirement in off-the-shelf sys-
tems. For example, in a collection of OODB realizations, if all of the architectures that provide long
transaction functionality also support multiple users, then an application with long transactions as a
requirement would get multi-user support as a side-effect. This may result in a system that is too
large or complex for the intended use, so the developer might want to re-think the relative impor-
tance of the long transaction requirement.

¥ Developers may Þnd that a requirement was deÞned incorrectly. For example, a requirement for
locality in a cluster of data objects may be contradicted in dynamic proÞling data from simulation
of a typical usage scenario.

page 18

Initially we attempted to implement tool support based on the simple software development cycle in Figure 3.
However, the complexity of mapping from requirements directly to an architecture simulation (via the parame-
terized architecture) led us to explore ways to clarify and simplify this portion of the cycle. Closer examination
showed that we could partition the mapping from requirements to architecture simulation into three simpler
sub-mappings with separate concerns, (1) map requirements to architectural parameters, (2) map architectural
parameters to architectural instance, and (3) realize architecture simulator. This led to the software develop-
ment cycle in Figure 4. This cycle is equivalent to Figure 3., but it is composed of a larger number of simpler
steps.

The following sections provide more detail on the different steps of the software development cycle illustrated
in Figure 4. We orient this discussion around the four major efforts and contributions of this work. These are
shown as the four tasks from the upper left to lower right in Figure 4.: deÞne requirements, map requirements
to architectural parameters, map architectural parameters to architectural instance, and realize architecture
simulator.

3.2. DeÞning Requirements

We have mentioned before how the task of deÞning requirements arises in our overall software development
cycle. The Þrst time is when developers make their initial best estimate of the requirements for an OODB
application. The second time is on subsequent iterations through the cycle when requirements are reÞned. In
this section we describe more precisely what it means to deÞne requirements in these contexts.

The above Þgure is an expanded version of the deÞne requirements task in Figure 4. In addition to the items
shown in Figure 4., we illustrate a tool called the Requirements Template Editor that is used to carry out the
task, shown by the labeled rounded rectangle positioned above the task oval. The editor provides a template for
deÞning values for a predeÞned set of requirements. For example, with the OODB requirements template edi-
tor there is a slot in the template for deÞning whether or not the OODB should support multiple concurrent
users. The values for the requirements come from two sources, (1) a preprocessor that scans the prototype
application source code to infer requirements, and (2) developers interactively deÞne the remaining require-
ments to the best of their current understanding. Note that as developers iterate through the entire modeling
and simulation cycle they may reÞne the requirements based on new knowledge gained in the previous cycle.

For the requirements deÞnition task, we are interested in only those requirements that discriminate among the
different instances that can be realized during modeling and simulation. We refer to these requirements as the
discriminating requirements. Requirements that are common to all instances do not need to be re-speciÞed
each time requirements are deÞned for an instance. For example, following are two common requirements that
do NOT have to be speciÞed in the requirements template editor for OODB instances: (1) a persistence mecha-
nism that allows objects to exist longer than the processes that create them and (2) an access mechanism that
allows new processes to locate and use existing persistent objects. The common requirements can be thought
of as an implicit part of the requirements deÞnition phase since all OODBs must support them.

DeÞne
Requirements

Requirement
Variable Values

Requirements
Template Editor

page 19

Typically there will be signiÞcantly more common requirements than discriminating requirements. Since the
developers only specify the discriminating requirements, this represents a signiÞcant reduction in the complex-
ity and level of effort that developers are faced with.

Discriminating requirements in our modeling and simulation tool are represented as a set of requirement vari-
ables. For example, a requirement variable that discriminates between instances that include or exclude a par-
ticular functionality could be a boolean requirement variable having the name of the functionality. During the
requirements deÞnition task, developers specify values for the requirement variables.

We selected the requirement variables in our implementation for OODBs to illustrate representative examples
of the most signiÞcant dimensions of variability that we observed in the OODB domain. As we will discuss
later in Section 9.5.2.1., this set of requirement variables can be extended to capture greater degrees of variance
in the domain.

In our OODB architecture implementation we use a structured editing interface for the requirement variable
template. The template contains the following requirement variables. The purpose of this list is simply to pro-
vide a sense of the number and type of requirement variables. We will deÞne and describe the concepts
addressed in these requirement variables in later chapters. Note that indentation in the following bullet items
indicates hierarchical structure in requirement variables.

¥ whether to support long transactions (boolean)
¥ whether to support concurrent multi-user access (boolean)
¥ object locality clusters indicating access and locking locality (a set of graphs)

¥ expected object utilization in the cluster (binary enumeration)
¥ expected size of the cluster (binary enumeration)
¥ level of primary persistence reliability (binary enumeration)
¥ level of secondary (backup) persistence reliability (2-dimensional enumeration)

¥ network separation of primary and backup device (binary enumeration)
¥ frequency of backups (quintary enumeration)

¥ sets of low utilization or large object clusters (sparse cluster sets) with bounded limits on concur-
rent set access

¥ global cluster access across all databases (binary enumeration)

¥ sets of high utilization and small object clusters (dense cluster sets)
¥ partitioning of sparse and dense cluster sets with common reliability requirements and bounded

partition access per repository
¥ expected global partition access across all databases (binary enumeration)

¥ overall transaction throughput across all databases (binary enumeration)
¥ reentrant partitions

These requirements address four broad issues in OODB architectures: appropriate functionality, data locality,
adequate resources, and load balancing. Note that the requirement variables express those features that vary
among OODBs and do not express requirements that are common to all such as persistence and object identity.

The requirement variables are deÞned to reßect the way that developers reason about application requirements
on OODBs. In Sections 5.1.1. and 5.1.8. we discuss our rationale for choosing this particular collection
requirement variables. It is based on capturing the most salient and practical discriminators in the OODB
domain and also on emphasizing those discriminators that are relevant within the scope of this thesis.

Because of the pragmatic OODB domain focus, these requirement variables are not necessarily designed to
possess mathematical properties such as orthogonality or completeness. For example, we will show later that
the reentrant partitions requirement variable depends on the way that the variables for object locality clusters
and sparse and dense cluster sets are deÞned. Although these requirement variables are not orthogonal, they do
reßect the way that developers reason about applications in the OODB domain.

page 20

3.3. Mapping Requirement Variables to Architectural Parameters

Once the requirement variable values are deÞned, the next objective with our approach is to instantiate a soft-
ware architecture for simulation. To automate the task, we have captured in our software engineering tool the
relationship between OODB requirements and OODB architecture instances.

The Þrst step is the mapping from requirement variables to architectural parameters. Similar to requirement
variables, architectural parameters discriminate among the different architectural instances that can be realized
during modeling and simulation. However, in contrast to requirement variables which are deÞned in terms of
concepts from the domain of requirements on system properties such as functionality, size, and performance,
the architectural parameters are deÞned in terms of concepts from the domain of software architectures such as
component variants, variations in component integration, and alternate implementations. Therefore, the map-
ping from requirement variables to architectural parameters is from the domain of system requirements to the
domain of system architectures.

An example of an architectural parameter is whether or not to implement read/write locks on objects in an
OODB. This is an implementation decision that is determined by two requirements, (1) whether long transac-
tions are needed and (2) whether multi-user access is supported. If either of these requirements are true, then
the architectural parameter for objects locks is true. Note that object locking is not a concept in the require-
ments, but rather is an implementation alternative in the OODB architecture that is included to implement
functional requirements such as long transactions and multi-user support.

The architectural features that are common to all instances are not addressed in the architectural parameters,
but rather are implicit in the parameterized software architecture model. Since the discriminating parameters
are typically few when compared to the Þxed architectural features, this distinction reduces the level of com-
plexity and effort involved when implementing and using the mapping from requirement variables to architec-
tural parameters.

Above is an expanded Þgure for the map requirement variable values to architectural values task in Figure 4.,
augmented with the tool Requirements to Architectural Parameter Map that implements the mapping. This
mapping isolates the developers that use it from architectural issues. The developers only interact with the
requirements deÞnition and do not have to interact with architectural parameters. As a result, they do not have
to be experts in the architectural and implementation issues for the class of systems. They only need to under-
stand how to specify what is required of a system instance. This represents another signiÞcant reduction in the
complexity and level of effort that developers are faced with.

The Þgure also shows a task to detect inconsistencies in the architectural parameter values. Detection of archi-
tectural parameter inconsistencies plays an important role in our tool when developers are evaluating off-the-
shelf OODBs. When a set of baseline requirements are mapped to architectural parameters, the tool checks to
see if the parameter values are consistent with those supported by the off-the-shelf OODB under evaluation. If

Requirements
to Architectural
Parameter Map

Map Requirement
Variable Values to

Architectural Parameter
Values

Architectural
Parameter

Values

Requirement
Variable Values

Detect
Inconsistencies

page 21

not, the tool reports the inconsistencies and suggests modiÞcations to the architectural parameters that will
resolve the inconsistencies. The tool also notiÞes developers of baseline requirements that cannot be fully sup-
ported due to the inconsistencies in the architectural parameters.

As with the requirement variables, we selected the architectural parameters in our implementation for OODBs
to illustrate representative examples of the most signiÞcant dimensions of variability that we observed in the
OODB domain. As we will discuss later in Section 9.5.2.1., this set of architectural parameters can be extended
to capture greater degrees of variance in the domain.

In our OODB architecture implementation we use the following architectural parameters. The purpose of this
list is simply to provide a sense of the number and type of architectural parameters. We will deÞne and
describe the concepts addressed in these architectural parameters in later chapters. Note that indentation in the
following bullet items indicates hierarchical structure in architectural parameters.

¥ whether to support long transactions (boolean)
¥ whether object locking is needed (boolean)
¥ whether distributed transactions are needed (boolean)
¥ sets of object clusters, referred to as cells
¥ a set of computational object servers

¥ allocation of cells (set of cells)
¥ cache size (integer)
¥ cache replacement policy (binary enumeration)
¥ write-through policy (binary enumeration)
¥ the control scheduling model (enumeration)

¥ OODB clients
¥ allocation of cells (set of cells)
¥ cache size (integer)
¥ cache replacement policy (binary enumeration)
¥ write-through policy (binary enumeration)
¥ the control scheduling model (enumeration)

¥ a set of persistent cell managers
¥ the allocation of object servers and clients (set of servers and clients)
¥ the write-through policy (binary enumeration)

¥ whether the transaction manager is stand-alone dedicated per repository, stand-alone shared per
repository, or embedded in the client.

¥ whether the object servers are stand-alone dedicated per repository or stand-alone shared per repos-
itory.

¥ whether the persistent cell managers are stand-alone dedicated per repository or stand-alone shared
per repository.

¥ whether the repository manager is stand-alone shared per repository or embedded in the client.
¥ whether secondary backups are supported (boolean)

¥ if true, whether the secondary backup is on LAN or WAN
¥ if true, secondary backup frequency (enumeration)

Note that, like requirement variables, the architectural parameters express those features that vary among
OODBs and do not express architectural features that are common to all such as persistent storage.

In Sections 5.1.1. and 5.1.6. we discuss our rationale for choosing these architectural parameters. It is based on
capturing the most salient and practical discriminators in OODB architectures and also on emphasizing those
discriminators that are relevant within the scope of this thesis.

In our implementation we support the evaluation of three off-the-shelf OODB architectures, modeled off of
ObjectStoreLite, Objectivity, and ITASCA. These three systems represent a spectrum of OODB architectures

page 22

ranging from small size with simple features to large size with broad functionality. Overall there are about 50
kinds of inconsistencies that can be reported during the mapping from requirements to architectural parameters
for these off-the-shelf systems. For example, for ObjectStoreLite, if the long transactions architectural parame-
ter value is TRUE, then report that ObjectStoreLite does not support them and instruct developers to manually
set this architectural parameter to FALSE.

3.4. Instantiating the Parameterized Software Architecture

Once the architectural parameter values are created by the mapping from requirement variable values, the next
step towards an architecture simulator is to instantiate the parameterized software architecture using the archi-
tectural parameter values. The resulting software architecture instance is a static model of an OODB architec-
ture instance. This architecture instance is used to model the size, structure, and functionality of an OODB
instance, plus it is used as the input to our conÞgurable OODB simulator. Note that this step of instantiating the
parameterized software architecture is identical for deÞning baseline requirements via modeling and simula-
tion and for evaluating off-the-shelf OODBs via modeling and simulation.

The above Þgure is an expanded version of the map architectural parameters to architecture instance task in
Figure 4., extended to show the Parameterized Software Architecture tool that implements the mapping. The
parameterized software architecture is an abstract architecture model that takes as input the set of architectural
parameters that uniquely specify the instances that can be modeled. It has a framework for assembling an
appropriate collection of architectural components into an architecture instance. The software architecture
instance produced is a model much like a software design description. It is not source code, nor is it an execut-
able. It describes a collection of software components (such as modules or classes) and how they are integrated
to produce an OODB instance. We deÞned a grammar to describe the architectural parameters and architec-
tural components, plus an imperative mapping between the architectural parameter and architectural compo-
nent grammars.

The Þgure also shows a task to determine static properties from the software architecture instance. The type of
properties that can be determined from the static model of the architecture instance include the processes that
implement the OODB architecture, the approximate size of the processes and the overall architecture, the
major functions implemented by the architecture, and the overall structural organization of the software archi-
tecture instance.

We deÞned the parameterized software architecture for our OODB implementation to illustrate the common
and discriminating features of numerous custom OODBs, OODB research publications, and OODB imple-
mentations. As with the requirement variables and architectural parameters, we choose the most signiÞcant
examples of architectural features that we observed in the OODB domain. As we will discuss later in Section
9.5.2.1., this set of architectural features can be extended to capture greater degrees of detail in the domain.

Parameterized
Software

Architecture

Software
Architecture

Instance

Map Architectural
Parameter Values to
Architecture Instance

Architectural
Parameter

Values

Determine Static
Properties

page 23

We Þrst introduce the parameterized architecture in terms of a common framework of OODB architectural fea-
tures. We refer to this as our reference architecture. The reference architecture is an abstraction for expressing
the common OODB features in the parameterized software architecture. Following that, we discuss the variant
characteristics in the parameterized architecture, how they specialize the reference architecture, and how
OODB instances are created from the parameterized architecture.

Figure 5. shows the top-level diagram of the reference architecture for our parameterized OODB architecture.
The central concept in this diagram is the ÒrepositoryÓ. Each repository holds the persistent data objects for a
particular use of the application. For example, if a personal address book application used an OODB, then each
person using the application would have their own repository to store their personal address objects in.

The Client component is the central site for application execution. It provides the user interface to applications.
It also executes methods on application data objects.

The Repository Manager controls the creation and deletion of repositories. The Transaction Manager, Object
Server, and Persistent Cell Manager provide operations on repositories and in some cases are independent pro-
cesses. The Repository Manager creates and monitors these processes. The Repository Manager also helps to
establish ÒbindingsÓ between clients and repositories, so that clients can access the contents of a repository and
communicate with the Transaction Manager, Object Server, and Persistent Cell Manager.

The Transaction Manager coordinates the transactions initiated by clients. Object Servers are servers that per-
form methods on application data objects. Computations for large and sparsely accessed data collections can
be allocated to Object Servers rather than to clients in order to improve performance.

Persistent Cell Managers (PCMs) manage the persistent storage for data objects, similar to a Þle server. Data
objects are stored in collections called cells on the PCMs. Cells are managed as indivisible units in the Persis-
tent Cell Manager. PCMs provide cells to Clients and Object Servers when the data objects in the cells are
needed, and conversely receive cells containing modiÞed data objects from Clients and Object Servers that go
back into persistent storage. Cells are ÒpackedÓ and ÒunpackedÓ into data objects in the Clients and Object
Servers.

The instantiation of an architectural instance is derived and expressed analogous to a conventional software
system conÞguration. That is, a collection of abstract software components are selected, specialized, and inte-
grated to create a particular instance of a system. In this case, the architectural parameters are used to specify
an instance conÞguration.

Figure 5. Common Features of the Parameterized Architecture

Repository
Manager

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 1

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 2

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 3

Client
Client

Client
Client

page 24

The conÞguration model used in our parameterized OODB architecture is represented as a tree-structured
composition of specializable components. Different conÞguration nodes are composed in different ways to
form different conÞguration trees, where each tree represents a software architecture instance. Each conÞgura-
tion node denotes (1) the selection of a software component in the parameterized software architecture, (2)
optional specializations (e.g., macro expansions) on the selected component, and (3) an optional set of chil-
dren, where each child is another conÞguration node.

An architecture instance is conÞgured by:

¥ selecting a root conÞguration node
¥ performing specializations on the node
¥ selecting one conÞguration node for each of the children
¥ for each of the child selections, recursively doing specializations and child selections

The following list contains some of the major conÞguration nodes in our parameterized OODB architecture.
The purpose of this list is simply to provide a sense of the number and type of conÞguration nodes. We will
deÞne and describe the concepts addressed in these conÞguration nodes in later chapters.

¥ Architecture Root
¥ children: client, object servers, PCM set, repository manager, transaction manager

¥ Client
¥ alternatives: reentrant, nonreentrant
¥ children: embedded repository manager, embedded transaction manager, object and cell

services, cell allocations, root role

¥ Object Server
¥ alternatives: reentrant, nonreentrant, threaded
¥ children: object and cell services, cell allocations

¥ Persistent Cell Manager
¥ specializations: lazy, eager
¥ children: object server and client allocations, PCM long transactions, PCM distributed

transactions, PCM locking, PCM backup

¥ Repository Manager
¥ alternatives: embedded, shared
¥ specializations: transaction manager management (shared, dedicated, embedded),

object server management (shared, dedicated, embedded), PCM management (shared,
dedicated)

¥ Transaction Manager
¥ alternatives: embedded, shared, dedicated
¥ children: TM long transactions, TM distributed transactions

¥ Object and Cell Services
¥ alternatives: single threaded, multi-threaded, locking, no locking, long transactions, no

long transactions
¥ specializations: cache size
¥ children: replacement policy, OCS distributed transactions

page 25

From an architecture instance, our OODB implementation provides feedback to developers on static modeling
properties. The type of feedback includes a summary of the conÞguration nodes, the relative number of pro-
cesses used by the architecture, approximate sizes for each process, and size contributions by each major com-
ponent in the architecture.

3.5. Realizing the Software Architecture Simulator

The Þnal step in mapping from requirements to an architecture simulation is to use the software architecture
instance to conÞgure our OODB simulator. We refer to this step as realizing the software architecture instance.
The resulting simulator is used to proÞle dynamic properties of the architecture instance such as execution
times, operation counts, and locality measures. These properties correspond to those illustrated at the top of the
development cycle in Figure 3. To complete the development cycle, the dynamic properties are compared to
the requirements as part of the test for conformance relationship.

Above is an expanded Þgure for the realize architecture simulator task in Figure 4., augmented with the Con-
Þgurable Simulator tool. The conÞgurable simulator is a simulation engine that takes as an input a software
architecture instance. This OODB architecture model is used to drive proÞling in the simulation engine as it
executes the prototype application code. The simulation proÞles that are produced approximate the execution
of the prototype application on the OODB architecture.

The simulation engine has two parts, the prototype application interpreter that executes the prototype applica-
tion source code and the architecture instance simulator. As the interpreter executes the application code, it
interacts with the architecture instance simulator to proÞle resource utilization in the architecture. For example,
the Þrst time that the application code accesses a persistent object, that object must be loaded from disk. The
architecture simulator will increment the persistent storage utilization, data marshalling and unmarshalling
costs, cache utilization, network trafÞc overhead, overall execution times, and so forth.

ConÞgurable
Simulator

Realize Architecture
Instance Simulator

Architecture
Instance
Simulator

Software
Architecture

Instance

Simulate to
Determine Dynamic

Properties

page 26

Following is a list of the dynamic properties collected in our OODB simulator. The purpose of this list is sim-
ply to provide a sense of the number and types of dynamic properties. We will deÞne and describe the concepts
in later chapters.

¥ number of object accesses that occur within cells (locality clusters of data objects), plus the associ-
ated execution time

¥ number of object accesses that occur across cells, but within the same process, plus the associated
execution time

¥ number of object accesses that require a remote procedure call, plus the associated execution time
¥ number of object and cell creations, plus the associated execution time
¥ number of cell activations from persistent storage into active caches, plus the associated execution

time
¥ number of cell de-activations from active caches to persistent storage, plus the associated execution

time
¥ number of transaction commits and aborts, plus the associated execution time
¥ execution times by architectural component
¥ execution times by cell type
¥ execution times at the application source code statement level

The dynamic properties proÞled by the simulator play an important role in our tool. When developers are using
the tool to deÞne and reÞne a set of baseline requirements, the comparison between the properties and the
requirements will indicate whether or not the requirements need to be further reÞned. When developers are
evaluating off-the-shelf OODBs, developers can compare the properties from the simulation of an off-the-shelf
OODB with the baseline properties of an OODB architecture created from the baseline requirements in order
to determine how well the off-the-shelf OODB matches the baseline OODB.

While similar information can be gained by prototyping with evaluation copies of off-the-shelf systems, soft-
ware architecture simulation is much more cost and time effective since it focuses developers on those require-
ments that discriminate among the systems and the simulator provides efÞcient access to the proÞling
information needed to evaluate system properties. This point is discussed in detail in Section 8.2.

It is also possible to automate some of these comparisons between properties and requirements rather than hav-
ing developers compare them manually in order to test for conformance. In our OODB implementation, the
following two automated tests are simple demonstrations of this potential tool capability:

¥ Test for inefÞcient data clusters. If a cluster of data objects allocated to clients has a simulation pro-
Þle indicating low utilization (i.e., that more time is spent activating the cluster than using objects in
the cluster), developers are advised by the automated proÞle analysis to change the utilization
requirement on that cluster to ÒlowÓ. The cluster will then be allocated to a computational server in
the architecture in an attempt to improve performance.

¥ Test for oversized data clusters. If a cluster of data objects allocated to a client grows too large,
there will be a large latency when activating the cluster. When this is detected in a simulation pro-
Þle, developers are advised by the automated proÞle analysis to change the size requirement on that
cluster to ÒlargeÓ. The cluster will then be allocated to a computational server in the architecture in
an attempt to improve performance.

page 27

3.6. Validation of the Technology

An ideal approach to validating the cost/conformance effectiveness of software architecture modeling and sim-
ulation technology would involve experimental and control groups developing system instances from a class of
systems. The experimental groups would use the modeling and simulation technology to help deÞne require-
ments, simulate system instances, select a general purpose system, produce a high-level system design, or pro-
duce an executable system instance. The control group would not use the modeling and simulation approach,
but rather would use conventional software development techniques to analyze, prototype, design, select, and
implement system instances. The development costs for both approaches would be measured, including the
amortized cost for developing software architecture modeling and simulation technology. The instance con-
formance (functionality, size, performance proÞles) for both approaches would be measured. The hypothesis
would be evaluated according to the cost and conformance results.

The level of effort required for such experiments is beyond the scope of resources available to this study. The
practical validation approach used in the context of this thesis avoids the labor cost of multiple experimental
and control groups working over multiple months and relies on several practical small-scale scenarios using an
OODB architecture simulator and intuitive arguments about the relative effectiveness of the technology when
compared to conventional software development.

We conducted two experiments on two example applications. The Þrst experiment is on an application that
requires a light-weight, single-user, single-machine OODB for a graphical editing application. The second
experiment is on an application that requires a more complex, high-performance OODB that supports a large
number of concurrent users. In each experiment we explore the effectiveness of both (1) deÞning and reÞning
OODB requirements for an application, and (2) evaluating and comparing how well different off-the-shelf
OODB architectures satisfy the requirements for an application. We then argue in Chapter 8. that the cost/con-
formance results using this technology is better than with conventional software development techniques.

page 28

page 29

Chapter 4. Case Study

This chapter is a two-part case study to illustrate how our tool is used. The two parts of the case study demon-
strate the two capabilities of the tool: (1) deÞning and reÞning OODB requirements for an application, and (2)
evaluating and selecting among off-the-shelf OODBs. The tool described and used in this case study is called
UFO, which stands for Uniquely Fabricated OODBs. All of the case study examples were run on the UFO
tool.

This case study relies on concepts from the OODB architecture domain and a workßow editor application
domain that have yet to be introduced. Rather than cloud the purpose of this chapter (which is to illustrate the
capabilities of the UFO tool) with in-depth descriptions of OODB and workßow concepts that will be provided
in later chapters, we only provide brief descriptions of the concepts as needed. We also include in this chapter
screen dumps from the UFO tool that contain more detail than we will explain at this stage. The purpose of
including these screen dumps is to illustrate the amount and type of information that users of the UFO tool
work with.

4.1. Introduction to the Problem

Consider the following scenario. A software development team is in the initial stages of designing and building
a commercial product: a graphical editor for workßow diagrams. They plan to license an OODB as the persis-
tent storage technology for storing workßow diagrams created by their tool. The target market for this editor is
project managers who make detailed diagrams of the tasks, resources, deliverables, and dependencies on their
projects. The target platforms for the editor are networked PCs and workstations.

Since the company does not have previous experience using OODBs, they are concerned about accurately
deÞning the system requirements for the OODB and also evaluating and selecting off-the-shelf OODBs. To aid
in this effort, they have decided to use the UFO OODB modeling and simulation tool.

UFO allows developers to conÞgure software architecture models and simulations for different custom and off-
the-shelf OODBs. These conÞgurations are derived from OODB requirements for an application. The tool
helps developers to:

¥ deÞne a set of baseline OODB requirements for their application. Developers use the tool to cycle
through initial requirements deÞnition, derivation of an OODB architecture instance, modeling and
simulation of the architecture instance, comparing the proÞle properties with the requirements, and
reÞning requirements. This cycle is repeated until the proÞle properties satisfy the requirements.

¥ evaluate and select among off-the-shelf OODBs. Developers use the tool to compare baseline
requirements, baseline architecture, and baseline properties to off-the-shelf OODB architectures
and properties. They can then decide which of the off-the-shelf OODBs most closely conforms to
the baseline requirements.

Part 1 of the case study illustrates how the development team would use the tool to deÞne and reÞne the set of
baseline requirements for their OODB. Part 2 of the case study illustrates how different off-the-shelf OODBs
are modeled, simulated, and evaluated with respect to the baseline requirements from Part 1.

page 30

4.2. Part 1: Prototyping OODB Requirements for the Graphical Editor

The Þrst objective of the developers is to create an accurate set of baseline requirements for the OODB in their
application. They use the UFO tool to deÞne the discriminating requirements that distinguish among alterna-
tives in the OODB design space.

The tool maps a set of requirements to an OODB model and an executable simulation that developers can use
to test their requirements. Developers can iteratively reÞne their requirements based on modeling and simula-
tion feedback until a baseline set of requirements is established for their application. These requirements will
be the standard by which off-the-shelf OODBs will be evaluated for use in the graphical editor application.

Figure 4. illustrates the steps in using the tool. As shown in the upper-left of that diagram, the Þrst item that
developers need is the prototype application source code for their workßow editor application.

4.2.1. Prototype Application Source Code and Simulation Scripts

The prototype application source code is a representative implementation of the application that requires an
OODB, which in this case study is a prototype of the workßow diagram editor. This prototype should make use
of an OODB in a way that closely represents Þnal product. The prototype could be a preliminary implementa-
tion of the product or a throw-away effort that is created only for UFO simulation and modeling.

Also needed are simulation scripts. The simulation scripts emulate the external system stimulus for typical
application scenarios. For example, with the workßow editor application, the simulation scripts stimulate the
editor to emulate typical user editing scenarios.

UFO provides a structure-oriented editor that developers use to write the prototype application source code.
The editor guides developers in creating syntactically correct programs.

The programming language provided for writing the prototype code is a UFO-speciÞc object-oriented lan-
guage with OODB constructs for transactions, persistence, and so forth. UFO uses a single programming lan-
guage that is common to all of the different OODB architecture instances supported by the UFO tool. In this
way the prototype application code that drives the OODB simulations can be written once and used repeatedly
as different OODB architectures are instantiated, modeled, and simulated. Details and rational for the UFO
application programming language are presented in Section 5.1.2.

4.2.2. DeÞning the Requirement Variable Values

After the prototype code and simulation scripts are written, developers are ready to begin the cycle, shown in
Figure 4., of deÞning requirements, instantiating OODB architecture instances, modeling and simulating the
OODB architectures, comparing the modeled and simulated system properties with the requirements, reÞning
the requirements as necessary, and repeating the cycle. The Þrst step is to deÞne the initial set of requirements
on the OODB for the workßow editor application using the UFO tool. The concepts and terminology for this
activity were introduced in Section 3.2.

UFO provides a requirements template editor for deÞning requirements. Figure 6. illustrates an empty template
with the eight top-level requirements. Developers use this template to specify values for the requirement vari-
ables. The italicized terms (all beginning with a Ô$Õ) are placeholders for requirement variable values. Two of
these requirement variable values, the Þrst and the last, are automatically derived by the tool scanning the pro-

page 31

totype application source code, while the other requirement variable values are provided by developers. The
template tool is a structure-oriented editor and therefore can assist users in constructing legal values. For exam-
ple, if a developer moves the user cursor to the Concurrent Users requirement variable and enters a Ô?Õ, the tool
will display the legal values for that variable as TRUE or FALSE.

The Þrst requirement variable, long transactions, is a boolean variable indicating whether or not support for
long transactions is required for the OODB. Long transactions that are supported by the OODB simulator are
persistent, nested transactions that can exist longer than the processes that create them. They are analogous to
experimental workspaces in revision control systems. The tool scans the prototype code for use of long trans-
action constructs and then automatically sets the value of the long transaction requirement variable value. In
this case, the developers did not need or use this functionality in their application, so the value is set to FALSE:

 Long Transactions: FALSE

The concurrent users requirement variable is a boolean variable indicating whether or not the OODB must
support multiple users concurrently editing the same workßow diagram. The developers choose FALSE for this
requirement variable value:

 Concurrent Users: FALSE

The next three requirement variables are for identifying and characterizing locality in the applicationÕs persis-
tent data objects. Two or more data objects exhibit locality if there is a signiÞcant probability that when one of
the objects is accessed that the other objects will also be accessed. A collection of data objects that exhibit
locality is referred to as a cluster. Locality is important since OODB performance overhead can often be
reduced by orders of magnitude when a cluster of objects is stored, loaded, transferred, and cached as a group
rather than one object at time. UFO allows developers to explicitly express as requirements that collections of
objects be clustered and managed by the OODB architecture in ways that improve application performance.

Figure 7. illustrates a completed deÞnition for the Locality Clusters requirement variable with three locality
clusters named Root, Composite, and PContent. Root is the initial object in a workßow diagram that all work-
ßow editor processes access. The Composite cluster is for composite tasks in the workßow model and is the
primary modular unit of editing with the workßow editor. Application users will typically use the workßow
editor to edit the collection of objects in a single Composite cluster over a contiguous and extended period of
time, which results in locality. The PContent cluster is for content of Product objects in a workßow diagram,
such as structured documents, design descriptions, spreadsheets, or other work products. This is another unit of
editing locality among objects.

 Long Transactions: $long_transactions_rv

 Concurrent Users: $multi_user_rv

 Locality Clusters:
 $locality_cluster_rv

 Sparse Cluster Sets
 $cluster_set_rv

 Dense $dense_cluster_set_rv

 Cluster Set Partitions
 $cluster_set_partition_rv

 Global Transaction Throughput: $global_transaction_throughput_rv

 Reentrant Partitions: <Automatic Derivation Complete. Internal Representation Not Shown>

Figure 6. Requirement Variables Template

page 32

For each cluster there are nested requirements for Roles, Utilization, Size, and Reliability. Roles specify the
datatypes of the objects that belong to the cluster. Utilization indicates the relative number of objects in the
cluster that are typically accessed whenever one of the objects in the cluster is accesses. The value for utiliza-
tion can either be HIGH or LOW, where high means 50% or greater typical access of objects in the cluster. Size
can have values of LARGE or SMALL, where large means 1 megabyte or larger typical runtime cluster size.
The developers estimate that all three of their locality clusters are high utilization and small size. As we will
later see, simulation provides more precise proÞle feedback on the utilization and size properties of clusters
such that requirements can be reÞned as necessary for another iteration through requirements deÞnition, archi-
tecture simulation, and property feedback.

Cluster reliability has two aspects, primary and secondary reliability. Primary cluster reliability allows devel-
opers to make trade-offs between requirements for higher performance and fault tolerance. Primary reliability
can have values of HIGH or LOW. High means that committed modiÞcations will survive system crashes
because committed modiÞcations are always written to persistent storage. Low reliability means that system
crashes may causes recent commits to be lost since committed modiÞcations are written ÒlazilyÓ to disk in
order to improve performance. By delaying writes to disk, several updates to an object can be collapsed into a
single write.

Figure 7. Locality Clusters

 Locality Clusters:

 Cluster: Root
 Roles:
 Role root_root is Class VPML_Root
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: Composite
 Roles:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: PContent
 Roles:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

page 33

Secondary reliability relates to automated backups for protecting against media failure. The possible values are
NONE (indicating that persistent media is not automatically backed up by the OODB) or values that specify
different automated backup frequencies and destinations. The trade-off associated with this requirement is a
larger OODB footprint for automated backups versus the extra manual effort, less control, and potential risks
without automated backups.

The developers in this case decide that workßow editing is likely to be an intellectually challenging activity
and therefore decide that they want to protect users as much as possible from editing losses in the face of sys-
tem crashes. They therefore declare the primary reliability to be HIGH. They also decide that the normal disk
backups performed in the target environments of networked PCs and workstations are sufÞcient to protect
against media failure, so they declare no additional secondary reliability requirements on the three clusters.

After the locality clusters are deÞned, developers move to the next two requirement variables, Sparse Cluster
Sets and Dense Cluster Set. For these two requirements, developers assign each locality cluster to either a
sparse cluster set or the dense cluster set. Locality clusters with LOW utilization or LARGE size (as deÞned
above) will exhibit better performance when assigned to a sparse cluster set, while the remaining clusters will
perform better when assigned to a dense cluster set. At runtime, clusters in the dense cluster set are operated on
by the client process while clusters in the sparse cluster sets are operated on by server processes. Each sparse
cluster set is allocated a separate server process.

The developers identify all three of their clusters as dense and assign them to a dense cluster set called DCS:

 <No Sparse Cluster Sets>

 Dense Cluster Set DCS
 Clusters:

 Root
 Composite
 PContent

For each cluster set there is a requirement variable called Global Cluster Set Contention. When large numbers
of concurrent users are expected to be using multiple repositories with a high contention for cluster sets, then
the value is HIGH, else LOW. At runtime, high contention cluster sets will have one server process for each
repository rather than a single shared server process for all repositories. Since the workßow application will be
single-user (implying no contention), developers set the value of this requirement variable to LOW on the
dense cluster set, DCS, that holds their three locality clusters:

 <No Sparse Cluster Sets>

 Dense Cluster Set DCS
 Clusters:

 Root
 Composite
 PContent

 Global Cluster Set Contention: LOW

While the sparse and dense cluster sets determine the client and server processes that operate on clusters, the
next requirement variable determines the persistent storage devices that store the clusters. Developers assign
each sparse and dense cluster set to a Cluster Set Partition. A cluster set partition will be mapped to a persis-
tent storage process in the OODB architecture. Developers in this case only have the single dense cluster set
DSC (deÞned above), so they create a single cluster set partition, CSP, and assign the dense cluster set DCS:

Cluster Set Partitions
 Partition CSP

 Cluster Sets:
 DCS

page 34

For each cluster set partition there is a requirement variable called Global Partition Contention. When large
numbers of concurrent users are expected to be using multiple repositories with a high contention for cluster
set partitions, then the value is HIGH, else LOW. At runtime, high contention cluster set partitions will have
one persistent storage process for each repository rather than a single shared persistent storage process for all
repositories. Since the workßow application will be single user (implying no contention), developers set the
value of this requirement variable to LOW on the cluster set partition CSP:

 Cluster Set Partitions
 Partition CSP

 Cluster Sets:
 DCS
 Global Partition Contention: LOW

The next requirement variable indicates required transaction throughput rate for the OODB, HIGH or LOW.
Applications that require high transaction throughput rates will have one transaction server process for each
repository, while applications that require low transaction throughput rates will have a single shared transac-
tion server process for all repositories. Since the workßow application will be single-user (implying a rela-
tively small number of transactions), developers set the value of this requirement variable to LOW:

Global Transaction Throughput: LOW

The Þnal requirement variable speciÞes which processes in the OODB architecture need to be reentrant and
which ones can be non-reentrant. Non-reentrant processes are simpler and smaller at runtime since they donÕt
require remote procedure call (RPC) call stacks and related reentrant mechanisms. Requirements for reentrant
processes depend on (1) the call graph cycles among data objects in the prototype application source code, (2)
the way that data objects are partitioned into locality clusters, and (3) the way that locality cluster are allocated
to different processes via the sparse and dense cluster sets. The UFO tool has access to all of this information,
so it can automatically derive those OODB process partitions that need to be reentrant. The representation of
this information is an internal data structure in the tool and not presented as an external textual representation
in the requirements template. This is indicated in the requirement variable as follows:

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

4.2.3. Mapping Requirement Variables to Architectural Parameters

Once the developers have deÞned the requirement variable values, their next objective is to instantiate the UFO
toolÕs parameterized OODB architecture using the requirement variables. The resulting OODB architecture
instance will allow developers to model and simulate an OODB that satisÞes the requirements and to deter-
mine from the modeling and simulation proÞles if the properties of the architecture satisfy the intent of the
requirements.

There are three steps in going from requirements to an OODB simulator (see Figure 4. on page 7). The Þrst
step is to map requirement variables to architectural parameters. This step was introduced in Section 3.3. The
intent of this step is to map from concepts in the domain of discriminating requirements to concepts in the
domain of architectural variations.

Developers invoke a command in the UFO tool that automatically derives architectural parameter values from
the requirement variable values. The architectural parameter values that are produced by the tool from the
requirement variable values above are shown in Figure 8. Following is a brief description of how each of these
architectural parameter values is derived by the tool.

page 35

The value for the Long Transactions architectural parameter comes directly from the Long Transactions
requirement variable, which in this case is false. The value for Object Locking is false when the requirement
variable for concurrent users is false and the requirement variable for long transactions is false (performance is
enhanced and system size is reduced when object locking is eliminated from the architecture). Distributed
Transactions is false because the requirement values imply that only a single architectural process will partici-
pate in a transaction. The Cell Declarations are mapped directly from the Locality Clusters in the requirement
variables.

 Long Transactions: FALSE
 Object Locking: FALSE
 Distributed Transactions: FALSE
 Cell Declarations:
 Cell: Root

 Role Declarations:
 Role root_root is Class VPML_Root

 Cell: Composite

 Role Declarations:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent

 Role Declarations:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Client:
 Cell Allocations:

 Root
 Composite
 PContent

 Cache Size: 1000000
 Replacement Policy: LRU
 Write-through Policy: EAGER
 Control Scheduling: NON-REENTRANT

 <No Object Servers>
 Persistent Cell Managers:
 Persistent Cell Manager: CSP

 PCM Allocations:
 CLIENT

 Write-through Policy: EAGER

 Transaction Manager Integration: EMBEDDED
 Object Server Set Integration: EMPTY Object Server Set
 Persistent Cell Manager Integration: SHARED
 Repository Manager Integration: EMBEDDED
 Backups: No Backups

Figure 8. Architectural Parameter Values

page 36

The Client architectural parameter describes the architectural variants for the client processes. The Cell Allo-
cations to the client are derived from the Dense Cluster Set in the requirement variables1. These cells have
small size and high utilization, which makes it effective to copy the objects in these cells from persistent stor-
age to the client and perform computations with them there. Cache size for clients is initially set to 1 megabyte
until simulation data is available on cache performance. The Replacement Policy is always set to LRU (this
feature is included for future tool enhancements). The Write-through Policy is derived from the Primary Reli-
ability requirement variable values for the clusters allocated to the client. If any of the clusters has a high pri-
mary reliability requirement, then the write-through policy is EAGER, else LAZY. Control Scheduling is
derived from the Reentrant Cluster Sets requirement variable. The clientÕs Control Scheduling will be REEN-
TRANT if the dense cluster set in the Reentrant Cluster Sets requirement variable is reentrant, otherwise NON-
REENTRANT.

The next four architectural parameters determine the way the transaction manager, object servers, persistent
cell managers, and repository manager are integrated into the overall architecture. Some of these may be
EMBEDDED into the client process, some can be SHARED process for all repositories in the OODB, and oth-
ers can be replicated and DEDICATED to each repository in the OODB. The actual values depend on whether
or not the OODB has a multi-user requirement, the requirement variable values for partition and cluster set
contention, and the transaction throughput requirement.

The Þnal architectural parameter, Backups, is for automatic persistent media backup functionality and policy.
In this case, none of the clusters had secondary reliability requirements, so no backup support is indicated in
the architectural parameter value.

4.2.4. Mapping Architectural Parameters to Software Architecture Instances

Once the architectural parameters have been derived, the next step for developers is to invoke a command in
the UFO tool that specializes the parameterized software architecture. This creates a software architecture
instance using the architectural parameter values. The software architecture instance is a static OODB model
that is used for two purposes, (1) to provide feedback on system properties such as size and functionality, and
(2) to conÞgure an OODB simulator for the architecture (see Figure 4. on page 7). This step was introduced in
Section 3.4.

Recall that an OODB architecture instance is represented as a tree-structured composition of conÞguration
nodes (Section 3.4.). Different conÞguration nodes are composed in different ways to represent different
OODB architecture instances. Each conÞguration node denotes (1) the selection of a software component in
the parameterized software architecture, (2) optional specializations on the selected component, and (3) an
optional set of children, where each child is another conÞguration node.

A textual description of the OODB architecture instance, output by the UFO tool, is shown in Figure 9. Inden-
tation is used to indicate nested composition. For example, the top few lines of the listing show that the Embed-
ded Repository Manager is a nested sub-component of the Non-reentrant Client. The description of each
architectural component includes the choices made for architectural variability in the component. For example,
in the third architectural component from the top, Embedded Transaction Manager, the functionality to imple-
ment nested persistent transactions or distributed transactions is not included. The tool determined from the
architectural parameter values that neither of these functions were required, so they were omitted to simplify
the architecture.

The UFO tool can also use the static OODB architecture model that was derived in this step to project the num-
ber of OODB processes and their approximate sizes. Developers issue a command to the tool to request this
information. The report is illustrated in Figure 10. It shows the number of processes and the runtime space
demands for each process, plus the source of some of the space demands.

1. Note that when clusters are implemented in the architecture they are called cells.

page 37

Non-reentrant Client:

 Embedded Repository Manager:

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED

 Cell Allocations:
 Cell: Root

 Role Declarations:
 Proxy Role root_root is Class VPML_Root ...

 Cell: Composite

 Role Declarations:
 Proxy Role comp_root is Class CompositeTask ...
 Role prim is Class PrimitiveTask ...
 Role res is Class Resource ...
 Role prod is Class Product ...
 Role pset is Class ProductSet ...
 Role pmem is Class ProductMember ...
 Role pflo is Class ProductFlow ...
 Role fchn is Class FlowChain ...

 Cell: PContent

 Role Declarations:
 Proxy Role pcont_root is Class ProductContent ...
 Role lnode is Class Node ...
 Role rnode is Class Node ...

 Root Role: Root.root_root
 ...

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:

 CLIENT
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS
 ...

Repository Manager. Integration: EMBEDDED

 <Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED

 <Embedded in client. See Client description.>

Figure 9. Textual Representation of Architecture Instance

page 38

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 1
Total size of shared processes: 2000000 Bytes

Non-reentrant Client:

Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:

 Total size: 50000 Bytes

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:

 Total size: 200000 Bytes

 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.

 Total size: 1100000 Bytes

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2000000 Bytes

 Persistent Cell Manager: CSP

 Write-through: EAGER
 Total size: 2000000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object Locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Figure 10. Architecture Properties

page 39

4.2.5. Mapping Software Architecture Instances to Executable Simulations

The developers are now ready to take the Þnal step to realizing the OODB simulator for their application. They
invoke a command in the UFO tool that conÞgures an OODB simulation engine based on the software archi-
tecture instance derived in the previous step. The resulting OODB simulator can then be used to execute the
prototype application code and provide proÞle developers with feedback on how well the OODB architecture
satisÞes the application requirements. The task of realizing the OODB simulator was introduced in Section 3.5.

The performance of a given OODB architecture will depend on underlying infrastructure such as computer
processor speed, disk I/O rates, and network speed. Developers use the UFO tool to conÞgure the simulator
with simulation constants corresponding to the computing infrastructure that their application will run on. The
UFO tool comes with examples of the simulation constants for various computers and networks so that devel-
opers can choose values that most closely correspond to their infrastructure. The values that the developers
chose for the client machines and persistent cell manager machines are shown in Figure 11.

4.2.6. Evaluating Requirements with Modeling and Simulation Feedback

The developers next use the prototype application code and the simulation scripts to drive a simulation. The
purpose of the simulation is to help developers converge on set of baseline requirements. ProÞles from the sim-
ulation may identify performance problems (such as poor locality), indicating that developers need to reÞne
requirements and make another iteration through the architecture instantiation, modeling, and simulation
cycle. When the simulation proÞle satisÞes the intent of the requirements, the requirements serve as the base-
line by which off-the-shelf OODBs are evaluated. The OODB baseline requirements, models, and simulation
proÞles created in this step are compared in the next section with requirements, models, and simulation proÞles
for off-the-shelf OODBs. Note that the requirements and architectures supported in the UFO tool are not con-
strained to model only off-the-shelf OODB implementations, but rather can be more Þnely tuned to match
application requirements. This supports the option of producing a hand-tailored OODB if that becomes neces-
sary.

Non-reentrant Client:
...
 Processor Constants:
 Processor Speed: 33 MHz
 Intra-Cell Call Cost: In: 50 cycles, Out: 50 cycles
 Inter-Cell Call Cost: In: 100 cycles, Out: 50 cycles
 RPC Call Cost: In: 550 cycles, Out: 550 cycles
 Object Activation Cost: 100 cycles
 Object Passivation Cost: 100 cycles
 Object Creation Cost: 500 cycles
 Cell Activation Cost: 1000 cycles
 Cell Passivation Cost: 1000 cycles
 Cell Creation Cost: 600 cycles
 Cell Lock Check Cost: 50 cycles
...
Persistent Cell Manager. CSP
...

 Persistent Cell Manager Constants:

 Processor Speed: 66 MHz
 Object Activation Cost: 200 cycles
 Object Passivation Cost: 200 cycles
 Object Creation Cost: 1000 cycles
 Object Commit Cost: 200 cycles
 Object Abort Cost: 10 cycles
 Cell Activation Cost: 10000 cycles
 Cell Passivation Cost: 10000 cycles
 Cell Creation Cost: 15000 cycles
 Cell Commit Cost: 10000 cycles
 Cell Abort Cost: 5000 cycles
 Cell Lock/Unlock Cost: 5000 cycles

Figure 11. Processor Constants

page 40

During simulation the UFO tool collects proÞle data, both on the source code and on the OODB architecture
model. We describe next how the developers interpret some of these results.

Figure 12. shows the top-level architecture proÞle, summarizing some of the key execution properties. The val-
ues for Intra-cell, Inter-cell, and RPC calls made and received relate to the cell locality performance2. Intra-
cell is for access from one object to another within the same cell. Inter-cell is for object access between cells,
but on the same processor. RPC is for object access that requires remote a procedure call, such as when two
cells reside on different object servers. In this case study, all cells reside on the client, no RPCs are seen in the
proÞle.

If the locality cluster requirements have been speciÞed well, then the intra-cell calls will dominate the inter-
cell calls, and the intra-cell calls will dominate the RPCs. If developers Þnd that this is not the case, then they
can use more detailed information later in the proÞle to identify where locality is breaking down and subse-
quently redeÞne the associated requirements. However in this case, the developers note that the proÞle reßects
good locality.

The proÞle values shown for Activations, Passivations, Commits, Aborts, and Creations all involve inter-pro-
cess communication and persistent storage operations. (Activation is when objects are read from persistent
storage into processor memory for computation. Passivation is the converse of activation; Objects are moved
from processor memory to persistent storage.) These are relatively expensive operations that typically repre-
sent a signiÞcant portion of the overall execution time, and are therefore a key subject of performance analysis.
One potential problem area is when a lot of time is spent activating and passivating cells that are rarely used
after they are activated. The UFO tool provides some automated proÞle analysis to help identify this situation.

To test for this, a general heuristic used by the tool is that the ratio of proÞle value for activations should not be
less than 50% of the proÞle values for intra-cell, inter-cell, and RPC calls received. In the proÞle from Figure
12., the ratio indicates a very high utilization of over 500% (i.e., each object activated is accessed on average 5
times before deactivation). If this ratio had been too low, the tool would have reported this to developers and
they could use more detailed information later in the proÞle to identify the low utilization cells and then mod-
ify the utilization requirement value for the appropriate locality cluster to LOW. This would result in the cells
being allocated to object servers that can keep large caches of low utilization cells, lowering overall activation
costs without bloating client caches.

2. Recall that cells correspond to the runtime implementation of locality clusters.

Note: All time measurements are expressed in micro-seconds.

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 4747
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 146882
Activations: Objects: 13441 Cells: 98
 Time: 99277
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 19524
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1464740

Figure 12. Top-level Architectural ProÞle

page 41

Figure 13. shows the client proÞle, summarizing key information that is speciÞc to the client process. The
same type of information is available as with the previous top-level summary, but only as related to the client.
In this case there are no object servers in the architecture, so many of the overall proÞle Þgures can be
accounted for in the client. However, note that total activation and passivation costs in the client are less than
the total for the overall architecture. This is because the persistent cell managers also contribute a signiÞcant
portion of the total activation and passivation costs. This illustrates how performance problems noted at higher
levels in the architecture can be traced into the subcomponents that contribute to the performance proÞle.

Figure 14. shows the proÞles for the cells allocated to the client (which in this case are all of the cells). Of par-
ticular interest to the developers are the Composite and PContent cell since these are where editing locality is
expected and where good performance is crucial to the success of their application. The locality proÞle (intra-
cell versus inter-cell) and utilization proÞle (activation versus intra-cell and inter-cell) for these cells are good.

Figure 15. shows the persistent cell manager proÞle. These Þgures illustrate how the operations dealing with
persistence contribute signiÞcantly to the overall execution costs and why accurately characterizing locality
and utilization in order to minimize persistence operations is so important.

With the information and experience that the development team has gained in prototyping, they now feel conÞ-
dent that they clearly understand the OODB requirements for their graphical workßow editor application. They
can now proceed to evaluate the off-the-shelf OODB options based on their baseline requirements.

Non-reentrant Client:

 Intra-Cell Calls Made: 46604 Time: 70607
 Intra-Cell Calls Received: 46604 Time: 70605
 Inter-Cell Calls Made: 1559 Time: 2361
 Inter-Cell Calls Received: 1567 Time: 4747
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0

 Object and Cell Services:

 Creations: Objects: 4588 Cells: 32
 Time: 70095
 Activations: Objects: 13441 Cells: 98
 Time: 43699
 Passivations: Objects: 4593 Cells: 37
 Time: 15039
 Object and Cell Services.

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Total Execution Time: 779088

 Embedded Repository Manager:

 Number of repository creates: 1
 Number of repository deletes: 0
 Number of repository bindings: 7

 Embedded Transaction Manager:
 Nested persistent transactions: NOT SUPPORTED
 Number of persistent transaction creates: 0
 Number of persistent transaction commits: 0
 Number of persistent transaction aborts: 0
 Number of persistent transaction changes: 0
 Transient transactions:
 Number of transient transaction commits: 7
 Number of transient transaction aborts:

Figure 13. Client ProÞle

page 42

 Cell Allocations:
 Cell: Root
 Intra-Cell Calls Made: 939 Time: 1422
 Intra-Cell Calls Received: 939 Time: 1422
 Inter-Cell Calls Made: 1331 Time: 2016
 Inter-Cell Calls Received: 8 Time: 24
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0
 CREATIONS: Objects: 1 Cells: 1
 Time: 33
 ACTIVATIONS: Objects: 6 Cells: 6
 Time: 200
 PASSIVATIONS: Objects: 6 Cells: 6
 Time: 200
 Total Execution Time: 5317
 Maximum Cell Size: 160

 ...

 Cell: Composite
 Intra-Cell Calls Made: 3981 Time: 6029
 Intra-Cell Calls Received: 3981 Time: 6027
 Inter-Cell Calls Made: 228 Time: 345
 Inter-Cell Calls Received: 1337 Time: 4051
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0
 CREATIONS: Objects: 195 Cells: 7
 Time: 3081
 ACTIVATIONS: Objects: 719 Cells: 24
 Time: 2906
 PASSIVATIONS: Objects: 195 Cells: 7
 Time: 803
 Total Execution Time: 23242
 Maximum Cell Size: 9472

 ...

 Cell: PContent
 Intra-Cell Calls Made: 41684 Time: 63156
 Intra-Cell Calls Received: 41684 Time: 63156
 Inter-Cell Calls Made: 0 Time: 0
 Inter-Cell Calls Received: 222 Time: 672
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0
 CREATIONS: Objects: 4392 Cells: 24
 Time: 66981
 ACTIVATIONS: Objects: 12716 Cells: 68
 Time: 40593
 PASSIVATIONS: Objects: 4392 Cells: 24
 Time: 14036
 Total Execution Time: 248594
 Maximum Cell Size: 49024

Figure 14. Cell ProÞles

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Write-through: EAGER
 Creations: Objects: 4588 Cells: 32
 Time: 76787
 Activations: Objects: 13441 Cells: 98
 Time: 55578
 Passivations: Objects: 4593 Cells: 37
 Time: 19524
 Commits: Objects: 4593 Cells: 37
 Time: 19524
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 685652

Figure 15. Persistent Cell Manager ProÞle

page 43

4.3. Part 2: Selecting an Off-the-Shelf OODB for the Graphical Editor

The next objective of the developers is to Þnd an off-the-shelf OODB that closely conforms to the baseline
requirements. The developers use the UFO tool to compare the baseline requirements and the corresponding
architecture instance and properties to those of different off-the-shelf OODBs.

To evaluate an off-the-shelf OODB, developers compare the architecture instance model and simulation proÞle
for the off-the-shelf OODB to the baseline requirements, architecture instance model, and simulation proÞle in
order to better understand how well the off-the-shelf OODB conforms to the baseline requirements. Develop-
ers follow a similar cycle of tasks as they did for deÞning and reÞning requirements (i.e., the cycle illustrated
in Figure 4.). However, there are two primary differences. First is that additional operations are activated in the
tool to detect inconsistencies between the baseline architectural parameters and a given off-the-shelf architec-
ture (as introduced in Section 3.3.). This Detect Inconsistencies task is illustrated in Figure 4. Second is that
the intent of developers is no longer to reÞne the best possible set of baseline requirements. Rather, the devel-
opersÕ intent is to determine how well the off-the-shelf OODB modeling and simulation properties satisfy the
baseline requirements for the application.

After evaluating one or more off-the-shelf OODBs, developers can either choose the off-the-shelf OODB that
most closely matches the baseline requirements for their application, or they can decide that none of the off-
the-shelf candidates are suitable and choose to create a custom OODB implementation.

4.3.1. Objectivity Evaluation

The developers Þrst enter the command in the UFO tool to activate the inconsistency detection for the off-the-
shelf OODB that they want to explore, which in this case is Objectivity:

Choose an OODB target [ITASCA,ObjectStoreLite,Objectivity]: Objectivity

The developersÕ next goal is to instantiate from the parameterized OODB architecture an OODB instance that
will be used to model static properties of Objectivity and simulate its dynamic properties.

4.3.1.1. Objectivity Modeling

The developers use the baseline requirements as the starting point for evaluating Objectivity. If it turns out that
there are no inconsistencies detected between these requirements and Objectivity, then developers will know
that Objectivity provides a good match for the baseline requirements. If inconsistencies are detected, then
developers can observe how great the difference is between the baseline requirements and the requirements
that Objectivity can support.

Developers invoke the mapping from requirement variables to architectural parameters. As the architectural
parameter values are derived, the tool compares the values to the legal architectural parameter values for
Objectivity. Inconsistencies are reported to the developers, along with suggested reÞnements to the architec-
tural parameters that will resolve the inconsistencies. These inconsistency reports assist developers in under-
standing how well the baseline requirements are supported by Objectivity. They also guide developers in
creating a set of architectural parameters that will map to a software architecture model and simulator consis-
tent with the Objectivity architecture. In this case, three inconsistencies are reported:

page 44

Long Transactions: FALSE
** INCONSISTENCY: Objectivity always supports long transactions.
Set architectural parameter to TRUE.
FALSE Long Transactions requirement value not supported.

Object Locking: FALSE
** INCONSISTENCY: Objectivity always supports object locking.
Set architectural parameter to TRUE.
FALSE Concurrent Users requirement value not supported.

Transaction Manager Integration: EMBEDDED
** INCONSISTENCY: Objectivity does not support embedded transaction managers.
Remove embedded transaction manager and create a shared transaction manager.
FALSE Concurrent Users requirement value cannot be supported.

The Þrst two inconsistencies indicate that Objectivity always supports two types of functionality not required
by their application. This excess baggage relative to the baseline requirements may imply a larger system size
and potentially poorer performance. The third inconsistency indicates an architectural feature that is not sup-
ported by Objectivity. In general, an embedded transaction manager is more efÞcient for single user applica-
tions, but Objectivity has a multi-user architecture with a stand-alone transaction manager process that is used
for both multi-user and single-user applications. The UFO tool only supports stand-alone repository managers
when the transaction managers are stand-alone, so the tool also requests this change be made.

At this point the developers can either decide that the differences between the baseline requirements and
Objectivity are too extreme and abandon the evaluation of Objectivity, or they can modify the architectural
parameter values as indicated and continue with the evaluation. In this case, the developers decide to modify
the architectural parameter values according to the suggestions in the inconsistency messages. Based on these
inconsistency messages, they also note which of the baseline requirements cannot be satisÞed by Objectivity.

After the developers modify the architectural parameters they receive no inconsistency messages. The architec-
tural parameter values that were produced are shown in Figure 16. These architectural parameter values most
closely support the graphical editor application under the constraints of the Objectivity architecture. That is,
the UFO tool guided developers in modifying the architectural parameters such that they are consistent with
Objectivity, while at the same time trying to minimize the differences with the baseline architectural parameter
values.

With the inconsistencies in the architectural parameters addressed, developers next invoke the mapping to pro-
duce the software architecture instance corresponding to Objectivity. The result is shown in Figure 17. The pri-
mary differences between this and the baseline instance shown in Figure 9. come from ObjectivityÕs support
for multiple concurrent users and long transactions. The embedded repository manager and embedded transac-
tion manager are now shared. ObjectivityÕs Object and Cell Services, Persistent Cell Manager, Repository
Manager, and Transaction Manager all contain functionality to support long transactions (persistent nested
transactions). The Object and Cell Services and the Persistent Cell Manager for Objectivity contain functional-
ity to support object locking.

The developers next invoke a command to get the description of architectural properties for the Objectivity
instance. This is shown in Figure 18. on page 47. The differences between the Objectivity model and the base-
line architecture properties shown in Figure 10. come from the restructuring required to support multiple users
and the additional functionality of multiple users and long transactions. The client size is estimated to be the
same with Objectivity, but the number of shared processes has gone from 1 to 3, and the total size of the shared
processes (PCMs, Transaction Manager, and Repository Manager) are nearly twice as large, going from 2
megabytes to nearly 4 megabytes. Following the directive of the last warning message that UFO issued (sub-
tracting out the shared repository manager) results in 2 shared processes rather than 3.

page 45

4.3.1.2. Objectivity Simulation

The developers next run the prototype application code and simulation scripts on the Objectivity architecture
simulator. The simulation proÞle for Objectivity will be compared with the baseline proÞle in order to deter-
mine how well Objectivity performs relative to the baseline requirements. The top-level results are shown in
Figure 19. Comparing these results to the baseline proÞle in Figure 12., the developers note a 4% increase in
execution time. Closer inspection at lower levels of detail in the proÞle shows that the increase comes from the
object locking functionality in Objectivity.

Figure 16. Architectural Parameter Values for Objectivity

 Long Transactions: TRUE
 Object Locking: TRUE
 Distributed Transactions: FALSE
 Cell Declarations:
 Cell: Root

 Role Declarations:
 Role root_root is Class VPML_Root

 Cell: Composite

 Role Declarations:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent

 Role Declarations:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Client:
 Cell Allocations:

 Root
 Composite
 PContent

 Cache Size: 1000000
 Replacement Policy: LRU
 Write-through Policy: EAGER
 Control Scheduling: NON-REENTRANT

 <No Object Servers>
 Persistent Cell Managers:
 Persistent Cell Manager: CSP

 PCM Allocations:
 CLIENT

 Write-through Policy: EAGER

 Transaction Manager Integration: SHARED
 Object Server Set Integration: EMPTY Object Server Set
 Persistent Cell Manager Integration: SHARED
 Repository Manager Integration: SHARED
 Backups: No Backups

page 46

Non-reentrant Client:

 Embedded Repository Manager:

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Root Role: Root.root_root

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED
 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 Write-through: EAGER
 Persistent nested transactions: SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Transaction Manager. Integration: SHARED

 Nested persistent transactions: SUPPORTED
 Distributed transactions: NOT SUPPORTED

Figure 17. The Software Architecture Instance Description for Objectivity

page 47

Figure 18. Architecture Properties for the Objectivity Model

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 2
Total size of shared processes: 3750000 Bytes

Non-reentrant Client:

Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:
 Total size: 50000 Bytes

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Object and Cell Services.

 Total size: 1300000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2750000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2750000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: SUPPORTED. Size: 500000
 Distributed transactions: NOT SUPPORTED
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Transaction Manager. Integration: SHARED

Total size: 1000000 Bytes

 Nested persistent transactions: SUPPORTED. Size: 500000
 Distributed transactions: NOT SUPPORTED

page 48

This example demonstrates how individual applications can have different levels of conformance with
OODBs. Although Objectivity has unnecessary object locking functionality for the developersÕ graphical edi-
tor application, the overhead doesnÕt cause a major increase in the performance proÞle because the application
has a very high locality and utilization of the cells. An application with poor locality and low cell utilization,
on the other hand, would show a major performance degradation by adding unnecessary object locking func-
tionality in the OODB architecture.

4.3.2. ObjectStoreLite Evaluation

Next the developers evaluate another OODB that they are interested in, ObjectStoreLite. They go through the
same series of steps as they did with Objectivity, starting with the baseline requirement variable values.

4.3.2.1. ObjectStoreLite Modeling

When the developers invoke the command to map from baseline requirement variables to architectural param-
eters, the UFO tool reports no inconsistencies between the architectural parameters and ObjectStoreLite. This
indicates that the salient ObjectStoreLite features are a good match for the workßow editor application.

The developers next invoke mapping from architectural parameters to a software architecture instance, and
then the mapping from software architecture instance to the OODB simulator realization for the instance. The
resulting architecture summary, shown in Figure 20. on page 49, is the same as the baseline architecture. A
summary of the architectural properties for this architecture is shown in Figure 21. on page 50. They are also
the same as the baseline architecture.

4.3.2.2. ObjectStoreLite Simulation

Developers next run the simulation on the ObjectStoreLite model using the same prototype code and simula-
tion scripts as before. The top-level simulation proÞle is shown in Figure 22. As expected, these results are the
same as the baseline architecture since the architectural models are identical.

Figure 19. Top-level Objectivity Simulation ProÞle

Note: All time measurements are expressed in micro-seconds.

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 7121
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 149307
Activations: Objects: 13441 Cells: 98
 Time: 106702
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 22327
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1972351

page 49

Figure 20. The Software Architecture Instance Description for ObjectStoreLite

Non-reentrant Client:

 Embedded Repository Manager:
 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.
 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Root Role: Root.root_root

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

page 50

Figure 21. Architecture Properties for the ObjectStoreLite Model

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 1
Total size of shared processes: 2000000 Bytes

Non-reentrant Client:
Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:
 Total size: 50000 Bytes
 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Total size: 200000 Bytes
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.
 Total size: 1100000 Bytes

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2000000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2000000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object Locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

page 51

4.4. Wrapping up the OODB Evaluation

Although the developers could continue testing off-the-shelf OODB architectures trying to Þnd other alterna-
tives, they decide to terminate the search since ObjectStoreLite provides a good match for their application.
The high-level modeling and simulation results from their tests are summarized in Table 1.

In general, development projects can use modeling and simulation information from the UFO tool, plus other
non-technical information such as licensing fees for off-the-shelf OODBs, time-to-market risks, and so forth,
in order to make an informed buy-versus-build decision for OODBs. If the developers are not comfortable with
the modeling and simulation Þgures for the off-the-shelf OODB alternatives, then they can consider a custom
implementation of the baseline architecture.

Table 1. Modeling and Simulation Summary for the Graphical Editor

OODB Model
Architectural Differences from

the Baseline
Client Size

Shared
Processes &

Total Size

Total
Simulated
Execution

Time

Baseline ÐÐÐ 2.4 MB 1
2.0 MB

1.5 Seconds

Objectivity Shared transaction manager.
Support for concurrent users,
including object locking. Support
for long transactions.

2.4 MB 2
3.8 MB

2.0 Seconds

ObjectStoreLite None 2.4 MB 1
2.0 MB

1.5 Seconds

Figure 22. High-level ObjectStoreLite Simulation ProÞle

Note: All time measurements are expressed in micro-seconds.

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 4747
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 146882
Activations: Objects: 13441 Cells: 98
 Time: 99277
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 19524
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1464740

page 52

page 53

Chapter 5. High-Level System Design Rationale

In this and the next chapter we describe our design and implementation of the UFO prototype tool. This chap-
ter presents the insights and rationale behind the high-level design while the next chapter provides the low-
level design and implementation issues.

The key technical components in the UFO tool are the parameterized software architecture and the OODB
modeler and simulator. These are illustrated as the ÒwedgesÓ in Figure 3. on page 6. The discussion in this
chapter focuses on the important problems and alternatives that these two pieces of technology present, the key
design decisions that we made in our solution, and the rationale behind these decisions.

The Þrst section in this chapter, 5.1., addresses the problem of capturing the salient features of the OODB class
of systems in the UFO parameterized software architecture. In Section 5.2. we address the OODB architecture
modeling and simulation issues. Finally, in Section 5.3. we explore the issues of incorporating the UFO
approach of deÞning and reÞning OODB requirements and evaluating off-the-shelf OODBs into conventional
software development practice associated with application development using OODBs.

5.1. Capturing the Class of OODB Systems in the UFO Parameterized
Software Architecture

As illustrated in Figure 3. on page 6, one of the key capabilities of our approach is to take a set of requirements
that an application has on an OODB and identify an OODB architecture instance that satisÞes these require-
ments. This capability requires a detailed understanding of the OODB domain. Furthermore, since we want to
automate this capability with the UFO tool, the information about the OODB domain must be captured and
represented in a tool. We refer to this representation as the Parameterized Software Architecture.

In this section we discuss the issues associated with creating the UFO parameterized software architecture.
Section 5.1.1. deals with general issues in OODB domain analysis: salient features that we captured versus fea-
tures we excluded, generalizations from the domain versus discriminators in the domain, language versus
architectural issues, functionality issues versus performance issues. Section 5.1.2. deals with speciÞc details in
the UFO generalization of the OODB languages. Section 5.1.3. deals speciÞcally with generalizing architec-
ture commonality in the OODB domain. Section 5.1.4. through 5.1.9. deal with the speciÞc issues of discrimi-
nating among instances in the domain Ð requirement variables, architectural parameters, conÞguration nodes,
and the mappings between them.

page 54

5.1.1. OODB Domain Analysis

Domain analysis refers to the activity of studying and characterizing the features of a class of systems[10]. In
our domain analysis for the OODB class of systems, we studied commercial off-the-shelf OODB and research
OODB systems. In this study we were most interested in characterizing practical and proven features that
developers use in application development, so we focused on OODB features that are commonly available in
commercial off-the-shelf OODBs. The research systems provided additional valuable insight since they were
often accompanied with better technical descriptions of architectural features.

As we present the results of our domain analysis in the following subsections, we consider four different char-
acterizations of each domain feature. We used these feature characterizations to determine the potential impact
of features on the UFO parameterized architecture.

¥ Functionality versus performance. From the point of view of an application executing on an
OODB, does the feature provide functionality that impacts the execution semantics or is the feature
included to enhance performance? OODB features typically fall into one or the other category.

¥ Impact on OODB language. Is the feature represented in the OODB language or is it only an archi-
tectural feature? This characterizes features considered for UFOÕs OODB language.

¥ Generalization for all OODB instances versus discriminator among the OODB instances. Is the
feature a generalization that is common among all OODB instances or a discriminator that differen-
tiates some instances from other instances. To construct the parameterized software architecture for
the OODB domain we developed both generalized features and discriminating features.

¥ Primary versus secondary features in the OODB domain. In particular, we were looking for the
most salient and representative features (i.e., the primary features) to characterize the spectrum of
OODB functionality, performance, languages, architectures, generalizations, and discriminators.
Since this thesis focuses on selecting among different OODB instances, we emphasize the discrim-
inating features of the OODB domain.

Table 2. summarizes the features in the OODB domain that we identiÞed and considered for the UFO tool. The
table illustrates how we characterized each feature according to the four bullet items above. The Þrst column is
the name of the OODB feature. The second column indicates whether the feature is primarily for OODB func-
tionality (F) or performance (P). The third column indicates whether we characterized the feature as a general-
ization (G) or a discriminator (D). The fourth column indicates whether the feature is reßected in the OODB
language. The Þfth column indicates whether (Y) or not (N) the feature was included in the UFO parameter-
ized software architecture. The last column describes how discriminators are viewed from the perspective of an
application developer try to select among different OODB instances.

For example, the Þrst second entry in the table, object identity, is an OODB feature that provides functionality
so that every object in an OODB can be uniquely referenced by its object identity. This is a generalized feature
that is available in all OODBs, so we will not use this feature as a discriminator among OODBs. OODB lan-
guages provide a way to express object identiÞers, so this feature impacts the OODB language.

From this list, our choice of features to include in UFO was driven by two primary objectives. Most impor-
tantly, we wanted to capture the most signiÞcant and practical generalizations and discriminators for modeling
and simulating the functionality and performance of OODB architectures. Second, we wanted features that
provided the biggest payoff from the investment we made to incorporate them in the tool. In other words,
within the limited scope of this thesis we didnÕt want to spend time characterizing and implementing features
that were relatively insigniÞcant in the OODB domain or that were overly complex relative to the value that
they provided to the tool. Third, we were more interested in features that represent important discriminations
among OODB instances since UFO is a tool that helps developers select among OODBs.

page 55

Table 2. OODB Domain Features Considered for UFO

OODB Domain Features

Function-
ality
(F)
or

Perform-
ance
(P)

General-
ization

(G)
or

Discrim-
ination

(D)

Impacts
OODB
Lan-

guage
(L)

UFO
Related UFO Requirements
(UFO discriminators only)

Persistence F G L Y

Object identity F G L Y

Short transactions (atomicity) F G L Y

Long transactions (atomicity) F D L Y Support for long transactions

Nested transactions (long and
short)

F D L Y Support for long transactions

Object locking (implicit, explicit) F D L Y Support of concurrent users

Object prefetch (clustering) P D Y Locality cluster declarations

Lock granularity (clustering) P D Y Locality cluster declarations

Computational object servers P D Y Cluster size & utilization

Events F D L N

Schema evolution F D N

Query language F G L N

Multimedia objects F D L N

Security F D L N

Inheritance F G L N

Federated databases F D N

Garbage collection F D L N

Explicit deletion F G L Y

Multiple language bindings F D L N

Distribution P D Y Cluster and cluster set utilization

Replication P D Y Backups

Deadlock detection F D N

page 56

Fortunately these three objectives typically did not conßict. The features that we determined to be most signif-
icant in the OODB domain, such as locality, distribution, and concurrency control, were also manageable
within the scope of this thesis. The features that we determined to be most complex and difÞcult to implement,
such as query languages and multiple OODB languages, were also less signiÞcant in discriminating among
architectures that satisfy OODB requirements.

In the following sections we describe those OODB features that we chose to implement in the UFO tool and
justify why they are included. First we discuss the generalizations from the domain. We use generalization for
two purposes. The Þrst is to generalize OODB languages to create a common OODB programming language
that developers can use to prototype their OODB applications. The second is to generalize OODB implementa-
tion architectures to create an OODB reference architecture. The reference architecture is a conceptual aid for
describing in the common, abstract framework of an OODB architecture and for abstracting away from the
architectural details that are common to OODB instances. Following that we discuss the discriminators in the
domain. Discriminators are central to the parameterized software architectureÕs ability to identify instances in
the OODB domain that satisfy a set of requirements. From the discriminators we deÞned requirement vari-
ables, architectural parameters, conÞguration nodes, and the mappings among them.

5.1.2. Generalized OODB Concepts in UFOÕs Virtual OODB Language

Different off-the-shelf and custom OODBs use a variety of different APIs or programming language interfaces
that serve a similar purpose. To simulate the different off-the-shelf OODB, we considered two alternatives.
One alternative was to implement all of the APIs for the different OODBs. This approach has associated with it
a signiÞcant overhead for us as developers of the UFO technology and also for UFO users. We would have to
implement a multitude of different OODB programming languages that all served a similar purpose. UFO
users would be required to repeatedly implement their application on different APIs in order to simulate on dif-
ferent OODBs. Furthermore, it would be difÞcult for developers to make meaningful comparisons of the archi-
tecture simulations since observed differences might be accounted for by architectural differences or
application implementation differences on the different API.

The other alternative that we considered was to create an single interoperable OODB programming language
that was a generalization of the APIs for the different off-the-shelf OODBs. This would allow us to implement
a single language for the UFO tool and would allow developers to implement their application once for simula-
tion on multiple OODB architectures. It would also allow developers to make meaningful comparisons of
application performance on different OODB architectures. The disadvantages of this alternative are (1) we
might not be able to include all of the special functionality provided by a individual off-the-shelf OODBs and
(2) our language could not be used with any off-the-shelf OODB.

The Þeld of relational databases has adopted an industry standard API called SQL to address the issue of
interoperability among different relational database implementations. We took a similar approach and deÞned
a single interoperable OODB language called the UFO Virtual OODB Language, or simply the UFO language.
Note that there is a movement in the OODB community to deÞne an interoperable OODB language[9].

In this section we use the UFO language as a means of introducing the OODB concepts supported by OODB
instances in the UFO parameterized architecture. These concepts are generalizations from custom and off-the-
shelf OODBs that we deemed to be the salient common features of OODBs. Our effort to identify these
ÒsalientÓ commonalities, of course, required us to make some judgement calls as to what was important and
what was arbitrary. These choices are discussed in the following sections and from an architectural point of
view in Section 5.1.3.

page 57

5.1.2.1. Applications, Repositories, and Clients

We found three general, top-level concepts associated with the OODBs we studied, although the terminology
differed. We refer to these concepts as applications, repositories, and clients. An application refers to an end-
user software system that uses an OODB. The persistent object space for an application is a set of named
repositories. Each repository holds an independent collection of application data objects. For example, in the
workßow management application described in Chapter 4., independent projects store their workßow dia-
grams in independent repositories. Each application user executes the application with a client process. A cli-
ent binds to a repository in order to access the persistent data objects in the repository, analogous to opening a
Þle. Clients also create and delete repositories.

We captured these three general concepts in the UFO language semantics. A UFO application is comprised of
repositories and clients. Figure 23. illustrates a collection of clients and repositories for an application. Client
1 is bound to Repository A and is accessing the persistent data objects in the repository. Client 2 is not yet
bound to a repository. Client 3 and Client 4 are concurrently accessing objects in Repository C. Client 5 is in
the process of creating a new repository. Currently there are no clients bound to Repository B.

5.1.2.2. Basic UFO Program Structure

In the OODBs that we studied, the execution of an application typically went through three phases: (1) an
introductory prelude phase where the execution context is established within the address space of repositories,
(2) a bootstrap phase where a persistent object in an OODB repository is identiÞed for initiating the object-ori-
ented execution, and (3) the execution of the application within the persistent object space.

We modeled these three phases in the basic program structure of the UFO language. In every UFO program
there is a Prelude, followed by a RootClass declaration, followed by zero or more Class declarations. The Pre-
lude is the initial program block where the execution context is established within the address space of reposi-
tories and long transactions. Although some OODB languages do not have an explicit language construct for
this purpose, there is an implicit initial phase in execution that serves the purpose of the Prelude. This is dis-
cussed in the next section.

Client 2

Figure 23. Repositories and Clients for an Application

Client 1

Client 3 Client 4

Client 5
Repository A

Repository C

Repository B

Repository
under Creation

Application

page 58

The RootClass and the Classes contain the type deÞnitions, or schema, for the application program, while a
repository contains data instantiated according to the schema. The methods for each type are also encapsulated
in the RootClass and Class declarations.

Object-oriented execution is initiated from the Prelude by invoking a ÒbootstrapÓ method on a persistent Root-
Class object. From the RootClass object, other Class objects can be accessed, created, and deleted, methods
can be invoked on objects, and so forth, similar to conventional object-oriented languages. All OODB lan-
guages have a way to bootstrap execution on an initial object, but not the notion of a special RootClass that
supports bootstrap methods. We felt that this feature was worth emphasizing with a special kind of class that
has distinct bootstrap methods.

For the interested reader, the following three sections discuss the design details of how we implemented the
prelude, repository access, transactions, bootstrap, and the persistent object space. Readers less interested in
these detail and more interested in the high-level concepts and rationale may skip ahead to Section 5.1.3.

5.1.2.3. The Prelude and Repository Commands

When a client begins executing the program, it Þrst enters the Prelude block at the top of the program. The pre-
lude is a program block within which a client process can bind to a particular repository and perform other
repository operations such as repository creation, repository deletion, and status queries. The prelude block
may also contain operations to control long-term concurrency. In conventional OODB languages, the concept
of a prelude is implicit. That is, there is not an explicit scope for repository and long transaction operations. We
chose to add this scope simply to mark a clear delineation between the preliminary phase of operations in the
prelude and the more central OODB operations involving object-oriented execution with persistent objects.

5.1.2.4. Transaction Commands

We found two types of transactions in the OODBs we studied, persistent transactions (also referred to as long
transactions) and transient transactions (also referred to as short transactions). Persistent transactions are use-
ful for long-lived transactions that may span hours, days, or weeks. Transient transactions are conventional
short-lived transactions. A persistent transaction may live longer than the client process that creates it, while a
transient transaction, being like a conventional transaction, may not exist after the client process that creates it
has either normally or abnormally terminated.

If persistent transactions are supported, then transient transactions are nested within persistent transactions.
That is, an executing application Þrst establishes its context within a persistent transaction and then begins exe-
cuting transient transactions. In addition to this nesting, some OODBs support nested persistent transactions.
Although none of the OODBs that we studied supported nested transient transactions, there appears to be no
technical limitation to preclude this feature.

We choose to support the most general transaction model that we observed in OODBs: nested persistent trans-
actions and single-level transient transactions. We chose this approach since we had a previous successful
experience implementing this type of transaction model; the UFO transactions are based on a software engi-
neering transaction design that we did for the Gandalf system OODB[11]. It is also analogous to transaction
mechanisms in OODBs such as ITASCA and ObjectStore.

Figure 24. illustrates UFO transactions. Readers not interested in the details of the model can skip ahead to
Section 5.1.2.5. As shown in the Þgure, both persistent and transient transactions are nested together in a tree-
structured hierarchy. The Þgure shows that Client 1 through Client 6 are concurrently bound to Repository A.
After a client binds to a repository it is always associated with a single transaction, referred to as the current
working transaction. The current working transaction is illustrated in the Þgure by the bold arrows from each
client. When a client initially binds to a repository it is automatically given access to the root persistent trans-
action of the transaction hierarchy, as is Client 4 in the illustration.

page 59

Clients can then traverse the hierarchy in order to access a particular persistent transaction to begin working in.
This is analogous to moving about a UNIX directory hierarchy in order to access a particular directory to work
in. For example, Client 1 has changed to persistent transaction PT 1 as its current working transaction.

In order for a client to access and modify the objects in a persistent transaction, the client must start a nested
transient transaction off of a persistent transaction. For example, Client 6 has started the transient transaction
TT 2.2.1 off of PT 2.2. The transaction TT 2.2.1 then becomes the current working transaction for Client 6
such that data objects can be accessed and modiÞed.

When a client performs a commit operation on a transient transaction or persistent transaction, the modiÞed
objects and object locks are passed up to the parent persistent transaction. In the illustration, if Client 3 com-
mits PT 2.1, the modiÞcations and locks are passed up to transaction PT 2.

There are four UFO language statements relating to transactions inside of the repository binding block. Create-
PersistentTransaction, ChangeTransaction, and CommitPersistentTransaction are operations on persistent
transactions, while the TransientTransaction block is for transient transactions:

Figure 24. A Transaction Hierarchy in a UFO Repository

Client 2

Client 1

Client 3

Client 4

Client 5

Application

Client 6

Root
Persistent

Transaction

Persistent
Transaction

PT 1

Persistent
Transaction

PT 2

Persistent
Transaction

PT 3

Persistent
Transaction

PT 2.1

Persistent
Transaction

PT 2.2

Transient
Transaction

TT 1.1

Transient
Transaction

TT 2.2.1

Repository A

page 60

5.1.2.5. The Persistent Object Space

The object-oriented execution semantics were similar in all of the OODBs that we studied. We deÞned the
UFO object-orient semantics to be similar to that of other object-oriented languages and OODBs. The runtime
state of a UFO object is maintained in component values. A component can have a simple type (integer, bool-
ean, character, string) or a reference type (a typed pointer to another object). The state of an object can only be
examined or modiÞed by methods that are encapsulated within the object's class declaration. A method is
invoked by applying it to an object through a reference to the object. Control ßow moves from one object to
another when an object with a component that references another object applies a method via that reference.

One difference between UFO and some other OODBs is that all object in UFO are persistent. Most OODB lan-
guages allow for both persistent and transient data objects in an application program. However, since we are
primarily focusing on the database aspects of OODB architectures in this thesis, we restricted our language to
include only persistent data constructs that interact with the database architecture. While this simpliÞcation
might not be suitable for a production OODB language, the inclusion or exclusion of transient data objects in
the language does not signiÞcantly impact the issues studied in this thesis.

Following is a brief discussion of the object-orient language constructs and execution semantics in UFO. Read-
ers not interested in this level of detail can skip ahead to Section 5.1.3.

Object-oriented execution in UFO can be bootstrapped only after a client gets access to a root object inside of
a transient transaction block. A root object is the handle for a collection of persistent objects in a repository,
providing a common entry point for clients. Once the client has access to the root object it invokes a boot pro-
cedure on the object. A boot procedure is similar to other procedures and functions in UFO, but the boot proce-
dure is the only method that can be invoked from the prelude scope rather than within the scope of a class.

Every UFO program has a single RootClass declaration. The RootClass is a special class declaration for deÞn-
ing root objects. The RootClass differs from other Classes in that it contains BootProcedures.

There can be zero or more components declared in a Class or RootClass. Each component has a unique name
in the RootClass. Components are typed, either with a UFO simple type (INTEGER, BOOLEAN, CHARACTER,
or STRING) or with a reference type (the name of a RootClass or Class).

The BootProcedure declarations follow the component declarations. UFO allows for the deÞnition of multiple
BootProcedures so that different tools can be written to operate on the same repository. For example, in a retail
sales database application, one BootProcedure might be a tool with commands used by a sales clerk while
another BootProcedure would be a tool with commands used by an inventory manager. Code within the Pre-
lude would determine which BootProcedure to invoke for each client.

The remaining method declarations are divided into Exported Methods and Local Methods. Exported methods
available in the class interface, while local methods can only be invoked from within the class. These methods
can either be functions having a return value or procedures with no return value.

Finally, the Constructor and Destructor are methods with predeÞned side effects and optional application-
deÞned operation. After the object is created and initialized, control is passed to the application code in the
constructor of the class so that the application can perform further initialization. Similarly, the destructor is
used to deallocate an object. Before the storage deallocation is called, control is passed to the application code
in the destructor for Þnalization and cleanup.

Note that UFO uses explicit object deletion rather than garbage collection. We chose this approach for two rea-
sons: (1) it simpliÞes the prototype implementation, and (2) explicit deletion allows the application developer
to better optimize the runtime architecture based on static information (i.e., garbage collection results in less
predictable system performance proÞles).

page 61

5.1.3. Generalizing OODB Implementations in the UFO Reference Architecture

In our search for ways to capture and express the complex features in the OODB architecture domain, we were
faced with several related challenges. First, we needed a way to express, test, and evolve our understanding of
the common ÒessenceÓ of the OODB domain. With each custom and off-the-shelf OODB that we considered,
we had to test our current knowledge of the domain to see if it adequately captured the salient architectural fea-
tures of the OODB. If not we needed a way to appropriately extend or modify our general understanding.

The second challenge was to express, test, and evolve our understanding of the salient variations in the OODB
domain. Similar to our search for commonality, we needed a way to identify meaningful differences among
OODBs that served to address different application needs and a way to identify arbitrary implementation dif-
ferences that we could abstract away from.

Also, after we complete our characterization of the OODB domain, we need our acquired knowledge of the
commonality and variations in the OODB domain to be expressed in a form that would serve as our basis for
the design of UFO tool. And Þnally, we need our acquired knowledge of the commonality and variations in the
OODB domain to be expressed in a form that would serve as a conceptual basis for application developers
using the UFO tool.

We could have chosen one mechanism to capture and express the commonality in the OODB domain and a dif-
ferent mechanism to express the variations. We could have also chosen different expressive notations for our
tool design and for the tool users. However, this approach had a major drawback of having to constantly main-
tain consistency among the different mechanisms and notations as our knowledge of the domain evolved.
Instead, we chose a single mechanism so that consistency would not be a problem. We refer to this mechanism
as the UFO Reference Architecture.

We considered a formal notation for the reference architecture, but decided that this type of notation was not
the most effective way to express OODB concepts to UFO tool users nor was the overhead and rigor associated
with a formal notation necessary to validate the thesis. Instead we use informal design diagrams and textual
descriptions for the reference architecture.

Figure 25. shows an entity-relationship diagram for the top-level runtime data entities in the UFO reference
architecture. That is, the architecture manages and maintains these data entities during execution. An applica-
tion installation consists of zero or more repositories and zero or more execution instances. A repository is the
top-level entity for maintaining persistent database objects. An execution instance contains the execution state
and the application code for an end-user using the application. The execution instance also provides access to
database objects that are created, deleted, viewed, and modiÞed. Execution instances are bound to a single
repository at a time. Each repository contains a transaction hierarchy of persistent and transient transactions.
An execution instance has a single transaction as its current working transaction. Each transaction provides
access to one or more cells. A cell is a locality cluster of persistent database objects.

The UFO reference architecture is partitioned into functional units that operate on the runtime entities such as
database objects, transactions, repositories, and execution instances. The functional units Ð clients, repository
managers, transaction managers, persistent cell managers, and object servers Ð are common functional units in
the OODBs that we studied. They are illustrated in the reference architecture diagram in Figure 26. (this Þgure
is a copy of Figure 5. from page 23).

For the interested reader, the following paragraphs provide an overview of the functional units in the reference
architecture. Readers less interested in these detail and more interested in the high-level concepts and rationale
may skip ahead to Section 5.1.4.

page 62

Figure 25. Entity-Relationship Diagram for UFO Architecture Entities

Application
Installation

Execution
Instance

Application
CodeTransaction

Repository

Cell

Database
Object

holds-state

consists-of consists-of

bound-to

contains
has-current

accessesholds-modiÞed

encapsulates

Figure 26. UFO Reference Architecture

Repository
Manager

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 1

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 2

Persistent Cell
ManagerObject Server

Transaction
Manager

Repository 3

Client
Client

Client
Client

page 63

The Client Functional Unit

The client executes application code and maintains state of the execution instance. During execution the client
creates, deletes, accesses, and modiÞes database objects.

Figure 27. shows the high-level functional composition of a Client. The Prelude and Method Execution unit is
responsible for executing the application code and maintaining state in the execution instance. The Object and
Cell Services functional unit is responsible for (1) getting database cells from persistent storage and unpacking
the cells into individual data objects in the clientÕs cache memory, plus the inverse of packing active data
objects into cells and returning them to persistent storage, and (2) participating in distributed transaction proto-
cols. The Remote Method Calls unit coordinates the outgoing and incoming method invocations that cross the
procedural boundaries of clients and object servers.

The Repository Manager Functional Unit

The Repository Manager has several responsibilities: (1) it handles the creation and deletion of repositories,
(2) it manages the binding between Clients and Repositories, (3) it manages the directory of Repositories, and
(4) it monitors and manages the processes (e.g., Transaction Managers, Object Servers, Persistent Cell Manag-
ers) that are responsible for operations on repositories and repository contents.

The Repository Manager is illustrated in Figure 28. The Binding Service is responsible for handling requests
from clients to bind to repositories. The Repository Inventory Service is responsible for creating and deleting
repositories, maintaining a directory of repositories, and servicing queries on the repository directory. Startup,
Shutdown, and Recovery manages the creation and monitoring of other system processes.

Figure 27. Client Functional Composition

Remote
Method
Calls

Prelude
and

Method

Client

Transac-
tion Service

Cache
Management

Object and
Cell Services

Figure 28. Repository Manager Functional Composition

Startup,
Shutdown,

and
Recovery

Repository
Inventory
Service

Binding
Service

Repository Manager

page 64

The Transaction Manager Functional Unit

The transaction manager maintains the transaction hierarchy for repositories and coordinates transaction oper-
ations among multiple processes such as the clients, object servers, and persistent cell managers.

Figure 29. shows the Transaction Manager. The Persistent Transaction Service handles all of the persistent
transaction operations in an application while the Transient Transaction Service handles the transient transac-
tion operations. The Distributed Transaction Service manages the distributed transaction processing, such as
two phase commit, in cases when an architectural conÞguration results in multiple processes participating in
transactions.

The Persistent Cell Manager Functional Unit

The persistent cell manager (PCM) is responsible for the persistent storage of cells. PCMs cooperate with cli-
ents in the activation and deactivation of cells. PCMs also maintain the persistent transaction cell tables and
provide cache overßow storage for cells modiÞed in transient transactions pending commit or abort. The auto-
mated backup of persistent cell storage to secondary persistent storage is also managed by PCMs.

Figure 30. shows the high-level functional composition of the Persistent Cell Manager. The Persistent Trans-
action Service manages the storage for persistent transaction structures. The Transient Transaction Service
manages the backing storage for transient transactions. The Distributed Transaction Service handles the two
phase commit protocol when distributed transactions are present in the architecture. The Cell Activation and
Deactivation Service is responsible for reading persistent cells and sending them to clients and object servers
(activation) and for receiving modiÞed cells from clients and object servers and writing them back to persistent
storage (deactivation). The Cell Backup Service manages requests to send backup copies of persistent cells to
external storage devices.

Figure 29. Transaction Manager Functional Composition

Persistent
Transaction

Service

Distributed
Transaction

Service

Transient
Transaction

Service

Transaction Manager

Figure 30. Persistent Cell Manager Functional Composition

Persistent
Transaction

Service

Cell Activation
and Deactivation

Service
Cell

Backup
Service

Persistent Cell Manager

Transient
Transaction

Service

Distributed
Transaction

Service

page 65

The Object Server Functional Unit

In conjunction with clients, object servers execute application code and maintain state of the execution
instance. Each object server resides on a separate processor, thus allowing for load sharing in a multi-user
architecture. Object servers typically have very large object caches to minimize the number of cell activations
during execution. This is particularly useful for cells with weak locality and large cells.

Figure 31. shows the high-level functional composition of the Object Server. It is essentially equivalent to the
Client architecture, but the object server does not directly interact with end-users. It is a secondary source of
computation for clients.

5.1.4. Discriminating Among OODB Instances

Generalization helped us factor commonality out of the OODB domain in the form of a reference architecture.
However, we still needed discrimination to help us structure the myriad of variations that we observed among
the instances within the class of OODB systems. Our objective was to capture the salient architectural dimen-
sions that varied from instance to instance in the off-the-shelf and custom OODBs that we studied and used.

We quickly found that OODBs differ in many ways at many different levels. The Þrst problem that we encoun-
tered in our efforts at discrimination was determining which of the differences were salient for our work and
which were arbitrary. There are many reasons why OODB developers implement their architectures in differ-
ent ways, but the question for us was Òwhich of these variations might be used to match OODB architectures to
application requirements?Ó

Architectural differences are typically not documented or justiÞed among OODBs. This meant that we had to
do some reverse engineering in order to characterize architectural differences and the purpose that they served.
We also took the inverse approach and looked at the different types of applications that use OODBs to further
our understanding of the overall variability in requirements on OODBs and how these requirements related to
architectural features. Although there appeared to be no innately clear way to distinguish between salient and
arbitrary architectural variants, we were able to identify some guidelines that helped us in our characterization.

We found that the most signiÞcant dimensions of architectural variability in the OODB domain served one of
the following three purposes for improving the conformance between applications and OODBs. We used these
three categories as rationale for including (or excluding) architectural variability in the UFO parameterized

Figure 31. Object Server Functional Composition

Remote
Method

Invocation

Method
Execution

Object Server

Transaction
Service

Cache
Management

Object and
Cell Services

page 66

architecture. For example, arbitrary architectural variations that appeared to serve none of these purposes were
not captured in the parameterized architecture.

¥ Parsimony. Architectural choices for including all and only the functionality needed for an applica-
tion. Parsimony means keeping unnecessary functionality out of an architecture instance in order to
minimize system size and to minimize the length of code paths (e.g., improve performance).

¥ Expected use proÞles. Architectural choices for optimizing system properties such as overall size
and performance based on expectations on how the system will be used. Expected use proÞles
allow assumptions to be made in the architecture about data access locality in order to minimize the
overall execution proÞles.

¥ User expectations. Architectural choices for optimizing system properties such as localized size
and performance based on expectations that end-users have on the system. User expectations lead
to architectural features that optimize localized execution proÞles to better satisfy performance
desires of the end-user, even in cases where the overall performance is compromised in order to
give better performance for a critical operation.

Another important problem that we were faced with was capturing the architectural variability and the ratio-
nale in our engineering tool. Since we were looking for a way to map application requirements to OODB
architectures, it initially appeared that we should capture the discriminating relationships between OODB
requirements and OODB architectures in a single mapping from requirement concepts to architecture realiza-
tions. We identiÞed several implementation alternatives for this mapping, including production systems, data
ßow networks, and conventional imperative implementations.

Evaluating the production system option, we found that most of the productions for discriminating among
OODB architectures were very simple and it appeared that a production system was more powerful than we
needed for the OODB domain. An ad hoc imperative implementation, on the other hand, offered no explicit
structure for the relationships and therefore appeared to be too informal. Data ßow networks appeared to be an
appropriate compromise between the two approaches.

We prototyped an initial implementation of the mapping from requirements to architectures as a data ßow
graph that we referred to as a dependency graph. Experience with the dependency graph indicated that it was
relatively simple to implement but relatively complex and difÞcult to enhance and maintain. Closer examina-
tion indicated to us that several types of information were being represented in the dependency graph and that
these different types of information could be segregated. Further prototyping showed that the dependency
graph could be decomposed into four simpler pieces, each addressing a separate concern for discrimination in
the OODB domain. These correspond to the four primary tasks illustrated in Figure 4. on page 7:

¥ DeÞne requirements. Extraction of requirement variable values from the application source code
and deÞnition of requirement variable values by developers. The requirement variable values dis-
criminate among the varying requirements that different applications can have on an OODB.

¥ Map Requirements to Architectural Parameters. Map from requirement variable values in the
requirements domain to architectural parameter values in the architecture domain. The architectural
parameter values discriminate at an abstract level along the different dimensions of architectural
variability in the OODB domain.

¥ Map Architectural Parameters to Architecture Instance. Map from architectural parameter values
to a software architecture instance. The software architecture instances discriminate among the
concrete architecture conÞgurations in the OODB domain.

¥ Realize Architecture Simulator. Map from a software architecture instance to a software architec-
ture simulator. The simulator helps to discriminate among the runtime properties of the different
instances in the OODB domain.

page 67

The decomposed representations and mappings simpliÞed the encoding of discriminators in the OODB
domain. The complex and convoluted dependency graph became a composition of simpler and straightforward
representations and mappings, each with separate and clear concerns. These representations and mappings are
easier to create, understand, modify, and maintain. We attribute this to the fact that the decomposed representa-
tions and mappings more accurately reßect the different tasks and relationships that exist in the conventional
development of software architectures.

In the following sections we describe each of the representations and mappings that we used to capture the dis-
criminating variants in the OODB domain.

5.1.5. Architectural Building Blocks: UFO ConÞguration Nodes

OODB architecture instances play a central role in parameterized software architecture. As such, one of the
important problems we had for the parameterized software architecture was choosing an appropriate represen-
tation for OODB architecture instances. This representation needed to serve in the mapping from requirements
to architecture, in modeling, and in simulation. Furthermore, we needed a ßexible representation that could
easily evolve as our understanding of OODB architectures and architectural variants evolved.

We seriously considered two alternatives for representing OODB architecture instances, one based on object-
oriented analysis notations and one based on grammars. The OO analysis notations are used to model applica-
tion domains during the analysis phase of software system development and seemed like a good candidate.
However, we found that these languages were intended for capturing, expressing, and passing domain knowl-
edge among humans in a human-readable format. Because of this, these notations were more expressive and
complex than we needed. We considered a representation based on grammars because we were using a gram-
mar notation to document the OODB reference architecture and architectural variants as we studied different
OODBs. This simpler approach turned out to be appropriate for our needs.

We represent an architecture instance as a collection of building blocks call conÞguration nodes. A conÞgura-
tion node denotes an architectural component such as a software sub-system or software module. The collec-
tion of conÞguration nodes that deÞne an architecture instance therefore represent the collection of software
sub-systems that comprise an OODB architecture.

The UFO tool creates an architecture instance by selecting and assembling a collection of conÞguration nodes
based on the requirements that developers deÞne for an the OODB. We chose this ÒconstructiveÓ approach
because it is analogous to conventional architecture development where architectural components are built,
selected, assembled, and so forth in order to create an architecture that satisÞes a set of requirements.

ConÞguration nodes are assembled in a tree structure. Each conÞguration node denotes:

¥ a software component in the software architecture

¥ zero or more specializations of the component

¥ zero or more children of the component, with each child being a predeÞned set of alternative con-
Þguration nodes

Specializations and child alternatives allow us to represent variations among the architecture instances. Spe-
cializations of a component correspond to limited and localized variability in a software component. An exam-
ple of a simple specialization is setting the cache size for object servers in the architecture. A slightly more
complex specialization is allocating classes to clients and object servers. When a class is allocated to a client or
object server, the methods and data declarations for the class have to be made available to that client or object
server at runtime. Specializations can typically be implemented using textual substitution in a compiler prepro-
cessor or simple code generation.

page 68

Children of a component correspond to more extensive variability, such as might be associated with alternative
implementations in a source code representation. An example of alternatives in a child component is whether
the client component of the architecture is reentrant for remote method invocations or nonreentrant. In prac-
tice, this type of alternative is typically realized by different source code implementations.

The following sections describe the conÞguration nodes in the UFO parameterized architecture and the archi-
tectural variability that each represents. This collection of conÞguration nodes captures the key dimensions of
architectural variability in the OODB domain. Readers less interested in these details and more interested in
high-level concepts and rationale can skip ahead to Section 5.1.6.

5.1.5.1. Architecture Root ConÞguration Node

In the UFO reference architecture, every OODB architecture instance has clients, a set of object servers, a set
of persistent cell managers, a repository manager, and a transaction manager. This common structure is seen in
the root conÞguration node in the parameterized architecture, which simply referred to as the ARCHITEC-
TURE conÞguration node. The variability at this level is in the alternate choices for the child conÞguration
nodes: client, object server set, persistent cell manager set, repository manager, and transaction manager.

The client child of ARCHITECTURE represents the client processes. Clients for an architecture are either uni-
formly reentrant or uniformly nonreentrant. These two alternatives are discussed later in the client conÞgura-
tion node descriptions.

The object server set child of the ARCHITECTURE represents the object servers in the architecture (as
deÞned in the reference architecture). There can be zero or more object servers deÞned for the object server set
in an architecture. The alternatives for the object servers in an architecture are discussed in the object server
conÞguration node descriptions.

The persistent cell manager set (PCM set) child of the ARCHITECTURE represents the persistent cell manag-
ers in the architecture (as deÞned in the reference architecture). There can be one or more persistent cell man-
agers deÞned for the PCM set in an architecture. The alternatives for the persistent cell managers in an
architecture are discussed in the persistent cell manager conÞguration node descriptions.

The repository manager child of ARCHITECTURE can either be empty or contain a shared repository man-
ager. If it is empty, the repository manager will be embedded in the client process. Otherwise the shared repos-
itory manager node represents a single independent process in the architecture that is shared by all client
processes. Shared repository managers are used in multi-user architectures.

The transaction manager child of ARCHITECTURE can either be empty, contain a shared transaction man-
ager, or contain a dedicated transaction manager. If it is empty, the transaction manager will be embedded in
the client process. A shared transaction manager node represents a single independent process in the architec-
ture that is shared by all client processes. Shared transaction managers are used in multi-user architectures. A
dedicated transaction manager node represents an independent process for each repository that is created. Cli-
ents bound to the same repository will share the dedicated transaction manager for that repository. This conÞg-
uration is used when a single shared transaction manager is not sufÞcient to handle the transaction rate in
multi-user, multi-repository applications.

5.1.5.2. Client ConÞguration Nodes

There are two types of client conÞguration nodes, reentrant and nonreentrant. The nonreentrant client repre-
sents a smaller software component with a subset of the functionality of the reentrant client. The nonreentrant
client blocks while it is waiting for a return from one or more outgoing remote method invocations. An incom-
ing remote method invocation while the client is blocked would lead to a deadlock. The nonreentrant client is

page 69

provided for cases where control ßow will never recursively reenter a client after going from the client to an
object server. The reentrant client accepts incoming remote method invocations while it is waiting for a return
from one or more outgoing remote method invocations. The implementation of the nonreentrant client will be
smaller and simpler than the reentrant client since it doesnÕt need call reentrant stacks, and it will also have bet-
ter performance due to shorter code paths.

The remaining architectural variance for the OODB clients is represented in the child conÞguration nodes. The
child conÞguration nodes are the same for nonreentrant clients and reentrant clients: object and cell services,
embedded repository manager, embedded transaction manager, and cell allocations.

There are three alternatives for object and cell services (refer to Figure 27. in the reference architecture),
depending on whether or not object locking and persistent transactions are to be supported. The Þrst option
supports both object locking and persistent transactions. The second option supports locking, but not persistent
transactions. The Þnal option supports neither locking or persistent transactions. Additional details on the
object and cell services conÞguration nodes are provided in a later section.

The embedded repository manager will be empty if the architecture contains a shared repository manager pro-
cess. Likewise, the embedded transaction manager will be empty if the architecture contains either shared or
dedicated transaction manager processes.

The cell allocations indicate the objects and classes that will be managed by the client. The overall allocation
of cells to clients and object servers determines the call graph and whether or not reentrant calls to the client
are possible (thereby determining whether the client should be reentrant or nonreentrant).

5.1.5.3. Object Server ConÞguration Nodes

Object servers are included in an architecture when locality is weak in a cluster of objects, in cases of large
object clusters, or when objects in a cluster are not heavily utilized after they are activated. In all of these cases,
overall performance may be improved by caching these clusters in a computational server and accessing the
objects via remote method invocation rather than incurring the high amortized cost of activating these clusters
into client processes.

Zero or more object servers to be speciÞed to handle the these special computational needs. Initially a single
object server might be used for large or low utilization clusters. Performance proÞles from simulation will
indicate whether this single object server is sufÞcient or whether it is overloaded and additional object servers
are needed.

The set of object servers in the architecture can either be dedicated or shared. When dedicated, there will in a
separate set of object server processes for each repository that is created (indicated for high contention reposi-
tories). When shared, there will be one set of object servers that is shared for all repositories (indicated for low
contention repositories).

The set of object servers can be empty or consist of a heterogeneous collection of reentrant, nonreentrant, and
threaded object server nodes. Each object server node represents an independent process in the architecture.
The reentrant and non-reentrant are analogous to the client conÞguration nodes. The threaded conÞguration
node is for supporting multiple execution threads from concurrent users. This is necessary in cases where the
architecture supports multiple concurrent users or single user architectures with a shared object server set.
Note that clients didnÕt need the threaded option since clients are always single user processes.

An object server conÞguration node has two child conÞguration nodes, object and cell services and cell alloca-
tions. These are both analogous to the child conÞguration nodes of the same name in the client.

There are three variants on the object and cell services, depending on whether or not object locking and persis-
tent transactions are to be supported in the object server. The Þrst option supports both object locking and per-

page 70

sistent transactions. The second option supports locking, but not persistent transactions. The Þnal option
supports neither locking or persistent transactions. Additional details on the object and cell services conÞgura-
tion nodes are provided in the next section.

The cell allocations indicate the objects and classes that will be managed by the object server. The overall allo-
cation of cells to clients and object servers determines the call graph and whether or not reentrant calls to an
object server are possible (thereby determining whether the object server should be reentrant or nonreentrant).

5.1.5.4. Object and Cell Service ConÞguration Nodes

Object and Cell Services is a component in both clients and object servers, as illustrated in Figure 27. and Fig-
ure 31. in the reference architecture. To represent the variability in the parameterized architecture, there are six
different object and cell services conÞguration nodes that correspond to the varying types of functionality sup-
ported by the object and cell services component. There are three dimensions that determine the six different
object and cell servers: (1) single versus multiple execution threads, (2) object locking versus no object lock-
ing, and (3) persistent transaction support versus no persistent transaction support.

The following points in this three dimensional space are supported by corresponding conÞguration nodes:

¥ single threaded, object locking, persistent transactions

¥ single threaded, object locking, no persistent transactions

¥ single threaded, no object locking, no persistent transactions

¥ multi-threaded, object locking, persistent transactions

¥ multi-threaded, no object locking, persistent transactions

¥ multi-threaded, no object locking, no persistent transactions

The single execution thread alternative implies a more compact and efÞcient implementation than the multiple
execution thread implementation. Having no support for object locking reduces the runtime overhead for lock
checks and acquisition. Having no support for persistent transactions reduces the implementation size and code
paths, implying a more efÞcient implementation. Therefore, the smallest and most efÞcient object and cell ser-
vices alternative is Òsingle threaded, no object locking, no persistent transactionsÓ while the largest and least
efÞcient (but most functional) is the Òmulti-threaded, object locking, persistent transactionsÓ.

Each of the six types of object and cell services conÞguration nodes has one specialization and three child con-
Þguration nodes: cache size, replacement policy, write-through policy, and distributed transactions. The cache
size specialization indicates the size of the object cache. The replacement policy, least recently used or most
recently used, indicates the replacement policy for the cache. The distributed transactions child indicates
whether or not distributed transactions are supported in the object and cell services node.

The write-through policy, eager or lazy, indicates the write-through policy of the cache during transaction com-
mits. Eager write-through means that modiÞed objects in the cache will be written to persistent memory during
transaction commit (the conventional interpretation of ÒcommitÓ). Lazy write-through means that the writes of
some modiÞed objects in cache may be delayed after a transaction commit in order to improve efÞciency. This
is suitable for applications that donÕt need the strong persistence property in the conventional interpretation of
ÒcommitÓ.

page 71

5.1.5.5. Persistent Cell Manager ConÞguration Nodes

Persistent cell managers (PCMs) manage the persistent storage for clusters of objects. Depending on the per-
formance load for an application, there can be one or more persistent cell managers running on different pro-
cessors to distribute the load.

The set of persistent cell manager conÞguration nodes (the PCM set) in an architecture instance can either be
dedicated or shared. Dedicated represents a separate set of PCM processes for each repository that is created
(indicated for high contention repositories). Shared represents one set of PCMs that is shared for all reposito-
ries (indicated for low contention repositories).

The PCM set is a heterogeneous collection of one or more eager and lazy persistent cell manager conÞguration
nodes. These correspond to the type of cache write-through policy deÞned for the object and cell services in
the clients and object servers that use the PCM. An eager PCM serves as the persistent cell storage process for
clients and object servers with eager write-through cache policies. Eager write-through is the conventional
transaction approach of moving all modiÞed objects from client or object server cache into persistent storage
during a transaction commit. A lazy PCM serves as the persistent cell storage process for clients and object
servers with lazy write-through cache policies. Lazy write-through differs from the eager write-through of the
eager PCM in that there may be a delay in moving some modiÞed objects from client or object server cache
into persistent storage during a transaction commit. This delay increases the risk of loosing data as a trade-off
for better performance.

Eager and lazy PCM conÞguration nodes have Þve child conÞguration nodes: PCM allocations, persistent
transactions, distributed transactions, locking, and backup. The PCM allocations indicate which of the client
and object server processes are assigned to use the PCM as their persistent storage server. The persistent trans-
actions child is included when persistent transaction support is required throughout the architecture. PCMs
store all persistent information related to persistent transactions. The distributed transactions child is included
when the architecture has multiple PCMs and/or object servers contributing to transactions. The locking child
is included when the architecture is supporting object locking.

The backup child conÞguration node is included when automated secondary storage backups are required in
the architecture. This conÞguration node has two child conÞguration nodes, separation and frequency. The
separation child indicates whether the destination of the backups is across a local area network or a wide area
network. The frequency specialization indicates how often the automated backups are activated.

5.1.5.6. Repository Manager ConÞguration Nodes

The repository manager in the UFO parameterized architecture can be conÞgured as a stand-alone process or
an embedded component in the client process. There is a conÞguration node to represent each of these options.

The shared repository manager conÞguration node represents an independent process in the architecture that
handles the repository operations such as create, delete, and binding. The repository manager is also responsi-
ble for creating other processes in the architecture that are associated with repositories such as transaction
managers, object servers, and persistent cell managers.

The embedded repository manager serves a similar function as the shared repository manager, but rather than
being an independent process it is embedded in the client process. This is possible when the architecture is sin-
gle user and therefore will not require multiple concurrent repository management operations from different
clients. This eliminates a process in the architecture, reduces the overall OODB architecture size, and elimi-
nates RPC communication costs between the client and the repository manager.

page 72

There are three specializations for both the shared and embedded repository manager conÞguration nodes:
transaction manager integration, object server integration, and PCM integration. These specializations indi-
cate whether the transaction manager, object server set, and PCM set are shared, dedicated, embedded, or
empty so that the repository manager can correctly create these processes and bind clients to these processes.

5.1.5.7. Transaction Manager ConÞguration Nodes

The transaction manager can be conÞgured as a stand-alone process, multiple stand-alone processes with each
dedicated to one repository, or an embedded component in the client process. There is a conÞguration node to
represent each of these options.

The shared transaction manager conÞguration node represent an independent process in the architecture that
serves as the central point of coordination for transactions.

The dedicated transaction manager conÞguration node represents one transaction manager dedicated to each
repository rather than one transaction manager for all repositories. The dedicated transaction manager imple-
mentation implies a more compact implementation since it does not have to manage transactions in multiple
repositories, but there will be more processes in the architecture. This is useful in applications where transac-
tion throughput is very high.

The embedded transaction manager is embedded in the client process. This is possible when the architecture is
single user and therefore will not require multiple concurrent transaction management operations from differ-
ent clients. The eliminates remote procedure calls between the client and transaction manager and also implies
a smaller size since it is not a stand-alone process.

Each of the transaction manager conÞguration nodes has two child conÞguration nodes, persistent transactions
and distributed transactions. The persistent transactions child is included if persistent transaction functionality
is required in the architecture. Likewise, the distributed transaction child is included if distributed transaction
functionality is required.

5.1.6. Abstracting Architectural Variability: Architectural Parameters

Architectural parameters deÞne how to select, specialize, and assemble a collection of conÞguration nodes for
and OODB architecture. Although conÞguration nodes can capture the variations in the architectural building
blocks for an OODB, remains a difÞcult task to select and compose a meaningful collection of conÞguration
nodes that represent an OODB for a given application. For example, with the conÞguration nodes as deÞned in
the previous section, over 250,000 different OODB architecture instances can be modeled.

To aid in this task, we needed abstractions for the dimensions of architectural variability and also automated
guidance from these abstractions into meaningful collections of conÞguration nodes. Although we could have
started with an Òempty slateÓ in our search for these abstractions, there were some early clues as to what these
abstractions should be.

In our initial attempt to implement the relationships between requirements and application instances with the
dependency graph we observed an intermediate collection of nodes in the graph that served as an abstraction
for architectural dimensions of variability. When we decomposed the dependency graph into four simpler
tasks, a set of architectural parameters began to emerge from this intermediate layer of abstraction in the
dependency graph.

The architectural parameters denote the dimensions of OODB architectural variability captured in the UFO
parameterized architecture. Architectural parameters consolidate the implementation level variability in the
conÞguration nodes into a high level expression of abstract variability. For example, sixteen of the different
conÞguration nodes representing architectural building blocks have variability on whether or not long transac-

page 73

tions are supported. However, at the architectural parameter level there is only one architectural parameter the
speciÞes whether or not long transactions are supported throughout a particular instantiation of conÞguration
nodes.

Following are descriptions of the twelve top-level architectural parameters. Note that some of these parameters
are complex data structures containing multiple and nested values. We use these composite architectural
parameter structures to group closely related architectural variants. Readers less interested in this level of detail
can skip ahead to Section 5.1.7.

Long Transactions. A boolean parameter that indicates whether persistent transactions are supported. If long
transaction functionality is not used by an application, then the architecture can be simpliÞed by not including
the functionality.

Object Locking. A boolean parameter that indicates whether object locking is supported. If the application
does not use long transactions and is not multi-user, then object locking functionality is not needed in the
architecture to control concurrent access to objects.

Distributed Transactions. A boolean parameter that indicates whether distributed transactions are supported.
If the architecture does not have multiple client and object server processes that contribute to a transaction,
then distributed transaction support need not be included.

Cell Declarations. A compound architectural parameter used to indicate locality in the data objects for an
application. Cell declarations partition the runtime data structures for an application into groups of data objects
called cells. This architectural parameter is included to improve performance based on expected use profiles
and user expectations. The rationale behind defining data locality is discussed later in the section on require-
ment variables.

Clients and the Object Server Set. A compound parameter that expresses the conÞguration of each client and
object server in an architecture instance. One parameter indicates non-reentrant, reentrant, or threaded. Others
determine the replacement policy (least recently used or most recently used), write-through policy (lazy or
eager), and cache size are for the object and cell services cache. A cell allocations parameter indicates the col-
lection of cells Ð and therefore which objects Ð are managed by a client or object server. The cell allocations
parameter will determine which class methods must be supported.

PCM Set. A compound parameter that expresses the configuration of each persistent cell manager. Includes a
nested parameter value determining the write-through policy of the clients and object servers allocated to the
PCM and therefore the type of commit write-through protocol to support. A PCM allocations parameter indi-
cates the set of the client and object server processes that a PCM provides persistent cell storage for.

TM Integration, OS Integration, PCM Integration, and RM Integration. Expresses the way in which the
transaction manager, the object servers, the persistent cell managers, and the repository manager are integrated
into an architecture instance. TM Integration indicates whether the transaction manager for an architecture
instance will be one stand-alone process dedicated per repository, one stand-alone process shared for all repos-
itories, or embedded in the client process. OS Integration indicates whether the object server set for an archi-
tecture instance will be one set dedicated per repository or one set shared for all repositories. The value is
EMPTY in the case where the Object_Server_Set_AP architectural parameter value is an empty set. PCM Inte-
gration indicates whether the persistent cell manager set for an architecture instance will be one set dedicated
per repository or one set shared for all repositories. RM Integration indicates whether the repository manager
for an architecture instance will be one stand-alone process shared for all repositories or embedded in the client
process.

PCM Backups. Indicates whether or not automated backups of PCMs are supported by the architecture
instance. If so, then there are two other nested parameter values. The frequency parameter indicates how often

page 74

the automated backups should be performed. The separation parameter indicates whether the automated
backup function supports backups across a local area network or a wide area network.

5.1.7. Mapping Architectural Parameters to ConÞguration Nodes

In this section we describe the UFO mapping in which a software architecture instance is conÞgured from the
conÞguration nodes, using the architectural parameters to drive the conÞguration process. This mapping is
from the abstract dimensions of architectural variability deÞned by the architectural parameters to the conÞgu-
ration of architectural building blocks deÞned by the conÞguration nodes.

The relationship between abstract architectural variants, such as whether or not to support long transactions,
and the implementation of these variants in an architecture instance can be complex. One architectural variable
can impact multiple components in an OODB architecture instance. Also, one component in an OODB archi-
tecture can depend on multiple architectural variables. We needed a mapping from architectural parameters to
conÞguration nodes that would capture these complex relationships from the OODB domain so that they could
be reused each time an OODB architecture instance was conÞgured in the UFO tool.

The architectural parameter to conÞguration node mapping is a top-down construction of conÞguration nodes,
starting with the ARCHITECTURE conÞguration node at the root. We associate with each conÞguration node
a mapping description that expresses how to specialize that conÞguration node and how to recursively select
the appropriate child conÞguration nodes.

The mapping description for each conÞguration node varies based on the values of architectural parameters.
For example, below is an operational mapping description in pseudo-code for the reentrant client conÞguration
node, followed by a brief explanation. The mapping description addresses each specialization and child of the
conÞguration node. The names of architectural parameters all end in Ò_APÓ. Readers not interested in this level
of detail can skip ahead to Section 5.1.8.

REENTRANT_CLIENT
child object and cell services :=

if (Object_Locking_AP)
if (Long_Transactions_AP)

construct SINGLE_THREADED_LOCKING_PERSISTENT_OCS
else

construct SINGLE_THREADED_LOCKING_OCS
endif

else
construct SINGLE_THREADED_OCS

endif
child embedded repository manager :=

case (RM_Integration_AP)
when (EMBEDDED) construct EMBEDDED_RM
when (SHARED) then skip

child embedded transaction manager :=
case (TM_Integration_AP)

when (EMBEDDED) construct EMBEDDED_TM
when (SHARED) then skip
when (DEDICATED) then skip

specialization cell allocations :=
foreach CELLALLOC of Client_AP.<cell allocations>

add <CELL_ALLOCATION> source CELLALLOC

page 75

The reentrant client conÞguration node construction consists of three child constructions and one specializa-
tion. The Þrst child construction is for the object and cell services child of the reentrant client. The mapping
description states that if the object locking architectural parameter value (Object_Locking_AP) is true and the
long transactions architectural parameter value (Long_Transactions_AP) is true, then the object and cell ser-
vices conÞguration node should be constructed with the single threaded variant that supports locking and per-
sistent transactions (SINGLE_THREADED_LOCKING_PERSISTENT_OCS). If object locking is true and
long transactions is false, then the SINGLE_THREADED_LOCKING_OCS is constructed. If object locking is
false, then the SINGLE_THREADED_OCS is constructed. Note that all object and cell services configuration
nodes for a client are single threaded. This is because no multi-processing is ever required in a client process in
the OODB architecture. Also note that condition for object locking false and long transactions true is not sup-
ported. This is because long transactions always require object locking, so this combination of architectural
parameter values will never exist.

The next child conÞguration node construction is for the embedded repository manager child of the client. The
mapping shows that if the repository manager integration architectural parameter value (RM_Integration_AP)
is EMBEDDED, then an EMBEDDED_RM configuration node is constructed, otherwise nothing is con-
structed in the client (the repository manager will be created elsewhere in the architecture in this case).

The next child conÞguration node construction is for the embedded transaction manager child of the client.
This part of the mapping is analogous to that of the embedded repository manager.

The Þnal entry in the mapping constructs the cell allocations. The cell allocations are used by the simulator to
manage the cells allocated to the client. This is a specialization rather that a child construction since it requires
only a simple code generation for data structures rather than a complete child conÞguration node that typically
represents a signiÞcant architectural component. The specialization iterates through each of the cell allocations
in the Client_AP architectural parameter to generate the cell allocations declarations for the reentrant client
conÞguration node.

This pseudo-code example illustrates that the mapping this conÞguration node is relatively simple. We found
that in general the mapping descriptions for conÞguration nodes have a similar small size and simplicity. There
are no intricate computations involved, but rather straightforward mappings from architectural parameter con-
structs to related portions of the conÞguration nodes. By partitioning the overall mapping from architectural
parameters to conÞguration nodes into smaller modular units (one per conÞguration node), we found that the
complexity of writing and maintaining the mapping description is signiÞcantly reduced.

5.1.8. Abstracting Architecture Requirements Variability: Requirement Variables

Although the architectural parameters provide a layer of abstraction over the architectural building blocks,
considerable knowledge about the OODB domain is needed to understand how to deÞne architectural parame-
ter values that satisfy the requirements for an application. For example, it is not obvious for which applications
object locking is needed or how to allocate clients and object servers to different persistent cell managers in an
OODB architecture. What we needed was a way to capture the knowledge about the variability in requirements
on OODBs and then a mapping from requirements to architectural parameters.1

We Þrst noticed the distinction between requirement variables and architectural parameters in the early imple-
mentation of our dependency graph. We observed that some of the entry points into the dependency graph were
expressed very much like requirements while others dealt with implementation issues. Closer examination
revealed that the entry points that dealt with implementation issues correspond to what we now call architec-
tural parameters and that the dependency graph could be enhanced with an abstract layer of requirements over

1. Note that these requirements are for OODBs, not the end-user, application-level requirements.

page 76

all of the implementation concerns in the dependency graph. This eventually led to the current distinction
between requirement variables, architectural parameters, and conÞguration nodes, each addressing separate
concerns in the parameterized architecture.

The UFO parameterized architecture captures the knowledge about variability in OODB requirements in a set
of requirement variables, plus a mapping from requirement variables values to architectural parameter values.
Like architectural parameters, requirement variables denote the variability in the overall UFO architecture.
However, the requirement variables are expressed in terms of OODB system requirement concepts rather than
OODB system implementation concepts. This abstraction layer isolates developers from the OODB architec-
tural issues and focuses them the OODB requirements domain.

Following are descriptions of the UFO requirement variables and what they specify in terms of requirements
on an OODB architecture instance. The descriptions include the rationale and heuristics for setting require-
ment variable values for a particular application. Readers not interested in this level of detail can skip ahead to
Section 5.1.9.

Long Transactions. This requirement variable is a boolean that indicates whether or not persistent transaction
support is required in a UFO architecture instance. Static analysis of the application source code can determine
this requirement variable value. In particular, if there are no calls in the application prelude to CreatePersis-
tentTransaction, then no persistent transaction can ever exist below the root transaction and other persistent
transaction operations such as ChangeTransaction and CommitPersistentTransaction will be illegal.

Multi-User. This requirement variable is a boolean that indicates whether or not a UFO architecture instance
supports multiple concurrent users or only a single user at a time. This requirement variable value is set by the
developers. The value cannot be extracted from the source code since the same source code can be used in a
single user or multiple user OODB. The single user choice leads to a smaller and simpler architecture while
multi-user provides the additional concurrent access functionality.

Locality Clusters. This is a compound requirement variable that indicates collections of persistent data
objects called clusters that exhibit locality in locking and access a runtime. Two or more objects exhibit local-
ity when there is a high probability that when one of the objects is accessed or locked that the other objects will
also be accessed or locked in the same time frame. This requirement states an expectation for performance to
be signiÞcantly enhanced when runtime locality occurs in a cluster.

The role declarations in a cluster identify the runtime objects that are members of the cluster and the class
names of those objects. Roles have a name to indicate the ÒroleÓ that they play in the cluster and a class to indi-
cate the UFO Class or RootClass of the object. Objects from a single class can serve different roles in different
clusters. The role declarations are used by the UFO runtime to distinguish which cluster that newly created
objects are associated with.

Each cluster has a utilization variable that indicates the expected ratio of object accesses relative to the number
of objects in the cluster for each activation of the cluster. Ideally this ratio is over 100%, indicating that objects
are used repeatedly after they are activated. An expected utilization ratio value over 50% is speciÞed with the
value of HIGH, while lower than 50% is speciÞed as LOW. The high and low utilization clusters are managed
by different components in the OODB architecture instance.

The size variable for a cluster indicates the typical expected size for the cluster, where 1 megabyte or greater is
considered LARGE and smaller is speciÞed as SMALL. The large and small sized clusters are managed by dif-
ferent components in the OODB architecture instance. ProÞling will provide the best information for the clus-
ter utilization and cluster size values, though developers can make an initial guesses prior to proÞling.

page 77

The primary reliability variable on a cluster indicates the reliability of transient transaction commits. HIGH
corresponds to the traditional durability quality of all commits being persistent. LOW means that some recent
commits may be lost in the face of a system crash. In either case, commits are atomic (i.e., have the Òall or
nothingÓ property). Primary reliability can be set to LOW in order to enhance system performance (commit
operations may be delayed in order to batch process multiple commits). This only makes sense in cases where
the durability property of the commit operation is not critical at the instant commit operations are called.

The secondary reliability variable indicates the automated backup support that is required on persistent storage
media. Frequency indicates how often backups should be initiated and separation indicates the relative net-
work location of the backup media (LAN or WAN). For very valuable data, the frequency should be high in
order assure two copies of most data. For primary storage in high risk environments, the separation should be
across a WAN to a low risk environment.

Sparse Cluster Sets. This requirement variable is used to specify requirements on how to best manage sets of
low utilization or large sized clusters (as deÞned above for locality clusters). The intent is to identify clusters of
objects that require special architectural support, such as keeping objects in large caches for long periods of
time, in order to get good OODB performance. This is in contrast to the Dense Cluster Set requirement vari-
able deÞned for clusters that exhibit characteristics that are most easily accommodated in the architecture for
high OODB performance (small caches for very localized data access).

All of the clusters deÞned in the Locality Cluster requirement variable that were declared to have either low
utilization or large size must go into a sparse cluster set. Each sparse cluster set will typically be allocated to an
independent CPU and have a very large object and cell services cache, so there is a balance between too many
clusters in a sparse cluster set over utilizing a processor and too many sparse cluster sets leading to an architec-
ture with too many processors. ProÞling can help to identify the appropriate balance, but developers can make
an initial guesses prior to proÞling.

Ideally, all of the clusters in a sparse cluster set have the same primary reliability (as deÞned above for locality
clusters). If any cluster in a set has high primary reliability, then the entire set will be treated as high reliability.

Each sparse cluster set has a global contention variable. Without a multi-user requirement, the global cluster
set contention value is always LOW. If there is a multi-user requirement, then global contention indicates the
expected level of concurrent access across all repositories. It is set to HIGH if a single processor cannot ade-
quately handle the computational requirements for all users of the OODB. Again, proÞling provides useful
feedback on establishing the appropriate value, although developers can make an initial guesses prior to proÞl-
ing.

Dense Cluster Set. This requirement variable deÞnes a single set (possibly empty) of high utilization and
small sized clusters. The intent is to identify clusters of objects that exhibit characteristics that are most easily
accommodated in the architecture to provide good OODB performance.

All of the clusters deÞned in the Locality Cluster requirement variable to have both high utilization and small
size must go into the dense cluster set. The dense cluster set will be allocated to the client CPU since these
clusters can be efÞciently handled by a modestly sized processor and cache.

The dense cluster set has a global contention variable. Without a multi-user requirement, the global cluster set
contention value is always LOW. If there is a multi-user requirement, then global contention indicates the
expected concurrent access across all repositories. It is set to HIGH if a single persistent cell manager cannot
adequately handle the computational requirements for all users of the OODB. ProÞling provides useful feed-
back on establishing the appropriate value.

Cluster Set Partitions. In this requirement variable, the sparse and dense cluster sets are partitioned into sets
with common primary reliability requirements (as deÞned above for locality clusters) and with computational
requirement on persistent storage that can be handled by a single CPU. The cluster sets from the Dense Cluster

page 78

Set requirement variable and Sparse Cluster Sets requirement variable are partitioned into high and low pri-
mary reliability partitions. If the Multi-User requirement variable value is false, then at most one high reliabil-
ity and/or one low reliability partition is sufÞcient.

If the multi-user requirement is TRUE, then the computational requirements on persistent storage must be
reviewed for each partition so that the concurrent access to the clusters in the partition will not overload the
computational resources of a persistent storage manager. If the computational requirements on persistent stor-
age for a partition is more than a single CPU can support, then a global partition contention requirement value
on the partition deÞnition can be assigned a HIGH value. This will result in processors being allocated to han-
dle the persistent storage requirements for each repository. If the computational requirements are still too high,
or if there will be a large number of repositories with only a small fraction being utilized at a time, then the two
partitions can be split into smaller partitions, each having a smaller computational requirement. Each of these
smaller partitions will be allocated to an independent persistent storage processor. Again, global partition con-
tention value can be set to HIGH or LOW, depending on whether the smaller partitions have excessive compu-
tational requirements. ProÞling can provide feedback in establishing the partition requirements, but developers
can make an initial guesses prior to proÞling.

Global Transaction Throughput. This requirement variable speciÞes the expected overall transaction
throughput rate across all repositories. Without a multi-user requirement, this value is always LOW. If there is
a multi-user requirement, then the value should be set to HIGH if the computational facilities of a single pro-
cessor is not capable of handling the transaction demands for all repositories. In this case, a separate processor
is allocated to manage the transactions for each repository.

Reentrant Cluster Sets. This requirement variable speciÞes the inter-cluster call graph support required by
the application. This information is used to determine when reentrant remote method invocation support is
needed between clients and object servers and when it can be eliminated. The reentrant cluster sets are auto-
matically derived by the UFO tool from the application source code and the cluster set requirement variables.
By following the static inter-object method calls in the source code and by observing which classes of objects
are in which cluster sets, the inter-cluster-set call graph is constructed. Cycles detected in the inter-cluster-set
call graph indicate reentrant clusters.

5.1.9. Mapping Requirement Variables to Architectural Parameters

The Þnal piece of technology in going from requirement variable values for an OODB to an architecture
instance composed of conÞguration nodes is the mapping from requirement variables to architectural parame-
ters. This is the mapping from the domain of requirements on OODBs to the domain of abstract architectural
variability.

The mapping from requirement variables to architectural parameters is typically many-to-many; one require-
ment variable can impact multiple architectural parameters and multiple requirement variables can impact a
single architectural parameter. For example, the requirement variable for single user versus multiple concur-
rent users impacts the architectural parameter for whether or not to implement object locking, the architectural
parameter for control scheduling, and others. Conversely, the object locking architectural parameter is depen-
dent on both the single versus multi-user requirement and the requirement variable for whether or not long
transactions are required.

Below is an operational mapping description in pseudo-code for the client architectural parameters, followed
by a brief explanation. The name of the architectural parameter in the pseudo-code ends in Ò_APÓ and the
names of requirement variables all end in Ò_RVÓ. Readers less interested in this level of detail can skip ahead
to Section 5.2.

page 79

Client_AP

:=
replacement policy := LRU
write-through policy :=

foreach Cluster of Dense_Cluster_Set_RV.<clusters>
if (Cluster.<primary reliability> == HIGH) then EAGER ; EXIT

LAZY
cell allocations :=

foreach ClusterName of Dense_Cluster_Set_RV.<clusters> insert with ClusterName
control scheduling :=

if (ReentrantCycles(Dense_Cluster_Set_RV) then
REENTRANT

else
NON_REENTRANT

cache size := 1000000

Client_AP is a composite architectural parameter with five component architectural parameters: replacement
policy, write-through policy, cell allocations, control scheduling, and cache size. Replacement policy is always
set to LRU (it is included for future tool enhancements). Write-through policy is set by scanning through all of
the clusters in the Dense_Cluster_Set_RV to see if any of them have a HIGH primary reliability requirement.
If so, then the write-through policy will be set to EAGER for the client to provide the highest reliability, else
the value is set to LAZY to give higher performance at a lower reliability. Cell allocations are made to the client
by scanning the cluster in the Dense_Cluster_Set_RV and inserting each cluster into the cell allocation set.

Determining the value for the control scheduling component requires searching for potential cycles in the call
graph that go out of the client and back into the client. If such a cycle exists, then the client architecture must
be REENTRANT, else the smaller and simpler NON-REENTRANT client architecture can be used. The Reen-
trantCycles function makes this determination from the Reentrant Cluster Sets requirement variable. If the
dense cluster set, which is the cluster set managed by the client, has a method call cycle, then the ReentrantCy-
cles function returns TRUE and the client will be REENTRANT.

This pseudo-code illustrates that the mapping for this architectural is relatively simple. As with the mappings
from architectural parameters to conÞguration nodes, we found in general that the mappings from requirement
variables to architectural parameters are relatively small and simple. We attribute this simplicity to the parti-
tioning of the overall mapping from requirement variables to architectural parameters into appropriate modular
units (one per architectural parameter).

5.2. Design of the OODB Architecture Modeler and Simulator

Referring back to Figure 3. on page 6, another key component in our approach, along with the parameterized
software architecture, is the OODB architecture modeler and simulator. The feedback from modeling and sim-
ulation provides one of the three paths in our iterative cycle from requirements to architectures to system prop-
erties and back to requirements. The intent of modeling and simulation feedback is to provide developers with
salient information about system properties for a particular OODB instance, relative to a particular application,
while at the same time abstracting away from the myriad of details and system properties that are not signiÞ-
cantly relevant in evaluating OODB architectures for a particular application.

In the initial phases of our studies, we focused on mapping from architecture abstractions to architecture
instances. Feedback did not play an important role in these early efforts. We only included simulation in these
studies as a way to implement the approach without having to incur to overhead of having to implement a con-
Þgurable OODB architecture or of having to acquire and use multiple off-the-shelf OODBs.

page 80

Experience from our preliminary work taught us several things. First is that it is very difÞcult for developers to
fully understand and accurately deÞne OODB requirements for an application on the Þrst attempt. This illus-
trated the importance of providing developers with feedback of system properties, helping developers to evalu-
ate system properties in relation to their system requirements, and extending our approach with reÞnement of
requirements followed by repeated iteration through the cycle. Second is that, just like us in our research,
development projects canÕt afford the overhead of time and money to acquire multiple OODBs for the purpose
of evaluation. Simulation provides an attractive alternative in a practical application of our approach. And
Þnally, as we explored the importance of feedback, we identiÞed static modeling and inconsistency detection
as two other techniques in addition to simulation for providing developers with feedback about salient OODB
properties.

The three types of feedback that we identiÞed are illustrated as the three bold arrows pointing upward in Figure
4. on page 7: (1) inconsistencies between baseline and off-the-shelf architectural variants, (2) static architec-
ture properties from modeling, and (3) dynamic architecture properties from simulation. The Þrst type of feed-
back provides information to developers about inconsistencies between the architectural parameters for a
baseline OODB instance for an application and the architectural parameters of an off-the-shelf OODB being
considered for the application. The second type of feedback provides information to developers about static
system properties such as architectural conÞguration and size. The third type of feedback provides developers
with detailed proÞling data on how an OODB architectural instance performs under simulated application sce-
narios. In the following sections we discuss the issue associated with these types of feedback from the UFO
tool.

5.2.1. The Modeler

When we began to explore the feedback issues in our technology, one potential source we identiÞed was the
architecture instance create out of conÞguration nodes. Recall that an architecture instance is a static model of
an OODB architecture, constructed prior to the simulation phase. We not only looked for system properties
that we could extract from the architecture model and provide as feedback to developers, but also for ways that
we could extend the representation to provide better feedback.

We identiÞed two general types of system modeling properties that can be derived from architecture instance
by the UFO tool, (1) architectural conÞguration data and (2) architectural size data. This information provides
useful feedback to developers about resource utilization such multi-processing and memory utilization. This
feedback can be used to identify resource utilization that may be excessive for the intended application execu-
tion environment. For example, an OODB instance with several large server processes may be inappropriate
for a laptop computing application.

The architectural conÞguration data presents the collection of architectural components in the OODB archi-
tecture instance, the allocation of architectural components to processes, and the multiplicity of processes
(such as one shared persistent cell manager versus multiple persistent cell managers). The architectural conÞg-
uration data directly reßects the collection of conÞguration nodes for an architecture instance.

The architectural size data presents the estimated executable system size information for architectural compo-
nents in the OODB architecture instance. This data is projected from static size attributes associated with con-
Þguration nodes.

Note that only static modeling properties can be modeled in this phase. For example, while we can present the
size of the object cache allocated in the client architecture, we cannot project dynamic properties such as the
ratio of cache hits to cache misses that are later exposed during simulation.

Developers can use this information to isolate architecture conÞgurations or system size data that may be
excessive or inconsistent with an application. If there are problems, developers can modify the requirement
variable values to reßect adjustments to the architecture and then rederive the architecture instance.

page 81

The following two subsections provide more detail about the static modeling feedback supported by UFO.
Readers not interested in this level of detail can skip ahead to Section 5.2.2.

5.2.1.1. Architectural ConÞguration Data

The architectural conÞguration data from UFO is a human readable representation of the internal conÞguration
node composition for an architecture instance. For example, the architectural conÞguration data presented for
the client conÞguration node will display the type of client (reentrant versus nonreentrant), recursively display
each child conÞguration node (object and cell services, embedded repository manager option, embedded trans-
action manager option), plus display the specialization for the cell allocations.

The only implementation alternative worth noting is the format of the human readable display for the conÞgu-
ration nodes. For the UFO implementation, we use a textual representation with indentation to show composi-
tion. Other attractive alternatives for displaying the architectural conÞguration data include graphical display
formats and the various analysis and design notations.

5.2.1.2. Architectural Size Data

The architectural size data in UFO comes from attributes we place on the conÞguration nodes. For the collec-
tion of conÞguration nodes in an architectural instance, we display the size for each conÞguration node plus
the child conÞguration nodes in its composition. For example, for a non-reentrant client conÞguration node,
the overall size is computed from:

¥ 1,000,000 bytes for the client conÞguration node

¥ plus 300,000 bytes for the child object and cell services conÞguration node (conÞgured as single
threaded, object locking, and long transactions)

¥ plus 50,000 bytes for an optional embedded repository manager child conÞguration node

¥ plus the object cache size

¥ plus code size for the application classes allocated to the client

For conÞguration nodes that represent dedicated architectural processes (i.e., one per repository), the size data
is presented as Òper repositoryÓ.

The size data helps developers understand the runtime memory requirements for an OODB architecture
instance. This information may be useful to developers in cases where an application is running on a machine
with limited memory resources.

The overall number of processes in the architecture is also reported in the data. This information may be useful
to developers in cases when an application is running on a machine with limited process resources.

5.2.2. The Simulator

Given the prototype application source code and an OODB architecture instance (represented as conÞguration
nodes), UFOÕs OODB simulator will simulate the application running on the architecture. The simulator col-
lects runtime data so that the execution properties of the application running on the OODB can be presented in
a simulation proÞle.

page 82

An initial observation that we made is that interpretation of the application source code is distinct from simula-
tion of the OODB architecture. Treating these as separate problems in our design and implementation offered
several advantages:

¥ The application source code can be interpreted without running an OODB simulation. This allows
application developers to prototype and debug their application source code before focusing on the
OODB simulations and proÞles.

¥ The separation in the design makes it easy to reconÞgure the OODB instance being simulated with-
out reconÞguring the application source code interpreter.

¥ As we were prototyping and developing the UFO OODB simulator, the OODB interpreter
remained most independent of the modiÞcations and extensions we made to the simulator.

Based on these observations, we designed the interpreter so that it functions stand-alone or in conjunction with
the OODB simulator. During simulation, the interpreter drives the simulator through an interpreter/simulator
interface. The following two subsections discuss these two components.

5.2.2.1. UFO Application Interpreter

The role of the UFO application interpreter is simply to execute the application source code, without concern
for the conÞguration of the OODB architecture instance under simulation. In fact, the interpreter is designed to
be fully functional without have any OODB architecture instance deÞned.

We use conventional compiler and interpreter techniques for the UFO interpreter. While a signiÞcant design
effort was involved, new innovations were not necessary. The application source code is represented and stored
as an abstract syntax tree in the UFO tool, similar to a parse tree produced by a parser. An additional inter-
preter structure produced for each application is a set of repositories. Each repository in the set contains struc-
tures for the persistent transaction hierarchy and a persistent object heap.

The interpretation of the application code begins in the abstract syntax tree with the Þrst statement of the appli-
cation prelude. Each statement and each expression in the statements are executed according to the semantics
outlined in Section 5.1.2. Each repository retains a persistent handle on the root object in the repository. Exe-
cution in the persistent object space is bootstrapped when a boot procedure is applied to the root object. Details
on the implementation of the UFO application interpreter are given in the next chapter.

5.2.2.2. Interfacing the Application Interpreter to the OODB Simulator

The conÞguration nodes for an OODB software architecture instance are represented as an abstract syntax tree
in the UFO tool. In order to simulate the execution of an application on an architecture instance, the interpreter
described in the previous section extends its scope to interface with the simulation constructs in the OODB
instance. These simulation extensions do not change the semantics of the code interpretation. Their role is sim-
ply to proÞle selected operations performed by the architectural components. For example, the interpreter will
create, commit, and abort transactions while the simulator will keep track of how many transaction creates,
commits, and aborts that each transaction manager, persistent cell manager, object server, and client participate
in, plus the overall time spent in each component on the different operations.

In the OODB language interpreter, data objects are the central design focus while in the OODB architecture
simulator, data cells are the central design focus. Recall that cells support runtime locality through clusters of
data objects. Capitalizing on this locality is essential for enhanced OODB performance, so it typically gets a
great deal of attention in OODB architectures.

An important issue for us then is how to interface the interpreter with its object focus to the simulator with its
cell focus. Rather than extend the interpreter to understand cells, we provided an interface to the simulator for

page 83

each interpreter operation on a data object. The simulator associates objects with cells and performs all of the
architectural operations that result from the operation on the object.

For example, when the interpreter creates a new object, the associated call to the simulator allocates the new
object to a cell. Subsequently, when the interpreter performs operations on the object, the simulator evaluates
corresponding operations on the enclosing cell. Examples include:

¥ activation of cells from persistent cell managers to clients and object servers when an inactive
object is accessed in the interpreter

¥ cell cache replacements when the activation of a cell exceeds cache capacity

¥ creation of a new cell when the Þrst object for a cell is created

¥ management of cells during transaction creations, commits, and aborts

The data collected and presented from these operations in a simulation proÞle is described in the next section.

5.2.2.3. Simulation Platform

An OODB will exhibit different performance proÞles on different hardware platforms. CPU speed, network
speed, disk speed, and operating system efÞciency all have an impact on performance. We felt that the UFO
simulator should reßect this reality. We provide a set of simulation constants that can be conÞgured prior to
simulation. Developers can specify simulation constants for simulating the platform that execute the applica-
tion and OODB architecture components. The simulation constants supported by the UFO tool are:

¥ Clock speed for the cpuÕs running the clients, object servers, and persistent cell managers. This
allows, for example, developers to simulate a network conÞguration where persistent cell managers
and object servers run on high-powered server machines while clients run on lower powered desk-
top machines.

¥ Disk access and network costs (in cycles) for persistent cell and persistent object manipulation: cre-
ation, commit, abort, activation, and deactivation. This allows, for example, developers to simulate
fast disk arrays and cheaper disk conÞgurations to compare cost and application performance.

¥ Costs (in cycles) for inter-cell, intra-cell, and inter-process method invocations. This allows devel-
opers to experiment with cost/performance trade-offs in cache, operating systems, and networks.

The UFO tool provides some predeÞned simulation constants. Developers can request that these ÒcannedÓ val-
ues be used for simulation constants or they can tailor their own simulation constants.

5.2.3. Dynamic Simulation ProÞles

After a simulation, the UFO tool produces a proÞle summary for feedback to developers. Developers use this
information to identify performance problems and resource limitations for the OODB instance, relative to the
simulated application scenario. If problems are found, developers can modify the requirement variable values
accordingly then rederive and simulate the architecture instance.

A particular challenge that we faced as we designed the simulator was distinguishing between useful informa-
tion that the simulator could provide developers and irrelevant information that would only distract developers
from salient information. Experience with the tool helped us identify system property information that was
most useful as we compared system properties to requirements for an architecture instance.

Even with being selective in Þltering the simulation data from the UFO tool, the data can be large and com-
plex. To aid in this problem, we explored techniques and trade-offs for manual versus automated proÞle analy-

page 84

sis. For example, the UFO tool might perform some automated analysis of the simulation proÞles in order to
identify problems and to provide developers with speciÞc suggestions on how to reÞne requirement variable
values to achieve better performance.

Manual analysis of UFO simulation proÞles for OODB architecture instances requires expertise, both in terms
of architecture performance issues and how these relate to reÞning requirements to enhance performance.
Manually analyzing performance proÞles can also be time consuming for developers. Therefore, to keep the
overall development costs low, a tool like UFO should provide automated performance analysis and feedback
whenever possible.

While this type of automated support can be very powerful, we found that it is difÞcult to design and imple-
ment. It requires identifying and encoding the type of knowledge that is typically possessed by system perfor-
mance experts. Therefore, a thorough implementation of automated performance analysis and feedback would
likely require an expert system approach.

The following two sections describe in more detail types of information that UFO provides for manual proÞle
analysis and from automated proÞle analysis.

5.2.3.1. ProÞle Summary for Manual Review

In this section we describe the simulation proÞle data supported by the UFO tool, plus examples of how devel-
opers can use the information to reÞne the OODB architecture to better conform to their application.

Execution time for a simulation

The overall execution times are reported for the client, the object server, and the persistent cell manager sub-
systems, plus the overall combined times for the full OODB architecture. Developers use this information to
make gross comparisons between different architecture instances and look for major performance problems in
the major subsystems.

Intra-cell method calls, inter-cell method calls, and inter-process method calls

Detailed information is provided about the locality exhibited during method invocations. Ideally, the majority
of object-to-object method invocations take place within cell boundaries and the minority are inter-process.
The UFO presents data about the number of invocations and the time associated with invocations made and
received at the following granularities:

¥ per client

¥ per object server

¥ overall architecture

¥ per cell

¥ per class

¥ per method declaration

¥ per method application

Problems that are observed by developers at larger granularities can be tracked down to their source at smaller
granulatities. This is one of the key areas for improving performance by improving locality in the requirements
deÞnitions.

page 85

Creations, activations, deactivations

Similar to the method invocation data, detailed information is provided about the locality exhibited for object
and cell creation, activation, and deactivation. Ideally, the activation and deactivation of cells should be rare
compared to accessing the objects in the cells after they are activated. The UFO presents data about the number
of cell and object creations, activation, and deactivations, plus the associated times, at the following granulari-
ties:

¥ per client

¥ per object server

¥ overall architecture

¥ per cell

Problems that are observed by developers at larger granularities can be tracked down to their source at smaller
granulatities. This is another one of the key areas for improving performance by improving locality in the cells
and by partitioning cells onto clients or object servers according to the degree of locality that can be achieved
in the cells (object servers can better handle cells with weaker locality than can clients).

Maximum dynamic cell size per cell type

Cells are dynamic in that their size can grow and shrink as objects are created and deleted at runtime. The max-
imum cell size for each type of cell is monitored and reported to catch cases when cells are getting too large to
be efÞciently activated and deactivated. Subdividing large cells or allocating them to object servers rather than
clients can improve performance in some cases.

Transaction creates, commits, and aborts

Transaction proÞles are also detailed in the feedback from the UFO tool, both for persistent transactions and
transient transactions. Cells are the unit of granularity for commits and aborts, but we also monitor the total
number of objects involved in commits and aborts. The data for raw counts, plus the overall times involved, are
reported for the transaction manager, the persistent cell managers, and for the overall architecture. This infor-
mation helps developers identify cases where transaction processing resources can be increased or decreased.

Repository creates, deletes, bindings

The Þnal area of proÞle data is for repository operations. This information is primarily valuable in cases where
architectural processes such as persistent cell managers are dedicated to one repository. Large numbers of
repositories can lead to large numbers of total processes executing in an architecture.

5.2.3.2. Automatic ProÞle Analysis

After some exploration, we determined that extensive research in this area was beyond the scope of this thesis.
However, we did want to illustrate the power of automated performance analysis and feedback. We demon-
strated the capability in two performance areas, while we defer to future work the study of what is required for
a more complete coverage of automated analysis (see Chapter 11., Future Work).

page 86

Low Cell Utilization

For each cell declaration allocated to the client, if the total of all method calls received by objects in
all of the cell instances is less than 50% of the total number of objects activated during all cell
instance activations, then report the following feedback:

Low utilization cell in client. Change cluster utilization requirement to Low for this cell.

The recommended requirement variable value change will cause the cell instances for the cell dec-
laration to be allocated to an object server in the OODB architecture, where it can be cached
between client sessions. This may lead to better amortized costs for object access.

Oversized Cells

For each cell declaration allocated to the client, if the total of any cell instance becomes greater than
one megabyte, then report:

Oversized cell in client. Change cluster size requirement to Large for this cell.

The recommended requirement variable value change will cause the cell instances for the cell dec-
laration to be allocated to an object server in the OODB architecture, where it can be cached
between client sessions. This may lead to lower activation and deactivation costs for large cells.

5.2.4. Inconsistency Detection

When the UFO tool is used to evaluate off-the-shelf OODBs, inconsistencies between the baseline architec-
tural parameter values for an application and the architecture parameter values supported by an off-the-shelf
OODB are detected and reported by the UFO tool. The feedback is presented to developers, both in terms of
architectural parameter inconsistencies and the baseline application requirements that cannot be satisÞed due
to the inconsistencies. Given this feedback, developers have the option of either reÞning the architectural
parameters to eliminate the inconsistencies or abandoning the evaluation if they decide that the off-the-shelf
OODB does not sufÞciently support the requirements for their application.

In some cases the tool can detect the potential for an inconsistency, but cannot make an absolute determination.
For example, some OODBs do not support the nesting of long transactions, but static analysis of the applica-
tion prototype code cannot determine if or when the dynamic control ßow might result in recursive long trans-
action invocations. These types of potential inconsistencies are reported as warnings. Developers must
manually evaluate warnings to determine whether or not they are indeed inconsistencies.

Note that by evaluating off-the-shelf OODBs using the architectural parameters, we are considering only archi-
tectural functionality and structure, not performance issues that are exposed later during simulation. We made
this choice because the analysis of dynamic performance feedback is considerably more complex. We deter-
mined that the effort required to automatically quantify the relative suitability of an OODB based on complex
proÞle data was beyond the scope of this research.

Our approach to detecting inconsistencies for off-the-shelf OODBs requires selecting and evaluating one
OODB at a time. We originally explored the possibility of a fully automated search and evaluation of all the
off-the-shelf OODBs for a given application and then automatically selecting the one with the best results. We
found that this approach had several signiÞcant problems. First, it is difÞcult to quantify the suitability of an
OODB that has inconsistency warnings since the warnings may represent a serious incompatibility or may rep-
resent no problem whatsoever. Second, since our approach relies heavily on feedback from simulation proÞles,
the real suitability of an OODB cannot be determined from architectural parameters only.

page 87

We identiÞed two types of inconsistencies that we could report from the tool:

1. Missing functionality. Functionality that is supported in the baseline architectural parameters for
an application but that is not supported by the off-the-shelf OODB under evaluation. In this case,
the developers will have to decide whether the functionality is an absolute requirement or whether
the application can be successfully deployed without the functionality. If not, then the OODB can
be excluded from consideration for the application.

2. Excess functionality. Functionality that is not indicated in the baseline architectural parameters for
an application but that is always part of the off-the-shelf OODB under evaluation. In this case, the
tool indicates to developers the extraneous functionality associated with the OODB. The developers
can then observe how the excess functionality impacts system size and performance in subsequent
modeling and simulation.

Following are several example of inconsistencies and warnings supported by the UFO tool for the three off-
the-shelf OODBs modeled: Objectivity, ITASCA, and ObjectStoreLite. Each example contains the name of the
architectural parameter and the off-the-shelf OODB for which the inconsistency check is done, the condition
under which the inconsistency is reported, the corresponding baseline requirements that cannot be supported,
and the suggested modiÞcations to the baseline architectural parameters in order to eliminate the inconsistency.

PCM_Set_AP (for Objectivity)

If the PCM_Set_AP contains more than 1 PCM

Then Report The Multiple Cluster Set Partitions requirement is inconsistent with Objectivity.
Objectivity supports only 1 PCM per repository. Allocate all Clients and Object Servers to 1 PCM.

Object_Server_Set_AP (for ObjectStoreLite)

If the Object_Server_Set_AP is not an empty set

Then Report The Sparse Cluster Sets requirement is inconsistent with ObjectStoreLite. Object-
StoreLite doesnÕt support computational object servers. Allocate all cells to the Client.

Object_Server_Set_AP (for ITASCA)

If the Object_Server_Set_AP is an empty set

Then Report The Dense Cluster Set requirement is inconsistent with ITASCA. ITASCA does all
computation in object servers. Allocate all cells to the Object Servers.

Long_Transaction_AP (for ITASCA)

If Long_Transaction_AP is TRUE

Then Report Warning. ITASCA supports only a single nested long transaction. Check application
code for multiple long transactions.

5.3. Adapting Software Architecture Modeling and Simulation Techniques
to OODB Architectures

OODBs themselves are tools for developing larger software systems and as such have software development
techniques associated with them. One of the early challenges that we faced was that in order to apply software
architecture modeling and simulation techniques to OODBs, the two different software development tech-
niques had to be merged. In this section we discuss the issues associated with adapting OODB application
development techniques to software architecture modeling and simulation and conversely how we adapted
software architecture modeling and simulation to OODB development techniques.

page 88

Readers interested in applying the software architecture modeling and simulation approach to classes of sys-
tems in domains other than OODBs will be particularly interested in this set of issues. While aspects of the
UFO technology such as architectural parameters and conÞguration nodes are largely independent of domain,
the merger discussed in this section is one area where domain-speciÞc characteristics are particularly impor-
tant in the software architecture modeling and simulation approach.

5.3.1. Conventional Application Development with OODBs

Figure 32. illustrates a typical approach to building applications using an OODB. Starting with the task oval on
the left, the application source code is written using the application programming interface (API) provided by
the OODB. This API is typically a conventional object-oriented language, such as C++ or Smalltalk, that has
been extended with database constructs. A specialized compiler provided with the OODB is then used to trans-
late the source code into executable application code that runs cooperatively with the OODB runtime. The
compiler specializations accommodate the OODB extensions to the language. The OODB runtime typically
consists of one or more servers to manage persistent storage, concurrent access, and other OODB functions.

5.3.2. Application Development with UFO

We next illustrate how we merged UFOÕs software architecture modeling and simulation technology with that
of OODBs. The resulting hybrid represents our solution for modeling and simulating OODB instances in the
design space of OODB system architectures.

Recall from Section 5.1.2. that one of the Þrst difÞcult issues we confronted was that each OODB we studied
had a different application programming interface (API). In order to model the design space for OODBs, we
didnÕt want to implement this multitude of different languages that all did essentially the same thing. Further-
more, in our simulations we wanted to be able to write application code once and then simulate the application
on different off-the-shelf OODBs without having to modify the application code to match the language for that
off-the-shelf OODB.

The approach we took was to generalize the APIs for the OODB instances in our implementation in order to
create a single API that captures the important features of many OODB APIs. Any given OODB architecture
instance may only support a subset of the generalized API. This is reasonable since most applications will only
use a subset of the features available in the API. The key to this approach is to assure that the OODB instance
simulated for an application supports the same set or a superset of the API features utilized by the application.

Recall that we refer to the generalized OODB API as the virtual OODB. The virtual OODB allows application
prototypes to remain independent of the OODB instance that is realized for modeling and simulation. This
independence provides the primary advantage of the virtual OODB: different OODB architectures can be real-
ized and explored without changing the application source code.

Figure 32. Typical Application Development with OODBs

Develop Application
on OODB

Translate
Application Source

Code

Application
Source Code

Executable
Application

OODB
RuntimeCompiler

and
Linker

Specializations

page 89

5.3.2.1. DeÞning Baseline Requirements with UFO

Figure 33. shows how OODB baseline requirements are deÞned using UFO. The top half of the diagram corre-
sponds to the basic modeling and simulation approach shown in Figure 4. on page 7, while the bottom half of
the diagram corresponds to the OODB approach from Figure 32. above. The modiÞcations required to merge
these two techniques are denoted with heavy bold lines. This merger supports building applications using the
virtual OODB API, deÞning OODB requirements for the application, modeling and simulating an OODB
instance that satisÞes these requirements, feedback on the system properties and simulation proÞles, and itera-
tive reÞnement of the requirements.

The task ovals in the diagram are labeled with numbers to indicate the relative order in which the tasks are car-
ried out. Starting with task number 1 at the lower left of the diagram, the source code for an application is writ-
ten using the virtual OODB. This task is drawn in bold to indicate a point of merger between UFO and
conventional OODBs. In this case, the UFO virtual OODB represents the generalization for different conven-
tional OODB APIs.

After the application source code has been created, the requirements for the OODB are deÞned in task 2. These
requirements come from two sources, application source code and developers. Requirements such as whether
or not long-transaction functionality is used by the application can be automatically extracted from the source
code. This explains our decision to place the requirements deÞnition phase after the application source code
has been written. Requirements that canÕt be automatically extracted from the source code, such as whether the
application will be used as a single-user or multi-user application, must be elicited directly from the developer.

Once the requirement variable values are deÞned, they are mapped to architectural parameters in task 3, and
then the architectural parameters are mapped to a software architecture instance in task 5. Static OODB model-
ing properties that can be derived from the static architecture instance, such as the architectural conÞguration
and component sizes, are fed back to the developer in task 6. This is one source of system properties that
assists developers in reÞning and validating OODB requirements for an application.

The OODB architecture simulator produced from task 7 is a primary point of merger between conventional
OODBs and UFO, as illustrated by the bold arrows leaving task 7. Note in the Þgure that the realizations for
the software architecture instance, output from task 7, are specializations to the OODB simulator preprocessor
and runtime. We designed these specializations such that the bulk of the simulator implementation remains
unchanged as the specialization change for different OODB architectures.

As illustrated by the case study in the previous chapter, developers use the feedback from the UFO modeling
and simulation tool to reÞne the requirements, repeat the mappings and simulations, and reevaluate the proÞles
until they have converged on a set of baseline requirements that accurately matches the requirements for the
application. The level of effort to use a tool based on the UFO design can be relatively low since tasks 3, 5, 6,
7, 8, and 9 can be fully automated and task 2 can be partially automated.

5.3.2.2. Evaluating Off-the-Shelf OODBs with UFO

Using the UFO tool to evaluate off-the-shelf OODBs is similar to Figure 33. with the exception of the addition
of Task 4, detecting inconsistencies. This task makes use of information about off-the-shelf OODB architec-
tures in order to identify inconsistencies between the baseline architectural parameters and a particular off-the-
shelf OODB. Inconsistencies are fed back to the developer so that the inconsistencies can be resolved.

Tasks 1, 2, and 3 are the same as in deÞning baseline requirements. Then, once the inconsistencies are resolved
for a particular off-the-shelf OODB, tasks 5, 6, 7, 8, and 9 proceed as in requirements validation. The feedback
about the static modeling properties and the dynamic simulation properties is used to compare the application
requirements and with the feedback from modeling and simulating other off-the-shelf OODB architectures.

page 90

DeÞne
Requirements

Requirement
Variables

Map Requirements
to Architectural

Parameters

Architectural
Parameters

Software
Architecture

Instance

Realize Architecture
Simulator

Map Architectural
Parameters to

Architecture Instance

Determine Static
Properties

Determine Dynamic
Properties

Feedback on
System

Properties

Developer

Detect
Inconsistencies

Prototype Application
on Virtual OODB

Translate
Application Source

Code

Application
Source Code

Executable
Application

Simulation
Preprocessor

Specializations

OODB
Simulator
Runtime

Specializations

1

9

6

4

7

5

3

2

8

Figure 33. Merging the OODB Domain with Architecture Modeling and Simulation

page 91

Developers can explore multiple off-the-shelf OODB architectures for conformance to application require-
ments. When inconsistencies are detected between the application requirements and an OODB in task 4, devel-
opers are notiÞed of requirements not satisÞed by the OODB architecture. Developers identify the off-the-shelf
OODB that results in the fewest inconsistencies with respect to the application requirements in order to Þnd
the OODB with the best conformance. This is consistent with what is observed in software development with
conventional OODB. Developers are often forced to compromise an optimal set of application requirements in
order to use an off-the-shelf OODB that doesnÕt precisely satisfy the optimal application requirements. The
choice on which OODB to use is based on the perceived match to application requirements. The UFO tool is
designed to more accurately and cost effectively identify the off-the-shelf OODB with the best match.

After an off-the-shelf OODB has been selected, the application can be developed on that OODB. However,
application source code written using UFOÕs virtual OODB API cannot be compiled with conventional off-the-
shelf OODBs, so any application source code written for the UFO modeling and simulation will have to be
ported to the API of the selected OODB. While there is at least one industry effort under way to produce a sin-
gle standardized OODB API[9], current OODBs each have a unique API. If at some point in the future an
industry standard API becomes available, then the UFO virtual OODB API can be built using the standard and
application code can be used interchangeable between UFO and other off-the-shelf OODBs that adhere to the
standard.

page 92

page 93

Chapter 6. Implementation of the UFO Tool Set

In this chapter we describe our implementation of the UFO tool set. The implementation is based on the design
presented in the previous chapter. Our discussion focuses on the technological issues associated with the
implementation strategy for a software architecture modeling and simulation tool set that meets our objectives
of conÞguring and validating high conformance OODB architectures at a low cost.

In Section 6.1. we outline our implementation objectives, base implementation technology, and implementa-
tion boundaries. Section 6.2. addresses our implementationÕs tightly integrated data model and tool set. The
base implementation technology provided by the Gandalf system is discussed in Section 6.3. In Sections 6.4.
through 6.14., each of the different tools within the UFO environment is described.

6.1. Overview of the Implementation

6.1.1. Objectives

Our objective with the UFO implementation is to create a software tool set to demonstrate the effectiveness
and practicality of software architecture modeling and simulation technology. As deÞned by the thesis state-
ment, the tools should reduce the cost of developing software architecture instances within a class of software
systems and also improve our ability to instantiate software architectures with high conformance to application
requirements. The UFO tool set is implemented to support our claims that automated mappings from require-
ments to architecture instances combined with modeling and simulation feedback will result in lower develop-
ment costs and higher conformance between requirements and architecture instances.

The following features and tools in the implementation help to accomplish our stated objectives:

¥ a requirements-deÞnition template tool that guides developers in selecting requirement variable val-
ues

¥ automated extraction of certain requirement variable values from the source code to reduce the
requirements deÞnition effort

¥ automated mappings

¥ requirement variable values to architectural parameter values

¥ architectural parameter values to software architecture instances

¥ software architecture instances to simulators

¥ inconsistency detection and feedback for comparative analysis of off-the-shell OODB architectures

¥ OODB architecture static modeling and feedback

¥ OODB architecture simulation, proÞle feedback, and automated proÞle analysis

page 94

6.1.2. Base Technology

We used the Gandalf System[11] as the base technology to implement the UFO tool set. Our decision to use
Gandalf was based on the following reasons:

¥ Gandalf is a software environment generator technology that allows rapid, iterative prototyping of
software development tools such as those required in our UFO implementation.

¥ Gandalf supports tightly coupled tools and data, allowing us to integrate the UFO editing, mapping,
modeling, and simulation tools.

¥ Our familiarity with the Gandalf System allowed us to accurately access the risks, advantages, and
prototyping effort associated with the base technology.

¥ Tools produced using the Gandalf System provided a structure-oriented user interface that provides
users with signiÞcant help and guidance. This makes the tools easier to learn and use.

The UFO tool implementation using Gandalf was approximately an eight person*month effort. The Þnal
implementation consisted of the following.

¥ the data schema and data visualization declarations, which required approximately 5250 lines of
Gandalf source code

¥ operational source code for approximately 400 different data types, which required approximately
20,000 lines of Gandalf source code

This was produced using Gandalf structure-oriented editors, so signiÞcant portions of the code were automati-
cally produced in the editing templates. From the 5250 lines of schema descriptions and 20,000 lines of source
code, Gandalf generated 37,250 lines of C source code and combined this with 116,000 lines of reusable Gan-
dalf code libraries to produce the executable UFO environment. Therefore, the 25,250 lines of source that we
developed resulted in 153,250 lines of C code.

6.2. The Integrated Data Model and Tools

In the UFO implementation, we used GandalfÕs integrated data management system for all of the data struc-
tures in all phases in all of the UFO tools. The advantage of having a single, uniÞed data representation is the
tight integration of tools in the environment. All information is available at all times to all of the tools. This
contrasts with traditional batch-mode tools, where selected information from one tool is batch transformed into
information for the next tool, but not the converse. So, for example, in UFO the semantic analysis tool is con-
currently active during the editing phase to assist developers correct static semantic errors as they are editing a
UFO program.

UFOÕs integrated data and tools are illustrated in Figure 34. The partitioning of the tools and data collections
directly reßects the design and rationale from the previous section. Related collections of data are illustrated
with bold rectangles while the tools that operate on the data are illustrated with rounded rectangles. An arrows
from a tool to a data collection indicates that the tool accesses the data collection. Multiple arrows pointing to
a data collection indicate multiple tools integrated via the data collection.

Starting in the upper left of the diagram, the UFO Language Editor tool stores application programs created by
developers in an Application Driver Code data collection. The Static Semantic Analysis tool associates Static
Semantic Structures with the Application Driver Code. The Static Semantic Analysis tool is tightly coupled
with the UFO Language Editor tool through the data that they share in the Application Driver Code.

page 95

At the lower left of the diagram, the Requirements DeÞnition Editor tool is used by developers to create data
for Requirement Variables. The tool also accesses the Application Driver Code to automatically extract certain
requirement variable values.

The Reqt Vars to Arch Params Mapping tool maps Requirement Variables to Architectural Parameters. The
Off-the-Shelf Inconsistency Detection tool accesses the Architectural Parameters to identify inconsistencies in
the parameters relative to a particular off-the-shelf OODB.

The Arch Params to Arch Inst Mapping tool maps Architectural Parameters to an Architecture Instance
Model. The Architecture Model Generator tool displays the Architecture Instance Model in a textual report for-
mat.

The Arch Inst to Arch Realiz Mapping tool augments an Architecture Instance Model with Dynamic Architec-
ture Structures to create the data for an architecture realization that can be simulated.

In the upper right corner of the diagram, the UFO Application Interpreter tool accesses the Application Driver
Code and the Dynamic Semantic Structures data to execute the application code. The Architecture Simulator
tool, which is tightly coupled with the UFO Application Interpreter, will simulate the operation of the OODB
architecture by accessing the Dynamic Architecture Structures.

After a simulation, the Simulation ProÞle Generator will generate a textual report from the simulation data
stored in the Dynamic Semantic Structures on the Application Driver Code and the Dynamic Architecture
Structures. The ProÞle Analysis tool accesses the Dynamic Semantic Structures on the Application Driver
Code and the Dynamic Architecture Structures in order to identify and report potential optimizations that may
be made by reÞning the requirement variable values.

In Sections 6.4. through 6.14. we discuss the implementation of each of these tools in more detail along with
their associated data. However, before we begin those discussions, a bit more description is needed of the Gan-
dalf implementation technology used to implement the tools and data structures.

Application
Driver Code

Static
Semantic
Structures

Dynamic
Semantic
Structures

UFO
Language

Editor

Static
Semantic
Analysis

Dynamic
Architecture
Structures

Architecture
Instance
Model

Architectural
Parameters

Requirement
Variables

Simulation
ProÞle

Generator
ProÞle

Analysis

Requirements
DeÞnition

Editor

Reqt Vars to
Arch Params

Mapping

Arch Params
to Arch Inst

Mapping

Off-the-Shelf
Inconsistency

Detection

Architecture
Model

Generator

Arch Inst to
Simulator

Initialization

UFO
Application
Interpreter

Architecture
Simulator

Figure 34. UFOÕs Integrated Data Model and Tools

page 96

6.3. Brief Introduction to the Gandalf System

Since its origin in the early 1980's, Gandalf[11] has traditionaly been referred to as a software development
environment generator. Characterized in terms of popular commercial technology today, it might be described
as an object-oriented database with a textual user interface generator for displaying and modifying the contents
of the database. The applications targeted by the Gandalf System have typically been software development
tools such as structure-oriented editors and software conÞguration management systems.

An application is implemented in Gandalf with three orthogonal pieces: data management, data visualization,
and computation. The data management piece deals with the data type declarations for the application. The
data visualization piece deals with displaying an editable, textual view of the data. The computation piece
deals with application operations performed on the data.

In the following subsections we briefly outline these three major components of the Gandalf technology. Fol-
lowing that we describe how each of the UFO tools were implemented using the Gandalf data management,
data visualization, and computation components.

6.3.1. Data Management

Data management in Gandalf is handled by an object-oriented database. The schema for a Gandalf database
consists of declarations for composite types, primitive types, and abstract types. Composite type declarations
describe complex objects that have other objects as sub-components. Primitive types describe primitive objects
such as integer, strings, and constants. Abstract types provide polymorphism, where any one of a collection
composite or primitive types can be instantiated at runtime for an abstract type.

Figure 35. shows an example Gandalf schema fragment, representing a CASE statement stored in the Gandalf
database. The schema is divided into three sections, one for composite types, one for primitive types, and one
for abstract types.

There are three composite types in the example, CASE, WHEN, and STATEMENTS. The left-hand-side (LHS)
of a composite declaration gives the name of the type. The right-hand-side (RHS) can have one of two forms,
variable arity and Þxed arity.

A variable arity RHS declares a sequence of zero or more objects of one abstract type. The CASE declaration is
an example of a variable arity RHS, corresponding to a sequence of zero or more when objects. It has a single
abstract type name enclosed in angle brackets.

Composite Types:

CASE = <when>
WHEN = boolean_expression statement_list
STATEMENTS = <statement>
...

Primitive Types:
TRUE = {static}
FALSE = {static}
VARIABLE = {rep}
...

Abstract Types:

when = WHEN
boolean_expression = VARIABLE FUNCTION TRUE FALSE EQ AND OR NOT
statement_list = STATEMENTS
statement = ASSIGN PROCEDURE CASE LOOP
...

Figure 35. Gandalf Schema Example

page 97

A Þxes arity RHS for a composite type declares a Þxed-length tuple of objects, where each member of the
tuple has a declared abstract type. The WHEN declaration is an example of a Þxed arity RHS, corresponding to
a two member tuple with a boolean_expression object and a statement_list object.

There are three primitive types in the example, TRUE, FALSE, and VARIABLE. The LHS of a primitive decla-
ration gives the name of the type. The RHS can have one of two forms, static and rep. A static primitive
denotes an object with a statically deÞned constant value. In the example, TRUE and FALSE are static primi-
tives. A representation primitive denotes an object with a value that is set at runtime. In the example, VARI-
ABLE is a rep primitive type, corresponding to the name of a variable.

There are four abstract types in the example, when, boolean_expression, statement_list, and
statement. The LHS of an abstract type declaration gives the name of the type. The RHS is a list of com-
posite types and primitive types that can be instantiated for the abstract type at runtime. Abstract types are only
used on the RHS of composite types. In the example, the boolean_expression abstract type can be
instantiated with either a VARIABLE object (a primitive type), a FUNCTION object (a composite type), a
TRUE object (a primitive type), a FALSE object (a primitive type), an EQ object (a composite type), an AND
object (a composite type), an OR object (a composite type), or a NOT object (a composite type).

6.3.2. Data Visualization

The Gandalf data visualization feature allows data objects in a Gandalf database to be displayed to users in dif-
ferent textual representations. This is analogous to report generators provided with many relational databases.
Furthermore, Gandalf allows database objects to be modiÞed, created, and deleted through the same textual
interface.

Each composite and primitive type declaration in the schema language has a view declaration associated with
it that speciÞes how to display the objects of that type. A view declaration contains a mixture of literal text and
view commands. Literal text is displayed as is, while the view commands perform other text formatting and
display operations. Figure 36. illustrates the view declarations for the CASE statement objects in the previous
example. The Þgure also contains some sample text generated under this view declaration.

View Declarations

CASE = <when>
 views:
 (0) "case@+@n@0@n@q@-@nendcase"
WHEN = boolean_expression statement_list
 views:
 (0) "when (@1) then@+@n@2@-"

Example of Displayed Text

case
 when (command == "make") then
 ME.make();
 when (command == "clear") then
 ME.clear();
endcase

Figure 36. Gandalf View Declaration Example

page 98

Under the WHEN type declaration, for example, the view declaration is given as Òwhen (@1)
then@+@n@2@-Ó. This string is interpreted as follows:

¥ Òwhen (Ó is a literal string that is displayed as is

¥ Ò@1Ó is a view command to recursively display the Þrst sub-object (the boolean_expression
object in this example)

¥ Ò) thenÓ is a literal string that is displayed as is

¥ Ò@+@nÓ is two view commands to (1) increase the level of indentation in the displayed text and to
(2) insert a newline

¥ Ò@2Ó is a view command to recursively display the second sub-object (the statement_list
object in this example)

¥ Ò@-Ó is a view command to increase the level of indentation starting at the next line of displayed
text

The result of this view declaration can be seen in the example of displayed text in Figure 36.

Note that abstract types don't have view declarations since they are never directly instantiated as objects in the
database, but rather simply deÞne which composite and primitive object types can be created as sub-objects in
a composite object.

6.3.3. Computation

Similar to other OODBs, the Gandalf OODB uses methods associated with database objects for computation.
In Gandalf, methods are written in a language call ARL, which stands for Action Routine Language.

The one feature of ARL that is a notable distinction from other OODB languages is the way that it is coupled
with the user interface. While most OODB languages have two predeÞned methods for each type of object, the
constructor and destructor, ARL has twelve. In addition to a constructor and a destructor method, the other ten
predeÞned methods are triggered by editing operations on the objects in the database through the user inter-
face. Examples include when the userÕs cursor moves in or out of the displayed representation of an object,
when an existing database object value is modiÞed, and when an object is copied and pasted. Application
implementors can deÞne methods to be executed when any of these predeÞned methods are invoked.

Another way of initiating computation in Gandalf is with extended commands. These commands are accessible
through a command menu in the user interface. Application implementors can deÞne any number of extended
commands for their application.

6.4. UFO Language Editor

Recall from Figure 33. on page 90 that the Þrst step in using the UFO tool set is to develop the application pro-
totype and simulation scripts using the Virtual OODB language. The UFO Language Editor is a syntax-
directed editor for this task.

The language implemented in the syntax-directed editor is as described in Section 5.1.2., starting on page 56.
In this and the other tool descriptions in this chapter, we will present implementation in terms of the three tech-
nical components of the Gandalf implementation technology: data, visualization, and computation.

page 99

6.4.1. Data

As illustrated in Figure 34., the UFO Language Editor tool reads and writes in the Application Driver Code
data collection. Using Gandalf, the application driver code data is structured as an abstract syntax tree, similar
to a parse tree representation of an application program.

Constructs in the UFO language were implemented with 56 composite types, 35 primitive types, and 49
abstract types. Figure 37. shows a sample of some of the typical types in the UFO schema for the application
driver code.

6.4.2. Visualization

As described in Section 6.3.2., with the Gandalf technology the visual representation of the application driver
code is generated from the application driver code data using a view declaration. The user never directly edits
the program text, but rather Þlls in code templates to create underlying data, which in turn is displayed back
through the view. Since the visual representation is generated from the abstract syntax tree data, the application
driver code will always be syntactically correct (assuming that we write the view declarations correctly).

The UFO language editor simultaneously uses two views declarations to generate class deÞnitions. One view
is for the body of the class and the other is for the class interface. The class interface is generated from the
same data as the class body, but the interface view simply displays the signature of the routines that are speci-
Þed as ÒexportedÓ. Therefore, whenever a developer creates a new exported routine, the signature becomes
immediately visible in the class interface. With this approach, the tool eliminates the potential for inconsisten-
cies between the interface and the body of a class deÞnition.

6.4.3. Computation

Gandalf has built in auto-construction routines that will automatically create a nested object whenever the type
of the nested object can be uniquely determined from the schema. So, for example, when a new UFO class
object is created, Gandalf will automatically create nested constructor and destructor objects since the schema
speciÞes that each UFO class has exactly one constructor and destructor component.

The UFO Language Editor does no computation or automation beyond what is automatically provided by Gan-
dalf. In the next section, we describe another tool closely coupled with the language editor that implements
extensive static semantic checking and automation on the application driver code data.

Composite Types:

CLASS = class_name component_decls exported_routines local_routines constructor destructor
DESTRUCTOR = formal_parameters variable_decls statement_list
VARIABLE_DECL = variable_name type

Primitive Types:

CLASS_NAME = {rep}
INTEGER = {rep}
TRUE = {static}

Abstract Types:

lhs = VARIABLE_PUT COMPONENT_PUT RESULT ROOT_PUT
arithmetic_expression = VARIABLE_GET COMPONENT_GET PARAMETER_GET FUNCTION_APPLICATION INTEGER PLUS
 MINUS TIMES DIVIDE MOD STR_TO_INT

Figure 37. UFO Schema Sample

page 100

6.5. Static Semantic Analysis

The UFO Static Semantic Analysis tool provides the same type of static semantic error checking as a conven-
tional compiler. Furthermore, the UFO language editor and the static semantic analysis tool are tightly coupled
through shared data, so the static semantic analysis tool can help to automate some editing tasks and to prevent
users from ever introducing static semantic errors in the application driver code.

6.5.1. Data

As shown in Figure 34., we extend the data representation of the application driver code with static semantic
structures. The static semantic analysis tool accesses both the application driver code data and static semantic
data structures in order to do error checking, and in some cases to prevent the editor from completing opera-
tions that would lead to an error in the application driver code.

The static semantic data structures include the following:

¥ Each object in the application driver code representation is given a status attribute that indicates
whether the static semantic correctness of the object is currently OK, not OK, or unknown. This
value changes as the application driver code is modiÞed.

¥ Declaration sites and use sites are linked and maintained for the following named constructs in the
UFO language:

¥ Classes and Root classes

¥ Class components

¥ Functions, Procedures, and Boot procedures

¥ Parameters

¥ Local variables

We implemented the static semantic constructs for declaration/use site maintenance using 1 Gandalf composite
type, 1 primitive type, and 1 abstract type.

6.5.2. Visualization

None of the data in the static semantic structures is presented to the user through a view. Static semantic errors
that are detected by the tool are reported to the user through an error window.

6.5.3. Computation

The different type of static semantic computations that we do can be grouped into error detection, error preven-
tion, and automated editing. These will be addressed in the following subsections. All of these static analysis
computations are structured in a common framework that is used to trigger localized semantic analysis under
well deÞned conditions editing.

6.5.3.1. The Static Semantic Analysis Framework

The static semantic analysis framework provides a uniform scheme for doing semantic checks and mainte-
nance for all objects in the application code representation. This framework simpliÞes our job of writing static
semantic checks by encapsulating with each UFO program construct a uniform method for checking and main-
taining semantic consistency.

page 101

Each object has a status attribute and a Check method. When Check is called at the root of a subtree in the
abstract syntax tree, it is called recursively to the child objects, and then to their child objects, until the leaves
are reached. Then the semantic checks are made locally at each leaf object, the results propagated up one level
to the parents of the leaves, and then the local semantic checks are made at each leaf parent. This continues
until the semantic status propagates up to the subtree root where the semantic check was initiated.

For example, if the Check method is called on an arithmetic plus object, the Check method is recursively called
on the left expression and the right expression. If the two expressions evaluated correctly, then the plus static
semantic check is made to see if the left and right expressions have compatible types for an arithmetic plus. If
the local type check is positive, then the status attribute of the plus object is set to OK.

The status attribute for each object can have one of three values:

¥ OK, meaning that local semantic checks have been done and no errors were detected

¥ NOTOK, meaning that local semantic checks have been done and errors were detected

¥ UNKNOWN, meaning that local semantic checks have not been done

When the status of any descendent of an object is NOTOK or UNKNOWN, then the status of that object is
always UNKNOWN. Only when the status of all descendents of the object is OK are the local semantic checks
done on an object. After the local semantic checks are done on an object, its status is set to either OK or
NOTOK.

Static semantic analysis is automatically triggered by one of GandalfÕs predeÞned methods. The Exit method
is called whenever the user's editing cursor moves out of the displayed subtree for an object. Checking is trig-
gered on Exit since this usually implies that the user is Þnished editing within the subtree of that object. We
trigger the static semantic analysis from the Exit method for the following modular program units:
CLASS, ROOT_CLASS, CONSTRUCTOR, DESTRUCTOR, FUNCTION_DECL, PROCEDURE_DECL,
PROGRAM_DECL, and PRELUDE.

6.5.3.2. Static Semantic Error Detection

One form of static semantic analysis in UFO is error detection. Error detection simply reports static semantic
errors to the user. However, unlike a compiler, the UFOÕs static semantic error detection is tightly coupled with
the program editor so that errors can be detected and reported when the user makes the error.

The following types of error detection are implemented in UFO:

¥ Declaration site and Use site inconsistency for classes, functions, procedures, components, vari-
ables, and parameters. Errors are reported for items used but not declared and for items declared but
not used.

¥ Name clashes within a scope for components, variables, and parameters. A declared name must be
unique across all three of these in each scope.

¥ Type checking. For each typed object in the language, the types at use sites are checked for consis-
tency with types at declaration sites.

¥ Signature checking. For each function and procedure in the language, the signatures (number and
types of parameters and returns) at use sites are checked for consistency with signatures at declara-
tion sites.

page 102

6.5.3.3. Static Semantic Error Prevention

Another form of static semantic analysis in UFO is error prevention. Similar to error detection, error preven-
tion detects static semantic errors as they occur, but goes a step further in that it prevents the associated errors
from going into the application driver code. This is only possible in cases where the source of the error can be
uniquely determined. The following types of error prevention are implemented in UFO:

¥ Name clashes within a scope for:

¥ Classes. Each class must have a unique name. An attempt to create a duplicate name
will fail and produce an error message.

¥ Functions and procedures. Within a class, functions and procedures must have unique
names. An attempt to create a duplicate name will fail and produce an error message.

¥ Some UFO language constructs are only legal in certain contexts. Illegal constructions are blocked
for:

¥ the RESULT keyword used outside the scope of a function declaration

¥ the ROOT keyword used outside the scope of a transient transaction

¥ any persistent transaction construct used outside the scope of binding block or inside of
a transient transaction block

¥ any repository command used outside of the prelude or inside of a binding block

¥ any function or procedure used in the prelude

¥ a NEW operation outside the dynamic scope of a transient transaction

¥ an AbortTransientTransaction operation outside the dynamic scope of a transient trans-
action

¥ a BindingBlock construct outside of the prelude

6.5.3.4. Automated Editing Based on Static Semantic Analysis

Another form of static semantic analysis in UFO includes automatic modiÞcations to the abstract syntax tree
for the application driver code. This, of course, is only appropriate when the modiÞcations can be unambigu-
ously computed by static semantic analysis. UFO currently applies automatic editing in one simple case. The
static semantic analysis tool automatically creates the constructor return type for a class from the class name
whenever the class name is created or modiÞed

6.5.3.5. Extended Commands

Static semantic checks in UFO can also be triggered manually from a menu by the user. There are two different
forms of manual checks, implemented as Gandalf extended commands. The Þrst is for triggering static seman-
tic checks on a user highlighted portion of the program text. The second is for triggering static semantic checks
from the root of the entire abstract syntax tree, forcing all errors to be reported.

page 103

6.6. UFO Language Interpreter

As developers create their application driver code, they can execute, test, and debug it using the UFO Lan-
guage Interpreter. The interpreter fully implements the dynamic semantics of the UFO language as described
in Section 5.1.2., but it does none of the OODB simulation and proÞling. However, as we show later in this
chapter, the interpreter also serves as the front end that drives the OODB simulator.

6.6.1. Data

Figure 34. illustrates that the interpreter operates on two data collections, the Application Driver Code and the
Dynamic Semantic Structures. The dynamic semantic structures are extensions to the application driver code
and static semantic structures that support execution of application programs. The dynamic semantic structures
were implemented in Gandalf with 17 composite types, 22 primitive types, and 22 abstract types.

The data in this collection represents and implements UFO repositories, long and short transactions, the object
memory heap, and the call stack. Some data structures from the static semantic structures, such as the declara-
tion and use site links, span the boundary between static and dynamic structures. They are used by both the
static semantic checker and the interpreter.

6.6.2. Visualization

None of the data in the dynamic semantic structures is presented to the user through a view. The interactions
with the application user from the UFO language terminal I/O are handled by the interpreter with a command
line window.

6.6.3. Computation

The interpreter tool is invoked by the user from the extended command menu. In keeping with our tight cou-
pling between tools, the interpreter runs directly off of the application driver code representation produced by
the language editor. Each object in the application program has a method call Execute that performs the local
dynamic semantic computation, possibly invoking the Execute method on other objects as prescribed by the
language semantics.

The execution begins at the object representing the language prelude. The Execute method on the prelude
object creates and initializes call stack objects for the prelude variables and then calls Execute on the prelude
statement list object. When that call returns, program execution is Þnished.

The prelude statement list object simply does the recursive invocation of Execute on each statement object in
the list. One such statement might be a CASE statement. The CASE statement object sequentially iterates
through the WHEN clause objects, and for each will invoke the Execute method on the boolean guard expres-
sion object. If, after evaluation, the expression has a value of TRUE, the statement for that WHEN clause will
have its Execute method invoked and the CASE statement will terminate.

The UFO language construct, NEW, is a function that creates a new object and calls the user deÞned construc-
tor for the class of the new object. When the Execute method is called on a NEW expression, a result pointer is
allocated for the call stack. The static semantic data structures contain a pointer from each NEW expression
back to the class for the new object. Using the class deÞnition as a ÒtemplateÓ, a new object is allocated and
initialized from the object heap in the dynamic semantic data area. The constructor for that object and class is
then triggered with the Execute method.

With UFO nested persistent transactions, there can be many different versions of an object due to modiÞca-
tions in different transactions. The conventional approach to implementing transactioned objects is to have a

page 104

lock table associated with each transaction that keeps track to locked and modiÞed object for the transaction. In
the UFO implementation, however, we maintain all of the transactioned versions for an object within the object
data structure. Therefore, given an object and the current transaction we can uniquely access the components
for that object in the transaction. Using this approach, the transaction commit operation modiÞes the internal
state of each modiÞed object in a transaction rather than updating transaction lock tables.

6.7. Requirements DeÞnition Editor

After developers create the application driver code, their next step is to use the UFO Requirements DeÞnition
Editor to deÞne the requirements for the application, which is shown as task 2, DeÞne Requirements, in Figure
33. on page 90. The requirements deÞnition editor is implemented as a Gandalf syntax-directed editor.

The ÒlanguageÓ implemented in the requirements deÞnition editor is deÞned by a requirement variables
abstract syntax. The language is viewed by the user of the requirements deÞnition editor as a requirements def-
inition template.

6.7.1. Data

As shown in Figure 34., the requirements deÞnition editor accesses data from the Application Driver Code and
the Requirement Variables data collections. Access to the application driver code, which is read only, allows
the requirements deÞnition editor tool to automatically derive some of the requirement variable values from
the content of the application driver code.

The requirement variables data collection was implemented with 12 composite types, 22 primitive types, and
29 abstract types. The implementation of the requirement variables data follows directly from the design
description in Section 5.1.8.

6.7.2. Visualization

The view declaration used by the requirements deÞnition editor to display the requirement variables data is a
requirement variables template. This template is shown in Figure 8. on page 35 prior to any requirement vari-
ables data being created, and in Figure 18. on page 47 after some example data has been created using the edi-
tor.

6.7.3. Computation

There is only one computation associated with UFOÕs requirements deÞnition editor tool. This computation
will scan the application driver code data collection in order to derive values for two requirement variable val-
ues. The computation is automatically invoked when a new requirement variable template is initialized with an
extended command.

The two requirement variable values extracted are Long Transactions, which is a boolean value indicating
whether or not long transaction support is required in the OODB architecture, and Reentrant Partitions, which
is a call graph representation that is used to identify processes in the OODB architecture that are required to be
reentrant.

The computation for determining whether or not long transactions are required is straightforward. The portion
of the abstract syntax tree representing the application program prelude is scanned for any long transaction
constructs, such as CreatePersistentTransaction. If none are found, then the Long Transaction requirement
variable data value is created as FALSE, otherwise TRUE.

page 105

The computation for the reentrant partition call graph requirement variable creates a graph representing the
method invocations among objects in different cluster partitions. Cycles are detected in the graph to indicate
reentrant cluster sets (i.e., cluster sets that receive incoming method invocations while waiting for the comple-
tion of an outgoing method invocation).

6.8. Requirement Variable to Architectural Parameter Mapping

After developers create the requirement variable values, the next step is to use the UFO Requirement Variable
to Architectural Parameter Mapping tool to deÞne the architectural parameters for the OODB. This is shown
as task 3, Map Requirements to Architectural Parameters, in Figure 33. on page 90. The mapping is imple-
mented as a Gandalf extended command.

6.8.1. Data

As shown in Figure 34., the requirement variables to architectural parameters mapping accesses data from the
Requirements Variables and Architectural Parameters data collections. Access to the requirement variables is
read only. This data is used by the mapping to derive the architectural parameter values.

The implementation of the requirement variables data collection was described in the previous section. The
architectural parameters data collection was implemented with 13 composite types, 31 primitive types, and 32
abstract types. The implementation of the architectural parameters data follows directly from the description in
Section 5.1.6.

6.8.2. Visualization

The architectural parameters are typically not of interest to developers using UFO. However, we provide a sim-
ple view for the architectural parameters, primarily for the purposes of debugging. Figure 11. on page 39
shows an example of the architectural parameter data view.

6.8.3. Computation

The requirement variables to architectural parameters mapping is implemented as a Gandalf extended com-
mand and is therefore invoked by users from a menu. When the mapping is invoked, it Þrst checks to see if the
requirement variables data is complete. If so, the mapping begins a top down construction of the architectural
parameters data.

6.9. Off-the-Shelf OODB Inconsistency Detection and Feedback

The OODB Inconsistency Detection and Feedback tool provides developers using UFO with information
about differences between a set of architectural parameter values and an off-the-shelf OODB architecture. This
is illustrated as task 4, Detect Inconsistencies, in Figure 33. on page 90.

6.9.1. Data

As shown in Figure 34., the inconsistency detection tool accesses data from the Architectural Parameters data
collection. This access is read only. The architectural parameters are created by the requirement variables to
architectural parameters mapping, described in the previous section.

page 106

6.9.2. Visualization

The inconsistency detection tool does not provide a view of the data to users, but rather inconsistencies that are
detected by the tool are reported to the user through a message window. Section 4.3.1.1. on page 43 shows
examples of inconsistency reports.

6.9.3. Computation

Through a Gandalf extended command menu, users select the off-the-shelf evaluation mode and the off-the-
shelf OODB architecture of interest. Currently ObjectStoreLite, Objectivity, and ITASCA are the off-the-shelf
OODBs supported. After the requirement variables to architectural parameters mapping is complete, the incon-
sistency detection and feedback tool is automatically invoked and any inconsistencies detected are reported to
the user. The implemented inconsistency analysis is described in Section 5.2.4.

6.10. Architectural Parameter to Software Architecture Instance Mapping

After developers have mapped to architectural parameter values, their next step is to use the UFO Architectural
Parameter to Architecture Instance Mapping tool to deÞne the architecture instance description for the OODB.
This is shown as task 5, Map Architectural Parameters to Architecture Instance, in Figure 33. on page 90. The
mapping is implemented as a Gandalf extended command.

6.10.1. Data

As shown in Figure 34., the architectural parameters to architecture instance mapping accesses data from the
Architectural Parameters and Architecture Instance Model data collections. Access to the architectural parame-
ters is read only. This data is used by the mapping to derive the architecture instance data.

The architecture instance data collection was implemented with 38 composite types, 48 primitive types, and 63
abstract types. The implementation of the architecture instance data follows directly from the description in
Section 5.1.5. Recall from that section that architecture instances are deÞned in terms of conÞguration nodes.
Each conÞguration node is implemented as an object in the Gandalf abstract syntax tree.

6.10.2. Visualization

Visualization of the architecture instance data, produce by the mapping from architectural parameters to archi-
tecture instances, is described in the next tool section, Static Modeling Feedback.

6.10.3. Computation

The architectural parameter to architecture instance mapping is implemented as a Gandalf extended command
and is therefore invoked by users from a menu. When the mapping is invoked, it Þrst checks to see if the archi-
tectural parameter data is complete. If so, the mapping begins a top down construction of the conÞguration
node data. The mapping is implemented according to the pseudo code description in Section 5.1.7.

page 107

6.11. OODB Architecture Model Generator

The OODB Architecture Model Generator tool provides developers using UFO with information about the
structure and size of OODB architecture instances produced by the mapping from architectural parameters to
architecture instances. This is illustrated as task 6, Collect Static Properties, in Figure 33. on page 90.

6.11.1. Data

As shown in Figure 34., the Architecture Model Generator accesses data from the Architecture Instance Model
and Application Driver Code data collections. The conÞguration nodes in architecture instance model data rep-
resentation are create by the architectural parameter to architecture instance mapping, described in the previ-
ous section. The conÞguration nodes have attributes that specify and accumulate size information about the
architectural components represented by the conÞguration node. The architecture model generator tool reads
and writes to these attributes in order to construct the static sizing model of an OODB architecture instance.
The application driver code is scanned by the tool to produce executable code sizing estimates. The architec-
ture size data was implemented according to the description in Section 5.2.1.2.

6.11.2. Visualization

The displayed representation of OODB architecture instances is done as two different Gandalf views. One
view focuses on the architecture structure represented by the conÞguration nodes, while the other view focuses
on the architecture sizing represented by the attribute data. Figure 19. on page 48 shows an example of the
architecture structure view while Figure 18. on page 47 shows an example of the sizing view. The different
views are selected via extended commands that are available in the UFO tool menu.

6.11.3. Computation

The computation associated with the architecture model generator tool calculates and accumulates the size
attributes on the conÞguration nodes. The toolÕs algorithm is a bottom up traversal of the conÞguration nodes
that calculates attribute values at each conÞguration node, based on local data and data from child conÞgura-
tion nodes. Each conÞguration node object has a method, ArchSummary, that performs the sizing computa-
tions for that object.

Size data falls generally into one of three categories:

¥ architectural component size. Local size contributions are stored as constants in the ArchSummary
method code for the conÞguration nodes. Total architectural component size is calculated as local
size plus size contributions from child conÞguration nodes.

¥ cache size. Cache size is initialized to predeÞned values in the conÞguration nodes and can be
adjusted by developers if necessary.

¥ code space. Code space is calculated from the lines of code application driver code in classes allo-
cated to cells in a particular conÞguration node.

6.12. Software Architecture Instance to Simulator Initialization

After developers have mapped to the architecture instance model, they can use the UFO Architecture Instance
to Simulator Initialization tool to initialize the OODB simulator, which is shown as task 7, Realize Architecture
Instance, in Figure 33. on page 90. This tool is implemented as a combined Gandalf extended command and
syntax-directed editor.

page 108

6.12.1. Data

As shown in Figure 34., the architecture instance to simulator initialization tool accesses data from the Archi-
tecture Instance Model, Application Driver Code, and Dynamic Architecture Structures data collections.
Access to the architecture instance and the application driver code is read only. This data is used by the map-
ping to derive the dynamic architecture structures data.

The dynamic architecture structures data serve three purposes, (1) deÞnition of simulation constants, (2) rela-
tionships between object references and cells, and (3) simulation proÞle attributes. These dynamic architecture
structures were implemented with 10 composite types, 10 primitive types, and 28 abstract types, plus attributes
on many of the conÞguration nodes.

The simulation constants deÞne computer system characteristics that will be used by the simulator, such as
CPU clock speeds, disk access times, network speed, and inter-process communication costs. The speciÞc data
is deÞned in Section 5.2.2.2. Developers can interactively set and modify these data values prior to simulation.

The portion of the dynamic architecture structures data dealing with relationships between object references
and cells is used by the simulator to help track when computation moves between clients and object servers in
the architecture. Every time a method invocation is simulated between two objects, this collection of data is
used to determine if the objects are in different cells and if the objects are on different processors.

Another portion of the dynamic architecture structures are the attributes for collecting simulation proÞle data.
These attributes will be described in greater detail in the Architecture Simulator tool and Simulation ProÞle
Generator tool sections, where they are initialized, modiÞed, and displayed to the user.

6.12.2. Visualization

The simulation constants data is displayed to the user through a view in a Gandalf syntax-directed editor.
Developers can edit and view the simulation constants using this editor. An example of the simulation con-
stants view from the editor is shown in Figure 12. on page 40.

The object to cell relationship data is also displayed to the user through a view in a Gandalf editor. This tool
creates Òrole declarationsÓ for each application object type allocated to a cell. Role declarations associate the
destination of an object pointer component in a class with a cell. Developers use the editor to enter a cell and
role destination for each object reference component in each role declaration.

6.12.3. Computation

The only computation associated with the architecture instance to simulator initialization tool is the automated
initialization of the role declarations in the object to cell relationship data. This part of the tool scans through
each cell declared in each client and object server, and for each application class allocated to a cell creates a
role declaration. The role declarations are modeled after the class declarations in the application driver code,
and are created by scanning the application driver code data.

6.13. UFO Architecture Simulator

With the application driver code, the OODB architecture instance, and the initialized simulation structures in
place, developers use the UFO Architecture Simulator to explore the dynamic properties of the architecture.
The simulator fully implements the dynamic semantics of the UFO reference architecture as described in Sec-
tion 5.1.3. Design of the simulator is described in Section 5.2.2. The simulator is implemented as an extension
to the UFO language interpreter, described previously in Section 6.6.

page 109

6.13.1. Data

Figure 34. illustrates that the simulator, in conjunction with the interpreter, operates on three data collections,
the Application Driver Code, the Dynamic Semantic Structures, and the Dynamic Architecture Structures.
These three data collections, all described in previous tool sections, are the culmination of the developersÕ
efforts to conÞgure an optimal OODB architecture for the application. During execution, the simulator tool
will accumulate performance proÞle data in the dynamic semantic structures and dynamic architecture struc-
tures that will help developers evaluate the OODB architecture. The architecture performance data is imple-
mented according to the description in Section 5.2.3.

6.13.2. Visualization

None of the data used during simulation is presented to the user through a view. The next tool section describes
how the performance proÞle data is fed back to users after simulation.

6.13.3. Computation

The simulator tool is invoked by the user from the extended command menu. The simulator is an extension to
the UFO language interpreter that not only interprets the language semantics, but also interacts with the OODB
architecture instance to simulate the architecture operation. In the interpreter are simulation ÒhooksÓ that are
treated as stubs during interpretation but drive the architecture during simulation.

As a simple example of simulator execution, when the interpreter executes the UFO CreateRepository com-
mand, a call is made to SimCreateRepository. During interpretation, this call is treated as a stub that returns
immediately, but during simulation, the call will increment a counter attribute on the repository manager con-
Þguration node.

For a more complex example, consider the following simulation scenario for assigning to a component value in
an OODB object.

1. The UFO interpreter calls Execute on Component_Put language construct. This method imple-
ments the language semantics and then calls SimPutComponent to simulate the OODB architecture
operations.

2. SimPutComponent increments the component write counts at the component declaration and com-
ponent use sites. It then calls AccessCell, which checks to see if the object is marked as active.

3. The object is currently not active, so ActivateCell is called. ActivateCell checks to see if cache can
accommodate another cell. The cache is currently full, so ActivateCell replaces least recently used
cells until there is enough space for the new cell.

4. As each least recently used cell is replaced in the cache, the cell is marked as inactive and the cache
replacement count is incremented on the cache conÞguration node. If a replaced cell is dirty, then
PassivateCell is called to simulate the write back to persistent storage.

5. PassivateCell will increment the cell passivation count for the cell type, increment the object passi-
vation count by the number of objects currently in the cell, calculate the cell size, and update the
maximum cell size attribute on the cell type declaration is the passivated cell size is larger than the
current maximum.

6. ActivateCell then marks the new cell as active and increments the cell activation count and object
activation count.

7. Finally, SimPutComponent marks the cell as dirty to indicate the component modiÞcation in that
cell.

page 110

6.14. Simulation ProÞle Generator

The OODB Simulation ProÞle Generator tool provides developers with proÞle information on a simulation
run. This is illustrated as task 9, Collect Dynamic Properties, in Figure 33. on page 90.

6.14.1. Data

As shown in Figure 34., the Simulation ProÞle Generator accesses data from the Dynamic Architecture Struc-
tures and the Dynamic Semantic Structures data collections, both described in previous sections. The simula-
tion proÞle generator tool reads these attributes, performs calculations based on simulation constants, and
accumulates results in other attributes in order to construct the simulation proÞle data. The architecture perfor-
mance data was implemented according to the description in Section 5.2.3.

6.14.2. Visualization

The displayed representation of the simulated OODB architecture proÞle is done as a Gandalf view. After the
proÞle attributes have been fully derived, the view displays the proÞle attributes on the conÞguration nodes in
order to show the performance proÞle of the architecture instance and displays the proÞle attributes on the
dynamic semantic structures on the application driver code in order to trace the performance loads back to their
source in the application. Figure 14. through Figure 17. on page 42 through page 46 show examples of the
architecture proÞle report view.

6.14.3. Computation

During simulation, only simple counts are collected at the low level conÞguration nodes in the architecture
instance. This helps to simplify the simulator implementation and enhance performance. It is only after simula-
tion and when a user requests a proÞle report are the counts accumulated, the higher level proÞle data calcu-
lated, and the report generated.

The toolÕs algorithm is a bottom up traversal of the data structures. Attribute values at each level of the archi-
tecture are calculated, based on local data, data from sub-components, and the simulation constants. Each data
object that is part of the proÞle computation has a method, ProÞleDigest, that performs the accumulation and
computations for that object.

For example, during simulation, every time that a cell in a client is activated, a counter on the appropriate cell
declaration is incremented by one and another counter on the cell declaration is incremented by the number of
object in the cell at that time. After simulation, when the ProÞleDigest method is call on the cell declaration
object, the following calculation is performed:

¥ the number of cell activations is multiplied by the cell activation cost from the simulation constants

¥ the number of object activations is multiplied by the object activation cost from the simulation con-
stants

¥ the two activation cost values are added together and divided by the cpu speed from the simulation
constants

¥ the result is stored in an activation time attribute

When the ProÞleDigest method is called on the client object, the method will access each cell declaration con-
Þguration node allocated to the client to accumulate the total cell activations, the total object activations, and
the total activation time. These results are all store in attributes on the client object. Results are similarly accu-

page 111

mulated at higher and higher levels in the architecture until the overall costs for the architecture are accumu-
lated. The results at all levels are displayed in the proÞle report.

The simulation proÞle generator is invoked by the user from the extended command menu. The tool Þrst per-
forms the computation and accumulation of the proÞle data, and then changes to the proÞle report view.

Accumulated and calculated proÞle data falls generally into one of the following categories. See Section
5.2.3.1. for details on the simulation proÞle data design.

¥ computations of execution times accounted for in the various subsystems and overall

¥ counts and times accumulated for intra-cell, inter-cell, and inter-process method calls

¥ counts and times accumulated for object and cell creations, activactions, and deactivations

¥ maximum dynamic cell size for all cells

¥ counts and times accumulated for transaction creates, commits, and aborts

¥ counts accumulated for repository creates, deletes, and bindings

6.15. Automated ProÞle Analysis and Feedback

The Automated ProÞle Analysis and Feedback tool provides developers using UFO with information about
potential architectural optimizations based on information in a simulation proÞle. This is an aid to manual
analysis of the simulation proÞle reports, generated as described in the previous section. This is illustrated as
task 9, Collect Dynamic Properties and the subsequent Feedback on System Properties in Figure 33. on page
90.

6.15.1. Data

As shown in Figure 34., the proÞle analysis tool accesses data from the Dynamic Architecture Structures and
the Dynamic Semantic Structures data collections. This access is read only and occurs after simulation and
after the simulation proÞle generator tool has accumulated and calculated all of the proÞle report data.

6.15.2. Visualization

The proÞle analysis tool does not provide a view of the data to users, but rather suggestions that are determined
appropriate by the tool are reported to the user through a message window. Section 7.2.3.1. on page 146 shows
an example of a suggested reÞnement to OODB requirements, generated as feedback to the user by the proÞle
analysis tool.

6.15.3. Computation

The proÞle analysis tool is automatically invoked from the simulation proÞle tool after a simulation proÞle
report has been generated. The proÞle analysis supported by the tool is described in Section 5.2.3.1.

The toolÕs algorithm is a bottom up traversal of the conÞguration nodes in the architecture instance being sim-
ulated. Each conÞguration node has a method, Feedback, that performs the proÞle analysis for the proÞle data
in that conÞguration node to make a local determination if any suggested reÞnements are appropriate.

page 112

6.16. Boundaries

The UFO tool implementation closely follows the design outlined in Chapter 5. The one exception is that the
implementation simulates multiple users interactions sequentially rather than concurrently. Since the UFO
model of concurrency uses serializable transactions, simulating with serialized user interactions rather than
concurrent interactions does not change the operational semantics of the UFO language. However, two things
that will not be reßected with serialized simulations are (1) concurrency conßicts and (2) performance degra-
dation due to excessive numbers of concurrent users.

Our reason for not implementing concurrency in the UFO simulator was simply that Gandalf does not support
concurrent execution threads. We felt that the complexity and level of effort required to manually implement
the concurrent simulation threads was not justiÞed by the limited beneÞts, identiÞed in the previous paragraph,
of having simulated concurrency.

page 113

Chapter 7. Experiments and Results

In this chapter we describe the experiments that we performed to determine how well our modeling and simu-
lation approach and the UFO tool support our hypothesis. In the experiments we estimate the effort associated
with using UFO to deÞne and reÞning OODB requirements and to evaluate and select off-the-shelf OODBs.
We also estimate how well the resulting OODB architectures conform to the application requirements.

We used the UFO tool for experiments on two different OODB-based applications. The Þrst application is the
workßow diagram editor described in the case study in Chapter 4. This application requires a single-user
OODB that is optimized for long editing activities on one or more clusters of data objects. The second applica-
tion is a workßow management system that uses that workßow diagrams produced with the editor to help mon-
itor progress on projects. The second application requires a multi-user OODB that is optimized for a high
throughput of short updates on small clusters of objects. These experimental applications are based on experi-
ences developing similar commercial products using OODB technology.

As noted above, the applications store similar data structures in an OODB but have very different OODB
requirements and correspondingly different architectures. The different access patterns and user expectations
associated with the two applications lead to different OODB requirements and different OODB architectures.
The Þrst application requires a client-based OODB, where object clusters are moved to the client machine for
access to the objects. The second application requires a server-based OODB where object clusters reside on a
collection of servers that indirectly provide object access to a large number of concurrent clients.

As we will see from these experiments, the UFO tool allows us to accurately deÞne requirements and select
off-the-shelf OODBs at a fraction of conventional costs.

7.1. Experiment 1: An OODB for a Workßow Diagram Editor

The description of the Þrst experiment is organized into subsections with the following order and content:

¥ Conceptual view of application

¥ Design of the classes

¥ Design and implementation of simulation scripts to drive the experiments with typical scenarios

¥ Use of the UFO tool to prototype requirements. Use of resulting modeling and simulation data to
reÞne requirements.

¥ Use of the UFO tool to evaluate off-the-shelf OODBs. Feedback, modeling, and simulation data to
compare and select an OODB for the application.

¥ Modeling and simulation data to illustrate conformance. Estimates on the development costs.
Resulting cost/conformance proÞles.

The concepts in the workßow diagram editor application are illustrated in Figure 38. The Primitive Task is a
deÞned unit of work within a project. For example, shingling the roof might be deÞned as a primitive task in
building a house. A Resource is a person or group of people assigned to carry our a primitive task. For exam-
ple, a rooÞng company might be assigned to carry out the task of shingling a roof. Multiple primitive tasks can
be grouped together to form a larger unit of work called a Composite Task. For example, a composite task for
rooÞng a house might consist of primitive tasks for (1) framing the roof, (2) putting on the deck, (3) putting up
the ßashing, (4) applying the felt, and (5) shingling. Primitive tasks can both produce and use Products. In par-
ticular, products produced by one primitive task can be used by subsequent tasks, such as the roof frame being
used to apply the roof deck.

page 114

7.1.1. The Classes in the Application Driver Code

The workßow diagram editor concepts were implemented using eleven classes in the UFO language. This pro-
vided a realistic yet manageable size of application for simulation and experimentation Ð approximately 1800
lines of UFO source code.

The classes and their inter-relationships are illustrated in Figure 39. and are described in the following eleven
paragraphs. Only the class name and Component parts of each class are listed. Recall that the Components part
is the private data for object instances of the class. All of these classes are for persistent objects that are stored
in the OODB.

RootClass VPML_Root. This class is for the root object in a workflow diagram. The graph component points
to the outermost composite task in the data structure. The other components are all for maintaining the global
editing context for the editor.

RootClass VPML_Root
...
 Components
 graph: CompositeTask;
 composite_context: CompositeTask;
 current_comp: CompositeTask;
 current_prim: PrimitiveTask;
 marked_prod: Product;

Class CompositeTask. This class is for the composite task entity illustrated in Figure 57. The name compo-
nent is the name for the composite task. The description is used to store the textual description of what the task
is to accomplish. The composites and primitives both point to the head of a linked list of the nested composite
tasks and primitive tasks within the composite task. The parent points to the composite task that contains the
composite task, while the sibling points to the next composite task in the linked list of composite tasks in the
parent.

Class CompositeTask
...
 Components
 name: STRING;
 description: STRING;
 composites: CompositeTask;
 primitives: PrimitiveTask;
 sibling: CompositeTask;
 parent: CompositeTask;

Figure 38. Entity-Relationship Diagram of the Workßow Editor Application

Composite
Task

Primitive
Task Product

Resource

Produces

Uses
Composed of

Composed of

Performs

page 115

Figure 39. Class Diagram of the Workßow Editor Application

Composite
Task

Primitive
Task

Product

Resource

VPML Root

Flow Chain

Product
Flow

Node

Product
Content

Product
Member

Product
Set

graph

composites

parent

sibling

parent

primitives

task

resource

source
output

destination

input

outßow

destination

inßow

content

lnode rnodemembers

set

product

next lnode rnode next

outßows
top

page 116

Class PrimitiveTask. This class is for the primitive task entity illustrated in Figure 57. The name component is
the name for the primitive task. The description is used to store the textual description of what the task is to
accomplish. The parent points to the composite task that contains the primitive task, while the sibling points to
the next primitive task in the linked list of primitive tasks in the parent. The resource component points to the
resource entity in Figure 57. The product component points to the product entity produced by the task, while
the input component points to the data structure that maintains the set of products that serve as inputs to the
task.

Class PrimitiveTask
 ...
 Components
 name: STRING;
 description: STRING;
 parent: CompositeTask;
 resource: Resource;
 output: Product;
 input: ProductSet;
 sibling: PrimitiveTask;

Class Resource. This class is for the resource entity illustrated in Figure 57. The name component is the name
for the resource. The description is used to store the textual description of the type of resource needed to
accomplish the associated task. The task points to the primitive task that the resource is to accomplish.

Class Resource
 ...
 Components
 name: STRING;
 description: STRING;
 task: PrimitiveTask;

Class Product. This class is for the product entity illustrated in Figure 57. The name component is the name
for the product. The description is used to store the textual description of the product. The source component
points to the primitive task that produces the product. The destination component points to a data structure that
maintains the list of primitive tasks for which the product serves as an input.

Class Product
 ...
 Components
 name: STRING;
 content: ProductContent;
 description: STRING;
 source: PrimitiveTask;
 destination: ProductFlow;

Class ProductSet. This class serves as the anchor for a linked list that maintains a set of products that serve as
input to a primitive task. The destination component points to the primitive task. The members component
points to the head of the linked list, which will be an object of type ProductMember.

Class ProductSet
 ...
 Components
 destination: PrimitiveTask;
 members: ProductMember;

Class ProductMember. This class serves as the elements in the linked list for the ProductSet (see previous
section). The set component points back to the ProductSet that anchors the linked list. The next component
points next element in the linked list. The product points to a product in the set.

page 117

Class ProductMember
 ...
 Components
 set: ProductSet;
 next: ProductMember;
 product: Product;

Class ProductFlow. This class and the FlowChain class are the converse of the ProductSet and the Product-
Member Ð the ProductFlow represents the set of Uses dataßows (see Figure 38.) from a product to primitive
tasks. The inßow component points to the product. The destination points to the head of the linked list of
FlowChain elements that connect to the primitive tasks.

Class ProductFlow
 ...
 Components
 inflow: Product;
 outflows: FlowChain;

Class FlowChain. This class serves as the elements in the linked list for the ProductFlow (see previous sec-
tion). The top component points back to the ProductFlow that anchors the linked list. The next component
points next element in the linked list. The outßow points to a primitive task in the set.

Class FlowChain
 ...
 Components
 top: ProductFlow;
 next: FlowChain;
 outflow: PrimitiveTask;

Class ProductContent. This class serves as the root for dummy content in a product during simulation. In a
real editor, this content might be HTML, ASCII, or other types of data. In our simulation, the product content
is simply a binary tree of Nodes.

Class ProductContent
 ...
 Components
 left: Node;
 right: Node;

Class Node. This class is for the nodes in binary tree the dummy product content. The height component sim-
ply represents the point where real content could be stored.

Class Node
 ...
 Components
 height: INTEGER;
 left: Node;
 right: Node;

7.1.2. The Simulation Scripts

After the application classes are implemented, the next step is for developers to create the simulation scripts.
Of course, in this case we play the role of the developers and create the simulation scripts. These scripts are
used later in the experiment to simulate typical scenarios for using the application. The scripts provide a
repeatable means of comparing and contrasting the same simulation of the workßow diagram editor running
on different OODB architectures.

page 118

The simulation scripts we created for the experiment simulate a user creating and browsing a workßow dia-
gram. The workßow diagram produced by these scripts has 5 top-level composite tasks, 24 primitive tasks, 24
products with content, 24 resources, and 34 product ßow connections. This provided a practical yet manage-
able sized simulation for the experiments (about an hour for the simulation on an architecture instantiation).

This particular workßow diagram describes a business approach for identifying and deploying new software
products. The graphical representation is shown in Figure 40. The large rounded rectangles are composite
tasks, the ovals are primitive tasks, the rectangles are products, and the underlined strings are resources. An
arrow going from a primitive task to a product indicates that the product is produced by the task. An arrow
going from a product to a primitive task indicates that the product is used to carry out the task. Details on the
semantics of the workßow diagram, including the labels and other notations on the arrows, will be given in the
next experimental description, where the workßow diagram is used to help manage the ongoing work on a
project.

The simulation scripts used for this experiment are simply method invocations into the user interface command
dispatcher. That is, they invoke the same methods in the application as a user interacting through the user inter-
face of the application. There are 350 method invocations in the scripts. Following is an excerpt that creates the
Þrst few workßow constructs illustrated in Figure 40.

ME.NewComposite("Define Markets"; "Identify and analyze target markets");
ME.EnterComposite();
ME.NewPrimitive("Identify Sub-market"; "Find a market niche");
ME.NewResource("Market Analyst"; "Has knowledge of market domain and potential");
ME.NewProduct("Sub-market Description"; "Description of sub-market area"; 4; FALSE);
ME.DisplayProduct();
ME.SetMark();
ME.NewPrimitive("Analyze Sub-market"; "Study and characterize sub-market");
ME.DataFlow(""; 0; FALSE);

7.1.3. Prototyping OODB Requirements for the Workßow Diagram Editor

With the workßow application code and the simulation scripts in place, we then prototyped the OODB require-
ments in order to converge on the set of OODB requirements that best conform to the workßow management
editor application. These requirements will serve as a baseline in the next part of the experiment where we
attempt to identify an off-the-shelf OODB that closely matches the requirements.

Using the modeling and simulation features in the UFO tool, the requirements prototyping activity consists of
the following steps:

1. manual and automated requirements deÞnition

2. mapping from requirements to an executable architecture simulation

3. running the simulation to get feedback on the system properties of the architecture

4. if necessary, cycling back to step 1 to reÞne the requirements based on the simulation feedback

During this portion of the experiment, we demonstrate the following features of the UFO tool that are intended
to reduce cost and increase conformance:

¥ automated deÞnition of some requirement variable values, accomplished by scanning the applica-
tion source code

¥ guidance for manually deÞning the remaining requirement variable values

page 119

Identify
Sub-market

Sub-market
Description

Analyze
Sub-market

Sub-market
Analysis

Market
Synthesis

Synthesized
Market

Analysis

Market
Search
Gate

MS Gate Key
&

Market Analysis

Market Analyst Market Analyst Market Analyst

Market Analyst1

1

continue

done

DeÞne Markets

DeÞne
Business

Plan

Business
Plan

Business Analyst

DeÞne
Target

Capability

Target
Capability

Business Analyst

DeÞne
Business
Priorities

Business
Priorities

Business Analyst

Characterize
Current

Capability

Current
Capability

Business Analyst

Business
Case

Breakout

Bus. Case
Breakout

Plan

Business Analyst

DeÞne
Functional

Spec

Functional
Spec

Product Analyst

DeÞne
Business

Requirements

Business
Requirements

Product Analyst
Reconcile

Funct Spec &
Bus Reqts

Merged
Funct Spec &

Bus Reqts

Product Analyst

Break out
Inconsistencies

Funct Spec &
Bus Reqts

ModiÞcations

Product Analyst

continue

done

DeÞne
Engineering

Plan

Engineering
Plan

Engineering Analyst

DeÞne
Reference

Architecture

Reference
Architecture

System Architect

Technical
Assessment

Base
Technology

Report

Technology Analyst

DeÞne
Reference

Requirements

Reference
Requirements

Requirements Analyst

Domain
Analysis

Domain
Model

Domain Analyst

Engineering Analysis

DeÞne Business Plan

DeÞne Functional Spec and Business Reqts

DeÞne
Release

Requirements

Release
Requirements

Design
System

System
Design

Implement
System Implementa-

tion

System
Test

Test
Results

Requirements Engineer System Designer
Software Implementor

Software Tester
1

Release Cycle

1

1

G

G

Build
Test
Plan

Test
Plan

Software Tester

Deploy
System

Release
Milestone

Deployment Manager

G

Figure 40. Workßow Diagram used for Experiments

page 120

Section 4.2. from the Case Study describes a scenario similar to the one used on this portion of the experiment.
Therefore, we assume that the reader is sufÞciently familiar with the UFO tool scenarios and we do not repeat
the tutorial-level description, but rather present the speciÞcs of the experimental procedures and results.

The Þrst step is to deÞne OODB requirements for the workßow application using the requirement variable
template. The initial form of the template is shown in Figure 41.

The UFO tool Þrst makes a pass over the workßow editor application source code to automatically derive val-
ues for two of the requirement variables, Long Transactions and Reentrant Partitions. As described in the UFO
tool implementation chapter, Chapter 6., the long transactions value is derived by searching for any CreatePer-
sistentTransaction constructs in the source code (the only way that nested long transactions can be created in
the application). Since there are none in the workßow editor, the value is set to FALSE.

The value for the reentrant cluster set variable is an internal representation that is derived from the static
method call graph among the workßow application classes. Cycle detection is used to determine whether or
not reentrant processes are required in cases where the architecture is partitioned into separate processes.

This automated derivation of requirement variable values impacts both the development cost and conformance
to requirements. First, the automation removes the developersÕ derivation cost for these requirement variable
values. Second, the automation removes the opportunity for developers to introduce errors (and therefore lower
conformance) in these requirement variable values.

The remaining values in the template cannot be automatically derived and must be manually entered. The UFO
tool guides the deÞnition of the requirement variable values in the following ways:

¥ the template-based tool clearly indicates the values that are needed, which is particularly useful for
the complex hierarchical requirements

¥ context-sensitive help in the UFO tool describes the legal values for each context in the template

In addition, a usersÕ manual could be written to provide guidelines for selecting the appropriate values for
requirement variables.

Figure 42. shows the requirement variables template with all remaining values deÞned. These values were
deÞned by us, playing the role of developers on the workßow diagram editor application. Selecting appropriate
values required knowledge of the workßow diagram editing domain, the expected use proÞles, and the user
expectations on the system.

 Long Transactions: FALSE

 Concurrent Users: $multi_user_rv

 Locality Clusters:
 $locality_cluster_rv

 Sparse Cluster Sets
 $cluster_set_rv

 Dense $dense_cluster_set_rv

 Cluster Set Partitions
 $cluster_set_partition_rv

 Global Transaction Throughput: $global_transaction_throughput_rv

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

Figure 41. Requirement Variables Template

page 121

REQUIREMENT VARIABLES

 Long Transactions: FALSE

 Concurrent Users: FALSE

 Locality Clusters:
 Cluster: Root
 Roles:
 Role root_root is Class VPML_Root
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: Composite
 Roles:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: PContent
 Roles:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 <No Sparse Cluster Sets>

 Dense Cluster Set DCS
 Clusters:
 Root
 Composite
 PContent
 Global Cluster Set Contention: LOW

 Cluster Set Partitions
 Partition CSP
 Cluster Sets:
 DCS
 Global Partition Contention: LOW

 Global Transaction Throughput: LOW

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

Figure 42. Requirement Variable Values for the Workßow Diagram Editor

page 122

The value for Concurrent Users is set to FALSE since the workßow diagram editor is not intended to support
concurrent users editing a single workßow diagram.

Three Locality Clusters are identiÞed, Root, Composite, and PContent. These particular clusters were selected
based on the potential for access locality during workßow diagram editing on the objects in each cluster.

The Root cluster contains a single object of class VPML_Root (Section 7.1.1.). This object plays the role of the
root of the entire persistent data structure for a workßow diagram and therefore is always the Þrst object
accessed when a new workßow data repository is opened. Editing commands are dispatched as methods on
this object, so it makes sense to have it as a stand-alone object in the root cluster.

The Composite cluster contains a single CompositeTask object plus all of the objects that are logically con-
tained within that CompositeTask. These contained objects will be from classes PrimitiveTask, Resource, Prod-
uct, ProductSet, ProductMember, ProductFlow, and FlowChain. For example, referring to Figure 40., the
workßow repository created and used in this experiment would have one cluster for each of the Þve composite
tasks shown (ÒDeÞne MarketsÓ, ÒDeÞne Business PlanÓ, and so forth), where each of the Composite clusters
would contain all of the objects illustrated inside of a composite task. The workßow diagram editor displays
the content of a single composite at a time for editing. This inherent editing locality motivates the deÞnition of
the Composite cluster.

The third cluster type, PContent, is used for a ProductContent object and all Node object that represent the
descriptive content of a product in a workßow diagram. Similar to the Composite cluster, the PContent cluster
represents a logical locality for the workßow diagram editor Ð the editor displays the content of a single Pro-
ductContent at one time for editing.

Each of the three clusters are declared to be HIGH utilization (greater than 50%), SMALL size (less than 1
megabyte), HIGH primary reliability (reliable primary persistence), and NONE for secondary reliability (no
automated backups).

Since all three of the clusters are declared to be HIGH utilization and SMALL size, none of the clusters go into
Sparse Cluster Sets. This is indicated by the <No Sparse Cluster Sets> value for that portion of the require-
ment variables.

Conversely, all of the cluster go into the Dense Cluster Set requirement variable. The Global Cluster Set Con-
tention is set to LOW on the Dense Cluster Set since there is no contention in a single user application.

Since there is only a single dense cluster set, the Cluster Set Partitions requirement variable contains only a
single partition labeled CSP to contain the dense cluster set DCS.

Finally, the value for Global Transaction Throughput requirement variable is LOW since this is a single user
application.

The development cost associated deÞning requirements in this experiment included the application require-
ments analysis cost and the cost of reßecting the results of the analysis in the requirements template. The
majority of the effort was in analysis of how the application would be used, so that we could deÞne the Local-
ity Clusters. Even this was straightforward since the editing locality for this application implied natural locality
clusters for the requirements. The other requirement variable values could be easily determined knowing that
this is a single user application with an interactive editing interface. We allocate an estimated one half day of
development cost to the requirements analysis activity. The cost of entering the information in the requirement
variables template tool was negligible.

The experiment next moved to mapping the requirement variables to architectural parameters. This phase is
fully automated by the UFO tool. Therefore, there are no development costs other then issuing the command to
the tool.

page 123

Mapping architectural parameters to a software architecture instance is likewise automated by the UFO tool.
The architectural parameters are used to instantiate the data structures for modeling the OODB architecture in
the UFO simulator.

After the mapping, the current implementation of the UFO tool requires that the components in each class be
annotated to indicate which type of object in which type of locality cluster it refers to. These annotations pro-
vide hints to the OODB runtime as to when to create new clusters and when pointer dereferences may cross
cluster or processor boundaries. Sample annotations are shown in Figure 43. The right arrow notation, Ò=>Ó,
indicates that the component on the left points at runtime to the object role on the right. The manual annotation
activity consists of Þlling in the cluster and object role on the right of the arrow. This activity (which could be
partially automated by extensions to the current tool) took approximately 10 minutes for this experiment.

The Þnal mapping from architectural instance to executable simulation is also automated by the tool. The tool
provides the developer with a template to deÞne the simulation constants for the simulated CPUs that the
OODB architecture will run on. The constants used for this experiment are shown in Figure 44.

Cell: Composite
 ...

 Role prim is Class PrimitiveTask
 name: STRING
 description: STRING
 parent: CompositeTask => Composite.comp_root
 resource: Resource => Composite.res
 output: Product => Composite.prod
 input: ProductSet => Composite.pset
 sibling: PrimitiveTask => Composite.prim
 state: CHARACTER

Figure 43. Component-to-Role Declaration

Non-reentrant Client:
...
 Processor Constants:
 Processor Speed: 33 MHz
 Intra-Cell Call Cost: In: 50 cycles, Out: 50 cycles
 Inter-Cell Call Cost: In: 100 cycles, Out: 50 cycles
 RPC Call Cost: In: 550 cycles, Out: 550 cycles
 Object Activation Cost: 100 cycles
 Object Passivation Cost: 100 cycles
 Object Creation Cost: 500 cycles
 Cell Activation Cost: 1000 cycles
 Cell Passivation Cost: 1000 cycles
 Cell Creation Cost: 600 cycles
 Cell Lock Check Cost: 50 cycles
...
Persistent Cell Manager. CSP
...

 Persistent Cell Manager Constants:

 Processor Speed: 66 MHz
 Object Activation Cost: 200 cycles
 Object Passivation Cost: 200 cycles
 Object Creation Cost: 1000 cycles
 Object Commit Cost: 200 cycles
 Object Abort Cost: 10 cycles
 Cell Activation Cost: 10000 cycles
 Cell Passivation Cost: 10000 cycles
 Cell Creation Cost: 15000 cycles
 Cell Commit Cost: 10000 cycles
 Cell Abort Cost: 5000 cycles
 Cell Lock/Unlock Cost: 5000 cycles

Figure 44. Processor Constants

page 124

A summary of the resulting architecture is shown in Figure 45. This architecture is one of the simplest possible
with the UFO architecture simulator Ð a single client, a single persistent cell manager, an embedded repository
manager, an embedded transaction manager, no locking, no persistent transactions, no distributed transactions,
no automated backups, and eager write-through.

A summary of the architecture properties is shown in Figure 47. This includes the multiplicity of the runtime
processes in the architecture and their runtime sizes, plus sizes of the various architectural components the
comprise the processes.

Simulation scripts were used to simulate a user creating and browsing the workßow diagram illustrated in Fig-
ure 40. The simulation ran 70 minutes on a Sun4c workstation. The output from the simulation was a 76 page
execution proÞle for the application and the OODB architecture. Most of this proÞle consists of low-level
details at the statement level of the application source code, while the more important high-level architectural
proÞle data is presented in a few pages of the simulation proÞle.

The high-level proÞles for the overall architecture, the client, and the persistent cell manager are summarized
in Figure 47. Two important points of interest in these proÞles are:

¥ The intra-cell calls dominate the inter-cell calls by a factor of 30. This indicates good internal local-
ity for the clusters deÞned in the requirements.

¥ The ratio of activated objects to combined intra-cell, inter-cell, and RPC calls received is 3.6. This
indicates high utilization of the objects activated in cells, which implies that the clusters deÞned in
the requirements have good temporal locality.

7.1.3.1. Summary for Experiment 1 Requirements DeÞnition

The parsimony of the architecture combined with the fact that the clusters exhibit good runtime locality indi-
cate that the OODB requirements were accurately deÞned and that the resulting architecture conforms well to
the application requirements on the OODB. We use this set of requirements as the baseline in the remainder of
the experiment.

The estimated development cost for deÞning and reÞning the OODB requirements for the application were:

¥ one-half staff*day to deÞne UFO requirement variable values for the application

¥ one-quarter staff*day to map from requirements to architecture simulator, plus run the simulation

¥ one-quarter staff*day to review the simulation proÞle

¥ one staff*day overhead to explore reÞnements on the requirements

Thus, we estimate the development cost to be about two days for a developer moderately familiar with the
UFO tool. With this minimal level of effort we were able to demonstrate that the deÞned set of OODB require-
ments for the workßow editor application are accurate. In contrast, the conventional approach to deÞning and
reÞning OODB requirements would involve the following labor-intensive tasks:

¥ Domain exploration and analysis. Starting with a Òclean slateÓ, study the OODB domain and char-
acterize the relevant OODB requirement issues.

¥ Requirements deÞnition. For the workßow editor application, develop a clear, complete, and accu-
rate set of OODB requirements.

¥ Application prototyping. Develop a prototype and do the proÞling to test the requirements.

¥ Requirements reÞnement. Iterate through these steps as needed until the requirements are stable.

In the next chapter we further explore and make estimates on the relative cost savings of the UFO versus con-
ventional approach.

page 125

Figure 45. Editor Architecture Summary with Baseline Requirements

Non-reentrant Client:

 Embedded Repository Manager:

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Root Role: Root.root_root

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

page 126

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 1
Total size of shared processes: 2000000 Bytes

Non-reentrant Client:

Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:

 Total size: 50000 Bytes

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:

 Total size: 200000 Bytes

 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.

 Total size: 1100000 Bytes

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2000000 Bytes

 Persistent Cell Manager: CSP

 Write-through: EAGER
 Total size: 2000000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object Locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED

<Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED

<Embedded in client. See Client description.>

Figure 46. Editor Architecture Properties with Baseline Requirements

page 127

Note: All time measurements are expressed in micro-seconds.

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 4747
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 146882
Activations: Objects: 13441 Cells: 98
 Time: 99277
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 19524
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1464740

Overall Architecture Summary ProÞle

Non-reentrant Client:

 Intra-Cell Calls Made: 46604 Time: 70607
 Intra-Cell Calls Received: 46604 Time: 70605
 Inter-Cell Calls Made: 1559 Time: 2361
 Inter-Cell Calls Received: 1567 Time: 4747
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0

 Object and Cell Services:

 Creations: Objects: 4588 Cells: 32
 Time: 70095
 Activations: Objects: 13441 Cells: 98
 Time: 43699
 Passivations: Objects: 4593 Cells: 37
 Time: 15039

 Total Execution Time: 779088

Client Summary ProÞle

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Write-through: EAGER
 Creations: Objects: 4588 Cells: 32
 Time: 76787
 Activations: Objects: 13441 Cells: 98
 Time: 55578
 Passivations: Objects: 4593 Cells: 37
 Time: 19524
 Commits: Objects: 4593 Cells: 37
 Time: 19524
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 685652

Persistent Cell Manager Summary ProÞle

Figure 47. Editor Simulation ProÞles with the Baseline Requirements

page 128

7.1.4. Selecting an Off-the-Shelf OODB for the Workßow Diagram Editor

In the next part of the experiment, we used the UFO tool to compare the architectural properties of three off-
the-shelf OODBs, using as a baseline the architectural properties that we deÞned in the Þrst part of the experi-
ment. We used the same workßow diagram editor application code and simulation scripts as in the Þrst part of
the experiment. With the baseline requirements as the starting point for evaluating each OODB, we then used
the static feedback and the dynamic simulation feedback to identify sub-optimal architectural properties in the
off-the-shelf OODBs and to identify the ÒbestÓ OODB choice for the workßow diagram editor application.

We selected the three off-the-shelf OODB architectures for the experiment to represent a range of functional-
ity, size, complexity, and performance. ITASCA is at one extreme, with a large-scale, multi-user, distributed
architecture. ObjectStoreLite is at the other extreme with a light-weight, single-user, single-machine architec-
ture. Objectivity lies between these two extremes and is architecturally oriented towards medium sized multi-
user applications with large granularity clustering and concurrency control.

7.1.4.1. Objectivity

We Þrst set the UFO tool to target the Objectivity OODB architecture and started with the baseline requirement
variable values from the previous section (see Figure 42.). When the mapping from requirement variables to
architectural parameters was invoked, the following inconsistencies were reported between the stated require-
ments and Objectivity:

Long Transactions: FALSE
** INCONSISTENCY: Objectivity always supports long transactions.
Set architectural parameter to TRUE.
FALSE Long Transactions requirement value not supported.

Object Locking: FALSE
** INCONSISTENCY: Objectivity always supports object locking.
Set architectural parameter to TRUE.
FALSE Concurrent Users requirement value not supported.

Transaction Manager Integration: EMBEDDED
** INCONSISTENCY: Objectivity does not support embedded transaction managers.
Remove embedded transaction manager and create a shared transaction manager.
FALSE Concurrent Users requirement value cannot be supported.

The architectural parameters were modiÞed as indicated, which resulted in the following warning:

Repository Manager Integration: SHARED
** WARNING ** Objectivity always uses embedded repository managers.
Remove this process from the Objectivity profile.

This warning is accounted for in the architecture proÞle.

Next, the mapping from architectural parameters to architecture instance and the mapping from architecture
instance to architecture simulator were invoked to create the architecture instance for simulation. The same
processor constants were used as in the Þrst part of the experiment (see Figure 44.). The architecture summary
is shown in Figure 48., the architecture properties are shown in Figure 49., and the simulation proÞle summary
is shown in Figure 50.

We will review these results in Section 7.1.4.4. to compare and contrast Objectivity, ITASCA, and Object-
StoreLite after we present the results from these other two OODBs.

The development activity associated with resolving the reported inconsistencies and warnings, for reÞning the
requirements to be consistent with the Objectivity architecture, and for collecting the simulation data is esti-
mated to be about one staff*day for a developer moderately familiar with the UFO tool.

page 129

Non-reentrant Client:

 Embedded Repository Manager:

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Root Role: Root.root_root

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED
 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 Write-through: EAGER
 Persistent nested transactions: SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Transaction Manager. Integration: SHARED

 Nested persistent transactions: SUPPORTED
 Distributed transactions: NOT SUPPORTED

Figure 48. Summary of Objectivity-based Editor Architecture

page 130

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 2
Total size of shared processes: 3750000 Bytes

Non-reentrant Client:

Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:
 Total size: 50000 Bytes

 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Object and Cell Services.

 Total size: 1300000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2750000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2750000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: SUPPORTED. Size: 500000
 Distributed transactions: NOT SUPPORTED
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Transaction Manager. Integration: SHARED

Total size: 1000000 Bytes

 Nested persistent transactions: SUPPORTED. Size: 500000
 Distributed transactions: NOT SUPPORTED

Figure 49. Properties of Objectivity-based Editor Architecture

page 131

Note: All time measurements are expressed in micro-seconds.

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 7121
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 149307
Activations: Objects: 13441 Cells: 98
 Time: 106702
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 22327
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1972351

Overall Architecture Summary ProÞle

Non-reentrant Client:

 Intra-Cell Calls Made: 46604 Time: 70607
 Intra-Cell Calls Received: 46604 Time: 70605
 Inter-Cell Calls Made: 1559 Time: 2361
 Inter-Cell Calls Received: 1567 Time: 7121
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0

 Object and Cell Services:

 Creations: Objects: 4588 Cells: 32
 Time: 70095
 Activations: Objects: 13441 Cells: 98
 Time: 43699
 Passivations: Objects: 4593 Cells: 37
 Time: 15039

 Total Execution Time: 909370

Client Summary ProÞle

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Write-through: EAGER
 Creations: Objects: 4588 Cells: 32
 Time: 79212
 Activations: Objects: 13441 Cells: 98
 Time: 63003
 Passivations: Objects: 4593 Cells: 37
 Time: 19524
 Commits: Objects: 4593 Cells: 37
 Time: 22327
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 1062981

Persistent Cell Manager Summary ProÞle

Figure 50. Simulation ProÞles for Objectivity-based Editor

page 132

7.1.4.2. ITASCA

Next, we set the UFO tool to target the ITASCA OODB architecture and restarted with the baseline require-
ment variable values as before (see Figure 42.). When the requirement variable to architectural parameter map-
ping was invoked, the following inconsistencies were reported for ITASCA:

** INCONSISTENCY: ITASCA always supports long transactions.
Manually set architectural parameter to TRUE.
FALSE Long Transactions requirement value not supported.

** INCONSISTENCY: ITASCA always supports object locking.
Set architectural parameter to TRUE.
FALSE Concurrent Users requirement value not supported.

**INCONSISTENCY: ITASCA always supports distributed transactions.
Set architectural parameter to TRUE.
See message regarding sparse cluster sets for unsupported requirements.

** INCONSISTENCY: ITASCA does all computation in object servers.
Allocate all cells to Object Servers.
Cannot support Dense Cluster Set requirement.

** INCONSISTENCY: ITASCA does not support embedded transaction managers.
Remove embedded transaction manager and create a shared transaction manager.
FALSE Concurrent Users requirement value cannot be supported.

** INCONSISTENCY: ITASCA does not support embedded repository managers.
Remove embedded repository manager and create a shared repository manager.
FALSE Concurrent Users requirement value cannot be supported.

The architectural parameters were modiÞed as indicated by these messages.

Next, the mapping from architectural parameters to architecture instance and the mapping from architecture
instance to architecture simulator were invoked. The same processor constants were used as in the Þrst part of
the experiment (see Figure 44.). The resulting architecture summary is shown in Figure 51., the architecture
properties are shown in Figure 52., and the simulation proÞle summary is shown in Figure 53.

We will review these results in Section 7.1.4.4. to compare and contrast Objectivity, ITASCA, and Object-
StoreLite for use with the workßow diagram editor application.

As with Objectivity, the development activity associated with resolving the reported inconsistencies and warn-
ings, for reÞning the requirements to be consistent with the ITASCA architecture, and for collecting the simu-
lation data is estimated to be about one staff*day for a developer moderately familiar with the UFO tool.

7.1.4.3. ObjectStoreLite

Next, we set the UFO tool to target the ObjectStoreLite OODB architecture and restarted with the baseline
requirement variable values as before (see Figure 42.). When the mapping from requirement variables to archi-
tectural parameters was invoked, no inconsistencies were reported between the stated requirements and
ObjectStoreLite.

Next, the mappings were invoked to create the architecture instance for simulation. The same processor con-
stants were used as in the Þrst part of the experiment (see Figure 44.). The architecture summary is shown in
Figure 54., the architecture properties are shown in Figure 55., and the simulation proÞle summary is shown in
Figure 56.

We will review these results in the next to compare and contrast Objectivity, ITASCA, and ObjectStoreLite for
use with the workßow diagram editor application.

Since there were no inconsistencies or warnings reported for ObjectStoreLite, the development activity associ-
ated with collecting the simulation data for the architecture is estimated to be about one half staff*day for a
developer moderately familiar with the UFO tool.

page 133

Reentrant Client:

 Object and Cell Services.

 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Root Role: Root.root_root

Object Server Set. Integration: SHARED

 Threaded Object Server: SCS
 Object and Cell Services.

 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

Persistent Cell Manager Set. Integration: SHARED
 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 SCS
 Write-through: EAGER
 Persistent nested transactions: SUPPORTED
 Distributed transactions: SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
 Nested persistent transactions: SUPPORTED
 Distributed transactions: SUPPORTED

Figure 51. Summary for ITASCA-based Editor Architecture

page 134

Size per client: 2634720 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 4
Total size of shared processes: 10320800 Bytes

Reentrant Client:
Total size: 2634720 Bytes
Size accounted for by methods: 34720 Bytes
Size accounted for by cache: 1000000 Bytes

 Object and Cell Services.
 Total size: 1350000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Object Server Set. Integration: SHARED
Total processes per object server set: 1
Total size per object server set: 5970800 Bytes

 Threaded Object Server: SCS
 Total size: 5970800 Bytes
 Size accounted for by methods: 20800 Bytes
 Size accounted for by cache: 4000000 Bytes

 Object and Cell Services.
 Total size: 4450000 Bytes
 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Persistent Cell Manager Set. Integration: SHARED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2950000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2950000 Bytes

 Processes allocated to PCM:
 CLIENT
 SCS
 Persistent nested transactions: SUPPORTED. Size: 500000
 Distributed transactions: SUPPORTED. Size: 200000
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
Total size: 200000 Bytes
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
Total size: 1200000 Bytes
 Nested persistent transactions: SUPPORTED. Size: 500000
 Distributed transactions: SUPPORTED. Size: 200000

Figure 52. Properties for ITASCA-based Editor Architecture

page 135

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 228 Time: 345
Inter-Cell Calls Received: 236 Time: 1072
RPCs Made: 1331 Time: 22183
RPCs Received: 1331 Time: 24199
Creations: Objects: 4588 Cells: 32
 Time: 149307
Activations: Objects: 6 Cells: 6
 Time: 1581
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 22327
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 2035604

Overall Architecture Summary ProÞle

 Intra-Cell Calls Made: 939 Time: 1422
 Intra-Cell Calls Received: 939 Time: 1422
 Inter-Cell Calls Made: 0 Time: 0
 Inter-Cell Calls Received: 8 Time: 36
 RPCs Made: 1331 Time: 22183
 RPCs Received: 0 Time: 0
 Creations: Objects: 1 Cells: 1
 Time: 33
 Activations: Objects: 6 Cells: 6
 Time: 200
 Passivations: Objects: 6 Cells: 6
 Time: 200
 Total Execution Time: 100029

Client Summary ProÞle

 Intra-Cell Calls Made: 45665 Time: 69185
 Intra-Cell Calls Received: 45665 Time: 69183
 Inter-Cell Calls Made: 228 Time: 345
 Inter-Cell Calls Received: 228 Time: 1036
 RPCs Made: 0 Time: 0
 RPCs Received: 1331 Time: 24199
 Creations: Objects: 4587 Cells: 31
 Time: 70062
 Activations: Objects: 0 Cells: 0
 Time: 0
 Passivations: Objects: 4587 Cells: 31
 Time: 14839
 Total Execution Time: 1177035

Object Server Summary ProÞle

 Creations: Objects: 4588 Cells: 32
 Time: 79212
 Activations: Objects: 6 Cells: 6
 Time: 1381
 Passivations: Objects: 4593 Cells: 37
 Time: 19524
 Commits: Objects: 4593 Cells: 37
 Time: 22327
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 758540

Persistent Cell Manager Summary ProÞle

Figure 53. Simulation ProÞles for ITASCA-based Editor

page 136

Non-reentrant Client:

 Embedded Repository Manager:
 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.
 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root

 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node

 Root Role: Root.root_root

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
 <Embedded in client. See Client description.>

Figure 54. ObjectStoreLite-based Editor Architecture Summary

page 137

Size per client: 2405520 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 1
Total size of shared processes: 2000000 Bytes

Non-reentrant Client:
Total size: 2405520 Bytes
Size accounted for by methods: 55520 Bytes
Size accounted for by cache: 1000000 Bytes

 Embedded Repository Manager:
 Total size: 50000 Bytes
 Maximum number of concurrent clients on a repository: 1
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: EMBEDDED
 Object server set administration: NO OBJECT SERVERS
 Persistent cell manager set administration: SHARED

 Embedded Transaction Manager:
 Total size: 200000 Bytes
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED

 Object and Cell Services.
 Total size: 1100000 Bytes

 Threads: SINGLE
 Object locking: NOT SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: NOT SUPPORTED
 Write-through policy: EAGER

<No Object Servers>

Persistent Cell Manager Set. Integration: SHARED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2000000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2000000 Bytes

 Processes allocated to PCM:
 CLIENT
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: NOT SUPPORTED
 Object Locking: NOT SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Transaction Manager. Integration: EMBEDDED
<Embedded in client. See Client description.>

Figure 55. ObjectStoreLite-based Editor Architecture Properties

page 138

Intra-Cell Calls Made: 46604 Time: 70607
Intra-Cell Calls Received: 46604 Time: 70605
Inter-Cell Calls Made: 1559 Time: 2361
Inter-Cell Calls Received: 1567 Time: 4747
RPCs Made: 0 Time: 0
RPCs Received: 0 Time: 0
Creations: Objects: 4588 Cells: 32
 Time: 146882
Activations: Objects: 13441 Cells: 98
 Time: 99277
Passivations: Objects: 4593 Cells: 37
 Time: 34563
Commits: Objects: 4593 Cells: 37
 Time: 19524
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 1464740

Overall Architecture Summary ProÞle

 Intra-Cell Calls Made: 46604 Time: 70607
 Intra-Cell Calls Received: 46604 Time: 70605
 Inter-Cell Calls Made: 1559 Time: 2361
 Inter-Cell Calls Received: 1567 Time: 4747
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0

 Object and Cell Services:

 Creations: Objects: 4588 Cells: 32
 Time: 70095
 Activations: Objects: 13441 Cells: 98
 Time: 43699
 Passivations: Objects: 4593 Cells: 37
 Time: 15039

 Total Execution Time: 779088

Client Summary ProÞle

 Creations: Objects: 4588 Cells: 32
 Time: 76787
 Activations: Objects: 13441 Cells: 98
 Time: 55578
 Passivations: Objects: 4593 Cells: 37
 Time: 19524
 Commits: Objects: 4593 Cells: 37
 Time: 19524
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 685652

Persistent Cell Manager Summary ProÞle

Figure 56. ObjectStoreLite-based Editor Simulation ProÞles

page 139

7.1.4.4. Collating the OODB Simulation Results for the Workßow Diagram Editor

To compare and contrast the conformance of Objectivity, ITASCA, and ObjectStoreLite to the workßow dia-
gram editor, we Þrst look at the architectural differences reported in the UFO modeling and we then look at the
relative size and performance data reported by the tool. The baseline requirements and architecture are used as
a standard for comparison.

Table 3. summarizes structural and functional conformance:

¥ (column 1) the name of the OODB being modeled

¥ (column 2) the architectural inconsistencies detected in the baseline architecture when compared to
the OODB. These are the inconsistencies reported by the tool for each OODB.

¥ (column 3) the baseline requirements that canÕt be satisÞed due to the inconsistencies. These are
reported by the tool along with the reported inconsistencies in column 2.

¥ (column 4) the architectural differences between the OODB and the baseline architecture. These
differences were identiÞed by comparing the architectural summaries of the baseline and other
OODBs (Figure 45., Figure 48., Figure 51., and Figure 54.).

This table demonstrates that ObjectStoreLite is a perfect architectural match to the workßow diagram editor
application. Objectivity had extraneous architectural support for long transactions, object locking, plus stand-
alone process for transaction management. ITASCA had these three non-conformance areas plus 4 others.

Table 4. provides size and performance proÞles on the baseline architecture and the three OODBs in order to
characterize the impact of the architectural conformance issues identiÞed in Table 3. This size and perfor-
mance data comes from the architectural properties and simulation proÞles summarized in Figure 47. & Figure
47., Figure 49. & Figure 50., Figure 52. & Figure 53., and Figure 55. & Figure 56.

Since there were no architectural differences between the baseline and ObjectStoreLite, their modeling and
simulation data are the same. Objectivity provides the next best conformance for the application, with an addi-
tional shared process (the stand-alone transaction manager), a 90% larger shared process size, a 40% larger
total runtime size, and only 75% of the execution speed. The details in the architecture summaries and simula-
tion proÞles show that the size and performance differences are accounted for by extraneous functionality in
the Objectivity architecture. ITASCA conformance was even lower due to the extensive functionality that it
provides Ð three additional shared processes, a 520% larger shared process size, a 290% larger total runtime
size, and only 75% of the execution speed.

page 140

Table 3. Reported Inconsistencies and Architectural Impacts

OODB Model
Architectural

Inconsistencies Reported
Unsupported Baseline

Requirements
Architectural Differences

Objectivity Objectivity always supports long
transactions.

Objectivity always supports object
locking.

Objectivity does not support embed-
ded transaction managers.

The Long Transaction
requirement is inconsistent
with Objectivity.

The Concurrent Users
requirement is inconsistent
with Objectivity.

Extra long transactions support in
Client, Transaction Manager, and
Persistent Cell Manager.

Extra object locking support in Client
and Persistent Cell Manager.

Transaction manager a stand-along
process rather than embedded in cli-
ent.

ITASCA ITASCA always supports long trans-
actions.

ITASCA always supports object lock-
ing.

ITASCA always supports distributed
transactions.

ITASCA does all computation in
object servers.

ITASCA does not support embedded
transaction managers.

ITASCA does not support embedded
repository managers.

The Long Transaction
requirement is inconsistent
with Objectivity.

The Concurrent Users
requirement is inconsistent
with Objectivity.

The Dense Cluster Set
requirement is inconsistent
with Objectivity.

Extra long transactions support in
Client, Transaction Manager, and
Persistent Cell Manager.

Extra distributed transactions sup-
port in Client, Transaction Manager,
and Persistent Cell Manager.

Extra object locking support in Client
and Persistent Cell Manager.

Extra object server process serving
as the primary computational server
for the application.

Extra multi-threading support in
object server.

Transaction manager a stand-along
process rather than embedded in cli-
ent.

Repository manager a stand-along
process rather than embedded in cli-
ent.

ObjectStoreLite None None None

Table 4. OODB Properties for the Workßow Diagram Editor Application

OODB Model
Runtime

Client Size

Number of
Shared

Processes

Runtime
Shared

Process Size

Total Runtime
Size

Total
Execution

Time

Baseline 2.4 Mbytes 1 2.0 Mbytes 4.4 Mbytes 1.5 Seconds

Objectivity 2.4 Mbytes 2 3.8 Mbytes 6.2 Mbytes 2.0 Seconds

ITASCA 2.6 Mbytes 4 10.3 Mbytes 12.9 Mbytes 2.0 Seconds

ObjectStoreLite 2.4 Mbytes 1 2.0 Mbytes 4.4 Mbytes 1.5 Seconds

page 141

7.1.4.5. Summary for Experiment 1 OODB Selection

The estimated development cost for simulating and comparing the off-the-shelf OODB system properties for
the three OODBs were:

¥ one-half staff*day per OODB to execute the mappings from requirements to simulator and to
address inconsistencies reported by the tool

¥ one-quarter staff*day per OODB to run the simulation

¥ one-quarter staff*day per OODB to review the simulation proÞle

¥ one staff*day overhead to do the comparative analysis among the different OODBs

Thus, we estimate the cost for evaluating the three OODBs to be about four days for a developer moderately
familiar with the UFO tool. With this minimal level of effort we were able to characterize how well each of the
OODBs satisÞed the requirements of the workßow editor application. In contrast, the conventional approach to
evaluating OODB requirements would involve the following labor-intensive tasks:

¥ Installing and learning how to use each OODB.

¥ Connecting the application to the each OODB.

¥ Application and OODB proÞling.

In the next chapter we further explore and make estimates on the relative cost savings of the UFO versus con-
ventional approach.

7.2. Experiment 2: An OODB for a Workßow Management System

Similar to the Þrst experiment, the description of the second experiment is organized into subsections with the
following order and content:

¥ Conceptual views of application

¥ Design of the extra classes needed for the second experiment

¥ Design and implementation of simulation scripts to drive the experiments with typical scenarios

¥ Use of the UFO tool to prototype requirements. Resulting modeling and simulation data plus feed-
back to reÞne and reÞne requirements.

¥ Use of the UFO tool to evaluate off-the-shelf OODBs. Feedback, modeling, and simulation data to
compare and select an OODB for the application.

¥ Modeling and simulation data to illustrate conformance. Estimates on the development costs.
Resulting cost/conformance proÞles.

The second experiment is based on a software application called the Workßow Management System. It is a
multi-user application that uses workßow diagrams for project management. The workßow diagrams produced
by the editor in the Þrst experiment are given an execution semantics. The workßow management system Òexe-
cutesÓ a workßow diagram, keeping track of which tasks have been completed, which tasks are in progress,
which tasks are ready to start, and which tasks are waiting for input products from upstream tasks. Users inter-

page 142

act with the workßow management system, requesting information about tasks that are active or ready, indicat-
ing that they are taking on a new task, creating data products that will be used by downstream tasks, and
indicating that they have completed a task.

As an example, the workßow diagram in Figure 40. begins executing with no active tasks and one ready task.
The ready task, Identify Sub-market in the upper-left, starts in the ready state because it is initialized with an
input token, as indicated with the number 1 in the circle on the input ßow to that task. Whenever all of the input
ßows to a task receive one or more tokens, the task becomes ready.

Tokens are generated in one of two ways, (1) initial tokens are created each time a workßow diagram begins
execution, and (2) a token is generated down the ßow from a product of an active task whenever a user indi-
cates that the task has been completed. An input token from an input ßow is consumed by a task whenever the
task goes from the inactive state to the ready state. However, if an input ßow is labeled as gated, denoted by the
ÔGÕ in a circle, the token ÒsticksÓ at the input and is never consumed. That is, once the Þrst token arrives at a
gated input, there will always be a token satisfying that input. The DeÞne Release Requirements task in the
lower left of the diagram has a gated input. When the Þrst token arrives at this input, the workßow diagram
goes into a continuous loop that restarts each time a token becomes available on the other input.

Users can view the list of ready tasks and the list of active tasks. A user can activate a ready task, which means
that the user assumes responsibility for completing the task. When the task is completed, the user indicates this
to the workßow management system, in which case an output token is generated and the task goes back to the
inactive state.

The workßow diagrams can have conditional branches, such as the output from MS Gate Key & Market Anal-
ysis in the lower center of the top composite task in Figure 40. When the user indicates that the Market Search
Gate task is complete, they must also indicate which of the two branches to follow, continue or done.

Typical use of the workßow management system is characterized by multiple concurrent users making short,
small updates to an executing workßow diagram. For this experiment, we focus on workßow management sys-
tem installations with large numbers of users, such as insurance claim processing sites or large corporate soft-
ware development sites with thousands of users.

The experimental description that follows Þrst describes the workßow management system implementation,
mostly in terms differences in and extensions to the workßow editor implementation. Next, is the description
of how the UFO tool was used to converge on a baseline set of OODB requirements for the application. In par-
ticular, this experiment illustrates techniques for deÞning requirements for multi-user applications. Then, the
architectural models for the three off-the-shelf OODBs are compared to the baseline requirements using the
UFO tool. Finally, we estimate the development costs associated with converging on the baseline requirements
and in selecting an off-the-shelf OODB.

7.2.1. .Additional Classes and Components in the Workßow Manager Application

The workßow management system was implemented using the eleven classes from the workßow editor, plus
two new classes for managing lists of ready and active tasks, plus additional class components and methods to
manage the execution of a workßow diagram. The two new classes are illustrated in Figure 57. The gray boxes
and arrows are for several of the original eleven classes shown in the top of Figure 39., while the black boxes
and arrows are for the two new classes.

The workßow management system implemented consisted of about 2900 lines of UFO source code. The class
components for the two new classes are described in the following two paragraphs. Following that, the exten-
sions to the components in the other eleven classes are shown. The basic classes from the editor are maintained
in the workßow management system. The operations for creating objects with the editor are adapted for
importing the workßow diagrams that will be executed.

page 143

Class ReadyNode. This class is for the Ready Node entity illustrated in Figure 57. It implements the list of
primitive tasks that have all of their input tokens available but that have not yet been activated by a user. The
task component points to the primitive task object that is ready. The next and previous components implement
the linked list. The name component is the name of the primitive task.

Class ReadyNode
...
 Components
 task: PrimitiveTask;
 next: ReadyNode;
 previous: ReadyNode;
 name: STRING;

Class ActiveNode. This class is for the Active Node entity illustrated in Figure 57. It implements the list of
primitive tasks that have been activated by a user but that have not yet been designated as complete. The task
component points to the primitive task object that is active. The next and previous components implement the
linked list. The name component is the name of the primitive task.

Class ActiveNode
...
 Components
 task: PrimitiveTask;
 next: ActiveNode;
 previous: ActiveNode;
 name: STRING;

Figure 57. Amendments to the Class Diagram for the Workßow Manager Application

Composite
Task

Primitive
Task

VPML Root Ready
Node

Active
Node

active_list ready_list

graph

composites

parent

sibling

parent

primitives

next next

task

task

...

page 144

RootClass VPML_Root. This class from the editor is extended with four components. Working_task points to
the active task that the user is currently working on. Ready_list and active_list point to the heads of the ready
and active task lists. Enacting indicates whether or not the workßow diagram is still being edited or whether it
is being executed (once execution starts, the diagram can no longer be modiÞed).

RootClass VPML_Root
...
 Components
 ...
 working_task: PrimitiveTask;
 ready_list: ReadyNode;
 active_list: ActiveNode;
 enacting: BOOLEAN;

Class PrimitiveTask. This class from the editor is extended with one component. The state component indi-
cates whether the task is inactive, ready, or active.

Class PrimitiveTask
...
 Components
 ...
 state: CHARACTER;

Class Product. This class from the editor is extended with one component. The state component indicates
whether the product is uninitialized or initialized.

Class Product
 ...
 Components
 ...
 state: CHARACTER;

Class ProductMember. This class from the editor is extended with two components. The token_que_length
indicates the number of tokens in an input ßow, and gated indicates whether the input ßow is gated or not.

Class ProductMember
 ...
 Components
 ...
 token_que_length: INTEGER;
 gated: BOOLEAN;

Class ProductFlow. This class from the editor is extended with three components. The selector component
indicates whether or not the product ßow is a selector with multiple output ßows. If it is a selector, the selected
value indicates whether or not the user has selected which output ßow to use on an active task. If it is selected,
the selection value is the name of the selected ßow.

Class ProductFlow
 ...
 Components
 ...
 selector: BOOLEAN;
 selected: BOOLEAN;
 selection: STRING;

page 145

Class FlowChain. This class from the editor is extended with one component. The selection component pro-
vides the name of the selection for each of the alternatives in an output ßow.

Class FlowChain
 ...
 Components
 ...
 selection: STRING;

7.2.2. The Simulation Scripts

The simulation scripts that we created to drive the workßow management system for this experiment were a
sequence typical task activations, product updates, task completions, and task browsing. Since the UFO simu-
lator does not support the simulation of concurrent users, the operations were performed as sequential user
interactions. We show later how to evaluate the sequential simulation results in terms of concurrent user loads.

The simulation was on the workßow diagram illustrated in Figure 40. The execution went around the loop in
the top composite task (DeÞne Markets) Þve times, through all primitive tasks in the next composite task
(DeÞne Business Plan), around the loops in DeÞne Functional Spec and Business Reqts four times, through all
primitive tasks in Engineering Analysis, and around the Release Cycle loop Þve times. This resulted in the acti-
vation and close out of 76 tasks, or 152 different user interactions.

Figure 58. shows an excerpt from the simulation scripts used for this experiment. The method invocations
alternately activate and complete (close out) tasks. The method deÞnitions for SimActivateTask and SimClose-
OutTask are shown in Figure 59. Each consists of several simple steps that a user would typically take when
interactive with the application.

7.2.3. Prototyping OODB Requirements for the Workßow Management System

As in the Þrst experiment, we next focus on deÞning and reÞning OODB requirements for the application. In
this experiment we demonstrate more advanced techniques for using feedback from modeling and simulation,
including automated suggestions on reÞning OODB requirements that are generated during the UFO toolÕs
automated analysis of simulation proÞles.

Prototyping the OODB requirements for the workßow management system proceeded through three stages.
The initial set of requirements were similar to those used for the workßow diagram editor in the Þrst experi-
ment. The next reÞnement moved some of the object clusters into computational servers to optimize data
movement among processes. The Þnal reÞnement replicated some of the architectural components in order to
meet high levels of multi-user concurrency.

 ME.SimActivateTask("Identify Sub-market");
 ME.SimCloseOutTask("Identify Sub-market"; 4; "");
 ME.SimActivateTask("Analyze Sub-market");
 ME.SimCloseOutTask("Analyze Sub-market"; 5; "");
 ME.SimActivateTask("Market Synthesis");
 ME.SimCloseOutTask("Market Synthesis"; 6; "");
 ME.SimActivateTask("Market Search Gate");
 ME.SimCloseOutTask("Market Search Gate"; 2; "continue");
 ME.SimActivateTask("Identify Sub-market");
 ME.SimCloseOutTask("Identify Sub-market"; 4; "");
 ME.SimActivateTask("Analyze Sub-market");
 ME.SimCloseOutTask("Analyze Sub-market"; 5; "");

Figure 58. Example Code from Simulation Scripts

page 146

7.2.3.1. Initial OODB Requirements for the Workßow Management System Ð Client-based Architecture

The initial requirement variable values are shown in Figure 60. These are the same as the baseline require-
ments from the Þrst experiment, with the two exceptions:

¥ the concurrent users requirement is set to TRUE

¥ the additional classes of objects (ReadyNode and ActiveNode) are allocated to the Root cluster

We mapped the requirements to an architecture instance for simulation. The simulation scripts were then used
to drive the simulation. The same processor constants were used as in the Þrst experiment (see Figure 44.). The
total to run the simulation was one hour and twenty minutes. We then used the UFO tool to generate and ana-
lyze the proÞle data. The tool issued the following feedback message regarding the Composite cell:

** FEEDBACK ** LOW utilization cell in client.
Change cluster Utilization requirement to LOW.

Reviewing the proÞle summary for the Composite cell, we Þnd the following raw data:

 Cell: Composite
 Intra-Cell Calls Made: 2022 Time: 3060
 Intra-Cell Calls Received: 2022 Time: 3060
 Inter-Cell Calls Made: 255 Time: 385
 Inter-Cell Calls Received: 541 Time: 2458
 RPCs Made: 0 Time: 0
 RPCs Received: 0 Time: 0
 CREATIONS: Objects: 0 Cells: 0
 Time: 0
 ACTIVATIONS: Objects: 6032 Cells: 155
 Time: 22975
 PASSIVATIONS: Objects: 6031 Cells: 154
 Time: 22942
 Total Execution Time: 54880
 Maximum Cell Size: 9472

Procedure SimActivateTask(name: STRING)

 ME.ListReady(FALSE);
 ME.ActivateTask(name);
 ME.ConnectToTask(name);
 ME.QueryTask(FALSE);
end Procedure SimActivateTask

Procedure SimCloseOutTask(name: STRING; psize: INTEGER; sel: STRING)

 ME.ListActive(FALSE);
 ME.ConnectToTask(name);
 ME.QueryTask(FALSE);
 ME.CreateProductContent(psize);
 case
 when (! sel == "") then
 ME.AssignSelector(sel);
 endcase
 ME.CloseOut();
end Procedure SimCloseOutTask

Figure 59. Method DeÞnitions for SimActivateTask and SimCloseOutTask

page 147

 Long Transactions: FALSE

 Concurrent Users: TRUE

 Locality Clusters:
 Cluster: Root
 Roles:
 Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: Composite
 Roles:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: PContent
 Roles:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 <No Sparse Cluster Sets>

 Dense Cluster Set DCS
 Clusters:
 Root
 Composite
 PContent
 Global Cluster Set Contention: LOW

 Cluster Set Partitions
 Partition CSP
 Cluster Sets:
 DCS
 Global Partition Contention: LOW

 Global Transaction Throughput: LOW

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

Figure 60. Initial Requirement Variable Values for Workßow Management System

page 148

The feedback message refers to the ratio of the intra-cell, inter-cell, and rpc calls received to the object activa-
tions. When this ratio drops below 50%, UFO notiÞes developers that a cluster is being sparsely utilized (i.e.,
that signiÞcantly more time is being spent activating objects than using them). In this case the ratio was 40%.
Since the clustering for the cell is good (i.e., the intra-cell calls dominate the intra-cell calls), the tool recom-
mends that the cluster deÞnition be retained but labeled as a low utilization cluster in the requirements.

7.2.3.2. First ReÞnement on OODB Requirements Ð Object Server-based Architecture

The recommended reÞnement is made to the requirements. Since the Composite cluster is now a low utiliza-
tion cluster, it must be put in a sparse cluster set. A sparse cluster set, SCS, is created for this purpose. The
reÞned requirement variable values are shown in Figure 61.

The mappings were invoked to produce the architecture instance for simulation from the new requirements.
The resulting architecture summary is shown in Figure 62. Items to note include:

¥ The Composite cell has been moved from client to Object Server, SCS. Now the Composite cells
can be activated and kept in object server cache for use by multiple clients. This is intended to
improve the amortized activation cost by activating once and using many times.

¥ Distributed transactions are now supported in architecture components (in client, object server, per-
sistent cell manager, and transaction manager) since now both the client and the object server par-
ticipation in transactions.

¥ Object locking is supported (in client, object server, and persistent cell manager) because of the
multi-user requirement.

The architecture properties are shown in Figure 63. and the simulation proÞle summary is shown in Figure 64.
Note that since the object server caches the Composite cell objects, they donÕt have to be activated each time
they are used. In this case the Composite cell objects were placed in the cache when they were created by the
import operation (prior to the start of the proÞling). As a result, the object server summary proÞle in Figure 64.
shows zero activation time, implying that no subsequent activations were needed. This, therefore, shows that
the UFO toolÕs suggested reÞnement to the initial architectural parameters eliminated the problem of excessive
activation time on the low-utilization Composite cell.

Since the UFO simulator processes client sessions sequentially, the proÞles and projections for concurrent cli-
ent sessions are derived manually from the sequential data. We use the proÞle data in Figure 64. to extrapolate
concurrent loads on the different components in the OODB architecture.

Each user will have a dedicated workstation to be used as the client machine for the workßow management
system. One or more object servers and the persistent cell managers can be shared among the clients. We must
project how to structure the architecture to provide sufÞcient capacity in the object servers and persistent cell
managers.

The targeted use of this application is for project management for a large corporate software development site
with approximately 6000 employees using the workßow management system. In the average case, each
employee will complete two tasks per day in a workßow diagram. Each employee must report their progress
before close of business each week, and the typical scenario is for all employees to dedicate the last 15 minutes
of work each week to updating their progress in the workßow diagrams. Therefore, the application requires
capacity for 6000 persons entering 10 task activation transactions and 10 task closeout transactions in 15 min-
utes, for a total of 8000 transactions per minute (tpm) for all users, or 1.3 tpm for each of the 6000 users.

These requirements are shown in the third column of Table 5. Since each user is on a different client machine,
the client requirement is 1.3 tpm. The object server and persistent cell manager components will be shared and
must support the combined transaction rate of 8000 tpm.

page 149

 Long Transactions: FALSE

 Concurrent Users: TRUE

 Locality Clusters:
 Cluster: Root
 Roles:
 Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: Composite
 Roles:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Utilization: LOW
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: PContent
 Roles:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Sparse Cluster Sets
 Cluster Set SCS
 Clusters:
 Composite
 Global Cluster Set Contention: LOW

 Dense Cluster Set DCS
 Clusters:
 Root
 PContent
 Global Cluster Set Contention: LOW

 Cluster Set Partitions
 Partition CSP
 Cluster Sets:
 DCS
 SCS
 Global Partition Contention: LOW

 Global Transaction Throughput: LOW

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

Figure 61. 1st ReÞnement of Requirement Variable Values

page 150

Reentrant Client:

 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Root Role: Root.root_root

Object Server Set. Integration: SHARED
 Reentrant Object Server: SCS
 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

Persistent Cell Manager Set. Integration: SHARED
 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 SCS
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED

Figure 62. 1st ReÞnement Architecture Summary

page 151

Size per client: 2560360 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 4
Total size of shared processes: 8881360 Bytes

Reentrant Client:
Total size: 2560360 Bytes
Size accounted for by methods: 60360 Bytes
Size accounted for by cache: 1000000 Bytes

 Object and Cell Services.
 Total size: 1250000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Object Server Set. Integration: SHARED
Total processes per object server set: 1
Total size per object server set: 5531360 Bytes

 Reentrant Object Server: SCS
 Total size: 5531360 Bytes
 Size accounted for by methods: 31360 Bytes
 Size accounted for by cache: 4000000 Bytes

 Object and Cell Services.
 Total size: 4250000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Persistent Cell Manager Set. Integration: SHARED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2450000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2450000 Bytes

 Processes allocated to PCM:
 CLIENT
 SCS
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED. Size: 200000
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
Total size: 200000 Bytes
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
Total size: 700000 Bytes
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED. Size: 200000

Figure 63. 1st ReÞnement Architecture Properties

page 152

Intra-Cell Calls Made: 36541 Time: 55359
Intra-Cell Calls Received: 36541 Time: 55360
Inter-Cell Calls Made: 5 Time: 7
Inter-Cell Calls Received: 155 Time: 703
RPCs Made: 786 Time: 13098
RPCs Received: 786 Time: 14289
Creations: Objects: 14348 Cells: 75
 Time: 458877
Activations: Objects: 4849 Cells: 174
 Time: 74205
Passivations: Objects: 6361 Cells: 403
 Time: 111823
Commits: Objects: 6361 Cells: 304
 Time: 88366
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 3911203

Overall Architecture Summary ProÞle

 Intra-Cell Calls Made: 34519 Time: 52299
 Intra-Cell Calls Received: 34519 Time: 52300
 Inter-Cell Calls Made: 0 Time: 0
 Inter-Cell Calls Received: 150 Time: 681
 RPCs Made: 536 Time: 8932
 RPCs Received: 250 Time: 4544
 Creations: Objects: 14348 Cells: 75
 Time: 218756
 Activations: Objects: 4849 Cells: 174
 Time: 19966
 Passivations: Objects: 330 Cells: 249
 Time: 8545
 Total Execution Time: 1370706

Client Summary ProÞle

 Intra-Cell Calls Made: 2022 Time: 3060
 Intra-Cell Calls Received: 2022 Time: 3060
 Inter-Cell Calls Made: 5 Time: 7
 Inter-Cell Calls Received: 5 Time: 22
 RPCs Made: 250 Time: 4166
 RPCs Received: 536 Time: 9745
 Creations: Objects: 0 Cells: 0
 Time: 0
 Activations: Objects: 0 Cells: 0
 Time: 0
 Passivations: Objects: 6031 Cells: 154
 Time: 22942
 Total Execution Time: 158043

Object Server Summary ProÞle

 Creations: Objects: 14348 Cells: 75
 Time: 240121
 Activations: Objects: 4849 Cells: 174
 Time: 54239
 Passivations: Objects: 6361 Cells: 403
 Time: 80336
 Commits: Objects: 6361 Cells: 304
 Time: 88366
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 2382454

Persistent Cell Manager Summary ProÞle

Figure 64. 1st ReÞnement Simulation ProÞles

page 153

From the simulation data in Figure 64., we can calculate the transaction throughput rate for the clients, object
servers, and persistent cell managers. The simulation performed 150 transactions. The total execution time for
each architectural component is shown in the Þgure: 1,370,000 microseconds for a client, 158,000 microsec-
onds for the object server, and 2,380,000 microseconds for the persistent cell manager. The translation of these
values into transactions per minute is shown in the second column of Table 5.

Comparing the simulated performance in column two to the required values in column three, we see that the
client and object server in the architecture both exceed the requirements, but the persistent cell manager pro-
vides less than 50% of the required capacity. To address this problem, the Global Partition Contention require-
ment variable value must be set to HIGH for the Cluster Set Partition CSP (corresponding to the cells managed
by the persistent cell manager). This will result in a separate persistent cell manager processor being dedicated
to each workßow management diagram repository rather than a single persistent cell manager processor shared
among all workßow management diagram repositories.

7.2.3.3. Final ReÞnement on OODB Requirements Ð Replication in the Architecture

Section 5.1.8. showed that setting the global partition contention to high on a cluster set partition increases
capacity and availability for the OODB. Therefore, since we are setting the value to high in order to increase
capacity, we also get higher availability. With this in mind, we decided to increase availability in the two other
global contention requirements: Global Cluster Set Contention on the Sparse Cluster Sets and Global Transac-
tion Throughput. The resulting requirement variable are shown in Figure 65.

The mappings were invoked to produce the architecture instance for simulation from the requirements. The
resulting architecture summary is shown in Figure 66. Note that the Integration on the Object Server Set, the
Persistent Cell Manager, and the Transaction Manager now have the value of DEDICATED. This means that
each repository that is created for a workßow diagram will have a dedicated processor for the object server,
persistent cell manager, and transaction manager. The corresponding architecture properties are shown in Fig-
ure 67. The second and third lines from the top show that each repository will now have three dedicated pro-
cesses and 8.8 megabytes of runtime process space associated with it. This increase in resources provides the
desired increase in capacity that we needed and the increase in availability that we requested.

The resulting simulation proÞle summary is shown in Figure 68. The results are nearly identical to the previous
simulation since the architectural properties that we changed Ð multi-user capacity and availability Ð are not
metered in the simulator. With no further requirement reÞnements suggested by the architectural properties and
simulation proÞles, we use this set of requirements as the baseline requirements for the OODB in the workßow
management system.

Table 5. Multi-Use Performance ProÞle and Requirements

Architectural Component
Simulated Performance

(transactions per minute)
Required Performance

(transactions per minute)

Client 6,600 tpm 1.3 tpm

Object Server 57,000 tpm 8,000 tpm

Persistent Cell Manager 3,800 tpm 8,000 tpm

page 154

 Long Transactions: FALSE

 Concurrent Users: TRUE

 Locality Clusters:
 Cluster: Root
 Roles:
 Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: Composite
 Roles:
 Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain
 Utilization: LOW
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Cluster: PContent
 Roles:
 Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Utilization: HIGH
 Size: SMALL
 Primary Reliability:
 HIGH
 Secondary Reliability:
 NONE

 Sparse Cluster Sets
 Cluster Set SCS
 Clusters:
 Composite
 Global Cluster Set Contention: HIGH

 Dense Cluster Set DCS
 Clusters:
 Root
 PContent
 Global Cluster Set Contention: LOW

 Cluster Set Partitions
 Partition CSP
 Cluster Sets:
 DCS
 SCS
 Global Partition Contention: HIGH

 Global Transaction Throughput: HIGH

 Reentrant Cluster Sets: <Automatically Derived. Internal Representation Not Shown>

Figure 65. Final ReÞnement of Requirement Variable Values

page 155

Reentrant Client:
 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Root Role: Root.root_root

Object Server Set. Integration: DEDICATED

 Reentrant Object Server: SCS
 Object and Cell Services.
 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

Persistent Cell Manager Set. Integration: DEDICATED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 SCS
 Write-through: EAGER
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: DEDICATED
 Object server set administration: DEDICATED
 Persistent cell manager set administration: DEDICATED

Transaction Manager. Integration: DEDICATED
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED

Figure 66. Final ReÞnement Architecture Summary

page 156

Size per client: 2560360 Bytes
Number of processes per active repository: 3
Total size of processes per repository: 8781360 Bytes
Number of fixed (shared) processes: 1
Total size of shared processes: 200000 Bytes

Reentrant Client:
Total size: 2560360 Bytes
Size accounted for by methods: 60360 Bytes
Size accounted for by cache: 1000000 Bytes
 Object and Cell Services.
 Total size: 1250000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Object Server Set. Integration: DEDICATED
Total processes per object server set: 1
Total size per object server set: 5631360 Bytes

 Reentrant Object Server: SCS
 Total size: 5631360 Bytes
 Size accounted for by methods: 31360 Bytes
 Size accounted for by cache: 4000000 Bytes
 Object and Cell Services.
 Total size: 4350000 Bytes
 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: NOT SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Persistent Cell Manager Set. Integration: DEDICATED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2450000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2450000 Bytes
 Processes allocated to PCM:
 CLIENT
 SCS
 Persistent nested transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED. Size: 200000
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
Total size: 200000 Bytes
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: DEDICATED
 Object server set administration: DEDICATED
 Persistent cell manager set administration: DEDICATED

Transaction Manager. Integration: DEDICATED
Total size: 700000 Bytes
 Nested persistent transactions: NOT SUPPORTED
 Distributed transactions: SUPPORTED. Size: 200000

Figure 67. Final ReÞnement Architecture Properties

page 157

Intra-Cell Calls Made: 36541 Time: 55359
Intra-Cell Calls Received: 36541 Time: 55360
Inter-Cell Calls Made: 5 Time: 7
Inter-Cell Calls Received: 155 Time: 703
RPCs Made: 786 Time: 13098
RPCs Received: 786 Time: 14289
Creations: Objects: 14348 Cells: 75
 Time: 458877
Activations: Objects: 4849 Cells: 174
 Time: 74205
Passivations: Objects: 6361 Cells: 403
 Time: 111823
Commits: Objects: 6361 Cells: 304
 Time: 88366
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 3921524

Overall Architecture Summary ProÞle

 Intra-Cell Calls Made: 34519 Time: 52299
 Intra-Cell Calls Received: 34519 Time: 52300
 Inter-Cell Calls Made: 0 Time: 0
 Inter-Cell Calls Received: 150 Time: 681
 RPCs Made: 536 Time: 8932
 RPCs Received: 250 Time: 4544
 Creations: Objects: 14348 Cells: 75
 Time: 218756
 Activations: Objects: 4849 Cells: 174
 Time: 19966
 Passivations: Objects: 330 Cells: 249
 Time: 8545
 Total Execution Time: 1370706

Client Summary ProÞle

 Intra-Cell Calls Made: 2022 Time: 3060
 Intra-Cell Calls Received: 2022 Time: 3060
 Inter-Cell Calls Made: 5 Time: 7
 Inter-Cell Calls Received: 5 Time: 22
 RPCs Made: 250 Time: 4166
 RPCs Received: 536 Time: 9745
 Creations: Objects: 0 Cells: 0
 Time: 0
 Activations: Objects: 0 Cells: 0
 Time: 0
 Passivations: Objects: 6031 Cells: 154
 Time: 22942
 Total Execution Time: 168364

Object Server Summary ProÞle

 Creations: Objects: 14348 Cells: 75
 Time: 240121
 Activations: Objects: 4849 Cells: 174
 Time: 54239
 Passivations: Objects: 6361 Cells: 403
 Time: 80336
 Commits: Objects: 6361 Cells: 304
 Time: 88366
 Aborts: Objects: 0 Cells: 0
 Time: 0
 Total Execution Time: 2382454

Persistent Cell Manager Summary ProÞle

Figure 68. Final ReÞnement Simulation ProÞles

page 158

7.2.3.4. Summary for Experiment 2 Requirements DeÞnition

The estimated development cost for deÞning and reÞning the OODB requirements for the application were:

¥ one-half staff*day to deÞne UFO requirement variable values for the application

¥ one-quarter staff*day to map from requirements to architecture simulator, plus run the simulation

¥ one-quarter staff*day to review the simulation proÞle

¥ one staff*day to identify the Þrst reÞnements to the requirements and to run the simulation

¥ one staff*day to identify the Þnal reÞnements to the requirements and to run the simulation

Thus, we estimate the development cost to be about three days for a developer moderately familiar with the
UFO tool. With this minimal level of effort we were able to demonstrate that the deÞned set of OODB require-
ments for the workßow management system application are valid. In the next chapter we further explore and
make estimates on the relative cost savings of the UFO versus conventional approach.

7.2.4. Selecting an Off-the-Shelf OODB for the Workßow Management System

As in the Þrst experiment, we next used the UFO tool to select among the three off-the-shelf OODBs (Object-
StoreLite, Objectivity, and ITASCA). We use the baseline requirements from the previous section as the stan-
dard for comparison.

7.2.4.1. ObjectStoreLite

We Þrst set the UFO tool to target the ObjectStoreLite OODB architecture. When the mapping from require-
ment variable values to architectural parameter values was invoked, the following inconsistencies were
reported:

** INCONSISTENCY: ObjectStoreLite does not support dedicated transaction managers.
...
** INCONSISTENCY ** ObjectStoreLite does not support object locking.
...
** INCONSISTENCY ** ObjectStoreLite always uses embedded repository manager.
...
** INCONSISTENCY: ObjectStoreLite supports only NON-REENTRANT clients.
...
** INCONSISTENCY: ObjectStoreLite doesn't support computational object servers.
...
** INCONSISTENCY: ObjectStoreLite does not support dedicated PCMs.
...

The reported inconsistencies imply that the ObjectStoreLite architecture is completely inappropriate for the
workßow management application. For example, the Þrst reported inconsistency arise from the fact that the
ObjectStoreLite architecture doesnÕt support multiple users. Therefore, we immediately eliminate ObjectStore-
Lite from consideration for this application.

page 159

7.2.4.2. Objectivity

Next, we set the target to Objectivity and invoked that mapping from requirement variables to architectural
parameters. The following summarized inconsistencies were reported:

** INCONSISTENCY: Objectivity supports only NON-REENTRANT clients.
...
** INCONSISTENCY: Objectivity does not use distributed transactions.
...
** INCONSISTENCY: Objectivity doesn't support computational object servers.
...
** INCONSISTENCY: Objectivity does not support dedicated PCMs.
...
** INCONSISTENCY: Objectivity does not support dedicated transaction managers.
...
** INCONSISTENCY: Objectivity always supports long transactions.
...
** WARNING ** Objectivity always uses embedded repository managers.
...

These inconsistencies imply that Objectivity does not support some of the important performance-oriented
baseline requirements. Therefore, we eliminated Objectivity from consideration for this application.

7.2.4.3. ITASCA

Finally, we set the target to ITASCA and invoked the mapping requirement variables to architectural parame-
ters. The following inconsistencies were reported:

** INCONSISTENCY: ITASCA always supports long transactions.
...
** INCONSISTENCY: ITASCA does not support dedicated transaction managers.
...
** INCONSISTENCY: ITASCA does not support dedicated object server sets.
...
** INCONSISTENCY: ITASCA does not support dedicated PCMs.
...

The Þrst inconsistency indicates that ITASCA provides extra functionality that is not need for this application,
but this does not preclude its use. The next three inconsistencies can easily be addressed by having a separate
ITASCA installation for each repository, thereby creating transaction managers, object servers, and persistent
cell managers that are dedicated to individual repositories.

After resolving the inconsistencies, the mappings were invoked to produce the ITASCA architecture instance
for simulation from the requirements. The resulting architecture summary is shown in Figure 69. The architec-
ture properties are shown in Figure 70. The simulation proÞle summary is shown in Figure 71.

7.2.4.4. The OODB Simulation Results for the Workßow Management System

Table 6. provides size and performance proÞles on the baseline architecture and ITASCA. This size and perfor-
mance data comes from the architectural properties and simulation proÞles summarized in Figure 67. & Figure
68., and Figure 70. & Figure 71.

page 160

Reentrant Client:
 Object and Cell Services.
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Root
 Role Declarations:
 Proxy Role root_root is Class VPML_Root
 Role ready is Class ReadyNode
 Role active is Class ActiveNode
 Cell: PContent
 Role Declarations:
 Proxy Role pcont_root is Class ProductContent
 Role lnode is Class Node
 Role rnode is Class Node
 Root Role: Root.root_root

Object Server Set. Integration: SHARED

 Threaded Object Server: SCS
 Object and Cell Services.
 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED
 Write-through policy: EAGER
 Cell Allocations:
 Cell: Composite
 Role Declarations:
 Proxy Role comp_root is Class CompositeTask
 Role prim is Class PrimitiveTask
 Role res is Class Resource
 Role prod is Class Product
 Role pset is Class ProductSet
 Role pmem is Class ProductMember
 Role pflo is Class ProductFlow
 Role fchn is Class FlowChain

Persistent Cell Manager Set. Integration: SHARED

 Persistent Cell Manager. CSP
 Processes allocated to PCM:
 CLIENT
 SCS
 Write-through: EAGER
 Persistent nested transactions: SUPPORTED
 Distributed transactions: SUPPORTED
 Object locking: SUPPORTED
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
 Nested persistent transactions: SUPPORTED
 Distributed transactions: SUPPORTED

Figure 69. ITASCA Architecture Summary

page 161

Size per client: 2660360 Bytes
Number of processes per active repository: 0
Total size of processes per repository: 0 Bytes
Number of fixed (shared) processes: 4
Total size of shared processes: 10331360 Bytes

Reentrant Client:
Total size: 2660360 Bytes
Size accounted for by methods: 60360 Bytes
Size accounted for by cache: 1000000 Bytes
 Object and Cell Services.
 Total size: 1350000 Bytes
 Threads: SINGLE
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 1000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Object Server Set. Integration: SHARED
Total processes per object server set: 1
Total size per object server set: 5981360 Bytes

 Threaded Object Server: SCS
 Total size: 5981360 Bytes
 Size accounted for by methods: 31360 Bytes
 Size accounted for by cache: 4000000 Bytes
 Object and Cell Services.
 Total size: 4450000 Bytes
 Threads: MULTI
 Object locking: SUPPORTED
 Persistent nested transactions: SUPPORTED
 Cache size: 4000000 Bytes
 Cache replacement policy: LRU
 Distributed transactions: SUPPORTED. Size: 50000
 Write-through policy: EAGER

Persistent Cell Manager Set. Integration: SHARED
Total processes per persistent cell manager set: 1
Total size per persistent cell manager server set: 2950000 Bytes

 Persistent Cell Manager: CSP
 Write-through: EAGER
 Total size: 2950000 Bytes
 Processes allocated to PCM:
 CLIENT
 SCS
 Persistent nested transactions: SUPPORTED. Size: 500000
 Distributed transactions: SUPPORTED. Size: 200000
 Object Locking: SUPPORTED. Size: 250000
 Backup policy: NO AUTOMATED BACKUPS

Repository Manager. Integration: SHARED
Total size: 200000 Bytes

 Maximum number of concurrent clients on a repository: 1000000
 Maximum number of repositories per installation: 1000000000
 Transaction manager administration: SHARED
 Object server set administration: SHARED
 Persistent cell manager set administration: SHARED

Transaction Manager. Integration: SHARED
Total size: 1200000 Bytes
 Nested persistent transactions: SUPPORTED. Size: 500000
 Distributed transactions: SUPPORTED. Size: 200000

Figure 70. ITASCA Architecture Properties

page 162

Intra-Cell Calls Made: 36541 Time: 55359
Intra-Cell Calls Received: 36541 Time: 55360
Inter-Cell Calls Made: 5 Time: 7
Inter-Cell Calls Received: 155 Time: 703
RPCs Made: 786 Time: 13098
RPCs Received: 786 Time: 14289
Creations: Objects: 14348 Cells: 75
 Time: 458877
Activations: Objects: 4849 Cells: 174
 Time: 74205
Passivations: Objects: 6361 Cells: 403
 Time: 111823
Commits: Objects: 6361 Cells: 304
 Time: 88366
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 4531705

Overall Architecture Summary ProÞle

Intra-Cell Calls Made: 34519 Time: 52299
Intra-Cell Calls Received: 34519 Time: 52300
Inter-Cell Calls Made: 0 Time: 0
Inter-Cell Calls Received: 150 Time: 681
RPCs Made: 536 Time: 8932
RPCs Received: 250 Time: 4544
Creations: Objects: 14348 Cells: 75
 Time: 218756
Activations: Objects: 4849 Cells: 174
 Time: 19966
Passivations: Objects: 330 Cells: 249
 Time: 8545
Total Execution Time: 1458551

Client Summary ProÞle

Intra-Cell Calls Made: 2022 Time: 3060
Intra-Cell Calls Received: 2022 Time: 3060
Inter-Cell Calls Made: 5 Time: 7
Inter-Cell Calls Received: 5 Time: 22
RPCs Made: 250 Time: 4166
RPCs Received: 536 Time: 9745
Creations: Objects: 0 Cells: 0
 Time: 0
Activations: Objects: 0 Cells: 0
 Time: 0
Passivations: Objects: 6031 Cells: 154
 Time: 22942
Total Execution Time: 204485

Object Server Summary ProÞle

Creations: Objects: 14348 Cells: 75
 Time: 240121
Activations: Objects: 4849 Cells: 174
 Time: 54239
Passivations: Objects: 6361 Cells: 403
 Time: 80336
Commits: Objects: 6361 Cells: 304
 Time: 88366
Aborts: Objects: 0 Cells: 0
 Time: 0
Total Execution Time: 2868669

Persistent Cell Manager Summary ProÞle

Figure 71. ITASCA Simulation ProÞles

page 163

The ITASCA runtime process size is 12% larger than the baseline, and the execution time is 15% greater. This
is attributed to excess functionality, such as the support for long transactions.

7.2.4.5. Summary for Experiment 2 OODB Selection

The estimated development cost for simulating and comparing the off-the-shelf OODB system properties for
the three OODBs were:

¥ one staff*day to execute the mappings from requirements to architecture simulator and address
inconsistencies reported by the tool

¥ one-half staff*day total to run the two ITASCA simulations

¥ one staff*day to review the initial ITASCA simulation proÞle and do the multi-user analysis

Thus, we estimate the cost for evaluating the three OODBs to be about two and one half days for a developer
moderately familiar with the UFO tool. With this minimal level of effort we were able to characterize how well
each of the OODBs satisÞed the requirements of the workßow editor application.

In the next chapter we further explore and make estimates on the relative cost savings of the UFO versus con-
ventional approach.

Table 6. OODB Properties for the Workßow Diagram Editor Application

OODB Model
Runtime

Client Size

Number of
Dedicated &

Shared
Processes

Runtime
Dedicated &

Shared
Process Size

Total Runtime
Size

Total
Execution

Time

Baseline 2.6 Mbytes 3
1

8.8 Mbytes
0.2 Mbytes

11.6 Mbytes 3.9 Seconds

ITASCA 2.7 Mbytes 3*

1*

* Dedicated by con-
vention of 1 reposi-
tory per installation

10.1 Mbytes
0.2 Mbytes

13.0 Mbytes 4.5 Seconds

page 164

page 165

Chapter 8. Analysis

In this chapter we look back at our hypothesis from Section 1.4. and the experimental results from the previous
chapter in order to analyze the degree to which the hypothesis is satisÞed. Our analysis in this chapter is
divided into two parts, supporting the hypothesis for requirements deÞnition and supporting the hypothesis for
off-the-shelf OODB selection. These two sections correspond to the two major functions of the UFO tool, each
of which was tested in each of the two experiments that we carried out.

As discussed in Section 3.6., the level of effort required to quantify and accurately compare conventional soft-
ware development costs and conformance values to those of UFO is beyond the scope of resources available
for this study. Therefore, we report here on single data points and estimates from the UFO implementation and
experiments in order to provide rough approximations for cost and conformance values. We rely on the
readerÕs intuition and possible experience in deÞning requirements and implementing software systems as we
discuss the cost and conformance issues associated with conventional and UFO software development technol-
ogy.

8.1. Supporting the Hypothesis for Requirements DeÞnition

The hypothesis for the requirements deÞnition portion of the UFO technology states that we provide an engi-
neering approach for converging on a set of requirements that results in both a relatively low development cost
and a relatively high conformance between requirements and OODB simulation properties. In this section, we
argue that our work supports this hypothesis. The projected cost/conformance proÞles for requirements deÞni-
tion are illustrated in Figure 73. The vertical axis in this diagram is the typical cost for deÞning requirements
for a system instance, while the horizontal axis represents the typical degree of conformance between the sys-
tem properties of a system instance and the requirements. The conformance using requirements deÞnition is
projected to be as high as custom system development while the cost is projected to be considerably lower than
both the conventional general purpose and custom system approach. We justify this projection in the following
sections.

Cost of DeÞning
Requirements

Conformance to Application Requirements

Requirements DeÞnition using
Conventional Development and

General Purpose Systems

Figure 72. Cost/Conformance ProÞle for Requirements DeÞnition

Requirements DeÞnition
using UFO

Requirements DeÞnition using
Conventional Development

of Custom Systems

page 166

8.1.1. Requirements DeÞnition Cost Estimates

With the conventional approach to deÞning requirements, the associated cost come primarily from three
sources: discovery cost, common speciÞcation cost, and variable speciÞcation cost. The discovery cost is the
cost incurred to explore the domain for the class of systems, to identify all of the relevant requirement issues,
and to identify how each requirement issue applies to a particular instance. Since conventional approaches to
custom system development or general purpose systems typically start with a Òclean slateÓ where developers
have limited understanding of the domain, the discovery costs can be signiÞcant.

Based on our experiences developing UFO, the conventional discovery cost for the portion of the OODB
domain considered for UFO is estimated to be approximately 2 months for an experienced software architect
with no previous experience in the OODB domain. The discovery activities include reading research papers,
books, and commercial literature on OODB objectives, concepts, functionality, architectural idioms, and
implementation tricks, plus the possibility of cursory explorations with off-the-shelf OODB systems. The
deliverable from the discovery phase would be a domain model, a high-level reference architecture, or similar
items.

In addition to the discovery costs are the cost associated with specifying the requirements in a clear, complete,
and accurate form so that developers can use the requirements in subsequent design and implementation. With
conventional approaches there is no distinction between the speciÞcations that are common for a class of sys-
tems and the speciÞcations that are variable among the different instances in the class. However, we split the
costs into common speciÞcation cost and variable speciÞcation cost to aid in later comparisons of conventional
approaches to deÞning requirements and the UFO approach to deÞning requirements.

Based on our experiences developing UFO, the conventional common speciÞcation cost and variable speciÞ-
cation cost for an OODB instance is estimated to be approximately 2 months each for an experienced software
architect with no previous experience in the OODB domain. The requirements deÞnition activities include
deÞning required functionality, boundaries and limitations, associations, and so forth. The deliverable would
be natural language requirements document on the order of 100 pages, clearly deÞning what is required of the
system instance for each of the requirement issues in the domain.

The UFO tool signiÞcantly reduces the conventional cost of deÞning requirements in the following ways:

¥ Reduced discovery cost. All requirement issues for the class of systems have been identiÞed,
explored, and captured in the UFO tool. Therefore, the discovery cost in requirements deÞnition is
zero.

¥ Reduced common speciÞcation cost. The common requirements are the same and predeÞned for all
instances in the UFO tool. Therefore, the common speciÞcation cost in requirements deÞnition is
zero.

¥ Reduced variable speciÞcation cost. The UFO tool provides the following support for efÞciently
specifying variable requirements:

¥ guided requirements deÞnition

¥ automatic extraction of some requirement variable values

¥ feedback on system properties from modeling and simulation for reÞning requirements

¥ automated suggestions for reÞning requirements

In the UFO experiments we estimated the variable speciÞcation cost using the UFO tool to be
approximately 2 days with the workßow editor (see Section 7.1.3.1.) and 3 days for the workßow
manager (see Section 7.2.3.4.).

page 167

8.1.2. Requirements DeÞnition Conformance Estimates

Conformance is primarily determined by three factors: completeness, accuracy, and satisfaction. Each of these
have values ranging from 0% to 100%. Completeness indicates the degree to which all requirements issues
have been addressed in the set of requirements for an instance. For example, if developers overlook or omit a
requirement, then completeness is less than 100%. Accuracy indicates the degree to which the set of require-
ments speciÞed for an instance accurately reßects the intent of the developers. For example, if developers mis-
understand a requirement and specify it incorrectly, then accuracy is less than 100%. Satisfaction indicates the
degree to which the system properties for an instance satisfy the set of requirements for the instance. For exam-
ple, if a system property is inconsistent or out of bounds for the requirement on that system property, then sat-
isfaction is less than 100%.

The UFO tool increases the potential for high conformance in the following ways:

Completeness. All of the requirement issues for the class of systems have been identiÞed, explored, and cap-
tured in the UFO technology. This assures that the completeness of the requirements is near 100%. Note that
this assumes a mature and stable UFO tool, where omissions have been detected and addressed.

Accuracy. Since the common requirements are the same and predeÞned for all OODB instances in UFO, the
accuracy for common requirements will be near 100% for a mature and stable UFO technology. That is, since
the common requirements are predeÞned, there is no opportunity for developers to incorrectly specify a com-
mon requirement.

For variable requirements, the UFO tool increases accuracy by automatically deriving some requirement val-
ues from source code and by guiding deÞnition of the remaining requirements. For example, the requirement
variable template editor provides developers with legal values for each requirement variable and can provide
on-line help to help developers select the appropriate values.

Accuracy is also increased through feedback from modeling and simulation. Unexpected size, performance,
and functionality that is found in system property proÞles can often be accounted for in inaccurately speciÞed
requirements. The UFO tool can increase accuracy by:

¥ providing modeling and simulation feedback on system properties to determine the accuracy of
requirements

¥ providing feedback in the form of suggestions on how to reÞne requirement values in order to
increase accuracy

For example, in the Þrst experiment on the workßow editor described in Section 7.1., we illustrated how to
optimize cluster optimization using feedback from simulation proÞling. In the second experiment on the work-
ßow manager, described in Section 7.2., we illustrated how to identify overloaded processors and how to mod-
ify requirements to more accurately reßect the system requirements.

Satisfaction. Since the common requirements are addressed with predeÞned, common structures in the soft-
ware architectures for all instances in UFO, the satisfaction for common requirements will be near 100% for a
mature and stable UFO technology. That is, since the common requirements are satisÞed by predeÞned struc-
tures in the software architecture, there is no opportunity for developers to incorrectly implement a common
requirement.

Similarly, variable requirements in the UFO technology will have a near 100% value for satisfaction since the
mappings from requirements to software architectures will assure that the requirement is properly addressed in
the architecture of the instance.

page 168

The primary source of variability in the satisfaction value comes from the intangible requirements on size and
performance. There are implicit desiderata in software for a system to be negligible in size and instantaneous
in response. However, a developerÕs acceptable threshold for system size or system performance may not
always be achievable. In these cases, the UFO tool helps to increase satisfaction by providing feedback on sys-
tem properties such as size and performance. This increase may simply mean that developers must adopt more
realistic and practical expectations on size and performance.

8.2. Supporting the Hypothesis for Off-the-Shelf OODB Selection

The hypothesis for the off-the-shelf OODB selection portion of the UFO technology says that we provide an
engineering approach for selecting an off-the-shelf system that results in both a relatively low development
cost and a relatively high conformance between baseline requirements and off-the-shelf OODB simulation
properties. In this section, we argue that our work supports this hypothesis. The projected cost/conformance
proÞles for OODB selection are illustrated in Figure 73. The vertical axis in this diagram is the typical cost for
selecting an OODB for a particular application, while the horizontal axis represents the typical degree of con-
formance between the system properties of a system instance and the application requirements. We justify
these results in the following sections.

8.2.1. Off-the-Shelf OODB Selection Cost Estimates

The costs associated with the conventional approach to selecting off-the-shelf OODBs come primarily from
three sources, search cost, profiling cost, collation cost.

The search cost is the cost associated with locating the available off-the-shelf systems, reviewing available lit-
erature and information, and pre-selecting the collection of appropriate candidates. The proÞling cost is the
cost of acquiring, installing, and benchmarking the candidates in order to collect relevant proÞle data. The col-
lation cost is the cost of doing the comparative analysis, ranking, and selection of an off-the-shelf candidate
based on the proÞle data.

Cost of
Selecting

OODB

Conformance to Application Requirements

Selecting OODBs using
Conventional Approach

Figure 73. Cost/Conformance ProÞle for Selecting Off-the-shelf OODBs

Selecting OODBs
using UFO

page 169

When using the UFO tool for selecting off-the-shelf OODBs, the selection costs are reduced in the following
ways:

¥ Search cost. All of the off-the-shelf OODBs that will be evaluated have already been identiÞed and
captured in the tool. This, of course, assumes a mature UFO that contains a relatively complete set
of off-the-shelf options. Therefore, the search cost in the selection cost equation is zero.

¥ ProÞling cost. The UFO tool provides the following support for proÞling:

¥ feedback on inconsistencies between a baseline OODB architecture and the off-the-
shelf OODBs being proÞled

¥ feedback on system properties from modeling and simulation

¥ automated proÞle analysis

This tool support signiÞcantly reduces the proÞling cost in the selection cost equation. Later in this
section we will estimate these values for our experiments.

¥ Collation cost. The cost of comparing the different off-the-shelf OODB modeling and simulation
results from the UFO tool is reduced by presenting modeling and simulation data for each OODB
candidate in a consistent and uniform way.

Based on the UFO experiments and practical experience evaluating OODBs we can roughly estimate these val-
ues. We estimate the search cost to be approximately 1 month to identify 3 to 5 good candidates. The proÞling
cost using conventional evaluation of selected off-the-shelf OODBs would be on the order of 6 months for
experienced software engineers without previous experience with OODBs. The collation cost associated with
taking the proÞle results and ordering the OODB candidates by their relative merit for a given application is
estimated to be approximately 1 month.

In the workßow editor experiment using UFO, we estimated the proÞling cost to be 3 days for 3 candidate
OODBs and the collation cost to be 1 day (see Section 7.1.4.5.). In the workßow manager experiment, the
UFO estimates were 1.5 days for proÞling cost and 1 day for collation cost (see Section 7.2.4.5.).

8.2.2. Off-the-Shelf OODB Selection Conformance Estimates

The conformance equation for OODB selection will be essentially the same as with requirements deÞnition,
with the additional consideration that the satisfaction may be further reduced by any mismatches between the
baseline requirements and the off-the-shelf OODB that most closely matches the baseline.

In Section 7.1.4.4. for the workßow editor we selected an off-the-shelf OODB that perfectly matched the base-
line OODB. Table 4. in that section shows that ObjectStoreLite has the same Total Runtime Size and Total Exe-
cution Time as the baseline OODB. Therefore, satisfaction in this case is not reduced by inconsistencies.

In Section 7.2.4.4. for the workßow manager we found an off-the-shelf OODB with a close but not perfect
match to the baseline OODB. Table 6. in that section shows that ITASCA has a Total Runtime Size that is 12%
larger than the baseline and a Total Execution Time 15% greater than the baseline. Therefore, the satisfaction
of the baseline requirements by ITASCA is not perfect. However, the UFO tool helps Þnd the off-the-shelf
OODB instance with the highest degree of satisfaction even if a perfect match is not available.

page 170

page 171

Chapter 9. Evaluation and Discussion

In this chapter we review and evaluate our experiences in deÞning software architecture modeling and simula-
tion technology, aimed at improving the development cost/conformance proÞles within a class of similar sys-
tems. We present some of the more signiÞcant lessons that we learned from these experiences and highlight
some of the key issues associated with creating and using the technology.

There are six major areas that are examined in the following subsections. First, we examine the issues and
challenges associated with capturing the relationships between requirements, architectures, and system proper-
ties. Recall that these relationship are used to deÞne the mappings in the tool and therefore play a central role
in the approach. The second section deals with our choice of discriminators for the OODB domain, the trade-
offs involved in making these choices, and why the choices were appropriate for our work. The next section
examines the effectiveness of the abstractions that we used in our technology. We argue that abstraction is the
unifying principal behind the software development efÞciencies offered by UFO. The next two subsections
deal with the practicality and extensibility issues associated with our technology, projecting what would be
involved in taking UFO from a research prototype to a production quality software development tool. In the
Þnal section we evaluate some of the challenges and successes in our low-level experiences implementing the
UFO tool.

9.1. Capturing Relationships Between Requirements, Architectures and
Properties

The key to our solution for improved cost/conformance proÞles is to capture the conventional relationships
between system requirements, software architectures, and system properties in an engineering support tool.
Capitalizing on these relationships, engineering support tools help developers to make principled choices
within the design space for a class of systems. In this section we review our experiences in capturing these
relationships and exploiting these relationships in a software architecture modeling and simulation tool.

9.1.1. The Triad of System Requirements, Architectures, and Properties

Early stages of this research focused only on system requirements, system architectures, and the relationships
between them. The hope was that developers could accurately specify their requirements a priori, and then the
relationships between requirements and architectures could be used to create a deterministic mapping from
requirements to system architectures with system properties that fully satisÞed the requirements. However,
after some experience we found that it was not always feasible for developers to fully understand and accu-
rately specify system requirements, even with the help of an engineering support tool that guided the deÞnition
of requirement variable values.

For example, with the UFO tool, developers might predict cluster utilization to be low on a particular cluster of
objects. However, the application simulation might reveal heavy utilization of the cluster that caused perfor-
mance bottlenecks in the architecture that were not predicted in the requirements.

To help developers more rapidly and accurately test and reÞne their requirements, we replaced the binary rela-
tionship between requirements and architectures with the ternary relationship between requirements, architec-
tures, and properties. This augmented our early view with an explicit representation of system properties, a
path to extract properties from architectures, and a feedback path from system properties back to requirements.

page 172

We found that the combination of requirements, architectures, and system properties allows for signiÞcantly
better engineering support for rapidly deploying high-conformance architectures than does simply considering
requirements and architectures. We believe that this is because the cycle of relationships between require-
ments, architectures, and system properties more accurately reßects and supports the way that conventional
software is developed in practice Ð experiences and observations regarding software system properties are
commonly used to iteratively reÞne requirements and optimize software system architectures.

9.1.2. Relationship between Requirements and Architectures

In our initial attempt at capturing the relationships between OODB requirements and OODB architectures, we
used a single mapping from requirement concepts to architecture realizations. This mapping was a complex
data ßow graph that we referred to as a dependency graph. Closer examination of the dependency graph indi-
cated that the mapping could be decomposed into four simpler mappings, each addressing a separate concern.
These are the four mapping phases illustrated in Figure 4. on page 7:

¥ Elicit requirements. Automatic extraction of requirement variable values from the application
source code and deÞnition of requirement variable values by developers.

¥ Derive architectural parameters. From requirement variable values to architectural parameter val-
ues.

¥ Instantiate software architectures. From architectural parameter values to software architecture
instance (instantiated conÞguration nodes).

¥ Realize software architectures. From conÞguration nodes to software architecture realization
(OODB modeling and simulation).

The decomposed mappings simpliÞed the encoding of relationships. The complex and convoluted dependency
graph now became a composition of simple and straightforward mappings, each with separate and clear con-
cerns. These mappings are easier to create, understand, modify, and maintain. We attribute this to the fact that
the mapping phases more accurately reßect the different activities and relationships that exist in conventional
development of software architectures.

9.1.3. Relationship between Architectures and System Properties

The most accurate means of extracting properties from a software system is with direct measurements and pro-
Þles on an executable system instance. However, this can be expensive if prototypes must be manually built or
if multiple evaluation copies of off-the-shelf systems are purchased. For this thesis, we focus on modeling and
simulation as a cost effective means of determining system properties. Although this was a pragmatic measure
for completing the thesis work (i.e., we didnÕt have the resources to build a generator for executable software
system architectures), modeling and simulation is also a realistic approach that can be applied in a cost effec-
tive way in practice.

The key to making the modeling and simulation effective is to accurately reßect the salient properties of the
OODB domain. However, note that it is primarily those properties that are a function of the requirements vari-
ables that need to be addressed. That is, system properties that are common and constant in all possible system
instances are much less interesting than the system properties that vary and discriminate the different system
instances. For example, in OODB subsystems whose structure, size, or performance can vary depending
requirement variable values, we provide a breakdown of how the components in the subsystem contribute to
the overall structure, size, or performance. For subsystems that donÕt vary from instance to instance, no break-
down is needed or provided.

It was a challenge to ÒcalibrateÓ the UFO modeling and simulation tool. Much of the information that we
needed regarding size and performance of OODB architectures was not published. Furthermore, we did not
have the time and resources to purchase, study, and prototype off-the-shelf OODBs in order to get representa-

page 173

tive data. Our approach to solving this problem was to rely on low-level performance simulations such as
remote procedure call costs, disk access costs, and so forth. In practice more accurate property models might
be required.

We simply note here that the cost and effort associated with calibrating a simulation and modeling tool such as
UFO are signiÞcant. However, this up-front cost and effort is amortized over each use of the tool.

9.1.4. Relationship between Properties and Requirements

The relationship between instance properties and requirements is a test for conformance. That is, it is a test for
how well a system instance satisÞes the requirements of the application. Low conformance between require-
ments and system properties can be accounted for by

¥ the system instance being used in a way that was not anticipated by the developer specifying the
requirements. For example, the application simulation might access data in a pattern that does not
match the locality predictions of the developer specifying locality clusters.

¥ a developer error in understanding a requirement or in specifying a value. For example, developers
might accidently specify a cluster they believe will be heavily utilized as a low utilization cluster in
the requirements.

The most effective way to capitalize on the relationship between properties and requirements in a modeling
and simulation tool is to automatically test for and detect inconsistencies, and then have the tool automatically
suggest reÞnements in the requirements that might improve conformance. An example of this in the UFO tool
is the test for high versus low utilization on clusters. The heuristic for testing high utilization is that the number
of intra-cell, inter-cell and RPC calls received on a cell must be 50% greater than the number of object activa-
tions on the cell. This can easily be extracted from the simulation proÞle for an instance and compared to the
high or low utilization requirement given for the cell. If the utilization for a cluster in the performance proÞle
does not match the utilization requirement deÞnition for the cluster, the tool will recommend that the require-
ment variable value be changed. This will result in the data cluster being moved to an OODB component that
can more efÞciently manage it.

Analysis of some system properties can be extremely complex, requiring considerable knowledge about the
application and about computer systems in general. It may be intractable to implement automated analysis in
the tool in these cases, so developers must manually evaluate the proÞles that are produced by the tool to deter-
mine appropriate reÞnements to the requirements. This approach can still be effective, but is more time con-
suming and leaves room for oversight and errors.

For example, one could imagine an algorithm that would Þnd the optimal clustering and partitioning require-
ments based on the low-level method invocation proÞle among data objects. The analysis, design, and imple-
mentation of that algorithm would be very complex, possibly a worthwhile thesis top of its own. Further
complicating this problem, however, is that a developer doing the clustering and partitioning analysis uses
knowledge about locality in the application domain and preferences of application users to Þnd clusters that
may not be globally optimal but optimize localized critical operations. To automate this type of analysis would
require an expert system plus extensions to the requirements deÞnitions portion of the tool to specify the
locally critical operations.

In general, the decision as to whether to implement automated proÞle analysis or to use manual analysis
depends on the trade-off between the cost of implementing the automated analysis up-front versus the cost of
repeatedly doing the manual analysis after each simulation. As discussed in Section 5.2.3.2., we limited the
automated proÞle analysis effort for the thesis to two performance areas. This allowed us to demonstrate the
potential of automation while still containing the scope of the thesis effort.

page 174

9.1.5. Discovering Relationships prior to Encoding

We have developed techniques for encoding the concepts and relationships in requirements, architectures, and
properties for a class of systems. However, one of the challenges that we did not explicitly address in this work
lies in discovering the concepts and relationships in a class of systems, prior to encoding them in a simulation
and modeling tool. This type of discovery process is commonly referred to as domain analysis in the software
reuse Þeld.

Although we did not directly focus on how to do the domain analysis to discover the relationships for a class of
systems, the technology that we have developed indicates the type of information that domain analysis must
produce and it suggests the activities required for producing that information. For example, the UFO modeling
and simulation tool provides a framework within which to capture:

¥ variability in OODB requirements

¥ parameters that express architectural variability in OODB architectures

¥ a mapping between requirement variability and architectural variability

¥ conÞgurations of architectural components that represent different OODB instances

¥ a mapping between architectural parameters and conÞgurations of architectural components

¥ simulation of the architectural components in an OODB instance

These items provided us with a separation of concerns as we did the analysis on the OODB domain. Each item
has a clear focus that drives the analysis. Each item has a framework for capturing and expressing information
about the OODB domain.

In Chapter 11., Future Work, we also describe the potential for future work in deÞning a general methodology
and technology for driving and capturing domain analysis in modeling and simulation tools similar to UFO.

9.2. Choosing the Discriminators for OODBs

The UFO requirement variables, architectural parameters, and conÞguration nodes are all discriminators
among OODB instances within the class of OODB systems. That is, they represent features from the OODB
domain that we deemed signiÞcant for distinguishing some OODB instances from others in the class.

Our choice of discriminators was driven by two primary objectives. Most importantly, we wanted the most sig-
niÞcant and practical discriminators for modeling and simulating OODB architectures in the UFO tool. Sec-
ond, we wanted discriminators that provided the biggest payoff from the investment we made to incorporate
them in the tool. In other words, within the limited scope of this thesis we didnÕt want to spend time character-
izing and implementing discriminators that were relatively insigniÞcant in the OODB domain or that were
overly complex relative to the value that they provided to the tool.

Fortunately these two objectives did not conßict. The discriminators that we determined to be most signiÞcant
in the OODB domain, such as locality, distribution, and concurrency control, were also manageable within the
scope of this thesis. The discriminators that we determined to be most complex and difÞcult to implement,
such as multiple long transaction models and multiple OODB languages, were also less signiÞcant in discrim-
inating among architectures that satisfy OODB requirements.

The existing UFO tool, the reference model, requirement variable deÞnitions, architectural parameter deÞni-
tions, and conÞguration node deÞnitions provide a framework for analyzing and incorporating new OODB dis-

page 175

criminators and OODB instance models. The UFO tool was designed and implemented to support evolution.
Therefore, with continued effort new discriminators can be added to the UFO tool to model Þne-grained details
of OODBs and to keep current with the evolution of the OODB domain.

9.3. Effectiveness of Abstractions in Software Architecture Modeling and
Simulation

While we have reported on several speciÞc sources for savings in software development cost with our software
architecture modeling and simulation technology, there is a unifying principle that explains why development
costs are less: raising the level of abstraction for developing software.

In [13] we reported on the importance of abstraction in determining the effectiveness of software reuse tech-
niques. Indeed, the Þndings there led to this thesis. In that work we claimed that the intellectual effort required
to develop a software system can be minimized when a software reuse technique accomplishes the following
two objectives:

1. Reduce the amount of intellectual effort required to go from the conceptualization of a system to an
explicit representation of the system. This is done by moving the abstractions used in the explicit
representation closer to the abstractions that developers use to reason about system implementation.

2. Reduce the amount of intellectual effort required to go from the explicit representation of the sys-
tem to an executable implementation of the system. This is done by automating all or part of the
mapping from explicit representation to executable realization.

The software architecture modeling and simulation technology that we describe in this thesis is a software
reuse technique that focuses on these two objectives.

The Þrst abstraction objective is accomplished through the requirements deÞnition part of the UFO tool. Since
it is typical for developers to initially reason about software systems in terms of system requirements, a good
way to minimize the amount of intellectual effort required to go from the conceptualization of a system to an
explicit representation of the system is to make a requirements speciÞcation the explicit representation of the
system. With a tool such as UFO, this is particularly beneÞcial since:

¥ developers only have to specify the discriminating requirements for a class of systems. The com-
mon requirements for the system instances are implicit, or abstracted away from.

¥ the tool deÞnes for users the discriminating requirement variables, their structure, and their legal
values

¥ some of the requirement variables can be automatically derived by the tool

¥ the modeling, simulation, and feedback of system properties provides tool support to developers as
they converge on a validated set of requirements

Each of these helps to reduce the conventional cost of taking a software system from a concept to an explicit
requirements speciÞcation for the system.

The second abstraction objective is accomplished with automation going from requirements variable values to
realizations of software architecture instances. With UFO, the tool provided automated guidance in evaluating
and selecting off-the-shelf OODB instances that best satisÞed application requirements. This helps to reduce
the conventional cost of going from a requirements speciÞcation of a system to an executable realization of the
system.

page 176

In Chapter 11., Future Work, we discuss other ways in which a tool like UFO can automate the transition from
a requirements speciÞcation to an executable realization. One is to automatically generate custom system
designs from the software architecture instance models in the tool. Another is to automatically generate an exe-
cutable custom system from the software architecture instance models in the tool by conÞguring a collection of
reusable software components (using the conÞguration node technique from UFO). Note that in this case, the
abstraction level for implementing an executable system has been raised to the level of merely specifying
requirement variable values. The rest of the system generation fully automated.

9.4. Practicality

In section 1.5. on page 9 we described a self-imposed challenge to make UFO a practical software engineering
tool. In this section we examine the practicality of transitioning and using the technology in mainstream soft-
ware engineering practice. We explore practicality through the following two issues:

¥ What level of expertise is required to use a software architecture modeling and simulation tool?

¥ What level of expertise is required to implement a software architecture modeling and simulation
tool?

9.4.1. Level of Expertise Needed for Users

A developer with a solid understanding of conventional software engineering technology and methods should
have sufÞcient skills to effectively use a tool like UFO. In particular, the user must understand the roles and
relationships between requirements, architectures, classes of systems, and instances from a class of systems.
Note the users of the tool donÕt have to understand how these concepts and relationships are implemented in
the tool, but rather how to use a tool that provides these concepts and relationships as abstractions to the user.

A usersÕ manual for the tool would likely contain the following information, so users must be competent in
using this information.

¥ General information about the class of system. Presents an overview of the intended function, gen-
eral requirements, reference architecture, and basic system properties. Sets the boundaries of inter-
est, in terms of what is included and what is not included.

¥ Discriminating and common features for the target instances. ReÞnes the general view of the
domain to indicate that various target instances that are supported by the tool. This information
includes the common requirements, architectural features, and system properties, plus the require-
ments that help to discriminate among the instances, the variance in the architectural features for
the different instances, and the system properties associated with the different instances.

¥ Details on using the tool for requirements deÞnition. Describes in detail each of the slots in the
requirements template of the tool, including the intent and impact of the requirement variable, the
legal values, and heuristics for choosing appropriate values.

¥ Details on interpreting the output from the tool. The tool may automate some of the property
extraction and suggest the appropriate reÞnements to requirements. However, in cases where the
developer must manually extract relevant system properties and interpret this in terms of reÞne-
ments on requirements, more detailed knowledge, expertise, and effort may be required of the
developer. The manual provides rationale and heuristics on how to do the analysis and reÞnement.

From this description of a usersÕ manual for a software architecture modeling and simulation tool, we see that
the skills needed to understand and use a tool like UFO are not beyond those needed by a conventional system
architect or system designer. In fact, since the usersÕ manual and tool provide considerable technical support

page 177

for a class of systems, the overall skill set needed by a project using software architecture modeling and simu-
lation technology is likely to be less than the skill set needed to implement a comparable system instance using
conventional analysis, design, and implementation techniques.

An additional new skill that is required of the uses is the ability to analyze and interpret modeling proÞles, sim-
ulation proÞles, and feedback suggestions and then to impart any desired reÞnements to the requirement vari-
ables. This skill is similar to the ad hoc techniques for system reÞnement in conventional software
development, but having a tool like UFO involved may require different ways of thinking about how to impart
desired changes to a system instance by way of changing requirement variable values.

9.4.2. Level of Expertise Needed for Implementors

While the expertise required to use a software architecture modeling and simulation tool is less than that
required using conventional techniques, the expertise required to implement such a tool is likely to be greater.
The implementors must be generalists that can not only understand the requirements, architectural, and imple-
mentation issues associated with a single system instance, but also understand the issues associated with the
entire domain for a class of similar systems. Note, however, that there will be many more developers using a
software architecture modeling and simulation tool than there will be implementors building it. Therefore, only
a relatively small number of specialists are needed to implement tools for a much larger population of develop-
ers using them.

A similar characterization of skills has been noted for the Þeld of domain engineering. That Þeld also looks at
general techniques for characterizing domains, or classes of systems. However, as just noted in Section 9.1.5.,
our technology has a very speciÞc focus in terms of the type of information that is need from the domain and
how it will be used. This framework or structure associated with our technology provides more guidance in
discovering the entities and relationships during domain analysis, so we might expect the implementorsÕ job
might be more well deÞned than that of a domain analyst.

9.5. Extensibility

We explore the extensibility of the UFO work through the following questions:

¥ How well does the OODB software architecture tool (UFO) generalize to other classes of systems?

¥ How well does the UFO approach scale to very large architectures? When does complexity become
an issue?

9.5.1. Generalizing the OODB Work to Other Classes of Systems

The idea of improving cost and conformance for a class of systems is not unique to the OODB class of sys-
tems. Our experiences suggest that the technology that we developed for the UFO tool can be generalized and
applied to other classes of systems.

Software development costs can be kept low for a class of systems via the automation provided by a software
architecture modeling and simulation tool. Conformance can be kept high through the mapping from require-
ments to architecture, the common parts of the architecture that satisfy the common requirements, and the
feedback from the system properties. However, the speciÞc details on what conformance means will vary from
domain to domain. For example, in the OODB class of systems, conformance depends on runtime locality in
the declared object clusters. This may not be a conformance issue in other domains such as interactive video
systems.

page 178

Based on our experiences with UFO and the OODB domain, we have identiÞed several characteristics for a
class of systems that are necessary in order for the software architecture modeling and simulation technology
to be successfully applied.

¥ The class of systems must contain a signiÞcant number of instances. That is, the effort required to
implement a modeling and simulation tool must be amortized across all of the instances that will be
modeled by the technology. If there are only a small number of instances that will every be created
in the tool, then the up-front cost may not be justiÞed by the overall savings. The overall cost of
building a tool compared to the average savings per instantiation give the projected payoff sched-
ule.

¥ Diverse and broad classes of architectures may not be amenable to software architecture modeling
and simulation technology. This is because commonality plays a less signiÞcant part in the
instances, because a high degree of variability is more difÞcult to capture and implement in the tool
(resulting in more up-front cost), and because the high variability requires more effort when using
the tool.

¥ The target instances for the class of systems must be predictable and identiÞable up-front when the
tool is developed. If not, developers will frequently Þnd that the instances they need have require-
ments, architectures, and system properties outside the scope of the tool.

9.5.2. Scaling Software Architecture Modeling and Simulation Technology

Our work with UFO is experimental in nature and accordingly limited in scope. It is a fair question then as to
how well our work scales from experimental to practical scope. Did we make unrealistic simpliÞcations in
order to control complexity? In what areas and at what level does complexity become a limiting factor?

We noted earlier that designing and implementing a tool such as UFO is considerably more complex than
using the tool to deÞne and validate requirements and to select corresponding architectural instances. There-
fore, in this section we focus on the complexity and scaling issues associated with building software architec-
ture modeling and simulation technology, not using it.

For the thesis, we found OODBs to be a realistic class of systems for applying software architecture modeling
and simulation ideas to, not just a ÒtoyÓ domain for experimentation.1 There is signiÞcant commonality among
the instances, there are a signiÞcant number of different instances that are valuable in practice, and OODBs are
relatively large sized software systems. As we look towards larger scale efforts, we explore three dimensions,
(1) modeling greater degrees of variance, (2) modeling domains with larger system sizes, and (3) greater levels
of detail in the architecture modeling.

9.5.2.1. Scaling to Greater Degrees of Variance

Scaling the technology with greater degrees of variance results in:

¥ a larger number of requirement variables
¥ a larger number of architectural parameters
¥ a larger number of conÞguration nodes
¥ more complex mappings from requirement variables to architectural parameters
¥ more complex mappings from architectural parameters to architecture instance models
¥ a more complex architecture instance simulator
¥ more complex simulation proÞle analysis and feedback reporting

1. This has been borne out in professional practice on projects where OODBs were evaluated and selected for application devel-
opment.

page 179

As we reported earlier in this chapter, our initial attempts at creating a dependency graph between require-
ments and architectures led to signiÞcant complexity. When we subdivided the mapping into four separate con-
cerns, the task became much easier. For example, the two mappings from requirement variables to architectural
parameters and from architectural parameters to architecture instance models consist of a collection small
algorithms, encapsulated around each architectural parameter or conÞguration node. As shown in Sections sec-
tion 5.1.7. on page 74 and section 5.1.9. on page 78, these algorithms are on the order of one fourth to one half
page of pseudo-code, and the implemented algorithms are of a similar, manageable size.

As the variability scales linearly, then we would expect the number of requirement variables, architectural
parameters, and conÞguration nodes to also increase linearly. Likewise, the number of mapping algorithms
would increase with the number of variables, parameters, and nodes that they map. The size of the mapping
would increase linearly or sub-linearly since the algorithms map from a Þnite number of variables or parame-
ters to a single parameter or conÞguration node. We estimate that variability could easily scale by an order of
magnitude before the number of requirement variables, architectural parameters, and conÞguration node, or
the size of the mapping algorithms started to introduce serious complexity issues.

One part of the UFO design and implementation that might not scale well is the approach to evaluating and
comparing off-the-shelf systems. Our approach is to model and simulate each off-the-shelf system and then
manually and automatically compare the models and proÞles to a validated standard for an application. This
approach of instantiating and comparing one instance at a time could be very time consuming and error prone
if the number of off-the-shelf instances were to grow to twenty or more. In Chapter 11., Future Work, we
describe more appropriate techniques for selecting from among large numbers of off-the-shelf system variants.

9.5.2.2. Scaling to Larger Architectures

System size of the system instances being modeled and simulated is much less of an issue for our technology
than is the amount of variability and detail being modeled. For example, consider a class of systems whose
instances are four times larger than in the OODB domain, but whose variability was one fourth that of the
OODB domain. This would result in fewer requirement variables, fewer architectural parameters, fewer con-
Þguration nodes, and smaller mappings. This would lead to less complexity when compared to the UFO tool in
terms of the design and implementation of a modeling and simulation tool to support the new class of systems.
Therefore, the fact that the system size that we are modeling and simulating is larger does not imply that the
implementation of a modeling and simulation tool is more difÞcult. In fact, for this example the only impact of
a larger system size would be that conÞguration nodes would model larger software components than conÞgu-
ration nodes in the OODB domain (i.e., the size attribute of the conÞguration nodes used in the modeling pro-
Þle would be a larger integer).

In Chapter 11., Future Work, we discuss enhancements to our technology that would generate system design or
conÞgure executable software systems. In this type of technology, larger system size would become an issue
since the actual design structures and/or system software components would have to be implemented.

9.5.2.3. Scaling to Greater Levels of Detail in Modeling

The level of detail that we provided in the UFO OODB architecture modeling best corresponds to the level of
detail found in a high-level system design. In practice, this level of detail might be scaled to correspond to a
low-level system design. This increased detail would provide more accurate predictions from the models, sim-
ulations, and requirement validations.

The impact associated with greater modeling detail is similar to that described for scaling to greater variance in
Section 9.5.2.1.: a larger number of requirement variables, a larger number of architectural parameters, a larger
number of conÞguration nodes, more complex mappings from requirement variables to architectural parame-
ters, more complex mappings from architectural parameters to architecture instance models, a more complex
architecture instance simulator, and more complex simulation proÞle analysis and feedback reporting.

page 180

9.6. Lessons from the UFO Design and Implementation

In this section we focus on some speciÞc issues that arose during the design and implementation of the UFO
tool. These low-level details will be of interest to implementors of software architecture modeling and simula-
tion tools similar to UFO.

9.6.1. UFOÕs Virtual OODB Language

In section 5.1.2. on page 56 we described the application development language for UFO. We referred to this
language as the virtual OODB language since it was a generalized API for all possible OODB instances in the
UFO parameterized architecture. We examine this generalized API here since it was a signiÞcant challenge to
deÞne and because it plays a key role in the UFO technology (or any similar software architecture modeling
and simulation implementation).

The rationale for having the virtual OODB is so that the application driver code can be written once and then
the application code tested against many different OODB architecture reÞnements without modiÞcation. If
each OODB instance were to have a different language for writing applications, then with each reÞnement in
the architecture it might be necessary to modify the application source code. This would make the technology
much more tedious and error prone, plus it would be more difÞcult to compare the modeling and simulation
data since the application code might be different for each proÞle.

An implication of the virtual OODB approach is that each OODB instance supports all or part of the API. That
is, some of the less functional instances will not support the full virtual OODB language. This is acceptable
since many applications do not need the full functionality of the virtual OODB. The only constraint is that in
order to be modeled, simulated, and evaluated an OODB instance must support all of the functionality used by
an application. This is easily handled by listing the required functionality for an application in the requirement
variables. An example in UFO is the long transactions requirement variable.

A challenge to the virtual OODB language is Þnding a single generalization for all of the instances that we
wanted to consider. This is complicated further when commercial off-the-shelf OODBs are considered since
each of these systems may provide a slightly different ßavor of functions such as long transactions. Further-
more, different OODBs may use different programming languages as the basis for their API.

For UFO, we simpliÞed the situation by using a single programming language with a single semantics for
functionality such as long transactions and concurrency control. For commercial off-the-shelf systems, we
modeled their architectures as close as we could, but the application driver code written in UFO cannot be used
directly with any commercial off-the-shelf system. However, we feel that there is sufÞcient architectural simi-
larity between the UFO models and the actual OODBs so that the UFO models are likely to be reasonable pre-
dictors for comparing the proÞles of off-the-shelf systems.

In practice, there are several potential ways to improve on the UFO virtual OODB language. One is to simply
add more detail in modeling the subtle differences between functionality such as long transactions, such that
all of the differences are represented in the API, the requirements, and the parameterized architecture. The
issues associated with add more detail to modeling are discussed in Section 9.5.2.3.

9.6.2. Static Declaration of Locality Clusters

Because of the overhead associated with moving objects in and out of persistent storage, object access locality
plays important role in OODBs. When objects are clustered with good locality, the object movement overhead
can be amortized over multiple objects in the cluster.

page 181

OODBs typically use runtime ÒhintsÓ or heuristics to assign objects to clusters enhance locality clustering. In
some cases, these clustering hints cannot be honored at runtime. For example, the OODB may not be able to Þt
an object into a cluster that is already full.

For the purposes of comparing different OODB proÞles in UFO, this unpredictable clustering behavior was
undesirable. For example, we didnÕt want an OODBÕs performance to be degraded simply because object
alignment in clusters was poor for a particular simulation run. Therefore, for the UFO simulation, we used a
stronger mechanism to get more predictable locality proÞles across all OODB architectures. We used a com-
mon static declaration of clusters in the requirement variables in order to get repeatable runtime object cluster-
ing across different object architectures.

This approach provided some interesting challenges in the simulator implementation. In particular, when a
new object is created, we had to be able to determine from the static locality declarations exactly what runtime
cell to put the object in. We did this by using the position of the new object relative to another object that
pointed to it. For example, if developers declared that an object of type B was to be clustered with an object of
type A whenever the A object had a pointer to the B object, then we used this information at runtime to cluster
a B object with an A object whenever it was created relative to the A object. In order to accomplish this we had
to restrict the language so that all object creations were the sole right-hand-side expression of an assignment
that had an object component on the left-hand-side. This restriction is of course too strong for a production
OODB language, but posed no signiÞcant problems or limitations during our prototyping and proÞling.

A possible extension to our approach would be to include the different clustering mechanisms found in differ-
ent OODBs as part of the architectural variability in UFO. This would impact the implementation all the way
from the virtual OODB language, to the requirements, to the parameterized architecture, and the simulator.
This extension would allow developers to explore the impact of different cluster schemes on their applications.

9.6.3. DeÞning ConÞguration Nodes

Once we had identiÞed the concepts in the OODB domain and had deÞned the UFO tool structures (such as the
requirements template, architectural parameters, architecture instances, conÞguration nodes, mappings, and so
forth), we found that it was often straightforward and intuitive to express the OODB domain concepts in terms
of the UFO implementation constructs. However, the approach for partitioning the parameterized architecture
into conÞguration nodes was not initially obvious (see section 5.1.5. on page 67 for a description of conÞgura-
tion nodes). We include below several simple guidelines for making these decisions.

¥ Common, invariant subsystems can be represented as a single terminal conÞguration node without
further decomposition or specialization. Only those subsystems that may vary among instances
need to be decomposed into smaller conÞguration nodes or have specializations.

¥ For variant subsystems, there are three basic techniques for representing the variations using con-
Þguration nodes: specialization, decomposition, and alternation. These techniques can be applied
recursively and heterogeneously. Following are guidelines for choosing which technique to apply
when modeling a variant subsystem.

¥ Specialization. Analogs to specialization include translation, transformation, subtyping,
or generic instantiation on a single base component. Use a specialization conÞguration
node for a variant subsystem when there are relatively minor and isolated differences
among the subsystem variations.

¥ Decomposition. The analog to decomposition is partitioning a subsystem into modules
or classes. Use a decomposition conÞguration node (i.e., a conÞguration node with
nested child conÞguration nodes) for a variant subsystem when the each variant feature
in the subsystem is modular and the overall variance represents a signiÞcant portion of
the subsystem.

page 182

¥ Alternation. Alternation is simply providing multiple subsystems to choose from. Alter-
native subsystems are represented with conÞguration nodes that are alternative terminal
nodes at a child of a parent conÞguration node. Use child alternatives when there is a
relative large amount of difference in the subsystem variants and when these differences
are not modular.

page 183

Chapter 10. Conclusions

In this thesis we developed a tool for modeling and simulating OODB architectures. We showed that this tool,
called UFO (for Uniquely Fabricated OODBs), and the approach we deÞned for using it satisÞes our hypothe-
sis:

It is possible to apply an engineering approach, based on the modeling and simulation of OODB
architectures, to efÞciently guide developers in making principled choices within the architectural
space for the class of OODB software systems, such that we improve our ability to identify OOBD
architecture instances with high conformance to application requirements.

The tool focuses on two speciÞc software development tasks: deÞning the application requirements on an
OODB and selecting an off-the-shelf OODB that best satisÞes these requirements. We showed that the tool sig-
niÞcantly improves our ability to carry out these tasks compared to conventional ad hoc approaches.

10.1. Justifying the Hypothesis

We showed how the cycle of relationships between (1) application requirements on OODBs, (2) OODB archi-
tectures, and (3) the system properties of OODBs serve as the technical basis for the UFO tool. Developers
iteratively traverse this cycle to converge on a set of baseline requirements that accurately deÞne an applica-
tionÕs requirements on an OODB. The cycle is then repeatedly traversed again to evaluate how well different
off-the-shelf OODBs satisfy the baseline requirements for an application.

To manage the complexity of the relationships between requirements, architectures, and system properties, we
decomposed the problem into three smaller sub-problems.

¥ We captured the relationships between requirements and software architectures in our parameter-
ized software architecture. The parameterized software architecture takes values for discriminating
OODB requirements its input parameters and maps these to conÞgurations for an OODB modeler
and simulator. The parameterized software architecture is further decomposed into three sub-map-
pings, each with separate concerns: (1) requirements variables to architectural parameters, (2)
architectural parameters to architecture instances, and (3) architecture instances to OODB modelers
and simulators.

¥ We captured the relationships between OODB software architectures and OODB system properties
in our OODB modeling and simulation tool. The OODB modeler presents feedback to developers
about the static properties of an OODB architecture, such as the number and size of the system pro-
cesses and the functionality supported by the OODB. The OODB simulator presents feedback to
developers about the dynamics properties of an OODB architecture operating in the context of a
particular application. Examples of dynamic properties captured by the UFO tool include execution
times, locality, and resource utilization.

¥ We captured some of the relationships between OODB system properties back to requirements in
an automated proÞle analysis. The proÞle analysis presents developers with feedback about how
well an OODB architecture satisÞes certain requirements and how the requirements might be
reÞned to more accurately express the requirements that the application has on the OODB.

page 184

To clearly illustrate how our tool could be used in a practical setting we presented in Chapter 4. a hypothetical
case study of a development team using UFO to deÞne requirements on an OODB for their application and to
evaluate and select an off-the-shelf OODB to satisfy those requirements. The scenario shows the issues that
developers have to address and the steps that are taken when using UFO.

We ran four experiments to help justify our claim that we satisÞed the hypothesis of our work. These experi-
ments, described in Chapter 7., were used to collect data about the level of effort required to use UFO to deÞne
requirements and select off-the-shelf OODBs for two different applications. In Chapter 8. we present an infor-
mal analysis using the experimental data to estimate the reduction in development effort that UFO offers and
the accuracy of the results from UFO. This informal analysis is divided along the two functions of the tool,
deÞning requirements and selecting OODBs. Our informal analysis projected that UFO could potentially
reduce the development effort for deÞning OODB requirements and selecting off-the-shelf OODBs to a few
percent of the conventional costs of doing analysis, requirements deÞnition, prototyping, and OODB evalua-
tion. We also informally projected that UFO could lead to requirements and OODB selections that are accurate
and complete to within a few percent for a given application.

10.2. Contributions

The primary contribution of this work is to demonstrate that a modeling and simulation tool can play an impor-
tant role in helping software developers make principled engineering choices within the architectural design
space for a class of similar systems. We have shown how such a tool can reduce the overall application devel-
opment effort and increase the overall accuracy in deÞning requirements for an OODB and in selecting off-the-
shelf OODBs that satisfy the requirements. The following paragraphs discuss more speciÞc contributions
within this context.

¥ UFO tool. We created a tool that application developers can use to deÞne and test application
requirements for OODBs and to select off-the-shelf OODBs that satisfy these requirements. We
demonstrated the use of this tool with case study scenarios and experiments.

¥ Role of modeling and simulation feedback. We have shown the value of providing modeling and
simulation feedback to developers as they deÞne baseline requirements for instances within a class
of similar systems and as they evaluate how well different instances satisfy the baseline require-
ments. This feedback allows developers to iteratively reÞne their baseline requirements to more
accurately reßect their intent. This feedback also allows developers to iteratively cycle through the
evaluation and selection of appropriate instances for a given application.

¥ Tool framework for classes of similar systems. We have identified and implemented in the UFO
tool a framework for the capturing the constructs and relationships from the software architectures
in a class of similar systems. As a whole, this collection of relationships appears complex, difficult
to capture, express, manage, and implement. One of the signiÞcant contributions of our work was to
characterize the structure of these concepts and relationships and to factor them into modular and
simpler abstractions. By doing so we reduce the complexity of designing and implementing a tool
like UFO. For example, the abstractions provided a guiding framework for characterizing the dif-
ferent concepts and relationships the OODB domain.

¥ At the highest level of abstraction, we partitioned the problem into a triangular cycle of
relationships between requirements and software architectures (the parameterized soft-
ware architecture), between software architectures and system properties (the modeler
and simulator), and between system properties and requirements (the proÞle analysis).

¥ Within each of these three we further factored the problem into smaller abstractions,
including mappings from requirements to architectural parameters, from architectural
parameters to conÞguration nodes, from conÞguration nodes to a modeler and simulator,

page 185

the feedback on inconsistencies between off-the-shelf instances and baseline require-
ments, system properties feedback from the modeler, system properties feedback from
the simulator, and automated analysis of the system properties from the proÞles relative
to the baseline requirements.

¥ An additional contribution of factoring the problem into smaller abstractions is that
other disciplines can make use of the individual constructs and relationships without
inheriting the whole UFO technology. For example, in the next chapter we discuss
future work that in some cases capitalizes on using individual subcomponents of the
UFO tools and in other cases capitalizes on extending individual subcomponents.

¥ Constructs and relationships for OODBs. Another important contribution of this work is our
characterization of OODBs as a class of systems:

¥ Commonality. We deÞned a reference architecture that captures salient common archi-
tectural features in the OODB domain.

¥ Discriminators. We deÞned requirement variables, architectural parameters, and conÞg-
uration nodes that discriminate among the salient differences within the class of OODB
systems.

¥ Feedback. We deÞned modeling and simulation proÞles for OODBs and also inconsis-
tency reports for mismatches between baseline requirements and off-the-shelf OODBs.
This feedback expresses the salient information that developers need to deÞne and reÞne
OODB requirements and to evaluate off-the-shelf OODBs.

page 186

page 187

Chapter 11. Future Work

In this chapter we look towards building on the accomplishments of this thesis with new or expanded research
efforts. We describe six different topics related to this thesis that have research potential. The Þrst of these, out-
lined in Section 11.1. explores the opportunity for doing quantitative validation of the UFO modeling and sim-
ulation tool and the effectiveness of its use. Section 11.2. looks at two additional ways of realizing our software
architecture instance model, generating a system design, and composing an executable collection of software
components. Section 11.3. describes the opportunity for advanced mechanisms to evaluate and compare large
numbers of off-the-shelf systems. Section 11.4. suggests that the developer can be removed from the feedback
loop in our approach so that a software architecture dynamically adapts to changing requirements in a
deployed application. In Section 11.5., we look at the potential for a support environment that would help
developers build tools like UFO for many different classes of software architectures. Finally, in Section 11.6.
we describe the possibilities for integrating multiple software architectures into composite architectures that
could be modeled and simulated as a whole.

11.1. Validation of UFO

We have indicated earlier that a thorough quantitative validation of the UFO approach and technology is
beyond the scope of this thesis, so we relied on qualitative arguments to support the hypothesis. In this section
we explore the possibility of doing a quantitative validation of UFO.

We identiÞed two primary areas where further validation would be beneÞcial. The Þrst is validation of the
UFO modeler and simulator. This type of validation, described in Section 11.1.1., would determine how well
the modeler and simulator predicts system properties of off-the-shelf systems. Second, in Section 11.1.2., we
discuss validation of the overall software development approach advocated in this thesis. This type of valida-
tion would (1) quantitatively verify that the requirements deÞnition and off-the-shelf OODB selection costs
associated with UFO are less than with conventional software development approaches, (2) quantitatively ver-
ify that OODB requirements and selected off-the-shelf OODBs conform more closely to application require-
ments using UFO as compared with conventional approaches, and (3) quantitatively verify that choices made
by developers using the UFO tool are as good as or better than choices made by OODB domain experts.

11.1.1. Validating the UFO Modeler and UFO Simulator

As shown in Figure 4., UFO provides three feedback paths from the OODB architecture modeler and simula-
tor, (1) inconsistency detection between baseline architectural parameters for an application and an off-the-
shelf OODB, (2) static architectural modeling properties such as size and structure for an OODB architecture,
and (3) dynamic simulation properties. Validation of the UFO modeler and simulator corresponds to validating
the accuracy of the information from these feedback paths. That is, validation would determine how well these
feedback paths predict inconsistencies, size, functionality, and performance of real OODB systems.

The validity of the feedback information is a function of its completeness and its correctness. Completeness
indicates whether or not the feedback paths contain all of the relevant information needed by developers. Cor-
rectness indicates whether or not the information from the feedback paths accurately represent the real proper-
ties of the systems being modeled or simulated.

page 188

11.1.1.1. Completeness of the Feedback Paths

The deÞnition of completeness depends on the objectives for the modeler and simulator. For example, the fol-
lowing increasingly rigorous objectives would require increasingly rigorous deÞnitions of ÒcompleteÓ feed-
back information:

1. identify the OODB architectures that closely conform to the baseline requirements and eliminate
those that are blatant mismatches

2. accurately determine the relative ordering of all of the off-the-shelf OODBs relative to the baseline
requirements

3. accurately predict the performance and runtime size data associated with the OODB architecture
instances

If the objectives for the modeler and simulator arenÕt being met (we describe in Section 11.1.2. how to validate
whether or not the objectives are being met) and the information from the feedback paths is determined to be
ÒcorrectÓ (we describe in Section 11.1.1.2. how to validate correctness of the feedback information), then it
follows that the feedback paths do not contain complete information. That is, essential information is missing
that would otherwise support the modeling and simulation objectives.

Information needed for completeness might be identiÞed in several ways. First is the approach that we took
with UFO. By studying the OODB domain we determined the information that we subjectively determined to
be most relevant for inconsistencies, modeling data, and simulation data. Second is to survey consultants and
other OODB evaluation experts as to what information they use. And Þnally, OODB architects could provide
useful information about the implications that different architectural features would have on externally observ-
able system properties.

11.1.1.2. Correctness of the Feedback Paths

Correctness of the feedback paths is the degree to which the modeling and simulation information accurately
reßects the properties of an OODB architecture instance. As with completeness, the deÞnition of correctness
depends on the objectives for the modeler and simulator. It may be sufÞcient for the feedback data for a collec-
tion of OODBs to reßect the relative ordering of system properties or a stronger set of objectives may require
the feedback paths to accurately predict the size and performance data.

Validating the correctness of the OODB modeler and simulator would require experiments with off-the-shelf
OODBs operating under a representative spectrum of different application requirements. Prototype applica-
tions would be run on both an off-the-shelf OODB and the modeler and simulator for the same OODB. The
results of the two would then be compared.

With sufÞcient experimentation and reÞnement of a modeler and simulator, correctness objectives could likely
be met. However, in a practical tool it would be important to easily add new off-the-shelf OODBs to the mod-
eler and simulator without compromising the correctness and without having to incur the cost of extensive re-
validation experiments and reÞnements. Therefore, it would be important to deÞne a set of benchmarks that
could be run on a new OODB and a means of conÞguring the modeler and simulator to produce correct values
for the new off-the-shelf OODB.

page 189

11.1.2. Validating the Effectiveness of the UFO Tool

In Chapter 8. we presented a qualitative validation of our hypothesis for the effectiveness of the UFO tool and
approach. In that chapter we identiÞed factors that impacted costs and conformance, and then intuitively
argued why UFO improved these factors relative to conventional approaches.

In order to do a quantitative validation, we would Þrst need to more rigorously deÞne and test the factors that
impact cost and conformance. For example, in Section 8.2.1. we identiÞed search cost, proÞling cost, and col-
lation cost as factors that determine the cost of selecting an off-the-shelf OODB. While these appear to be a
reasonable characterization of the factors, there may be different factorizations or additional factors that would
help to better represent selection costs. With a well deÞned characterization of cost and conformance factors in
place, we could more accurately perform experiments to compare the cost and conformance using UFO and
conventional approaches.

The validation experiments would involve experimental groups developing applications that use OODBs. Dif-
ferent experimental groups would use different software development approaches related to the evaluation and
selection of OODBs. Then the associated costs and conformance associated with each approach would be mea-
sured and compared. The following three development approaches would provide a useful spectrum: (1) con-
ventional application development using developers without OODB expertise, (2) conventional application
development with the help of OODB experts or consultants, (3) application development using the UFO tool.

¥ The conventional application development group would not use the UFO tool or the modeling and
simulation approach, but rather would use conventional software development techniques to ana-
lyze, prototype, design, select OODBs, and implement their applications.

¥ The application development group with OODB domain experts would use conventional software
development techniques, but would rely on the knowledge and experience of the OODB experts to
analyze, prototype, design, select OODBs, and implement their applications.

¥ The application development group using UFO would use the modeling and simulation approach
and tool to help deÞne requirements, simulate system instances, select off-the-shelf OODBs, and
implement an executable application.

The data from the three groups would be collected according to the cost and conformance factors and model
discussed above, including the amortized cost for developing the UFO architecture modeling and simulation
technology. The hypothesis could then be validated according to the cost and conformance results.

A collection of applications requiring a representative spectrum of OODBs would be necessary to accurately
carry out the validation experiments. That is, the application requirements from the different applications used
in the experiments should result in the selection of a signiÞcant number of the available off-the-shelf OODBs.

page 190

11.2. Software Architecture Realizations

During the early stages of our research, we identiÞed three different software representations that could be pro-
duced by mappings from software architecture instances: (1) OODB simulators, (2) OODB designs, and (3)
executable OODBs. The Þrst was addressed in this thesis while the second two were determined to be out of
scope. We discuss here the research potential of the remaining two items.

11.2.1. Generating a Design from a Software Architecture Instance

With the current UFO tool, developers Þrst converge on a set of baseline requirements and then attempt to
identify an off-the-shelf OODB that closely conforms to the baseline requirements. In the case where none of
the off-the-shelf options are satisfactory, a custom OODB must be developed. The current UFO tool provides
little support for custom development other than the baseline requirements and the high-level textual descrip-
tion of the architecture instance that is derived from the baseline requirements. A promising extension to the
UFO tool is an OODB design generator for custom OODBs.

Figure 74. illustrates how the current UFO approach would be modiÞed so that OODB designs could be gener-
ated. Tasks 1 through 6 are identical to Figure 33. on page 90. Task 7 generates a design description from a
software architecture instance. For task 8, developers take the design description and manually implement the
custom OODB, producing OODB compiler specializations and an OODB runtime.

The conÞguration nodes that are used to internally represent the OODB architecture instances in UFO are also
a good candidate from which to generate OODB designs. Each conÞguration node in UFO could have a design
description associated with it, plus design descriptions for the specializations that can be applied to the conÞg-
uration node. The design descriptions would include internal details that are not modeled in the current UFO
modeling tool, such as internal software components and interfaces. The reference architecture description in
Section 5.1.3. could serve as the unifying framework for the overall design description, with the conÞguration
nodes supplying the speciÞc details on the different architectural variants.

Two interesting research issues related to generating OODB designs include:

¥ What type of design notation is best suited for the generated designs? Graphical, textual, formal?

¥ What level of detail can be achieved in the generated design descriptions? High level designs, low
level designs, or both?

11.2.2. Generating an Executable System from a Software Architecture Instance

Another potential extension to UFO is to directly generate a custom executable OODB from the software
architecture instances. This approach has several signiÞcant implications. First, there would no longer be a
need for OODB modeling and simulation. All of the system properties could be collected directly from the
generated OODB. Second, there would be no need to consider off-the-shelf OODBs since the generated
OODBs could be used for applications rather than evaluating and selecting off-the-shelf OODBs.

Figure 75. shows how executable OODBs could be generated from a collection of reusable software compo-
nents using UFO. Tasks 1 through 6 are identical to Figure 74. in this chapter and Figure 33. on page 90. Task
7 conÞgures the executable OODB from a collection of reusable components, based on a software architecture
instance. The resulting OODB serves the same purpose as an off-the-shelf OODB in tasks 8 and 9.

OODB generation could be accomplished by conÞguring reusable software components according to the con-
Þguration nodes in a software architecture instance model. Each of conÞguration nodes in the UFO parameter-
ized architecture would have an associated reusable software component. The reusable software components
would have the same specialization and child subcomponents as modeled in the conÞguration nodes.

page 191

OODB Design

Design

DeÞne
Requirements

Requirement
Variables

Map Requirements
to Architectural

Parameters

Architectural
Parameters

Software
Architecture

Instance

Realize Architecture
Design

Map Architectural
Parameters to

Architecture Instance

Determine Static
Properties

Determine Dynamic
Properties

Feedback on
System

Properties

Developer

Detect
Inconsistencies

Prototype Application
on Virtual OODB

Translate
Application Source

Code

Application
Source Code

Executable
Application

Compiler
and

 Linker

Specializations
OODB

Runtime

1

10

6

4

7

5

3

2

9

Manually
Implement

Design
8

Figure 74. Using UFO to Generate Designs from Requirements

page 192

OODB Software
Components

DeÞne
Requirements

Requirement
Variables

Map Requirements
to Architectural

Parameters

Architectural
Parameters

Software
Architecture

Instance

Realize
OODB

Map Architectural
Parameters to

Architecture Instance

Determine Static
Properties

Determine Dynamic
Properties

Feedback on
System

Properties

Developer

Detect
Inconsistencies

Prototype Application
on Virtual OODB

Translate
Application Source

Code

Application
Source Code

Executable
Application

Compiler
and

Linker

Specializations

OODB
Runtime

1

9

6

4

7

5

3

2

8

Figure 75. Using UFO to Generate an Executable OODB from Requirements

page 193

With this approach, the UFO parameterized architecture and reusable software components are similar to the
existing software reuse concepts software frameworks and software component libraries. The proposed exten-
sion to UFO could address some of the shortcomings of these reuse techniques.

Software component libraries are collections of software modules with functionality that can commonly be
reused in different software development projects. Hash tables, sets and sequences, and multi-dimensional data
points are examples of reusable software components. A noted problem with software components is that they
donÕt provide architectural structure or guidance for selecting and composing a consistent set of components to
satisfy the requirements for an application. These structuring and composition tasks are often the most difÞcult
and time consuming parts of software development, so reusable software components often donÕt offer signiÞ-
cant savings in development costs.

Software frameworks can offer advantages over software component libraries. Frameworks provide reusable
and ßexible software ÒskeletonsÓ that can be specialized within the design space for a class of systems. In
order to use a framework in an application, the undeÞned portions in the code skeleton are Þlled out by adding
components with predeÞned interfaces in predeÞned places. While frameworks provide structure for compos-
ing reusable components, they donÕt provide guidance in selecting a consistent set of components that satisfy a
speciÞc set of requirements for an application.

UFO technology, on the other hand, provides both structure and guidance for composing a collection of soft-
ware components (i.e., conÞguration nodes) into a software architecture that satisÞes the requirements for a
speciÞc application, similar to the work of Batory[14]. In addition, UFO also provides support for exploring
the validity of those decisions through the feedback paths to developers.

Another potential research issues related to generating executable OODBs is conÞguration management. As
the UFO reference model, conÞguration nodes, and mappings evolve during development and maintenance, so
must the reusable software components that go into making the executable OODBs. It is important that the
reusable component library contains a collection of software components that are consistent with each other
and furthermore are consistent with the UFO conÞguration nodes and mappings. This presents an interesting
software conÞguration management problem in that the component library evolves over time as well as the
mappings that deÞne all possible combinations components in the generated OODBs. How can implementors
of the UFO tool be assured that they have not introduced a change to a component or mapping that results in an
inconsistent conÞguration of components in an OODB?1

11.3. Evaluating and Comparing Off-the-Shelf Instances

The current approach to evaluating and comparing off-the-shelf OODB architectures with UFO is to model
and simulate each candidate and then manually compare the results. There is an opportunity for research on
automated tools for evaluating, comparing, and pruning off-the-shelf candidates relative to the requirements
for a particular application. This might be particularly useful if the number of available off-the-shelf instances
increases to a level where manual evaluation becomes tedious or error prone.

We have identiÞed several items that could be explored in such research efforts. The Þrst would be automated
evaluation and comparison of off-the-shelf architectures based on static modeling properties and dynamic sim-
ulation properties. The current UFO tool would be used to deÞne baseline requirements and to map from base-
line requirements to a baseline software architecture instance. A new tool would be developed to automatically
indicate how well each of the off-the-shelf candidates conforms to the baseline architecture based on static
properties such as excess or missing functionality or excessive system size or numbers of processes. Another
new tool could also automate the simulation and proÞling of an application on different off-the-shelf architec-
tures, and then order candidates based on dynamic criteria such as overall execution time or execution time on

1. The author is studying and prototyping a conÞguration management system of this type in a commercial development
project.

page 194

certain operations indicated by developers to be critical. Poor matches could be immediately pruned and devel-
opers could focus on evaluating and selecting from the best candidates.

Another potential approach is to create a UFO tool with requirement variables, architectural parameters, a
mapping from requirement variables to architectural parameters, conÞguration nodes, and a mapping from
architectural parameters to conÞguration nodes that model only off-the-shelf architecture instances. Using this
tool, developers could deÞne their application requirements and then invoke the mappings in order to instanti-
ate an off-the-shelf architecture that satisÞes the requirements. The following situations could arise:

¥ One off-the-shelf architecture would be instantiated that corresponds to exactly one product satisfy-
ing the requirements.

¥ No off-the-shelf architectures would be instantiated, indicating that no products satisfy the require-
ments. The tool or mappings in this case could indicate where each of the off-the-shelf instances
were pruned and why so that requirements can be relaxed in minimal ways in order to instantiate
one or more instances.

¥ One or more off-the-shelf architectures could be instantiated that corresponds to multiple products
satisfying the requirements. These candidates could be further evaluated with simulation to identify
the best candidates, using the automated proÞle analysis to order the candidates according how well
they satisfy the requirements.

To automated the evaluation and selection of off-the-shelf OODBs, the requirement variables could be
extended to provide the tool with the type of information that developers currently use to do manual evaluation
and selection. For example, developers might be interested in optimizing the performance of certain critical
operations in their application and much less interested in the overall execution time. These preferences could
be expressed by indicating performance-critical operations in the requirements.

11.4. Automated Architectural Evolution

With UFO, developers can model and simulate OODB architectures that satisfy a set of application require-
ments prior to application development. This is done prior to development so that baseline requirements are
conÞrmed and so that an appropriate OODB architecture can be selected to best satisfy those requirements.
However, what happens when the application requirements for an OODB change after the application is devel-
oped and deployed? With the current UFO, this would mean repeating the UFO analysis cycles (deÞning
requirements, simulating, selecting OODBs) and converting the existing application and existing data in the
OODB repositories to a new OODB.

An adaptation of UFO technology would automate the detection of requirement changes, analysis of the
impact of changing requirements, and conversion of a deployed OODB. With this technology, the UFO tool
and its associated iterative cycles from requirements to architectures to system properties and back to require-
ments would begin prior to application development (as it does in the current tool), but would remain active
after the application was deployed.

There are numerous practical reasons why the application requirements on an OODB might change after the
application is deployed:

¥ The number of application users might increase or decrease, leading to insufÞcient or excessive
OODB resources for the application.

¥ Enhancements to the application such as new features or modiÞed features may indirectly impact
the OODB requirements.

¥ As a project using the application evolves, so may the types of interactions with the application.

¥ The user community for the application may become more sophisticated after some experience
using the application, resulting in changes to the typical user interactions with the tool.

page 195

Several major pieces of technology would have to be developed for automated architectural evolution in
response to changing requirements. First, the OODBs produced or selected by UFO would have to continu-
ously gather and feedback runtime proÞle data. Second, analysis of this feedback would have to be fully auto-
mated to detect sub-optimal performance proÞles and associated reÞnements to the requirements. Third, the
tool would have to automatically make the reÞnements to the requirements and rederive the architecture
instance model. Next the tool would have to select or generate an OODB from the architecture instance. And
Þnally, the tool would have to generate and perform the necessary conversion functions to efÞciently upgrade
the existing application OODB with the new one.

Currently the two options when an OODB no longer satisÞes evolving application requirements are for the
application users to tolerate sub-optimal performance of the application due to a sub-optimal OODB or to
incur the high costs of analysis, redesign, modiÞcation, and conversion of the application implementation and
the existing application data. Automated architectural evolution offers an attractive alternative to these options.

Learning systems might offer useful concepts and technology for automated architectural evolution. For exam-
ple, Staudt-Lerner demonstrated how a software application could be constructed with monitors to gather
usage proÞles and agents that would analyze the usage proÞles and attempt to tailor the application to a userÕs
individual style of interaction[15].

11.5. Creating Software Architecture Modeling and Simulation Tools

Although the work in this thesis focused on modeling and simulating OODB architectures, we paid careful
attention throughout not to limit the applicability of the approach to only the OODB domain. It has always
been our belief that the concepts and technology developed for UFO could be applied to a broad range of dif-
ferent software architectures. An opportunity with signiÞcant potential for future branches of UFO research is
to generalize the approach to support many domains other than just OODBs.

Rather than simply repeating the UFO OODB effort for each domain, a much more useful approach would be
to generalize the practices and technology that we used for UFO to provide meta-tools for efÞciently creating
software architecture modeling and simulation tools analogous to UFO. For example, one can imagine a spe-
cial-purpose language and editor for deÞning conÞguration nodes and another special-purpose language and
editor for deÞning mappings from architectural parameters to conÞguration nodes. These special-purpose lan-
guages would be independent of the application domain.

This approach is analogous to the Gandalf environment generator system[11]. Similar to what we are propos-
ing here, Gandalf is a meta-tool for building structure-oriented editors. It provides a collection of special pur-
pose languages for expressing salient features for a structure-oriented editor application.

One of the more difÞcult challenges in capturing the software architecture for a class of systems is knowing
what to look for and capture in the domain. The meta-tools for capturing software architectures could provide
structure and guidance to the domain analysis task. For example, users would need to deÞne a reference archi-
tecture to capture commonality in the domain and discriminators such as requirement variables, architectural
parameters, conÞguration nodes, and mappings to capture the variance in the domain. The languages and tools
for capturing these could provide signiÞcant guidance in how to think about the domain analysis problem and
the type of information that users need to look for in a class of systems.

page 196

11.6. Composite Software Architectures

With a capability in place to capture multiple software architectures (as described in the previous section) a
new set of opportunities and challenges arise for modeling and simulating composite software architectures. A
composite software architecture is a collection of software architectures that are integrated to create a single
larger architecture. The objective would be to create technology to model and simulate a composite software
architecture as a whole.

Modeling and simulating composite software architectures is useful for addressing the architecture mismatch
problem described by Garlan et.al.[16]. At the analysis and design stage of software application development it
is often useful to identify off-the-shelf subsystems that can be used to implement the application. However,
there is a risk that mismatches across the architectural interfaces may make it difÞcult or impossible to effec-
tively integrate the off-the-shelf subsystems into an effective composite architecture. A tool that could model
and simulate the integration of software architectures into a single composite architecture would be useful in
that it could detect these architectural mismatches early in the software analysis and design stages rather than
in later prototyping, implementation, or testing stages.

At least two approaches could be explored for architecture composition. One would recursively apply the UFO
approach to software architectures. In the same way that we compose conÞguration nodes within a well
deÞned framework for OODB architectures, there could be higher level frameworks that would compose soft-
ware architectures. This approach, however, implies that a higher level framework for an application must exist
before developers can use it. If they are trying to develop an application with an unanticipated composition of
software architectures, this approach will not work.

Another approach would allows developers to deÞne arbitrary compositions of software architectures. This
would correspond to the deÞnition of a framework on-the-ßy. Tools similar to those described in the previous
section, Creating Software Architecture Modeling and Simulation Tools, might be useful for quickly deÞning a
unique framework for integrating, modeling, and simulating a composite software architecture for a particular
application.

page 197

References

[1] Burkhard, Neil, McCabe, Rich, Campbell, Grady, Wartik, Steve, O'Connor, Jim, Valent, Joe and
Facemire, Jeff. "Reuse-Driven Software Processes Guidebook." Technical Report SPC-92019-CMC,
Software Productivity Consortium, Herndon, Virginia, November, 1993.

[2] Dijkstra, E.W. "Notes on Structured Programming." In Structured Programming, Dijkstra, E.W., Dahl,
O.J. and Hoare, C.A.R., Ed(s). Academic Press, London, England, 1972, pages 1-82.

[3] Parnas, David L. "On the Design and Development of Program Families." IEEE Transactions on
Software Engineering. SE-2:1-9, 1976.

[4] Lane, Thomas G. "User Interface Software Structures." PhD Thesis CMU-CS-90-101, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, May, 1990.

[5] Shaw, Mary and Garlan, David. "Software Architecture." Prentice Hall, Upper Saddle River, New
Jersey, 07458, 1996.

[6] Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides, John. "Design Patterns." Addison-Wesley
Publishing Company, Reading, Massachusetts, 1995.

[7] Boehm, Barry W. and Scherlis, William L. "Megaprogramming." In Proceedings of the Software
Technology Conference 1992, DARPA, Los Angeles, CA, April, 1992, pages 63-82.

[8] Barry, Douglas. "Charting the Feature Coverage of ODBMSs." Object Magazine. 28-42, February,
1997.

[9] Atwood, Tom, Duhl, Joshua, Ferran, Guy, Loomis, Mary and Wade, Drew. "The Object Database
Standard: ODMG-93." Cattel, R.G.G., Ed(s). Morgan Kaufmann Publishers, San Mateo, CA, 1994.

[10] Arango, Guillermo and Prieto-Diaz, Ruben. "Domain Analysis Concepts and Research Directions" In
Domain Analysis and Software Systems Modeling, Arango, Guillermo and Prieto-Diaz, Ruben, Ed(s).
IEEE Computer Society Press, Los Alamitos, CA 90720, 1991, pages 9-32.

[11] The Gandalf Project. "The Gandalf System Reference Manual." Technical Report CMU-CS-93-X &
CMU-CS-86-130, Carnegie Mellon University School of Computer Science, Pittsburgh, PA, April 1993.

[12] "CORBA Object Request Broker." Technical Report http://www.omg.org, Object Management Group,
December 1997.

[13] Krueger, Charles W. "Software Reuse." ACM Computing Surveys. 24, 2:131-183, June 1992.

[14] Batory, Don, Singhal, Vivek, Sirkin, Marty and Thomas, Jeff. "Scalable Software Libraries." ACM
Press, New York, NY, December 1993, pages 191-199.

[15] Staudt Lerner, Barbara. "Automated Customization of User Interfaces." PhD Thesis CMU-CS-89-178,
Carnegie Mellon University, Pittsburgh, PA, September 1989.

page 198

[16] Garlan, David, Allen, Robert and Ockerbloom, John. "Architectural Mismatch: Why Reuse is So Hard."
IEEE Software. 12, 6:17-26, November 1995.

[17] Tepfenhart, William M., IEEE Software, 31-35, January, 1997

[18] Monroe, Robert, Kompanek, Andrew, Melton, Ralph and Garlan, David. "Architectural Styles, Design
Patterns, and Objects." IEEE Software. 14, 1:43-52, January 1997.

[19] Shaw, Mary. "Comparing Architectural Design Styles." IEEE Software. 12, 6:27-41, November 1995.

[20] Abowd, Gregory, Allen, Robert and Garlan, David. "Using Style to Understand Descriptions of
Software Architecture." In 18, 5, David Notkin, Ed(s). Software Engineering Notes, ACM Press, Los
Angeles, CA, December 1993, pages 9-20.

[21] Neighbors, J.M. "DRACO: A Method for Engineering Reusable Software Systems." In Software
Reusability: Volume I - Concepts and Models, Biggerstaff, T.J. and Perlis, A.J., Ed(s). ACM Press, New
York, NY, 1989, pages 295-320.

[22] Prieto-Diaz, R. "Domain Analysis for Reusability." In Proceedings of COMPSAC '87, IEEE Computer
Society, 1987, pages 23-29.

[23] Arango, Guillermo. "DOMAIN ANALYSIS - From Art Form to Engineering Discipline." In
Proceedings of the 5th International Workshop on Software SpeciÞcations and Design, IEEE Computer
Society Press, Los Alamitos, CA, May, 1989, pages 152-159.

[24] Hess, James A., Novak, William E., Carrol, Patrick C., Cohen, Sholom G., Hollibaugh, Robert R., Kang,
Kyo C. and Peterson, A. Spencer. "A Domain Analysis Bibliography." Technical Report CMU-SEC-90-
SR-3, Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, July 1997.

[25] Perry, Dewayne E. and Wolf, Alexander L. "Foundations for the Study of Software Architecture."
Software Engineering Notes. 17, 4:40-52, October 1992.

[26] "Proceedings of the First Intl Workshop on Architectures for Software Systems." Technical Report
CMU-CS-95-151, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, April
1995.

[27] Mettala, Erik and Graham, Marc. "The Domain SpeciÞc Software Architecture Program." Los Angeles,
CA, April 1992, pages 204-236.

[28] Tracz, Will. "Domain-SpeciÞc Software Architecture (DSSA) Frequently Asked Questions (FAQ)."
ACM SIGSOFT Software Engineering Notes. 19, 2:52-56, April 1994.24.

[29] Tracz, Will. "DSSA (Domain-SpeciÞc Software Architecture) Pedagogical Example." ACM SIGSOFT
Software Engineering Notes. 20, 3:49-62, July 1995.

[30] Batory, Don, Coglianese, Lou, Goodwin, Lou and Shafer, Steve. "Creating Reference Architectures: An
Example from Avionics." ACM Press, New York, NY, August 1995, pages 27-37.

[31] "Readings in Object-Oriented Database Systems." Zdonik, Stanley B. and Maier, David, Ed(s). Morgan
Kaufmann Publishers, Inc., Palo Alto, CA, 1990.

[32] Carey, Michael J., DeWitt, David J., Graefe, Goetz, Haight, David M., Richardson, Joel E., Schuh,
Daniel T., Shekita, Eugene J. and Vandenberg, Scott L. "The EXODUS Extensible DBMS Project: An
Overview." Morgan Kaufmann Publishers, Inc., Palo Alto, CA, 1990, pages 474-499.

page 199

[33] Batory, D.S., Barnett, J.R., Garza, J.F., Smith, K.P., Tsukuda, K., Twichell, B.C. and Wise, T.E.
"GENESIS: An Extensible Database Management System." IEEE Transactions of Software
Engineering. 14, 11: November 1988.

[34] Batory, D.S. "Modeling the Storage Architectures of Commercial Database Systems." ACM
Transacations on Database Systems. 10, 4:463-528, December 1985.

[35] Carey, Michael J., DeWitt, David J., Richardson, Joel E. and Shekita, Eugene J. "Object and File
Management in the EXODUS Extensible Database System." August 1986, pages 91-100.

[36] Batory, D.S. and Mannino, M. "Panel on Extensible Database Systems." ACM Press, New York, NY,
May 1986, pages 187-190.

[37] Keller, Arthur M. and Wiederhold, Gio. "Modularization of the DADAISM Ada Database System
Architecture." Technical Report unpublished, Standord University, Palo Alto, CA, February 1989.

[38] Simmel, Sergiu S. and Godard, Ivan. "The Kala Basket." ACM Press, New York, NY, 1991, pages 230-
246.

[39] Joseph, John V., Thatte, Satish M., Thompson, Craig W. and Wells, David L. "Object-Oriented
Databases: Design and Implementation." Proceeding of the IEEE. 79, 1:42-64, January 1991.

[40] Wells, David. "DARPA Open Object-Oriented Database." Technical Report unpublished, Texas
Instruments, Dallas, TX, September 1991.

[41] Hornick, Mark F. and Zdonik, Stanley B. "A Shared, Segmented Memory System for an Object-
Oriented Database." ACM Transactions on OfÞce Information Systems. 5, 1:70-85, 1987.

[42] Boehm, Barry and Scacchi, Walt. "Simulation and Modeling for Software Acquisition (SAMSA): Plans
and White Paper." Technical Report http://sunset.usc.edu/SAMSA/shitepaper.html, University of
Southern California, June 1995.

[43] Boehm, Barry and Scacchi, Walt. "Simulation and Modeling for Software Acquisition (SAMSA): Air
Force Opportunities (Extended Report)." Technical Report http://sunset..usc.edu/SAMSA/
SAMSA_FAM_Þnal_report.html, University of Southern California, March 1996.

page 200

