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Abstract 
 

The conventional wisdom in Educational Data Mining (EDM) suggests that a superior model 
fits the data better. However, this perspective overlooks a critical aspect: the value of 
machine learning models lies not merely in their predictive power, but fundamentally comes 
from their use. Models that prioritize prediction accuracy often fail to provide scientifically or 
practically meaningful interpretations. Meaningful interpretations are crucial for scientific 
insight and often yield practical applications, especially from the human-centered 
perspective. For example, a popular knowledge tracing model using deep learning has been 
demonstrated to have a superior predictive power of student performance; however, its 
parameters do not have an association with any latent constructs, so there have been no 
scientific insights or practical applications resulting from it. In contrast, a logistic regression 
model often underperforms its deep learning counterparts in prediction accuracy, but its 
parameter estimates have meaningful interpretations (e.g., the slope illustrates the rate of 
learning of knowledge components) that lead to new scientific insights (e.g. improved 
cognitive models discovery) and results in useful practical applications (e.g. an intelligent 
tutoring system redesign). 

In this thesis, I argue for a claim that meaningful interpretations are what we need 
rather than post-hoc explanations or uninterpreted interpretable models, especially in the 
context of EDM.  I explore a concept of "meaningful models" as inherently interpretable 
models whose parameters and outputs are not only transparent but actively interpreted. 
Moreover, their interpretations lead to useful and actionable insights for stakeholders. I 
illustrate the benefits of meaningful models through examples where existing mechanisms or 
models are insufficient to produce meaningful interpretations and demonstrating how 
enhancements can yield scientifically or practically valuable insights. For example, 
Performance Factor Analysis (PFA) has been demonstrated to outperform its base model, 
but we show that PFA parameters are confounded, which resulted in ambiguous 
interpretations. We then proposed improved models that not only de-confound the 
parameters but also presented meaningful interpretations that lead to insights on the 
associated knowledge component model and suggested instructional improvement. Overall, 
this thesis highlights the essential role of meaningful models in EDM, emphasizing that only 
through meaningful interpretations can models effectively drive practical improvements in 
educational practices and advance scientific understanding. 
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Chapter 1​
Introduction 
 
 
Educational Data Mining (EDM) is a crucial field in learning sciences that leverages data 
analysis to enhance educational outcomes and personalize learning experiences. By 
analyzing large amounts of educational data, EDM researchers can discover patterns and 
insights that lead to improvements in pedagogy design, curriculum development, and 
student intervention. One prominent example of EDM is student modeling with knowledge 
tracing — models that estimate students' mastery of specific skills over time, which has 
been widely used in Intelligent Tutoring Systems (ITS) to adaptively assess students’ 
knowledge states. 

The recent trend in EDM, and in data mining more generally, suggests that a 
superior model fits the data better [71]. In other words, a model that performs better on fit 
statistics, such as root mean squared error (RMSE) [9], bayesian information criterion 
(BIC) [23], or area under the receiver operating characteristic curve (AUC) [8], is usually 
considered a better model. However, this perspective overlooks a critical aspect: the value 
of machine learning models lies not merely in their predictive power, but fundamentally 
comes from their use. In other words, a model is not just a mathematical artifact; it is a 
tool, and its worth is determined by how it contributes to stakeholders' benefits. Models 
that prioritize prediction accuracy often fail to provide scientifically or practically 
meaningful interpretations, which are crucial for scientific insight and often yield practical 
applications. While accurate prediction could be useful, the focus on prediction accuracy 
alone can overshadow the importance of understanding and prioritizing the needs and 
benefits of stakeholders who will use these models [36].  

My goal for this thesis is to reconsider interpretable machine learning through a 
human-centered approach. By emphasizing stakeholder utility, it is essential to move 
beyond post-hoc explanations of black-box models and focus instead on developing 
inherently interpretable models. These models should offer not only improved predictive 
accuracy but also parameter estimates that clearly explain their predictions. Specifically, 
parameters in such meaningful models should align with latent variables, thus providing 
valuable insights into the educational processes they represent. Nevertheless, it is 
insufficient to merely identify these parameters; meaningful interpretations derived from 
these models are necessary to genuinely deliver practical benefits to stakeholders. 

Why are these meaningful interpretations important to stakeholders? These 
interpretations are crucial for scientific insight and are useful for practical applications, 
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especially from the human-computer interaction perspective. For example, Deep 
Knowledge Tracing (DKT) [57], a knowledge tracing model based on Recurrent Neural 
Network (RNN) [73], has been demonstrated to predict student performance better than 
traditional approaches based on logistic regression [1]; however, its parameters do not 
have an association with any latent constructs, so it lacks meaningful interpretation and 
consequently provides neither scientific insights nor practical applications [70]. In contrast, 
Additive Factor Model (AFM) [13], a knowledge tracing model based on logistic 
regression, often underperforms DKT in prediction accuracy, but its parameter estimates 
have meaningful interpretations (e.g., the slope illustrates the rate of learning of 
knowledge components) that lead to new scientific insights (e.g. improved cognitive 
models discovery) and results in useful practical applications (e.g. an intelligent tutoring 
system redesign) [41]. 

It is likely a misconception that complex black-box models are always superior in 
terms of predictive performance. In many cases, simpler, interpretable models can 
achieve comparable accuracy [23, 35, 56, 62, 84, 92], while still providing valuable 
insights into the learning mechanisms and pedagogy [33, 41]. For example, it has been 
shown that a logistic regression model, with the right set of features, was as good as DKT 
in predicting student performances on several datasets, while also preserving the 
meaningful interpretation of their parameter estimates [23, 44, 62]. Emphasizing the 
development and use of inherently interpretable models in EDM can lead to more effective 
and actionable educational interventions. More examples from my previous works are 
discussed further in Chapter 5. 
​ In this thesis, I argue that post-hoc explanations and inherently interpretable 
models are not sufficient without being interpreted. Particularly in high-stakes domains 
such as EDM, the utility of these models is significantly limited without meaningful 
interpretation. To address this issue, I introduce the concept of "meaningful models," 
defined as models whose interpretations yield actionable insights or facilitate scientific 
discovery. To highlight the urgency of this issue , especially within the EDM community, 
this thesis includes a  review of recent publications from leading AIED and EDM 
conferences, revealing that most proposed models  emphasize predictive performance, 
and even those that claim interpretability often do not actively engage with their 
interpretations, thus significantly reducing their practical utility. Furthermore, this thesis 
provides multiple  examples demonstrating how meaningful models and their 
interpretations can produce actionable insights, guide pedagogical strategies, and 
advance scientific understanding. 
​ This document is organized as follows: Chapter 2 provides background information 
and discusses related work, beginning with an overview of literature concerning model 
explainability and interpretability, emphasizing their relevance within EDM contexts. It also 
reviews the historical development and existing research on knowledge tracing models 
and models of human learning. In Chapter 3, I present my central argument regarding the 
necessity for meaningful models, constructing a framework grounded in literature from 
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multiple related disciplines, including explainable and interpretable machine learning, 
human-computer interaction, cognitive science, and learning sciences. Chapter 4 critiques 
predictive performance metrics, illustrating their unreliability and potential for misleading 
conclusions within educational contexts. Through experiments using synthetic data, I 
demonstrate that knowledge tracing models selected based on superior fit statistics, such 
as the Bayesian Information Criterion (BIC), may perform poorly when implemented in 
practical applications, such as adaptive learning systems. Chapters 5 and 6 explore 
various methodologies for constructing and interpreting meaningful models, demonstrating 
their potential to produce actionable insights beneficial to stakeholders, including learning 
scientists and educators. Finally, the thesis concludes by summarizing these contributions 
and their implications.  
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Chapter 2 
Background 
 
 
2.1 Model Interpretability 
 
The widespread use of black-box machine learning models in high-stakes 
decision-making areas, such as healthcare and criminal justice, has led to significant 
challenges and ethical concerns [87]. Similarly the field of EDM has prioritized prediction 
accuracy such that black-box models have been increasingly used [20, 25]. However, 
black-box models not only present challenges for applications in high-stakes domains, but 
also fail, by themselves, to provide useful insights, scientifically or practically. 

Interpretability in machine learning encompasses multiple dimensions, reflecting 
diverse viewpoints on the importance and methods of making models understandable to 
humans. It involves both the transparency of a model’s internal mechanisms and the 
clarity of its outputs, aiming to bridge the gap between complex algorithms and human 
comprehension. This multifaceted nature underscores the need for clear definitions and 
context-specific approaches to ensure that interpretability efforts align with the goals of 
various stakeholders. 

To address the multifaceted nature of interpretability in machine learning, Murdoc 
et al. introduced The PDR framework offering a structured approach to evaluating 
interpretability in machine learning by emphasizing three key criteria: predictive accuracy, 
descriptive accuracy, and relevancy [51]. Predictive accuracy assesses how well a model 
generalizes to new data, ensuring its outputs are reliable. Descriptive accuracy measures 
how faithfully an interpretation reflects the model’s internal mechanisms and learned 
relationships. Relevancy considers whether the interpretation provides meaningful and 
actionable insights for a specific human audience within a given domain. The framework 
also distinguishes between model-based interpretability methods, which are inherently 
transparent, and post-hoc methods that explain black-box models after training. By 
integrating these dimensions, the PDR framework aids practitioners in selecting and 
evaluating interpretability techniques that align with their specific application needs and 
audience requirements .  

Lipton et al. also argues that interpretability is not a monolithic concept but 
encompasses various distinct ideas, leading to confusion and inconsistent claims in the 
literature [26]. The authors critically examine the ambiguous and multifaceted nature of 
interpretability in machine learning. They identify two primary notions: transparency, where 
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a model’s internal mechanics are inherently understandable, and post-hoc explanations, 
which provide insights after model training. They also challenge the assumption that linear 
models are inherently interpretable, noting that factors like feature engineering can 
complicate their interpretability. Ultimately, the authors call for a more precise and 
context-dependent understanding of interpretability, urging researchers to clearly define 
what they mean by interpretability and to align their methods with the specific needs of the 
application domain. 

The discourse around interpretability in machine learning has given rise to different 
schools of thought. One perspective advocates for post-hoc explanation methods, which 
attempt to elucidate the decisions of black-box models after they have been trained. 
These methods include techniques like SHAP values [42], LIME [22], and saliency maps, 
aiming to provide insights into model behavior. While both Murdoch et al. and Lipton 
explicitly distinguish between inherently interpretable models and post-hoc explanations, 
they acknowledge that post-hoc methods can mitigate these issues [32], this approach 
often perpetuates problematic practices. In response, Rudin et al. have proposed that the 
preferable strategy is to design models that are inherently interpretable by design [71]. 
This perspective underscores the fundamental difference between explaining black-box 
models and using inherently interpretable models, such that explanation is post hoc and 
does not lead to the understanding of the underlying mechanisms of the events or the 
nature of the data. Instead, meaningful models provide transparency and accountability, 
which are crucial in applications that directly impact stakeholders and could lead to useful 
insights. 

The problem is that it is almost always easier to find an accurate-but-complex 
model than an accurate-yet-simple model. However, Semenova et al. pointed out that, 
given a predictive model, there is usually a large equivalence set of similarly accurate 
models known as the Rashomon set. This set includes some models that are highly 
parameterized and difficult to understand, while others are simpler and more interpretable 
[74]. Therefore, given an accurate black-box model, an inherently interpretable model is 
likely to exist but unlikely to be produced by deep learning.  

Usually, a machine learning model would be considered interpretable when it is 
simple enough (e.g. smaller number of parameters) for humans to comprehend and 
understand the relationship between input features and output prediction. However, in the 
context of this thesis, I aim to expand on the definition of interpretable models to 
“meaningful models”, such that the input features themselves need to be meaningful and 
represent some latent constructs. Moreover, the parameter estimates from meaningful 
models should provide insights that lead to the understanding of the underlying 
mechanisms or practical applications. For instance, consider a simple linear regression 
model predicting the probability of diabetes. If one of its features is a complex and 
arbitrary computation, such as weight multiplied by the number of siblings, the model may 
not be genuinely interpretable. Even though the model predicts an outcome, the inclusion 
of obscure or unrelated features can obscure its interpretability, making it challenging to 
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understand how and why certain predictions are made. Chapter 3 discusses my 
reasonings and arguments on the importance of meaningful models that are not only 
interpretable but are interpreted in ways that yield practical or scientific insight. 
 

2.2 Knowledge Tracing and Models of Learning 
 
The main objective of EDM is to improve educational systems by applying data mining 
techniques to educational data, such as student interactions with an ITS, to obtain useful 
insights, especially on the students' learning processes. These insights can then help 
refine teaching strategies and enhance student achievement. Knowledge tracing models 
are among the most popular models that have been explored in the field of EDM. These 
models take students’ past performance on related problems associated with a set of 
knowledge components [34], as inputs and output predicted student performance on a 
particular problem or a student’s mastery on a certain knowledge component.  
​ Traditionally, there are two popular approaches to knowledge tracing models. Early 
attempts based on a Bayesian inference approach, which usually relied on simplifying the 
model assumptions (e.g. student’s mastery is a binary state). Bayesian Knowledge 
Tracing (BKT) [17], which models student mastery as a latent variable in a simple Hidden 
Markov Model [7], has been widely used in the real-world ITSs and shown to be 
reasonably effective for mastery learning and problem selection [75]. Another popular 
approach to knowledge tracing models is a series of models based on logistic regression 
models, such as Additive Factor Model (AFM) and Performance Factor Analysis (PFA) 
[55]. In contrast to BKT, these models do not assume student mastery as a binary variable 
but use a parametric factor analysis approach to trace a student’s knowledge based on a 
variety of factors, such as number of previous opportunities. Recently, with the rising 
popularity of neural networks, a large number of knowledge tracing models based on 
different deep learning techniques has been introduced. Deep Knowledge Tracing (DKT) 
is the pioneer of the deep learning based approach, which is based on a sequence model 
called Recurrent Neural Network (RNN). In the earlier works, DKT has been demonstrated 
to outperform the existing models, such as BKT and PFA, in many scenarios. However, 
recent work has further studied its pitfalls and showed that these deep learning models do 
not always outperform traditional models; model success depends on the nature of the 
dataset [23, 62, 84, 92]. 
​ In the context of interpretability, traditional models based on Bayesian inference 
and logistic regression usually have parameters that have meaningful interpretations, 
intentionally or not, due to the simplicity of the models and variables that are based on 
related latent constructs, such as a probability that a student makes a mistake when 
applying a known skill or a probability that a student guesses an answer correctly. 
However, deep learning based knowledge tracing models often forgo interpretability for 
potentially stronger predictive power due to the extremely large amount of parameters that 
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these models usually have. On a related note, the traditional evaluation methods for 
knowledge tracing models have focused on goodness-of-fit (e.g. AIC and BIC) and 
cross-validation. However, recent trends emphasize the use of metrics like AUC. This shift 
is driven by the increasing complexity and number of parameters in the deep learning 
based models, which have a strong negative impact on metrics like BIC. In my previous 
work, it is demonstrated that relying solely on AUC might not always accurately represent 
the quality of knowledge tracing models in the practical applications [62]. 

It could be argued that the primary goal of knowledge tracing is to predict student 
outcomes accurately. However, prior studies indicate that we can gain much more from 
parameter estimates, providing deeper insights into learning processes [33, 41]. If the 
objective of EDM is to enhance our understanding of learning, which leads to improved 
student outcomes, models that naively predict student’s performance without offering 
interpretability that can result in useful insights could be considered inadequate. Despite 
the utility of such predictions, their contribution to the broader educational objectives 
remains limited. 

 

2.2.1 Additive Factors Model and Performance Factor Analysis 
 
The Additive Factors Model (AFM) [13] is a logistic regression that extends item response 
theory by incorporating a growth or learning term. The model gives the probability , in 𝑝

𝑖𝑗

log-odds, that a student i will get a problem step j, with related KCs (k) specified by , 𝑞
𝑗𝑘

correct based on the student’s baseline ability ( ), the baseline difficulty of the related θ
𝑖

KCs on the problem step ( ), and the learning rate of the KCs ( ). The learning rate β
𝑘

γ
𝑘

represents the improvement on a KC with each additional practice opportunity, so it is 
multiplied by the number of practice opportunities ( ) that the student already had on the 𝑇

𝑖𝑘

KC: 
 

 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑(𝑞

𝑗𝑘
β

𝑘
+ 𝑞

𝑗𝑘
γ

𝑘
𝑇

𝑖𝑘
)

Eq 1. Additive Factors Model (AFM). 
 
The Performance Factor Analysis (PFA) [55] is an extension of the AFM model that splits 
the number of practice opportunities ( ) into the number of successful opportunities ( ), 𝑇

𝑖𝑘
𝑠

𝑖𝑘

where students successfully complete the problem steps, and the number of failed 
opportunities ( ), where students make errors. Both ( ) and ( ) have their own slopes, 𝑓

𝑖𝑘
𝑠

𝑖𝑘
𝑓

𝑖𝑘

 and : γ
𝑘

ρ
𝑘
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 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑(𝑞

𝑗𝑘
β

𝑘
+ 𝑞

𝑗𝑘
γ

𝑘
𝑠

𝑖𝑘
+ 𝑞

𝑗𝑘
ρ

𝑘
𝑓

𝑖𝑘
)

Eq 2. Performance Factor Analysis (PFA). 
 
While PFA tends to produce better predictions than AFM, its parameters are not 
particularly meaningful [43], particularly because their slope interpretation is ambiguous. 
One interpretation, which is consistent with the intention of PFA, is that these parameters 
capture individual differences in student mastering that are particular to KCs (i.e. 
student-KC interactions). Namely, students who make more errors on a KC than otherwise 
expected will master that KC more slowly than otherwise expected. An alternative, and 
perhaps more straightforward, interpretation is that the success slope (S-slope; γk) and 
failure slope (F-slope, ρk) represent different learning rates for prior initially successful 
versus failed practice opportunities. An indication supporting this notion is the occasional 
occurrence of a negative F-slope, which, under the second interpretation, can be 
interpreted as students being unable to learn from unsuccessful attempts [43]. This 
interpretation could be problematic since it implies that a true novice does not learn (or 
even unlearns) from making errors. This seems unlikely given modeling and empirical 
evidence that making errors can contribute significantly to positive learning, as long as 
feedback is provided [47, 60, 86]. 
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Chapter 3 ​
Meaningful Models 
 
 
As we discussed in the previous chapters, the recent trend in EDM primarily focuses on 
developing models that can perform better than the state-of-the-art models on some 
datasets using various metrics, such as cross-validation errors or AUC. While these works 
may advance academic benchmarks or stimulate novel developments in machine 
learning, their real-world significance and practical utility remain questionable without clear 
evidence of actionable impact. As researchers in the EDM community, our work should 
aim beyond incremental gains in metrics; ultimately, it should enrich educational practice, 
support informed decision-making in classrooms, and empower educators to better 
understand and enhance student learning outcomes. The value of machine learning 
models lies not merely in their predictive power, but fundamentally comes from its use and 
how it contributes to stakeholders' benefits. This "use" can manifest as direct deployment 
in a real-world application, such as adaptive learning platforms that tailor educational 
content in real-time, or as indirect utilization through the insights it offers to humans, by 
revealing meaningful patterns and explanations that empower educators, administrators, 
or policymakers. For example, Klenanov et al. found that students who skip tasks tend to 
reinforce this behavior over time and create a self-perpetuating cycle, providing an 
actionable insight: teachers need just-in-time, personalized support to break this cycle [8]. 

Without bridging the gap from performance metrics to these practical utility, 
machine learning models risk becoming abstract achievements disconnected from 
meaningful educational progress. However, simply achieving incremental improvements 
on benchmark datasets does not automatically translate into meaningful practical 
outcomes. A model’s predictions alone may solve a task, but the model becomes far more 
valuable when we actively interpret it—to build user trust or to extract novel insights and 
inform policy or improve science.  
 

3.1 The Promise of Interpretable Models 
 
How do we transform strong performance scores into real‑world value? Researchers in 
emerging areas such as Human‑Centered AI (HCAI) and Explainable AI (XAI) argue that 
interpretable and explainable models could be the critical bridge from metrics to practice 
[26, 32, 36, 48]. Existing studies show that models are far more likely to be adopted when 

19 

https://www.zotero.org/google-docs/?X1XPVu
https://www.zotero.org/google-docs/?X7FGh1


 

end‑users, domain experts, and regulators can understand, challenge, and act on the 
outputs. For example, Caruana et al. investigated the evaluation of the application of 
machine learning for predicting pneumonia risk [11, 16]. The authors report that highly 
accurate—but opaque—neural-net models “were considered too risky for use on real 
patients,” so clinicians adopted an interpretable generalized-additive model instead 
Similarly, Darvish et al. employs an exploratory qualitative approach, conducting eleven 
in-depth interviews to identify key factors influencing XAI adoption in business [19]. They 
found perceived explainability as a top driver of corporate AI roll-outs, alongside technical 
readiness and regulatory pressure. These observations raise a key question: what 
constitutes interpretability in these models? 

Interpretability in machine learning is a multifaceted concept, encompassing 
various perspectives on how and why models should be understandable to humans. At its 
core, interpretability pertains to the degree to which a human can comprehend the internal 
mechanics or decision-making processes of a machine learning model. This 
understanding is crucial, especially in high-stakes domains like healthcare, finance, 
criminal justice, and education, where decisions can have significant consequences. By 
elucidating the reasoning behind model outputs, interpretability fosters trust, facilitates 
compliance with regulatory standards, and aids in identifying and mitigating biases within 
the models. Moreover, it enables practitioners to diagnose errors, refine model 
performance, and ensure that the models align with domain knowledge and ethical 
considerations. 

To provide a structured approach to evaluating interpretability, Murdoch et al. 
propose the Predictive, Descriptive, Relevant (PDR) framework [58], which evaluates 
interpretability through three key dimensions: predictive accuracy (how well the model 
predicts outcomes), descriptive accuracy (how well the explanations reflect the model’s 
operations), and relevance (the usefulness of the explanations to a human audience) . 
This framework underscores that interpretability isn’t solely about model simplicity or the 
availability of explanations but also about the quality and applicability of those 
explanations to end-users. Additionally, Lipton et al. highlights the ambiguity surrounding 
the term, distinguishing between transparency—where a model’s operations are inherently 
understandable—and post-hoc explanations, which attempt to elucidate the behavior of 
complex models after training [26]. Lipton cautions that post-hoc methods may offer 
insights but can sometimes provide misleading representations of a model’s true 
reasoning. 

Further emphasizing the importance of model transparency, Rudin et al. advocates 
for the adoption of inherently interpretable models, particularly in high-stakes domains 
where decision transparency is paramount [61]. The authors argue that relying on 
black-box models, even when supplemented with post-hoc explanations, can be 
misleading and potentially harmful. They emphasize the importance of designing models 
that are transparent by design, such as decision trees and scoring systems, which allow 
stakeholders to directly understand and scrutinize the decision-making process without 
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the need for additional explanation tools. As an example, Rudin et al. highlight that 
ProPublica’s claim of racial bias in COMPAS (Correctional Offender Management Profiling 
for Alternative Sanctions) recidivism model [95], a proprietary model that is used widely in 
the U.S. Justice system for parole and bail decisions, relied on a linear surrogate that 
poorly represented the recidivism model’s nonlinear logic, showing how post‑hoc 
explanations can mislead rather than illuminate [72, 94]. 

Another important aspect of interpretability is causality.  Causal inference 
techniques are a critical approach to enhance the scientific and practical value of machine 
learning models. Causal inference explicitly aims to identify cause-and-effect 
relationships, thereby providing deeper insights into how changes in variables impact 
outcomes. These causal explanations have the potential to improve decision-making in 
high-stakes domains by clarifying the consequences of potential actions and interventions. 
The most rigorous form of causal inference is randomized controlled trials (RCTs), but 
there are also approaches using naturalistic data without experiments [27] 
[https://link.springer.com/content/pdf/10.1007/BF00413966.pdf]. Despite its conceptual 
strength, these causal inference techniques without experiments alone are not sufficient. 
Accurately establishing causality typically requires original models to use variables and 
parameters based on related constructs, so the identified relationships are sound 
causality. Also, closing the loop experiments, often through RCTs, are necessary to 
validate the identified causality because causal claims derived from observational data 
can remain speculative, prone to biases, and potentially misleading. Thus, while causal 
inference enriches the interpretability, it is not sufficient to bridge the gap between 
machine learning models and real-world values. 
 

3.1.1 Why Post-Hoc Explanations Are Insufficient 
 
Post-hoc methods, such as LIME [22] and SHAP [42], offer flexibility and can be applied to 
a wide range of complex models, making them appealing for generalization. They are 
often easier to implement than designing inherently interpretable models that match the 
predictive performance of black-box models. Despite their utility, post-hoc explanation 
methods have notable limitations. These methods typically generate feature attributions or 
surrogate models that highlight which inputs influenced a prediction. They often provide 
local approximations that may not faithfully represent the model’s decision-making 
process, leading to potential misinterpretations. These explanations can be unstable, with 
small changes in input data resulting in significantly different explanations, undermining 
their reliability. Can the post-hoc explanation method provide global approximations? 
Rudin et al. argues that post-hoc surrogate explanations can never be globally faithful, 
because any simplification inevitably misrepresents the black-box model in parts of the 
feature space where their behaviours diverge. If a surrogate were perfectly 
faithful—matching every input–output pairing—it would replicate the black-box’s entire 
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decision function, so the “explanation” would simply be the original model and inherit its 
full complexity [71]. 

Moreover, they often fall short in providing meaningful interpretations that lead to 
actionable insights. While these methods can highlight which inputs influenced a 
prediction, they rarely offer guidance on how to modify inputs to achieve desired 
outcomes. For instance, if a model predicts that a student is at risk of underperforming, a 
post-hoc explanation might indicate that low prior quiz scores contributed to this 
prediction. Yet, it doesn’t suggest specific interventions, such as targeted practice on 
particular concepts or adjusting study strategies, leaving educators without clear, 
actionable steps. Given these critical limitations, inherently interpretable models emerge 
as the more suitable solution, particularly in contexts requiring actionable and 
understandable knowledge. Such models, unlike post-hoc methods, can inherently 
support simulatability, human-understandable representation, and alignment, so they not 
only facilitate reliable and robust insights but also provide clear pathways for effective 
interventions and informed decision-making. 

 

3.2 Interpretability Is Not Enough: The Case for Meaningful 
Interpretation 
 
Despite widespread recognition of interpretability as a critical factor in machine learning 
adoption, interpretability alone does not fully address the practical concerns faced by 
stakeholders. Merely designing models to be inherently interpretable does not, by itself, 
ensure that stakeholders will engage in interpretation and trust the models, or that their 
interpretations will translate into genuinely valuable and actionable insights. Interpretability 
is foundational, yet it must be paired with meaningful interpretations that resonate with 
stakeholders’ needs. 
​ A direct benefit of a model is its deployment in real‑world applications; in 
high‑stakes domains, successful deployment hinges on strong stakeholder trust. However, 
trust cannot be established simply by labeling a model as interpretable—without carefully 
examining its actual interpretations, claims of interpretability remain useless. Previous 
studies show that PFA usually predicts student outcomes accurately, and its parameters 
have clear and practical meanings, most notably the “success” and “failure” slopes, which 
represent learning rates after correct answers and errors. Closer inspection, however, 
reveals a problem: the model often produces negative failure slopes, implying that 
students “unlearn” after errors [89]. This finding contradicts prior works in learning 
science, which asserts that making mistakes typically supports, rather than harms, 
learning [9, 47, 82]. Such interpretations, despite the model's interpretability, can 
undermine stakeholder trust rather than build it, highlighting that claims of interpretability 
alone are insufficient. True interpretability means verifying that explanations match expert 
knowledge and give stakeholders insights they can trust and use. 
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Another key benefit is the generation of useful insights for stakeholders. A model is 
valuable only when its findings are both verifiable and useful. In an educational context, 
teachers and educators rely on predictive models not only to forecast outcomes, but to 
guide interventions. A prediction without a clear rationale or suggested course of action 
offers limited practical benefit to those making decisions on the ground. Researchers 
likewise seek models that uncover new scientific patterns. For example, Koedinger et al. 
discover that students do not show substantial differences in their rate of learning from 
fitting statistical growth models to 27 datasets, which challenges the prior hypothesis that  
different learners acquire competence at different rates [33]. To deliver such insights, 
models must expose parameters that align with domain-related constructs, 
knowledge‑component difficulty, prior knowledge, and student motivation [18], so 
researchers and practitioners can meaningfully interpret what the model reveals about the 
learning process.  

Moreover, I argue that simply having interpretable parameters is not enough; these 
meaningful insights can only be derived from the actual interpretation that emerges from 
those parameters. For example, Liang et al. applied DiCE counterfactuals to flag features 
linked to student risk and fed these into LLMs to craft “personalized” feedback. The 
output, however, amounted to raw data, e.g., “aim for about 332 minutes”, without 
contextual guidance. This case shows that even when the models are interpretable with 
understandable parameters, the model's interpretability has no practical value unless they 
are interpreted and yield actionable insights for educators and learners [37]. This 
illustrates that even with an interpretable model, failure to engage with the interpretations 
can result in missed opportunities for intervention and improvement. 

This concern is just as relevant for models developed primarily for prediction. For 
example, even when a model achieves high accuracy in forecasting student outcomes, its 
practical value is limited without clear reasoning behind those predictions. For instance, if 
a model identifies a student as likely to fail a course, the prediction alone does not equip 
educators to intervene effectively. Unless the educator understands what factors are 
contributing to that risk and why, the prediction fails to support meaningful action. 
Concrete and actionable interpretations are what enable educators to tailor their 
interventions, whether by assigning targeted remedial exercises, offering counseling, or 
addressing non-academic barriers to learning. This is because interpretation is the "why" 
behind the prediction—the bridge between model output and pedagogical 
decision-making. Interpretability must therefore extend beyond surface-level explanations 
to provide context-sensitive insights that align with educators’ needs. 

A study by Cohausz et al. on student dropout prediction offers a compelling 
example of why interpretation matters more than explainability alone [14]. The authors 
used LIME to identify key features influencing dropout risk, such as poor attendance. 
While these outputs technically explain the model's decisions, the study found that such 
surface-level insights were not sufficient to support meaningful intervention. For example, 
knowing that a student has low attendance may signal risk, but without understanding why 
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that attendance pattern exists—whether due to disengagement, external obligations, or 
institutional barriers—educators cannot respond appropriately. The authors argue that true 
interpretability requires combining these data-driven outputs with domain-specific 
reasoning, such as theories from education and social sciences. Only then can 
stakeholders move from knowing what influenced a prediction to understanding how and 
why it matters, enabling targeted, context-aware actions.​
 

3.2.1 What Interpretation Is and Is Not 
 

It is also important to clarify what interpretation is—and what it is not. Interpretation 
involves making sense of model outputs in ways that connect to theoretical or practical 
understanding within a domain. It includes analyzing parameters, identifying underlying 
patterns, and reasoning through their implications. By contrast, visualization techniques 
such as heatmaps or feature importance plots are not interpretations in themselves—they 
are tools that assist in the process of interpretation. Simply displaying which features are 
most important does not explain why they matter or how they relate to outcomes in 
context. Without this deeper layer of analysis, even models that appear interpretable risk 
being reduced to superficial insights. 

 
 

3.3 Reframing Interpretability: The Meaningful Model 
 
Building on the preceding discussion, it becomes clear that what we ultimately need are 
models that go beyond surface-level interpretability and support meaningful interpretation 
in practice. In this section, I propose a framework to conceptualize the notion of 
“meaningful models”. In general, a meaningful model consists of two core components: 
(1) an interpretable model, and (2) meaningful interpretations that lead to practical 
values, reinforced by three key properties: (a) simulatability (b) human-understandable 
representations (c) alignment with human reasoning and domain theory.  

What makes an interpretation meaningful? An interpretation is considered 
meaningful when it leads to practical values. Practical values can be defined in various 
ways depending on the context and specific objectives. Considered the context of EDM, I 
propose that practical values can be organized into three types: 
 

Trust-building (for real-world deployment) is critical because, in educational 
settings or other high-stake domains, stakeholders must trust the model before it 
can be effectively deployed in real-world applications. For example, adaptive 
learning systems rely on knowledge tracing models to dynamically tailor 
educational content to students' real-time performance. However, highly predictive 
models like DKT are not widely implemented due to their lack of interpretability and 
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the absence of meaningful parameter interpretations. Conversely, simpler and less 
predictive models, such as BKT, enjoy broad adoption because their parameters 
are intuitive and align clearly with human reasoning, thereby fostering trust among 
educational stakeholders.  
 
Actionable insights are meaningful findings, usually derived from the 
interpretation of model parameters, that lead to practical recommendations or 
understandings that stakeholders, such as teachers or administrators, can use to 
enhance decision-making processes. For example, Liu et al. demonstrate that 
meaningful interpretations of AFM parameters, such as learning rates for 
knowledge components' slopes, can lead to new actionable insights [41]. These 
insights include improved discovery of cognitive models, resulting in practical 
applications like the redesign of intelligent tutoring systems. 
 
Scientific discovery refers to novel insights that advance our understanding of 
educational phenomena. Meaningful interpretations can reveal previously 
unnoticed relationships or patterns, leading to new theories or confirming existing 
ones within learning science or related fields. For example, Rachatasumrit et al. 
demonstrate how a simulated learner can serve as a hypothesis-testing engine. 
They integrated simulation results with empirical evidence to clarify apparent 
contradictions between the testing effect and worked-example principles. This 
approach exemplifies how meaningful interpretations from computational models 
can significantly advance scientific understanding in education. 

 
Having clarified the practical values that meaningful interpretations can offer, the next step 
is to establish the key properties that constitute a type of model that can lead to those 
meaningful interpretations. 
 

3.3.1 Simulatability (a) 
 
Simulatability refers to the extent to which a human can mentally trace and comprehend 
the entire decision-making process of a model. As Lipton et al. highlights, even models 
traditionally considered interpretable, such as linear regressions, can become opaque if 
they involve large numbers of parameters or overly complex interactions [40]. This 
observation challenges the common assumption that simplicity alone guarantees 
interpretability, emphasizing instead that models must remain cognitively manageable for 
human users. Sparsity also plays a significant role in enhancing simulatability. Sparse 
models, characterized by a limited number of non-zero parameters, are generally easier 
for humans to interpret. For instance, logistic knowledge tracing models, despite 
potentially having a large number of parameters, frequently employ one-hot encoding for 
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their input features, resulting in a sparse representation that ensures their simulatability. 
However, it’s important to note that sparsity or simplicity does not always equate to 
interpretability. Rachatasumrit et al. discuss the simpler PFA model, which, despite having 
fewer parameters, can be less interpretable compared to its extended version (PFA-h) that 
introduces additional parameters. The interpretability issues in the PFA models are due to 
confounded parameters making their practical meanings ambiguous. In contrast, the 
additional parameters in PFA-h attempted to de-confound those parameters, thereby 
enhancing clarity and interpretability despite increased complexity [59]. Simulatability can 
be crucial for meaningful models because only when humans can mentally follow a 
model’s reasoning can they validate its conclusions, trust its outputs, and translate those 
insights into informed actions. 
 

3.3.2 Human-understandable Representation (b) 
 
Human-understandable representation emphasizes the importance of models presenting 
their internal workings—such as features, parameters, and structures—in ways that are 
naturally interpretable to humans. Central to this idea is the selection and use of model 
features that align closely with human intuition and domain-specific concepts, which 
significantly facilitates the interpretation of the model’s behavior. For example, in 
educational data mining, features like correctness (whether a student answered a 
question correctly), and time spent on a task are immediately meaningful to educators. In 
contrast, abstract features, such as complex embeddings from deep neural networks, can 
be powerful predictors yet are difficult for humans to directly interpret, as their meanings 
and implications are unclear. Moreover, parameters within a model should ideally reflect 
concepts or processes that domain experts can readily recognize and reason about. For 
instance, logistic knowledge tracing models frequently employ parameters representing 
the difficulty of knowledge components and the student’s prior knowledge, making it 
straightforward for educators to interpret these parameters and adjust instructional 
strategies accordingly. Ultimately, prioritizing human-understandable representation 
ensures models not only make accurate predictions but also provide actionable insights 
that practitioners can effectively utilize to inform decisions, strategies, and interventions. 
 

3.3.3 Alignment (with Human Reasoning and Domain Theory) (c) 
 
Alignment (with human reasoning and domain theory) ensures that a model’s output and 
their interpretations align closely with established human knowledge and logical reasoning 
in a specific domain. In practice, this means models should not contradict foundational 
theories or accepted guidelines within their fields—or, at the very least, any deviations 
from established knowledge must be clearly explained and justified through these 
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underlying theories. For example, Zambrano et al. use both recurring self-reports (SR) 
and classroom observation (BROMP) [53] to measure student emotion during a study and 
develop two sets of affect detectors corresponding to SR and BROMP-based measures of 
student emotion. Their analysis shows that SR and BROMP-based detectors are picking 
up on different signals. Prior studies on  the differences between self-report and 
observational measurements points to the availability of different signals, which supports 
the findings. For instance, an observer might see a student who has reached an impasse 
as experiencing confusion or frustration, but self-reported confusion requires some 
metacognitive recognition on the part of the student. 

Unlike simulatability and human‑understandable representations, which are 
properties of the model itself, alignment is a property of its interpretation. 
Human‑understandable representations and alignment are closely related but play distinct 
roles. In short, human‑understandable representations make each component of the 
model readable, whereas alignment checks that the pattern that those components 
express coheres with human reasoning or accepted domain theory. Put differently, the 
former asks, "What does the model reveal?" while the latter asks, "Why does it matter, 
and what do those representations imply?" A model can expose clear parameters yet still 
mislead if their learned patterns contradict theory; likewise, aligning with theory is unlikely 
if the underlying representations are opaque. Truly meaningful models must therefore 
possess both qualities in tandem. 

 
In summary, a model becomes meaningful not simply because it is easy to understand, 
but because the understanding it affords leads to something useful—whether that is a 
trust building, actionable insights, or a deeper scientific discovery. In this sense, 
meaningful models combine structural interpretability with interpretive engagement. 
Without the act of interpretation, even the most interpretable model fails to deliver value 
unless its outputs are examined, interpreted, and connected to the domain context in 
which it operates. 
 

3.3.4 What about Performance metric 
 
Although this thesis critiques an exclusive focus on performance metrics such as BIC, 
AUC, or cross‑validated accuracy, these measures are by no means useless. From a 
human‑centred standpoint, however, these metrics are not goals in themselves, as they 
offer stakeholders no direct value. They are means, not ends. Robust fit statistics or 
accuracy scores assure us that a model is at least reasonably faithful to the data, and we 
certainly do not want an interpretable model whose predictions deviate wildly from reality. 
In this sense, metrics act as a complementary lens: they help us audit and refine models 
so that any interpretations we draw rest on a sound empirical base. 
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This perspective differs from the traditional benchmark culture, where the main 
goal is to outperform the current leader, even by a fraction of a percent. Instead, I treat a 
good fit as a basic requirement, not a model selection approach. When a model 
marginally improves accuracy, we must ask: does the gain make a practical difference, or 
is it functionally negligible? Sometimes marginal improvements do matter. For example, 
Weitekamp et al. show in his analysis that a small boost in knowledge‑tracing accuracy 
can markedly reduce unnecessary problem assignments in adaptive tutors. However, this 
is not always true, so model selection must balance predictive performance with the 
concrete value delivered to stakeholders, adopting a holistic view that keeps metrics in a 
supportive role. 
 

3.4 Literature Reviews of Meaningful Models 
 
This emphasis on the importance of meaningful interpretations raises a pressing question: 
to what extent are current models in educational data mining and artificial intelligence in 
education research achieving this standard? In the following section, I review recent 
literature in both fields to highlight a recurring and critical issue—a widespread lack of 
attention to interpretation, and in many cases, to interpretability itself. Through this review, 
I aim to show how this gap limits the practical utility and trustworthiness of many models 
that are otherwise methodologically sound. 

In conducting this review, I examined two distinct groups of literature: first, recent 
studies explicitly claiming interpretability, and second, a selection of papers published in 
prominent EDM during 2024. Among the works asserting interpretability, a significant 
majority primarily delivered human-understandable representations—such as meaningful 
input features or structured outputs—but stopped short of offering genuine interpretations 
of model behavior or outcomes. Some of these studies employed neural network 
architectures, inherently limiting simulatability due to their complex structures. In contrast, 
others leverage simpler, linear models, which naturally enhance simulatability by allowing 
stakeholders to mentally reconstruct the model’s reasoning. Despite these methodological 
distinctions, a critical gap persisted uniformly across both categories, such that none of 
the reviewed papers undertook the actual interpretive task—that is, they did not explicitly 
articulate why certain model decisions or predictions occurred, leaving the essential step 
from model transparency to meaningful interpretation notably absent. 

In reviewing the EDM and AIED proceedings from 2024, I analyzed a total of 75 
full papers, not including any studies on which I am listed as co-authors, of which 22 
involved the development or training of models. Among these, several explicitly 
highlighted interpretability as a key contribution; however, upon closer examination, their 
claims largely amounted to providing human-understandable representations—such as 
intuitive feature sets, visualizations, or clearly labeled model parameters—without 
progressing further to substantive interpretation. While these representations indeed 
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facilitated some degree of human insight, they did not fulfill the deeper interpretative task 
of explaining why the model made specific predictions or how these decisions could be 
meaningfully connected to educational theories or practices. In the end, there are 3 
papers (4.00%) that actively engage in meaningful interpretations. 

Condor et al. specifically addressed interpretability in automatic short answer 
grading systems by employing Neural Additive Models (NAMs) [15], which integrate the 
predictive strength of neural networks with the transparency offered by additive modeling. 
Their approach relied on engineered features grounded in the Knowledge Integration (KI) 
framework [39], thus providing human-understandable inputs that educators could 
conceptually grasp. However, given that the model’s core still leverages neural network 
architectures, it inherently lacks simulatability. Although the authors argued that NAMs 
offer “easily interpretable visualizations of the model’s prediction functions,” supposedly 
providing educators insights into student comprehension, these visualizations fell short of 
generating genuinely actionable insights for teachers. Consequently, the practical value of 
these visualizations remains limited, highlighting a crucial distinction between superficial 
transparency and meaningful interpretation. 

 

 
 

Figure 1. Condor et al.’s visualization of model’s prediction function 
 
 

Another example that clearly emphasizes the importance of meaningful interpretations is 
Liang et al.’s work on generating personalized feedback based on DiCE counterfactual 
explanations [37, 49]. The authors employed DiCE to automatically identify parameters 
indicative of students at risk and subsequently used these parameters as input for large 
language models (LLMs) to create personalized feedback. Figure 2 provides an example 
of the feedback generated in their study. However, upon examination, it becomes evident 
that the feedback primarily consists of a summary of factual data points rather than 
actionable guidance. For instance, a recommendation such as “aiming for a total of 
approximately 332 mins” is presented without clear contextual meaning or practical 
direction. Thus, while the parameters and explanations provided by DiCE are indeed 
human-understandable, the absence of genuinely actionable interpretations significantly 
limits their practical utility for educators and students. 
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Figure 2. Liang et al.’s personalized feedback from LLM with DICE. 

 
 

However, among the reviewed literature, a few studies stood out by genuinely 
engaging in the task of interpretation. Klebanov et al. developed a model designed to 
predict instances of students skipping content within an interactive reading application. 
Their approach leveraged a generalized linear mixed model (GLMM) using clearly 
interpretable features such as turn duration and turn length. Crucially, their interpretive 
analysis revealed that prior instances of skipping were the strongest predictor of future 
skipping behaviors, highlighting the tendency for student disengagement to escalate if not 
proactively addressed. Furthermore, they illustrated how their model could be practically 
applied: by estimating an optimal activity duration and enabling personalized adjustments 
when ongoing disengagement was identified for individual students. This study represents 
a compelling example of how models built with inherent interpretability can yield direct, 
actionable insights that meaningfully support educational interventions. 
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Table 1. Literature review on meaningful interpretations in EDM and AIED. 
 

Paper 
Key Properties 

Meaningful 
Interpretations 

Simulatability 
Representati

on Alignment 

Shi et al. [76] ✕ ✓ ~ ~ 

Hoq et al. [50] ✕ ✓ ✕ ✕ 

Tsabari et al. [79] ✕ ✓ ✕ ✕ 

Cao et al. [10] ✓ ✓ ~ ✕ 

Lindsey et al. [38] ✓ ✕ ~ ~ 

Liang et al. [37] ~ ✓ ~ ✕ 

Yu et al. [88] ✕ ✓ ~ ✕ 

Klebanov et al. [8] ✓ ✓ ✓ ✓ 

Condor et al. [15] ~ ~ ✕ ~ 

Rodrigues et al. [67] ~ ✓ ✕ ✕ 

Atil et al. [5] ✕ ✕ ✕ ✕ 

Sonkar et al. [77] ✕ ✕ ✕ ✕ 

Tsutsumi et al. [80] ✕ ✓ ✓ ✕ 

Queiroga et al. [58] ✓ ✓ ~ ✕ 

Islam et al. [46]  ✕ ~ ✕ ~ 

Ghanem et al. [24] ✕ ✕ ~ ✕ 

Demirtas et al. [21] ✓ ✓ ✓ ✓ 

Alam et al. [52] ✕ ~ ✕ ✕ 

Zhao et al. [93] ✓ ✓ ~ ~ 

Zambrano et al. [91] ✓ ✓ ✓ ✓ 

Acosta et al. [2] ✕ ~ ✕ ~ 

Kim et al. [90] ✓ ~ ~ ~ 
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Chapter 4​
Good Fit Bad Policy: Why Fit Statistics Are A 
Biased Measure Of Knowledge Tracer Quality1  

 
 
A popular application of knowledge tracing models is  estimating students’ mastery of 
individual KCs to adaptively select subsequent problems based on students’ current 
abilities. Mastery of a KC is typically characterized as the point when a student’s predicted 
chance of correctly answering future question items associated with the KC exceeds 
some preset mastery threshold, typically chosen in the range 85–95% [4].  Thus, the 
challenge of knowledge tracing is to actively adapt to students as they practice to optimize 
their use of time—giving them enough practice problems for each KC to ensure full 
domain mastery, but not more than this to avoid wasting time better spent practicing new 
material. Thus, the ideal knowledge tracer jointly minimizes over-practice, the number of 
prescribed practice problems given after the student has reached mastery, and 
under-practice, the number of practice problems which a student would still need to solve 
in order to achieve mastery.  

Unfortunately, over- and under-practice are not directly measurable quantities. 
Instead, the relative quality of knowledge tracers is typically compared on the basis of the 
overall fit of their underlying student performance models to student data. Overall fit 

statistics take the form  and measure the degree to which the continuous student π(𝑦, 𝑦)
model predictions  are a good approximation of the discrete sequence of binary 𝑦
correctness values  (correct=1, incorrect=0) collected from student 𝑦 = 𝑦

0
,  ...,  𝑦

𝑛

transaction logs. Prior work has used a variety of fit statistics for knowledge tracer 
comparisons including Mean-Square Error (MSE), prediction accuracy, log-likelihood, AIC 
[3], BIC [96], and Area under the receiver operating characteristic curve (AUC). In this 
work, we demonstrate that overall fit statistics can in fact be a biased basis for knowledge 
tracer comparison since there are circumstances where a model’s total predictive 
performance can be improved without any corresponding change in the behavior of a 
knowledge tracer utilizing that model. A model can fit better without producing any 
corresponding reduction in the number of over- and under-practice problems experienced 
by students. 

1 This work is adapted from Rachatasumrit et al. [62] published at AIED 2024. 
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This issue directly reinforces the central thesis on meaningful models, arguing that 
a truly valuable model must prioritize generating actionable insights that guide practical 
decisions, rather than solely achieving high predictive accuracy. We show through 
simulation that it is possible for a knowledge tracer model to fit better than a baseline 
model but perform worse when deployed in practical applications, such as adaptive 
learning systems which require mastery-based item selection. 
 

4.1 Over-Practice and Under-Practice 
 
Although counts of over- and under-practice are not directly measurable from student 
data, they can be defined relative to a notion of a student’s ground-truth learning 
curve—their true probability of answering next question items correctly at each practice 
opportunity. Framed in non-stochastic terms, a student’s ground truth curve for a given KC 
represents the degree to which that KC has been mastered at each learning opportunity. It 
captures the progression of complex cognitive factors beyond the scope of what statistical 
performance models typically capture. A point along the curve captures the degree to 
which a student has partially constructed knowledge—a notion that statistical models 
typically were estimated solely from binary observations of correct and incorrect 
performance. 

By reference to a ground-truth learning curve and a choice of mastery threshold, a 
model’s instances of under-practice are those where the performance model predicts 
performance to be above the mastery threshold when the ground truth is below it, and the 
model’s instances of over-practice are those where it predicts performance to be below 
mastery when the ground-truth is above the mastery threshold (Fig. 3). 

Student performance modeling can be framed as estimating students’ groundtruth 
learning curves from the noisy sampling of performance data collected from tutoring 
system transactions. The logic of comparing knowledge tracers by their overall 
goodness-of-fit to data is motivated by the idea that an optimal recreation of the 
ground-truth learning curve should produce an optimal prediction of student mastery. 
However, this perspective conflates the logic of offline statistical modeling, in which 
goodness-of-fit can be used to justify hypotheses about students’ learning trajectories and 
their relationship to learning materials, with the narrower aims of online item selection. In 
this context, a knowledge tracer’s purpose is simply to make one critical decision: after a 
student completes each problem it decides whether to continue prescribing new practice 
problems with particular KC requirements or not. Thus, certain variations in the predictions 
of a student performance model simply have no bearing on the real-world quality of their 
knowledge tracer. 

Figure 3 demonstrates how this can be the case by offering an illustration of a 
hypothetical set of performance model predictions relative to a ground-truth learning 
curve. The intersection of the ground-truth curve with the mastery threshold divides the 
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figure into 4 quadrants. Predictions in the top-left and bottom-right quadrants are 
instances where the model would cause under- or over-practice. The dots and x’s in Fig. 1 

represent the predictions  of a baseline model A. Consider that there is also a 𝑦
𝐴

comparison model B with predictions  =  perturbed by some 𝛿 which brings B 𝑦
𝐵

𝑦
𝐴

+ δ

closer to the ground truth than A. With these perturbations B’s expected overall fit to a 
sample of the ground-truth curve should be better than model A’s. However, only a subset 
of the shown perturbations would produce improvements in mastery prediction, only those 
perturbations which move predictions out of the over- and under-practice quadrants (e.g. 
like  and ). δ

4
δ

5

 
 

 
 

Figure 3. Illustration of over-practice and under-practice attempts​
 

 
A core hypothesis of this work is that the prediction differences between different types of 
student performance models mostly do not correspond to differences in expected over- 
and under-practice like perturbations  and . Instead, we hypothesize that the majority δ

4
δ

5

of model improvements are like  and : inconsequential to levels of over- and δ
1
, δ

2
, δ

3
,  δ

6

under-practice, and generally outside the neighborhood of the ground-truth mastery 
threshold. One reason to expect this result is that the more data that models have about 
students the more similar their predictions are likely to be. We expect models to have the 
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greatest difference in their predictions under uncertain circumstances, particularly in early 
practice attempts when evidence about the student’s knowledge is sparse. 

To test this hypothesis we utilize synthetic student data to establish ground-truth 
learning curves. Then we fit various student performance models on the synthetic data 
and utilize the ground-truth curves to measure over- and under-practice. We evaluate 
whether the student performance models which produce the least over- and 
under-practice are also the best fitting models with respect to overall performance 
statistics like AUC and MSE. Finally, we graph MSE as a function of ground-truth 
probability to evaluate whether differences in model fit tend to be greatest within or outside 
the neighborhood of the mastery threshold. 
 

4.2 Methods 
 
We utilize 3 models for synthetic data generation and evaluation: BestLR [23], DKT [57], 
and PFA [55]. For each dataset, we use each model to create a simulated dataset and 
evaluate each generated dataset with all 3 models to create a 3 × 3 experiment. In all 
cases, we use implementations from Gervet et. al. [23]. 

Our synthetic data generation works by (1) fitting a generation model to the real 
data, (2) predicting an error rate for each transaction with a fitted model, and using the 
predicted value as a ground truth for an error rate in synthetic data, (3) sampling a 
synthetic outcome for each transaction in the synthetic data based on the corresponding 
error rate. In this work, we use the same 7 real-world datasets from Gervet et. al. [23], so 
we generated 21 synthetic datasets for our experiment using 3 generation models. For 
each synthetic dataset, we use random cross-validation splitting by students. The data of 
90% of the students are used for training and the data of the other 10% are reserved for 
the test set. We resample and retrain 5 times for each condition, examining the relative 
counts of over- and under-practice on the test set between models, and compare this to 
their relative AUC scores on the test set. We report the average and standard deviation for 
each metric across replicates. 
 

4.3 Results and Discussion 
 
Table 2 shows the average instances of over- and under-practice and Table 3 shows the 
average AUC for each dataset and evaluation model pair. Conventional evaluations 
assume that between two models the one with the higher predictive performance (e.g. 
higher AUC) will be the better model—the one expected to make fewer over- and 
under-practice errors. However, our results demonstrate that this assumption is not 
always true. We find that in 43% of the synthetic datasets, there are pairs of models where 
the higher AUC model commits more over- and under-practice errors than the lower AUC 
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model. These results support the hypothesis that overall fit statistics are not a reliable 
measure of a knowledge tracer’s ability to optimally select next items for students, and 
challenge the credibility of conventional approaches to comparing knowledge tracers. 
 

4.4 Limitation and Conclusion  
 
One of primary limitations in this work is the ground-truth identification. As in prior works 
that have utilized synthetic data for analyses of student performance models [61], our 
method relies upon a theoretical commitment to an underlying model for generating 
ground-truth curves. Thus our method is not a stand-in replacement for traditional metrics 
of model fit which evaluate models directly on datasets. Yet, methods which draw 
comparisons between statistical models and synthetic ground truths have the potential to 
enable deeper evaluations than the simple notion of what fits best is best. 

In this work, we have utilized synthetic data generated by popular knowledge 
tracers to test whether models with the highest overall fit statistics necessarily produce the 
best predictions of student mastery. Our method allows us to answer questions of the 
nature: what is the quality of knowledge tracer X’s item selection assuming student 
learning behaves like model Y? Varying models X, Y, and datasets we find that in 43% of 
the synthetic datasets, models with higher measures of overall predictive performance 
(i.e. AUC) were worse than a comparison model with a lower predictive performance at 
minimizing over-practice and under-practice. We conclude that traditional measures of 
overall performance (e.g. AUC) are in fact not reliable proxies for rates of over- and 
under-practice. These results support the core proposition of meaningful models arguing 
that the value of models are from their use, either to discover actionable insights or be 
deployed in practical applications. Therefore, metrics on predictive performance are not 
only insufficient but can also be misleading when it comes to model comparisons. 
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Table 2. Average numbers of over- and under-practice for each dataset and model 
 

Dataset Generate BestLR DKT PFA 

algebra05 

BestLR 4.577 ± 0.235 7.261 ± 0.199 10.843 ± 0.433 

DKT 13.164 ± 5.184 8.300 ± 0.327 32.522 ± 1.957 

PFA 9.067 ± 0.672 13.116 ± 0.835 5.028 ± 0.563 

assistments09 

BestLR 3.355 ± 0.078 4.488 ± 0.181 5.393 ± 0.151 

DKT 7.280 ± 0.151 4.000 ± 0.107 9.597 ± 0.265 

PFA 4.258 ± 0.136 5.706 ± 0.246 3.309 ± 0.184 

assistments15 

BestLR 2.398 ± 0.045 4.388 ± 0.323 2.961 ± 0.056 

DKT 8.096 ± 0.107 3.963 ± 0.063 8.233 ± 0.167 

PFA 2.377 ± 0.118 4.997 ± 0.186 2.425 ± 0.043 

assistments17 

BestLR 2.638 ± 0.045 3.567 ± 0.060 5.297 ± 0.085 

DKT 6.334 ± 0.226 2.808 ± 0.027 3.614 ± 0.098 

PFA 4.663 ± 0.280 4.738 ± 0.395 3.495 ± 0.581 

bridge_algebra 

BestLR 3.936 ± 0.094 5.494 ± 0.217 6.405 ± 0.132 

DKT 14.033 ± 0.368 6.751 ± 0.165 22.319 ± 0.712 

PFA 4.762 ± 0.300 6.539 ± 0.200 3.759 ± 0.218 

spanish 

BestLR 2.447 ± 0.022 4.213 ± 0.16 3.173 ± 0.083 

DKT 10.798 ± 0.222 4.600 ± 0.194 12.701 ± 0.345 

PFA 2.397 ± 0.041 4.324 ± 0.145 2.109 ± 0.036 

statics 

BestLR 3.962 ± 0.205 4.263 ± 0.185 10.559 ± 0.442 

DKT 10.379 ± 0.415 5.095 ± 0.235 19.067 ± 0.843 

PFA 8.333 ± 0.687 7.565 ± 0.589 3.743 ± 0.457 
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Table 3. Average and SD of AUC for each dataset and evaluation model 
 

Dataset Generate BestLR DKT PFA 

algebra05 

BestLR 0.794 ± 0.002 0.728 ± 0.004 0.716 ± 0.004 

DKT 0.808 ± 0.003 0.764 ± 0.007 0.737 ± 0.002 

PFA 0.689 ± 0.004 0.645 ± 0.004 0.705 ± 0.002 

assistments09 

BestLR 0.712 ± 0.003 0.636 ± 0.006 0.653 ± 0.003 

DKT 0.736 ± 0.005 0.696 ± 0.004 0.670 ± 0.004 

PFA 0.629 ± 0.003 0.565 ± 0.007 0.653 ± 0.003 

assistments15 

BestLR 0.721 ± 0.005 0.702 ± 0.006 0.713 ± 0.005 

DKT 0.658 ± 0.001 0.674 ± 0.002 0.656 ± 0.001 

PFA 0.659 ± 0.002 0.630 ± 0.001 0.659 ± 0.003 

assistments17 

BestLR 0.734 ± 0.004 0.717 ± 0.005 0.654 ± 0.004 

DKT 0.702 ± 0.002 0.728 ± 0.001 0.617 ± 0.001 

PFA 0.636 ± 0.002 0.619 ± 0.002 0.639 ± 0.002 

bridge_algebra 

BestLR 0.834 ± 0.031 0.780 ± 0.033 0.780 ± 0.034 

DKT 0.774 ± 0.003 0.747 ± 0.008 0.705 ± 0.004 

PFA 0.699 ± 0.005 0.645 ± 0.002 0.715 ± 0.003 

spanish 

BestLR 0.820 ± 0.003 0.764 ± 0.001 0.811 ± 0.004 

DKT 0.808 ± 0.006 0.813 ± 0.006 0.788 ± 0.003 

PFA 0.813 ± 0.006 0.763 ± 0.006 0.814 ± 0.006 

statics 

BestLR 0.799 ± 0.007 0.785 ± 0.010 0.661 ± 0.010 

DKT 0.804 ± 0.005 0.801 ± 0.004 0.665 ± 0.005 

PFA 0.661 ± 0.005 0.647 ± 0.004 0.670 ± 0.004 
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Chapter 5​
Building Meaningful Models 
 
 
5.1 Toward Improving Student Model Estimates through 
Assistance Scores in Principle and in Practice2 
 
This work is an example of how we identify an issue with the configuration of an existing 
model (binary outcomes in AFM), which causes it to not be interpretable in some 
scenarios and develop a new meaningful model (PC-AFM) that addresses the identified 
issue. The motivation for this work is that, although common methods such as AFM and 
BKT perform adequately, they rely on simple right-or-wrong responses. Therefore, they 
are restricted by using only binary student performance (e.g. correct/incorrect response), 
which could suffer from an information loss due to its dichotomized nature. In ITS, student 
performance outcome is often reduced to a binary indicator—first-attempt correct or 
incorrect—where any error or hint is coded as failure. This binary roll-up simplifies 
modelling but discards nuanced behaviour captured by ITS. We instead use an 
Assistance Score, the total number of errors and hints a student produces on each step. 
Preliminary analysis shows that assistance scores correlate with AFM-predicted error 
rates, implying they supply additional information beyond simple correctness. In this work, 
we are interested in whether or not an assistance score model could be a better predictor 
of a student’s change in performance than a dichotomous model like AFM. Particularly, 
our research questions are: (1) How can we develop an effective statistical measurement 
model that uses assistance scores? and (2) How do we compare two different response 
models? 
 

5.1.1 Method 
 
AFM [13] is a logistic regression that extends Item Response Theory by incorporating a 
growth or learning term. Our extension of AFM to support a polytomous outcome 
measure, like Assistance Score, is inspired by the Partial Credit Model (PCM) [45], which 
is an adjacent-categories logit model [81]. The model was designed to work with ordered 
polytomous response categories with a specific order or ranking of responses, which is 

2  This work is adapted from Rachatasumrit et al. [61] published at EDM 2021. 
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the case for Assistance Score. It is widely applied in aptitude testing to allow for partial 
credit for near correctness of a response. In adjacent-categories logit models, we model 
the odds of a higher category relative to the adjacent lower one, and this paired 
comparison creates the ordering of the categories. 

Assistance Score can be interpreted in the partial credit framework as follows. A 
student who gets a problem step correct on their first try or after fewer errors or hint 
requests is more likely to have the associated competence than a student who makes 
many errors or requests multiple hints before getting the step correct. Thus, students 
making no errors and needing no hints get full credit (Assistance Score = 0) and students 
with errors and/or hint requests get partial credit in rough proportion to the number of hints 
and errors. 

The Partial Credit Additive Factors Model (PC-AFM) builds upon these two 
different statistical models, AFM and PCM. For a student i and a step j, there is a set of 
probabilities  describing the chance for student i to get 𝑃

𝑖𝑗
 =  {𝑝

𝑖𝑗
;  𝑎 = 0,  1,  ...,  𝐴}

Assistance Score a on the step j, where A is the maximum Assistance Score. In this work, 
we decided to limit an Assistance Score to 5 because values above this tend not to be 
meaningful and rare, but extreme outliers (e.g., where assistance score is over 20 or even 
140!) would significantly bias the model. 98% of our data have an Assistance Score of 5 
or less. We extend AFM to use a multivariate generalized linear mixed model, and the link 
function in logistic regression takes the vector-valued form. 
 

 
Eq 3. PC-AFM link function model. 

 
Note that  is not included due to the number of nonredundant probabilities. PC-AFM 𝑓

𝑙𝑖𝑛𝑘, 0

uses adjacent-categories logits as a link function based on PCM. The ath 
adjacent-categories logit is the logit of getting an Assistance Score a versus a − 1. Each 
link function is an extended version of AFM’s linear model (Eq. 4) with a level parameter (

), which represents the difficulty to improve from an Assistance Score a to a−1. α
𝑎

 

 𝑓
𝑙𝑖𝑛𝑘, 𝑎

(𝑃
𝑖𝑗

) =  θ_𝑖 +  α_𝑎 +  
𝑘
∑(𝑞

𝑗𝑘
 β

𝑘
 +  𝑞

𝑗𝑘
 γ

𝑘
 𝑇

𝑖𝑘
)

Eq 4. Individual PC-AFM link function model. 
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Inverting this function gives an expression for the probabilities of student i to complete a 
problem step j with each of the possible Assistance Scores a. 
 

 𝑝
𝑖𝑗𝑎

 =  𝑒
λ

𝑎

𝑖=0

𝐴

∑ 𝑒
λ

𝑖

 λ
𝑎

=  
   0 𝑖𝑓 𝑎 = 0

 
𝑙=1

𝑎

∑ 𝑓
𝑙𝑖𝑛𝑘, 𝑙

(𝑃
𝑖𝑗

) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Eq 5. Probability of a student to complete a step with Assistance Score . 𝑎
 

5.1.2 Experiments 
 
We conduct experiments on both synthetic data and real student data to evaluate the 
performance of PC-AFM. We used the synthetic data to validate PC-AFM’s parameter 
recovery capability and examine our evaluation strategy in a synthetic environment in 
which Assistance Score is stochastically derived from student ability alone. In particular, 
Assistance Scores in the synthetic data are not confounded by other student variations, 
such as their motivational state. We hypothesized that PC-AFM would work less 
effectively with the real student data because of non-ability effects on Assistance Score, 
such as students’ help seeking strategies or propensity to game the system. 

One of the unique challenges in this work is that goodness-of-fit metrics like BIC 
are unsuitable for comparing AFM and PC-AFM due to differing outcomes (error rate vs. 
Assistance Score), despite measuring the same latent construct (student ability). To 
address this, we employ two methods: evaluating parameter reliability via split-half 
comparisons, and conducting cross-measure predictions. Split-half comparisons assess 
parameter consistency, compensating for unknown true parameters in real data. 
Cross-measure predictions leverage the relationship between binary and polytomous 
outcomes to identify superior predictive accuracy. As detailed exploration of these 
methods lies beyond the scope of this thesis, please refer directly to the original work for 
comprehensive information. 
 

5.1.2.1 Experiment 1: Synthetic Data 
 
In this experiment, we generated six synthetic datasets, varying from 8 to 32 knowledge 
components (KCs) and 25 to 200 students, to create a controlled environment where 
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students' performance was derived from Assistance Scores. Using the known student 
intercepts, KC difficulties, and KC learning rates they sampled an Assistance Score (0 – 5; 
higher values truncated) for every step, then fit two competing models: the standard AFM 
trained on binary error rates and the proposed PC-AFM trained on the full Assistance 
Score distribution. Evaluation focused on three aspects: (1) parameter recovery, the 
correlation between true and estimated latent parameters; (2) split-half reliability, 
indicating the stability of estimates across random halves of the data; and (3) predictive 
accuracy, using under 3-fold cross-validation with random, student-blocked, and 
item-blocked splits, where each model was required to forecast both outcome types via 
cross-measure conversion. 

Results were consistently in favour of PC-AFM. For parameter recovery, we found 
that PC-AFM better recovers the true student and KC parameters than AFM in almost all 
comparisons using correlation (Table 4). The correlations of parameters in split-half 
comparison are reported in Table 5, which show a similar pattern to the correlation 
between estimated and true parameters. This demonstrates that the parameter correlation 
in split-half comparisons, which can be computed in real data, is a reasonable proxy for 
true parameter recovery, which cannot be computed in real data. Figure 4 illustrates better 
true parameter recovery using Assistance Score and PC-AFM than using error rate and 
AFM. PC-AFM parameter estimates (red x’s) are generally accurate across the spectrum 
of known parameter values (x-axis), as can be seen by their closeness to the line, which is 
identity function (intercept of 0, slope of 1). AFM estimates (blue dots) are generally 
biased toward the extremes.  
 
 

Table 4: Correlation between true and estimated parameters in synthetic data. 
 

Dataset 
Stu Intercept KC Intercept KC Slope 

PC AFM PC AFM PC AFM 

KC8_S25 0.978 0.954 0.996 0.802 0.914 0.675 

KC8_S50 0.973 0.936 0.998 0.985 0.972 0.964 

KC8_S100 0.973 0.931 1.000 0.984 0.952 0.909 

KC8_S200 0.975 0.936 1.000 0.979 0.975 0.735 

KC16_S50 0.990 0.977 0.998 0.780 0.962 0.933 

KC32_S50 0.996 0.988 0.995 0.799 0.929 0.543 
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Table 5: Correlation between split-halves parameters in synthetic data 
 

Dataset 
Stu Intercept KC Intercept KC Slope 

PC AFM PC AFM PC AFM 

KC8_S25 0.932 0.828 0.990 0.895 0.912 0.498 

KC8_S50 0.963 0.906 0.998 0.931 0.972 0.945 

KC8_S100 0.980 0.941 0.998 0.850 0.969 0.888 

KC8_S200 0.871 0.790 0.999 0.955 0.910 0.894 

KC16_S50 0.947 0.857 0.997 0.947 0.927 0.843 

KC32_S50 0.967 0.942 1.000 0.883 0.997 -0.345 

 
 

5.1.2.2 Experiment 2: Real Student Data 
 
In the second experiment, we examine PC-AFM across a variety of real world datasets. 
We used 6 datasets across different domains (statistics, English articles, algebra, and 
geometry) from the DataShop repository. For each dataset, we use the KC model that 
achieves the best BIC reported on the DataShop repository. All KC models coded a single 
KC per step. The number of KCs ranges from 9 to 64, and the number of students ranges 
from 52 to 318. 

For each dataset, we evaluated both PC-AFM and AFM on 5 independent runs of 
3-fold CVs of each type predicting both Assistance Score and error rate. We found that 
PC-AFM outperforms AFM in Student-blocked in both Assistance Score and error rate 
CVs in most datasets, which suggests that PC-AFM can achieve better estimates of KC 
parameters. To validate the hypothesis, we investigated split-halves parameters 
correlation of both models. We splitted the datasets on students to evaluate KC slopes 
and intercepts correlation, and we splitted the datasets on KCs to evaluate students’ 
intercepts (Table 6). On average, PC-AFM yields better correlations of both KC intercepts 
(0.954 vs 0.946) and KC slopes (0.600 vs 0.563), but correlations of student intercepts is 
significantly higher for AFM (0.784 vs 0.495). 
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Table 6: Split-halves parameters correlation in real data. 
 

Dataset 
Stu Intercept KC Intercept KC Slope 

PC AFM PC AFM PC AFM 

ds308 0.113 0.486 0.971 0.955 0.745 0.583 

ds313 0.490 0.830 0.948 0.937 0.865 0.905 

ds372 0.427 0.803 0.985 0.968 0.433 0.639 

ds388 0.567 0.873 0.946 0.945 0.225 0.354 

ds392 0.830 0.901 0.973 0.964 0.494 0.485 

ds394 0.541 0.809 0.904 0.906 0.838 0.413 

 

 

5.1.3 Discussion 
 
Assistance score should, in principle, improve model parameter estimates and predictions 
based on them. A student who gets a step correct after just one error or one hint 
(Assistance Score = 1) is likely to be closer to full acquisition of a KC than a student who 
makes an error and requests 3 hints (Assistance Score = 4). However, the error rate 
metric commonly used with BKT and AFM treats these the same, since the student was 
not correct on their first attempt at the step without a hint. Thus, there is potentially extra 
information about students’ level of knowledge acquisition in the Assistance Score not 
present in error rate. On the other hand, prior research, for example on gaming the 
system [6], suggests there are other reasons students may produce repeated incorrect 
entries or hint requests. These may produce enough confounding variance to make using 
Assistance Score worse at accurate latent parameter estimation than using error rate.  

Assessing whether Assistance Score is a better measure than Error Rate in real 
student data is complicated in two ways. First, we do not have access to the true 
parameters in real datasets, so we turn to measures of reliability and predictive validity. 
Second, we know from models of gaming the system and help seeking that students may 
produce Assistance Scores for motivational and metacognitive reasons that are potentially 
independent of a mastery source. In other words, Assistance Scores have a 
student-driven source of variation that may reduce their effectiveness in estimating 
student mastery. We hypothesize that our model is struggling to estimate student 
parameters in the real-world datasets due to variance in students’ help seeking behavior. 
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Figure 4. Using Assistance Score and PC-AFM on synthetic data produces better 

estimates of the true parameters, for all three of student intercepts, KC intercepts, 
and KC slopes than does using error rate and AFM. 
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We found that in real world datasets PC-AFM can better estimate KC parameters than 
AFM, which results in PC-AFM outperforming AFM in Student-blocked CVs. KC 
parameters estimates significantly impact Student-blocked CVs because they are the sole 
driver of these predictions. Poor student estimates do not impact Student-blocked CVs 
because they are not carried from the training to test as blocking means there are different 
students in the test than training. It does impact Random CVs and Item-blocked CVs 
because they are likely to have some students showing up in both test and training. 
 

5.1.4 Conclusion 
 
In this work, we investigated whether or not Assistance Score provides a better 
measurement model than error rate for estimating a student's ability. To pursue this 
question, we developed a statistical model, PC-AFM, that utilizes Assistance Score. We 
demonstrated that PC-AFM outperforms AFM when Assistance Scores are synthesized to 
be meaningful, but its performance is hindered by non-ability variance in students’ 
behavior in the real-world datasets. This work is an example of how we identify an issue 
with the configuration of an existing model (binary outcomes in AFM), which causes it to 
not be interpretable in some scenarios and develop a new meaningful model (PC-AFM) 
that addresses the identified issue. When we applied PC-AFM with real-student datasets, 
we found that KC parameter estimates are more reliable than student parameter 
estimates, which led to the insight that the assistance score was heavily influenced by 
factors beyond their ability, such as motivations. This analysis was only possible because 
of the interpretable nature of the parameters of PC-AFM, which supports our argument 
that meaningful models are important in the field of EDM. 
 

5.2 Beyond Accuracy: Embracing Meaningful Parameters in 
Educational Data Mining3 
 
Our goal in this work is to demonstrate that meaningful parameter estimation is not a 
necessary consequence of more accurate model prediction. We perform this 
demonstration in the context of two popular models of student learning: PFA [55] and AFM 
[13]. While PFA tends to produce better predictions than AFM, PFA’s parameter estimates 
are not meaningful because their interpretation is ambiguous. As we will explain in more 
detail below, interpreting the slope parameters in PFA is difficult because it could mean 
individual differences in learning rates or differences in prior knowledge or difficulty of 

3   This work is adapted from Rachatasumrit et al. [59] published at EDM 2024. 
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specific student-KC combinations but it could also mean different learning rates from 
successful and unsuccessful attempts, or even “unlearning” from errors. Conversely, 
AFM’s slope is consistently and unambiguously interpretable as learning rate [33]. To 
demonstrate how PFA’s parameters are confounded, we proposed and evaluated two 
alternative models (AFMh and PFAh) designed to unconfound the interaction between 
KCs and students. We demonstrated the capabilities of these alternative models with 
synthetic data generated from different models and configurations. Then, we conducted 
an experiment with 27 real-world datasets from Datashop [78], and found that PFA 
outperforms AFM in 17 datasets, but our further analysis with the new alternative models 
showed that PFA’s parameters are indeed difficult to interpret. We also argue for the 
importance of parameter interpretability by comparing AFM and PFA with these alternative 
models AFMh and PFAh to demonstrate their meaningful interpretations leading to 
potential insights and applications. In particular, we are interested in these research 
questions: (1) Can we demonstrate confounding parameters in PFA?, and (2) Do h 
models have meaningful parameters and also produce better predictions? 
 

5.2.1 AFMh AND PFAh Models 
 
In order to unconfound the student-KC interaction from the success and failure slopes, we 
need to add additional variables to the models to capture the student-KC interaction. A 
straightforward approach is to add a variable for each student-KC pair to capture the 
interaction, but this can lead to overparameterization. Instead, we introduce a success 
history variable ( ), which is a ratio between a number of successful past attempts at ℎ

𝑖𝑘

solving a KC ( ) and a number of total past attempts at solving that KC ( ). The intuition 𝑠
𝑖𝑘

𝑇
𝑖𝑘

behind the success-history variable is that a student who has better prior knowledge of a 
particular KC would yield higher success rates for the KC. We formulated hik such that its 
value will be 0.5 at the first opportunity because  should be distinguishable in the case ℎ

𝑖𝑘

of consecutive failed attempts at the beginning. If  started at 0, its value would remain 0 ℎ
𝑖𝑘

regardless of the number of failed attempts at the beginning, which could be problematic 
for the model: 
 

 ℎ
𝑖𝑘

=
𝑠

𝑖𝑘
+1

𝑡
𝑖𝑘

+2

Eq 6. Success-history variable 
 
We incorporated the hik variables into AFM and PFA models to create AFMh and PFAh 
models, in the term . The equations for AFMh (Eq. 7) and PFAh (Eq. 8) are below. 𝑞

𝑗𝑘
η

𝑘
ℎ

𝑘
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 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑ 𝑞

𝑗𝑘
(β

𝑘
+ γ

𝑘
𝑇

𝑖𝑘
+ η

𝑘
ℎ

𝑖𝑘
)

Eq 7. Additive Factors Model with History (AFMh) 
 
 

 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑ 𝑞

𝑗𝑘
(β

𝑘
+ γ

𝑘
𝑠

𝑖𝑘
+ ρ

𝑘
𝑓

𝑖𝑘
+ η

𝑘
ℎ

𝑖𝑘
)

Eq 8. Performance Factors Analysis with History (PFAh) 
 

5.2.2 Experiment 1: Synthetic Data 
 
In this experiment, we aim to validate the efficacy of our newly developed model in 
capturing the interaction dynamics between students and KCs. To achieve this, we 
evaluate this model on synthetic data with known characteristics by sampling model 
parameters such as student intercepts, KC intercepts, and KC slopes from normal 
distributions with statistical properties similar to those observed in real-student data. We 
generated synthetic datasets based on either the AFM or PFA models, serving as the 
ground truth for student error rates and correctness [61]. To emulate the student-KC 
interactions observed in real-world scenarios, we introduced variability by augmenting 
datasets with student-KC interaction effects. This was achieved by sampling values from a 
normal distribution, reflecting the variance in student performance specific to each KC. 
Overall, we created 18 dataset groups encompassing varying the number of students (10, 
20, and 50), the number of KCs (8, 16, and 32), and the strength of the student-KC 
interactions (SD = 0.2 and 1.2). We evaluate all four models (AFM, PFA, AFMh, and 
PFAh) on each dataset. Table 2 and Table 3 show the BIC scores for each model on each 
dataset in this experiment and summarize the best-fitting models by BIC score. 
 

5.2.2.1 Results 
 
As shown in Table 7, when the student-KC interaction is weak (SD = 0.2), AFM and PFA 
are the best-fitting models in all datasets depending on the generating model (i.e. AFM is 
the best-fitting model when the generating model is AFM, and PFA is the best-fitting 
model when the generating model is PFA). However, when the student-KC interaction is 
strong (SD = 1.2), the model corresponding to the generation method is the best-fitting 
model in all datasets, except one (student=10, KC=32, method=PFA+Interaction), as 
shown in Table 8. In other words, when there is a reasonably strong interaction between 
students and KCs, the models with the h variable consistently outperform the standard 
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models. Moreover, the result shows that PFA consistently outperforms AFM when there 
are student-KC interactions, even when the base generation model is AFM, in which 
AFMh also consistently outperforms PFA. This supports our hypothesis that PFA 
parameters are confounded by both the student-KC interactions and two learning rates, 
but the h variable will be able to unconfound them by capturing the student-KC 
interactions. Overall, these results also demonstrate the capability of the h models to 
capture the dynamics of student-KC interactions. 
 
 

 

49 



 

Table 7: BIC scores of all 4 models on synthetic datasets with interaction SD = 0.2. 
Light grey highlights the best-fitting model among all 4. 
 

Stu KC Generation AFM PFA AFMh PFAh 

10 

8 

AFM 1590.290 1627.946 1598.361 1636.017 

AFM+I 1630.425 1662.996 1634.406 1669.617 

PFA 2091.749 1436.743 1538.479 1444.813 

PFA+I 2072.443 1514.381 1607.171 1522.153 

16 

AFM 3818.870 3880.883 3827.027 3885.613 

AFM+I 3808.662 3868.290 3817.426 3877.054 

PFA 4010.223 2807.466 2893.398 2815.151 

PFA+I 3949.252 2840.803 2913.090 2849.557 

32 

AFM 6114.022 6196.097 6121.329 6205.297 

AFM+I 6042.236 6125.623 6051.586 6135.080 

PFA 7925.592 6382.965 6676.408 6392.397 

PFA+I 7823.461 6348.209 6673.301 6357.680 

20 

8 

AFM 4791.102 4837.957 4799.797 4846.721 

AFM+I 4601.883 4653.242 4610.647 4662.006 

PFA 6755.818 6403.026 6700.326 6411.790 

PFA+I 6728.999 6445.256 6715.965 6453.907 

16 

AFM 6520.145 6597.033 6529.602 6606.491 

AFM+I 6334.954 6405.390 6342.483 6410.950 

PFA 9840.107 8331.947 8969.829 8338.121 

PFA+I 10059.017 8498.802 9050.723 8508.260 

32 

AFM 10894.995 10989.292 10905.136 10999.442 

AFM+I 10614.447 10714.491 10624.598 10723.488 

PFA 17967.629 14766.013 15470.549 14776.163 

PFA+I 18373.613 14781.398 15415.666 14791.548 

50 

8 

AFM 7752.478 7813.250 7762.159 7822.930 

AFM+I 7465.130 7529.155 7474.811 7538.835 

PFA 8978.669 6766.349 7572.593 6776.029 

PFA+I 9386.140 7121.818 8032.094 7131.499 

16 

AFM 17436.148 17535.014 17446.522 17545.388 

AFM+I 17380.842 17468.669 17390.404 17478.980 

PFA 23980.442 17452.077 19262.037 17462.450 

PFA+I 23881.545 17732.729 19555.968 17743.103 

32 

AFM 28246.575 28398.769 28257.642 28409.835 

AFM+I 28505.827 28648.146 28515.574 28658.121 

PFA 33787.825 30985.826 31862.632 30996.893 

PFA+I 35348.852 32002.575 32923.707 32013.642 
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Table 8: BIC scores of all 4 models on synthetic datasets with interaction SD =1.2. 
Light grey highlights the best-fitting model among all 4. 
 
 

Stu KC Generation AFM PFA AFMh PFAh 

10 

8 

AFM 1051.481 1094.670 1059.552 1102.728 

AFM+I 1117.250 1110.974 1095.651 1121.092 

PFA 2086.542 1736.834 1768.927 1744.905 

PFA+I 2442.974 1779.640 1788.976 1778.851 

16 

AFM 2209.120 2267.256 2217.864 2276.020 

AFM+I 2412.882 2359.565 2333.930 2359.085 

PFA 3741.063 3585.428 3684.478 3594.192 

PFA+I 4298.942 3809.425 3870.989 3807.412 

32 

AFM 6362.627 6444.527 6371.700 6453.985 

AFM+I 7290.315 6785.575 6770.986 6784.784 

PFA 10103.516 8081.974 8434.942 8091.431 

PFA+I 10653.994 8404.126 8559.083 8410.545 

20 

8 

AFM 2387.151 2438.373 2395.171 2447.137 

AFM+I 2811.167 2698.942 2661.740 2695.280 

PFA 5208.531 4508.708 4661.685 4515.641 

PFA+I 5448.687 4676.877 4718.731 4649.611 

16 

AFM 5605.182 5687.103 5614.639 5696.560 

AFM+I 6109.225 5905.782 5833.515 5876.967 

PFA 10155.346 7978.861 8504.096 7988.318 

PFA+I 11099.476 8051.809 8196.360 8011.967 

32 

AFM 11602.318 11720.229 11612.225 11730.379 

AFM+I 12897.355 11902.381 11796.091 11832.277 

PFA 18625.785 14559.687 15284.133 14569.251 

PFA+I 20953.855 14522.347 14889.161 14501.333 

50 

8 

AFM 9270.245 9337.691 9279.925 9347.372 

AFM+I 10248.059 9472.805 9301.816 9334.143 

PFA 13377.323 10083.043 10708.542 10092.723 

PFA+I 14207.732 9690.340 9895.612 9638.426 

16 

AFM 16027.836 16120.648 16038.208 16130.733 

AFM+I 17820.780 16525.557 16326.445 16361.036 

PFA 19711.027 15708.241 16163.369 15718.614 

PFA+I 23266.309 16106.685 16374.813 15996.808 

32 

AFM 24554.830 24708.746 24565.897 24719.813 

AFM+I 27686.058 25585.924 25288.177 25326.152 

PFA 47960.208 38961.412 40581.090 38972.479 

PFA+I 52031.370 40238.448 40847.476 40038.740 
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5.2.3 Experiment 2: Real Student Data 
 
We conducted an experiment with 27 real-world dataset from Datashop across different 
domains (e.g., geometry, fractions, physics, statistics, English articles, Chinese 
vocabulary), educational levels (e.g., grades 5 to 12, college, adult learners), and settings 
(e.g., in class vs. out of class as homework). Table 9. shows the detailed information of 
each dataset. We evaluated all four models (AFM, PFA, AFMh, and PFAh) on each 
dataset. 
 

​
Table 9: Dataset Details, with content domain, grade, number of students, number 

of observations, and number of KCs. 
 

Dataset Domain Grade EdTech Student Obs KCs 

99 Geometry High ITS 95 17469 41 

115 Chinese College ITS 72 19008 248 

253 Geometry High ITS 41 14785 22 

271 Algebra Middle Tutor 69 1103 6 

308 Statistics College Online 52 4152 9 

372 English College Tutor 99 7128 19 

392 Geometry Middle ITS 123 41756 38 

394 English College Tutor 97 5773 13 

445 Fractions Elem Game 51 4327 21 

447 Language College Tutor 161 92067 46 

562 Fractions Elem Tutor 63 48739 102 

563 Fractions Elem Tutor 64 55407 54 

564 Fractions Elem Tutor 73 66728 65 

565 Fractions Elem Tutor 61 57948 78 

566 Fractions Elem Tutor 58 64025 4 

567 Fractions Elem Tutor 59 48501 236 

1007 CS College ITS 49 5063 4 

1330 Algebra Middle Tutor 2819 39369 24 

1387 Fractions Elem ITS 84 4032 34 

4555 Algebra High ITS 129 32125 26 
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5.2.3.1 Results 
 
Table 10 shows the BIC score of each model on each real student dataset. When 
comparing between AFM and PFA, PFA outperforms AFM in 17 out of 27 datasets, 
replicating prior evidence. However, when comparing among all four models, PFA is the 
best-fitting model in only one dataset (where the difference in BIC score is relatively 
small), while AFM is the best-fitting model in 4 datasets. AFMh and PFAh are the 
best-fitting models in 11 datasets each. Among the 17 datasets that PFA outperforms 
AFM, AFMh is the best-fitting model in 5 datasets. In fact, AFMh outperforms PFA in 24 
out of 27 datasets, in contrast to PFAh which outperforms PFA in only 13 out of 27 
datasets. Generally, the results demonstrate that the h models usually fit the data better 
compared to the standard models because they are the best-fitting models in 22 out of 27 
datasets. 
 

5.2.4 Discussion 

5.2.4.1 RQ 1: Confounding Parameters in PFA 
 
In the synthetic data experiment, we demonstrated the capability of AFMh and PFAh to 
capture the interactions between students and KCs, as those models outperform standard 
AFM and PFA when interactions are incorporated in the synthetic datasets. Particularly, 
PFAh effectively handles the confounding slopes in PFA because the added ηk captures 
interactions and the slopes capture different rates of learning from errors and successes. 
It is worth noting that PFA also outperforms AFM in all datasets with strong interactions 
where the generation method is not AFM without interaction, including AFM with 
interaction. In other words, PFA is a better fitting model when the generation method 
includes either student-KC interactions or independent slopes for errors and successes 
(or both), which attests that the PFA parameters are indeed confounded. 

This claim is further validated by the experiment with the real-student datasets. Of 
the 27 datasets, PFA produces better predictions than AFM on 17 of them – so, indeed, 
PFA is generally a more predictive model even if it is less interpretable than AFM. 
However, for 16 of these 17 datasets, either of the new more meaningful models, AFMh (5 
out of 17) or PFAh (11 out of 17), yields better predictions than PFA. In other words, PFA 
is rarely the best-fitting model when we compare it with the models that are designed to 
separately capture the student-KC interactions. Moreover, even though PFA outperforms 
AFM in the majority of the datasets, when compared with PFAh and AFMh, it is the best 
model only in one dataset (6%). On the contrary, AFM is the best model in four datasets 
(40%). Generally, the results also show that it is possible for a model to be both 
interpretable and produce better predictions, as evidenced by AFMh and PFAh. 
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5.2.4.2 RQ2: Meaningful Parameters 
 
We return to the claim that the significance of model parameters and their interpretability 
supersedes goodness-of-fit or prediction accuracy. The results with real-student datasets 
demonstrate that AFMh and PFAh are usually better fitting models compared to standard 
AFM or PFA, but the question remains: do these models hold meaningful interpretations, 
particularly concerning the h parameter?  

It is essential to distinguish between the  variable and its associated estimated ℎ
𝑖𝑘

parameters, . In a meaningful model, parameter estimates typically offer clear η
𝑘

interpretations. For instance, in AFM, the student in-tercept represents the student’s prior 
knowledge, while the KC intercept reflects the difficulty of the KC. But what insights does 

 offer? η
𝑘

 

 
Figure 5. SD of Residuals vs . The residuals and  are positively correlated  η

𝑘
η

𝑘
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Table 10. BIC scores of all 4 models on 27 real-student datasets. Light grey 
highlights a better fitting model between AFM and PFA. Dark grey highlights the 
best-fitting model among all 4. 
 

DS AFM PFA AFMh PFAh 

99 14568.873 14564.965 14506.087 14522.619 

104 6965.241 6978.620 6957.865 6987.335 

115 20752.969 20612.962 20722.641 20622.806 

253 14598.394 14585.407 14563.883 14585.933 

271 1277.940 1305.424 1283.093 1309.691 

308 3072.037 3115.442 3079.713 3120.485 

1980 6920.579 6944.683 6917.875 6951.888 

372 6283.754 6213.442 6207.816 6222.314 

1899 5541.982 5555.805 5534.952 5564.308 

392 29177.451 29005.429 29006.499 28994.564 

394 5580.649 5557.175 5550.959 5565.836 

445 4964.794 4971.661 4945.798 4978.275 

562 57459.694 56460.229 56410.123 56355.453 

563 58377.219 57007.220 56876.034 56840.820 

564 67622.473 66165.224 66035.163 65999.477 

565 60111.965 57395.729 57057.449 56987.445 

566 64040.573 63603.997 63459.030 63470.794 

567 49015.532 48010.910 48117.234 48009.947 

605 3355.982 3381.284 3361.952 3388.193 

1935 8034.666 8052.826 8027.439 8060.300 

1330 49749.563 49698.893 49623.904 49622.238 

447 87354.605 85040.246 84523.160 84499.571 

531 110398.180 106320.620 106032.060 105714.360 

1943 127785.500 120277.020 118027.780 117993.150 

1387 3298.273 3324.936 3300.726 3330.990 

1007 3720.511 3738.319 3688.687 3723.710 

4555 36957.404 36506.379 36365.781 36349.639 
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We investigated the relationship between  and the residuals, the difference between the η
𝑘

actual outcomes and the model predictions, for each student on corresponding KCs. 
Particularly, we investigated the ds99 dataset, where  ranges from -0.46 to 3.95 (μ = η

𝑘

1.12). Let’s first look at the  variables. When the KC has a strong variance for the ℎ
𝑖𝑘

interactions, which means some students are really strong while some students are really 
weak on the KC, we will also expect a high variance for  of that KC. In contrast, when ℎ

𝑖𝑘

the student-KC interactions have a weak variance,  will also be expected to have a low ℎ
𝑖𝑘

variance. As a result,  should be correlated with the variance of the corresponding η
𝑘

student-KC interactions. The result from the real-student data, as shown in Fig. 5, 
supports this hypothesis and shows that the variance of the residuals and  are in fact η

𝑘

correlated. 
 

 
Figure 6. Actual Outcomes vs Predicted Outcomes ( =0.16). When  is low, students η

𝑘
η

𝑘

are performing as expected from the model’s prediction. 
 

 
Consequently, the  can be interpreted as representing the variance of student-KC η

𝑘

interactions of the associated KC. In other words, when  is high, some students are η
𝑘

really good at the KC while other students are not. For example, number-letter is a KC 
with a relatively high  from the English Article Tutor. The number-letter KC describes a η

𝑘

skill that involves selecting an English article (i.e. ”a” or ”an”) to fill in the blank. Examples 
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of problems with number-letter KC are ”This is the first time that I’ve received ’99’ on a 
test.” or ”My name begins with ’L’.”. Some, perhaps otherwise struggling, students may 
learn this skill faster because they happen to focus on the sound of the letter in the 
following noun and whether it is a vowel or consonant sound. Other, perhaps otherwise 
good, students may learn this skill slower because they focus on the written letter and 
whether it is a vowel or consonant. This latter encoding sometimes works, so it is 
non-trivial to reject in early induction if a learner thinks of it, However, it produces errors 
and slows down learning overall. On the other hand, when  is low, most students are η

𝑘

relatively similarly good at that given KC, so the differences in their performance will 
depend on their overall characteristics, such as student intercepts (prior knowledge). The 
corollary of this finding is that when  is low, students are performing as expected from η

𝑘

the model’s prediction (Fig. 6) due to the small variances of residuals. Conversely, 
students are not performing as expected on the KCs when  is large (Fig. 7). η

𝑘

Taken together, these results demonstrate that the  models are not only better ℎ
fitting models, but their parameters are also meaningful and interpretable. To illustrate the 
usefulness of the meaningful interpretations, the above suggests a change in the KC 
model and associated instruction so that the number-letter KC becomes unambiguous 
and the variance of students’ learning is reduced. 

 

 
Figure 7. Actual Outcomes vs Predicted Outcomes ( =3.35). When  is high, students η

𝑘
η

𝑘

are not performing as expected from the model’s prediction. 
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5.2.5 Conclusion 
 
In this work, we argued that models with high prediction accuracy do not necessarily 
exhibit meaningful parameter estimates, which are important for scientific and practical 
applications. We demonstrated our claim in the context of PFA using both synthetic data 
and real-student data. The result supported our hypothesis that while PFA is a better 
fitting model compared to AFM, its parameters’ interpretation is ambiguous. Further, we 
proposed new models AFMh and PFAh, introducing a success-history variable ( ) ℎ

𝑖𝑘

designed to capture student-KC interactions, to the existing models. We evaluated their 
capabilities also with synthetic data and real-student data and demonstrated that the new 
models are both more interpretable and better fitting compared to PFA. 
 

5.3 Content Matters: A Computational Investigation into the 
Effectiveness of Retrieval Practice and Worked Examples4 
 
This work combines human experiment data with a computational model of human 
learning to explain why two apparently contradictory instructional techniques: sometimes 
taking tests (retrieval practice) helps students learn more, while other times studying 
worked-out examples works better [29, 66, 68, 69]. Previous proposals to address this 
contradiction, have proposed that problem complexity was the critical dimension that 
defined whether retrieval practice or worked examples would improve learning [28, 30]. 
However, as Karpicke et al. pointed out, this explanation does not capture all the evidence 
[31, 97]. For example, there is ample evidence that retrieval practice improves learning of 
complex texts [64, 65]]. An alternative hypothesis follows directly from the Knowledge 
Learning Instruction framework (KLI) [34]. KLI suggests that when learning facts all 
presented information is critical and should be encoded, whereas when learning skills, 
only a subset of the presented information is relevant to forming an effective generalized 
skill. This theoretical proposal is also consistent with procedural differences between 
research on retrieval practice and example study. Research on retrieval practice generally 
tests learners’ memory of the information presented in repeated trials, whereas research 
on worked examples generally uses different examples of the same concept in each trial. 

To test this hypothesis, Carvalho et al. [12] conducted an experiment using a basic 
mathematical domain (calculating the area of geometrical shapes) and found a significant 
interaction between the type of concept studied and the type of training. In this study, we 
use an AI model of human learning to examine the extent to which the memory 
mechanism influences human learning and generates such behavioral results similar to 
Carvalho et al.’s experiment. Specifically, we implemented two models, one without 
forgetting and another with forgetting. Our results indicate that the simulated learners with 

4   This work is adapted from Rachatasumrit et al. [59] published at AIED 2023 (Best Paper award). 
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forgetting match human results better and further analysis supports the proposed 
mechanism. Furthermore, this study provides further evidence for the utility of 
computational models of human learning in the advancement of learning theory. As 
proposed by MacLellan et al. [98], the use of such models enables a bridge between 
learning theory and educational data, allowing for the testing and refinement of 
fundamental theories of human learning. This study extends this concept by 
demonstrating the ability of these models to contribute to evaluating theories that can 
explain even surprising student learning phenomena, for which existing learning theories 
may offer inconsistent explanations. These computational models are an example of 
meaningful models that focus on the underlying mechanism, so this work demonstrates 
how meaningful models can lead to the discovery of scientific insights. 
 

5.3.1 Computational Model of Human Learning 
 
Computational models of human learning aim to precisely characterize how humans learn 
by constructing artificial (intelligent) systems that interact with simplified learning 
environments [83, 85, 99]. These models incorporate adaptive learning rules that allow the 
system to adjust based on interactions with its environment. One notable category of 
computational models of human learning is represented by simulated learners. Simulated 
learners are AI systems that learn to perform tasks through an interactive process, such 
as human demonstrations and feedback, usually with mechanisms that are intended to 
model how humans learn. In this work, we used the Apprentice Learner framework (AL), a 
framework for creating simulated learners based on different mechanistic theories of 
learning. A simulated learner, such as AL, exemplifies meaningful models by offering 
transparent mechanisms that align with human cognitive processes. This transparency 
enables these models to produce meaningful interpretations which lead to scientific 
insights, reinforcing the core thesis of meaningful models. Further details on AL and its 
operation can be found elsewhere [98, 99]; briefly, AL agents learn a set of production 
rules through an induction mechanism. The agents receive a set of states as input and 
search for the existing production rules that are applicable. If none of the existing 
production rules are applicable, AL agents will request a demonstration of a correct action 
and go through the induction process to construct a new rule for the current set of states. 
Later, when the agents encounter states that use the same production rule, the rule will 
get generalized or fine-tuned according to the examples they encounter. The learning 
process in AL is largely deterministic but some of the learning mechanisms have 
stochastic elements. For example, when multiple possible actions are possible, a 
stochastic probability matching process is used to select which one to execute. 

In previous work, AL agents have been shown to demonstrate human-like 
behaviors in learning academic tasks, such as fractions arithmetic, and multi-column 
addition [98]. Here, we used AL to test the mechanistic hypothesis that retrieval practice 
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involves memory and retrieval processes, whereas studying examples involves induction 
processes. To do this, we developed a memory mechanism in AL and compared the 
performance of AL agents learning facts and skills in a setup similar to previous empirical 
results with humans (see also Simulation Studies below). We compare learning outcomes 
following training of facts and skills, using retrieval practice (practice-only) or worked 
examples (study-practice). In our study, we employed the same subject matter, but we 
altered the learning focus between fact acquisition (e.g., “What is the formula to calculate 
the area of a triangle?”) and skill acquisition (e.g. “What is the area of the triangle 
below?”). 

Additionally, it is crucial to investigate the extent to which memory plays a role in 
this mechanistic hypothesis. From existing literature, it has been established that retrieval 
practice has a significant impact on memory. However, the implications of memory 
processes on the use of worked examples as a learning method are still unclear. For 
example, what is the potential impact of having perfect memory on these different modes 
of learning? Therefore, we also created a model without a forgetting mechanism and 
conducted the same experiment compared to the simulated learners with forgetting. 

Our hypothesis predicts that the simulated learners with forgetting will perform 
similarly to human results, with better performance when learning facts and skills through 
retrieval practice and worked examples, respectively. The simulated learners without 
forgetting are not expected to match human results, with retrieval practice being less 
effective than worked examples in the acquisition of both facts and skills in the absence of 
a memory mechanism. 
 

5.3.2 Simulation Studies 
 
This work replicates the findings of Carvalho et al.’s [12] experiment on the effect of 
retrieval practice and worked examples on the different types of knowledge. In their 
studies, participants were divided into four groups: practice-only training of facts, 
study-practice training of facts, practice-only training of skills, and study-practice of skills. 
The participants learned how to calculate the area of four different geometrical shapes 
(rectangle, triangle, circle, and trapezoid) through a training phase that consisted of 
studying examples and practicing memorizing formulas or solving problems. To replicate 
the findings, our pre/post tests and study materials were adapted from the original study. 
 

5.3.2.1 Model Modification 
 
To evaluate our hypothesis that memory and forgetting processes are necessary for a 
learning benefit of retrieval practice, we leveraged the AL framework to create two models 
of human learning: a model with forgetting and a model without forgetting (i.e. having a 
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perfect memory). Our memory mechanism implementation is based on Pavlik et al.’s 
memory model using ACT-R [54]: 
 

 𝑚
𝑛
(𝑡

1...𝑚
) = β + 𝑏

𝑘
+ 𝑙𝑛(

𝑘=1

𝑛

∑ 𝑡
𝑘

−𝑑
𝑘)

Eq 9. ACT-R memory model.​
 

In the simulated learners with forgetting, an activation strength ( ) depends on the base 𝑚𝑛
activation ( ), the strength of a practice type ( ), ages of trials ( ), and decay rates ( ). β 𝑏

𝑘
τ

𝑘
𝑑

𝑘

The decay rate for each trial depends on the decay scale parameter ( ), the intercept of 𝑐
the decay function ( ), and the activation strength of prior trials ( ): α 𝑚

𝑘−1

 

 𝑑
𝑘
(𝑚

𝑘−1
) = 𝑐𝑒

𝑚
𝑘−1 + α

Eq 10. Decay rate model. 
 
The activation strength of each production rule will be updated through the mathematical 
process described above, every time it is successfully retrieved both through 
demonstrations/examples or practice testing, but with different corresponding parameter 
values depending on the type of training. Then, the probability of a successful recall for a 
production rule will be calculated using the recall equation when simulated learners 
attempt to retrieve the rule. 
 

5.3.2.2 Study Design 
 
There were a total of 95 AL agents, each agent matching a human participant in [12], 
assigned to one of four conditions: practice-only training of facts (N = 27), study-practice 
training of facts (N = 22), practice-only training of skills (N = 18), and study-practice 
training of skills (N = 28). Each agent went through the same procedure as human 
participants. It completed 16 pretest questions, 4 study sessions, and then completed 16 
posttest questions after a waiting period. In the study session, The agents were divided 
into two groups: the practice-only group, where they were trained with one demonstration 
(worked example) followed by three practice tests, and the study-practice condition, where 
they alternated between both types of training. During the practice tests, the agents were 
only provided with binary corrective feedback without the correct answer. 
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5.3.3 Results and Discussion 

5.3.3.1 Learning Gain 
 
Similar to the behavioral study in Carvalho et al. [12], we analyzed posttest performance 
controlling for pretest performance, for each type of trained concept (skills vs. facts) and 
training type (practice-only, vs. study-practice). A two-way ANOVA was performed to 
analyze the effects of type of training and type of concept studied on learning gains, and 
the results showed that there was a statistically significant interaction between the effects 
of type of training and type of concept in the simulated learners with forgetting (F (1, 471) 
= 9.448, p = .002), but none was found in the simulated learners without forgetting (F (1, 
471) = −3.843, p = 1). Moreover, consistent with our prediction, simple main effects 
analysis showed that the type of training did have a statistically significant effect on 
learning gains in the simulated learners without memory (F (1, 471) = 7.364, p = 0.007), 
but not in the simulated learners with forgetting (F (1, 471) = 0.845, p = 0.359). On the 
other hand, the type of concept studied had a statistically significant effect on learning 
gains in both simulated learners with forgetting (F(1, 471) = 13.052, p < 0.001) and 
without forgetting (F(1, 471) = 29.055, p < 0.001). The similar pattern can also be seen in 
Fig. 8, comparing the learning gains for each condition between human participants (a), 
the simulated learners without forgetting (b), and the simulated learners with forgetting (c). 
The results indicate that the simulated learners with forgetting in a study-practice condition 
led to higher learning gains for skills than a practice-only condition (19.9% vs 15.8%), 
t(228) = −2.404, p = 0.009, but the opposite was true for facts (12.7% vs 15.6%), t(243) = 
2.072, p = 0.020. However, the simulated learners without forgetting led to higher learning 
gains for both skills (26.1% vs 24.4%), t(228) = 1.106, p = 0.135 and facts (21.6% vs 
20.0%), t(243) = −1.713, p = 0.044, in the study-practice condition. These results suggest 
that the simulated learners with forgetting better align with human learning patterns. 
 

5.3.3.2 Error Type 
 
To further investigate the extent to which memory plays a role in this mechanistic 
hypothesis, we analyzed the types of errors made by simulated learners with forgetting at 
posttest (since the simulated learners without forgetting cannot commit a memory-based 
error, it would be unnecessary to conduct the analysis). We classified errors into two 
categories: memory-based and induction-based. Memory-based errors occurred when an 
applicable production rule was learned but not retrieved in the final test, whereas 
induction-based errors occurred when incorrect production rules were found or none were 
found. Table 11 displays the proportion of each error category, broken down by knowledge 
type, at the posttest stage. In general, the simulated learners committed more 
induction-based errors than memory-based errors (56.2% vs 43.8%). Additionally, the 
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simulated learners in practice-only condition committed less memory-based errors 
compared to the ones from study-practice condition (41.8% vs 45.7%), but more 
induction-based errors (58.2% vs 54.2%), t(466) = −1.467, p = 0.072; even though, both 
groups exhibited similar proportions of both categories (82.7% vs 83.9% for 
induction-based errors and 17.3% vs 16.1% for memory-based errors) at pretest. 
 

 
Table 11. Types of errors (memory-based and induction-based) in posttests for each 

training condition. 
 

 Memory-based Induction-based 

practice-only 41.8% ± 27.9 58.2% ± 27.9 

study-practice 45.7% ± 30.3 54.2% ± 30.3 

overall 43.8% ± 29.3 56.2% ± 29.3 
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Figure 8. Learning Gains Comparison between type of training and type of concept. 
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5.3.4 Discussion 
 
Our results indicate that the results of simulated learners with forgetting align well with 
human results, with retrieval practice being more effective for facts and worked examples 
being more effective for skills. In contrast, for simulated learners without forgetting, worked 
examples are more beneficial for both facts and skills, as the lack of a memory 
mechanism does not allow for the benefits of retrieval practice to be realized. These 
findings support our hypothesis that, according to the KLI framework [34], retrieval 
practice improves memory processes and strengthens associations, making it beneficial 
for learning facts where all presented information is important. Conversely, studying 
examples improves inference processes and information selection for encoding, making it 
beneficial for learning skills where only a subset of presented information is relevant. 

Interestingly, the introduction of a memory mechanism in simulated learners with 
forgetting slightly decreases learning gains (22.2% for simulated learners without 
forgetting vs 13.7% for simulated learners with forgetting), t(948) = 9.409, p < 0.0001, but 
does not negate the benefits of worked examples over retrieval practice for skills. 
Furthermore, the breakdown of error categories revealed more induction-based errors 
than memory-based errors (59.1% vs 40.9%). This supports our hypothesis that skills 
learning involves more selectivity and inference, which are better aided by worked 
examples than by increased memory activation through retrieval practice. 

 

5.3.5 Conclusion 
 
In summary, this study has highlighted the utility of computational models of human 
learning in bridging the gap between learning theory and data, as demonstrated through 
examination of unexpected learning phenomena. We started with an unexpected learning 
phenomena (inconsistencies in the effects of retrieval practices and worked examples on 
learning), and a proposed plausible mechanism (a mechanism focusing on the selectivity 
of encoding of the tasks). Then, through the use of computational models, we were able to 
not only confirm but also examine this proposed learning theory in more depth. 
Additionally, the ability of these models to examine different learning theories and identify 
which one best fits human learning, as well as provide valuable insights into the learning 
process, highlights the potential of computational models in the field of education 
research. Our findings demonstrate the potential for these models to inform the 
development of more effective teaching strategies and guide future research in this 
area.This work also illustrates the benefits of a meaningful model, a simulated learner in 
this case, that goes beyond simple outcome prediction; by exposing its internal processes, 
it enables researchers to examine learning mechanisms and draw interpretations that lead 
to scientific insights.  
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Chapter 6​
Knowledge Tracing Models with Extended 
Interaction Terms 
 
 
Traditional statistical thinking has long treated every additional coefficient as a potential 
liability. Criteria such as BIC [96] impose a penalty on the log‑likelihood, so a model with 
more parameters must improve its fit significantly or be judged inferior. This penalty-based 
reasoning has shaped an intuition that simplicity and interpretability are two sides of the 
same coin. This conservative bias, combined with generally limited data availability in 
educational settings, has made knowledge tracing researchers commonly hesitant to 
introduce heavy parameterizations, such as student-KC interactions. However, as this 
thesis argues, the true value of a model lies in its ability to produce meaningful and 
actionable insights. As we have demonstrated in previous chapters, additional parameters 
can actually enhance the meaningfulness of a model by yielding interpretations that are 
theory-aligned and grounded in real-world constructs. 

Omitting interaction terms in the models and relying only on main effects may 
spare a few hundred parameters, but it also eliminates the capability to capture those 
interactions. These interactions unlock interpretability through personalization: for 
example, the model may reveal that a given learner consistently excels on a unit overall 
while stumbling on some specific KCs. Such fine‑grained patterns turn the model into a 
hypothesis‑generating engine, guiding educators toward targeted intervention, such as 
improving instructions to reduce ambiguity. Because each added term is grounded in 
students’ constructs, the extra complexity clarifies rather than obscures, and by capturing 
meaningful variation it often improves goodness‑of‑fit as well. 

Prior work such as PFA-h incorporated a proxy variable , a ratio of prior ℎ
𝑖𝑘

successes, that indirectly captures aspects of student-KC interactions. While this 
approach has been demonstrated to improve upon the original PFA in both goodness-of-fit 
and interpretability, it remains a coarse approximation. Moreover, preliminary study using 
synthetic datasets revealed issues with false positives in the PFAh model. Prior work [59] 
suggests that a given model should be the best performing model (lowest BIC) when the 
synthetic datasets align with its structure. Specifically, PFAh should perform better in 
datasets generated with two distinct learning rates for learning opportunities starting with 
successful or unsuccessful first attempts, whereas AFMh is expected to outperform in 
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scenarios with a single learning rate. Table 12 presents a comparison of model 
performance on data simulated using a single learning rate versus data simulated using  
separate learning rates for learning opportunities starting with successful versus 
unsuccessful first attempts. While PFAh indeed performed best in scenarios with two 
distinct learning rates, achieving the lowest BIC in 21 out of 27 cases (77.8%), it 
unexpectedly also outperformed AFMh in 19 out of 27 datasets (70.3%) under single-rate 
conditions. These findings demonstrate a limitation in the proxy variable approach utilized 
by PFAh, suggesting it may not adequately address confounding issues in PFA slopes. To 
overcome this limitation, we introduced explicit student-KC intercept parameters, sampled 
from a normal distribution, designed to directly capture the varied patterns of student 
performance across different knowledge components, thus providing a more accurate 
reflection of authentic educational scenarios.  

Rather than relying on historical aggregates, the student-KC interaction 
formulation captures how different students respond to different KCs in distinct ways. The 
explicit student-KC interaction parameters enable the model to surface more interpretable 
patterns, such as which skills are consistently difficult for subgroups of students, and 
facilitates richer diagnostic feedback and hypothesis generation. These interaction 
parameters may also take away the confound producing the false positives in Table 12 so 
that the success and failure learning rate estimates are more trustworthy. We also directly 
challenge the assumption that adding a large number of parameters to knowledge tracing 
models is inherently undesirable. We demonstrate that when these parameters are 
carefully selected, particularly when they are theory-driven and semantically meaningful, 
they can enhance interpretability and yield more useful, actionable insights. Importantly, 
this added complexity does not necessarily degrade model fit; in many cases, it performs 
comparably to more constrained models while offering greater transparency. Particularly, 
our research questions are: (1) Do the additional student–KC interaction parameters harm 
goodness-of-fit? (2) Do they improve the interpretability and practical usefulness of the 
model? 
 

 
​
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Table 12: BIC scores of all AFMh and PFAh on synthetic shadow datasets. Light 
grey highlights the best-fitting model. Green letters indicate the correct best-fitting 
model, and red letters indicate incorrect ones. PFAh incorrectly fits better than 
AFMh on simulated data with student-KC interactions and a single slope (left 
columns). 

 

Dataset 
1-Slope 2-Slope 

AFMh PFAh AFMh PFAh 

99 15366.19864 15088.76773 15308.14363 14939.32591 

104 6941.984143 6882.42514 6965.888966 6836.709074 

115 22047.70432 22042.16587 21822.9575 21673.25315 

253 15242.26575 14963.30213 14920.88224 14508.15749 

271 1367.028756 1376.242096 1339.102362 1358.980815 

308 3163.173181 3184.474983 3186.739676 3191.725551 

1980 7236.983122 7136.024606 7380.119404 7207.101123 

372 6766.625326 6696.207466 6953.461395 6551.603659 

1899 5967.097015 5940.366942 5831.453676 5792.351656 

392 33304.18309 32579.90588 33244.59668 31766.27396 

394 5942.727325 5898.638637 5903.435371 5774.353689 

445 5240.115383 5190.359332 5125.309633 5072.476659 

562 57787.44912 56610.90243 56254.36293 53664.00318 

563 59340.22199 58027.52844 57541.61146 54371.58408 

564 68197.68778 66601.51491 65604.86612 62315.13861 

565 62098.36106 60882.94146 58357.49018 54329.66586 

566 63558.84719 62193.96991 61979.39471 59431.69133 

567 51439.65416 50884.2949 50776.86447 48890.24718 

605 4133.607239 4092.715099 3942.951703 3912.214081 

1935 8431.453495 8416.575083 8496.135018 8435.192653 

1330 49556.72307 49116.32011 49869.50265 49295.53863 

447 91613.9094 89467.10344 90561.69605 83628.85426 

531 112678.8035 109665.2872 107142.9504 96863.82479 

1943 132585.5578 129639.0037 126958.1042 116269.7656 

1387 3714.840565 3696.946979 3704.351411 3704.365121 

1007 4051.29575 4021.622167 4118.819954 4042.392068 

4555 36747.60412 36106.78892 35310.5411 33771.65147 
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6.1 Extended Models with Interaction Terms 
 
Unlike AFMh and PFAh, which utilize the success-history variable ( ) as a proxy for ℎ

𝑖𝑘

student-KC interactions, we propose directly modeling student-KC interactions. 
Specifically, we introduced unique student-KC intercepts ( ) to explicitly capture the λ

𝑖𝑘

interaction between student i and KC k. These intercepts were introduced as random 
effects to reduce the chance of overfitting and integrated into the AFM and PFA models, 
creating interaction-based extensions, AFMi and PFAi. The equations for AFMi (Eq. 11) 
and PFAi (Eq. 12) are provided below. The AFMi model gives the probability , in 𝑝

𝑖𝑗

log-odds, that a student i will get a problem step j, with related KCs (k) specified by , 𝑞
𝑗𝑘

correct based on the student’s baseline ability ( ), the baseline difficulty of the related θ
𝑖

KCs on the problem step ( ), the learning rate of the KCs ( ), and the strength of β
𝑘

γ
𝑘

student-KC interaction ( ). PFAi is an extension of the AFMi model that splits the number λ
𝑖𝑘

of practice opportunities ( ) into the number of successful opportunities ( ), where 𝑇
𝑖𝑘

𝑠
𝑖𝑘

students successfully complete the problem steps, and the number of failed opportunities 
( ), where students make errors. Both ( ) and ( ) have their own slopes,  and : 𝑓

𝑖𝑘
𝑠

𝑖𝑘
𝑓

𝑖𝑘
γ

𝑘
ρ

𝑘

 

 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑(𝑞

𝑗𝑘
β

𝑘
+ 𝑞

𝑗𝑘
γ

𝑘
𝑇

𝑖𝑘
+ 𝑞

𝑗𝑘
λ

𝑖𝑘
)

Eq 11. Additive Factors Model with Interactions (AFMi) 
 
 

 𝑙𝑜𝑔(
𝑝

𝑖𝑗

1−𝑝
𝑖𝑗

) = θ
𝑖

+
𝑘
∑(𝑞

𝑗𝑘
β

𝑘
+ 𝑞

𝑗𝑘
γ

𝑘
𝑠

𝑖𝑘
+ 𝑞

𝑗𝑘
ρ

𝑘
𝑓

𝑖𝑘
+ 𝑞

𝑗𝑘
λ

𝑖𝑘
)

Eq 12. Performance Factors Analysis with Interactions (PFAi)  
 
 
We conducted two experiments, on synthetic data and real student dataset, to evaluate 
the performance and interpretations of newly proposed models (AFMi and PFAi) 
compared to the standard models (AFM and PFA) and models from prior work (AFMh and 
PFAh). We used Bayesian information criterion (BIC) as the primary metric to compare 
model goodness-of-fit. In our experiments, we leveraged 27 real-world datasets from 
Datashop across different domains (e.g., geometry, fractions, physics, statistics, English 
articles, Chinese vocabulary), educational levels (e.g., grades 5 to 12, college, adult 

69 



 

learners), and settings (e.g., in class vs. out of class as homework). Table 9. shows the 
detailed information of each dataset. 
 

6.2 Synthetic Data Experiment 
 
In this experiment, we aim to validate the effectiveness of our newly proposed model in 
capturing the interaction dynamics between students and KCs and in hopes of eliminating 
the false positives produced by the PFAh model (see Table 12) so that the success and 
failure slopes are more scientifically interpretable. We evaluate the model on synthetic 
datasets designed with known properties. We constructed four synthetic datasets based 
on two key factors: (1) whether there are different learning rates for successful and failed 
opportunities, and (2) whether student-KC interactions are present. In the model, these 
two factors are represented by the number of KC slopes and the inclusion or exclusion of 
student-KC intercepts, forming a 2x2 experimental design. To reflect the learning rate 
factors in our synthetic datasets, we used two generating models: AFM, which assumes a 
uniform learning rate (i.e., a single slope), and PFA, which assumes distinct learning rates 
for successful and unsuccessful student attempts (i.e., two slopes). For datasets with 
student-KC interactions, we introduced student-KC intercepts generated by sampling from 
a normal distribution to capture the varied performance patterns students exhibit across 
different KCs, mirroring authentic educational scenarios. 

Rather than generating data completely from scratch, we strive for our synthetic 
dataset to accurately reflect the variability inherent in real student data. To achieve this, 
we created a synthetic “shadow” dataset by resampling student outcomes based on real 
transaction data. This method aims to ensure that our synthetic dataset authentically 
represents the variability and complexity observed in real-world student interactions. Our 
approach to generating synthetic shadow datasets involved three concise steps: (1) 
collecting students’ and KCs’ parameters from the real student dataset with AFM, (2) 
predicting error rates for each transaction using the corresponding generating models, 
and (3) sampling synthetic outcomes for each transaction in the synthetic dataset based 
on these predicted error rates. In step 2, the generating models depend on the factors 
discussed above, resulting in four variations for each dataset: 

 
(a) Single KC slope with interaction 
(b) Single KC slope without interaction 
(c) Two KC slopes with interaction 
(d) Two KC slopes without interaction 
 

Since KC parameters were derived exclusively using AFM, a modification was necessary 
for the two-slope conditions. To clearly distinguish between success and failure slopes 
and avoid ambiguity relative to the single-slope condition, which frequently occurred when 
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directly obtaining two slopes using PFA, we applied an offset derived from the average 
difference between success and failure slopes observed in PFA across all KCs in 27 real 
student datasets. Specifically, the success and failure slopes were generated by 
respectively adding and subtracting this offset (≅1.9) to the single KC slope from AFM. 
This adjustment provided sufficient differentiation between the slopes for robust 
interpretation. In total, this process resulted in 108 distinct datasets (4 variations x 27 
original datasets), and we evaluated all 6 models on each dataset to assess their 
performance. We hypothesize that in variations with student-KC interactions, the newly 
proposed interaction models (AFMi and PFAi) will be the best performing models. On the 
other hand, in variations without student-KC interactions, we expect the standard models 
to outperform the other models. 
 

6.2.1 Results and Discussion 
 
In contrast to the  false-positive issues observed in the PFAh model (see Table 12), Table 
13 presents the comparison between AFMi and PFAi on the same problematic shadow 
datasets, a variation with a single learning rate and student-KC interactions. Whereas 
earlier analyses revealed unexpectedly better performance by PFAh in single learning rate 
conditions, the current results suggest that these false-positive occurrences have been 
substantially reduced. Consistent with our hypothesis, AFMi demonstrated better 
performance compared to PFAi across all evaluated datasets. 

Next, we compare the newly proposed interaction models with the   models from 
our prior work and standard models. Table 14 shows comparison among AFM-based 
models (AFM, AFMh, and AFMi) on the dataset with a single learning rate. Aligned with 
our hypothesis, the results show that AFM consistently outperforms the other models in all 
dataset variations without student-KC interactions. Also, in datasets where interactions 
were explicitly incorporated, AFMi consistently outperformed both AFM and AFMh. This 
finding indicates that AFMi might be more effective in capturing student-KC interactions 
compared to the other models, including AFMh. Similarly, Table X compares the 
PFA-based models (PFA, PFAh, and PFAi) across dataset variations with two learning 
rates. Consistent with our hypothesis, PFA performed best in all variations without 
student-KC interactions. However, in variations with explicitly incorporated student-KC 
interactions, PFAi demonstrated superior performance, outperforming PFA and PFAh in 
15 out of 22 datasets (68.2%), while PFA and PFAh performed best in 4 and 3 datasets 
respectively. 

Furthermore, Table 15 examines the average differences in BIC scores between 
the best-performing model and the second-best model, grouped by the best-performing 
model. Raftery et al. suggests that a BIC difference of 10 corresponds to a Bayes factor of 
approximately 150, which represents very strong evidence of better model fit [63]. The 
results show that, when interaction models (PFAi and AFMi) achieve the best 
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performance, the average BIC differences are notably large (228.27 for PFAi and 761.39 
for AFMi), whereas the average differences when other models perform best are less than 
10 

The synthetic shadow datasets experiments showed that extending the model with 
student–KC interaction terms, despite the substantial increase in parameters, did not 
diminish goodness‑of‑fit and frequently outperformed simpler standard models. However, 
as emphasized throughout this thesis, while fit metrics are valuable for assessing how well 
a model represents data, the primary benefit for stakeholders often comes from the 
meaningful interpretations. In the next section, we further evaluate the newly proposed 
interaction models on real student datasets to determine their effectiveness in producing 
meaningful interpretations and actionable insights. 
 
 
Table 13: BIC scores of AFMi and PFAi on synthetic shadow datasets with a single 

learning rate and interactions. Light grey highlights the best-fitting model. 
 

Dataset AFMi PFAi Dataset AFMi PFAi 

99 14917.85480 14967.41932 563 57462.86757 57544.34243 

104 6806.93481 6841.28230 564 65866.81201 65992.01640 

253 14712.44342 14755.18338 565 60275.19152 60362.41424 

271 1358.11588 1376.26527 566 61189.52979 61296.21893 

308 3111.14526 3158.13974 567 50767.44313 50845.24097 

1980 7088.74298 7109.31427 605 4008.47046 4041.44404 

372 6665.41712 6695.84614 1935 8279.11886 8314.79350 

1899 5926.42428 5940.99247 1330 49320.58286 49163.23575 

394 5861.17717 5888.47463 1387 3689.56708 3699.59428 

445 5144.25429 5168.92526 1007 3955.77742 3987.69884 

562 56287.64314 56384.60297 4555 35568.56610 35600.87201 
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Table 14: BIC scores of all AFM-based models on synthetic shadow datasets with a 
single learning rate and interactions. Light grey highlights the best-fitting model. 

 

Dataset AFM AFMh AFMi 

99 16003.16932 15366.19864 14917.85480 

104 7112.60045 6941.98414 6806.93481 

253 16212.81337 15242.26575 14712.44342 

271 1379.17088 1367.02876 1358.11588 

308 3182.18868 3163.17318 3111.14526 

372 6968.71957 6766.62533 6665.41712 

392 34656.42379 33304.18309 32153.12604 

394 6072.78139 5942.72733 5861.17717 

445 5360.97343 5240.11538 5144.25429 

447 96662.45519 91613.90940 88519.38245 

562 60392.25056 57787.44912 56287.64314 

563 63397.69287 59340.22199 57462.86757 

564 72608.01544 68197.68778 65866.81201 

565 65594.58038 62098.36106 60275.19152 

566 68430.13262 63558.84719 61189.52979 

567 52988.08207 51439.65416 50767.44313 

605 4162.23232 4133.60724 4008.47046 

1007 4170.74638 4051.29575 3955.77742 

1330 50446.41912 49556.72307 49320.58286 

1387 3774.64843 3714.84057 3689.56708 

1899 6047.83391 5967.09702 5926.42428 

1935 8609.99915 8431.45350 8279.11886 

1980 7481.29472 7236.98312 7088.74298 

4555 38920.36348 36747.60412 35568.56610 
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Table 15: BIC scores of all PFA-based models on synthetic shadow datasets with 
two learning rates and interactions. Light grey highlights the best-fitting model. 

 

Dataset PFA PFAh PFAi 

99 15016.74540 14939.32591 14797.27621 

104 6863.33347 6836.70907 6823.25745 

253 14631.64216 14508.15749 14320.15647 

271 1357.55663 1358.98082 1364.00006 

308 3188.54034 3191.72555 3164.50216 

1980 7212.21023 7207.10112 7184.86711 

372 6546.91785 6551.60366 6553.56912 

1899 5788.51764 5792.35166 5797.01208 

394 5778.14498 5774.35369 5774.47947 

445 5074.05619 5072.47666 5054.71567Δ 

562 53799.38982 53664.00318 53491.40941 

563 54685.72824 54371.58408 53833.03310 

564 62569.01138 62315.13861 61827.28138 

565 54652.72596 54329.66586 53959.71413 

566 59936.52909 59431.69133 58574.47914 

567 48953.31052 48890.24718 48890.75109 

605 3926.57770 3912.21408 3874.75999 

1935 8476.61787 8435.19265 8343.33583 

1330 49315.54300 49295.53863 50482.33383 

1387 3698.62143 3704.36512 3706.84331 

1007 4062.96857 4042.39207 4005.86134 

4555 34109.20281 33771.65147 33347.21865 
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Table 16. Average BIC differences for each winning model type. 
 

Best Model Δ BIC Best Model Δ BIC 

PFA 7.267 AFMi 761.394 

PFAh 6.878 AFM 8.203 

PFAi 228.265 AFMh N/A 

 
 

6.3 Real Student Data Experiment 
 
Having established that the models behave as intended in the synthetic experiment, we 
applied the newly proposed interaction models to real student datasets to further evaluate 
their capability to produce meaningful interpretations and insights. We applied four models 
(AFM, PFA, AFMi, and PFAi) across 27 original student datasets without any 
modifications. Model performance was assessed and compared using the BIC. It should 
be emphasized that the synthetic data experiment demonstrated how the best performing 
model is usually determined by the underlying structure of the dataset, particularly the 
uniformity of learning rates and the presence of student-KC interactions in our case. For 
example, when AFM is the best performing model, the dataset likely shows little distinction 
between learning from successes and learning from errors (i.e. success and failure 
slopes) and only weak student–KC interaction effects. Conversely, datasets in which PFAi 
emerged as the best model typically implied asymmetry between success and failure 
slopes and strong student–KC interactions. Given that these factors are not controlled in 
the real student data, fit metrics like BIC serve as diagnostic tools rather than the primary 
objective. and the true value of the interaction models lies in the nuanced and informative 
interpretations they enable. 
 

6.3.1 Result and Discussion 
 
Figure 9 summarizes the number of datasets in which each model achieved the best 
performance based on a goodness-of-fit metric (BIC). Interaction models generally 
provided a better fit, with PFAi being the best performing model in 11 datasets and AFMi in 
6 datasets. In comparison, the standard AFM model performed best in 7 datasets, while 
the standard PFA model was optimal in 3 datasets. Table Y provides a detailed 
breakdown, including specific BIC scores for each model-dataset pair.  
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Figure 9. Number of datasets in which each model achieved the best performance. 

 
 
Experiments with synthetic shadow datasets showed that adding student–KC interaction 
terms, despite markedly increasing parameter count, did not harm goodness‑of‑fit and 
even outperformed the simpler baseline models often. A similar trend appears in the 
real‑student datasets; however, the question remains whether interaction models yield 
meaningful interpretations. 

There is an unresolved debate in learning science on whether learners benefit 
more from successes or failures during practice. Metcalfe et al. demonstrated that making 
incorrect guesses followed by clear feedback leads to stronger learning than simply 
reviewing correct answers [47]. In contrast, research on errorless learning consistently 
suggests that avoiding mistakes altogether can result in better learning outcomes [9]. Prior 
studies on this topic typically involve limited numbers of participants and are restricted to 
single-domain laboratory settings. Since we have demonstrated that student-KC 
interaction parameters remove a known confound from the PFA’s success and failure 
slopes, we can systematically investigate this question with a large number of datasets. 
From the result with 27 real student datasets, we found 14 datasets where PFA and PFAi 
are best fit models, and among these datasets, success slope is greater than failure slope 
in 12 of them (Table 17). Among them, the average success slope is 0.21 and the average 
failure slope is 0.04. Across all the datasets, the average success slope is 0.20 and the 
average failure slope is 0.06. These results provide support for the hypothesis that 
students learn more from a first-attempt success than a first-attempt failure followed by 
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feedback. This result demonstrates the benefit of meaningful models for contributing to 
scientific discovery. 
 

 
Table 17: Success slope is greater than failure slope in 12 out of 14 datasets 

where PFA or PFAi are best fit models. 
 

Datasets Best Model Success > Failure 

115 PFA ✓ 

372 PFA ✓ 

392 PFAi ✓ 

447 PFAi ✓ 

531 PFAi ✓ 

562 PFAi ✓ 

563 PFAi ✓ 

564 PFAi ✕ 

565 PFAi ✓ 

566 PFAi ✓ 

567 PFAi ✓ 

1330 PFA ✕ 

1943 PFAi ✓ 

4555 PFAi ✓ 

 
 
 

Another straightforward interpretation of student‑KC intercepts is the degree to 
which a learner’s performance on a particular KC deviates from expectations given their 
overall performance from student's intercept and KC’s parameters. If a KC is overall 
harder, all students will have lower intercept for that KC. Similarly, if a student is 
particularly well-performing, they will have higher student intercepts, which affect all KCs. 
For example, a strong student-KC interaction might reveal that a particular student, 
otherwise well-performing in a geometry course, consistently underperformed on a 
trapezoid-related KC. This observation can lead to a personalized intervention, such as 
assigning targeted practice on trapezoid‑area problems or offering an alternative 
explanation for the student.  

77 



 

Table 18: BIC scores of all 4 models on real student datasets with two. Light 
grey highlights the best-fitting model. 

 

Dataset AFM PFA AFMi PFAi 

99 14568.87265 14564.96489 14516.59703 14542.66767 

104 6965.24099 6978.62004 6962.66504 6983.45562 

115 20752.96889 20612.96170 20635.73836 20622.63643 

253 14598.39431 14585.40750 14561.31853 14583.56381 

271 1277.93983 1305.46005 1284.21386 1312.24741 

308 3072.03686 3115.44179 3080.04133 3122.33743 

372 6283.75412 6213.44189 6233.02525 6219.84040 

392 29177.45122 29005.42867 29039.06492 28995.43929 

394 5580.64917 5557.17483 5552.41225 5565.11122 

445 4964.79420 4971.66119 4949.02413 4978.87248 

447 87354.60486 85040.24621 85066.02784 84810.49712 

531 110398.18930 106320.62840 105974.78640 105680.95600 

562 57459.69442 56460.22911 56728.80081 56413.04766 

563 58377.21857 57007.22005 57158.78302 56898.31646 

564 67622.47256 66165.22368 66246.13668 65875.75440 

565 60111.96550 57395.72894 57326.20781 57115.50833 

566 64040.57265 63603.99746 63835.84921 63602.78869 

567 49015.53231 48010.90971 48362.67831 48001.16786 

605 3355.98173 3381.28360 3361.38202 3389.46702 

1007 3720.51097 3738.31900 3697.51079 3727.27133 

1330 49749.56307 49698.89304 49760.13279 49709.46276 

1387 3298.27292 3324.93566 3305.94790 3333.04327 

1899 5541.98172 5555.80526 5545.67621 5564.30834 

1935 8034.66627 8052.82604 8043.24955 8061.88567 

1943 127785.50560 120277.02760 119222.31420 118483.13860 

1980 6920.57900 6944.68258 6922.61692 6953.47619 

4555 36957.40390 36506.37913 36459.69693 36396.25938 
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Beyond analyzing single student–KC pairs, the interaction intercepts can be also 
aggregated along either dimension to yield higher‑level insights. Aggregating across KCs 
for an individual student can highlight the idiosyncratic pattern of the student. Aggregating 
across students for a given KC exposes an insight on the KC. For example, a high 
variance of the intercepts indicates that some learners excel while others lag on that KC 
regardless of overall ability. In other words, high‑achieving students may encounter 
unexpected difficulty with the KC, whereas lower‑performing students can sometimes 
master it more rapidly. This implies potential ambiguity or prerequisite gaps in the item 
design. Conversely, a low variance suggests that most students perform as expected from 
their overall proficiency, implying a well‑scaffolded, unambiguous skill. Together, these 
aggregates translate raw parameters into actionable information for curriculum refinement 
and targeted support 

 
 

 
 

Figure 10. A problem tagged with skill1*interpbarchart KC. 
 
 

Within our real-student dataset, two cases illustrate how the variance of student–KC 
interaction intercepts signals the clarity—or ambiguity—of a skill. DS115 
(Chinese‑character domain) contains KCs that map single characters to their meanings or 
corresponding sound; the task is essentially factual recall, which are less likely to have 
strong individual variabilities. The maximum standard deviation across student intercepts 
is just 0.018, indicating that nearly all students perform in line with their overall proficiency 
and ambiguity is unlikely. In contrast, DS308 (statistics domain) shows an average 
standard deviation of 0.105. Consider two representative KCs below. The problem with 
skill1×interpBarChart (SD=0.046) asks learners to identify the apparent difference 
between two bar charts, whereas a problem with skill1×m1o5 (SD=0.105) is less obvious 
and requires judging whether a point is an “outlier,” a notion open to interpretation. 
Moreover, some of the problems with this particular KC are true/false items which 
encourages guessing and yields wide variability—some high‑achieving students might 
misinterpret the concept, while lower‑achieving students may answer correctly by chance. 
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High variance thus flags KCs whose wording or instructional framing needs revision; 
reducing ambiguity should narrow the spread of interaction effects and promote more 
consistent learning. 

 
 

 
 

Figure 11. A problem tagged with for skill1*m1o5 KC. 
 
 
Prior work has used the PFA‑h η parameter (cumulative prior success ratio), which can be 
interpreted as a proxy for a variance of student–KC interactions. While useful, η is still an 
approximation. With PFAi, we can calculate the actual variance of student-KC interactions 
for each KC. Figure 12 plots the absolute η values against the standard deviations of 
student‑KC interaction intercepts derived from PFAi, and the correlation  between them is 
 0.57, which indicates a moderately strong association. Beyond treating η� as a rough 
proxy, the full student-KC interaction intercepts enables us to pinpoint students exhibiting 
the largest KC‑specific deviations and to search for common characteristics that could 
inform targeted interventions. For example, in the English‑article dataset several KCs 
have significant variance. After discussion with the domain expert who collected the 
dataset, they hypothesized that this pattern is attributed to first‑language transfer: learners 
whose native language lacks grammatical articles struggle considerably more than those 
whose language includes them. Unfortunately, the dataset contains only unique student 
IDs without more information, we cannot directly validate this hypothesis. 

Taken together, our findings underline the importance of meaningful models that 
the real value of a model lies in the insight it provides, not in how few parameters it has or 
how well it scores on a single fit metric. When the extra terms we add are tied to 
meaningful learning concepts, such as the way each student interacts with each skill, they 
maintain solid predictive accuracy while opening a clearer window into student thinking. In 
this holistic view, the model stops being just a score‑predictor and becomes a practical 
tool that helps teachers spot problems, tailor support, and improve the curriculum.   
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​ Figure 12. Scatter plots between PFAh’s η and PFAi’s interaction intercept SD.  
 
 

6.4 Conclusion 
 
This chapter shows that enriching knowledge‑tracing models with carefully chosen 
student-KC interaction terms produces models that are both empirically sound and 
pedagogically meaningful. Through experiments on synthetic shadow dataset and 
real-student datasets, we found that interaction models, like AFMi and PFAi match or 
exceed the performance of their simpler based models while offering a far richer 
interpretive capability. Crucially, our findings suggest that parameter count alone is 
irrelevant when extra terms capture meaningful learning structure, they do not hurt, and 
often help with interpretations. 

These results reinforce the thesis of Meaningful Models: interpretive value, not 
parameter count or predictive metrics, should guide model choice. When additional 
parameters are theory-aligned and semantically transparent, they help the model to be 
more meaningful and lead to actionable insights that are useful for stakeholders.  
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Chapter 7​
Conclusion 
 
 
In this thesis, I attempt to rethink the model usability, especially in the context of 
Educational Data Mining (EDM) from a human‑centered perspective. It advanced two 
main claims. First, a model’s value lies in what stakeholders can do with it—trust it, act on 
it, or learn from it—not in marginal gains on fit statistics. Second, making a model 
interpretable is necessary but insufficient; only when interpretations are actively examined 
and aligned with domain reasoning do they become meaningful. Building on the literature 
on interpretable machine learning, I conceptualize the notion of "meaningful models", 
interpretable models which are actively interpreted for meaningful interpretations that lead 
to practical values, reinforced by three key properties: simulatability, 
human-understandable representations, and alignment with human reasoning and domain 
theory. Researchers need to ensure that their variables and parameters are aligned 
one-to-one to causal constructs. Researchers also must validate that the results of their 
models are aligned with domain theory, potentially using synthetic data. 

To support these claims, the thesis contributed both conceptual and empirical 
work. Conceptually, it introduced the notion of a meaningful model and articulated how the 
three properties jointly enable practical value—trust‑building, actionable insights, and 
scientific discovery. Empirically, it shows  through multiple examples of building 
meaningful models that relying solely on performance metrics can mislead model 
selection. Across synthetic and real‑world datasets, these studies demonstrated that 
models designed for interpretability can yield relatively good fit metrics or sometimes 
exceed their less interpretable alternatives while offering more values through their 
interpretations. 

High prediction accuracy has long been the focus of EDM research, but without 
meaningful interpretation, a model has limited value. To be useful to stakeholders, it is 
crucial that we prioritize interpreting models to extract insights that can lead to 
improvements in practical applications or contribute significantly to scientific discoveries. 
For example, in the learning sciences, it is critical that interpretations result in refining 
pedagogy or producing insights about learning. Without tangible scientific discovery or 
practical recommendation, our best models cannot be considered meaningful and are 
effectively useless. By foregrounding meaningful interpretation alongside stakeholder 
needs, this thesis offers conceptual guidance and examples for building models that both 
perform well and make a genuine difference through their interpretations. I hope future 
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work embraces this broader perspective so that advances in statistical and machine 
learning models  and machine learning models translate into real benefits for 
stakeholders. 
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