
Efficient Parallel Algorithms for Planar DAGs

Stephen Guattery Gary L. Miller

May 1995
CMU-CS-95-100

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Parts of this report appeared in the Fourth Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’92)

This work was supported in part by the Air Force Materiel Command (AFMC) and the Advanced Research Projects
Agency (ARPA) under contract number F19628-93-C-0193.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of AFMC or ARPA or the U.
S. Government.

Keywords: Algorithms, Graph Theory, Graph Algorithms,Parallel Algorithms, Planar Graphs

Abstract
We show that testing reachability in a planar DAG can be performed in parallel in O(logn log� n)
time (O(logn) time using randomization) usingO(n) processors. In general we give a paradigm for
reducing a planar DAG to a constant size and then expanding it back. This paradigm is developed
from a property of planar directed graphs we refer to as the Poincaré index formula. Using this
new paradigm we then “overlay” our application in a fashion similar to parallel tree contraction
[MR85, MR89]. We also discuss some of the changes needed to extend the reduction procedure
to work for general planar digraphs. Using the strongly-connected components algorithm of Kao
[Kao93] we can compute multiple-source reachability for general planar digraphs in O(log3 n)
time using O(n) processors. This improves the results of Kao and Klein [KK90] who showed that
this problem could be performed in O(log5 n) time using O(n) processors. This work represents
initial results of an effort to apply similar techniques to arbitrary planar directed graphs, and to
develop efficient algorithms for certain problems encountered in parallel compilation.

1 Introduction

Testing if there exists a path from a vertex x to a vertex y in a directed graph is known as the
reachability problem. Many graph algorithms either implicitly or explicitly solve this problem.
For sequential algorithm design the two classic paradigms for solving this problem are BFS and
DFS. They only require time at most proportional to the size of the graph. Parallel polylogarithmic
time algorithms for the problem now use approximately O(M(n)) processors, where M(n) is the
number of processors needed to multiply two n�n matrices together in parallel. For sparse graphs
the situation is better, though still not optimal with respect to work: Ullman and Yannakakis give
a probabilistic parallel algorithm that works in O(

p
n) time using n processors [UY90]. This

blow-up in the amount of work for parallel algorithms makes work with general directed graphs
on fine grain parallel machines virtually impossible. One possible way around this dilemma is
to find useful classes of graphs for which the problem can be solved efficiently. In pioneering
papers Kao [Kao93], Kao and Shannon [KS89] [KS93], and Kao and Klein [KK90] showed that
the reachability problem and many related problems could be solved in polylogarithmic time using
only a linear number of processors for planar digraphs. The planar reachability problem for multiple
start vertices is specifically addressed in [KK90]. The methods in that paper involve a series of
reductions between related problems; each reduction introduces more logarithmic factors to the
running time. In the end it takes O(log5) time to solve this problem.

In this paper we give a general paradigm for reducing planar directed acyclic graphs (DAGs)
to a constant size. We will show that after O(logn) rounds of reduction an n-node directed planar
DAG will be reduced to a constant size. There have been several reduction rules proposed for
undirected planar graphs [Phi89, Gaz91] but this is the first set for a class of directed planar graphs.
After we present the rules for reduction it will be a relatively simple matter to “overlay” rules
necessary to compute multiple-source reachability.

The results in this report are part of a larger effort to develop a set of reduction rules for
arbitrary planar directed graphs (i.e., those with cycles as well as DAGs). We feel that the class
of directed planar graphs are important for at least two reasons. First, the class includes several
important subclasses including tree and series parallel graphs. Second, the flow graphs for many
structured programming languages without function calls are planar. Our goal is to develop the
basic algorithmic foundation for a class of planar graphs so that a theory of planar flow graphs
could be based on it.

This report presents the details of the reduction technique for the planar DAG case. This
case is already quite complicated, and is sufficient to fill a report itself (although we do discuss
changes involved in extending the reduction procedure to the general case). Further, we feel that
our algorithm for planar DAGs is interesting in its own right. First, it alone is sufficient to improve
the computation of many-source reachability by a factor of log2 n time by simply using the strong
connectivity of Kao [Kao93] (our algorithm for general planar digraphs should remove one further
logn factor). Second, it uses new topological techniques, in particular, the Poincaré index formula.
This should be of interest in parallel algorithm design for digraphs.

Throughout the paper we will assume that the graph G = (V;A) is a directed embedded
planar graph. If an an embedding is not given we can construct one in O(logn) time using n

processors using the work of Gazit [Gaz91] and Ramachandran and Reif [RR89]. We assume that

1

the embedding is given in some nice combinatorial way such as the cyclic ordering of the arcs
radiating out of each vertex.

This paper is divided into seven sections. The second gives the main definitions necessary to
define and analyze the directed graph reduction algorithm. The third gives the reduction algorithm
for special case of of a planar DAG. The theorems in Sections 4 and 5 show that the reduction
algorithm for planar DAGs works in a logarithmic number of reduction steps: Section 4 shows that
at any step of the reduction process, a constant fraction of the edges are candidates for removal or
contraction; Section 5 shows that a constant fraction of these candidates can be operated on without
affecting a set of invariants that we require for the graph structure. The sixth section explains how
the reduction procedure can be applied to the many-sources reachability problem and calculates
the running time. Finally, in Section 7 we discuss work in progress, including some of the steps
necessary to extend this result to the case of general planar digraphs.

2 Preliminaries

2.1 Planar Directed Graphs

We will assume that the reader is familiar with basic definitions and results from graph theory
that apply to undirected graphs (see, for example, textbooks such as the one by Bondy and Murty
[BM76]).

A directed graph (digraph) G(V;A) is a set of vertices V and a set of arcs A. Each arc a 2 A

is an ordered pair drawn from V � V . We say that arc a = (u; v) is directed from u to v; u is the
tail and v is the head of the arc. We say that an arc is out of its tail and into its head. An arc a is
incident to a vertex v if v is the head or the tail of a. The degree of a vertex v is the number of arcs
incident to it; we represent this number as degree(v). The indegree of a vertex v is the number of
arcs that have v as their head; the outdegree of v is the number of arcs with v as their tail.

For any directed graph G we can define an undirected graph G0 on the same set of vertices
in the following way: for each arc (u; v) in G we include an edge (u; v) in G0. We refer to G0

as the underlying graph of G. In this report we will distinguish between edges and arcs: edges
are undirected and lie in the underlying graph, while arcs are directed. When we refer to arcs in
G as edges, we are actually referring to the associated edges in G0. (We will use the notation E to
represent the set of edges of an undirected graph.)

A directed path is a sequence of vertices (v0; v1 . . . vk) such that the vi’s are distinct (with the
exception that we might have v0 = vk) and for all 0 < i � k we have the arc (vi�1; vi) in A. A
directed cycle is a directed path such that v0 = vk. A digraph that contains no directed cycles is
called a directed acyclic graph (DAG).

For a directed path p that is not a cycle, we define the rank of a vertex v on p as the number
of vertices on p that precede v.

A planar directed graph is a directed graph that can be drawn in the plane in such a way
that its arcs intersect only at vertices. There may be a number of different ways to draw a digraph
in the plane; any particular way can be specified by giving the cyclic ordering (either clockwise
or counterclockwise) of the arcs incident to each vertex. Such a specification is called a planar
embedding of the digraph.

2

If the points corresponding to the arcs in an embedded planar digraph are deleted, the plane
is divided into a number of connected regions. These regions are called faces. The boundary
of a face is the set of arcs that are adjacent to that face. The size of a face is the number of arcs
encountered in a traversal of the face’s boundary (note that a single arc could be counted more than
once in the size of some face). We denote the set of faces by F . (The definitions of these terms are
essentially the same for an undirected embedded planar graph.)

In an embedded planar digraph we define parallel arcs as two arcs that form a face of size
2. Parallel edges in an embedded planar graph are defined in the same way. We can extend this
relation by making it transitive; in that case we say that a set of arcs or edges is mutually parallel.

There is an important formula developed by Euler (not surprisingly referred to as Euler’s
formula that relates the numbers of edges, vertices, and faces in planar graphs. Euler’s formula,
which holds for embedded connected planar graphs, is

jV j � jEj+ jF j = 2: (1)

If the graph is also simple (i.e., it has no loops and no parallel edges) and has 3 or more vertices,
then each face will have at least three edges in its boundary, and it is easy to prove the following
inequality:

jEj � 3 � jV j � 6: (2)

Proofs that these formulas hold can be found in basic graph theory textbooks (e.g., [BM76]). The
formula corresponding to (1) (with jAj substituted for jEj) holds for embedded planar digraphs
that have a connected underlying graph since the orientations of the arcs do not affect the quantities
involved. The inequality corresponding to (2) (with jAj substituted for jEj) holds for an embedded
planar digraph G with a connected underlying graph if G has no loops or parallel edges. Note
that this implies that it holds for embedded planar DAGs with connected underlying graphs if the
DAGs contain no parallel arcs.

2.2 The Poincaré Index Formula

Let G(V;A) be a connected embedded planar digraph with faces F . We say that a vertex of G is a
source(sink) if its indegree(outdegree) is zero. The alternation number of a vertex is the number
of direction changes of the arcs (i.e., “out” to “in” or vice versa) as we cyclically examine the arcs
radiating from that vertex. Observe that the alternation number is always even. Thus, a source or
a sink has alternation number zero. A vertex is said to be a flow vertex if its alternation number is
two. It is a saddle vertex if the alternation number is 4 or more. Vertex alternations are indicated
by asterisks in Figure 1. The alternation number of a face can be defined in a similar way. Here
we count the number of time the arcs on the boundary of the face change direction as we traverse
its boundary. Thus, a cycle face has alternation number zero, a flow face has alternation number
two, and a saddle face has an alternation number greater than two. Face alternations are indicated
by asterisks in Figure 2 below. We denote the alternation number of vertex v by �(v), and the
alternation number of face f by �(f) (it will be clear from the context whether � refers to a vertex
or a face, so we do not distinguish this in our notation).

3

 source flow vertex saddle vertex

* * *
*

**

Figure 1: Vertex Types

 cycle face flow face saddle face

*

*

*

*

*

*

Figure 2: Face Types

4

A concept related to alternation number is index. The index of a vertex v (denoted index(v))
is defined as index(v) = �(v)=2 � 1. The corresponding definition holds for the index of a face.
Once again we do not distinguish between the notation used in these two cases.

Our approach depends on combinatorial arguments based on the following simple but funda-
mental theorem which we refer to as the Poincaré index formula. We show that it follows directly
from Euler’s formula.
Theorem 2.1 For every embedded connected planar digraph, the following formula holds:

X
v2V

index(v) +
X
f2F

index(f) = �2:

Proof: Consider the situation at any vertex as we cycle through its incident arcs in order according
to the embedding. Each transition from one arc to the next results in exactly one alternation either
for the vertex or for the face for which the two arcs lie on the boundary (see Figure 3). If we sum

vertex alternations
at a vertex

face alternations
at a vertex

* *
*

*

*
*

*

Figure 3: Alternations

the number of alternations over all vertices, we see that the total number of alternations in the graph
is equal to the sum of the degrees of all the vertices, which is equal to twice the number of arcs in
the graph: X

v2V

�(v) +
X
f2F

�(f) =
X
v2V

degree(v) = 2 � jAj :

Dividing by two and applying Euler’s formula, we get

X
v2V

�(v)

2
+
X
f2F

�(f)

2
= jAj = jV j+ jF j � 2;

which gives us X
v2V

�(v)

2
� jV j +

X
f2F

�(f)

2
� jF j = �2;

5

which with some rearrangement and an application of the definition of index gives us

X
v2V

�
�(v)

2
� 1

�
+
X
f2F

�
�(f)

2
� 1

�
=
X
v2V

index(v) +
X
f2F

index(f) = �2:

2

This formula is important because it tells us a great deal about the structure of a planar digraph
embedding. For example, we have defined various types of faces and vertices in terms of their
alternation numbers; this has implications with respect to the contributions of these structures in
the Poincaré Index Formula:

� Sinks, sources, and cycle faces each contribute �1. These are the only elements that make
negative contributions to the sums in the formula; since the total must be �2, it is clear
that every embedded planar digraph must have at least two such elements. For example,
a strongly connected planar digraph cannot have any sinks or sources, so it must have two
cycle faces.

� Flow faces and flow vertices have index 0 and contribute 0 to their respective sums. There
can be an arbitrary number of such elements. It is easy to see that a flow face has two
alternations on its boundary, one of which looks like a source with respect to the boundary,
the other of which looks like a sink. A useful implication of this fact is that at most one
source and at most one sink can lie on the boundary of a flow face.

� Saddle vertices and saddle faces have positive (integer) indices that depend on their alternation
numbers and thus contribute positive (integer) amounts to their respective sums. Since the
formula total must always be �2, the embedded graph must contain a sink, source, or cycle
face for every pair of alternations beyond the first on some saddle.

We will use the formula below to develop invariants and to help us count (for example, we use it
to count particular types of arcs).

2.3 Models of Parallel Computation

The reduction algorithm is specified for the Parallel Random-Access Machine (PRAM) model
of computation. We discuss the algorithm for this model in the cases where memory accesses are
allowed to be concurrent read, concurrent write (CRCW). We also assume the ARBITRARY model
for concurrent writes (i.e., an arbitrary one of the values being written to a memory location during
a concurrent write will end up in that location).

3 Graph Reduction

In this section we introduce a collection of reduction rules and an associated data structure for
planar DAGs. The reduction rules allow us to convert a graph into a smaller graph in order to
recursively solve our problem. Once the problem is solved for the reduced graph, we can expand
the graph out in reverse order and generate a solution for the original graph. In Sections 4 and 5

6

we show that at each stage the reduction process removes a constant fraction of the arcs; thus, the
rules could be implemented as an O(log jAj)-step reduction procedure for planar DAGs. Since we
will require our inputs to have no parallel arcs, Inequality (2) in Section 2.1 thus implies that the
reduction procedure takes O(logn) steps (where n = jV j in the original graph). The rules listed
below represent an abstraction of the reduction procedure that can be applied with slight variations
to implement different algorithms. These variations involve algorithm-specific actions performed
as each rule is applied; we will specify such actions in the algorithm descriptions in a later section.

We will assume that our input is a connected, embedded planar DAGG that has no parallel arcs
(and hence no parallel edges). We preprocess the graph such that G has the following properties
(these properties will remain true throughout the algorithm):

1. G has only flow faces. This can be accomplished by putting a source in each saddle face,
and putting an arc from this source to every vertex that is a local source with respect to the
saddle face boundary (Figure 4). It is straightforward to show that the number of arcs and
hence the number of vertices increases by at most a constant factor.

 after preprocessing before preprocessing

Figure 4: Preprocessing Saddle Faces

2. No vertex has both indegree and outdegree of 1 (i.e., there are no degree-2 flow vertices).
Such vertices are considered to be internal vertices of topological arcs; such arcs are treated
as single arcs with respect to the algorithm, though operations on these arcs may require the
internal vertices to perform operations such as splicing connectivity pointers.

It’s not hard to see that any connected, embedded planar DAG can be transformed in O(logn)
time so that these conditions are true without changing the reachability of the graph.

3.1 Terminology

In order to simplify the presentation of the reduction rules, we first introduce some concepts and
terminology.

7

Let f be a flow face; then the arcs on its boundary decompose into two paths, a left and a right
(we refer to any arc that is both on the left and the right path of a particular face as an internal
arc). There is also a unique top and a unique bottom vertex on f . Thus the left path starts at the
top vertex and in a counter-clockwise fashion (with respect to the face) goes to the bottom vertex,
and the right path goes from top to bottom in a clockwise fashion1. A top(bottom) arc of f is any
arc out of(into) the top(bottom) vertex. An arc may be both a top and a bottom arc for the same
face. An arc is referred to simply as top(bottom) if it is the top(bottom) arc for some flow face. We
will mark top arcs with “T” and bottom arcs with “B.”

In applying the rules we may modify the connectivity of the graph. Therefore we associate
flow faces with a data structure that allows us to maintain connectivity information. For each
vertex on a flow face that is neither a top or bottom vertex we have a cross-pointer, pointing from
left to right or right to left. Initially each cross-pointer is set to the bottom vertex. Intuitively, the
connectivity on f as determined by its cross-pointers and boundary arcs should be the same as
obtained using using arcs and vertices on the boundary of f or those removed from the interior of f
by the reduction rules. For each vertex other than top and bottom on a flow face we will also keep
the highest and lowest vertex on the opposite side of the face that points to this vertex (initially the
high point in will be set to bottom and the low point in will be set to top).

For both the left and right path of each flow face, the top arc will serve as the leader of the
path (if the top arc is internal it will serve as leader for both sides); each arc will know the two faces
common to it and the leaders on those faces. Leader is defined similarly for topological arcs: the
leader is the first arc from the original graph in the topological arc (i.e., the arc into the first internal
vertex of the topological arc). The rank of the vertices will be maintained on each topological arc.

Using concurrent reads, a leader for each face and topological arc, and the ranking of vertices
internal to topological edges, the vertices can now coordinate their actions. For example, cross-
pointers can now be tested in constant time to see if they have become forward pointers: simply
test if the head and tail are on the same side of the face. (The coordination actions we will use take
constant time in the CRCW model.)

We will refer to saddle vertices by their indices. For example, “saddle vertices with index 1”
represents the set of saddle vertices with fewest alternations.

Some reduction rules depend on knowing whether an arc is the unique arc into some vertex or
the unique arc out of some vertex. We will refer to such arcs as unique-in unique-out arcs. Note
that it is possible for an arc to be both unique-in and unique-out. In some cases an arc a might not
be unique-in, but at the head of a the next arcs in both the clockwise and counterclockwise cyclic
ordering may be out-arcs. In that case we say that a is locally unique-in; a symmetric definition
holds for locally unique-out. Note that we will always use “locally” to imply that there is at least
one other edge into(out of) the head(tail), though that edge is not adjacent in the cyclic order.

The existence of topological arcs and the introduction of reachability pointers as described
above leads to complications in the application of reduction rules. In particular, we need to
distinguish certain unique-in and locally unique-in arcs out of a source. We call such an arc a out of
a source clean if it has the following properties: (1) a has no internal vertices, and (2) for each face

1Clockwise and counterclockwise with respect to a face can be understood in terms of the dual graph; the clockwise
order of arcs on the boundary of a face is the same as the order of the corresponding arcs in the clockwise cyclic order at
the dual vertex corresponding to the face.

8

f that has a on its boundary, there are no pointers across f into the head of a. Clean unique-out and
clean locally unique-out arcs into sinks are defined similarly, with the exception that the second
condition prohibits pointers across adjacent faces out of the tail of the arc.

We define the operation of arc contraction as follows: the contracted arc is removed from the
graph, and the head and tail vertices are combined into a single vertex. The cyclic order of the arcs
at this new vertex is the cyclic order at the tail with the arcs at the head vertex inserted (in their
original order) where the contracted arc was.

3.2 Reduction Rules

We are now ready to list the reduction rules:

[TB Rule] If an arc a is marked both T and B then remove a. If a is topological, it may
have crosspointers incident to its internal vertices. A crosspointer into an internal vertex v is
adjusted by a process we refer to as pointer splicing: the cross-pointer into v is set to point to the
vertex pointed to by the cross-pointer out of v on the opposite side of a. The remaining pointers are
unchanged. Information on the structure of the face must be updated (e.g., the left and right leaders
must be updated), and any new or changed topological arcs must be updated. Pointer updating is
shown in Figure 5 (the lighter arrows indicate pointers, the darker ones arcs). [Degree-1 Rule]

B

T

Figure 5: TB Rule Pointer Splicing

If a source or a sink is of degree 1 then remove it and its arc. The leaders on the left and right
boundaries of the face are reset if necessary.

[Unique-in(Unique-out) Arc Contraction Rule] If a is a clean unique-in arc out of a source,
contract a. The leaders on the affected faces are reset as necessary. The corresponding rule holds
for unique-out arcs into sinks.

9

[Adjacent Degree-2 Sources and Sinks Rule] If a degree-2 source and a degree-2 sink inci-
dent to clean arcs are in the configuration shown in Figure 6, remove the source and sink and their
arcs as shown. [Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule] Let s be a degree-2 or

 s

t

Figure 6: Adjacent Degree-2 Sources and Sinks Rule

degree-3 source incident only to clean locally unique-in arcs. Further, at two of the saddle vertices
u1 and u2 adjacent to s let there be locally unique-out arcs (respectively a1 and a2) such that a1

(a2) is adjacent in the cyclic order at u1 (u2) to the arc incident to s. If a1 and a2 are also incident
to distinct sinks t1 and t2, take the following actions:

� If s has degree 2, remove the source and its arcs, and combine the two sinks into a single
sink (see Figure 7 – since all faces are flow faces, each sink will be at the bottom of one of
the two faces on the boundaries of which s lies).

� If s has degree 3, remove the arc out of s common to the two faces on the boundaries of
which the two sinks lie, then combine the two sinks into a single sink (Figure 8).

A corresponding rule applies for sinks and adjacent sources. If a large number of vertices are
combined into a single vertex, a processor must be selected to represent that vertex. Although this
could take time O(logn), this computation can be done in parallel with the rest of the algorithm
without affecting the running time.

[Consecutive Rule] Let s be a source incident to a clean locally unique-in arc a. At the head
of a, if the next arcs in both the clockwise and counterclockwise directions are clean locally
unique-out arcs into sinks, do the following: remove a, and combine the two sinks into a single
sink (see Figure 9). A corresponding rule applies for a sink and adjacent sources.
[Index-1 Saddle Rule] If a source has a clean arc to a saddle vertex of index 1 and if the only other

arc into the saddle is a clean arc from another source, then contract one or both2 of the in-arcs (see

2Whether one or both are contracted will be determined by the conflict resolution procedureas discussedin Section 5.1.

10

 t

t1

 a1

 a2 u2

 a2

 a1

 u1

 t2

Figure 7: Sink-Source-Sink Rule (Degree-2 Source)

 t
 a1

 a2

 a2

 u2

 u1
 a1

t1

 t2

 s

 v

 s

 v

Figure 8: Sink-Source-Sink Rule (Degree-3 Source)

 s

 a

 t1 t2

 s

 t

Figure 9: Consecutive Rule

11

Figure 10). A corresponding rule holds if there are exactly two clean out-arcs to sinks (Fig. 11).
As for the s-t-s and t-s-t Rules, if a large number of vertices are combined into a single vertex, a
processor must be selected to represent that vertex.

If a source (sink) of degree 2 or 3 has two clean arcs to (from) a single index-1 saddle, note
that these two arcs divide the plane into two pieces. Split the graph into two pieces as follows:

� the arcs and vertices in the interior piece of the plane (i.e., the piece not including the exterior
face), including the vertex that was an index-1 saddle in the graph prior to rule application;
and

� if the source or sink has degree 2, the arcs and vertices in the exterior piece of the plane
(including the vertex that was the saddle prior to rule application); if the source or sink
has degree 3, the arcs and vertices in the exterior piece of the plane with the third source
arc incident to the vertex that was the index-1 saddle. The resulting graph in either case
corresponds to the result of deleting the arcs and vertices in the interior piece and then
contracting the two arcs incident to the saddle.

Each of the two graphs has strictly fewer arcs than the graph prior to splitting (see Figure 12 below).

 a2 a2 a1 s1 s2 s2

Figure 10: Index 1 Saddle Rule Applied to Sources – only arc a1 contracted

In the CRCW model it is easy to determine in constant time if the conditions for rule application
are met. These conditions can be checked locally in the graph. Ignoring the time to do conflict
resolution for now, rule applications can be done in constant time.

3.3 Cleaning Up the Graph

Many of the rules above require that the arcs involved be clean. Arcs in the configurations
corresponding to particular rules will not necessarily be clean, however. Therefore we introduce
a parallel algorithm for cleaning up arcs out of sources(into sinks) that runs in constant time in
the CRCW model. The cleanup algorithm will be run as a subroutine in the reduction algorithm.
Because the cleanup algorithm can change the structure of the graph, we may require it to preserve

12

 t1
 t2

Figure 11: Index 1 Saddle Rule Applied to Sinks – both arcs contracted

Figure 12: Index 1 Saddle Rule – Single Degree-3 Source Case

13

some invariant specific to the problem we are solving (e.g., in the case of many-source reachability
the invariant will be that the vertices in the current version of the graph that are reachable from one
of the original sources are either marked as reachable or have a path consisting of pointers and arcs
from some vertex with an active mark). Applying cleanup with respect to the invariant will add
computation to the cleanup algorithm; in general, we try to choose an invariant in such a way that
it doesn’t increase the asymptotic running time of the basic cleanup algorithm.

We do not clean up all sources and sinks. To insure that cleanup doesn’t take too long (i.e.,
cleanup activities other than application-specific processing should take constant time), we will
clean up only sources (respectively sinks) of degree less than or equal to a constant d (to be specified
later) that are incident only to unique-in or locally unique-in (respectively unique-out or locally
unique-out) arcs. Note that such sources and sinks are not incident to parallel arcs. We will explain
the rationale for these restrictions in Section 4; intuitively, the conditions given here will allow us
to argue that we can remove a number of arcs proportional to the number of sources and sinks: the
reduction rules allow operation on parallel arcs (such arcs will be marked both T and B) and clean
arcs at sources and sinks. Thus we expect to find an arc to operate on for each clean source or sink;
we’ll show later that the number of sources and sinks with no incident operable arc is small.

3.4 The Cleanup Algorithm

We define the frontier of a source s as the set of vertices at the heads of the arcs out of s. The
frontier of a sink t is the set of vertices at the tails of the arcs into t.

The cleanup algorithm consists of several steps. We note that application-specific processing
can be added prior to or after any step, and defer further discussion to Section 6, where we discuss
a particular application in detail.

At the first cleanup step, each source (respectively sink) determines if it has degree less than or
equal to d, and if so, whether all incident arcs are either unique-in or locally unique-in (respectively
unique-out or locally unique-out). Any source or sink not meeting these conditions drops out of
the cleanup algorithm.

At the second cleanup step, for each arc out of each source still involved in the cleanup we
want to find the highest vertex on that arc (including its head) that can be reached from some other
frontier vertex. Here “highest” means closest to the source, and “reached” means there exists a
path of pointers from the frontier vertex to the high point, where each pointer has as its head and
tail some vertex that lies between the source and the frontier (inclusive of frontier vertices). We
also need to know which frontier vertex can reach this high point, and whether the pointer path
proceeds in a clockwise or counterclockwise direction relative to the source. These things can be
determined by following the high pointer chains out of each frontier vertex first in the clockwise
direction and then in the counterclockwise direction. Note that if more than one frontier vertex
can reach the high point with respect to a single direction (e.g., clockwise around the source), we
will choose the one at the greatest distance in terms of the cyclic ordering. The high point can be
determined by comparing the location of the clockwise and counterclockwise high points relative
to the rank ordering along the topological arc. If the same high point can be reached from both the
clockwise and counterclockwise directions, the tie can be broken arbitrarily.

The case for sinks is symmetric. For each arc into each sink still involved in the cleanup we

14

want to find the lowest vertex on that arc (including its tail) that can reach some frontier vertex. Here
“reach” will mean there exists a path of pointers from the low point to the frontier vertex, where
each pointer has as its head and tail some vertex that lies between the frontier and the sink (inclusive
of frontier vertices). Again, we also need to know which frontier vertex can be reached from this
low point, and whether the pointer path proceeds in a clockwise or counterclockwise direction
relative to the sink. These things can be determined by following the chain of low pointers in
reverse order, first in the clockwise direction and then in the counterclockwise direction. Note that
if more than one frontier vertex can be reached from the low point with respect to a single direction
(e.g., counterclockwise with respect to the sink), we will choose the one at the greatest distance in
terms of the cyclic ordering. The low point can be determined by comparing the location of the
clockwise and counterclockwise low points relative to the rank ordering along the topological arc.
If the same low point can reach the frontier in both the clockwise and counterclockwise directions,
the tie can be broken arbitrarily.

Note that for any cleaned source we must have at least one arc a out that has no high point.
Similarly, for any cleaned sink there must be at least one arc b such that b has no low point. To see
this for sources, note that if an arc a has a high point there is another frontier vertex v that has a
path to the head of a consisting of the pointer path to the high point plus the segment of a between
the high point and the head. We can construct a directed graph consisting of the frontier vertices
for this source and arcs representing the existence of a path from one frontier vertex to another.
Since the original graph is a DAG, the graph we have constructed must be acyclic. But if every
arc out of the source has a high point, then every frontier vertex in this graph must have an arc in,
which contradicts the fact that it is acyclic.

At the third step we realign the graph as shown in Figure 13 below (the presentation here is in
terms of sources; the actions for sinks are symmetric). First consider arcs that are reachable from

 s
 s

Figure 13: Cleanup: Realignment at a Source

another frontier vertex: Each arc (if the high point is a frontier vertex) or arc segment (if the high
point is internal to a topological arc) from the source to the high point is replaced by an arc (or, if
internal, an arc segment) from the most distant frontier vertex. If a frontier vertex reaches multiple
high points, the cyclic order of the new arcs at the frontier vertex is same as the cyclic order of the
deleted arcs to those vertices at the source. All pointers to vertices at or below the high point are
retained.

For arcs that are not reachable from another frontier vertex, if the arc is topological, replace

15

the arc with an arc containing no internal vertices (i.e., all internal vertices between the source and
the high point are deleted).

Each source and sink that has been cleaned up is now marked as “cleaned up”. Each arc out
of a cleaned source or into a cleaned sink is marked as “cleaned”.

It is easy to verify the following claims: Every cleaned source has at least one arc out; every arc
out of a cleaned source is clean. Likewise every cleaned sink has at least one arc in; every arc into
a cleaned sink is clean. All the resulting faces are flow faces. The number of arcs and vertices in
the graph does not increase. The reachability for every vertex remaining in the graph is unchanged
in the following sense: Let u and v be any two vertices that are not internal to topological arcs. If
there is a path of arcs and crosspointers from u to v prior to cleanup, then there is such a path after
cleanup.

In order to avoid any conflicts between arcs common to both a source and a sink these steps
can be run twice, once for sources and once for sinks.

These steps could be implemented in a number of ways. Because the degree of any cleaned
source or sink is bounded by a constant and because we can use the leader of each topological arc
to keep track of bookkeeping information, the cleanup algorithm can be programmed to execute in
a constant number of steps in the CRCW model provided that any application-specific processing
added will execute in constant time.

3.5 Overview of the General Reduction Process

The general algorithm for reducing an embedded planar DAG can now be stated:

1. Preprocess the graph to make it consistent with our invariants.

2. Main Reduction Loop: While there are arcs left in the graph, repeat the following sequence
of steps:

� Clean up the current graph, performing any application-specific actions where needed.

� Apply the reduction rules in the order they’re listed in Section 3.2. Application-specific
processing may be required as each rule is applied.

3. Perform any application-specific processing needed prior to the expansion phase.

4. Reconstruct the graph by reversing the steps in the reduction process (note that this requires
that we have stored, in order, all changes made during the reduction process).

This process will take constant time given that the conflict resolution steps noted take constant
time using randomization in the CRCW model; the deterministic algorithm takes time O(log� n)
for each reduction step. The proof that the graph will be reduced by applying this process O(logn)
times (thus giving an O(logn) time randomized algorithm or an O(logn log� n) deterministic
algorithm) is presented in the rest of the report.

16

4 Operability Lemmas

In the next two sections we prove that the reduction procedure given above works inO(logn log� n)
time usingO(n) processors, provided that the application-specific processing takes at most constant
time per reduction phase. (We will use the convention that n = jV j throughout the rest of this
section.) The main result of this section is that at each pass through the main reduction loop a
constant fraction of the arcs are candidates for removal (we refer to such arcs as operable). We
start with two preliminary lemmas.
Lemma 4.1 [Flow Face Operability] An arc a between two flow faces is operable if it is neither
unique-in, locally unique-in, unique-out, nor locally unique-out.
Proof: Such an arc a must have an adjacent out-arc in the cyclic ordering at its tail vertex, which
must be the top vertex of one of the flow faces. Therefore a is a T arc. A symmetrical argument
shows that a is also a B arc. Thus, a is operable by the TB rule. 2
Lemma 4.2 [Unique-In and Unique-Out Arc Count] In a connected, embedded planar DAG
consistent with our invariants the number of unique-in and unique-out arcs not incident to degree-1
vertices is less than or equal to 2=3 the number of arcs in the graph.
Proof: We note that in an embedded DAG the unique-in arcs (respectively unique-out arcs) form
a forest. For the purposes of this proof, we use the term unique-in(unique-out) tree to refer to
a maximal subgraph of such a DAG that consists of a tree induced by unique-in(unique-out) arcs
in the DAG. The unique-in(unique-out) tree may contain vertices that had degree 1 in the original
DAG; if these vertices and their incident arcs are deleted from the unique-in(unique-out) tree, the
trimmed unique-in(unique-out) tree results. We will start by counting the number of arcs to
which each trimmed unique-in tree is incident in the current graph G that either 1) are neither
unique-in nor unique-out, or 2) are into degree-1 vertices, and proving that this number is greater
than the number of arcs in the tree (the proof for unique-out trees is symmetric).

We first claim that every leaf v of a trimmed unique-in tree must have at least two arcs out inG,
each of which either is a unique-in arc to a degree-1 vertex or is neither unique-in nor unique-out.
To see that there must be two or more arcs out, note that if v were of degree 1 in G, that would
contradict the fact that the tree is trimmed; if v were of degree 2, the second arc would have to
be an arc out, and v would be a degree-2 flow vertex, contradicting the conditions of the lemma.
We further claim that these arcs out of v must either be unique-in arcs to degree-1 vertices or be
neither unique-in nor unique-out. Since there are two out-arcs, they can’t be unique-out; if they
are unique-in they must be to degree-1 vertices or we contradict the assumption that v is a leaf of a
trimmed unique-in tree, which by definition is maximal. Therefore the claim must hold.

Next we will pair each arc in the trimmed tree with a distinct arc a inG out of some tree vertex
v such that a either is into a vertex of degree 1 or is neither unique-in nor unique-out. Note that
each tree arc must be either into an internal node of the tree or into a leaf node. We pair each arc
into a leaf v with one of the arcs out of v in G; this leaves one additional arc out of each leaf. To
handle internal nodes, we introduce the following terminology: if an internal node has exactly one
tree arc out, we call it a path node; otherwise it is a branch node. (For our purposes we will not
count the root as an internal node, though it makes only minor technical differences in the statement
of the following.) Each path node in a unique-in tree must have at least one arc out in G that either
is incident to a degree-1 vertex or is neither unique-in and nor unique-out; we pair one such arc

17

with the unique tree arc into the path node. The only arcs we still have to pair up are those into
branch nodes, which we can associate with distinct arcs from the set of arcs out of the leaves as
follows: The number of leaves in a tree is easily shown to be greater than the number of branch
nodes. Therefore, since we have exactly one unique-in arc into any branch node, we have fewer
arcs into branch nodes than we have arcs left at the leaves. Thus all tree arcs have been paired
as claimed. The arcs we’ve associated with each trimmed unique-in tree arc are clearly distinct,
and, since we have only counted arcs out of trimmed unique-in trees, no arc we’ve counted could
be counted for more than one such tree. Therefore there is at least one distinct arc of one of our
two types for every unique-in arc in the graph that is not incident to a vertex of degree 1. This
completes the argument.

By a symmetric argument, there is either a distinct unique-out arc out of a node of degree 1
or a distinct neither-unique-in-nor-unique-out arc for every unique-out arc in the graph that is not
incident to a vertex of degree 1. To finish the proof, we observe that each neither-unique-in-nor-
unique-out arc out of a unique-in tree could also be an arc into a unique-out tree; thus, in the worst
case we might count each of these arcs twice. In that case the number of arcs we’ve found is at
least 1=3 the number of arcs in the graph, from which the lemma follows. 2

We can now state the main lemma of this section:
Lemma 4.3 [Operability Lemma] In any connected, embedded planarDAG that has been cleaned
up and that is consistent with our invariants, a constant fraction of the arcs are operable.
Proof: The lemma follows immediately from Lemmas 4.4 and 4.8 below, which prove the result
for the cases in which the number of sources and sinks is less than n=14 and greater than or equal
to n=14 respectively. 2

Before proving these two lemmas, we’ll give brief sketches of the proofs. Lemma 4.4 deals
with the case in which the number of sources and sinks is less than a specified fraction of the
number of vertices in the graph. Its proof proceeds by showing that there are many arcs that either
are unique-in or unique-out and incident to degree-1 sources and sinks, or are neither unique-in
nor unique-out. This follows from the Unique-In, Unique-Out Arc Count Lemma (Lemma 4.2
above). This isn’t quite enough to prove Lemma 4.4, however; we must then show that most of
the non-unique-in, non-unique-out arcs are neither locally unique-in nor locally unique-out. This
follows from the Poincaré Index Formula and the conditions of the lemma. By the Flow Face
Operability Lemma (Lemma 4.1 above), this is sufficient to show that a constant fraction of the
arcs in the graph are operable by the TB Rule.

Lemma 4.8 covers the case in which the number of sources and sinks is at least a specified
fraction of the vertices in the graph. We prove it using a counting argument. First we show that a
high degree source or sink v (i.e., a source or sink with degree greater than the constant d introduced
in Section 3.3) either is incident to a TB arc or is uncommon in the sense that the total number of
such sources and sinks is less than a constant fraction of the total number of sources and sinks in the
graph. Next we show that at least a constant fraction of the sources and sinks with degree � d are
incident to an operable arc. This is clearly true for such sources and sinks that are either degree-1
or incident to a TB or arc. Any other such sources or sinks will be processed in the cleanup phase.
We will show that at least a constant fraction of the cleaned sources and sinks are incident to an
operable arc by a counting argument based on the Poincaré Index Formula. We can then show that,
excluding parallel arcs, a constant fraction of the arcs are operable, and since all parallel arcs are

18

both T and B (and hence operable), the lemma follows.
We now proceed with complete proofs:

Lemma 4.4 In any connected, embedded planar DAG consistent with our invariants and in which
the number of sources and sinks is less than n=14, 1=6 of the arcs are operable.
Proof: To prove this lemma we show that in graphs meeting the stated conditions there are many
arcs that either are incident to degree-1 sources or sinks, or are operable by the TB Rule.

Let k be the number of sources and sinks in the graph. To make the proof easier to read, we
will use the following notation to refer to specific sets of arcs:

� A1 will be the set of arcs that are incident to degree-1 vertices.

� A2 will be the set of arcs not in A1 (A2 = A nA1).

� A3 will be the set of arcs in A2 that are neither unique-in nor unique-out. We can restate
Lemma 4.2 as follows:

jA3j+ jA1j �
jAj
3
:

� A4 will be the set of operable arcs in A3.

� A5 will be the set of inoperable arcs in A3 (A5 = A3 nA4).

� Aop will be the set of all operable arcs.

Before proceeding, it’s useful to recall that graphs meeting our invariants have no degree-2 flow
vertices (such vertices become parts of topological arcs), so every vertex other than a source or sink
has degree 3 or more. Thus the number of arcs in the graph is at least 3(n�k)=2+k=2 = 3n=2�k.
Since all arcs in A1 are operable, we will give a lower bound on jA1j+ jA4j, which is also a lower
bound on the number of operable arcs.

To get a lower bound on the size of A4, we first note that the graph only has flow faces, so
every arc in A3 lies between two flow faces. Thus by Lemma 4.1 an arc in A3 will be operable if
it is not locally unique-in or unique-out. Recall that a locally unique-in or unique-out arc must be
incident to a saddle vertex.

We now apply the Poincaré Index Formula. We have no cycle or saddle faces, so we only
need to consider the indices of sources, sinks, and saddle vertices. Since sources and sinks each
contribute�1 to the sum and saddles each contribute a positive amount, the total number of saddles
is less than or equal to k � 2. The formula implies that for each source or sink beyond the first
two there are two alternations on some saddle vertex; there are also two additional alternations per
saddle vertex. Thus, the graph can have at most 4k � 8 alternations at saddles vertices. We will
associate each alternation with a single arc in the following way: A vertex alternation is associated
with a pair of arcs; associate the alternation with the second arc of the alternation with respect
to the cyclic ordering of arcs around the saddle vertex (we refer to this arc as the one “following
the alternation”; the first arc of the alternation “precedes the alternation”). Note that each locally
unique-in or unique-out arc must have an alternation associated with it: such arcs are by definition
immediately preceded and followed by alternations. Since each inoperable arc in A3 is locally
unique-in or unique-out, each has an alternation associated with it. Each alternation is associated

19

with exactly one arc, so there will be at most 4k � 8 inoperable arcs in A3. This gives us an upper
bound on the size of A5; since A5 and A4 partition A3, we have

jA4j = jA3j � jA5j � jA3j � 4k + 8 > jA3j � 4k:

We can now use the fact above with Lemma 4.2:

Aop � jA1j+ jA4j > jA1j+ jA3j � 4k � jAj
3
� 4k:

The lemma follows when we substitute using the condition that k < n=14 and the fact that
jAj � 3n=2 � k:

Aop >
jAj
3
� 4k >

n

2
� 13k

3
>

n

6
:

2

In order to prove Lemma 4.8 and thus complete the proof of Lemma 4.3, we first need to
introduce some terminology and preliminary lemmas. We will assume that the graph has been
cleaned up.

For analysis purposes we associate a value of i with each saddle vertex, where i is equal to the
index of that saddle vertex. This value is distributed equally among the alternations at the saddle;
each alternation gets i=2(i + 1). The alternations assign their values to sources or sinks in the
following way:

� Value is assigned only to cleaned sources with only locally unique-in arcs out, or to cleaned
sinks with only locally unique-out arcs in. We refer to such sources and sinks as eligible.

� Value from a particular saddle vertex is assigned only to eligible sources (or eligible sinks)
that are the tails (respectively heads) of arcs incident to that saddle (i.e., only to eligible
sources and sinks at distance 1 from that saddle).

� If only one source or sink can be assigned value from a particular saddle, that source or sink
receives that saddle’s full value. If value from a saddle can be assigned to more than one
source or sink, it is done so in the following way: for each eligible source or sink at distance
1 from this saddle, count the number of alternations between it and the next such eligible
source or sink in both the clockwise and counterclockwise directions around the saddle. The
source or sink is assigned the value for half that number of alternations.

Clearly each saddle vertex assigns a total value of either 0 or its index to sources and sinks. Note
that the minimum value that an eligible source or sink can be assigned per locally unique-in or
locally unique-out arc is 1=4.

We refer to the total value assigned to a source or sink as the value of that source or sink. Under
certain conditions presented in Lemma 4.6 we will allow particular sources or sinks to transfer
their value to other sinks or sources. This transfer will be done in such a way that the total value
summed over all sources and sinks will remain constant.

We will call a source or a sink with a value of 9=8 or greater uncommon; other sources
and sinks are common. In the arguments below, we’ll associate a distinct operable arc with each

20

common source and with each common sink. Since each such arc can be associated with at most
one common source and one common sink, this will prove that the number of operable arcs is
proportional to the number of common sources and sinks.
Lemma 4.5 In an embedded planar DAG with a total of k sources and sinks, more than k=9 of the
sources and sinks are common.
Proof: It follows from the remarks above and the Poincaré Index Formula that the total value
that can be assigned by all alternations at all saddle vertices is bounded above by k � 2. Each
uncommon source or sink gets value greater than or equal to 9=8. If 8=9 of the sources and sinks
were uncommon, their total value would be greater than or equal to (8k=9) � (9=8) = k, which is
greater than the total value available for assignment. 2
Lemma 4.6 In an embedded planar DAG meeting our invariants, every source incident only to
clean locally unique-in arcs is either uncommon or at the tail of an operable arc. Similarly, every
sink incident only to clean locally unique-out arcs is either uncommon or at the head of an operable
arc.
Proof: The sources and sinks meeting the conditions of the lemma are the eligible sources and
sinks as described above. We will argue on the basis of the degree of the eligible source or sink.
Note first that if an eligible source or sink is of degree 1, the incident arc is operable by the Degree-1
Rule. Further, if an eligible source or sink is of degree 5 or greater, it is uncommon (the minimum
value that an eligible source or sink can get from each adjacent saddle vertex is 1=4). If an eligible
source or sink has degree 3 or 4, then either one of the incident arcs meets the conditions for
removal by the Consecutive Rule or it is uncommon (an eligible source or sink will get the value
of at least 3/2 alternation from any saddle vertex where the Consecutive Rule doesn’t apply). Thus
we only need to prove that the result holds for eligible sources and sinks of degree 2 to complete
the proof. We will prove the result for the case of sources; the proof for sinks is symmetric. To
simplify the arguments below, we refer to an eligible sink t as adjacent to an eligible source s at
a saddle vertex u if t is incident to arc at, s is incident to arc as, and at and as are adjacent in the
cyclic order at u.

For eligible sources of degree 2 where each arc out is incident to a different saddle, we have
the following cases:

� There are no adjacent eligible sinks at either saddle vertex. In this case the source gets the
value of at least 4 alternations. If either saddle has index greater than 1 then the source is
uncommon (recall that the value of an alternation at a saddle of index i is i=2(i+ 1)). If both
saddles are index 1 and the source has value 1, then each saddle must have an arc in from
another eligible source. In this last case the Index-1 Saddle Rule will hold and the source
has an operable arc out.

� There is a single adjacent eligible sink (i.e., an eligible sink is at the end of exactly one edge
out of one saddle). In this case the source will get the value of at least three and one-half
alternations. There are three subcases: First, if both saddles have index of 2 or greater the
source will be uncommon. Second, if the saddle with no adjacent eligible sinks has index 1,
then either there is another eligible source with an edge into that saddle (in which case the
Index-1 Saddle Rule will hold and the source we are considering will have an operable arc
out) or the source gets the value of all alternations at that saddle (in which case the source

21

is uncommon). Third, the saddle without the adjacent eligible sink has index greater than 1
and the saddle with the adjacent eligible sink has index 1. Again, at the index-1 saddle either
there is a second eligible source with edge into the saddle (in which case the Index-1 Saddle
Rule applies at the source under consideration) or the source gets a value of 1=2 from this
saddle and is uncommon.

� There are at least two adjacent eligible sinks. In this case there are two possibilities. If two
of the sinks are distinct then either the t-s-t Rule or the Consecutive Rule will hold and the
source will have an operable arc out. Otherwise we have the situation shown in Figure 14
below. There are numerous subcases to consider. In the first two the source has an operable

t

 s

Figure 14: Degree-2 source with common adjacent eligible sink

arc out:

– The sink has degree 2. Then the Adjacent Degree-2 Sources and Sinks Rule applies
and the source has an operable arc out.

– The sink has degree 3 or greater and one saddle has index 1 and another eligible source
with an arc in. Then the Index-1 Rule applies and the source has an operable arc out.

In the remaining subcases there are no rules that apply at the source and we must show it is
uncommon (we will refer to this as the problem source configuration:

– the source has degree 2 and the arcs out are incident to different saddles;

– a single eligible sink of degree 3 or greater is adjacent at each saddle;

– and neither adjacent saddle has index 1 and is also adjacent to another eligible source.

). Note that such a source has a value of at least 1 (it will get two alternations from saddles
of index 1 and at least 3=2 alternations at saddles of index 2 or greater). In some of these
subcases we transfer value between sources and sinks as mentioned above. In all cases
where we transfer value from sinks to sources, the sources must be in the problem source
configuration. When a sink transfers value, it divides the value equally among all adjacent
sources in such a configuration.

22

– The sink is operable. In this case we can transfer all its value. The sink has a value
of at least degree(t)=4; since the number of problem configurations any sink can be
involved in is less than or equal to its degree, each source in a problem configuration
with this sink will get additional value of at least 1=4, making it uncommon.

– The sink t has degree 3 or greater and is not operable. In this case we transfer value
equal to 1=4 from the sink to the source, making the source uncommon. We will show
below that such a sink has sufficient value to transfer 1=4 to all such sources to which
it is adjacent and still remain uncommon.

For eligible sources of degree 2 where both arcs are incident to the same saddle, we have the
following cases:

� If the saddle has index 1, then the Index-1 Rule holds and the arcs out are operable.

� If the saddle has index 2 and there are no adjacent eligible sinks with respect to the source,
then the source gets at least 4 alternations and is uncommon.

� If the saddle has index 2 and there is at least one eligible adjacent sink, we have two subcases.
The first is as follows: We refer to the two arcs out of the source as a1 and a2 respectively.
Note that the cyclic order around the saddle is divided into two segments, one between a1

and a2 and the other between a2 and a1 in the clockwise cyclic order at the saddle. Since the
source is eligible, two of the alternations must fall in one segment and four in the other. We
note that there can be an adjacent eligible sink in the segment with two alternations only if it
is a degree-1 sink that is adjacent to both a1 and a2. In this case the Consecutive Rule will
apply. This is shown in Figure 15 below.

a1

a2

t
s

Figure 15: Adjacent eligible sink t in two-alternation segment

� The only remaining case for an index 2 saddle is the case that there are adjacent eligible
sinks on the segment with 4 alternations. Note that if there is not an eligible sink adjacent
to both a1 and a2, then the source will get at least 7=2 alternations and will be uncommon.

23

Otherwise, there must be an arc to an eligible sink adjacent to each arc out of the source.
Further, since the sink at the end of each such arc lies on the same face as the source, it must
be a single sink (there is at most one sink on any flow face). We can treat this situation by
looking at the degree of the sink:

– If the sink is of degree 2, then the Adjacent Degree-2 Source and Sink Rule applies,
and the arcs out of the source are operable.

– If the sink has degree 3 or greater, then we are in a variant of the problem source
configuration, and we transfer value of 1=4 from the sink to the source, making the
source uncommon. Once again, the proof that making such a transfer is reasonable is
given at the end of the proof of the lemma.

� If the saddle has index 3 or greater, then either the Consecutive Rule applies, or else each arc
out of the source gets 3=2 alternations, which gives the source value at least 9=8 and thus
makes it uncommon.

To complete the argument for degree-2 sources, and thus complete the proof of the lemma we
must show that in the cases in which we transferred value, each inoperable vertex transferring value
retained enough value to stay uncommon. We start by noting that all transfers will be from sinks of
degree 3 or higher to sources of degree 2, or (in the symmetrical argument for sinks) from sources
of degree 3 or higher to sinks of degree 2. Thus there will be no conflicting transfers. We will
prove that the sink-to-source transfers meet the stated conditions; the argument for source-to-sink
transfers will be symmetrical.

We start by noting that each such sink has a value of at least degree(t)=2. The sink must
receive value of at least 1=2 for each arc into a saddle (if the saddle has index 1 neither the Index-1
Rule nor the Consecutive Rule can apply to t, which is inoperable, so there is at most one adjacent
eligible source at that saddle and t gets value of at least 1=2; if the saddle has index 2 or greater
the Consecutive Rule cannot apply, so t gets at least 3=2 alternations, which has a value of 1=2 or
more).

Next we consider a sink t that transfers value to one or more sources. We observe that each
arc a into t can be adjacent (in the cyclic order at the saddle at the a’s tail) to at most one arc out
of some source (if not, the Consecutive Rule would apply at that sink, which is inoperable). Since
each source that receives value from t is incident to two arcs each of which is adjacent to a distinct
arc into t, the number of such sources can be at most bdegree(t)=2c. If we transfer 1=4 to each
such source, t’s remaining value is at least

degree(t)
2

� degree(t)
2

� 1
4
=

3 � degree(t)
8

;

which is greater than or equal to 9=8 for sinks with degree 3 or greater. Thus the sinks that transfer
value will remain uncommon.

This completes the proof of the lemma. 2
The preceding lemma dealt with sources and sinks that have been cleaned up. However, the

cleanup algorithm is not applied to all sources and sinks. The next lemma will show that there are
not too many sources and sinks that haven’t been cleaned and that are not adjacent to an operable

24

arc. This, along with the fact that there aren’t too many uncommon sources and sinks, will allow
us to argue that the number of operable arcs is suitably large. We start with some definitions and
observations.

A problem high-degree source is a source of degree greater than the constant d (introduced
in Section 3.3) with all arcs out either unique-in or locally unique-in. A problem high-degree
sink is a sink of degree greater than d with all arcs in either unique-out or locally unique-out. Such
vertices are problems in the sense that they may have no operable arcs and they can’t be cleaned
up in constant time.

We define a simplified underlying graph of an embedded planar DAG G = (V;A) to be
the embedded planar graph G00 = (V 00;E00) that results when each set of parallel edges in G0 (the
underlying graph of G) is replaced by a single edge. G00 has the following properties:

� Any problem high-degree source or sink in G has no parallel arcs, and hence will have the
same degree in G00 as it has in G.

� All faces inG00 have boundaries of length 3 or longer because there are no loops and because
faces in G0 with boundaries of length 2 are formed by parallel edges. Thus Inequality (2) in
Section 2.1 holds.

� The number of vertices is the same in G00 and in G.

Given these facts, it’s easy to prove the following lemma:
Lemma 4.7 In any embedded planar DAG consistent with our invariants the number of problem
high-degree sources and sinks is less than 6n=d.
Proof: Let l be the number of vertices inG00 that have degree greater than d. Because Inequality (2)
from Section 2.1 holds for G00, we have

d � l
2

<
��E00

�� < 3n! l <
6
d
� n:

Since every problem high-degree source or sink in G has degree greater than d in G00, the number
of such sources and sinks must also be less than 6n=d. 2

We now set d = 1512, which by the argument in the preceding lemma implies that the number
of problem high-degree sources and sinks in the graph will be less than n=252.
Lemma 4.8 In any cleaned-up embedded planar DAG G consistent with our invariants in which
the number of sources and sinks is greater than or equal to n=14, a constant fraction of the arcs
are operable.
Proof:

As in previous proofs, let k be the number of sources and sinks.
We start with some preliminary observations: We can partition the arcs into two sets: those

that have another parallel arc and those that don’t. Since G has no cycles, every arc parallel to some
other arc is both T and B with respect to the face common to the two arcs, and is hence operable
by the TB Rule. From our discussion above about the simplified underlying graph G00, the number
of arcs in G without parallels plus the number of sets of mutually parallel arcs is less than 3n (this
number is jE00j < 3n).

25

Our goal is to specify a set of operable arcs such that the size of this set is a constant fraction
of the number of sources and sinks in the graph (i.e., a constant fraction of k). The operable arcs
we specify will correspond to edges in G00: they will be either arcs without parallels or single
representatives of sets of parallel edges. Because k is at least a constant fraction of n by the
conditions of the lemma, and because the arcs inG that don’t correspond to unique edges in G00 are
all parallel arcs (and thus operable), specifying this set of operable edges will imply that a constant
fraction of the arcs in G are operable.

We now specify the set of operable arcs in the following way: For each source(sink) at the
tail(head) of at least one TB arc, put one such arc in the set; the arc is operable by one of the TB
Rules. (To be consistent with the condition that we choose only one arc corresponding to any edge
in G”, if the arcs specified for a source and a sink both come from the same parallel set, then a single
arc representing the parallel set will be used for both the source and sink.) If the source or sink has
degree 1, then the incident arc is operable by the Degree-1 Rule and is added to the operable set.
The remaining sources all have only unique-in and locally unique-in arcs out; the remaining sinks
only have unique-out and locally unique-out arcs in. We will ignore problem high-degree sources
and sinks for the moment, so we can assume that all edges out of sources and into sinks are clean.
Thus, for any other source incident to a unique-in arc or sink incident to a unique-out arc we can
add such an arc to the set of operable arcs because of the Unique-In/Unique-Out Arc Contraction
Rule. This leaves only sources with clean locally unique-in arcs out and sinks with clean locally
unique-out arcs in; by Lemma 4.6 every such source or sink is either uncommon or at the tail or
head respectively of an operable arc.

An operable arc has been specified for every source or sink that is not either a high degree
problem or uncommon. The number of problem high-degree sources and sinks is less than n=252
by Lemma 4.7 and the choice of d; this is less than k=18 by the conditions of this lemma. The
number of uncommon sources and sinks is less than 8k=9 by Lemma 4.5. Thus the number of
sources and sinks for which an operable arc has not been specified is less than 17k=18, which
means that an operable arc has been specified for more than 1=18 of the sources and sinks.

In order to complete the proof, we must show that we don’t have too many duplicate arcs in the
set. Since every operable arc we’ve specified is incident to a source or a sink, we’ve only included
duplicates when an arc in the set was specified for both a source and a sink. In that case we could
include an arc at most twice; thus, the size of the set is at least a constant fraction of k. 2

5 Conflict Resolution

In the previous section we showed that in any embedded connected planar DAG meeting certain
invariants a constant proportion of the arcs are operable once the graph has been cleaned up.
However, applying the reduction rules to these operable arcs leads to two types of conflicts we
must deal with: intra-rule conflict, and inter-rule conflict.

Intra-rule conflict arises when we try to apply in parallel a single rule to all arcs operable by
that rule. Doing so can lead to cases in which either invariants aren’t maintained or in which the
rule applications cannot be completed in some specified amount of time (for DAG reduction, this
will be constant time; in the general reduction algorithm this will be O(logn)). For example,

26

removing two arcs, both of which are marked T and B, can result in a graph that doesn’t meet the
invariant that all faces are flow faces (see Figure 16 below). Another potential problem is that

saddle
 face

T T

BB

Figure 16: Example of intra-rule conflict for TB Rule

removing multiple arcs via the TB Rule could leave us with an arbitrary number of arcs that must
be combined into a single topological arc (see Figure 17 below). Updating the information for all
the internal components (e.g., determining leader information and rank ordering) could thus take
time O(log jAj). Likewise, it must be possible to combine faces in constant time (since we don’t

TB
TB

TB

TB

TB

TB

TB

TB

TB

Figure 17: Creation of topological arc with arbitrarily many segments

keep rank orders on face boundaries, it is possible to combine an unbounded number of faces into
a single face, but we must show that this does not require excessive time).

Inter-rule conflict arises when applications of a particular rule make arcs that were operable
by another rule inoperable. Both types of conflict affect our counting argument aimed at showing
a constant proportion of the arcs are removed in each pass through the main loop.

Before we discuss conflicts and conflict resolution in detail, we recall the following observation
made in Section 2.2, which is useful in a number of subsequent arguments: A flow face has at most
one source and one sink on its boundary.

27

5.1 Resolution of Intra-Rule Conflict

We will deal with conflicts between applications of a single rule by building a conflict graph that
relates the conflicting arcs. The graph consists of a vertex for each arc operable by the rule in
question, and an edge between each pair of these vertices where the removal of the corresponding
arcs causes a conflict. The edges can be undirected or directed, depending on whether the conflicts
are symmetric or asymmetric. It is clear that choosing an independent set from the conflict graph
will give a set of arcs that don’t conflict with each other. We will show how to find an independent
set that includes at least a constant proportion of the vertices in the conflict graph, and thus a
constant proportion of the arcs operable by a particular rule. In general, the conflict graphs have
bounded degree, so finding a maximal independent set (MIS) in the conflict graph will suffice.

The intra-rule conflict definitions for each rule follow. In all cases but one we state the max-
imum degree of the conflict graph. We argue that the “flow faces only” invariant is preserved.
We also argue that any changes resulting from removing non-conflicting arcs can be processed in
constant time in the CRCW model; in particular, we show that we never have to combine arbitrarily
many arcs into a single topological arc, and that we never have to splice the arcs from arbitrarily
many vertices into consecutive places in the cyclic order at some vertex. Also, we must show that
where rules combine faces, the associated work can be done in constant time. The rule-by-rule
conflict definitions are as follows:

[TB Rule] For the TB Rule we break the conflict resolution into four stages. In each stage
we determine conflicts for a particular type of TB arc, then remove non-conflicting arcs of that
type. For purposes of the counting argument, we assume that we first determine all TB arcs, then
apply the conflict resolution procedure. At the time that conflict resolution for a particular type of
TB arc occurs, arcs of that type are specified. The reason for this is that as TB arcs are removed,
the formation of topological arcs can change the characteristics of a particular arc. For example,
an arc meeting the conditions for Type II TB arcs prior to arc removal could meet the conditions
Type III TB arcs after the removal of a Type I TB arc. The four types are as follows:

� A Type I TB arc is not marked both T and B for any single face.

� A Type II TB arc is marked both T and B for exactly one face f , and the other T and B
marks for f are not common to a single arc.

� A Type III TB arc is marked both T and B for exactly one face f , and the other T and B
marks for f are common to a single arc.

� A Type IV TB arc is any TB arc that is marked both T and B for two faces.

We describe the conflict resolution for each type of arc in turn:

[Type I TB Arcs] A Type I TB arc a conflicts with any other Type I TB arc that is marked
T or B with respect to a face for which a is marked T or B. Each Type I arc conflicts with at
most 6 other arcs (an arc can lie on two different faces and there are up to 3 arcs on each face
with which it will conflict); these conflicts are symmetrical (an example of a conflict graph

28

is shown in Figure 18 below). A MIS is selected from the conflict graph and the associated
arcs are selected for removal.

Note that removal of these Type I arcs might either make certain Type II and Type IV TB
arcs inoperable, or might make them into Type I arcs that won’t get removed during this
arc-removal phase. For this to happen, however, these arcs must be marked T, B, or both
T and B on a face from which a Type I TB arc is removed. Thus vertices corresponding to
these arcs could be added to the Type I conflict graph without increasing its maximum degree
and without changing the fact that the MIS is maximal. (This extension of the conflict graph
is not necessary in the actual algorithm; it is a counting mechanism that will be used in the
proof that the conflict algorithm will allow us to remove a sufficient number of arcs. The
fact that a Type II or Type III arc has become inoperable can be detected in a subsequent arc
removal step.) An example of how Type II TB arcs can be added to the conflict graph is
shown in Figure 18.

TBTB

TB

Conflict Graph for Type I TB
Arcs: Heavy Arcs are Type I;
Light Lines Indicate Conflicts

Results for Type I TB Arcs:
Heavy Arcs are Type I MIS; Light
Lines Indicate Type II Conflicts

Figure 18: TB Rule Conflict Graphs

To see that this conflict resolution procedure will preserve the “flow faces only” invariant,
note that saddles will result only if the removal of some set of arcs effectively changes the
marks on some other removed arc so that it is no longer marked both T and B. To create such
a conflict with a Type I TB arc a, we must remove an arc a0 that is common to a face f with
a, and that has the same mark as a with respect to f . Since we only remove Type I TB arcs
at this time, such an arc must be Type I, and our conflict procedure rules this out.

29

The TB Rule can never create cycle faces in a DAG, since it only removes arcs.

The following lemma shows that this procedure combines at most a constant number of arcs
into a topological arc:

Lemma 5.1 At most 3 arcs can be combined into a single topological arc as a result of
removing Type I TB arcs.

Proof: We number the arcs that are incorporated into a new topological arc according to
their order of occurrence on this new arc, with the arc closest to the tail being numbered
1. We will refer to the ith arc as ai. Suppose v is the tail of some ai, and that v becomes
internal to the new topological arc. Then every arc incident to v other than ai�1 and ai must
be removed at the same time. Note that if two such incident arcs were adjacent in the cyclic
order, the conflict resolution procedure for Type I TB arcs would prevent the removal of one
of them. Therefore if we consider the cyclic ordering at v in the clockwise direction, there
can be at most one Type I TB arc between ai�1 and ai, and at most one between ai and ai�1.

Now assume that removing Type I TB arcs can cause four or more arcs to be combined into
a single new topological arc (the following argument is illustrated in Figure 19 below). This
implies that at least one arc incident to v4, the tail of a4, must be removed. We will refer this
arc as b4. Without loss of generality, assume that b4 lies between a3 and a4 in the clockwise
cyclic order at v4. b4 and a3 are common to a face we will refer to as f1.

Another arc b3 incident to v3, the tail of a3, must also be removed. If b3 lies between a2 and
a3 in the clockwise cyclic order at v3, then it also is common to f1, and conflict resolution
will prevent the simultaneous removal of b3 and b4. Therefore b3 must lie between a3 and a2

in the clockwise cyclic order at v3. b3 and a2 are common to a face f2.

Finally, a Type I TB arc incident to v2, the tail of a2, must also be removed. However, if
this arc lies between a2 and a1 in the clockwise cyclic order at v2, it is common to face f2

and conflicts with b3; if it is lies between a1 and a2 in the clockwise cyclic order at v2, it is
common to face f1 and conflicts with b4 because there is no arc between a2 and a3 in the
clockwise cyclic order at v3. Thus our assumption leads to a contradiction, and the lemma is
proved. 2

To see that at most two crosspointers get spliced into one, first note that if more than two
pointers are spliced together, then for any pointer other than the first or last, the arcs at both
its head and tail must be removed. This requires the removal of two arcs from one face,
which is prevented by the conflict resolution procedure.

Since we never remove more than one arc from any face, it is obvious that we never remove
two arcs that are consecutive in the cyclic order at any vertex. Likewise, we never combine
more than two faces into one.

[Type II TB Arc] The conflict resolution procedure for Type II TB arcs is different from the
procedure for most other rules because it involves the construction of two conflict graphs in
sequence, and it differs from all other rules because the first conflict graph is a forest and
may not be of bounded degree. The vertices of the first conflict graph represent Type II TB

30

A Type I TB arc at v2 causes intra-rule conflict

a1

f1
b4

a4a3a2

b3

v4

f2

v3v1 v2

Figure 19: Example for Topological Arc Formation

arcs that remain operable after conflict resolution for Type I TB arcs is completed. (Recall
that we are considering arcs that were operable prior to the removal of any Type I TB arcs;
any newly-created Type II TB arcs are considered inoperable, as are those made inoperable
by Type I conflict resolution. Also note that we are only considering arcs that are currently
Type II; any operable Type II arcs that became Type III when Type I arcs were removed will
be considered later.) It is easy to see that any such arc meets two easily-tested conditions: it
was operable prior to Type I removal, and it currently meets the conditions for Type II TB
arcs. Each such Type II arc a is on the boundary of a unique face f for which a is not both
T and B. If the opposite side of f is an operable Type II arc b, direct an arc in the conflict
graph from the vertex representing a to the vertex representing b. The result is a directed
forest (see Figure 20). Removing Type II TB arcs does not affect the operability of Type III
or Type IV TB arcs.

We could use tree contraction to find an independent set in the forest that contains at least half
the vertices. However, that could take time O(log jAj). Therefore we use a simpler method
that runs in constant time in the ARBITRARY CRCW model. To simplify the exposition,
we first introduce some terminology: a chain vertex is any vertex in the conflict forest with
indegree 1, provided that the arc in is not incident to a leaf. The first conflict resolution
algorithm for Type II TB arcs can now be stated:

– Add all leaves in the forest to the set of arcs to be operated on.

– Form the subgraph induced by the chain vertices and replace the directed arcs by
undirected arcs. This subgraph will have maximum degree 2. Find a MIS in the
subgraph and add the corresponding arcs to the set of arcs to be removed.

The argument that this gives us at least 1=3 of the operable Type II TB arcs is straightforward.
We first note that since the subgraph induced by the chain vertices has maximum degree 2, the

31

Conflict graph shown in lighter color

TBTB

TB

TB

TB TB

TB

Figure 20: Conflict Graph for First Phase of Type II TB Conflict Resolution

MIS has at least 1=3 of these vertices. Next we count the vertices other than chain vertices.
There are three types:

1. leaves

2. vertices with indegree 2 or greater. We noted in the proof to Lemma 4.2 that the number
of such vertices must be less than the number of leaves.

3. vertices with indegree 1 for which the arc in is incident to a leaf. The number of such
vertices is at most the number of leaves.

Thus the number of non-chain vertices is less than three times the number of leaves. Since
all arcs corresponding to leaves will be operated on, this is greater than 1=3 of the remaining
arcs, and the claim is proved.

The second phase of conflict resolution prevents the creation of topological arcs out of more
than some constant number of arcs. The conflict rule is as follows: for each Type II TB arc
a selected in the first round of conflict resolution, consider the other T and B arcs on the face
f for which a is marked both T and B. Each lies on the boundary of another face (f1 and f2

respectively; they need not be distinct). If the T arc is marked either T or B on f1, and if the
boundary of f1 opposite from the T arc is a Type II TB arc marked both T and B on f1 and
was chosen in the first round, put an edge between the vertices representing it and a in the
conflict graph. Likewise, if the B arc is marked either T or B on f2, and if the boundary of
f2 opposite from the B arc is a Type II TB arc marked both T and B on f2 and was chosen in
the first round, put an edge between the vertices representing it and a in the conflict graph.
These conflicts are symmetrical, so the degree of any vertex in the conflict graph is at most 2,
and a MIS from this graph will correspond to a set of arcs that is at least a constant fraction
of the Type II TB arcs that were operable at the start of this conflict resolution stage.

32

To see that the two-step conflict resolution procedure will preserve the “flow faces only”
invariant, note that saddles will result only if the removal of some set of arcs effectively
changes the marks on some other removed arc a so that a is no longer marked both T and B.
If a is a Type II TB arc, this would require the removal of at least one arc marked either T or
B on the face for which a is marked both T and B. Since we are only removing Type II arcs
at this stage, this is ruled out by the first conflict rule.

Removal of the arcs selected by this process will cause at most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer p must lie
between two arcs that are removed; these arcs must be common to a single face. Our
reduction rules will insure that if two arcs are removed from a single face then neither is
marked both T and B on that common face (if both are, they are not Type II TB arcs; if one
is then the two arcs conflict in the first half of the conflict resolution step). Therefore, any
pointer spliced to p must cross a face to or from a the side of a Type II TB arc that is marked
both T and B. But the Type II TB arc is the only one removed from such a face, and the chain
of splices can’t extend any further. Thus at most three pointers get spliced into one (one to a
Type II arc, one from one Type II arc to a second, and one from the second Type II arc).

The same sort of argument shows that the maximum number of arcs consecutive in the cyclic
order that are removed at some vertex is at most two. Any pair of such arcs are common to
a face f . If the arcs have the same orientation (i.e., both are in-arcs), then by the argument
above neither is both T and B on the common face. If they have opposite orientations, then
neither can be both T and B on the common face. Therefore in either case they must be
marked both T and B on the other faces; no other arcs are removed from these faces, so the
next arcs in the cyclic order in either direction will not be removed.

We still need to show that the number of arcs that are combined into a single topological
arc is bounded by a constant. We have just shown that the algorithm will never remove
three consecutive arcs in the cyclic order at any vertex. We can apply this fact at any v that
becomes internal to a topological arc, so we only need to consider the cases in which one
or two consecutive arcs are removed. If two consecutive arcs are removed, we can limit the
possibilities to four as shown in Figure 21 below. The unlabeled arcs are components of the
topological arc. In (a) both a1 and a2 could be Type II TB arcs and could both be removed
without conflict. In (b) and (c), there is exactly one way in which both arcs could be Type II
TB arcs; in those cases the arcs will conflict by the first conflict resolution step. In (d) there
is no way that the two labeled arcs could both be Type II TB arcs.

Now consider the possible configurations of arcs incident to a vertex v that will become
internal to a topological arc. At least one arc incident to vmust be removed. The configuration
of arcs at one side of v (i.e., either clockwise in the cyclic order between the arc into v and
the arc out of v, or clockwise in the cyclic order between the arc out of v and the arc into
v) can be one of four things: no arcs, an arc in, an arc out, or two arcs as specified above.
We note that if there is an in arc on each side of the topological arc at v then these two arcs
conflict by the second conflict resolution step; this is also the case if there is an arc out on
each side. Therefore we are left with the four possibilities (plus their mirror images) shown
in Figure 22 below.

33

(a)

a1
TB

TB

a2

(b)

a1

a2

(d)

a1

TB

TB
a2

(c)

a1

a2

TB

TB

Figure 21: Consecutive Type II TB Arc Incidences at a Vertex

a1

a1

a1

a2

a1

a2

(1) (4)(3)(2)

Figure 22: Nonconflicting Type II TB Arc incidences at vertices that could become internal

34

Finally consider the configurations possible at two consecutive vertices u and v that become
internal to a topological arc. Specifically, let there be an arc from u to v that becomes part
of the topological arc, and let the arc out of v be the last arc in the sequence that becomes
the new topological arc. First consider the case in which there is an in-arc ain incident to v.
This in-arc will conflict with an out-arc on the opposite side of u, and an out-arc at u on the
same side of the topological arc as ain cannot be a Type II TB arc. If there is no out-arc at
u, there must be an in-arc at u. However, such an arc will conflict with ain if it lies on the
same side of the topological arc. Thus, if configurations (1), (3), or (4) shown in Figure 22,
or their mirror images, occur at v, there is only one allowable configuration that can occur
at u: configuration (1), with the arc on the opposite side of the topological arc from ain. By
the same argument, the only configuration that can occur at the vertex preceding u on the
topological arc is configuration (1), with the arc on the same side of the topological arc as
ain. But such an arc must conflict with ain by the first conflict resolution rule. Thus in this
case at most three arcs can be combined into a single topological arc.

Now consider the case in which the configuration at v is (2). If configuration (1), (3), or
(4) occurs at u, the previous argument says that at most three arcs preceding the arc out of
v will be combined into the topological arc, limiting the total number of arcs combined to
four. If configuration (2) occurs at u, the arc out of u must be on the opposite side of the
topological arc from the arc out of v; if not, they’d conflict by the first conflict resolution
rule. This implies that configuration (2) can’t occur at the vertex preceding u; if one of the
other configurations does occur at the preceding vertex, we again have the case discussed
above, and at most three more arcs can be included in the new topological arc. Thus, at most
five arcs can be combined into a single arc as a result of removing Type II TB arcs.

Type II TB arc removal is one case where an unbounded number of faces can be combined
into one. Let f be a face such that an arc marked both T and B with respect to f is removed.
The conflict resolution rules will prevent f from being combined with another such face.
However, several faces such as f can be combined with a face f 0 such that no Type II TB
arc marked both T and B with respect to f 0 is removed. If this occurs, the processor for f 0

will become the processor for the new face. To create this new face, f 0 needs to determine
if the leaders have changed as a result of the removal of a Type II TB arc. Then the various
faces to be combined with f 0 need to set the processor of f 0 as the new processor. The edges
on the remaining boundaries of these faces can read the new processor number to complete
the change. This can all be done in constant time in the CRCW model, so combining an
arbitrary number of faces in this way is not a problem.

[Type III TB Arc] Recall that a Type III TB arc is marked both T and B for exactly one face
f , and the other T and B marks for f are common to a single arc b. We apply the conflict
rules for Type III TB arcs to any such arc that is currently operable. Such an arc a meets the
following two conditions: a was marked both T and B prior to the start of TB arc conflict
resolution, and a currently meets the conditions for Type III TB arcs.

The first conflict rule says that if b is also an operable Type III TB arc, a conflicts with b and
vice versa.

35

In addition, we need some conflict rules to prevent the formation of topological arcs from
arbitrarily many arcs. To understand these rules, it is first useful to discuss the situations in
which vertices can become internal as a result of Type III TB arc removal.

The first conflict rule will assure that if Type III TB arc a is removed, then an arc parallel
parallel to a will remain in the graph. This implies that the alternation number of any vertex
in the graph will not decrease as a result of Type III TB arc removal. Thus only flow vertices
can become internal to topological arcs.

Also, for each arc b remaining after Type III TB removal, at most two Type III arcs parallel
to b could have been removed. Thus if the outdegree (respectively indegree) of a flow vertex
is four or more, that vertex cannot become internal as a result of the removal of Type III arcs.

The additional conflict rules will thus apply to operable Type III TB arcs that are incident to
flow vertices that have indegree and outdegree less than or equal to 3. Let a be such an arc
and v be such a flow vertex at the tail of a. Once again, b will denote the TB arc common to
the face for which a is marked both T and B.

To determine these additional conflicts, consider the next arc in the cyclic order at v, where
the direction of the order is determined by b followed by a. If c is out of v, then a has no
conflicts with respect to its tail. If c is into v, the following cases apply:

– If c is a Type III TB arc, the following conflicts can occur: a and c conflict if c is
operable; if the arc d opposite c on c’s TB side is an operable Type III TB arc, then a

also conflicts with d (this last condition applies whether or not c is operable).

– If c is not a Type III TB arc, then we consider the indegree of v. If the indegree is
greater than one, a has no more conflicts with respect to v. If c is the only arc in, then
we consider the vertex u at the tail of c (if the indegree of v is greater than one in this
case, v will not become internal). If u is a flow vertex with indegree 3 or less and c is
the only arc out, then we consider the arcs into u (if u does not meet these conditions,
u will not become an internal vertex). Let d be the arc into u on the face common with
a. If d is a Type III TB arc, the following conflicts can occur: a and d conflict if d is
operable; if the arc e opposite d on d’s TB side is an operable Type III TB arc, then a

also conflicts with e (this last condition applies whether or not d is operable). If d is
not a Type III TB arc, no conflicts occur.

These conflicts are illustrated in Figure 23 below. A symmetrical set of conflicts occur for
arcs out of the head of a.

As in previous cases we build a conflict graph with vertices corresponding to the Type III TB
arcs, and edges corresponding to conflicts. In this case conflicts may not be symmetrical;
however, for any operable Type III TB arc there are at most five arcs with which it can conflict
and that can conflict with it. The degree of any vertex in the conflict graph is at most five.
Thus we can get a constant proportion of the vertices in the conflict graph by finding a MIS.
As was the case for Type I arcs, removal of Type III arcs can affect the operability of other
types of TB arcs. In particular, certain Type IV TB arcs can either become inoperable, or can
become Type III TB arcs that won’t be removed during this phase of arc removal. However,

36

a conflicts with c;
may conflict with d

a

b

c

a conflicts with d;
may conflict with e

a

b

c

d

d e

Figure 23: Type III TB Arc Conflicts

all such Type IV arcs will be common to a face for which a removed Type III arc is marked
both T and B. As was the case for Type I conflict resolution, we can extend the conflict graph
to include these arcs after we’ve selected a MIS: If a is represented by a vertex in the MIS in
the conflict graph, and if a is labeled both T and B on a face f , and the opposite side of f is
a Type IV TB arc b, add a corresponding vertex and edge to the conflict graph (again, this is
done for counting purposes of the proof and need not be done in the actual algorithm). This
doesn’t increase the maximum degree of the conflict graph, and that, since every added edge
is incident to an element of the MIS, the MIS is still a MIS.

To see that this will preserve the “flow faces only” invariant, note that saddles will result
only if the removal of some set of arcs would effectively change the marks on some other
removed arc a so that a would no longer be marked both T and B. This can only occur for
Type III TB arcs if we remove two arcs both of which are marked both T and B on a common
face. This is ruled out by the conflict rules.

Removal of the arcs selected by this process will cause at most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer must lie
between two arcs that are removed; these arcs must be common to a single face. Our conflict
rules will insure that if two arcs are removed from a single face then neither is marked both
T and B on that common face (if either is, then by the definition of Type III TB arcs both
are, and they conflict). Therefore, any pointer spliced to such a pointer must cross a face to
or from a the side of a Type III TB arc that is marked both T and B. But the Type III TB arc
is the only one removed from such a face, and the chain of splices can’t extend any further.
Thus at most three pointers get spliced into one (one to a Type III arc, one from one Type III
arc to a second, and one from the second Type III arc).

It is easy to see that no more than two arcs consecutive in the cyclic order at any vertex are
removed. The conflict rules insure that if a Type III arc a is removed, then the other arc on
the face for which a is marked both T and B is not removed. If two consecutive Type III arcs
are removed, then neither can be marked both T and B on the face they share. Further, the
next arc in either direction in the cyclic order will remain.

37

To see that no more than three arcs are combined into a single topological arc, first recall
that if a vertex becomes internal, either its outdegree, its indegree, or both are reduced to one
(either the indegree or the outdegree could be one already). Because of the first conflict rule,
if the outdegree (respectively indegree) is reduced, we can conclude that it was two or three
prior to removal, and that the removed arcs were parallel to the remaining arc. It is easy to
see that if a vertex v has both indegree and outdegree of two or three, then the additional
conflict rules will insure that v does not become internal (an example of such a vertex is
included in Figure 24 below as the “excluded” case; the arcs labeled a and b conflict since
the other two arcs must both be Type III TB arcs even if they are no longer operable).

This allows us to reduce the number of cases we need to consider. There are four basic
cases as shown in Figure 24 below (cases 1 and 3 each represent two mirror-symmetric
configurations). Assume that v is the last vertex that will become internal in the newly formed

ba

v

a

v

b

a

v

ba

v

a

v

(1) (2) (3) (4) excluded

Figure 24: Cases for showing that Type III TB conflict resolution prevents the formation of long
topological arcs

topological arc. Let atop be the arc with v as its head that is included in the topological arc,
and let u be the tail of atop. If u also could become internal and the configuration at v was
either 3 or 4, then the configuration at u would have to be 1 or 2 respectively (operable arcs
out of u would be arcs into v, which are not consistent with the assumed configuration). In
either case conflicts occur and not all the arcs incident to u and v will be removed (note that
for configurations 1 and 3, the arc parallel to the Type III TB arc must also be a Type III
arc). If the configuration at v is 1 or 2, then either configuration 3 or 4 occurs at u (the arcs
out of u are the arcs into v); in this case its clear that at the next vertex back from u on the
desired topological arc there will be conflicts as described above. In this case it is possible
to combine three topological arcs into a single arc.

Removal of Type III TB arcs can lead to the combination of an unbounded number of faces in
the same way as for Type II TB arc removal. The method of combination and the argument
that it will take constant time are the same as in the Type II case above.

[Type IV TB Arc] Recall that a Type IV TB arc is marked both T and B for two faces. The
Type IV arcs that are removable at this step meet the easily-tested conditions that they were

38

marked both T and B prior to TB arc removal, and that they currently meet the conditions
for Type IV TB arcs.

Each Type IV TB arc a lies on the boundary of two faces. If a is operable, it will conflict
with any operable Type IV TB arc that forms the opposite side of either of these faces. Thus
each such arc can conflict with at most two other arcs, and all conflicts are symmetrical. The
conflict graph has a maximum degree of 2.

It is easy to see that two arcs consecutive in the cyclic order are never removed: if the opposite
sides of the faces bounded by a removed arc are not Type IV arcs, they are unaffected; if
they are Type IV arcs they will conflict with the removed arc and not be removed. Thus at
most one arc is removed from any face. When a single Type IV TB arc between two faces
is removed, the two faces are merged into a single flowface, so no saddle faces are formed.
Also, at most two pointers can be spliced into one; if longer pointer chains were formed, two
arcs would have to be removed from some face, which is not possible.

It is also clear that removal of a Type IV arc cannot create a topological arc. In general the
conflict rules assure that both the top and bottom arcs on two faces stay incident to the head
and tail of the removed arc. In the degenerate case in which the graph consists of two parallel
arcs, the arc that remains is not combined with any other arc.

The conflict procedure for Type IV TB arcs prevents the removal of more than one such
arc from any face. Therefore at most two faces are combined. This can easily be done in
constant time.

This completes the conflict rules for various types of TB arcs. We can now argue that this
four-step procedure is sufficient to remove a constant fraction of the TB arcs: We note that
the maximum degree of the conflict graph for Type I TB arcs is 6, so the conflict resolution
procedure discussed in Section 5.1 above will yield a MIS that includes at least 1=7 of the set
that includes (1) arcs operable by this rule and (2) Type II and Type IV TB arcs that will not
be removed as a result of the removal of Type I arcs corresponding to vertices in the MIS.
The arcs not in this set are Type II, Type III, and Type IV TB arcs that remain operable after
Type I removal.

The conflict resolution procedure for Type II TB arcs removes a constant proportion of the
remaining operable Type II arcs without affecting the operability of the remaining Type III
and Type IV TB arcs.

The conflict resolution procedure for Type III TB arcs removes a constant proportion of the
remaining operable arcs that are either (1) Type III or (2) Type IV arcs that won’t be operated
on because of the removal of Type III arcs. The argument is as for the Type I case.

Finally, the Type IV conflict resolution procedure allows the removal of a constant fraction
of the remaining arcs. Thus a constant proportion of the arcs that were TB arcs prior to
conflict resolution will be removed.

[Degree-1 Rule] There are no conflicts between arcs operable by this rule, so the con-
flict graph has no edges. To see that no saddle or cycle faces are created, note that the

39

removal of such an arc a changes only the face of which a is on the boundary. Furthermore,
removing a degree-1 vertex and its arc causes the number of face alternations either to stay the
same or to decrease. Thus, given that all faces are flow faces, we start with two alternations
on the face. If the number of alternations goes down it must go to zero (there are always
an even number of face alternations on a face), which would mean the face is a cycle face.
But that implies that the remaining boundary formed a cycle in the original graph, which
contradicts the fact that the graph is a DAG.

Given that the graph being reduced contains no directed cycles and that there is at most one
source and one sink on a flow face, it is easy to show that there are at most two arcs operable
by this rule on any face and these arcs can’t be adjacent in the cyclic order at any vertex.
There are no problems with processing time (i.e., with respect to pointer splicing or updating
topological arc information) in this case.

The remaining rules affect only clean arcs. Therefore we don’t need to worry about splicing
pointers: A clean arc has no pointers through internal vertices, so its removal won’t cause
any splicing. If it is contracted, the head will become top (respectively, the tail will become
bottom), and any incident pointers can be deleted (the conditions on clean arcs insure they
won’t become self-loops or backpointers). However, we do need to be careful that no more
than a constant number of faces get combined into a single face as the result of the application
of some rule.

[Unique-In(Unique-Out) Arc Contraction Rule] An arc a operable by this rule conflicts
with its two neighbors in the cyclic order at the source(sink). The conflicts are symmetrical,
so the degree of any vertex in the conflict graph is at most 2. Contraction of a unique-
in(unique-out) arc won’t create a cycle or saddle face: Only the two faces that have this
arc on a boundary are affected. Since the next arcs in a traversal of these faces have the
same orientation on the boundary as the contracted arc, the face remains a flow face, and the
“all flow faces” invariant holds. The conflict rule insures that consecutive arcs in the cyclic
order won’t be contracted, so changes in the cyclic order can be processed in constant time
in the CRCW model. There are no problems with either combining too many arcs into a
topological arc or combining too many faces together: no topological arcs can be formed
and no faces can be combined by this rule.

(Note that there are no conflicts in which this rule applies to an arc at both a source and
a sink; if a unique-out arc from a source is the unique arc into a sink, then these vertices
plus the arc form a complete connected component. Since the reduction rules won’t dis-
connect a DAG this situation won’t arise except in the case that the graph has exactly one arc.)

[Adjacent Degree-2 Sources and Sinks Rule] A conflict graph can be constructed as
follows: Vertices in the conflict graph will be the operable degree-2 sources. Each such
source s checks for each sink t with which it is operable (there are at most 2) if there is a
second source s0 that is operable with t, and if so adds an edge to s0 source in the conflict
graph.

In addition, smay lie on a face f that has a degree-2 sink t as its bottom, and s is not operable

40

with t. However, t may be operable with another source s0; if this is the case, then s and s0

conflict. This conflict is defined in a symmetrical way with respect to s0: if s0 is operable
with with a sink t, and if t lies on a face f such that the top of f is a source s that is operable,
but not with t, then s0 and s conflict. These conflicts are included to prevent the combination
of more than a constant number of faces or the creation of a topological arc from arbitrarily
many arcs.

Since the conflicts are symmetric, the maximum degree of any vertex in the conflict graph is
2. If any source selected for removal during conflict resolution is operable with more than
one sink, it chooses one of the sinks arbitrarily.

If only non-conflicting sources and their corresponding sinks are removed from a graph that
contains only flow faces, the conflict rules insure that each removal affects only three faces:
face f1 for which the source is top and the sink is bottom; face f2 for which the source is top
and the sink is not on the boundary, and face f3 for which the sink is bottom and the source
is not on the boundary (these faces are easily identifiable in Figure 3.3 in Section 3.2). When
the source and sink are removed, the remaining face consists of the paths from the top of f2

to the two saddle vertices and and the paths from the two saddles to the bottom of f3. This
forms a new flow face; the “all flow faces” invariant continues to hold. The conflict rules
also insure that no more than these three faces are combined into a single face.

It is obvious that no more than two consecutive arcs in the cyclic order at any vertex are
removed at once. Arcs are removed in pairs, so if more than two were removed simultaneously
there must be at least two conflicting sources.

It is straightforward to show that at most three arcs are combined into a single topological
arc. To see this, assume that four arcs could be combined into a topological arc consistent
with the conflict rules, and let u, v, and w be the vertices that become internal in the order
from tail to head of the topological arc. Since w is not already internal, some incident arcs
must be removed. Assume that the removed arcs lie on a particular side of the topological
arc. The conflict rules will not allow all arcs to be removed from either v or u on the
same side of the topological arc. Therefore all arcs must be removed from v and u on
the other side of the topological arc, and at least one arc must be removed at each of those
vertices. But this would involve removing conflicting arcs, which contradicts our assumption.

[Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule] To make the exposition sim-
pler, we will refer to the source involved in a potential application of the t-s-t rule as the
“operable source”, and the sink involved in a potential s-t-s Rule application as the “operable
sink”.

To prevent problems such as removing an arbitrary number of consecutive arcs in the cyclic
order at some vertex or combining an arbitrary number of faces, the algorithm will apply
these two rules in sequence (we will assume the t-s-t Rule is applied first, though the order
is not important). The specific procedure will be as follows: first, mark all sources and
sinks that are operable by these rules. Apply the t-s-t Rule (there are no conflicts between
operable sources). Test whether the sinks marked as operable remain operable, and apply

41

the s-t-s Rule to those that do (again, there are no conflicts between operable sinks). We will
define conflicts between sources and sinks, though no conflict graph need be constructed -
this is another case where we use conflicts for counting purposes only. To understand these
conflicts, note that applications of the t-s-t Rule could leave a neighboring operable sink
inoperable either because the number of neighboring sources drops to one, or because that
sink ends up with too high a degree. Thus, every operable sink will conflict with every
operable sink with which it is common to a face. Since operable sources have degree 3 or
less, the number of sinks that can become inoperable by a single s-t-s Rule application is
clearly bounded.

For a particular source at which the t-s-t Rule applies there may be more than one way to
apply the rule. The source can arbitrarily pick one of the ways; this isn’t a conflict in the
sense we use the term. The same holds for applying the s-t-s Rule at some sink.

Each merging of cyclic orders at a source (for the s-t-s Rule) or a sink (for the t-s-t Rule)
occurs between two arcs that are not removed, so consecutive merges don’t occur. Thus
there is no problem if a particular source appears in multiple s-t-s Rule applications or if a
sink appears in multiple t-s-t applications (note that a high-degree vertex may be created as
mentioned in the discussion of this rule in Section 3.2).

To see that the remaining graph has only flow faces, note that the removal of the arc (or arcs)
out of any source affects only the structure of the two faces it borders (the case for sinks is
symmetric). These two faces are replaced by two new flow faces. The same observation
makes it clear that no arbitrary set of faces will be merged into one.

It is obvious that no topological arcs are formed.

[Consecutive Rule] Let a be an arc that is a candidate for removal by this rule, and let
the two faces of which a lies on the boundary be f1 and f2. Then a conflicts with any other
arcs that lie on the boundaries of f1 and f2 that are operable by the Consecutive Rule. These
conflicts are symmetric. The conflict graph in this case has maximum degree 6.

It is obvious that this rule prevents the removal of successive arcs in the cyclic order at a
source, sink or saddle vertex, and that the cyclic order at any combined sources or sinks can
be updated in constant time.

It is easy to see that the application of this rule cannot produce saddle or cycle faces. Any
single application of this rule affects only the two faces of which the removed arc lies on the
boundary. These two flow faces are reconfigured into two new flow faces; the rest of the
graph is unaffected. The same argument shows that a Consecutive Rule application never
combines more than a constant number of faces into a new face. Also, no topological arcs
are produced since all removed arcs are incident only to saddle vertices and sources or sinks.

[Index-1 Saddle Rule] An arc a operable by this rule conflicts with at most its two neighbors
in the cyclic order at the source(sink), provided that those neighbors are incident to different
saddles. It also may conflict with two arcs adjacent in the cyclic order at the saddle if these
arcs are incident to sinks(sources) at the saddle (i.e., when this rule is applied at a source

42

there may be two sinks at the index-1 saddle that also are operable by this rule). The degree
of any vertex in the conflict graph is at most 4 (the conflicts are symmetric).

This conflict rule insures that if an arc is contracted then none of the adjacent arcs in the
cyclic order at either end are affected, so there is no problem with splicing cyclic orders.
Applications of this rule that involve two sources(sinks) only contract arcs, so no topological
arcs will be formed, and faces will not be combined. In this case, the argument that no saddle
or cycle faces are created is the same as for the Contraction Rule above.

Applications that involve a single source or sink adjacent to a saddle affect at most three
faces. The separation of the graph does not create any topological arcs, and the affected faces
all remain flow faces, though their boundaries are changed. The cyclic orders at the affected
vertices can be modified in constant time.

With the exception of the first step of conflict resolution for Type II TB arcs, the degree of each
vertex in the conflict graphs for each reduction rule is bounded by a constant. The conflict graphs
are not necessarily planar, however (e.g., it is easy to construct graphs for which the Type I TB arc
conflict graph is not planar). They are easily constructed in constant time in the CRCW model.

It is obvious that a maximal independent set (MIS) of vertices from a conflict graph represents
a set of vertices that can be removed in parallel without problems; it is also obvious that a MIS
in a bounded-degree graph contains a constant fraction of the vertices. Therefore we can use the
techniques developed by Goldberg, Plotkin, and Shannon [GPS87] to resolve conflicts inO(log� n)
time.

If we introduce randomization, the running time can be reduced to constant time for the CRCW
model. In particular, we can use Luby’s Monte Carlo Algorithm A (described in Reference [Lub86])
for finding a MIS in constant time.

5.2 Conflict Resolution Between Rules

We deal with the second type of conflict by proving the following lemma:
Lemma 5.2 Given the order of rule application specified in the algorithm description, a single ap-
plication of any reduction rule reduces the number of arcs operable by subsequent rules (excluding
the arcs removed by this rule application) by at most a constant number.
Proof: The proof is by examining all cases.

The TB Rule affects the Degree-1 Rule only either where it lengthens (by making topological
or by adding a new topological segment) the arc incident to a degree-1 vertex, or where it creates a
new degree-1 vertex. There is no reduction in the number of arcs operable by the Degree-1 Rule.

All of the other rules operate on clean unique-in or locally unique-in arcs incident to sources
(respectively unique-out or locally unique-out arcs incident to sinks); the s-t-s/t-s-t Rule additionally
requires some locally unique-in/locally unique-out arcs that are not necessarily clean. These arcs
will not be removed by the TB Rule. Further, it is obvious that a unique-in arc out of a source will
remain unique-in if other arcs incident to its head are removed. It is possible that such an arc could
become part of a topological arc if all but one arc out of the head are removed by the TB Rule,
however. Any TB arc removed will affect at most one unique-in arc at its tail. (The symmetric
argument holds for unique-out arcs into sinks.)

43

Recall that locally unique-in (respectively locally unique-out) arcs are incident to saddle
vertices. Thus a locally unique-in arc a will remain locally unique-in: An arc adjacent in the cyclic
order at the head of a is marked both T and B only if the next arc in the cyclic order has the same
orientation. However, at each step of TB arc removal, the conflict resolution procedure will not
allow the removal of two arcs with the same orientation that are adjacent in the cyclic order at
some vertex. Finally note that if a is clean it will remain clean. If a pointer into its head were to
be created across a face of which it lies on the boundary, an in-arc adjacent at the head would have
to be removed. But the existence of such an adjacent arc would contradict the fact that this arc is
locally unique-in. The arguments for locally unique-out arcs are symmetric.

Thus the application of the TB Rule doesn’t conflict with any arcs operable by subsequent
rules.

For Degree-1 Rule conflicts with subsequent rules, we first note that removal of an arc by
this rule will not make any clean arc dirty. Also note that the removal of such an arc changes the
structure of only one face. Thus it is easy to see that at most one conflict can occur with the Adjacent
Degree-2 Source and Sink Rule, and at most one with either the s-t-s or t-s-t Rule. Since a degree-1
arc is adjacent to at most one other source or sink at a saddle vertex, at most one application of
the Consecutive Rule can be in conflict. A degree-1 arc can be adjacent to at most one index-1
saddle, so there can be at most three conflicts with the Index-1 Saddle Rule. It is obvious that any
arc operable by the Unique-In/Unique-Out Arc Contraction Rule is unaffected by the removal of
an arc by the Degree-1 Rule.

For the Unique-In/Unique-Out Arc Contraction Rule, two key observations are that contraction
of such an arc will never change the face structure of the graph (e.g., top and bottom of every face
stays the same), and that arcs incident to saddle vertices will never be contracted. It is therefore
easy to see that arcs operable by the Adjacent Degree-2 Source and Sink Rule, the Consecutive
Rule, and the Index-1 Rule will not be affected. Recall that the s-t-s/t-s-t Rule is only applied at
sources or sinks that have either two or three locally unique-out (respectively locally unique-in)
arcs; this plus the observation that the face structure is unchanged imply that there will be no
Unique-In/Unique-Out Arc Contraction Rule conflicts with s-t-s/t-s-t Rule applications.

Next consider the Adjacent Degree-2 Source and Sink Rule. Since the arcs incident to the
source and sink involved are all removed, we don’t have a conflict with the Consecutive Rule
applied with either the source or sink as the center. This leaves at most four conflicts: a sink
adjacent to the source in the cyclic order at either saddle vertex, or a source adjacent in the cyclic
order to the sink at either saddle. For the s-t-s/t-s-t Rule there is a conflict if the sink might be
involved in a t-s-t Rule application and the source in an s-t-s application (recall from the lemma
statement that if an arc is operable by both rules it isn’t counted as a conflict). Since the s-t-s and
t-s-t Rules apply to sources and sinks that share faces, and since the degree of the source and sink
in question is 2, there is at most one conflicting t-s-t Rule application involving the sink, and at
most one s-t-s conflict involving the source. Finally, the source and sink are adjacent to at most
two vertices, so the number of Index-1 Saddle Rule applications affected is clearly bounded.

For the s-t-s/t-s-t Rule, first consider the Consecutive Rule. We will give the argument for an
application of the t-s-t Rule; the argument for an application of the s-t-s Rule is symmetric. There
are two ways to conflict with a potential application of the Consecutive Rule: make one of the
arcs involved “dirty” or remove one of the arcs involved. In applying the t-s-t Rule, no clean arcs

44

are made dirty, so only the second case applies. The t-s-t Rule will remove at most two arcs out
of a source, so at most four potential applications of the Consecutive Rule are affected (again, we
don’t count cases in which the arc operable by a subsequent rule is operable by the current rule).
For t-s-t/s-t-s Rule conflicts with the Index-1 Saddle Rule, consider the case of an application of
the t-s-t Rule. At most two arcs incident to the source are removed; the two sinks are combined.
The only possible effects on potential Index-1 Saddle Rule applications are if the removed arcs are
incident to index-1 saddles. No more than three conflicts are possible at each saddle. The argument
for the s-t-s Rule is symmetrical.

For Consecutive Rule conflicts with potential Index-1 Saddle Rule applications, we note that
the only way conflict can occur is through the removal of an arc incident to an index-1 saddle.
Since a Consecutive Rule application removes exactly one arc that is incident to a source or sink,
exactly one index-1 saddle can be affected. As in previous cases of conflict with the Index-1 Saddle
Rule, there are at most three conflicts at that saddle.

Since the Index-1 Saddle Rule is applied last, there is nothing else to prove.
2

5.3 Proof of Main Lemma

We are now ready to show that the reduction algorithm runs in a logarithmic number of iterations
of the main loop.
Lemma 5.3 [Main Lemma] For any embedded connected planar DAG consistent with our in-
variants, the generalized reduction algorithm will work in O(logn) iterations of the main loop.
Proof: This will follow if we show that the reduction algorithm removes a constant proportion of
the arcs in each pass through the main loop.

Consider the graph at the start of the main loop. After some application-specific processing
(which will not change the graph), the graph is cleaned up. Cleanup leaves the number of vertices,
sources, and sinks unchanged. The number of arcs does not increase; therefore it is sufficient to
show that we remove a constant proportion of the arcs left after cleanup. Lemma 4.3 implies that a
constant proportion of these remaining arcs are operable. All that is left is to show that we remove
at least a constant proportion of the operable arcs.

To show this, we will argue that the total number of arcs knocked out by conflicts is bounded
by some constant times the number of arcs removed. In most cases this is obvious because the
total number of interrule and intrarule conflicts is bounded by a constant. The exception is TB arcs
(the first Type II conflict graph does not have bounded degree). However, we have argued above
that a constant fraction of such operable arcs are removed, which implies that the total number of
arcs knocked out by intrarule conflicts is at most a constant times the number of TB arcs removed.
Since the number of interrule conflicts with TB arcs is bounded by a constant, the result holds.
Since every operable arc is either removed or is subject to a conflict with an arc that is removed,
this implies at least a constant proportion of the operable arcs are removed.
2

45

6 Applications

In this subsection we present an application that uses the abstract reduction procedure presented
above. We also present the running time and number of processors needed to run this application.

6.1 Planar DAG Many-Source Reachability

The abstract reduction procedure can be used to solve the many-source reachability problem for
planar DAGs. The problem can be stated as follows: given a planar DAG and an initial set of
vertices in that DAG as the input, compute the set of vertices that are reachable via directed paths
from the initial set. We will refer to the vertices reachable in this way as the solution set; we
include the initial set as a subset of the solution set. Our solution to this problem consists of a set
of application-specific actions taken at various points in the reduction algorithm; to show that it
works we introduce invariants that allow us to prove that the result is correctly computed.

We introduce two flags at each vertex: a “reachable” flag indicating whether or not the vertex
has been marked as reachable from one of the initial vertices, and an “active mark” flag that we
will use to determine whether or not to propagate marks during the reduction phase. The algorithm
starts with the input set of vertices having both their “active mark” and “reachable” flags set. We
use the term correctly marked to indicate that a vertex in the solution set has its “reachable” flag
set, and that a vertex not in the solution set does not.

The basic reduction algorithm combines vertices as the graph is processed. We need to
keep track of such vertices while we compute reachability. Therefore we introduce the following
terminology: A vertex in the current graph is an original vertex if it corresponds to exactly one
of the vertices in the graph prior to the start of the reduction process (we will consider sources
added during preprocessing to be original vertices). The remaining vertices in the current graph
correspond to two or more vertices that have been combined by various reduction rules; we refer to
them as combined vertices. For each combined vertex we refer to the original vertices that have
been combined into it as its components.

For the purpose of proving that the algorithm for the reachability application works, we define
the set of active vertices, which includes all original vertices that are not sources or sinks, plus any
original sources that have active marks.

For the reachability application we keep track of the status of each vertex (combined or
original).

We define a reduction propagation step as follows:

� If a vertex v is at the head of either a connectivity pointer or a directed arc such that the tail
of that pointer or arc is a vertex with an active mark, v sets both of its flags (we say that the
mark is propagated or passed over the arc or crosspointer). This rule also applies to internal
vertices.

� If the directed arc over which a mark is passed is topological, all internal vertices of that arc
are marked as reachable.

� If any internal vertex of a topological arc a receives a mark, the “active mark” and “reachable”
flags of the head of a are both set.

46

� The “reachable” and “active mark” flags are unset for every sink and combined vertex.

� Any source that propagates an active mark unsets its “active mark” flag.

An expansion propagation step is defined similarly, except that all active vertices propagate their
marks whether or not the “active mark” flag is set or not.

The application-specific processing added to the basic reduction algorithm is as follows:

� At the start of each cleanup phase d propagation steps are performed, where d is the degree
limit introduced in Section 3.3. For each topological arc out of a source, if an active mark
exists at an internal vertex higher than the high point, then the high point gets an active
mark (this can be done in constant time in the CRCW model in constant time using the rank
order on the topological arc). During the realignment phase, if a topological segment s of
an arc out of a source is removed or replaced by a segment with no internal vertices, and if s
contains a marked vertex, then the head of s is given an active mark (i.e., both flags are set).

� Whenever the TB Rule creates a topological arc a, if any internal vertex of a has an active
mark, the head of a is given an active mark.

� Just prior to the application of specific rules, various numbers of propagation steps are done
as follows:

– One step is done before each of the Degree-1, Adjacent Degree-2 Source and Sink,
s-t-s/t-s-t, and Consecutive Rules.

– Two steps are done before the Unique-In/Unique-Out Contraction and Index-1 Saddle
Rules.

– For the TB Rule, one step is done prior to removing Type I TB arcs; two steps are done
prior to removing each of Types II, III, and IV TB arcs.

� In rules where sources or sinks are combined with other vertices, the state of the vertices
before combination is saved for the expansion phase, and the combined vertex is unmarked
(i.e, neither of its flags are set).

� For the case of the Index-1 Saddle Rule in which the graph is split, the index-1 saddle vertex
becomes a source. The active flag at this new source should be unset.

Between the reduction and expansion phases, each topological arc that was removed marks
itself according to any marks at any of its vertices. More specifically, all vertices beyond the first
vertex marked as reachable are marked as reachable.

The application-specific steps added to the algorithm for the expansion phase are as follows:

� One expansion propagation step is done after arcs are restored for the Unique-In/Unique-Out
Contraction and the Index-1 Saddle Rules; two are done for the Degree-1 Rule.

� As TB arcs are added back to the graph their internal vertices may need to be marked. This
involves checking crosspointers and checking the tail of the arc. If the tail has its “reachable”

47

flag set, all the internal vertices set their “reachable” flags. Otherwise, each internal vertex
checks the lowest point that can reach it on each face it borders and sets its “reachable”
flag accordingly. Also during expansion any vertices that became components of combined
vertices are marked as necessary as they revert to original vertices. Note that the “active
mark” flag is not used in this process. This step is done twice after Type IV TB arcs, twice
after Type III TB arcs, twice after Type II TB arcs, and once after Type I TB arcs are restored.

At the end of the expansion phase we remove the restriction that sinks cannot be marked and
do one more expansion propagation step to mark the sinks correctly.

It is easy to see that given the information on faces and topological arcs all of these application-
specific actions can be done in constant time in the CRCW model.

The following lemma is useful in the proof that the reduction invariant holds through the
cleanup phase (cleanup is discussed in Section 3.4, and some of the terminology used below is
introduced there as well). A similar argument will be used to show that the expansion invariant
holds through the reverse of the cleanup phase during expansion. For simplicity, in the text below
we will refer to the highest points reachable from the frontier or beyond as “high points”; if no
vertex is reachable from the frontier or below, then the frontier vertex is the high point.
Lemma 6.1 For each topological arc a out of a source of degree � d, let v be the the highest
internal vertex on a that both lies above the high point of a and is reachable from an active mark.
Then during reduction, after d� 1 mark propagation steps v is marked correctly.
Proof: Such a vertex v is reachable only from marks that lie above the high points for this
source, so we can prove this claim by looking at the subgraph consisting of the source and all arcs
(or segments of arcs) out to the high point, and all pointers that lie between two vertices in this
subgraph. Note that there is such a v for each arc in the subgraph that is reachable from an active
mark. If v is the source, the result is trivial. If v already has an active mark, the result is again
trivial. If the source does not have an active mark and v is not yet marked, then the last link in the
path from any mark must be a crosspointer. In particular, there must be a crosspointer from v0, the
highest point reachable from a marked vertex on the other side of one of the adjacent faces: v must
be at the head of a crosspointer from some vertex u reachable from a mark; if u is not the highest
reachable vertex on its arc a0, then the pointer rules indicate that the highest reachable vertex on
a0 must have a crosspointer to a vertex on a that is at least as high as v. Since such a crosspointer
could not be to a higher point than v (that would contradict the fact that v is the highest point
reachable from a mark), the crosspointer must be to v.

We continue extending this path of crosspointers back until it reaches a marked vertex. Note
that the path can never backtrack to an arc that has previously been visited: no higher point on
such an arc can lie on such a path (this contradicts the fact that the path includes only the highest
reachable vertices); no lower vertex or one already on the path could lie on such a path because
that would imply the existence of a cycle in the original graph, which is a DAG. Thus the path
can have length at most d� 1, and the phase of propagation across pointers will cause the highest
points reachable from marks to be marked.
2

To prove that this marking process correctly marks the reachable vertices we use the following
invariants, one for the reduction phase and one for the expansion phase. The reduction invariant is

48

as follows:
Lemma 6.2 During the reduction phase, the following two conditions hold:

1. There is no path from one active vertex to another through a vertex that is not in the active
set (i.e., an original source with no active mark, a combined vertex, or a sink).

2. One or both of the following conditions hold for a vertex v in the active set if and only if v is
in the solution set:

� v is marked; or

� there exists a path of arcs or crosspointers from an active mark at an active vertex to v,
and the vertices on this path are all active vertices.

Proof: The proof proceeds by induction. The base case is the initial graph. The first part of the
invariant is obviously true since all vertices are in the active set. The second part of the invariant
holds by the definition of the problem (note that the preprocessing adds only sources, so no added
vertices violate the invariant).

For the induction step we consider the effects of the mark propagation steps, cleanup, and
applying each rule in a single pass through the main loop. By the induction hypothesis, the
invariant holds at the start of a pass through the main loop; by the argument below, it holds at the
end as well, thus proving the lemma.

Cleanup: The first cleanup phase is application-specific processing, which for the current
application consists of d rounds of mark propagation. Since mark propagation doesn’t change any
path in the graph or combine any vertices, the first part of the invariant obviously remains true.

It is also obvious that the second part of the invariant continues to hold because it holds prior
to propagation by the induction hypothesis, and because marks are propagated only over paths of
arcs and crosspointers through active vertices.

At this point any sources or sinks with degree higher than d (the cleanup degree constant) drop
out of the cleanup process. Since they are unaltered by further cleanup steps, no changes to the
invariant occur. We only need consider sources and sinks that are cleaned up.

The determination of the highest internal vertex on an arc out of a source reachable from the
frontier (respectively lowest internal vertex on an arc into a sink that can reach the frontier) does
not affect the invariant.

To show that the invariant holds after realignment, we first note that if v is an active vertex
that lies between a high point and its cleaned source or below a low point and its cleaned sink, then
v is removed. Second, it is straightforward to see that there is a path between two vertices after
realignment only if there was a path between those vertices prior to realignment. In conjunction
with the induction hypothesis and our previous arguments, this implies both that the first part of the
invariant continues to hold, and that there is no path from an active mark to any active vertex not
in the solution set (i.e., the second part of the invariant holds for vertices not in the solution set).
Third, the second part of the invariant continues to hold for any marked active vertex. All that is
left to show is that the second part of the invariant continues to to hold for unmarked vertices in
the solution set.

Consider any path P from an active mark to a remaining unmarked active vertex such that P
exists prior to realignment. Since the realignment actions don’t disturb paths that don’t include any

49

vertices above high points or below low points, if P is such a path it will remain after realignment.
By definition of low point, once a path reaches a vertex below the low point on an arc into some
sink, all subsequent vertices on that path must be below the low point on some arc into that sink.
Thus, P cannot pass through a vertex below the low point at any sink (recall that no vertices below
low points remain after cleanup). The only remaining case to consider is if P passes through
vertices above the high point at some source. By the definition of high point, such a path cannot
include a vertex above a high point on an arc out of some source unless the path starts at such a
vertex at that source. Thus if P is such a path it starts at an active mark above a high point at some
source. Assume that this is the case. We need to show that any vertex on P that remains after
realignment remains reachable from an active mark.

Note that Lemma 6.1 above implies that any high point h reachable by such an active mark at
the same source will get an active mark as a result of the application-specific processing:

� either some vertex above h is reachable by such a mark, in which case the lemma shows that
the highest reachable point above h will be marked, which implies h will be marked when
marks are propagated to high points,

� or h will be the highest point on its arc a reachable by such a mark. In this case the last link
on the path from the mark to h must be a crosspointer from some vertex on an arc a0. But
then the crosspointer from u, the highest reachable point above the high point on a0, must
also have h as its head (it must point at least as high as h, but no higher point on a is reachable
from such a mark). By the lemma, u has been marked after d� 1 propagation steps; then h
will have been marked after the d propagation steps.

Thus the second part of the invariant holds for paths that go through high points.
If P does not go through a high point, there must be a first vertex v on the path that lies below

a high point, and the path must follow a crosspointer from a vertex u above a high point to v. But
this implies that there is a crosspointer p from u0, the highest point marked on u’s arc, to some
point v0 at or above v on v’s side of the flow face. If v0 is above the high point, the high point will
be marked as per the previous paragraph. Otherwise Lemma 6.1 says that u0 is marked by the time
d� 1 propagation steps have occurred, so v0 will have been marked by the time d propagation steps
have occurred. Either way, the claim will hold.

TB Rules: The TB Rule does not combine vertices or create new paths, so the first part of the
invariant continues to hold.

To show that the second part of the invariant continues to hold, we show that it holds after
each step in the rule application/conflict resolution procedure.

The rule is first applied for Type I TB arcs. Note that the conflict resolution for this step
ensures that at most one arc per face is removed in this step. We first consider the paths left after
Type I TB arcs are removed. In particular, we want to show that for any pair of active vertices u
and v that remain after Type I arcs are removed, if there was a path P from u to v prior to removal
then there is a path P 0 from u to v after removal. Since the first part of the invariant holds at the
time of removal, the path left after removal will include only active vertices. There are four cases
to consider on the basis of how a removed Type I arc a is involved in the original path P :

� The path includes a. There are two possibilities: First, a may be replaced by a crosspointer,

50

which replaces a in the path. Second, the tail of a may already have a crosspointer to
a point above a’s head on the other side of the face. In this case a will not be replaced
by a crosspointer. However, there is a path from the tail of a to the head of a across the
crosspointer and down the opposite side of the face. This path was in existence prior to the
removal of a. Since the second half of the invariant held previously, and since the head and
tail of a are active, all vertices on this path must be active. Since no other arcs on this face
are removed, this path is not broken by the removal of any other Type I TB arc.

� The path enters the tail of a and leaves a via a crosspointer out of an internal vertex across
face f . In this case we need to consider whether a is marked T or B on f (recall that Type I
TB arcs are marked T on one adjacent face and B on the other, and that they are not both
T and B on any face). If it is marked T, then the tail of a is the top of the face and there is
a path from the tail of a to the head of the crosspointer along the opposite side of the face
prior to a’s removal. Since at most one arc per face is removed, this path is not affected by
Type I arc removal. If it is marked B, the crosspointer at the tail of a points to a vertex on
the opposite face as high or higher than the crosspointer involved in the original path. Thus
using the crosspointer at the tail of a and part of the opposite side of the face boundary gives
an alternative path; again, this path is not affected by Type I arc removal.

� The path enters an internal vertex of a via a cross pointer across face f and leaves via a’s
head. Let w be the internal vertex on awhere the crosspointer enters. Again, we consider the
cases in which a is marked T or B with respect to f . If it is marked T, then the crosspointer
out of w on the other face f 0 adjacent to a reaches a point at or above the head of a (a is
marked B with respect to f 0); this provides that alternative path and is not affected by other
Type I arc removals. If a is marked B with respect to f , then there is a path from the tail of
the crosspointer to the head of a along the side of f opposite to a. As in previous cases, this
path is not affected by removal of any other Type I TB arc.

� The path enters an internal vertex w of a via a crosspointer p across face f and leaves a
via a crosspointer p0 across face f 0 out of internal vertex w0. By the specification of the
crosspointers, the crosspointer p00 out ofw across f 0 reaches a point on the opposite side of f 0

that is as high or higher than the point reached by p0. Thus after arc removal the crosspointer
that results from splicing p and p00 and possibly a segment of what was the opposite face of
f 0 will provide the alternative path.

The only other problem that could occur during Type I arc removal is that an active mark at an
internal vertex might be deleted when the associated arc is removed. We must show that this does
not affect the invariant by leaving some unmarked active vertex in the solution set without a path
from an active mark. We will show that this is prevented by the single step of mark propagation is
done prior to Type I arc removal.

To see that any vertex reachable from an active mark is still reachable after the Type I TB arcs
are removed, consider the situation just after removal. Any active mark removed must be at an
internal vertex v of some topological arc a. There are two cases to consider. The first case is that
the mark started at v. In this case the propagation rules insure that if the head is an active vertex,
it will be marked with an active mark, which, given the argument above, implies that the invariant

51

will continue to hold for any path from v through the head of the arc. The other paths out of v
are via crosspointers. Note that the pointers out of v reach as high or higher than the crosspointers
out of vertices lower than v on a. Thus for any path out of a lower vertex we can find a path
out of a crosspointer at v and down the opposite side of some face; we only need to consider the
crosspointers out of v. The heads of v’s crosspointers are marked by the propagation phase, and
since they lie on a face common to a, they are not removed when the Type I TB arcs are.

The second case to consider is when v receives an active mark as the result of the propagation
phase. If the mark propagates in via the tail of a, then a’s head is marked. Furthermore, since
a source cannot be at the tail of a Type I TB arc, the active mark remains at the tail. Thus, any
remaining vertex that was on the boundary of the face f for which a is marked T is reachable
from this active mark. The only paths left to consider are those that leave v through a crosspointer
on f 0, the face for which a is marked B. But the crosspointer out of a’s tail reaches as high as
the crosspointer out of v and provides a path from the active mark at a’s tail to any vertex on the
opposite side of f 0 reachable from v. Since no other arcs on f or f 0 are removed, the claim holds. If
v received the active mark across a crosspointer p, then again the head of a is marked. If p is across
face f , v’s crosspointer on f is to a point below the tail of p since the graph is a DAG. Thus the
only paths left to worry about are those that cross a second face f 0 of which a is on the boundary.
All these paths would be via a crosspointer p0 out of v. However, p and p0 will be spliced into a
new pointer that provides a path from the tail of p (where the active mark remains) to the head of
p0.

The invariant therefore holds after Type I TB arc removal. We next consider the situation
when Type II, Type III, and Type IV TB arcs are removed. These cases are similar and can be
treated together.

We start with the useful observation that an arc of these types is marked both T and B on at
least one face f , and that the conflict rules assure that no arcs are removed from the opposite side
of f . Thus, when such an arc is removed a path from the tail to the head remains undisturbed.

We again have the situation that if a path from a vertex u to a vertex v exists before TB arcs of
any of these types are removed, then it exists after the arcs are removed. The arguments to show
this are similar to the to those used for Type I TB arcs. However, in this case there is the added
complication that two such arcs connected by a crosspointer can be removed simultaneously. As a
result, there are more cases to consider when an arc a is removed:

� The path enters the tail of a and exits the head.

� The path enters the tail of a and exits a crosspointer to a vertex that is not removed.

� The path enters a via a crosspointer from a vertex that is not removed and exits via the head.

� The path enters a via a crosspointer from a vertex that is not removed and exits via via a
crosspointer to a vertex that is not removed.

� The path enters the tail of a and exits a crosspointer to a vertex on b, and exits via the head
of b.

� The path enters the tail of a and exits a crosspointer to a vertex on b, and exits via a
crosspointer to a vertex that is not removed.

52

� The path enters a via a crosspointer from a vertex that is not removed, exits via a crosspointer
to a vertex on b, and exits the head of b.

� The path enters a via a crosspointer from a vertex that is not removed, exits via a crosspointer
to a vertex on b, and exits b via a crosspointer to a vertex that is not removed.

The details of the arguments for these cases are similar to those for the Type I TB arc arguments,
and are left to the reader.

The arguments that no active marks are lost are also similar to the arguments in the Type I
TB arc case. There may be one additional crosspointer to deal with; however, the two propagation
steps for these three types are sufficient to insure that the marks reach vertices that aren’t removed.
Once again the details are left to the reader.

This proves the claim for the TB Rule.
Degree-1 Rule: Once again we note that application of this rule doesn’t create any new

paths, so by the induction hypothesis and the preceding arguments, the first part of the invariant
continues to hold. Also, no paths from active marks to vertices not in the solution set exist after
rule application, so the second part of the invariant continues to hold for active vertices not in the
solution set.

To show that the second part of the invariant continues to hold for active vertices in the solution
set, we first consider a degree-1 source. Note that we can’t assume that as, the arc out, is clean,
because the application of the TB rules may have made the arc out a longer topological arc. Because
all faces are flow faces, as is both the left path and the right path of the boundary of a flow face,
and is the top arc on both sides of the face. Thus there are no pointers into as from any vertex
outside it; such a pointer would be a backpointer and would imply that the initial DAG had a cycle,
which is impossible. Thus the only paths between active vertices that involve internal vertices on
as or its head are those that start at such a vertex. Therefore if there is no mark internal to the
removed arc, the invariant continues to hold; if there is an active mark internal to the arc then any
vertex reachable from the mark is reachable via a path through the head of the arc, which will get
an active mark as a result of the propagation step for this rule application, or will have one already.

The case for a sink is simple. The arc at into a degree-1 sink is the bottom arc on both sides of
a flow face. Therefore there can be no paths out of any vertices on at to higher points on the face
because the graph started as a DAG. This implies there are no paths between any active vertices
that will remain after this rule application through these vertices, and no such paths that start at
these vertices. The arc at can be removed without affecting paths from active marks to remaining
active vertices.

Unique-In(Unique-Out) Arc Contraction Rule: Note that a necessary condition for con-
traction of an arc to change the connectivity of the graph is that there be a path into some point
below the tail of the arc and a path out of some point above the head of the arc. If the arc is not
topological, this translates to a path into the head of the arc and a path out of the tail of the arc.

We first consider a unique-in arc a incident to a source s. Since this rule is only applied if a
is clean, it is easy to show that the contraction of a doesn’t change the connectivity of the graph:
Because a is clean, there are no pointers into a or its head across the faces of which a is on the
boundary, and, since a is the unique arc into its head, any pointers across any other faces into the
head of a would be backpointers and contradict the fact that the graph is a DAG. By the condition

53

stated above, contraction of a cannot create any new paths, so the first part of the invariant and the
invariant condition on vertices not in the solution set continue to hold. It is also easy to see that if
P is any path from an active mark to an active vertex such that neither s nor the head of a lie on
P , then P is unaffected by the contraction. The only cases left are if either s or the head of a had
an active mark prior to contraction. These cases are handled by the two propagation steps prior to
rule application, which will either mark the vertices reachable from these vertices or will leave an
active mark at an intermediate active vertex that is not affected by the application of this rule.

For sinks, a symmetric argument shows that no new paths are added, which implies that the first
part of the invariant and the invariant condition on active vertices not in the solution set continue
to hold. Also, any path that doesn’t pass through the tail of the contracted arc is unaffected (the
sink is never an active vertex and has no paths through it). Since the only paths through the tail of
a must next cross a and terminate at the sink, the condition on active vertices in the solution set is
unaffected.

Adjacent Degree-2 Sources and Sinks Rule: For this rule we a remove a source and a sink
and their (clean) incident arcs. No new paths are created, so the first part of the invariant continues
to hold, and the second part of the invariant continues to hold for active vertices not in the solution
set. We also need to show no paths from active marks to active vertices are broken. The only
such paths that can be broken are those that start at an active mark at the removed source, so the
propagation step will insure that any vertex reachable from a mark at the source is either marked
or reachable from an active mark at an intermediate vertex along the original path.

Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule: First consider the s-t-s rule. Two
sources get combined into a single vertex, which will no longer be active. The only new paths
created are those that start at one or the other of these sources, so no paths are created that violate
the invariant condition for active vertices not in the solution set. Since there is a propagation step,
neither of these sources will be active and the first part of the invariant will continue to hold. We
also need to worry about breaking paths from active marks to active vertices in the solution set to
complete the argument that the invariant holds for applications of this rule. But the only such paths
that are affected by this rule are those that start at the sources (the sink is not in the active set, so
removal of an arc into it doesn’t break any such paths). The propagation step arguments used for
previous rules apply here and give the desired result.

For the t-s-t Rule, two sinks get combined into a single vertex, which is not active. No new
paths are created to any active vertex, so no paths are created that violate the invariant condition for
active vertices not in the solution set, nor are any created that violate the first part of the invariant.
We again only need to worry about breaking paths from active marks to active vertices in the
solution set to complete the argument that the invariant holds for applications of this rule. But the
only such paths that are affected by this rule are those that start at the source that loses an arc. The
propagation step arguments used previously again apply and give the desired result.

Consecutive Rule: The arguments here are essentially the same as those for the s-t-s and t-s-t
rules: a clean arc is deleted and two sources or sinks are combined. No new paths are created, so
the first part of the invariant is unaffected, as is the condition on vertices not in the solution set.
No paths from active vertices to other active vertices are affected with the exception of paths from
active marks at sources involved in the rule application; as in previous cases, the propagation step
for this rule will insure that the invariant still holds for active vertices in the solution set.

54

Index-1 Saddle Rule: There are two basic cases to consider: application with respect to
sources and application with respect to sinks. In the situation where the rule is applied with respect
to sources, there are two subcases: applications that involve contraction of arcs, and applications
that separate the graph.

First consider the case of two distinct sources s1 and s2 with clean arcs into the saddle. By
the same kind of arguments used in the Unique-In/Unique-Out Arc Contraction Rule, the only
paths into the saddle are the two arcs out of the sources. If both arcs are contracted by the rule
application, the same argument applies as for the Contraction Rule; if only one arc is contracted
(w.l.o.g. assume the arc incident to s1), then the only new paths created are those starting at s2 and
exiting the combined vertex via an arc that was out of s1. However, since two propagation phases
were performed prior to contracting the arc, s2 no longer has an active mark (remember that the
“active mark” flag at a source is unset after propagation) and thus is not an active vertex, so the
invariant is not violated. The rest of the argument proceeds as for the Contraction Rule.

Next consider the case where the Index-1 Saddle Rule is applied at a source that is incident
to the only two arcs into the saddle. In this case the two arcs from the source to the saddle are
deleted and the graph is separated into two graphs. First consider the case for a degree-2 source.
By previous arguments used for other rules in which arcs were only deleted, the first part of the
invariant and the second part of the invariant’s condition on active vertices not in the solution set
will continue to hold since no new paths are created. If the source has degree 3, the tail of the third
arc out of the source will become the former saddle, thus creating new paths. However, the former
saddle becomes a source and (as part of the application specific processing) loses any active mark.
Thus the new paths do not violate either the first part of the invariant or the second part of the
invariant’s condition on active vertices not in the solution set, which continue to hold. The rest of
the argument is the same in the case of either degree-2 or degree-3 sources: For active vertices in
the solution set we need to show that no paths from active marks to unmarked vertices are broken.
Since the only paths broken by splitting the graph are those that go through the saddle, and since
the only arcs into the saddle are from the source, we only need to worry about the case in which
the source has an active mark. However, by the same arguments used above, the two propagation
steps prior to rule application will insure that the invariant continues to apply for active vertices in
the solution set, which are either marked or are reachable from some intermediate active vertex not
affected by the rule application.

Third, consider the case of two distinct sinks t1 and t2 with clean arcs out of the saddle. By
using arguments used for the Unique-In/Unique-Out Arc Contraction Rule, the only paths out of
the saddle are into the sinks. If both arcs are contracted, no new paths are added, which implies
that the first part of the invariant and the invariant condition on active vertices not in the solution
set continues to hold. If only one arc is contracted, the only new paths created are those that extend
a path into the combined vertex created from the contracted sink (say t1) and the saddle. These
paths all either end at the combined vertex or at t2. Since sinks and combined vertices are not in the
active set, the the first part of the invariant and the condition on active vertices not in the solution
set are again unaffected. For active vertices in the solution set, no paths are broken and the second
part of the invariant continues to hold.

Finally, consider the case where one sink is incident to the two clean arcs out of the saddle. In
this case the two arcs from the saddle to the sink are deleted and the graph is separated into two

55

graphs. First consider the case for a degree-2 sink. By previous arguments used for other rules in
which arcs were only deleted, the first part of the invariant and the invariant condition on active
vertices not in the solution set will continue to hold since no new paths between active vertices are
created. If the sink has degree 3, the head of the third arc into the sink will become the former
saddle, thus creating new paths. However, the former saddle becomes a sink, which is not in the
active set and will not be marked as part of the reduction application-specific processing. Thus the
new paths do not violate either the first part of the invariant or the second part of the invariant’s
condition on active vertices not in the solution set, which continue to hold. The rest of the argument
is the same in the case of either degree-2 or degree-3 sinks: For active vertices in the solution set
we need to show that no paths from active marks to unmarked vertices are broken. Since the only
paths broken by splitting the graph are those that go through the saddle, and since the only arcs
out of the saddle are to the sink, it is clear that for active vertices in the solution set, no paths are
broken and the invariant continues to hold.
2

At the end of the reduction phase, consider the active vertices. If we stop reduction when the
graph is some constant size, all active vertices reachable from an active mark can be marked in
constant time.

As noted above, between the reduction and expansion phases all removed topological arcs are
correctly marked by propagation of any marks on internal vertices. Since the rank order of the
vertices on the topological arc is known at the time of removal, we can use standard techniques to
determine the first marked internal vertex in constant time in the CRCW model. All vertices can
read this rank and mark themselves if they have a higher rank. Thus all this processing can be done
in constant time in the CRCW model.

At this point the expansion phase begins. Expansion proceeds by reversing the reduction steps
of the basic reduction algorithm, with application-specific steps added as specified above. Our
moving of vertices between various sets for analysis purposes will also be reversed. Recall that
during the expansion phase we will allow all marks at original vertices to propagate.

The expansion invariant is as follows:
Lemma 6.3 During the expansion phase, all active vertices are correctly marked.
Proof: This proof also works by induction on backward passes through the main loop. The
base case follows from the discussion above and the following observations about the reduction
procedure: First, since there are no active marks at vertices not in the active set, and since all mark
propagation is from vertices with active marks to active vertices, the reduction invariant therefore
implies that no active vertices are incorrectly marked.

We note that for the Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule, the Consecutive
Rule, and the Adjacent Degree-2 Sources and Sinks Rule, the only change to the active set when
these rules were applied in the reduction phase was that some sources dropped from the active set.
In particular, sources that had an active mark propagated that mark out. By the argument above,
these vertices were correctly marked prior to rule application, and thus are marked correctly when
they are returned to the set of active vertices. Thus, in reversing these steps the expansion invariant
remains unchanged.

For the Unique-In(Unique-Out) Arc Contraction Rule and the Index-1 Saddle Rule, we note
that the only vertices that could be dropped from the active set when these rules are applied are

56

those at the head (respectively tail) of an arc contracted into a source (respectively sink), plus any
active source involved in the contraction. (In the case of the Index-1 Rule, these arcs may have
been removed rather than contracted).

We start by considering the case where an arc a incident to a source was contracted. In
expanding, if the source becomes active then by the definition of the active set it must have had an
active mark prior to contraction, and is thus marked. Because the reduction invariant held at the
time of contraction this mark is correct. If v, the head of a, becomes active, then since the reduction
invariant held prior to contraction either v is marked correctly or there was an active mark at some
vertex with a path (through active vertices) to v. But we proved above that v is reachable only
from the one or two sources that have arcs into it, in which case if v was in the solution set but
was unmarked prior to rule application, then there must have been an active mark at such a source.
This mark would have marked v during the propagation step for this rule.

In the case of an arc a with tail v that was contracted with a sink t, we recall that sinks are
never in the active set, and thus we only need to consider the case when v becomes active upon rule
reversal. First consider the case when v is not in the solution set. Since the reduction invariant held
prior to contraction, v is not marked, nor are any active vertices that have paths to v. Therefore
after the expansion propagation step v is still unmarked. If v is in the solution set, either v was
marked prior to contraction, or there was an active mark at some vertex u and a path form u to v

through active vertices. This implies that prior to contraction there was an active vertex w with an
arc (or perhaps a pointer) into v. By the induction hypothesis and the fact that w was not combined
during this rule (i.e., it remained active), w is correctly marked when a is restored, so v is correctly
marked during the subsequent expansion propagation step.

For cases in which the Index-1 Rule separates the graph, first consider the case of a source
incident to both arcs into an index-1 saddle v. If after restoring these arcs v is active, we have the
following cases:

� v is in the solution set and is already marked. The invariant obviously holds here.

� v is not in the solution set. We note that the only paths into v are the arcs from the source.
Then the reduction invariant implies the sources can’t be marked. Thus v is not marked by
the propagation step and the invariant holds.

� v is in the solution set and not marked. By the reduction invariant that held prior to
rule application, the source must have been marked and the propagation step prior to rule
application would have marked v, so this case doesn’t occur.

Now consider the case of a sink incident to both out arcs from an index-1 saddle v. Each copy
of v (one in each of the graphs left after separation) became a sink and was subsequently inactive.
If v becomes active when the rule is reversed, the situation is basically the same as in the case of
expansion of a unique-out arc incident to a sink. In this case if v is in the solution set but unmarked,
we can guarantee that an adjacent vertex remained active when this rule was applied (this follows
from the conflict resolution procedure for the Index-1 Rule and the two steps of propagation done
prior to applying this rule in the reduction process), and is now marked. This will insure that v is
marked during the expansion propagation step.

57

Degree-1 Rule: When a degree-1 arc is restored, vertices internal to that arc may become
active. Consider such an arc a. As was noted above in the argument for the reduction invariant,
there are no crosspointers into the internal vertices on a. To see that the invariant continues to hold
we consider the following sets of vertices that become active:

� Vertices in the solution set that are marked. It is obvious that the invariant holds for these
vertices.

� Vertices in the solution set that are unmarked. Note that if these are internal vertices, at
the time of their removal the only path to them was through a higher vertex on the arc.
If a is incident to a source, then the reduction invariant implies that there must be a mark
somewhere on a that was propagated to all reachable vertices in the step between expansion
and reduction. If a is incident to a sink, then either the situation described above occurred,
or the tail of a was active. In this case there is a marked vertex with an arc or pointer to the
tail of a, and the two expansion propagation steps will insure that the vertices of this type are
marked (the tail will become a sink when a is removed, so two steps are necessary).

� Vertices that are not in the solution set. Recall that the reduction invariant implies that these
vertices are not marked, no higher vertex on the arc can be marked, and no vertex incident
to an arc into any vertex on a can have a mark. Thus these vertices will remain unmarked.

TB Rules: As in previous cases, the reduction invariant allows us to argue that vertices not in
the solution set will not be marked. Thus we need only consider restored active vertices that are in
the solution set. Such vertices that are already marked are consistent with the invariant, so we only
need to consider unmarked restored vertices in the solution set.

In the expansion phase the algorithm may restore a topological arc with internal vertices in the
solution set that were not marked at the time of removal. To see that these vertices are properly
marked after the propagation step following the arc’s restoration, first note that any marks at internal
vertices were propagated correctly between the reduction and expansion phases. Thus we only
need to consider marks that come from outside the arc. By the reduction invariant, the only paths
through which such marks can reach the arc must be through active vertices either at the tail of this
arc or at the tails of pointers incident to internal vertices on the arc (as noted above, the marks could
be at the tail of a path of pointers through internal vertices on restored arcs, but such paths can have
length two at most). By the induction hypothesis these active vertices are correctly marked, so in
the case where there is a mark at the tail of some restored arc, the internal vertices will be marked
correctly by the expansion propagation step.

Now consider the case in which there is an unmarked vertex v on restored arc a such that v is
in the solution set and the tail of a is unmarked. As noted above, there must be a path from some
marked vertex that first crosses a crosspointer into a, then travels along some (possibly empty)
segment of a to v. We now use the following fact, which is easy to prove: There is a marked vertex
u on the opposite side of a face f from v such that there is a path from u to v of the form described
above if and only if the lowest vertex across f that can reach v is marked. Therefore the marking
process described in the application-specific processing will work (we note that the restoration of
Type II TB arcs can break pointers into three pieces, so two steps are necessary in that case).

58

Cleanup: In reversing the cleanup process, the algorithm can restore some vertices that lie
above high points or below low points to the active set. As in previous cases, vertices not in the
solution set are not marked, nor will they be marked upon restoration. Thus we again only need
worry about vertices in the solution set. If such vertices are marked, the reduction invariant implies
they are correctly marked; thus we only need to worry about unmarked vertices in the solution set
that become active.

For such vertices above high points, we argued above that the highest such points on each
topological arc at a cleaned source were marked prior to removal. This implies that all lower
vertices on the topological were marked in the step between reduction and expansion, so no
unmarked vertices of the type we’re considering remain above high points.

Thus we need only to show that unmarked vertices below low points and in the solution set are
correctly marked after the d expansion propagation steps following the restoration of the previous
graph structure. The argument is similar to that in Lemma 6.1. The claim follows by noting that
for each arc containing a vertex that should be marked, there is a highest point at or below the low
point that should be marked. If this highest point is already marked, we can propagate the mark
along the topological arc to mark every active vertex on the arc as described below. If the highest
point v reachable by a mark is not yet marked, then the last link in the path from a mark must be
over a crosspointer. In particular, there must be a crosspointer from the highest point reachable
from a marked vertex on the other side of one of the adjacent faces: there must be a crosspointer
from a vertex u reachable from a mark; if u is not the highest reachable vertex on its arc, then
the pointer rules indicate that the highest reachable vertex on u’s arc must have a crosspointer to
a vertex on v’s arc that is at least as high as v. Since such a crosspointer could not be to a higher
point than v (that would contradict the fact that v is the highest point reachable from a mark), the
crosspointer must be to v.

We continue extending this path back until it reaches a marked vertex. Note that the path can
never backtrack to an arc that has previously been visited: no higher point on such an arc can lie
on such a path (this contradicts the fact that the path includes only the highest reachable vertices);
no lower vertex or one already on the path could lie on such a path because that would imply
the existence of a cycle in the original graph, which is a DAG. There are two cases to consider.
First, the path works its way back to some marked vertex at or below the low point. Since no
arc can appear in the path more than once, the path will have length at most d, and the phase of
propagation across pointers will cause the highest points reachable from marks to be marked. The
propagation of marks along topological arcs will mark the rest of the vertices on the arc. If the last
vertex at or below a low point is not marked, then the path from a mark must go higher than the
low point through some active vertex. In particular the path from a mark into this last vertex must
be a crosspointer; the vertex at the tail of the crosspointer must be active (otherwise the reduction
invariant would have been contradicted) and thus must be marked by the induction hypothesis. The
low point on bottom arc of the side of the face below the marked vertex is not on this path by the
construction since it will be marked or not active; thus the path is again of length at most d, and
will be marked by the propagation steps.

To see that we can propagate marks at internal vertices along topological arcs, recall that we
keep a rank ordering of the vertices on the topological arc. Thus, in the CRCW ARBITRARY
model we can use standard techniques to determine in constant time the highest marked internal

59

vertex, and therefore in constant time we can have every lower vertex mark itself.
2

These invariants are sufficient to prove that at the completion of the algorithm the graph is
correctly marked.
Theorem 6.4 The marking procedure specified above solves the many-source reachability problem.
Proof: By Lemma 6.3, every vertex in the graph is correctly marked at the end of the expansion
phase except sinks. Thus, the last step of marking sinks will mark each sink if and only if it is in
the solution set, and the theorem holds.
2

6.2 Running Time and Processor Count

The running time is determined by observing that the main loop is executed O(logn) times in the
reduction and expansion phases. The running time of the main loop is dominated by theO(log� n)
time it can take to resolve conflicts for some of the reduction rules. Preprocessing time is dominated
by the time for the main loop, so the running time isO(logn log� n) (this can be reduced toO(logn)
through the use of randomization as noted above). The algorithm can be run using one processor
per face, vertex, and arc, which is linear in the size of the input graph. When combined with Kao’s
strongly connected components algorithm [Kao93] the running time becomes O(log3 n).

7 Reducing Planar Digraphs with Cycles

The techniques above can be expanded to work with planar graphs that have cycles. This is
particularly useful in that we can then compute strongly connected components, and thus we can
compute many-source reachability for any planar digraph (by first computing strongly connected
components and then contracting them, then computing many-source reachability, then expanding
back out the strongly connected components).

The reduction algorithm for the cyclic case is more complicated, as are the proofs of its
correctness. We summarize some of the differences below:

� We must introduce two new rules (an arc contraction rule and an arc removal rule) for cycle
faces. The structural invariant changes to allow cycle faces as well as flow faces.

� In addition to crosspointers on flow faces we must keep backpointers to the highest point
reachable on the same side of the face.

� Cleanup is more complex because of the backpointers. We must now clean up two levels
of arcs from sources or sinks. In addition, we must spend O(logn) time determining the
connectivity implied by the backpointers during cleanup.

� The operability proofs must be modified to take into account the existence of cycle faces in
the graph.

Details will be provided in a future Technical Report.

60

References

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, New
York, 1976.

[Gaz91] H. Gazit. Optimal EREW parallel algorithms for connectivity, ear decomposition and
st-numbering of planar graphs. In Fifth International Parallel Processing Symposium,
May 1991. To appear.

[GPS87] Andrew Goldberg, Serge A. Plotkin, and Gregory Shannon. Parallel symmetry-breaking
in sparse graphs. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 315–324, New York, May 1987. ACM.

[Kao93] Ming-Yang Kao. Linear-processor nc algorithms for planar directed graphs i: Strongly
connected components. SIAM Journal on Computing, 22(3):431–459, June 1993.

[KK90] Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure bot-
tleneck: Efficient parallel algorithms for planar digraphs. In Proceedings of the 22th
Annual ACM Symposium on Theory of Computing, Baltimore, May 1990. ACM.

[KS89] Ming-Yang Kao and Gregory E. Shannon. Local reorientation, global order, and planar
topology. In Proceedings of the 21th Annual ACM Symposium on Theory of Computing,
pages 286–296. ACM, May 1989.

[KS93] Ming-Yang Kao and Gregory E. Shannon. Linear-processor nc algorithms for planar
directed graphs ii: Directed spanning trees. SIAM Journal on Computing, 22(3):460–
481, June 1993.

[Lub86] M. Luby. A simple parallel algorithm fot the maximal independent set problem. SIAM
J. Comput., 15(4):1036–1053, November 1986.

[MR85] Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In 26th
Symposium on Foundations of Computer Science, pages 478–489, Portland, Oregon,
October 1985. IEEE.

[MR89] Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. In
Silvio Micali, editor, Randomness and Computation, pages 47–72. JAI Press, Greenwich,
Connecticut, 1989. Vol. 5.

[Phi89] Cynthia Phillips. Parallel graph contraction. In Proceedings of the 1989 ACM Symposium
on Parallel Algorithms and Architectures, pages 148–157, Santa Fe, June 1989. ACM.

[RR89] Vijaya Ramachandran and John Reif. An optimal parallel algorithm for graph planarity.
In 30th Annual Symposium on Foundations of Computer Science, pages 282–287, NC,
Oct-Nov 1989. IEEE.

61

[UY90] Jeffery Ullman and Mihalis Yannakakas. High-probability parallel transitive closure
algorithms. In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and
Architectures, pages 200–209, Crete, July 1990. ACM.

62

