
Building Educational Technology

Quickly and Robustly with an Interactively Teachable AI

Daniel Phillip Weitekamp

CMU-HCII-24-111
September 2024

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Commitee:
Dr. Kenneth Koedinger

Dr. Brad Myers
Dr. Vincent Aleven
Dr. Kurt VanLehn
Dr. Erik Harpstead

Dr. Christopher MacLellan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This dissertation research was supported in part by the training grant (R305B150008) from the Institute of Education
Sciences. Additional thanks to Google for providing a 2018 Google Faculty Research Award (for Ken Koedinger) in

support of this work. Opinions expressed in this dissertation are the author’s alone and do not represent the views of the
U.S. Department of Education or Google.

Copyright © 2024 Daniel P. Weitekamp

Keywords: Interactive Task Learning, Machine Teaching, Interactive Machine Learning,
Programming by Demonstration, Intelligent Tutoring Systems, Self-Aware Learning, ITS
Authoring Tools

Abstract

Interactive task learning (ITL) is a machine-learning paradigm that envisions AI that
can learn whole programs directly from the natural instructions of untrained users. In this
dissertation, I present a system called AI2T that improves upon an ITL sub-paradigm called
authoring-by-tutoring, whereby highly adaptive educational technology known as intelligent
tutoring systems (ITSs) are authored by teaching an agent with rapid human-like learning
capabilities. In the course of about 20-30 minutes authors can tutor AI2T with demonstra-
tions and interactive feedback instead of needing to program an ITS by hand; a process
which typically requires 200-300 developer hours per hour of instruction.

Authoring-by-tutoring presents a significant opportunity to democratize the authoring
of ITSs. The defining characteristic of an ITS is the automatic delivery of detailed step-by-
step feedback and hints characteristic of human-to-human tutoring. ITSs are typically more
effective than traditional instruction and in some cases even more effective than human
tutors. Authoring-by-tutoring is a path toward building the cognitively focused, precisely
engineered, and reliably accurate behaviors of traditional ITSs without needing to hand-
program behaviors or rely upon costly pretrained AI systems like large language models
(LLMs) that are prone to hallucinating incorrect solutions and feedback. Toward this aim,
this work innovates on methods of machine learning that robustly learn complex behaviors
via rapid bottom-up induction, instead of by mimicking patterns in big data.

In this dissertation, I present two novel machine-learning algorithms that enable data-
efficient and robust interactive task learning, whereby correct and complete rule-based pro-
grams can be induced from interactive instruction. First I present STAND, a highly data-
efficient algorithm for inducing preconditions for rules from binary reward signals. STAND
out-performs algorithms like random forests and XGBoost known for their data-efficient
learning on tabular data. STAND also enables a measure called instance certainty, an esti-
mate of prediction probability that is more highly correlated with actual increases in holdout
set performance than methods that rely on weighted ensembles. I show in simulation and
with users that instance certainty can help authors estimate when AI2T has induced 100%
complete programs, and show that it can provide active-learning support, helping authors
identify the most helpful problems to tutor AI2T on next. Second, I introduce a method for
learning hierarchical task networks (HTNs) from action sequences that helps AI2T induce
simpler and more robust hierarchical programs than past systems. This approach is agnostic
to action sequence lesson ordering, and induces HTNs with features like unordered groups
and conditional actions that are useful for ITS rules.

The machine learning and interactions design innovations of this work improve upon
the authoring-by-tutoring implemented in past systems like SimStudent and the Apprentice
Learner (AL) framework. I evaluate these improvements in two user studies each with 10
users. In study 2, half of our participants succeeded at teaching AI2T 100% complete and
accurate ITS behavior for two K-12 math domains when we evaluated the induced programs
on a large holdout set of 100 problems. These first-time participants worked with AI2T for
a median time of just 22 minutes per domain, half the time reported in our prior work.

Acknowledgements

I would like to extend my gratitude to my parents for all that they have done to support
my upbringing and my several decades of education. To my mother for standing by me
through difficult times, for teaching me to care for myself and others, and for encouraging
my interests in the humanities. To my father for instilling in me the inquisitive and inventive
disposition of a scientist, for his wit, for his sense of humor, and of justice. To my two older
brothers—my role models in everything. To the peers in my PhD cohort for the time we
shared, especially to Sujeath Pareddy who we miss dearly. And finally, I would like to extend
my gratitude to my colleagues, my committee members, my advisor Ken for 6 great years of
talking shop.

Table of Contents

1 Introduction 5

1.1 Intelligent Tutoring Systems . 6

1.2 Authoring Tools . 8

1.3 Authoring by Tutoring . 8

1.4 Contributions of This Dissertation . 9

2 Decomposed Inductive Procedure Learning: An Overview 12

2.1 Simulated Learners . 13

2.2 Decomposed Inductive Procedure Learning 13

2.2.1 Decomposing RL into DIPL . 14

2.2.2 How-Learning . 16

2.2.3 Where-learning . 19

2.2.4 When-Learning . 20

2.3 Task Domains . 21

2.4 Ablation Analysis . 23

2.4.1 Methods . 23

2.4.2 Results . 23

2.4.3 Discussion . 24

2.5 Conclusion . 25

3 Prior Investigation: An Interaction Design for Machine Teaching to
Develop AI Tutors 27

4 Designing an Interface for Interactively Teaching an AI Agent: Lessons
Learned 31

4.1 Visualizing and Assisting Demonstration Explanations 32

4.2 Supporting Per-State Completeness . 34

4.2.1 Prototype Design . 35

4.2.2 Skill Application Pop-ups (a removed feature) 35

4.2.3 Prompting for Complete Feedback . 36

4.2.4 Visualizing the Set of Proposed Skill Applications 37

4.3 Supporting Solution Path Navigation with Behavior Graph Generation . . . 39

4.4 Simplifying Graphs and Navigation with Induced Unordered Groups 40

4.5 Visualizing Action Certainty . 41

2

3

5 STAND: Improving Precondition Learning by Embracing Inductive
Ambiguity 43
5.1 Overcoming the Limits of Supervised Learning by Embracing Ambiguity . . 43
5.2 STAND: Building A Complete Space of Classifiers for the Cost of One 46

5.2.1 A Space of Classifiers for the Cost of One 49
5.2.2 STAND as an Approximate Version Space 50

5.3 Estimating Model Ambiguity and Instance Certainty 51
5.3.1 Model Ambiguity . 51
5.3.2 Instance Certainty . 52

5.4 Evaluating Learning Performance and Certainty Estimation Quality 53
5.4.1 Methods . 53
5.4.2 Evaluating Prediction Performance and Stability 55
5.4.3 Per-problem Errors by Type . 56
5.4.4 Evaluating Instance Certainty . 58

5.5 An Improvement, but is STAND Enough? 60

6 Process-Learning: Hierarchical Task Network Induction from Action
Sequences 61
6.1 The Problem with Purely Display-Based Induction 61
6.2 Hierarchical Task Networks . 63

6.2.1 Prior Work: Hierarchical Task Network Induction 64
6.2.2 The Benefits of Action Sequence Driven Induction 66
6.2.3 An HTN Representation for Flexible ITS Behavior 67
6.2.4 HTN Induction: Lessons from Sierra . 69

6.3 A Complex Initial Approach: Minimal Grammar Updates 70
6.3.1 An Example Target HTN Grammar . 71
6.3.2 Abducing Skill Applications from Actions 72
6.3.3 Initialization . 72
6.3.4 Sequence Alignment and Parsing . 72
6.3.5 Insert, Delete, Disjoin, and Unorder Edits 73
6.3.6 The Trouble with Bad Generalization Commitments 74
6.3.7 Merge Edits . 75
6.3.8 Why Abandon This Approach? . 76

6.4 A Robust Approach: Order Agnostic HTN Induction 76
6.4.1 An Atomic Evidence Representation . 77
6.4.2 Two Steps: Primitive Sequencing and Iterative Construction 77
6.4.3 Step 1: Primitive Sequencing . 79
6.4.4 Step 2: Iterative Construction . 79
6.4.5 Considerations for Inducing Recursive Grammars 80
6.4.6 Integration with Decomposed Inductive Procedure Learning 81
6.4.7 Performance with Process-learning . 82

7 Evaluating AI2T With Users 84
7.1 Methods . 84
7.2 Study 1: 3-Mechanism Agent . 86

4

7.2.1 Quantitative Results . 87
7.2.2 Qualitative Results . 88

7.3 Study 2: AI2T with Process-Learning . 89
7.3.1 Quantitative Results . 90
7.3.2 Qualitative Results . 91

7.4 Discussion . 91
7.5 Future Work . 92

8 LLMs: Opportunities and Risks in the Classroom and for Comple-
menting Authoring-by-Tutoring 93
8.1 Static Content Generation . 94
8.2 On-Demand Tutoring . 95
8.3 Model-Tracing and Cognitive Supports . 96
8.4 Authoring-By-Programming Support . 98
8.5 Authoring-By-Tutoring Support . 98

9 Conclusion 100
9.1 Potential Scope of Tutoring System Domains 100
9.2 Who can use AI2T? . 101
9.3 Interface Design and The Design Loop . 101
9.4 Future Work for Broader Authoring with AI2T 102
9.5 Other Time-Saving Benefits . 102
9.6 Additional Elements of Feature Complete Tutoring Systems 103
9.7 Considerations for Editing, Reusing, and on Building Upon Existing ITSs . . 103
9.8 Broader Applicability . 105

Chapter 1

Introduction

This dissertation presents an authoring tool called AI2T that enables non-programmers
to build adaptive educational technology by interactively teaching an AI. AI2T is an agent-
based system that rapidly generates knowledge structures through bottom-up induction from
the author’s instruction, enabling them to quickly build educational software that would
typically require hundreds of dedicated programmer hours to produce. This dissertation
presents several innovations in highly data-efficient and robust machine learning that enable
AI2T to be taught interactively in a web interface. In our final study, we demonstrate that
non-programmers can author correct and complete programs with AI2T in around 20-30
minutes.

In this dissertation I consider a tutoring system induced by AI2T to be correct and
complete if it exhibits the same grading behaviors and solution flexibility as a ground-truth
hand-programmed tutoring system. Specifically, we look at whether tutoring systems built
with AI2T permit exactly the same set of acceptable next student actions for all reachable
tutor states when compared to a ground-truth reference tutoring system. We focus on tutor-
ing system behaviors that permit many possible solution paths, meaning the set of permitted
actions and reachable states typically differ between instances of the same kind of problem.
Half of our users in our final study succeeded at teaching AI2T programs that are 100%
correct and complete in this regard when evaluated against a large holdout set of problems.
Among those that did not succeed in authoring 100% correct and complete programs, several
participants came very close (within less than 12% of perfect) and two participants failed to
catch mistakes that led to buggy tutoring system behavior.

The core features of AI2T span several machine learning paradigms including machine
teaching [126], active learning [106], and interactive task learning (ITL) [46]. At its core AI2T
builds upon the programming-by-demonstration (PBD) paradigm, where non-programmers
can demonstrate the behavior of a program instead of writing code in a programming lan-
guage [22]. Many demonstrations of PBD have shown robust performance in automating
simple single action or sequential behaviors [27, 51, 59] that require minimal generalizations
from users’ demonstrations. However, the challenges of PBD multiply when applied to build-
ing larger multi-faceted applications [72, 87]. AI2T is able to very robustly induce the core
behaviors of complex applications known as Intelligent Tutoring Systems (ITS)—educational
technologies known for their comprehensive adaptive student support features. Authors train
AI2T with a set of interactions that go beyond PBD. These interactions are better described
as programming-by-tutoring [70]—the author is not only responsible for demonstrating so-
lutions to AI2T but also interactively checking its behavior as it attempts to solve problems
on its own. In this relationship, the author is the tutor, and AI2T is the tutee. Therefore
AI2T is best described by Laird et. al.’s vision of interactive task learning (ITL), the idea
of AI systems that can be taught complex and robust new capabilities using a variety of
natural interaction methods that are intuitive to non-programmers.

6

1.1 Intelligent Tutoring Systems

ITSs are highly adaptive educational technology that attempt to mimic the kinds of
interactive feedback that students receive in one-on-one tutoring. The development of ITSs
was motivated by Bloom’s famous observation that tutoring is about two standard deviations
more effective than traditional instruction in terms of expected learning gains [10]. Many
ITSs have been shown to match or exceed the benefits of human tutors [44, 113]. ITSs are
distinguished from basic online educational content like quizzes and videos by features that
adapt to students as they engage in practice [112].

Historically ITSs have implemented many overlapping paradigms of complex adaptive
support. For instance, constraint-based modeling (CBM) approaches characterize correct
solutions by the satisfaction of several independent requirements that when violated trigger
highly specific feedback [78], conversational agents engage students in interactive dialogues
[26], and approaches like example-tracing and model-tracing track students solutions step-
by-step to deliver correctness feedback, hints, and other forms of support that are aligned
with particular problem steps, solution strategies, and common mistakes [4].

Fig. 1: The Geometry Cognitive Tutor. The interface breaks the problem down step-by-step
and an adaptive hint is provided in a pop-up. In the top right the student’s current knowledge
trace is shown by yellow and green bars indicating varying degrees of knowledge component
mastery (image as appeared in [1]).

No single adaptive feature distinguishes an ITS from other forms of online instruction,
although roughly speaking an ITS deliberately adapts instruction to students in ways that
could be considered “intelligent”—replicating the reasoning processes of a good teacher or
tutor [93]. Typically the learning objectives of an ITS are characterized by a detailed break-
down of the expert knowledge it aims to teach. Toward supporting optimal learning, ITSs
also often include tools for estimating individual students’ mastery of components of that

7

expert knowledge and implement interactions that support students in learning those com-
ponents individually within a tutoring interface. Tutoring systems’ adaptive features span
multiple time scales. Outer-loop adaptivity controls the selection of next practice problems
to ensure optimal learning. Outer-loop adaptivity relies upon knowledge tracing, a model of a
student’s current knowledge of individual knowledge components—particular facts, skills, or
principles—to select next problems that will help them learn new things. Inner-loop adaptiv-
ity controls how the tutoring system provides support within each problem [112]. Inner-loop
features include replications of many of the forms of support that a human tutor would
provide in one-on-one practice sessions including hints, step-by-step breakdowns of problems
into more granular steps [73,98], elaborations on why certain step responses are correct and
incorrect [79], and elicitations for self-explanations [21,100], just to name a few [112].

Fig. 2: Model tracing production rules to trace three different possible student actions. Dif-
ferent hint messages are available depending on the student solution path or mistake (image
as appeared in [39]).

Both inner- and outer-loop adaptivity depend upon a detailed representation of what
an expert in the target domain knows. Model-tracing tutors track students’ step-by-step
responses to determine in what ways their current knowledge aligns with or diverges from
the knowledge of an expert. ITSs, like Cognitive Tutors [5] and the Andes physics tutor [114]
rely upon model-tracing to ensure that the forms of support that students experience address
individual misconceptions and unmastered knowledge. A large number of adaptive features
can be built upon a model-tracer, and determining which adaptive features students should
experience creates a challenging design space of features that may interact with one another
to produce multiplicative improvements in learning students’ rates [40]. Determining which
combinations of features best support learning for particular domains creates a challenging
experimental problem, where researchers must deploy multiple versions of the same ITS.
Thus, having tools for rapidly building ITSs is important both for the practical purpose
of delivering content with highly effective ITS features, and for speeding up the pace and
coverage of learning engineering research to explore which features are most effective in which
circumstances.

8

1.2 Authoring Tools

AI2T’s primary purpose is to make it possible for non-programmers to very quickly
build model-tracing ITSs simply by interactively tutoring AI2T on a handful of problems.
Typically programming a model-tracing ITS requires 200-300 hours of development time per
hour of instruction [2], and requires authors to do so by writing expert-system-like rules—
a now uncommon paradigm of programming expertise. AI2T aims to significantly reduce
authoring times so that the core functionality of tutoring systems can be built in a short
20-30 minute session.

Fig. 3: A CTAT example-tracing tutoring system and behavior graph. The author has demon-
strated part of two solution paths that diverge after the first action (image as appeared in [2]).

Many efforts have been made to build ITS authoring tools that can be easily used by non-
programmers, however, most methods place considerable limitations on the kinds of step-by-
step support that the authored ITSs can provide to students. For instance, many tutors built
with the ASSISTments authoring tool are only simple quizzes of question-answer pairs [29].
OATutors offer slightly more support for building more granular step-by-step adaptivity
through the availability of strictly sequential “tutoring pathways” that break problems into
multiple steps [95]. Cognitive Tutor Authoring Tool (CTAT) example-tracing allows users
to demonstrate problem steps to generate a graph structure of states and actions that can
diverge, re-converge, and manifest unordered groups, essentially limiting them to a slightly
larger class of finite state machines-like control structures [2]. Both CTAT example-tracing
and OATutor enable means of mass producing problems within these fixed control structures
via a template filling approach, where special variable strings are replaced by problem specific
content detailed in spreadsheets. In practice, this method of mass-producing problems still
requires some programming effort, for instance, by writing programs to fill in the content of
each step in a spreadsheet formula language [2, 95].

1.3 Authoring by Tutoring

The development of AI2T is motivated by the objective of building an authoring tool for
non-technical users that shoulders some of the burden of authoring by exploiting methods of
data-efficient induction that mimic human learning. This capability allows AI2T to induce
more complex control structures than other tools intended for non-programmers, enabling
forms of step-by-step support in ITSs that are typically only implementable by programming
a model-tracing tutor in a production rule language. For many kinds of problems, AI2T can

9

also eliminate the need to undergo additional programming steps to mass-produce problems
since it automatically generalizes from the author’s demonstrations and feedback. This re-
search aims to democratize the development of highly adaptive tutoring systems by enabling
non-programmers to build complex ITSs and by considerably reducing authoring times.

AI2T significantly improves upon the standard set by several prior attempts to build
ITS authoring systems that directly generalize from natural interactions with an author.
Demonstr8 is a very early example of a PBD system that allowed authors to build sim-
ple arithmetic domains in a graphical user interface that could partially generalize from
an author’s demonstrations [9]. Later authoring systems prototyped the possibility of more
natural authoring-by-tutoring interactions driven by human-like machine learning systems
called simulated students or simulated learners (all humans are “learners” even if they are
not students). SimStudent is a simulated learner which is one of the earliest systems to imple-
ment authoring-by-tutoring functionality [70]. Later work by Maclellan et. al. demonstrated
some benefits of using simulated learners from the Apprentice Learner (AL) framework for
authoring tasks. This work demonstrated AL’s ability to induce imperfect tutors for a large
variety of domains [68]. Following these works we conducted a user study in which non-
programmers trained AL agents in a web interface geared toward training simulated learners
for ITS authoring [117]. This was the first user study to demonstrate that novice users could
author ITSs with a simulated learner trained using authoring-by-tutoring. We showed a large
7x improvement in authoring efficiency over CTAT example-tracing in a single arithmetic
domain known to be tedious to represent in example-tracing’s finite graph structure.

Authoring-by-tutoring, like example-tracing, begins with a blank HTML interface for
demonstrating tutoring system behavior. This blank interface may be programmed or built
with a graphical drag-and-drop interface builder. In the case of AI2T, any blank HTML
interface produced by any means typically suffices. The author first fills in the interface
with an initial problem that they will solve for the simulated learner. The author provides
a series of demonstrated actions detailing a step-by-step solution as a student would fill in
when solving the problem themselves. The author may add additional clarifying information
along with each demonstrated action, like indications of the arguments they used in their
computation [70] or natural language descriptions of how they performed each action [119]
to help the AI induce correct production rules that reproduce the demonstrated actions.

When the user writes in the initial state for subsequent problems, the AI agent may try to
apply its induced production rules, called skills, and suggest next-step actions automatically.
The user can then give correctness feedback to each suggested action. If an action is correct
and the way it was computed is correct, then the author gives positive feedback, otherwise,
they give negative feedback. This feedback helps the agent refine its skills so that they are
only applied in appropriate situations. By tutoring the agent on several problems, and giving
it demonstrations and feedback where appropriate, the AI refines its induced skills until they
can be trusted as production rules for a model-tracing ITS.

1.4 Contributions of This Dissertation
In this dissertation, I demonstrate that AI2T improves upon the authoring efficiency mea-

sured in our prior study with AL. Through improvements to AI2T’s learning capabilities over
AL and improvements in the authoring interface, tutoring systems can be authored in less
time. More importantly, while prior demonstrations with SimStudent and AL consistently

10

exhibited imperfect performance, AI2T introduces several solutions that help authors more
reliably build tutoring systems that exhibit 100% model-tracing complete [117] ITS behavior.
A tutoring system is 100% model-tracing complete if it aligns exactly with a ground-truth
tutor’s model-tracing behaviors: it should only permit correct actions and no incorrect ac-
tions at each problem state. As experienced by a student, this means the tutoring system
would mark the student’s correct actions as correct as they proceed along any correct solu-
tion path or incorrect if they don’t, and as a side effect of predicting correct solution paths
also produce next step actions as requestable “bottom-out” hints. This work does not eval-
uate the presence of auxiliary features beyond model-tracing like the inclusion of conceptual
hint messages, that might be added on top of core model-tracing behavior. Model-tracing
completeness only evaluates the completeness of the core hard-to-program behavior of a
rule-based ITS, on which additional support systems are typically added.

AI2T implements two significant improvements in machine learning algorithms over prior
work with SimStudent and AL that help it more robustly induce 100% model-tracing com-
plete programs from less training data. One of these new algorithms introduces a new data-
efficient and performant learning mechanism called STAND for learning the preconditions
of induced production rules. The second algorithm introduces a learning mechanism for hi-
erarchical task network induction not present in SimStudent and AL, that was explored in a
much earlier simulated learner system called Sierra [110,111]. This mechanism enables AI2T
to induce knowledge structures that are more reliable, more explainable, and more concise
than those induced by previous simulated learner systems. Compared to Sierra’s HTN in-
duction approach, our method is agnostic to the order that training problems are presented
and induces an HTN representation that captures forms of solution flexibility that are desir-
able in an ITS authoring setting including unordered groups and optional or conditionally
applicable actions.

Both of these two new algorithms implemented in AI2T contribute to a solution for over-
coming a difficult issue for authors: knowing when the simulated learner has been trained
on a sufficient number of problems such that its induced behavior can be trusted on new
untrained problems. AI2T’s two new algorithms, especially STAND, enable it to have very
accurate self-awareness of its learning progress. STAND allows AI2T to produce a certainty
score called instance certainty that estimates prediction certainty as the degree of agree-
ment in a space of possible induced programs. We show preliminary evidence that users can
successfully use instance certainty as a heuristic for determining when AI2T has achieved
correct and complete behavior. In simulations of interactive authoring, we show that this
new measure has several advantages that make it a more desirable heuristic than traditional
estimations of prediction probability, especially in an interactive task learning (ITL) setting
where users expect the AI to induce correct knowledge structures from just a few instances
of interactive instruction. STAND’s instance certainty measure is strongly correlated with
actual performance improvements on holdout data, and it has very high utility in an active-
learning [106] setting. In other words STAND is very good at picking potential training
examples that will help AI2T learn most effectively.

This dissertation is organized into 9 chapters including this introduction. In chapter 2 we
will review several simulated learner systems that have preceded and inspired the develop-
ment of AI2T with special attention to the common collection of learning mechanisms that
they each implement—a collection of mechanisms that I have called Decomposed Inductive

11

Procedure Learning (DIPL). In chapter 3 we summarize the results of our 2020 prototype
interface design for authoring with AL. In chapter 4 we describe how the interface for AI2T
was developed in response to the lessons learned from our earlier work and interactions with
users across several pilot sessions and two user studies. Chapters 5 and 6 describe STAND
and process-learning respectively.

In chapter 7 we report on a pair of user studies where participants taught AI2T two
math domains: multicolumn addition and fraction arithmetic. These studies form a pseudo-
experiment between two different versions of AI2T which differ along several features. This
pseudo-experiment sheds some light on the backend and frontend components of AI2T that
are essential to its effectiveness and usability.

Finally, in Chapter 8 we address an elephant in the room: what place does an interactive
task learning method like AI2T serve in the rapidly advancing world of pretrained large
language models (LLMs)? In short, we address some of the opportunities that LLMs offer
interactive task learning methods like AI2T and outline some of the opportunities, dangers,
and limitations of employing LLMs in education to implement adaptive features. Chapter 9
concludes by summarizing the contributions of this dissertation and outlines directions for
future work.

Chapter 2

Decomposed Inductive Procedure Learning: An

Overview

When students practice skills in controlled learning environments like intelligent tutoring sys-
tems (ITS)—educational technologies that mimic one-on-one tutoring interactions through
highly adaptive step-by-step instructional support—their learning proves to be remarkably
quick [38]. The data collected from these learning environments make it clear that when given
proper support humans are orders of magnitude more data-efficient learners than today’s
data-driven machine learning (ML) systems. While data-driven ML may require thousands
to millions of examples to replicate human performance capabilities (and often take many
passes through that data), humans can typically learn general procedural tasks incremen-
tally from fewer than a dozen practice opportunities—learning steadily from being complete
novices to reaching a point of task mastery characterized by error rates of less than 10%.

Recent advances in ML for mathematical problem solving show remarkable performance
capabilities on challenging problems [48]. For instance, Large Language Models (LLMs) have
succeeded on challenging word problems [14] from the MATH dataset [30] including recent
GPT models trained step-by-step which have demonstrated 78% accuracy [61]. While these
systems have arguably achieved human-like performance, in terms of data-efficiency they are
about as far from human learning as one could imagine. The quantity of learning experiences
required to achieve these capabilities is many orders of magnitude greater than a human
would experience in a lifetime, and the process of learning from those experiences is relegated
solely to the sorts of pattern recognition and fuzzy mimicry achieved by fitting to data in
a data-driven manner. Humans learn by engaging a wide array of knowledge construction
strategies that are not well captured by simple data-driven prediction. Instances in past
AI systems include constructing knowledge through interpretation of and disambiguation of
natural language instruction [33, 119], representation learning [57], inductive generalization
from examples [111], and analogical reasoning [36]—just to name a few—all of which have
typically been achieved through acquiring or utilizing symbolic representations.

A shortcoming of many prior attempts to replicate various human learning capabili-
ties has been the need for researchers to pre-engineer an AI system’s prior knowledge and/or
environment in domain-specific ways—limiting practical applicability beyond isolated exper-
iments. Much work in logic programming [69] and cognitive architectures like ACT-R [103]
and SOAR [45], for instance, could be held to this criticism. Data-driven ML, although im-
pressive in its ability to replicate patterns in data without hard-coding knowledge or features,
has analogous drawbacks due to the engineering effort required to prepare training environ-
ments, or collect, clean, and preprocess data, in addition to the effort of selecting, training,
and tuning models. Laird and colleagues [46] have promoted a research vision to overcome
these shortcomings via systems of Interactive Task Learning (ITL) where “untrained hu-
mans” as opposed to programmers “teach agents new tasks and task knowledge”. In partial

13

alignment with this end, LLMs have demonstrated successes at enabling untrained users
to clarify or refine requests to better utilize their numerous pre-trained generative capabil-
ities [102]. Yet the broader ITL vision of ML that can efficiently learn rich representations
and performance capabilities in a mostly bottom-up constructive manner from natural in-
struction is still an ongoing project within the field of AI.

2.1 Simulated Learners
In this work, we build upon a body of work that has set out to study human learning

computationally by developing ML methods that learn rapidly from interactive natural in-
struction instead of from large datasets or well-structured environments. We focus on the
commonalities between three simulated learner (SL) systems: Sierra [111], SimStudent [70],
and the Apprentice Learner (AL) architecture [66], which have been used in both computa-
tional modeling and interactive task learning of academic procedural tasks. We also discuss
our own implementation of these mechanisms in AI2T. These systems share a common
breakdown of learning mechanisms for induction from examples and feedback situated in
step-by-step display-based instructional environments (i.e. ITSs). VanLehn [111] has shown
that this form of inductive learning underlies the acquisition of early mathematical skills.
Later efforts with AL have shown that it can closely match student performance changes (i.e.
their learning curves) practice opportunity by practice opportunity [66,120]. When these SL
systems experience examples they induce production rule-like skills that may initially pro-
duce errors, but are rapidly refined toward a state of errorless mastery through supervised
practice.

The procedure learning implemented in these inductive SL systems differs from the var-
ious forms of speed-up learning achieved by systems like SOAR [45] and related approaches
like Neves et. al.’s approach to simulating math learning [90]. In these examples learning is
assumed to be “a side effect of performance” [47] of a planning system executed on pre-built
environments. Inductive SL systems by contrast learn by interpreting external instructional
experiences situated in natural supervised practice environments, like for instance a tutoring
system in an online interface. Thus, inductive SL systems do not expect a well-structured
environment ready-made with primitive actions, or easily verifiable goal states. In these sys-
tems the primitive operations of a procedure and the means of verifying its completion are
induced from examples and feedback. Inductive SL systems learn these capabilities by in-
ducing minimal sets of production rule-like skills from demonstrated worked examples and
refining those skills through supervised practice. This induction can leverage domain-general
prior knowledge like arithmetic functions, or domain-specific prior knowledge if available,
but does not rely on pre-specified domain-specific affordances within an environment. AL
agents, for instance, can learn interactively from instruction that begins in blank HTML
interfaces [117] instead of from specialized environments pre-programmed with strong rep-
resentational commitments, such as for instance in [69]. This general purpose bottom-up
induction is essential in ITS authoring applications where we expect many of the potential
users to be non-programmers.

2.2 Decomposed Inductive Procedure Learning
Advances in data-driven machine learning have led to a generation of AI technologies built

almost exclusively with artificial neural networks. While there are many kinds of neural net-

14

work architectures and training methodologies, essentially all neural networks are learned via
the same single learning mechanism: regression by gradient descent. The back-propagation
algorithm [28] enables loss gradients of the weight of these models to be computed over large
multi-layered network structures, enabling flexible training of monolithic multi-purpose deep-
learning models. Using collections of differentiable network elements, enormous quantities
of data, and copious computing power and time, deep learning has been shown to learn a
wide variety of things with some expected rate of error. This approach is much slower than
the rapid incremental learning that humans employ and requires neural network models to
slowly tweak weights as they review datasets in multiple passes.

Reinforcement Learning (RL) is an approach to learning procedural capabilities by learn-
ing policies π(s) → a, directly or indirectly, that map states to actions to maximize reward
over task episodes. RL can maximize overall collected rewards in environments where re-
ward signals are delayed between states, or even with non-deterministic actions. As RL
algorithms have evolved and come to rely largely on deep learning, they have shown suc-
cesses at challenging games [80] and robotics tasks [105], and have become a go-to choice
even in deterministic procedural domains that require symbolic manipulation including the-
orem proving [35], and for learning mathematical tasks such as geometry [123], and early
K-12 mathematics like fractions and long arithmetic [97] (as we do in this work). However,
these approaches, like most deep learning-based ML, require many examples collected over
typically at least thousands of task episodes, and generally learn by attempting tasks in
specially formatted environments with pre-specified action spaces.

Inductive simulated learners like Sierra, SimStudent, and the Apprentice Learner also
learn procedural capabilities, but are remarkably more data-efficient learners than RL methods—
about as data-efficient as human learners. They can acquire capabilities from just dozens of
examples by utilizing a combination of three to four core learning mechanisms, and some-
times more, that work together to induce structured knowledge representations. To highlight
the inductive power of decomposing learning processes into multiple learning mechanisms, we
coin the name Decomposed Inductive Procedure Learning (DIPL) to refer to this collection of
mechanisms. The data-efficient induction achieved by DIPL-based simulated learners arises
precisely because the learning processes are decomposed into multiple parts that have well-
defined, but intertwined roles, as opposed to being handled by end-to-end single-mechanism
approaches.

2.2.1 Decomposing RL into DIPL

A good way to understand DIPL, and why it is about as data-efficient as human learning
[66] and orders of magnitude more data-efficient than RL, is to consider how its multiple
learning mechanisms break up the highly unconstrained induction problem that gradient
descent-based RL methods attempt to solve. A key element of DIPL’s advantage is that it
induces skills (which are like production rules in development). An agent induces multiple
skills to produce actions instead of selecting among predefined grounded actions [65] like
RL methods. These skills are learned through the induction and generalization of distinct
parts characterizing how certain kinds of actions are taken, in which circumstances (i.e.
where) it is possible to take those actions, and when (i.e. under what circumstance and in
what order) those actions must be taken to correctly execute a target behavior. For each of

15

Fig. 4: Decomposition from 1-mechanism learning, like RL, that maps states-to actions to
DIPL’s 3-mechanism or 4-mechanism learning. A 2-mechanism system bridges the difference
and uses how-learning but combines where- and when-learning into LHS-learning.

these how-, where- and when- parts of a skill there is a corresponding learning mechanism.
Between Sierra, Simstudent, AL, and AI2T, the implementations of these mechanisms vary
considerably, yet the division of mechanisms is largely the same. Unless otherwise stated,
our descriptions will align with the particular implementation we use in AI2T.

By analogy to RL’s choice of actions via a global policy π(s) → a DIPL’s induced skills
produce actions via multiple symbolic pieces When(s,Where(s)) → How(Where(s)) = a.
Ablating from RL’s 1-mechanism learning we can produce DIPL’s 3 or 4-mechanism structure
by incrementally introducing learning mechanisms. First, we can consider a two 2-mechanism
system by introducing how-learning and a combined mechanism which we’ll call left-hand-
side (LHS) learning that learns the if-part in the if-then structure of a production rule which
is typically called the left-hand-side.

How-learning serves a similar role to action model learning [6] in the planning system
literature, except that instead of inducing simple operators that describe the addition or
deletion of grounded predicates between states, how-learning is used in situations where
the computations underlying an action are somewhat ambiguous. How-learning finds the
most likely program that can reproduce values within an action. A mathematical example is
finding a composition of known functions that can reproduce an example value from other
available values in a problem state (e.g., how could the value 10 in a demonstration for a step
be produced from the numbers 2, 3, and 4). We’ll focus on this numerical framing of how-
learning, as it suites many academic tasks, but the idea of how-learning captures a broader
idea, of learning how different kinds of actions are performed. For instance, a mechanism
that determines how a system of robotic actuators might carry out an atomic action would
also be a sort of how-learning. In general, how-learning solves the problem of abducing a
program (i.e. finding the most likely one) that reproduces one or more demonstrated actions.

16

We need another learning mechanism to decide where and when potential applications of
the generalizations learned by how-learning ought to be applied. One way is with a combined
left-hand-side (LHS) learning mechanism that learns the correct object to act upon (called
the selection) and the correct objects to use as arguments. LHS-learning can be a simple
multi-class classifier that predicts a selection and set of arguments from a problem state. A
how-part and LHS form a simple kind of skill that can produce actions on a state.

To get a 3-mechanism model we can break down LHS-learning even more. Instead of using
a single classifier, we can use a where-learning mechanism to learn matching patterns that
pick out candidate selections and arguments, and a when-learning mechanism—a binary
classifier that learns when a candidate matching set should be applied with a how-part
formula to produce an action that is correct given the current problem state. Breaking down
LHS-learning into these two parts enables where-learning to modify matching patterns to
produce spatial generalizations, and when-learning uses variables introduced by the matching
pattern to learn relational preconditions that gate how individual skills can be applied. Note
that a particular SL agent may learn many skills each with an independent how-, where-
and when- part.

To get a 4-mechanism model we can relegate part of the role of when-learning so to a
4th mechanism called process-learning that organizes skills into a hierarchical task network.
Without process-learning, when-learning learns conditions that control both the order that
skills are allowed to produce actions and the context in which individual skills are applicable.
Process-learning takes over the role of learning the order that skills should be applied by
ordering them explicitly (or not) within its induced hierarchical task network structure.
Within this structure, the application of every primitive skill—a skill that directly produces
an action—is gated by the application of higher-order skills representing an intention to
achieve higher-level goals. This structure reduces the role of when-learning so that it must
only ensure that the correct skills in this hierarchical task network structure are applied
if there is a disjoint choice of possibilities. SimStudent and AL use a 3-mechanism model,
whereas Sierra and AI2T use the 4-mechanism model that includes process-learning.

This idea of decomposing or distributing learning across mechanisms with unique, but
complementary roles has much precedent in AI research. For instance, actor-critic algorithms
[43] typically divide learning between an actor that performs the target task and a critic
that helps to train the actor. The important elements of DIPL’s decomposition, which we
hypothesize contributes to its data-efficiency, are that each learning mechanism assists in or
simplifies the learning of others, and that each learning mechanism is instantiated separately
across each unique learned skill (i.e., production-rule). Instead of resigning task learning
to a single global mechanism, each instance of each individual learning mechanism serves
a bite-sized and well-defined role; each one responsible for acquiring particular kinds of
generalizations for individual skills—where each skill is built up from these induced pieces
and is responsible for performing particular kinds of actions.

2.2.2 How-Learning

How-learning acquires the then-part of a skills if-then-structure, and is responsible for deter-
mining how actions are produced. This mechanism takes a goal value from a demonstrated
worked example and finds a composition of domain-general prior-knowledge functions (like

17

Fig. 5: How-learning explanations produced for worked examples for the first steps of fraction
multiplication and multi-column addition problems.

arithmetic functions and string operations) that reproduces the value given the set of avail-
able values visible in the current problem state. How-learning synthesizes short programs
via an abductive explanation process. It finds the shortest explanation for how a value in a
demonstrated worked example came to be produced. To do so it searches over compositions
of known primitive functions in an effort to reproduce the worked example. In principle, this
search may produce multiple candidate compositions that reproduce the worked example,
some of which may be incorrect.

Among the candidate compositions that reproduce the worked example the most par-
simonious (having the fewest operations and arguments) is chosen. If several are equally
parsimonious, then one is selected randomly. The chosen explanation is generalized by re-
placing the constants in the grounded composition with variables. For instance, OnesDigit(7+5)
in the above example (Fig. 5) may be generalized to depend upon two argument variables
Arg0=Var(TextField) and Arg1=Var(TextField) which select TextField type interface elements. Ad-
ditional conversion functions may be added to the composition so that the .value fields of
those elements are evaluated as floats.

Set-Chaining A constraint of ITL systems is that the implemented algorithms must be
efficient enough that users do not experience significant delays. How-learning can become
an issue in this regard because it engages in a form of search that grows exponentially
with composition length. Prior implementations of how-learning have composed primitive
functions in an iterative-deepening fashion [70]. At each deepening, the composition depth
(e.g., Add(a,b) is depth=1, Divide(Add(a,b), Subtract(c,d)) is depth=2) is increased, and
each composition of the current depth is formed and executed on all permutations of the
source values. This continues up to a maximum search depth. Executions that reproduce
the goal value can be stored as possible explanations, or search can stop short at the first
reproduction of the goal value.

The how-learning implementation used in AI2T utilizes a search process which we call Set
Chaining (Algorithm 1), which we have found to have efficiency benefits over serially com-

18

Algorithm 1 Set Chaining
Input: goal g, values V0, functions F
Parameter: maximum search depth d
Output: composition set C

1: S0 = UniqueSet(V0).
2: for k ∈ {1, . . . , d} do
3: Sk = copy(Sk−1).
4: for f ∈ F do
5: n = number of args in f
6: for each permutation {a0, ..., an} of Sk−1 do
7: v = f(a0, ..., an)
8: Sk[v] = [Record(f, a0, ..., an), ...Sk[v]]
9: if g ∈ Sk then
10: return ExplanationIterator(Sk[g])
11: return null

posing compositions as in prior iterative-deepening approaches. Set Chaining is amenable to
SIMD (Single Instruction, Multiple Data) parallelization because it applies primitive func-
tions over a growing set of intermediate values computed at successive depths. Only the
unique values generated from all previous execution depths are used, instead of using ev-
ery value instance individually. This reduction of potential arguments greatly reduces the
combinatorial explosion of the search. By a common characterization of search methods,
SetChaining is akin to a graph search method while serially composing functions is akin to a
tree search method. SetChaining trades the memory overhead of storing intermediate values,
for the efficiency benefits of reducing repeated work, and parallelizing execution.

Each individual function execution in SetChaining is tracked with a lightweight record
data structure, that is inserted into a linked list stored in a hash map keyed by values.
When the goal value is found, Set Chaining returns an ExplanationIterator which incrementally
enumerates all solutions up to the depth where the goal was found. At instantiation this
iterator works back through the record structure, building up a tree of records that lead to
the goal value. The iterator then uses a depth-first traversal of this record tree to interactively
generate compositions and arguments that explain the goal value. The ExplanationIterator can
generate subsets of explanations if there happen to be more than are computationally feasible
to enumerate. This means that in an interactive training setting users can be made aware
if their worked examples produce very large numbers of explanations. This can help them
decide if additional instruction is necessary to clarify the correct explanation.

Clarifying Correct Explanations Several methods of annotating worked examples with
additional instructional information have been used in prior work to narrow how-learning’s
selection of explanations. For instance, explanations with incorrect arguments can be culled
from consideration by explicitly pointing out the arguments used to compute the worked-
example (called foci-of-attention in prior work) [70]. Another method is to label each worked
example as an instance of a particular skill, and then consider only those compositions that
jointly explain multiple worked examples annotated with the same skill label. Our more
recent approaches enable how-learning to be guided by natural language instruction [119].
Instructors are able to provide a hint describing how their worked examples were produced,

19

and this accompanying hint is processed into a policy that guides the search for a correct
composition.

Each of these clarifications support distinct forms of mutual disambiguation between
worked examples and other kinds of instruction. For instance, our prior work that added
natural language processing to how-learning showed that hint annotations and worked ex-
amples were more likely to reproduce correct generalizations than when provided with ei-
ther alone [119]. Since our ablation analyses will compare these methods to reinforcement-
learning—which typically relies solely on agent generated or expert provided examples an-
notated with reward—we restrict ourselves to using just argument annotations in one of our
two task domains.

2.2.3 Where-learning

Where-Learning discovers matching patterns that can pick out candidate applications of
skills. While how-learning is responsible for producing the operational generalizations within
skills, where-learning is responsible for building spatial generalizations that determine the
situations where skills can be applied. Where-learning is similar to the data description
problem in programming by demonstration literature [60]: the problem of producing gener-
alizations (e.g., data descriptions) that uniquely select correct data to operate on. However,
where-learning is a more restrictive concept than data descriptions since it explicitly cap-
tures just the spatial relationships that are common between demonstrations of the same
skill, but not necessarily preconditions that would select only correct candidate application
of a skill, or pick one over another (this is the role of when-learning).

For instance, in a multi-column addition task, where-learning could support generalizing
a skill for computing the one’s digit of a partial sum so that it can be applied across columns.
The patterns learned by where-learning are expressed in terms of a set of argument variables
(generated from how-learning, like Arg0 and Arg1 in the example above) and a single selection
variable (e.g., like Sel=Var(TextField)) which matches the interface element that will be acted
upon.

Fig. 6: An example of a where-part that has been generalized to act across columns in multi-
column addition.

20

The learned where-part pattern consists of a logical statement, expressing necessary con-
ditions and spatial relationships that must be upheld between its variables. The where-part
pattern produced from an initial worked example is typically highly specific and constrained
such that it may only bind to a limited set of selections and arguments. However, if sub-
sequent examples are not captured by a skill’s current where-part then it is generalized to
capture the new selections and arguments, either by generalizing individual literals in the
statement or by removing them entirely. How-learning has a supporting role in identifying
the sets of arguments where-learning generalizes from. How-learning attempts to explain
each new worked example using existing skills’ how-parts. If there are any candidate expla-
nations, the one with arguments that would make the minimal change to an existing skill
(quantified by a structure mapping score that measures explanation structure similarity) is
used for where-part generalization. Otherwise, how-learning generates a new skill from the
example.

In some implementations, including AI2T’s, where-parts can have additional variables
that match neighbors or parents of the selections and argument variables. The structure of
these additional variables can depend heavily on whether the problem state is structured
hierarchically, or if the agent is supplied with prior representation parsing knowledge. One
example, used in past work [57], is knowledge for structuring equations into hierarchies of
expressions, terms, coefficients, and variables. In the interest of eschewing representation
engineering, which would require some programming in an ITS authoring setting, and to
maintain greater parity with the purely flat state representation expected by the typical
deep-RL methods, we limit ourselves to simple adjacency relationships (i.e. right, left, above,
below) computed directly from the static positions of HTML elements.

2.2.4 When-Learning

When-learning identifies the contexts or order in which skills ought to be applied. The when-
part of a skill consists of necessary preconditions on the applicability of the skill. When-
learning is typically implemented by a binary classifier. This classifier is often symbolic and
relational. For instance, prior work has employed inductive logic programming, decision trees,
and incremental concept learning approaches [66,70]. In a given state, the learned when-part
preconditions distinguish whether a particular candidate application of a skill matched by
the where-part pattern ought to be applied as an action or not. Collectively the where- and
when-parts make the left-hand-side of skills. While how- and where-learning operate purely
over positive worked examples, when-learning utilizes both positive and negative feedback on
attempted actions. When-learning uses the features directly available in the problem state,
and those inferred using additional prior knowledge feature functions, like Equals(a,b), which
recognizes that pairs of values are equal.

When-learning takes positive and negative examples of candidate applications of the skills
applied to particular problem states. Thus, where-part processing in each skill assists when-
learning by generating candidate selections, and sets of arguments for each state, action,
reward triple. This allows when-learning to construct when-parts as relational concepts con-
sisting of literals that express features in the state as they relate to the selection (e.g., Sel)
and arguments (e.g., Arg0, Arg1) instead of as they relate to particular interface elements.
This enables generalization across spatially distinct instances of the same skill. For instance,

21

Fig. 7: Positive and negative examples of an AddNum skill in fraction addition, and an
Add2 skill in Multi-Column addition. Partial when-parts that accept the positive examples
but reject the negative example are shown expressed with relational features generated by
relative featurization.

the when-part in the fraction example in Figure 7 includes a literal Equals(Arg0.below.value,

Arg1.below.value) which references the values of the elements below Arg0 and Arg1.

Prior work has used FOIL, an inductive logic programming (ILP) method, to learn con-
cepts with relational constraints like those above. FOIL searches for and combines new literals
like Below(Arg0, A) expressed in terms of source variables like Arg0, or invented variables like A.
Searching for such statements can be computationally demanding, posing a risk of latency
experienced by an end user training a SL interactively. Instead we introduce a streamlined
means of restating features in the problem state relative to the selection and argument vari-
ables. The shortest path through adjacency relationships is found between interface elements
using the Bellman-Ford algorithm. Then each feature in the state is relabeled with the short-
est path from the selection or arguments (in the dot-notation of Figure 4). This method of
“relative featurization” also allows us to keep the when-learning classifier independent of
relational feature generation.

2.3 Task Domains

We build on the TutorGym environments presented by Maclellan et. al. [65] to wrap two
different ITS domains into RL gym environments. (1) A Fraction arithmetic domain (Figure
8) which randomly selects among: adding same denominator fractions, different denominator
fractions, and multiplying fractions. (2) A multi-column addition tutoring system for adding
3-digit numbers (Figures 6,7). In both domains agents can request demonstrated worked
examples (demos), and receive immediate reward signals (1 for correct, -1 for incorrect) on
attempted actions. These particular tasks can tractably be learned via RL without needing
to heavily engineer extra affordances into the environment. The action spaces consist only of,

22

Fig. 8: Fraction arithmetic tutoring system for teaching multiplying and adding fractions.
Learner insert an ’x’ to the ’check convert’ field if the fraction must first be converted.

checking boxes, placing numbers in fields, or pressing the ‘done’ button, meaning there are
finitely many unique primitive actions, and a discrete state space with features that overlap
between problems.

In the fractions tutor, the agent must perform the correct fraction arithmetic procedure
step-by-step (multiplying, adding, or converting then adding) based on the two starting
fractions and operator. In the RL-Gym wrapper for this environment the agent is able to
fill in each of 6 number fields with the numbers 1-450, fill in the ‘check convert’ field with
an “x” or press the done button, for a total of 2,702 unique actions. The multi-column
addition domain, see Figures 6 and 7, has 7 fields that can be filled with the digits 0-9, plus
a done button for a total of 71 unique actions. In this domain the agent must compute the
sum of two 3-digit numbers by computing each partial sum in right-to-left order by placing
the ones digit and then carrying the ten’s digit when necessary. In both domains the state
is encoded into a vector with 0.0 or 1.0 in each element via one-hot encoding (size 2,000
in fractions and 240 in multi-column addition). The one-hot encoding maps each unique
interface element-attribute pair to a slot in the state vector.

The non-RL-based agents instead experience the state in its original object-based rep-
resentation, where each object has a unique identifier, type, position, shape, and value.
Additionally no predefined action space is provided to these agents. Instead, they learn
how to produce actions by applying how-learning to the on-demand worked example demos.
These agents are instantiated with the primitive domain-general prior knowledge functions
necessary to compose how-parts for each task: Add(a,b) and Multiply(a,b) for fractions and
OnesDigit(a), TensDigit(a), Add3(a,b,c), Add(a,b) for multi-column addition. In multi-column ad-
dition, extraneous how-learning explanations are common thus we aide how-learning by an-
notating each demo with its arguments. We do not provide these annotations for fractions.
In the fractions domain we provided a single feature function Equals(a,b), enabling the agent
to identifying equal values, which is necessary for learning to check for equal denominators.
Toward the objective of building an SL based authoring tool, these ready-made ITSs are not
just learning environments, but also essentially simulations of the ideal tutoring interactions
an author would provide to the SL. The ideal ML approach for this purpose should show
high data efficiency for quick training and low long-tail error for robust grading behavior.

23

2.4 Ablation Analysis

2.4.1 Methods

We apply two RL approaches: an off-policy Deep-Q-Network (DQN) model [81] and an on-
policy Proximal Policy Optimization (PPO) model [105]. PPO has become a popular RL
approach for its relative stability, data-efficiency, and consistent convergence without hyper-
parameter tuning. We additionally train agents with or without automatically provided demo
worked examples. In the former case (indicated by “+Demos”), each incorrect action is
followed by training on the current step’s demo worked example. This mimics the capability
of DIPL-based simulated learners to request demos when no next action can be produced.
Unfortunately, this method only works with the DQN models, as there is not a simple
method for training on-policy methods like PPO with actions not produced by its current
policy. All models were implemented using OpenAI’s stable baselines library and were trained
for 500,000 timesteps. For a symbolic comparison we additionally train a decision tree using
the “+Demos” training modality.

Our 2-mechanism model uses a Set Chaining how-learning mechanism to learn individual
skills, but only a single Left-Hand-Side (LHS) learning mechanism that predicts where and
when those skills should be applied. The LHS-learning uses a decision tree as a multi-class
classifier that predicts the ids of the selection and arguments for the correct next action from
features of the problem state.

Finally we utilize AI2T with 3-mechanisms (how, where, when) as a DIPL-base agent.
This setup is essentially a re-implementation of the mechanisms used in the Apprentice
Learner (AL) Architecture. Set-Chaining is used for how-learning. Where-learning uses a
MostSpecific implementation that recalls sets of selections and arguments from past ex-
amples. Finally, when-learning is achieved with a decision tree. We train both with and
without relative featurization to illustrate the effects of utilizing where-part processing in
when-learning.

2.4.2 Results

Fractions MC Addition

1-mech

PPO Not Converge 30,642

DQN+Demos 11,315 9,496

DT+Demos 1,944 7,816

2-mech How+LHS 17 270

3-mech

DIPL

(no rel. feat.)
33 38

DIPL 20 19

Human Data ∼9-14 N/A

Table 1: Number of problems before < 10% average error.

Our results are summarized in Table 1 and select learning curves are shown in Figure 9.
The DQN models converged only in the “+Demos” condition. PPO successfully converged
only in multi-column addition. Among the RL methods the “DQN + demos” approach
achieved the best data-efficiency up to the <10% error mastery point requiring about 10,000

24

Fig. 9: Learning curves for DQN-Demos, How+LHS, and DIPL. Human curves are included
for fractions offset to account for unobserved learning opportunities.

problems in each task. Decision trees were more data-efficient than the RL methods, but still
required 1,944 problems in fractions and 7,816 problems in multi-column addition. The 2-
mechanism model showed a dramatic improvement in data-efficiency, taking just 17 problems
to master fractions but 270 for multi-column addition. The 3-mechanism DIPL model by
contrast mastered both in 20 problems or less. Turning off relative featurization resulted in
a 13-19 problem worsening of data-efficiency. We additionally include human data collected
by Patel et. al. [96] from the same fractions ITS. We shift this data by 6 problems to align
the initial 30% student error-rate with the most efficient SL, leading to an adjusted mastery
intercept of around 9-14 problems. The DIPL agents and humans show similar initial learning
rates, but the DIPL SLs improve more rapidly beyond the mastery threshold up to less than
1% error after about 130 problems.

2.4.3 Discussion

Data-Efficiency Our 1-mechanism models cover only a small number of RL training ap-
proaches yet are fairly representative of the data-efficiency of RL—a level far from acceptable
for ITL purposes. One contribution to inefficiency is that the RL learns how to pick correct
numbers instead of how to compute them (similar to how LLMs approach math). However, in
similar experiments in which RL agents were given domain-specific primitive actions equiv-
alent to what an SL would induce through how-learning, training still required thousands
of episodes [65]. Thus, there is not much hope that these approaches will be useful for ITL
purposes even with knowledge engineering assistance.

The decision tree’s relatively better data-efficiency demonstrates an advantage of sym-
bolic versus sub-symbolic learning. However, learning decomposition proved to be the more
essential condition for achieving human-like data-efficiency. In the 2-mechanism model how-

25

learning helped produce near human-like efficiency for fractions, but in multi-column addi-
tion the further decomposition of separating where- and when-learning was essential, since
where-learning allows when-learning to spatially generalize across multiple uses of the same
skill (like across columns).

Representation Prior academic task learning methods have leveraged rich pre-programmed
domain representations (e.g., Neves [90] and Manhaeve et. al [69]). By contrast our approach
succeeds despite using relatively simple representations drawn from static-HTML pages.
While this is a compelling ITL demonstration, applying DIPL in domains like algebra for
instance requires supplying prior hierarchical representation parsing knowledge. Li et. al. [57]
have explored offline representation-learning in SimStudent. This approach is relatively data-
efficient, but needs to be trained in advance of regular procedure learning. Efficient online
representation-learning that works along side procedure learning remains an open problem.

Decomposing Further with Process-Learning In this section we have discussed the
3-mechanism approach used by the Apprentice Learner (AL) framework, and SimStudent.
In chapter 6 we add a 4th mechanism, process-learning that learns a hierarchical structure of
skills. VanLehn’s Sierra [111] is an early example of this 4-mechanisms approach. We show in
chapter 6 that this additional learning mechanism produces yet-greater data-efficiency, and
more robust learning that goes beyond achieving the high (> 90%) success rates characteristic
of human mastery, to achieve programs that are 100% correct and complete (with respect
to model-tracing performance) on large holdout datasets.

Scope of Applicability As the name suggests, Decomposed Inductive Procedure Learning
is an approach for learning procedural tasks—typically ones that can be performed within a
structured user interface. Additional performance and learning mechanisms would be needed
to extend DIPL to tasks that require parsing or producing images or natural language.
Nonetheless, DIPL is generally applicable for interface-based programming by demonstra-
tion, and excels at learning programs that require some contextual decision making. For
instance, correct execution of the two domains we show in this work require applying differ-
ent sequences of actions between tasks, and decisions need to be made within the process of
executing each task, and not just as triggers for deciding when to apply an overall task or
not. While I focus on just two domains here—as some effort is required to prepare domains
to work with reinforcement-learning—prior work has employed the DIPL approach to dozens
of domains including several math domains including other forms of long-arithmetic and al-
gebra [70,111], scientific procedures like stoichiometry [64], games [20], and simple language
domains like Chinese character translation and English article selection [64].

2.5 Conclusion

We show that data-efficient academic task learning can be achieved by decomposed pro-
cedure learning so that sets of action-producing skills are induced via a collection of intercon-
nected learning mechanisms. This result illustrates an instance of symbolic induction that
flexibly produces general-purpose structured knowledge representations without relying upon

26

domain-specific knowledge engineering. Our results suggest that learning mechanism decom-
position is a more important consideration for data-efficiency than simple symbolic/sub-
symbolic distinctions. Learning decomposition may be an essential component to building
ML that readily and flexibly constructs rich operational knowledge structures bottom-up
purely from natural instruction.

For the purposes of describing our AI2T authoring tool this section has achieved two
aims. First we have described three of the 4 mechanisms that make up AI2T—the three
mechanisms (how, where, and when) that AL and SimStudent implement—and motivated
the development of a 4th: process-learning. Second, we have established the data-efficiency
that this variety of approaches can offer in an interactive task learning (ITL) setting like ITS
authoring. The several orders of magnitude difference between the training effort that an
author would need to put into training our approach versus a deep-learning based approach,
illustrates the inductive power of simulated learner systems. In chapters 5 and 6, we expand
upon the simulation experiments we outline here by introducing a new implementation of
when-learning and an implementation of process-learning, and evaluate these in simulation
environments that replicate instruction from an ITS author. This simulation environment
differs from the one reported in this section in that the agent is shown multiple solution paths
and is evaluated on total completeness instead of single path correctness. In the following
two chapters 3 and 4 we describe the front-end development for a prototype authoring tool
we designed in 2020 and our new interface for AI2T.

Chapter 3

Prior Investigation: An Interaction Design for Machine

Teaching to Develop AI Tutors

Fig. 10: Authoring interface for AL (2020). The tutor interface is embedded in the training
interface (3). For each problem state users see AL’s conflict set (1a), and provide feedback
to the whole set at a time (1b). Users are also able to give feedback one action at a time
(4a).

In our 2020 CHI study: “An Interaction Design for Machine Teaching to Develop AI
Tutors” [117] we prototyped the core training interactions of a simulated learner based ITS
authoring tool using AL. The objective of this study was to prototype AL as an authoring tool
with actual participants. An early attempt to replicate SimStudent’s Java training interface
in HTML for use with AL revealed some significant limitations in the way SimStudent framed
training. The design of these early interfaces for SimStudet and AL were framed heavily
around human-to-human tutoring in which the author provides examples or feedback to the
synthetic tutee one action at a time. While debugging our reimplementation of this general
design we found that training one action at a time was limiting because it provided the user
with only a very narrow view into what the agent had learned, and the scope of possible
actions it thought were correct.

The aim of our redesign was to build a more efficient and robust interface for training AL
agents that was explicitly designed around the objective of inducing fully complete model-
tracing behavior. The main new feature of this interface was the skill window (Figure 11.a)
which showed all of the agents proposed next actions at each training step, and information
concerning the underlying skills that produced them (full view in Figure 10). Since each

28

action is produced from an induced skill, every action produced by the simulated learner
is actually a skill application: a particular way that some skill is applied on an interface
elements with certain arguments. Henceforth we will refer to actions and skill applications
interchangeably. The skill window allows the user to give feedback for every candidate skill
application that the agent predicts to be correct for a particular problem state. The skill
applications shown in the skill window are those generated by matching the patterns induced
by each skill’s where-learning mechanism to the current problem state. These skill applica-
tions also satisfy the skill’s preconditions induced by the when-learning mechanism. In this
version of the interface we did not have the user see information about the when- and where-
components of each induced skill to demonstrate that authors do not need to engage in pro-
gram checking. In this interface the user sees just the how-part formula for the induced skill,
and the interface elements that each skill application is applied with. This information allows
the user to evaluate not just whether the action is correct but whether it was produced using
the correct formula and arguments. Seeing the set of skill applications in this window also
provides the author a broad overview of which actions the agent currently considers correct
or incorrect, helping them evaluate and correct deficiencies in model-tracing completeness
directly.

(a (b)

Fig. 11: (a) The skill window with user feedback filled in for two correct actions and one
incorrect one. (b) A proposed skill application (i.e. action) is highlighted in purple, arguments
are highlighted in yellow, orange, and blue.

The benefit in this interface over verifying single actions is simple: the user can give
feedback to all the proposed actions because they can see all the proposed actions. Other
useful features of this interface include element highlighting to show the argument interface
elements employed by the proposed skill application (Figure 10 right), and the ability to
demonstrate new actions at any point, instead of only when the agent has no proposals for
what to do next.

To make a direct comparison with conventional authoring tools we had our participants
work with both AL and CTAT example-tracing to compare their authoring efficiency. Build-
ing on previous authoring investigations with SimStudent and AL [67, 70], our 2020 CHI
study was the first full comparison between a simulated learner-based and conventional ITS

29

authoring tool, and the first to evaluate multiple participants beyond the researchers that
designed the tool simulated learned based authoring tool.

Fig. 12: Two kinds of multi-column addition problems that require two structurally different
behavior graphs in CTAT example-tracing.

Our participants consisted of ten masters and PhD students studying educational tech-
nology. Eight of our participants had used CTAT example-tracing before. Participants each
spent 45 minutes trying to build a three-digit multi-column addition tutoring system with
CTAT and with AL. Multi-column addition was selected as the authoring domain because
almost everyone remembers how to do it, yet it has a relatively complex control structure.
It cannot be authored in CTAT with a single example-tracing graph, and the number of
behavior graphs necessary (Figure 12) increases exponentially with the number of digits
(e.g., 8 for 3x3-digits, 16 for 4x4-digits etc.). Thus, we predicted that AL’s ability to induce
control structures would provide a more efficient authoring experience. The tool used first
by participants, CTAT or AL, was selected randomly. Four participants used CTAT first and
six used AL first. The table in Figure 13 summarizes the results.

Fig. 13: Time spent and levels of authoring completeness achieved by participants using
CTAT example-tracing and AL.

30

For CTAT example-tracing completeness was evaluated as the proportion of the eight
required behavior graphs that were fully demonstrated, variablized, and mass produced into
multiple problems within 45 minutes. Partial credit was given in the CTAT condition for
partially finished graphs. We measured completeness for AL slightly differently. There is not
a simple way of counting the absolute completeness of AL’s induced skills, since two skills
with different constituent parts may be functionally equivalent. Instead after 45 minutes
of training or after users self-reported that they believed they were finished training the
agent, we ran the agent on a holdout set of problem states. We evaluated model-tracing
completeness on these states: the proportion of states in which the agent only produced all
of the correct next actions. Note that this measure is considerably harder to succeed at than
training the agent to only have a high accuracy (i.e. select a correct action from its set of
proposed actions at each step), or have a high step score (i.e. have a high proportion of
proposed correct actions). Additionally the holdout set comprised a meaningful subset of
problems needed to achieve absolute mode-tracing completeness. The holdout set consisted
of every intermediate state on a variety of problems including a complete set of known edge
cases.

Our main quantitative result was that users were able to exhibit about a 7-fold improve-
ment in median authoring efficiency (i.e. 13% to 92% over 45 minutes) while using AL, over
CTAT example-tracing. This main result is promising. It empirically demonstrates that for
domains with complex control structures using a simulated learner like AL can be signifi-
cantly faster than a more traditional authoring tool. Additionally users generally conveyed
that they enjoyed using AL more than CTAT. However, the qualitative results from our ob-
servations of participants paint a broader picture of challenges that needed to be overcome
to build a full-fledged simulated learner-based authoring tool. Some remaining issues include
that users were unable to effectively estimate when they were finished training the agent,
and struggled to make consistent plans for tutoring it through varied enough sequences of
problems and solution paths to achieve 100% model-tracing completeness. These issues are
symptoms both of issues in the interaction design and in the backend AI. In the follow-
ing chapter, I discuss the remaining issues with this interaction design, and some potential
solutions.

Chapter 4

Designing an Interface for Interactively Teaching an AI

Agent: Lessons Learned

Our initial 2020 study revealed several of the challenges of building an ITS authoring tool
around interactively teaching an AI agent. A good way of understanding these interaction
challenges is to consider how they differ from the simple experience of solving individual
problem instances. Even if authors lack the skills to program the rules of an ITS or have
little understanding of what would make for a good ITS, they ought to at least know how
to solve the kinds of problems that they intend for students to practice in the ITS. Thus,
solving problems is a good baseline interaction around which to design a system intended for
non-programmers. One benefit of authoring with an AI agent is that the agent can alleviate
much of the tedium of filling in answers for every step across several problems. When the
agent believes that it knows how to solve a problem step it can propose an answer that the
author can check instead of needing to write solutions themselves each time. If the author
comes to trust that the agent has induced the correct general ITS behavior, then they might
trust the agent’s induced program to tutor students for problems they never tutored the
agent on. The fact that the AI agent generalizes from the author’s instruction imposes some
extra responsibilities on the author beyond providing simple step-by-step solutions:

1. Demonstration Explanations: The author needs to ensure that the agent has the
correct understanding of how each of their demonstrated actions were produced. The
tool should reveal the agent’s explanations and support amending those explanations if
they are wrong.

2. Per-State Completeness: The author needs to verify the correctness of all of the
actions that an agent proposes for each problem state. It is not enough to simply give
confirmatory feedback; respond Yes for the first correct action proposed by the agent, since
for many model-tracing domains each step may permit multiple correct next actions. The
interface should reinforce checking every proposed agent action, and encourage authors
to demonstrate correct actions that the agent did not propose.

3. Solution Path Navigation: The author may need to ensure that the agent produces
the correct behavior along multiple solution paths. The author is accountable for the
agent’s performance over a potentially large space of possibilities. Every correct action
leads to a potentially unique new problem state, and the author can greatly assist the
agents inductive processes if they give feedback along a large fraction of these states in
at least a handful of problems. It should be easy for the author to navigate among these
possibilities and know which ones have not yet been checked.

The interaction design for AI2T was developed to resolve issues that we observed among
the users in our initial 2020 study [117]. For the purposes of this dissertation work, our revised
interface was developed and refined over a process of several rounds of piloting, and two user

32

Fig. 14: Interface for AI2T (study 2 version). The user has just demonstrated two actions.
They show up as blue dashed edges in the behavior graph (top-left) and are indicated by
in the skill application window (middle-bottom). One of the demonstrations for multiplying
the denominators of the expression 4/5 * 8/3 is selected and is previewed as a 15 in the
tutor interface overlay. Demonstrations can be removed by clicking the X button in the skill
application window or on the tutor interface. Two other actions were proposed by the agent
as part of an unordered group (grey edges in dashed box). They both have high certainty
scores of 97%, but are incorrect. The user can add correctness feedback by clicking the ✗or
✓icons on the toggler in the skill application window.

studies. We discuss these two users studies in Chapter 7. In this section we outline how our
interface was refined through qualitative observations of users interactions and think-aloud
over the course of these evaluations. We will refer to various stages in the development of
AI2T’s final interface with respect to the prototype in our 2020 study, piloting prior to user
study 1, user study 1, piloting prior to user study 2, and the final interface for user study 2.

4.1 Visualizing and Assisting Demonstration Explanations

Each AI2T agent begins as a blank slate. The author teaches the agent the skills necessary
to complete problems within the ITS that they are authoring by first demonstrating step-by-
step solutions to problems. An AI2T agent tries to self-explain these initial demonstrations
using its how-learning mechanism. One of the author’s responsibilities is to ensure that the
compositions of primitive functions that the agent proposes as an explanations for their
demonstrations are correct. For instance, in a simple case, the author may demonstrate 6
for the converted denominator of a sum of fractions problem 5/2 + 1/3 (Fig. 15). The agent
may come up with the correct explanation 2 * 3, or some incorrect explanation like 3 + 3
or 5 + 1.

33

(a) (b)

Fig. 15: (a) The user has demonstrated the converted fraction 6. (b) The agent displays
several possible explanations for this demonstration in a drop-down. The arguments of the
correct explanation are currently highlighted in the tutor interface.

Users need to understand what composition of functions the agent is proposing, and what
interface elements that formula takes as arguments. One mistake we made in our 2020 proto-
type interface was showing a representation for induced formulae with too much information.
Under the hood the agent must account for details such as the attributes of each interface
element being used and conversions between numbers and strings. For instance, to induce
a skill that multiplies two numbers the agent must come up with a how-part formula like:
string(float(A.value) * float(B.value)). Where float() and string() convert between numbers
and text strings, and A.value retrieves the string in the value slot of an interface element
bound to variable A.

To simplify the formula displayed to the user we drop all conversion operations and
attribute de-references, reducing each formula to its simplest form (i.e. A * B), and then
express each formula in terms of color coded argument values instead of variables: 2 * 3.
This color-coding is mirrored in the interface by highlighting the borders of each argument
interface element with corresponding colors (Fig. 15.a). This approach makes it clear what
values are being using to explain the author’s demonstrated action, and resolves ambigui-
ties between repeat values. If the agent comes up with multiple explanations for the same
demonstration then they appear in a drop down (Fig. 15.b). Mousing over each item in this
drop down highlights the arguments for one formula option in the interface, and clicking
selects a formula as the correct one.

The agent can come up with just a few explanations or sometimes thousands. In either
case it is time consuming to check and select among candidate explanations, so we enable
the user to directly clarify the arguments and operations of the intended formula by two
additional methods. The user can clarify the arguments they used to compute a demon-
strated value by simply selecting interface elements on the screen. When the user writes in
a demonstration they enter an argument selection mode indicated by replacing their mouse
with a multi-colored cross-hair that toggles selected arguments when clicked (Fig. 16.a be-
low). The selected arguments constrain the search for an explanation. Selecting arguments
very often reduces the set of possible explanations to just one correct explanation. Users
also have the option of stating the formula directly in natural language or in mathematical

34

notation (Fig. 16.b below). These natural language explanations are mutually disambiguated
with the demonstration using the method we describe in [119], to further narrow down the
candidate explanations.

(a) (b)

Fig. 16: (a) The user selects the interface elements that they used as arguments to compute
the demonstrated 4. They first select the 8 and then the 6, and the agent’s explanation for
how the 4 was generated is immediately updated. (b) The user describes the formula that
produced their demonstration 90 in natural language, and this is interpreted by the agent
to guide the search for a formula that explains it.

4.2 Supporting Per-State Completeness

A common issue in our 2020 study was that some users fell into a pattern of validating
the first correct action suggested by the agent, but failed to give feedback to any other
actions that it proposed for the same state. For getting an agent to solve problems with
high accuracy this is not a bad strategy. However, for authoring purposes we want the agent
to be able to track all possible correct ways of solving problems. In this case, we aim to
achieve 100% model-tracing completeness which means the agent should suggests all correct
next actions and no incorrect actions for every reachable problem state. When users do not
give feedback to all proposed actions the agent is deprived of important feedback toward
achieving model-tracing completeness.

It is natural that users verify single actions and move on since this is similar to solving
problems or tutoring someone to solve them—to get a problem right you typically only need
to solve it one way—and so we hypothesized that making the multiplicity of proposed action
more visible to the user would help reinforce more comprehensive checking behavior.

35

4.2.1 Prototype Design

(a) (b)

Fig. 17: (a) The skill window and (b) Yes/No buttons from the design used in our 2020 CHI
study.

In our 2020 design the set of proposed actions was made visible to the user in a skill ap-
plication window (Fig. 17.a) in the bottom-left corner of the screen, however many users
ignored this box and gave feedback by answering the Yes and No prompts (Fig. 17.b) in the
bottom-right side of the screen. One poor design choice in this early version was that the
Yes button provided both positive feedback to the selected action and applied that action as
well, moving the user on to a new state, and effectively preventing additional feedback. This
design choice was motivated by trying to make teaching the agent similar to the experience
of tutoring someone working on paper. However, this choice made it difficult for users to
give comprehensive feedback to all of the agent’s proposed actions if they flipped through
the skill window and ignored the Yes/No buttons entirely.

4.2.2 Skill Application Pop-ups (a removed feature)

We initially hypothesized that we could improve the interface by replacing the skill appli-
cation window with pop-up windows that would appear in an overlay on top of the tutor
interface. We believed that these pop-ups would give the user an immediate sense of how
many actions the agent was proposing and where they were being applied. Similar to the
skill application window this pop-up display showed the action value of each skill application
and information about their skills’ how-part formulae. In this display each skill application
is shown in a card, and when multiple skill applications apply on the same interface element
multiple cards can be scrolled through. A hypothesized advantage of this pop-up approach
was that it would allow users to quickly visualize the context of each skill application by
displaying their information immediately next to their corresponding interface elements.

36

Fig. 18: Two designs for skill application popups—a feature removed in the final design. The
left image shows multiple skill applications scrolled through in the same popup group. In
both images, the group for the selected skill application is expanded.

However, what we found in our first round of piloting was that the purpose of the pop-
ups was not immediately clear to users, and at times they would cover other important
information like other interface elements and other pop-up windows. We ended up dropping
this feature and keeping the information for each skill application in a single window at
the bottom of the screen that simply displayed information about just the selected skill
application.

Another feature which we removed in our pilot design was that users were able to see
multiple skill applications displayed in the interface at once as semi-translucent values. Click-
ing on these semi-translucent values was one ways of selecting particular skill applications
in this version, in addition to moving through them by clicking the Yes and No prompts
and directly clicking on edges in the behavior graph visualization which we discuss in a later
section. One issue with having multiple semi-translucent actions visible at once is that users
can confuse these proposed actions with committed values and misunderstand which step in
the problem they are on. Prior to study 1 we streamlined the interface to only show a single
skill application at a time—only the selected skill application.

4.2.3 Prompting for Complete Feedback

Fig. 19: Several prompts that users are given in the AI2T interface.

37

One approach we took to guiding our users through using our interface was simply to prompt
them for whatever information was needed at each step. We added prompts asking users to
demonstrate new actions when appropriate, select arguments after giving explanations, and
most importantly we added prompts that would ask the user whether each proposed action
was correct. The interface asks: “Is this action correct?”. To which they can respond by
clicking the Yes or No buttons to give positive and negative feedback. After pressing Yes or
No the next skill application is selected for feedback, and this repeats until all of the skill
applications have been given feedback. After clicking Yes/No for the last skill application that
needs feedback, one of the correct skill applications is selected and the prompt is displayed:
“Feedback looks good. Apply this action to go to the next state?”. The user can click an
Apply button to apply the newly selected correct action and move on to the next step of the
problem.

4.2.4 Visualizing the Set of Proposed Skill Applications

Fig. 20: Interface element overlays have an action count indicator when one or more proposed
actions apply to that element. (Top) none of the actions are selected. (Bottom) one of those
actions has been selected. The indicator and border are colored grey (left) when none of the
skill applications have been given feedback, green (middle-left) when positive feedback has
been given, red (middle-right) when negative feedback has been given, and blue when the
selected skill application is a demonstration (right).

Users are made aware the set of actions proposed by the agent via several methods. One way
is via the edges of the behavior graph visualization which we describe in the next section.
Another way is by small indicators superimposed on the tutor interface showing the number
of proposed actions for each interface element (Fig. 20). Clicking on an interface element that
has this indicator selects one the first of its skill applications. These indicators are helpful
for getting a quick sense of what interface elements the agent has proposed actions on, and
which actions have been given feedback. The indicator’s border is colored grey with a dash
when no feedback has been given, green with a ✓ if any positive feedback has been given,
and red with an ✗ if all of the provided feedback is negative.

When an action is selected this indicator shows the index number of the selected action.
Also when an action is selected either a small toggler is shown next to its interface element
to allow the user to quickly toggle positive and negative feedback, or if the action was

38

Fig. 21: The interaction design used in study 2. The skill application window shows each of
the actions proposed by the agent. Currently, action 3 of 4 is selected.

produced by a demonstration then a small x button is shown to allow the user to remove
that demonstration.

In the interface version we deployed in study 2 we reintroduced a revised version of the
skill application window as an additional way for the user to see and select among the set of
proposed skill applications. In user study 2 we found that users interacted with this window
heavily (which was not the case for the 2020 prototype design), and that they tended to
follow a simple interaction loop of checking each item in the list and assigning it feedback.
Unlike our prototype design, each click of the Yes/No buttons queued positive or negative
feedback and selected the next action for consideration. In this design users could change each
item’s correctness feedback directly with toggle buttons inside the skill application window.
This design differs from our 2020 prototype, in that the skill application window is centrally
located, more easily readable, and functionally aligned with the Yes/No prompts. Pressing
Yes stages positive feedback and moves the user through the list of skill applications instead
of applying the selected action.

Our observations of users in piloting and in user study 1 ultimately disabused us of
the idea that displaying comprehensive information about multiple skill applications super-
imposed on the interface would help users attend to giving feedback to multiple proposed
skill applications. These observations led us to remove the semi-translucent candidate actions
and pop-ups which we had in our pilot design prior to study 1, and we reintroduce the skill
application window prior to study 2. We found that these design choices were beneficial
simply because with less information on the screen users were less likely to misinterpret the
information that was being displayed. In addition limiting the information super-imposed
on the tutor interface meant that the interface was visually better aligned with what users
expected to see if they were just solving problems.

39

4.3 Supporting Solution Path Navigation with Behavior Graph
Generation

Authors need to be able to see which solution paths they have given feedback on and which
ones are untouched. In our 2020 prototype design authors needed to restart problems from
the beginning and take a different path if they wanted to show an alternative solution path.
However, when the space of allowed solution paths is very large, or not strictly sequential—
including paths that can diverge and re-converge in a graph—it can become difficult for the
author to keep track of what paths they have and have yet to tutor the agent on.

To support users in visualizing the solution paths that they have covered, and allow them
to easily navigate between states, AI2T implements a feature similar to CTAT’s example-
tracing behavior graphs. In CTAT users demonstrate actions one at a time to build up a
state-machine-like structure of states and actions. In AI2T behavior graphs are automati-
cally generated for each problem by repeatedly querying the agent for next actions starting
with the start state of the problem, following each proposed action into a new state, and
terminating when an action would press the done button.

In general since an AI2T agent learns rule-like knowledge structures instead of strict
state-machines, each generated behavior graph is simply a visualization of the AI2T agent’s
induced program applied to a particular problem—not a direct visualization of its internal
knowledge structure. The behavior graph shows all of the diverging action sequences the
agent believes are correct, and allows the author to navigate between these possibilities by
clicking on particular nodes (for states) and edges (for actions).

To assist the author in tracking which paths have been tutored and which paths have
not, each edge of the behavior graph is labelled with the value of its action and given a color
indicating its feedback state. Blue edges indicate actions that the author demonstrated to
the agent, grey edges indicate proposed actions that have not yet been given feedback, and
green and red edges indicates actions that have been given positive and negative feedback

(a) (b)

Fig. 22: (a) A generated behavior graph and (b) a behavior graph zoomed into the current
state with the 2nd of 3 proposed actions selected. Demonstrations are blue, actions with
positive feedback are green, and grey edges are proposed actions that still need feedback.

40

respectively. We utilize a pallet which uses a particularly light green, dark red, and slightly
blue-tinged grey, to reduce mix-ups common to various forms of color-blindness. We verified
this pallet using an application that simulates protanopia, deuteranopia, and tritanopia, and
checked with some colorblind labmates.

Users can pan through AI2T’s generated behavior graph by scrolling or dragging, and
zoom in and out with shift+scroll. Entering a new state for any reason including clicking
on a node, selecting an edge in a different state, or applying an action in the main inter-
face, automatically animates the graph view so that it is centered on the new state and its
downstream actions. This feature keeps the graph aligned with the current problem state. In
piloting and both user studies users did not generally have much trouble with the mechanics
of navigating the through the behavior graph.

4.4 Simplifying Graphs and Navigation with Induced Unordered
Groups

One issue we did encounter was that some users in study 1 struggled with connecting
the graph visualization to the notion of actions that can be applied in alternative orders. In
a very simple case two actions that can be applied in either order make a pattern of two
edges (indicating two choices for the first action) diverging into two separate states each with
one edge (the other action) converging again into a common state. Some users had trouble
understanding why they effectively had to show the same actions multiple times across three
different states to make this pattern. In general there are n! permutations for any n number
of actions that can be performed in any order, so the combinatorics of checking graphs of
unordered actions becomes unwieldy very quickly. For instance, in fraction arithmetic four
actions are needed to convert a pair of fractions and fill in their converted numerators and
denominators, making for the very complex graph shown in Figure 22.a.

In chapter 6 we describe a learning mechanism called process-learning that induces hier-
archical task networks from sequences of actions and includes support for inducing unordered
groups. In the version of AI2T we deploy in study 2, we utilize this learning mechanism to

(a) (b)

Fig. 23: (a) A behavior graph with two visible unordered groups. (b) The Move On button
moves the author to a new state by applying a single action or multiple actions in an
unordered group.

41

recognize groups of unordered actions. This allowed us to simplify our behavior graph rep-
resentation considerably. For reasons that are made clear in chapter 6, without this process-
learning mechanism the agent really needs to be tutored on states along a large fraction of
possible orders to allow actions to be applied in any order without permitting other incorrect
actions as well. Training the agent to 100% complete behavior can be tedious in this case.

With process-learning however, the agent really only needs to experience demonstrations
of actions performed in one order and then again in the reverse order to recognize that
it should generalize those actions to be part of an unordered group. When this kind of
generalization occurs we can directly display the presence of an unordered group in the graph
visualization (Fig. 23.a). This makes the graph easier to understand, but also discourages the
user from unnecessarily navigating through the combinatorial branching structures necessary
when there is no process-learning to induce unordered groups. Whenever the user encounters
an already induced unordered group as they are navigating through the problem, moving on
to the next state applies all of the actions in the unordered group by default. Along with this
change, instead of giving authors the option to go to the next state with an Apply button
associated with the selected action, users instead press a button labelled “Move On” that
either applies all actions in an unordered group, or just the single next correct action.

With these changes, we make it so that users can demonstrate unordered groups explicitly
by demonstrating multiple actions at once in the same state. By default multiple actions
are interpreted as a demonstration of an unordered group which the agent automatically
experiences as a sequence of demonstrations plus a second sequence in the reverse order.
In principle, multiple valid actions in the same state can also indicate that two actions are
mutually exclusive instead of unordered. This was not a distinction that was necessary to
make in the domains we tested AI2T on, so we leave interactions for making this distinction
to future work.

4.5 Visualizing Action Certainty

Finally within our revised skill application window, and on each edge of the behavior
graph visualization, we added a continuous certainty score ranging between -100% and 100%.
These scores indicate how sure the agent is that each proposed skill application is correct or
incorrect. Negative values indicate that the agent is mostly certain that an action is incorrect
and positive values indicate varying degrees of certainty that the proposed action is correct.
As we describe in chapter 5 these values come from our instance certainty measure which
we will show is a fairly reliable indicator of prediction certainty that is theoretically and
empirically a strong reflection of the agent’s actual learning progress—something we show is
not true of many alternative methods of estimating prediction probability. Roughly speaking
if the agent proposes only actions with 100% certainty scores for a particular problem state,
then this is a fairly strong indication to the author that the agent will exhibit 100% model-
tracing complete behavior in similar situations. Mixtures of lower certainty scores are a fairly
strong indication that the user should continue to train the agent on more problems.

42

(a) (b)

Fig. 24: Three actions proposed for the initial state of 1/9+1/3. Certainty scores are shown
over edges in the behavior graph (a) and in the skill application window (b). The first
proposed action (49% certainty) would fill the numerator with 1=1*1. The first action is
selected (indicated by a small white circle), but the third action is hovered over and previewed
in the interface. This is the correct next action and has a higher certainty of 66%.

Chapter 5

STAND: Improving Precondition Learning by

Embracing Inductive Ambiguity

Participants in our initial authoring study only needed to train AL agents on a few problems
before the agent could correctly produce all solution paths on most of the holdout problems.
Yet, none of these participants succeeded at training agents that exhibited 100% model-
tracing complete tutoring systems behavior [117]. In other words they did not succeed at
training agents that would reliably only permit correct actions along any valid solution path.
In our own testing we had verified that it was possible for the agent to achieve 100% model-
tracing completeness if it was trained on a selection of fewer than 20 problems that exhibited
important edge cases. However, none of our participants succeeded at training agents to this
level of completeness.

We can look at this deficiency in two ways: (1) The agents were arguably not data-efficient
enough to learn from users’ limited feedback, and (2) the users were arguably not sufficiently
optimal teachers; they did not know how to select good problems that would be helpful to
the agent’s inductive learning processes, and they could not self assess when they had trained
the AI on a sufficient number of problems. In this section, I address both of these problems
with a new machine learning method called STAND that is more data-efficient than the
decision-trees used for when-learning in our initial study. STAND is able to self-reflect on its
learning to estimate the certainty of its predictions—an estimate that authors can use as a
heuristic to assess the agents total learning progress.

Toward addressing these issues, especially the issue of data-inefficiency, it is important
to note that typically only the when-learning mechanism is at fault when it comes to late-
stage agent mistakes. The structures within an AL-agent’s skills for producing actions, the
how- and where-parts, converge quickly to their final states from just a handful of examples.
But the when-learning mechanism, which is responsible for learning the preconditions for
applying each skill, requires considerably more training to converge to correct generalizations.
The when-learning mechanism faces the difficult problem of determining which features
within a problem state are sufficient indicators that a particular candidate application of a
skill—with a particular selection element and set of arguments—should be applied. When-
learning must learn which conditions to impose from just the limited set of positive and
negative examples that users are able to provide interactively. From these small training
datasets it is not difficult to construct conditions that separate correct and incorrect skill
applications. However, producing a set of conditions that also succeeds at selecting correct
skill applications in all states of all unseen problems is extremely challenging.

5.1 Overcoming the Limits of Supervised Learning by Embracing
Ambiguity

Traditional supervised machine learning frames the problem of learning generalizations
that perform well beyond a training set as a matter of mitigating overfitting and underfitting.

44

In a small-data setting the properties of the distribution from which the data was sampled
cannot be estimated precisely and thus overfitting becomes especially problematic. Overfit-
ting is typically mitigated by methods of regularization that constrain how specialized or
complex models are allowed to become when fit to training data. Regularization methods
often sacrificed some training data performance to maximize performance on unseen data.

This framing of supervised learning where a theoretically optimal, yet fundamentally
imperfect predictor is fit to noisy data works well when data is numerous and when there
is some stochasticity in features or sample labels. However, in an interactive task learning
(ITL) setting [46], data is small because it is generated interactively from a single user,
and the aim is to enable the user to automate intended behaviors through various forms of
instruction. In this context the user may reasonably expect that they can produce a program
that reliably works in every situation. In principle this should be possible since in many cases
we can expect that the features available within the task are noiseless, and that the program
that the user intends to produce has consistent well-defined behavior (like tutoring systems).

The best practices of traditional supervised-learning do not translate well to ITL tasks.
For instance, it is rarely feasible to collect enough well balanced data that one could reliably
model variations in a user’s generated data as samples of a common distribution, without
permitting major biases. For instance, in our authoring tool, training data is generated from
user’s feedback on the agent’s proposed actions, so a typical training sequence will accumulate
far more positive examples than negative examples as the agent improves in performance.
We have seen that users typically only accidentally produce important edge cases, and rarely
produce them as a result of employing good teaching strategies. Thus, important edge cases
are rarely covered during training, if at all. Many data-driven approaches that rely heavily
on the relative frequencies at which patterns occur in data would perform poorly on this
small, poorly balanced, and sparse data. For instance, data-hungry deep-learning methods
are likely useless in this context.

Additionally many of the tricks for reducing the overfitting of symbolic learning mecha-
nisms, like subsampling and pruning for tree classifiers, are irrelevant by their very principle.
After all if our goal is to find conditions that are 100% accurate at separating positive and
negative skill applications on arbitrary problem steps of non-stochastic domains, then the
training set must have 100% accuracy as well. No sacrifice in performance on the training
set can be made in an effort to optimally generalize beyond it since we are always aiming
for, and expect to achieve, perfect performance. Of course this expectation assumes that
authors catch all of their mistakes, which is not something that can be guaranteed, but can
certainly be supported with good interaction design choices, like affordances for reviewing
past training interactions.

In a small-data setting fitting a classifier that has perfect performance on the training
set is often so easy that any generated solution will be almost arbitrary. There are typically
more perfect solutions than are feasibly generatable or even countable, and we can at best
employ classifiers with inductive biases that select among the more parsimonious ones. In
when-learning finding a set of conditions that achieves 100% accuracy in all unseen cases is
like finding a secret special needle in a pile of needles—we would not know if we happened
to select the correct one even if it was right in front of us, and any attempt to guess would
just be an arbitrary choice.

45

The key to solving this problem is to abandon the idea that we can rely upon statistical
learning at all, and embrace that among the classifiers that could be learned from limited
data, the choice of the right one is an ambiguous one. Each user interaction provides evidence
of a program that the user intends to demonstrate to the AI agent. This intended program
remains ambiguous until the user provides sufficient evidence to disambiguate the intended
program from other possibilities. To support this perspective we can at best try to map out
all of the programs that the user may be intending to demonstrate and cut out large swaths
of possibilities as new evidence proves possibilities to be impossible. Approaching learning
in this way allows us to do a great deal more with limited data, both because we are no
longer arbitrarily guessing at solutions from limited evidence and because knowing all of the
possibilities means we can support users in making decisions that can maximally reduce the
ambiguity of selecting the right generalization.

The notion of learning by updating possible spaces of classifiers is not a new one. The
theory of version spaces [75,76] dates back to the early days of machine learning, and describes
a general theory for efficiently representing spaces of all generalizations consistent with a set
of examples. For a particular representation language, a version space bounds the set of all
consistent examples with two boundary sets. Version spaces’ boundary sets can enclose a
space of consistent generalizations far larger than can be feasibly enumerated, and provides
a means of updating the space to cut out large sets of possible generalizations as they prove
to be inconsistent with new training examples. Version spaces require a definition of relative
generality between generalization hypotheses. For instance, in the generalization language
of logical statements, a statement consisting of one predicate X5 = True, is more general
than a conjunction of two predicates AND(X5 == True,X3 == False). The two boundary
sets consist of a maximally general set G, and a maximally specific set S. The set of all
hypotheses contained in the version space is the set of hypotheses in S or more general than
S, but no more general than any hypothesis in G.

The seminal work on version spaces [75] describes them as “generalization as search”.
Although “search” is a somewhat misleading analogy. Typically searching or planning is a
process of looking through individual possibilities in pursuit of a known target, like finding
a needle in a haystack. Version spaces do something far more powerful. They cut out vast
sets of possibilities as new evidence proves them to be impossible. They systematically cut
out possibilities in pursuit of the particular good needle in the needle stack, throwing out
large sets of generalizations which are inconsistent with new examples. A version space may
narrow down to a single possible generalization when its general set G and specific set S
converge to a single generalization. However in practice, especially when data is limited,
convergence to a single generalization never occurs. This is not a weakness of version spaces,
so much as a realistic treatment of the ambiguity of inducing correct generalizations from
limited data.

Unfortunately, version spaces are intractable to learn under the typical cases that when-
learning is employed. Specifically, in the 3-mechanism learning employed by AL, the role
of when-learning is quite broad and almost always requires learning preconditions that are
in disjunctive normal form. For instance, a disjunctive normal logical statement is one that
disjoins two or more conjunctions with an OR. For instance:

OR(AND(X5 == True,X3 == False), AND(X1 == ”1”, X2 == True)) (1)

46

The most common version space implementation is the version space over conjunctive
logical statements. However, it is well known that extending version spaces to disjunctive
normal logical statements is computationally intractable [31].

To overcome this issue, this section introduces a method that I call STAND, that suc-
ceeds at building an approximate version space over this known intractable representation
language. Unlike typical algorithms for learning version spaces, STAND’s approximate ver-
sions space learning does not fail catastrophically when it encounters noisy or mislabelled
data; it does not suffer from version space collapse. More importantly, as I will demonstrate
in the following sections, STAND is much more useful than a single classifier or even an
ensemble of classifiers, both because it tends to achieve higher performance from less data,
and because it can produce very reliable estimates of its learning progress that are useful for
users in an ITL setting.

Symbolic classification methods that learn a single set of conditions can only accept or
reject a new unlabeled example, but STAND can learn an approximate version space of
possible condition sets that produce competing predictions about an example’s correctness.
Much like an ensemble this allows STAND to estimate the certainty of its predictions based
on a set of competing hypotheses. While many statistical machine-learning methods are able
to make continuous probabilistic predictions about the class labels of unseen examples, they
are often too data-inefficient to be helpful in an ITL setting. STAND by contrast requires
remarkably little data to accurately estimate the certainty of its predictions. Additionally
STAND’s estimates of prediction certainty have a structurally meaningful counterfactual
interpretation that differs from typical statistical estimates of class probability. If an example
is accepted by a part of STAND’s approximate version space but rejected by another, then
one of the two parts will be eliminated when the label is revealed. This allows STAND to
quantify how much of its approximate version space will change as a result of receiving
feedback from a user. STAND can essentially predict which training examples will help it
learn, and which will not.

5.2 STAND: Building A Complete Space of Classifiers for the
Cost of One

In ecology a stand is a contiguous region of trees that share similar characteristics. An
ecological stand is a habitat that is typically mutually beneficial to the trees that comprise
it. Analogous to its namesake concept, STAND is a method for learning a compact collection
of classifiers embedded in a shared data-structure. The compact representation learned by
STAND holds every classifier that would be generated by a randomized greedy learning
process. In our explanation we’ll use decision trees as an example for this underlying classifier
but the same method can be applied to other greedy strategies as well, including sequential
covering methods common in inductive logic programming [99].

To efficiently produce every classifier that would be produced by a greedy learning process,
STAND expands every decision whenever an arbitrary choice would be made between nearly
equally good options. For instance, when applied over decision trees, STAND is structurally
similar to an option-tree [42]: a variation of decision trees where each node splits every
feature with the highest split criterion reduction simultaneously, instead of splitting on just
one (often randomly selected) best feature. Like an option-tree, instead of only expanding

47

one feature that optimally splits data at each node, STAND expands every split that would
decrease the impurity criterion nearly as well as the best split ∆Cimp(Xi) >= α∆Cimp(X∗);
where the parameter α ∈ (0, 1] varies the rejection rate for splits relative to the best split.
Choosing α = 1.0 to only accept splits with utility equal to the best split often works well
for small non-noisy datasets. Like an option-tree, each node in STAND has 2n edges each
leading to child nodes, where n is the number of best splits for that node. By contrast,
normal decision trees typically have strictly 2 child nodes per non-terminal node.

While regular option-trees are unwieldy or intractable to compute without imposing
constraints, such as limits on node depth or the number of expansions at each node, STAND
can efficiently generate a complete compressed option-tree-like structure by caching nodes by
the set of subsets of samples that they select. Since the set of expanded splits at each node
depends entirely on the training samples selected by that node, we can route all edges that
select the same subset of samples to the same shared node. Reusing nodes in this manner
allows STAND to learn a complete space of possible decision trees, often in only a little more
time than it takes to learn a single decision tree. This trick also makes it easy to support
partial incremental learning over streams of examples. Highly ranked splits tend to remain
highly ranked when new examples arrive, so when new examples are filtered into the tree
only those nodes with changes in their set of best splits need to be refit.

Samples

[0,1,2,3,

4,5,6]

Samples

[0,2,4,5,6]

Samples

[0,5,6]
Samples

[2,4]

Samples

[1,3]

X4 ¬X4

X2 ¬X2

X4

X2

Decision Tree STAND

X3X2 X5 X6

X1
X3 X4

Samples

[0,1,2,3,4,5,6]

X6X5X2 X3 X4

Samples

[0,2,4,5,6]

X6X5X2 X5X2

Samples

[1,2,5,6]

X6X5X2 X3 X4

Samples

[0,3,4]

X5X4X1 X2 X3

✓

✓ ✘

Samples

[1,3]

✓

Derived Condition Set

For Class:

OR(

 ,

 ¬
)

X4
X4

X2

G0 G1 G2 G3

General Condition Space
For Class: ✓OR(

 G0: (|)(|¬),

 G1: ,

 G2: ¬ ,

 G3: (¬ |¬)

)

X4

X4

X6

X6

X2 X5

X5
X3
X3
X1

AND

,
X1

X7

AND

¬ ,

 ,

 ,

X2
X4
X6

 X7

AND

 ,

 ,

 ,

X1
X4
X6

 X7

AND

 ,

¬ ,

 ,

X1
X2
X5

AND

,
X1

X7

AND

X7

Samples

[0,5,6]

✘

Samples

[2,4]

✓

Samples

[1,2]

✓

Samples

[5,6]

✘

Samples

[3,4]

✓

Samples

[0]

✘

 X1 X2 X3 X4 X5 X6 X7 Y

0: 0 0 1 1 0 1 1 0

1: 1 0 0 0 1 0 1 1

2: 1 1 0 1 1 1 1 1

3: 1 0 1 0 0 0 0 1

4: 1 1 1 1 1 1 1 1

5: 1 0 0 1 0 1 1 0

6: 1 1 0 1 0 1 1 0

Sa
m

pl
es

Input Data:

Specific

Extension

for Each
Leaf Node

Leaf

Nodes

X3 X4

✓

Fig. 25: An example of a Decision Tree and STAND fit to the same input data. In STAND
multiple splits (filled grey circles) are expanded per node. STAND builds a general condition
space (top-right) that is bounded below by a specific extension (bottom).

48

Figure 25 shows an example of a decision tree and STAND fit on the same data. Each
sample 0-6 in the training data has seven binary features X1, ..., X7. In the decision tree
X4 is selected randomly for the root node from among the best features for splitting the
data. ¬X4 (i.e. X4 = 0) selects a pure subset of two positives samples and X4 (i.e. X4 = 1)
selects an impure subset that is then split further by X2 into leaves with purely positive or
negatively samples. By contrast, STAND splits X4 at the root, but also X3 and X6 as well.
STAND’s sample caching trick makes it so that the 6 edges formed by these 3 splits only
lead to 4 nodes (two of which are reused by two edges) instead of 6 nodes (one per-edge)
like in a normal option-tree. The 4 nodes downstream of the root are reached by following
edges that select sample sets [0,2,4,5,6], [0,3,4], [1,2,5,6], and [1,3] respectively. The last one
is a leaf because it only selects positive samples, while the others are still impure, and are
further split into pure leaves. Note that unlike a typical decision tree, in STAND a single
sample can filter into multiple leaves. For instance, the 3rd leaf [3,4] and last leaf [1,3] in
Figure 25 both contain sample 3.

From a conventional decision tree, one can derive a disjunctive normal logical statement
that only selects training samples of a particular class. If all leaves are pure, which can
be expected for non-stochastic data, then edges along paths from the root of a decision
tree to its positive leaves form conjunctions of literals that each only select positive training
examples. For instance, in Figure 25 the decision tree’s derived statement for positive samples
is OR(X4X2,¬X4). In STAND, multiple edges can lead into the same node, meaning there
are multiple paths of literal sequences (i.e. conjuncts) that select the same sub-samples.
In the top-right of Figure 25 we represent these options in parentheses separated by the |
symbol. For instance, the choice of literals (X4|X6) corresponds to the two edges leading
into the left-most node that selects [0,2,4,5,6]. STAND’s caching trick helps account for
alternative conjuncts that select the same subsets of training samples, and thus it is not
just an optimization, but also a means of compressing sets of alternative generalizations. For
instance, the left-most leaf in Figure 25 is reached by any conjunct in the Cartesian product
of options represented by G0:

G0 = (X4|X6)(X2|¬X5) = X4X2 | X6X2 | X4¬X5 | X6¬X5 (2)

It is important to keep in mind that STAND’s node caching trick is only helpful in limited
circumstances. For instance, it would likely not be effective in many data-driven prediction
settings where classifiers are learned over large datasets with noisy features or labels. In
these cases there would be very little consistency between the subsets of samples selected
by different splits leading to limited potential for node reuse. Large training sets would also
make subset hashing and comparison computationally expensive. However, this approach
thrives in non-stochastic small-data environments, including many ITL applications. This
includes precondition induction like when-learning where the target generalization is a set of
hard requirements and not a probabilistic predictor. Preconditions after all must be express-
ible in a representation language of non-stochastic predicate-like features. It is admissible
for stochastic features to be present in the dataset so long as they are not necessary for
discriminating the target preconditions.

49

5.2.1 A Space of Classifiers for the Cost of One

Any AI approach used in an interactive setting should execute quickly to avoid subjecting
users to considerable lag. In our authoring tool several skills’ when-learning mechanisms
may have their .fit() sub-routines called after the users submits their demonstrations and
feedback by pressing the “move on” button. Since the when-learning mechanism has an
instance for each skill its .predict() sub-routine may be called many hundreds of times to
recalculate rollouts for building a behavior graph visualisation. Thus the duration of .fit()
and .predict() should be kept to a minimum. Ideally re-fitting and then calculating a new
rollout should take less than half a second.

In this context STAND provides a great deal of benefit with almost no efficiency draw-
back. On average fitting and predicting with STAND takes only marginally more time than
fitting and predicting with a single decision tree. Averaging over a long 100 problem training
sequence refitting STAND takes about 5.30 ms whereas a single decision tree takes about
4.42 ms. On average for predicting the correctness of a new action STAND takes 0.35 ms
and a decision tree takes 0.27ms. With either of these when-learning mechanisms the total
time it takes to re-fit each skill and update the behavior graph after the user presses “move
on” rarely exceeds 300ms. Replacing these with an ensemble method like random forests or
XG Boost leads to update times of a second or more—long enough to be noticeable to users
or even disruptive their training process.

0 10 20 30 40 50 60
milliseconds

STAND

Decision Tree

XGBoost

Random Forest

fit() duration

0 1 2 3 4 5
milliseconds

predict() duration

Fig. 26: Average .fit() and .predict() durations for Random Forest with 100 estimators,
XG Boost, Decision Tree and STAND used as when-learning mechanisms for agents trained
on 100 multi-column addition problems. Timed on an Ubuntu 22 laptop with an 11th gen-
eration Intel i7-1165G7 processor and 16 GB of RAM.

STAND’s caching trick is a big part of why it is nearly as efficient as a single decision tree.
Typically decision trees calculate the utility of every possible way of splitting each node’s
sub-samples. STAND simply hashes the indices of the two child subsets generated by each
split and routes equivalent child subsets to the same node. When data is small and mostly
noiseless STAND’s total number of nodes is not more than a small factor greater than a
normal decision tree’s. Very little extra work is performed per-node since each node only
needs to calculate its split utilities once.

50

5.2.2 STAND as an Approximate Version Space

STAND’s compressed option-tree-like structure of cached nodes is akin to the general set G
of a version space. Since a true G over disjunctive normal logical statements is intractable to
compute, it goes without saying that STAND’s structure is only an approximation—a strict
subset of a true general set G. Nonetheless, this structure shares important properties of a
true version space’s general set G:

1. The members of G are not any more specific than they need to be
2. The members of G cover all of the most-general possibilities (by some definition).

The first property depends on the choice of greedy classifier underlying STAND, but is
certainly true of decision trees and of sequential covering. These processes construct condi-
tions one split or literal at a time and do not grow generalizations any more than necessary to
separate training examples by label. The second property follows from the fact that STAND
expands all options that could be randomly constructed by repeatedly rerunning one of these
greedy construction processes. This is of course a much looser definition than the typical the-
oretical notion of a G set which includes all of the most-general consistent generalizations
expressible within a representation language. Nonetheless, STAND’s approximate G is use-
ful in practice because it spans a well-defined space of good choices within a disjunctive
representation language.

STAND’s general set G is encoded in a distributed manner over its leaf nodes. Examples
filter into one or more leaves because they satisfy one or more of the alternative literal
statements associated with each of the ancestor nodes along some path leading from the
root. The paths leading to each leaf node i form a set of alternative conjunctive statements
Gi that select all of the training samples associated with that leaf node. As in the example
above, the set of all conjunctions in Gi is the Cartesian product of each alternative. For
instance, in Figure 25, leaf i = 0 forms a space of alternative conjunctive statements G0:

G0 = (X4|X6)(X2|¬X5) = X4X2 | X6X2 | X4¬X5 | X6¬X5 (3)

where | represents an alternative choice. Let Lcov be the set of all minimal subsets of
leaves that cover the positive training examples. For each covering set Lcov ∈ Lcov a portion
of the general set GLcov is formed by disjoining every combination of alternative conjunctions
for all i ∈ Lcov. The set of disjunctive statements generated by Lcov is then:

GLcov = {g1 ∨ . . . ∨ gn|(g1, . . . , gn) ∈ G0 × . . .× Gn} (4)

Where ∨ indicates disjunction and × indicates the cartesian product of all Gi associated
with Lcov. The total set of most general disjunctive statements covered by STAND’s effective
G set is then simply:

G =
⋃

Lcov∈Lcov

GLcov (5)

STAND’s specific set S is formed by extending the generalizations associated with each
leaf node i so that they select any additional features that are common between the samples
selected by each leaf. The specific extension si for each leaf i is a conjunction of literals
selecting all common features in the leaf’s subset of samples that do not overlap with any of

51

the literals comprising Gi. Each pair of Gi and si define a mini-version space of conjunctive
statements within the whole. Any conjunction in Gi can be extended by adding literals from
si to form a new conjunction that selects all of the training samples that filter into leaf i.

The classic candidate-elimination approach for learning conjunctive version-spaces [75]
can fail catastrophically when it encounters examples that are logically inconsistent with its
enclosed generalizations. This is called version space collapse, and it makes traditional version
space approaches brittle to training on noisy data. STAND does not suffer from this issue. It
is as robust to noise as whatever greedy algorithm it is applied to. For instance, when applied
to decision trees, as we have describe above, a mislabelled example can prevent STAND from
converging to perfect performance, but it will not cause STAND to break entirely. If a user
mislabels the correctness of an example in this case, then STAND will very likely introduce
new disjunctions into its tree structure. In the best case the mislabelled example may filter
into its own leaf isolated from the rest, which would produce minimal changes to model
behavior. Or in the worst case it may filter into a leaf that captures several other properly
labelled examples, which could alter the literals that select those examples, or cause the
specific extension si for the leaf to over-generalize.

5.3 Estimating Model Ambiguity and Instance Certainty

Interpreting STAND as an approximate version space allows us to quantify various no-
tions of ambiguity and certainty. We define model ambiguity as the size of the approximate
version space. It captures how ambiguous the target generalization remains given all of the
generalizations that are equally consistent with the current training data. Instance certainty
captures how unambiguous the label prediction of an example is given all of the generalisa-
tions that capture the example. Low instance certainty indicates high disagreement between
the predictions of alternative generalizations in a STAND model’s version space.

Model ambiguity is loosely analogous to the inverse of the posterior distribution P (θ|X)
of a Bayesian statistical model and instance certainty is loosely analogous to the poste-
rior predictive distribution P (y|x,X, Y). However, these probabilistic concepts are imperfect
analogs since STAND is not nearly as sensitive to the distributional properties of data as a
typical parameterized statistical model. Each element in STAND’s space of generalizations
is equally consistent with the training data, and possess no notion of relative likelihood be-
tween them, nor do generalizations have parameters derived from the frequencies of patterns
in the data. Consequently, STAND does not need to be trained on large sets of independent
and identically distributed examples. STAND requires diverse examples to learn well, but
not necessarily numerous or well-distributed ones.

5.3.1 Model Ambiguity

In practice, the true values of model ambiguity and instance certainty are prohibitively
expensive to compute since they require generating G from all minimal spanning sets Lcov.
This runs the risk of combinatorial explosion. For practical purposes, it is more helpful to
use heuristics that change over the course of training in a manner reflective of changes in
model ambiguity and instance certainty. As a simplification, we can calculate a heuristic A
for the total model ambiguity by summing a heuristic Ai representing the size of each leaf’s

52

independent mini version space. The true total size of each leaf i’s mini-version-space is on
the order of:

size i = (
∏

gji∈Gi

|gji|)(1 + |si|)! (6)

Estimating this size precisely is not particularly useful, since the magnitude of size i is
highly sensitive to the size of the specific extension si, leading to a number that can vary
wildly between leaves. It is far more useful to simply sum the number of literals in Gi and si
to make for an easy to compute, numerically stable heuristic that reflects immediate changes
to the boundary sets G and S. We’ll define Ai and A to be:

Ai = (
∑
gji∈Gi

|gji|) + |si| (7)

A =
∑
i

Ai (8)

In the above, |gji| represents the number of alternative choices of literals in ancestor node
j of leaf i. Because of node caching each node may have multiple parents, and thus finding
all |gji| for leaf i involves traversing several branching possibilities back to the root.

5.3.2 Instance Certainty

To compute instance certainty we must consider how examples may be filtered into several
leaves that disagree in label prediction. We must consider three varieties of disagreement
that may occur when an example is compared to STAND’s approximate version-space.

First, an unlabelled example can simultaneously filter into multiple positive leaves and
multiple negative leaves. This disagreement is similar to the prediction disagreement between
classifiers within an ensemble.

Second, within each of the leaves that accepts the example, if the true correctness label
agrees with the leaf’s label, the mini-version-space formed by Gi and si of leaf i may reduce
in size to accommodate the new example. Subsets of the literals in each gji ∈ Gi and literals
of the specific extension si may be inconsistent with the new example, and thus will be
dropped. This will reduce the total heuristic size Ai of leaf i’s mini-version-space.

Third, if a user’s stated correctness label disagrees with the leaf’s label then refitting the
option-tree structure will result in extensions or rearrangements of nodes in order to achieve
purity in all leaves. These sorts of changes are largely unpredictable without speculatively
refitting with alternative example labels, and are likely to effectively increase the size of A,
so it is better to ignore them. Part of the curse of trying to approximate a version-space over
disjunctive concepts is that the space must grow as it entertains new disjunctions. Conse-
quently A is unlikely a useful heuristic of learning progress on its own. However, instance
certainty is still useful if we only focus on how new examples may reduce the size of each
known Ai.

Given these considerations, we can calculate the certainty that a new example x belongs
to the positive class or negative class independently. For a set of positive leaves L+(x) that

53

accept an unlabelled example x we can find the average disagreement of their mini-version-
spaces. If A′

i is the value of Ai after shrinking from accommodating the new example then
the proportion of literals bounding i’s mini-version-space that accept the example is A′

i/Ai.
Averaging over each leaf in L+(x) we get:

IC (x)+ =
1

|L+(x)|
∑

i∈L+(x)

(A′
i/Ai) =

1

|L+(x)|
∑

i∈L+(x)

(
∑

g′ji∈G′
i
|g′ji|) + |s′i|

(
∑

gji∈Gi
|gji|) + |si|

(9)

If we also compute IC (x)− from the negative leaves that accept x we can define IC (x)
as a value ranging from -100% to 100% that can be easily placed within an interface and
interpreted by a user.

IC (x) =

{
IC (x)+ if IC (x)+ ≥ IC (x)−

IC (x)− otherwise
(10)

Compared to other measures of model probability, instance certainty is particularly infor-
mative to a user in an ITL setting since it captures prediction certainty, example-by-example
learning utility, and indirectly indicates learning completion when IC(x) = 100%. Many
statistical models can produce continuous probability predictions from the contributions of
either a single classifier’s internal weights or the competing outcomes of multiple models in
an ensemble. By contrast, IC(x) accounts for all of the predictions of alternative consis-
tent generalizations within STAND’s version space. Relative to STAND, most methods for
estimating predictions probabilities do not rely on a particularly complete account of alter-
native predictors. Bayesian estimations of posterior predictive distributions P (y|x,X, Y) by
integration over a posterior P (θ|X, Y) are a notable exception, although in practice these
measures are hard to compute, and lack some of IC(x)’s desirable properties as a helpful
signal to users.

For instance, when IC(x) = 100% on an unseen example x that means that STAND’s
version space encloses no positively labelled generalizations that reject x, meaning that
nothing can be learned by verifying that x is correct. IC(x) = 100% may be a false positive
if the users’ examples are very similar to one another or if they have not yet provided many
negative examples.

5.4 Evaluating Learning Performance and Certainty Estimation
Quality

To assess STAND’s capabilities as a when-learning mechanism in an authoring setting,
we evaluate its performance against several alternative when-learning mechanisms in two
tutoring system domains. We evaluate each model on its overall predictive performance per-
problem, and performance on measures of prediction quality.

5.4.1 Methods

We train AI2T agents with several competing when-learning mechanisms using an automated
training system that mimics the demonstrations and feedback that an ideal user would pro-
vide while authoring. We apply this special authoring training approach in the two domains
introduced in chapter 2: multicolumn addition and fraction arithmetic.

54

In this setup each agent receives ideal on-demand demonstrations and correctness feed-
back. At each state all proposed actions are given correctness feedback. If an action is missing
then it is demonstrated to the agent with annotations that make the underlying reason for
the action unambiguous. Each demo is annotated with the formula for producing the ac-
tion’s value, and the arguments used. This replicates the behavior of an ideal user of first
selecting the correct formula that explains each demo (among the several abduced possi-
bilities) before moving on. These annotations enable how- and where-learning to produce
error-less generalizations almost immediately, meaning almost all errors can be attributed to
when-learning. No annotations are provided to assist when-learning besides the correctness
labels of each action. Just like an ideal author, the training system trains the agent on all
alternative solution paths for each problem.

We compare several classifiers with STAND:

1. Decision Tree: A decision tree using gini impurity [13] as the impurity criterion. We
use STAND’s implementation, expanding just one random split at each decision point.

2. Random Forest: Scikit-learn implementation of random forest ensemble [12] of 100
decision trees. Random forests use bagging [11] to independently train several decision
trees on subsets of the data.

3. XG Boost: An ensemble method that trains multiple decision trees one at a time. This
method uses gradient-based sampling to re-weight the samples for subsequent trees [17].

These tree-based methods are chosen because they excel at learning from small datasets
of structured data. In all models no limits are set on tree depth or leaf size since for these
condition-learning tasks the agents are provided with features that are sufficient for sepa-
rating correct and incorrect candidate skill applications perfectly. Since condition learning
is noiseless the trees will already tend to not become more complex than the ideal solution,
and limiting their depth could only prevent the ideal solution from being discovered.

The two ensemble methods are included for comparison with STAND’s comprehensive
verison-space-based approach, and to compare the utility of their prediction probabilities
with instance certainty IC(x). Each model is re-trained on 40 repetitions on a sequence
of 100 randomly generated problems. However, in the active-learning conditions described
below, agents self-select their next training problems. After each completed training problem
each agent is evaluated on a holdout set of 100 problems. All agents are evaluated on the
same holdout set for each domain.

In the active learning conditions agents assign a certainty score to each problem in the
random problem pool. For each candidate next problem the agent rolls out every sequence
of actions that they predict to be correct using the same act rollout() sub-procedure used
to dynamically generate behavior graphs. For each problem each action produced along this
rollout is given a certainty value—IC(x) for STAND and prediction probability for the other
models. The certainty score for a problem is the minimum certainty value assigned to all
actions produced in this rollout that are predicted to be correct. The minimum is used instead
of the average so that problem selection is not biased by number of problem steps. After
each training problem the problem in the pool with the lowest certainty value is selected as
the next problem. Then the selected problem and the highest certainty 50% of problems are
replaced with randomly regenerated problems. This resampling ensures that the pool tends
to contain a high proportion of uncertain problems.

55

5.4.2 Evaluating Prediction Performance and Stability

STAND’s raw predictive performance compared to alternative methods is only one element
of evaluating its usefulness in an interactive task learning setting. An ideal when-learning
mechanism should rapidly converge to a state of 100% holdout set accuracy and alter its
prediction behavior conservatively—changing predictions only when new examples provide
evidence to suggest the change. Methods like decision trees that randomly pick among alter-
natives choices when fitting can produce an issue where predictions on unlabeled examples
change dramatically between training events. In an authoring setting, users may find that
the actions suggested at each problem state change spontaneously to include new incorrect
actions or exclude correct one. Thus, in addition to raw model performance, it is impor-
tant to evaluate the stability of when-learning’s predictions. With these considerations in
mind we evaluate STAND’s prediction behavior to the comparison models on per-problem
completeness, per-problem errors by type, and error re-occurrence rate.

Per-Problem Completeness Below we report each model’s completeness performance on
a holdout set of 100 problems after each training problem. We define completeness here as
“model-tracing completeness” [117]: the average number of problem states along all correct
solution paths where the agent would only suggest every correct action, and no incorrect
actions. Completeness reflects the proportion of problem states in the holdout set where
when-learning produces 100% correct predictions.

0 20 40 60 80 100
30

40

50

60

70

80

90

100
MC Addition

STAND
Decision Tree
Random Forest
XGBoost

0 20 40 60 80 100
30

40

50

60

70

80

90

100
Fractions

STAND
Decision Tree
Random Forest
XGBoost

Fig. 27: Average holdout completeness by problem.

Table 2: Average Holdout Completeness at Problem N, and Number of 100% Complete
Repetitions at problem 100.

MC Addition Fractions

N=20 N=50 N=100 100% Reps N=20 N=50 N=100 100% Reps

STAND 85.45% 96.10% 98.62% 19/40 98.72% 99.91% 99.99% 38/40

Decision Tree 75.75% 91.86% 96.97% 10/40 88.15% 97.24% 99.88% 38/40

Random Forest 64.16% 90.02% 95.53% 0/40 88.13% 97.44% 98.97% 11/40

XG Boost 81.20% 95.40% 98.01% 3/40 81.12% 96.20% 97.34% 27/40

56

In both domains STAND’s average completeness is higher than the competing models
throughout the training sequence. This implies that STAND has better overall model per-
formance, and data-efficiency since it can achieve greater levels of completeness with fewer
training problems. In 19 of 40 MC addition repetitions STAND achieved 100% completeness
after training on a sequence of 100 problems compared to 10 of 40 repetitions for decision
trees. In fractions 38 of 40 repetition achieved 100% completeness with STAND and decision
trees. The relative performance of the decision tree, random forest, and XG Boost varies
between domains. Notably the random forest was the worst in multicolumn addition, likely
because its bagging approach of sampling subsets of the data had the effect of dropping
important edge cases, which are particularly important in this domain.

The relatively poor performance of random forests’ highlights that models that tend
to work well in a data-driven machine learning setting do not necessarily work well in an
interactive task learning setting. When fitting an imperfect predictor to a large noisy datasets
fitting on sub-samples can create helpful diversity in an ensemble. In our case however fitting
on sub-samples most likely discarded important edge cases that could have provided valuable
evidence about the true preconditions, thus many of the tree instances in the random forest
most likely underfit the data.

5.4.3 Per-problem Errors by Type

A when-learning mechanism can make errors of omission where a correct action is considered
incorrect (i.e. a false negative), and errors of commission where an incorrect action is pre-
dicted to be correct (i.e. a false positive). Errors of commission are easy for users to fix and
hard to miss: the user must simply mark a proposed action as incorrect. Errors of omission
are harder to notice, and take slightly longer to fix: the user must demonstrate a correct
action missing from the set of proposed actions.

0 20 40 60 80 100

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
MC Addition

STAND
Decision Tree
Random Forest
XGBoost

0 20 40 60 80 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Fractions

STAND
Decision Tree
Random Forest
XGBoost

Fig. 28: Average omission errors by problem.

57

0 20 40 60 80 100
0

5

10

15

20

25

30
MC Addition

STAND
Decision Tree
Random Forest
XGBoost

0 20 40 60 80 100
0

5

10

15

20

25

30
Fractions

STAND
Decision Tree
Random Forest
XGBoost

Fig. 29: Average commission errors by problem.

Our results show that STAND tends to make strictly fewer errors of omission and com-
mission than the other models, except that in multi-column addition it does not make fewer
errors of omission than the two ensemble methods.

Error Re-occurrence Rate Error re-occurrence rate is defined as the proportion of correct
predictions prior to a training event that transition into being incorrect after the training
event. A low error re-occurrence rate implies that errors strictly decrease with more training
examples and do not spontaneously reappear in problem states that have already been given
feedback. Error Re-occurrence Rates can also be broken down by type. The omission re-
occurrence rate is the proportion of true positives that transition into false negatives, and
the commission re-occurrence rate is the proportion of true negatives that transition into
being false positives.

Table 3: Total Error Re-occurrence Rates
MC Addition Fractions

Total Omission Commission Total Omission Commission

STAND 0.53% 0.43% 0.86% 0.05% 0.04% 0.08%

Decision Tree 0.38% 0.00% 1.48% 0.06% 0.00% 0.23%

Random Forest 1.28% 1.37% 0.98% 0.41% 0.52% 0.07%

XG Boost 0.74% 0.73% 0.81% 0.81% 0.96% 0.34%

Our results indicate that overall STAND does not succeed at reducing error re-occurrence
rates over single decision trees, although it is slightly better in fractions. However since
STAND makes fewer errors overall this result is not necessarily an indication that STAND
is less desirable on this front. STAND generally produces fewer error re-occurrence events
than the two ensemble methods, and has a low ratio of omission re-occurrence events to
commission re-occurrence events. A low rate of omission re-occurrence events is desirable
since this implies that authors are less likely to find that proposed actions spontaneously
disappear.

58

5.4.4 Evaluating Instance Certainty

In order to be informative to users, it is important that STAND’s estimates of certainty
reflect actual learning progress and eventual completeness. Instance certainty IC(x) should
reflect STAND’s learning trajectory: it should be low when receiving the correctness label
of an example would cause STAND to learn a lot, and high when STAND achieves a state
of complete mastery. Additionally, increases in certainty estimates should reflect changes in
performance on unseen problems.

We report several measures of desirable properties along these lines: precision at high
certainties, productive monotonicity, and normalized active learning utility. We compare
STAND with only those models that can produce prediction probabilities (i.e. the two en-
sembles), and where applicable each comparison models’ prediction probabilities are negated
when an action is predicted to be incorrect. This maps their values into to IC(x)’s range of
[−100%, 100%].

Precision at High Certainties If a when-learning classifier predicts that an action is
correct with a high certainty of 90%-100% then there should be a very low probability that
the user must inform the agent that the proposed action is actually incorrect.

Table 4: Total Precision at High Certainties
MC Addition Fractions

≥ 90% = 100% ≥ 90% = 100%

STAND 93.19% 99.81% 95.70% 100.00%

Random Forest 97.15% 94.79% 95.19% 93.72%

XG Boost 98.35% 100% 99.39% 100.0%

Our simulations show that XG Boost has the highest precision at high certainties. For
predictions of 100% STAND is nearly as precise as XG Boost in multicolumn addition and
equally 100% precise in fractions. For predictions of ≥ 90% STAND’s precision is closer
to 90%, which is arguably a desirable property—as it indicates some alignment of instance
certainty IC(x) with actual ground-truth precision.

Productive Monotonicity Productive monotonicity is defined as the proportion of changes
in certainty estimates for actions in a holdout set that move toward 100% when the action
is correct and -100% when the action is incorrect. High productive monotonicity reflects the
degree to which changes in certainty estimates mirror actual learning gains.

Table 5: Total Productive Monotonicity
MC Addition Fractions

STAND 56.74% 78.54%

Random Forest 51.26% 50.61%

XG Boost 52.58% 50.90%

59

0 20 40 60 80 100

40

45

50

55

60

65

70

MC Addition
STAND
Random Forest
XGBoost

0 20 40 60 80 100

40

50

60

70

80

Fractions

STAND
Random Forest
XGBoost

Fig. 30: Productive Monotonicity By Problem

Our results show that STAND’s instance certainty IC(x) has considerably higher over-
all productive monotonicity than the two ensemble methods’ prediction probabilities. The
random forest and XG Boost’s prediction probabilities align with actual changes in holdout
performance not much more than 50% of the time—they are not much better than chance.

In multi-column addition STAND’s productive monotonicity is < 50% for the first 60
training problems and > 50% thereafter. This may be the case in this domain because in
the early stages of training STAND’s version-space is still growing from permitting new
disjunctions. This growth introduces new leaves that reduce IC(x) but increase prediction
performance. In the later stages of training the version-spaces enclosed by each leaf tend
to gradually shrink as possible generalizations are eliminated. Fractions may not show a
similar pattern because purely conjunctive preconditions tend to suffice in this domain,
and so STAND’s effective version space is covered by fewer leaves, and tends to shrink
monotonically.

Normalized Active Learning Utility If the agent proposes an action with low certainty
then this should indicate high expected learning gains when the user verifies the action’s
correctness. Consequently, we can use instance certainty IC(x) and estimates of prediction
probability as heuristics in an active-learning scenario where the agent self-selects next train-
ing problems from a pool of random problems. We define normalized active-learning utility
as the average difference in completeness between agents that can and cannot self-select
problems divided by the total completeness deficit of the agents that cannot:

Ûactive = (Cactive − Cnormal)/(1.0− Cnormal) (11)

Active learning utility is a measure of the expected proportion of agent errors that can
been eliminated by allowing the agent to self-select the problems it is instructed on. The
denominator normalizes the completeness benefit of active learning by the total completeness
deficit of the basline model in order to controls for differences in baseline model performance.

60

0 20 40 60 80 100

2.5

2.0

1.5

1.0

0.5

0.0

0.5
MC Addition

STAND
Random Forest
XGBoost

0 20 40 60 80 100
6

5

4

3

2

1

0

1
Fractions

STAND
Random Forest
XGBoost

Fig. 31: Normalized Active Learning Utility by Problem

STAND shows positive active learning utility after problem 40 in multi-column addition
with a peak of nearly .5 at problem 80. An active learning utility of .5 indicates that half of
the remaining completeness deficit was made up by being able to self-select new problems
with IC(x). STAND shows high positive active learning utility in fractions after problem
60. The random forest shows some active-learning utility for early problems in multicolumn
addition, and throughout training for fractions. XG Boost consistently shows negative utility
on both domains.

STAND may only benefit from active learning in the latter stages of training in both
domains because it is good for identifying edge cases to round out the final stages of training,
but less effective when nearly any new example would be helpful.

5.5 An Improvement, but is STAND Enough?

Using STAND for when-learning resulted in higher levels of completeness with less train-
ing than the competing models. However, on its own STAND appears to be insufficient for
making authoring-by-tutoring a practical method for building ITSs. Our simulation results
show that STAND is able to achieve 100% model-tracing completeness in both domains,
although not consistently. In the best case fewer than 30 problems are needed for 100%
complete behavior in multi-column addition, assuming they cover relevant edge cases. In
this domain if the author randomly picked next problems they would have a 50% chance
of achieving 100% complete tutoring behavior if they trained AI2T on a huge set of 100
problems, and a small roughly 5% chance of achieving 100% complete tutoring behavior
when training on a more manageable but still very large training set of about 30 problems.
Compared to big-data machine learning these results are rather impressive, and indicate at
least some chance of overcoming the issues that previous simulated learner based authoring
tools have had with asymptotic completeness [118]. However, these results are still short of
what would be desirable for practical use.

In the following chapter we improve upon AI2T’s data-efficiency and robustness by rele-
gating much of the role of when-learning to a new learning mechanism that learns hierarchical
task networks. Later in chapter 7 we show that STAND’s instance certainty measure can be
displayed to users, helping them estimate when they are finished training an AI2T agent.

Chapter 6

Process-Learning: Hierarchical Task Network

Induction from Action Sequences

In chapter 2 we discuss why constructing simulated learners’ from a collection of multiple
learning mechanisms is beneficial to data-efficiency. SimStudent and the Apprentice Learner
(AL) employ a collection of 3-mechanisms: how-learning, where-learning, and when-learning.
In this chapter we show that yet-greater data-efficiency and robustness can be achieved by
further decomposing the role of when-learning by introducing a fourth learning mechanism
called process-learning that learns the hierarchical control structure of tasks. We will show
that this learning mechanism makes it possible to more reliably produce correct and complete
ITS behavior in our two ITS domains.

6.1 The Problem with Purely Display-Based Induction

In SimStudent and AL, when-learning effectively learns two things that could be treated
separately: 1) the order that skills should be applied and 2) the necessary preconditions
for applying each skill. If we look at the set of preconditions learned by a particular skill
we can often pick out literals that act as ordering constraints or precondition constraints.
For instance, in the fraction arithmetic example, the preconditions for the induced skill
AddNumerators that adds the numerators for two fractions together might look like:

AddNumerators(a,b) :=

a.below.value == b.below.value and # The denominators are the same

a.right.value == “+” and # The operator is “+”

a.value != “” and b.value != “” and # The numerators are not empty

a.below.value != “” and b.below.value != “” # The denominators are not empty

The first two literals are precondition-like since they control whether or not the skill
should be applied depending on the context of the problem: we only add numerators if the
operator is “+” and only if the denominators of the fractions are equal. The remaining
literals are order-like conditions. They simply prevent this skill from being applied before all
of the values of a converted fraction are filled in.

In SimStudent and AL, when-learning is responsible for learning both precondition-like
and order-like conditions. In this setup each skill’s preconditions are learned independently
from one another, meaning similar kinds of conditions may need to be learned across different
skills. Each of these conditions embodies a form of display-based reasoning [50]. They specify
what values certain relational features of the state should have when it is the correct time
to apply each skill. However, this display-based approach can quickly prove insufficient. For
instance, in order for the agent to learn multi-column addition by this approach, we need to
give the agent feature predicates that elaborate on the state by specifying the values that
would be filled in by other candidate actions. For instance, a plain English translation of

62

preconditions for the skill Add2(a,b) that adds two numbers and takes the ones digit might
be:

Add2(a,b) :=

The partial sum slot for the previous column is filled and

Carry2(a,b) would not carry a 1 into this column and

Carry3(a,b,c) would not carry a 1 into this column and

Carry2(a,b) would not carry a 1 into the previous column and

Carry3(a,b,c) would not carry a 1 into the previous column and

A value has not already been carried into this column

The Carry2(a,b) skill which carries the tens digit of the sum of two numbers would need
to independently learn a similar set of preconditions. The need to learn the order that skills
are applied by inducing these complicated preconditions makes when-learning much more
complex problem than it needs to be and makes agents highly prone to producing errors
where otherwise correct actions are suggested out of order. These kinds of errors can persist
far into the late stages of training, and make up the vast majority of mistakes that agents
make.

Fig. 32: A problem state where the agent suggests 3 out-of-order actions and one correct
action. Actions have been marked correct (green) or incorrect (red) by the user. All incorrect
actions are incorrect because they are applied too soon.

Relying upon when-learning to produce ordering constraints produces an initial inductive
bias for permitting skills to produce actions in any order—so long as a set of arguments for
applying the skill are present, the action produced from those arguments will be predicted
to be correct. An author can only reign in this overly-general behavior by rejecting incorrect
ordering behaviors as they occur. This policy of: anything goes until proven incorrect, makes
for a rather frustrating and tedious user experience of constantly rejecting unusual behaviors
as they unpredictably crop up. We can produce a more streamlined and predictable training
experience by giving the agent an inductive bias for performing actions in the order that

63

the user originally presented them, and only generalize from that strict ordering when the
user demonstrates new action orders. A simple implementation of this bias would be to
implement something similar to CTAT’s example tracing tutors, where there is a graph of
states with legal actions connecting them. However, this approach enables only a limited
variety of control structures.

6.2 Hierarchical Task Networks
A more general approach to imposing control structures on procedural tasks is with

hierarchical task networks (HTNs): a control structure of tasks and subtasks that permits
strict action and subtask ordering, recursion, and alternative solution pathways gated by
preconditions. Sierra implements HTN induction with a fourth mechanism referred to as
skeleton induction [110] or control structure learning [111]. Although, we will instead refer
to mechanisms that induce hierarchical control structures as process-learning. We use the
term process-learning to generalize the idea beyond Sierra’s particular implementation and
avoid confusion with the field of control in robotics, which is the study of directing the
continuous movements of objects and actuators [92].

Fig. 33: A possible HTN for a fraction arithmetic ITS. A task trace (dotted-purple) and
action trace (dashed-green) are shown of the solution to an addition problem of fractions
with different denominators.

Process-learning acquires HTN that may recursively divide an overall target task into
subtasks, and those subtasks into further subtasks. These learned HTNs capture the general
process of performing a task, and their hierarchy terminates in primitive operator-like skills
that collectively produce a sequence of grounded actions sufficient to achieve the overall task.
The structure of a hierarchical task network is much like a grammar, except that each symbol

64

may have argument variables, much like a function, and the expression of those symbols may
be gated by preconditions, consisting of predicates over those variables.

An HTN consists of a set of hierarchical rules called methods. A method is a rule in
the HTN’s grammar structure that expands a task into subtasks [23]. A method has a head
that represents the task that it achieves, a set of preconditions, and a sequence of resulting
subtasks or primitive operators that should be executed if the preconditions hold. If multiple
methods have the same task in their heads then this represents a disjunction—there are
alternative choices of methods that achieve the same task. Preconditions may prevent the
execution of certain method options for expanding a task. A task in an HTN represents a
high-level objective, but does not necessarily represent a well-defined outcome or goal as
a particular change to working memory or a particular change to the world. Higher-order
tasks signify the decomposition of a process into more granular parts, and primitive tasks
are operator-like rules that produce changes to the world.

The following table consists of terms that are roughly interchangeably with reference
to structures shared between HTNs, traditional production systems, grammars, and the
different kinds of skills of a simulated learner that implements process-learning:

HTNs Production Systems Grammars Simulated Learners

primitive task, operator operator terminal symbol primitive skill

(goal) task goal non-terminal symbol macro skill

method N/A rewrite rule method skill

Table 6: Terms that describe similar structures in different kinds of representation languages.

In our language describing process-learning we largely align our vocabulary with HTN
literature with the exception of the term macro skill. In HTN literature the word task is of-
ten used to refer to both primitive and higher-order symbols interchangeably [24]. Our term
macro skill refers to higher-order symbols in place of the term task or goal since our induced
higher-order symbols lack the semantic certainty a hand-written task or goal with a mean-
ingful name signifying the objective to produce a particular outcome. From the perspective
of inducing HTNs from action sequences, an induced high-order task is not necessarily such
a solid and semantically meaningful thing. The induced higher-order task (i.e. a macro skill)
simply unifies some apparent disjunction in observed action sequences, and may change or
restructure throughout the training process. While a user could certainly provide meaningful
names, or even structured information to label or even assist the induction of a macro skill,
process-learning as we frame it here does not require that a user interact with or structure
the induced HTN in any way. Instead we would like to induce HTNs simply from the users’
demonstrations.

6.2.1 Prior Work: Hierarchical Task Network Induction

Many approaches to inducing HTNs exploit highly structured inputs and background knowl-
edge that can directly reveal elements of a target HTN’s structure. For instance, a task trace
(Fig. 33) provides a top down description of a decomposition of an action sequence into a
set of tasks, subtasks, and operators that produced it. Many HTN induction methods re-
quire task trace annotations as an input [32,49,85], which directly specify a particular target

65

HTN structure. Other approaches exploit the rich representations available in planning en-
vironments to induce HTNs from sequences of operators. For instance, a method by Nejati
et. al. [88] utilizes the existing preconditions of primitive operators in a planning domain
to deduce the need for higher order tasks by backwards chaining from known goal. These
approaches are not particularly useful for the sake of non-programmer ITS authoring, as
they operate within heavily structured environments. ITS authors begins with at most a
blank HTML interface, and so there is no ready-made environment for providing task traces,
well-formed operators with preconditions, or even well defined goals. Some methods have
explored interaction methods where a user directly articulates a recursive decomposition of
task and subtasks in a top down manner similar to a task traces [33, 52, 59]. However, in
this work we’ll focus on the harder (and more ambiguous) problem of inducing HTNs in a
bottom up manner from action sequences alone.

Learning HTNs from just action sequences is a fairly under-represented problem. A few
approaches have emerged within planning and robotics, although many methods have trade-
offs that are ill-suited to ITS authoring. For instance, many approaches lack a means of learn-
ing multiple alternative solution paths [91]. Several methods utilize probabilistic context-free
grammars to handle alternative solution paths [56,109]. However, these methods tend to pro-
duce large, overly specific HTNs [56] that vary greatly in structure from ground-truth HTNs
and permit incorrect action sequences [16]. One approach that produces more constrained
generalizations, and shares some similarity with the approach we outline in section 6.4, ap-
plies reductions that treat diverging sequences of actions as analogies to paths in a resistive
circuit [16].

Sierra provides an early HTN induction approach for learning hierarchical control struc-
tures in mathematical tasks. Sierra was designed with the intent of simulating human learning
of hierarchical control structure from tutorial demonstrations, and for modeling the errors
that result from this process. Sierra’s accompanying analyses of student errors support the
idea that induction from tutorial instruction plays a dominant role in the learning of early
elementary school mathematics skills compared to direct verbal instruction [111]. This con-
clusion is consistent with the almost universal phenomena that students learn best by doing,
and less effectively when only by being told [18,41,115]. Sierra’s approach to HTN induction
succeeds at reproducing the human capability of learning control structure from action se-
quences in a several arithmetic domains. However, this approach comes with one very large
caveat: Sierra’s method is highly sensitive to the order that action sequence lessons are pre-
sented. Sequences must begin with very simple tasks that capture basic sub-procedures and
introduce just one new sub-procedure per new lesson [110]. This is a reasonable constraint
for the purposes of modeling learning within highly curated curricula, however for the pur-
poses of ITS authoring this constraint would put a large burden on authors to curate ideal
curricula for the AI. If not, authors would quickly fall into hard to debug failure modes.

In this chapter we outline a method for learning HTNs from arbitrary action sequences in
the context of ITS authoring, without imposing constraints on the order that action-sequence
lessons are presented. Additionally, the methods we outline in the following sections enable
the induction of an HTN language that is well-suited to capturing control structures that are
useful in an ITS environment such as alternative solution paths, undordered action sequences,
and optional or conditional actions.

66

6.2.2 The Benefits of Action Sequence Driven Induction

There are several reasons why in an authoring setting it is desirable for an agent to be able
to replicate the human ability to learn hierarchical control from action sequences instead
of from more explicit annotations like task traces or direct HTN descriptions, and several
reasons why studying this form of induction is interesting in general:

Expert Blind-Spot While qualified authors will undoubtedly have tacit expertise of the
domains they aim to author, they may lack meta-cognitive awareness of the full structure of
that tacit expertise. Experts are often only able to explain their reasoning case-by-case upon
deliberate reflection. In the absence of structured prompting to elicit these reflections experts
often fail to to immediately articulate as much as 70-80% of what they know implicitly [124].
Methods for explicitly eliciting the structure of an expert’s tacit knowledge are collectively
called cognitive task analysis (CTA) [19]. A large body of literature overlapping with early
work in AI investigates how CTA can be used to build programs called expert systems that
reproduce human expertise across varied situations [116]. Since authors may be blind the
structure of their tacit knowledge, or that of an external expert, they may find it challenging
to produce accurate subtask traces that reflect an HTN structure sufficient for supporting
full solution flexibility, and other forms of adaptivity in an ITS.

Novelty There are quite a few works that demonstrate methods for recursively prompting
users to produce task trace-like annotations. Although, the kinds of domains that these sorts
of methods have been demonstrated in are typically quite a bit simpler than the kinds of
ITS domains that would require a rule-based implementation, and are often implemented
within environments that implement many domain specific support structures beyond what
could be expected in an authoring environment.

INSTRUCTO-SOAR [33] is an early example of this approach applied to teaching hierar-
chical tasks to a simulated robotic agent in a well-structured symbolic environment. A task
like “press the green button” can be described to INSTRUCTO-SOAR in terms of primitive
actions that it understands such as “move above the green button”, “move the arm up”,
“move the arm down”. Rosie extends upon this SOAR-based system with capabilities for
learning the words for primitive features, objects, and actions using situated instruction [84],
and learning hierarchical tasks from situated instruction. SUGILITE [59], learns hierarchical
programs for automating tasks within a smartphone UI, that implement simple forms of
generalization from situated examples. VAL [52] is a recent example applied within game
environments that uses LLMs to adapt flexibly to diverse phrasings of user instructions.

These systems rely upon a human instructor to essentially articulate task hierarchy, or
demonstrate single action sequences that easily cover all variations in task instances with
simple generalizations that replace constants with variables. This work is unique both because
it induces hierarchy from action sequences alone, and because it does so in domains that also
require inducing precondition that handle complex contextual decision making.

Novice Friendly The benefit of learning HTNs from step-by-step action traces alone is
that authors need only initially exercise their tacit expertise by producing step-by-step so-
lutions. By contrast, an authoring method that required subtask traces would likely impose

67

steeper skill requirements on the author. Authors would need some familiarity with CTA-like
thinking, and knowledge of how to articulate that thinking within an open-ended interface.
By contrast, authoring by solving and checking problems requires minimal expertise beyond
knowledge of the ITS domain itself.

Concrete Editable Artifacts Users may want to revise the HTN induced by our system, or
simply see their tacit knowledge displayed in a well-structured format for their own learning
purposes. An HTN induced from action sequences offers an opportunity to reveal its induced
solution in its own representation language (or a simplification of it). An induced HTN is a
concrete artifact that can be displayed with editing affordances—it may be easier to tweak
an HTN than it is to produce one by scratch.

Broader Machine Learning Applications Deep reinforcement learning (RL) has cap-
tured a great deal of attention within the field of machine learning applied to procedural
tasks [7]. Reinforcement learning learns a policy that performs tasks by selecting among a
predefined set of grounded primitive actions for each world state. The method I report here
may set a path for far more data-efficient learning in domains that would typically be ap-
proached with RL. Action sequence-based HTN induction could also serve as an explainable
alternative to, or method of augmenting, black-box neural network models.

6.2.3 An HTN Representation for Flexible ITS Behavior

It is helpful to highlight that the hierarchical structure of an HTN is akin to a grammar—one
that parses action sequences instead of sentences or character strings. The terminal symbols
of the grammar are primitive operator-like rules that produce individual actions. The non-
terminal symbols are tasks that decompose further into subtasks and operators. In an HTN
each method is like a rewrite rule in a grammar, it indicates one possible decomposition of
a task into subtasks or operators.

A key difference between an HTN and a grammar is that each of the symbols (tasks
or primitives) in the HTN have variables, and each of the methods has both variables and
preconditions. In our implementation, we permit certain tasks and primitives to also have
preconditions (although this is somewhat unconventional). A successful application of a
method can pass arguments to its child items, or a potential application may be rejected
because its preconditions fail. Neglecting variables and preconditions (which we do not show),
the HTN in Figure 33 could be represented with the following grammar-like shorthand:

S → A d mn : multiply numerators md : multiply denominators

A → B | C B | mn md an : add numerators cd : copy denominator

B → an cd cn1 : convert left numerator cn2 : convert right numerator

C → cn1 cn2 cd1 cd2 cn1 : convert left denominator cn2 : convert right denominator

Here the | symbol represents a disjunction of alternative methods. For instance, A is a
goal task (i.e. a non-terminal) that can be achieved by applying one of three disjoint methods:
B, C B, or mn md . In this domain each of these methods is mutually exclusive, meaning the
preconditions for their methods should permit only one of them to ever be applied. In other

68

cases one may permit multiple methods to be executed for the same problem, indicating
multiple acceptable solution strategies.

By contrast AL and SimStudent’s 3-mechanism learning approach induces skills that
are akin to just the terminal lowercase symbols in this grammar notation. They represent
strictly primitive single-action-producing rules (i.e. operators). SimStudent and AL’s skills,
are initially unconstrained and will consider any match they find in the problem state.
Since matches are not inherited from any higher-order structures, matching is somewhat
computationally expensive relative to an HTN and can produce a broader set of possibilities.
In this case, since valid matches are not constrained by a higher-level control structure, skills
tend to be erroneously applied out-of-order until sufficient positive and negative examples
enable when-learning to induce sufficiently constraining preconditions.

Typically HTNs are hand-programmed to guide planning systems that find a single se-
quence of operator applications that achieve a goal from a set of initial conditions. In an ITS
authoring environment our HTN representations must be flexible enough to permit a variety
of student solutions. In an authoring setting an ideal HTN must be able to handle alternative
solution strategies, the presence or absence of optional and or preconditioned actions, and
enable loose constraints on the order that actions are performed (i.e. unordered groups).

In our HTN representation, we allow methods to be marked as unordered. In our grammar
shorthand, we represent an unordered method by underlining the method’s item sequence.
For instance in the fractions example:

S → A d mn : multiply numerators md : multiply denominators

A → B | C B | mn md an : add numerators cd : copy denominator

B → an cd cn1 : convert left numerator cn2 : convert right numerator

C → cn1 cn2 cd1 cd2 cn1 : convert left denominator cn2 : convert right denominator

d : press done button

Optional and conditioned items are indicated by an asterisk. For instance, a recursive
HTN for multi-column addition of two numbers could look like:

A → B d a2 : write ones-digit of a+b c2 : carry tens-digit of a+b

B → C B∗ a3 : write ones-digit of a+b+c c3 : carry tens-digit of a+b+c

C → a2 c2∗ | a3 c3∗ | cp cp : copy down digit d : press done button

Here applying the asterisk to a symbol U is equivalent to replacing it with V such that
V → U | ϵ, where ϵ indicates the null string (i.e. do nothing). This annotation simplifies
the notation; so that grammars tend to require fewer disjuncts, and side-steps the burden of
implementing a special ϵ no-op primitive. Functionally a symbol annotated with an asterisk
indicates that an application of a skill might be rejected by its preconditions, and should be
skipped over if that is the case.

In the above example, this asterisk annotation for marking symbols as conditional serves
two roles. First, it controls the recursion of the symbol B, which is responsible for computing
the partial sums one column at a time from right to left. This is equivalent to the more
conventional recursion notation B → C | CB. Second, it allows the two primitive skills for
carrying the ones-digit to be applied conditionally. Preconditions should be learned that only
apply these skills if the partial sum is greater than 10.

69

6.2.4 HTN Induction: Lessons from Sierra

Sierra’s approach to learning HTNs from action traces treats an HTN like a grammar and
makes incremental changes to that grammar so it can parse new sequences of primitive
actions. Sierra first parses a new action sequence as far as it can in a top-down manner,
recursively executing each method in its HTN. This process can produce several alternative
parses that may align with the new sequence to varying degrees. If top-down parsing fails to
reproduce the input sequence then Sierra amends its grammar with a process called parse
completion. It tries to parse the sequence bottom-up as far up as it can to meet the top-down
parse trees. The hole between the top-down and bottom-up parses is filled by adding a new
method.

In practice there can be many different choices of ways to complete a parse. Sierra imposes
some inductive biases that inform this choice that were found to explain common patterns of
errors observed in student data. Sierra imposes biases to fill the holes between top-down and
bottom-up parses that favor 1) adding new methods to the deepest subtasks in the top-down
parse, 2) creating new methods with the fewest downstream symbols, and 3) calling upon
the highest subtasks in the bottom-up parse (in that order). Roughly speaking, these biases
tend to amend the HTN at its lowest symbols, and make minimal changes. Each new method
added as a result of parse completion adds disjunction to the grammar: some subtask in the
grammar gets a new alternative downstream method.

Fig. 34: (left) A trace tree of the true HTN for a solution to a subtraction problem where
you need to subtract by borrowing from zero. (right) An incomplete trace with a hole. The
agent’s current HTN lacks the BFZ 10’s goal. The top-down parse covers the last four actions,
and a bottom-up parse can cover the first two. Parse completion attempts to fill the hole.

70

Early iterations of Sierra’s parse completion algorithm implemented a broader accounting
of possible grammars that constructed the space of all grammars (under some constraints)
that could parse a particular action sequence. This is called the sequence’s derivational
version-space [110]. This version-space-based approach produces a very large collection of
candidate methods that could be part of the ideal grammar. However, ultimately VanLehn
concluded that imposing biases on the grammar construction process, such as adding the
fewest new disjuncts per lesson, constrained the learning process such that only one grammar
needs to be maintained at a time, instead of a whole space of possible grammars.

A drawback of Sierra’s HTN induction that makes it cumbersome in an authoring en-
vironment is that it can only learn “one sub-procedure per lesson”, or in our language:
one method per action sequence. Sierra’s capabilities have only been reported on curated
sequences of lessons in a handful of arithmetic domains, so it is hard to know if its true
requirements are even more limiting than this. For instance, parse completion’s inductive bi-
ases control the subtasks that new methods are assigned to. It is difficult to know how likely
it is for these biases to produce unrecoverable mistakes in uncurated curricula by assigning
new methods to the wrong parent subtasks.

In any case, the interactive nature of an authoring environment favors more flexibility
and robustness than Sierra’s approach to HTN induction is likely to provide. It is not unrea-
sonable to ask authors to attempt to curate lesson plans for the agent that are similar to the
kinds of lessons that Sierra has been shown to succeed on—ones that begin with short simple
problems and build up new edge cases one lesson at a time. However, it is unclear whether
authors would find this easy, or that they could reliably succeed at producing sufficient lesson
sequences on their first try. A bad lesson sequence could easily trip up the agent’s inductive
processes opening up a class of failure modes that are better avoided entirely if possible.

We can however draw a few lessons from Sierra’s approach:

1. We probably do not need to track a space of multiple grammars. Updating a single
grammar to accommodate each new action sequence should suffice.

2. We should only generalize incrementally and conservatively, imposing strong inductive
biases.

3. Generalizing properly requires aligning each action sequence with existing skills in the
current HTN. A combination of top-down and bottom-up parsing is a good approach for
finding candidate locations for grammar edits.

6.3 A Complex Initial Approach: Minimal Grammar Updates

We want our HTN induction system to be robust to the order that action sequences are
received. The simplifying power of Sierra’s one sub-procedure per lesson requirement is that
much of the ambiguity of how operators should be grouped into methods is eliminated. If
only one new method can be expressed in a lesson then any actions that cannot be parsed
must be part of the same new method.

In abandoning the one sub-procedure per lesson requirement, we open ourselves to the
possibility that each new action sequence can introduce several new methods. New action
sequences may also introduce generalizations on existing methods by applying one of our new
unordering and conditional symbol annotations—an ordered method may become unordered
or one of its items can be marked as conditional.

71

In this section, I outline several considerations that arose in my attempt to implement a
grammar induction algorithm that works by generalizing a grammar with each new action
sequence. Ultimately I abandoned this approach, as it became far too complex to implement
in a way that would succeed with any order of action sequences. However, it is helpful to
highlight some of the considerations that arose during this process, as they inform the more
robust approach that I outline in the next section.

6.3.1 An Example Target HTN Grammar

Consider a non-recursive target HTN sufficient for adding two 3-digit numbers:

S → A B C cp d a2 : write ones-digit of a+b c2 : carry tens-digit of a+b

A → a2 c2∗ a3 : write ones-digit of a+b+c c3 : carry tens-digit of a+b+c

B → a2 c2∗ | a3 c3∗ cp : copy down digit d : press done button

C → a2 c2∗ | a3 c3∗

Now consider an action sequence, where each action is notated by the pattern {prim}{x}
where primitive skill “prim” is applied to column “x”. For instance, let a21 indicate adding
two digits in the ones-column and writing the ones-digit of that partial sum below, and c33
indicate carrying the tens-digit of the sum of three numbers in the hundreds column to the
next column. So for instance we can consider a few action sequences that might be produced
by a few kinds of problems:

777+777 a21 c21 a32 c32 a33 c33 cp d

c21 a21 c32 a32 c33 a33 cp d

772+776 a21 c21 a32 c32 a33 d

c21 a21 c32 a32 a33 d

333+333 a21 a22 a23 d

238+179 a21 a22 c22 a33 c33 cp d

a21 c22 a22 c33 a33 cp d

The target ITS behavior encoded in our target HTN permits certain groups of actions to
be performed in any order, so several of the problems may produce multiple action sequences.

This example HTN grammar may appear a bit unusual since it is non-recursive, meaning
it would only work for pairs of 3-digit numbers. It also disjoins some primitive operations
that could in principle be replaced with a single operation. For instance, we might express
each of the instances of cp, a2, a3 as simply: OnesDigit(Sum(column)).

The lack of recursion in this example is partially for illustrative purposes. It is easier to
consider how the basics of the two approaches described in this section and the next, would
work without introducing the problem of inducing recursive structures. Additionally, at the
time of writing this, we haven’t perfected the details of inducing recursive programs by these
approaches, although I share some considerations on the matter in the latter part of the next
section.

The choice of using a plurality of primitive operators cp, a2, a3 is also partially to illustrate
the generalization capabilities of these approaches since modeling to a domain in this way
requires a grammar with some instances of disjunction. Although even for practical purposes,
this disjunctive execution of multiple similar primitives is arguably a good choice for an ITS
environment. It is not unreasonable to expect that a student may accidentally just add two

72

numbers (i.e. a2) in a column, but forget to add the carry value as well (i.e. a3). Having
this behavior explicitly expressed in the HTN provides a means of recognizing this kind of
mistake so that adaptive instruction can be provided in response to it. When it comes to
programming an ITS, the simplest program is not necessarily the best program, the best
program is the one that adapts to students appropriately.

6.3.2 Abducing Skill Applications from Actions

When an author provides an action sequence, they are providing information with a more
impoverished representation than our shorthand implies. For instance, the action for a21
in the first sequence of 777+777 would initially be experienced by the agent as Update-
TextField(out1, 4) meaning a 4 was placed below the line in the ones column. The agent
must abduce a skill with the correct how-part formula OnesDigit(a+b) and where-part pat-
tern to explain how this action was produced. In the second action trace a21 would be
experienced as the action UpdateTextField(out1, 6) and the agent would need to abduce
that this action was produced by the skill it learned from the previous problem. Thus, the
two instances of a21 are in fact different actions, but the agent’s ability to self-explain actions
allows it to interpret them as essentially the same skill application (i.e. the same skill applied
with the same arguments). We’ll assume in the following examples that the agent always
succeeds at abucing the correct skill application for each action, and thus we’ll assume that
each item in an action sequence uniquely implies a particular skill application.

6.3.3 Initialization

Next, we must consider how we can induce an HTN that covers a set of action sequences.
First, we must decide upon a grammar that covers the first sequence. There are an infinite
number of grammars that could parse any finite sequence. But since a single sequence has no
evidence to indicate any disjunction, unordering, or conditional items, a reasonable inductive
bias is to begin with the flattest possible grammar that would only produce the initial
sequence. For instance, if the first sequence a21 c21 a32 c32 a33 c33 cp d was seen from the
problem 777+777 would produce an HTN:

S → a2 c2 a3 c3 a3 c3 cp d

Here our HTN can be expressed as a flat grammar with a single method. Each item in this
initial method indicates an operator-like primitive skill (i.e. they produce one atomic action).
In our notation, we drop the column index for each item to differentiate skill applications
from primitive skills, since a single skill may be applicable in multiple situations.

Note that unlike the “‘one subprocedure per lesson” approach this initial HTN contains
none of the methods of the target grammar. To produce the target grammar, or something
functionally equivalent to it, we’ll need to edit this flat grammar to include new symbols and
disjuncts as new sequences provide new evidence for generalizing the grammar.

6.3.4 Sequence Alignment and Parsing

Updating the grammar from an action sequence requires determining which items in the
sequence are applications of existing primitive skills already in the grammar and which ones

73

are new. Similar to Sierra’s approach, in our approach we first apply the HTN in a top-down
manner to produce a tree structure of skill applications. The skill applications produced
from the application of primitive skills in the top-down parse are compared pair-wise with
the skill applications from the action sequence. A pair of skill applications can overlap to
varying degrees. 1) The skill applications’ how-part formulas may agree or not, and 2) some
proportion of their match elements—the particular elements bound to their selection and
argument variables—may be shared.

The average of these two forms of overlap creates a total overlap score from 0.0 to
1.0 between a pairing of skill applications between those produced by the top-down parse
and those abduced from the observed action sequence. Any perfectly overlapping pairs are
recorded for later. Then a bottom-up parse is performed starting with the deepest methods in
the HTN, moving upward. During bottom-up parsing each method is aligned with the input
sequence. The alignment is a mapping, built greedily by adding the pair of primitive skills
applications with the highest overlap score one at a time. This alignment process associates
some subset of the methods in the HTN with non-overlapping spans of the input sequence.

Each method with any non-empty alignment span will need to be edited to accommodate
the discrepancies between the method and the skill applications in its span. If all the align-
ment spans do not completely cover the input sequence, then the holes are filled by choosing
a method somewhere upstream from the hole to expand its span and fill the hole. The overlap
score of elements at the edges of each span are one heuristic for choosing between them. If
there is a tie the lowest method is chosen.

We might consider whether this process could work only with a bottom-up parse, and no
top-down parse. The top-down parse is necessary for two reasons:

1. Top-down parsing allows us to generate virtual skill applications that can be compared
to the observed skill applications from the action sequence. This is helpful for generating
overlap scores.

2. Parsing top-down allows us to find all the skill applications that the grammar can already
produce before assigning method spans in the bottom-up parse. This gives the highest
methods in the grammar the opportunity to reserve coverage of any skill applications
that they cover so that they are not erroneously assigned to the spans of downstream
methods.

6.3.5 Insert, Delete, Disjoin, and Unorder Edits

If a method’s alignment with the input sequence is not a one-to-one mapping then the
method can be edited in one of four ways so that it can cover the subsequence in its span:

1. delete: If one of the method’s items has no pair in the subsequence then we can apply
a delete edit. Add the asterisk annotation to that item to identify it as conditionally
applicable.

2. insert: If one of the skill applications in the subsequence has no paired item then we can
apply an insert edit. Add a new item (with an asterisk annotation) to the method that
covers the skill application.

3. disjoin: If some subsets of the method’s item sequence and skill application subsequence
cannot be reconciled then apply a disjoin edit. Turn each of the two subsets into a new

74

method. Add the new methods to a new non-terminal symbol and replace the item subset
with that symbol.

4. unorder: If some subset of the method’s item sequence and skill application subsequence
have perfect overlap scores, but the alignment shows that they are out of order, then make
a substitution with a new non-terminal symbol with one child method consisting of the
item subset which is marked as unordered. If the item subset covers the whole method
then just mark the original method as unordered.

6.3.6 The Trouble with Bad Generalization Commitments

Sometimes grammar edits can produce incorrect new structures in the grammar that are
challenging to amend. Recall our ground-truth grammar for reference:

S → A B C cp d a2 : write ones-digit of a+b c2 : carry tens-digit of a+b

A → a2 c2∗ a3 : write ones-digit of a+b+c c3 : carry tens-digit of a+b+c

B → a2 c2∗ | a3 c3∗ cp : copy down digit d : press done button

C → a2 c2∗ | a3 c3∗

Consider a grammar initialized from the problem 777+777, S → a2 c2 a3 c3 a3 c3 cp d,
that will be generalized from a sequence from 333+333: a21 a22 a23 d. The single method
in the grammar only perfectly aligns with the first and last skill applications a21 and d.
Consider a few possibilities for how this grammar could be edited to incorporate the new
sequence.

Modifying S → a2 c2 a3 c3 a3 c3 cp d, to incorporate: a21 a22 a23 d

(1) (2) (3) (4)

S → a2 A d S → a2 c2∗ A cp∗ d S → a2 c2∗ A B cp∗ d S → a2 c2∗ A B cp∗ d

A → c2 a3 c3 a3 c3 cp | a2 a2 A → a3 c3 a3 c3 | a2 a2 A → a3 c3 | a2 A → a3 | a2
B → a3 c3 | a2 B → c3 a3 c3 | a2

The first option only permits the two example sequences that have been seen so far. It
would be generated by a simple disjoin edit. The second option permits only a few more
sequences than the two example sequences. It would be generated by dividing off two insert
edits from the disjoin edit in the first example to introduce c2∗ and cp∗. The third option is
the closest to our target grammar. However, it makes several premature generalizations that
allow it to cover several correct sequences that have not yet been encountered. The fourth
illustrates that the way the third option was partitioned was a lucky choice, this option
would permit some incorrect sequences.

These four possibilities illustrate a difficult trade-off. Ideally, we would like to make edits
that minimally generalize the grammar so that it accepts as few new example sequences as
possible. Conservative generalizations reduce the risk of inducing grammars that may permit
incorrect sequences. However, even minimal changes can impose structures on the grammar
that can cause issues later on.

For instance, to converge to our target grammar from the first example we would need
to at some point move the first c2 from the first method of A and put it in the same method
as a2. However, it is challenging to consider how this sort of redistribution edit could be
implemented conservatively. If such an edit were allowed then in principle there could be

75

many possible items in an HTN’s methods that could be redistributed, and it is would be
difficult to formulate a policy for when such an edit should be applied and how alternative
possibilities should be chosen between.

An alternative that works for this example is to impose biases that prefer edits that
produce the second grammar over the first. One bias is to prefer edits that keep items
together in the same method that have high match overlap—ones that draw from and act
upon the same objects. Each pair of a2 c2 or a3 c3 in the target grammar draws upon digits
from the same column, so the correct pairings always have a greater match overlap. This is
a bias that is most likely reasonable to impose in almost any domain. If two primitive skills
should belong to the same method then they share a parent symbol (i.e. a goal task/macro
skill) with arguments that should be passed to multiple items in each of its child methods.

Unfortunately, these inductive biases cannot completely eliminate the possibility of gen-
erating an HTN structure that can only be fixed through an implementation of redistribution
edits. We saw our failure to find an inductive bias that consistently eliminated these kinds
of bad inductions as a considerable drawback to this approach. In general, grammar editing
can become quite complex.

6.3.7 Merge Edits

A particularly complex form of edit, the merge edit, is required when we consider the changes
needed to transform the second grammar into something closer to our target grammar.
Consider the edits that must be made to the second grammar to incorporate an example
from the problem 238+179, with sequence a21 a22 c23 a33 c33 cp d :

Modifying S → a2 c2∗ A cp∗ d to incorporate: a21 a22 c23 a33 c33 cp d

A → a3 c3 a3 c3 | a2 a2

(5) (6)

S → a2 c2∗ A cp∗ d S → a2 c2∗ CD cp∗ d

A → C D C → a3 c3 | a2 c2∗

C → a3 c3 | a2 c2∗ D → a3 c3 | a2
D → a3 c3 | a2

This example highlights some new considerations. In this example the last two items of
A’s first method: a3 c3 a3 c3, align with parts of the new sequence and the first item of
the second method: a2 a2, aligns with one of the skill applications in the sequence. However
since these two methods are disjoint so the grammar must be modified so they are no longer
disjoint if it is to permit the subsequence a22 a33 c33. To do this we can apply a merge
edit where we combine two disjoint methods into one method that redistributes their items
into new subtasks C and D. This gives us grammar (5). Merging A’s two methods leaves it
with just one method: C D, so we can substitute any instance of A with the sequence C D,
to get the slightly simpler grammar (6).

The need for merge edits adds another layer of complexity to this approach. There are
several edge cases that need to be considered for a robust implementation, including the fact
that any merge edit can also trigger additional insert, delete, disjoin, or, unorder edits. For
instance, in this example, an insert edit adds c2∗ to C’s second method.

76

6.3.8 Why Abandon This Approach?

In our initial testing, this approach appeared to work quite well. For instance, in both
multi-column addition and fractions it is easy to converge to a structure similar to a target
grammar if one simply initially provides two action sequences from the same problem where
the second is presented with any unordered subsequences applied in the reverse order. For
instance, consider taking two different sequences from the problem 777+777.

Modifying S → a2 c2 a3 c3 a3 c3 cp d, to incorporate: c21 a21 c32 a32 c33 a33 cp d

S → A B C cp d

A → a2 c2

B → a3 c3

C → a3 c3

Three unorder edits are applied to the initial grammar. After this point, very little can
go wrong since the HTN grammar already has a correct partitioning of subtasks. However, if
we do not begin with helpful sequences like these that make this partitioning clear then we
may find ourselves in situations where method items are incorrectly partitioned and need to
be redistributed. As noted before, implementing a redistribution edit opens up many difficult
considerations.

One reason that it may be interesting to continue pursuing this approach is that these
hard-to-fix grammar induction problems may have analogs in human learning. Perhaps some
class of students’ misconceptions are of a similar nature: some action in an example may be
misinterpreted as belonging to an unrelated subtask that happens to occur contiguously with
it in an example lesson. This may cause a class of errors where students make the mistake of
taking an action when it is not necessary or neglecting to take an action as part of its true
subtask. How does one remediate such a misconception?

For authoring purposes, however, the fact that this approach falls into these kinds of
failure modes is problematic. Without more work, this approach does not succeed at achieving
our goal of being agnostic to action sequence order. Moreover, with seven or so different kinds
of edits (insert, delete, disjoin, unorder, merge, simplify, redistribute) it is quite complicated
to implement and maintain. It would be nice to have something simpler.

6.4 A Robust Approach: Order Agnostic HTN Induction

One of the key insights in our implementation of STAND was that making any sort of
arbitrary inductive commitment from a collection of evidence limited our inductive power.
HTN induction presents a similar, but perhaps harder problem: in making arbitrary inductive
commitments we run the risk of making incorrect commitments that we cannot recover
from. It is likely possible that a similar version-space-like solution could be applied to HTN
induction where multiple diverging commitments produce multiple independent grammars
or a bounded space of grammars. The literature surrounding Sierra’s development dives
quite deeply into this sort of possibility [110]. However, entertaining a plurality of grammars
would only complicate the existing grammar editing approach, and may be computationally
expensive to the point of being useless for interactive task learning.

77

6.4.1 An Atomic Evidence Representation

Instead, we’ll start by attempting to characterize the problem of inducing HTNs from ac-
tion sequences more precisely. Our first consideration should be to understand the kinds of
evidence that action sequences provide. Relative to task traces they are a very implicit sort
of evidence. Task traces directly provide pieces of the target HTN abstraction. By contrast,
action sequences only provide atomic forms of evidence that disambiguate elements of the
target HTN, but do not reveal its structure directly.

Let us take account of some forms of evidence that an action sequence can provide, and
define a concrete representation for those forms of evidence. A new action sequence may
introduce:

1. New Primitives: An action that cannot be explained with known primitive skills is
evidence that a new primitive skill (i.e. operator) is needed to form the target HTN.

2. Order (Amin, Amax): Evidence about the orders that skill applications can occur. Skill
applications that are part of the same method tend to be adjacent or close to one another.
We can encode this evidence in two matrices Amin and Amax. If skill application i has
position index Pk(i) in sequence k then Amin

ij = mink P (i)−P (j) and Amax
ij = maxk P (i)−

P (j).
3. Co-Occurrence (C): Some skill applications may always co-occur. The items of a

method produce skill applications that always co-occur unless one is conditionally ap-
plicable. The matrix Cij = 1 if all action sequences where skill application i occurs skill
application j also occurs, otherwise Cij = 0. It can be the case that Cij = 0 ∧ Cji = 1 if,
for instance, j always occurs with i, but i can occur on its own.

4. Disjunction (D): Some skill applications may never co-occur. This can be evidence
that two skill applications result from two disjoint methods of the same task. The matrix
Dij = 1 if skill applications i and j never co-occur in all action sequences and Dij = 0
otherwise.

5. Match Overlap (O): Evidence about the match overlap between skill applications. It
is a reasonable inductive bias to assume that skill applications that belong to the same
method will draw upon and act upon some of the same objects. Oij is the match overlap
score for skill applications i and j.

Instead of directly building and updating a single grammar, our order-agnostic approach
will accumulate pair-wise evidence about the relationships between different skill applications
within the matrices Amin, Amax, C, D, and O. When a new action sequence produces a
change in these matrices we can induce the simplest HTN that follows from the updated
evidence. Since the evidence matrices are order-agnostic—they will be the same regardless
of the order that action sequences were evaluated—our grammar construction process will
be order-agnostic as well.

6.4.2 Two Steps: Primitive Sequencing and Iterative Construction

This new approach to HTN induction is performed in two steps. The first step is primitive
sequencing: we order all of the unique primitive skills into one sequence where: 1) primitive
skills that are likely to be part of the same method stay together, 2) disjoint skills that likely

78

share the same parent task stay together, and 3) the presentation order between co-occurring
primitive skills is maintained. The second step is iterative construction. In this step, the
sequence is partitioned into subsequences that are likely to be part of common methods,
and then any disjoint method subsequences are grouped into common macro skills (i.e. goal
tasks). If this joining process produces a reduced sequence with multiple remaining macro
or primitive skills then the process is repeated again recursively until the remaining symbols
require no grouping into new macros. Iterative construction should end when the remaining
symbols do not have any neighboring disjoint items.

It is easiest to understand this two-step process by example. Let us begin by showing what
an ideal sequence of primitive skills would look like in our multi-column addition example.
For simplicity, we will assume that the implementation creates one primitive skill per unique
skill application so we can use our {prim}{x} notation for skill applications to indicate each
primitive skill. For target grammar:

S → A B C cp d a2 : write ones-digit of a+b c2 : carry tens-digit of a+b

A → a2 c2∗ a3 : write ones-digit of a+b+c c3 : carry tens-digit of a+b+c

B → a2 c2∗ | a3 c3∗ cp : copy down digit d : press done button

C → a2 c2∗ | a3 c3∗

The ideal ordering of primitive skills in stage 1 would give:

a21 c21 a22 c22 a32 c32 a23 c23 a33 c33 cp d

Which ideally would be partitioned into methods as:

(a21 c21) (a22 c22) (a32 c32) (a23 c23) (a33 c33) (cp) (d)

Then the disjoint methods can be grouped into macros skills as:

[(a21 c21)] [(a22 c22) (a32 c32)] [(a23 c23) (a33 c33)] (cp) (d)

Note that (a21 c21), (cp), and (d) are single candidate methods with no parent disjunc-
tion. If the ordering matrices Amin and Amax showed that the order in (a21 c21) could be
permuted then it will be grouped into its own macro so that a new unordered method can
be introduced. (cp), and (d) imply no disjunction or unordering, so there is no reason to in-
troduce new macros or methods to cover them. The remaining new grouped sequence would
be A B C cp d. Assuming the evidence matrices Amax, Amin, and C had converged to their
final states at this point the methods of the grouped task could also be given their asterisk
and unorder annotations: A → a21 c21∗, B → a22 c22∗ | a32 c32∗, C → a22 c22∗ | a32 c32∗.

At this point, the evidence matrices on this new set of symbols must be recomputed.
However, since every pair of new items is non-disjoint Dij = 0, we do not need to do another
full round of iterative construction. At this point, the evidence matrices may suggest that
(cp) does not always co-occur with the other skills in which case it must be given an asterisk
annotation to mark it as conditional. An asterisk is given to skill i when there exists j in
the new sequence such that Cji = 0.

79

6.4.3 Step 1: Primitive Sequencing

In the previous example, we showed the iterative construction step operating on an already
prepared primitive sequence. The primitive sequencing step ensures that iterative construc-
tion begins with a well-formed primitive sequence. From the first action sequence, the primi-
tive skill sequence is simply the sequence of skills abduced from that initial action sequence.
When a new action sequence is incorporated the primitive sequence must be reordered to
include any newly abduced skills. The new ordering is generated greedily by adding primitive
skills one at a time. The first skill can be chosen from any primitive skill that never strictly
comes after some other skill. The next skills are greedily added to the sequence one at a
time. Skill i is chosen next which maximizes the utility value Uoi on the current order o.
This next primitive item is chosen on the basis of item l ∈ o, the right-most item in o that
is non-disjoint with i (i.e. Dli = 0).

The utility Uoj is a tuple with the following slots in order of importance.

1. Order Violation Count (vi): The negative of the number of ordering violations that
would be produced by choosing primitive i next. An order violation occurs if (∃k ∈ o, k ̸=
i : Amax

ki < 0) ∨ (∃k′ /∈ o, k ̸= i : Amax
ik′ < 0). In practice, if a non-violating ordering exists

then the chosen next skill will always have vi = 0.
2. Strong Adjacency Score (si): Two skills are strongly adjacent if they have ever been

adjacent: Amin
li <= 1 ∧Amax

li >= 1, and always occur together Cil = 1 ∧ Cli = 1. If l and
i are strongly adjacent then Si = (.5 + Oil)/max(Amax

li , 1), otherwise Si = 0. Si is high
when the match overlap between i and l is high, and when their maximum distance from
each other is small.

3. Weak Adjacency Score (wi): Two skills are weakly adjacent if they have ever been
adjacent: Amin

li <= 1 ∧ Amax
li >= 1, and one always occurs when the other occurs Cil =

1∨Cli = 1, but not necessarily the other way around. If l and i are weakly adjacent then
Wi = (.5 +Oil)/max(Amax

li , 1), otherwise Wi = 0.
4. Match Overlap Oli: The match overlap between l and i.
5. Disjoint Score di: If l and i are disjoint then di = Oli otherwise di = 0.

Greedily choosing i that maximizes Uoi greedily produces primitive sequences that do not
violate order constraints, that keep adjacent and co-occurring skills together, that keep skills
together that tend to have high match overlap, and that keep disjoint spans of primitives
together. In other words, subsequences of primitives likely to be part of the same method
stay together, and disjoint method subsequences tend to stay together—an ideal sequencing
for the iterative construction step. All of the sub-heuristics of Uoi incorporate Oli to some
degree. This makes the greedy choice for the next primitive biased toward keeping items that
match the same objects together.

6.4.4 Step 2: Iterative Construction

Iterative construction proceeds in two phases. First, the primitive sequence is partitioned
into candidate methods. Each span (n,m) of the primitive sequence is given a method score
Mnm. The method score Mnm has value 0 if any pair i, j ∈ [n,m] are disjoint Dij = 1.
Otherwise, its value is computed from the other evidence matrices. We can break down the
calculation for Mnm into four parts:

80

1. Weak Co-occurrence Score (Mweak
nm): Mweak

nm =
∑

i,j∈[n,m];i ̸=j Cij ∨ Cji.

2. Strong Co-occurrence Score (M strong
nm): Mweak

nm =
∑

i,j∈[n,m];i ̸=j Cij ∧ Cji.

3. Overlap Score (M overlap
nm): M overlap

nm =
∑

i,j∈[n,m];i ̸=j Oij.

4. Fully Unordered (unm): unm = 1 if Amin and Amax permit all i, j ∈ [n,m] to be permuted,
otherwise unm = 0

Combining these parts:

Mnm = (m−n)∗(Mstrong
nm +unm)+Mweak

nm +Moverlap
nm

(m−n)2−(m−n)

This metric rewards partitions of methods that span long sets of strongly co-occurring
items and that can be unordered. Weak co-occurrence and match overlap are given less
weight. The denominator divides the total value by the number of off-diagonal elements in
each sum so that long spans are not artificially weighted more highly. The set of method
spans is chosen greedily by starting from i = 0, selecting the span (i,m) such that maxmMim,
then incrementing i to the end of the span and repeating to the end.

Next, any subsequences of method spans that are completely mutually disjoint, meaning
each pair of spanning items between them are mutually disjoint Dij = 0, are grouped into
common subtasks. The evidence matrices for the new sequence are computed, and the next
construction iteration begins if needed.

This two-step process succeeds at inducing HTNs for arbitrary action sequences for both
the 3x3 digit multi-column addition example and for our fraction arithmetic example.

6.4.5 Considerations for Inducing Recursive Grammars

One of the undesirable qualities of our multi-column addition example is that it only works
for problems where we add two three-digit numbers. Of course, we would prefer a method
that induces a recursive grammar that works for any pair of numbers. Several forms of
information could be used to hypothesize potential recursions. The most obvious hint is the
presence of contiguous skill applications that have the same how-part formula. Consider a
recursive grammar for multi-column addition:

A → B d a2 : write ones-digit of a+b c2 : carry tens-digit of a+b

B → C B∗ a3 : write ones-digit of a+b+c c3 : carry tens-digit of a+b+c

C → a2 c2∗ | a3 c3∗ | cp cp : copy down digit d : press done button

Now consider an example like 333+333, with sequence a21 a22 a23 d. In this case, there
is a fairly clear candidate for recursion: B → a2 B∗, since a2 is repeated. To avoid spurious
over-generalizations we might hold off until it is clear that this recursion is needed since we
do not know that there are not always exactly 3 instances of a2. For instance, 33+33 or
3333+1234 would indicate a variable number of repeats.

Of course, other problems would reveal that a2 is not the only primitive that is repeated,
meaning we need a means of slotting in other primitives into the body of the recursive rule
appropriately. One helpful heuristic is to consider sets of symbols where there is a consistent
relationship between the skill applications at each recursion step. Recall that each of our
symbols is really a skill with variables and so a recursion like B → a2 B∗ could be restated
with variables. Depending on how rich our interface representation is we could express this
as one of the following:

81

B(a, b, c) → a2(a, b, c) B(a.left, b.left, c.left)∗

B(col) → a2(col) B(col.left)∗

Where a.left is an expression for de-referencing the symbol to the left of variable a,
and where col is a variable that captures a collection of interface elements grouped into a
column. If we encountered a new problem with new primitives like 238 + 79 with sequence
a21 a22 c22 a33 c33 cp d, then many of the primitives may be new, but pairs of them may
share spatial relationships that are a hint that they ought to be descendants of the same
macro skill in a recursion relationship. For instance, the col.left relationship is maintained
by partitioning the sequence above into:

(a21) (a22 c22) (a33 c33) (cp) d

Several details remain to be worked out considering how these forms of evidence could
be incorporated into our current system, and used to induce recursive structures.

6.4.6 Integration with Decomposed Inductive Procedure Learning

The addition of process-learning as a fourth learning mechanism necessitates some reconsid-
eration of the relationship between different learning mechanisms. An agent that implements
process-learning should be able to determine where it currently is within its HTN’s control
structure on the basis of the current problem state. While the three-mechanism version of
Decomposed Inductive Procedure Learning (DIPL) could operate in a purely display-based
manner—reflexively responding to new problem states by attempting to apply each of its
skills—the inclusion of process-learning requires us to consider how skills are applied as part
of a higher-level control process.

For instance, the agent must have a means of accounting for an internal hierarchical
planning state. Since actions can be externally demonstrated by a user, and since the HTN
induced so far is not necessarily complete, the agent cannot necessarily rely upon a stored
internal planning state updated one action at a time. Instead, it is sometimes necessary for
the agent to self-explain how a particular problem state can be reached by following the
process outlined in its current induced HTN. The agent can use its HTN grammar to parse
a sequence of actions leading to the state in question in a top-down manner and determine
if the sequence can be produced by its grammar. If this parsing process succeeds then the
grammar can yield a set of multiple possible next primitive skill applications. If the parsing
process fails then the sequence diverges from the grammar in some way, in which case any
unparsable actions are considered out-of-process.

For instance, consider that the agent has experienced four actions in a solution to the
multi-column addition problem 773+668:

a21 c21 a32 c32 a33 c33 cp4 d

The parse path for this series of actions puts the HTN in a planning state where there
are four actions that could be produced next.

S → A B C cp∗ d; C → a2 c2∗

S → A B C cp∗ d; C → a2 c2∗

S → A B C cp∗ d; C → a3 c3∗

S → A B C cp∗ d; C → a3 c3∗

82

Taking one more action:

a21 c21 a32 c32 a33 c33 cp4 d

There are three actions that can be taken next.

S → A B C cp∗ d; C → a2 c2∗

S → A B C cp∗ d

S → A B C cp∗ d

Of course, in both of these problem states only a subset of the highlighted actions are
actually correct next actions. The when-learning mechanism is responsible for learning pre-
conditions that permit only correct next actions. With an induced HTN the role of when-
learning is immensely simplified. Without a guiding HTN, when-learning is responsible for
discovering preconditions that enforce the execution order of each primitive skill. By induc-
ing an HTN with process-learning, ordering constraints are enforced by default and relaxed
as the HTN generalizes.

Even in cases where the HTN produces a choice of multiple next actions, when-learning
generally does not need to learn preconditions with cross-skill dependencies. For instance,
in the second example, two primitives with a conditional annotation precede d, the skill for
pressing the done button to finish a problem. Without process-learning the preconditions for
pressing the done button are very complicated. They must check that several other skills must
not first be applied, which requires special feature predicates that indicate the applicability
of those other skills. However, with the HTN, primitives have a clear order of priority. In our
first example above, all of the next candidate primitives have the same priority since they are
part of two disjoint unordered methods. In the second example, cp∗ is only applicable if c2∗

is not applicable, and d is only applicable if cp∗ is not applicable. Thus, the HTN produces a
situation where the primitive d no longer requires any preconditions at all—it is simply the
action that is taken after all of the other actions that should have been taken.

In general, the HTN makes it so that we only need to learn preconditions at points of
effective disjunction in the grammar. Preconditions are needed for choosing between disjoint
methods, and for deciding whether a symbol with a conditional annotation U∗ ought to be
applied. In principle, these could be treated as the same situation, since U∗ is the same as
V → U |ϵ. Although, for the purposes of debugging and for potentially communicating HTN
structure to a user there is an elegance in maintaining a structure with as few symbols as
possible.

6.4.7 Performance with Process-learning

When integrated as a fourth learning mechanism in Decomposed Inductive Procedure Learn-
ing (DIPL) our order-agnostic method for building HTNs from action sequences largely re-
solves prior issues with training agents that achieve 100% correct and complete tutor system
behavior.

Table 7 and Figure 35 compare the holdout performance of agents with and without a
process-learning mechanism. In both multicolumn addition and fraction arithmetic the aver-
age holdout performance over 40 repetitions for agents with a process-learning mechanism is

83

Table 7: Average Holdout Completeness at Problem N, and Number of 100% Complete
Repetitions at problem 100.

MC Addition Fractions

N=20 N=50 N=100 100% Reps N=20 N=50 N=100 100% Reps

STAND 85.45% 96.10% 98.62% 19/40 98.72% 99.91% 99.99% 38/40

STAND +
HTN Ind.

99.72% 100.00% 100.00% 40/40 99.69% 99.94% 99.99% 38/40

higher than those without it. In multicolumn addition, 20 problems are sufficient to achieve
100% model-tracing completeness.

0 20 40 60 80 100
20

30

40

50

60

70

80

90

100
MC Addition

STAND
STAND + HTN Induction

0 20 40 60 80 100

20

40

60

80

100
Fractions

STAND
STAND + HTN Induction

Fig. 35: Average completeness trajectories for AI2T agents using STAND with and without
a process-learning mechanism for HTN induction.

Chapter 7

Evaluating AI2T With Users

We evaluated AI2T in two studies each with 10 users in which participants authored two
tutoring system domains. In each domain participants tutored an AI2T agent on several
problems until they were convinced that the agent could produce correct and complete
behavior for any new problem instance. When participants self-reported that they believed
the agent had achieved a state of absolute completeness, we scored their agents’ model-
tracing performance on a large holdout set of 100 problems. After being scored, participants
moved on to the next domain.

The central aim of these studies was to evaluate what configurations of the agent and
interface design best support authors in teaching the AI to induce correct and complete
programs. Beyond qualitative observations of usability, a core element of this evaluation
is to determine whether our interaction design supports authors in building model-tracing
complete tutoring systems. This support includes assisting authors in self-assessing when
they have sufficiently trained agents to a point of absolutely complete behavior.

Very little prior work explores interactions for supporting users in self-assessing the learn-
ing progress of interactively teachable AI agents that learn completely bottom-up from users.
This is largely because most machine learning systems lack the data-efficiency or flexibility
to be taught entirely from interactive training. Our interactively teachable simulated learn-
ers are a notable exception, as they learn domain-specific skills entirely from an author’s
instruction within arbitrary HTML interfaces instead of within specialized environments.
These studies evaluate not just how well our interaction design supports users in engaging in
effective training, but also in gaining trustable estimates of the agents’ learning progress via
our certainty score indicators which are enabled by STAND’s instance certainty measure.

7.1 Methods

Domains The participants in our two studies taught one of two versions of AI2T multi-
column addition and fraction arithmetic, the same two domains we used in our simulation
experiments. Authors were given a blank interface for each of these domains and tutored
an AI2T agent on several problems. In multicolumn addition, participants taught the agent
the algorithm for summing large numbers together by computing partial sums and carrying
each tens digit. We limited this domain to just summing pairs of 3-digit numbers. In fraction
arithmetic, participants taught the agent how to add and multiply fractions, including how
to convert fractions before adding when the two fractions have unequal denominators. In
this domain, fractions are converted by simply multiplying their denominators, and then
multiplying crosswise to find the converted numerators. Participants did not need to train
the agent to reduce the converted fractions or simplify the final answer.

Domain Variants In both studies the fraction arithmetic domain was the same. How-
ever, the version of multicolumn addition that we had users teach AI2T differed between

85

the two studies. In study 1, the agent was not given a process-learning mechanism. Recall
that in chapter 5 we showed that agents without a process-learning mechanism struggle to
learn multicolumn addition programs that are 100% model-tracing complete relative to a
ground-truth tutoring system. Since our goal is to evaluate whether authors can self-assess
completeness, we used a simpler version of multi-column addition in study 1 where this was
feasible to achieve with the available agents.

The version of multicolumn addition we had users teach in study 1 requires that the tens
digit of partial sums are carried even when it has a value of zero (i.e. when the partial sum
is less than 10). We call this a zero-carry variant of multicolumn addition. This version is
much easier for the 3-mechanism variety of AI2T (without process-learning) to learn because
it has a much simpler control structure than the normal multicolumn addition algorithm in
which zero-carries are omitted. The key reason for this is that explicitly performing zero-
carries helps the agent keep track of where it is in the process of summing the two numbers.
The agent can reason in a display-based manner from right to left, column-by-column by
simply learning preconditions that ensure that the carry and output boxes of the previous
column’s partial sum have already been filled in. For the 3-mechanism variety of AI2T to
learn the normal addition algorithm, the agent must learn much more complex between-skill
preconditions that must sometimes check that other skills should not first carry a non-zero
value into the current column.

In study 2, the AI2T agent is configured with a process-learning mechanism making learn-
ing the normal version of multi-column addition over 3-digit numbers much easier. However,
since our current process-learning mechanism is still limited to non-recursive grammars it
must encounter examples where every combination of primitive skills are applied in every
column to achieve 100% holdout performance. In study 2 we helped users by presenting them
with a set of 7 target problems that cover a wide variety of these cases. We asked that users
train the agent on these 7 problems, and then continue to make up their own problems until
they believed the agent’s learning was complete.

Instruction In both studies, participants authored multicolumn addition before fraction
arithmetic. None of the participants had used AI2T before, so in both studies we can think
of this first domain as a warm-up attempt to practice using the tool. We first gave partic-
ipants a short tutorial on how to use the tool by showing them how to demonstrate each
step of the problem 777+777, and showed them how to give feedback to the agent on the
subsequent problem 222+222. Prior to having participants begin authoring each domain, we
described the behavior that we expected the final tutoring system to have, and we asked
that participants engage in a think-aloud: “say whatever you are thinking as you work with
the tool”. Participants always began authoring with a blank agent with no prior training.

While users worked with AI2T we made ourselves available to answer questions and made
participants aware if they began to teach the agent a procedure that differed from the target
ITS behavior. We refused to give participants any advice concerning when they should stop
training the agent. We limited ourselves to suggesting that they train the agent on a variety
of problems and suggested that they should at least keep training AI2T until it seemed
like it had stopped getting things wrong. We never explicitly pointed out the availability of
certainty scores in the interface so that we could assess whether users noticed, understood,
and utilized these indicators on their own.

86

At the end of each session, we asked users to give their overall feedback about the system.
We simply asked: “What worked well and what didn’t work well as you were using the tool?”.
In study 2 we also explicitly asked participants if they noticed the certainty score indicators
and whether they considered them when deciding whether or not to stop training the agent.

Participants All users participated in these studies remotely via Zoom, and screen shared
as they worked in AI2T’s web interface. Participants filled out online forms indicating their
consent to be recorded. For their participation in these IRB-approved studies users were
compensated with a $30 Amazon gift card. We limited all sessions to a maximum of 90
minutes. Participants for piloting prior to study 1 included labmates and colleagues who
had volunteered their time. The 10 paid participants for study 1 were all graduate students
recruited from Carnegie Mellon University (CMU), and 8 of these 10 participants were part
of graduate programs that specialized in educational technology. 4 more CMU graduate stu-
dents were recruited and compensated as part of piloting prior to study 2. The participants
for study 2 included 5 graduate students from CMU, 3 of which specialized in educational
technology, 2 human-computer interaction graduate students, 4 biology graduate students
from Arizona State University, and 1 professional specializing in the authoring of instruc-
tional technology for a major ITS project unaffiliated with CMU. Participants’ self-reported
genders were roughly equally male and female in both studies.

Our participant population of mostly graduate students is fairly well aligned with the
educational background of professionals who would typically use an ITS authoring tool.
Many of our participants explicitly study the design of educational technology (although not
necessarily the programming elements of it), and professional learning engineers typically
have some graduate-level education. Since our tool is intended for use by non-programmers,
teachers are another potential target population. K-12 teachers are typically more inclined
toward seeking out ready-made materials than making new material themselves, although
we have certainly encountered a handful of teachers who have conveyed interest in this kind
of tool. While our recruited participants are not in-service teachers they do have similar
backgrounds to a typical teacher. All have bachelor’s degrees, and 6 of the 10 participants in
study 2 were non-programmers. Several of the study 1 participants were non-programmers
as well but we did not collect this data.

For study 2 we asked participants to score their programming experience on a Likert
scale from 1 to 5. We asked: “Would you describe yourself as a proficient programmer (i.e.
you have the ability to write scripts/software)” where 1 is labeled as “No. I have little or no
programming experience.”, and 5 is labeled as “I have extensive programming experience.
I believe I could program professionally.” For the purposes of our analyses, we consider a
score of 1 or 2 to be a non-programmer.

7.2 Study 1: 3-Mechanism Agent

The aim of study 1 was to test several features of AI2T’s interface design that distinguish
it from our 2020 prototype and to test this interface with an agent that used STAND for
when-learning, allowing for better learning performance, and for showing the user a certainty
score from -100% to 100% for each agent proposed action. In the study 1 version of AI2T,
the agent was configured with a 3-mechanism structure like AL and SimStudent, with no

87

Fig. 36: Study 1 Interface. An intermediate state of problem 597+346. Two of three actions
(outgoing graph edges in top-left) have been given negative feedback (marked red). A third
action (grey) is selected, it adds 7+5 and takes the ones digit resulting in the value 2. Pressing
the Yes button will mark this selected action as correct.

process-learning mechanism. The interface for this version had automatic behavior graph
generation (without induced unordered groups), and users were able to cycle between the
actions that the agent proposes at each problem state by selecting among the behavior graph
edges, or by following along with the dialog prompts that ask “Is this action correct? Yes or
No.”

7.2.1 Quantitative Results

Table 8: Results for Study 1
MC Addition (zero-carry) Fraction Arithmetic

User# Completeness Minutes Completeness Minutes

1 90% 55 -

2 99.80% 33 64.69% 32

3 71.43% 31 100% 24

4 100% 33 92.76% 34

5 91.45% 24 100% 33

6 90.60% 24 38.05% 32

7 100% 22 85.75% 35

8 100% 23 95.29% 23

9 99.15% 28 76.43% 29

10 57.07% 50 - -

Mean 90% 30.33 82% 30.25

Median 95% 28 89% 32

88

The quantitative results for study 1 are outlined in Table 8. For the zero-carry version of
multicolumn addition, 3 of 10 participants taught agents that achieved a 100% model-tracing
completeness score on the holdout set of 100 random problems. Two of our participants took
more than half of the allotted 90 minutes for the first domain, and we did not have them
complete the second. In fraction arithmetic just 2 of the 8 participants achieved 100%. In
both domains, the median authoring time was about 30 minutes. This is the elapsed time
spent by participants between beginning authoring the domain and self-reporting that they
believe the agent has achieved correct and complete behavior.

7.2.2 Qualitative Results

The main goal of study 1 was to evaluate whether the interface improvements from our 2020
prototype succeeded in assisting authors. Automatic behavior graph generation was one
major improvement over our prototype design. Users generally had little trouble panning
and selecting states and actions in the behavior graph. However, some users had difficulty
connecting patterns in the behavior graph with our instructions that certain subsets of
actions should be permitted in any order. Alternative orders are displayed as diverging
paths in the graph. A key element of users’ difficulty was that actions essentially needed to
be demonstrated or given feedback multiple times since they could appear as distinct edges
along different paths with different orderings of actions.

For the fraction arithmetic domain, some users found it tedious to give feedback to the
agent in 24 unique problem states generated from each permutation of the 4 steps associated
with converting two fractions. In reality, users may have needed to only give feedback on a
small subset of these states per problem to achieve 100% completeness. However, since the
behavior graph made it very easy for users to see what states they had and had not given
feedback on, and since we had set them upon the objective of 100% completeness, most
participants tended to grade the agent along all generated paths.

Behavior graphs also showed certainty scores above each edge in the behavior graph.
However, this presentation did not appear to be effective as none of the users mentioned
the certainty scores in their think-alouds or follow-up interviews, and those that we asked
explicitly said they did not notice them.

Many of the participants in study 1 had used other ITS authoring tools before, includ-
ing CTAT’s example-tracing authoring tool. In follow-up interviews, several participants
commented that they found AI2T easier to use than CTAT example-tracing because after
demonstrating solutions to a single problem, the agent would suggest step-by-step solutions
automatically for the remaining problems. For instance, one participant remarked “This is
a lot nicer than CTAT. . . I like that it mostly does the problems for you.” These users com-
mented that checking the agent’s step-by-step solutions was much easier than demonstrating
several problems themselves, and noted that the fact that the agent induced a program from
their teaching saved them from needing to mass produce step-by-step problem solutions in
a spreadsheet.

89

7.3 Study 2: AI2T with Process-Learning

Fig. 37: Interface for study 2. An intermediate state of 189+542. There are 4 proposed actions,
shown as skill app window items (middle-bottom) and graph edges (top-left). In the graph,
they are grouped into two unordered groups (dashed boxes). Two actions have been given
negative feedback (✗), and one has been given positive feedback (✓). The mouse hovers over
an action without feedback that was proposed with 88% certainty. When the ✓ is pressed
on the toggle button it will be given positive feedback. When “Move On” is pressed it will
move to the state after both the correct actions in the top unordered group are applied.

The configurations of both the backend agent and frontend interface differ between study
1 and study 2. Taken together they form a loose pseudo-experiment, in which study 1 es-
tablishes a baseline with several issues and study 2 implements several fixes to remedy those
issues. The version of AI2T deployed in study 2 implements three major improvements over
study 1:

1. The AI2T agents have a process-learning mechanism that induces hierarchical task net-
works (HTNs) that organize skills into higher-order skills that can execute sub-skills—
eventually terminating in primitive skills that produce actions. Process-learning learns an
explicit control structure for each ITS domain instead of relying on each primitive skill
to induce complex preconditions that gate their individual application.

2. When process-learning induces that a sequence of actions is unordered this information is
displayed within the generated behavior graphs (Fig. 37 below). Users can automatically
demonstrate an unordered group by demonstrating multiple next actions at once in the
same state.

3. A skill application window is displayed listing every action that the agent believes is
correct. This window prominently shows the certainty score for all proposed actions that
have not yet been assigned feedback (Fig. 37 below).

90

Since participants were not randomly assigned to conditions and since there are mul-
tiple differences between the two studies we cannot precisely quantify the benefits of each
improvement. However, as we will show in the following subsections participants in study 2
were far more successful at producing 100% model-tracing complete tutoring systems. The
simulation results from chapters 6 would lead us to believe that this difference is largely due
to the more rapid and robust learning that can be achieved with the inclusion of a process-
learning mechanism. However, our qualitative observations and interviews with participants
led us to believe that our interaction design improvements played a large role as well.

7.3.1 Quantitative Results

Table 9 outlines the results for study 2. 6 of our 10 participants reported their programming
experience as a 2 out of 5. These 6 non-programmer participants included our 4 biology
graduate students, and 2 graduate students specializing in design.

8 of 10 participants succeeded at training agents that achieved 100% holdout completeness
in on the normal version of multicolumn addition (not the zero-carry version). This is the
same version of multicolumn addition that participants were asked to author in our 2020
prototype, in which users had a median model-tracing completeness rate of 92%, and no
user achieved 100%. Our study 2 results also showed users completing training in about
half the time compared to our 2020 study: a median of 22 minutes instead of 41 minutes.
For multicolumn addition, all users first solved the same 7 problems and selected their own
problems thereafter. In most cases, two or three additional problems after the initial 7 were
sufficient to achieve 100%. The two participants who did not reach 100% made mistakes
during training that they did not succeed in tracking down and fixing.

Table 9: Results for Study 2
MC Addition (normal) Fraction Arithmetic

User# Prog. Exp. Completeness Minutes N prob. Completeness Minutes N prob. Notice Use

1 2 100% 22 13 100% 21 20 n n

2 2 100% 20 9 100% 32 18 y y

3 2 100% 30 11 96.31% 30 16 n n

4 5 100% 14 11 88.52% 17 13 y y

5 2 90.96% 30 14 40.18% 19 9 n n

6 5 100% 22 11 98.87% 16 10 n n

7 5 100% 28 11 100% 27 14 y y

8 3 89.16% 36 11 38.73% 18 14 n n

9 2 100% 22 10 100% 25 18 y y

10 2 100% 18 9 100% 23 21 y n

Mean 3 98% 24.2 11 86% 22.8 15.3

Median 2 100% 22 11 99% 22 15

In fraction arithmetic, participants self-selected all of their own problems, and 5 out of
10 participants succeeded at training agents that achieved 100% holdout completeness. The
two lowest-performing participants made mistakes during training that prevented them from
achieving more than 50% completeness. The median completeness in this domain was 99%.
Participants trained the agent on 9 to 21 problems in this domain in 16 to 32 minutes with
a median of 22 minutes.

91

In our follow-up interviews we asked participants if they noticed the certainty score
indicators, and whether they considered them when deciding when to stop training the agent.
5 of 10 participants said that they did notice the certainty scores, and 4 indicated that they
considered them when deciding whether or not to stop training the agent. Specifically, these
participants indicated that they took the presence of a low certainty action as an indication
that the agent needed additional training on similar problems. 3 of these 4 participants
achieved 100% model-tracing completeness in both domains.

7.3.2 Qualitative Results

In our follow-up interviews several participants remarked on how quickly they learned to use
our tool, and how they could succeed at using AI2T to author two tutoring systems in less
than an hour. As in study 1, several users remarked on how quickly the agent was able to
learn from their instruction and how the authoring process became much easier once they
entered the stage of mostly checking the agent’s behavior on new problems. For instance,
one of our biology graduate student participants remarked: “This is wild, I could teach it all
that math in like 20 minutes [per topic].”

While some study 1 participants had commented on issues with the smoothness of the
“interaction loop”, very few study 2 participants had constructive negative feedback. Our
observations of users led us to believe that the inclusion of the skill application window in
the study 2 design was helpful in this regard. Some study 1 participants jumped between
problem states without fully giving feedback to all of the agent’s proposed actions, whereas
study 2 participants very consistently fell into a pattern of looking through actions in the
skill application window and giving them all feedback before moving on. The inclusion of
unordered groups meant that there were far fewer states in the study 2 version for users to
navigate through. For instance, much of the users’ time in study 1 was spent going through
many diverging states in large behavior graphs, especially for the fraction arithmetic domain,
but unordered groups spared study 2 users from the tedium of grading combinatorial paths.
Some study 1 users expressed that they had become disoriented while navigating between
problem states, but study 2 participants did not report any similar confusions.

Our follow-up interviews provided strong evidence that the users who noticed the cer-
tainty scores used them successfully to gauge when they should stop training the agent. For
instance, participant 2 in study 2 said, “I definitely would have stopped teaching it earlier
if I hadn’t seen the low confidence on some problems that I thought it already knew how to
do.”

7.4 Discussion

Overall our study 2 results show that our redesign produced a considerable improve-
ment over study 1. Half of the study 2 participants succeeded at training agents with 100%
complete tutoring system behavior on both domains, usually in under half an hour. Our in-
terviews with users also confirmed that displaying STAND’s instance certainty measure was
useful for assessing the AI2T agent’s learning progress toward 100% completeness. Several
participants in study 2 indicated that this indicator influenced their decision of when to stop
training the agent on new problems. This is a strong preliminary indication that the certainty
score indicators had the intended effect. A future randomized experiment would be able to

92

lend stronger statistical evidence for the connection between the availability of this indicator
and high authoring completeness. Although the productive monotonicity measure we report
in chapter 5 already establishes that this measure accurately reflects agent learning, so it is
reasonable to conclude that if users were explicitly trained to interpret it, they could use it
successfully as a heuristic for estimating holdout completeness.

These two studies were conducted across two points in the development of AI2T, starting
from a version that did not consistently achieve 100% model-tracing completeness, to a
point (with the inclusion of process-learning) where correct and complete programs could
be induced fairly consistently from being tutored by untrained users. In study 2, when
users did not achieve 100% model-tracing completeness they either made clear mistakes
during authoring (e.g., users 5 and 8) or trained AI2T on too few problems. Thus, improving
AI2T’s robustness may largely come down to better support for training users and helping
them catch mistakes. Participants 3, 4, and 6 likely fell short of 100% because they trained
AI2T on too few problems in fraction arithmetic (we didn’t find any uncaught training upon
reviewing their screen recordings). Participant 4 was the only user among these three who
claimed to use certainty scores, and the only participant familiar with the trajectory of the
AI2T project—specifically that AI2T had become more data-efficient in the months prior to
study 2—and thus they may have had a skewed belief of how little training was required.
When participants strictly interpreted a less than < 100% certainty score as an indication of
incompleteness they trained AI2T on a sufficient number of problems. Consequently, a little
bit of training to check for mistakes, and correctly interpret certainty scores may go a long
way toward helping authors use AI2T effectively.

7.5 Future Work

While our results are very promising, our user observations indicate that elements of our
system could be improved. For instance, a few of our study 2 participants made training
mistakes that produced errors that they did not identify and fix, and several others trained
the agent on too few problems to achieve 100% model-tracing complete behavior. It is rea-
sonable that users interacting with a tool for the first time make these mistakes, however, it
may be possible to better support users with these kinds of issues.

While our interaction design allows users to fix errors by deleting demonstrations or tog-
gling feedback on proposed actions, users must still find an error in order to fix it. Usually
buggy skills are easy to identify since they will persistently propose unusual actions. Expe-
rienced users may find it easier to find bugs if they were able to select individual skills, and
browse through each example supporting its current induced generalizations. We could also
help users choose good training problems by adding tools for auto-generating pools of prob-
lems and then using STAND’s instance certainty measure to choose ones with low certainty.
Recall that we showed in simulation in Chapter 5 that instance certainty can have a very
high active-learning utility. This would help users produce more diverse training sets, and
avoid a potential issue where the reported certainty scores are misleadingly high because the
training problems do not cover important edge cases.

Chapter 8

LLMs: Opportunities and Risks in the Classroom and

for Complementing Authoring-by-Tutoring

The elephant in the room is that since the proposal of this dissertation, the AI world has
evolved tremendously, raising the question of whether the innovations reported here are
obsolete. In the span of a year, the capabilities of Large Language Models (LLMs) have
improved by leaps and bounds and spurred a wide range of applications. Pretrained language
models have been employed in grading systems [25,53,74,86], educational content generation
[125], and have even been suggested as all-purpose tutoring chat bots [82,89,108]. While these
developments have attracted a great deal of attention, it is important to understand the scope
of LLM’s potential and risks. LLMs enable many exciting possibilities for generating content
at a moment’s notice and for responding flexibly to varied student inputs. Nonetheless, I
am not convinced that many of the proposed applications of LLMs will produce significant
improvements in the quality of online education in the near term. To understand my overall
pessimism toward the use of LLMs in education, yet optimism in select cases, we must
understand both how LLMs learn and perform, and consider whether they could play a role
in building educational technology like ITSs that actually show considerable improvements
over traditional instruction.

LLMs like ChatGPT are able to generate text, solve math problems, and write code
because they have been trained on gargantuan datasets: hundreds of billions of words of text,
hundreds of thousands of math problems, and large fractions of open-source code repositories
like GitHub. An LLM’s training dataset consists of more data of any variety than any human
would consume in a lifetime. Whether it generates sentences, math solutions [61], or code [8],
the performance of an LLM is typically imperfect, because it is essentially a very complex
form of auto-complete that outputs text by predicting next characters one at a time. The
more variety of human data the model is trained on, the more likely it is to generate an
output that we recognize as an acceptable human-like response in more diverse situations.

Surprisingly, this approach can partially work in math on fairly challenging problems, yet
always with imperfect performance (78% for instance in the case of [61]). Training a neural
network to solve math problems is a bit of a Sisyphean project. Regardless of the model’s
size or training set, the approach of using neural networks to directly generate responses
produces brittle performance [121]. Much of a neural network’s acquired capabilities in these
domains are simply memorized problem-solution pairs. The way that the neural network
compresses these solutions into its many internal weights produces some generalization that
enables the model to guess at unseen problems. However, since it does not actually induce a
program that leverages arithmetic functions, as we report in this work, its induced behavior
is far from reliable. It is quite easy, to come up with a problem that an LLM will undoubtedly
get wrong. For instance, problems with very large numbers that are unlikely to be part of
the LLM’s training set often do the trick. Additionally, since LLMs use some stochasticity in

94

their generation process and many are constantly retrained causing them to forget many of
their prior capabilities, LLMs can have highly variable performance between repeated queries
and over time.

8.1 Static Content Generation
The major value proposition of generative models is that they enable people to produce

new content on a whim. Although for mathematical content, where precision is essential,
it is difficult to see the benefit of using an LLM for question or answer generation when it
will inevitably generate errors. It seems silly to favor buggy content over curated content,
like for instance, the presumably errorless dataset that the LLM was trained on. After all,
a small fraction of the problems from that gargantuan dataset would suffice for covering a
large number of topics. For static content creation, the perceived value of the LLM is the
convenience of instantly drawing upon a great deal of prior human labor.

In an educational context, generating text with an LLM is a much safer prospect than
generating mathematical problems or solutions, as text is much easier to spot-check for
mistakes. An LLM that produces occasional errors can still be useful if the time and effort
required to double-check the model’s output is less than writing the text from scratch. And
there is a great deal of value in simply generating any material, even if it is of poor quality,
as a starting point. Drawing from auto-generated content can greatly lessen the burden of
needing to generate ideas, or provide an overall outline of what one wants to cover.

In a recent work, Pardos et. al. [94] found that ChatGPT 3.5 produced erroneous hints
30% of the time for algebra problems, yet they claim that they could mostly eliminate these
errors by querying the model 10 times per problem, and taking the most frequent response.
The filtered ChatGPT 3.5 hints were compared to expert-generated hints in a randomized
experiment with students showing that both produced similar learning gains. However, it is
worth considering if Pardos et. al.’s trick achieves something somewhat absurd in the grand
scheme of things. The LLM is able to generate hints because it was trained on a dataset
with lots of examples of algebra hints. If we poll the model multiple times, the expected
output would be, on average, similar to the examples it was trained on, especially in a K-12
domain like algebra which is probably well-represented in the LLM’s training set. This raises
the question: was this experiment an evaluation of ChatGPT’s generative capabilities or a
comparison between the human-generated hints from ChatGPT’s training set and another
set of human-generated hints? An LLM user cannot escape the fact that the generative model
was built upon other people’s labor, which they may or may not be legally entitled to.

A key drawback of LLMs is that they simply compress existing content and regurgitate it
back to users, meaning they cannot generate content of any higher quality than the average
poor-quality content already available on the internet. In the absence of high-quality curated
training data, the expected output of an LLM will be the fatefully mediocre mean of the
most frequent patterns in its training set. One can often tease higher quality content from
an LLM with “prompt engineering”, in which one provides more specific requests to an
LLM to constraint its generative capabilities, perhaps kicking it into drawing from parts
of its network trained from higher quality training examples [122]. But, it is not as if one
could not have searched for those high-quality materials themselves. High-quality publicly
available materials for any conceivable university-level topic are available in Massive Online
Open Courses (MOOCs), many of which are offered free of charge by world-class institutions.

95

Platforms like Khan Academy and IXL serve the same purpose for K-12 content. And of
course, search engines allow us to locate countless documents about just about anything.

While many of the materials across the internet and in platforms like MOOCs and Khan
Academy are of high quality in terms of accuracy, fluency, and comprehensiveness they are
not necessarily optimal learning tools since they most often consist of static text and videos
which are known to be among the least effective tools for of learning [18, 41]. If we want to
consider how AI can be used to improve education we need to disabuse ourselves of the idea
that content creation is the main hurdle to providing quality education. The internet has no
shortage of high-quality content. LLMs simply make it easier for those starting from scratch
to borrow or steal from existing content with plausible deniability. What we should really
consider is how we can provide students with the kinds of active and adaptive one-on-one
tutoring characteristic of ITSs, that rival the teaching performance of human tutors [44].
Delivering this kind of content at scale is the most compelling path toward improving online
educational systems with AI.

8.2 On-Demand Tutoring
The idea of using LLMs directly as interactive tutors has attracted a great deal of atten-

tion, and many classrooms have already experimented with incorporating tools like Chat-
GPT, and Khan Academy’s Khanmigo variant of GPT into their curricula. The perceived
benefits of using an LLM as a tutor are inarguable. ChatGPT is considerably more flexible
than any other chatbot before it and can answer queries on a wide range of topics, and
solve problems step-by-step along with detailed explanations. This approach to on-demand
tutoring presents a considerable opportunity.

Yet LLM-based chatbots have many glaring risks. Any on-demand response generated by
an LLM may be riddled with errors that could do more harm than good. LLM mistakes have
been likened to “hallucinations” [34]—a term that simultaneously captures the illogic of many
of their gaffs and the polite but self-assured manner in which they utter statements that are
clearly incorrect or logically inconsistent. However, I believe the most harmful hallucinations
are those that are not obviously incorrect; those that are so nearly correct that they appear
authoritative, yet confuse some important detail that would surely produce a misconception
in a novice. An LLM’s purpose is to produce text that sounds like what a human would
say, yet it engages in no explicit reasoning to produce its responses. It is not difficult to
imagine an LLM, for instance, providing advice that would be appropriate in one situation,
that is completely incorrect in another. In one instance, I observed ChatGPT 3.5 refer quite
confidently to the opposite sides of a triangle, which is of course a geometric impossibility.
Student’s misconceptions and mis-articulations lead them to say similarly odd things. An
LLM-based chatbot could very well be prone to re-affirming those illogical notions instead
of catching and correcting them.

There are several ways in which LLMs’ hallucination-prone generative abilities can be
reigned in. For instance, Retrieval Augmented Generation (RAG) is an approach that largely
constrains the outputs of an LLM to content present in a reference text [54]. Other approaches
to building educational chatbots with LLMs have taken the approach of generating static chat
dialog flows [104]. Another relatively safe approach is to use an LLM as the basis for classifiers
that grade or decide which of several fixed feedback options to provide to students on the
basis of their responses [62]. As self-contained elements within more structured programs, the

96

risks of using LLMs can be mitigated. For instance, some risks of an unconstrained chatbot
are that students may abuse it by convincing it to do work for them, or distract them
by entertaining their off-task queries. These sorts of issues have historical analogs in prior
educational technologies. There are many cases of educational technologies with engaging
and open-ended features that were shown to ultimately just waste student’s time [63, 71].
Similar issues will no doubt become apparent as unconstrained LLM chatbots are evaluated
in classroom studies.

8.3 Model-Tracing and Cognitive Supports

One reason to favor highly structured tutoring system designs over the sorts of open-
ended systems that an unconstrained LLM might enable, is simply that many of the greatest
ITS successes in terms of measured learning gains have been built through a highly detail-
oriented cognitivist approach that tends to focus students on precisely what they need to
learn at each point of their learning trajectory [44, 113]. The tried-and-true methods of
ITS engineering involve using cognitive task analyses (CTAs) to design these very focused
educational experiences [19]. CTAs of experts help learning engineers understand the nitty
gritty details of the specific knowledge they intend for students to master, and CTAs of
students help learning engineers understand what elements of that knowledge are difficult to
learn so that they can design very targeted adaptive features. There is no conceivable reason
to believe that in the absence of these efforts, an LLM could make similarly well-informed
instructional decisions.

Model-tracing is the essential ITS feature that this dissertation has sought to make easier
to implement: the ability of an ITS to track student solutions and mistakes step-by-step.
Model-tracing enables ITSs to provide targeted step-specific feedback for particular solution
strategies and mistakes and track when students utilize certain knowledge components in
particular problem steps.

One issue with trying to replicate model-tracing with an LLM is that it is difficult to
design a prompt that reliably extracts information about steps that are more fine-grained
than the LLM’s usual outputs. In my attempts so far, ChatGPT has consistently failed
when answering my best attempts at designing model-tracing-like queries. For instance for
the following prompt to ChatGPT 3.5:

Prompt: “A student has partially solved the problem 1/4 + 2/3. They have found the
common denominator 12 for the two fractions. What should they put as the numerator
of the left converted fraction?”

The model responds by giving a long step-by-step explanation for solving the problem
which concludes with:

ChatGPT: “Now, we add these fractions:

1
4
= 1x3

4x3
= 3

12
2
3
= 2x4

3x4
= 8

12

Therefore, the numerator of the left converted fraction is 11”

97

This error is not surprising. The language model is almost certainly only trained to
reproduce step-by-step solutions as single continuous blocks of text. It has likely not been
trained to answer more specific granular queries about individual steps and thus defaults to
providing the numerator of what is typically the final answer.

The following example highlights the fact that while ChatGPT’s responses can be very
detailed, it very often applies detailed feedback incorrectly:

Prompt: “A student has partially solved the problem 1/4 + 2/3. They have converted
the two fractions into 2/4 + 3/6. What would you tell a student who has made this
mistake?”

ChatGPT’s response includes suggestions with four steps, the first of which is:

ChatGPT: “Incorrect Conversion: Converting 1
4
to 2

4
assumes that they multiplied

both the numerator and the denominator of 1
4
by 2. However, the correct conversion

to a common denominator for 1
4
and 2

3
should be to find the least common multiple

of 4 and 3 which is 12.”

There is an obvious mistake in this response’s diagnosis of the student’s error. Only the
numerator was multiplied by 2, not the denominator as well. The fact that the model has
even attempted to explain the student mistake at this level of detail suggests that it has
been trained on examples that produce this very specific kind of feedback, yet in this case,
the feedback was applied incorrectly.

ChatGPT did not make it very hard to illustrate these issues. These two prompts were
the very first two that I attempted while writing this section, and both had errors. Perhaps
in the course of minutes or hours, I might come up with prompts that more reliably produce
the behavior I am after. However, the possibility of designing a prompt that works 100% of
the time is likely a remote one.

The other three steps that ChatGPT suggests in this second response were without
error and included “Finding the Correct Common Denominator”, addressing the
“Calculation Error” that 2

4
+ 3

6
= 1, and emphasizing the “Learning Point” that the

student should start by finding the common denominator.
These are all potentially helpful suggestions. However, it is worth considering whether

there is not a more direct way of instructing a potential student than giving them long-winded
explanations after they have made several errors. The common approach in model-tracing
ITSs is to give immediate step-wise correctness feedback that would, for instance, catch this
kind of error as soon as a student placed an incorrectly converted numerator or denominator.
It is difficult to say for certain without experimental evidence which of the two approaches
would be more effective: letting students play out their mistakes and then explaining those
mistakes back to them at length, or simply keeping the student focused on executing a
particular solution strategy in a more constrained environment. However, the latter would
undoubtedly be more time-efficient for students, which is often a good strategy for optimizing
student learning gains.

Of course, not every domain is well-suited to model-tracing-like supports, and we might
consider if LLMs could give detailed feedback in these cases. There are some instances in prior
literature of tutoring systems that largely diagnose errors in student solutions without relying

98

heavily on within-problem step-by-step scaffolding. Mitrovic’s SQL-Tutor [77] is one well-
studied prior example along these lines. However, it’s difficult to imagine an LLM achieving
tutoring capabilities anywhere near the specificity and precision of a system like the SQL-
Tutor that relies upon some 600 rules. Where would the training data for such detail-oriented
feedback come from?

LLMs consume and reproduce text, information that is intended to be consumed pas-
sively. It is inconceivable that a system built upon static content would be able to provide
the kinds of detailed cognitive supports that have historically distinguished ITSs from simple
content delivery systems and quizzes.

On the other hand, I think there are many exciting hybrid opportunities for augmenting
the cognitive supports of a traditional ITS with an LLM. For instance, many of the risks of
LLM hallucinations can be mitigated if they are only used to generate static content like hints
and feedback messages, that can be checked before they are deployed. Another application is
the building of item-specific or behavior-specific detectors that identify predefined patterns in
students’ natural language responses. Having an LLM give detailed domain-specific feedback
to incorrect student responses out of the box is beyond their current capabilities, but fine-
tuning them to explicitly identify well-defined classes of errors is considerably more feasible,
and if the feedback follows a relatively fixed template then the risks of providing misleading
feedback can be mitigated.

8.4 Authoring-By-Programming Support

One possibility that has been explored with CTAT is using ChatGPT-4 to generate the
code for rule-based model-tracing ITSs. In this work, an author with expertise in engineering
rule-based model-tracing ITSs gave GPT4 examples of rules written in a language called
nools [Aleven, 2024 venue pending]. The author described several domain-specific rules in
plain English for ChatGPT to translate into nools code to build a CTAT tutoring system.
The major downside of this approach is that the author needed to know how to write nools
rules for CTAT-based ITSs, and moreover, the specific rules that they wanted to write. They
described the contents of these rules to ChatGPT in detailed plain English and succeeded at
getting ChatGPT-4 to produce rules that were correct. However, this required a great deal of
back-and-forth with the language model where the author needed to describe a considerable
number of corrections to the generated outputs. For one domain more than 100 clarifications
were needed to write 22 rules.

An often overlooked issue with trying to finesse LLMs to behave properly with prompt
engineering is that in order to test and refine a prompt one must already have a desired
result in mind. In some cases, a well-written prompt can improve an LLM’s performance at
automating tedious repetitive tasks. However, when prompt engineering is used to produce
very particular single-purpose results, the time required to check the generated output and
then engage the LLM in multiple prompt cycles to refine the result can far outweigh the
effort that would have been required to just write the generated content by hand.

8.5 Authoring-By-Tutoring Support

AI2T’s authoring-by-tutoring approach is decidedly accessible to non-programmers. The
author does not need to know anything about how to write rules, only how to solve problems.

99

Yet inducing programs that authors never explicitly check or edit has its drawbacks. For
instance, in the fraction arithmetic domain, one of the preconditions of the induced rules is to
check whether or not the starting fractions have the same denominator. It should be trivially
obvious, even to a non-programmer, that this precondition needs to be somewhere in the
induced program. After all, to solve fraction addition problems all of our participants needed
to check for this and apply the appropriate procedure in turn. Authors could surely convey
this knowledge directly to an authoring-by-tutoring agent if the agent could understand it,
instead of forcing every precondition to be blindly induced from several example problems.

Allowing authors to go under the hood and write code would present many challenges.
The authors may know what they want to accomplish, but not how to represent it in AI2T’s
internal representation language, and where to place the code within the overall induced
program. The authoring interface could lighten some of this burden by grounding the writ-
ing of the precondition in a context in which it is relevant: within a step of a particular
problem, with particular referenceable interface elements, being acted upon by a particular
skill. Tools like SUGILITE [59] and Rosie [84], for instance, take this kind of approach where
the demonstration of a program is situated in an example. Yet the problem remains for the
non-programmer writing the actual precondition in an unfamiliar representation language.

One way LLMs could assist non-programmers with writing preconditions is by translating
their natural language instructions: “Convert the two fractions when they have unequal
denominators”, into code. LLMs could help by querying for situated piece-wise instruction
and ask the user: “What are the denominators?”, similar to approaches like [84] and [52]. Or
the LLM could be used to simply write an example predicate that tests for “unequal” things,
and mutual disambiguation with induced predicates could narrow down which two unequal
things across problems are most likely the necessary ones to check. Even if induction or LLM
translation produces an incorrect predicate, it may provide a natural way for the user to see
what a predicate looks like as expressed with reference to the variables of particular skills.
LLMs could also translate predicates back to natural language so that non-programmer users
can understand induced ones [52].

Of course, I am not suggesting that natural language instruction should replace induction
entirely. In the ideal case, they should complement one another. Some balance should be
struck between having users describe a program in its entirety and having an AI induce the
program in its entirety. A solution at the intersection of these modalities makes for a large
space of design considerations.

Another kind of natural language instruction that users could provide is the structure of a
hierarchical program. I’ve described this approach, employed in systems like Instructo-Soar,
Rosie [83], SUGILITE [59], and VAL [52] as potentially troublesome in cases where users aim
to build very complex programs. However, combined with HTN induction, there may be a
middle ground where users describe constraints, features, or sub-routines of a larger program
that an inductive system can then connect together. This could avoid the issue with purely
top-down instruction where the user must essentially know the hierarchical structure of their
intended program from the start, yet still leverage the user’s ability to describe elements of
the intended program.

Chapter 9

Conclusion

Well beyond prior attempts at implementing authoring-by-tutoring [68, 70, 117] this disser-
tation has demonstrated a path towards methods of ITS authoring that are both acessible
to non-programmers and enable the authoring of flexible and robust ITS behaviors that
are typically only implementable with hand-programmed production rules. Prior works with
SimStudent and AL have only shown imperfect ITS induction, even in the hands of their
creators. By contrast, our evaluations of AI2T show half of our untrained participants, who
were mostly non-programmers, succeeding at producing model-tracing complete ITSs with
authoring-by-tutoring, and several others achieving nearly 100% model-tracing complete-
ness. Toward this aim, STAND and our HTN induction approach mark major improvements
toward building data-efficient and robust simulated learners that can be taught interactively,
and our interaction design evaluations show how users can be supported in succeeding at
this interactive training.

This work reports on the technical and design elements of AI2T that make 100% model-
tracing completeness possible, yet is limited to evaluating just multi-column addition and
fraction arithmetic. Focusing on just these two domains maintained some consistency be-
tween our two studies and prior work [117], limited participation time to less than 90 min-
utes, focused on domains that most participants would remember how to do, and limited
the number of domains we needed to hand-program in specialized environments in order
to evaluate model-tracing completeness against a ground-truth program (this is not general
requirement of authoring, just for our evaluations). However, AI2T is not necessarily limited
to these two domains, and its capabilities may be considerably broadened with the addition
of a few additional features.

9.1 Potential Scope of Tutoring System Domains

Prior work with Sierra, SimStudent, and the Apprentice Learner, which learn in a similar
manner as AI2T, have trained agents on dozens of domains including algebra, stoichiometry,
geometry, simple linguistic tasks like Chinese character translation and article selection, a
few games, and other arithmetic tasks like subtraction and multiplication. Many of these
domains have control structures that could only typically be programmed in production
rule-based implementations. AI2T may well succeed where these prior systems have fallen
short of inducing correct and complete behavior. STAND is more data-efficient than the
precondition induction approaches used in those systems, and AI2T can learn HTN-based
control structures that may more naturally capture their control behaviors.

In general, AI2T is designed for authoring procedural domains similar to those typically
targeted by rule-based model-tracing tutors like Cognitive Tutors [39]. These domains tend
to have well-defined correct and incorrect solution paths with distinct steps, and with AI2T’s
rule induction approach these steps can vary based on the context of the problem or student
solution strategy instead of being fixed within the structure of static sequences or graphs.

101

Naturally science and math skills tend to fall into this category of procedural skills. However,
any domain that involves procedural decision making and can be expressed symbolically
within an interface is a good candidate. Domains like essay grading that permit unconstrained
natural text responses are out of scope of AI2T’s abilities. However, there are certainly
possibilities for using systems better suited to these kinds of assessments in combination
with AI2T. AI2T may add value in these cases if the free response pieces needed to be
situated within some procedural decision making process that AI2T could help induce.

9.2 Who can use AI2T?
The major aim of this work was to prototype a method whereby the authoring of complex

ITSs is made simple, fast, and accessible to non-programmers. The typical users of an ITS au-
thoring tool include instructional designers, learning-engineers, teachers, and researchers—all
professionals who may or may not have programming expertise, but who all certainly benefit
from being able to author ITSs quickly. Many of our participants succeeded at authoring
complete model-tracing behavior in less than half an hour. Studies of in-service professionals
working in a more open-ended authoring study may provide interesting design perspectives
that this work has overlooked. However, in terms of usability, there is every reason to believe
that the typical users of an ITS authoring tool should have similar success using AI2T as
our mostly graduate student participants.

9.3 Interface Design and The Design Loop
One initial challenge of authoring a domain is building an interface for it. In our studies we

provided interfaces for our users that were each ready-made for a particular approach to step-
by-step problem solving. ITS authoring typically requires planning the design of an interface
around its step-by-step support, and these designs may need to be revised as they are tested
with students. This cyclic process of revision has been referred to as the design loop of ITS
authoring [3]. AI2T does not provide a solution for building HTML interfaces, although it
can certainly use interfaces built with any of the several options already implemented for
other ITS authoring tools [2], including tools where interfaces can be built from natural
language descriptions [15].

AI2T may play a beneficial role in the ITS design loop as it tends to learn more effec-
tively from granular step-by-step solutions. Step-by-step scaffolding tends to benefit student
learning, especially for students with low prior knowledge since step-by-step problem solving
tends to reduce cognitive load and provide more opportunities in the ITS for adapting to
student mistakes [37]. Instead of authors relying on classroom studies to assess if their cogni-
tive support is appropriate, AI2T can be used as a simulated student that can partially guide
this process. It is easier for AI2T to learn procedures in a step-by-step display-based manner
where steps are granular and can be easily self-explained from its current function library,
and where intermediate results are visible for use in later steps. For instance, the zero-carry
version of multi-column addition that we used in study 1 can be trained with fewer examples
than the normal algorithm (like study 2) where zeros are never carried. Since AI2T learns
entirely bottom-up from authors’ instruction, what works well for AI2T may very well work
well for low prior knowledge students, and authoring with AI2T may encourage authors to
build tutoring systems with more fine-grained support than they may otherwise consider on
their first design attempts.

102

9.4 Future Work for Broader Authoring with AI2T

One challenge of using AI2T for general-purpose authoring is that it needs to have prim-
itives in its function library to explain and generalize from users’ demonstrated actions.
Multi-column addition and fraction arithmetic can be authored with a library that has
just a few arithmetic primitives like adding, multiplying, and isolating ones and tens digits
from integers. Yet, many domains would require additional pre-built or author-programmed
primitives for AI2T to compose into complete programs. There is some precedent for authors
learning to write these primitives fairly quickly. At the LearnLab summer school, a week-
long workshop on edTech tools developed at CMU, we have had several dozen participants
succeed at building interfaces (with drag and drop tools) and writing primitive functions for
a wide array of domains that they then succeeded at training a pre-cursor to AI2T on, in the
course of about 2 dedicated work days of deliberate effort. These summer school participants
have taught agents to carry out algorithms taught in CS curricula, special approaches to
arithmetic, pre-algebra procedures, and skills in music theory, just to name a few. Of course,
when it comes to writing primitives for complex domains, the scope of what authors can
build depends on their prior programming experience. LLM’s code generation capabilities
could go a long way toward speeding up and helping less-experienced users with writing
these primitive functions. Authors’ demonstrations could also provide a natural means of
unit testing these short sub-routines, and interface affordances could be designed around
these features.

Adding yet more performance and learning mechanisms to AI2T could also expand the
scope of what it can be used to author with simple primitive functions. For instance, Li et.
al. added a representation learning mechanism to SimStudent [57] that greatly simplified
the primitive functions required for it to learn algebra equation solving. The representation
learning mechanism acquired a grammar for parsing short algebraic expressions, which elim-
inated the need to hand-write domain-specific primitives, like ones for extracting constants
and coefficients from expressions. A limitation of this work was that the representation learn-
ing mechanism needed to be pretrained offline, not interactively. A representation learning
mechanism that learns interactively and in tandem with procedure induction is an open,
and potentially very difficult problem (perhaps PhD dissertation worthy). There are other
opportunities along these lines for using pretrained systems like LLMs to parse content like
text and images into a structured representation that AI2T can reason over. These features
could extend AI2T’s authoring scope to include domains with word problems and problems
that involve reasoning over figures (this would be a relatively quick project to prototype).

Additionally, some minor improvements in AI2T’s process-learning mechanism, like the
ability to induce recursive HTNs, would go a long way toward broadening the generality
of problem types that can be authored. For instance, in this work, we tested 3-by-3 digit
multi-column addition, but recursive HTN induction would naturally extend to arbitrary
addition problems, and assist in inducing many other domains as well (this could likely be
perfected in a matter of months).

9.5 Other Time-Saving Benefits

Moreover, AI2T’s authoring-by-tutoring approach could in principle replicate and speed
up the authoring of domains similar to those that have been built with tools like CTAT

103

example-tracing or OATutor that only allow for much simpler control structures. After an
initial set of demonstrations, AI2T mostly just requires authors to check problem solutions.
Authors do not necessarily need to solve every problem that they mass produce, and since
AI2T has the potential to induce complete programs from a handful of examples, authors
may not even need to check every problem they generate. As we’ve shown in this work,
this benefit applies to building the core model-tracing features of an ITS like correctness
evaluations of step-by-step actions, and the generation of “bottom-out” hints that produce
next-step answers. However, in principle, AI2T’s ability to induce rule-based programs can
partially assist with some of the effort of authoring additional ITS features. For instance,
it is much easier to write a few templates for conceptual hints and feedback messages that
are associated with particular rules, than it is to write unique hints and messages problem-
by-problem or generate messages with LLMs problem-by-problem and check them one at
a time [94]. Automatically inducing rules for a domain also naturally produces a domain
model, a model of the skills needed to master a domain—something which is typically hand-
built or derived in a data-driven manner, and used in knowledge tracers that track student
mastery [55].

9.6 Additional Elements of Feature Complete Tutoring Systems
The model-tracing behavior that AI2T induces in this work suffices for enabling automatic

correctness feedback (e.g., marking actions as correct or not) and bottom-out hints (hints
that give the answer for individual steps). Beyond this, authoring a typical fully featured
model-tracing ITS would additionally involve:

1. Building a tutoring interface. This can be done with drag-and-drop UI tools like the one
for CTAT [2] among others [15, 107].

2. Writing step-specific hints and feedback messages that go along with each induced skill.
3. Teaching AI2T several buggy skills to adapt to common mistakes. Currently AI2T has

no explicit interaction method for this. Although, the interface design for doing this
could be as simple as introducing a toggler to flag demonstrations or skills as buggy. The
backend AI would simply need to be adjusted to explicitly ignore these buggy skills in
some instances.

4. Assigning knowledge component labels to steps to enable knowledge tracing. Prior work
has demonstrated that simulated learners can automate this process quite well [58]. Each
independent application of an induced skill can serve as step-to-knowledge component
mapping.

9.7 Considerations for Editing, Reusing, and on Building Upon
Existing ITSs

The benefits of authoring ITSs quickly are numerous. ITSs can quickly become obsolete
by shifts in technology. For instance, changing trends in programming language popularity
and the shift from desktop applications to on-demand web applications have produced rapid
changes in the tools used to program and deliver ITSs, often resulting in their reimplemen-
tation. Making ITS authoring easier may also enable more education technology to be like
ITSs and provide fine-grained cognitive support. Additionally perfecting adaptive instruction
requires researchers to implement multiple versions of tutoring systems so they can be tested

104

against each other in A/B studies. All of these use cases benefit from tools for authoring
ITSs quickly from the ground-up.

Yet, another possibility is that end-users like teachers and researchers may want to tweak
existing ITSs to specialize them for their own purposes. For instance, a teacher may want
to add, remove, or replace the solution strategies supported by an already-built ITS. In
principle, this could be facilitated in AI2T by interface affordances that allow users to simply
select and remove entire methods or primitive skills—a features which would also be helpful
for cleaning up incorrect skills induced from erroneous demonstrations in normal authoring.
Instead of just allowing for the removal of demonstrations, which AI2T already supports,
this feature could remove whole skills and all of their supporting examples. To add new skills
to an existing ITS, authors could simply demonstrate new solutions as needed. In principle,
AI2T’s process-learning mechanism reduces much of the complexity of this. With induced
HTNs multiple strategies are naturally expressed as multiple disjoint methods of the same
task, and thus new methods can be easily inserted by simply demonstrating them wherever
they should be applied. In general, this should rarely interfere with the rest of the HTN
structure.

An author may also want to make edits to an ITS or reuse skills that AI2T learned when
making another ITS. In these cases, authors may want to use induced skills in interfaces
different than the ones they were learned in. One compelling application along these lines is
taking higher-order skills (e.g., methods in an HTN) learned in an interface with fine-grained
steps, and compressing them into skills that perform more complex multi-step actions with-
out placing intermediate results in a display. Toward making more complex tutors from
simpler ones, and for supporting curricula with faded scaffolding in which step-by-step sup-
ports are removed as students gain greater mastery [101], chunking together and reusing
composite skills is a desirable feature. Composing skills is fairly straightforward, although
robustly generalizing skills to work in new interfaces is somewhat more difficult, and poten-
tially error-prone. In principle, where-learning already provides a solution for cross-interface
generalization, but we have not evaluated it extensively along these lines.

From an author’s perspective, cross-interface transfer could work in multiple ways. In the
ideal case the AI agent could propose applications of its current skills in new interfaces by
automatically recognizing their applicability. In a less desirable case, the author may need to
demonstrate the skill again in the new interface and have AI2T use where-learning to abduce
how the new demonstrations map onto a prior skill, and how this mapping will generalize
the where-part constraints for that skill. In the case where the agent proposes its own candi-
dates for skill transfer, each proposed skill application may need to violate some of the skill’s
current where-part constraints. This requires applying partial matching—something AI2T
already has a good implementation for, but which has some potential to cause erratic be-
havior. Partial matching is typically more computationally expensive than fully constrained
matching and can generate a large number of candidate matches. So there are likely sub-
problems that need to be solved to find the sweet spot between helpful suggestions for skill
transfer, and erratic behavior where the agent produces many spurious suggestions. Inputs
from a user like hints about when skill transfer should be attempted may help with this.

105

9.8 Broader Applicability

In the broader context of interactive task learning, the innovations of this work—including
its novel machine learning algorithms and interaction design—open up possibilities that
could be applicable in robotics, web automation, and human-AI collaboration. In the last
few decades, the field of machine learning has had a heavy focus on data-driven learning.
More recently AI research has focused heavily on finding ways to utilize pretrained generative
models. A smaller group of researchers have focused methods of ITL where AI capabilities
are learned directly from human instruction [46]. However, many ITL approaches envision
interactions where a user gives instructions to an agent in a mostly top-down manner. The
objectives of a program are stated, and then the user describes steps to achieving that
objective. By analogy to human learning, instructing an agent in this top-down manner is
like learning from being told—an approach to learning that often produces poor learning
outcomes in humans compared to learning-by-doing.

AI2T, like other simulated learners before it, simulates learning-by-doing in the context of
supervised tutoring interactions situated in practice, including demonstrations and correct-
ness feedback on attempted actions. This work is an example where the kinds of instruction
that are often effective for human learners are employed effectively in tutoring an artificial
learner. The consideration of looking to human learning as an inspiration for designing better
machine learning and interactions for teaching artificial learners is one that has fallen out of
practice in recent decades, perhaps in part because of the rise of data-driven methods like
deep reinforcement learning (a learning-by-doing approach of sorts) that are decidedly not
human-like and orders of magnitude less data-efficient than human learners. The fact that we
achieve data-efficient and robust induction opens a number of considerations for improving
systems that currently operate by reinforcement-learning, and for broadening the kinds of
interactions that can be used when training agents interactively.

References
1. Aleven, V., McLaren, B., Roll, I., Koedinger, K.: Toward tutoring help seeking: Applying cognitive modeling to

meta-cognitive skills. In: Intelligent Tutoring Systems: 7th International Conference, ITS 2004, Maceió, Alagoas,
Brazil, August 30-September 3, 2004. Proceedings 7. pp. 227–239. Springer (2004)

2. Aleven, V., McLaren, B.M., Sewall, J., Van Velsen, M., Popescu, O., Demi, S., Ringenberg, M., Koedinger, K.R.:
Example-tracing tutors: Intelligent tutor development for non-programmers. International Journal of Artificial
Intelligence in Education 26(1), 224–269 (2016)

3. Aleven, V., McLaughlin, E.A., Glenn, R.A., Koedinger, K.R.: Instruction based on adaptive learning technolo-
gies. Handbook of research on learning and instruction 2, 522–560 (2016)

4. Anderson, J.R., Boyle, C.F., Corbett, A.T., Lewis, M.W.: Cognitive modeling and intelligent tutoring (1990)
5. Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive tutors: Lessons learned. The journal

of the learning sciences 4(2), 167–207 (1995)
6. Arora, A., Fiorino, H., Pellier, D., Métivier, M., Pesty, S.: A review of learning planning action models. The

Knowledge Engineering Review 33, e20 (2018)
7. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: A brief survey.

IEEE Signal Processing Magazine 34(6), 26–38 (2017)
8. Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q.,

et al.: Program synthesis with large language models. arXiv preprint arXiv:2108.07732 (2021)
9. Blessing, S.B.: A programming by demonstration authoring tool for model-tracing tutors. International Journal

of Artificial Intelligence in Education 8, 233–261 (1997)
10. Bloom, B.S.: The 2 sigma problem: The search for methods of group instruction as effective as one-to-one

tutoring. Educational researcher 13(6), 4–16 (1984)
11. Breiman, L.: Bagging predictors. Machine learning 24, 123–140 (1996)
12. Breiman, L.: Random forests. Machine learning 45, 5–32 (2001)

106

13. Breiman, L.: Classification and Regression Trees. Routledge (2017)
14. Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y.T., Li, Y.,

Lundberg, S., et al.: Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712 (2023)

15. Calo, T., MacLellan, C.J.: Towards educator-driven tutor authoring: Generative ai approaches for creating
intelligent tutor interfaces. arXiv preprint arXiv:2405.14713 (2024)

16. Chen, K., Srikanth, N.S., Kent, D., Ravichandar, H., Chernova, S.: Learning hierarchical task networks with
preferences from unannotated demonstrations. In: Conference on Robot Learning. pp. 1572–1581. PMLR (2021)

17. Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining. pp. 785–794 (2016)

18. Chi, M.T., Wylie, R.: The icap framework: Linking cognitive engagement to active learning outcomes. Educa-
tional psychologist 49(4), 219–243 (2014)

19. Clark, R.E., Feldon, D.F., Van Merrienboer, J.J., Yates, K.A., Early, S.: Cognitive task analysis. In: Handbook
of research on educational communications and technology, pp. 577–593. Routledge (2008)

20. Codel, C., Koedinger, K., Harpstead, E.: Revisiting rumbleblocks with apprentice learning: Examining and
learning gameplay with al (2020)

21. Conati, C., VanLehn, K.: Teaching meta-cognitive skills: Implementation and evaluation of a tutoring system
to guide self-explanation while learning from examples. In: Artificial intelligence in education. pp. 297–304. IOS
Press (1999)

22. Cypher, A., Halbert, D.C.: Watch What I Do: Programming by Demonstration. MIT press (1993)
23. Erol, K., Hendler, J.A., Nau, D.S.: Semantics for hierarchical task-network planning. Citeseer (1994)
24. Erol, K., Hendler, J.A., Nau, D.S.: Umcp: A sound and complete procedure for hierarchical task-network plan-

ning. In: Aips. vol. 94, pp. 249–254 (1994)
25. Gao, R., Merzdorf, H.E., Anwar, S., Hipwell, M.C., Srinivasa, A.: Automatic assessment of text-based responses

in post-secondary education: A systematic review. Computers and Education: Artificial Intelligence p. 100206
(2024)

26. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H.H., Ventura, M., Olney, A., Louwerse, M.M.: Autotutor: A
tutor with dialogue in natural language. Behavior Research Methods, Instruments, & Computers 36, 180–192
(2004)

27. Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using examples. Communications of the
ACM 55(8), 97–105 (2012)

28. Hecht-Nielsen, R.: Theory of the backpropagation neural network. In: Neural networks for perception, pp. 65–93.
Elsevier (1992)

29. Heffernan, N.T., Heffernan, C.L.: The assistments ecosystem: Building a platform that brings scientists and
teachers together for minimally invasive research on human learning and teaching. International Journal of
Artificial Intelligence in Education 24(4), 470–497 (2014)

30. Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., Steinhardt, J.: Measuring
mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874 (2021)

31. Hirsh, H.: Polynomial-time learning with version spaces. In: AAAI. pp. 117–122 (1992)
32. Hogg, C., Munoz-Avila, H., Kuter, U.: Htn-maker: Learning htns with minimal additional knowledge engineering

required. In: AAAI. pp. 950–956 (2008)
33. Huffman, S.B., Laird, J.E.: Flexibly instructable agents. Journal of Artificial Intelligence Research 3, 271–324

(1995)
34. Ji, Z., Yu, T., Xu, Y., Lee, N., Ishii, E., Fung, P.: Towards mitigating llm hallucination via self reflection. In:

Findings of the Association for Computational Linguistics: EMNLP 2023. pp. 1827–1843 (2023)
35. Kaliszyk, C., Urban, J., Michalewski, H., Oľsák, M.: Reinforcement learning of theorem proving. Advances in

Neural Information Processing Systems 31 (2018)
36. Klenk, M., Forbus, K.: Analogical model formulation for transfer learning in ap physics. Artificial intelligence

173(18), 1615–1638 (2009)
37. Koedinger, K.R., Aleven, V.: Exploring the assistance dilemma in experiments with cognitive tutors. Educational

Psychology Review 19, 239–264 (2007)
38. Koedinger, K.R., Carvalho, P.F., Liu, R., McLaughlin, E.A.: An astonishing regularity in student learning rate.

Proceedings of the National Academy of Sciences 120(13), e2221311120 (2023)
39. Koedinger, K.R., Corbett, A., et al.: Cognitive tutors: Technology bringing learning sciences to the classroom.

na (2006)
40. Koedinger, K.R., Corbett, A.T., Perfetti, C.: The knowledge-learning-instruction framework: Bridging the

science-practice chasm to enhance robust student learning. Cognitive science 36(5), 757–798 (2012)
41. Koedinger, K.R., Kim, J., Jia, J.Z., McLaughlin, E.A., Bier, N.L.: Learning is not a spectator sport: Doing

is better than watching for learning from a mooc. In: Proceedings of the second (2015) ACM conference on
learning@ scale. pp. 111–120 (2015)

107

42. Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: ICML. vol. 97, pp. 161–169 (1997)
43. Konda, V.R., Borkar, V.S.: Actor-critic–type learning algorithms for markov decision processes. SIAM Journal

on control and Optimization 38(1), 94–123 (1999)
44. Kulik, J.A., Fletcher, J.: Effectiveness of intelligent tutoring systems: a meta-analytic review. Review of educa-

tional research 86(1), 42–78 (2016)
45. Laird, J.E.: The Soar cognitive architecture. MIT press (2019)
46. Laird, J.E., Gluck, K., Anderson, J., Forbus, K.D., Jenkins, O.C., Lebiere, C., Salvucci, D., Scheutz, M., Thomaz,

A., Trafton, G., Wray, R.E., Mohan, S., Kirk, J.R.: Interactive Task Learning. IEEE Intelligent Systems 32(4),
6–21 (2017). https://doi.org/10.1109/MIS.2017.3121552, http://ieeexplore.ieee.org/document/8012335/

47. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: Toward a common computational
framework across artificial intelligence, cognitive science, neuroscience, and robotics. Ai Magazine 38(4), 13–26
(2017)

48. Lample, G., Charton, F.: Deep learning for symbolic mathematics. arXiv preprint arXiv:1912.01412 (2019)
49. Langley, P.: Learning hierarchical problem networks for knowledge-based planning. In: International Conference

on Inductive Logic Programming. pp. 69–83. Springer (2022)
50. Larkin, J.H.: Display-based problem solving. Complex information processing: The impact of Herbert A. Simon

pp. 319–341 (1989)
51. Lau, T., Wolfman, S.A., Domingos, P., Weld, D.S.: Programming by demonstration using version space algebra.

Machine Learning 53(1), 111–156 (2003)
52. Lawley, L., Maclellan, C.: Val: Interactive task learning with gpt dialog parsing. In: Proceedings of the CHI

Conference on Human Factors in Computing Systems. pp. 1–18 (2024)
53. Lee, G.G., Latif, E., Wu, X., Liu, N., Zhai, X.: Applying large language models and chain-of-thought for

automatic scoring. Computers and Education: Artificial Intelligence 6, 100213 (2024)
54. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih, W.t.,

Rocktäschel, T., et al.: Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural
Information Processing Systems 33, 9459–9474 (2020)

55. Li, N., Cohen, W.W., Koedinger, K.R., Matsuda, N.: A machine learning approach for automatic student model
discovery. In: Edm. pp. 31–40. ERIC (2011)

56. Li, N., Cushing, W., Kambhampati, S., Yoon, S.: Learning probabilistic hierarchical task networks as probabilis-
tic context-free grammars to capture user preferences. ACM Transactions on Intelligent Systems and Technology
(TIST) 5(2), 1–32 (2014)

57. Li, N., Matsuda, N., Cohen, W.W., Koedinger, K.R.: Integrating representation learning and skill learning in a
human-like intelligent agent. Artificial Intelligence 219, 67–91 (2015)

58. Li, N., Stampfer, E., Cohen, W., Koedinger, K.: General and efficient cognitive model discovery using a simulated
student. In: Proceedings of the Annual Meeting of the Cognitive Science Society. vol. 35 (2013)

59. Li, T.J.J., Azaria, A., Myers, B.A.: SUGILITE: Creating multimodal smartphone automation by demonstration.
In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. pp. 6038–6049. ACM
(2017)

60. Li, T.J.J., Labutov, I., Li, X.N., Zhang, X., Shi, W., Ding, W., Mitchell, T.M., Myers, B.A.: Appinite: A
multi-modal interface for specifying data descriptions in programming by demonstration using natural language
instructions. In: 2018 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). pp.
105–114. IEEE (2018)

61. Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker, B., Lee, T., Leike, J., Schulman, J., Sutskever, I.,
Cobbe, K.: Let’s verify step by step. arXiv preprint arXiv:2305.20050 (2023)

62. Lin, J., Chen, E., Han, Z., Gurung, A., Thomas, D.R., Tan, W., Nguyen, N.D., Koedinger, K.R.: How can
i improve? using gpt to highlight the desired and undesired parts of open-ended responses. arXiv preprint
arXiv:2405.00291 (2024)

63. Long, Y., Aleven, V.: Educational game and intelligent tutoring system: A classroom study and comparative
design analysis. ACM Transactions on Computer-Human Interaction (TOCHI) 24(3), 1–27 (2017)

64. MacLellan, C.J.: Computational Models of Human Learning: Applications for Tutor Development, Behavior
Prediction, and Theory Testing. Ph.D. thesis, Carnegie Mellon University (2017)

65. MacLellan, C.J., Gupta, A.: Learning expert models for educationally relevant tasks using reinforcement learn-
ing. International Educational Data Mining Society (2021)

66. Maclellan, C.J., Harpstead, E., Patel, R., Koedinger, K.R.: The Apprentice Learner Architecture: Closing the
loop between learning theory and educational data. International Educational Data Mining Society (2016)

67. MacLellan, C.J., Harpstead, E., Wiese, E.S., Zou, M., Matsuda, N., Aleven, V., Koedinger, K.R.: Authoring
tutors with complex solutions: A comparative analysis of example tracing and simstudent. In: AIED workshops
(2015)

68. MacLellan, C.J., Koedinger, K.R.: Domain-general tutor authoring with apprentice learner models. International
Journal of Artificial Intelligence in Education pp. 1–42 (2020)

108

69. Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., De Raedt, L.: Deepproblog: Neural probabilistic logic
programming. Advances in neural information processing systems 31 (2018)

70. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Teaching the teacher: Tutoring simstudent leads to more effective
cognitive tutor authoring. International Journal of Artificial Intelligence in Education 25(1), 1–34 (2015)

71. Mayer, R.E.: Should there be a three-strikes rule against pure discovery learning? American psychologist 59(1),
14 (2004)

72. McDaniel, R.G., Myers, B.A.: Gamut: Demonstrating whole applications. In: Symposium on User Interface
Software and Technology: Proceedings of the 10 th annual ACM symposium on User interface software and
technology. vol. 14, pp. 81–82 (1997)

73. McNeill, K.L., Lizotte, D.J., Krajcik, J., Marx, R.W.: Supporting students’ construction of scientific explanations
by fading scaffolds in instructional materials. The journal of the Learning Sciences 15(2), 153–191 (2006)

74. Meyersa, P., Hana, A., Grewala, R., Potnisa, M., Stampera, J.: Focal: A proposed method of leveraging llms
for automating assessments

75. Mitchell, T.M.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)
76. Mitchell, T.M.: Version spaces: an approach to concept learning. Tech. rep., STANFORD UNIV CALIF DEPT

OF COMPUTER SCIENCE (1978)
77. Mitrovic, A.: An intelligent sql tutor on the web. International Journal of Artificial Intelligence in Education

13(2-4), 173–197 (2003)
78. Mitrovic, A.: Modeling domains and students with constraint-based modeling. In: Advances in intelligent tu-

toring systems, pp. 63–80. Springer (2010)
79. Mitrovic, A., Ohlsson, S., Barrow, D.K.: The effect of positive feedback in a constraint-based intelligent tutoring

system. Computers & Education 60(1), 264–272 (2013)
80. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari

with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)
81. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fid-

jeland, A.K., Ostrovski, G., et al.: Human-level control through deep reinforcement learning. nature 518(7540),
529–533 (2015)

82. Modran, H., Bogdan, I.C., Ursut, iu, D., Samoila, C., Modran, P.L.: Llm intelligent agent tutoring in higher
education courses using a rag approach (2024)

83. Mohan, S., Laird, J.: Learning goal-oriented hierarchical tasks from situated interactive instruction. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence. vol. 28 (2014)

84. Mohan, S., Mininger, A., Kirk, J., Laird, J.E.: Learning grounded language through situated interactive instruc-
tion. In: 2012 AAAI Fall Symposium Series (2012)

85. Mohseni-Kabir, A., Chernova, S., Rich, C.: Collaborative learning of hierarchical task networks from demon-
stration and instruction. In: 2014 AAAI Fall Symposium Series (2014)

86. Moore, S., Nguyen, H.A., Bier, N., Domadia, T., Stamper, J.: Assessing the quality of student-generated short
answer questions using gpt-3. In: European conference on technology enhanced learning. pp. 243–257. Springer
(2022)

87. Myers, B.A.: Creating user interfaces by demonstration. Academic Press Professional, Inc. (1988)
88. Nejati, N., Langley, P., Konik, T.: Learning hierarchical task networks by observation. In: Proceedings of the

23rd international conference on Machine learning. pp. 665–672 (2006)
89. Neumann, M., Rauschenberger, M., Schön, E.M.: “we need to talk about chatgpt”: The future of ai and higher

education. In: 2023 IEEE/ACM 5th International Workshop on Software Engineering Education for the Next
Generation (SEENG). pp. 29–32. IEEE (2023)

90. Neves, D.M.: Learning procedures from examples and by doing. In: IJCAI. pp. 624–630. Citeseer (1985)
91. Nguyen, C., Reifsnyder, N., Gopalakrishnan, S., Munoz-Avila, H.: Automated learning of hierarchical task

networks for controlling minecraft agents. 226–231 (2017)
92. Nguyen-Tuong, D., Peters, J.: Model learning for robot control: a survey. Cognitive processing 12, 319–340

(2011)
93. Nwana, H.S.: Intelligent tutoring systems: an overview. Artificial Intelligence Review 4(4), 251–277 (1990)
94. Pardos, Z.A., Bhandari, S.: Chatgpt-generated help produces learning gains equivalent to human tutor-authored

help on mathematics skills. Plos one 19(5), e0304013 (2024)
95. Pardos, Z.A., Tang, M., Anastasopoulos, I., Sheel, S.K., Zhang, E.: Oatutor: An open-source adaptive tutoring

system and curated content library for learning sciences research. In: Proceedings of the 2023 chi conference on
human factors in computing systems. pp. 1–17 (2023)

96. Patel, R., Liu, R., Koedinger, K.R.: When to block versus interleave practice? evidence against teaching fraction
addition before fraction multiplication. In: CogSci (2016)

97. Poesia, G., Dong, W., Goodman, N.: Contrastive reinforcement learning of symbolic reasoning domains. Ad-
vances in neural information processing systems 34, 15946–15956 (2021)

109

98. Puntambekar, S., Hubscher, R.: Tools for scaffolding students in a complex learning environment: What have
we gained and what have we missed? Educational psychologist 40(1), 1–12 (2005)

99. Quinlan, J.R.: Learning first-order definitions of functions. Journal of artificial intelligence research 5, 139–161
(1996)

100. Rau, M.A., Aleven, V., Rummel, N.: Intelligent tutoring systems with multiple representations and self-
explanation prompts support learning of fractions. In: Artificial intelligence in education. pp. 441–448. Ios
Press (2009)

101. Reiser, B.J.: Scaffolding complex learning: The mechanisms of structuring and problematizing student work. In:
Scaffolding, pp. 273–304. Psychology Press (2018)

102. Reynolds, L., McDonell, K.: Prompt programming for large language models: Beyond the few-shot paradigm.
In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems. pp. 1–7 (2021)

103. Ritter, F.E., Tehranchi, F., Oury, J.D.: Act-r: A cognitive architecture for modeling cognition. Wiley Interdis-
ciplinary Reviews: Cognitive Science 10(3), e1488 (2019)

104. Schmucker, R., Xia, M., Azaria, A., Mitchell, T.: Ruffle &riley: Insights from designing and evaluating a large
language model-based conversational tutoring system. In: International Conference on Artificial Intelligence in
Education. pp. 75–90. Springer (2024)

105. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 (2017)

106. Settles, B.: Active learning literature survey (2009)
107. Smith, G., Gupta, A., MacLellan, C.: Apprentice tutor builder: A platform for users to create and personalize

intelligent tutors. arXiv preprint arXiv:2404.07883 (2024)
108. Tate, T., Doroudi, S., Ritchie, D., Xu, Y., Warschauer, M.: Educational research and ai-generated writing:

Confronting the coming tsunami. EdArXiv. January 10 (2023)
109. Tu, K., Pavlovskaia, M., Zhu, S.C.: Unsupervised structure learning of stochastic and-or grammars. Advances

in neural information processing systems 26 (2013)
110. VanLehn, K.: Learning one subprocedure per lesson. Artificial Intelligence 31(1), 1–40 (1987)
111. VanLehn, K.: Mind bugs: The origins of procedural misconceptions. MIT press (1990)
112. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelligence in Education

16(3), 227–265 (2006)
113. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring

systems. Educational Psychologist 46(4), 197–221 (2011)
114. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy, D., Weinstein, A., Winters-

gill, M.: The andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in
Education 15(3), 147–204 (2005)

115. VanLehn, K., Siler, S., Murray, C., Yamauchi, T., Baggett, W.B.: Why do only some events cause learning
during human tutoring? Cognition and Instruction 21(3), 209–249 (2003)

116. Waterman, D.A.: A guide to expert systems. Addison-Wesley Longman Publishing Co., Inc. (1985)
117. Weitekamp, D., Harpstead, E., Koedinger, K.: An interaction design for machine teaching to develop ai tutors.

CHI (2020 in press)
118. Weitekamp, D., Harpstead, E., Koedinger, K.: Toward stable asymptotic learning with simulated learners. In:

International Conference on Artificial Intelligence in Education. pp. 390–394. Springer (2021)
119. Weitekamp, D., Rachatasumrit, N., Wei, R., Harpstead, E., Koedinger, K.: Simulating learning from language

and examples. In: International Conference on Artificial Intelligence in Education. pp. 580–586. Springer (2023)
120. Weitekamp, D., Ye, Z., Rachatasumrit, N., Harpstead, E., Koedinger, K.: Investigating differential error types

between human and simulated learners. In: International Conference on Artificial Intelligence in Education. pp.
586–597. Springer (2020)

121. Welleck, S., West, P., Cao, J., Choi, Y.: Symbolic brittleness in sequence models: on systematic generalization in
symbolic mathematics. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 36, pp. 8629–8637
(2022)

122. White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-Smith, J., Schmidt,
D.C.: A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382
(2023)

123. Xiao, Z., Zhang, D.: A deep reinforcement learning agent for geometry online tutoring. Knowledge and Infor-
mation Systems 65(4), 1611–1625 (2023)

124. Yates, K., Sullivan, M., Clark, R.: Integrated studies on the use of cognitive task analysis to capture surgical
expertise for central venous catheter placement and open cricothyrotomy. The American journal of surgery
203(1), 76–80 (2012)

125. Yuan, X., Wang, T., Wang, Y.H., Fine, E., Abdelghani, R., Lucas, P., Sauzéon, H., Oudeyer, P.Y.: Selecting
better samples from pre-trained llms: A case study on question generation. arXiv preprint arXiv:2209.11000
(2022)

110

126. Zhu, X.: Machine teaching: An inverse problem to machine learning and an approach toward optimal education.
In: Proceedings of the AAAI conference on artificial intelligence. vol. 29 (2015)

