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CARNEGIE MELLON UNIVERSITY

Abstract
Human-Computer Interaction Institute

Computational Design of Morphing Looped Graph Structures

by Jianzhe GU

Over the past few decades, robotics has undergone a transformative evolution, yet cre-
ating machines capable of dramatic volumetric shape changes while maintaining high struc-
tural stability and precision remains elusive. Among various approaches, truss robots and
tensegrity robots - which we term looped-graph structures (LGSs) - offer unique advantages
through their architecture of nodes and length-changeable edges. These structures lever-
age their graph topology with loops, where edges can circle back to their starting nodes,
to achieve extensive degrees of freedom and distinctive shape-changing capabilities while
maintaining structural stability through their distributed network.

LGSs face two fundamental challenges that have limited their practical implementation.
First, as their complexity grows exponentially with size, they encounter the Curse of Dimen-
sionality (CoD), making both physical fabrication and control system design increasingly
intractable. Second, the discrete nature of their graph topology and categorical parameters
like actuator grouping assignments make traditional continuous optimization approaches in-
effective, particularly as the design space grows geometrically with robot size.

We present a systematic progression of solutions that addresses both challenges. To
tackle the CoD in physical implementation, we introduce an actuator grouping mechanism
inspired by biological muscle synergy, where complex movements emerge from coordinated
muscle groups rather than individual control. This enables the fabrication of truss robots with
over 100 actuators controlled by just a few modules, dramatically reducing system complex-
ity while maintaining shape-changing capabilities. Building on this foundation, we develop
an interactive editor with real-time simulation that bridges the gap between conceptual design
and physical implementation.

For complex structures capable of multiple tasks, we first implement a customized genetic
algorithm that navigates the discrete graph space while respecting connectivity constraints.
However, as truss complexity scales up, this discrete optimization becomes inefficient in
the geometrically increasing search space. To overcome these limitations and enable topol-
ogy generation, we develop two complementary approaches using variational auto-encoders
(VAE) that transform the discrete design space into continuous latent representations for more
efficient optimization. We introduce a novel truss grammar that represents designs through
sequential tokens and parameters, enabling translation between discrete structures and con-
tinuous latent spaces. Our graph attention network approach achieves 99.925% accuracy in
reconstructing actuator groupings, while our long short-term memory network successfully
generates complete truss topologies and parameters, creating the first end-to-end framework
for optimizing both discrete topology and continuous parameters of truss robots.

Through demonstrations ranging from quadrupedal locomotion to shape-shifting struc-
tures, we show that our framework enables the practical implementation of complex mor-
phing LGSs. By bridging the gap between theoretical capability and physical realization,
this work establishes foundations for a new generation of adaptive robots that can reshape
themselves to meet diverse task requirements.

HTTPS://WWW.CMU.EDU/
https://hcii.cmu.edu/




v

Acknowledgements
This research journey has been simultaneously challenging and enriching, filled with

challenges, discoveries, and meaningful collaborations. It has been enriched by the guidance,
support, and friendship of numerous individuals who have contributed to both my research
and personal interests.

First and foremost, I would like to express my deepest gratitude to my advisor, Professor
Lining Yao, and co-advisor, Professor Ding Zhao. Their patience, inspiration, and knowledge
have been instrumental in shaping this work. They have consistently demonstrated both
ambitious vision and attention to detail, while providing unwavering support under various
conditions.

I am particularly grateful to my thesis committee members: Professor Lining Yao (Chair),
Professor Nikolas Martelaro, Professor Alexandra Ion, and Professor Ding Zhao. Their di-
verse perspectives and constructive feedback have significantly strengthened this research.

I would like to thank the Human-Computer Interaction Institute at Carnegie Mellon Uni-
versity, particularly Department Head Scott Hudson and Professor Geoff Kaufman, for fos-
tering an environment conducive to interdisciplinary research.

I gratefully acknowledge the financial support that made this Ph.D. research possible.
This work was supported by the U.S. Department of Defense through the Multidisciplinary
University Research Initiatives (MURI) program, the National Science Foundation (NSF),
and Honda Research Institute.

The administrative staff have been crucial in navigating this journey. Special thanks to
Queenie Kravitz for her invaluable suggestions and support at critical moments, and to Leah
Buffington, Becky Wang, Eric Davison, Lindsay Olshenske, and Nick Hernandez for their
assistance.

I have been fortunate to work with many talented classmates, collaborators, and col-
leagues. I would particularly like to thank: Guanyun Wang, Humphrey Yang, Lea Albaugh,
Stella Shen, Dinesh K Patel, Yuyu Lin, Ke Zhong, Michael Vinciguerra, Shuhong Wang,
Danli Luo, Youngwook Do, Yibo Fu, Jenny Hu, Qiuyu Lu, Harshika Jain, Kexin Lu, Emily
Guan, Sunniva Liu, Tate Johnson, Tucker Rae-Grant, Ziwen Ye, Fang Qin, Cathy Mengy-
ing Fang, Chris Harrison, Vidya Narayanan, James McCann, Victoria Webster-Wood, Qiang
Cui, Tingyu Cheng, Haiqing Xu, Di Wu, Melinda Chen, Jack Forman, Taylor Tabb, Koya
Narumi, Sijia Wang, Haiqing Xu, Zeyu Yan, Kuanren Qian, Yuxuan Yu, Haolin Liu, David
Jourdan, Matthew McGehee, Lingyun Sun, Jiaji Li, Yue Yang, Hengrong Ni, Tianyu Yu,
Advait Wadhwani, Andreea Danielescu, Lydia Yang, Aditi Maheshwari, Byoungkwon An,
Yu Chen, Xiaoqian Li, Cheng Yao, Fangtian Ying, Zhi Yu, Tianying Chen, Amber Horvath,
Andrew Kuznetsov, Danny Weitekamp, Huy Nguyen, Hyeonsu Kang, Jason Wu, Michael
Xieyang Liu, Tianshi Li, Chris Atkeson, Youda Huang, Haiyi Zhu, Robert Kraut, Roberta
Klatzky, Maxwell Abbott, Vivian Wong, Clara Hsu, Ryan Patel, Felipe Martinez, and Aniket
(Niki) Kittur.

I am grateful for the collaborative relationships with researchers at other institutions:
Guanyun Wang (Zhejiang University), Ye Tao (Zhejiang University City College), David E.
Breen (Drexel University), Sam Kriegman and Wei Chen (Northwestern University), Teng
Zhang (Syracuse University), Ido Levin and Eran Sharon (Hebrew University), and Lifeng
Zhu (Dongnan University), Josiah Hester(Geogia Tech Univerisity).

Personally and most importantly, I want to express my profound gratitude to my family -
my parents, whose unconditional love and sacrifice have made this journey possible, and my
extended family, whose encouragement from afar has kept me grounded. I am deeply thank-
ful to my girlfriend, Sophie Kang, for her unwavering support and understanding throughout
this journey. I am also grateful to my friends who have made the United States feel like



vi

home: June Song, Yibo Fu, Jeff Chao, Dingkun Guo, Ziqi Wang, Cone, Zhitong Cui, Eddie
Huang, Eden Ritchie, and Bill Kenny.

This thesis builds upon the work of countless researchers in robotics, computer science,
and related fields. While I cannot name them all, I am grateful to stand on the shoulders of
giants.



vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Challenge: Curse of Dimensionality and Discreteness in LGR . . . . . . . . 6
1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Overcoming CoD in Fabrication through Synergy-Inspired Actuator
Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Interactive Editor and Simulator for Forward Design . . . . . . . . . 8
1.4.3 Search for Optimal Solutions in Discrete Space . . . . . . . . . . . . 9
1.4.4 Reinforcement Learning for Closed-Loop Control . . . . . . . . . . . 9
1.4.5 Continuous Representation and Optimization of Topology and Pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Key Contributions and Insights . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 Biological Inspiration for Control Complexity Reduction . . . . . . . 10
1.5.2 Hierarchical Approach to Design Optimization . . . . . . . . . . . . 10
1.5.3 Novel Capabilities in Volumetric Shape Change . . . . . . . . . . . . 11
1.5.4 Fundamental Trade-offs in Complex Robot Design . . . . . . . . . . 11

2 Background 13
2.1 Non-LGR Morphological Approaches . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Limbed Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Continuum Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Cubic Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Static Structures: Foundation for Dynamic Systems . . . . . . . . . . . . . . 14
2.2.1 Truss Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Tensegrity Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Dynamic Systems: Truss and Tensegrity Robots . . . . . . . . . . . . . . . . 14
2.3.1 Truss Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Tensegrity Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Neural Network Approaches for Robot Design . . . . . . . . . . . . . . . . . 15
2.5 Grammar-Based Robot Representation . . . . . . . . . . . . . . . . . . . . . 16

3 PneuMesh: Actuator Grouping in Truss Robot 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 PneuMesh System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 User Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Demonstration of Design Space . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Qualitative Design Session . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



viii

3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.3 Joint Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7.4 GUI Implementation Details . . . . . . . . . . . . . . . . . . . . . . 33
3.7.5 Fabrication Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.8 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.1 Actuation Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.2 Simulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.8.3 Fabrication Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Muscle Synergy Inspired Evolution of Actuator Network 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Metatruss Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Optimization Framework with Tailored Genetic Algorithm . . . . . . 42

Design Representation . . . . . . . . . . . . . . . . . . . . . . . . . 42
C-network Topology Constraints . . . . . . . . . . . . . . . . . . . . 43
Multi-objective Computation Pipeline . . . . . . . . . . . . . . . . . 44
Tailored Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 Performance with Varying C-network Channel Numbers . . . . . . . 46
4.2.5 Diversity in Task and Truss Topology . . . . . . . . . . . . . . . . . 48
4.2.6 Physical Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Mechanism and Fabrication Details . . . . . . . . . . . . . . . . . . 51
Core Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Actuator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Joint Design and C-Network Implementation . . . . . . . . . . . . . 52
System Constraints and Challenges . . . . . . . . . . . . . . . . . . 52
Fabrication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Problem Statement of Metatruss Optimizer . . . . . . . . . . . . . . 53
4.4.3 Simulator Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.4 Simulator Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.5 Representation Details and Symmetry Definition . . . . . . . . . . . 55

Representation Details . . . . . . . . . . . . . . . . . . . . . . . . . 55
Symmetry Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.6 Constraint Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Symmetry Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 57
Connectivity Constraint . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.7 Optimization Process in One Generation with NSGA-II . . . . . . . 58
4.4.8 Elite Pool Strategy for Optimization Across Generations . . . . . . . 59
4.4.9 NSGA-II Explanation . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.10 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Initialization of C-network Indices . . . . . . . . . . . . . . . . . . . 60
Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Constrained Crossover Operator for Design Synthesis . . . . . . . . . 61

4.4.11 Truss Topologies and Tasks . . . . . . . . . . . . . . . . . . . . . . 62
Quadruped Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



ix

Shape-Shifting Helmet . . . . . . . . . . . . . . . . . . . . . . . . . 62
Lobster Robot Trained for Energy Efficiency . . . . . . . . . . . . . 62
Tentacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Pillbug Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.12 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.13 Numerical Results and Implementation Details . . . . . . . . . . . . 65

Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 65
Performance Analysis with Varying C-network Numbers . . . . . . . 65

4.4.14 Physical Prototype and Simulator Accuracy Validation . . . . . . . . 66
Experimental Setup and Data Collection . . . . . . . . . . . . . . . . 66
Data Analysis and Metrics . . . . . . . . . . . . . . . . . . . . . . . 66
Results and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.15 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.16 Usage of Large Language Model in Writing . . . . . . . . . . . . . . 69

4.5 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Code Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.1 On-body Control Circuit Using Mechanical Logic Gates . . . . . . . 70
4.7.2 This section includes: . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Supplementary Videos . . . . . . . . . . . . . . . . . . . . . . . . . 70
Supplementary Table . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Closed-loop Control of Truss Robot using Reinforcement Learning 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Physical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Definition and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Channel Symmetry Requirement . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.8 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Reward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Preliminary Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.11 Appendix: Genetic Algorithm Pipeline . . . . . . . . . . . . . . . . . . . . . 79
5.12 Appendix: Initialization and Mutation with Channel Connection Constraint . 80
5.13 Appendix: Multi-Objective Selection Function . . . . . . . . . . . . . . . . 80
5.14 Appendix: Elite Pool Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Truss Topology and Parameter Generation with Variational Auto-encoders 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 C-network Optimization through Graph-Attentive Variational Autoencoder . 85

6.2.1 Data and dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.2 GAT-VAE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.5 Latent Space Visualization . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.6 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.7 Shape Aspect-ratio Optimization . . . . . . . . . . . . . . . . . . . . 92



x

6.2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Grammar-based Topology Generation through Sequential Variational Au-

toencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.1 Truss Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3.2 Data and Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 LSTM-VAE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Position Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Validity Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.6 Multi-shape Optimization . . . . . . . . . . . . . . . . . . . . . . . 100

Target Shape Representation . . . . . . . . . . . . . . . . . . . . . . 100
Shape Loss Computation . . . . . . . . . . . . . . . . . . . . . . . . 101
Optimization Process . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 Supplementary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Discussion 109
7.1 The Challenge of Complex Morphing Robots . . . . . . . . . . . . . . . . . 109
7.2 Biological Inspiration: From Muscle Synergy to Actuator Groups . . . . . . 110
7.3 From Manual Design to Automated Optimization . . . . . . . . . . . . . . . 111
7.4 Bridging Discrete and Continuous Optimization . . . . . . . . . . . . . . . . 112
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Future Work 115
8.1 Extension to Other Physical Systems . . . . . . . . . . . . . . . . . . . . . . 115

8.1.1 Tensegrity Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Physical System Design . . . . . . . . . . . . . . . . . . . . . . . . 116
Computational Framework Adaptation . . . . . . . . . . . . . . . . . 116
Preliminary Simulator Development . . . . . . . . . . . . . . . . . . 116

8.1.2 Robotic Metamaterials . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Joint Design Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.2.2 Alternative Actuation Mechanisms . . . . . . . . . . . . . . . . . . . 118
8.2.3 Sensing and Feedback Attachments . . . . . . . . . . . . . . . . . . 118

8.3 Algorithm Advancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.3.1 Topology Generation and Dataset Extension . . . . . . . . . . . . . . 119
8.3.2 Control Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



xi

List of Figures

1.1 Examples, topologies and features of limbed robots [5–8], continuum robots [15,
16], cubic robots [58, 59], and looped graph robots [40, 49]. . . . . . . . . . 5

1.2 Illustration of the curse of dimensionality (CoD) challenge in the fabrication
and design of looped graph robots. As the number of edges increases lin-
early, the required number of actuable beams and the combination of beam
grouping increase geometrically. . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 PneuMesh consists of a computation design platform and a set of novel hard-
ware design improvements for Truss-based morphing and locomotion robots.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 A six-leg walker with only two channels compartments can move ahead ef-

fectively, designed in the PneuMesh platform. In contrast, most typical six-
legged robots have more control units (12 linear actuators in TrussFormer
[69]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 (a) Each pneumatic linear actuator is composed of a shell, a customized pis-
ton, and a tubing adaptor. Flexible rubber tubing connects the adapter to
the multiway joints. (b) The stopper structure can be placed onto any of the
three grooves on the piston to control the contraction ratio in (c). (d) The
physically fabricated structure. (e) The computer model of the actuator unit. . 20

3.4 Examples of different design variables enabled by the platform. (a) A tetra-
hedron with no blockers (top) uniformly contracts after deflation. (b) A tetra-
hedron with blockers deforms into an irregular shape. (c) An actuator with
full contraction is replaced with a passive beam and keeps the same transfor-
mation. This is our strategy of keeping the desired transformation behaviors
as designed while decreasing the weight of the structure. . . . . . . . . . . . 21

3.5 Partial connection strategy. A tetrahedron is composed of beams from two
channel compartments. (a) Both channels are actuated. (b) Channel 2 is
deflated. (c) Channel 1 is deflated. . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Shape editing function. (a-b) Choose "Add Joint" and click a joint to append
a beam. (c-d) Choose multiple joints and click "Connect Joints" to add beams
between each pair of selected joints. Iteratively doing (a-d) and eventually
finish a shape design, e.g., a lobster (e). . . . . . . . . . . . . . . . . . . . . 22

3.7 Channel setting and validation. (a) Check "Channel Color" to visualize the
channel compartment assignment. Beams of the same color belong to the
same compartment and will be actuated by a single air channel. (b) Choose
beams and assign them with corresponding channel compartments by click-
ing the compartment icons. (c) Beams belonging to the same channel com-
partment must be connected through neighboring joints. (d) Users can then
switch on the control signal of each channel channel compartment and simu-
late the transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Beam contraction ratio. By selecting actuators and moving the slider of
"Contraction", users can change the contraction ratio. The location of the
stopper is shown in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



xii

3.9 Airflow control signals. Users can edit the control signal panel to control
the inflation/deflation status of each compartment at each time frame. The
colors of the squares correspond to the color of channel compartments. Each
column indicates a time frame. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.10 (a-c) Multi-way joints generated for additive manufacturing. (d) Hardware
components are fabricated before the final assembly. . . . . . . . . . . . . . 25

3.11 (a) With the top-left configuration, The lobster grabs two cups and slowly
moves forward (12 cycles, 47 seconds). (b) The lobster quickly moves for-
ward (5 cycles, 22 seconds). . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 The design space of PneuMesh for different goals, behaviors, and interac-
tions. Lines with the same color indicate the design space of one of the four
shapes (bug, turtle, lobster, and fox). . . . . . . . . . . . . . . . . . . . . . . 27

3.13 A crawling pillbug robot moving forward. . . . . . . . . . . . . . . . . . . . 27
3.16 Designs created by six participants with the PneuMesh editing tool. P1 de-

signed three self-rolling polygons and two dancing robots; P2 and P3 de-
signed two flowers; P4 designed a claw; P5 designed a globefish; P6 designed
two adjustable pillars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.14 The turtle switches locomotion modes (a - c) by the changes of control sig-
nals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.15 The fox switches geometry and locomotion by changing control signals. (a)
Moving ahead. (b) Lowering the head and traveling through a constrained
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.17 (a) The threshold tension force of the actuator through a tension test, (b)
the threshold compressing force of the actuator through a compression test,
(c) measurement of the maximum and minimum bending angles, and the
bending force to deform the rubber tubing, and (d) measurement of the shear
friction between the rubber tubing and joints. . . . . . . . . . . . . . . . . . 30

3.18 Joint generation. (a) The tunnels are initialized as straight lines sharing nodes
in the middle, with endpoints fixed. (b) The optimization pushes channels
apart, where t represents time steps. (c,d) Grasshopper generates the 3D
model with separated channels for 3D printing. . . . . . . . . . . . . . . . . 32



xiii

4.1 Overview of the metatruss system. a, A metatruss with double tetrahedron
topology, consisting of 9 actuators and three inter-connected air channels,
C-networks. The actuators belonging to the same C-network expand simul-
taneously, causing the shape change of metatruss. b, Variety of achievable
morphologies through the combination of binary on/off states for three C-
networks. Here, three C-networks can yield 23 possible truss configurations
with two tetrahedrons. c, Illustration of the multi-objective genetic algorithm
with customized operators used for the metatruss design optimization. d,
The C-network assignment, where actuators of the same color belongs to the
same C-network. e, The customized joint structure features inner air chan-
nels with selective connectivity, enabling unified control for actuators sharing
the same air pressure. f, Each beam has a discrete contraction level within
one of the four percentages r ∈ {0.0,0.12,0.24,0.36}, preset manually with
a blocker design. g, Contraction levels in a metatruss design. h, Open-loop
binary control signals in a metatruss design. i, Six-channel quadruped meta-
truss optimized to achieve four distinct target motions through four open-loop
controls: walking, turning, tilting, and crouching. j, Experimental results
indicating diminishing performance gains with an increased number of C-
network channels. k, Comparison with existing research featuring VGT with
optimized control [40–43, 45, 46, 56, 57, 60, 94–99], highlighting how our
optimizer minimizes the number of control units (Nc) while increasing the
number of actuatable beams (Na). . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Representation and Elements of a metatruss Design. a, A 1D integer ar-
ray serving as the design representation. This array encompasses C-network
indices, contraction levels, and on/off control signals. b, In a quadruped
robot example, each beam designated a unique C-network index indicated by
color. c, Preset contraction ratios r derived from the product of contraction
level and a fixed increment, ∆ = 0.12. d, Task-specific sequences of on/off
control signals assigned for actions like walking and turning. . . . . . . . . . 43

4.3 Metatruss Symmetry Constraints. a-b, A symmetric metatruss consisting
of self-symmetric (a) and inter-symmetric beams (b). c, Preset C-network
configurations designating individual C-network as self-symmetric or specify
C-network pairs as inter-symmetric. . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The Optimization Pipeline for metatruss Structures: a, The single-generation
optimization involving each training generation to update the active gene
pool via NSGA-II-based selection, mutation, crossover, and initialization. (i)
The input setting includes the predefined topology, joint positions, symmetry
along the y = 0 plane, C-network configurations, and objectives. (ii) The ini-
tial active gene pool is formulated through a tailored initialization operator.
(iii) Different trajectories of the robotic behaviors resulted from simulation.
(iv) Within each GA iteration, simulated design trajectories undergo evalua-
tion using specific objective functions. (v)NSGA-II ranks and filters designs,
retaining only top performers. (vi) Retained designs generate the next gen-
eration via mutation and crossover operators, complemented by additional
designs from the initialization operator. (vii) Updating active gene pool. b,
The cross-generation optimization to replenish the elite pool from the active
pool. For each NG generation, the remaining designs in the active gene pool
are moved to the elite pool, indicating the end of the iteration. Once the elite
pool is full, its designs are transferred back to the active gene pool. . . . . . . 45



xiv

4.5 Metatruss Operators including C-network Initialization, Mutation and
Crossover. a-j, A four-C-network initialization process. One beam for each
of the four C-networks is randomly selected and assigned a valid C-network
index, adhering to C-network and beam symmetry constraints (a-d). Then
beams connected to those already assigned are also assigned valid C-network
indices through iterative selection (e-j). k, The valid mutation steps. l-m, The
invalid mutations that break symmetry (l) or disrupt C-network connectivity
(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Performance Trade-offs with Varying C-network Channel Numbers a,
C-network assignments for the quadruped robot with 2, 8, 16, 32, or 64
C-network channels at the 1000th iteration. b, Performance metrics for a
quadruped robot for four target objectives including walking distance, turn-
ing alignment, tilting alignment, and crouching distance. c, ANOVA test
results on multi-objective optimization performance for quadruped robots
trained with 2, 8, 16, 32, or 64 C-network channels, each group comprising
six data points. Significant differences are observed across the five groups,
with a notable distinction in the first pair highlighted by Tukey’s HSD. d,
Performance of the hypervolume of the Pareto front across iterations. . . . . . 47

4.7 Metatruss Design Variations and Performances a, Three target positions
for a morphing helmet in two objectives, with green indicating the key joints,
and red being the corresponding target positions. b, Joint weights of the
morphing helmet are indicated by color shading, with darker shades repre-
senting larger weights. c, The shape of the helmet before and after morphing.
d-e, Shape-shifting helmet training metrics: hypervolume and mean square
distance between the key joints and the corresponding target positions. f,
Lobster robot’s walking trajectory and morphologies at different times. g-i,
Lobster robot metrics: hypervolume, energy efficiency, and walking distance.
j, Tentacle robot reaching three distinct target positions. k-l, Tentacle robot
metrics: hypervolume and mean squared distance between the tracking joint
and three target positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Evaluation of the fabricated pillbug and simulation. a, Comparison of the
experimental and simulated pillbug performing walking with lowered body
in one action sequence cycle. The three tracked joints are highlighted in
green bounding boxes. b-d, The experiment and simulated trajectories of the
three joints (Top-bottom: joint 1-3). The color gradient indicates the time of
the motion. The joint positions at the beginning and ending of each action
sequence cycle are highlighted with dots. e-g, Trajectories of each action
sequence cycle from the experiment and simulated trajectories (Top-bottom:
joint 1-3). All the cycles are cropped from b-d at the highlighted points, with
starting positions aligned at the zero coordinate. . . . . . . . . . . . . . . . . 50

4.9 Metatruss Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.10 Illustration of the simulator. a, Spring force vectors on beam joints, applica-

ble when beam length li j exceeds rest length l∗i j. b, Force vectors illustration
when the metatruss contacts the ground with horizontal velocity. Besides the
spring forces, each joint receives a gravity force. On ground contact, a joint
encounters a vertical upward support force and a friction force in the opposite
direction of the horizontal velocity component. . . . . . . . . . . . . . . . . 54



xv

4.11 Truss symmetry definition. ve and v f are inter-symmetric joints because
they are mirrored against the mirror plane. Similarly, vb and va are inter-
symmetric, while vc and vd are self-symmetric as they are at the mirror
plane. With both joints inter-symmetric to another beam’s joints, eae is inter-
symmetric to eb f . Blue C-network is inter-symmetric to red C-network, while
yellow C-network is self-symmetric. . . . . . . . . . . . . . . . . . . . . . . 56

4.12 NSGA-II explanation for a two-fitness optimization problem. a, Non-
dominated sorting: Designs 1 and 2 have R = 0 as they are not dominated
by any other design. Design 3 is dominated by Design 1 but not by any
other non-R = 0 design, so it has R = 1. b, Crowding distance calculation:
For each design, the cuboid formed by its nearest neighbors in the fitness
space is considered. The crowding distance is the sum of the normalized side
lengths of this cuboid. For example, CD1 =

d1,2

f max
2 − f min

2
+

d1,1

f max
1 − f min

1
, where d1,2

and d1,1 are the distances to the nearest neighbors in fitness dimensions 2 and
1, respectively. c, Hypervolume: The hypervolume (area in 2D) covered by
the Pareto front, which serves as a measure of the quality and diversity of
non-dominated designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 On-body control circuit using mechanical logic gates. a, Open-loop con-
trol signal optimized for Pillbug metatruss towards walking forward. b, 4-
to-8 multiplexer circuit for the open-loop signal. c, Simplified circuit for the
open-loop signal. d, The basic mechanical circuit unit. e, The illustration of
the bi-stable mechanism of the mechanical circuit unit. f, The illustration of
the ports connection for AND, OR, and NOT gate. g, The illustration of the
clock unit. h, A rendering of the pillbug with on-body mechanical open-loop
control circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Left: A lobster VGT with individually controlled actuators. Right: A lobster
VGT with channel grouping mechanism. . . . . . . . . . . . . . . . . . . . . 74

5.2 Physical system of channel grouped variable geometry truss. . . . . . . . . . 76
5.3 Computational pipeline of channel grouped VGT co-design. . . . . . . . . . 77
5.4 Four motions of a robotic table, (a) lowering the height, (b) tilting the table

top, (c) rotating, and (d) locomoting forward. . . . . . . . . . . . . . . . . . 79
5.5 Channel symmetry constraint. Left: Perspective view of the truss of a robotic

table. Right: Top view of the robotic table truss. Channel 0 and channel 1
are symmetric to each other with regard to the mirror plane. Channel 2 is
symmetric by itself. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Performance comparison between Genetic Algorithm (GA) and Reinforce-
ment Learning (RL) approaches for soft robot control tasks. Blue curves
show the GA performance with characteristic evolutionary behavior, where
the population-based optimization leads to larger performance variations and
stepwise improvements. Orange curves represent the RL performance, demon-
strating faster convergence and more stable learning. Shaded regions indicate
the standard deviation across multiple runs (±1σ for RL,±2σ for GA). Two
tasks are tested: (a) Moving forward, where displacement is measured in unit
beam length. RL achieves superior performance (31.2 units) within 1,000
simulations, while GA converges to a lower performance (27 units) after
20,000 simulations. (b) Rotation task, where the angle difference decreases
from 35◦ to 0◦. RL completes the task in 354 simulations, significantly out-
performing GA which requires 7,800 iterations. The results demonstrate
RL’s superior sample efficiency and performance compared to GA for these
soft robot control tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



xvi

6.1 Introduction. GAT-VAE Pipline begings with an input truss topology and
an initial input C-network assign. The GAT-VAE model generates the opti-
mized C-network indices. The optimized C-network follows the connectivity
constraint, and its morphed shape has a maximized aspect-ratio. LSTM-
VAE Pipeline only takes in one or multiple objective shapes. The LSTM-
VAE model generates optimized truss design with novel topology tokens,
C-network indices, initial lengths and contraction ratios. A continuous post-
optimization is applied on the initial lengths and contraction ratios to further
refine the design. Eventually, the resulting truss robot is able to transform
between multiple shapes to approximate objective shapes. . . . . . . . . . . 85

6.2 Aspect ratio and connectivity. a. Each truss robot with three C-networks
has eight C-network actuation states, thus having eight transformed shapes
based on the state. The height over width ratio of the bounding box of the
morphed shape is called the aspect ratio. b. A C-network assignment is
defined as disconnected, if any C-network is not a connected graph. . . . . . 87

6.3 GAT-VAE Model is composed of the encoding module, decoding module
and property prediction module. The encoding module takes in a truss de-
sign and converts it to a latent vector through GAT updates. The decoding
module takes in a truss design without C-network information and a latent
vector, and uses the same GAT update process to decode the latent vector.
The decoded embeddings are reconstructed into the truss design. The prop-
erty prediction module includes two multi-layer perceptron networks that
takes in the latent vector and predicts the connectivity and maximum aspect
ratio of the truss design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 GAT-VAE latent space visualization. The latent vectors are projected to
two principal dimensions using PCA. a. The predicted graph connectivity
value shows a smooth transition mainly along the first principal component
dimension. b. The actual label of graph connectivity shows that the model
clearly and correctly separates the latent vectors into connected and discon-
nected categories. c. 80 out of 128 latent dimensions are visualized individ-
ually, showing most of the dimensions are learning meaningful information
about the connectivity. d. The predicted maximum aspect ratio shows a
smooth transition mainly along the second principal component dimension,
perpendicular to the direction of connectivity prediction. e. The actual max-
imum aspect ratio is very close to the predicted maximum aspect ratio with
small difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 GAT-VAE interpolation and optimizations. a. The model is able to inter-
polate the C-network assignments between two trusses with the same con-
nectivity (interpolation 1) or different connectivity (interpolation 2). b. The
model optimizes the C-network assignment towards a larger maximum as-
pect ratio, which shows a continuous improvement on the aspect ratio of the
transformed shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 2D Truss Grammar a-g. Step-by-step demonstration of the usage of five
truss topology tokens. h. Two examples of using a sequence of truss topology
tokens to represent 2D trusses. . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.7 2D Truss Grammar parameters. a. A truss before transformation ini-
tialized with C-network indices and initial edge lengths. b. A truss after
transformation with each C-network contracting, with numbers showing the
contraction ratio of each edge. c. Top: The topology tokens representing
the truss in a, b. Bottom: Pairs of C-network indices, initial edge lengths,
contraction ratios corresponding to each token. . . . . . . . . . . . . . . . . 95



xvii

6.8 3D Truss Grammar. a. 3D truss shares the same set of topology tokens.
The difference lies in that the objects of operation are changed from edges
to triangles, and triangles to tetrahedrons. Adding token adds a tetrahedron
instead of a triangle, and merging token merges two faces instead of two
edges. b. A pillbug truss robot is represented by the sequence shown below
the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.9 LSTM-VAE model. a. The variational auto-encoder structures has four
encoder networks and decoder networks, each reconstructing the tokens, C-
network indices, initial lengths, and contraction ratios of a truss design. The
reconstruction loss is computed based on the input and decoded parameters
from the decoders. A KL loss is calculated based on the mean and standard
deviation latent vectors from the encoders. b. The mean latent vector is fed
into the position predictor network to predict the eight sets of morphed vertex
positions. An MSE loss is computed based on the predicted and simulated
morphed vertex positions. c. Both position predictors (PP) and decoders
(D) are LSTM networks. D generates the embedding sequentially, while PP
takes in the embedding and predicts the vertex positions. Each time step
corresponds to a generated token. . . . . . . . . . . . . . . . . . . . . . . . 97

6.10 LSTM-VAE latent space interpolation. Two input truss designs (at t =
0.0 and t = 1.0) are encoded to two latent vectors. New latent vectors are
interpolated evenly with t presenting the weight of the second input latent
vector. The new latent vectors are decoded and shown in the order of their
corresponding t values. The model is able to interpolate both continuous
parameter, initial edge length, and discrete parameters, the topology and C-
network indices in a visually smooth and meaningful way. . . . . . . . . . . 99

6.11 LSTM-VAE shape optimization. Left column: objective shapes, middle
column: the optimized transformed shapes with the three dots showing the
actuation states of the three C-networks, right column: the alignment be-
tween the transformed shapes and the objective shapes. Top-Bottom: Given
one, two and three objective shape, the optimizer outputs one topology each
time, which transforms into the single objective shape or transforms between
two and three objective shapes. . . . . . . . . . . . . . . . . . . . . . . . . 100

6.12 LSTM-VAE latent space interpolation. The trusses shown at the top-left
and bottom-right corners represent the input designs. The t value indicates
the interpolation weight applied to the latent vector of the bottom-right truss
design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.13 Comparison of optimized star design with dataset examples. a, The final
optimized star shape and the target shape mask. b-c, The three closest data
in the dataset with 8 transformed shapes. . . . . . . . . . . . . . . . . . . . . 105

6.14 Comparison of optimized geometric shape design with dataset examples.
a, The final optimized geometrical shapes and the target shape masks. b-c,
The three closest data in the dataset with 8 transformed shapes. . . . . . . . . 106

6.15 Failure cases of shape optimization of strip transformations. a-b, The
optimized shapes (top) and the target shape masks of a strip bent into a C
shape. c-d, The optimized shapes (top) and the target shape masks of a strip
transformed into a square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.1 Illustration of the proposed tensegrity structure with cable actuator grouping
and external winch motors. Same color of cables are continuous and pulled
by a single external motor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117





xix

List of Tables

3.1 The parameters of each application, including (from left) the building time,
the time using the design tool, number of beams, number of linear actuators,
number of joints, number of channel compartments, number of static shapes,
and weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

S1 Tukey’s HSD Pairwise Group Comparisons (95.0% Confidence Interval) for
the hypervolume performance of quadruped robot with 5 C-network counts,
with group 0 for 2 C-networks, group 1 for 8 C-networks, 2 for 16 C-networks,
3 for 32 C-networks, 4 for 64 C-networks . . . . . . . . . . . . . . . . . . . 72





1

Chapter 1

Introduction

1.1 Motivation

Nature offers countless examples of creatures that dramatically transform their morphology
to adapt to their environment and tasks. From caterpillars that inch through narrow spaces
to octopus that squeeze through tiny openings, this adaptability enables survival in diverse
conditions. Inspired by these remarkable capabilities, robotics researchers have long sought
to create machines that can similarly modify their shape and structure. However, achieving
such versatile morphological adaptation while maintaining structural integrity and control
precision remains a significant challenge in robotics. Recent studies have demonstrated that
a robot’s morphology fundamentally determines its functional capabilities [1]. A robot that
can actively modify its shape gains remarkable advantages: it can compress itself to navigate
confined spaces, conform to objects for better manipulation, and even alter its appearance
to facilitate more natural human-robot interaction. These capabilities become particularly
crucial in scenarios where environmental conditions or task requirements can change dra-
matically, from search and rescue operations in collapsed buildings to adaptive furniture that
responds to user needs.

The unique adaptability of living organisms extends far beyond simple compressions or
expansions. Lizards like the frilled-neck lizard dramatically modify their throat structure, ex-
panding dewlaps to intimidate predators or attract mates [2]. The magnificent frigatebird can
inflate its gular pouch to nearly its body size during courtship displays, transforming its ap-
pearance for social signaling [3]. Perhaps most remarkably, octopi can modulate their entire
body shape fluidly, not only for squeezing through constraints but also for complex behaviors
like tool manipulation and environmental exploration [4]. These adaptations represent more
than just changes in size or shape - they demonstrate fundamental alterations in body volume
and structure that serve diverse functions from defense and social communication to hunting
and survival. Notably, these transformations often involve body regions that defy simple cat-
egorization into traditional anatomical parts like limbs or appendages. Instead, they represent
integrated, whole-body adaptations that blur the distinction between structural and functional
elements.

The quest for morphological adaptability has led to several distinct approaches in robot
design. Each category offers unique advantages while facing specific limitations in achiev-
ing versatile shape transformation (Fig. 1.1). Limbed robots, which mirror the anatomical
structure of animals and humans [5, 6], utilize a central body with branching limbs [7, 8].
These robots can be equipped with diverse end-effectors such as wheels, grippers, or sensors,
and some feature variable limb lengths [9, 10] or morphing wheels [11]. While effective
for many tasks, their tree-like topology [12–14] constrains their shape-changing capabilities.
They can move limbs but cannot fundamentally alter their volume or overall structure. Con-
tinuum robots, inspired by spineless organisms like octopi and worms [15, 16], represent
another approach. These robots employ soft, continuously deformable materials that provide
virtually infinite degrees of freedom in movement and shape adaptation. Much like how an
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octopus can squeeze through openings barely larger than its eye, these robots can theoreti-
cally achieve remarkable flexibility. However, this flexibility comes at a cost: they often lack
mechanical stability and load-bearing capacity. Moreover, their reliance on complex material
properties presents significant challenges in fabrication and precise control, particularly for
larger structures or extended operations.

A robot’s morphology fundamentally determines not just its physical capabilities but
also its potential for meaningful interaction with humans and environments. Shape-changing
robots have emerged as a powerful paradigm in human-computer interaction (HCI) and
human-robot interaction (HRI), where their adaptability serves diverse functions beyond tra-
ditional robotics tasks. In HCI, shape-changing interfaces enable dynamic physical affor-
dances, convey information through form changes, and adapt to different usage contexts.
For instance, a single adaptive structure might transform from a flat surface for display to
a curved form for ergonomic interaction, or reconfigure itself to provide tactile feedback or
physical constraints. In HRI scenarios, a robot’s ability to modify its shape can significantly
enhance its social presence and functionality - from adjusting its posture to match the so-
cial context, to modifying its form factor to better suit different interaction scenarios. This
expansion beyond conventional robotic applications has driven the development of various
shape-changing systems, each addressing different scales and interaction requirements.

At room and furniture scales, shape-changing robots demonstrate remarkable potential
for adapting physical spaces to user needs. Recent advances have produced systems capa-
ble of dramatic volumetric transformations while maintaining practical utility. Inflatable-
Bots [17] and RoomShift [18] enable large-scale encountered-type haptics in virtual reality
through different approaches - the former using inflatable structures and the latter employing
furniture-moving swarm robots. These systems can dynamically reconfigure spaces, creating
physical affordances that match virtual environments. Similarly, LiftTiles [19] demonstrates
how modular, reconfigurable actuators can construct room-scale shape-changing interfaces,
enabling adaptive furniture and environmental-scale haptic feedback. More permanent in-
stallations like the Constraint-Driven Robotic Surfaces [20] show how shape-changing walls
can morph into functional furniture elements, while systems like TRANSFORM [21] and in-
FORM [22] create dynamic physical affordances through arrays of actuated elements. These
implementations reveal a crucial insight: effective shape-changing systems must balance
transformation capabilities with structural stability and practical utility.

At desktop and personal scales, shape-changing interfaces demonstrate even greater di-
versity in their transformation capabilities and interaction modalities. Systems like Chain-
FORM [23] and LineFORM [24] showcase how linear, reconfigurable structures can serve
multiple functions - morphing from information displays to wearable devices, or transitioning
between interactive tools and aesthetic elements. PneUI [25] introduces pneumatically actu-
ated interfaces that can adapt their form for different contexts, from shape-changing mobile
devices to responsive wearables that modify their structure based on user needs. More spe-
cialized systems like MorphIO [26] demonstrate entirely soft sensing and actuation modules
that enable programmable shape changes through tangible interaction, while ShapeBots [27]
shows how swarms of small, shape-changing robots can collectively form larger structures
for various interaction scenarios. Even seemingly simple interfaces like Dynablock [28] and
the Fluidic Computation Kit [29] push the boundaries of what’s possible, enabling dynamic
3D shape formation and mechanical logic-driven transformations respectively. These sys-
tems highlight a critical advantage of smaller-scale shape-changing interfaces: their ability
to seamlessly transition between different functional states while maintaining close physical
interaction with users.

The role of morphological adaptation becomes particularly crucial in social robotics,
where a robot’s physical form directly influences human perception and interaction. Stud-
ies in social robot morphology [30, 31] reveal how different physical forms evoke distinct
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social responses - from the level of trust users place in the robot to their willingness to en-
gage in various interaction scenarios. This understanding has led to innovations in dynamic
morphological expression, exemplified by research in texture-changing robot skin [32–34].
These systems demonstrate how subtle changes in surface morphology can convey emotional
states and social signals, much like the social displays observed in nature. Beyond simple
aesthetic changes, morphological adaptation in social robots can serve functional purposes
- a robot might appear more approachable during casual interactions, then reconfigure to
provide physical assistance when needed [35]. The ability to transition between different
morphological states becomes particularly valuable in healthcare and social care settings,
where robots must adapt their appearance and functionality to suit various care scenarios
while maintaining appropriate social presence. This dynamic adaptation capability repre-
sents a significant advance over traditional fixed-morphology robots, enabling more nuanced
and context-appropriate human-robot interactions.

Among various shape-changing structures such as linear pin arrays [36], inflatable blad-
ders [37, 38], and origami [39], meshes and trusses have been widely adopted for their advan-
tages in modularity, reconfigurability, and high volume-weight ratio. Looped Graph Robots
(LGRs), encompassing both truss robots and tensegrity robots, emerge as a promising alter-
native that combines structural stability with shape-changing capabilities. Truss robots con-
sist of joints connected by rigid linear actuators whose varying lengths enable complex shape
transformations [40]. These Variable Geometry Trusses (VGTs) can achieve diverse transfor-
mations including rotation, twisting, linear scaling, and volumetric changes. This flexibility
enables a wide range of capabilities: from locomotion [41, 42] and manipulation [43, 44]
to specialized morphological adaptations [45–48]. The unique advantage of LGRs lies in
their graph topology with loops, where edges can circle back to their starting nodes. This
topology provides both structural stability and extensive degrees of freedom, allowing for
dramatic shape changes while maintaining load-bearing capacity. Tensegrity robots [49] fur-
ther extend this concept by combining cables and rods in a prestressed network, offering
exceptional strength-to-weight ratios and natural impact absorption capabilities. Both types
of LGRs share a crucial feature: their sparse internal volume allows for more extensive shape
changes compared to solid-body alternatives, while their discrete structure enables more pre-
cise control than continuous soft robots.

1.2 Background

The quest for morphological adaptability has led to several distinct approaches in robot de-
sign. Each category offers unique advantages while facing specific limitations in achieving
versatile shape transformation (Figure 1.1).

Limbed robots, which mirror the anatomical structure of animals and humans [5, 6],
utilize a central body with branching limbs [7, 8]. These robots can be equipped with diverse
end-effectors such as wheels, grippers, or sensors, and some feature variable limb lengths [9,
10] or morphing wheels [11]. While effective for many tasks, their tree-like topology [12–14]
constrains their shape-changing capabilities - they can move limbs but cannot fundamentally
alter their volume or overall structure.

Continuum robots, inspired by spineless organisms like octopi and worms [15, 16],
represent another approach. These robots employ soft, continuously deformable materials
that provide virtually infinite degrees of freedom in movement and shape adaptation. Much
like how an octopus can squeeze through openings barely larger than its eye, these robots
can theoretically achieve remarkable flexibility. However, this flexibility comes at a cost:
they often lack mechanical stability and load-bearing capacity. Moreover, their reliance on
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complex material properties presents significant challenges in fabrication and precise control,
particularly for larger structures or extended operations.

Cubic robots take a different approach, building from repeated modular units. Multi-
material voxel robots [50–53] achieve shape changes by selectively activating specific voxels
with different material properties. While this approach offers good shape approximation ca-
pabilities, it faces fundamental limitations in scalability and precision due to the inherent
constraints of solid volumes and the complex interactions between connected voxels. Mag-
netic self-reconfigurable cubic robots [54, 55] enable voxelated shape reassembly through
magnetic connections but sacrifice structural integrity and continuous motion capabilities.

Looped Graph Robots (LGRs), encompassing both truss robots and tensegrity robots,
emerge as a promising alternative that combines structural stability with shape-changing ca-
pabilities. Truss robots consist of joints connected by rigid linear actuators whose vary-
ing lengths enable complex shape transformations [40]. These Variable Geometry Trusses
(VGTs) can achieve diverse transformations including rotation, twisting, linear scaling, and
volumetric changes. This flexibility enables a wide range of capabilities: from locomo-
tion [41, 42] and manipulation [43, 44] to specialized morphological adaptations [45–48].

The unique advantage of LGRs lies in their graph topology with loops, where edges
can circle back to their starting nodes. This topology provides both structural stability and
extensive degrees of freedom, allowing for dramatic shape changes while maintaining load-
bearing capacity. Tensegrity robots [49] further extend this concept by combining cables and
rods in a prestressed network, offering exceptional strength-to-weight ratios and natural im-
pact absorption capabilities. Both types of LGRs share a crucial feature: their sparse internal
volume allows for more extensive shape changes compared to solid-body alternatives, while
their discrete structure enables more precise control than continuous soft robots. These char-
acteristics make LGRs particularly suitable for applications ranging from adaptive furniture
to search-and-rescue robots that must navigate varying terrain while maintaining structural
integrity.

The final category, Looped Graph Robots (LGRs), represents a distinct approach to
morphological adaptation through its unique topology of interconnected nodes and edges.
This category encompasses two main types: truss robots and tensegrity robots.

Truss robots, also known as variable geometry trusses (VGTs), consist of joints (nodes)
and rigid linear actuators (edges) arranged in tetrahedral or octahedral structures [40]. By
varying the lengths of their actuator beams, these robots can achieve diverse transforma-
tions including rotation, twisting, linear movement, and volumetric scaling. This flexibility
enables VGTs to perform a wide range of tasks: from traditional robotic functions like loco-
motion [41, 42] and manipulation [43, 44], to specialized activities requiring complex mor-
phological adaptations [45–48]. However, despite their advantages in degrees-of-freedom
(DOFs) and versatility, current VGTs face a fundamental challenge: their control systems
scale exponentially with the number of beams [40]. As a result, existing physical implemen-
tations are limited to either simple structures with few tetrahedral units [43, 56, 57] or larger
structures where only a small subset of beams are actuable [45].

Tensegrity robots [49] offer a complementary approach within the LGR family. These
robots combine rigid rods with adjustable cables, achieving dramatic shape changes through
the coordinated length adjustments of these components. While this design offers advantages
in weight reduction and impact absorption, tensegrity robots share similar challenges with
VGTs: they feature discrete looped-graph topologies and must maintain complex rules of
self-balance, making their design and control optimization particularly challenging.

The defining characteristic of LGRs is their graph topology with loops, where edges can
circle back to their starting nodes. This architecture provides three key advantages: structural
strength derived from the looped graph structure, extensive degrees of freedom due to the
length variability of each edge, and distinctive volumetric shape-changing capabilities. These
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features make LGRs particularly suitable for applications ranging from search-and-rescue
robots that must adapt to challenging environments, to companion robots with customizable
shapes, to dynamic entertainment structures. However, realizing these applications requires
overcoming significant challenges in both design optimization and control.

FIGURE 1.1: Examples, topologies and features of limbed robots [5–8], con-
tinuum robots [15, 16], cubic robots [58, 59], and looped graph robots [40,

49].

LGRs derive their unique capabilities from their graph topology with loops, where edges
can circle back to their starting nodes. This architecture offers three fundamental advantages:
structural strength through the distribution of forces across the looped structure, extensive de-
grees of freedom from independently variable edge lengths, and distinctive volumetric shape-
changing capabilities that surpass those of traditional robotics approaches. These character-
istics enable LGRs to achieve complex transformations while maintaining structural integrity
- a combination rarely found in other morphing robot designs.

Both truss and tensegrity robots within the LGR family demonstrate remarkable versatil-
ity through their large degrees of freedom (DoF). This extensive DoF enables precise local
adjustments for manipulation tasks while supporting dramatic whole-body transformations.
The key to achieving such versatility lies in the robots’ discrete structure - each edge can be
independently controlled, creating a highly adaptable system that can be precisely tuned for
specific tasks.

This discrete, edge-based architecture offers another crucial advantage: computational
tractability. Unlike continuum robots that require complex material modeling, or voxel-based
robots that demand intensive computational resources for their solid volumes, LGRs present
relatively straightforward simulation models. Their mechanical behavior, while sophisti-
cated, follows clear principles based on the interactions of discrete elements. This simu-
lability makes LGRs particularly suitable for computational tasks like design optimization,
motion generation, and performance analysis.

The modular nature of LGRs extends these advantages into practical benefits. By us-
ing a sparse network of edges and nodes rather than solid volumes, these robots achieve
remarkably high volume-to-weight and volume-to-mass ratios. This efficient use of material
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creates structures that are not only lightweight but also highly functional. The open, lattice-
like architecture serves multiple purposes: it provides natural mounting points for sensors
and actuators, allows for easy access to internal components, and enables straightforward
assembly and maintenance. When transportation or storage is needed, these robots can be
efficiently disassembled and later reconstructed without compromising their functionality.

These fundamental characteristics - extensive DoF, computational tractability, and mod-
ular design - combine to enable a diverse range of applications. In locomotion tasks, LGRs
can dynamically adjust their gait and body shape to navigate varying terrains, from urban
environments to disaster sites. Their precise control and load-bearing capabilities make them
suitable for practical applications like adaptive furniture or reconfigurable workspace ele-
ments. As animated sculptures, they can create engaging kinetic displays through controlled,
dynamic transformations. Perhaps most significantly, they can actively adapt to environmen-
tal challenges, such as flattening to pass through narrow spaces or adjusting their contact
geometry for optimal friction and stability.

1.3 Challenge: Curse of Dimensionality and Discreteness in LGR

Despite their theoretical potential for extensive degrees of freedom and dramatic shape changes,
the practical implementation of LGRs remains constrained. Current physical realizations of
truss robots are limited to either simple topologies with fewer than 40 beams, or more com-
plex structures that exist only in simulation [60]. These limitations stem from two fundamen-
tal challenges: the Curse of Dimensionality (CoD) and the discrete nature of graph structures
(Figure 1.2).

Despite their advantages in degrees-of-freedom (DOFs) and versatility, current VGTs
face scalability issues due to the complexity of their control systems, which scale exponen-
tially with the number of beams [40]. This complexity results in physical VGT implemen-
tations being limited to either a few tetrahedral units [43, 56, 57] or structures where only
a few beams are actuable [45], restricting their achievable motions. Given the same size of
the elements, beam lengths and cable lengths, scaling up the volume of an LGR leads to a
cubic increase in the number of elements. This curse of dimensionality manifests in multiple
critical ways:

First, the hardware complexity grows exponentially. For truss robots, the assembly ef-
fort increases cubically with size. The challenge of individually controlling each actuator
becomes even more daunting - while wireless communication and on-body control systems
could theoretically make the structure untethered, the associated costs become prohibitive,
and the increasing total weight begins to negate the structure’s traditionally advantageous
volume-to-weight ratio.

The second manifestation of CoD appears in the design and optimization space. As the
number of edges in a structure increases linearly, both the possible combinations of actuator
groupings and the complexity of control strategies grow geometrically. For example, a linear
increase in the volume of an LGR typically leads to a cubically increased search space for
combinatorial optimizers.

The other fundamental challenge stems from the discrete nature of the graph structure
of LGRs. While graphs offer advantages in sparsity for storage and compatibility with com-
puter data structures, their discrete nature creates significant optimization challenges. Unlike
continuum robots that are inherently suitable for continuous optimization, or cubic robots
that can be optimized in a continuous space and then discretized to a regular grid structure,
the non-regular and non-Euclidean graph structure of LGRs poses unique difficulties. This
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discrete nature proves particularly challenging when combined with actuator grouping strate-
gies, limiting optimization approaches to heuristics-based combinatorial methods that often
prove less efficient than continuous optimization techniques.

These challenges - the curse of dimensionality and the discrete nature of graph structures
- become particularly acute as we attempt to scale LGRs to more complex tasks and larger
sizes. The optimization becomes exponentially more difficult as the search space grows larger
with the robot’s complexity, often increasing rapidly in size. This makes finding optimal con-
figurations, groupings, and balancing various design parameters an increasingly challenging
task. The situation becomes even more complex when dealing with tensegrity robots, which
must maintain additional constraints for structural stability.

FIGURE 1.2: Illustration of the curse of dimensionality (CoD) challenge in
the fabrication and design of looped graph robots. As the number of edges
increases linearly, the required number of actuable beams and the combina-

tion of beam grouping increase geometrically.

1.4 Thesis Overview

The looped graph structure offers immense potential in robotics through its high degrees of
freedom and shape-morphing capabilities. These structures uniquely combine scalability,
modularity, and lightweight design with the ability to achieve dramatic shape transforma-
tions. However, two fundamental challenges - the Curse of Dimensionality (CoD) and the
inherent discreteness of these structures - currently limit both their fabrication and computa-
tional capabilities.

This thesis presents a systematic progression of solutions to unlock the full potential of
LGRs, focusing particularly on truss robots. Our approach evolves from practical hardware
solutions to increasingly sophisticated computational methods, each building upon the in-
sights of the previous:

1.4.1 Overcoming CoD in Fabrication through Synergy-Inspired Actuator Group-
ing

We first address the challenge of CoD in fabrication and controller complexity through a
novel actuator grouping mechanism. Drawing inspiration from muscle synergy in biological
systems, our approach mirrors how complex movements in nature emerge from coordinated
muscle groups rather than individual muscle control. In biological systems, this synergy
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mechanism enables sophisticated behaviors like walking or jumping without conscious con-
trol of individual muscles, significantly reducing the neural pathway complexity [61, 62].
Details in PneuMesh: Actuator Grouping in Truss Robot.

Translating this biological principle to robotics, we introduce a method to group actu-
ators through customizable connection joints. Each subset of actuators can be controlled
simultaneously by a single control module, significantly reducing the redundancy in control
mechanisms while maintaining the system’s expressiveness. This innovation represents a
fundamental shift in truss robot design - rather than scaling control complexity linearly with
the number of actuators, our approach enables exponentially more complex structures with
only linear increases in control complexity.

The practical implementation of this concept involves carefully designed joint structures
that can selectively channel actuation signals across multiple beams. This design not only
simplifies the control architecture but also reduces the physical complexity of wiring and
power distribution. By allowing a single control signal to coordinate multiple actuators, we
achieve sophisticated morphological changes with dramatically reduced hardware overhead.
This breakthrough makes the fabrication of complex LGRs more feasible, enabling the con-
struction of truss robots with greater degrees of freedom [63].

However, this solution introduces new challenges in the design space: determining op-
timal topology for specific tasks, efficiently allocating actuator groupings, and ensuring that
grouped actuators can effectively coordinate to achieve desired motions. These challenges
motivated our subsequent developments in design tools and optimization methods.

1.4.2 Interactive Editor and Simulator for Forward Design

To support human designers in navigating these complex design spaces, we developed an
interactive editor and simulator that bridges the gap between conceptual design and physical
implementation. This tool enables real-time visualization and iterative design in a virtual
environment, providing immediate feedback on the feasibility and effectiveness of different
design choices. Details in PneuMesh: Actuator Grouping in Truss Robot.

Our simulator implements a highly-damped dynamical model that balances computa-
tional efficiency with physical accuracy. The model captures essential physical behaviors
including length constraints, gravity, ground collision, and friction, while using significant
damping to approximate quasi-static behavior. This design choice enables rapid evaluation
of designs while maintaining sufficient accuracy for predicting physical performance. The
editor interface provides intuitive controls for defining actuator groups, setting control pa-
rameters, and visualizing resulting movements.

Through extensive workshop demonstrations, we validated the tool’s effectiveness across
various applications, from simple shape-morphing structures to complex adaptive furniture
designs. The workshops revealed both the potential and limitations of human-driven design.
While designers could effectively create basic locomotion patterns and simple transforma-
tions, more complex requirements - such as precise shape-matching or multi-objective op-
timization - proved challenging for human intuition alone. For instance, designing a truss
robot to achieve specific target shapes while maintaining structural stability across all con-
figurations often led to suboptimal solutions when relying solely on human judgment.

These insights into the limitations of human design capabilities, particularly when fac-
ing tasks requiring precise shape control (like expressive helmets) or complex manipulation
sequences, highlighted the need for automated optimization approaches. The gap between
human intuition and optimal solutions became particularly apparent in scenarios requiring si-
multaneous optimization of multiple objectives or precise coordination of numerous actuator
groups.
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1.4.3 Search for Optimal Solutions in Discrete Space

The need for automated optimization brought the challenges of CoD and discreteness into
sharp focus. The expansive search space created by CoD, combined with the discreteness and
connectivity constraints of actuator grouping, complicated the use of traditional continuous
optimizers. Our solution emerged in the form of a custom genetic algorithm (GA) specifically
tailored to the unique constraints and objectives of truss robot design. Details in Muscle
Synergy Inspired Evolution of Actuator Network.

Our GA implementation incorporates several key innovations. First, we developed cus-
tom operators for mutation and crossover that explicitly respect connectivity constraints
while exploring the design space. These operators ensure that all generated solutions main-
tain physical feasibility - a crucial consideration for practical implementation. Second, we
introduced a multi-objective evaluation framework that simultaneously considers factors such
as structural stability, motion capability, and control complexity.

To handle the specific requirements of actuator grouping, we implemented a hierarchical
optimization structure. This approach first optimizes the high-level topology and grouping
assignments before refining individual actuator parameters within these groups. This hier-
archical strategy helps manage the combinatorial explosion of possible designs while main-
taining solution quality.

The effectiveness of this approach was demonstrated across various test cases, from sim-
ple locomotion tasks to complex shape-morphing sequences. However, as we scaled to larger
structures and more demanding applications, we began to encounter the fundamental limita-
tions of discrete optimization approaches. The efficiency of genetic algorithms diminished
as the search space grew, particularly when dealing with hundreds of actuators or complex
sequences of shape transformations.

1.4.4 Reinforcement Learning for Closed-Loop Control

While genetic algorithm optimization enables effective open-loop control sequences, physi-
cal implementation revealed limitations when facing environmental disturbances and uncer-
tain conditions. Building on our actuator grouping mechanism, we explored reinforcement
learning as a means to enable closed-loop control while maintaining the computational ad-
vantages of grouped actuation.

Our approach frames the control problem as a reinforcement learning task where an
agent learns policies for dynamically selecting actuator group states based on real-time feed-
back. The state space incorporates both geometric configuration of the truss and translation-
invariant environmental information, with the action space defined by the binary activation
patterns of actuator groups. To develop these policies, we implemented a two-stage opti-
mization process: first using genetic algorithms to discover effective grouping strategies,
then training control policies through Proximal Policy Optimization (PPO).

This hierarchical approach demonstrated improved adaptability in physical experiments.
For instance, in locomotion tasks, the closed-loop controller maintained consistent perfor-
mance across multiple cycles where open-loop control showed increasing deviation. How-
ever, this work also revealed new challenges, particularly in developing efficient state repre-
sentations and reward functions that generalize across different truss configurations.

The insights gained from implementing closed-loop control, especially regarding the in-
terplay between physical structure and control policy, informed our subsequent investigation
into neural network approaches for comprehensive optimization of truss topology and pa-
rameters. The complete implementation details and experimental results are presented in
Chapter Closed-loop Control of Truss Robot using Reinforcement Learning.
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1.4.5 Continuous Representation and Optimization of Topology and Parame-
ters

Despite the effectiveness of our discrete optimizer, scaling up LGRs with increasing com-
plexity revealed fundamental limitations of genetic algorithms. Not only does their effi-
ciency diminish in larger search spaces, but they also cannot generate novel topologies better
suited for specific tasks. This limitation becomes particularly acute when dealing with multi-
objective scenarios, where unconventional morphologies might outperform human-designed
structures. Details in Truss Topology and Parameter Generation with Variational Auto-
encoders.

To address these challenges, we developed two complementary approaches using varia-
tional auto-encoders (VAE). Our first solution leverages graph attention networks (GAT) to
optimize actuator grouping connectivity within fixed topologies. The GAT architecture’s nat-
ural ability to process graph structures proved particularly effective in capturing both local
edge relationships and global structural patterns, enabling shape optimization while main-
taining physical connectivity constraints.

We then introduced a more comprehensive solution using long short-term memory (LSTM)
networks, coupled with a novel truss grammar that can represent loop-containing structures
through sequential tokens. This approach enables simultaneous optimization of both topol-
ogy and continuous parameters - a significant advance over traditional tree-based grammars
that cannot handle the complex loop structures inherent in truss robots. The LSTM-VAE
learns to reconstruct complete truss designs while managing the interplay between topologi-
cal structure and geometric properties.

The resulting architecture enables the generation of entirely novel truss robot designs that
meet specified performance objectives, with the continuous latent space allowing efficient
exploration through gradient-based optimization. Our experiments demonstrate successful
generation of actuator groupings for shape deformation and, more significantly, complete
truss designs that can transform between multiple target shapes. To our knowledge, this rep-
resents the first work enabling continuous optimization and generation of both truss topology
and parameters.

1.5 Key Contributions and Insights

1.5.1 Biological Inspiration for Control Complexity Reduction

Our work demonstrates how biological principles can inform robotics design beyond mere
morphological mimicry. The muscle synergy principle, where complex movements emerge
from coordinated muscle groups rather than individual control [61, 62], provided both the-
oretical foundation and practical direction for our actuator grouping mechanism. This bio-
logical insight led to a fundamental advance in truss robot design - achieving exponentially
more complex structures with only linear increases in control complexity. The success of this
approach suggests broader applications of biological control principles in robotics design.

1.5.2 Hierarchical Approach to Design Optimization

Through developing increasingly sophisticated optimization methods, we discovered the ef-
fectiveness of a hierarchical approach to truss robot design. Beginning with discrete opti-
mization through genetic algorithms, then progressing to continuous latent space optimiza-
tion via neural networks, each method revealed different aspects of the design space. The
genetic algorithm proved effective for optimizing within fixed topologies but highlighted the
need for topology generation. This led to our VAE approaches, which showed that separating
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topology generation from parameter optimization allows for more efficient exploration of the
design space. This progression suggests that complex robotics design problems may benefit
from similar hierarchical decomposition.

1.5.3 Novel Capabilities in Volumetric Shape Change

Our work reveals unique advantages of LGRs in achieving dynamic volumetric shape changes,
distinct from other morphing robot approaches. Unlike inflatable structures that permit only
preset transformations [64], or limbed robots lacking internal volume, LGRs enable con-
trolled, reversible shape changes with precise timing. Their sparse network structure over-
comes the resolution and expansion limitations faced by cubic robots [53], while maintain-
ing structural integrity throughout transformation. This capability opens new possibilities for
adaptive robotics in confined spaces and dynamic environments.

1.5.4 Fundamental Trade-offs in Complex Robot Design

Our most significant insight concerns the relationship between control complexity and func-
tional capability. Our experiments reveal that performance improvements diminish beyond a
certain number of control groups, suggesting an optimal balance point that varies with task
complexity. This finding challenges the common assumption that more degrees of freedom
necessarily lead to better performance, instead pointing toward the importance of strategic
actuation grouping. This principle could inform the design of other complex robotic systems
where control complexity poses significant challenges.
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Chapter 2

Background

Recent advances in robotics have driven the development of diverse morphological approaches,
each offering unique advantages and limitations. To contextualize the significance of Looped
Graph Robots (LGRs), we first examine the broader landscape of robotic systems, followed
by an analysis of static truss and tensegrity structures, and conclude with an overview of their
dynamic counterparts and optimization approaches.

2.1 Non-LGR Morphological Approaches

2.1.1 Limbed Robots

Limbed robots, which mirror the tree-structured anatomy of biological organisms, represent
the most prevalent category of robotic systems. These robots feature appendages branching
from a central body, with each limb potentially serving distinct functions. Notable imple-
mentations include robots with variable limb lengths [9, 10], morphing wheels [11], and
traditional legged systems [5, 6]. The topology of these robots follows a tree structure, where
each node represents either the body or a limb, characterized by both discrete attributes (e.g.,
wheel vs. gripper) and continuous parameters (e.g., length, motion range) [7, 8]. While this
architecture excels in specific tasks, it inherently limits volumetric adaptability since limb
movements do not alter the robot’s core volume.

2.1.2 Continuum Robots

Inspired by organisms lacking rigid skeletons, continuum robots employ soft materials to
achieve continuous deformation. These systems offer nearly infinite degrees of freedom in
their movement and environmental response [15, 16]. However, they face significant chal-
lenges in mechanical stability and strength. Their fabrication, typically relying on specialized
3D printing processes, presents scalability issues. Additionally, the non-linear physical mod-
els governing their behavior make accurate simulation particularly challenging, especially
for complex geometries or extended temporal sequences.

2.1.3 Cubic Robots

Cubic or voxel-based robots represent another significant category, characterized by their
regular, repeating units. Multi-material voxel robots [50–53] achieve shape transformation
through selective activation of specific voxels. However, their solid volume nature and non-
linear inter-voxel interactions pose challenges for scalability and precision in real-world ap-
plications. Magnetic self-reconfigurable cubic robots [54] enable voxelated shape reassembly
through magnetic connections but struggle with structural integrity and continuous motion
capabilities.
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2.2 Static Structures: Foundation for Dynamic Systems

2.2.1 Truss Structures

Traditional truss structures, composed of rigid rods and linkages forming tetrahedral and
octahedral configurations, provide foundational insights for dynamic systems. Their key
advantages include structural stability, high volume-to-weight ratios, and efficient material
utilization [40, 65, 66]. These properties facilitate easy transportation, assembly, and dis-
assembly while maintaining structural integrity. The inherent modularity of truss designs
allows for straightforward integration of additional components and functionalities.

2.2.2 Tensegrity Structures

Static tensegrity structures, utilizing a combination of rigid rods and tensioned cables, demon-
strate unique mechanical properties. Their design ensures that rigid components never di-
rectly connect, instead relying on a network of cables under tension to maintain structural
integrity. This architecture results in exceptional volume-to-weight ratios and impact absorp-
tion capabilities. While these structures excel in certain applications, their reliance on cables
can limit load-bearing capacity and impose specific material requirements. The complexity
of maintaining self-balancing tension adds another layer of algorithmic challenges.

2.3 Dynamic Systems: Truss and Tensegrity Robots

2.3.1 Truss Robots

Truss robots represent a dynamic evolution of static truss principles, replacing traditional
rigid rods with linear actuators capable of length variation. The fundamental tetrahedral
and octahedral topology of these systems ensures that shape changes remain deterministic as
actuator lengths modify. This predictability stems from the inherent geometric constraints of
the structure, allowing precise control over morphological transformations.

The capabilities of truss robots extend far beyond simple structural support. In the realm
of manipulation and locomotion, these systems demonstrate remarkable versatility. Research
by Spinos et al. [57] and Liu et al. [42] has shown how truss robots can achieve complex
maneuvers through coordinated actuator movements. Their high degree of freedom enables
them to execute intricate shape transformations while maintaining structural stability, a cru-
cial feature for advanced robotic applications.

Environmental adaptation represents another significant capability of truss robots. Za-
gal et al. [67] demonstrated how these systems can navigate through irregular terrain and
confined spaces by modifying their morphology in response to environmental challenges.
This adaptability proves particularly valuable in exploration and rescue operations, where
the ability to change shape can mean the difference between success and failure in accessing
restricted areas.

The structural integrity inherited from traditional truss designs enables these robots to
manage substantial loads while maintaining their shape-changing capabilities. Usevitch et
al. [68] explored this dual capacity, showing how truss robots can distribute loads effectively
across their structure while still executing complex movements. However, as Kovacs et al.
[69] noted, these systems face a significant challenge in scalability. The control system
complexity increases proportionally with structural complexity, as each additional actuator
typically requires independent control.
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2.3.2 Tensegrity Robots

Tensegrity robots advance the principles of static tensegrity structures by incorporating active
elements in both their rigid components and cables. This dynamic adaptation of the tensegrity
principle creates systems with unique capabilities and characteristics. These robots maintain
the fundamental tensegrity requirement that rigid components never directly connect, instead
relying on a network of cables under tension to maintain structural integrity.

The distributed tension network in tensegrity robots provides natural shock absorption
capabilities, as demonstrated by Caluwaerts et al. [70] in their work on space exploration
applications. This inherent resilience makes tensegrity robots particularly well-suited for
navigation across rough terrain or environments where impact resistance is crucial. The
structure dissipates forces throughout its network of tensions and compressions, rather than
concentrating them at specific points.

The biomimetic properties of tensegrity robots, explored by Lessard et al. [71], reveal in-
teresting parallels with biological systems. These similarities lead to more natural movement
patterns and improved adaptability to various environmental conditions. The integration of
rigid and flexible elements mirrors biological structures, suggesting potential applications in
bio-inspired robotics and medical devices.

Deployability represents another significant advantage of tensegrity robots. Sabelhaus et
al. [72] investigated how these structures can efficiently collapse and expand while main-
taining their structural integrity. This capability proves particularly valuable in applica-
tions where transportation or storage space is limited, such as space exploration missions
or portable rescue equipment.

The application spectrum of tensegrity robots continues to expand. Bruce et al. [73]
demonstrated their potential in planetary exploration, where the combination of structural
resilience and adaptability proves invaluable. In the medical field, Liu et al. [74] explored
applications in rehabilitation devices, leveraging the unique combination of rigidity and flex-
ibility inherent in tensegrity structures. These robots can provide controlled support while
maintaining compliance, making them suitable for direct human interaction.

The development of tensegrity robots faces distinct challenges in control system design
and fabrication. The interdependent nature of tensions and compressions within the structure
requires sophisticated control algorithms to maintain stability during shape changes. Addi-
tionally, the selection and integration of appropriate materials for both rigid components and
tensioned elements remain active areas of research, as these choices significantly impact the
robot’s performance and capabilities.

2.4 Neural Network Approaches for Robot Design

The optimization of robot designs, particularly those with graph-based structures, has seen
significant advancement through neural network approaches. Traditional optimization meth-
ods often struggle with the discrete nature of robotic structures, leading researchers to explore
techniques that can bridge discrete and continuous representations. Variational Autoencoders
(VAEs) have emerged as a powerful tool in this domain, offering the ability to transform dis-
crete structural representations into continuous latent spaces suitable for optimization. This
approach has proven particularly valuable in molecular design and robot morphology gener-
ation [75].

Graph Neural Networks (GNNs) and Graph Attention Networks (GAT) have demon-
strated particular promise in processing graph-structured data, with Kim et al. [76] showing
their effectiveness in condensing complex kinematic structures into lower-dimensional rep-
resentations. These networks excel at capturing both local connectivity patterns and global
structural features, making them well-suited for robotic design optimization. The integration
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of GAN-based approaches with evolutionary algorithms, as demonstrated by Hu et al. [77],
has further expanded the possibilities for generating and optimizing modular robot designs.

2.5 Grammar-Based Robot Representation

The challenge of representing complex robotic structures in a form suitable for computational
optimization has led to the development of various grammar-based approaches. RoboGram-
mar, introduced by Zhao et al. [7], demonstrates how discrete representation combined with
grammar-based procedural generation can effectively guide the search process for optimal
robot designs. This approach has proven particularly effective for tree-structured robots,
where components branch from a central body in a hierarchical manner.

However, the representation of robots with cyclic or looped structures presents unique
challenges not addressed by traditional tree-based grammars. While researchers have suc-
cessfully applied grammar-based approaches to limbed robots [8, 78] and CAD models [79],
these methods typically rely on having a unique root node from which the structure can grow.
The extension of grammar-based representations to handle looped structures, while maintain-
ing the advantages of sequential token representation, remains an active area of research.

The success of transformer-based approaches in processing these grammar representa-
tions, as shown by Gupta et al. [78], suggests promising directions for future development.
These methods offer the potential to learn universal controllers for modular robot design
spaces, while maintaining the ability to handle complex topological constraints and symme-
try requirements.
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Chapter 3

PneuMesh: Actuator Grouping in
Truss Robot

From transoceanic bridges to large-scale installations, truss structures have been known for
their structural stability and shape complexity. In addition to the advantages of static trusses,
truss structures have a large degree of freedom to change shape when equipped with rotat-
able joints and retractable beams. However, it is difficult to design a complex motion and
build a control system for large numbers of trusses. In this paper, we present PneuMesh,
a novel truss-based shape-changing system that is easy to design and build but still able to
achieve a range of tasks. PneuMesh accomplishes this by introducing an air channel con-
nection strategy and reconfigurable constraint design that drastically decreases the number
of control units without losing the complexity of shape-changing. We develop a design tool
with real-time simulation to assist users in designing the shape and motion of truss-based
shape-changing robots and devices. A design session with seven participants demonstrates
that PneuMesh empowers users to design and build truss structures with a wide range of
shapes and various functional motions.

3.1 Introduction

Among various shape-changing structures such as linear pin arrays [36], inflatable bladders
[37, 38], and origami [39], meshes and trusses have been widely adopted for their advan-
tages in modularity, reconfigurability, and high volume-weight ratio. Mesh or truss-based
shape-changing structures have been seen as modeling toolkits computationally augmented
for both sensing [80] and actuation [81, 82]. Mesh or truss-based structures have been used
to construct dynamic [69] and static [83] artifacts and devices through different actuation
and morphing techniques as well. Beyond HCI, truss structures are also commonly used in
industry and architecture due to their structural stability and modularity [84–86]. A truss typ-
ically consists of multiple triangular units constructed from straight beams whose ends are
connected at joints. By replacing passive beams with linear actuators that can change length
independently, researchers enable a truss structure to locomote, change shape drastically, or
manipulate objects [87]. Truss devices do not have specific morphology or motions: they
can be assembled into arbitrary shapes, and each part of their bodies can be an actuator. By
changing the body shape with a large number of actuators, truss devices can execute various
motions, including linear or volumetric scaling, rotation, twisting, and adapting to different
environments.

Despite their versatility and adaptiveness, truss devices suffer from an increasingly scaled
complexity of the control system. As each beam is controlled independently, the number of
control units (e.g. air tubings, wires, motors) is proportionally scaled with regard to the
complexity of shape and motion. To reduce the control complexity, researchers use a small
number of beams [68], or set most of the beams as passive units [69]. However, these design
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FIGURE 3.1: PneuMesh consists of a computation design platform and a
set of novel hardware design improvements for Truss-based morphing and

locomotion robots.

strategies often compromise the resolution of the shape (i.e., the number of the truss units),
or the complexity of the motion. In this paper, we seek an approach that can give us a certain
degree of control over every individual beam but still keep a relatively simple physical setup.

We propose PneuMesh, a pneumatic truss-based shape-changing system that can achieve
multiple tasks with a small number of control units (Figure 3.1). PneuMesh is composed of
adjustable pneumatic linear actuators (beams) with air channels inside, multi-way joints that
direct air to separate channels, and airflow valves controlling each channel. We introduce
1) a partial connection strategy of dividing the entire truss structure into multiple channel
compartments, with each compartment containing multiple beams that share an airflow valve
and connect through algorithmically generated joints, and 2) a replaceable stopper structure
that controls the minimum beam length under negative air pressure by restricting contraction.
The interconnected beams within one compartment are actuated simultaneously yet have in-
dividually reconfigurable contraction ratios. By carefully designing the connection strategy,
we allow users to actuate a large number of beams (up to more than 118) with only a few air
channel controllers (fewer than or equal to four in this paper), but still create rich motions
through the combinations of stopper locations and airflow signals. For example, a six-leg
walker can achieve forward motion plus left and right turns with only two air ports and two
tubings (Figure 3.2). Trussformer [69] showed a similar design with 12 individually control-
lable linear actuator units with correspondingly higher wiring and control complexity, cost,
and weight.

As the number of beams and time span increase, the search space of the stopper positions,
channel connectivity, and control signals scales up proportionally. Thus, we build an online
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FIGURE 3.2: A six-leg walker with only two channels compartments can
move ahead effectively, designed in the PneuMesh platform. In contrast,
most typical six-legged robots have more control units (12 linear actuators

in TrussFormer [69])

design tool that allows users to edit and simulate the device motions without try-and-error in
the physical world.

Our main contributions are as follows:

• A multifunctional truss-based shape-changing system with small numbers of air chan-
nels as the control. The system can act on various motions through adjusting beam
contraction ratio, channel configuration, and airflow control signals.

• A computational design tool that assists users to edit, simulate and export the shape-
changing device.

• Digital designs and physical prototypes that demonstrate the design potential of the
system.

3.2 PneuMesh System

We present PneuMesh, a pneumatic truss-based shape-changing system that can achieve mul-
tiple tasks with a small number of control units. To change beam lengths on the same channel,
we first introduce a passive stopper structure that stops the contraction of the beam at a spe-
cific length. The stopper can be manually replaced to adjust the contraction ratio of the beam
without any controller modules. Second, to reduce the complexity of the control system
of traditional truss devices without losing shape-changing capacity, we introduce the partial
connection strategy: each air channel connects a portion of the beams through multi-way
joints, where the interconnected beams are actuated simultaneously but independently from
beams on other channels. The combination of air channel connection, stopper locations and
air flow signals enable PneuMesh to achieve multiple complex motions with a limited number
of air channels. Below we will describe the four main design features in more details:

(1) Adjustable Contraction Ratio of Active Beams. Our linear actuators are constructed
with a shell, a piston, an adapter, and a stopper structure that can be relocated on the piston
(Figure 3.3a). Each stopper can be manually plugged in to one of three grooves on the 3D
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printed piston such that the contraction of the piston will be stopped at the stopper location
(Figure 3.3b). In short, when being inflated, every beam actuator will extend to the same full
length. When deflated, they will contract by a certain percentage based on the constraint
position. Based on our design and measurement, the actuator can be set to one of four
different contraction ratios under deflation as shown in Figure 3.3c. Figure 3.3d, e show the
designed and fabricated single actuator unit, respectively. We demonstrate how the adjustable
contraction ratio of each beam can be leveraged to transform a tetrahedron in Figure 3.4a, b.

FIGURE 3.3: (a) Each pneumatic linear actuator is composed of a shell, a
customized piston, and a tubing adaptor. Flexible rubber tubing connects
the adapter to the multiway joints. (b) The stopper structure can be placed
onto any of the three grooves on the piston to control the contraction ratio in
(c). (d) The physically fabricated structure. (e) The computer model of the

actuator unit.

(2) Passive Beams. To accommodate complex geometry while simplifying the fabrica-
tion tasks, we allow users to convert actuation (active) beams that have been set with full
contraction into geometrically equivalent passive beams, Figure 3.4c.

(3) Reconfigurable Channel Compartment. We design 3D printable multi-way joints each
allowing different channels to go through separately.

(4) Control Signals. Since we allow reconfigurable channel compartments, each com-
partment can be actuated separately. Users can design a set of motions or transformations
sequentially by merely changing the control signals which change the state (ON or OFF) of
each compartment (Figure 3.5).

Through 3D printable multi-way joints, our system allows multiple channel compartment
design. Users can individually actuate each compartment, or combine multiple compartments
at the same time. Users can also manually adjust the contraction of every single beam with
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FIGURE 3.4: Examples of different design variables enabled by the plat-
form. (a) A tetrahedron with no blockers (top) uniformly contracts after de-
flation. (b) A tetrahedron with blockers deforms into an irregular shape. (c)
An actuator with full contraction is replaced with a passive beam and keeps
the same transformation. This is our strategy of keeping the desired transfor-
mation behaviors as designed while decreasing the weight of the structure.

the adjustable actuator design. With the combination of the channel connection and stopper
replacement, users can explore various geometries and shape-changing behaviors.

FIGURE 3.5: Partial connection strategy. A tetrahedron is composed of
beams from two channel compartments. (a) Both channels are actuated. (b)

Channel 2 is deflated. (c) Channel 1 is deflated.

3.3 User Workflow

To assist novice users to design PneuMesh artifacts, we developed an online design tool that
allows editing and simulating the PneuMesh setting, as well as exporting 3D printable joint
models and assembly instructions. We will go through the user’s workflow in the bellow
section.

Step 1: Shape design. Users can build arbitrary truss structures by using five interactive
tools iteratively (Figure 3.6). The shape design starts with a single tetrahedron under the
deflated status. Users can 1) click "Add Beam" to add one actuator with a new joint onto an
existing joint, 2) drag the new joint to change its location, 3) select multiple joints connect an
isolated joint to other joints with new beams (the joint position would automatically adjust
such that beams are of the same minimum length, 4) undo/redo edits with "ctrl-z" and remove
a joint and all connected beams with "Remove Joint", and finally 5) fix the positions of joints
by selecting joints and clicking "Fix", which is useful when creating stationary applications.
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FIGURE 3.6: Shape editing function. (a-b) Choose "Add Joint" and click
a joint to append a beam. (c-d) Choose multiple joints and click "Connect
Joints" to add beams between each pair of selected joints. Iteratively doing

(a-d) and eventually finish a shape design, e.g., a lobster (e).

Step 2: Channel compartment configuration. Users can assign each beam with a
channel compartment to connect by selecting the beams and corresponding compartments
(Figure 3.7). A channel validation algorithm will reject edits causing discontinuous channels
(Figure 3.7 c). Users can change the air port locations of each channel by selecting a joint
and the corresponding air channel of the port.

Step 3: Stopper locating and length setting. Users can change minimum beam lengths
as well as the PneuMesh shape at fully contracted status by either setting a beam as passive
by clicking "Active/Passive", or changing the contraction ratio of an active beam. For passive
beams, users can further change the static length of the beam. For active beams, a stopper
will be visualized on the corresponding position (Figure 3.8).

Step 4: Airflow signal editing. The signal editor is in the left bottom corner of the
screen. Users can first change the number of time frames of the signal, with each time
frame lasting for 2.5 seconds (500 simulation time steps). Users can then toggle the infla-
tion/deflation status of each channel at every time frame. The PneuMesh will repeat the
control signals according to the script (Figure 3.9).

Step 5: Simulate. If "Simulate" is toggled on, a mass-spring-based numerical simulator
will run in the background and animate the PneuMesh structure. The simulator includes the
tensile energy of beams, bending energy of joints, the air volume in the channels. The terrain
mode includes gravity, ground, and friction. Real-time simulation can be run at any step
during the design process, allowing interactive design.

Step 6: Export Fabrication Instructions. The "Export" function uses an air channel
generation algorithm to create 3D printable models of multiway joints incorporating our op-
timized channel geometries (Figure 3.10). The air channels are routed to prevent them from
colliding or intersecting. To enable assembly without it “being a puzzle,” a number is shown
on each printed joint model as well as in the design tool. Users can assemble the PneuMesh
referring to the numbers on the joints and the positions of stoppers.

Step 7: Physical Assembly and Control. Figure 3.11 show the fabricated and assem-
bled structure of a lobster. By manually switching the blockers of the yellow channel, the
lobster can be converted between two modes. By receiving the actuation signal for different
channels, the lobster can enact 1) grabbing plus slowly moving (Figure 3.11 a) in the first
mode or 2) quickly moving in the other mode (Figure 3.11 b).
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FIGURE 3.7: Channel setting and validation. (a) Check "Channel Color"
to visualize the channel compartment assignment. Beams of the same color
belong to the same compartment and will be actuated by a single air chan-
nel. (b) Choose beams and assign them with corresponding channel com-
partments by clicking the compartment icons. (c) Beams belonging to the
same channel compartment must be connected through neighboring joints.
(d) Users can then switch on the control signal of each channel channel com-

partment and simulate the transformation.

3.4 Demonstration of Design Space

Although the basic building block is simply a length-changing beam, when a large number
of such beams assemble and move programmatically under a temporal sequence, the design
space increases exponentially. As Figure 3.12 shows, PneuMesh can potentially be used to
design structures for locomotion, manipulation, and shape transformation. The shape change
behavior can also act as a way to interact with the environment, people, or other objects
nearby.

Pill-bug We showed a basic crawling robot designed to move forward with three control
channels (Figure 3.13). The bug uses crawling motion and gait to locomote on the ground.

Turtle The turtle shows the capability of switching locomotion behavior by merely chang-
ing the control signals Figure 3.14. In this case, neither the contraction ratio of the beams
nor the initial geometry (physical assembly) has been changed. Figure 3.14 b also shows
additional sensors, such as an IR sensor, that can be attached to the robot to make it interact
with the human hand.

Fox We implemented the fox to show the capabilities of switching transformation be-
haviors by changing both the contraction ratio of selective beams and the control signals.
While Figure 3.15 a shows the fox is moving forward, Figure 3.15 b shows that the fox can
transform shape by bending down its head to travel through a constrained space.
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FIGURE 3.8: Beam contraction ratio. By selecting actuators and moving the
slider of "Contraction", users can change the contraction ratio. The location

of the stopper is shown in black.

FIGURE 3.9: Airflow control signals. Users can edit the control signal panel
to control the inflation/deflation status of each compartment at each time
frame. The colors of the squares correspond to the color of channel com-

partments. Each column indicates a time frame.

3.5 Qualitative Design Session

To validate the usability of PneuMesh, we conducted a qualitative design session with seven
participants. In the design session, users were asked to create shape-changing devices with
the PneuMesh design tool and share their feedback to reveal existing problems or show future
improvements.

Participants. We recruited seven participants(two males, aged 19-26). Four of them
were students majoring in industry designs, one in architecture, one in material science, and
one in art. Four participants reported to have basic CAD design experience and three were
proficient in CAD modeling and design. During each session, each participant created one to
four designs except for P7 who didn’t finish the design within the given time.

Process. The design session took 2 hours. Participants first went through a tutorial to
understand the basic knowledge of the shape-changing truss and the challenges when building
large shapes. They were then asked to build three basic shape-changing structures (twisting
column, bending strip, expanding sphere) to get familiar with the tool and its functions. Next,
users were guided to build several basic shapes and get familiar with the tool. After that, they
were asked to build their own design. Following the design session, participants went through
a semi-structured interview. Questions included: “What problems did you find?”,“Could you
create the design you had in mind?”, “Without PneuMesh, how would you design the device
you want?”.

Overall, participants responded positively to PneuMesh’s design tool: “I appreciate the
tool being intuitive and easy to use, but can still create many complicated designs” (P3).
“Pretty interesting project that gives the user easy access to the design of a complex inter-
face.” (P6). “I really enjoy the pipeline of interactively editing and seeing the result in the
real-time, it made my life easier in designing shape-changing interface”. (P1). They found
the tool “easy and fun to learn” (P2). They thought “the color-coding of different channels
and the correspondence between the channel color and the control script block color gives an
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FIGURE 3.10: (a-c) Multi-way joints generated for additive manufacturing.
(d) Hardware components are fabricated before the final assembly.

intuitive visual cue that helps me to understand the channel connection strategy and improve
my design.” (P4)

Learning curve. Participants improved greatly during the design session. In under two
hours, P1 was able to finish five designs of increasing shape and motion complexity. (Fig-
ure 3.16 P1). Participants started to understand “how to build and allocate actuating beams if
I want to build a twisting beam or a bending flower after using the tool for a while” (P2).

Design space. Participants appreciated the large design space of the system and the
design tool that lowers the barrier to the PneuMesh system. To build the same design without
PneuMesh, P4 would “first use some plasticine and sticks to prototype the shape and then use
Arduino with motor and linkage system to implement.” But they could imagine that would
require “tedious and repetitive design iterations” (P4). P1 mentioned that without the editing
tool, they would use a traditional CAD tool to sketch and iterate on the shape, but it would
be non-intuitive and error-prone as the structure scales up and the number of units increases.

Feedback and improvements. Participants also pointed out existing problems and gave
suggestions for new features in the tool. One main complaint was the lack of common
CAD functions, for example, mirroring and trimming (P7, P3, P2). Users mentioned that
the process of building a large number of beams was tedious, and suggested a tool that au-
tomatically converts mesh into tetrahedrons(P7, P5). They also mentioned that it would be
helpful to give a library of basic shapes to save time, such as twisting units, elongation units,
and expansion units. Finally, participants proposed some inverse kinematics algorithms and
optimization methods that could automatically generate the channel connection by assigning
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FIGURE 3.11: (a) With the top-left configuration, The lobster grabs two cups
and slowly moves forward (12 cycles, 47 seconds). (b) The lobster quickly

moves forward (5 cycles, 22 seconds).

a target shape or target motion.
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FIGURE 3.12: The design space of PneuMesh for different goals, behaviors,
and interactions. Lines with the same color indicate the design space of one

of the four shapes (bug, turtle, lobster, and fox).

FIGURE 3.13: A crawling pillbug robot moving forward.

FIGURE 3.16: Designs created by six participants with the PneuMesh edit-
ing tool. P1 designed three self-rolling polygons and two dancing robots; P2
and P3 designed two flowers; P4 designed a claw; P5 designed a globefish;

P6 designed two adjustable pillars.
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FIGURE 3.14: The turtle switches locomotion modes (a - c) by the changes
of control signals.

Participants’ designs. Figure 3.16 shows a series of designs by participants. We ob-
served that users like to build things that are related to their life or work. For example, P6
is an architect who built Figure 3.16 P6 which represents an interactive column that changes
height and diameter and can twist. It turned out that users who want to build a motion prefer
changing the channel connection, while users who want to build specific shapes have a higher
chance to change the contraction ratio. The reason might be that channel connection change
gives a large change in the global shape and motion but might miss the shape detail, while
contraction ratio change enables users to better control the shape details. We also noticed
that participants like to use the tool to build bio-inspired objects that have organic shapes and
irregular motions, such as flowers (Figure 3.16 P2, P3), globefish (Figure 3.16 P5) and claws
(Figure 3.16 P4).

3.6 Characterization

To determine the parameters of the simulation, we measured essential mechanical parameters
of the basic units with a constant-pressure pump with positive air pressure at 7.5 ± 0.3 psi
and negative pressure at -7.5 ± 0.3 psi.
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FIGURE 3.15: The fox switches geometry and locomotion by changing con-
trol signals. (a) Moving ahead. (b) Lowering the head and traveling through

a constrained space.

Theoretically, the actuating force from the air pressure is constantly fa = p · s, where p is
the air pressure and s is the inner cross section area of the linear actuator. If the loading force
expanding (if the pressure is inner negative) or compressing (if the inner pressure is positive)
the actuator is larger or equal to the actuating force, the actuating status of the actuator will
be switched. To verify this theory, we first fixed the end of the linear actuators with negative
pressure, applied an expanding/tension force with a thrust meter, slowly increasing the force
(Figure 3.17 a). We then fixed the body of the linear actuators with positive pressure, applied
a compressing force along the axis, and slowly increased the force (Figure 3.17 b). The
results aligned with our assumption. We did 18 tests on three linear actuators, including nine
with positive pressure and nine with negative pressure. The average maximum tension force
for negative pressure is 9.2 ± 0.03 N and maximum compression force for positive pressure
is 8.3 ± 0.03N.

The joint is composed of multi-way joints and flexible rubber tubings. The joints and
the tubings are firmly connected by the friction and tension of the tubing. Each joint has
a maximum and minimum bending angle and maximum shear friction. We first measure
the maximum bending angle of the joints (Figure 3.17 c). We did 15 tests on five 3-way
joints. We first fixed one side of the beam on the table, and slowly changed the angle of the
free beam until it broke. We recorded the average maximum bending angle as 91.2 ± 0.2°.
We then measure the maximum shear friction of the tube, over which the joint will detach
(Figure 3.17 d). We did nine tests on three tubings and recorded the average maximum
shear force is 3.42 ± 0.03 N with a standard deviation of 0.42N. The measured bending force
(Figure 3.17 c) is smaller than 0.1 N at a radius of 51 mm, which is ignorable compared to
the shear friction and is therefore left out of the simulation.
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3.7 Implementation

3.7.1 Characterization

To determine the parameters of the simulation, we measured essential mechanical parameters
of the basic units with a constant-pressure pump with positive air pressure at 7.5 ± 0.3 psi
and negative pressure at -7.5 ± 0.3 psi.

Theoretically, the actuating force from the air pressure is constantly fa = p · s, where p is
the air pressure and s is the inner cross section area of the linear actuator. If the loading force
expanding (if the pressure is inner negative) or compressing (if the inner pressure is positive)
the actuator is larger or equal to the actuating force, the actuating status of the actuator will
be switched. To verify this theory, we first fixed the end of the linear actuators with negative
pressure, applied an expanding/tension force with a thrust meter, slowly increasing the force
(Figure 3.17 a). We then fixed the body of the linear actuators with positive pressure, applied
a compressing force along the axis, and slowly increased the force (Figure 3.17 b). The
results aligned with our assumption. We did 18 tests on three linear actuators, including nine
with positive pressure and nine with negative pressure. The average maximum tension force
for negative pressure is 9.2 ± 0.03 N and maximum compression force for positive pressure
is 8.3 ± 0.03N.

FIGURE 3.17: (a) The threshold tension force of the actuator through a
tension test, (b) the threshold compressing force of the actuator through a
compression test, (c) measurement of the maximum and minimum bending
angles, and the bending force to deform the rubber tubing, and (d) measure-

ment of the shear friction between the rubber tubing and joints.

The joint is composed of multi-way joints and flexible rubber tubings. The joints and
the tubings are firmly connected by the friction and tension of the tubing. Each joint has
a maximum and minimum bending angle and maximum shear friction. We first measure
the maximum bending angle of the joints (Figure 3.17 c). We did 15 tests on five 3-way
joints. We first fixed one side of the beam on the table, and slowly changed the angle of the
free beam until it broke. We recorded the average maximum bending angle as 91.2 ± 0.2°.
We then measure the maximum shear friction of the tube, over which the joint will detach
(Figure 3.17 d). We did nine tests on three tubings and recorded the average maximum
shear force is 3.42 ± 0.03 N with a standard deviation of 0.42N. The measured bending force
(Figure 3.17 c) is smaller than 0.1 N at a radius of 51 mm, which is ignorable compared to
the shear friction and is therefore left out of the simulation.
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3.7.2 Simulation

We used JavaScript to develop a position-based dynamics model for PneuMesh structures.
The PneuMesh structure uses rigid plastic for the beams and joints and flexible rubber tubing
to connect the beams and joints. The self-deformation is driven by the pneumatic actuation
force along the axial direction of actuators as well as the bending resistance force from the
tubing. However, due to the softness of the tubing and the structural stability of triangles, we
consider the self-deformation only governed by the axial actuation force. In addition to the
axial actuation force, the simulation also includes the ground contact and friction.

To simplify the model, we consider the beams as rigid bodies and joints as point masses.
During simulation, we update the target length of each beam based on the actuation speed
and update the joint positions following the length constraint. To achieve real-time perfor-
mance, we allow deviation from the length constraint and use the beam strain energy as a
soft penalty. We compute forces applied to joints by minimizing the beam strain energy and
updated velocity and displacement of each joint by forward Euler integration.

Target Length. At every time step, each actuator has a target length lg based on the
volume inside the beam and the blocker position. We define lg = kalM +(1−ka)(lMσM, lM−
db), where ka equals to 1 if the channel is under inflation or 0 otherwise, lM is the maximum
length of actuators, and σM is the maximum contraction ratio of actuators. db is the beam
displacement which equals to ta · vb, where ta is the time of the current actuation, vb is the
expanding/contraction speed of beams. For passive beams, σM and db are constantly 0.

Beam Strain Energy. To keep the length of the beams approximating their target lengths,
we introduce the strain energy Es = ks(l− lg)2 , where ks is the weight of the energy. In the
experiment, we use a rubbery mat as the ground, which gives enough friction and stabilizes
the device. Accordingly, we assume that the ground absorbs all impact by setting the z-
component of velocity to 0 for the joints moving against the ground. We use Coulomb’s
model of friction with the static friction factor as 0.72 and the dynamic friction factor as
0.36.

Durability validation. Tubing detachment and the inversion of actuators’ actuation are
two factors that cause the most instability. The tubing is the weakest part of the PneuMesh
structure, and it is fixed to adapter structures by friction and internal tension. The structure
may break down due to the detachment of the tubing rather than other parts. Although the
two parts of an actuator are considered to be rigid bodies, the movement between the two
parts might be inverted due to the load on the beam (e.g. a tall structure gives a huge load on
the beams at the bottom). Specifically, an inflating actuator can be compressed and a deflated
actuator can be stretched. We only consider the former case because, under large tension,
the tubing will be detached before the latter case happens. At the end of each time step,
we validate the force applied on the beam and the tube. If they exceed the threshold value
we found through characterization, the tool throws a warning. Similarly, the tool evaluates
the bending angle of each beam attached to the joint and throws a warning once any angle
exceeds the threshold angle.

Directional surface. We found that adding a directional friction surface 3D-printed with
PLA, which only provides friction in one defined direction, on the bottom of the mesh makes
the locomotion more efficient. To simulate it, for each joint with a directional surface, we cal-
culate a forward direction by optimizing a vector that minimizes the angle difference between
the vector and all the neighboring edges compared to the initial setting.

3.7.3 Joint Generation

A joint is composed of ports connecting beams to a joint sphere, and air tunnel networks
inside the sphere. The air tunnel network consists of multiple air tunnels intersecting at
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FIGURE 3.18: Joint generation. (a) The tunnels are initialized as straight
lines sharing nodes in the middle, with endpoints fixed. (b) The optimiza-
tion pushes channels apart, where t represents time steps. (c,d) Grasshopper

generates the 3D model with separated channels for 3D printing.

one point, where each air channel connects one beam on the joint. Each air tunnel network
connects all the beams belonging to the same channel. In other words, if beams on the joint
belong to the same channel, only one air tunnel network will be generated, where all the air
tunnels will simply intersect in the center and remain straight. Otherwise, multiple air tunnel
networks will coexist inside the joint sphere and must be separated from each other. There
are a few requirements to ensure joint quality. First, there is a minimum distance between
tunnels from different networks to ensure isolation. Second, a larger radius of the channel
gives rise to a larger airflow. Third, a shorter and straighter tunnel has a higher printing
success rate and larger airflow. We first initialize all the air tunnels straight and connect
them to the center point of the sphere. We then discretize each air tunnel into N points. Air
tunnels in the same network have a shared point in the center of the sphere. We then optimize
the nodes’ locations by minimizing a weighted sum of tensile energy and repulsive energy
P = argminP keEe + krEr, where P is the set of all point positions (Figure 3.18 a,b).

Tensile energy. We set tensile energy to every neighboring pair of points in the same
network as Ee = d2, where d is the distance between the points and is initialized as 0.05mm.
Minimizing this energy gives relatively short and smooth channels, which have a higher
fabrication success rate.

Repulsive energy. We set repulsive energy to every pair of points belonging to different
networks as Er =−1/d,d < dm, Er = 0,d≥ dm, where dm is a minimum interference distance
we set as 0.4mm. This resembles the electrostatic potential energy following Coulomb’s law,
which pushes networks apart from each other. The cutoff distance reduces the computational
cost considering the O(N2) complexity of the long-range force energy.
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We do not update the position of the points on the end, which will be connected to the
channel of beams. We used Python with the NumPy library to implement air tunnel opti-
mization then store the result as a JSON file. We use Rhino 6 with Grasshopper to read the
JSON file in real-time and generate the joint models for 3D printing (Figure 3.18 c,d).

3.7.4 GUI Implementation Details

We used JavaScript with React-Three-Fiber library (a WebGL-based graphics library) [88]
to implement the design tool, simulator, durability validation, and GUI. The whole plat-
form is implemented and tested on a quad-core Macbook Pro. The browser-based design
tool has been tested on Google Chrome, Safari 14, and Edge. The code has been released
open-sourced (https://github.com/riceroll/PneuMesh) and a demo can be accessed
through (https://riceroll.github.io/pneumesh/).

3.7.5 Fabrication Details

For positive pressure, we used ASLONG AP-370 air compressor with 7.73psi maximum
pressure, and 0.5∼ 1.5L/min; for negative pressure, we used PYP370 vacuum pump rated at
−7.15psi and 0.5∼ 2.5L/min. We used Arduino UNO and electromagnetic valves to control
the pneumatic actuation. We used Z Rapid iSLA600 printer to print the joints, pistons, and
adaptors and used silicone tubing with a 50 durometer and 1.5 mm inner diameter. We
used polypropylene black pipe with 6 mm inner diameter and used a manual electric grinder
machine to cut the pipes.

3.8 Evaluation

3.8.1 Actuation Speed

The speed of actuation is affected by both the structural complexity and power of the pumps
we used. In our test, we use the same physical setup detailed in the Fabrication Details
section. Theoretically, the time from starting actuation to finishing equals ta = v/k, where
v is the volume of the channels, including the beams, joints, and connection parts, and k
is the flow rate of the pump. In reality, the actuation time varies due to the friction and
structure deformation as shape complexity increases. To verify our assumption and quantify
the performance, we measured the time of actuation with regard to the number of beams.
We used five structures, each with nine active actuators without blockers, as well as a varied
number of passive beams. We tested the time of a cycle of full actuation. The time varies
from 1.2s to 20.8s. We posit two major reasons for the variation of the actuation speed: 1)
Fabrication inconsistency, including printing and assembly qualities. 2) Small distortion in
the tubing changes the friction of the linear actuator which requires higher accumulated air
pressure to actuate and takes more time.

3.8.2 Simulation Accuracy

We evaluate the accuracy of our simulation by measuring the difference of corresponding
joint positions between experiments and simulations after actuation. For simple shapes such
as a single tetrahedron, the experiment result aligns well with our simulation. As the com-
plexity of the shape and time of actuation increases, the discrepancy between the experiment
and simulation also increases. For example, for the fox in Figure 3.15, the position of the
left-front node was displaced for (34.6 ± 1.8, -4.5 ± 0.4) mm after 5 cycles of actuation, while
in simulation the locomotion is (36.4, 0.3) mm. The difference is 5.3% (compared to the total
locomotion distance). To improve our accuracy in the future, in addition to implementing a

https://github.com/riceroll/PneuMesh
https://riceroll.github.io/pneumesh/
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high-order simulator with smaller time steps, we could add acceleration sensors to measure
the location and adjust the simulator on the fly.

3.8.3 Fabrication Parameters

We reported the fabrication parameters of each application in Table 3.1. From the result, we
can see that we use a very limited number of channels to actuate large numbers of actuators.

TABLE 3.1: The parameters of each application, including (from left) the
building time, the time using the design tool, number of beams, number of
linear actuators, number of joints, number of channel compartments, number

of static shapes, and weights.

3.9 Limitations

Speed As reported previously, there is a limit in speed due to the flow rate of the pumps and
the maximum air pressure the structure can withstand. Currently, the physical prototypes are
aimed at tabletop interfaces, such as construction toolkits for design, education, or physi-
cally embodied agents. Higher speeds would require increasing the power of the pump and
changing the design of the connecting parts to withstand higher air pressure.

Unit Size and Shape Resolution To increase the number of beam units and shape reso-
lution for more complex geometries without sacrificing actuation speed, each unit must be
miniaturized. Currently, the unit size is limited by both the beam and joint designs. Each
requires an air channel; this channel cannot be too narrow due to both our 3D printing resolu-
tion and the required flow rate of air for a given actuation speed. Different printing methods,
or different speed goals, could allow further miniaturization.

Asynchronous Actuation of Different Beam Units We have mentioned in our evaluation
section how the speed of actuation could vary given the same beam number and geometrical
complexity, and this is largely due to the fabrication quality and varied extent of deformation
at joints (due to the different transformation design). Indeed, these two factors also cause
some asynchronous actuations of different beam units. For relatively complex structures
shown in this paper, some beams will take a longer time to actuate than others. For now, our
simulation does not take this factor into account, and this will sometimes cause discrepancies
between the simulation results and the physical performance. We believe both improving
hardware design (e.g., removing the soft tubing at each joint) and adapting more sophisticated
fluid mechanics simulations to better capture how air flows within our channels will help
tackle this challenge.

Load Carrying Capacity This is a lightweight structure and not optimized for loading.
The load-carrying capability is largely limited by the soft rubber tube connections we are
using. We may improve the joint design with methods introduced in previous truss-based
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robotics such as the flexible joint design in Trussformer[69], so we can have flexible joints
with varying deformation angles yet being rigid and load-bearing. Instead of printing com-
municating tubes as joints, we 3D print a scaffold for structural stability and connecting
flexible tubes for air to pass through respectively. However, a more sophisticated (or artic-
ulated) joint design may bring higher requirements for the printing resolution and limit the
minimum size of our structure.

Optimization and Inverse Design
Since users might wish to design quite complex truss structures with many adjustable

beam units, it could take the users a lot of trial-and-error in a forward design process until
they achieve a transformation or locomotion behavior they like. In addition, what the users
have designed may not be most optimized in the sense that fewer air channels may be able
to reach the same locomotion behavior given more time to try other design options. For
example, the lobster design took us about 1.5 hours. For the next step, to better facilitate the
design process of complex truss structures, we will implement an inverse design process with
tailored optimization in the future. Inverse kinematics [89] or evolutionary robotics design
[90] are potential references.
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Chapter 4

Muscle Synergy Inspired Evolution of
Actuator Network

The functionality of robots is often related to their morphology. Adapting morphology to
diverse conditions and tasks may enhance their performances in locomotion, transformation,
and human-robot interaction. Truss robots with numerous beams offer extensive morpho-
logical possibilities and degrees of freedom but present challenges in terms of structural and
control complexities. We introduce metatruss, a design and optimization approach inspired
by biological muscle synergies, that addresses these challenges through three key contribu-
tions: (1) a novel control architecture that groups actuating beams into subnetworks con-
trolled by single modules, (2) a multi-objective optimization pipeline incorporating custom
genetic algorithms to navigate design constraints, and (3) a physically realizable implemen-
tation demonstrated through multiple robot designs. For instance, a metatruss with 150 ac-
tuating beams can be efficiently grouped into eight subnetworks, each managed by its own
control module—achieving a ratio of 18.75 actuating beams per control module, a significant
improvement over existing models which typically achieve only 1.5 actuating beams per con-
trol module. Our method not only simplifies control but also facilitates complex and sequen-
tial motions, enhancing the robot’s ability to handle diverse tasks. Our demonstrations across
multiple robot designs, from quadrupedal locomotion to shape-shifting structures, confirm
that metatruss can effectively undertake various robotic and morphing functions, showcasing
their potential in complex, real-world applications.

4.1 Introduction

Recent studies show that a robot’s morphology is pivotal to its functionality [1]. Biolog-
ical organisms demonstrate this through their ability to adjust body structure and stiffness
to accommodate environmental demands - octopi squeeze through small apertures, while
caterpillars use peristaltic shape changes to navigate diverse environments. This adaptability
becomes indispensable for robots facing tasks such as fitting into tight spaces, conforming
to objects, or inducing specific human emotions and cognitive responses. However, such
dynamic plasticity that enables robust operation in natural environments remains a challenge
for most artificial systems.

Robotic systems with adaptive morphology demonstrate capabilities for continuous shape
changes, including volumetric transformations. Bar-joint robots use interconnected bars and
joints as linear or rotational actuators, but are often limited to tree topologies [12–14] or
single-bar limbs [91], restricting their shape expressiveness and weight-bearing capacity.
Multi-material voxel robots [50–53], composed of regular cubic units (voxels) with differ-
ent material properties, offer diverse shape changes by activating specific voxels. However,
they face challenges in scalability and real-world precision due to their solid volume nature
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and the non-linear interactions between connected voxels. Magnetic self-reconfigurable cu-
bic robots [54, 55] allow for voxelated shape reassembly through magnetic connections, but
lack structural integrity and continuous motion, limiting their practical applications. Other
approaches include robots with variable limb lengths [9, 10], morphing wheels [11], and 2D
origami or soft sheet robots [92, 93]. However, these designs often have limited degrees
of freedom, control precision, or are constrained to specific morphologies, highlighting the
need for more versatile and scalable solutions in adaptive robotic systems that can achieve
complex, three-dimensional shape changes while maintaining structural integrity and precise
control.

Among the various approaches to address these challenges, variable geometry truss (VGT)
systems stand out among robotic designs that offer morphological complexity and adaptabil-
ity. VGTs, composed of beams and joints that form tetrahedral or octahedral truss structures,
achieve diverse transformations such as rotation, twisting, linear, and volumetric scaling
through actuator beams. This flexibility enables VGTs to perform standard robotic tasks like
locomotion [41, 42], manipulation [43, 44], and target-reaching, as well as specialized ac-
tivities requiring morphological adaptations [45–48]. Despite their advantages in degrees-of-
freedom (DOFs) and versatility, current VGTs face scalability issues due to the complexity of
their control systems, which scale exponentially with the number of beams [40]. Therefore,
existing VGT with physical implementations are either having a few tetrahedral units [43,
56, 57] or only a few beams are actuable [45], restricting their achievable motions.

Previously, researchers have introduced a novel approach to simplify the control of com-
plex truss robots [63], a strategy for grouping actuator air channel into networks, termed
C-networks. By grouping pneumatic actuators with interconnected joints, each subgroups
of the actuators in the same C-network can be actuated simultaneous with a single air valve
as the controller (Fig. 4.1 b). Despite that the total number of actuators do not change,
the number of controllers decreased. With varying combination of the actuation states of
the C-networks, the metatruss deforms into different morphology and the number of possi-
ble morphologies exponentially scales as the number of the C-networks increases (Fig. 4.1
b). Moreover, under a temporal sequence of actuation signals, the truss transforms into a
series of morphologies and performs a sequential motion. Additionally, they enabled each
actuator to have different preset contraction ratio through a blocker structure. This approach
aims to simplify the system and control complexities inherent in complex truss robots. Al-
though it introduced a design and simulation tool that allows designers to assign the beam
connectivity manually, no optimization or automated design pipeline was introduced. As the
truss becomes more intricate and tasks grow in complexity, manually navigating C-network
assignment becomes tedious and intractable.

In nature, humans and other animals, despite having hundreds of muscles and billions
of muscle cells, execute complex movements without consciously controlling each muscle’s
contraction. Research indicates that animals may use a control strategy known as synergy [61,
62, 100, 101]. This mechanism, also present in humans, reduces neural pathway complex-
ity [100]. With synergy in human motor control, intricate actions like walking or jumping are
executed by coordinating a muscle network periodically, eliminating the need for conscious
control of every individual muscle. As such, many muscles operate concurrently when en-
gaging in activities that require collaborative muscle actuation. While the topic remains under
debate, several researchers argue that this coordinated approach achieves an optimal balance
between actuator count and control complexity, significantly reducing the brain’s computa-
tional burden [102–104]. Inspired by biological muscle synergy, where complex movements
are achieved through efficiently coordinated muscle groups rather than individual control, we
propose a similar principle for metatruss. We hypothesize that there exists an optimal num-
ber of C-networks for a given metatruss, beyond which additional networks yield diminishing
increase in performance across various multiple tasks.
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FIGURE 4.1: Overview of the metatruss system. a, A metatruss with dou-
ble tetrahedron topology, consisting of 9 actuators and three inter-connected
air channels, C-networks. The actuators belonging to the same C-network
expand simultaneously, causing the shape change of metatruss. b, Variety
of achievable morphologies through the combination of binary on/off states
for three C-networks. Here, three C-networks can yield 23 possible truss
configurations with two tetrahedrons. c, Illustration of the multi-objective
genetic algorithm with customized operators used for the metatruss design
optimization. d, The C-network assignment, where actuators of the same
color belongs to the same C-network. e, The customized joint structure fea-
tures inner air channels with selective connectivity, enabling unified control
for actuators sharing the same air pressure. f, Each beam has a discrete con-
traction level within one of the four percentages r ∈ {0.0,0.12,0.24,0.36},
preset manually with a blocker design. g, Contraction levels in a metatruss
design. h, Open-loop binary control signals in a metatruss design. i, Six-
channel quadruped metatruss optimized to achieve four distinct target mo-
tions through four open-loop controls: walking, turning, tilting, and crouch-
ing. j, Experimental results indicating diminishing performance gains with
an increased number of C-network channels. k, Comparison with existing
research featuring VGT with optimized control [40–43, 45, 46, 56, 57, 60,
94–99], highlighting how our optimizer minimizes the number of control

units (Nc) while increasing the number of actuatable beams (Na).

To validate this hypothesis, we developed a multi-objective optimization pipeline using
a tailored hierarchical genetic algorithm (Fig. 4.1c, d). This approach was chosen because
the discrete nature of C-network assignments and the topological constraints of the network
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make traditional gradient-based optimization methods unsuitable. Our genetic algorithm in-
corporates custom operators that respect both symmetry and connectivity constraints while
exploring the design space. The pipeline simultaneously optimizes three key aspects: the as-
signment of actuators to C-networks (determining which actuators work together), the preset
contraction levels of individual actuators (defining actuators’ motion), and the temporal actu-
ation sequences (controlling when each C-network activates). This multi-level optimization
allows us to find designs that balance the competing demands of control simplicity and task
performance while maintaining physical feasibility.

Our hypothesis is substantiated through an empirical study. We demonstrate that for a
complex truss robot with multiple functional objectives—specifically, a quadruped metatruss
bot tasked with four distinct functions—a limited number of C-networks can yield compet-
itive performance (Fig. 4.1d, i, j, Supplementary Video 1). This finding is significant when
compared to existing literature. Our proposed design method and optimization approach
notably enhance the ratio of total actuating beams to the complexity of the control system,
offering a unique contribution to the field (Fig. 4.1 k). Furthermore, we showed five different
truss topologies with various tasks to show the topology and task diversity of our system. We
build a physical prototype of one metatruss to validate the physical feasibility and compare
its trajectory with simulation to show the high accuracy of the simulator.

4.2 Results

4.2.1 Overview

Our metatruss, based on the pneumatic shape-changing truss design from PneuMesh [63], is
a tetrahedron-based structure composed of pneumatic linear actuators and 3D-printed joints.
Each actuator expands to a maximum length under positive pressure P+ and contracts to one
of four preset lengths under negative pressure P−, adjustable via a reconfigurable blocker
structure (Fig. 4.9 c, d). The joints have selective inner air channels that connect incident
actuators, grouping them into subsets called C-networks (Fig. 4.1 a, b) Actuators within a C-
network share air pressure and operate simultaneously, independent of other networks. Each
C-network has a binary state: active (P+) or inactive (P−). The metatruss achieves various
morphologies through different combinations of C-network states (Fig. 4.1 a, b). Detailed
mechanism and fabrication information can be found in the Methods section Mechanism and
Fabrication Details.

A metatruss can achieve specific shapes or perform sequential motions through activation
signals of its C-networks, enabling tasks that require locomotion or shape changes. While
previous work [63] demonstrated hand-designed C-network assignments and actuation sig-
nals for given tasks, our work automates this process for more complex truss topologies
and diverse tasks. Given a metatruss topology, initial joint positions, tasks, number of C-
networks, and C-network symmetry, our optimizer finds the optimal C-network assignment,
contraction levels, and actuation signals to maximize the metatruss’s multi-objective perfor-
mance across the specified tasks. For a detailed problem definition, refer to Problem State-
ment of Metatruss Optimizer. The specific truss topologies and tasks explored in this paper
are described in Truss Topologies and Tasks.

To optimize the metatruss design, we developed a highly-damped dynamical simulator
that balances computational efficiency with physical accuracy. While existing simulators like
Finite Element Methods offer high fidelity but are computationally intensive, and pure kine-
matic approaches are fast but oversimplified, our approach strikes a middle ground necessary
for evolutionary optimization. The simulator approximates quasi-static behavior through sig-
nificant damping while accurately capturing essential physical interactions including length
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constraints, gravity, ground collision, and friction. This design choice enables rapid evalu-
ation of thousands of design iterations while maintaining sufficient accuracy for real-world
transfer, as validated through our physical prototypes. The simulator’s performance and ac-
curacy are thoroughly examined in Simulator, where we demonstrate comparable accuracy to
established physics engines while achieving substantially faster computation times necessary
for our genetic optimization pipeline."

Building on our simulator, we developed an optimization framework tailored to the
unique challenges of metatruss design. At its core, our approach transforms the complex
problem of C-network design into a tractable form by encoding network assignments, con-
traction levels, and activation signals into a simple yet expressive integer-based representa-
tion (Representation). This optimization framework addresses the essential topological con-
straints of C-networks while enabling efficient evolutionary optimization (Constraints). To
handle multiple competing objectives while maintaining design diversity, we enhanced the
NSGA-II algorithm with an elite preservation mechanism (Computation Pipeline). A key in-
novation of our framework lies in its custom genetic operators, carefully designed to explore
the design space while respecting physical and topological constraints (Operators).

We validated our framework through three complementary experimental studies. Using
a quadruped robot as our primary test case, we demonstrated that metatruss performance
reaches diminishing returns beyond a certain number of C-networks, supporting our hy-
pothesis that effective control can be achieved with relatively few networks (Performance
v.s. C-network numbers). We then showcased the versatility of our approach by optimizing
five distinct metatruss designs for diverse tasks ranging from locomotion to shape-morphing
(Task and Topology Diversity). Finally, we bridged the simulation-reality gap by building
and testing a physical prototype, confirming both the practical feasibility of our designs and
the fidelity of our simulator (Physical Validation). Detailed descriptions of the truss designs
and their corresponding tasks can be found in Truss Topologies and Tasks, with numerical
results and implementation details in Numerical Results and Implementation Details.

4.2.2 Metatruss Simulator

Various approaches exist for simulating truss robots, each with distinct pros and cons. Finite
element methods (FEM), such as Karamba3D, offer detailed analysis of load distribution
and micro-deformations but are computationally intensive [105]. Rigid body simulators like
Newton Game Dynamics [45], Open Dynamics Engine [96], Mujoco, and Bullet [12–14]
provide a balance of speed and accuracy, making them suitable for interactive use and opti-
mization. Some researchers focus on kinematic analysis, assuming quasi-static motion and
fixed contact points, which allows for simpler inverse kinematics solutions but limits task
diversity and dynamic scenarios [41, 42, 60].

To simulate metatruss, We employ a highly-damped dynamical simulation model. Al-
though rooted in dynamic simulations, this model utilizes significant damping factors and
incremental adjustments to the rest lengths of connecting beams, effectively approximat-
ing quasi-static behavior. This approach de-emphasizes the dynamic processes in favor of
the final, converged states. The model integrates four types of forces: length-constraint
forces, gravity, ground collision, and friction. These forces collectively shape the system’s
physical behavior, and their computations are performed using explicit integration methods.
The incorporation of damping ensures that the system approaches a near-equilibrium state at
each step, approximating quasi-static behavior while retaining computational efficiency. The
model details can be found in Simulator Details.

As genetic algorithm requires lots of evaluation on generations of designs, and the result
needs to be transferred to a metatruss robot in real world, the simulator needs to be both
efficient and accurate. To evaluate the efficiency, we compared our simulator with Mujoco.
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Using motor actuators and equality constraints in Mujoco, the simulation results between
Mujoco and our simulation aligned with an average difference of 3.63%. Our simulator
achieved computation speeds approximately 345 times faster than Mujoco for 10,000 simu-
lation steps (see Simulator Details).

To validate our simulator’s accuracy, we fabricated a physical prototype of a pillbug-like
metatruss. We compared the tracked experimental trajectory with the simulated trajectory
over eight action sequence cycles, finding a trajectory difference of 4.38% relative to the
total displacement of 86.0 cm (see Physical Validation). This close alignment between ex-
perimental and simulation results demonstrates the high accuracy of the sim-to-real transfer
of our simulator.

4.2.3 Optimization Framework with Tailored Genetic Algorithm

In the field of VGT, researchers have developed various approaches to optimize the control
and motion of truss robots, focusing on the actuation signals for individual beams or joints
[41, 42, 97]. Some studies have explored co-optimization of control and morphology [7, 78,
106, 107]. However, these methods typically assume independent control of each actuator
and often require continuous contraction ratios, which is not suitable for our metatruss.

Implicit encoding methods have been used to represent element attributes and actions in a
continuous latent space. Compositional pattern-producing networks (CPPNs) have been par-
ticularly effective for voxel robots [50, 108], excelling at generating complex designs with
symmetry, repetition, and spatial continuity. These features align well with voxel robots’
regular, Euclidean topology. However, truss structures present challenges for CPPNs due
to their non-Euclidean topology where the relationship between neighboring elements is not
uniform or continuous in space. A small changes in an actuator’s C-network index can dra-
matically affect metatruss performance or invalidate the structure, and the spatial properties
CPPNs excel at may not be beneficial.

Other approaches like using transformers [13, 14] or L-systems [109] for tree-topology
robots also face limitations when applied to metatruss designs. These methods are well-suited
for acyclic, tree-like structures but struggle with the cyclic topology of trusses. Moreover, the
number of edges in our metatruss is significantly larger than in typical limbed robots, adding
another layer of complexity to the encoding and optimization process.

Given the unique challenges of metatruss optimization—including C-network connectiv-
ity constraints, cyclic graph topology, and multi-objective requirements—existing implicit
encoding approaches prove inadequate. Instead, we opt for discrete optimization methods,
specifically genetic algorithms, which allow direct optimization on explicit encodings. The
flexibility of genetic operators enables us to tailor them to our specific constraints. To address
the multi-objective nature of our problem, we implement the NSGA-II algorithm, facilitating
simultaneous optimization of metatruss designs across multiple performance criteria.

Design Representation

To efficiently and concisely describe a metatruss design compatible with the genetic algo-
rithm, we use a one-dimensional integer array as its representation. We represent every pa-
rameter, including the C-network assignment, contraction level, and actuation sequences in
integers, and concatenates them into an 1D integer vector. Specifically, this array is struc-
tured into three segments, each encapsulating specific design parameters of the metatruss
(Fig. 5.2a):

• C-network Assignment: The initial segment of the array captures the affiliation of
each beam to a specific C-network. Integers within this segment correspond to the
indices of C-networks to which each beam is assigned (Fig. 5.2b).
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• Contraction Level: The second segment represents the preset contraction levels for
the beams. Each integer in this section signifies a preset level, which corresponds to a
predefined contraction ratio (Fig. 5.2c).

• Actuation Sequences: The final section captures the dynamic aspects of the meta-
truss design – the actuation sequences. Each integer here indicates the on/off states
for the air valves that govern each C-network at every time step (Fig. 5.2d). The ac-
tuation sequences are flattened into a one-dimensional array and concatenated into the
representation.

This encoding represents all the information of a metatruss design as an integer vector
that is suitable for the genetic algorithm to optimize. The detailed definition of the represen-
tation can be found in Representation Details.

FIGURE 4.2: Representation and Elements of a metatruss Design. a,
A 1D integer array serving as the design representation. This array encom-
passes C-network indices, contraction levels, and on/off control signals. b, In
a quadruped robot example, each beam designated a unique C-network index
indicated by color. c, Preset contraction ratios r derived from the product of
contraction level and a fixed increment, ∆= 0.12. d, Task-specific sequences

of on/off control signals assigned for actions like walking and turning.

C-network Topology Constraints

As shown in the design of the actuators and joints Mechanism and Fabrication Details, actua-
tors within the same C-network share the same air pressure through a continuous air channel
network. It implies that a C-network is an undirected connected graph. Any two actuators
within the same C-network needs to be physically connected, and there exists a path of actua-
tors connecting them, where all the actuators in the path are assigned to the same C-network.
We define this as the connectivity constraint to ensure the physical validity of the C-networks.

The second is symmetry constraint. Symmetry, a concept often observed in nature, has
been recognized for its ability to increase the efficiency of robotic movements [110]. By in-
tegrating symmetry into the design and control of robots, the parameter space can potentially
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be substantially reduced, thereby enhancing the search process’s efficiency. Here, we define
a symmetry constraint during the C-network assignment optimization process. This involves
defining symmetry at various levels, including the joint, beam, and truss, and introducing
the C-network symmetry configuration (Fig. 4.3). The details of symmetry definition can be
found in Symmetry Definitions.

The formal definition for the constraints can be found in Constraint Details.

FIGURE 4.3: Metatruss Symmetry Constraints. a-b, A symmetric meta-
truss consisting of self-symmetric (a) and inter-symmetric beams (b). c,
Preset C-network configurations designating individual C-network as self-

symmetric or specify C-network pairs as inter-symmetric.

Multi-objective Computation Pipeline

To optimize towards multiple objective, a weighted sum of multiple objective function evalu-
ation values is the straightforward way. However, when different objectives have conflicting
requirements, the optimization often ends up at a middle ground which leads to solution that
is not performing the best at any of the objectives.

One advantage of genetic algorithm is that instead of optimizing a single design, it op-
timizes a generation of designs, where each design has different advantages in some of the
tasks. NSGA-II is an algorithm that encourages the diversity in the designs through a non-
dominated sorting and a crowding distance sorting. Specifically, instead of sorting in one
dimension with weight combination of performances, NSGA-II computes a rank (R) which
shows to what degree a design is not dominated by other designs, where a design domi-
nates another means that a design outperforms another on all objectives. Within the same
rank, NSGA-II computes a crowding distance (CD) to evalute how many designs with simi-
lar performance exist, and sort them later to encourge design in a sparse performance space
to enhance the diversity. The details of NSGA-II can be found in NSGA-II Explanation.

In generation-based optimization, a common challenge arises when a subset of designs
consistently outperforms others, leading to their propagation through mutation, crossover,
or regeneration operators. As a result, less dominant designs may be prematurely discarded,
losing the opportunity to evolve and reach their potential. To address this issue, we introduced
an elite pool mechanism (Fig. 4.4 b). This approach maintains a separate elite pool in addition
to the traditional evolution pool. At regular intervals, the best-performing designs are moved
temporarily to the elite pool, creating space for newer designs to evolve in the main pool.
After a few iterations, these elite designs are reintroduced to the evolution pool for further
optimization, allowing for a more balanced and diverse exploration of the design space and
improved Pareto performance. Details of the elite pool mechanism can be found in Elite Pool
Strategy for Optimization Across Generations.

Each optimization starts with the input of the given topology, and initial joint positions,
the symmetry and C-network configurations, as well as the objectives (Fig. 4.4, a). A gen-
eration of designs are initialized, and simulated, and evaluated through multiple objective
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functions. The resulting objective values are sorted through NSGA-II. The top performed
designs are kept while the rest is discarded. Every a few generations, the top performed de-
signs will be moved to an elite pool. Once the elite pool is full, all the elite designs are moved
back to the active pool and continue the evolution. The details can be found in Optimization
Process in One Generation with NSGA-II.

FIGURE 4.4: The Optimization Pipeline for metatruss Structures: a, The
single-generation optimization involving each training generation to update
the active gene pool via NSGA-II-based selection, mutation, crossover, and
initialization. (i) The input setting includes the predefined topology, joint
positions, symmetry along the y = 0 plane, C-network configurations, and
objectives. (ii) The initial active gene pool is formulated through a tailored
initialization operator. (iii) Different trajectories of the robotic behaviors
resulted from simulation. (iv) Within each GA iteration, simulated design
trajectories undergo evaluation using specific objective functions. (v)NSGA-
II ranks and filters designs, retaining only top performers. (vi) Retained
designs generate the next generation via mutation and crossover operators,
complemented by additional designs from the initialization operator. (vii)
Updating active gene pool. b, The cross-generation optimization to replenish
the elite pool from the active pool. For each NG generation, the remaining
designs in the active gene pool are moved to the elite pool, indicating the end
of the iteration. Once the elite pool is full, its designs are transferred back to

the active gene pool.

Tailored Operators

Default genetic algorithm operators do not consider the relationship and constraints between
the digits. They randomly generate, change or exchange the digits within the domain. How-
ever, a metatruss representation has symmetry and connectivity constraints, which are not
explicitly expressed in the integer vector representation. Therefore, to both keep the validity
of the two constraints and the randomness of the search, we developed tailored initialization,
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mutation, and crossover operators (Fig. 4.5). For initialization, we need to create a random
C-network from an empty metatruss. Instead of randomize the digits and check if the con-
straints are valid, we developed a network growth approach. It first randomly generates new
C-network assigned edges on top of existing C-networks, which assures the connectivity
constraint. Meanwhile, the C-network index is filtered based on the symmetry constraints.
This ensures the symmetry constraint, connectivity constraints of C-networks, ans well as the
randomness of the search. The details can be found in Operators

FIGURE 4.5: Metatruss Operators including C-network Initialization,
Mutation and Crossover. a-j, A four-C-network initialization process. One
beam for each of the four C-networks is randomly selected and assigned
a valid C-network index, adhering to C-network and beam symmetry con-
straints (a-d). Then beams connected to those already assigned are also as-
signed valid C-network indices through iterative selection (e-j). k, The valid
mutation steps. l-m, The invalid mutations that break symmetry (l) or disrupt

C-network connectivity (m) .

4.2.4 Performance with Varying C-network Channel Numbers

There exists a trade-off between control complexity and task performance. In an extreme
scenario, if the number of C-networks equals the number of beams - implying that each
actuator can be controlled independently - the metatruss will possess the maximum DOFs
for control, therefore having the potential to achieve optimal performance. However, this is
likely unnecessary and generates a tremendously large parameter space (e.g., the metatruss in
Fig. 4.1 would have had 150 air flow control units if each actuator is individually controlled),
leading to over-complicated control setup requirements. On the other hand, a robot with too
few independently controllable actuators may struggle to accomplish multiple distinct tasks.

We investigated the relationship between the number of C-networks and robot perfor-
mance using a quadruped robot model (Fig. 4.1b). The robot was trained to perform four
tasks: walking, turning, tilting, and crouching, with C-network numbers ranging from 2 to
64 (Fig. 4.6a).

Our results reveal a non-linear relationship between performance and C-network count.
For simpler tasks like tilting and crouching, which require only a single-step action, all five
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FIGURE 4.6: Performance Trade-offs with Varying C-network Channel
Numbers a, C-network assignments for the quadruped robot with 2, 8, 16,
32, or 64 C-network channels at the 1000th iteration. b, Performance metrics
for a quadruped robot for four target objectives including walking distance,
turning alignment, tilting alignment, and crouching distance. c, ANOVA test
results on multi-objective optimization performance for quadruped robots
trained with 2, 8, 16, 32, or 64 C-network channels, each group comprising
six data points. Significant differences are observed across the five groups,
with a notable distinction in the first pair highlighted by Tukey’s HSD. d,

Performance of the hypervolume of the Pareto front across iterations.

robots reach the maximum value. In the task of tilting, the 2-C-network robot takes 378
iterations to converge, while the 8-C-network robot and others require 230 or fewer iterations.
As tasks become more complex with longer horizons, a performance gap emerges between
the 2-C-network, 8-C-network, and 16-C-network robots. Nevertheless, the performance
difference diminishes as the number of C-networks increases. For robots with more than
32 C-networks, there is no significant difference in converged performance in converged
performance, with only a 4.8% variation in Pareto front volume among 16, 32, and 64 C-
networks (Fig. 4.6b,d).

Statistical analysis using one-way ANOVA confirmed significant differences among the
five groups (p < 0.001). Post-hoc comparisons using Tukey’s HSD showed that performance
improved significantly when increasing from 2 to 8 C-networks (p = 0.003), but differences
became statistically insignificant beyond 16 C-networks (p > 0.877) (Fig. 4.6c).

These findings support our hypothesis that an optimized C-network design can achieve
competitive performance with a relatively small number of C-networks, balancing task per-
formance with control system complexity. We used the hypervolume of the Pareto front as an
overall performance metric to capture the multi-objective nature of the optimization problem.

The details of the implementation and analysis can be found in Numerical Results and
Implementation Details.
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4.2.5 Diversity in Task and Truss Topology

To demonstrate the versatility of our metatruss method, we explored a variety of truss topolo-
gies and functional objectives beyond simple locomotion tasks. Previous work on Variable
Geometry Trusses (VGTs) has primarily focused on single-function designs or limited mor-
phological changes due to control complexity [42, 45]. Similarly, other morphing robots
have typically been optimized for specific tasks such as locomotion on different terrains or in
water [91, 111]. Traditional limbed robots, while versatile in movement, are limited in their
ability to perform significant shape changes [76].

Our method, in contrast, enables the design of multi-functional, highly adaptable struc-
tures while maintaining a simplified control system. It allows for both complex locomotion
and volumetric shape morphing, similar to deformable triangle meshes in computer graphics,
albeit constrained by the actuators’ contraction ratios. This capability sets our approach apart
from both traditional VGTs and limbed robots.

We hypothesized that our approach could optimize trusses for diverse, potentially con-
flicting objectives within a single design, including both locomotion and shape approximation
tasks. To test this, we developed four distinct examples: a quadruped robot, a shape-shifting
helmet, a lobster-inspired walking robot, and a tentacle-like actuator ( Fig. 4.1b, Fig. 4.7).

The quadruped robot was optimized for four motion objectives: walking, turning, tilt-
ing, and crouching (Fig. 4.1e). The goal of this demonstration is to first show that the meta-
truss is capable of achieve traditional robotic tasks including locomotion and pose changes,
and second to show that our computation pipeline can enable the metatruss perform multiple
tasks with a single physical configuration. As expected, the robot successfully achieved all
four motions, with performance improving as the number of C-networks increased up to a
certain threshold (Fig. 4.6b).

The shape-shifting helmet (Fig. 4.7a-c) tested the method’s capability in precise volu-
metric shape morphing, successfully transforming between two distinct target shapes while
maintaining structural integrity. This demonstrates a capability not typically achievable with
traditional limbed robots, and can potentially unlock new robotic functionalities such as
changing morphology to adapt to different environmental constraints and functionality re-
quirements, or precisely approximating different shapes for aesthetic purposs.

The lobster-inspired robot (Fig. 4.7f-i) incorporated energy efficiency alongside lo-
comotion speed, demonstrating improved walking performance and optimization efficiency
compared to single-objective optimization. This multi-objective approach goes beyond typ-
ical terrain-specific optimizations that only optimizes the speed, but also show the potential
of sustainable locomotion robot with a large number of actuators.

The tentacle-like actuator (Fig. 4.7j-l) achieved high precision in reaching multiple 3D
target positions, with error rates below 1e-5mm for a 135mm beam length, showcasing the
method’s potential for precise shape control. This shows the potential for high precision tasks
such as manipulation under with truss robots.

These examples demonstrate our method’s ability to optimize complex, multi-functional
truss designs that can perform both locomotion and significant shape changes, while main-
taining a simplified control structure. The results consistently met or exceeded our perfor-
mance expectations, showcasing the potential of our approach in designing versatile, adaptive
robotic systems that bridge the gap between traditional limbed robots and highly deformable
structures. The details of the of topologies and tasks can be found in Truss Topologies and
Tasks.
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FIGURE 4.7: Metatruss Design Variations and Performances a, Three
target positions for a morphing helmet in two objectives, with green indi-
cating the key joints, and red being the corresponding target positions. b,
Joint weights of the morphing helmet are indicated by color shading, with
darker shades representing larger weights. c, The shape of the helmet before
and after morphing. d-e, Shape-shifting helmet training metrics: hypervol-
ume and mean square distance between the key joints and the corresponding
target positions. f, Lobster robot’s walking trajectory and morphologies at
different times. g-i, Lobster robot metrics: hypervolume, energy efficiency,
and walking distance. j, Tentacle robot reaching three distinct target posi-
tions. k-l, Tentacle robot metrics: hypervolume and mean squared distance

between the tracking joint and three target positions.

4.2.6 Physical Validation

To demonstrate the feasibility of our metatruss design and assess the accuracy of our simu-
lator, we constructed and tested a physical prototype called the "pillbug" (Fig.4.8a, Supple-
mentary Video 5). This prototype was designed to perform a walking task with a lowered
body, optimized for both locomotion speed and minimized average maximum height. The
design was selected from the Pareto front after 800 iterations of training and fabricated using
previously established methods[63].

We compared the experimental performance of the pillbug with our simulation pre-
dictions by tracking the trajectories of three key joints over eight action sequence cycles
(Fig. 4.8b-d). Our analysis revealed a good overall agreement between the simulated and
experimental results, with an average trajectory discrepancy of 3.77 cm and an average static
position discrepancy of 1.26 cm. For context, the fully extended length of each beam in the
prototype is 17.8 cm.
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The prototype demonstrated high consistency in its motion patterns, with an average self
trajectory cycle discrepancy of 0.54 cm. This indicates reliable and repeatable performance
despite inherent variances in the physical system, such as friction differences between pneu-
matic components.

Our results validate the effectiveness of our metatruss design approach and highlight
the potential for physical implementation of optimized designs. They also reveal areas for
future improvement, such as accounting for friction variances in the simulation and exploring
closed-loop control methods for enhanced accuracy in long-term operation.

For more detailed information, please refer to the Methods section Physical Prototype
and Simulator Accuracy Validation.

FIGURE 4.8: Evaluation of the fabricated pillbug and simulation. a,
Comparison of the experimental and simulated pillbug performing walking
with lowered body in one action sequence cycle. The three tracked joints are
highlighted in green bounding boxes. b-d, The experiment and simulated
trajectories of the three joints (Top-bottom: joint 1-3). The color gradient
indicates the time of the motion. The joint positions at the beginning and
ending of each action sequence cycle are highlighted with dots. e-g, Tra-
jectories of each action sequence cycle from the experiment and simulated
trajectories (Top-bottom: joint 1-3). All the cycles are cropped from b-d at
the highlighted points, with starting positions aligned at the zero coordinate.

4.3 Discussion and Conclusion

In this paper, we present a metatruss design concept with a simplified control system by
introducing the C-network mechanism. We implement a tailored multi-objective genetic
algorithm to optimize the design of a metatruss under unique design constraints of the system
that are discrete and highly relevant to the topology, such that the metatruss can achieve
multiple complex motions with a limited complexity of the control system.

Our metatruss design also shows potential for fully mechanical implementation of the
control system. While our current implementation relies on external control signals, the opti-
mized open-loop control sequences could be encoded directly into mechanical logic circuits
as a future work. Taking our pillbug robot as an example, its 4-bit binary control sequence
with 4 time steps can be implemented using a 2-to-4 multiplexer circuit requiring only 14
logic gates including one clock unit (Fig. 4.13). Using pneumatic logic gates based on
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bistable membranes [112, 113], where air pressure differences control the blocking of air
tubings, these control circuits could be miniaturized and integrated directly into the meta-
truss structure. With mechanical logic units potentially scalable to 1cm and metatruss beams
expandable to 20cm, a single metatruss robot could carry its own control circuit board. This
approach would significantly simplify the control infrastructure, requiring only a constant air
pressure source - either tethered through a single tube or completely untethered with an on-
board compressed air tank. This demonstrates how our metatruss design could evolve from
externally controlled systems to autonomous, mechanically controlled robots.

We see the potential of our metatruss design method going beyond pneumatically-driven
truss robots. Other linear actuators suitable as beams in a truss-robot context could be
adapted, including linear actuating beams driven by linear motors, shape memory alloy,
and soft actuators such as liquid crystal elastomer [114] or muscle-based biohybrid ac-
tuators [115–118]. Another potential direction is to explore metatruss systems without a
required physical subnetwork connection. Specifically, a subset of beams can be actuated
under the same control signal but does not need to form an interconnected subnetwork. For
example, liquid crystal elastomers of different colors can be engineered to respond to remote
global lighting with specific wavelengths [119]. In such cases, the constraints from connec-
tivity are alleviated, but the benefits of synergy and reduced control system complexity still
stand. This may give us more flexibility on the algorithm side.

Our method shows potential for application in other emerging fields of robotic metama-
terials and structures. Recent work has introduced strategies to design and construct classes
of robotic metamaterials and 4D printed lattice structures that incorporate complex, multi-
functional elements in discrete architectures [120, 121]. These approaches create materials
capable of outputting multi-DoF motions, sensing capabilities, and programmable thermal
and mechanical responses through the manipulation of the properties of local discrete units
within 2D or 3D lattices. Our tailored multi-objective genetic algorithm, originally devel-
oped for metatruss optimization, could be adapted to optimize these lattice-based structures
and potentially automate and speed up the design process, optimizing the arrangement and
properties of discrete elements to achieve more complex macro-scale performances or mo-
tions while respecting manufacturing and material constraints.

Lastly, we can further explore alternative simulators and optimizers utilizing auto-differentiable
simulation [107] or density method [122], which can potentially speed up the optimization
efficiency through gradient-based methods and provide more capabilities on the design. For
example, the density method may be used to explore an optimal initial topology of the truss
structure based on a given three-dimensional mesh, as well as explore the possibility of re-
configurable topology for multi-stage robotic motions or tasks.

4.4 Methods

4.4.1 Mechanism and Fabrication Details

The metatruss design builds upon the PneuMesh framework [63], consisting of two key
components: pneumatic linear actuators serving as length-changeable beams and specialized
joints that connect them. Like other Variable Geometry Truss (VGT) systems, a metatruss
achieves shape changes through the coordinated expansion and contraction of these beams.
We present the complete mechanism and fabrication details here for comprehensiveness.

Core Components

The metatruss system is fundamentally based on two designs: a discrete-preset-contraction
beam system and a selective-air-channel joint network.
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Actuator Design

Each actuator is a syringe-like pneumatic device with an internal air channel and openings
at both ends, allowing bidirectional airflow. Under positive pressure, all actuators expand to
their maximum length. Under negative pressure, each actuator can contract to one of several
preset lengths.

As shown in Figure 4.9d, the piston component contains three positioning holes where
a C-shaped ring (blocker) can be installed (Fig.4.9c). When negative pressure is applied,
the piston retracts until it meets the blocker. This design enables four discrete contraction
ratios: 0% (no blocker), 12%, 24%, and 36%, corresponding to the three blocker positions
(Fig.4.9d).

This discrete-ratio design serves two purposes. First, it simplifies the parameter space to
discrete integers, making it compatible with combinatorial optimization methods. Second, it
allows for preset morphological variations without increasing control complexity.

Joint Design and C-Network Implementation

The joints, which connect multiple actuators, incorporate an innovative selective-air-channel
design (Fig. 4.1a). These channels enable specific groups of actuators to share the same air
source, ensuring synchronized activation. We refer to these interconnected actuator groups
as C-networks (Control networks). Importantly, a single joint can accommodate two inde-
pendent C-networks without cross-interference, allowing for complex control patterns while
maintaining system simplicity.

The joint design process involves several stages of development. First, actuators are as-
signed to specific C-networks. Then, internal air channels are generated for each C-network
passing through the joint. The channel geometry is optimized using Kangaroo, a geometric
optimization package, with two primary considerations: maintaining minimum separation
between air channels and between channels and outer walls to ensure air-tightness, and mini-
mizing channel curvature to facilitate post-processing removal of support material (Fig.4.9f).
The final joint structure is created using boolean difference operations in Rhino, a parametric
design tool (Fig.4.9g).

System Constraints and Challenges

While these mechanisms add flexibility to the system, they also introduce several key con-
straints. All actuators within a C-network must form an interconnected group to satisfy
connectivity requirements. The C-networks must maintain prescribed symmetry patterns,
and both contraction ratios and control signals are limited to binary/discrete states. These
constraints simplify control but create significant challenges for system optimization, partic-
ularly as the metatruss scales up in size and complexity. Navigating this discrete solution
space within such a structured framework becomes increasingly challenging with scale.

Fabrication Process

The fabrication process combines both 3D-printed and off-the-shelf components. We 3D
print the pistons, blockers, end caps, and joints, while using commercial syringes for actuator
shells and rubber tubing for pneumatic connections. The assembly process involves using
super glue to construct the actuators, with barb structures 3D-printed directly on ports to
secure the friction-fit rubber tubing connections.

The completed assemblies are shown in Figure 4.9, with examples of both the quadruped
(h) and pillbug (i, j) configurations demonstrating the versatility of the design.
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FIGURE 4.9: Metatruss Mechanism

4.4.2 Problem Statement of Metatruss Optimizer

Optimizer. Given the topology of a metatruss, the initial joint positions, and optimization
configurations, which includes the N tasks, the lengths of actuation sequences, the number
of C-networks and the symmetry of the C-networks, we want to find an optimal C-network
assignment, the contraction level of each actuator, and N open-loop control sequences.

N metatruss motion trajectory will be generated based on N actuation sequence. Each
task is a combination of one ore more objective functions. And each simulated trajectory
will be evaluated by one or more objective functions. N tasks, and N control sequences
correspond to M objective functions and M performance scores.

The number of C-networks and the C-network symmetry are given at the beginning of
the optimization, where C-network symmetry tells whether a C-network is self-symmetric of
inter-symmetric to another C-network C-network Topology Constraints.

We want find the optimal C-network assignment, contraction levels and open-loop control
sequences to maximize the performances.



54 Chapter 4. Muscle Synergy Inspired Evolution of Actuator Network

4.4.3 Simulator Details

FIGURE 4.10: Illustration of the simulator. a, Spring force vectors on beam
joints, applicable when beam length li j exceeds rest length l∗i j. b, Force vec-
tors illustration when the metatruss contacts the ground with horizontal ve-
locity. Besides the spring forces, each joint receives a gravity force. On
ground contact, a joint encounters a vertical upward support force and a fric-

tion force in the opposite direction of the horizontal velocity component.

In our simulation, we use a dynamic mass-spring model with high damping coefficient
(fig. 4.10). The simulator captures the gravity, friction and the axial forces of beams. As
the friction plays a crucial role in the metatruss performance, a dynamic simulator is chosen
over a semi-static simulation. Due to the asynchronized actuation, we keep the motion of the
system to be as static as possible to avoid the unpredictable asynchronized dynamics from
actuation. Thus, a high damping coefficient is used to capture the semi-static nature of the
motion.Considering the existence of the friction and semi-static We use mass-spring model
with an explicit integrator and high damping coefficient. The simulation consists of K steps
within a transformation period. During each step, incremental adjustments are made to the
rest lengths of beams, transitioning them from their initial length li j0 to their target lengths
li jg. Specifically, the rest length li j

∗
k between joints i, j at the kth step of a transformation

period is calculated as

li j
∗
k = (1− k

K
)li j0 +

k
K

li jG

Each step of simulation is further divided into multiple sub-steps, where force, velocity,
and position updates are performed.

Let p⃗i be the position vector of point i. Let v⃗i be the velocity vector of point i. Let k be
the spring constant, and ∆li j be the difference between the actual length li j and the rest length
l∗i j of the spring between points i and j. Let g⃗ be the acceleration due to gravity. Let γ be the
damping coefficient. Let µ be the friction coefficient.

Spring Force. Spring forces aim to maintain a certain rest length between each connected
pair of points

F⃗spring
i j =−k∆li j r̂i j

Where k is the spring constant, ∆li j is the difference between the actual length li j and the rest
length l∗i j, and r̂i j is the unit vector from i to j.

Gravitational Force. Gravitational forces act uniformly downward on all points, defined
as

F⃗gravity
i = mi⃗g

, where g⃗ represents the acceleration of gravity.
Support Force. When a joint contacts the ground, support forces counteract gravity:

F⃗support
i =−min(0, F⃗i · ẑ)ẑ

, where ẑ is the unit vector perpendicular to the ground pointing upwards, and F⃗i is the total
force on the ith joint.

Frictional Force (when in contact with the ground). Frictional forces are dependent on
the horizontal velocity of the points in contact with the ground

F⃗ friction
i =−µ v⃗i,horizontal
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, where µ is the friction coefficient.
Total Force The total force on a point i is the sum of all individual forces:

F⃗i = F⃗spring
i + F⃗gravity

i + F⃗support
i + F⃗ friction

i

Explicit Integration for Velocity and Position

1. Update velocity:

v⃗i(t +∆t) = v⃗i(t)+
F⃗i

mi
∆t− γ v⃗i(t)∆t

, where γ is the damping coefficient.

2. Update position:
p⃗i(t +∆t) = p⃗i(t)+ v⃗i(t +∆t)∆t

, where p⃗i is the position vector of the ith joint, v⃗i is the velocity vector the ith joint.

4.4.4 Simulator Comparison

To validate our simulator’s accuracy and efficiency, we implemented a comparative model us-
ing MuJoCo, a widely-used physics engine known for its accuracy in robotics simulation. In
the MuJoCo implementation, we modeled each linear actuator using a prismatic joint with a
sliding constraint and integrated spring forces through MuJoCo’s built-in force elements. The
connections between actuators were modeled using ball joints with three rotational degrees
of freedom. We maintained consistent parameters across both simulators, including step size,
gravity constants, mass distributions, and friction coefficients. We conducted comprehensive
comparisons across multiple test cases, including the four distinct motions of the quadruped
robot, two motion patterns of the pillbug, and the tentacle’s positioning tasks. The compar-
ison focused on the accuracy of final joint positions, measuring the average displacement
between corresponding joints in both simulators. Our analysis revealed an average positional
discrepancy of 3.64% relative to the total displacement, indicating strong agreement between
the two simulation approaches. Performance analysis showed significant speed advantages in
our custom simulator. For a standardized test of 10,000 timesteps, our simulator completed
the computation in 0.12 seconds, compared to MuJoCo’s 40.80 seconds. This represents a
340-fold improvement in computational efficiency. This substantial speed increase can be
attributed to two main factors: our simplified physics model that focuses on essential dy-
namics relevant to the metatruss system, and our optimized C++ implementation designed
specifically for truss-like structures.

4.4.5 Representation Details and Symmetry Definition

Representation Details

We define a metatruss structure as a tuple (V,E), where:
V = {vi}NV−1

i=0 is the set of joints (named after vertices), with each joint vi ∈ R3 indicating
a position in three-dimensional space.

E = {ei}NE−1
i=0 is the set of beams (named after edges), with each beam ei = { ji0, ji1}

representing an unordered pair of distinct vertices with indices ji0, ji1 ∈ {0,1, . . . ,NV −1}.
A metatruss design includes a tuple (C,L), where:
C = {ci}NE−1

i=0 is the set of C-network indices, with each C-network index ci corresponding
to the beam ei and ci ∈ {0,1, . . . ,NC−1}, where NC is the total number of C-networks.
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Λ = {λi}NE−1
i=0 denotes the contraction levels for each beam. Each λi corresponds to the

beam ei and takes a value from the set {0,1, . . . ,NΛ−1}, where NΛ indicates the total number
of contraction levels.

Under actuation, each beam can contract by a predefined contraction ratio r, which equals
to the product of its contraction level λ and contraction increment ∆. The contraction incre-
ment is a constant value within (0, 1.0

NLambda−1) . In our work, we set ∆ = 0.12 and NΛ = 4.
Hence, the possible contraction ratios are in the set {0%,12%,24%,36%}. This means that,
depending on its contraction level, each beam can contract by one of these ratios. In practice,
the value of ∆ and λ are often determined by specific hardware constraints.

We take the C-network indices C, contraction levels Λ, and actuation sequences A0,A1, ..ANA ,
flatten and concatenate them into a 1D integer vector as the representation of a truss config-
uration D. This encoding represents all the information of a metatruss design as an integer
vector that is suitable for the genetic algorithm to optimize.

We define A j = {ai}
NA j−1
i=0 as the actuation sequence for the metatruss, where NA j is the

number of actions in the jth action sequence. During simulation, metatruss will take in
actions in sequence and actuate the truss. Each action ai ∈ {0,1}NC controls the on or off
state of each C-network (Fig. 5.2b,c). During the actuation of each action, beams in each
C-network expand or contract based on the action. τ is the time duration of each action. The
total actuation time T equals to τ ·NA j for the jth action sequence A j.

A metatruss goes through a set of action sequences {A0,A1, . . . ,ANA−1 , where each action
sequence Ai is expected to achieve one task Si. A task Si consists of a set of subtasks. For
example, Si = {sl,st} represents the metatruss is expected to perform both locomotion and
turning under the same action sequence for the ith task (Fig. 5.2d).

Symmetry Definitions

We define the self-symmetry and inter-symmetry of joints and beams, as well as the sym-
metry definition of a metatruss (Fig. 4.10). On top of that, we define the self-symmetry and
inter-symmetry of c-networks as the C-network symmetry configuration used for c-network
mutation and crossover.

FIGURE 4.11: Truss symmetry definition. ve and v f are inter-symmetric
joints because they are mirrored against the mirror plane. Similarly, vb and
va are inter-symmetric, while vc and vd are self-symmetric as they are at
the mirror plane. With both joints inter-symmetric to another beam’s joints,
eae is inter-symmetric to eb f . Blue C-network is inter-symmetric to red C-

network, while yellow C-network is self-symmetric.

Joint Symmetry
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Joint Inter-symmetry: Two joints are inter-symmetric if they are mirrored to each other
against the mirror plane, such that the segment connecting them is perpendicular to the plane
and the distance from the two joints to the mirror plane are equal. Inter-symmetry is denoted
by↔. For example, va↔ vb represents for inter-symmetric joints va and vb.

Joint Self-symmetry: A joint is considered self-symmetric if it is located on the mirror
plane. Symbolically, we use ⊙ to represent self-symmetry. For example, ⊙vc represents that
joint vc is self-symmetric.

Beam Symmetry. The symmetry extends to beams as well:
Beam Self-symmetry: If both joints of a beam are self-symmetric, the beam itself is

deemed self-symmetric (Fig. 4.3a). Beam Inter-symmetry: A pair of beams is inter-symmetric
if the corresponding pairs of joints are inter-symmetric or if one pair is inter-symmetric and
the other pair is self-symmetric (Fig. 4.3b).

We categorize beams into sets Es for self-symmetric beams and Er for inter-symmetric
beams, satisfying Es +Er = E.

Truss Symmetry. A truss is defined as symmetric if there exists a mirror plane such that
every beam is either self-symmetric or inter-symmetric. While our paper exclusively utilizes
symmetric trusses, our algorithm has the flexibility to be applied to asymmetric trusses as
well.

C-network Symmetry. One of our goals of optimization is to have the C-networks be
either self-symmetric or inter-symmetric, which allows symmetric motions. We represent
the ith C-network by Ei, denoting the set of beams sharing the same C-network index iC,
where iC ∈ IC. C-network Self-symmetry: A C-network Ei is considered self-symmetric if
∀em ∈ Ei, ∃en ∈ Ei such that em↔ en or ⊙em. C-network Inter-symmetry: Conversely, a pair
of C-networks Ei and E j is deemed inter-symmetric if, ∀em ∈ Ei, ∃en ∈ E j such that em↔ en.
The sum of all C-networks is represented by ∑

NC−1
i=0 Ei = E.

For each optimization task, we predefined the C-network symmetry configuration (Fig.
4.3c), meaning that we specify the total number of C-networks as well as the count of
inter-symmetric and self-symmetric C-networks. Within the C-networks identified as self-
symmetric or inter-symmetric (Fig. 4.3c), we further describe relationships such as iC0↔ iC1,
which signifies the C-network with index iC0 is inter-symmetric with the C-network indexed
iC1, or ⊙iC2, meaning the C-network with index iC2 is self-symmetric.

4.4.6 Constraint Details

Symmetry Constraints

We define two types of symmetry among joints, beams, and the truss: self-symmetry and
inter-symmetry, with respect to a given mirror plane. For joints and beams, inter-symmetry
occurs when two joints or beams mirror each other against the plane, while self-symmetry
occurs when they mirror themselves (Fig. 4.3a, b). At the truss level, a truss is defined as
symmetric if a mirror plane exists such that every beam is either self-symmetric or inter-
symmetric. While our paper exclusively utilizes symmetric trusses, our algorithm has the
flexibility to be applied to asymmetric trusses as well (see Methods for detailed definitions).

A C-network is also assigned with symmetry in the metatruss (see Methods). A C-
network is considered self-symmetric if it mirrors itself against the middle plane. If two
C-networks mirror each other against the plane, they are considered inter-symmetric.

For each optimization task, we predefine the C-network symmetry configuration (Fig.
4.3c), meaning that we specify the total number of C-networks as well as the count of inter-
symmetric and self-symmetric C-networks. Empirically, we set 33% of the C-networks as
self-symmetric. For example, in a quadruped robot with six C-networks (Fig. 4.3c), four
C-networks are inter-symmetric, and two C-networks are self-symmetric.
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Connectivity Constraint

In our optimization task, we aim to ensure that all C-networks are connected and that they ad-
here to either self-symmetry or inter-symmetry in accordance with the predefined C-network
symmetry configuration. The connectivity constraint ensures that the C-network forms a
continuous path, enabling the efficient transmission of control signals and powers, thereby
preserving the integrity of the robot’s movements and actions. We have three connectivity
constraints in the system:

• Adjacent Beams: Two beams are termed adjacent if they share a common joint. This
connection represents a physical connection between the two beams at that specific
joint.

• Connected Beams: Building on adjacency, we introduce the concept of connected
beams. Two beams are classified as connected if there is a sequence of adjacent beams
starting from the first beam and ending at the second. In other words, one can traverse
from one beam to the other through this series of adjacent connections.

• Connected C-network: Extending the idea to a whole C-network, a C-network is
determined to be connected if every pair of beams within that C-network is connected.
This definition guarantees that there’s a navigable path between any two beams in the
C-network, either directly through adjacency or indirectly via a sequence of adjacent
beams.

4.4.7 Optimization Process in One Generation with NSGA-II

We introduce our optimization pipeline, a tailored genetic algorithm (GA) that is illustrated in
Figure 4.4 by using the previously introduced quadruped robot (Fig. 4.1e) as an example. The
design of a metatruss sits in a discrete combinatorial space. The truss structure is inherently
a network composed of multiple subnetworks – C-networks – that have shared nodes, but
their edges are exclusive. The design of subnetworks involves C-network indices, contraction
levels, and binary control sequences, which are all discrete in nature. While there are methods
that treat discrete variables in a continuous manner, often used in topology optimization such
as density-based approach [123], they don’t fit our problem due to the connectivity constraint
we impose: all beams within the same C-network need to belong to a same sub-network in a
truss network, or we call them being interconnected. This constraint is not easily expressed
in a continuous and differentiable form, which conventional optimization algorithms would
require.

Given this constraint, we turn to the GA [124], a method adept at handling discrete and
combinatorial search spaces. To ensure our specific constraints are respected, we base on the
standard GA and customize its operators, enabling it to efficiently explore the design space
while following our C-network connection constraints and the discrete nature of parameters.

GA is first used to initialize a generation of designs {D0,D1, . . . ,DNG}, where NG is the
population size of one generation (Fig. 4.4a i-ii). Each design is simulated following NA

action sequences, which are evaluated by the corresponding subtask objective functions and
got Ns fitness values (Fig. 4.4a iii-v).

We use Non-dominated Sorting Genetic Algorithm II (NSGA-II) [125] for selecting de-
signs, keeping some designs and removing others. To fill up the gene pool again, we use
mutation and crossover on the kept designs, and add the newly generated ones through mu-
tation, crossover, and initialization into the kept pool (Fig. 4.4a vi-vii). This renewal of the
gene pool increases the chance of the algorithm getting higher-performing designs over time,
potentially moving them to a new Pareto Front.
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4.4.8 Elite Pool Strategy for Optimization Across Generations

At this stage, we introduce two distinct gene pools: an active gene pool with a capacity of Na

designs, and an elite gene pool with a capacity of Ne designs (Fig. 4.4b). Each generation, the
designs in the active gene pool are assessed and sorted using the NSGA-II algorithm, based
on Pareto dominance and crowding distance. A fixed percentage ρ of top-performing designs,
referred to as elite designs, are preserved, while the rest are discarded. The active gene pool
is then updated with new designs generated through crossover, mutation, and regeneration
operators.

Every Ng generations, instead of simply preserving the elite designs within the active
gene pool, these elite designs are temporarily moved to the elite gene pool. This allows the
remaining non-elite designs to continue evolving, providing them with the opportunity to
further optimize and potentially exceed the current elite designs.

Once the elite gene pool reaches its capacity, the designs it contains are moved back into
the active gene pool. This cyclical process encourages competition between both elite and
non-elite designs. The elite gene pool thus serves two key purposes: initially, it protects
high-performing designs, preventing premature convergence, while promoting diversity and
exploration. Later, as it reintroduces elite designs back into the active pool, it drives further
exploitation of advantageous designs for high-quality solutions.

By alternating between the preservation of elite designs and their reintegration, this mech-
anism helps balance exploration and exploitation, ultimately leading to better Pareto perfor-
mance (Fig. 4.4b).

In our paper, we use choose Ne equal to Na, and ρ = 20%. We move elites to the elite
pool every Ng = 5 generations. Therefore, the elite pool gets full and moved back to the
active pool every Ng/ρ = 25 generations. The detailed number of Na for each metatruss can
be found in Numerical Results and Implementation Details.

4.4.9 NSGA-II Explanation

NSGA-II introduces metrics to find the best-performing group on multi-objectives. It uses
non-dominant sorting and crowding distance sorting. First, it calculates the rank (R) of a
design based on whether it is dominated by other designs. The definition of dominance is as
follows: Given a design 1 with multi-objective fitness S1 = s1,0,s1,1, ...,s1,n, and a design 2
with fitness S2 = s2,0,s2,1, ...,s2,n, if

s2,i ≥ s1,i∀i ∈ 0,1, ...,n and ∃ j : s2, j > s1, j

we say that design 2 dominates design 1. Designs that are not dominated by any other design
have rank 0. To determine rank 1, we consider only the designs not in rank 0, and find those
that are not dominated within this subset. We continue this process to find subsequent ranks
(Fig. 4.12a). The R = 0 designs form the Pareto set, and their fitness values form the Pareto
front.

The crowding distance (CD) is calculated to further sort designs within the same rank and
to encourage diversity. CD measures how crowded it is around a design in the fitness space.
It is calculated as follows: For a design i in a particular front:

For each fitness dimension m: a. Sort the designs in the front by fitness m. b. Assign
infinite distance to boundary designs. c. For all other designs, assign a distance equal to the
absolute normalized difference in the fitness values of two adjacent designs. The overall CD
for design i is the sum of individual distance values for each fitness dimension:

CDi =
M

∑
m=1

fm(i+1)− fm(i−1)
f max
m − f min

m
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FIGURE 4.12: NSGA-II explanation for a two-fitness optimization prob-
lem. a, Non-dominated sorting: Designs 1 and 2 have R = 0 as they are not
dominated by any other design. Design 3 is dominated by Design 1 but not
by any other non-R = 0 design, so it has R = 1. b, Crowding distance cal-
culation: For each design, the cuboid formed by its nearest neighbors in the
fitness space is considered. The crowding distance is the sum of the normal-
ized side lengths of this cuboid. For example, CD1 =

d1,2
f max
2 − f min

2
+

d1,1
f max
1 − f min

1
,

where d1,2 and d1,1 are the distances to the nearest neighbors in fitness di-
mensions 2 and 1, respectively. c, Hypervolume: The hypervolume (area in
2D) covered by the Pareto front, which serves as a measure of the quality

and diversity of non-dominated designs.

where M is the number of fitness dimensions, fm(i) is the m-th fitness value of the i-th design,
and f max

m and f min
m are the maximum and minimum values of the m-th fitness dimension. A

larger CD implies that the design is more unique and potentially has distinct features, adding
to the diversity of the generation. During the selection process, designs are first sorted by
rank and then by crowding distance (Fig. 4.12b).

To evaluate the overall performance of a generation in multi-objective optimization, we
use the hypervolume metric (Fig. 4.12c). The hypervolume is the n-dimensional space cov-
ered by the Pareto front with respect to a reference point. In the case of two fitness dimen-
sions, it represents the area dominated by the Pareto front. A larger hypervolume indicates
better overall performance and diversity of the non-dominated designs. The hypervolume
provides a single scalar value that captures both the quality of the solutions and their spread
across the Pareto front, making it a useful metric for comparing different generations or op-
timization algorithms.

4.4.10 Operators

With the constraints of symmetry and connectivity in place, traditional GA operators fall
short. The standard processes, such as initialization that creates a new gene mutation that
randomly selects and alters digits within a single gene, and crossover that involve swapping
digits between two genes, don’t align with the unique dependencies introduced by the sym-
metry and connectivity constraints in the metatruss. Simply applying the standard GA opera-
tors would violate symmetry and connectivity within the C-networks and beams. Therefore,
we must employ customized operators that are tailored to these constraints. In the following
sections, we will introduce three such operators that have been designed to function within
the constraints of our optimization problem.

Initialization of C-network Indices

Standard initialization methods in GA are inadequate to navigate the unique challenges posed
by our system’s C-network configurations and symmetry constraints. Therefore, we’ve de-
signed a specialized initialization operator that respects both symmetry and connectivity con-
straints.
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The algorithm starts with an unassigned truss structure graph and employs the C-network
configurations progressively. The first step involves earmarking a single beam for each C-
network based on its symmetry property (Fig. 4.5a-d). Specifically, beams selected for
self-symmetric C-networks are self-symmetric; for inter-symmetric C-networks, a beam and
its inter-symmetric counterpart are chosen simultaneously.

Once this anchor layer of beams is assigned, the algorithm moves to the iterative phase
(Fig. 4.5e-j). Here, it selects unassigned beams that are adjacent to already-assigned beams.
The C-network assignment for these beams adheres to two key criteria: i) they must be adja-
cent to a beam that shares the same C-network, and ii) their symmetry properties must align
with the chosen C-network. This ensures that both connectivity and symmetry constraints
are satisfied.

This iterative process continues until no unassigned beams remain, thereby initializing
designs that are feasible and optimized for the subsequent stages of the genetic algorithm.
The detailed algorithm for the initialization and assignments of C-network indices are ex-
plained in Methods, "Algorithm for Initialization of C-network Indices".

Mutation

The mutation process introduces randomness into the C-network connections. It may in-
volve changing the C-network assignment of a beam while maintaining the connectedness of
beams in the same C-network. The aim here is to allow the exploration of the solution space
beyond the initial population and to prevent the algorithm from getting stuck at local optima
(Methods, Algorithm for Mutation).

Given the unique constraints of our problem, a specialized mutation operator (Fig. 4.5k)
is necessary for effective optimization. Governed by a pre-defined probability pm, the muta-
tion process aims to explore the design space while ensuring C-network connectivity. During
the mutation process (Fig. 4.5k), given a design Dm from survived designs, a random beam
e ∈ Dm has a pm chance to be selected for mutation. The beam’s C-network may be al-
tered, subject to the following conditions: i) The new C-network index im must be one of
the adjacent C-network indices, and ii) If e is self-symmetric, the new C-network im must
also be self-symmetric. Otherwise, there is no inter-symmetric beam for the inter-symmetric
C-network. If e has an inter-symmetric beam e′, the C-network index of e′ will be altered
accordingly.

A fail-safe checking mechanism will be applied each time a mutation is applied. If the
mutation results in the disconnection of a C-network, the operation will be reverted (Fig.
4.5l-m). The iterative process will continue until a random number r exceeds pm. This
operator ensures that the mutation is both random and constrained, facilitating the traversal
of the design space without violating the system’s structural or functional integrity.

Constrained Crossover Operator for Design Synthesis

The crossover operation (Methods, Algorithm for Constrained Crossover Operator) lever-
ages two randomly selected survived designs as parent designs, aiming to create offspring
with features from both. The process is analogous to the mutation operator but involves the
exchange of beams between two designs instead of altering beams within a single design.

Briefly, a beam e0
i is randomly picked from the first parent design, and its corresponding

beam e1
i in the second parent is identified. If applicable, the C-network indices of the two

beams are then swapped, along with their inter-symmetric counterparts. A fail-safe checking
ensures that the swapping adheres to the symmetry and connectivity constraints. The opera-
tion iterates until a successful crossover is achieved, thereby synthesizing new designs while
preserving the requisite constraints.
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4.4.11 Truss Topologies and Tasks

Quadruped Robot

The quadruped robot was designed with 150 actuatable beams arranged in a symmetric con-
figuration. The robot’s structure consists of four legs connected to a central body, maintaining
bilateral symmetry along its longitudinal axis. This symmetry was reflected in the C-network
assignments, with 30% of the C-networks designated as self-symmetric and the remainder as
inter-symmetric pairs.

The quadruped was optimized for four distinct tasks: 1. Walking: Forward locomotion
along the x-axis. 2. Turning: 90-degree rotation around the z-axis. 3. Tilting: Changing the
orientation of the robot’s top surface. 4. Crouching: Lowering the overall height of the robot.

These tasks were chosen to demonstrate the robot’s ability to perform diverse movements
using a single optimized configuration. The performance of the quadruped across these tasks
with varying numbers of C-networks is detailed in the 4.2.4 section.

Shape-Shifting Helmet

We designed a shape-shifting helmet with two functional objectives. The two objectives
represent specific target shapes the robot is trained to achieve. For each objective, the goal is
to let the assigned key joints (Fig. 4.7a) approximate the corresponding target positions (Fig.
4.7a), while maintaining the rest of the non-key joints at their original locations as much as
possible. When computing, we assign each joint a weighting factor. The value of the weight
is based on each joint’s proximity to the closest key joint along the beams. The weight of
each joint diminishes as it moves further from the key joints, and the key joints themselves
carry the maximum weight (Fig. 4.7b).

Figure 4.7c shows the resultant shape transformations. As demonstrated, the helmet ef-
fectively approximates each target shape (Supplementary Video 2). The training performance
corresponding to each objective is depicted in Figure 4.7d,e. The plots show that the morph-
ing helmet’s ability to approximate target shapes improved steadily over the iterations.

Lobster Robot Trained for Energy Efficiency

We use a lobster-inspired walking robot to study how energy efficiency can be integrated into
the functional objective (Fig. 4.7f, Supplementary Video 3). The robot that walks with energy
efficiency has two subtasks. One subtask is to achieve a high locomotion speed by evaluating
the displacement of the centroid after the action sequence is completed. The second subtask
is to minimize the energy consumption of the robot, which is calculated by accumulating the
axial force and displacement of all joints along time steps (see 4.4.12 section for details).

Figure 4.7g, h shows the lobster performance with iterations. We observed that, in this
case, using multiple objectives can enhance the search efficiency and quality. For example,
when searching for a solution for both the locomotion task and energy efficiency task, the
search is faster and converges at a better result than searching for locomotion only (Fig.
4.7i).

Tentacles

We also demonstrated how the metatruss method could be utilized to design a tentacle actu-
ator that approaches multiple target locations in a volumetric space with its end joint (Fig.
4.7j), with its training performance reported (Fig. 4.7k,l).

The joint at the most distal position of the tentacle is designated as the key joint. The
tentacle is assigned three objectives, each including one subtask of reaching the target point
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(Fig. 4.7, Supplementary Video 4). The three subtasks are to reach three different target
points, each situated at the centers of the green dots in 4.7j.

This task demonstrates the metatruss’s effectiveness in tasks requiring precision. By the
800th iteration, the key joint is able to achieve proximity to each target position with a dis-
tance of less than 1e-5mm, with each beam extending to a maximum length of 135mm). The
tentacle shown in Fig. 4.7j is one of the designs selected from the Pareto front, exhibiting the
closest distances to the three respective target positions, with deviations of 6.01mm, 2.06mm,
and 3.37mm. This design is picked based on the smallest standard deviation of the three fit-
ness values. It indicates the tentacle’s ability to closely approach all three targets within a
single design despite the inherent conflict among reaching three points.

Pillbug Robot

While the previous examples demonstrate the diversity of achievable morphologies and tasks,
the Pillbug robot was designed specifically to showcase the physical feasibility of our meta-
truss design and to assess the accuracy of our simulation. The Pillbug was optimized for two
tasks similar to those of the quadruped robot: walking forward and lowering its body.

The robot’s structure resembles a pillbug but with four legs, featuring two smaller forelegs
and two larger back legs. It consists of 50 actuatable beams, arranged to allow for both lo-
comotion and body posture changes. We assigned an objective with two subtasks: firstly, to
achieve a high locomotion speed, and secondly, to minimize the average maximum height
of the metatruss. This combination of subtasks was chosen to create a low-profile, efficient
walking motion.

After optimization, we selected one design from the Pareto front for physical fabrication.
The fabrication process followed the approach described in our previous study [63]. The
physical prototype was actuated to complete its action sequence across eight cycles, with the
trajectory tracked across three of its joints for comparison with the simulated results.

Detailed information about the Pillbug robot’s design, fabrication, and the comparison
between experimental and simulated results can be found in the Physical Prototype and Sim-
ulator Accuracy Validation section.

4.4.12 Objective Functions

Walking. The walking subtask is defined as maximizing the directional displacement of the
robot. The centroid position pc is the position of the center of mass of all the joints. At time
t, the centroid position is computed as pc(t) = 1

NV
∑

NV−1
i=0 vi(t). During a given period of time

expressed by NT · I, the displacement of the centroid along x axis is defined as the walking
distance d̃w. The robot is expected to achieve a walking distance as large as possible. ux is
the unit vector along the x axis.

d̃w(t) = (pc(t)− pc(0)) ·ux (4.1)

Reorientation The reorientation subtask is to maximize the orientation alignment ão

between the original orientation of a subset of the metatruss, represented as a unit vector uo,
with the target orientation, represented as a unit vector ug. In this case, the metatruss starts
with an initial orientation represented as a unit vector uo(0), and is expected to align with a
target unit vector ug. A subset of vertices Vo in the metatruss are assigned to determine the
orientation. For the turning subtask of the quadruped robot shown in Figure 4.1e, five vertices
in two incident tetrahedrons in the middle part of the robot are assigned as Vo to represent the
body. uo(0) is assigned as the unit vector along the positive direction of the x-axis, while ug

is the unit vector along the positive y-axis. We define the orientation alignment fitness value
as
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ão = uo ·ug (4.2)

As the metatruss deforms, the vertices are subject to relative movement, we determine
the metatruss’s orientation by calculating a transformation matrix. This matrix transforms
the initial vertex positions, demoted as Vo(0), to approximate their final positions Vo(T ) at
time T . We then extract the orientation information from this transformation. To achieve
this, we employ the BFGS optimizer [126] from ’scipy.optimize.minimize’ [127] to optimize
the 3D transformation matrix F . This optimization minimizes the average distance between
the current positions Vo(t) and the transformed initial positions Vo(0) ·F . Consequently, we
derived the current orientation uo(T ) by rotating the initial orientation uo(0) with F .

Energy Efficiency during Walking. This function is defined as minimizing the average
energy consumption during walking for a unit distance. Here the total energy consumption
is calculated by summing up the work done by all the beams. The work is calculated by
summing up the product of axial force f of each beam and its length change ∆l at every time
step. The energy efficiency fitness value φ̃ is defined as the negative of the quotient obtained
by dividing the total energy consumption by the total directional displacement as described
in (4.1).

φ̃ =−∑
NE−1
i=0 ∑

NT ·I−1
t=0 ∆l i(t) · fi(t)

˜dw(t)
(4.3)

Here, i indexes each beam, and t represents the time step.
Shape Approximation. The shape approximation subtask guides the metatruss to ap-

proximate a target shape, prioritizing selected key joints to reach target locations while con-
sidering the spatial relationships among all joints. As the morphing helmet example (Fig-
ure 4.7a) shows, in two objective functions, three joints are designated as key joints including
one each at the front, left, and right. Their are used to guide the deformation optimization.

The subtask is formulated as minimizing the sum of the mean squared distances be-
tween the joints and their respective target positions, with a weight applied to all joints.
First, a set of key joints Ik = {i0, i1, . . . , iNX−1} is selected, and their target positions Pt =
{pt 0, pt 1, . . . , pt NX−1} are defined. For non-key joints, their target positions are set to be their
initial positions and a weight is applied based on proximity to the closest key joint along
the beams. Figure 4.7c demonstrates the weighting scheme, where the weight for each joint
diminishes as it moves closer to the key joints, and key joints themselves carry zero weight.

Specifically, the weight for each non-key joint is determined by the distance di to its
closest key joint along the beams, with the accumulated beam lengths defining the distance.
The distance is then converted to weight using a hyperbolic tangent transformation: wi =
1
π

tan−1((di−α) ·β )+ 1
2 , where di is the length of the shortest path to the closest key joint,

and α and β are constants. In the context of the helmet (Fig. 4.7a-c), the α = 2.3,β = 2.0.
The shape approximation fitness value X is defined as:

X(t) =−( 1
NX

∑
i∈Ik

∥vi(t)− pt i∥2 +ξ ·
NV−1

∑
i=0

wi∥vi(t)− vi(0)∥2) (4.4)

Here, ξ indicates the importance of keeping non-key joints to their original positions. In
the case of helmet, ξ is set to 1.0 to keep the overall shape, while in the case of tentacle, ξ is
set to 0.0 to maximize the range of accuracy of the key joint.

Here, the metatruss maintains its overall shape while adjusting key joints to align with the
target positions. This leads to a controlled deformation that respects the spatial relationships
between joints.
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4.4.13 Numerical Results and Implementation Details

Implementation Details

In our study, we use the notation↔ to indicate inter-symmetric channels and⊙ to denote self-
symmetric channels. We implemented various metatruss designs with different C-network
configurations. The quadruped design with 8 channels features a symmetric topology, with
channels configured as 0↔ 1, 2↔ 3, 4↔ 5, ⊙6, ⊙7, comprising 6 inter-symmetric and 2
self-symmetric channels. A simpler quadruped design with 2 channels maintains symmetry
with both channels being self-symmetric (⊙0, ⊙1).

We also explored more complex quadruped designs: a 16-channel version with 4 self-
symmetric and 12 inter-symmetric channels, a 32-channel version with 8 self-symmetric
and 24 inter-symmetric channels, and a 64-channel version with 16 self-symmetric and 48
inter-symmetric channels. The helmet design exhibits symmetry with three self-symmetric
channels (⊙0, ⊙1, ⊙2), while the lobster design is symmetric with two inter-symmetric and
two self-symmetric channels (0↔ 1, ⊙2, ⊙3). Notably, the tentacle design is asymmetric,
consisting of four self-symmetric channels (⊙0, ⊙1, ⊙2, ⊙3).

In our optimization process, we set the active pool size equal to the elite pool size, with an
elite percentage of 20% in every generation. As the C-network number increases, we scaled
the pool size accordingly: 128 for the 8-channel quadruped, 48 for the helmet, 64 for both
the lobster and tentacle, 32 for the 2-channel quadruped, 256 for the 16-channel quadruped,
512 for the 32-channel quadruped, and 1024 for the 64-channel quadruped.

We conducted our computations using Google Cloud Computing with 128 cores, achiev-
ing an average optimization time of 18 hours and 24 minutes for the 4-channel quadruped
over 1000 iterations.

Performance Analysis with Varying C-network Numbers

To investigate the relationship between the number of C-networks and robot performance,
we conducted a series of experiments using a quadruped robot model. The robot was trained
to perform four distinct tasks: walking (maximizing forward distance), turning (90-degree
rotation), tilting (changing top orientation), and crouching (lowering height). We tested con-
figurations with 2, 8, 16, 32, and 64 C-networks, always setting 30% as self-symmetric and
the rest as inter-symmetric. This 30

The genetic algorithm was run for 1000 iterations for each configuration. We used a
population size of 200, with 100 designs retained after each iteration. New designs were
generated through mutation (70 designs) and crossover (20 designs), with 10 new random
initializations per iteration. The elite pool capacity was set to 400.

Performance was evaluated using the hypervolume of the Pareto front at the 1000th it-
eration. The hypervolume metric was chosen as it provides a scalar measure of the quality
of a Pareto front in multi-objective optimization, capturing both the spread and the prox-
imity to the ideal point. It was calculated using the pygmo library’s hypervolume function,
with a reference point set to the worst observed values for each objective plus a small offset.
We conducted one-way ANOVA to compare performances across C-network numbers, with
significance level set at 0.05. Tukey’s Honest Significant Difference (HSD) was used for
post-hoc pairwise comparisons.

The ANOVA assumptions were verified: data independence was ensured by separate
testing, homogeneity of variance was confirmed by Levene’s test (F = 0.085, p = 0.986), and
normal distribution was verified by the Shapiro-Wilk test (F = 0.962, p = 0.343).

ANOVA results showed significant differences among the five groups (F(4, 10) = 12.840,
p < 0.001, η2 = 0.138). Tukey’s HSD revealed significant performance improvement when
increasing from 2 to 8 C-networks (p = 0.003), but no statistically significant differences



66 Chapter 4. Muscle Synergy Inspired Evolution of Actuator Network

among configurations with 16 or more C-networks (p > 0.877). Complete pairwise compari-
son results are provided in Supplementary Table S1.

4.4.14 Physical Prototype and Simulator Accuracy Validation

We conducted a comprehensive evaluation of our physical prototype, the "pillbug," to validate
our metatruss design and assess the accuracy of our simulator.

Experimental Setup and Data Collection

The pillbug prototype was actuated to complete its action sequence across eight cycles, with
the entire process recorded on video (Fig.4.8 a, Supplementary Video 5). We tracked the
trajectories of three key joints throughout the experiment, collecting 536 tracked points for
each action sequence cycle (Fig.4.8 b-d).

To facilitate comparison with our simulation, we overlaid the simulated trajectory on the
experimental data. We highlighted static positions at the beginning and end of each cycle
to identify key points of motion and rest. The trajectory was then segmented into individual
cycles at these static positions for detailed analysis.

Data Analysis and Metrics

To quantify the similarity between simulated and experimental results, we calculated several
metrics:

Average Trajectory discrepancy (dt): The mean point-wise distance between correspond-
ing points on the experimental and simulated trajectories, averaged across the entire trajec-
tory.

Average Trajectory Cycle discrepancy (dc): The mean point-wise distance between each
experimental trajectory cycle and the corresponding simulated cycle, averaged across all cy-
cles and trajectories.

Average Static Position discrepancy (ds): The mean point-wise distance between each
pair of static positions across all trajectories.

Average Self Trajectory Cycle discrepancy (d f ): To assess the internal consistency of the
prototype, we calculated the mean trajectory cycle for each joint and measured the distance
between each experimental cycle and this mean.

Results and Conclusion

Our analysis yielded the following results:
dt = 3.77 cm (averaged across all three trajectories), dc = 2.68 cm, ds = 1.26 cm, d f =

0.54 cm. For reference, the fully extended length of each beam in the prototype is 17.8 cm.
The average locomotion speed is 2.45 cm/s, which is 9.24% of its original lengths. The full
displacement is 86.0 cm.

The larger values of dt and dc compared to ds likely result from inherent friction dif-
ferences in the pneumatic plastic syringes used as beams, causing unsynchronized actuation
times under uniform air pressure. This factor was not accounted for in our simulation. The
smaller ds indicates good alignment at static positions, which may be attributed to our use of
a highly-damped dynamic model and relatively low actuation pressure (+0.8 psi and -0.8 psi)
in the simulation.

The fact that dt is higher than dc suggests accumulated errors across cycles, a common
phenomenon in open-loop control systems. The low d f value indicates high consistency in
the metatruss motions despite inherent friction variances.
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These results validate our metatruss design approach while highlighting areas for future
improvement, such as standardizing linear actuators for uniform friction or integrating fric-
tion variance into the simulator. Additionally, the findings suggest that incorporating sensors
for closed-loop control could enhance long-term accuracy, particularly given the ample inte-
rior space in the metatruss design.

4.4.15 Algorithms

Here we detailed four algorithms critical to our computational pipeline, including the algo-
rithm for initialization of C-network indices, the algorithm for mutation, the algorithm for
constrained crossover operator, and the algorithm for single training iterations with elitism.

Algorithm 1 Random Initialization of C-network Indices

1: IC = {0,1, . . . ,NC−1}: the set of all C-network indices
2: Eu: unassigned beams, Ei: beams of the ith C-network
3: Es: self-symmetric beams, Er: inter-symmetric beams
4: for each C-network ci, where i ∈ IC do
5: if ∃ci′ , such that ci↔ ci′ then
6: Randomly select e,e′ ∈ Er that e↔ e′

7: Move e from Eu to Ei, e′ from Eu to Ei′

8: else if ⊙ci then
9: Randomly select e ∈ Es

10: Move e from Eu to Ei

11: end if
12: end for
13: repeat
14: Randomly select e ∈ Eu adjacent to any assigned beam
15: if ⊙e then
16: Randomly select an adjacent C-network i that ⊙i
17: Move e from Eu to Ei

18: else if ∃e′ that e′↔ e then
19: Randomly select an adjacent C-network index i
20: if ∃i′ that i′↔ i then
21: Move e from Eu to Ei, e′ from Eu to Ei′

22: else
23: Move e,e′ from Eu to Ei

24: end if
25: end if
26: until Eu is empty
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Algorithm 2 Mutation of C-network Indices
1: pm: the probability of executing mutation
2: Is: self-symmetric C-network indices, Ir: inter-symmetric C-network indices
3: r← random number in [0,1]
4: repeat
5: if r < pm then
6: Randomly pick beam e ∈ E, with C-network index i
7: Find all adjacent C-network indices Ia

8: if ⊙e then
9: Randomly select C-network with index imwhichistobemutated,where∈ Is∩Ia

10: Move e from Ei to the mutated C-network Eim
11: else if ∃e′, that e′↔ e then
12: Randomly select C-network im ∈ Ia

13: if ∃i′m, that i′m↔ i then
14: Move e to Eim , e′ to Ei′m
15: else if ⊙im then
16: Move e,e′ to Eim
17: end if
18: end if
19: if Ei or Eim is disconnected then
20: Revert C-network assignment
21: end if
22: r← random number in [0,1]
23: end if
24: until r ≥ pm

Algorithm 3 Constrained Crossover of C-network Indices
1: pc: the probability of executing crossover
2: D0,D1: two selected survived designs for crossover
3: r← random number in [0,1]
4: E0,E1: sets of beams in D0 and D1

5: e j
i : the ith beam of the jth selected design.

6: repeat
7: Randomly select beam e0

i ∈ E0, with C-network index j0
8: Select beam e1

i ∈ E1, with C-network index j1
9: Swap the C-network indices by moving e0

i from E0
j0 to E0

j1 , moving e1
i from E1

j1 to
E1

j0
10: if ∃i′, such that e0

i′ ↔ e0
i and e1

i′ ↔ e1
i then

11: Swap the C-network indices of the inter-symmetric beams, by moving e0
i′ to from

E0
j′0

to E0
j′1

, moving e1
i′ from E1

j′1
to E1

j′0
12: end if
13: if ∃E0

k or E1
k is disconnected, where k ∈ IC then

14: Revert the swap of C-network indices.
15: end if
16: r← random number in [0,1]
17: until r ≥ pc
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Algorithm 4 Single Training Iterations with Elitism
1: Np: maximum number of designs in a pool
2: Ns: number of designs that survives
3: Nm: number of designs generated by mutation
4: Nc: number of designs generated by crossover
5: Ni: number of iterations in each generation
6: Pe: elite pool, Pa: active pool
7: if Cardinality of Pe equals Np then
8: Move Np designs from Pe to Pa

9: else
10: Initialize Np designs in Pa

11: end if
12: for i = 0,1, . . . ,Ni−1 do
13: Evaluate the fitness of designs in Pa as fi,∀i ∈ Pa.
14: Apply NSGA-II sorting to Pa, resulting in sorted designs Pa = {D0,D1, . . . ,DNp−1}

and corresponding fitness { f̂0, f̂1, . . . , ˆfNp−1}.
15: Retain the top Ns designs in Pa and remove the rest: Pa←{D0,D1, . . . ,DNs−1}.
16: for j = 0,1, . . . ,Nm−1 do
17: Select a design Dm ∈ Pa uniformly at random
18: Add its mutation D̄m into Pa

19: end for
20: for j = 0,1, . . . ,Nc−1 do
21: Select two distinct designs Dc0,Dc1 ∈ Pa uniformly at random
22: Add the crossover result D̄c to Pa

23: end for
24: for j = 0,1, . . . ,Ni− (Nm +Nc)−1 do
25: Initialize a new design D̄i and insert into Pa

26: end for
27: end for
28: Move the top Ns designs from Pa to Pe, clear Pa

4.4.16 Usage of Large Language Model in Writing

In the preparation of this manuscript, we utilized ChatGPT with GPT-4 specifically for gram-
mar checking purposes. The prompts we employed were structured as follows: "[the text]
Please check the grammar of this writing as a submission for a scientific journal, please don’t
change or distort the meaning or create new information."

4.5 Data Availability

Correspondence and requests for code implemented, data generated and analyzed, and 3d
printing models during the study should be addressed to jianzheg@andrew.cmu.edu.

4.6 Code Availability

Code implemented for genetic algorithm, tracking and data processing should be addressed
to jianzheg@andrew.cmu.edu.
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4.7 Supplementary Information

4.7.1 On-body Control Circuit Using Mechanical Logic Gates

Our optimization generates sequential open-loop control signals that could potentially be im-
plemented through mechanical structures, eliminating the need for multiple electronic control
inputs and requiring only a constant power supply. Taking our pillbug’s forward walking task
as an example, the optimized open-loop control sequence consists of a 4-bit binary signal over
4 time steps (Fig. 4.13 a). Each time step’s control signal can be represented as a 2-bit input
generating a 4-bit output, making it implementable through a 2-to-4 multiplexer (Fig. 4.13
b). We used logic optimization tools to analyze the truth table and derived a simplified circuit
for the Pillbug’s actuation sequence. The resulting circuit requires 14 logic gates, including
one clock unit (Fig. 4.13 c).

For physical implementation, we identified a mechanical circuit design from previous
work [112, 113] that uses pneumatic power and cylindrical units with bi-stable membranes.
In this design, the air pressure differential between two chambers affects the membrane’s
direction (Fig. 4.13 d, e), which in turn blocks one of the air tubings. By connecting the six
ports to different pressure sources, each unit can be preconfigured to function as AND, OR,
or NOT gates (Fig. 4.13 f), theoretically enabling the implementation of any logic circuit.
Additionally, when connected to an external tank and a constant air pressure source, these
units can function as oscillators, serving as the clock component in the logic circuit (Fig. 4.13
g).

While current mechanical logic units measure approximately 4cm, they have potential
for miniaturization. Similarly, our metatruss design can be scaled up through modified fabri-
cation processes and corresponding parameter adjustments in the simulator, without requir-
ing changes to the optimizer. Assuming mechanical logic units could be reduced to 1cm³
and metatruss beams could be expanded to 20cm length, we created renderings of a circuit
board containing all required units and visualized a pillbug robot carrying this control system
(Fig. 4.13 h). In this configuration, the robot would require only a single constant air power
source, enabling operation either through a single tethered air tube or potentially untethered
if equipped with an onboard compressed air tank.

This implementation strategy demonstrates how our metatruss system could evolve to-
ward more self-contained, mechanically controlled robots with simplified power and control
requirements.

4.7.2 This section includes:

• Supplementary Videos S1 to S5 (Available Online).

• Supplementary Table S1.

Supplementary Videos

• Video S1: A quadruped metatruss performs walking, turning around, lowering body
and tilting the top. (Left: perspective view. Right: side or top view.)

• Video S2: Top: A lobster metatruss performs walking. Bottom: The same lobster
metatruss performs walking with energy efficiency. Right: Training result showing
the relationship between the hypervolume of the multi-objective optimization for the
lobster metatruss.

• Video S3: A Helmet metatruss transforms into two target shapes from the same initial
shape. (Left: perspective view, Right: side or top view.)

https://drive.google.com/drive/folders/19DVwVypFLyMG6Y4BUyiETfX8gnxaP5We?usp=sharing
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FIGURE 4.13: On-body control circuit using mechanical logic gates. a,
Open-loop control signal optimized for Pillbug metatruss towards walking
forward. b, 4-to-8 multiplexer circuit for the open-loop signal. c, Simplified
circuit for the open-loop signal. d, The basic mechanical circuit unit. e,
The illustration of the bi-stable mechanism of the mechanical circuit unit.
f, The illustration of the ports connection for AND, OR, and NOT gate. g,
The illustration of the clock unit. h, A rendering of the pillbug with on-body

mechanical open-loop control circuit.

• Video S4: A tentacle metatruss reaching three different target positions. (Left: per-
spective view, right: side view.)

• Video S5: Top: tracked video of a fabricated pillbug metatruss walking forward. Bot-
tom: The simulation of the pillbug metatruss walking forward.

Supplementary Table
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TABLE S1: Tukey’s HSD Pairwise Group Comparisons (95.0% Confidence
Interval) for the hypervolume performance of quadruped robot with 5 C-
network counts, with group 0 for 2 C-networks, group 1 for 8 C-networks, 2

for 16 C-networks, 3 for 32 C-networks, 4 for 64 C-networks

Comparison Statistic p-value Lower CI Upper CI
(0 - 1) -12.799 0.003 -22.023 -3.574
(0 - 2) -15.764 0.000 -24.989 -6.540
(0 - 3) -18.710 0.000 -27.935 -9.486
(0 - 4) -19.695 0.000 -28.919 -10.470
(1 - 0) 12.799 0.003 3.574 22.023
(1 - 2) -2.965 0.877 -12.190 6.259
(1 - 3) -5.911 0.352 -15.136 3.313
(1 - 4) -6.896 0.214 -16.120 2.329
(2 - 0) 15.764 0.000 6.540 24.989
(2 - 1) 2.965 0.877 -6.259 12.190
(2 - 3) -2.946 0.879 -12.170 6.279
(2 - 4) -3.930 0.722 -13.155 5.294
(3 - 0) 18.710 0.000 9.486 27.935
(3 - 1) 5.911 0.352 -3.313 15.136
(3 - 2) 2.946 0.879 -6.279 12.170
(3 - 4) -0.985 0.998 -10.209 8.240
(4 - 0) 19.695 0.000 10.470 28.919
(4 - 1) 6.896 0.214 -2.329 16.120
(4 - 2) 3.930 0.722 -5.294 13.155
(4 - 3) 0.985 0.998 -8.240 10.209
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Chapter 5

Closed-loop Control of Truss Robot
using Reinforcement Learning

Building on the actuator grouping mechanism introduced in PneuMesh [128], we explored
reinforcement learning as an approach to enable closed-loop control of truss robots. While
our previous work demonstrated that grouped actuation with open-loop control can achieve
complex motions, physical implementation revealed sensitivity to factors like friction varia-
tions and accumulated errors over multiple cycles. This chapter presents preliminary work
investigating how reinforcement learning might address these challenges while maintaining
the computational benefits of actuator grouping.

Given an initial truss structure and actuator grouping optimized through genetic algo-
rithms, we frame the control problem as a reinforcement learning task where an agent learns
to select group actuation states based on real-time position feedback. Specifically, we imple-
ment a co-design approach that couples genetic algorithms for optimizing actuator groupings
with reinforcement learning for control policy development. The model incorporates cus-
tomized initialization, mutation and selection functions tailored to PneuMesh system con-
straints, along with translation-invariant state vectors for reinforcement learning.

Using a robotic table as our test case, we demonstrate how this approach enables adapta-
tion to varying conditions while performing multiple tasks such as moving, lowering its body,
or tilting its tabletop. The results suggest potential benefits of closed-loop control, while
also highlighting challenges in state representation and reward function design that warrant
further investigation. The methods and findings presented here complement our open-loop
control framework while pointing toward future directions in adaptive control of morphing
truss robots.

This chapter details our implementation and experimental findings, beginning with an
overview of the physical system and problem formulation, followed by our methodology
combining genetic algorithms with reinforcement learning, and concluding with preliminary
results and discussion of limitations.

5.1 Introduction

Living creatures interact with the world through a large variety of transformation behaviors.
Caterpillars repetitively shrink and twist the body to climb; pufferfish expand their bellies
to intimidate enemies; and macrophages deform the cytomembrane to swim and hunt other
cells. In the field of robotics, one robotic system that can create complex geometries and
motions is Variable Geometry Truss (VGT) [129–131]. A VGT typically consists of an
arbitrary number of beams and joints, where beams are connected through joints and form
truss structures composed of tetrahedrons. Each beam is a linear actuator that can expand or
contract. By morphing the body with actuators, VGTs can execute various motions, including
rotation, twisting, linear and volumetric scaling.
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Despite its versatility and adaptability, a VGT suffers from the exponentially scaled com-
plexity of the control system. As each beam is controlled independently, the number of
control units (e.g. air tubings or linear motors) is cubically scaled with the complexity of
the truss morphology. A recent VGT design, PneuMesh [128], simplifies the control system
while achieving various complex motions. A PneuMesh VGT is a pneumatic driven truss
where each beam is a syringe-like linear actuator with an air channel inside. Rather than
individually controlling beams, PneuMesh selectively connects the air channels of beams
through multi-way joints that direct air to separate beams. With this design, beams are in-
tegrated into different sub-networks, each sub-network are controlled synchronously by a
single air valve. With PneuMesh, a complex VGT (up to more than 118 beams) can be con-
trolled by a limited number of control modules (three to six control modules) but still create
rich motions through the connections of beams. For example, a lobster-shaped VGT (Figure
5.1) with 67 beams can move forward and grab objects (Figure 5.2 c) with only three control
modules (Figure 5.2a).

FIGURE 5.1: Left: A lobster VGT with individually controlled actuators.
Right: A lobster VGT with channel grouping mechanism.

Despite the simplification of the control system, identifying an optimal channel grouping
and control strategy in a forward design or manual fashion is challenging. A truss with
ne edges and nγ channels will have a solution space with a size up to nne

γ . Meanwhile, a
physically practical solution must keep the connectivity of each channel (i.e., beams belong
to the same channel group need to have ensured physical connectivity for pneumatic actuation
system). Lastly, the motion performance is very sensitive to the grouping strategy, where
changing the channel of a single beam might lead to entirely different motions. Other than
designing the channel assignment, for every channel design and target motion, a control
strategy needs to be computed. As the number of beams and tasks increases, it is not practical
to manually design both the channel assignment and the control.

The aforementioned challenges lead to our proposed VGT co-design strategy. Given a
predefined truss structure, we want to find a channel assignment and a set of control policies
that enables the VGT to achieve multiple morphing tasks. Researchers have explore the
problem of optimizing both the morphology and control of irregular-shaped robots. [132] use
CPPN and genetic algorithms for a periodic control signal. [133] presented a graph heuristic
search and reinforcement learning for co-designing a tree-structure robot. While these work
achieved great performance for their specific systems, they have different inherent topology
from PneuMesh VGT which is a 3D graph with loops and specific constraints on the channel
grouping.

In this work, we introduce a hybrid model to solve the co-design problem of PneuMesh
VGTs through genetic algorithms (GA) and reinforcement learning (RL). We adopted NSGA-
II for the selection method of GA to improve the performance of multiple objectives without
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being biased on one of the objectives. Customized initialization and mutation functions are
implemented to ensure the symmetry and the connectivity of channels. To evaluate the po-
tential of a channel design, we train a control policy with a RL controller using PPO [134]
method, and simulate the motion of a VGT controlled by the trained policy. The simulation
results are sent into customized objective functions to generate the ratings, or fitness.

We demonstrate the effectiveness and efficiency of our method by designing a robotic
truss table and applying our method on training the table towards four objective motion tasks,
including lowering the height, tilting the table top, locomotion and turning around.

5.2 Physical System

In the previous work, PneuMesh [128] introduces a VGT design that can minimize the num-
ber of control units while keeping a sufficient degree of control over the truss and achieving
various motion tasks.

Traditional VGTs are over-actuated systems where the number of beams is more than
what is needed for given motion tasks. Instead of having independent actuators, we selec-
tively connect adjacent actuators through their shared joints with a customized inner air chan-
nel design (Figure 5.2a,b). Interconnected actuators are synchronized and will be actuated or
de-actuated at the same time corresponding to a single control input.

In such a way,a system with ne edges and nc channels will have nc binary values as control
inputs at every moment. Despite the decrease in the degree of freedom(DOF), each beam can
still change length, and each channel is a sub-network that can span through the entire truss.
These properties endow the truss with substantial freedom to deform and achieve various
motions.

A trade-off exists between the reduction of DOF and simplification of the control system.
The goal of this work is to find a balance between optimizing the channel assignment and
control signals.

5.3 Method

5.4 Definition and Problem Statement

We define a truss structure as a graph T = {E,nγ} consisting of nv vertices and ne edges,
where E is the adjacency list of vertices and nγ is the predefined number of channels. A T
is associated with the channel assignment of its edges C = [c0,c1, ...cne−1], where ci is the
integer index of the channel assigned to the ith edge.

At every time step t, T has a corresponding state st = {Vt ,Ut ,Vt
′,Ut

′,kt} , where Vt and
Vt
′ are absolute and relative node positions, Ut and Ut

′ being absolute and relative node ve-
locities. The actuation state of channels is a vector of nγ Boolean values, each indicating the
on/off state of one channel.

A simulator M takes in T , C and st , and outputs the next state st+1. T can be assigned
with multiple objective functions O = [o0,o1, ...ono−1] that takes in the state sequence of an
entire simulation S = [s0,s1,s2, ...] and outputs a rating vector R= [r0,r1, ...rno−1], where each
oi takes in S and outputs ri. A control policy π takes in T , C, st , and outputs an action at ,
where at is assigned to each channel as the new channel states.

Given a T , its initial state s0, and O, we want to find an optimal channel assignment
C and control policies Π = [π0,π1, ...πNo−1] that maximize the general performance on all
objectives.
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FIGURE 5.2: Physical system of channel grouped variable geometry truss.

5.5 Overview

We introduce a co-design algorithm which uses GA to optimize C and RL to optimize Π

(Figure 5.3). GA is first used to initialize a generation G of channel assignments C0,C1,
...Cng−1, where ng is the population size of one generation. Each channel assignment is
bundled with a control sequence ξ that includes ns×nγ Boolean values, each indicating the
on/off state of the iγ th channel at the is time step.

In each generation, every pair of Ck,ξk are tested by a simulator which outputs a rat-
ing vector Rk. At the end of the generation, a selection function (Appedix 5.13) following
NSGA-II[[135]] keeps the population Ḡ with the best performance and discards the rest. The
missing population will be filled by duplicating and mutating Ḡ through a customized mu-
tation function (Appendix 5.12) that assures the channel connectivity and the symmetry of
the truss. We also introduce an elite pool mechanism (Appendix 5.14) that temporarily keeps
elite populations aside to avoid exploitation caused by the domination of elites.

However, ξ is a fixed sequence that only applied to the truss with a specific initial condi-
tion and at a specific environment. Once the initial condition changes, ξ needs to be retrained.
Furthermore, errors will accumulate in a long trajectory. Instead, we train a RL model as a
closed-loop control policy πk on top an elite Ck in the last GA generation.

5.6 Channel Symmetry Requirement

If the input truss is mirrored, a channel symmetry requirement is enforced(Figure 5.5).With
this requirement, each channel is either mirrored to itself or mirrored to another channel.
For example, each pair of mirrored edges are either in the same channel or in two mirrored
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FIGURE 5.3: Computational pipeline of channel grouped VGT co-design.

channels. By default, half of the channels will be self-mirrored and the other half are inter-
mirrored. In such a way, we assure the symmetry of the channels and implicitly assure the
possibility of symmetric motions.

A mirroring function maps a half graph Â to the whole graph Â. The initialization and
mutation steps are performed in the half graph and mirrored to the whole graph when simu-
lating. Other parts remains the same.

5.7 Genetic Algorithm

A GA training process consists of two nested loops. The outer loop is for exploration and
the inner loop for exploitation. An evolving pool is updated at every exploitation step, and
an elite pool is updated every exploration step. (C,ξ ) pairs are initialized in the evolving
pool and improved by iteratively applying selection and mutation (Appendix 5.12) functions.
After certain generations(20 in this work), survived pairs will be put into an elite pool and a
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new evolving pool will be initialized. When the elite pool is full, elite pairs will be put back
into the evolving pool to further evolve. See details in (Appendix 5.11).

5.8 Reinforcement Learning

We use PPO [134] as the reinforcement learning method to train the control policy and use
PytorchRL [136] for implementation. We use two multi-layer perceptrons(MLP) each with
two linear layers for the actor and critic network.

Observation

The observation is calculated at every simulation time step to inform the controller the state
of the truss. As mentioned above, a state vector is st = {Vt ,Ut ,Vt

′,Ut
′,kt}. Kinematics in-

formation in the model space is location invariant and gives controller less noise than the
information in the world space [137]. To calculate the relative node positions and velocities,
for every truss, we define a beam in the middle as the center beam. The center beam deter-
mines the front orientation qc as well as the center location pc of the truss, which we use to
calculate the relative positions Vt

′ and velocities Ut
′ by translating and rotating Vt , Ut based

on qc, pc.

Action

At each time step, an action vector is generated from the controller and sent to the simulator.
For a truss with nγ channels, action is a Boolean vector with nγ digits. The action vector is
encoded as a binary value to a decimal value within [0,2nγ ). Accordingly, The output linear
layer has nγ outputs. When using deterministic policy, PPO takes the largest output as the
decimal and converts it to the action vector.

Reward

Rewards are calculated by customized reward function. For each task, once the simulation
reaches a maximum time steps or a target objective is achieved, the simulation finishes and
gives a task specific reward. Before finishing, simulator gives 0 reward. For example, the
distance of locomotion and height change are rewards for moving forward and lowering
bodies. For turning left and tilting the top, a negative angle difference will be calculated
based on the target and final orientations.

5.9 Preliminary Result

We demonstrate the usability and the performance of our method with a robotic table. We
envision a scenario where every piece of furniture and daily objects can be robotic and have
extra morphing functionalities in addition to their conventional static state. Here, a robotic
table is trained to walk towards people who have limited mobility, lower itself for kids, or tilt
the top in an angle for painters. in order to achieve the target design features, four objective
functions were defined during the training process: moving forward, turning left by 90°,
lowering the height, and tilting the tabletop. We design the truss structure of the table and fix
the relative position of the top four nodes to mimic a fixed tabletop in the simulator.

We first use GA to optimize (C,ξ ) for 1000 generations. We then pick a C from the last
generation and train RL for 600 model updates. The experiment is run on a server with 64
cores for 2.4 hours. Figure 5.6 shows that GA effectively optimizes the design towards four
objectives. Although RL improves the performance only by a small value, control policy
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by RL is adaptable to a wider range of initial condition and is able to adjust the control on
the fly to minimize the accumulated error. Further research needs to be conducted to test
the generalizability of RL under different initial conditions, terrain conditions and external
disturbance. We visualizes the design and the trajectory of the robotic table for four tasks
using the training result by RL. (Figure 5.4).

FIGURE 5.4: Four motions of a robotic table, (a) lowering the height, (b)
tilting the table top, (c) rotating, and (d) locomoting forward.

5.10 Discussion

The preliminary result shows that our method is able to generate useful channel designs
and controls for a complex truss with multiple diverse objectives. An immediate next step
is to test the generalization ability of the method. For example, testing the method with
trusses of various shapes, diverse objective functions, varying terrain conditions and external
disturbance. To improve the generalization ability, we can apply graph convolutional neural
network [138] to utilize the underlying graph topology information. Currently, the initial
truss topology is pre-designed, but it might not be the optimal topology for the given tasks.
To further improve the truss topology, a generative design such as a graph heuristic search
[133] might optimize the truss topology together with the design and control.

5.11 Appendix: Genetic Algorithm Pipeline

In the first exploitation step, the evolving pool of ng designs (C,ξ ) are generated through an
initialization function, which either randomly creates (C,ξ ) pairs or duplicate from the elite
pool if it is full. Ratings are generated through the evaluation function which simulates the
truss with C,ξ . Based on the ratings, a selection (Appendix 5.13) function sorts and keeps
a subset of the population to maximize the general population performance as well as the
diversity.



80 Chapter 5. Closed-loop Control of Truss Robot using Reinforcement Learning

In every other exploitation step, the preserved population will be duplicated and mutated
to fill the evolving pool through a mutation (Appendix 5.12) function before the evaluation.

At the end of an exploitation loop, the preserved population will be added to an elite pool
which has the same maximum size as the evolving pool. When the elite pool is full, elite
population will be duplicated for initializing the evolving pool and the elite pool is cleared.
After an exploitation step, the better elites will be selected and put back to the elite pool.

In such a way, the existing elite pool is continuously improved while the new population
will have the chance to improve in each exploitation loop before being defeated by the elites.

5.12 Appendix: Initialization and Mutation with Channel Con-
nection Constraint

Different from traditional GA where initialization and mutation are giving random value to
randomly chosen digits, the digits in this problem are the channel assignment on beams,
which is constrained by the channel connection rule. Beams of the same channel must be
connected through joints and a random change might separate a channel and renders the
solution impractical. Therefore, we use a customized channel-growing algorithm to initialize
and mutate the solution.

At the initialization stage (Appendix 5), the algorithm assigns nc edges with different
channels. To assure the connectivity, a self-mirrored channel will be initialized with one self-
mirrored edge. The algorithm keeps track of all the unassigned edges that are connecting to
the assigned edges as Euc. It randomly chooses one edge from Euc and randomly assigns a
channel γ that it is incident to the edge. The previous step is repeated until all the edges are
assigned.

The mutation function (Appendix 6) is similar to initialization. It keeps track of all the
edges that are connected with more than one channel as Ec. Every time, it selects one edge
ec from Ec and picks one different incident channel c̄ and reassigns c̄ to ec. It checks the
connectivity of all the subgraphs with breadth-first search and reverts the reassignment if the
connectivity is broken. It repeats the previous step until finding an assignment that does not
break the connectivity.

5.13 Appendix: Multi-Objective Selection Function

We adopted NSGA-II [135] as the selection function to keep the multi-objective performance.
This method first preserves solutions at the front hypersurface where no solution is worse

than another solution on all objectives. Within the front hypersurface, a crowdedness dis-
tance(CD) is calculated based on how crowded the solutions are in the local performance
space. If the total number of preserved solutions exceeds the threshold, the solutions with
lower CD values will be preserved. Different from multi-objective functions with weighted
sum that might lead to solutions that are not good at any objectives, this method improves
the ratings of each objective while keeping the diversity of the genes. Meanwhile, It does not
require a weight assignment to every objective.

5.14 Appendix: Elite Pool Mechanism

Every fixed number of generations, the population remaining on the front hypersurface will
be added to an elite pool, and the population will be cleared and reinitialized. When the
elite pool reaches the size of the population, the population in the elite pool will be put
back to the population. This mechanism allows GA to explore more types of solutions by
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re-initialization but at the same time exploit the best solutions by repetitively mutating the
preserved population.

FIGURE 5.5: Channel symmetry constraint. Left: Perspective view of the
truss of a robotic table. Right: Top view of the robotic table truss. Channel
0 and channel 1 are symmetric to each other with regard to the mirror plane.

Channel 2 is symmetric by itself.

FIGURE 5.6: Performance comparison between Genetic Algorithm (GA)
and Reinforcement Learning (RL) approaches for soft robot control tasks.
Blue curves show the GA performance with characteristic evolutionary be-
havior, where the population-based optimization leads to larger performance
variations and stepwise improvements. Orange curves represent the RL
performance, demonstrating faster convergence and more stable learning.
Shaded regions indicate the standard deviation across multiple runs (±1σ

for RL, ±2σ for GA). Two tasks are tested: (a) Moving forward, where
displacement is measured in unit beam length. RL achieves superior per-
formance (31.2 units) within 1,000 simulations, while GA converges to a
lower performance (27 units) after 20,000 simulations. (b) Rotation task,
where the angle difference decreases from 35◦ to 0◦. RL completes the task
in 354 simulations, significantly outperforming GA which requires 7,800
iterations. The results demonstrate RL’s superior sample efficiency and per-

formance compared to GA for these soft robot control tasks.
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Algorithm 5 Initialization
1: nγ : number of channels
2: Total channels Γ = {γ0,γ1, ...γnγ−1}, where γi = i for simplicity.
3: Total channels of a halfgraph Γ̂ = {γ̂0, γ̂1, ...γn̂γ−1}
4: φ : γ 7→ γm, where γm is the channel mirrored to γ .
5: E = {e0,e1, ...ene−1}, where ei = vi0,vi1
6: Ê = {ê0, ê1, ... ˆene−1}, edges in the half graph.
7: ψ : e 7→ em, where em is the edge mirrored to e.
8: Êu: edges on the half graph with no channel assignment.
9: Em: edges that are self-mirrored.

10: C = c0,c1, ...cne−1, ci ∈ Γ, the channel assignment of each edge, initialized with -1.
11: for γ = 0 to ne−1 do
12: γm← φ(γ)
13: if γm == γ then
14: select e from Êu∩Em

15: ce← e
16: select e from Êu∩ (Ê−Em)
17: em← ψ(e)
18: ce← γ

19: cem ← γm

20: remove e from Êu

21: while Êu is not empty do
22: ˆEad j← edgesConnectingChannels(C, Ê)
23: select e from ˆEad j
24: Γinc← channelsIncidentEdge(C, e)
25: select γ from Γinc

26: ce← γ

27: remove e from Êu

Algorithm 6 Mutation

Êc← edgesConnectingMultipleChannels(C, Ê)
while True do

select e from Êc

Γinc← channelsIncidentEdge(C, e)
for γ in Γinc do

if channelsConnected(C, Ê, e, gamma) then
γe← γ

BREAK
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Chapter 6

Truss Topology and Parameter
Generation with Variational
Auto-encoders

While transformable truss robots offer remarkable potential for shape-morphing applications,
optimizing their design remains a significant challenge due to the complex interplay between
discrete topology and continuous geometric parameters. To address this challenge, we de-
velop two complementary neural network approaches. Our first solution, a Graph Attention
Network-based Variational Autoencoder (GAT-VAE), effectively optimizes C-network con-
nectivity within fixed topologies, demonstrating exceptional accuracy in both reconstruction
and connectivity prediction. To overcome the limitations of fixed topology optimization, we
then introduce a Long Short-Term Memory-based VAE (LSTM-VAE) featuring a novel truss
grammar that can represent loop-containing structures through a merging operation. This
grammar enables simultaneous optimization of topology and continuous parameters while
supporting direct shape optimization through a position prediction network. Both approaches
achieve state-of-the-art performance in their respective tasks and exhibit smooth interpola-
tion capabilities in their latent spaces. Together, they provide a comprehensive framework
for truss robot optimization while suggesting promising directions for combining their com-
plementary strengths in future work.

6.1 Introduction

While optimizing edge and node values within fixed truss topologies has proven effective
using tailored genetic algorithms (GA), the fundamental challenge lies in generating optimal
topologies themselves. Current truss topologies, designed by humans using conventional
design tools, may not be ideally suited for specific functional objectives like locomotion or
manipulation. For instance, a truss designed to resemble a quadrupedal form might not be
optimal for tasks like squeezing through narrow spaces or climbing, where unconventional
morphologies could prove more effective. This limitation of human design becomes partic-
ularly apparent in multi-objective scenarios, highlighting the need for algorithms that can
optimize or generate topologies themselves, rather than merely optimizing parameters within
a given topology.

Furthermore, while current genetic algorithms are flexible enough to handle discrete pa-
rameters like C-network indices through well-designed operators for mutation and crossover
on discrete graph structures, they become inefficient as the search space scales up. Although
GA can explore for global optima and is less likely to get trapped in local minima, its effi-
ciency diminishes with increasing complexity.

There is a clear need for more efficient methods to navigate through graph topologies,
which are inherently discrete and non-Euclidean. While graphs offer advantages in their
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compatibility with computer data structures and their computational efficiency due to spar-
sity, these same characteristics present significant optimization challenges. Their discrete
nature and non-Euclidean geometry mean that traditional methods of continuous optimiza-
tion are not directly applicable. Similarly, approaches that convert continuous to discrete
optimization, while effective for grid structures, do not translate smoothly to graph struc-
tures. This mismatch arises from the fundamental properties of graphs, necessitating novel
approaches specifically tailored to graph topology optimization.

The advancement of neural networks and machine learning presents a viable solution.
By employing neural networks as encoders and decoders, Variational Autoencoders (VAE)
can transform discrete data and graph structures into continuous latent representations and
then decode them back into discrete form. Unlike standard autoencoders that directly decode
from latent vectors, VAE learns a distribution and samples latents from the latent distribution.
This ensures the VAE latent space grows into a smooth and disentangled space suitable for
continuous optimization.

Researchers have used grammar to represent limbed robots and have employed neural
networks to encode, generate, and optimize topology and morphology [7, 8, 78]. However,
these limbed robots are based on a tree topology, where each token represents a limb branch-
ing from an existing body. This type of topology fits well for most animals and limbed robots,
and its hierarchical nature resembles natural language and can be well captured by language
models such as transformers [79, 139, 140]. However, the volumetric shape deformation
inherent in truss structures often requires loop topology, which cannot be simply represented
by tree-based token grammar.

In this work, we present two complementary approaches to address these challenges,
each targeting different aspects of truss optimization (6.1). 1). Our first approach employs
a Graph Attention Network (GAT) based VAE for optimizing C-network assignments within
fixed topologies. We initially focus on the challenging problem of C-network connectivity
optimization, where GAT’s natural ability to process graph structures makes it particularly
suitable. Through attention mechanisms, the GAT-VAE captures both local edge relation-
ships and global structural features of the truss design. This approach demonstrates remark-
able effectiveness, achieving 99.925% reconstruction accuracy and 99.999% connectivity
prediction accuracy in our experiments. The model successfully optimizes truss designs for
maximum aspect ratio with a mean square error of only 0.036, while showing smooth interpo-
lation capabilities between different C-network assignments while maintaining connectivity
constraints.

However, while GAT excels at fixed-topology optimization, it cannot easily handle vary-
ing graph structures. 2). To address this limitation, we develop our second approach: a
Long Short-Term Memory (LSTM) based VAE with a novel truss grammar. This gram-
mar introduces a unique way to represent truss topologies as sequences, critically supporting
loop structures through a merging operation. The LSTM-VAE simultaneously optimizes
topology, C-network indices, initial lengths, and contraction ratios, while an additional po-
sition prediction network enables direct shape optimization. This comprehensive approach
achieves 99.43% token reconstruction accuracy and, most importantly, demonstrates suc-
cessful multi-shape optimization where a single truss can transform between multiple target
shapes under different actuation states. By directly setting shape objective functions on the
predicted shapes, we enable gradient-based optimization in the latent space, followed by
post-optimization parameter refinement of the decoded continuous parameters to further ap-
proximate objective shapes.

These approaches complement each other while addressing different aspects of the chal-
lenge: the GAT-VAE provides deep understanding of C-network connectivity within fixed
topologies, while the LSTM-VAE enables exploration of the broader design space including
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FIGURE 6.1: Introduction. GAT-VAE Pipline begings with an input truss
topology and an initial input C-network assign. The GAT-VAE model gen-
erates the optimized C-network indices. The optimized C-network follows
the connectivity constraint, and its morphed shape has a maximized aspect-
ratio. LSTM-VAE Pipeline only takes in one or multiple objective shapes.
The LSTM-VAE model generates optimized truss design with novel topol-
ogy tokens, C-network indices, initial lengths and contraction ratios. A con-
tinuous post-optimization is applied on the initial lengths and contraction
ratios to further refine the design. Eventually, the resulting truss robot is able

to transform between multiple shapes to approximate objective shapes.

topology variation. Based on our knowledge, this is the first time an entire truss robot design
can be generated from scratch with continuous optimization.

A promising future direction would be to combine these approaches, leveraging GAT’s
strength in understanding local and global connectivity patterns with LSTM’s capability in
handling variable topologies through sequential generation. While we focus on 2D trusses
to explore the potential of our grammar and VAE approaches, the grammar can be straight-
forwardly extended to 3D truss structures, presenting an exciting direction for future work.
Together, they currently provide a comprehensive framework for truss robot optimization,
demonstrated through extensive experiments in shape morphing and multi-objective opti-
mization, while pointing toward even more powerful hybrid approaches for future work.

6.2 C-network Optimization through Graph-Attentive Variational
Autoencoder

Graph neural networks pass information through edges and vertices, enabling them to cap-
ture both topological and geometrical information of graph structures. Through the integra-
tion of attention mechanisms and global latent features, graph attention networks (GAT) can
learn both local information and global features of a graph. This capability has led to their
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widespread application in physics-informed systems with underlying graph structures, such
as limbed robots and solar systems.

While genetic algorithms (GA) have proven effective for optimizing discrete parameters
like C-network indices through well-designed mutation and crossover operators on graph
structures, they become computationally inefficient as the search space grows [7, 8, 78]. Op-
timizing C-network indices while maintaining connectivity is particularly challenging, as a
single misassignment can break the network’s connectivity. This task requires both local
understanding of edge relationships and global comprehension of network structures, mak-
ing it difficult for traditional optimization methods. The discrete nature and non-Euclidean
geometry of graphs further complicate the application of traditional continuous optimization
methods, necessitating novel approaches specifically tailored to graph topology optimization.
Our experiments demonstrate that GAT-VAE excels at this task, achieving 99.925% recon-
struction accuracy and 99.999% connectivity prediction accuracy, while maintaining a mean
square error of only 0.036 for aspect ratio prediction.

Truss robots exhibit both local and global information structures. Local information in-
cludes the C-network connections between incident edges and the relative positions between
adjacent vertices. Global information, which can be derived from local information, en-
compasses the overall connectivity of C-networks and the absolute positions of vertices. By
leveraging GAT’s natural ability to process graph structures and capture both local edge rela-
tionships and global structural features, we can effectively optimize C-network assignments
within fixed topologies.

In this section, we focus on reconstructing the C-network indices with given topology
and equal initial edge length and contraction ratios. We adopt GAT as both the encoder
and decoder of a Variational Autoencoder (VAE), optimizing the latent space to maximize
C-network connectivity while considering the aspect ratio of the truss after transformation.
Unlike standard autoencoders that directly decode from latent vectors, VAE learns a distribu-
tion and samples latents from this distribution, ensuring the latent space grows into a smooth
and disentangled space suitable for continuous optimization.

6.2.1 Data and dataset

We use 2D truss topologies containing between 1 and 8 triangles as our base structures,
generating 10,000 distinct topologies. To simplify the problem, we set all edges to have
equal initial length and contraction ratio.

For each topology, we randomly assign C-network indices to create different C-network
configurations. A C-network assignment is considered connected if all edges with the same
C-network index form a connected graph component (Fig. 6.2 b). Through this random
assignment process, we expand our dataset to 10,000 data points, with approximately 76%
being disconnected configurations and 24% being connected configurations (Fig. 6.2 b).

Since each truss robot has three C-networks, there are eight possible actuation states
(23) corresponding to each C-network being either actuated (contracted) or not. For each
C-network assignment, we first assess its connectivity. Then, for connected configurations,
we simulate all eight transformed shapes by actuating different combinations of C-networks.
From these eight configurations, we extract the maximum aspect ratio, defined as the height-
to-width ratio of the bounding box of the morphed shape (Figure. 6.2a). This ratio serves as
a metric for the truss’s shape-morphing capability.

To summarize, our dataset consists of 10,000 data points, with each point containing:

• Initial vertex positions

• C-network indices for each edge
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FIGURE 6.2: Aspect ratio and connectivity. a. Each truss robot with three
C-networks has eight C-network actuation states, thus having eight trans-
formed shapes based on the state. The height over width ratio of the bound-
ing box of the morphed shape is called the aspect ratio. b. A C-network
assignment is defined as disconnected, if any C-network is not a connected

graph.

• A boolean value representing connectivity

• Maximum aspect ratio among all eight transformed shapes (for connected configura-
tions)

We split this dataset into training (80%) and testing (20%) sets for model evaluation.

6.2.2 GAT-VAE Model

We develop a VAE architecture using Graph Attention Networks (GAT) as both encoder and
decoder structures (Figure. 6.3).

Encoder: The encoder consists of two embedding layers: one converts each 2D vertex
position pv ∈R2 into initial vertex embedding e0

v , and another transforms the one-hot vector of
C-network indices ce ∈ {0,1,2} into initial C-network embedding e0

c . A learnable embedding
el

g initializes the global embedding. The embedded graph is then processed through the GAT
encoder network for ng iterations. The resulting global embedding is passed through two
fully connected layers to produce the mean latent vector µ and the standard deviation latent
vector σ . A latent vector ez

g is sampled from the normal distribution N (µ,σ).
Decoder: The decoder takes as input the same truss topology without C-network as-

signments. Vertex positions are embedded into initial vertex embeddings, while C-network
embeddings are initialized with a learnable embedding el

c. The global embedding is set to
the sampled latent vector ez

g from the encoder. After ng iterations of the GAT decoder net-
work, the decoded vertex embedding edecode

v and decoded C-network embedding edecode
c are

reconstructed into C-network indices using softmax followed by argmax operations.
GAT Update: Each GAT update iteration comprises three message-passing processes:
1. Vertex Update: For each vertex v, the C-network embeddings of all incident edges

{en
c i}i∈N (v) and the vertex embedding en

v are aggregated through a vertex attention layer:

en+1
v = Attnv({en

c i}i∈N (v),e
n
v) (6.1)

2. C-network Update: For each edge e, the vertex embeddings of its two incident
vertices {en+1

v 0,en+1
v 1} and the C-network embedding en

c are aggregated through a C-network
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FIGURE 6.3: GAT-VAE Model is composed of the encoding module, de-
coding module and property prediction module. The encoding module takes
in a truss design and converts it to a latent vector through GAT updates. The
decoding module takes in a truss design without C-network information and
a latent vector, and uses the same GAT update process to decode the latent
vector. The decoded embeddings are reconstructed into the truss design. The
property prediction module includes two multi-layer perceptron networks
that takes in the latent vector and predicts the connectivity and maximum

aspect ratio of the truss design.

attention layer:
en+1

c = Attnc(en+1
v 0,en+1

v 1,en
c) (6.2)

3. Global Update: All updated vertex embeddings {en+1
v i}, C-network embeddings

{en+1
c i}, and the global embedding en

g are aggregated through a global attention layer:

en+1
g = Attng({en+1

v i},{en+1
c i},en

g) (6.3)

Two separate neural networks are trained to predict the connectivity and maximum aspect
ratio. The mean latent vector µ serves as input to each network. Both networks consist of
three fully connected layers with ReLU activation functions. A softmax function is applied
after the connectivity predictor.

The total loss L consists of four components:

L = βLKL +Lrecon +Lconn +Laspect (6.4)

where LKL is the KL divergence between the encoded distribution and standard normal dis-
tribution weighted by β , Lrecon is the reconstruction loss of C-networks, Lconn is the cross-
entropy loss of connectivity prediction, and Laspect is the mean square loss of maximum
aspect ratio prediction.

6.2.3 Implementation

The GAT encoder and decoder each contain three attention layers to process local, edge-level,
and global graph information. We set the number of GAT update iterations ng = 4 to ensure
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sufficient information propagation across the graph, noting that more complex topologies
might require larger ng values.

Training Schedule: The model is trained for a total of 2000 epochs with the following
schedule:

• Batch size: Initially 128, reduced to 32 after epoch 200 to fine-tune learning

• Learning rate:

– Initial: 1×10−3

– After epoch 50: 1×10−4

– After epoch 500: 1×10−5

• KL divergence weight β :

– Initial: 1×10−8

– Increased by factor of 10 when reconstruction accuracy reaches 99%

– Maximum value: 1×10−2

Dataset Split: We utilize 7000 data points for training (70%) and 2000 for testing (20%),
maintaining a balanced distribution of connected and disconnected configurations in both
sets.

Optimization: For latent space optimization, we employ the Newton-CG method from
SciPy, which effectively handles the continuous optimization in the learned latent space while
maintaining the constraints imposed by the VAE’s learned distribution.

6.2.4 Performance

The model achieves exceptional performance across all key metrics:

• Reconstruction Accuracy: 99.925% on C-network assignments, demonstrating the
model’s ability to capture and reproduce complex graph structures

• Connectivity Prediction: 99.999% accuracy, indicating near-perfect understanding of
global connectivity patterns

• Aspect Ratio Prediction: Mean Square Error (MSE) of 0.036, with a dataset mean
maximum aspect ratio of 0.89

These results demonstrate that the GAT-VAE successfully learns both local and global
features of truss designs. The high reconstruction accuracy indicates that the model effec-
tively captures the discrete C-network assignment patterns, while the near-perfect connec-
tivity prediction shows its ability to understand global structural properties. The low MSE
in aspect ratio prediction (approximately 4% relative to the mean) suggests that the model
accurately captures the geometric transformation properties of the designs.

The performance metrics also validate our choice of network architecture and training
schedule. The gradual decrease in learning rate and increase in β allows the model to first
focus on reconstruction accuracy before refining the latent space structure through the KL
divergence term. This approach helps create a smooth, continuous latent space suitable for
optimization while maintaining high reconstruction fidelity.
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FIGURE 6.4: GAT-VAE latent space visualization. The latent vectors are
projected to two principal dimensions using PCA. a. The predicted graph
connectivity value shows a smooth transition mainly along the first principal
component dimension. b. The actual label of graph connectivity shows that
the model clearly and correctly separates the latent vectors into connected
and disconnected categories. c. 80 out of 128 latent dimensions are visual-
ized individually, showing most of the dimensions are learning meaningful
information about the connectivity. d. The predicted maximum aspect ra-
tio shows a smooth transition mainly along the second principal component
dimension, perpendicular to the direction of connectivity prediction. e. The
actual maximum aspect ratio is very close to the predicted maximum aspect

ratio with small difference.

6.2.5 Latent Space Visualization

We analyze the learned latent space through Principal Component Analysis (PCA) to under-
stand how the model organizes different aspects of truss designs. The visualization reveals a
remarkably structured organization of the latent space (Figure 6.4).

When examining the connectivity encoding, we observe a clear separation between con-
nected and disconnected designs primarily along the first principal component. The predicted
connectivity values (Figure 6.4a) demonstrate a smooth transition across this axis, closely
matching the actual connectivity labels (Figure 6.4b). This alignment validates the model’s
high connectivity prediction accuracy and suggests it has learned meaningful representations
of structural connectivity.

To better understand the latent space’s structure, we visualize 80 out of 128 individual
latent dimensions (Figure 6.4c). The analysis reveals that most dimensions actively con-
tribute to connectivity categorization, indicating an efficient use of the latent space without
redundant dimensions.

The maximum aspect ratio visualization (Figure 6.4d,e) reveals another interesting pat-
tern: the aspect ratio varies smoothly primarily along the second principal component, no-
tably orthogonal to the connectivity direction. This orthogonality suggests the model has
learned to encode geometric properties independently from connectivity features. The close
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correspondence between predicted and actual maximum aspect ratios further confirms the
model’s ability to capture geometric transformation properties accurately.

6.2.6 Interpolation

To demonstrate the model’s generative capabilities, we perform latent space interpolation
between different truss configurations. Figure 6.5a showcases two distinct interpolation sce-
narios that highlight different aspects of the learned representation.

FIGURE 6.5: GAT-VAE interpolation and optimizations. a. The model
is able to interpolate the C-network assignments between two trusses with
the same connectivity (interpolation 1) or different connectivity (interpola-
tion 2). b. The model optimizes the C-network assignment towards a larger
maximum aspect ratio, which shows a continuous improvement on the as-

pect ratio of the transformed shape.

In the first scenario, we interpolate between two connected C-network configurations. We
generate four intermediate designs through linear interpolation in the latent space, revealing
a smooth transition that maintains connectivity throughout the path. The C-network patterns
evolve gradually between the start and end configurations while preserving structural validity,
demonstrating the model’s ability to navigate the space of connected designs.

The second scenario presents a more challenging task: interpolation from a disconnected
to a connected configuration. This transition demonstrates how the model has learned to
"repair" disconnected configurations, showing a gradual improvement in connectivity as we
move through the latent space. The smooth progression of designs suggests that the model
has learned meaningful features about what makes a configuration connected, rather than
treating connectivity as a binary property.

These interpolation results provide strong evidence that the VAE has learned a smooth
and continuous latent space where neighboring points correspond to similar designs. The suc-
cessful navigation between different connectivity states, while maintaining physical validity,
confirms that the model captures meaningful features rather than merely memorizing training
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examples. Furthermore, the smooth transition of both discrete (C-network assignments) and
continuous (geometric) properties indicates that the model has developed a unified represen-
tation that handles both aspects coherently.

The clear organization shown in the latent space visualization, combined with the suc-
cessful interpolation results, confirms that the GAT-VAE has learned a rich and well-structured
representation of truss designs. This representation not only enables analysis of existing de-
signs but also supports the synthesis of new ones through principled latent space exploration.

6.2.7 Shape Aspect-ratio Optimization

To validate the practical utility of our learned latent space, we investigate its effectiveness for
shape optimization by focusing on the aspect ratio as a geometric objective. Our optimization
process leverages the continuous nature of the latent space and the model’s ability to predict
geometric transformations accurately.

The optimization process begins with randomly selected C-network assignments from
our test set. We first encode each design into its corresponding latent vector, which serves as
the initial point for optimization. Using the Newton-CG optimizer in SciPy, we then navigate
the latent space to maximize the predicted aspect ratio. The optimization takes advantage of
the differentiable nature of our neural network, using gradients from the aspect ratio predictor
to guide the search through the latent space.

Figure 6.5b visualizes the optimization trajectory through a series of decoded designs.
The sequence demonstrates a continuous improvement in the maximum aspect ratio of the
transformed shapes, with each intermediate design maintaining valid C-network connectiv-
ity. This smooth progression validates that our latent space captures meaningful geometric
relationships and that the aspect ratio predictor provides useful gradients for optimization.

The success of this optimization approach highlights several key advantages over tra-
ditional methods like genetic algorithms. First, by operating in a continuous latent space
rather than directly on discrete C-network assignments, we can use efficient gradient-based
optimization techniques. Second, the neural network provides rapid feedback through its
predictions, requiring simulation only for final validation rather than during the optimization
process. This significantly reduces computational cost compared to methods that require full
simulation for each candidate solution. Finally, the smooth nature of the learned latent space
helps avoid the discontinuous jumps often encountered when directly modifying discrete
graph structures.

These results demonstrate that our GAT-VAE not only learns to represent and reconstruct
truss designs but also creates a latent space suitable for practical design optimization tasks.

6.2.8 Discussion

Our GAT-VAE approach demonstrates effectiveness in handling the challenging task of op-
timizing discrete categorical information on graph structures. The model shows particular
strength in understanding and maintaining C-network connectivity while optimizing for geo-
metric objectives, achieving high accuracy in both reconstruction and prediction tasks. This
success highlights the potential of combining graph neural networks with variational autoen-
coders for problems involving both discrete and continuous optimization.

A key advantage of our approach lies in its computational efficiency. Traditional methods
like genetic algorithms search through discrete C-network configurations directly, requiring
full simulation for each candidate solution. In contrast, our model provides gradient-based
optimization through the learned latent space, using the neural network for rapid evaluation
and requiring simulation only for final validation. This efficiency becomes particularly valu-
able as the complexity of truss designs increases.
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However, our current approach has a notable limitation: it operates only on fixed topolo-
gies. While the model excels at optimizing C-network assignments and predicting geometric
transformations, it cannot generate new topological structures or modify existing ones. This
constraint becomes particularly relevant when the optimal solution might require a different
topological arrangement of triangles or edges.

Looking forward, one promising direction involves extending this work to handle vari-
able topologies. A potential approach could use GAT to predict operations on edges, such
as adding triangles, merging with incident triangles, or removing triangles. By encoding
these operations in the edge embeddings, we could enable the model to generate distinct
graph topologies in an auto-regressive fashion. This extension would significantly expand
the design space accessible to our optimization approach.

6.3 Grammar-based Topology Generation through Sequential Vari-
ational Autoencoder

After successfully demonstrating that neural networks can capture topological and geomet-
rical information in fixed graph structures through GAT-VAE, we faced a more ambitious
challenge: could we teach neural networks to not just understand existing truss designs, but
to create entirely new ones? This meant moving beyond simply optimizing C-network as-
signments to simultaneously crafting the topology itself, along with initial edge lengths and
contraction ratios. However, we first needed to solve a fundamental problem: how could we
represent a truss structure in a way that neural networks could both understand and generate?

Looking to the broader field of robotics and machine learning, we found that researchers
had made remarkable progress in developing grammars for various discrete structures with
hierarchical topologies. From limbed robots [7, 8, 78] to CAD models [79, 139] and molecules [140],
these approaches shared a common thread: they all relied on having a unique "root" node
from which the structure could grow. This root enabled representation as a sequence of to-
kens through familiar tree-traversal methods like breadth-first or depth-first search. But here
is our central challenge - truss structures, with their distinctive looped graph topology, have
no such natural starting point.

To address this challenge, we developed a novel truss grammar with a key innovation:
a "merging" operation that allows us to represent any truss with a specified starting edge as
a unique sequence of tokens. Rather than merely growing new elements atop existing ones,
our grammar introduces the ability to connect the ends of neighboring branches, forming
the loops that characterize truss structures. This approach successfully represents any truss
with disk-like topology - that is, where the internal space of each element represents the truss
geometry’s internal space, and the resulting geometry is topologically equivalent to a disk.
While this excludes certain exotic configurations (such as 2D trusses shaped like "O" or "∞"),
it captures the vast majority of practical truss designs.

We implemented this representation using multiple long-short term memory (LSTM)
networks as encoder and decoder models to reconstruct both topology and associated pa-
rameters. Additionally, we trained a separate LSTM network to directly predict eight sets
of transformed vertex positions. This direct position prediction, compared to the aspect-
ratio predictor in GAT-VAE, offers complete freedom in defining various shape objectives
for transformation.

The trained VAE achieved high reconstruction accuracy on both training and test sets,
while demonstrating meaningful and smooth interpolation within the latent space. To vali-
date our approach, we present three compelling examples: one showing how generated truss
designs can approximate a single objective shape, and two demonstrating the more complex
task of transforming between two or three different objective shapes.
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6.3.1 Truss Grammar

The truss grammar represents topology through a sequence of five distinct tokens (Fig. 6.6).
Each sequence begins with a starting token s, which initializes the topology with a single
edge. This edge is placed into an empty open edge queue (Fig. 6.6 a).

FIGURE 6.6: 2D Truss Grammar a-g. Step-by-step demonstration of the
usage of five truss topology tokens. h. Two examples of using a sequence of

truss topology tokens to represent 2D trusses.

The generation process proceeds iteratively, with each step operating on an open edge
popped from the queue. The sequence can contain four types of operational tokens:

1. Adding token a: Creates a new triangle using the current open edge as its base. The
newly formed triangle generates two additional edges, with the original open edge serving as
the bottom edge. The three edges follow a specific numbering convention shown in Figure 6.6
b. Edge 1 and Edge 2 are automatically added to the end of the queue.

2. Closing token c: Marks the current open edge as closed, removing it from further
consideration in the generation process.

3. Merging token m: Enables loop formation through edge merging. A merge operation
is valid when the current open edge has an adjacent open edge and they share a vertex with
more than one triangle. Upon merging, the two edges combine into a single edge, and the
adjacent open edge is removed from the queue. Importantly, this operation does not create
new triangles.

4. Ending token e: Terminates the sequence.
For each a token that creates new edges, the grammar assigns corresponding parameters:

C-network indices, initial lengths, and contraction ratios. These parameters are represented
as one-dimensional vectors aligned with the token sequence. For tokens that do not create
new edges (s, c, m, e), the corresponding positions in these parameter vectors are filled with
-1 (Fig. 6.7).
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FIGURE 6.7: 2D Truss Grammar parameters. a. A truss before trans-
formation initialized with C-network indices and initial edge lengths. b. A
truss after transformation with each C-network contracting, with numbers
showing the contraction ratio of each edge. c. Top: The topology tokens
representing the truss in a, b. Bottom: Pairs of C-network indices, initial

edge lengths, contraction ratios corresponding to each token.

The grammar naturally extends to three dimensions. In the 3D case, edges become faces,
and triangles become tetrahedra. The sequence begins with an open triangle face, and the
tokens operate as follows:

- a: Adds a tetrahedron to the current open triangle face - c: Closes the current open face
- m: Merges the current open face with an adjacent open face if they share edges with more
than one tetrahedron - s and e: Maintain their starting and ending functions

FIGURE 6.8: 3D Truss Grammar. a. 3D truss shares the same set of topol-
ogy tokens. The difference lies in that the objects of operation are changed
from edges to triangles, and triangles to tetrahedrons. Adding token adds a
tetrahedron instead of a triangle, and merging token merges two faces instead
of two edges. b. A pillbug truss robot is represented by the sequence shown

below the figure.

This systematic approach enables the representation of complex truss structures while
maintaining consistent rules across both 2D and 3D domains (Fig. 6.8).

6.3.2 Data and Dataset

The dataset generation process consists of two phases: topology generation and parameter
assignment.
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For topology generation, we created 60,000 unique topologies through a controlled ran-
dom sampling process of tokens a, c, m, e. For each topology, we created 10 variations, with
random C-network, initial length and contraction ratios. Each topology sequence starts with
an edge, and subsequent tokens are selected based on the following rules:

1. At each step, if the current edge permits a merge operation: Select randomly from a,
c, m, e with equal probability

2. If merging is not valid for the current edge: Select randomly from a, c, e with equal
probability

The sequence terminates under two conditions:
1. When an e token is selected and the resulting sequence is unique
2. When all edges are closed, in which case an e token is automatically appended
For parameter assignment, we generate 100 variations for each unique topology by ran-

domizing three key parameters:
1. C-network indices: Selected from three possible networks
2. Initial lengths: Sampled from the range [10.0, 20.0]
3. Contraction ratios: Sampled from the range [0.8, 10]
For each parameter configuration, we simulate eight distinct actuation states and record

the resulting vertex positions as ground truth data. These eight states correspond to all possi-
ble combinations of C-network actuations.

The final dataset consists of training set with 80% of the complete dataset and testing set:
20% of the complete dataset.

6.3.3 LSTM-VAE Model

The LSTM-VAE architecture leverages LSTM networks for both encoding and decoding,
capitalizing on their ability to process sequential information. The model comprises three
main components: the encoding module, the decoding module, and the position prediction
module (Fig. 6.9).

Encoding

The encoding process begins with seven embedding layers that transform the input sequences.
One layer processes topology tokens, while pairs of layers handle C-network indices, initial
lengths, and contraction ratios respectively. Each embedding layer transforms its input into
a 128-dimensional vector space, creating a unified representation dimension across the net-
work. For each token in the sequence, these seven embeddings are concatenated to form a
7×128 dimensional vector. To handle variable-length sequences, all inputs are padded to a
maximum length of 22 tokens, with padded positions masked during loss computation.

The Token encoder processes the token embedding sequence to generate encoded token
embeddings at each step, outputting a token output vector from its final hidden state. The
token embedding is concatenated with the other six embeddings to incorporate topological
information into the encoding process, resulting in a combined embedding that preserves
both structural and parameter information. Each specialized encoder (C-network, length,
and contraction) processes this concatenated embedding to produce its corresponding output
vector.

The seven output vectors are concatenated and processed through two fully connected
layers to generate the mean latent vector µ and standard deviation latent vector σ . The latent
vector z is then sampled from a Gaussian distribution parameterized by µ and σ using the
reparameterization trick: z = µ +σ ⊙ ε , where ε is sampled from N (0,1).



6.3. Grammar-based Topology Generation through Sequential Variational Autoencoder 97

FIGURE 6.9: LSTM-VAE model. a. The variational auto-encoder struc-
tures has four encoder networks and decoder networks, each reconstructing
the tokens, C-network indices, initial lengths, and contraction ratios of a truss
design. The reconstruction loss is computed based on the input and decoded
parameters from the decoders. A KL loss is calculated based on the mean
and standard deviation latent vectors from the encoders. b. The mean latent
vector is fed into the position predictor network to predict the eight sets of
morphed vertex positions. An MSE loss is computed based on the predicted
and simulated morphed vertex positions. c. Both position predictors (PP)
and decoders (D) are LSTM networks. D generates the embedding sequen-
tially, while PP takes in the embedding and predicts the vertex positions.

Each time step corresponds to a generated token.

Decoding

The decoder consists of seven LSTM networks structurally identical to their encoder coun-
terparts. Each decoder receives the sampled latent vector z as its initial hidden state, with
temporal inputs initialized to zero. The decoders recursively generate their respective de-
coded embeddings. During training, teacher forcing is employed with a ratio of 0.5, meaning
that 50% of the time the decoder uses its own previous output as input for the next step, and
50% of the time it uses the ground truth value.

The decoding process produces two types of outputs through different pathways. To-
ken and C-network embeddings are transformed through fully connected layers into one-hot
vectors matching the vocabulary size of tokens and C-network indices respectively, then con-
verted to discrete values via argmax. Initial length and contraction embeddings are processed
through fully connected layers to directly output floating-point values within their respective
valid ranges.

Position Predictor

The position prediction module consists of eight parallel LSTM networks, each dedicated
to predicting vertex positions for one of the eight possible actuation states. Each network
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takes concatenated decoded embeddings as sequential input and uses the mean latent vector
µ from the encoder as its initial hidden state. The networks process concatenated decoder
outputs at each time step and transform their respective output position embeddings through
fully connected layers to generate position predictions for their assigned actuation state.

Validity Predictor

To enforce token sequence validity constraints, we incorporate a validity predictor imple-
mented as a multilayer perceptron (MLP). This component takes the latent vector as input
and predicts sequence validity. The predictor trains jointly with the VAE to regulate the la-
tent space and contributes to optimization through negative validity prediction in the loss
term.

The total loss function L combines four components with adaptive weights:

L = λ1(t)LKL +λ2(t)Lrecon +λ3(t)Lconn +λ4(t)Laspect (6.5)

where LKL represents the KL divergence between encoded distribution and standard normal
distribution, Lrecon is the reconstruction loss for C-networks, Lconn denotes the cross-entropy
loss for connectivity prediction, and Laspect represents the mean square loss for maximum
aspect ratio prediction. The weight coefficients λi(t) follow a scheduling scheme where
reconstruction weights start higher and gradually decrease while KL divergence weight in-
creases, following common practice in VAE training. This scheduling helps establish stable
reconstruction before enforcing latent space regularization.

6.3.4 Performance

The LSTM-VAE demonstrates good performance across multiple evaluation metrics on the
test set. The model achieves a token reconstruction accuracy of 99.43%, indicating robust
learning of the truss grammar syntax. For C-network assignments, the model attains re-
construction accuracies of 96.90% and 97.00% for the left and right channels respectively,
demonstrating consistent performance across different network components.

Analysis of reconstruction accuracy across different structure sizes reveals an interesting
pattern. For sequences shorter than 8 tokens, the accuracy drops to 92.02%. This lower
performance on smaller structures can be attributed to their limited combinatorial space,
which provides fewer examples for the model to learn the underlying patterns. As sequence
length increases, the model’s performance improves, suggesting better learning of structural
patterns in more complex configurations.

The model also shows strong performance in reconstructing continuous parameters, achiev-
ing accuracies of 97.30% for initial lengths and 98.58% for contraction ratios. These results
indicate the model’s capability to simultaneously handle both discrete topological features
and continuous geometric parameters.

The position prediction accuracy is evaluated by comparing the predicted vertex positions
with the simulated positions from the physical engine. The model achieves an average po-
sition prediction error of 0.45 units, which is particularly noteworthy given that the average
initial edge length in the dataset is 10.0 units. This represents a relative error of approxi-
mately 4.5% of the characteristic length scale, indicating high-fidelity reconstruction of the
physical configuration space.

6.3.5 Interpolation

To demonstrate the model’s ability to learn a meaningful latent representation, we exam-
ine the interpolation behavior between different truss designs. We first randomly select two



6.3. Grammar-based Topology Generation through Sequential Variational Autoencoder 99

designs from the test set and encode them into their respective latent vectors. Linear in-
terpolation is then performed in the latent space, with parameter t ∈ [0,1] representing the
interpolation weight between the source (t = 0.0) and target (t = 1.0) designs.

FIGURE 6.10: LSTM-VAE latent space interpolation. Two input truss de-
signs (at t = 0.0 and t = 1.0) are encoded to two latent vectors. New latent
vectors are interpolated evenly with t presenting the weight of the second in-
put latent vector. The new latent vectors are decoded and shown in the order
of their corresponding t values. The model is able to interpolate both con-
tinuous parameter, initial edge length, and discrete parameters, the topology

and C-network indices in a visually smooth and meaningful way.

A key feature of our architecture is how different decoders interpret the same interpolated
latent vector. While all decoders share the same latent input, they independently reconstruct
their respective parameters - topology tokens, C-network indices, initial lengths, and con-
traction ratios. This separation allows each parameter type to transition smoothly in its own
space while maintaining coherence in the overall design.

In our experiments, we observe an interesting pattern in how designs evolve during in-
terpolation. Often, the topology remains stable in the early stages of interpolation while
continuous parameters like initial edge lengths gradually adjust. For example, as shown in
Figure 6.10, the first two interpolated designs maintain their topological structure while their
initial edge lengths change to better approximate the target shape. This suggests that the
model has learned to prioritize continuous adjustments before making discrete topological
changes - a behavior that mirrors human design intuition where small adjustments are pre-
ferred over structural overhauls when possible.

The interpolation results reveal the VAE’s capacity to capture both the discrete and con-
tinuous aspects of truss design in a unified latent space. By demonstrating smooth transitions
between different designs, including changes in topology, C-network indices, and geomet-
ric parameters, the model shows its potential as a tool for exploring the design space of
transformable trusses. This capability is particularly valuable for design exploration and
optimization, as it allows continuous navigation through what is inherently a mixed discrete-
continuous design space.
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6.3.6 Multi-shape Optimization

The multi-shape optimization framework enables a single truss design to transform between
multiple target shapes under different actuation states. The framework combines shape repre-
sentation through signed distance fields with key point matching, allowing for precise control
over both global shape and specific features (Figure. 6.11).

FIGURE 6.11: LSTM-VAE shape optimization. Left column: objective
shapes, middle column: the optimized transformed shapes with the three
dots showing the actuation states of the three C-networks, right column: the
alignment between the transformed shapes and the objective shapes. Top-
Bottom: Given one, two and three objective shape, the optimizer outputs
one topology each time, which transforms into the single objective shape or

transforms between two and three objective shapes.

Target Shape Representation

Our approach represents target shapes through two complementary methods. The primary
representation uses a signed distance field (SDF) computed on a 256 × 256 grid, where
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each pixel value represents the signed distance to the nearest boundary. Positive values indi-
cate points outside the shape, negative values indicate points inside, and zero represents the
boundary. The SDF is computed using fast marching methods from the shape’s outline, pro-
viding a smooth, differentiable representation of the target geometry. Additionally, critical
features of the target shape are represented through Gaussian distributions centered at key
points, creating smooth gradient fields that guide precise feature matching during optimiza-
tion.

Shape Loss Computation

Shape matching quality is evaluated through a dual-component loss function that considers
both global shape and local features. The SDF loss component evaluates each vertex in the
transformed truss against the target shape’s SDF, naturally penalizing both under-coverage
and over-extension. The key point loss component measures the alignment between trans-
formed truss vertices and specified key points using the Gaussian gradient fields, ensuring ac-
curate capture of critical features. These components are combined with appropriate weights
to create a balanced objective that considers both global shape matching and local feature
alignment.

Optimization Process

The optimization proceeds in two phases. The first phase optimizes in the latent space, where
the primary parameter is the latent vector that the position predictor network maps to eight
sets of predicted vertex positions. For each actuation state, we compute both SDF and key
point losses, seeking designs that can effectively approximate one or more target shapes
through different transformations.

The second phase refines the results through post-optimization. After decoding the op-
timized latent vector to a truss design, we maintain the discovered topology and C-network
indices while fine-tuning the continuous parameters - initial lengths and contraction ratios -
using gradient-based optimization to further improve shape approximation accuracy.

Experimental Results

To explore the full potential of our framework, we designed a series of increasingly chal-
lenging tests. We began with what appeared to be a straightforward task: could our system
generate a truss that transforms into a single target shape such as a star. While conceptu-
ally simple, this challenge would validate the basic premise of our approach. The optimizer
successfully generated a truss design that achieved the star configuration under the actuation
state [0, 0, 0], demonstrating precise control over shape transformation.

We pushed the framework further: could a single truss structure encode two distinct
target shapes. This represented a significantly more complex challenge, as the same physical
structure needed to achieve two different configurations through combination of its actuation
states. The framework produced a design that could smoothly transform between two distinct
shapes while maintaining structural integrity throughout the transformation process.

The most complex test came in the form of triple-shape transformation. Here, the op-
timizer needed to discover a single truss design capable of achieving three different target
shapes, a task that would be challenging even for human designers. The successful result
demonstrated not just the framework’s optimization capabilities, but its ability to uncover
non-intuitive designs that might elude conventional design approaches. The truss could
smoothly transition between all three target shapes through different actuation states, main-
taining precise control over its geometry at each configuration. These progressive experi-
ments revealed the framework’s ability to handle complex shape-morphing objectives.
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By comparing the optimized shape to the closest shapes in the dataset by finding the
closest topology tokens, we found the optimized shapes are novel and visually different from
any of the shapes in the dataset (Fig. 6.13 and Fig. 6.14).

6.3.7 Implementation

The LSTM-VAE architecture consists of three-layer LSTMs throughout the network. The
embedding size, hidden size, latent vector size, and input size to the token encoder are all set
to 128.

The training process follows a two-phase approach. In the first phase, we train on a mini-
training set comprising 10% of the training data for 1,000 epochs, using a learning rate of
1×10−4, batch size of 128, with σ set to 0.

The second phase extends to the full dataset for 2,000 epochs with dynamic parameter
adjustments. The batch size starts at 128 and reduces to 64 after 1,000 epochs. The learning
rate follows a decremental schedule: initial rate of 1×10−3, decreasing to 1×10−4 after 100
epochs, and further reducing to 1×10−5 after 500 epochs.

For variational sampling, we apply a coefficient of 0.1 to the standard deviation σ . The
KL divergence weight β begins at 1× 10−8 and increases by a factor of 10 when all five
reconstruction accuracy metrics exceed 95%, stabilizing at 1× 10−2 for the remainder of
training.

The optimization of the latent vector utilizes the BFGS algorithm from SciPy. The full
training set includes 80% of the complete dataset.

6.4 Discussion and Conclusion

This work advances the optimization of truss robot design through two novel neural net-
work approaches. The GAT-VAE effectively optimizes C-network connectivity and trans-
formed shape properties within fixed topologies, achieving 99.925% reconstruction accuracy
and 99.999% connectivity prediction accuracy, with a mean square error of 0.036 for aspect
ratio prediction. The LSTM-VAE with our novel truss grammar enables simultaneous opti-
mization of both discrete topological structure and continuous parameters, achieving 99.43%
topology reconstruction accuracy while demonstrating successful multi-shape optimization
capabilities. Both models show smooth and meaningful interpolation in their respective latent
spaces, indicating they have learned meaningful representations of the design space.

Our approaches make several key technical contributions to the field. 1). We introduce
a novel truss grammar that effectively represents loop-containing structures, extending be-
yond traditional tree-based grammars. 2). We develop a hybrid approach combining discrete
topology optimization with continuous parameter tuning, creating an end-to-end differen-
tiable framework for shape optimization in truss robotics. 3). Through our experiments, we
demonstrate successful multi-shape optimization where a single truss can transform between
multiple target configurations, validating the effectiveness of our approach.

While our results are promising, we identify several important limitations and corre-
sponding future research directions. One promising direction is combining the strengths of
GAT and LSTM architectures. While GAT shows excellent performance in understanding
local and global connectivity, LSTM effectively processes sequential tokens. A natural next
step would be to separate their functions, using LSTM solely for token reconstruction while
delegating C-network indices, initial lengths, and contractions to GAT modules. This integra-
tion could potentially improve both reconstruction accuracy and optimization performance.

Furthermore, due to the limited contraction ratio and limited amount of data, there are
certain target shapes are not achievable with current framework. For example, a target shape
with too large contraction ratio required or curvature required is not possible (Fig. 6.15).
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The extension to 3D structures presents another significant challenge. While truss gram-
mar naturally extends to 3D by using faces and tetrahedrons as basic units rather than edges
and faces, expanding the dimension significantly increases the possible design space of truss
topology and transformed positions. Future work will require larger datasets and more so-
phisticated models specifically tailored to learning 3D truss structure representations. This di-
mensional expansion may necessitate architectural innovations to handle the increased com-
plexity.

Current geometric validation also presents important limitations. The model implicitly
learns truss validity from the dataset, with grammar enforcing topological validity. However,
we still observe invalid geometry outputs, such as initial lengths or contractions outside their
intended ranges and overlapping triangles in the resulting geometry. Future work should
incorporate explicit physical constraints and validation mechanisms, possibly through differ-
entiable physics simulation integration or explicit constraint enforcement in the loss function.

Optimization of latent space subsections presents another promising direction. Instead of
optimizing the entire latent vector, we could use concatenated latent vectors where each seg-
ment contains information from specific encoders. This would enable selective optimization
- for instance, if users are satisfied with the generated topology but need shape modifications,
we could fix the token latent while optimizing other latent vectors, preserving topology while
adjusting geometry.

Scaling to larger, more complex truss structures presents additional computational chal-
lenges that future work must address. This includes developing more efficient training strate-
gies for larger datasets, exploring hierarchical representations for complex structures, and
optimizing the inference pipeline for real-time applications. These improvements will be
crucial for practical applications of our approach in real-world scenarios.

The success of our approaches in combining discrete and continuous optimization sug-
gests broader applications beyond truss robots. These methods could extend to other domains
involving graph-based structures with mixed discrete-continuous optimization challenges,
such as molecular design, circuit layout, or architectural structures. Moreover, our truss
grammar formulation might inspire new approaches to representing and optimizing other
types of physical structures with complex topological constraints.

From a broader impact perspective, this work contributes to the growing field of auto-
mated design optimization in robotics and could potentially accelerate the development of
more versatile and efficient robotic systems. However, care should be taken to ensure that
automated design systems maintain physical feasibility and safety constraints in real-world
applications. The integration of physical constraints and validation mechanisms will be cru-
cial for translating these theoretical advances into practical applications.

6.5 Supplementary

The supplementary materials present further analyses of our model’s capabilities and limita-
tions in both latent space representation and shape optimization. Supplementary Figure 6.12
demonstrates the continuous interpolation between different truss designs in the LSTM-VAE
latent space, showing smooth geometric transitions as the interpolation weight varies. Fol-
lowing this, we provide detailed comparisons between our optimized designs and the existing
dataset to validate the novelty of our results. Supplementary Figures 6.13 and 6.14 show-
case various optimized structures including star shapes and geometric forms, each presented
alongside their closest matches from the training dataset to highlight the unique character-
istics of our optimized solutions. Finally, Supplementary Figure 6.15 illustrates challenging
cases where our approach encounters limitations in achieving the desired shape transforma-
tions, particularly for deformations requiring extreme scaling ratio or curvature.
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Chapter 7

Discussion

7.1 The Challenge of Complex Morphing Robots

Nature offers remarkable examples of creatures that can dramatically transform their mor-
phology to adapt to their environment and tasks. From octopi that can squeeze through open-
ings barely larger than their eye [4], to the magnificent frigatebird that can inflate its gular
pouch to nearly its body size [3], to lizards that can dramatically modify their throat structure
for display [2], biological systems demonstrate sophisticated capabilities in morphological
adaptation that extend far beyond simple compressions or expansions.

This biological inspiration has driven developments not only in robotics but also in
human-computer interaction (HCI), where shape-changing interfaces enable dynamic physi-
cal affordances and adaptive functionality. From social robots that use dynamic skin textures
to convey emotional states [32], to furniture-scale shape transformation systems [141], to en-
tirely soft, programmable shape-changing modules [26], researchers have demonstrated the
broad potential of morphological adaptation. However, creating machines that can achieve
such dramatic volumetric shape changes while maintaining structural integrity and control
precision remains a significant challenge.

Current approaches to morphological adaptation in robotics each face distinct limitations.
Limbed robots, which mirror the anatomical structure of animals [5, 6], utilize a central body
with branching limbs [7, 8]. While effective for many tasks, their tree-like topology inher-
ently constrains their shape-changing capabilities - they can move limbs but cannot funda-
mentally alter their volume or overall structure. Continuum robots, inspired by spineless
organisms [15, 16], provide virtually infinite degrees of freedom but often lack mechanical
stability and load-bearing capacity. Cubic robots based on voxel units [50, 51] achieve shape
changes through selective activation but face challenges in scalability and precision due to
their solid volume nature.

Among these approaches, looped graph structures (LGSs) - encompassing both truss and
tensegrity robots - emerge as a promising alternative that combines structural stability with
shape-changing capabilities. Their graph topology with loops, where edges can circle back
to their starting nodes, provides both structural strength and extensive degrees of freedom.
However, these structures face two fundamental challenges that have limited their practical
implementation:

First, the curse of dimensionality (CoD) manifests as the structure scales up. Given the
same size of elements and connection patterns, scaling up an LGS’s volume leads to a cubic
increase in the number of elements. This exponential growth affects both hardware complex-
ity and the search space for design optimization. As a result, current physical implementa-
tions are limited to either simple structures with few tetrahedral units [43, 56, 57] or larger
structures where only a small subset of beams are actuable [45]. More complex designs have
been demonstrated in simulation [60], but their physical realization remains challenging due
to these scaling constraints.
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Second, the discrete nature of graph structures poses unique optimization challenges.
Unlike continuum robots that are inherently suitable for continuous optimization [15, 16],
or voxel-based robots that can be optimized in a continuous space and then discretized to a
regular grid structure [53, 123], the non-regular and non-Euclidean graph structure of LGSs
creates significant barriers to efficient optimization. While topology optimization methods
have proven effective for regular grid structures [122], the connectivity constraints and irreg-
ular topology of truss robots make such approaches unsuitable. This discrete nature proves
particularly challenging when combined with actuator grouping strategies, limiting optimiza-
tion approaches to heuristics-based combinatorial methods [7] that often prove less efficient
than continuous optimization techniques.

In this thesis, we addressed these fundamental challenges through a series of contribu-
tions: (1) a bio-inspired actuator grouping mechanism that reduced control complexity while
maintaining functionality, (2) a specialized genetic algorithm framework that effectively op-
timized discrete parameters towards multiple objective tasks within physical constraints, and
(3) a novel neural network approach that transformed discrete topology optimization into
continuous latent space optimization, enabling topology generation. Together, these advances
enabled the creation of complex morphing truss robots that were previously impractical to
design and implement.

7.2 Biological Inspiration: From Muscle Synergy to Actuator Groups

Our approach to addressing these challenges draws inspiration from biological muscle syn-
ergy, where complex movements emerge from coordinated muscle groups rather than in-
dividual control. Research indicates that humans and other animals execute sophisticated
movements without consciously controlling each muscle, despite having hundreds of mus-
cles and billions of muscle cells. This mechanism, known as muscle synergy, significantly
reduces neural pathway complexity [61, 62, 100]. Through synergy in human motor control,
intricate actions like walking or jumping are executed by coordinating muscle networks pe-
riodically, eliminating the need for conscious control of every individual muscle. While the
topic remains under debate, several researchers argue that this coordinated approach achieves
an optimal balance between actuator count and control complexity, significantly reducing the
brain’s computational burden [102–104].

This biological principle suggested a novel solution to the curse of dimensionality in
truss robots: rather than controlling each actuator independently, we could group actuators
into networks that operate in coordination. As presented in PneuMesh: Actuator Grouping
in Truss Robot, we introduced a novel actuator grouping mechanism through customizable
connection joints, termed C-networks. Each subset of actuators within a C-network can be
actuated simultaneously by a single control module, significantly reducing the redundancy in
control mechanisms while maintaining the system’s expressiveness.

The success of this approach was demonstrated through the construction of complex
truss robots with over 100 actuable beams controlled by just a few modules. For instance,
our system enabled a truss robot with 150 actuating beams to be efficiently grouped into eight
subnetworks, each managed by its own control module—achieving a ratio of 18.75 actuating
beams per control module. This represents a significant improvement over existing models
which typically achieve only one actuating beams per control module [40, 45].

Our implementation, detailed in PneuMesh: Actuator Grouping in Truss Robot, involves
carefully designed joint structures that can selectively channel actuation signals across mul-
tiple beams. Each joint incorporates an innovative selective-air-channel design that enables
specific groups of actuators to share the same air source, ensuring synchronized activation.
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This design not only simplifies the control architecture but also reduces the physical com-
plexity of wiring and power distribution. The effectiveness of this approach was validated
through multiple robot designs, from a six-leg walker achieving forward motion with just
two air ports to complex shape-morphing structures capable of dramatic volumetric transfor-
mations.

7.3 From Manual Design to Automated Optimization

While the actuator grouping mechanism presented in PneuMesh: Actuator Grouping in Truss
Robot demonstrated the feasibility of complex truss robots with simplified control, it intro-
duced new challenges in design optimization. The assignment of actuators to C-networks
needed to satisfy both connectivity constraints (actuators in the same C-network must form
a connected subgraph) and symmetry requirements. As detailed in Muscle Synergy Inspired
Evolution of Actuator Network, a truss with ne edges and nγ channels has a solution space
with a size up to nne

γ . Moreover, a physically practical solution must maintain the connectivity
of each channel, meaning beams belonging to the same channel group need to have ensured
physical connectivity for the pneumatic actuation system.

Existing approaches to truss robot optimization proved inadequate for our unique chal-
lenges. Previous work typically assumed independent control of each actuator [41, 42, 97],
or focused on co-optimization of control and morphology for tree-like structures [7, 78, 106].
Implicit encoding methods like Compositional Pattern-Producing Networks (CPPNs), while
effective for voxel robots [50, 108], struggle with the non-Euclidean topology of truss struc-
tures where the relationship between neighboring elements is not uniform or continuous in
space.

As presented in Muscle Synergy Inspired Evolution of Actuator Network, we addressed
these challenges through a tailored genetic algorithm incorporating custom operators that re-
spect both symmetry and connectivity constraints while exploring the design space. Our ap-
proach transformed the complex problem of C-network design into a tractable form by encod-
ing network assignments, contraction levels, and activation signals into a simple yet expres-
sive integer-based representation. To handle multiple competing objectives while maintain-
ing design diversity, we enhanced the NSGA-II algorithm with an elite preservation mecha-
nism.

The effectiveness of this optimization framework was demonstrated through several com-
pelling examples. Most notably, our quadrupedal robot with over 150 actuators could achieve
walking, turning, crouching, and tilting behaviors using just eight control groups. Through
systematic experimentation, we found that performance improvements diminish beyond a
certain number of C-networks, supporting our hypothesis inspired by muscle synergy. Sta-
tistical analysis using one-way ANOVA confirmed significant performance improvements
when increasing from 2 to 8 C-networks (p = 0.003), but differences became statistically
insignificant beyond 16 C-networks (p > 0.877). The success of this optimization approach
enabled the design of significantly more complex truss robots than previously possible.

The effectiveness of this optimization framework was demonstrated through several com-
pelling examples. Most notably, our quadrupedal robot with over 150 actuators could achieve
walking, turning, crouching, and tilting behaviors using just eight control groups. Through
systematic experimentation, we found that performance improvements diminish beyond a
certain number of C-networks, supporting our hypothesis inspired by muscle synergy. Sta-
tistical analysis using one-way ANOVA confirmed measurable performance improvements
when increasing from 2 to 8 C-networks (p = 0.003), but differences became statistically
insignificant beyond 16 C-networks (p > 0.877). This result validates our core hypothesis:
strategic actuator grouping can achieve complex robotic capabilities with reduced control
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complexity. While previous VGT implementations were limited to either structures with few
tetrahedral units [43, 56, 57] or larger structures where only a small subset of beams were
actuable [45], our approach enabled multi-behavior control in a structure with 150 actuating
beams managed by eight modules, achieving a ratio of 18.75 actuating beams per control
module compared to the 1:1 ratio in previous work [40, 45]. This reduction in control com-
plexity while maintaining motion capabilities suggesting an alternative to the conventional
approach of independent control for each actuator.

7.4 Bridging Discrete and Continuous Optimization

Despite the effectiveness of our genetic algorithm approach presented in Muscle Synergy In-
spired Evolution of Actuator Network, scaling to larger structures and more complex tasks re-
vealed fundamental limitations of discrete optimization. The expansive search space created
by the curse of dimensionality, combined with the discreteness and connectivity constraints
of actuator grouping, complicated the use of traditional optimizers. This challenge became
particularly acute when dealing with multi-objective scenarios, where unconventional mor-
phologies might outperform human-designed structures.

As detailed in Truss Topology and Parameter Generation with Variational Auto-encoders,
we developed two approaches using variational auto-encoders (VAE) to transform the dis-
crete design space into continuous latent representations suitable for optimization. Our first
solution leverages graph attention networks (GAT) to optimize actuator grouping connectiv-
ity within fixed topologies. The GAT architecture’s natural ability to process graph struc-
tures proved effective in capturing both local edge relationships and global structural pat-
terns, achieving high accuracy in both reconstruction (99.925%) and connectivity prediction
(99.980%).

However, while the GAT-VAE excelled at fixed-topology optimization, it could not easily
handle varying graph structures. To overcome this limitation, we needed to solve a funda-
mental representation challenge: how to encode truss structures with loops in a way that
neural networks could both understand and generate. Previous work had demonstrated suc-
cess in using grammar to represent limbed robots, molecular structures [7, 78], and CAD
models [140], but these approaches relied on tree-based grammars where each token repre-
sents a branching element from an existing body. Such representations cannot capture the
looped topology essential to truss robots.

Our solution, presented in Truss Topology and Parameter Generation with Variational
Auto-encoders, introduces a novel truss grammar that represents loop-containing structures
through a merging operation. Our grammar enables the representation of any truss with disk-
like topology as a unique sequence of tokens, which we combine with an LSTM-VAE to
simultaneously optimize topology, C-network indices, initial lengths, and contraction ratios.

The model achieved 99.43% token reconstruction accuracy and demonstrated smooth in-
terpolation capabilities in its latent space. As shown in Figure. 6.12, the model can smoothly
transition between different designs while simultaneously modifying both discrete parame-
ters (number of triangles) and continuous parameters (edge lengths). This continuous latent
space representation enables efficient gradient-based optimization of traditionally discrete
parameters and topologies.

We demonstrated our approach through three increasingly complex shape-morphing tasks
(Fig. 6.11). Given one, two, or three target shapes, our model generates complete truss de-
signs including topology, actuator grouping, and contraction ratios. The resulting trusses can
transform to approximate a star shape in the single-shape case, morph between rectangular
and triangular forms in the two-shape case, and achieve three distinct configurations in the
three-shape case.
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To verify that our model generates novel designs rather than memorizing training ex-
amples, we compared the optimized designs with their closest counterparts in the training
dataset. As shown in Figure. 6.13 and Figure. 6.14, the optimized designs exhibit distinct
differences in both topology and transformation strategies. For the star shape optimization,
our model discovered an asymmetric structure with fewer triangles than similar training ex-
amples, achieving more efficient shape approximation. In the geometric shape transforma-
tions, the model generated novel actuation patterns that enable smoother transitions between
target configurations.

However, the current approach has limitations, particularly for shapes requiring large
contraction ratios or high curvature (Fig. 6.15). These failure cases suggest the need for future
work in pre-evaluating target shape feasibility, either through analytical methods calculating
minimum distortion ratios or through a learned neural network that predicts if the objective
shapes are achievable.

To our knowledge, this work presents the first application of continuous latent space
optimization to discrete looped topology structures in robotics. While previous approaches
either relied on discrete optimization [7] or were limited to tree-like structures [79], our
method enables simultaneous optimization of discrete topological features and continuous
geometric parameters within a unified framework.

7.5 Conclusion

This thesis presents a progression of solutions to fundamental challenges in looped-graph
structures (LGSs), particularly focusing on truss robots. Through a series of theoretical and
practical contributions, we have advanced the field’s understanding of how to design, op-
timize, and control complex morphing robots while managing the inherent challenges of
dimensionality and discreteness.

Our first major contribution, presented in PneuMesh: Actuator Grouping in Truss Robot,
introduces a synergy-inspired actuator grouping mechanism that fundamentally reimagines
how complex truss robots can be controlled. Drawing parallels from biological muscle coor-
dination, this approach enables the control of structures with over 100 actuators using just a
few control modules - a dramatic reduction in complexity that makes previously intractable
designs physically realizable. This innovation demonstrates that strategic reduction in con-
trol granularity can actually enable more complex overall capabilities, challenging traditional
assumptions about the relationship between control complexity and functional sophistication.

The development of our optimization framework, detailed in Muscle Synergy Inspired
Evolution of Actuator Network, addresses the discrete nature of truss optimization while re-
specting physical constraints. Our tailored genetic algorithm’s success in optimizing actuator
groupings within fixed topologies, while maintaining connectivity constraints, demonstrates
the viability of discrete optimization for moderate-sized structures. However, its diminishing
efficiency with increasing complexity motivated our transition to continuous optimization
approaches.

The introduction of our dual VAE framework in Truss Topology and Parameter Genera-
tion with Variational Auto-encoders - combining Graph Attention Networks for connectivity
optimization and LSTM networks for topology generation - represents a significant advance-
ment in morphing robot design. The GAT-VAE’s remarkable accuracy in reconstructing ac-
tuator groupings (99.925%) and connectivity patterns (99.999%) demonstrates the potential
of continuous latent space optimization for discrete problems. Meanwhile, the LSTM-VAE’s
novel truss grammar enables the first approach to generating complete truss designs, includ-
ing topology, actuator groupings, and geometric parameters.

These technical contributions collectively enable several key capabilities:
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1. The ability to scale up truss robot complexity without proportional increases in control
complexity, making previously intractable designs physically realizable

2. Efficient optimization of both discrete topological features and continuous parameters
within a unified framework

3. Generation of novel truss designs optimized for specific tasks or shape transformations,
moving beyond human-designed topologies

4. A practical pathway to implementing complex morphing robots through a combination
of simplified control architecture and tailored optimization tools

The approaches developed in this thesis could extend beyond truss robots to other do-
mains involving graph-based structures and mixed discrete-continuous optimization chal-
lenges. For tensegrity robots, which achieve stability through a balance of tension-only ca-
bles and compression-only rods [142], our grouped actuation strategy could be adapted to
cable-based systems while our VAE framework could optimize both topology and tension
distribution. In robotic metamaterials, where mechanical properties emerge from cellular ar-
chitectures [143], our topology generation approach could enable optimization of both spatial
allocation of elements and material properties of each element, particularly relevant for multi-
material fabrication. These extensions are made possible by the fundamental similarities in
their underlying discrete graph structures and optimization challenges, such as balancing ge-
ometric constraints with functional objectives while managing high degrees of freedom. The
computational frameworks developed here, including grammar-based representation and hy-
brid discrete-continuous optimization, provide tools that could be adapted for these related
domains. Additionally, advances in hardware implementation through alternative actuation
mechanisms like light-responsive materials [144] and improved sensing systems could enable
more precise control over morphological transformations while reducing physical constraints
(See Future Work).
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Chapter 8

Future Work

The solutions developed in this thesis, from synergy-inspired actuator grouping to neural
network-based topology optimization, establish foundational approaches for designing and
controlling complex morphing robots. While our framework has demonstrated success in
truss robots, its underlying principles - the combination of grouped actuation, grammar-based
representation, and hybrid discrete-continuous optimization - have potential applications be-
yond our initial scope. This chapter examines three key directions for extending our work:
application to other physical systems like tensegrity robots and metamaterials, advancement
of hardware implementation through novel actuation and sensing mechanisms, and enhance-
ment of algorithmic capabilities for more complex topologies and control strategies. These
directions not only address current limitations but also open new possibilities for adaptive
robotics and morphing structures.

8.1 Extension to Other Physical Systems

Our framework’s success in truss robots suggests broader applications to other morphing
structures that share similar topological characteristics but present unique challenges. Of
particular interest are tensegrity robots and robotic metamaterials, both of which involve
complex graph structures and face similar challenges in balancing structural stability with
shape-changing capabilities. These extensions not only validate the generality of our ap-
proach but also open new possibilities for adaptive structures across different scales and
applications.

8.1.1 Tensegrity Robots

A natural and promising extension of our framework lies in tensegrity robots, which combine
rigid rods with tensioned cables in a looped graph structure. Unlike truss robots where each
edge can bear both tension and compression, tensegrity structures achieve stability through a
precise balance of tension-only cables and compression-only rods. This fundamental charac-
teristic makes them particularly appealing for applications requiring high strength-to-weight
ratios and natural shock absorption capabilities [142]. However, tensegrity robots face even
more stringent constraints than truss robots - beyond managing degrees of freedom, they
must maintain structural stability through continuous tension balancing during any shape
transformation.

Current approaches to tensegrity robot design typically rely on either modifying existing
stable configurations [145] or assembling known stable units [146]. While these methods
have produced functional robots, they significantly limit the design space and may miss more
optimal configurations for specific tasks. Traditional optimization methods like force den-
sity [147] or position-based approaches [148] work well for simple topologies but become
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computationally intractable for complex structures. Furthermore, these methods typically fo-
cus on static stability rather than dynamic performance, making them insufficient for robotic
applications.

Physical System Design

To address the control complexity challenge in tensegrity robots, we propose adapting our
actuator grouping mechanism to a cable-based actuation system, as illustrated in Figure 8.1.
This design replaces individually controlled cables with a continuous cable that threads
through multiple edges and is controlled by a single external actuator such as a winch. The
approach maintains the benefits of reduced control complexity demonstrated in truss robots
while accommodating the specific requirements of tensegrity structures.

The cable routing strategy requires careful design of the pathways through which ca-
bles traverse multiple edges, enabling coordinated movement patterns across the structure.
This presents three primary technical challenges. First, the joints must enable smooth cable
routing without interference while managing friction effects in multi-edge cable paths. Sec-
ond, the system needs to ensure continuous and controllable length changes across grouped
edges for precise shape control. Third, the design must maintain proper tension distribution
throughout the structure to preserve structural integrity during transformation.

Computational Framework Adaptation

Extending our VAE-based optimization framework to tensegrity robots requires several key
modifications to accommodate their unique constraints. The primary challenge lies in main-
taining tensional integrity - tensegrity structures must maintain a precise balance of tensions,
with rigid components connected only through cables under tension. Incorporating this con-
straint into the optimization pipeline necessitates the integration of form-finding algorithms,
which have proven effective for static tensegrity structures. The modified framework distin-
guishes between rigid rods and tension cables in the graph representation while incorporating
tension balance constraints in the optimization process. The truss grammar requires adapta-
tion to handle the specific requirements of tensegrity structures, particularly in representing
the distinct properties of rods and cables. This modified grammar must ensure that generated
designs maintain stability across their range of motion, a constraint not present in pure truss
structures.

Preliminary Simulator Development

Initial simulations using Mujoco demonstrate the feasibility of this approach for tensegrity
robots. The simulator captures the essential dynamics of cable-actuated tensegrity structures,
including tension distribution and shape deformation. These preliminary results indicate
that the framework can handle the additional complexity introduced by tensegrity-specific
constraints.

Several technical challenges remain for physical validation. The development of robust
joint designs that maintain reliable cable routing under dynamic conditions presents a pri-
mary challenge. Implementing effective tension monitoring and control systems is equally
critical, as tension distribution directly affects structural stability. The integration of actuator
grouping with tensional integrity requirements necessitates careful balance between grouped
actuation and tension distribution. Validating the transfer from simulation to physical systems
requires systematic testing and refinement of the models to capture real-world dynamics.

The extension to tensegrity robots enables new possibilities in morphing robot design
through the combination of truss and tensegrity principles. Cable-based actuation systems
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FIGURE 8.1: Illustration of the proposed tensegrity structure with cable ac-
tuator grouping and external winch motors. Same color of cables are contin-

uous and pulled by a single external motor.

with optimized tension distribution can achieve higher strength-to-weight ratios than tradi-
tional truss designs [142]. The distributed tension network provides natural impact absorption
capabilities, while the combination of rigid elements with tensioned cables enables extensive
shape changes while maintaining structural stability. These characteristics make tensegrity
robots particularly suitable for applications in space exploration, where lightweight, deploy-
able structures must adapt to irregular terrain, and in architectural applications, where struc-
tures must respond to environmental conditions.

8.1.2 Robotic Metamaterials

Metamaterials represent engineered structures that derive their properties primarily from their
cellular architecture rather than their constituent materials. These structures exhibit behav-
iors not found in natural materials, including tunable chiral, auxetic, and compliant prop-
erties [143, 149]. The behavior emerges from their repeating spatial arrangement of solid
regions and voids, with truss-based cellular architectures representing one effective approach
to space-filling patterns [150].

Current approaches to metamaterial design range from manual design to topology opti-
mization methods. Some researchers have demonstrated success in achieving specific me-
chanical properties through discrete optimization of unit cell geometry [151, 152]. Neural
networks have been employed to predict properties of given designs [153], but the genera-
tion of novel topologies optimized for specific properties remains challenging. Additionally,
while existing work primarily focuses on single-material structures, modern multi-material
fabrication capabilities suggest opportunities for more complex designs with varying material
properties across the structure.

Our VAE framework offers potential advantages for metamaterial design through its abil-
ity to encode and optimize both topology and continuous parameters. The framework could
be extended to optimize both the spatial arrangement of unit cells and the material properties
of individual elements. This capability becomes particularly relevant with the advancement
of multi-material 3D printing technologies, which enable the fabrication of structures with
varying material properties across different components. The position prediction network
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could be modified to predict mechanical properties of generated designs, enabling direct op-
timization for specific behavioral targets.

8.2 Hardware Implementation

The practical implementation of complex morphing robots presents several technical chal-
lenges that warrant exploration. Current hardware limitations in joint design, actuation mech-
anisms, and sensing capabilities directly impact the achievable complexity and precision of
morphing structures. This section examines potential advances in these areas to bridge the
gap between theoretical capabilities and physical realization.

8.2.1 Joint Design Evolution

Static truss structures employ straightforward joint designs that prioritize load distribution
and structural stability. However, truss robots require joints capable of accommodating vary-
ing angles during transformation while maintaining structural integrity. Previous work in-
troduced several approaches to this challenge. The spherical joint design in [154], based
on [155], enables smooth rotation through a 3D-printed mechanism. Alternative approaches
include the spiral zipper spherical joint [156], which employs a linkage structure allowing
both rotation and joint reconfiguration.

Our pneumatic system introduces additional complexity by requiring air channels through
the joints. Current designs rely on soft, compliant mechanisms [157, 158], but these limit
load-bearing capacity. A promising direction combines rigid spherical joints with integrated
pneumatic routing. However, this approach faces a fundamental trade-off: joint size typi-
cally scales with degrees of freedom to prevent collision, potentially limiting the structure’s
overall contraction ratio. Future work could address this through miniaturization of joint
components or by incorporating joint constraints directly into the optimization framework.

8.2.2 Alternative Actuation Mechanisms

The current pneumatic actuation system imposes connectivity constraints that complicate
both physical implementation and algorithmic optimization. Light-triggered actuation mech-
anisms offer a potential solution by enabling remote control without physical connections be-
tween actuators. Materials such as hydrogels respond to light through hydration changes [159,
160], while liquid crystal elastomers (LCE) contract along their nematic alignment direction
under UV exposure [161].

These materials enable more sophisticated control through wavelength-specific responses.
Different regions of an LCE actuator can respond to distinct wavelengths [144], similar to
our C-network grouping but without physical connectivity requirements. By varying color
concentrations within individual actuators, partial responses to different light sources become
possible [162], enabling reuse of actuators across different transformations. This approach
has demonstrated success in micro-scale applications [163], suggesting potential for minia-
turized truss robots at scales of 0.5-5mm.

8.2.3 Sensing and Feedback Attachments

The preliminary work on reinforcement learning for closed-loop control, detailed in Closed-
loop Control of Truss Robot using Reinforcement Learning, demonstrates the potential for
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enhancing the current open-loop control system. The reinforcement learning approach pro-
cesses environmental inputs to determine optimal C-network states at each time step, en-
abling adaptation to environmental disturbances and precise control over morphological trans-
formations. However, implementing closed-loop control on physical systems requires accu-
rate real-time position sensing of the truss robot’s joints.

Motion capture technology offers promising solutions for real-time tracking. The modu-
lar nature of truss structures, combined with their high volume-to-mass ratio, facilitates the
integration of various sensing devices. Potential approaches include distributed IMU sen-
sors or multiple cameras tracking visual markers [164]. These sensing systems must balance
precision with the added weight and complexity they introduce to the structure.

8.3 Algorithm Advancement

8.3.1 Topology Generation and Dataset Extension

Current transformer architectures demonstrate capability in processing sequences of compa-
rable length to their training data [165], with models like Skexgen successfully handling over
200 tokens for CAD modeling. Large language models further extend this capacity [166].
Our current implementation, described in Truss Topology and Parameter Generation with
Variational Auto-encoders, handles sequences up to 22 tokens, suggesting potential for sig-
nificant expansion.

Neural networks have shown promising results in processing 3D data, as demonstrated
by recent work in triangle mesh surface generation [167]. While these approaches focus on
surface meshes without connectivity constraints or tetrahedral structures, our truss grammar
naturally extends to 3D configurations as outlined in Truss Topology and Parameter Genera-
tion with Variational Auto-encoders. Expanding the dataset to incorporate longer sequences
and 3D truss topologies represents a logical next step in advancing the framework’s capabil-
ities.

8.3.2 Control Integration

The reinforcement learning approach detailed in Closed-loop Control of Truss Robot us-
ing Reinforcement Learning successfully develops closed-loop controllers for truss designs
optimized through genetic algorithms ( Muscle Synergy Inspired Evolution of Actuator Net-
work). The current TrussVAE implementation employs separate position predictors for each
possible control signal combination, limiting extensibility to more complex control scenar-
ios. A more scalable approach would develop a neural network that processes control signal
combinations and actuator groupings into high-level features for position prediction, enabling
reuse of the network structure across different grouping configurations.

Future developments could explore universal controller generation [14, 168], where con-
trollers are conditioned on topology. This approach would enable simultaneous optimization
of both structural design and control strategies, potentially discovering more efficient solu-
tions for complex morphing tasks.
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