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Abstract
A grand challenge in human-computer interaction (HCI) is constructing user in-

terfaces (UIs) that make computers useful for all users across all contexts. Conven-
tional UI development processes have approached this goal by iteratively converging
towards a single “final” UI through prototyping, implementation, and testing. How-
ever, even when following best practices, this approach locks in a set of assump-
tions that often cannot accommodate the diversity of user abilities, usage contexts,
or computing technologies, ultimately limiting how we can use computers. In this
dissertation, I propose a new approach that uses machine-learning-driven systems
that automatically understand and manipulate existing UIs as a way to overcome
this challenge. Using content and functionality inferred from an existing applica-
tion, combined with sensed usage context, the UI can be dynamically tailored to the
immediate needs of use, e.g., through interface adaptation or generation.

The work presented in this dissertation represents the initial technical foundation
for this vision. First, I describe approaches for understanding user ability and context
(user understanding), which HCI suggests is the basis for building good interfaces. I
describe a recommendation system that recommends device settings (e.g., accessibil-
ity features) based on sensed usage behaviors and user interaction logs. While users
often found these suggestions helpful, this approach of adapting interfaces through
configuration changes has traditionally been limited, since applications often do not
properly expose their semantics to external services. To this end, I describe several
projects in the area of UI understanding, which shows that it is possible to overcome
this barrier using data-driven ML models that predict interface layout, structure, and
functionality from visual information, which is how UIs are generally assumed to
be used. These predicted semantics can enable many forms of existing computing
infrastructure, such as accessibility and UI agents to work more reliably and ro-
bustly. Finally, I combine both user and UI understanding to dynamically generate
and adapt UIs that meet the specific needs of users. I describe ML-driven systems
that generate UIs by modifying existing application layouts and generating UI code
based on personalized user profiles and design objectives. Ultimately, through my
work, I show that computational understanding of user interfaces allows UIs to be
transformed from static objects into malleable representations that can be dynami-
cally reshaped for new devices, modalities, and users.
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1
Introduction

What are computers going to look like in the future and how are we going to interact with them?
There are many visions imagining how computers of the future will be more natural to use, more
personalized, more adaptable, and more context-aware. The ultimate goal for computers is to
allow users flexibility in interacting with digital information, whoever they are and wherever
they are.

However, many of today’s user interfaces (UIs) are not yet ready for this future. A lot of
the functionality that we use computers for are locked behind manually-designed UIs built for a
rigid set of assumptions. For example, UIs are often designed for specific device hardware, and
running UIs designed for mouse-based input on touch-screen devices could substantially impact
their usability. Today’s UIs also make a lot of assumptions about users, and many non-experts
find applications hard to use or hard to learn. UIs are often not created accessibly, with research
estimating that over 60% of mobile apps have various accessibility errors [255, 331]. This leads
to barriers for many users, for example those who can’t see or have some other accessibility
needs. Even when we’ve developed other programs like assistive technology and development
tools to address some of these problems, they often don’t work with UIs that are missing the
required APIs and toolkit support. These are just a few examples of the assumptions that are
baked into UIs today that limit how we can use computers.

A grand challenge in the field of human-computer interaction (HCI), is overcoming these bar-
riers, and striving towards the goal of making computer interfaces useful for all people, across
all contexts. One reason this is hard is because today, when most UIs are manually designed and
compiled into an application, there’s no good way for us to dynamically change them. Conven-
tional UI design processes [46] often advocate for identifying and resolving all possible require-
ments at design-time, guided by an iterative process of sketching, prototyping, and user testing.
The goal of this idealized process is to converge on a single interface or other type of “deployed”
artifact that is expected to be interacted with in pre-verified ways. However, this is exceedingly
difficult and time-consuming to manually design a single “optimal” UI because of the trade-offs
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that go into designing for different scenarios and the mismatches between expected and actual
usage conditions.

In this dissertation, I investigate approaches for computationally understanding UIs and how
they are used, with the goal of using this understanding to dynamically improve them. I present
work in three areas: i) modeling usage and accessibility needs to recommend potentially benefi-
cial interface settings, ii) building models and systems that can understand and operate existing
UIs on the behalf of users, and iii) techniques for automatically adapting and synthesizing alter-
nate interfaces.

Computational understanding of user interfaces allows UIs to be transformed
from static objects into malleable representations that can be dynamically reshaped
for new devices, modalities, and users.

1.1 Document Organization
This dissertation presents several projects that advance this vision of using computational under-
standing and improving UIs. In Chapter 2, I first contextualize my work by reviewing relevant
prior research, focusing on methods for UI adaptation and computational UI Understanding. I
then present three areas of work that comprise my main approach: i) user understanding, ii) UI
understanding, and iii) UI generation.

First, I investigate user understanding, which focuses on modeling usage needs from ob-
served behavior and natural interactions. Chapter 3 presents a system that recommends poten-
tially beneficial OS features and settings as a mechanism for transforming the appearance and
behavior of existing apps based on observed usage behavior.

Most infrastructure for programmatically interfacing with applications (e.g., OS features, de-
velopment software, and personal assistants) rely on developer-defined metadata and application
programming interfaces (APIs), which are often unavailable. The next part of my dissertation
focuses on UI understanding, which aims to enable machines to more reliably understand and
operate UIs. In Chapters 4, 5, and 6, I introduce machine learning-driven systems that predict
semantic information and operate existing apps using the same ways humans are assumed to
interact with UIs – through visual perception (i.e., screenshot) and touch input.

Finally, I combine computational understanding of user context and UIs to improve expe-
rience through UI generation. Chapter 7 presents a system that optimizes existing app layouts
based on user calibration data to improve target acquisition time. Towards the goal of dynami-
cally synthesizing new customized interfaces, Chapter 8 and 9 presents machine learning meth-
ods that improve the syntactic correctness and design quality of UI code generated by generative
models, such as large-language models (LLMs).

Chapter 10 concludes this dissertation by discussing the contributions and impact of my work,
and opportunities for future research.
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2
Related Work

In this dissertation, I present new approaches for improving human-computer interaction by mod-
eling how UI content and functionality is displayed based on user needs and context. My work
builds on a prior approaches to UI adaptation that generally fall into two categories: i) strategies
applied during UI development (i.e., pre-deployment) and ii) strategies applied during runtime
(i.e., post-deployment). I first review these prior approaches and argue that many of them face
drawbacks, either due to lack of widespread adoption or due to compatibility limitations.

My work focuses on building machine-learning models that enable UI adaptations to be dy-
namically applied to any UI, using i) user understanding, ii) UI understanding, and iii) UI gener-
ation. To provide technical background behind my proposed approach, I review prior literature
related to each of these three areas.

2.1 Prior Approaches to UI Adaptation
A long-standing challenge in HCI is constructing UIs that can serve users in different contexts
and of different abilities. There have been several threads of research aimed at achieving this
goal, which I categorize by the stage of UI development at which they are applied.

2.1.1 Strategies During Development
Currently most UIs are manually designed and developed by humans before they are deployed
to end-users. Because UIs typically cannot be easily changed after deployment, designing an
interface that works well for all users is difficult. Approaches such as Universal Design [200]
advocate for a “one size fits all” solution sometimes face trade-offs that can degrade the experi-
ence of marginalized and disabled users. In this section, I review design strategies and technical
solutions for developing UIs that can adapt to end-user needs.
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Adaptive User Interfaces

Adaptive user interfaces (AUIs) can improve user experience by automatically adapting how
information and functionality are presented in a user interface.

A major challenge of AUIs is that their the dynamic nature and potentially numerous varia-
tions make them challenging to author. Prior research has focused on introducing methods for
more efficiently defining adaptive behavior. One approach is to develop tools and frameworks
that contain pre-programmed logic for common adaptive patterns. For example, many commer-
cial tools (e.g., Dreamweaver[5], WebFlow [301]) and frameworks (e.g., Bootstrap [38]) contain
ready-made templates for adapting a website to mobile and tablet form-factors. Previous work
has developed similar software frameworks to support context-awareness [76, 188], user behav-
ior [107], and mixed-reality [152] UIs by providing developers with pre-built, composable mod-
ules for sensing, recognition, and adaptation. Model-based approaches have also been developed,
which provide higher-level abstractions of widgets and behavioral patterns common in ubiqui-
tous [237] and multi-device computing applications [213]. Finally, other development environ-
ments have been developed to simplify the authoring process, authoring using programming-by-
demonstration (PBD) and programming-by-example (PBE) techniques [154, 195, 308, 309, 319]

Other development approaches have used objective-based optimization to automatically adapt
UIs by searching for layouts that optimize predefined metrics [89, 99, 216, 233]. The ARNAULD
and SUPPLE [99] systems, enable developers to specify a high-level, formal definition of their
UI that is used for dynamic generation. During runtime, these systems use an optimization
algorithm that makes rendering decisions based on an objective function that captures user pref-
erences or abilities. Similarly, recent approaches for the 3D placement of UI widgets in mixed
reality applications applied optimized layouts based on the semantic properties of UIs [60, 190]
and developer-tuned objective functions [85] such as reachability, visibility, and consistency.

Ability-based Design

A broader view of developing UIs for different user groups involves adopting a more inclusive
stance on design. Ability-based design is a design process that focuses on the ability of users
during the development process which allows better experience for diverse users [307]. The
simplest but perhaps most effective approach is to create a new UI for each user group. Simple
Finder is an alternative app to navigate the Mac OS filesystem that was designed for young kids
and elderly, which is easier to learn due to its distilled functionality. Additional measures can be
taken to associate different versions of the interface with automatically-sensed context, such as
mobility and motor impairment, which can improve end-user experience [145] However, even
with best development practices and decoupling, implementing this may require a lot of effort.
There has been research in automating certain aspects of ability-based design, which often co-
incides with the previously described literature on AUIs. SUPPLE, previously described as an
AUI generation toolkit, has been specifically applied to personalize interfaces to facilitate faster
access and lower error [103]. Experimental results of the system has shown encouraging results
for optimizing application mockups for low-vision and motor impaired users [102]. Other exam-
ples of ability-based AUIs have also been constructed to provide accessibility benefits to older
adults with motor and cognitive impairments [258]. While development strategies UI adapta-
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tion allow greater control and control, there they present several challenges as well. Despite
these potential benefits, AUIs and ability-based design techniques, in general, have seen limited
adoption in most real-world applications. Fundamentally, strategies for UI adaption during de-
velopment place additional burden on designers and developers, who may not be knowledgeable
about these approaches (e.g., due to low awareness) or lack the motivation to implement these
practices. Adaptive UIs that need to be built from scratch, using specific UI toolkits, and with
specific requirements on developers, is severely limiting in practice. In addition, even if adop-
tion were to improve going forward, these approaches cannot address the substantial legacy of
existing applications which have already been created and released.

2.1.2 Strategies During Runtime

In contrast to the aforementioned development strategies and toolkits, another class of approaches
aim to apply change the ways existing UIs are used during runtime, often through external tech-
nologies. Here, I describe two classes of runtime strategies: access technologies and interface
repair techniques.

Access Technologies

Access technologies are tools or software that help individuals with disabilities access access
computers, often by providing an alternate channel for how content and functionality are pre-
sented to the user. Through the lens of UI adaptation, the alternate interaction channel provided
by these technologies can also be seen as a type of adaptation enabled during runtime.

Some types of access technologies (e.g., alternative input and output hardware for comput-
ers) are traditionally recommended to users by human experts or through recommendations of
medical professionals. For example, assistive Technology (AT) specialists can be employed
as consultants to provide guidance on making content (e.g., educational curriculum) accessi-
ble [48]. Physicians or therapists may also provide guidance on using assistive technology as
part of rehabilitation therapy [11, 66], although this sort of support is not available to everyone
who could benefit from accessibility features. Such matching is typically done in specialized
environments and is costly in terms of time and money. Access technologies tend to have low
adoption rates [68], perhaps because potential users do not have sufficient time to see how they
would work into their daily lives. Other types of access technology are more readily available,
such as the accessibility software installed on commodity devices. In these cases, a barrier to
adoption is end-users’ lack of awareness. For example, many people who could benefit from
accessibility features on mobile devices they may already own may not know to seek external
help or have access to it.

Interface Repair

Related to access technologies are interface repair techniques that alter existing applications to
better suit use-cases that were not appropriately considered in their original design. For exam-
ple, Genie [277] is a system that re-targets WIMP-style web applications so that they can be
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controlled using voice commands. Similarly, other techniques [143] make it easier to re-define a
GUI layout in a way that is responsive to display parameters such as screen size.

Another class of interface repair strategies focus on describing or remapping parts of a GUI
application. Interaction proxies apply runtime modification to existing mobile apps by “repair-
ing” inaccessible or difficult-to-use UI elements [330]. Interaction proxies and other approaches
that apply input/output redirection [274] use specialized UI elements to re-render parts of the
original UI while maintaining interactivity. Similarly, Prefab enables custom interaction tech-
niques (e.g., target-aware pointing) for desktop applications through pixel-based identification
of user interface elements [77]. The underlying techniques used by these repair strategies often
focus on template-based pixel matching, which can be used to identify widgets in existing GUI
applications when accessibility metadata or developer-provided APIs are unavailable. These
same techniques are sometimes also integrated into various access technologies [263] and end-
user scripting systems [325].

2.2 Computational UI Understanding
UI adaptation strategies applied at runtime are promising because they are able to work with a
larger range of applications without need for developer intervention. However, their adaptations
and utility often limited by the amount of semantic information provided to them by applications.

The work in this thesis is aimed at applying computational approaches such as machine learn-
ing to understand more about UIs and how they are used during runtime, ultimately leading to
more beneficial adaptations and user experience. In this section, I review prior work for this
modeling task in three categories: i) user understanding, ii) UI understanding, and iii) UI gener-
ation.

2.2.1 User Understanding
Understanding the context of how UIs are used is central to identifying what kinds of adaptations
are beneficial to apply. There are many factors that influence the usability of a UI, and many
strategies can be applied to both sense them and map them to beneficial adaptations [1, 76]. In
this section, I focus specifically on two areas that are most relevant to the work presented in this
thesis: i) “screening” approaches for medical and accessibility needs and ii) touch interaction of
mobile applications.

Automated Screening

As previously mentioned, a challenge for many types of access technology is the need for users
to be matched with AT that they could benefit from, but not know about them otherwise. Recent
work has started to explore how to “detect” whether someone is likely to have a particular con-
dition, which could be used to recommend that they consult an expert or even try out a particular
assistive technology.

Many mobile health sensing efforts have focused on providing low-cost alternatives for mon-
itoring chronic symptoms, such as asthma [161] and cystic fibrosis [115], or building mobile

6



“screening” applications for detecting medical conditions [70, 294, 297]. Some screening appli-
cations reduce the dependence on a specialized procedure and involve completing a task, such
as playing a game, or leveraging interaction data with specialized apps (e.g., photo browser, lock
screen) [238, 250, 251, 285]. A drawback of many of these approaches is that they require active
intervention on the user’s part (e.g., opening an app and performing a specialized screening pro-
cedure). Many users, especially users who are less tech-literate, might not think to download and
run screening tools or enable readily-available access technologies (e.g., accessibility features).

Modeling Touch Interaction

An alternative to screening-based approaches is to model user needs from natural usage behav-
iors. Unlike automated screening wizards which require users to actively answer questions, some
types of usage needs could be sensed proactively from natural usage behavior. Touch interaction
can be analyzed using existing models of cursor-based selection [201], which has been extended
to the touch screen [32]. During UI development, this type of analysis gives recommendations
about the relative size and spacing of UI elements on touch-based apps. Similar interaction mod-
eling techniques have also been used to apply personalized runtime changes by adaptive toolkits,
such as SUPPLE [99]. Other work has focused on properties specific to touch interaction, such
as the effect of the finger choice on selection accuracy. As examples, touch input is imprecise
due to factors such as finger deformations (i.e., the “fat finger” problem [293]), occlusions when
the hand covers up UI elements [126, 127], and varying finger-to-screen ratios [29]. Some of
these factors are spatially dependent (e.g., the finger occludes more of the screen when it makes
contact with the touchscreen at an extreme angle). Prior work [163] has analyzed common hand
postures used to grip a smartphone with one hand and characterized the region of the phone that
could be comfortably reached. Mayer et al. [205] give further evidence through their analysis
of 45 million touch events collected during touch-based gameplay, where they identified a re-
gion of the screen most likely to be comfortable to tap, known as the “sweet spot.” The findings
from prior work suggest that user modeling methods could be used to inform either manual or
automated design decisions, such as UI layout (i.e., the position and size of UI elements).

2.2.2 UI Understanding

Insights from user and context modeling approaches can lead to many adaptations that enhance
user experience. However, because most existing applications do not readily expose their under-
lying semantics (i.e., content and functionality), it can be difficult to apply these adaptations. In
this section, I review approaches for UI understanding which aim to reliably predict this infor-
mation from existing applications.

Template-based Reverse Engineering UIs

One way to understand the content of UIs is to attempt to “reverse-engineer” various semantic
attributes from visible information presented by the app (i.e., pixel information). In this section,
I focus on reverse-engineering methods that focus on template-based approaches.
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As described earlier, Outspoken [263] was of one the first screen readers that supported GUIs,
which required it to describe both text and graphical elements of the screen. To process icons and
other pictorial elements, the system maintained a database of graphical elements (paired with a
verbal description) and matched on-screen elements to descriptions of similar items.

Similar methods can also be used to extend existing GUI applications. A common approach
to interface with applications without an application programming interface (API) is to define
“macros” that automate sequences of key-strokes and mouse movements. To acquire interaction
targets, many automation toolkits provide functions for searching the screen for pixel values
and returning their coordinates [19]. Sikuli [325] and PAX [49] are systems that improve the
localization of targets by supporting more advanced matching techniques (e.g., bitmap matching
and heuristics) and combining hierarchical information extracted from an external source, such
as the system window manager. Elements localized using pixel-based methods can also be used
to modify apps at runtime [77], and previous work has investigated the benefit of hierarchy
prediction (using heuristics) for this use-case.

Datasets for UI Modeling

Template-based approaches have limited accuracy and robustness, since there is a large diversity
of apps that have different visual appearances and designs. To improve accuracy and robustness
of template-based approaches, many UI understanding approaches rely on data-driven modeling,
such as machine learning.

Several datasets have been collected for this purpose. Many of these datasets have been
focused in the mobile application domain. The Rico dataset is a large dataset of 72,000 mo-
bile UIs and associated metadata including view hierarchies, screenshots, and user interactions,
collected from 9,700 publicly available Android apps [72]. The FrontMatter dataset uses static
analysis techniques to predict the purpose of UI elements by determining which system APIs are
invoked [157]. Large datasets like these have enabled ML-based methods which can perform var-
ious tasks involving mobile UIs, including providing accessibility annotations [180, 312], giving
design feedback [132, 262, 276, 326], suggesting common interaction flows [334], summarizing
screens [296], automating interaction with UIs [18, 179, 264], and creating rich embeddings of
UI image and text data for other downstream tasks [21, 122, 176].

Predicting Screen Semantics

These large-scale datasets of UIs have enabled more sophisticated approaches to predict screen
semantics used machine-learning models.

Related to the template-based approach used by Outspoken [263], recent screen reader tech-
nology [54, 331] uses deep convolutional neural networks to generate element descriptions and
other accessibility metadata. Several models [54, 92, 207, 327] have also been trained to predict
the semantics of unlabeled icons found in mobile apps. These models can be applied to improve
the accessibility of mobile apps, either as a tool during design time or as an automated system
that repairs existing apps at runtime. Most of these models map UI elements to a pre-defined
set of classes (e.g. UI element and icon type), which may exclude less common components.
Recent research applied few-shot learning techniques to allow new classes of semantic classes
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to be dynamically considered after the primary phase of model training [56]. Another class of
approaches have aimed to reduce the need for large manually-annotated datasets by training UI
semantic models using self-supervision [72, 97, 176]. Screen2Vec [176] and other pixel-based
autoencoders [72, 193] map UIs to fixed-length embedding vectors which can be used to repre-
sent semantic properties. The Pixel-words model [97] employs a transformer model architecture
and masked training objective based on prior work in NLP [75].

In general, advances in machine learning approaches for UI semantic prediction have led to
improvements for many downstream tasks, such as design assistance [167, 193], accessibility
improvement [331], and task-oriented systems. A subset of these approaches have focused on
translating hand-drawn wireframes to GUI code. These tools [160, 305] are useful for designers
who wish to quickly sketch and prototype possible UI layouts. A more complex version of this
task is generating code from complete UI screenshots, as it requires that the system handle the
stylistic and structural variation present in real-world app screens. REMAUI [220] is a system
that uses heuristics to combine OCR detection results and cropped patches from the original
screenshot to generate working UI code. Pix2Code [28] is an end-to-end code generation model
that uses a CNN encoder to encode a screenshot and a RNN decoder to generate code. UI2Code
uses a similar architecture to generate a “GUI Skeleton” from a screenshot [53] that describes
the relative positioning of UI elements.

Predicting UI Interactions

Many of the previously described machine-learning approaches for predicting UI semantics fo-
cus on information related to a single UI state. However, UIs are dynamic objects that often
encode how users can interact with them to achieve some higher-level goal, i.e., interaction se-
mantics. Examples of interaction semantics are predicting element tappability [262, 276] and
screen “fingerprinting” [91]. Previous approaches of training models on large human-annotated
datasets of UI screenshots have been shown to be ineffective, since human annotators are often
confused by ambiguous visual signifiers [262]. More recently, Reinforcement Learning (RL)
has been applied to model user interactions with both physical and digital interfaces. Oulasvirta
et al. proposed a general framework based on RL of how users incorporate cognitive facilities,
their experiences, and their environment in understanding and interacting with computers [230].
Under this context, an important part of knowing how to interact with an interface is by under-
standing its affordances. Affordances are the functional properties of an object (e.g., UI) that
suggest how it should be used [226], and designer commentary suggests that design patterns can
make affordance discovery more difficult. Liao et al. used a virtual robot agent equipped with
sensors to simulate and learn how humans may discover affordances in physical interfaces (e.g.,
buttons and sliders) [185].

A promising direction for training UI understanding models is to similarly learn about UIs
through sustained, potentially endless interaction. This approach is related to active learning
(specifically online active learning), which is a field of ML that seeks to improve models using
only a limited number of human-labeled examples [110]. These approaches often identify and
prioritize difficult or representative examples to produce the best possible model from a small
dataset. Another related approach is Never-Ending Learning, which is an ML paradigm for cre-
ating systems that continually learn from acquired experience rather than a single dataset. It was

9



first applied to web-based knowledge using the NELL system [210]. The system has been run-
ning for prolonged periods of time (years) and has accumulated over 50 million beliefs (i.e., hy-
pothesized knowledge snippets), which is possible only by processing large amounts of data that
are prohibitively expensive to annotate. This learning approach introduces unique challenges,
such as the need to learn from new data while retaining previously acquired knowledge. There
are several techniques in the literature that can be applied to retain previous knowledge that in-
volved i) regularization [148, 183], ii) rehearsal-based approaches [248], and iii) techniques that
address task-recency bias [47].

To summarize, these approaches may not only be useful for learning to predict UI affor-
dances (i.e., interactions supported by a UI screen) but for developing a more sustainable and
accurate method for learning UI semantics through self-guided exploration, rather than manually-
annotated data.

2.2.3 UI Generation
Computational understanding of both a UI’s usage context (i.e., user understanding) and con-
tent/functionality (i.e., UI understanding) opens up new opportunities to incorporate this infor-
mation when generating more optimized interfaces. In this section, I review prior work related
to automated UI generation.

Prior Approaches to UI Generation

Much of the prior work in UI generation is intended to support the UI design and authoring
process, although similar techniques could potentially be applied at other stages of UI use. A
common approach to UI generation to use an optimization to generate a UI that maximizes an
objective function. Sketchplore [287] and Scout [278] were UI prototyping/design tools that inte-
grated a layout optimizer to generate design suggestions. Simlar approaches have been integrated
even earlier in the design process (e.g., to produce diverse starting points) [69], and have even
been used to refine existing designs [80, 314]. Neural networks have also been used to complete
partially complete layouts [178] and generate layouts “from scratch” [171] or other conditional
input [59, 172].

Instead of generating UI code from abstract specifications, other approaches used existing
sketches or UI mockups as input. SILK was an early system that used computer vision methods to
detect sketched elements and translate them to code implementations [160]. Recent approaches
have built on this approach by applying more sophisticated methods of inferring UI layout and
hierarchy from visual input [28, 53, 166, 313]. Systems that rely on visual input may still in-
troduce a usage barrier because it requires a screenshot or UI mockup as input. An alternative
is language-based code generation, which can be more appropriate for early-stage design explo-
ration or novice use. Several systems have been developed to retrieve relevant UI exemplars [40]
or code [254] from databases using natural language requirements [150], descriptions [133], or
conversation [261, 288]. Brassau [94] is one example of a system that retrieves then modifies
existing UI templates for constructing on-demand GUI interfaces for voice interfaces.

Instead of generating or retrieving UI layouts, another approach is to first generate code and
then use a UI toolkit to render the resulting UI. Model-based UI (MBUI) development is an
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example of an approach that converts high-level specifications of a UI’s properties or data into
lower-level code. MBUI has been successfully applied in many applications, especially for auto-
mated interface generation [242], simplifying the implementation of complex adaptive UIs [221],
or personalizing UIs [302]. While MBUI is useful for organizing requirements and functional-
ity [236], it can be difficult to translate existing manually designed layouts into specifications
expected by the code generation system [2]. To this end, recent advances in large language mod-
els (LLMs) are promising in that they are generally trained on large amounts of natural-language
text and code. Yet, generating UI code using LLMs is difficult, due to challenges associated with
code generation in general [57], and especially poor representation of UI languages in publicly
available training data and evaluation benchmarks [151, 215].

UI Quality Evaluation

One way to improve UI generation techniques is to develop more methods for evaluating output
quality. Methods for accurately assessing UI quality could be applied in several ways, for exam-
ple, i) an objective function for optimization techniques, ii) a “reward model” to train generative
model, and iii) a mechanism for filtering model output.

Traditional UI evaluation, initially rooted in heuristic evaluation and established guidelines [139,
225], has evolved significantly over time. The development of automated metrics marked a tran-
sition towards more objective and scalable UI assessments. Early work like ARNAULD [100]
collected user preferences about specific outcomes to automatically learn and tailor a cost func-
tion for UI assessment and adaptation. tLight [209] continued this vision and presented eight
automatic metrics for evaluating graphical user interfaces’ aesthetics, demonstrating their ef-
fectiveness on desktop and mobile platforms. Progressing further, researchers also explored
assessing the visual complexity of mobile user interfaces, establishing metrics that link visual
complexity to perceived usability [253]. This shift underscores a growing emphasis on quan-
tifying user interface elements to predict usability outcomes. Moreover, integrating cognitive
principles into UI evaluation is gaining traction, with metrics now considering harmony and at-
tractiveness, aligning with how users perceive and organize visual information. For instance,
the Aalto Interface Metrics (AIM) service [228] demonstrates how blending user perception and
attention models can improve GUI design evaluation. In recent developments, deep learning
has been employed to model user interaction aspects like tappability [262, 276] and draggabil-
ity [315], marking a shift towards using neural modeling to enhance our understanding of user
behaviors. Furthermore, with the rise of generative models, recent research applies LLMs to
provide UI design feedback [81], illustrating how combining design knowledge parameterized
in large pre-trained models with user input can be helpful for designers to improve the visual UI
design.

Machine Learning-based Quality Metrics

There are many opportunities for improving UI evaluation techniques by machine-learning a
model from large-scale datasets. In this section, I review prior approaches aimed at developing
quality metrics in the machine learning literature.

Learning scoring functions has been an important topic in many areas of machine learning.
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In the context of text-generation or machine translation, a popular class of text quality metrics in-
volve the use of “ground truth” responses known as “references.” BLEU [232] and later variants
like ROGUE [189] and Meteor [24] were developed for other applications, such as summariza-
tion [106]. However, not all domains have access to human-authored references, leading to the
development of ”reference-free” metrics. Perplexity [140], for instance, is a classic metric used
to estimate how likely a piece of text, often generated by a machine, is to come from a human-
generated corpus.

More recently, direct human evaluations have been utilized to assess model-generated text [332].
This type of evaluation system often ask individuals to compare outputs from the same input
text to determine which model-generated version they prefer. In the realm of computer vision,
numerous metrics have been devised to evaluate the quality of images produced by models,
including the inception score [256], the Fréchet Inception Distance (FID) [124], and more re-
cently the HyPE scores [333]. Finally, there has been a class of evaluation methods aimed at
multi-modal applications that concern both text and images. CLIPScore [123] is a technique for
assessing the quality of image captions by using the pre-trained OpenAI CLIP model. CLIP-
IQA [298] further adopts CLIP to contrastively learn a function that evaluates images based on
various quality attributes (e.g., brightness, colorfulness) and perceptual aspects (happy, scary).
TIFA [131] introduces a method where it asks and answers its own visual questions using large
vision-language models. It then quantifies how well the text prompts and the images generated
from those prompts align. However, current, off-the-shelf vision-language models like CLIP of-
ten fall short in accurately analyzing UI screenshots, particularly when assessing UI design qual-
ity through language, due to the poor representation of UI examples in their training datasets.
In summary, this body of work suggests many opportunities for rethinking and applying these
techniques in the domain of UI generation.
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3
Recommending Accessibility

3.1 Preamble

Content in this chapter is based on a conference paper that was published at Web4All 2021
[311]. The work was done with my collaborators, Gabriel Reyes, Sam C. White, Xiaoyi Zhang,
and Jeffrey P. Bigham. In this chapter, I use the term “we” to collectively refer to myself and my
collaborators.

In this chapter, I investigate the potential of user understanding (i.e., modeling UI usage and
context) in improving end-user experience. Specifically, I show that by framing UI adaptation
as an interface configuration problem, beneficial adaptations can be automatically enabled using
machine learning models that predict accessibility needs. Feature-based adaptation has several
benefits. Most smartphone OS’s have dozens of built-in accessibility features (50+ on iOS), so
there is already a very large of potential UI variations that can be reached by feature combina-
tions. While many features result in seemingly simple changes (e.g., changing global typeface),
they are often designed by accessibility experts to be effective for the targeted user groups. Some
features can result in substantial changes to how apps are used; for example, Voice Control is
a feature that allows graphical apps to be used completely through voice. Yet, feature-based
adaptation also has drawbacks. Because many third-party apps are developed using inaccessi-
ble third-party toolkits, they do not properly expose application semantics that allow them to
respond to feature settings or assistive technology. Later chapters in this dissertation will focus
on repairing these missing semantics through computational modeling. Another drawback is that
users need to know about them in order to properly configure them. In this chapter, I present a
system that recommends existing accessibility features included in popular smartphone OSes to
users based on observed usage behaviors.

Numerous accessibility features have been developed and included in consumer operating
systems to provide people with a variety of disabilities additional ways to access computing
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devices. Unfortunately, many users, especially older adults who are more likely to experience
ability changes, are not aware of these features or do not know which combination to use. In this
chapter, we first quantify this problem via a survey with 100 participants, demonstrating that very
few people are aware of built-in accessibility features on their phones. These observations led us
to investigate accessibility recommendation as a way to increase awareness and adoption. We de-
veloped four prototype recommenders that span different accessibility categories, which we used
to collect insights from 20 older adults. Our work demonstrates the need to increase awareness
of existing accessibility features on mobile devices, and shows that automated recommendation
could help people find beneficial accessibility features.

3.2 Introduction
Over the past decades, numerous accessibility features have been developed for people with a
wide variety of abilities to use computing devices. Screen readers present otherwise visual con-
tent audibly, zoom features enable people to see content better, switch controls allow people
to navigate screen content with switches (triggers), features tune out noise and allow users to
hear more of what matters, and reading support adds an auditory component to text while read-
ing and/or writing. Although many features exist, it is unclear how or whether people find the
accessibility features that they could benefit from.

There is reason to believe that many people do not know about these features, and thus may
not discover these features when they need them. As an example, one study found that only 1 of
50 participants were aware of the zoom feature in their web browser [35]. Another study found
that only 3 of 14 older adults were aware that many mobile devices now come with accessibility
features [96]. Older adults present a case worth further investigating, as many of them may
not consider themselves as having a disability, but may nevertheless benefit from accessibility
features as they age [4].

In this chapter, we explore methods for matching accessibility features for people who may
not know they could benefit from them. A natural starting point is to consider whether recom-
mender systems may help with discovering accessibility features. One challenge is obtaining the
data needed to construct these models in a privacy-preserving way. Health-related, and espe-
cially disability-related, information is highly sensitive, and users may be unwilling to provide
this data [300]. Moreover, common recommender systems work via collaborative filtering [259],
which leverages the idea that users who like certain things will like similar things. This could
work in the area of accessibility recommendation, e.g., if a user has turned on the VoiceOver
screen reader, we might infer that they might also want to turn on Audio Descriptions because
other users often have that pair of features turned on together. Yet, one of the assumptions in
this project is that many people will not know to turn on accessibility features at all. If a per-
son has never turned on any accessibility feature, there is no usage data to even start the first
recommendation (i.e., the “cold start” problem in recommender system research [159]).

An alternative approach that we advance in this chapter is to recommend accessibility features
based on how a user is interacting with a device. For instance, if the user is holding the device
closer (or farther) than we would expect, that might indicate that they are having trouble seeing it,
and could thus benefit from a font size increase. Likewise, if users are unable to perform double-
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clicks fast enough for the gesture to be recognized, then we might suggest to them the feature
that allows more time between clicks. This is not an entirely new idea, e.g., if one presses the
shift key on Microsoft Windows repeatedly (perhaps indicating they are having difficulty using
it as a modifier key), then Windows will ask the user if they would like to turn on “Sticky Keys”,
an accessibility feature introduced in Apple System 6 (1988) that turns the modifier keys into
toggles so key combinations can be pressed one key at a time [292]. It is also possible to detect
stuttering in speech, which may eventually be connected to features to make speech recognition
work better [165]. As we will present, many of the accessibility features available on today’s
smartphones can be activated using such mechanisms derived from behaviors detected based on
device use.

The main assumption behind our approach is that users should use their device as they nor-
mally would in order to understand their usage patterns and receive recommendations for acces-
sibility features. This differentiates our work from past work on, e.g., digital games specifically
designed to detect dyslexia [250, 251] or autism [294], and wizards that explicitly ask users to
describe their accessibility needs. Therefore, our approach may not be able to recommend some
accessibility features to a subset of users. For instance, our approach may not be able to recom-
mend VoiceOver to a blind person, who has never heard of the VoiceOver screen reader feature.
However, we might be able to recommend VoiceOver to a user who is using the zoom feature at
a high zoom level and still holding the device closer than would be expected. Most accessibility
features do not dramatically change smartphone functionalities and are amenable to our approach
of recommending based on observed usage.

In this chapter, we first present the results of a survey with 100 participants (including 25
people over the age of 50) demonstrating that very few people are aware of available accessibility
features on their devices. We then select four common accessibility features, each selected from
a main category of accessibility features (e.g., vision, hearing, interaction and mobility), and
develop prototype recommenders for them. We initialized our recommenders from a baseline
study with 10 participants, and then used them to explore accessibility recommendation with 20
participants.

Our paper makes the following contributions:

• We demonstrate and quantify that awareness and knowledge of how to use accessibil-
ity features is low among smartphone users (one-fifth of users knew what “accessibility”
means) and even lower among adults over the age of 50 (one-tenth), who are more likely
to benefit from them.

• We show that many existing accessibility features are conducive to recommendation, and
we provide recommendation strategies for detecting relevant usage behaviors. Using these
strategies, we constructed four prototype recommenders spanning accessibility categories.

• We conducted a study with 20 participants to collect insights on the utility and preferences
of accessibility feature recommendation.
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3.3 Accessibility Awareness Survey

We conducted an online survey to understand people’s awareness of accessibility features on their
mobile phones. Specifically, we were interested in how people might react if they developed an
accessibility need, and if they would know to use (or even check) their phones for features that
could help. A challenge in investigating awareness of accessibility features is that questions
directly asking about a feature, e.g., “Did you know you can make the font size bigger on your
phone?”, may make respondents aware of the feature. To address this challenge, we used a staged
reveal approach in which we first asked about hypothetical situations a feature could be useful in
to see if participants mentioned accessibility features as a potential solution, and then later asked
how they would go about configuring accessibility features to better support their needs.

In our survey, we asked participants about their smartphone usage and a series of questions
aimed at assessing their awareness of accessibility features. We obtained 100 survey responses
and collected demographic information (42M/58F, ages 19-83, mean age 42.4). Our sample
included 25 adults above the age of 50, who are significantly more likely to develop a disabil-
ity in the near term [4] and could benefit from accessibility features in the future. The survey
was conducted through an online polling platform Pollfish [240] and targeted a general pop-
ulation in the United States. We asked respondents what type of smartphone they used most
frequently — 42% used Apple iOS while 58% used Google Android. Most respondents (74%)
were frequent smartphone users (i.e., used their smartphone multiple times an hour), and 95%
of respondents reported using their smartphones at least a couple of times per day. Furthermore,
participants reported using a wide range of apps on their smartphone, with respondents reporting
using Lifestyle (43%), Social Media (76%), Education (18%), Games/Entertainment (54%), Pro-
ductivity (35%), Utility (56%), and News/Information (51%) apps. 62% of respondents reported
wearing prescription glasses or contacts, and 18% reported that they were sometimes unable to
hear clearly without the use of a hearing aid.

Our survey investigated the following research questions:
RQ1 - Would users think to check their mobile device if they developed an accessibility
need?

RQ2 - Do users know how to configure their devices to better support accessibility needs?
To address these research questions, we included two types of questions in our survey: (i) hypo-
thetical questions (RQ1), and (ii) feature-based questions (RQ2). Figure 3.1 shows the specific
hypothetical scenarios and features used in these questions, which were chosen to span features
from various categories (e.g., vision, hearing, etc.) and be plausible candidates for recommenda-
tion.

To answer RQ1, we first asked our participants how they would use their phone in hypo-
thetical situations where they encountered certain types of impairments related to accessibility
features. For example, we asked participants: “Imagine your eyesight gets worse so you can’t
easily read what’s on the phone screen, what would you do?”. This allowed us to infer aware-
ness of these features, without revealing their existence in the question itself. In total, our survey
contained 7 of these hypothetical questions (Figure 3.1), each corresponding to a different ac-
cessibility feature. Following the hypothetical questions, we presented feature-based questions
(RQ2) that provided high-level solutions to some of the previously posed hypothetical situations
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but required respondents to demonstrate knowledge of feature usage. For example, we asked
“How can you make the content on the screen larger and easier to view?”. As a part of this set
of questions, we also asked participants to describe what the function of the Accessibility menu
was in their device’s settings. In total, our survey contained 5 of these feature-based questions
(Figure 3.1). Survey-takers were told to answer these questions using their existing knowledge
of smartphone features (or indicate “I don’t know”) and were explicitly told not to search for
answers online or check external resources. In summary, we purposefully staged our questions
to gauge accessibility awareness without initially “giving away” the existence of accessibility
features (i.e., hypothetical questions); then, we “narrowed in” on specifically asking for device-
based solutions (i.e., feature-based questions).

Responses for all questions were coded by 3 researchers trained in HCI and qualitative meth-
ods. The responses were coded using the following categories.

• Correct setting (C1) - The response provided the correct accessibility setting (e.g., Enable
Larger Text in the Accessibility menu) or another feature that provided the same level
of access to device content (e.g., Change the system font size in the Display Settings).
Solutions for any mobile operating system (e.g., iOS, Android) were marked correct.

• Other Smartphone-based solutions (C2) - The response provided a solution on the smart-
phone but was either too vague (e.g., Change the settings) or did not work in all cases the
accessibility feature did (e.g., Double-tap to zoom in). Responses in this category often
indicated that the user was aware that their device was capable of making content more
accessible, but did not know how to enable that functionality without additional help. One
of the problems is that users need to know the name of the feature beforehand in order to
search for it, and our goal is to proactively surface them to the user to remove this need.

• Other (C3) - The response provided did not demonstrate any knowledge of awareness or
usage of mobile accessibility features, but, as we discuss later, can still constitute a valid
course of action.

Hypothetical Questions (RQ1) - To analyze responses from our set of hypothetical ques-
tions, we wanted to see how many participants’ responses mentioned using functionality already
present on their smartphone (C1, C2). We coded the responses to the hypothetical questions
with an inter-rater reliability (Fleiss’ Kappa) of κ = 0.68. While there was some disagreement
(between the C1 and C2 codes) on whether a response provided “the same level of access to
device content” as the correct accessibility setting (e.g., some responses mentioned using voice
commands for questions targeted at touch accommodations), it was clear that users did not think
to check their mobile devices for accessibility affordances (RQ1). Only 15.7% of participants
would have attempted to look on their phone for a solution and only 12.1% identified the most
effective setting (Figure 3.1).

We also more closely analyzed the C3 category to better understand those responses. Un-
surprisingly, a common response was that participants stated they would consult with a doctor
or medical professional. For example, if their eyesight prevented them from easily reading on-
screen content, they responded that they would go to an optometrist to get glasses. As previ-
ously mentioned, human experts can match access technology with a higher degree of certainty
and effectiveness. However, for many reasons (e.g., time/money requirements, doctor’s lack of
knowledge of a patient’s device, non-medicalized accessibility need such as slightly degraded
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vision) this method may not lead to the widest adoption of accessibility features. Other partic-
ipants proposed purchasing additional software or equipment to access content (e.g., buying a
loud Bluetooth speaker when unable to clearly hear content or buying a new phone). Finally,
another common type of response included asking someone else to help perform the action or
trying again slowly, but these would not be feasible in many situations.
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Figure 3.1: This figure shows a summary of responses to our online survey, which was composed
of hypothetical (Left) and feature-based (Right) questions. For each of set of questions, we
coded the responses to show people’s knowledge of smartphone accessibility features. From
our set of hypothetical questions (Left), we find that on average, 15.7% of participants would
have attempted to find a solution on their smartphone and only 12.1% identified a setting that
addressed the scenario. When asked which settings/features were needed to make certain content
more accessible (Right), participants responded correctly 10.3% of the time, and only 18% of
participants knew what “accessibility” meant in the context of their phone’s settings.

Feature-based Questions (RQ2) - We performed a similar coding for our feature-based ques-
tions (κ = 0.73), but because participants were required to consider their smartphone as a part
of their solution, we only focused on whether the response provided the Correct setting (C1).
The responses from the feature-based questions indicate a similar conclusion, showing that on
average only 10.3% of responses by participants mentioned the correct setting (or an alternative
solution providing equivalent utility). Finally, to more directly answer RQ2, we asked partici-
pants to respond with the definition of “accessibility” in the context of their phone’s settings, and
only 18% responded correctly, suggesting that most people would not know how to access their
devices’ built-in accessibility capabilities.

In summary, the results from our awareness survey show that although users rely on their
smartphones for a wide variety of tasks, they are generally unaware of the accessibility features
available on their smartphone. While one might suggest that users seek out this information
when they develop the need, they may not know to look, and continue to “get by” using their
device (e.g., squinting or bringing the phone closer to their eyes). Thus, we believe a smartphone
that proactively recommends accessibility features would improve users’ interactions with their
devices.
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3.4 Recommending Accessibility

To chart the design space of how accessibility features could be recommended, we reviewed
and categorized a set of features available on modern mobile platforms. For our exploration
and building proof-of-concept prototypes, we scoped our effort to iOS 12 1, which contains
nearly 50 accessibility features (Figure 3.2). Many of its accessibility features (e.g., font size
adjustment, content magnification) are standard across other platforms, so our recommenders
can be directly transferred. Our approaches to building recommenders (i.e., strategies for feature
recommendation) can also be applied more generally to features that we did not initially explore.

A few of these features either require special hardware (e.g., hearing aids) to be connected in
order to be used, or are meant to address accessibility needs that would likely prevent users from
using the device without them (e.g., VoiceOver), and so we would not be able to recommend
these features. This is not intended to be an exhaustive or complete list, necessarily, but is rather
the result of iterative process among the authors (accessibility and sensing experts) to identify
promising directions for each feature. Generally, our approach to recommending accessibility
involves (i) identifying an accessibility need (potentially corresponding to an available feature),
(ii) developing a hypothesis about how it might manifest in device signals, (e.g., sensor readings,
system events), (iii) determining a detection strategy to decide when to surface a recommendation
to the user, and (iv) empirically validating, to the extent possible, that the detection method
works as intended with acceptable accuracy. In our work, we specifically focus on detecting
potential accessibility needs from observed usage data. While detection constitutes a large part of
recommendation, there are other aspects (e.g., how to surface, strategies for increasing adoption)
that we leave to future work.

We categorize accessibility detection into four approaches: statistical, near-miss, action se-
quences, and grouped detections. In this section, we give a brief description of each method
along with an example use-case.

Statistical

Statistical detection involves identifying differences in users’ behavior statistically over time.
This approach is useful when one or more signals are known to be relevant, but it is unclear what
specific bounds or behaviors to detect. For instance, users may not realize that they frequently
hold the phone close to their face to read content on it or that they consistently listen to media at a
high volume. This approach generally leverages statistical tests and outlier detection algorithms
to compare an individual’s usage patterns with a pre-defined range. This detection method draws
from prior approaches, such as machine learning techniques for dyslexia detection [250] and
ability detection [99, 102, 136]. Generally, such approaches have assumed labeled data for su-
pervised machine learning or optimization algorithms; yet, we find that even when using simpler
approaches with fewer data (i.e., univariate statistical tests), we can successfully detect relevant
behaviors.

Font Size Increase – if a user tends to hold the phone closer (or farther) from their face
than the common distance we expect, then they may benefit from a larger font size.

1https://www.apple.com/accessibility/iphone/
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Figure 3.2: 48 accessibility features listed in the iOS Accessibility menu, labeled according to
our detection strategies: Required are features that require hardware or whose users would be
unlikely to use the device without them; Statistical, Sequence, Near Miss, and Grouping refers
to the detection strategies. For every feature (row), a strategy (column) is highlighted if it is
applicable. For features using the Grouping strategy, we also indicate which group they belong to
(using a group number and color). For example, if the user has VoiceOver enabled, other features
in that group (e.g., Audio Descriptions, Require Attention for Face ID) can be recommended.

Near-Miss

Another type of detection strategy is to monitor features that rely on a pre-defined threshold or
require multiple conditions to be reached before triggering. Often, the default threshold values
may be difficult to reach for people with disabilities (e.g., the default speed for double-clicking
the home button may be too fast for people with motor impairments), so surfacing accessibility
options that allow the adjustment of these values can significantly improve the user experience.
Monitoring the threshold values for features that have them and logging “near-misses” can be
used to trigger recommendations. Often, the accessibility feature itself gives a good clue as to
what to look for, i.e., if a double-click needs to happen with no more than 1 second latency
between button presses, looking for examples of two button presses in sequence with a slightly
longer gap between may be a good signal that the user could use more time.

Side Button Click Speed – double and triple clicking the side button on iPhone invoke
Apple Wallet and a shortcut to other accessibility features, respectively. Observing a user
press the button two or three times, and fail to activate the feature (when they would have
succeeded if the speed had been set to slower), may indicate that they could benefit from
setting the required speed to slower.
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Action Sequences

In some instances, a strong connection is known between a specific sequence of behaviors and
a feature that might be useful. Action sequence detection is implemented by monitoring and
recording system events (e.g., app open events and UI interaction events). This method is in-
formed by prior shortcut induction from user behavior [67], and programming by demonstration
systems that have been used for accessibility purposes [36, 37, 118]. In most cases users may dis-
cover that some task is inaccessible and perform action sequences as “work-arounds” to achieve
the same functionality, sub-optimally.

Magnifier – the Magnifier in iOS allows users to use their phone’s camera as a magnifier.
We have informally observed people use an alternative way to access such functionality,
which involves taking a picture of something (e.g., a restaurant menu), opening the photo in
the photo viewer, and then using “pinch to zoom”. This sequence of actions could indicate
that the user could benefit from the Magnification feature [14].

Grouped

Finally, grouped detection can be used to recommend new accessibility features based on the
ones the user already has enabled. This is useful because related features do not always appear
close to each other in the Settings menu, and some accessibility needs may not directly manifest
themselves in signals detectable by other approaches. Grouping is a manual approach to replace
recommendation algorithms, which do not have the necessary data to provide recommendations.
Instead, we used simple conditional statements to recommend other grouped features. Unlike
larger recommendation systems, the number of accessibility features to recommend is relatively
small. A manually curated approach is manageable, although we envision grouped recommen-
dations could potentially be data-driven if such data was available.

Type to Siri – this feature allows users to type their queries to Siri. This may benefit deaf
or hard-of-hearing users, and could be recommended when users turn on Hearing-related
features.

Other examples are much more straightforward because they are already grouped together,
i.e., if you use one of the Vision-related features you might also benefit from other Vision-related
features. For instance, neither Audio Descriptions nor Type to Siri is grouped with Vision or
Hearing, respectively. In Section 3.5.4, we provide more details on the groupings implemented
by our prototype system. Figure 3.2 shows more potential groupings between accessibility fea-
tures, uniquely grouped by an identifying number and color.

3.5 Prototype Recommenders
To move towards concrete implementations of recommenders, we used several recommendation
strategies and applied them to some of the features discussed in the accessibility awareness sur-
vey (Figure 3.1). We first performed a baseline data collection with an initial group of participants
using a popular consumer smartphone (iPhone XS) to understand how different usage behaviors
manifested themselves in sensor data. We describe the procedure for this data collection in the
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user studies section. Then, using our recommendation strategies, we built four accessibility fea-
ture recommendation prototypes. Each prototype targeted one or more accessibility features that
could be detected using similar strategies. These prototypes are exemplars, which demonstrate
how we might go about developing future recommenders.

3.5.1 Font Size Recommender
Our font-size recommender prototype automatically senses when users find it difficult to read
content and recommend features that would adjust the content’s size. As noted by previous
research on text magnification, adjusting font size can enhance the readability and experience for
many users, especially aging adults [35].

We calculated viewing distance using the front-facing camera and ARFaceAnchor objects
returned by the ARFaceTrackingConfiguration [8] and used the Statistical detection strategy to
surface recommendations to the user if they were found to hold the phone outside of an expected
viewing distance range. We chose to define our expected viewing distance range empirically,
based on our baseline data collection (Md = 0.36m,σd = 0.049m). Our results align with pre-
vious work quantifying average font size and viewing distance for smartphone content [20]. We
triggered a notification recommendation when the difference between the user’s mean viewing
distance and Md exceeded a threshold, which we conservatively set to two standard deviations.

3.5.2 Subtitles & Captions Recommender
Our “Subtitles and Captions Recommender” monitors device volume levels to recommend hear-
ing accessibility features, similar to other features such as watchOS decibel meter, which does so
for environmental noise [10]. We implemented a background daemon that continuously moni-
tored 1) whether audio was currently playing, 2) the volume level, and 3) the output device. In the
data collected from our baseline study, the average volume level was Mv = 47.1%, σv = 16.3%.
Using the Statistical recommendation strategy, we surfaced a recommendation for the Subtitles
& Captions feature when the user’s listening volume was statistically greater (by a minimum of
two standard deviations) than our baseline mean.

3.5.3 Side Button Click Speed Recommender
While touch interaction is the primary mode of interaction for most mobile devices, several im-
portant features require the use of physical buttons. These include adjusting output volume,
locking/unlocking the device, and certain application-specific uses (e.g., confirming an app in-
stallation) [16].

The default double-click speed on the side button can be difficult to trigger for many users
with even slight motor impairments. Recognizing this, the time allowed between clicks can be
changed (increased) via the accessibility menu [15]. Our prototype recommends this feature
to users when it observes a “near-miss” failed attempt. To do this, the recommender monitors
repeated button presses that occurred within the slowest possible double-click threshold. The
recommendation is made if the input is too slow to trigger based on the current threshold, but
would have done so using a slower setting.
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3.5.4 Grouped Recommenders
Usage-based recommenders may be able to educate users about the existence of accessibility
features, and then Grouped recommenders could help them expand and/or customize selected
accessibility settings. Figure 3.2 shows a comprehensive grouping of accessibility features, while
our grouped recommender prototype implements a subset of these using the iOS UIAccessibility
API [13].

• AssistiveTouch→ Side Button — If AssistiveTouch is enabled, the user might also benefit
from the Side Button setting which can also make wider range of interactions accessible.

• Closed Captioning→ Type to Siri — A Closed Captioning user may wish to interact with
Siri using an alternative text-based modality.

• Bold Text→ Larger Text — Similar to Bold Text, Larger Text increases the readability of
on-screen text content by increasing the available font sizes.

3.6 User Studies
We conducted two user studies: (i) a baseline data collection and (ii) a user study. As mentioned
earlier, the baseline data collection with 10 participants aided in the design of our detection
strategies and initializing our prototypes (e.g., triggering thresholds). We then used our proto-
type recommenders with 20 participants to generate insight on the utility and preferences for
accessibility feature recommendation. All user studies were conducted before the COVID-19
pandemic, so there was no additional risk for participants.

3.6.1 Baseline Data Collection

Table 3.1: This table describes the tasks participants performed during the data collection study.
T # Name Description
1 Video Questions Watch a short 3-minute TED talk then fill out a quiz (24 questions) on the smartphone.

2 App Installation
Use the App Store to install 5 applications. After downloading and installing, take a
screenshot of the main screen, then uninstall the app.

3
Internet Scavenger
Hunt

Answer 9 trivia questions about GPS technology using provided external links and a search engine.
Record answers in a note-taking app.

4 Siri Questions Answer 7 questions using Siri and record answers in a note-taking app.
5 e-Reader Questions Find 10 pieces of information in a book chapter and record answers in a note-taking app.

Procedure

We recruited 10 participants (7M/3F, ages 24-40, mean age 32) for our baseline data collection
study. Eight of the participants wore glasses or contacts with corrective prescriptions, and no
participants used hearing aids. After obtaining consent, participants were given an iPhone XS
device that was preloaded with a background daemon that recorded a variety of signals.

At the start of every usage session, the researcher reset some of the device’s settings (e.g.,
output volume, system font size) to the lowest possible value. This was done to encourage
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the participant to set these values according to their own preference rather than using the ones
chosen by the previous person, and the researcher informed participants that they were allowed
to adjust these settings. To simulate everyday usage, we gave participants a pre-determined list
of common smartphone tasks (Table 3.1) to complete during the study session. The order of
the tasks was randomized for each participant. Participants were given 45 minutes to complete
the list of tasks, and the data collection session was stopped if the tasks were finished early.
Afterwards, participants were given a shortened version of the accessibility awareness survey that
included questions about demographics, mobile phone usage, and the feature-based questions.
Participants were compensated with a $10 gift card.

The data obtained helped inform the design of our prototypes and provided a dataset to em-
pirically set our recommender algorithm parameters.

3.6.2 User Study
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Figure 3.3: This figure shows the portion of responses from our in-person surveys (i.e., Baseline
Study and User Study) that provided the correct response to our feature-based questions. Aware-
ness of features was much lower among adults over the age of 50, even though they were more
likely to benefit from them.

To validate our approach and generate additional insights for accessibility recommendation,
we conducted a study with two populations (n=20). All user studies were conducted before the
COVID-19 pandemic, so there was no additional risk for participants. We were interested in
answering the following research questions:

RQ1 - Were participants aware of the accessibility capabilities of their smartphones?

RQ2 - Did participants find the features recommended by our prototypes useful?

Participant Age Range

One of our motivations for this work was to surface recommendations for accessibility features
to users who are likely to benefit from them (e.g., older adults). In our recruitment of partici-
pants for this study, we settled on the age threshold of 50+, which we know is roughly the time
when abilities start to really change [295, 304]. We acknowledge that this range is larger than
most studies in HCI that study ageing, and likely encompasses several sub-groups (e.g., older
middle-aged, retirement-age adults, seniors) which have unique social norms, life experiences,
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and technology use. Our motivation is not bracket individuals into age groups or to create a
solution specifically for one such group, but to identify broad segment of the population that can
most benefit from accessibility recommendation.

Procedure

The first population (P1-P9) was recruited from a senior care residence and consisted of 9 partic-
ipants (3M/6F, ages 79-97). We initially recruited 10 participants from our first population, but
one later withdrew due to difficulty using the smartphone, and so we report on findings from the
other 9 in that group. The second population (P10-P19) was recruited from a local participant
pool with a minimum age requirement of 50 (5M/4F/1 Prefer not disclose, ages 50-79). Our
participants had a diverse range of abilities, which allowed us to evaluate our system under cir-
cumstances experienced by a broad range of users. 78.9% of our participants wore glasses, and
36.8% participants used hearing aids. Most (78.9%) owned smartphones and reported varying
frequency of usage — ranging from a couple of times per week or less (10.5%) to multiple times
per hour (31.6%). When asked what kinds of apps participants used on their smartphones, some
responded that they only used their phones for calling family members (5.3%), while others used
Lifestyle (26.3%), Social Media (47.4%), Games/Entertainment (36.8%), Utility (57.9%), and
News/Information (52.6%) apps. On average, participants reported that they had their smart-
phone for 4.3 years.

For both populations, we followed a procedure similar to the one used for our baseline data
collection (Table 3.1). Users were asked to complete a set of tasks during a usage session,
and then filled out a survey afterwards. In this study, we shortened the usage session from
45 minutes to 30 minutes by removing two of the tasks (Internet Scavenger Hunt and the e-
Reader questions) to make time for a brief interview afterwards about participants’ views on the
recommendations. In addition, due to some participants’ lack of experience using smartphones
and motor impairments, we reduced the complexity of some of these tasks (e.g., reducing number
of questions on the video questionnaire). Although these procedural differences may impact the
distribution of collected signals used for statistical detection (e.g., viewing distance), we only
removed tasks if they were similar to others in the set (e.g., filling out an Internet Scavenger
Hunt required typing text in the Notes app, as did the video questionnaire), and we did not
observe a significant effect on our prototype’s detection ability. For participants who preferred
us to do so, we administered the post-study surveys verbally and recorded their answers for them
in writing.

After administering the survey, researchers conducted a brief interview with participants
structured around various accessibility features supported by our prototypes. We showed par-
ticipants how to enable various accessibility features and demonstrated their effects on the user
experience. We then asked participants to rate whether each feature was useful for them on a
7-point Likert scale (1: Strongly Disagree, 2: Disagree, 3: Somewhat Disagree, 4: Neutral, 5:
Somewhat Agree, 6: Agree, 7: Strongly Agree). We concluded the interview by asking the
participants if they thought they could benefit from accessibility features like these, and if so,
how they would prefer the recommendations be surfaced. Participants were compensated $20
for their time.
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3.6.3 Accessibility Awareness
Using the procedure for categorizing the questions from our online study, we coded the survey
responses from both the Baseline Study and the Older Adults Study. The inter-rater agreement
scores were κbaseline = 0.67 and κsenior = 0.76 for the responses from the Baseline Study
and Older Adults Study, respectively. As the in-person surveys only included feature-based
questions, we focused mainly on whether the responses fell into the Correct setting category
(C1) or not. A comparison of the two populations can be seen in Figure 3.3. As seen in our
analysis, most of our users were unaware of common accessibility features and how to use them.
In answering RQ1, we found that there was very little awareness of accessibility features (or
even what “accessibility” was) among older adults, even as they continue to engage with mobile
technology (78.9% owned smartphones). Compared to the survey results from the baseline study,
we found that awareness of accessibility features was much lower (10.5% of older adults knew
what “accessibility features” were compared to 90% of baseline participants) among older adults,
who more likely to benefit from them. Most of the participants in our Baseline Study were
software engineers familiar with iOS and were more likely to know about accessibility features.
Nevertheless, while 90% of participants generally knew about accessibility features, they were
less familiar with specifics about how they could be used. From our Older Adults Study, we
found relatively few participants knew about accessibility features (10.5%), even though they
were more likely to benefit from them.

3.6.4 Utility of Accessibility Recommendation
Using the data collected from the participants’ usage sessions, we ran our detection strategies
post-hoc (i.e., participants did not interact with recommendations in real-time) to estimate the
the utility of their recommendations. In total, our prototypes triggered 19 recommendations, and
based on the participants’ ratings of the features, they would have found 73.7% of those recom-
mendations useful, 21.1% not useful, and 5.3% neutral. This suggests that our participants would
likely benefit from accessibility feature recommendations (RQ2). Our goal was to gauge partici-
pants’ perception feature recommendation and accessibility features overall, although additional
work would need to be done to better understand the potential for these recommendations lead-
ing to adoption. Our conversations with participants support our initial analysis, and we aim to
further strengthen this conclusion in future work.

Below, we further analyze each feature recommender in more detail and provide context for
their performance. Because none of the participants had turned on any accessibility features, our
Grouped recommender prototype is not applicable.

Font Size/Zoom

The Font Size/Zoom recommender was triggered by 3 of the participants (all 3 wore glasses),
who, on average, gave those features a usefulness rating of 6.3/7. Interestingly, every participant
in our study responded that they thought those features were useful when shown to them in our
post-study interview. This may suggest that if such a feature recommender was deployed, it could
be beneficial to decrease the triggering threshold or non-intrusively surface a recommendation
for all users. Indeed, as part of the iOS new device setup process, a subset of display settings such
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as Display Zoom can be adjusted which affects the size of on-screen content. However, given that
only two participants mentioned adjusting font size in their awareness survey responses, there is
reason to believe that these features could be made more visible.

Subtitles & Captions

Similar to the Font Size recommender, the Subtitles & Captions recommender was also imple-
mented by performing statistical detection on the user’s audio volume. The mean audio levels
of 6 of the participants (4 required hearing aids to hear clearly) exceeded our threshold, and
those participants rated the Subtitles/Captioning features usefulness 4.8/7 on average. While the
majority of triggered recommendations were found to be useful, we found that observed signals
did not always align with participants’ ratings of features. For example, P4 watched the video at
maximum volume but rated the Subtitles & Captions feature as providing low usefulness. When
asked about the rating, P4 responded that he disliked watching TV and movies with closed cap-
tioning because he found them distracting. Other instances of declined recommendations may
be explained by preference or by prior work on the attitudes of older adults toward disability and
aging [135]. We took from this that an additional element to consider when recommending a
new feature is not only the expected utility of the feature but also the user’s acceptance of it.

Click Speed & Assistive Touch

Compared to the other recommenders, the Click Speed & AssistiveTouch prototype was triggered
the most often, in part due to the more relaxed Near-Miss detection scheme used. While in
practice, such a system might surface a recommendation after a couple of near-misses, we set
our prototype to trigger after the first instance due to the short duration of the study. In total, 10
users performed a double-click at speeds which would not have been detected using the Default
timing but would have using slower settings. Of these, 70% found the associated accessibility
features useful and 30% did not. Among users who triggered the recommender, the average
usefulness rating was 4.7/7. However, for users that triggered our prototype’s Slowest threshold,
all of them (100%) found the features useful. While Near-Miss detection is appealing in part
due to its simplicity and direct connection to an adjustable setting, successful deployment of
recommenders for features such as Click Speed require more robust schemes that may combine
certain aspects of statistical detection (e.g., modeling the number of near-misses for the average
user) and take into account additional context (e.g., it is the first time the user is performing the
double-click gesture).

3.6.5 Additional Observations

Beyond Awareness

An interesting observation was that one participant (P19) knew about accessibility features, but
described them as “for the visually/aurally impaired”, which suggests that because he didn’t
identify as having a visual or hearing disability, he would not have thought of looking for useful
features under the accessibility menu. We believe that a proactive recommendation system such
as ours could help surface features that provide utility to a broad range of users. Indeed, two
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of our recommenders were triggered by the participant’s usage session, and both features were
marked as useful in the post-study interview. The only other participant (P11) who correctly de-
scribed what “accessibility” referred to responded “Can’t remember ... But [I’ve] used [them]...
maybe to increase text/magnify”, indicating knowledge of only a small subset of features that
could potentially be useful. Among participants recruited at the senior care residence (P1-P9),
we found that knowledge of accessibility features was non-existent (i.e., none of the participants
from this group knew what “accessibility” meant in the context of computing), even though many
of them had begun to adopt mobile technology (77.8% of them owned a smartphone, and on av-
erage, they owned their smartphone for 2.3 years). Similarly, we believe that our system could
provide a lot of value for these technology adopters by making certain tasks easier to learn or
perform.

Recommendation Preferences

After conducting the study, the researchers were frequently asked by participants to show them
how to enable certain features on their personal devices. Even for participants who did not trig-
ger any recommendations (P18), when shown certain features (e.g., Font Size), they indicated
that they thought the features would be beneficial: “I have perfect eyesight but I still have a pair
of readers that I use sometimes [to reduce strain] ... a bigger font size would also make things
easier to read.” Almost all participants (89.5%) were open to receiving recommendations, with
most preferring low frequency surfacing methods (e.g., home screen, email, or a message) that
did not interrupt their current task. On the other hand, one participant (P2) indicated that she
valued the potential usefulness of features over the interruption cost: “If there is something that
could help me use [my device], I want to know about it.” Furthermore, not all participants wanted
these features to be recommended to them (P6, P8). While P6 agreed that accessibility features
were useful for interacting with her smartphone, she preferred not to have them automatically
recommended to her, saying “I might find it confusing”. P8 offered another reason: “Not neces-
sarily... Once I learn [how to do something], I’ll be set in my ways”, stating that the novelty of
interacting with the device through the recommended features might be off-putting. Similar to
what we saw with declined recommendations, additional context such as user preference play an
important role in user acceptance of accessibility features and new technology in general.

3.7 Discussion and Future Work
In this chapter, we have introduced the idea of “recommending accessibility” as a fruitful area
for research. Even as numerous useful accessibility features have started to be included in the
smartphones that people own, our survey demonstrated that very few people know about them or
know which of those features they could benefit from using. While on-device recommendation
approaches are not the only useful strategy for building awareness, we believe that they are likely
to be an important and necessary complement to existing advocacy and awareness approaches,
especially as our devices, thankfully, contain more and more features intended to make them
more accessible.

We have laid out a roadmap for recommending accessibility, explicitly outlining how acces-
sibility features on iOS could map to a set of detection strategies and available signals that we
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believe largely characterize the space (Figure 3.2). We believe there is ample opportunity for fu-
ture research in validating this across the many accessibility features on iOS and other platforms.
Delivering a new recommender for a new feature will require substantial effort to validate, for
instance, ensuring that the recommender works as intended and has an acceptable false positive
rate in the real world. Ultimately, the success of a recommender approach seems dependent on
a user deciding not only to turn on a feature but to adopt it; understanding adoption takes sig-
nificant effort over time, especially given that each individual accessibility feature may only be
expected to be useful to a relatively small percentage of people.

The prototypes introduced in this chapter were designed as proof-of-concept implementations
to demonstrate the potential of this direction and for use in our study with older adults. The
accuracy and breadth of our recommendation prototypes can be further improved. We currently
employ a simple statistical distance measure for unimodal data (i.e., considering each signal
independently). There is a great opportunity for future work to improve this aspect by developing
more sophisticated methods of learning from usage data. Given a large enough sample, it may
even be possible to learn retroactively from sensor streams collected from people who have
turned on a feature.

Our approach to matching signals to detection strategies was largely manual. In some cases,
we believe the mappings are fairly straightforward extensions of the accessibility feature specifi-
cation, especially for the Near-Miss category that is explicitly defined this way. However, other
categories, such as Sequence or Statistical, require generating hypotheses about differences ex-
hibited by people who could benefit from the feature, collecting data to validate this hypothesis,
and finally building a recommendation strategy based on that. Future work could investigate au-
tomated data-driven methods of identifying promising accessibility signals from usage patterns.
In pursuing this, it is important to collect and analyze this data in a privacy-preserving manner.
The Statistical signals rely on detecting differences from a collected baseline, and so developers
of recommenders using this approach should be cognizant of where that baseline is collected
from and be aware that some people may differ from the baseline for a reason other than need-
ing the accessibility feature. Our framework does not provide a pattern for recommending all
features that can be naively applied; future systems based on detecting and using accessibility
signals should continue to rely on the intuition of designers, feedback from potential users, and
iterative development and evaluation.

Another area to more thoroughly explore is how to surface accessibility recommendations. In
our usage study, we presented users with recommendations after they completed their tasks, but
recommendations can also be presented in situ. Notifications may be the most direct way of cap-
turing attention and displaying information to users, but they can be disruptive or annoying [303].
Initiatives from Apple [9] and Google [111] have focused on limiting interruptions from notifi-
cations. The aforementioned “Sticky Keys” notification on Microsoft Windows has arguably
been successful in getting people to know about the feature, but numerous web-based articles are
devoted to turning off that notification (some fast-paced video games also often involve press-
ing modifier keys repeatedly and quickly). Less obtrusive ways of surfacing recommendations
could include simply ranking the features higher in the accessibility menu, or including them in
a non-intrusive but clearly visible place (e.g., the lock screen) [12].

As a part of our exploration, we briefly explored different ways recommendations might be
surfaced in a mobile operating system. While we expect more obtrusive notifications like pop-ups
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to be more likely attended to by users, they might also be more likely to disturb or annoy users2.
Ultimately, there are many design decisions to be made, such as the wording and style used in the
recommendation. In our prototypes, we specifically avoided relating the recommended feature to
any underlying condition, ability, or cause. For example, we wrote recommendations like, “Did
you know you can adjust the font size?” rather than “It looks like you’re having trouble seeing the
screen.” We suspect that the preferred style and obtrusiveness of notifications may depend on the
accuracy and timing of the recommendation, the likelihood that the user will follow the advice,
and the realized benefit to them if they adopt the feature (i.e., the classic expected utility problem
in mixed-initiative interaction [128]). Ultimately, we believe the best strategy and frequency for
surfacing recommendations will be feature and context dependent. We leave it to future work to
empirically determine the best strategy for each feature and use case.

3.8 Conclusion
A large number of accessibility features have been developed for smartphone platforms. Our
survey with 100 participants demonstrates that relatively few know about these features or how
they might benefit from them. In this chapter, we present our framework for recommending
accessibility, outlining useful signals and detection methods using them to recommend accessi-
bility features on the smartphone platform. We categorize 48 features on iOS in terms of how
those features might be recommended to participants, and provide a number of example recom-
menders. We develop four prototypes, three of which we initialized in a baseline study with 10
participants. We then use our recommenders with another population of 20 participants to better
understand their potential feasibility and utility. With so many great accessibility features being
developed, we believe it is important to direct some of our research focus to recommending these
accessibility features to those who might benefit from them. Our work provides a roadmap for
researchers and developers to make progress in this important area.

2Early in development, we also implemented a modal dialog box as an alert, but pilot studies guided us to less
obtrusive designs.
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4
WebUI: A Dataset for Enhancing Visual UI

Understanding with Web Semantics

4.1 Preamble

Content in this chapter is based on a conference paper that was published at CHI 2023 [316]. The
work was done with my collaborators, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols,
and Jeffrey P. Bigham. In this chapter, I use the term “we” to collectively refer to myself and my
collaborators.

In the previous chapter, I showed that under certain circumstances (i.e., when semantic in-
formation is available), useful transformations, such as built-in feature configurations, can be
applied at runtime to better adapt existing UIs to user context. Examples of these semantics
include rendering metadata (e.g., the accessibility hierarchy of mobile apps) or complete source
code (e.g., some types of web UIs), which describe the information and functionality presented
by the UI. Operating system features and assistive technologies are some examples of mecha-
nisms that depend on this metadata to function. However, these application semantics are often
unavailable on many types of graphical user interfaces (GUIs) that are constructed using inac-
cessible toolkits. To this end, it is beneficial to build systems that can perform UI understanding
more generally and more robustly. Some prior work [331] has focused on building datasets for
training machine learning models that can predict semantic metadata (which is not always pro-
vided by the developer) from an app’s screenshot (which is always available for GUIs). The
purpose of the WebUI project is to build a dataset of UIs where visual appearance (i.e, screen-
shots) are associated with app semantics, with the goal of training models that can relate and
generate one representation from another.

Modeling user interfaces (UIs) from visual information allows systems to make inferences
about the functionality and semantics needed to support use cases in accessibility, app automa-
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tion, and testing. Current datasets for training machine learning models are limited in size due to
the costly and time-consuming process of manually collecting and annotating UIs. We crawled
the web to construct WebUI, a large dataset of 400,000 rendered web pages associated with
automatically extracted metadata. We analyze the composition of WebUI and show that while
automatically extracted data is noisy, most examples meet basic criteria for visual UI modeling.
We applied several strategies for incorporating semantics found in web pages to increase the
performance of visual UI understanding models in the mobile domain, where less labeled data is
available: (i) element detection, (ii) screen classification and (iii) screen similarity.

4.2 Introduction
Computational modeling of user interfaces (UIs) allows us to understand design decisions [72,
156], improve their accessibility [331], and automate their usage [45, 175, 179]. Often, these sys-
tems must interact with UIs in environments with incomplete or missing metadata (e.g., mobile
apps authored with inaccessible UI toolkits). This presents many challenges since it necessitates
that they reliably identify and reason about the functionality of the UI to support downstream
applications. Visual modeling of UIs, which has shown to be a promising solution, predicts in-
formation directly from a screenshot using machine learning models and introduces no additional
dependencies.

Building the datasets needed to train accurate visual models involves collecting a large num-
ber of screenshots paired with their underlying semantic or structural representations. Recent
efforts to collect datasets [72, 331] for data-driven modeling have focused on mobile apps, which
are typically manually crawled and annotated by crowdworkers since they are often difficult to
automate. This process is both time-consuming and expensive — prior work has estimated that
collecting a dataset of 72,000 app screens from 10,000 apps took 5 months and cost $20,000
[72]. Because of this, datasets for visual UI modeling are limited in size and can be prohibitively
expensive to keep updated.

The web presents a possible solution to UI data scarcity since web pages are a promising
source of data to bootstrap and enhance visual UI understanding. In contrast to mobile UIs,
web UIs (i.e., web pages) are much easier to crawl since they are authored in a unified parsable
language (i.e., HTML) that typically exposes semantics (e.g., links and listeners) necessary for
automated navigation. The same web page can also be viewed in many different viewports and
display settings, which makes it possible to collect a large dataset of UIs rendered on a variety
of devices (e.g., a smartphone or tablet). In addition, web browsers offer several facilities to
extract visual, semantic, and stylistic information programmatically. In particular, web conven-
tions, such as the semantic HTML and the ARIA initiatives, while not always adopted, constitute
a large, if potentially noisy, source of annotations for UI elements. Finally, the web offers a vir-
tually unlimited supply of data and has already been employed as a data source for large-scale
machine learning [105, 322, 324]. We explore the possibility of automatically collecting and la-
beling a large dataset of web UIs to support visual UI modeling in other domains (e.g., mobile).
Compared to previous web datasets [156], our dataset is much larger, more recent, and contains
semantic information needed to support common visual UI understanding tasks.

In this chapter, we show that a large dataset of automatically collected web pages can im-
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prove the performance of visual UI Understanding models through transfer learning techniques,
and we verify this phenomenon for three tasks. We first describe the platform that we built to
crawl websites automatically and scrape relevant visual, semantic, and style data. Our crawler
visited a total of approximately 400,000 web pages using different simulated devices. WebUI,
the resulting dataset is an order of magnitude larger than other publicly available datasets [156].
Next, we analyzed our dataset’s composition and estimated data quality using several automated
metrics: (i) element size, (ii) element occlusion, and (iii) layout responsiveness. We found that
most websites met basic criteria for visual UI modeling. Finally, we propose a framework for
incorporating web semantics to enhance the performance of existing visual UI understanding ap-
proaches. We apply it to three tasks in the literature: (i) element detection, (ii) screen classifica-
tion and (iii) video screen similarity and show that incorporating web data improves performance
in other target domains, even when labels are unavailable.

To summarize, our paper makes the following contributions:

1. The WebUI dataset, which consists of 400,000 web pages each accessed with multiple
simulated devices. We collected WebUI using automated web crawling and automatically
associated web pages with visual, semantic, and stylistic information that can generalize
to UIs of other platforms.

2. An analyis of the composition and quality of examples in WebUI for visual UI modeling
in terms of (i) element size, (ii) element occlusion, and (iii) website layout responsiveness.

3. A demonstration of the usefulness of the WebUI dataset through three applications from
the literature: (i) element detection, (ii) screen classification and (iii) screen similarity. We
show that incorporating web data can lead to performance improvements when used in a
transfer learning setting, and we verified its improvement for our three tasks. We envision
that similar approaches can be used for other tasks common in visual UI understanding.
Furthermore, we show that models trained on only web data can often be directly applied
to other domains (e.g., Android app screens).

All code, models, and data will be released to the public to encourage further research in this
area.

4.3 WebUI Dataset

We introduce the WebUI dataset, which we construct and release to support UI modeling. The
WebUI dataset is composed of 400,000 web pages automatically crawled from the web. We
stored screenshots and corresponding metadata from the browser engine, which serve as anno-
tations of UI element semantics. Because the collection process is highly automated, our final
dataset is an order of magnitude larger than other publicly available ones (Figure 4.4) and can be
more easily updated over time.

In this section, we give an overview of our web crawling architecture, analyze the com-
position of our dataset, and provide evidence that it can support visual UI modeling for other
platforms.
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4.3.1 Web UI Crawler

Crawling Architecture

Database

Crawling 
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Crawler


Web

workers
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Figure 4.1: Overview of our crawling architecture. A crawling coordinator contains a queue of
URLs to crawl and assigns them to workers in a crawler pool. Workers asynchronously process
URLs by visiting them in a automated browser, scraping relevant metadata, then uploading them
to a cloud database.

To collect our dataset, we implemented a parallelizable cloud-based web crawler. Our crawler
consists of (i) a crawling coordinator server that keeps track of visited and queued URLs, (ii) a
pool of crawler workers that scrapes URLs using a headless browser, and (iii) a database service
that stores uploaded artifacts from the workers. The crawler worker is implemented using a head-
less framework [243] for interfacing with the Chrome browser. Each crawler worker repeatedly
requests a URL from the coordinator server, which keeps global data structures for visited and
upcoming URLs. The crawler worker includes some simple heuristics to automatically dismiss
certain types of popups (e.g., GDPR cookie warnings) to help it access page content.

We seeded our coordinator using a list of websites that we hypothesized would lead to diverse
examples of web pages (e.g., link aggregation websites and design blogs) and ones that we
expected to have high-quality accessibility metadata (e.g., government websites). A full list of
our seed websites can be found in the supplementary materials.

We explored several crawling policies and eventually settled on one that encourages diverse
exploration by inversely weighting the probability of visiting a URL by its similarity to the visited
set. For example, if the crawler previously visited http://example.com/user/alpha,
it would be less likely to subsequently visit http://example.com/user/beta. We set a
minimum probability so that it is possible to re-visit links to support additional types of analysis
(e.g., temporal changes). The coordinator organizes upcoming (i.e., queued) URLs by their
hostname, (i) selects a hostname randomly with uniform probability, and then (ii) selects a URL
using its assigned probability. Empirically, we found this technique to be effective at avoiding
crawler traps, which are websites that cause automated crawlers to get stuck in endless loops
navigating within the same site.
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Data Collected from a Web Page

We used a pool of crawler workers to crawl web pages in parallel, and we visited each URL with
multiple simulated devices. We collected several types of semantic information by querying the
rendering and accessibility engine. We set a timeout limit of 6 minutes for each URL, so some
web pages were not visited by all simulated devices.

1280x720

1366x768

1536x864

1920x1080 iPhone iPad

Figure 4.2: Screenshots from a web page accessed using 6 different devices: 4 desktop resolu-
tions, a smartphone, and a tablet. By requesting a responsive web page at different resolutions,
we induce several layout variations (e.g., navigation and hero button).

Simulated Devices. We sampled each web page with 6 simulated devices: 4 of the most
common desktop resolutions [42], a tablet, and a mobile phone. Devices are simulated by setting
the browser window resolution and user agent to match the goal device, both of which may affect
the page’s content and rendering.

Screenshots. Our crawler worker captured two types of screenshots (i.e., visual data) from
websites. We captured a viewport screenshot, with fixed image dimensions, and a full-page
screenshot, with variable height. Images were saved using lossy compression to save storage.
While compression can introduce some artifacts, previous work [79] suggests that the effect on
deep learning model performance is minimal.

Accessibility Tree. We used a browser automation library to query Chrome’s developer
tools to retrieve an accessibility tree for each page [27]. The accessibility tree is a tree-based
representation of a web page that is shown to assistive technology, such as screen readers. The
tree contains accessibility objects, which usually correspond to UI elements and can be queried
for properties (e.g., clickability, headings).

Compared to the DOM tree, the accessibility tree is simplified by removing redundant nodes
(e.g., ¡div¿ tags that are only used for styling) and automatically populated with semantic in-
formation via associated ARIA attributes or inferred from the node’s contents. The browser
generates the accessibility tree using a combination of HTML tags, ARIA attributes, and event
listeners (e.g., click handlers) to create a more consistent semantic representation of the UI. For
instance, there are multiple ways to create a button (e.g., a styled div) and the accessibility tree
is intended to unify all of these to a single button tag.
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Layout and Computed Style. For each element in the accessibility tree, we stored layout in-
formation from the rendering engine. Specifically, we retrieved 4 bounding boxes relevant to the
“box model”: (i) the content bounding box, (ii) the padding bounding box, (iii) the border bound-
ing box, and (iv) the margin bounding box. Each element was also associated with its computed
style information, which included font size, background color and other CSS properties.

4.3.2 Dataset Composition
The WebUI dataset contains 400K web UIs captured over a period of 3 months and cost about
$500 to crawl. We grouped web pages together by their domain name, then generated training
(70%), validation (10%), and testing (20%) splits. This ensured that similar pages from the same
website must appear in the same split. We created four versions of the training dataset. Three of
these splits were generated by randomly sampling a subset of the training split: Web-7k, Web-
70k, Web-350k. We chose 70k as a baseline size, since it is approximately the size of existing
UI datasets [72, 331]. We also generated an additional split (Web-7k-Resampled) to provide a
small, higher quality split for experimentation. Web-7k-Resampled was generated using a class-
balancing sampling technique, and we removed screens with possible visual defects (e.g., very
small, occluded, or invisible elements). More information about how this set was generated can
be found in the appendix. The validation and test split was always kept the same.
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Figure 4.3: 10 most common element types in the WebUI dataset. Element types are based on
automatically computed roles, which are not mutually exclusive. Text is the most common type,
but many types offer semantic information about what text is used for e.g, a heading, paragraph
or link.

Comparison to Existing Datasets

WebUI is an order of magnitude larger than existing datasets used for UI understanding (Figure
4.4) and provides rich semantic and style information not found in mobile datasets. WebUI
focuses on the static properties of web pages and does not store page loading times or element
animations.

We analyzed the makeup of web UIs and compared them to mobile UIs. The distribution
of UI types (e.g. Login, News, Search) in WebUI are also likely to be different than mobile
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Figure 4.4: Comparison of WebUI to existing UI datasets. WebUI contains nearly 400,000 web
pages and is nearly one order of magnitude larger than existing datasets available for download
(Enrico, VINS, Clay, Rico). Each web page also contains multiple screenshots captured using 6
simulated devices.

data, since many web pages are primarily hypertext documents. We extracted elements from the
accessibility tree and categorized them using their computed accessibility role and the role of any
singleton parents. For example, a clickable image is created in HTML by surrounding an image
(¡img¿) element with an anchor element (¡a¿). Thus, it is possible for elements to be assigned
to multiple classes. Figure 4.3 shows the frequency of element types in our dataset. Similar to
prior work [331], we find that text is the most common element in our dataset. However, we find
limited overlap between the rest of the label set, possibly due to the nature of web data and the
mutually exclusive nature of existing label sets. On average, there were 60 elements on a web UI,
30 of which were visible in the viewport. This is more than the number of elements on mobile app
screens, which prior work estimated to be around 25 per screen, although this may in part be due
to differences in segmentation (e.g., a single Rich Text Field on Android can contain differently
formatted text while on HTML they would broken up into different tags). On average, there were
also more clickable elements per web page (20 on web pages vs 15 “interactable” elements on
Android apps), likely due to the prevalence of hyperlinks on the web.

Dataset Quality

Compared to manually labeled examples, automatically extracted annotations can contain errors
that impact modeling performance. We conducted an analysis on a small, randomly sampled data
from our dataset (1000 web pages). While there are numerous possible defects, we focus on three
that we believe are most relevant to data quality: (i) element size, (ii) element occlusion, and (iii)
website responsiveness. Our analysis is primarily focused on quantifying possible defects but
not repairing them. Previous work [170, 265] has explored automated methods for correcting
mismatched labels and occluded elements, and we expect the overall quality of WebUI could be
improved if these were applied..

Element Size. Element size refers to the dimensions of an annotated object in an image.
For example, if a bounding box annotation surrounds an object that is too small relative to the
image resolution, it may be difficult for a model to identify the object. The average area of
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bounding boxes in our data is approximately 14000px2, but this may have been influenced by
short segments of text. The Web Content Accessibility Guidelines (WCAG) guideline for target
size also recommends that interactable elements have a minimum size of 44 by 44 pixels, so
that they can be easily selected by users. In our dataset, one third of interactable elements (e.g.,
elements tagged as links or button) were smaller than this threshold.

Element Occlusion. Element occlusion occurs when one object partially or completely cov-
ers another in a screenshot. Occluded elements are detrimental to visual modeling since they
may represent targets that can be impossible to predict correctly. We quantified the occlusion
rate by counting the number of screens with overlapping leaf elements. We found that 18% of
screens in our sampled split contained overlapping leaf elements. However, of the overlapping
elements, only a third of them were occluded by more than 20% of their total area.

Responsive Websites. Website responsiveness relates to how well a web page adapts to
different screen viewports. Since we simulated multiple devices for each web page, responsive
websites are likely to produce more variation in their layouts than unresponsive ones. To measure
responsiveness, we automatically computed metrics included in the Chrome Lighthouse tool for
estimating layout responsiveness: (i) responsiveness of content width to window size and (ii) the
use of a viewport meta tag, which is needed for proper mobile rendering. From our analysis we
found that 70% and 80% of processed web pages met the first, and second criteria, respectively.

In summary, our analysis suggests that most web pages in our dataset meet some basic re-
quirements for visual UI modeling. Given the reliance of our data collection on extracted acces-
sibility metadata, we expect high quality examples to adhere to good accessibility practices, such
as those outlined by WCAG. However, considering the inaccessibility of the web and that many
criteria are difficult to verify automatically, we also expect many web pages to violate some of
these criteria. There are other desirable properties for dataset quality that we did not check, e.g.,
the accurate use of semantic HTML tags, ARIA tags, and tightness of element bounding boxes.
These properties were harder to verify automatically, since they require knowledge of developer
intention and associated tasks. In our analysis, we only attempt to identify possible defects, and
we did not attempt to remove or repair samples. This could be a direction for future work to
improve dataset quality [49, 170].

4.4 Transferring Semantics from Web Data
We hypothesized that web data is similar and relevant to modeling other types of UIs from their
pixels. In this chapter, we are specifically interested in the mobile domain, as mobile apps of-
ten lack metadata and can only be reliably understood from their visual appearance. In many
cases, manually-annotated mobile datasets are small, and in some cases, labels are completely
unavailable. We used transfer learning to apply our dataset to three existing tasks in the UI un-
derstanding literature: (i) element detection, (ii) screen classification, and (iii) screen similarity.
Table 4.1 shows downstream applications where UI understanding tasks can benefit from web
data. Because each task contains different constraints (e.g., presence of labeled target data) it is
difficult to apply a single strategy to serve all use-cases. For example, inductive transfer learning
typically requires labels in both the pre-training and fine-tuning phase is impossible to apply to a
setting where target labels are unavailable (e.g., screen similarity). We expect our three transfer
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learning strategies to be applicable to most future use-cases, since they span all combinations of
labeled data availability (Table 4.1).

Table 4.1: Table of strategies for transferring semantics from web pages to other types of UIs. We
explored scenarios where labeled data is missing in either domain by applying three strategies:
(i) finetuning, (ii) semi-supervised learning, and (iii) domain adaptation.
Approach Finetuning Semi-supervised Learning Domain Adaptation

Application Element Detection Screen Classification Screen Similarity

Web (Source) Y N Y
Mobile (Target) Y Y N

4.4.1 Element Detection

Web 
Data

VINS
Element 
Detector

Element 
DetectorStep 1:


Pre-training
Step 3: 

Fine-tuning

Step 2: Weight initialization

Figure 4.5: We applied inductive transfer learning to improve the performance of a element
detection model. First, we pre-trained the model on web pages to predict the location of nodes in
the accessibility tree. Then, we used the weights of the web model to initialize the downstream
model. Finally, we fine-tuned the downstream model on a smaller dataset consisting of mobile
app screens.

Element detection requires a machine learning model to identify the locations and types of
UI elements from a screenshot. Often these models are based on object detection frameworks.

Element detection is an example of a task where labeled data is available in both the source
and target domain (albeit fewer examples of mobile screens), so it is possible to employ inductive
transfer learning. The WebUI dataset contains the locations of elements that we scraped from
the website accessibility tree. Element types are inferred from the HTML tags and the ARIA
labels [27]. We show that this training strategy results in improvements to element detection
performance.

Model Implementation

We primarily followed the details provided by VINS [44] to implement our element detection
model. The VINS dataset, which we used for training, is composed of 4800 annotated UI screen-
shots from various sources such as design wireframes, Android apps, and iOS apps. Since the
authors did not release official data splits, we randomly partitioned the data into training (70%),
validation (15%), and testing (15%) sets. This specific split ratio was chosen since it has been
used in other UI modeling work [313]. The paper identifies 11 primary UI component classes;
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however the released raw dataset includes a total of 22 class labels. For the extraneous labels, we
either tried to merge them with the 11 primary labels (e.g., “Remember Me” merged with “Check
Box”) or assigned them to an “Other” class (e.g., “Map”) if no good fit was found. Instead of
the SSD object detection model [194] used by VINS, we opted to start from the more recent
FCOS model architecture [286], since we found it was easier to modify to support multi-label
training. Previous element detection work [44, 55, 331] trained models to assign one class label
(e.g., Button, Text field) to each detected element in the screenshot. To take advantage of multi-
ple, nested definitions of web elements in our dataset, we trained the object detection model to
predict multiple labels for each bounding box.

Figure 4.5 illustrates the overall training process. In the pre-training phase, the element
detection model is trained on a split of the WebUI dataset. Due to cost and time constraints, we
trained all element detection models for a maximum of 5 days. We also used early stopping on
the validation metric to reduce the chance of overfitting. Afterwards, a specific part of the model
was re-initialized (the object classification head) to match the number of classes in the VINS
dataset before it was fine-tuned. We found it difficult to modify the original SSD architecture
to support the multi-label pre-training, so we only followed the original training from scratch
procedure described in the paper as a baseline.

Results

Table 4.2 shows the performance of each model configuration on the VINS test set, and we show
that our updated configurations lead to significant performance improvements. Our primary
performance metric for this task was the mean average precision (mAP), which is a standard
metric used for object detection models that takes into the accuracy of bounding box location (i.e.,
how closely the predicted box overlaps with ground truth) and classification (prediction of object
type). The mAP score is calculated by computing an individual average precision (AP) score
for each possible element class (e.g., Text, Check Box), which represents the object detector’s
accuracy in detecting each object class. The AP scores are averaged to produce the mAP score.
We calculated the mAP score over classes that could be mapped to the original label set in the
paper [44] i.e., we excluded the “Other” class where there was no clear mapping to the original
set. We calculated the un-weighted mean between class APs, which assigns equal importance
to common and rare element types. Our best model configuration performed 0.14 better than
the baseline in terms of mAP score. While the largest source of improvement over the baseline
configuration (SSD) came from the updated FCOS model architecture, our fine-tuning procedure
contributed to gains as well. Specifically, we note that pre-training with more examples led to
better performance (around 0.04 mAP). Depending on the downstream application of the element
detection model, this improvement could lead to better user experience but would require further
validation. For example, a screen reader [331] does not require tight bounding boxes; however,
it would benefit from detecting more (small) elements on the screen. Query-based design search
[44] could also retrieve more relevant examples.

Although we followed the original training procedure as closely as possible, we were unable
to reach the mAP score reported in the original VINS paper. This can be attributed to (i) our use
of different randomized splits and (ii) differences in mappings between class labels from the raw
data to the 11 primary classes, which were not provided in the previously released code. Never-
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theless, since we used the same splits and class mappings across all of our model configurations,
we expect the relative performance improvements to be consistent.

We also investigated the zero-shot performance of element detectors trained only on web
data (i.e., without fine-tuning). It is difficult to compute performance quantitatively, since the
label sets between the web and mobile datasets do not directly overlap. However, we provide
qualitative evidence that zero-shot learning could be successful. Figure 4.6 shows the output of
a web model when run on mobile app screens from Rico. We conducted minimal preprocessing,
such as cropping out the Android system notification bar and the navigation soft buttons. In
many cases, the web analogs of mobile text and image elements are detected accurately, which
suggests that some element classes have consistent appearance across platforms. Interestingly,
some web classes such as links and headings are also detected in the image, which could be used
to infer new semantics such as clickability [276] and navigation landmarks.

Figure 4.6: Output of our element detection models run on two app screens. In many cases,
detections from our web-only model (Blue) coincide with ones from our fine-tuned model (Or-
ange), which suggests some zero-shot transfer capabilities. Predicted tags from the web-only
model also provide additional metadata corresponding to clickability (link) and heading pre-
diction (heading); however, the predicted bounding boxes are often less tight than the fine-
tuned model.

Table 4.2: Element detection performance (11 object classes) for different model configurations.
Pre-training on more web screens led to better performance on mobile screens after fine-tuning.
Model Configuration mAP

SSD (Random Init.) 0.6737
FCOS (Random Init.) 0.7739
FCOS (Pre-trained on Web7k) 0.7877
FCOS (Pre-trained on Web7k-Resampled) 0.7961
FCOS (Pre-trained on Web70k) 0.7921
FCOS (Pre-trained on Web350k) 0.8115
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4.4.2 Screen Classification

Enrico
Web 
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Teacher 
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Figure 4.7: We applied semi-supervised learning to boost screen classification performance using
unlabeled web data. First, a teacher classifier is trained using a “gold” dataset of labeled mobile
screens. Then, the teacher classifier is used to generate a “silver” dataset of pseudo-labels by
running it on a large, unlabeled data source (e.g., web data). Finally, the “gold” and “silver”
datasets are combined when training a student classifier, which is larger and regularized with
noise to improve generalization. This process can be repeated; however, we only perform one
iteration.

Classifying screen type or functionality from a screenshot can be useful for design analysis
and automation. Previously, small amounts of data have been collected and annotated for this
purpose. Enrico [167] is an example of a dataset (1460 samples, subset of Rico [72]) where
each screenshot is assigned to one of 20 mutually-exclusive design categories. Because of the
dataset’s small size, it is challenging to train accurate deep learning classification models. While
our web dataset is large, it also does not have the screen-type annotations, and thus it is not
possible to employ the same pre-training strategy that was used for element detection.

Instead, we applied a semi-supervised learning technique known as self-training [51]. Self-
training is a process that improves model performance by iteratively labeling and re-training on
a large source of unlabeled data. We investigated the effects of using WebUI as the unlabeled
dataset and show that doing so improves overall screen classification accuracy.

Model Implementation

Figure 4.7 shows our procedure for incorporating WebUI data into our model training via self-
training.

First, we trained screen classifier based on the VGG-16 architecture with batch normalization
and dropout [270], as described by the Enrico paper [167]. Since official training, validation, and
testing splits were not provided, we randomly generated our own (70%/15%/15%). This model
was trained only on data from the Enrico training split and served as the teacher classifier. Next,
the teacher model was used to generate “soft” pseudo-labels for screenshots in the WebUI dataset,
where each sample was mapped to a vector containing probabilities for each class. We followed
the procedure used by Yalniz et al. [324] to keep only the top K most confident labels for each
class. To select K, we first randomly sampled a small subset of 1000 web pages from our dataset
and performed a parameter search to find the optimal value. Based on our experiments, we found
that a value of 10% of the total dataset size led to good performance (e.g., we set K=700 for
the Web-7k split). Finally, we trained a student classifier on a combination of the original and
automatically generated labels. We employed a specific type of self-training known as Noisy
Student Training [322], which involves injecting noise into the student model’s training process
so that it becomes more robust. Two types of noise are used in this process: (i) input noise,
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which is implemented via random data augmentation techniques and (ii) model noise, which
is implemented with dropout [273] and stochastic depth [134]. Because stochastic depth can
only be applied to model architectures with residual blocks, we used an architecture based on
ResNet-50 [121] instead of VGG-16.

Results

Table 4.3: Classification accuracy (across 20 classes) for different configurations of our screen
classification model. Increasing the amount of data used with our semi-supervised learning
method led to increased accuracy.
Model Configuration Accuracy

VGG-16 0.4737
Noisy ResNet-50 0.4649
Noisy ResNet-50 (Rico) 0.4956
Noisy ResNet-50 (Web7k) 0.4864
Noisy ResNet-50 (Web7k-Resampled) 0.4868
Noisy ResNet-50 (Web70k) 0.5175
Noisy ResNet-50 (Web350k) 0.5263

Overall, we found that applying self-training to incorporate additional unlabeled data led to
consistent performance improvements (Table 4.3). The best classifier using WebUI data was 5%
more accurate than the baseline model, which was only trained with the Enrico dataset. Our
baseline VGG-16 model performed considerably worse than the originally reported results [167]
but achieved similar accuracy to another reproduction of the work [184]. The performance dif-
ference could be attributed to differences in randomized splits. Since we used the same splits
across all conditions, we expect relative performance differences to be consistent. To investigate
the effects of using a new model architecture, we also trained a Noisy ResNet-50 (architecture
used by the student model) on the Enrico dataset. The resulting classifier performed relatively
poorly (worse than the baseline model), since the modifications introduced (dropout and stochas-
tic depth) require more data to train effectively.

The primary source of improvement stems from the inclusion of additional unlabeled data
during the training process, which led to a more generalizable student model. We observed that
the small size of the Enrico dataset (1460 samples) quickly led to overfitting during training and
limited overall performance. Semi-supervised learning techniques, such as self-training, allow
training on a much larger number of examples. We found that model accuracy improved when
we incorporated more unlabeled examples, both from WebUI and Rico.

4.4.3 Screen Similarity
Identifying variations within the same screen and detecting transitions to new screens are useful
for replaying user interaction traces, processing bug reports [65], and automated app testing
[181, 182]. To model these properties and understand how multiple screens from an application
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Figure 4.8: We used unsupervised domain adaptation (UDA) to train a screen similarity model
that predicts relationships between pairs of web pages and mobile app screens. The training uses
web data to learn similarity between screenshots using their associated URLs. Unlabeled data
from Rico is used to train an domain-adversarial network, which guides the main model to learn
features that transferrable from web pages to mobile screens.

relate to each other, previous work [90, 182] has sought to differentiate between distinct UIs
and variations of the same UI. For example, the same checkout screen may appear different
based on the number and types of products added to the cart. Common screen interactions
such as scrolling and interaction with expandable widgets (e.g., menus, dialogs, keyboards, and
notifications) may also alter the visual appearance of a screen. Visual prediction reduces system
reliance on accessibility metadata, which may be missing or incomplete, and further extends
the applications of these models, as they can process video recordings of user interactions (e.g.,
reproducing bug reports) [30, 65].

Previous work [90] opted to manually annotate a dataset of more than one thousand iPhone
applications that were manually “crawled” by crowdworkers; however, the dataset was not re-
leased to the public. As a weak source of annotation, we used web page URLs to automatically
label page relations. Since no labeled data is available in the mobile domain, we employed
domain-adversarial network training [104], a type of unsupervised domain adaptation (UDA),
to encourage the model to learn transferrable features from the web domain that might apply to
the mobile domain. Note that while it is possible to apply the semi-supervised learning strategy
(which was used for the screen classification task) in reverse, it may be less effective, since the
unlabeled dataset (mobile UIs) is smaller than the labeled dataset.

Model Implementation

We followed previous work [90] and used a ResNet-18 [121] model trained as a siamese net-
work [119]. The siamese network uses the same model to encode two inputs, then compares
them in feature space (i.e., their embeddings) to decide if they are different variations of the
same UI screen. Our approach is different from the method proposed by previous work [65],
which applies random data augmentations (e.g., blurring, rotation, translation) to screenshots
to create same-screen pairs. Instead, we randomly sampled pairs of screenshots from our web
data for training, with balanced probability for same-screen and new-screen pairs. Same-screen
pairs were generated by finding screenshots with the same URL but accessed at different times or
simulating page scrolls on a full-page screen capture by sliding a window vertically along the im-
age. Note that occasionally, simulated page scrolls and accessing the same web page at different
times still produced identical or nearly identical screenshots, so in our test set, we filtered these
out using perceptual hashing. Different-screen pairs were generated both by sampling screen-
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shots from within the same domain but with different URL path, and by sampling screenshots
from other domains.

The domain-adversarial training process seeks to simultaneously accomplish two objectives:
(i) learn an embedding space where two screenshots are from the same screen if their distance
is less than a threshold, and (ii) learn an encoding function that applies to both the web and
mobile domains. The first objective is related to the primary task of distinguishing same-screen
pairs from new-screen pairs and is achieved with a pairwise margin-based loss [90]. The second
objective aims to align the feature distributions of the two domains by maximizing the error rate
of a domain classifier, which is a network that tries to classify whether a sample is from a web or
mobile UI. For this task, we used only web page screenshots captured on simulated smartphones,
to make the domain classification objective more challenging.

Results
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Figure 4.9: Examples of interaction videos segmented by our best models trained with UDA
(Red) and without UDA (Blue). Videos are sampled at 1 fps. The output of both models contain
errors, however, we found that the adapted UDA model generally produced better segmentations.
Common errors include oversegmentation due to app dialogs and soft keyboards, which do not
occur in the WebUI dataset.

Since one of the assumptions of our problem is that labeled examples of same-screen and
new-screen pairs are unavailable for mobile apps, we used two alternative methods to evaluate
our screen similarity model: (i) quantitative evaluation on labeled pairs of web screens and (ii)
qualitative evaluation on a set of unlabeled Android interaction videos.
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Table 4.4: Classification performance (same-screen vs new-screen) of our screen similarity mod-
els evaluated on pairs of screens from our web data. Performance increased when the model was
trained on more data and slightly decreased when trained with the UDA objective.
Model Configuration F1-Score
ResNet-18 (Web7k) 0.7097
ResNet-18 UDA (Web7k) 0.7184
ResNet-18 (Web7k-Resampled) 0.7368
ResNet-18 UDA (Web7k-Resampled) 0.7191
ResNet-18 (Web70k) 0.8222
ResNet-18 UDA (Web70k) 0.8193
ResNet-18 (Web350k) 0.9630
ResNet-18 UDA (Web350k) 0.9500

Table 4.4 shows the quantitative performance of our models evaluated on pairs of web pages
from our dataset. Overall, training with more data led to significantly better performance, an
increase of over 20%. The inclusion of a domain adaptation objective sometimes led to a slight
drop in classification performance since it introduces additional constraints in the learning pro-
cess. We qualitatively evaluated our model’s performance characteristics on mobile screens by
using them to segment videos of mobile app interaction. We used a dataset of screen recordings
of bug reproductions [65] for 6 open-source Android apps and applied our model by sequentially
sampling frames from the video and evaluating whether a new screen was reached. Note our
sampling process differs from other previous work [45, 72] that segmented crawls at recording
time using accessibility metadata, because we do not have accessibility metadata correspond-
ing to the previously collected recordings used in our analysis. Figure 4.9 shows an example
of a usage video processed by our model. While the web model was effective detecting some
types of transitions that occurred in mobile apps, it was less effective at others, such as software
keyboards and dialogs, which do not occur frequently in the WebUI dataset. We include more
model-generated segmentations of the bug reproduction dataset in supplementary material.

In this work, we applied unsupervised domain adaptation, which does not require any labels
from the target domain. Other domain adaptation strategies exist, and some are able to incorpo-
rate small amounts of labeled data, which we expect could improve the accuracy of our model
by contributing transition types unique to mobile apps.

4.5 Discussion

4.5.1 Performance Impact of Web Data

Empirically, we showed that automatically crawled and annotated web pages, like those available
in WebUI, can effectively support common visual modeling tasks for other domains (e.g., mobile
apps) through transfer learning strategies. In cases where a small amount of labeled mobile
data was available, as in element detection and screen classification, incorporating web data
led to better performance. Even when labeled data was completely unavailable, as in screen
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similarity, models trained only on web data could often be directly applied to mobile app screens.
Our results suggest that the size of current UI datasets may be a limiting factor, since model
performance increases consistently when trained on larger splits of data. Our observations and
analysis of WebUI’s composition showed that web pages can differ from mobile app screens in
terms of complexity (i.e., average number of on-screen elements) and element types. However,
the performance improvements from our machine learning experiments suggest that web and
mobile UIs are similar enough to transfer some types of semantics between them.

We currently only explored three examples, although we believe that other UI modeling
works [56, 276, 313] can also benefit from similar approaches. We did not evaluate all possible
applications of WebUI in our paper, due to time and cost constraints. However, the three exper-
iments we conducted cover all possibilities of source and target domain labels (4.1), so similar
transfer learning techniques are likely to apply. Future work that builds upon WebUI can conduct
more detailed evaluations of other downstream tasks.

One specific area that we believe is promising for future work is automated design verifi-
cation [212], which could benefit from a large volume of web pages containing paired visual
and stylistic information. Our highly automated data collection process also allows WebUI to be
more easily updated in the future by re-visiting the same list of URLs. An updated version of the
dataset could also facilitate longitudinal analysis of the design [73] and accessibility [95] of web
UIs. Nevertheless, WebUI is currently unlikely to support other types of modeling, such as user
interaction mining [71, 72], that require realistic interaction traces, since our crawling strategy
was largely based on random link traversal.

4.5.2 Improved Automated Crawling

Our crawler was unable to access much of the “deep web” (i.e., large part of the web that cannot
be indexed), and thus our dataset contains few, if any, web pages that are not publicly accessible
or protected by authentication flows. It also did not attempt to interact with all elements on a web
page and conducted a very limited exploration of any JavaScript-enabled functionality that might
have been present. Trends in web and app development, such as the creation of Progressive Web
Apps (PWAs), suggest that this type of functionality will become more common, and traditional
link-based traversal may become less effective at exploring UI states.

To improve automated crawling and data collection, our crawler could benefit from a seman-
tic understanding of web pages. For example, it could detect page functionality to explore states
that require human input and either execute automated routines (e.g. detecting login fields) or
employ crowdsourcing [72] to allow it to proceed in more complex scenarios. Our currently
trained models could augment or improve this process by identifying tasks associated with web
pages (e.g., screen classification) or by augmenting potentially noisy labels provided by the au-
tomatically generated accessibility tree. In turn, the crawler could explore more of the web,
leading to higher quality and more diverse data. If repeated iteratively, this process would con-
stitute a form of Never-Ending Learning [211], a machine learning paradigm where models learn
continuously over long periods of time. Instead of learning from a fixed dataset, models could
constantly improve itself by encountering new content and designs, both of which are important
due to the dynamic nature of UIs.
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4.5.3 Generalized UI Understanding
Our experiments show that incorporating web data is most effective for improving visual UI
modeling in transfer learning settings where a limited amount of target labels are available for
fine-tuning. A logical next step is to obtain similar benefits without any additional labeled data.
To this end, we identified several strategies for improving generalization. First, unlike existing
UI datasets that contain examples from one device type, we intentionally simulated multiple
viewports and devices during data collection. The decomposition of one-hot labels (where each
element type is assigned exactly one type) into combinations of multi-hot tags (each element can
be assigned multiple labels) may also be useful, since it avoids the problem of platform-specific
element types. Figure 4.6 demonstrates the zero-shot transfer capabilities of models trained only
on web data by successfully detecting and classifying elements on Android app screens. While
the label sets of web and Android data do not directly overlap, the web model outputs reasonable
analogs (e.g., Text, link) for Android widgets (e.g., Text Button). Finally, our screen similarity
model shows how unsupervised domain adaptation can improve the transferrability of learned
features across domains through an explicit machine learning objective.

A long-term goal of our automated data collection and modeling efforts is achieving a more
generalized understanding of UIs — a single model that could be used to predict semantics
for any UI. This is challenging due to differing design guidelines and paradigms, but it could
ultimately lead to a better understanding of how to solve UI problems across platforms.

4.6 Conclusion
In this chapter, we introduced WebUI, a dataset of approximately 400,000 web pages paired
with visual, semantic, and style information to support visual UI modeling. Unlike most ex-
isting datasets for UI research that depend on costly and time-consuming human exploration
and annotation, WebUI was collected with a web crawler that uses existing metadata, such as
the accessibility tree and computed styles, as noisy labels for visual prediction. Our highly
automated process allowed us to collect an order of magnitude more UIs than other publicly
released datasets and often associates more information (e.g., clickability, responsiveness) with
each example. We demonstrated the utility of our dataset by incorporating it into three visual UI
modeling tasks in the mobile domain: (i) element detection, (ii) screen classification, and (iii)
screen similarity. In cases where a small amount of labeled mobile data exists, incorporating
web data led to increased performance, and in cases without any labeled mobile data, we found
that models trained on web pages could often generalize to mobile app screens. In summary, our
work shows that the web constitutes a large source of data that can more sustainably be crawled
and mined for supporting visual UI research and modeling.

4.7 Additional Dataset Samples
We provide additional samples from the WebUI (Figure 4.10) to supplement the example in the
paper (Figure 4.2). Our example gallery shows several different types of websites, including
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login, landing, product, portfolio, and informational pages. Each website is captured using dif-
ferent simulated devices, which shows, among other things, how content responds to screen size.
We also computed the percentile-rank of each web page’s class distribution.

4.8 Class Imbalance Analysis
This section describes analysis of class imbalance of WebUI and its effect on transfer learning
applications. Similar to other UI datasets[331], WebUI exhibits an imbalance of UI element
classes, where some types of elements (e.g., text) appear much more frequently than others (e.g.,
images). Several aspects of WebUI (e.g., finer-grain text segmentation, multi-hot labels, and
prevalence of documents on the web) also contributed to class imbalance.

We used a frequency-based resampling method to generate the Web7k-Resampled, which re-
sulted in more examples of infrequent element types. Our technique assigned weights to samples
to increase the representation of UIs containing rare or infrequent element types, and we resam-
pled based on the 10 element types shown in Figure 4.3. Algorithm 1 provides an overview of our
resampling technique. Note that unlike some class-balancing algorithms (e.g., SMOTE [52]), our
technique does not generate additional synthetic samples and does not include the same screen
more than once.

Web7k-Resampled contains proportionally more examples of many infrequent classes (Fig-
ure 4.3). Figure 4.11 shows the proportional increase in screens containing each element type.
Figure 4.12 shows the proportional increase in the total number of elements for each type.

Table 4.5: Average Precision (AP) of each element class (excluding the “Other” class) for the
Element Detection task.

Element Type SSD (Random) FCOS (Random) FCOS (Web7k) FCOS (Web7k-Re.) FCOS (Web70k) FCOS (Web350k)

Background Image 0.85 0.88 0.86 0.91 0.85 0.93
Checked View 0.06 0.28 0.31 0.34 0.32 0.38
Icon 0.72 0.73 0.75 0.75 0.75 0.77
Input Field 0.22 0.59 0.7 0.60 0.72 0.69
Image 0.73 0.8 0.77 0.82 0.78 0.82
Text 0.66 0.83 0.89 0.84 0.9 0.85
Text Button 0.57 0.9 0.94 0.94 0.95 0.94
Page Indicator 0.83 0.76 0.83 0.76 0.79 0.8
Pop-Up Window 0.85 0.83 0.8 0.85 0.78 0.83
Sliding Menu 0.95 0.98 0.96 0.98 0.96 0.97
Switch 0.97 0.93 0.86 0.97 0.91 0.94

mAP 0.67 0.77 0.79 0.80 0.79 0.81

The results from our performance evaluations in the main paper suggest that this resampled
split leads to improvements for each of our three tasks when compared to a randomly sampled
subset of the same size. Notably, the element detector model resampled 7k split outperformed
the one trained on 70k random split, which suggests that element balancing was particularly
useful for tasks where elements types are directly predicted. Tests with other two tasks (screen
classification and screen similarity) also led to improvements for the resampled models; however,
the gains were more modest. The improvements could be because the element distribution in the
resampled split is closer to that of the target data. In addition, we provide a deeper analysis
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Algorithm 1: Pseudo-code for the frequency-based resampling algorithm used to gen-
erate the Web7k-Resampled split.
1 function SampleSplit (N,C, S);

Input : Number of samples to choose N , list of element classes C, and list of samples
S

Output: Resampled subset of S
/* Vector containing total frequencies for c ∈ C */

2 fC ← total # of elements in S for each class
/* Matrix where rows are s ∈ S and columns are normalized

frequency of c ∈ C for s */
3 fS ← frequency of classes c ∈ C (columns) for s ∈ S (rows)
/* Assign sampling weights to c ∈ C inversely proportional

to frequency */
4 wC ← [ 1

fC [c]
— c ∈ C]

5 samples← []
/* Repeat until desired split size is reached */

6 while len(samples) < N do
7 cs ← Sample(C,wC)
8 ws ← [fS[s, cs] — s ∈ S]
9 sample← SampleWithoutReplace(S,ws)

10 add sample to samples
11 end
12 return samples
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of the Element Detection class, which is most likely to be affected by element type imbalance.
Table 4.5 shows that the Web7k-resampled split has higher AP for classes like ”Text Button” and
”Image”, which had increased representation after resampling.

51



Figure 4.10: Samples from WebUI accessed with different simulated devices. For each screen,
we compute its element type distribution (normalized to 1). Then, we computed the percentile-
rank of the top 10 classes with respect to the entire dataset. For example, the bottom row’s
button class has a percentile-rank of 90, meaning the web page’s relative frequency of is
greater than 90% of others in the dataset.
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Change in Screen Frequency after Resampling

Figure 4.11: We calculated the change in frequency (expressed as a ratio) of screens containing at
least one of each element type after resampling. For example, the number of screens containing
at least one image element is 2.7x more than in the randomly sampled set.
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Change in Element Frequency after Resampling

Figure 4.12: We calculated the change in frequency (expressed as a ratio) of total number of
elements after resampling. For example, the average screen in the resampled split contains 1.3x
more images. Note that is possible for most element classes to increase in frequency (while
not having other classes experience a proportional decrease) because element classes are not
mutually exclusive, and the resampled split contains more elements that are assigned multiple
tags.
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5
Screen Parsing: Towards Reverse Engineering

of UI Models from Screenshots

5.1 Preamble

Content in this chapter is based on a conference paper that was published at UIST 2021 [313].
The work was done with my collaborators, Xiaoyi Zhang, Jeffrey Nichols, and Jeffrey P. Bigham.
In this chapter, I use the term “we” to collectively refer to myself and my collaborators.

In the previous chapter, I introduced several models for predicting semantic information
about UIs, such as the i) the location of UI elements and ii) a screen categorization. While
these models allow systems to make basic inferences about existing apps, they fall short of the
descriptive resolution required by assistive technology. Assistive technology often relies on a
hierarchical representation of the UI known as the accessibility tree. The accessibility tree is
a model of the information and widgets are presented to the user (i.e., presentation model). In
this chapter, I present a system that reverse-engineers this semantic information from a single UI
screenshot.

Automated understanding of user interfaces (UIs) from their pixels can improve accessibility,
enable task automation, and facilitate interface design without relying on developers to compre-
hensively provide metadata. A first step is to infer what UI elements exist on a screen, but
current approaches are limited in how they infer how those elements are semantically grouped
into structured interface definitions. In this chapter, we motivate the problem of screen pars-
ing, the task of predicting UI elements and their relationships from a screenshot. We describe
our implementation of screen parsing and provide an effective training procedure that optimizes
its performance. In an evaluation comparing the accuracy of the generated output, we find that
our implementation significantly outperforms current systems (up to 23%). Finally, we show
three example applications that are facilitated by screen parsing: (i) UI similarity search, (ii)
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accessibility enhancement, and (iii) code generation from UI screenshots.

UI Element
Detection

UI Hierarchy
Prediction

Group LabelingInput Screenshot

(i) (ii) (iii)

Figure 5.1: An overview of our implementation of screen parsing. To infer the structure of an
app screen, our system (i) detects the location and type of UI elements from a screenshot, (ii)
predicts a graph structure that describes the relationships between UI elements, and (iii) classifies
groups of UI elements.

5.2 Introduction
User interfaces are, unsurprisingly, designed for consumption by human beings, and it can be
difficult for automated systems to understand what functionality is present in a user interface,
how the different components of the interface work together, and how it can be operated to
accomplish some goal. This is particularly true if the automated system does not have access to
any meta-data about the user interface, such as view hierarchies or accessibility tags, or if this
information is missing or incompletely defined, as is often the case. Automated user interface
understanding systems could offer many benefits. For example, a screen reader (e.g., VoiceOver
and TalkBack) could facilitate access to user interfaces for blind and visually impaired users
when the underlying app does not provide appropriate meta-data [331], and task automation
agents (e.g., Siri Shortcuts and IFTTT) could allow users to automate repetitive or complex
tasks with their devices more efficiently. These benefits are gated on how well these systems
can understand and interact with the underlying applications. Many of today’s systems rely on
the availability of UI meta-data and fail when this information is unavailable. To overcome this
recent efforts have focused on predicting the presence of an app’s on-screen elements solely from
its visual appearance.

Structure is a core property of UIs that is reflected both in how they are constructed and
how they are used. However, many current approaches to visual modeling of UIs ignore or
fail to centralize this aspect. In this chapter, we present a new approach called screen parsing,
which applies techniques used in NLP for natural language parsing to produce machine-learned
models that predict the UI hierarchy of an app from its screenshot. Our approach involves (i) a
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Faster-RCNN model for detecting the set of elements on a screen, (ii) a stack-based transition
parser model for predicting the hierarchy of how those elements relate to each other, and (iii) a
Deep Averaging Network model that classifies element groupings. We describe the details and
training procedure of our implementation of screen parsing, and conduct an evaluation in which
we compare the performance of our system against baseline approaches. Using a set of 5 metrics,
we show that our implementation performs up to 23% better than baseline systems depending
on the performance metric used. Finally, we show three example applications enabled by our
implementation of screen parsing.

More broadly, we believe that systems can benefit from perceiving UI screens as humans do
– not as a set of elements, but as a coordinated and organized presentation of content. Structural
understanding is an important step that can help systems reason about relationships between
interaction controls and content. Our model implementation is trained to predict one type of
relation (links in the view hierarchy), but we believe screen parsing and our modeling approach
can be extended to others as well (e.g., navigation order).
To summarize, this chapter makes the following contributions:

• A problem definition of screen parsing which is useful for a wide range of UI modeling
applications.

• A description of our implementation of screen parsing and its training procedure.
• A comprehensive evaluation of our implementation with baseline comparison.
• Three implemented examples of how our model can be used to facilitate downstream ap-

plications such as (i) UI similarity, (ii) accessibility metadata generation, and (iii) code
generation.

5.3 Screen Parsing

5.3.1 Problem Formulation
We define the problem of screen parsing, which we use to refer to the prediction of structured UI
models from visual information. As a review, we use UI models to refer to high-level abstractions
of UI semantics e.g., logic, presentation, and associated tasks [114]. A screen parsing model
takes a UI screenshot as input and produces a graph representation of a model as output. The
connections in the graph can be used to express a variety of semantic and syntactic concepts.
For example, one might use an edge to represent interaction flow (e.g., the “Username” text field
should be filled out before tapping on the “Login” button).

In this chapter, we focus on generating an app’s UI hierarchy (i.e., presentation model) which
is a specification of how UI elements are grouped and rendered on the screen [241]. Figure
5.2 shows an example of a screen and corresponding UI hierarchy graph. The properties of UI
hierarchies introduces some constraints on the types of valid outputs.

• Complete – the output is a single tree that spans all of the detected UI elements.
• Grounded – Nodes in the output reference specific UI elements in the screen.
• Abstractive – The output can group elements together (potentially more than once) to form

higher-level structures.
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Moreover, all UI hierarchies can be described as directed trees, which we constrain our system
to generating.

Tab Bar

List View

Root

Nav Bar

Nodes in the 
output are 
grounded to 
UI elements

The output is 
abstractive

The graph is 
complete, 

connecting all 
input elements

Figure 5.2: We show an example of an input screen (Left) and the corresponding screen parse
(Right). The graph contains all of the visible elements on the screen (the output is complete),
groups them together to form higher-level structures (abstractive), and nodes can be used to
reference UI elements (the output is grounded).

5.3.2 Comparison to Related Problems
Screen parsing is closely related to and, in many ways, motivated by other problems in the UI
modeling and computer vision. Specifically, we select three similar tasks for comparison: (i) UI
Element Detection, (ii) GUI Skeleton Generation, and (iii) Scene Graph Generation. All of these
approaches generate semantic output from a visual representation of a screen (i.e., screenshot).
However, there are important differences that make screen parsing applicable to a wider range
of down-stream applications (Table 5.1).

UI Element Detection

UI Element Detection is a specific application of object detection, which extract a set of class-
labeled bounding boxes from an image. When trained and applied to UI screens, the prediction
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Table 5.1: This table shows the requirements of several downstream applications and support for
them among our implementation and related approaches. Screen parsing’s problem formulation
allows it to be applied more widely.
Requirements Complete Grounded Abstractive

Applications
Structural Similarity N N Y
Screen Reader N Y N
Code Generation Y N N

Approaches
Scene Graph Y Y N
GUI Skeleton N N Y
Heuristics Y Y N
Our Implementation Y Y Y

output corresponds to the set of UI elements on the screen, which is useful on its own or as
a “first-pass” step for further processing. The main difference from screen parsing is that UI
Element results in a flat structure, which prevents it from representing relationships between
elements. Heuristics can be applied to detect and group elements; however there is no guarantee
that all elements will be connected.

GUI Skeleton Generation

The GUI Skeleton is an artifact produced by the UI2Code system that describes the types of
widgets in a screen and their hierarchical structure [53]. Similar to our model implementation,
UI2Code is trained to produce trees processed from view hierarchies.

It is important to note that an app’s GUI Skeleton is different its UI hierarchy (the target
output of our model). Namely, it doesn’t support we what refer to as element grounding, the
ability to match items in its output to its input. For example, an app’s GUI Skeleton might
indicate that the screen contains a list container with three buttons, but it is unable to indicate
which three buttons (on a screen with many buttons) belong to the list. Thus, the GUI Skeleton
cannot be used to support certain applications, such as screen reader navigation.

Scene Graph Generation

Screen Graph Generation (SGG) is a visual scene understanding problem that models the rela-
tionships between visible objects using scene graphs. Like our model, SGG models are designed
to process an input image and generate a graph whose nodes are detected objects in the scene
and edges are semantic relationships between those objects.

Scene graphs are often constructed to describe real-world visual scenes [153]. Unlike UIs,
which are typically constructed using nested views stemming from a single root node, visual
scenes can contain multiple entities, represented as independent sub-graphs. We purposefully
constrained our model to produce a single connected tree to reflect this property of UIs.
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Most edges in a scene graph correspond to direct relationships between detected objects,
and SGG models often consider pairwise relationships rather than hierarchical ones. Because
of this, a strong and frequently-used baseline for SGG is computing the prior probabilities of
relationships between object classes (ignoring position) on the training set [328]. Edges between
leaf nodes are relatively rare among UI hierarchies, as most elements are indirectly joined by
container elements.

5.4 Implementation
Our implementation of screen parsing uses separate models to (i) detect elements from a screen-
shot, (ii) group them together in a graph structure, and (iii) predict labels for the element groups.

5.4.1 UI Element Detection
We used a standard object detection model to extract the set of UI elements in a screen and
their parameters. Specifically, we trained a Faster-RCNN [252] model with a ResNet-50 [121]
backbone on our UI screen dataset. Before feeding an image to the element detection model, we
resized images to 256x256 and normalized each input channel to have a mean of 0 and standard
deviation of 0.5. We first run our detection model on an input screenshot and keep all detections
that have a confidence of at least 0.7. We then apply non-max suppression to remove overlapping
detections with lower confidence (IoU threshold of 0.5).

5.4.2 UI Hierarchy Prediction
After a set of detections is obtained from the Element Detection model, the next step is to predict
their hierarchical relationship. A natural way of representing this is using a graph structure,
where elements are linked to one another with parent-child relationships. Intuitively, the problem
can be thought of as generating a complete graph (i.e., the UI hierarchy) given the leaf nodes (i.e.,
visible elements). We draw inspiration from the NLP literature on text parsing, where such graph
structures are often used to define relationships between words in a sentence. Specifically, we
build a top-down transition-based parser [199], which is able to construct any UI hierarchy1, and
offers fast and efficient decoding.

Like other transition-based parsers, our model incrementally produces a graph structure
through a sequence of actions, and is most closely related to the approach detailed in similar
dependency parsers used in NLP [199]. Our model uses three data structures to perform parsing:
the input buffer (l) that holds the set of visible UI elements, the stack (σ) that allows the model
to traverse the graph, and the set of visited nodes (α). The actions that we support are:

• Arc – A directed edge is created between the node on top of σ (parent) and the node in
l − α with the highest attention score (child). The child is pushed onto σ and added to α.

• Emit – An intermediate node (represented as a zero-vector) is created and pushed onto σ.

1Some parsing algorithms are designed to handle only a subset of parse trees known as projective trees, which
makes them difficult to apply to view hierarchies.
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Figure 5.3: Our UI Hierarchy prediction model is a stack-based transition parser. A Bi-
directional LSTM encoder is fed a set of embedded UI elements and query tokens. The final
hidden state is used to initialize a LSTM decoder network. The decoder produces a sequence
of actions that describe the UI hierarchy using a continuously updated state (stack, buffer, and
visited set).

• Pop – σ is popped (i.e., the top element is removed).

Figure 5.3 provides an example of how these actions are used to parse a screen.

Model Architecture

Our model architecture (Figure 5.3) consists of a LSTM-based encoder and decoder. Our chosen
encoder model, the LSTM [125], is a type of recurrent neural network effective at encoding
long sequences. LSTMs are designed with special gated memory cells that enable it to perform
computations useful for our task, such as counting and recognizing hierarchy [120]. The input
of the model is the list of UI elements in a screen, sorted using y-position as the primary key and
x-position as the secondary key. Each element represented as the concatenation of its position
and a one-hot class vector for the UI element type (e.g., Text, Slider, Picture, etc...). The final
hidden state is used as the initial state of the decoder.

Decoding

At every decoding timestep, the LSTM is fed the (i) last hidden state (ht) and (ii) the element at
the top of σ. The LSTM returns (i) an output vector (ot+1) and (ii) an updated hidden state (ht+1).
The output ot+1 is fed through a linear layer that produces the logits for the emit and pop actions.
The output ot+1 is also used to compute the scaled dot-product attention between all of the
encoded UI elements {s0, s1, ..., sN}. Finally, an action vector is constructed by concatenating
the emit (ui

e) and pop (ui
p) activations with the attention scores.

ui
j =

ej
Thi√
n

(5.1)
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p(ai|a0, a1, ..., ai−1, P ) = softmax(concat(ui
e, u

i
p, u

i)) (5.2)

n is the size of the hidden state, P represents the input and a0, a1, ...an represent the previously
selected actions. This process is repeated until all leaf nodes are added to α, which guarantees
that the generated graph is complete. Finally, as a heuristic to prevent repeated Emit and Pop
actions, we set the probability of the Emit action to 0 if the last 10 actions does not contain an
Attend.

The output of the model is additionally smoothed to remove extraneous intermediate nodes.

5.4.3 Group Labeling

Table 5.2: Table of group labels considered for each dataset, along with number of occurrences.
AMP RICO

Tab Bar Button (63170) List Item (56186)
Table (23693) Toolbar (29068)
Tab Bar (19602) Card (6091)
Collection (19420) Drawer (5756)
Button (9779) Multi-Tab (3189)
Segmented Control (2988) Bottom Navigation (236)

To label the intermediate nodes in a tree, we train a separate classifier. We first inspect
each dataset to determine the most common labels assigned to “containers” and select 7 classes
(including an “Other” class) based on frequency and relevance to our task (Table 5.2).

Our Group Labeling classifier is based off the Deep Averaging Network (DAN) architecture
used for sentence classification [138]. To classify a given node, we retrieve a list of all of its
descendant elements. Each element in the list is embedded using using a feed-forward layer, and
all of the embeddings are pooled using the sum operation. The pooled representation is fed into a
MLP that predicts its label. Because some containers appear much more frequently than others,
we use a weighted loss function for training (class-weighted cross entropy), and the F1-macro
metric to measure validation and test performance. Our best group labeling models achieved
F1-macro scores of 0.61 and 0.76, on AMP and RICO (our two training datasets).

This approach to classifying element groups is a simple one that does not model the joint
probability of multiple element groups (e.g., the probability of one group’s label conditioned on
another’s). We will improve this aspect of our system in future work.

5.5 Training
In this section, we primarily describe the training procedure for our system’s primary component
– the UI Hierarchy model. We first describe how we extracted and processed a dataset for this
purpose. Then, we describe an effective approach for training parsing models that is especially
relevant to UI Hierarchy modeling.
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5.5.1 Datasets

We trained our models on two mobile UI datasets: (i) AMP, an internal dataset of 130,000 iOS
screens, and (ii) RICO, a publicly available dataset of 80,000 Android screens [72]. Each dataset
contains screenshots, annotated screens, and their view hierarchies. Both datasets collected by
crowdworkers who installed and explored popular apps across 20+ categories (in some cases
excluding certain ones such as games, AR, and multimedia) on the iOS and Android app stores.
More information is available in the original papers [72, 331]. Before training, three splits are
created for each dataset: training (70%), validation (15%), and testing (15%). When training our
system, we only train on screens with less than 64 elements (to make training more efficient), but
we do not apply this constraint to our test set.

Node Correspondence

The first step is to match up visible elements with a corresponding node in the view hierarchy.
We ran our trained UI Element detector on screenshots, which produced a list of detections above
a confidence threshold (0.7). We employed a best-cost matching algorithm [155] to compute the
best match between the set of element detections and the set of bounding boxes found in the view
hierarchy. The matching score between two bounding boxes are defined as the intersection-over-
union (IoU) score, and pairs with low scores (IoU ¡ 0.5) are ignored.

Extracting Hierarchical Information

We found that many of the screens in our dataset had missing or mostly incomplete view hi-
erarchies (i.e., most of the visible elements did not have a corresponding element in the view
hierarchy). For example, in the AMP dataset, we found that around 40,000 screens had view
hierarchies that were suitable for ground truths. To train and evaluate our model on a higher-
quality subset, filtered both datasets. The AMP dataset was filtered by selecting screens where
at least 80% of annotated nodes had a corresponding element in the view hierarchy. The RICO
dataset was filtered using scores from the node correspondence step – only screens where the
average match score was greater than 0.8.

Graph Smoothing

Because the view hierarchy is an artifact of the UI rendering system, it contains some irrelevant
nodes and edges that represent class inheritance and singleton containers. We preprocessed view
hierarchy graphs using a smoothing algorithm that removed nodes which (i) only had one child
and (ii) did not correspond to a visible element.

5.5.2 Training Algorithm

A standard approach to training transition-based parsers is defining an “oracle” function that
produces a sequence of actions for every view hierarchy. An example of an oracle function for
graph-structured data is running a depth-first search and recording the order nodes were entered
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Static Oracle
Sequences

Dynamic Oracle
Sequences

8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, … 8, 6, POP, POP, EMIT, EMIT, 7, POP, 5, POP, …

EMIT, EMIT, 0, POP, 13, POP, EMIT, 1, POP, 3, POP …

EMIT, EMIT, 7, POP, 5, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 1, POP, 3, POP, POP, EMIT, 2, POP, 4 …
EMIT, EMIT, 2, POP, 4, POP, POP, EMIT, 5, POP, 7, …

EMIT, EMIT, 13, POP, EMIT, 11, POP, 12, POP, POP, …
EMIT, EMIT, EMIT, 11, POP, 12, POP, POP, 2, POP, …
EMIT, EMIT, EMIT, 12, POP, 11, POP, 13, POP, 0, …

8, 6, POP, POP, EMIT, EMIT, EMIT, 11, POP, 12, …
8, 6, POP, POP, EMIT, EMIT, 11, POP, 10, POP …

Explores left
subtree first

Explores right
subtree first

Explores center
subtree first

…

Figure 5.4: We explored two oracle-based training procedures for UI hierarchy prediction. For
a given ground-truth UI hierarchy (top), a static oracle (left) only produces one sequence of
optimal actions, while a dynamic oracle (right) produces all optimal sequences.
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and exited (Figure 5.4). We compared two different approaches to oracle training for our element
grouping model.

The first approach we compared is the static oracle, which is a simple and common im-
plementation that traverses the graph deterministically (i.e., produces exactly one sequence of
actions for every graph). For screen parsing, this requires defining an ordering function that sets
a deterministic order by which children are processed (e.g., children are ordered top-down, left-
to-right). During training, the parser is trained to maximize the likelihood of the static oracle’s
“gold” action at every timestep.

The second approach is a dynamic oracle, which provides a set of optimal actions at every
state for the model to learn instead of a single action. During training, if the model’s top-choice
action is optimal then it is executed, and otherwise an optimal action from the oracle’s output
is randomly selected and executed. While other options are available [23, 109], we found that
training to maximize the average likelihood of the set of optimal actions [203] led to the best
results:

p(zg|pt) =
1

|zg|
∑

zgi∈zg

p(zgi |pt) (5.3)

5.6 Evaluation
We compared our final system (Screen Parser Dynamic) to (i) a baseline system [331] and (ii) a
baseline training procedure [199], and we show that our implementation significantly improves
performance.

Screen Recognition is a heuristic-based system used to generate accessibility metadata from
pixel data, and it is similar to heuristic-based approaches employed by other UI reverse-engineering
work [220]. Similar to our system, Screen Recognition first runs an object detection model on a
screenshot, which returns a set of element detections. These detections are then processed using
a set of manually-defined heuristics that check for features such as nesting, text grouping, tab
grouping, and picture subtitles.

We also used a baseline training procedure to train our system (Screen Parser Static), and
we show that our chosen approach significantly outperforms standard training methods for NLP
parsers.

To summarize, we compared the following systems in our evaluation:
• RCNN Oracle - This is not a system; it represents the best possible matching between

the RCNN detections and the ground truth hierarchy. This gives a rough bound for the
best-case parsing performance given the accuracy of the UI element detector.

• Screen Recognition - The complete Screen Recognition with its original UI element detec-
tor and heuristics.

• Screen Recognition + RCNN - The Screen Recognition heuristics run on the output of our
RCNN-based UI element detector. When run on the RICO dataset, we used an RCNN
model trained on the RICO dataset and mapped the the labels from the RICO label set to
the AMP equivalent (the heuristics were designed for AMP).

• Screen Parser Static - The Screen Parser system where the UI Hierarchy model is trained
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using a static oracle (standard training procedure).
• Screen Parser Dynamic - The Screen Parser system where the UI Hierarchy model is

trained using a dynamic oracle (improved training procedure).

5.6.1 Performance Metrics
To compare prediction outputs to ground truth view hierarchies, we first used our node corre-
spondence algorithm (Section 5.5.1) to label the nodes in each graph with corresponding identi-
fiers. Container nodes are matched using a similar method, where the score is the IoU of their
descendant nodes.

We computed three types of metrics that measure different performance aspects relevant to
down-stream tasks.

Edge-based metrics

Popular approaches to evaluating natural language parsers (e.g., constituency parsing) are based
on measuring the number of correctly predicted edges (e.g., constituents) [144]. We decomposed
both the ground truth and prediction graph into sets of edges and computed two metrics: (i)
the overall F1 score and (ii) the F1 score for only edges that are attached to leaf nodes. The F1
score of the leaves can be more relevant for some downstream applications which use lower-level
element groupings.

The F1 score is bounded from 0 to 1 and a higher score indicates better performance. If the
prediction doesn’t contain any matched nodes (possibly due to inaccurate element detection), the
F1 scores for the overall tree and leaves are set to 0.

Distance-based metrics

While edge-based metrics are simple to compute, they can unfairly penalize some types of mis-
takes (e.g., correct grouping but wrong parent). Graph Edit Distance (GED) is a measurement of
graph similarity that considers the minimum number of “edits” needed to make a graph isomor-
phic to another.

GED(g1, g2) = min
(e1,...,ek)∈P(g1,g2)

k∑
i=1

c(ei) (5.4)

P(g1, g2) refers to the set of possible edit paths between g1 and g2. We consider GED that allows
4 edit operations all with cost of 1: the insertion and deletion of nodes and edges. Exact compu-
tation of GED is computationally expensive (NP-complete), so we use an inexact algorithm that
approximates an upper bound of the true distance [93].

Because a lower GED indicates better performance, we set the GED to the number of edges
in the ground truth tree if the prediction doesn’t contain any matched nodes.

Group-based metrics

Finally, we considered group-based metrics that target the grouping of elements rather than their
structure. This metric is more relevant for some downstream tasks such as screen segmentation
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that aim to partition the screen.
This metric is computed as the mean of each container’s (e.g., intermediate node) IoU score

with the ground truth. Similar to edge-based metrics, the container match (CM) score is bounded
between 0 and 1, where a score of 1 indicates that all groups were correctly matched. For trees
without any matched modes, we set the score to 0.

5.6.2 Results

Table 5.3: We evaluated screen parsing performance using 4 metrics: F1 score (F1), F1 score of
edges with leaf nodes (F1 Leaves), graph edit distance (GED), and container match cost (CM).
Higher is better for all metrics except GED. More details are described in the performance met-
rics section. Note that the RCNN Oracle is not a system – it is the best possible matching between
the RCNN detections and the ground truth.

AMP RICO

F1↑ F1 Leaves↑ GED↓ CM↑ F1↑ F1 Leaves↑ GED↓ CM↑

RCNN Oracle 0.76±0.22 0.75±0.22 16.6±20.9 0.79±0.19 0.89±0.14 0.89±0.14 8.8±15.9 0.93±0.07

Screen Recognition 0.40±0.20 0.52±0.26 23.5±20.7 0.63±0.23 0.39±0.19 0.47±0.26 23.8±21.4 0.43±0.19
Screen Recognition + RCNN 0.34±0.19 0.44±0.24 25.5±21.1 0.54±0.21 0.41±0.23 0.44±0.28 17.8±19.7 0.48±0.23
Screen Parser Static 0.53±0.23 0.62±0.22 26.1±24.6 0.59±0.16 0.61±0.27 0.59±0.27 15.2±16.2 0.69±0.24
Screen Parser Dynamic 0.60±0.23 0.67±0.23 20.2±20.9 0.63±0.16 0.66±0.28 0.64±0.28 13.2±15.5 0.74±0.24

Table 5.3 shows the results of our performance evaluation using our set of metrics. Our results
show that our final system, Screen Parser Dynamic outperforms all baselines in all performance
metrics. In this section, we provide more detailed comparison with baselines and further analyze
factors that impact performance.

Comparison with Screen Recognition

Both Screen Parser models outperform Screen Recognition on both datasets. One reason is that
Screen Recognition and most other heuristics-based approach are not abstractive, which prevents
them from producing “deep” trees. Performance on edges containing leaf nodes (i.e., shallower
relations) is generally much better; Compared to overall F1 score, Screen Recognition had a 25%
higher F1 Leaves score.

More importantly, Screen Recognition was not designed to produce output similar to app
view hierarchies; instead, it was designed to support common groupings required by screen
reader navigation. In addition to the set of performance metrics described here, we recommend
holistically evaluating systems in downstream tasks.

Effect of Improved Training Procedure

Based on our results, Screen Parser Dynamic performs up to 23% better than Screen Parser Static.
Since both static and dynamic versions of our model was trained to maximize the likelihood of the
same data, we can conclude that the dynamic oracle training technique is effective in increasing
screen parsing performance.
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Recall that the main difference between the two training procedures is that the static oracle
only produces one sequence of optimal actions (i.e., the canonical action sequence) while the
dynamic oracle produces all optimal sequences (Figure 5.4). This is especially relevant for UI
hierarchies, where the tree structure can be several levels high, leading to exponentially more
possible optimal sequences. This is in contrast to natural language parse trees, which are typically
limited by the relatively short length of sentences.

While the canonical action sequence provably correct (i.e., contains all correct element rela-
tionships) [109], it leads to exposure bias – where the model is biased to perform well only in
states it has seen during training. During test-time, the model may choose an action outside of
this sequence (either by making an error or choosing another optimal action), which causes the
model to perform poorly afterwards.

Effect of UI Element Detection Performance

All systems were fed UI element detections as input, and errors in the upstream model also
affected the performance of the hierarchy prediction.

To estimate the upper-bound performance of systems that rely on the RCNN output, we in-
cluded the RCNN Oracle which constructs an output using the best possible between the detector
output and the ground truth hierarchy. Even with access to the ground truth, it does not achieve
perfect accuracy – possibly a result of missing or inaccurate detections. This suggests that a
better object detection model could further improve UI hierarchy prediction.

As an example, we ran Screen Recognition’s heuristics on both its default object detector
and our RCNN model’s output. Compared to our system’s RCNN model, Screen Recognition’s
object detector is optimized for the AMP dataset (e.g., tuned per-class confidence threshold)
which results in better performance.

Performance on Complex Screens

Finally, we analyzed the performance of screen parsing system on screens of different com-
plexity. Figure 5.5 shows the overall F1 score for each system run on splits of the test data
containing a screens with a specified # of elements. Performance is highest for screens up to
32 elements and degrades following that threshold. One major factor is lower object detection
accuracy with smaller objects (screens with more elements tend to have smaller elements), since
the performance of the RCNN Oracle also drops past that point. Interestingly, Screen Recogni-
tion’s performance remains relatively constant, which suggests that many of the local patterns
targeted by heuristics are not as affected by screen complexity. We also note that although both
Screen Parser systems were only trained on screens with up to 64 elements, they still perform
competitively for more complex screens.

Examples of failure cases (some of which result from these factors) are shown in Figure 5.6.

5.7 Example Applications
In this section, we present a suite of example applications implemented using our screen pars-
ing model. These applications show the versatility of our approach and how the UI hierarchy
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Figure 5.5: Analysis of each system’s performance on screens of varying complexity. Screens
with a higher number of elements introduce challenges for both UI element detection (screens
with large # of elements generally have smaller and more dense elements) and UI hierarchy
prediction.
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Incorrect Grouping Missing Grouping
Object Detection 

Errors

Figure 5.6: Examples of some errors by our screen parsing model. We identified three types
of errors that can occur: (i) object detection errors, (ii) incorrect groupings, and (iii) missing
groupings. Object detection errors can lead to missing elements or misaligned bounding boxes,
which our model relies on to infer grouping. Incorrect groupings can assign irrelevant text labels
to icons. Missing groupings can result in errors in downstream applications, such as a non-
optimal navigation order for screen readers.
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predicted by our model can be used to facilitate many existing tasks.

5.7.1 UI Similarity Search

Many recent efforts in modeling UIs have focused on representing them as fixed-length embed-
ding vectors. These vectors can be trained to encode different properties of UI screens (e.g.,
layout, content, and style) and support down-stream tasks. For example, a common application
of embedding models is measuring screen similarity, which is represented by distance in em-
bedding space. We believe the performance of such models can be improved by incorporating
structural information, an important property of UIs.

Our implementation is trained to model the structural relationships between on-screen ele-
ments, and we show that its internal representations are useful for this purpose. To generate
an embedding of a UI, we feed it into our model and pool the last hidden state of the encoder.
This includes information about the position, type, and structure of on-screen elements. Figure
5.7 shows the 2-D projection [206] of randomly-sampled screens embedded using this technique.
This set includes several variations of app screens, including (i) scaling, (ii) language, (iii) theme,
and (iv) dynamic content. Our model is largely invariant to these changes, since their structure
is the same, just rendered under different conditions. The properties of our embedding could be
useful for some UI understanding applications, such as app crawling and information extraction
where screens are characterized more by their semantics than appearance. We provide examples
of UIs retrieved by our similarity search application in the appendix to illustrate the types of
information our embedding captures.

5.7.2 Accessibility Enhancement

Screen readers help blind and visually impaired users access applications by reading out content
highlighted by a cursor. Knowledge of UI element location (i.e., spatial information) and hier-
archy is important for screen readers to compute the correct order to move the cursor through
the screen (e.g., elements in the same group should be ordered consecutively), and for accessible
apps, this information is found in an app’s accessibility metadata. Recent work [331] has suc-
cessfully generated missing metadata for inaccessible apps by running an object detection model
on the UI screenshot. Their approach to generating hierarchical data relies on manually defined
heuristics that detect and group localized patterns between elements (e.g., a container with a text
element inside it might be grouped as a button). However, these approaches may sometimes fail
because they do not have access to global information that is necessary for resolving ambiguities.

In contrast, our implementation generates a UI hierarchy with a global view of the input, so
it can overcome some of the limitations of heuristic-based approaches. We used the predicted UI
hierarchy to group together the children of intermediate nodes of height 1 that contained at most
one text label and used the X-Y cut algorithm [208] to determine navigation order. Figure 5.8
shows an example where the grouping output from the screen parser model is more accurate than
the one produced by Screen Recognition heuristics. Note that this is not always the case. More
examples are available in the appendix.
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Scaling Language

Dynamic ContentTheme
Figure 5.7: The intermediate representation of our parsing model can be used to produce a screen
embedding, which describes hierarchical structure of an app. We embedded a set of app screens
using our model and visualize them in a 2-D projection. We show that display settings such as
(i) scaling, (ii) language, (iii) theme, and (iv) small dynamic changes result in minimal variation,
which may be useful for some downstream tasks that rely on characterizing screens by semantic
structure rather than aesthetic appearance.

72



Missing
Groupings

Corrected 
Groupings

Poor Navigation 
Experience

Raw 
Detections

Screen 
Recognition

Screen Parser 

Figure 5.8: Recent approaches use object-detection approaches to generate accessibility meta-
data for inaccessible apps. Our model can be used to improve or augment the heuristic-based
approach used by these systems to infer navigation order. Original detections from the object
detector are shown in blue, and grouped elements are shown in orange. Element boxes are anno-
tated using their navigation ordering [208], where the number represents how many swipes are
needed to access the element when using a screen reader. While both results contain errors, in
this case, Screen Parser correctly groups more elements, which decreases the number of swipes
needed to access elements.
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5.7.3 Generating UI Code from a Screenshot
Producing code from screenshots or mock-ups can greatly accelerate application prototyping de-
velopment. A simple approach for code generation is (i) to first extract the location and type
of UI elements using an object-detection model, (ii) then generate code that places the appro-
priate UI controls at the detected locations. While this approach may result in interfaces that
are visually similar to the input, it is undesirable for several reasons. Code generated using this
approach often uses absolute positioning constraints to instantiate UI controls, which prevents it
from adapting to new screen sizes and makes it less useful for developers to work off of.

Some systems [220] use heuristics to detect a limited subset of containers (e.g., lists), while
others [49] augment visually detected elements with hierarchical data extracted from the win-
dow manager. To generate high quality, responsive code, structural understanding of a UI is an
important step.

We built an example application that uses our implementation to generate SwiftUI code from
a app screenshot. We employed a technique used by compilers to generate code from abstract
syntax trees (AST) known as the visitor pattern. First a screenshot is fed into our system, which
produces a UI hierarchy. We performed a depth-first traversal of the UI hierarchy using a visitor
function that generates code based on the current state (current node and stack). Specifically, the
visitor function emits a SwiftUI control (e.g., Text, Toggle, Button) at every leaf node and emits
a SwiftUI container (e.g., VStack, HStack) at every intermediate node 2. We manually created
a mapping between nodes types in the screen parser tree and SwiftUI views and automatically
required parameters such as label text using OCR. Elements containing graphics, such as image
views or icons, are represented by an image patch cropped from the original screenshot, which
are automatically included as assets. When generating code for small form-factors such as smart-
watches, we replace horizontal containers with vertical ones due to limited space. Finally, our
system uses a simple heuristic to determine whether the app uses a light or dark theme, and sets
a preferred color scheme.

The resulting code describes the original UI using only relative constraints (even if the orig-
inal UI was not), allowing it to act responsively to changes in screen size or device type (Figure
5.9). The generated code does not contain appearance and style information (e.g., text size, el-
ement color), which is sometimes necessary to render a similar-looking screen. Nevertheless,
prior work [53] has shown that such output can be a useful starting point for UI development,
and we believe future work can improve upon our approach by detecting these properties.

5.8 Limitations and Future Work
In this chapter, we presented the problem of screen parsing and implemented a baseline imple-
mentation that shows how structured information can be predicted from a UI’s visual appear-
ance. Specifically, our implementation predicts the presentation model from a UI’s screenshot,
for which we had a large dataset of examples (i.e., view hierarchies) to facilitate machine learn-
ing. Some of our system’s constraints (e.g., can only produce directed trees) were purposefully

2Information about SwiftUI controls and containers are available in the SwiftUI documentation: https://
developer.apple.com/documentation/swiftui/views-and-controls
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Figure 5.9: By mapping nodes in the UI hierarchy to declarative view-creation methods, we
can generate code for a UI from its screenshot. Generating code from the hierarchy rather than
the layout ensures that it is responsive across screen sizes, and we show the same output code
rendered on different device form factors. Our example application may produce some errors
due to missing style information (a, c) or inaccurate OCR (b).
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introduced by us in service of our chosen target model.
We see multiple opportunities to improve our particular implementation. From our evalu-

ation, we found that certain components, such as the UI Element Detector, can limit the per-
formance of others that rely on it. The performance of our system can also be improved by
modeling changes e.g., incorporating visual information (e.g., dominant color or visual embed-
ding of an element) in our hierarchy prediction and improving our group labeling model. Some
down-stream applications have different notions of performance. For example, when computing
screen reader navigation, lower-level groupings (i.e., close to leaf nodes) matters more. To more
accurately assess our system’s performance, we plan to evaluate it in the context of down-stream
tasks. Our current model generates its output entirely from visual input (i.e., app screenshot),
which minimizes its dependencies. Nevertheless, we also believe there is an opportunity to take
advantage partial or incomplete view hierarchy, which our model can use in conjunction with
visual information to improve performance [49].

More broadly, we hope to apply screen parsing to extract other types of structured semantics
from UI screenshots (including those on other platforms such as web and desktop UIs), including
those that describe data flow, interaction, and tasks. We expect that for some of these, we will
be able to re-use much of our current architecture. Others might require adding or moving
constraints (e.g., predicting more general types of graphs that may include cycles). Furthermore,
some types of models (e.g., task models) might not be possible to infer from a single screenshot
and would instead require a sequence of screens. Regardless, we expect the utility of automated
UI systems to increase as they gain the ability to parse reason about structured semantics from
UIs. We believe a promising application of screen parsing lies in tasks that require higher-
level semantics such as task automation and programming-by-demonstration [175], which often
require accessibility metadata to work.

5.9 Conclusion
In this chapter, we introduced the problem of screen parsing, the prediction of structured UI
models from visual information. In a comparison to three related problems, we show that our
problem formulation and model is more suited to the unique properties of user interfaces. We de-
scribed the architecture and training procedure for our reference implementation, which predicts
an app’s presentation model as a UI hierarchy with high accuracy, surpassing baseline algorithms
and training procedures. In addition, we showed that the properties of our system allow it to si-
multaneously support a diverse array of down-stream applications: (i) UI similarity search, (ii)
accessibility enhancement, and (iii) code generation from UI screenshots. More broadly, we be-
lieve our formulation of screen parsing will allow automated systems to better reason about the
underlying structure and purpose of UIs, facilitating more advanced and complex interactions.

5.10 Model Hyperparameters
All models were trained with early stopping that stopped training when validation loss did not
improve for 10 epochs. We implemented our models using PyTorch [235] and PyTorch Lightning
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Model Hyperparameter Value
Faster-RCNN optimizer SGD

lr (base) 0.01
lr (max) 0.1

Screen Parser optimizer Adam
lr 1e-4
weight decay 1e-5
dropout 0.25
hidden size 256
hidden layers 4

Group Labeler optimizer Adam
lr 1e-4
weight decay 1e-4
hidden size 256
hidden layers 1

[87].

5.11 Oracle Pseudocode

f o r example in d a t a s e t :
node = example . roo tNode
whi le not example . i s T e r m i n a l N o d e ( node ) :

o p t i m a l = s e t ( )
i f l e n ( node . c h i l d r e n ) == 0 :

# a t a l e a f node , go back up
o p t i m a l . add ( PopAct ion ( ) )

e l s e :
f o r c h i l d in node . c h i l d r e n :

i f c h i l d . i s L e a f :
o p t i m a l . add ( ArcAct ion ( c h i l d ) )

e l s e :
o p t i m a l . add ( Emi tAc t ion ( ) )

i f d y n a m i c T r a i n i n g :
model . t r a i n ( o p t i m a l )
i f model . h i g h e s t S c o r i n g in o p t i m a l :

a c t i o n = model . p r e d i c t i o n
e l s e :

a c t i o n = randomChoice ( o p t i m a l )
e l s e : # s t a t i c t r a i n i n g

a c t i o n = g e t C a n o n i c a l A c t i o n ( o p t i m a l )
model . t r a i n ( a c t i o n )

node = node . n o d e A f t e r A c t i o n ( a c t i o n )
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5.12 UI Retrieval Examples
Figure 5.10 shows examples of UIs retrieved using our UI Similarity Search example application.
We embedded a set of query UIs and used them to retrieve similar UIs from a subset of our AMP
dataset.

5.13 Accessibility Enhancement Examples
Figure 5.11 shows examples of accessibility metadata generated by our system and Screen
Recognition, a baseline that we compared with. Both systems occasionally produce minor errors
(e.g., grouping elements that do not belong together) but significantly improve the navigation
experience.
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Figure 5.10: Example output of our UI Similarity Search example applications. We use several
query UIs to find similar UIs in a subset of the AMP dataset. Retrieved UIs are ordered by their
similarity to the query UI in embedding space. Many of the retrieved screens are from other apps
with similar structural layout.
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Figure 5.11: Examples of accessibility metadata generated for raw detections by Screen Recog-
nition heuristics and our screen parser model. Each element is annotated with the number of
swipes needed to reach it using a screen reader. Elements groups are shown in orange. The last
row of screenshots contain an email address, which is redacted.
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6
Never-ending Learning of User Interfaces

6.1 Preamble

Content in this chapter is based on a conference paper that was published at UIST 2023 [315].
The work was done with my collaborators, Rebecca Krosnick, Eldon Schoop, Amanda Swearn-
gin, Jeffrey P. Bigham, and Jeffrey Nichols. In this chapter, I use the term “we” to collectively
refer to myself and my collaborators.

This chapter presents a system with two goals. First, similar to the preceding two chapters,
we developed a model to predict a new type of semantic about UIs. We focus on affordance pre-
diction i.e., understanding which UI elements can be interacted with using taps or other gestures,
such as dragging. This is essential for machine-based understanding of UI functionality, which
is ultimately necessary for context-dependent transformations. Second, we present a novel ap-
proach for training ML models to learn this information. Currently, most models rely on datasets
of static screenshots that are labeled by human annotators, a process that is costly and surprisingly
error-prone for certain tasks. For example, workers labeling whether a UI element is “tappable”
from a screenshot must guess using visual signifiers, and do not have the benefit of tapping on the
UI element in the running app and observing the effects. In this chapter, we present the Never-
ending UI Learner, an app crawler that automatically installs real apps from a mobile app store
and crawls them to infer semantic properties of UIs by interacting with UI elements, discovering
new and challenging training examples to learn from, and continually updating machine learning
models designed to predict these semantics. The Never-ending UI Learner so far has crawled for
more than 5,000 device-hours, performing over half a million actions on 6,000 apps to train three
computer vision models for i) tappability prediction, ii) draggability prediction, and iii) screen
similarity.
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6.2 Introduction

Machine Learning (ML) has played an increasingly important role in the domain of mobile
User Interfaces (UIs). Recent techniques have used Deep Neural Networks (DNNs) to bridge
critical usability gaps and enable new types of evaluations, such as providing missing acces-
sibility metadata to UIs [312], giving designers feedback to make UI features more discover-
able [262, 276], and predicting user engagement with animations [320]. The enabling research
artifacts behind these interactions are large datasets of mobile UI screenshots annotated by human
annotators [72, 157]. These datasets provide an invaluable volume of data for training DNNs,
but they only capture a fixed snapshot of the views of mobile applications and are extremely
costly to collect and update. In addition, relying on annotators to estimate certain properties of
UI elements from static visual signifiers is known to be error-prone [262]. Inspired by the Never
Ending Learning paradigm [210], we propose an automated method for collecting UI element an-
notations by interacting with applications directly with an automated crawler that continuously
improves its own performance and can refresh ML models for other downstream tasks over time.

We built the Never-ending UI Learner, an app crawler that formulates UI semantic learning
as an active process that uses real interactions on real devices to explore UIs and discover proper-
ties which are used to continually train machine learning models. More specifically, our crawler
automatically installs real apps from mobile app stores and crawls them to discover new, chal-
lenging training examples to learn from (e.g., those that result in low model confidence). During
crawling, the Never-ending UI Learner records temporal context (i.e., taking screenshots before,
during, and after interactions) that is used by heuristic functions to generate more accurate labels
than are possible from human-annotated single screenshots. The resulting data is used to train
models that predict the tappability and draggability of UI elements and determine the similarity
of encountered screens. Although the process can start with a model trained from human-labeled
data, the end-to-end process does not require any additional human-labeled examples.

In contrast to existing data pipelines for data-driven UI modeling [72, 157, 331], our never-
ending UI learning paradigm allows data collection, annotation, and model training to be per-
formed without any human supervision and can be run indefinitely. Of course, in this chapter the
learning is not truly never-ending. Here we present experiments that analyze the performance
characteristics of our learner over 5,000 device-hours, in which it performed more than half a
million actions on 6,000 apps. The resulting dataset is an order of magnitude larger than existing
human-annotated UI datasets [72, 331] and allowed us to analyze the performance of UI seman-
tic models when trained with increasing amounts of recently collected examples. Ultimately,
we believe this model can be used in a true “never-ending” style, continually crawling the app
ecosystem, collecting data from literally all available apps, and experiencing new UI styles and
trends as new or updated apps are released.

The specific contributions of our paper are as follows:

1. The Never-ending UI Learner, is a system that operationalizes our approach for auto-
matically learning from UIs through never-ending interaction.

2. Three applications which demonstrate use of the Never-ending UI Learner. We use
our crawler to train three types of models of UI semantics that are difficult to learn through
existing methods: i) tappability, ii) draggability, and iii) screen similarity.
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Figure 6.1: Architecture of our Never-ending UI Learner. The Never-ending UI Learner is
a parallelizable mobile app crawler which consists of a coordinator-worker architecture. The
crawler coordinator distributes crawls to workers and maintains the dataset. Each crawler worker
is connected to a programatically controlled mobile device which collects data and runs data post-
processing.

6.3 Never-ending UI Learner
To operationalize our approach, we built the Never-ending UI Learner, a system that automati-
cally downloads and crawls publicly available apps using remotely operated devices. Our current
implementation and infrastructure is based on iOS. We use stock factory reset devices that are
logged in to testing accounts that are not associated with any real user data to avoid privacy
concerns.

Note that unlike some crawlers that interact with apps using an OS-provided programmatic
interface such as the accessibility API, our crawler interacts with the device through the VNC
remote desktop protocol, from which it receives regular updates to the screen and processes them
visually and can send raw input events to the device to create tap, swipe and keyboard actions.
Using VNC, the Never-ending UI Learner is able to reliably interact with more apps, learn based
on the same facilities that a human would and generalize to other platforms. In this section, we
describe the crawler’s architecture and behavior that enable it to perform never-ending learning.

6.3.1 Architecture Overview
Our crawling architecture is shown in Figure 1. We implemented a distributed crawling architec-
ture which consists of i) a central coordination server and ii) a large pool of workers to parallelize
the crawling process.

Coordinator Server

The crawler coordination server maintains a list of app IDs to crawl which are sent to workers.
The central server keeps track of successful and unsuccessful crawls, and it automatically retries
failed app crawls. App crawlers differ from web crawlers in that they focus only on the app they
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are asked to crawl, although limited cross-app interaction sometimes does occur (e.g., clicking on
a link or permission request dialog). When all app IDs are exhausted, our crawler can schedule
itself to be run again after a fixed time period (e.g., weekly). The list of app IDs can be modified
between crawls to add new apps or reflect changes in app availability. While the majority of the
app IDs remain the same, the apps may change their appearance and behavior due to dynamically
updated content and new versions of the software. Re-crawling the same apps regularly can
enable our model to adapt to design changes over time.

Crawler Worker

Crawler workers are processes that interface with remotely controlled mobile phones and pro-
cess the collected data. Each crawler worker downloads and installs a target app whose ID is
provided by the central server to the mobile phone and then runs a program that crawls the app.
Screenshots are collected during interactions and when the crawler believes it has arrived at a
new screen. The program can use three methods to explore the app (random selection or based
on model confidence), and as a part of this chapter, we run experiments to determine the best
crawling strategy for each of our never-ending learning use-cases. We set a time-limit (5 min-
utes) on the maximum duration of a crawl for a single app. Afterwards, the worker processes the
collected data (e.g., screenshots and interactions) with models and heuristics to generate labels
from the observations. Both raw data and processed output is uploaded to a coordinator server.
In our experiments, the number of crawler workers varied to due to availability from the device
pool which we used, which was shared with other users. Generally, there were around 40-100
crawler workers.

6.3.2 Machine Learning Components
Our crawler contains a screen-level and element-level model that allow it to understand the con-
tent on UIs it encounters. We run these models every time a screenshot is captured to augment
it with useful semantics. Furthermore, the three UI semantic models that we trained in using the
crawler, are designed as extensions of these base models, improving overall efficiency.

Screen Understanding

To keep track of its crawling progress in the app, our crawler uses a model to generate semantic
representations of screens. We used a model introduced by previous work [91] that predicts
whether two screenshots belong to the same UI by encoding each as an embedding vector, which
the authors shared with us. Because significant variation can be introduced by changes in state,
such as a news app that displays new content periodically, the model is designed to learn the
underlying structure of UIs. We made minor modifications to the previous work in order to
develop a model that could run under our hardware constraints. Instead of their recommended
screen transformer model architecture, we use their CNN-based model architecture, which is
more efficient to run despite somewhat lower performance [91]. For further optimization, we use
an EfficientNet-B0 [280] model architecture as the backbone instead of the original ResNet-18
[121], which has more parameters. As in the original paper, the output of the last layer of the
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CNN network is used as a screen embedding. During training, we applied a data augmentation
approach [284] to increase performance. We followed all other aspects of the original model
training and our final CNN-based model achieves a F1-score of 0.636.

Element Understanding

To generate element semantics, we used an object detection model architecture that is similar to
CenterNet [335]. At a high level, the detection model slides a window (via convolutions) over
the image and featurizes image sub-regions using a backbone network (MobileNet-v1 [129]),
resulting in embeddings for each region. These embeddings are fed into a classification head
which produces per-class confidences, and regions with high confidences are returned as detec-
tions. The model was trained on the AMP dataset [331], which consists of 77,000 app screens
collected and annotated by annotators from 4,000 iPhone apps. In addition to the standard el-
ement type classification head, which was trained with the rest of the object detection model,
we added heads for tappability prediction and draggability prediction. The additional heads are
trained independently from the rest of the model by first freezing the backbone and training the
heads on embeddings corresponding to detected elements.

6.4 Applying Never-ending Learning
In this section, we describe the application of our never-ending learning framework to three UI
semantic models: i) tappability prediction (element semantic), ii) draggability prediction (con-
tainer semantic), and iii) screen similarity (screen semantic). The tappability and draggability
models were trained completely from crawler-generated data, while the crawler fine-tuned its
existing screen similarity model that was originally trained using human-annotated data. For
each UI semantic, we developed an interaction-based heuristic used by our crawler to automati-
cally generate new training examples for our models. Next, we designed and trained models to
predict each of these semantics from a screenshot. Finally, to contextualize these models in the
context of never-ending learning, we analyzed their performance over time.

Experimental Setup. We conducted experiments on a list of 6,461 free iOS apps. For
the purposes of evaluation, all model training and experiments were performed with randomized
training (80%), validation (10%) , and testing (10%) splits. We randomly partitioned our list of
app IDs, which ensured that all UI screens from an app were contained in the same split. We use
the term crawl epoch to refer to one complete pass through the list of apps. Note that unlike an
epoch through a training dataset, the actual contents of a crawl epoch might change from time to
time, due to the dynamic nature of apps.

Our experiments analyzed two aspects of the crawler’s performance: i) crawling strategy and
ii) performance over time. We ran three variations of the crawler, which had different crawling
strategies: i) randomly selecting elements on each screen (Random), ii) selecting elements that
result in low prediction confidence from the current models (Uncertainty Sampled), and iii) a
hybrid that for each crawl epoch alternates between Random and Uncertainty Sampled strategies,
inspired by similar approaches in optimization [271]. To evaluate the performance over time,
we ran each crawling strategy for five crawl epochs. Note that the first crawl epoch for all
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strategies uses Random to train an initial confidence-prediction model. In the Hybrid strategy,
because alternation happens at the epoch level, the second epoch is crawled using the Uncertainty
Sampled strategy and thus through two epochs the inputs and results are identical for both the
Uncertainty Sampled and Hybrid strategies. The three strategies fully diverge starting from the
third epoch. Across all experiments, we collected over half a million screenshots, although the
same UI screen may have been visited multiple times. The number of screenshots in our dataset
is considerably larger than previous work [44, 72, 157, 316].

The crawler’s models were trained and evaluated after each crawl epoch. After each crawl
epoch, model training is resumed with the updated data from the latest crawl and the model
weights are optimized for 100,000 optimization steps (with early stopping). In order to maintain
a constant validation set across a varying number of epochs, we only use the evaluation data split
from the first epoch for calculating performance metrics. Finally, for models that were trained
completely on crawler data (tappability and draggability), we performed additional sub-epoch
evaluations during the first crawl to analyze learning speed.

While the dataset is not released at the time of publication due to internal regulations, we are
investigating processes to make it available to the broader community. To replicate our work, it
is possible to use tools and models built for comparable platforms (e.g., Android). Open-source
crawlers [181, 290] can be integrated with available screen similarity [316] and element detection
models [44, 316, 321].

6.4.1 Tappability
Tapping is the most common interaction on mobile devices, yet it is often difficult to automati-
cally determine if an element is tappable or not due to missing metadata and ambiguous visual
cues. For example, a text button that doesn’t have sufficient contrast or missing borders would
likely appear untappable to users, and many games are missing accessibility traits that prevent
screen reader users from using them. Accurate inference of tappability could aid designers in
finding ambiguous visual elements and be useful for generating metadata for repairing inacces-
sible apps. Previous work has used human-annotated UI screenshots to train machine learning
models of tappability. However, this process is surprisingly error-prone [167, 170, 262, 276] due
to ambiguous visual cues, which suggests that human-annotated screenshots are an unreliable
source of ground-truth for training tappability models. In contrast, our crawler can use addi-
tional context from the entire interaction, such as before and after screenshots instead of a single
before screenshot, to determine if tapping resulted in an effect. Effects could either be state
changes, like flipping a toggle, or a transition to a new screen. We developed a heuristic for in-
ferring tappability from our crawler’s recorded interactions and found that it had high agreement
with human-annotated videos. We used heuristic-labeled data to train an efficient tappability
“head” model purely from crawler-annotated data. After five crawl epochs, the best-performing
tappability model reached an F1 score of 0.860.

Tappability Heuristic

We developed a heuristic to infer the tappability of an element based screenshots of the UI taken
before, during, and after a tap interaction. A tap may result in several different scenarios, which
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Baseline Screen Initial Screen Post-Interaction Screen

Simulate TapSelect 
Element Take ScreenshotTake ScreenshotTake Screenshot

Establish Baseline Infer Effects of ActionPerform Action

Figure 6.2: This figure visualizes the steps to our tappability heuristic. When the crawler arrives
at a new screen, it takes two screenshots separated by 5 seconds as a baseline of visual change.
Then, a detected UI element is chosen and sent a tap. After waiting for the screen to settle, a
post-interaction screenshot is used to infer the effects of the action.
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are captured by our heuristic. First, we use a screen similarity model to compare screenshots
taken before and after the tap to determine if the tap led the crawler to a new screen. If a screen
change was not detected, the tap could have also changed the screen state. We compute a pixel-
based difference of the “before” and “after” screenshots to identify possible visual indications
of local or global changes, such as tapping a checkbox or refreshing screen content respectively.
Finally, to reduce false positives, the heuristic also uses multiple screenshots captured before the
tap to identify dynamic areas of the screen (e.g., videos) whose visual changes are not related to
the tap.

To validate the accuracy of our heuristics, we compared its results against human-labeled
interaction videos. We used our crawler to save short screen recordings of tap interactions that
were collected during crawls. Each example video was approximately 10 seconds long and
included the tap location overlaid on the video and temporal context before and after the tap
interaction, such as including transition and loading animations.

We randomly sampled a balanced subset of 1000 video clips from our crawls and asked hu-
man annotators if each video clip contained a tap interaction. Annotators were recruited, trained,
and paid by a separate team at our organization (all with appropriate legal/ethical approval). An-
notators were employees paid who are paid a competitive hourly salary for their location. We
used standard classification metrics to evaluate the accuracy of our heuristics, using the human-
annotated labels as ground truth. The tappability heuristic had an overall accuracy of 0.934, and
had a similar number of false positives (38 instances) and false negatives (28 instances).

Model Implementation

To predict tappability, we designed a model architecture that operates as a “head” of our existing
element detection model (Figure 6.3). Heads are small sub-networks or set of layers usually
located close to the output layer of neural network architectures and generate predictions from
featurized representations of the main input produced by a “backbone” network. Since element
detection is closely related to tappability, we hypothesized that the previously learned represen-
tations are likely to contain relevant information and greatly accelerate tappability learning. Our
head model is a simple three-layer feed-forward model with an input size of 128, a hidden size
of 64 that we chose through manually tuning, and an output size of 1 that gives tappability con-
fidence. To train it, we first froze the weights of the element detector’s backbone network and
randomly initialized the parameters of our feed-forward network. While freezing most of the
model reduces its capacity, it also results in a significant reduction in training time, since there
are fewer parameters to optimize. Then we trained the model to predict the tappability of an
element from a screenshot of the UI before the tap, and we used the labels generated by our
tappability heuristic as ground truth.

Performance Evaluation

The results of our experiments are shown in Figure 6.4. While all crawling strategies are success-
ful in improving on the initial model from the first epoch, the Random crawler has the best final
performance. In our experiments, the Random crawler reaches the best final F1 score of 0.860
while the Uncertainty Sampled crawler reaches the lowest final F1 score of 0.853. While it is not
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Figure 6.3: Architecture of our tappability model. The tappability model is designed as a
“head”, which is a sub-network of the UI element detection model. The element detector featur-
izes image regions in an input screenshot using a sliding window, which results in a featurized
image embedding for each detected object. The main branch of the network (top) feeds in the
embedding to determine the region’s element type and position. We feed in the same element
embedding into a separate feedforward network (bottom) to predict the probability that it is tap-
pable.
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Figure 6.4: Performance of tappability over time. The model performance increases most
rapidly during the first crawl epoch and the rate of improvement plateaus afterward. After the
final epoch, the random crawler achieves the highest F1 score of 0.860, and the uncertainty
sampled crawler has the lowest F1 score of 0.853.
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possible to make a direct comparison with previous work [262, 276] because their experiments
were run on different datasets, it seems that our tappability model is able to reach similar levels
of performance in terms of F1 score after its first epoch.

We also conducted a comparison between the quality of our automatically collected tappa-
bility dataset and human-annotated ones, we used the labels provided by the AMP dataset [331].
First, we trained our classification head model architecture on AMP, which led to similar per-
formance (F1=0.81) to the originally reported numbers (also F1=0.81), which used a tree-based
model architecture. However, when we used the model trained on human-annotated data to
predict the tappability of elements in our crawled dataset, we observed significantly degraded
performance (F1=0.60), suggesting that the human-annotated and crawler-generated labels dis-
agree with each other. We consider the heuristic-annotated data to be higher quality since its
performance was validated by annotators with access to a video clip of the entire tapping interac-
tion, and previous work [262] has shown predicting element tappability from a single screenshot
leads to high variance among raters.

6.4.2 Draggability

Dragging is a common interaction in mobile apps that involves touching an element on the screen
with one’s finger and moving the finger along the screen’s surface before finally releasing it. This
interaction is used to manipulate controls, such as sliders and page controls, and is necessary for
accessing off-screen content via scrolling. While these examples reflect different types of input,
we collectively refer to all these actions as “draggability,” since they involve similar physical
movement. Unlike tappable elements, draggable elements often have fewer visual signifiers
and are more difficult to automatically detect. To the best of our knowledge, there aren’t any
datasets available with draggability labels, and we believe that, similar to tappability, it would
be difficult for human labelers to reliably identify draggable elements from screenshots. To
improve screen reader support for inaccessible apps with these affordances, we used our crawler
to automatically find and label examples through automated interaction. We developed a heuristic
to infer draggability from screenshots of drag interactions. Using data labeled by this approach,
we trained a draggability model that reached an F1 score of 0.794 after five crawl epochs.

Draggability Heuristic

To detect if a UI element is draggable, our crawler captures screenshots while attempting to hold
and drag elements. Our crawler first identifies likely candidates, then emulates drag actions to the
left (e.g., finger goes to the left) and upward directions to detect horizontal and vertical dragging,
respectively. These directions were chosen because they correspond to the initial position of lists
in left-to-right reading directions, and we execute drag actions from the center of the element to
either its left or top boundary. The crawler captures one screenshot before the drag begins and
one screenshot at the end of the drag but before its “finger” leaves the screen.

The high-level idea of the heuristic is to detect which UI elements, if any, “follow the finger”
in the direction of the drag. We first use the smallest UI element containing the dragged pixel
on the pre-drag image to create an image patch. This image patch is template-matched with
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Figure 6.5: This figure illustrates the draggability heuristic. The heuristic uses a pre-drag image
(center) which was taken before the interaction, and a post-drag image (right) which is taken near
the end of the drag interaction, before the “finger” leaves the screen. A template image is created
from the dragged element (left). The heuristic finds the location of the template in the post-drag
image to infer draggability.

the post-drag image using the normed correlation coefficient method on grayscaled and edge-
detected images. The vector corresponding to the template displacement is filtered by cosine
angle and magnitude. Next, the patches inside bounding boxes between the pre-drag and post-
drag screens are compared to identify whether other elements which scrolled during the drag
action. If the contents of a bounding box in the pre-drag image match the contents of a bounding
box translated by the template translation vector in the post-drag image, then it is likely a UI
element which has been scrolled together with the original UI element. We use the normed
correlation coefficient method to measure similarity between these image patches, on grayscaled
and edge-detected images. If no scrolled elements are identified, the original UI element is also
marked as not draggable to filter out false positives.

We conducted an evaluation of our heuristic on 1000 samples, which were generated by
running the heuristic on screens collected from a randomized crawl, then selecting 500 screens
where the heuristic was triggered and 500 where it was not. Due to a glitch, our crawler did
not record the interaction videos of the draggability interaction, however we found that it was
straightforward to infer draggability from the captured before/after screenshots. For each inter-
action step, we presented the annotator with three images, the pre-drag image, post-drag image,
and a combined image with the both pre- and post- images super-imposed, which allowed more
easy visualization of movement. The images were annotated with an arrow that indicated where
the drag occurred. Again, we used the human-provided labels as ground-truth to evaluate our
heuristic’s predictions. The draggability heuristic had an overall accuracy of 0.92, and a similar
number of false positives (38 instances) and false negatives (48 instances).

Model Implementation

Unlike tappability, which is an element semantic, draggability is often associated with containers
that contain multiple elements. We initially tried to use the same “head” model architecture as our
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Figure 6.6: Architecture of our draggability model. Similar to the tappability model, the drag-
gability model uses embeddings from the element detector. To give the draggability model ad-
ditional context (e.g., presence of partially occluded elements), all elements on the screen are
simultaneously fed into a single-layer transformer. The resulting contextual embeddings are
used to predict draggability probability.
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tappability model, which re-uses the element features generated by our detection model, however
we found that this model achieved low performance (F1 score=0.2). Upon closer inspection of
misclassified examples, we noticed that visual signifiers for an element’s draggability are often
non-local (i.e., occur elsewhere on the screen). For example, a picture is more likely to support
swiping if page control indicator is located beneath it, and scrollability in mobile apps is often
best inferred by searching for partially occluded elements at the end of the list or near the edges
of the screen. Because the element detector featurizes image regions by pooling together nearby
visual information, it omits many relevant cues for this task.

Based on these observations, we designed a model based on the transformer architecture,
which allows it to incorporate information from the entire screen into its prediction. We first
used our element detector to featurize all detected elements on the screen. The element embed-
dings are then fed into self-attention layers to generate a contextualized embedding. Finally, the
elements’ contextualized embeddings are fed into a linear classifier with a single output node to
classify draggability. While training the draggability model, the element detector’s weights are
also frozen to improve training efficiency. For screens where the draggability heuristic wasn’t
triggered, loss is only computed for the directly interacted element. For screens where the drag-
gability heuristic was triggered, loss is computed on all elements that were affected by the drag.
In both cases, elements that did not move along with the finger are ignored in the loss calculation,
as it isn’t possible to know for certain if they are not draggable without interacting with them.

Performance Evaluation

Our evaluation of the draggability model focused on performance over time (See Figure 6.7).

The results of our experiments are shown in Figure 6.7. The Hybrid crawler had the highest
final performance (F1=0.794), while the Uncertainty Sampled crawler was lowest (F1=0.770).
Interestingly, the Uncertainty Sampled and Hybrid crawls both experienced a decrease in per-
formance during the second crawl epoch. While the Uncertainty Sampled crawler continued
to decline, the Hybrid crawler alternated to its randomized crawl strategy and began to rapidly
improve. We hypothesize that the uncertainty sampling during the second epoch may have im-
balanced the dataset by collecting many examples of similar elements while ignoring others, and
thus negatively impacted the subsequent model.

From our experimental results and anecdotal observations, we hypothesize that draggability
is harder to infer from static visual information alone due to the lack of local cues, and the best
way to discover functionality that involves dragging may be learning from extended usage. In
some cases, it may be appropriate to directly apply the draggability heuristic at run-time. In
contrast to tapping, which is likely to alter the state of the UI or bring the user to a new page,
we hypothesize that many dragging interactions are less likely to lead to side-effects. Our model
could be used to first identify likely candidates for interaction-based verification.

Similar to the tappability model, we also observed small gains in performance over time;
however, there was less overall improvement to draggability performance. One possible reason
is that since draggability is more difficult to infer visually, the model reached its ceiling earlier.
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Figure 6.7: Performance of draggability over time. Similar the tappability model, the draggabil-
ity model improves the most during the first crawl epoch and the rate of improvement plateaus
afterward. The hybrid strategy crawler achieves the highest final F1 score of 0.797, and the un-
certainty sampled crawler has the lowest F1 score of 0.770.
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6.4.3 Screen Similarity
We used our crawler to improve its screen understanding capabilities by using its interactions to
validate and retrain the screen similarity model. A more accurate screen similarity model allows
our crawler to more reliably determine which app screens it has already visited in an app, and thus
increase its exploration efficiency. Screen similarity models have also been used in other types of
software engineering applications, such as processing mobile app usage videos [65], automated
software testing [181, 182], and automated storyboard generation [58]. Feiz et al. note that due
to their labeling technique, their dataset contains more examples of new-screen pairs than same-
screen pairs. We mined additional examples of same-screen pairs from our crawler’s recorded
interactions to augment the original training data and fine-tuned the initial model by lowering
the learning rate by a factor of 10. Compared to a baseline condition where the screen similarity
model was trained using the unmodified dataset (with the same lowered learning rate), we found
that the augmented dataset led to consistently better performance.

Data Generation

We do not introduce a new interaction-based heuristic for collecting labels for screen similar-
ity. Instead, we re-use the data captured from the tappability and draggability heuristics. Both
heuristics take two screenshots before initiating an interaction to identify animated or dynamic
regions of the screen that could cause false positives for tappability and draggability detection.
Yet these same examples can also be used to find examples of false negative predictions from our
screen similarity classifier. We assume that the pre-interaction screenshots belong to the same
screen, since any visual variation between them is not caused by a user input. We make similar
assumptions about data collected from the draggability heuristic, since the final screenshot is
taken before the drag gesture is completed (i.e., before the finger is released from the screen)
and is unlikely to result in a new screen. We use these sources to create a dataset of screen-
shot pairs of same-screen pairs, and we ran our existing screen similarity model to search for
incorrect predictions, which can be used to re-train the model. Based on this process, we mined
approximately 2000 new examples from each epoch.

Model Implementation

The screen similarity model was initially trained on a dataset that contained both examples of
positive (same-screen) and negative (different-screen) pairs, which made it possible to optimize
using a contrastive margin loss [119].

At a high level, the model maps screenshots into an embedding space, and the loss ensures
that similar screens are close together (i.e., have a distance less than a margin value) while dif-
ferent screens are further apart.

Lsim =

{
||∆h||2 if s1 = s2

max(0,m− ||∆h||2) otherwise
(6.1)

To fine-tune the model, we use the same training objective but decrease the learning rate to
lr = 1e− 5, which is ten times lower than the original value used to train the model. We initially
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Figure 6.8: Architecture of our screen similarity model. The screen similarity determines if two
input screenshots are variations of the same UI by i) featurizing each screenshot using a CNN ii)
comparing their Euclidean with a threshold value.
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tried to use the newly-mined same-screen pairs to fine-tune the model without mixing it with the
original dataset. However, this was unsuccessful, since only focusing on the “similarity” term
(s1 = s2) resulted in a failure case where the model learns to map all screenshots to the same
point in embedding space, since it is only penalized if similar screens are far away but not if
dissimilar screens are close together. Thus, we directly “mixed” in the newly mined examples
with the rest of the original dataset, which consisted of 800,000 labeled pairs.

Performance Evaluation

We measured performance with respect to the original dataset’s evaluation split because our
generated data only contains same-screen pairs, which makes it impossible to compute precision.
The results are shown in Figure 6.9. Because the screen similarity model doesn’t affect the
crawler’s selected actions (e.g., attempted taps and drags), we only evaluated our approach on
data from the Random crawl. Overall, we found that using the crawler-generated dataset to
fine-tune the model led to small but consistent improvements in performance over time. The
screen similarity model improved from an initial F1 score of 0.636 to a final F1 score of 0.663.
Despite being trained on the original dataset, the baseline model also improved due to the lowered
learning rate. A common practice in neural network training is to decrease the learning rate after
performance plateaus, which may allow the model to continue improvement. The baseline model
improved the initial model to a final F1 score of 0.659.

If the crawler were to run indefinitely, it would need some mechanism to ignore a subset
of the collected data to avoid eventual data imbalance due to the collection of only same-screen
pairs. Several possible techniques exist for consolidating and distilling datasets to retain the most
informative samples [218, 219, 299]. While we believe these methods are applicable, we leave
this aspect of validation to future work.

6.5 Discussion

Our experiments revealed that visual UI models could effectively be trained and improved through
automated, continual interaction. In this section, we discuss i) the performance of our specific
Never-ending UI Learner implementation, ii) other types of interaction-based learning, and iii)
the benefits applying these strategies over very long or potentially indefinite period of time

6.5.1 Never-ending UI Learner Performance

In this chapter, we conducted a series of experiments that evaluate the Never-ending UI Learner
and and its ability to automatically learn UI semantics. Our experiments investigate two key
questions: i) what is the best way for an automated crawler to learn about UIs? and ii) how long
would it need to run?

Crawling Strategy. Our experiments focused on three crawling strategies for exploring mo-
bile apps: i) randomized crawling, ii) uncertainty sampling, and iii) a hybrid strategy. Overall,
the random strategy consistently led to strong performance in all our experiments. We initially
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Figure 6.9: Performance of screen similarity over time. We compared i) adding training ex-
amples mined from crawls and ii) a baseline of continuing model training on its original dataset
with a lower learning rate. The crawler-augmented dataset achieved a final F1 score of 0.663
while the baseline’s final F1 score was 0.659.
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hypothesized that uncertainty sampling, an active learning technique that improves sampling ef-
ficiency by prioritizing examples with low model confidence, would let the model to learn more
efficiently and effectively. However, because our crawler updated its models (which are used to
compute the prediction confidences) every epoch instead of after each sample (as is often done
in applications where uncertainty sampling is employed), it led to imbalanced data collection
during subsequent crawls, which decreased performance. The hybrid crawler alternated between
random and uncertainty sampling strategies, which allowed it learn from low-confidence pre-
dictions while also correcting the distribution shift induced by batched uncertainty sampling.
Overall, it led to similar performance to pure random crawling, although it was less consistent.
In the draggability task, it initially decreased performance but experience rapid improvement af-
terward. Ultimately, our experiments do not reveal a clear choice, and we believe there is room
for exploring additional strategies [110] and longer-term evaluation, which we leave to future
work.

Performance over Time. Even though our crawler is meant to run indefinitely, our ex-
periments focused on a relatively short period of five crawl epochs. Each crawl epoch lasted
approximately half a week (clock time) when parallellized across multiple crawler workers and
consisted of approximately 500 device-hours of app interaction, data post-processing, and model
training. Across all experiments, the Never-ending UI Learner crawled for more than 5,000
device-hours, which was carried out over the span of approximately one month.

Our results show that this window is sufficient to learn accurate models purely from crawler-
collected data (tappability and draggability) or fine-tune existing models (screen similarity).
Overall, we found that models had rapid early learning followed by slower improvement, which
is consistent with empirical observations in machine learning research that suggests an expo-
nential relationship between dataset size and model performance [275]. We believe these small
improvements are valuable, since their benefit can be magnified when running over potentially
very long periods of time and allow the model to be continuously updated. We plan to continue
running the crawler, which doesn’t require human supervision, to observe trends over longer
periods of time and maximize the potential of our automated learning approach.

Anecdotal Observations. Based on our experimentation, we found several dimensions that
affect the performance of never-ending learning systems such as ours. We offer anecdotal obser-
vations that may be useful for replication or implementing similar systems.

• Choosing examples. In this chapter, we primarily explored two methods (random and
uncertainty-based) for selecting training examples. We found that random selection is a
strong baseline, and active learning approaches (e.g., uncertainty sampling) can be effec-
tive with proper hyperparameters. There is more to explore along this dimension, including
the use of crawler history to reduce sample redundancy, which we observed in our crawled
data.

• Retraining frequency. Re-crawling and re-training frequency can affect the system’s per-
formance changing the makeup of the training data. The experiments in this chapter were
run over the span of around one month with an update iteration every 1-2 days, so the
app changes that we witnessed were primarily due to changes in dynamic content. We be-
lieve that less frequent updates can be effective (e.g., monthly) which could capture more
substantial changes such as app updates or newer design guidelines.
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• Evaluation data. We used a fixed evaluation split to directly compare model performance
over time. Using data from the latest crawl may allow for more accurate estimation of real-
world performance; however, it is less straightforward to compare models across epochs,
since changes may either have been caused by model performance or changes to valida-
tion data. Finally, using a dynamic-sized validation set could be useful if the models are
deployed in scenarios where performance on both old and new apps are important.

6.5.2 Learning from Interactions
Our work contributes the idea that automated interactions can be used to generate datasets for
model-based UI understanding. Most existing datasets use human annotators and crowd work-
ers to produce labels for mobile UI datasets, such as UI element bounding boxes, icon types,
and screen similarity pairings. While human labeling has been a de facto standard for creating
datasets, especially for domains where the data volume requirements for self-supervised learning
are not feasible, crowd worker-generated annotations are known to be susceptible to errors and
biases [64, 234]. Furthermore, many tasks implicitly encode a degree of subjectivity. One such
example is tappability prediction, where annotators use their own judgment to decide whether a
particular UI element in a screenshot is tappable. Labels for such tasks are known to be noisy in
practice, and are often averaged or voted on from multiple crowd workers, further increasing the
time and cost of human-produced labels [262]. In contrast, automated interaction-based learning
can significantly mitigate annotator biases, since labels are produced through hypothesis testing.
However, there may be cases where encoding perceptual information into labels can be useful,
such as giving feedback to designers on perceived tappability. In other cases, such as generat-
ing accessibility information, labels more closely aligned with ground truth may be preferred.
Understanding the trade-offs between these methods and their impact on model alignment is an
opportunity for future work.

In our work, we showed that interaction-based learning can be used to model element (tap-
pability), container (draggability), and screen-level (screen similarity) semantics in mobile UIs.
For our tested applications, we found that heuristics that operated with knowledge of the entire
interaction made label generation relatively straightforward. However, highly accurate heuristics
did not always lead to highly accurate models since the model had to make the same prediction
with access to less data (i.e., only visual information from a static screenshot). Some types of
semantics were more conducive to visual modeling than others. Our tappability model achieved
high classification performance, with an F1 score of 0.860. On the other hand, draggability was
much harder to predict from a screenshot (F1=0.797).

A natural question to explore is: what other types of semantics can be learned through inter-
action? For example, related semantics such as “press-and-hold” functionality can be discovered,
and textboxes can be better understood by observing what kind of software keyboard (e.g., email
or numeric keyboard) appears when it is tapped on. Could this approach be extended to the prob-
lem of UI element detection more generally, which currently relies heavily on human annotation?
There are many details that would need to inferred, such as the size and shape of UI elements,
and of course the element type. Many more interactions would be needed from the crawler to
determine a bounding box for a given element, and it might be difficult to infer complex element
types, but a working system that could do this might be able to learn about custom controls and
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other non-standard elements that current models cannot deal with today. Better automated un-
derstanding of UIs can not only benefit downstream applications directly, but also collect better
data to train models.

6.5.3 Benefits of Never-ending Learning

Our crawler is meant to be run indefinitely, allowing it to accumulate examples and train over
long periods of time. In our paper, we experimented with several variables (e.g., training hyper-
parameters and exploration strategies), which was only feasible by focusing on a relatively short
period of time for each condition (5 crawl epochs). Even from this short time-span, we could train
models for UI semantics “from scratch” and observed consistent improvements to performance
afterwards, but we believe that our models are yet to reach their maximum potential. In addition
to its performance benefits, never-ending learning allows machines to learn from diverse sources
of data. Never-ending learning can help machines identify and learn from mistakes, especially
those caused by shifts in data distribution caused by trends in app usage and design trends.

Never-ending learning also introduces new challenges, like “catastrophic forgetting,” the pos-
sibility of erasing previously learned information by training on new data, and difficulties asso-
ciated with large, ever-growing datasets. In this chapter, we conduct a preliminary exploration
of methods to address some of these challenges, such as uncertainty sampling, which can help
prioritize certain types of data. Our literature review uncovered many other possible machine
learning techniques that involve training the model training process [47, 148, 183, 248] or dis-
tilling the collected dataset relevant samples [218, 219, 299]. We expect that they will be useful
for scaling and maximizing the performance of never-ending UI learning.

6.6 Limitations & Future Work

Our current implementation of a Never-ending UI learner is limited and presents opportunities
for future exploration.

First, our current crawler is implemented using a specific set of tools and infrastructure cus-
tomized for our target platform (iOS). While we did not run experiments on other types of UIs
(e.g., Android, web-based interfaces), we expect our results to be generalizable, since our ap-
proach does not rely on any platform-specific metadata or APIs, and previous research has shown
semantic overlap between mobile and web UIs [316]. Our experiments primarily focused on free
apps that did not require authentication (e.g., registering and making an account), which biased
the set of UI screens reached by crawling. We used manually-designed and verified heuristics
for a small set of semantics for tappability and draggability. We believe that many other as-
pects of UIs and interaction can be formulated using similar methods. Another limitation of our
current experiments is that we did not investigate the effect of different randomized train/test
splits, which could provide additional insight into the robustness of our method. Because exper-
iments took roughly a month to complete, the time and compute costs for repeated trials would
have been prohibitively high. However, since our list of apps is sufficiently large and randomly
shuffled, we do not expect large variations in performance across different randomized splits.
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Personalized interaction traces collected over long periods of usage can improve the perfor-
mance of models for rarer, niche apps, although a privacy-preserving approach would be needed
(e.g., on-device training). An alternative direction is to allow our crawler to automatically learn
interaction sequences to discover and label new aspects of UIs, instead of executing manually-
defined heuristics. We expect future versions of our crawler to incorporate techniques from
related machine learning fields, such as reinforcement learning.

Finally, our crawler could benefit improved UI understanding capabilities. First, our crawler’s
primary representation of screens that it visits is a list of UI elements, which are used to navigate
and discover other parts of the app. A more effective way of representing screens could lead
to more efficient crawling [312]. For example, since properties of list items are similar, the
crawler could reduce unneeded interactions by tapping on one list item and propagating the
label to others. Icon semantics [54, 56, 193] are also helpful for inferring the result of certain
interactions. For example, tapping on a “camera” icon may open the system camera app, which
would disrupt the crawl. Since the goal of the crawler itself is to train such UI models, we
believe that integrating these additional models into the never-ending learning framework is a
natural next step.

6.7 Conclusion
In this work, we presented a technique for continuous extraction and modeling of user inter-
face semantics through interactions, which we refer to as “never-ending learning of UIs.” We
implemented a mobile app crawler that downloads, installs, and crawls thousands of apps to ob-
serve UI semantics and affordances in real-world apps, and we use interaction-based heuristics
to generate large datasets for training three types of UI understanding models i) tappability, ii)
draggability, and iii) screen similarity. We found that models trained in this way can be more
accurate than those trained from human-annotated screenshots and continue to improve with ac-
cess to more training examples. The highly automated nature of our approach allows us to apply
it indefinitely, with little to no human supervision, which can maximize their performance and
utility to downstream applications.
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7
Reflow: Automatically Improving Touch

Interactions in Mobile Applications through
Pixel-based Refinements

7.1 Preamble

Content in this chapter is based on a previously published technical report and workshop paper
at the CHI 2022 Computational UI workshop [314]. The work was done with my collaborators,
Titus Barik, Xiaoyi Zhang, Colin Lea, Jeffrey Nichols, and Jeffrey P. Bigham. In this chapter, I
use the term “we” to collectively refer to myself and my collaborators.

So far, I’ve covered my work in computationally understanding UI usage (Chapter 3) and
semantics (Chapters 4, 5, and 6) more robustly. Combining techniques and insights from these
two avenues of work presents new opportunities to dynamically improve applications, which I
broadly refer to as UI generation.

This chapter presents Reflow, a system that imagines a future where any existing app can
be optimized based on user-specific and other in-situ factors. Because many apps are not con-
structed in a way that integrate with OS features [331] and do not expose application semantics,
previously described approaches (Chapter 3) cannot work in many circumstances. Instead, we
propose an “end-to-end” that requires only the pixels of an existing input UI and produces the
pixels of an optimized one. Reflow combines the output of pixel-based semantic prediction mod-
els with a user-specific model generated from a calibration task.

Touch is the primary way that users interact with smartphones. However, building mobile
user interfaces where touch interactions work well for all users is a difficult problem, because
users have different abilities and preferences. We propose a system, Reflow, which automatically
applies small, personalized UI adaptations, called refinements—to mobile app screens to improve
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Figure 7.1: Reflow (i) detects UI elements from pixels, (ii) optimizes the UI layout for a per-
sonalized difficulty model, and then (iii) re-renders the visual UI with the new layout. In this
example, the UI elements are correctly detected, and the new layout includes larger buttons that
are more spread apart. Simply moving and stretching the UI elements causes gaps and distor-
tions, which Reflow fixes using additional post-processing methods.

touch efficiency. Reflow uses a pixel-based strategy to work with existing applications, and im-
proves touch efficiency while minimally disrupting the design intent of the original application.
Our system optimizes a UI by (i) extracting its layout from its screenshot, (ii) refining its layout,
and (iii) re-rendering the UI to reflect these modifications. We conducted a user study with 10
participants and a heuristic evaluation with 6 experts and found that applications optimized by
Reflow led to, on average, 9% faster selection time with minimal layout disruption. The results
demonstrate that Reflow’s refinements useful UI adaptations to improve touch interactions.

7.2 Introduction

Touch is an ubiquitous way of interacting with smartphones. However, building mobile user
interfaces (UI) where touch interactions work well for all users is a difficult problem, because
users have different motor abilities, skills, and even preferences [307]. For example, consider
a right-handed user who wants to access a menu item on the left side of the screen. For larger
screens, this menu item is more difficult for the user to touch with their right hand than for a
left-handed user.

UI adaptivity is a promising approach towards improving touch interactions, because it al-
lows systems to dynamically personalize the UI and tailor the UI to the users’ needs. But for UI
adaptivity to be practically useful for real-world apps, it must support two goals. First, the tech-
nique should be generally useful across a broad range of existing mobile applications. Second,
the technique should apply adaptations in a way that respects the design intentions of the original
applications. In other words, we expect that drastic UI adaptations are likely to make the user
interface less familiar to the user and disruptive to the overall user experience [35].

To operationalize these goals, we built a system, Reflow, which automatically applies small
UI adaptations—called refinements—to mobile existing app screens to improve touch efficiency.
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Towards the first goal of supporting broad applicability, Reflow is entirely pixel-based: the sys-
tem does not need knowledge of the applications’ dependencies or view hierarchy to make its
UI adaptations. Towards the second goal of respecting design intent and minimally disrupting
the user experience, Reflow incorporates the theory of microstrategies in its model [83, 86, 113].
Microstrategies suggest that even small, principled adaptations to the user interface can signif-
icantly improve task efficiency—particularly over cumulative usage—and we postulate that the
same principle applies when personalizing touch-based mobile applications.

Reflow supports personalized optimization by constructing a spatial map from usage data,
which identifies difficult-to-access areas of the screen (e.g., elements on edges of the screen
requires users to reach and reposition their hand to select). Reflow then (i) automatically detects
the UI elements contained on the screen, (ii) uses a machine learning model to optimize the
UI layout to better support the difficulty map, and then (iii) re-renders the existing UI pixels to
match the new layout (Figure 7.1). Reflow improves on existing approaches because it works
with a range of existing mobile applications and enables an end-to-end pipeline from layout
optimization to re-rendering the application screens.

To evaluate Reflow, we first conducted a study with 10 participants, where we found it im-
proved interaction speed by 9% on average, and improved interaction speeds by up to 17% for
some UIs. From lessons learned, we made further improvements to this model by detecting and
applying an additional set of UI constraints (relative positioning, alignment). We then conducted
a heuristic evaluation based heuristics for evaluating UI layouts [267, 287] with 3 accessibility
and 3 design experts to validate if these improvements make acceptable trade-offs between touch
efficiency and layout preservation. Feedback from our expert evaluators indicated that refine-
ments were likely to improve selection time while avoiding significant disruption to the UI. The
results of this work demonstrate that refinements are a useful UI adaptation technique to improve
task efficiency for touch interactions.

The contributions of our paper are as follows:

• We propose an approach based on the theory of microstrategies [113] for improving touch
interactions through refinements, which are small modifications to the original UI. Based
on this approach, we present Reflow, an end-to-end system for personalizing any existing
mobile app using only its pixels. We describe our implementation in several modular steps:
(i) element detection, (ii) layout refinement, (iii) UI re-rendering, which may be applied to
other UI adaptation systems.

• We conduct two evaluations that provide evidence for the effectiveness of Reflow’s auto-
matic UI refinements. From our user study (n = 10), we find that the refinements automat-
ically applied by Reflow result in more efficient touch interaction (average speedup of 9%,
up to 32%). Furthermore, we conduct a heuristic evaluation with 3 accessibility and 3 de-
sign experts, validating that the changes induced by Reflow are likely to improve selection
time while being minimally disruptive. Qualitative feedback from our expert evaluators
provide additional rationale for the acceptability of these trade-offs.

107



Figure 7.2: Reflow optimizes existing third party apps using only UI information from pixels and
a spatial difficulty map corresponding to a user’s abilities. An app screen with short menu items
near the top of the screen is difficult to use (Left). Reflow automatically optimizes the layout of
on-screen elements, making each menu item taller and shifting items down (Right).

7.3 Example Usage Scenario for Reflow
To motivate how Reflow can be used to improve touch interactions on mobile apps, we provide an
expected usage scenario where Reflow would be enabled globally through the mobile operating
system.

Scenario: Alice has recently purchased a new smartphone. Alice’s new smartphone is able
to install and run all of her favorite apps, but the device is slightly larger than her old smartphone.
Because of this, she can no longer comfortably reach UI controls on the far edges of the screen
while using the device with one hand. While she is still able to use her favorite apps, Alice finds
her routine interactions with the apps inconvenient.

The Reachability accessibility feature built into iOS1 addresses the challenge of touching
items in the upper half of the screen by enabling users to swipe down on the lower portion of
the screen to move the upper half of the screen down to the lower half. While this is useful to
many people, it requires an additional touch interaction (swipe down) which slows Alice down
and feels like more support than she requires.

Setup: Alice opens the settings application on her smartphone and turns on the “Reflow”
toggle button. If this is the first time the setting has been enabled, Alice is brought to a setup
screen that that initializes the Reflow system. This screen is similar to the first-time setup process
of some biometric authentication features (e.g., Face ID). The setup screen asks Alice to perform
a calibration task, and measures how quickly she can select targets located at different parts of the
screen. With this usage information, Reflow creates a personalized profile for her that identifies
difficult-to-reach areas on the screen.

Usage: Once enabled, Reflow automatically intercepts and applies refinements to app screens

1https://support.apple.com/guide/iphone/touch-iph77bcdd132/14.0/ios/14.0#iph145eba8e9
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Figure 7.3: A block diagram describing the architecture of Reflow. Reflow consists of 4 main
stages: (i) user calibration, (ii) element detection, (iii) layout optimization, and (iv) re-rendering.
Together, these stages allow an existing UI screenshot to be adapted to a personalized difficulty
model.

before they are displayed to the user, a form of manifest interface [77]. The UI produced by
Reflow is interactive, as it automatically redirects input events to the original app screen, using
techniques similar to previous work [274, 330]. Alice notices that the location and size of UI
elements on apps have only slightly changed, and that the overall appearance and structure of
app UIs are still very similar (Figure 7.2). Because of this, she is once again able to comfortably
use her favorite apps, as she was previously able to do with her old phone, but she does not need
to re-familiarize herself with the refined UIs.

Customization: Alice may decide to customize the behavior of Reflow by opening its set-
tings panel. In this panel, she may define lists of apps that she wishes the refinement feature
to include or exclude. This could be useful for disabling the feature on apps that Alice already
finds easy-to-use on her new smartphone. Similarly, Alice can define a shortcut (e.g., gesture or
detected activity) to quickly toggle Reflow’s functionality based on when it is useful. Finally,
the settings panel allows her to reset or re-calibrate the feature to reflect updated preferences or
physical affordances (for example, a smartphone case that makes it easier to grip the device).

7.4 Reflow

Reflow is an end-to-end system that produces a refined UI from an original app’s screenshot.
Reflow’s operations occur in several stages (Figure 7.3). First, the user is asked to perform a
calibration task, which is used by Reflow to construct a difficulty map characterizing areas of
the screen which may be hard-to-reach. During runtime, an element detector is used to extract
the layout of an existing app screen. This layout is then optimized by repeatedly (i) predicting
the selection time for UI elements given the UI layout and user-specific difficulty map and (ii)
modifying the layout to minimize this predicted value while respecting stopping conditions de-
signed to detect large disruptions (e.g., overlapping, other constraints). Finally, the refined layout
is re-rendered into a refined graphical user interface, where it can be presented to the user and
made interactive.
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7.4.1 User Calibration

Calibration Task

To characterize the areas of the screen that are hard-to-reach for a user, we designed a one-handed
calibration task that a user performs when first enabling the feature. We focused on one-handed
touch interactions because these motor activities are more likely to cause selection challenges
in user interfaces, particularly given the limited range and flexibility of the thumb [29, 50, 217].
Users were asked to select on-screen targets, and the system recorded the (i) selection time and
(ii) selection error (i.e., difference between the target position and recorded tap position). These
targets were uniformly spaced in a 4x8 grid, with a single, randomly selected target highlighted
at a time. After a target was selected, the next one was not immediately displayed; instead, it
was delayed for the remainder of a timeout value. This was done to allow the finger to return to
a “rest position” after selection and reduce the influence of the previous target’s location on the
finger’s starting position. We set the timeout value to 3 seconds, based on our early observations
and estimation of how long this process would take.

We conducted a data collection study with 10 participants (7M/2F/1 prefer not to disclose,
ages 22-40, recruited within our organization) to characterize the input error for users and to
initialize our system. We performed data collection remotely using video conference software.
Participants were asked to install an app on an iPhone, which was needed to run our software.
4/10 of our participants used an iPhone Xs, 2/10 used an iPhone 11, 3/10 used an iPhone Xs
Max, and 1/10 used an iPhone 11 Pro. Users were asked to hold their device with one hand and
tap on targets using the same hand that they were holding the device with.

During the study, participants were asked to select targets placed at different locations on
the screen. In total, the study required less than 30 minutes and included both a practice and
evaluation session. 9/10 participants held the phone in their right hand.

Difficulty Map

Using calibration data from each user, we generated a personalized difficulty map [214] that
estimates the relative difficulty of accessing any on-screen location (including locations between
two of the original calibration points).

We calculated difficulty by combining two measurements from the calibration data: (i) input
error and (ii) selection time. We introduce a procedure to “normalize” the raw error measure-
ments by selection time. Our procedure is based on the intuition that if a user selects two targets
with equal accuracy (i.e., equal input error), the one that took longer to select (i.e., higher se-
lection time) is more difficult. We refer to this computed value as the “adjusted error”, and it
represents an estimation of input error given a constant selection time. In other words, if a user
was only given one second to select anywhere on the screen, what is the error we would expect
for a given location? Our approach is informed by prior work which suggests that selection-based
interactions experience a tradeoff between speed and accuracy [201].

Our computation of adjusted error is based on the standard Fitts’s law equation. Figure 7.4
shows a user’s finger, initially located at pi (i.e., resting position), selecting a target located at pt,
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Figure 7.4: A user taps a location on the screen by lowering a finger from a starting position
pi (A) to a target location on the screen pt (B), whose path is shown as a dark gray dotted line.
The circles represent region on the screen where the finger is expected to land given the current
position. As the finger descends towards the screen, the circle shrinks, as the user “hones in” on
the target location. The user’s finger makes contact with the screen at pf , which is a distance rf
away from pt (B).

Figure 7.5: An example of a difficulty map generated by our user calibration process. Data
from the calibration task is first used to compute input error (Left) and selection time (Center)
independently. We combine these two measurements to produce the “adjusted error”, or difficulty
map (Right).

which is located a distance A away.

t = a+ b · log2(A)
t = a+ b · log2(||pf − pi||)

(7.1)

If the resting position pi is assumed to be constant for a single user (which previous research has
shown is plausible [162, 205]), we can estimate its location as a model parameter. To do this—in
addition to the standard Fitts’ model parameters a and b—we also learned pi by fitting Equation
7.1 to a dataset of pairs ⟨ti, pf⟩ using non-linear ordinary least squares. The initial value of pi
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was set based on the resting location area identified in previous work [162], and we constrained
the position of pi so that it lies at most 5 inches above the device screen (a reasonable upper
bound for the thumb’s distance to the screen when holding a smartphone) and within the screen’s
x-y bounds.

To estimate the error magnitude ϵ at a constant time tn, we solve the following system of
equations, where a and b are from the Fitts’s model, and d is the distance the finger has traveled
at tn.

((A, rf , 1)× (0, ri, 1))(d, ϵ, 1)
T = 0 (7.2)

d = 2
tn−a

b

ϵ =
(rf−ri)·d

A
+ ri

(7.3)

Using this procedure, we compute the adjusted error at each of the original calibration points (4x8
grid), then fit a bivariate polynomial (similar to a 2-D spline) to interpolate values in between.

To summarize, the output of the user calibration step is a function that returns the adjusted
error for any location on the screen. The adjusted error at location (x, y) is an estimate of the
offset of where a user’s touch would land if given tn seconds to tap a target located at (x, y).

7.4.2 Element Detection

In this stage, Reflow extracts the locations of on-screen UI elements using a CNN-based object
detector and grouping heuristics [331]. We performed additional post-processing on the output of
the object detector to further improve performance. First, we removed any detection that overlaps
(by keeping the one with the higher confidence) or contains another (if a detection contains a text
element, then the container is removed; otherwise, the children are removed). The resulting
layout contains no overlapping elements. Because the downstream re-rendering stage (7.4.4)
involves cropping and moving image patches, the quality of element bounding boxes identified
in element detection have affect the quality of the final output. We employed a heuristic that
refines the positions of bounding box edges by repeatedly (i) computing the mean color of the
pixels of each edge, (ii) selecting the edge whose mean color is most dissimilar from the others,
(iii) adjusting its value by a small increment in the direction of improvement.

The output of the element detector is the UI layout of the original screenshot: Θ = {θ1, θ2, · · · , θn}
where θi = [x, y, w, h] describes the location and size of the i-th bounding box.

7.4.3 Layout Optimization

Neural Scoring Model

Using a difficulty map, we estimated the error a user would experience when selecting individual
elements of the UI. For a given app layout we define a scoring function S(Θ) which quantifies
how likely the user is able to successfully select each element in the screen. We define the scoring
function as

S(Θ) =
∑
θ∈Θ

∫∫
Rθ

Pθ dA (7.4)
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Figure 7.6: The architecture for the neural scoring model used for scoring a UI screen given a
spatial map of error. The network encodes the layout of UI elements using a bidirectional RNN
and encodes the spatial difficulty map using the coefficients of a 2-D polynomial function fitted
to the calibration points. These encoded representations are combined and fed into a feedforward
network.

where Pθ is the predicted distribution of where the user’s finger will actually land when attempt-
ing to click the middle of an element θ. To estimate Pθ, we centered 2-D Gaussian on the center
of UI element θ and set its covariance based on the adjusted error at that location. We compute
S(Θ) using Monte Carlo integration. For each UI element, n samples are drawn from the 2-D
Gaussian parameterized by the adjusted error at its center. We set n = 30 based on empirical
observations of how many samples were needed for consistent results. We scored a screen by
counting the number of true positives over total number of points.

To further improve upon the speed and efficiency of our UI scoring function, we used a
neural network to learn the result Monte Carlo scoring function. Our model architecture (7.6)
consists of an LSTM-based UI layout encoder [80, 177] and a difficulty map encoder. Because
we parameterize the difficulty map as a model input, it allows for personalization at runtime—
allowing re-calibration and removing the need to retrain the network for every new user.

We trained our neural scoring network on two datasets. The first was a large annotated dataset
of 77,000 iOS app screens introduced in prior work [331]. The second dataset consisted of spa-
tial difficulty maps collected from our user calibration dataset. Because the second dataset is
relatively small, we augmented it by introducing perturbations and randomly generated difficulty
maps. The network was trained by randomly selecting an application screen and a spatial dif-
ficulty map and computing the score using our Monte Carlo algorithm, which was used as the
ground truth. We trained our network using stochastic gradient descent until the validation loss
stopped improving.
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Figure 7.7: An email app (“Original”) is optimized using four different spatial difficulty maps
(“A”, “B”, “C”, “D”). The result of the optimization process moves UI elements away from
regions of higher relative difficulty (red) to lower relative difficulty (blue). Depending on the
direction of error where an element is located, it may be stretched horizontally or vertically.

Layout Optimization

To optimize a UI layout, we use predictions from our neural scoring model to make modifications
that reduce expected interaction difficulty. One benefit of our model is that it is differentiable
(since it is a neural network) and thus, given an initial screen layout and its corresponding score,
we can use gradient-based optimizer [147] to find an improved layout with a better score. In
service of our refinement approach to UI adaptation, we guide optimization and stop the process
if disruptive changes are detected.

First, we add a regularization term that penalizes layouts that are proportionally dissimilar to
the original. This regularization term is defined as the cosine distance (DC) between the pairwise
L1 displacements of each UI element (ϕ(Θ)). This does not penalize the layout for increasing in
size but attempts to maintains relationships between neighboring UI elements.

Next, we add “corrective procedures” after each optimization step to guide the optimization
of certain properties (e.g., size and element). We clamped element parameters to ensure they
stay within a certain range and to prevent elements from becoming too small or large. We also
use a routine that detects overlapping regions and resolves them by moving overlapped elements
further apart. The overlap removal algorithm repeatedly tries to find intersecting region between
pairs of UI elements, and if one exists, shifts them apart in the axis of least overlap. This process
is repeated until no more overlaps are detected or a max number of iterations is reached. Despite
our precaution, the final UI may still appear to contain overlaps due to inaccurate element detec-
tion (e.g., detection bounding box does not fully enclose element or includes multiple elements)
and artifacts introduced by our re-rendering process.

Finally, we implemented an early stopping condition that is triggered when the overlap re-
moval algorithm detects overlaps that are unresolvable, that is, overlaps that cannot be resolved
by moving elements further apart.

Figure 7.7 shows examples of our algorithm’s output for an email app optimized using dif-
ferent difficulty maps.
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7.4.4 Re-rendering

Using the refined UI layout produced by layout optimization, we produce artifacts that are needed
for end-user interaction: (i) visual representation of the UI (UI screenshot) and (ii) mapping
between the original and refined UIs, needed for input redirection [274, 330].

Layout Renderer

We use the refined UI layout and re-render the UI back into a visual representation. First, Reflow
outputs a mapping between regions of the original UI and the refined UI. This mapping can be
used to update the interactive regions of the UI using input/output redirection methods [274, 330]
(e.g., clickable bounding box a button is updated to reflect its new optimized position). To align
the screen’s visual appearance with the updated regions, image patches from the original screen
are translated and resized to their new locations.

Post-processing

We use several post-processing strategies to preserve relevant aesthetic qualities (i.e., legibility
of text). We briefly describe three such techniques we used, which improve the legibility of: (i)
background areas, (ii) text, and (iii) image content.

Image Inpainting. Moving and resizing elements can result in “holes” so we employ an in-
painting technique to generate visually plausible replacements. We experimented with
many different inpainting algorithms [26, 31, 283], and found that most methods produced
results of similar visual quality, since inpainted regions are unlikely to contain complex
textures or structural features (most visual content is contained inside of the UI elements
themselves). Our implementation uses flow-based inpainting algorithm [31] included in
the OpenCV library [39].

Original Resized
(Scaling)

Resized
(Content-Aware)

Figure 7.8: An example of how content-aware resizing (Right) improves upon standard scaling
(Center). Compared to the original screenshot (Left), scaling (Center) introduces distortions that
make text less legible. Our approach (Right) preserves textual content.

115



Content-Aware Resizing. Because standard rescaling methods can distort elements (7.8), our
system uses an optimized method for resizing these regions. We first create an image
canvas with the target region’s size. The source image patch resized (retaining the original
aspect ratio) to maximum size fits within the target dimensions. Leftover space is filled
using image inpainting.

Text Re-rendering. We explored a method specifically for resizing and replacing text (e.g.,
translation example application). Our approach to resizing text involves detecting and
extracting text using optical character recognition (OCR), re-rendering the text with the
correct background and foreground colors, then inserting the result at the target location.
We used an off-the-shelf OCR system that recognizes text from images [272]. We esti-
mated the original text’s font size by rendering it using a known font and comparing its
dimensions to the size of the original image patch. Background and foreground color are
extracted from the original image patch by performing k-means clustering on the pixels
and extracting (i) the largest cluster (background color), and (ii) the cluster which is fur-
thest away from the background color in pixel space (foreground color). We created an
image patch corresponding to the target dimensions and rendered the text with the correct
foreground and background colors.

7.4.5 Prototype Implementation
For the purposes of our prototype, the Reflow system was implemented on a remote server.
Screenshot images are sent from the iOS device to the remote server, which returns a re-rendered
screenshot image that contained the UI refinements. For purposes of the user study (described
next), the re-rendered screenshot is displayed to the user and touch events are recorded, which
allowed us to conduct our user study. Prior work has demonstrated how such a re-rendered
graphical UI could be used in a more advanced proxy setup to control the original underlying
mobile app, which is how we imagine it would be used with existing applications in practice.
We leave that implementation, and some difficult details (e.g., handling scrolling GUIs) to future
work.

7.5 User Study

7.5.1 Procedure
We empirically evaluated the performance of our system through a 45-minute user study. We re-
cruited 10 participants (5M/4F/1 Prefer not disclose, ages 24-36) within our organization. Sim-
ilar to how we collected data in the calibration task (7.4.1), we conducted our usability study
remotely using a specialized data collection app and video conferencing software. The break-
down of devices used by our participants were: 1/10 iPhone X, 5/10 iPhone Xs, 1/10 iPhone XR,
1/10 iPhone Xs Max, 1/10 iPhone 11, 1/10 iPhone 11 Pro. 8/10 participants held the phone using
their right hand.

The usability study consisted of two phases, a calibration phase and a navigation phase, which
included a practice session. During calibration participants performed the user calibration task,
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Table 7.1: Navigation Time Results from our User Study

Screen App
Original Reflow Original Reflow

Books 1.1± 0.4 1.0± 0.3 4.2± 1.0 3.9± 0.9
Clock 1.1± 0.6 1.0± 0.5 4.4± 1.5 3.8± 1.3
Photos 1.2± 0.5 1.0± 0.4 4.7± 1.4 4.1± 1.1

Overall 1.1± 0.5 1.0± 0.4 4.4± 1.3 4.0± 1.1

Navigation times from our user study. Values shown
are the times (M ± SD) needed to navigate a sin-
gle screen. We report results for both per-screen and
per-app navigation. Screen navigation refers to the
time taken to advance one screen, while app naviga-
tion refers to the time taken to complete all screens
for the app. For both measurements, Reflow’s refine-
ments resulted in 9% faster navigation, on average.

which was used to generate personalized difficulty maps. Participants were then given a short
5 minute break. During the navigation phase, participants were presented with a series of app
screens with a target UI element that was highlighted. Participants were instructed to select the
target element, which brought them to the next screen.

We chose 3 apps where users had to navigate through a total of 5 screens each (Figure 7.9). 3
apps were chosen to constrain the study design to fit under our time constraints, and we selected
default applications on iOS that users are likely to be familiar with, since they come pre-installed.
All of these apps and screens were outside of the training set used to train our scoring model.
For each of the screens, we used our system (running on a remote server) to optimize its layout
using the user’s difficulty map generated during the calibration phase.

7.5.2 Results

Table 7.1 shows the results of our user study. We report both screen (time taken to navigate a
single screen) and app (time taken to navigate all screens in an app) interaction times. For both,
Reflow’s refinments resulted in an average of 9% faster navigation. This speed-up was significant
for screen-level navigation (T = 2.76, p < 0.01, Cohen’s d = 0.23) and approached significance
for app-level navigation (T = 1.99, p = 0.06, Cohen’s d = 0.38), due to small sample size
for apps. The small–medium effect size suggests that refinements lead to small, but significant
improvements to interaction speed [158].

7.5.3 Post-study Improvements

The results from our user study demonstrate the feasibility of our scoring model to optimize the
layout of existing UIs. Based on impromptu feedback from three participants during the study
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Figure 7.9: A gallery of app screens optimized by Reflow. For the apps used in the User Study,
we only show the first and last screens of each app (each app has 5 screens). As was our intention,
most changes by our system were conservative (resulting in little to no changes) and aimed at
minimizing any negative effects introduced by drastic changes. Some text (e.g., email address)
is redacted in black.
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and our observations on how users interacted with Reflow, we made some improvements to fur-
ther minimize the amount of disruption to the original UI. Specifically, participants commented
that the adaptation process affected the ordering of elements (e.g., an element was moved past an
adjacent neighbor) and caused controls in UI structures navigation bars became mis-aligned. We
implemented additional heuristics to extract these constraints from the UI and used them further
guide the optimization process.

Constraint Extraction: Our approach maintains a list of constraints represented as equations
and tests them against pairs of elements in the layout to determine if they hold. We check for two
types of constraints: (i) relative positioning (ii) alignment.

The enforcement of relative positioning ensures, for example, that if an element A was to the
left of another element B, it remains to its left. Relative positioning is represented using a multi
constraint described by the following equation.

xi + wi ≤ xj (7.5)

To reduce the number of relative constraints generated by our approach (making optimization
more efficient), we remove redundant relationships through transitive reduction. For example, if
A is left of B and B is left of C, the relative positioning of A and C is implied and can be omitted
as an explicit constraint.

Alignment constraints require that some part of two elements are arranged on the same line.
We consider 3 types of alignment between elements: (i) beginning alignment, (ii) center align-
ment, and (iii) ending alignment. These three types are computed for both the x and y dimension,
resulting in a total of six possible element alignments. Note that most interface builders may also
allow mixing of these types e.g., the left edge of element A is aligned with the center of element
B. For simplicity, we omit these.

Because our UI element detector introduces a small amount of error in the bounding boxes,
exact computation of alignment (e.g., computing xi = xj) would be inaccurate, leading to many
undetected constraints. Thus, we allow alignments to be met inexactly using slack variables. We
consider three types of alignment: beginning alignment, center alignment, and end alignment.

xi + ϵi = xj + ϵj ϵi ≥ 0, ϵj ≥ 0
xi + wi + ϵi = xj + wj + ϵj ϵi ≥ 0, ϵj ≥ 0
xi +

wi

2
+ ϵi = xj +

wj

2
+ ϵj ϵi ≥ 0, ϵj ≥ 0

(7.6)

Constrained Optimization: We used the non-convex optimization technique introduced
by Platt and Barr [239] to augment our original layout optimizer. Specifically, we added the
heuristically extracted constraints as “secondary functions” of the main objective function (i.e.,
minimizing expected difficulty) that the optimizer aims to minimize. Note that the while this
technique allows the consideration of constraints, it does not guarantee that they will be met in
the final solution.
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7.6 Heuristic Evaluation

7.6.1 Procedure
To determine the acceptability of our improved system and to obtain qualitative feedback, we
conducted a heuristic evaluation as described in Nielsen [224]. Heuristic evaluation has been
previously been used as a design-centered analytic evaluation for user interfaces [25, 204]. In
a heuristic evaluation, expert evaluators examine the interface or aspects of the interaction to
identify usability problems. Nielsen [224] recommends the use of around three to five evaluators,
so we contacted 10 people in our organization, in anticipation that some would be unavailable.
6 experts (3M, 3F) from different backgrounds (3 designers, 3 accessibility experts) agreed to
participate and provided diverse feedback. Recruitment was done via convenience sampling—
we reached out to potential evaluators using our organization’s messaging software. All of our
evaluators had multiple years of experience in their field and five had doctoral degrees in their
respective areas of specialization.

The heuristic evaluation was conducted online, and evaluators were sent a link to the evalua-
tion materials. The link first gave a brief description of Reflow and the evaluation task. Evalua-
tors were instructed to watch a video clip that showed four usage scenarios (e.g., while walking
or holding a shopping bag with one hand) where a user interacted with app UIs. Original and
adapted versions of the UI were overlayed on the video and allowed evaluators to assess different
qualities of the UI in context. Evaluators could pause and replay the video as many times as they
needed during the evaluation to more closely inspect aspects of the UI and usage scenario.

We provided a questionnaire with a set of UI heuristics for them to evaluate, informed by
prior work on layout usability [267, 287]. We removed heuristics (e.g., color harmony) that were
not applicable to Reflow and settled on the following: alignment, selection time, visual clutter,
saliency, and element grouping. For each heuristic, we provided a brief description and asked
evaluators to rate adherence using a 5-point Likert scale for comparison (“Significantly Worse
(1)” to “Significantly Better (5)”). We also asked evaluators to provide rationale for their ratings
and encouraged elaboration on the positive and negative aspects on the layout changes introduced
by Reflow.

7.6.2 Results
7.2 shows each evaluator’s 5-point Likert-type item responses. Overall, the results of the heuristic
evaluation confirm that Reflow improves touch efficiency while minimally disrupting the user
experience. We summarize the feedback from our evaluators along each of the heuristics.

Alignment: Heuristic. Alignment refers to the internal alignment of elements with each
other. Evaluation. Most evaluators agreed that Reflow’s refinements slightly impacted align-
ment. While our improved layout optimizer does detect and account for UI constraints such as
alignment, it does not guarantee that these constraints are met. We found that some evaluators’
intepretations of “alignment” included aspects such as spacing (not explicitly handled by our sys-
tem) as well as edge alignment (handled by our system) (E3AX). Nevertheless, E2AX observed
that some layouts “probably could change more without hurting understanding,” indicating that
Reflow’s refinements kept semantic relations are kept intact.
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Table 7.2: Relative Likert Scores for Heuristic Evalua-
tion

AX DS

Heuristic E1 E2 E3 E4 E5 E6

ALIGNMENT −1 −1 −1 +1 −1
SELECTION TIME +1 +1 +1 +1 +1
CLUTTER −1 −2 −1 +2 −1
SALIENCY −1 +1 −1 +1 −1
GROUPING −1 −1 +1

Expert evaluations from heuristic evaluation. Rat-
ings are normalized to show deviation from the
neutral option (“About the same (3)”). Positive
scores indicate better change and negative scores in-
dicate worse change. AX denotes accessibility ex-
pert while DS denotes design expert.

Selection Time: Heuristic. Selection time refers to the time needed to select the target
element. Since the evaluators did not directly operate each UI, we asked evaluators to estimate
the selection time from the relative positioning of elements (i.e.,), as in previous work [267,
287]. Evaluation. Feedback from our evaluators mostly indicated that our adaptations allow for
more rapid selection times during use, but evaluators expressed some uncertainty as they were
estimating purely from visual appearance (E1AX, E3AX). We did indeed empirically measure
selection times from our user study (7.1), and our expert’s estimates are consistent with our
findings. E5DS pointed out that our system allowed faster interaction “without having to use
reachability” and would “certainly save time,” since performing the Reachability gesture (7.3)
would require more time than using Reflow.

Taken together with other feedback (comment by E2AX on alignment), this suggests that
supporting manual adjustment of optimization levels may help Reflow better serve users with
differing goals—either prioritizing selection time or preserving aspects of the original UI (e.g.,
alignment).

Visual Clutter: Heuristic. Visual clutter refers to how confusing a display is. The more
cluttered a display, the more difficult it is for an element to catch a user’s attention Evaluation.
E2AX pointed out that movement of semantically-important elements contributed to confusion.
There was some level of disagreement between evaluators (E3AX, E5DS), which was in part in-
fluenced by different interpretations of the heuristic. For example, E3AX attributed the higher
levels of visual clutter to “worse alignment, unexpected/unintuitive negative space, and overlap-
ping elements,” indicating the consideration of multiple factors such as alignment, spacing, and
overlap.

Saliency: Heuristic. Saliency refers to the degree to which important elements are more
likely to catch the attention of the user. Evaluation. Evaluators suggested that our system’s
modifications did not induce significant changes in saliency, which is desirable since a large
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saliency change would imply a violation of design intent. E3AX indicated that the refinement
process only resulted in “subtle changes” and did not make a single element any more or less
salient than the others. E2AX noted that size refinements, which allows elements in “difficult
areas” to be selected more easily, positively impacted the saliency of small items by enlarging
their tap targets; however the same behavior was viewed negatively by E1AX: “the adaptations
didn’t have much impact on saliency, so I almost selected about the same, but I noticed that the
tabs have increased size so they may be over-emphasized.”

Element Grouping: Heuristic. Elements that are clustered near each other are perceived
as a unified object. Evaluation. Element grouping was also minimally affected by Reflow’s
refinement process. While evaluators generally agreed that element grouping remained “about
the same” (E2AX, E4DS, E6DS), some pointed out instances where the adjustment of element
spacing led to ambiguity: “on the 4th screenshot pair, the inbox and arrows have scrunched
down too closely to the App Store and To field, leaving not enough separation” (E1AX).

7.7 Discussion

7.7.1 Flexible Personalization through Difficulty Maps
An architectural decision choice we made in Reflow was to parameterize the difficultly map as
an explicit input to the neural scoring model (7.3). Doing so has a number of advantages.

Difficulty maps are the key mechanism through which we enable personalization, because
they allow users to recalibrate their touch interactions without having to retrain the neural scoring
model for every user. Having to retrain a model for every user is not practical, especially if the
retraining must be done on a mobile device.

An second advantage of parameterizing difficulty maps is that Reflow can be easily extended
to other types of interactions. While our studies evaluated one-handed touch interactions, the
Reflow is not restricted to this. Difficulty maps can also be constructed to support reachabil-
ity, handedness, motor impairments, or other touch accommodations needed to support users.
Difficulty maps can even go beyond touch interactions, for example, when using a pen input or
other pointing device. Once a mode of interaction is translated to a difficulty map, the rest of
the Reflow architecture can take advantage of this—without requiring any changes the remaining
stages in the Reflow pipeline.

Finally, difficulty maps make it possible to offer users a set of pre-defined profiles for com-
mon touch interaction scenarios. Pre-defined maps could cover scenarios such as one-handed
usage and allow many users to benefit from adaptation without having to perform manual calibra-
tion. Should these pre-defined maps not support the user, they can always fallback to performing
a quick calibration to construct a personalized difficulty map.

7.7.2 Design Space between Touch Efficiency and Layout Preservation
Reflow applies refinements—small UI adaptations that minimally disrupt the UI layout—as a
design choice for performing layout optimization. Our heuristic evaluation validates that this
decision choice as an appropriate one. However, this decision choice is only one possible point
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across the full design space, which includes a spectrum of trade-offs between improving touch
efficiency against preserving the existing layout. Users may have different preferences along this
design space.

For example, all evaluators in our heuristic evaluation—except E4—indicated that selection
time would be improved by Reflow. E4 desired to see more dramatic improvements to touch
interactions, even if this would require Reflow to make more substantial disruptions to the layout.
In contrast, E3 disliked the clustering that resulted from Reflow’s layout optimization. Users such
as E3 may find it acceptable to have fewer touch improvements, if this would result in smaller
layout disruptions.

One possibility is to give users more control over this design space. Consider a slider control
that allows the user to select points in the design space between maximizing touch interaction
efficiency, minimizing layout disruption, or some balance in between these two extremes. Users
may also want to selectively enable or disable specific types of optimizations, for example, they
may prefer not to allow the size of UI elements to change. Users may even have different pref-
erences between applications, with varying expectations about layout disruption for the different
applications.

7.7.3 Opportunities for Reflow

Through our prototype implementation and experiments, we identified opportunities and future
work for Reflow, including (i) extracting and incorporating screen semantics, (ii) improving
interaction fidelity, and (iii) studying the effect of applying refinements over time.

Extracting Screen Semantics

Several of these opportunities involve addressing existing limitations of Reflow. First, the set of
constraints that we automatically extract should be extended to support those available in conven-
tional UI authoring tools, such as vertical and horizontal alignment guides, distributing vertical
and horizontal spacing, and resizing elements across axes. Including these constraints and in-
ference techniques [34, 143, 154, 198] in Reflow would further minimize layout disruptions.
Currently, Reflow internally represents UIs as a list of bounding boxes, but the limitations of this
approach are that it is unable to capture semantic relationships between elements during infer-
ence. Because of this restriction, Reflow currently treats a list of n UI elements as n unrelated
UI elements, which is potentially a lost opportunity for layout optimization.

Improved Interaction Fidelity

Reflow’s pixel-based pipeline consumes an image (i.e., screenshot) of the current UI as input and
also generates an image as output. The refined UI is made interactive by making certain parts
of the output image respond to touch events, which can then be forwarded to the original app.
While this allows Reflow to be applied to any screen, it may lead to poor performance on screens
with dynamic properties such as animated content and scrolling because this behavior cannot be
adequately captured in a static screenshot.
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One way to extend the current approach to handle these cases is to perform this image-to-
image process multiple times per second, thus updating the output as frequently as dynamic
behavior occurs. Besides the optimization and performance challenges this entails, repeatedly
optimizing single video frames as independent inputs may lead to artifacts such as jitter. An
alternative approach is to regenerate the interface from extracted semantics and interfaces, which
has previously been applied to web applications [222]. Recent work in pixel-based semantic
extraction [94, 313] suggests this may also be possible for mobile UIs.

Extended Evaluation

Finally, a longer-term usage study may reveal more detailed effects of adaptive UIs and, more
specifically, our refinements approach. Although our studies demonstrate the effectiveness of
refinements for improving touch efficiency, it would be important to evaluate Reflow in longi-
tudinal studies. The benefits of Reflow can only be fully realized through cumulative use: the
longer users use Reflow, the more opportunities they have to take advantage of the adapted UIs.
As Gray and Boehm-Davis [113] observe—“milliseconds matter”—and even seemingly small
improvements add up over frequent and repeated touch interactions.

7.8 Conclusion
In this chapter, we introduced Reflow, a system that automatically applies small, personalized
UI adaptations—called refinements—to mobile app screens to improve touch efficiency. Reflow
supports real-world UIs without any source code or metadata dependencies through pixed-based
element detection. Reflow optimizes a UI by (i) extracting its layout from its screenshot, (ii) re-
fining its layout, and (iii) re-rendering the UI to reflect these modifications. We conducted a user
study with 10 participants and found that UIs optimized by Reflow were on average 9% faster
to use. We conducted a heuristic evaluation with 6 experts to elicit qualitative feedback about
Reflow and validate that the system’s UI refinements improve selection time while minimizing
layout disruption. The results of our work demonstrate that refinements applied by Reflow are a
useful UI adaptation technique to improve touch interactions.
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8
UICoder: Finetuning Large Language Models

to Generate User Interface Code through
Automated Feedback

8.1 Preamble

Content in this chapter is based on a conference paper that has been accepted to NAACL 2024
[318]. The work was done with my collaborators, Eldon Schoop, Alan Leung, Titus Barik,
Jeffrey P. Bigham, and Jeffrey Nichols. In this chapter, I use the term “we” to collectively refer
to myself and my collaborators.

In Chapter 7, I presented a system that can modify any existing app at runtime using only
its pixels as input. Reflow applied small changes, called refinements, to an existing app’s layout
and re-rendered the resulting interface for end-user use. Our experimental results show that for a
limited set of apps and users, even small changes could lead to performance improvements, i.e.,
an average of 9% faster selection time. However, Reflow was limited in several ways. First, it
used a primitive approach to re-generating app interface by cropping and re-arranging parts of the
original screenshot. This prevented the system from applying substantial changes, since it could
increase the likelihood of rendering artifacts. Secondly, while the output was interactive, it was
also a primitive example of an interaction proxy [330], as it consisted of a re-rendered image with
touch areas re-mapped to the original UI. This made the system inefficient for apps that contained
interactive elements, since the output would need to be continually refreshed to stay in-sync with
the state of the original interface. Based on these observations, I focused on developing systems
that can support the dynamic generation of higher-quality UIs through compilable code. I first
investigated this approach in the context of description-based UI code generation, since it is by
itself a challenging and unsolved problem.
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LLMs struggle to consistently generate UI code that compiles and produces visually relevant
designs. Existing approaches to improve generation rely either on expensive human feedback or
distilling a proprietary model. In this chapter, we explore the use of automated feedback (com-
pilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method
starts with an existing LLM and iteratively produces improved models by self-generating a large
synthetic dataset using an original model, applying automated tools to aggressively filter, score,
and de-duplicate the data into a refined higher quality dataset, and producing a new LLM by fine-
tuning the original on the refined dataset. We applied our approach to several open-source LLMs
and compared the resulting performance to baseline models with both automated metrics and
human preferences. Our results show the resulting models outperform all other downloadable
baselines and approach the performance of larger proprietary models.

8.2 Introduction
Designing and implementing user interfaces (UIs) has traditionally been a difficult and time-
consuming process that requires expertise and effort. Because of this, there are significant barri-
ers for designers to quickly prototype design candidates, developers to implement working apps,
and end-users to create customized interfaces. Large language models (LLMs) present a promis-
ing solution since they are trained on large amounts of natural language text and code, which
allows them to relate high-level user specifications to concrete code implementations. Following
a large-scale unsupervised “pretraining” phase, the model is finetuned to perform specific tasks,
such as generating code, based on natural language directives in a process called instruction-
tuning. Through this process, LLMs have been trained to be proficient in conversation, develop
reasoning abilities, and even use external tools [43, 260].

Nevertheless, it is still difficult for LLMs to reliably generate syntactically-correct, compil-
able code for UIs. Most of the examples found in crawled web pages and repositories are not
self-contained or are of low quality [117]. Even in curated or manually authored finetuning
datasets, examples of UI code are extremely rare, in some cases making up less than one percent
of the overall examples in code datasets [215]. Furthermore, by their nature LLMs are unable to
directly incorporate visual or spatial feedback into their training process, which would seem to
be an important aspect of UI design and implementation.

In this chapter, we describe an automated method for training LLMs to generate UI code
from textual descriptions. We specifically focus on training models to implement UIs using
the SwiftUI framework, though our method would likely generalize to other languages and UI
toolkits. Instead of relying on additional external data, our approach finetunes LLMs to generate
improved UI code entirely from their own previous outputs. We first prompt an existing LLM to
generate a large synthetic dataset of SwiftUI programs from a list of UI descriptions. We then
use a compiler and vision-language model [245] to aggressively score, filter, and deduplicate the
output samples to create a refined higher quality dataset. By finetuning on the subset of high-
scoring outputs, an improved LLM learns to generate UI code that i) successfully compiles and
ii) is relevant to the input description. During subsequent iterations, the improved LLM generates
higher-quality datasets, which results in further performance gains.

We call our resulting model UICoder, because we originally started with the open source
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LLM StarCoder [174]. In this chapter, we use the latest instruction-tuned version of StarCoder,
at the time of writing, called StarChat-Beta, as our base model [291]. We applied five iter-
ations of our method, resulting in nearly one million generated SwiftUI programs, and used
preference-based alignment methods to train three models for text-to-UI code generation. In
a series of experiments that measure both automated and human preference, we show that our
models significantly outperform other downloadable baselines and approach the performance
of much larger proprietary LLMs. We think our results are particularly impressive because our
models originate from StarCoder, and Swift code repositories were accidentally omitted from the
training of this model [174]. The finetuning dataset used to create StarChat-Beta from StarCoder
contains just one Swift example out of ten thousand total examples.

To summarize, the contributions of our work are as follows:
1. We introduce an automated method for generating description-to-code datasets for UIs by

using code compilers and vision-language models to score and filter self-generated data.

2. We applied five iterations of our method to train the UICoder model for generating com-
plete SwiftUI implementations from natural language descriptions. Our experiments show
that UICoder i) outperforms all other downloadable models and ii) approaches the perfor-
mance of larger proprietary models.

3. We show that incorporating the synthetic dataset generated by UICoder significantly im-
proves other LLMs’ UI code generation capabilities, without needing to undergo multiple
iterations of the training process themselves.

8.3 Training Procedure

Figure 8.1: A flow chart showing an overview of the multi-step training process of our model.
Our process is based on prior LLM finetuning approaches [231] and consists of a base model,
supervised-tuned model, and an aligned model. Different sources of data and training techniques
are used at each stage.

In this section, we detail the training procedure used to train LLMs to generate SwiftUI
code for a UI given its natural language description. SwiftUI is a toolkit for the Swift language
that allows cross-platform UIs (desktop, tablet, mobile, and watch) to be composed through a
domain specific language (DSL). Generating SwiftUI using LLMs is difficult, due to challenges
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associated with code generation in general [57], and especially poor representation of SwiftUI
programs in publicly available training data and evaluation benchmarks.

To improve the generation capabilities of LLMs, we apply a training procedure based off
of previous work [231] that involves three high-level stages. Our approach is unique in that
it uses automated feedback from code compilers and multi-modal visual-language models in
place of human annotations. Figure 8.1 shows the overall overview of our training approach that
involves i) training (or using a pre-existing) base model, ii) using supervised finetuning, then iii)
preference alignment techniques to further improve performance.

8.3.1 Training Datasets
To train our model, we used several UI datasets: i) Screen2Words [296], ii) AMP [331], and
iii) Crawls [90]. Between them, there are a total of 800,000 iOS and Android UIs. In this
work, we primarily focused on generating code for mobile UIs, although additional datasets
(e.g., web [156, 316]) could be incorporated in the future. The datasets we used mainly con-
tained screenshots, which were sometimes paired with natural language descriptions or other
metadata. In our training procedure, we only focus on the screenshot images and natural lan-
guage descriptions. Note that these datasets do not contain the source code of the UIs; therefore,
the model must learn to match its own generated code output to relevant examples. We describe
two additional measures we took to increase the number and complexity of descriptions used for
training.

Generated Descriptions. The AMP and Crawls datasets did not contain natural language
descriptions of UI screenshots, so we used a large visual-language model (VLM) [173] to gen-
erate descriptions of screenshots. While previous work has generally found off-the-shelf image
captioning models to be ineffective at captioning UI screenshots [168], we found that a combina-
tion of stronger models, prompt engineering and strict filtering were sufficient for weak labeling
of these screens.

LLM-assisted Augmentation. The human-annotated descriptions in the Screen2Words dataset
were often very simple (e.g., incomplete sentences) and underspecified, and we observed that this
led to simple outputs as well. To add more detail, we used an additional open-sourced LLM (the
Falcon-7B model [6] finetuned on open instruction-tuning data [151]) to paraphrase and add
more detail to the original description text. In total, we used two prompts to generate 200,000
alternate descriptions for the Screen2Words dataset. Since the LLM used in this process did
not have access to the original screenshot, it is possible that it can “hallucinate” inaccurate de-
tails. However, we found that our filtering methods could minimize inaccurate descriptions since
samples are excluded if there isn’t a strong match with the original screenshot.

8.3.2 Base Model
The first step of our approach is to train or use a pre-existing base model (see Figure 8.1). Train-
ing base models is a resource-intensive and time-consuming process that involves unsupervised
training of an LLM on a very large corpus, often containing billions or trillions of tokens. There-
fore, we chose to use an existing pre-trained 15B parameter model, StarChat-Beta [291], as
a starting point, which was the best available open model at the time we started the project.
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Figure 8.2: A collection of randomly drawn samples from 100,000 SwiftUI programs generated
by the StarChat-Beta base model. Only around 10% of the generated samples are compilable,
and we rendered them into screenshots using Stable Diffusion to generate image assets. On the
left, we randomly sampled twelve screenshots that passed the compilation filter and show that
many of the screens are very simple. On the right, we randomly sampled twelve screens that
passed the CLIP score filter, which are more complex and of higher quality.

StarChat-Beta is an LLM based on StarCoder [174] which was trained primarily on i) TheS-
tack [174], a large dataset (250B tokens) of permissively licensed code repositories, ii) crawled
web pages, and iii) OpenAssistant-Guanaco [74], a small instruction-tuning dataset. Notably,
StarChat-Beta’s training data contains little to no SwiftUI data [174]. Swift code repositories
were excluded by accident when creating TheStack dataset [174], and upon manual inspection,
we found that the OpenAssistant-Guanaco dataset only contains one example (out of ten thou-
sand) with any Swift code in the response field. We hypothesize that any Swift examples seen
by StarChat-Beta during training were most likely from crawled web pages, which are possibly
lower quality and less structured than repository code.

8.3.3 Supervised Finetuning

Since most “base models” are trained through next-token-prediction (i.e., text completion), they
are unable to respond directly to certain types of instructions. During the supervised finetuning
stage, a base model is adapted to perform tasks or respond in a certain format by training on
examples of input/output pairs.

An overview of our approach is shown in Figure 8.3, where we generate the input/output
pairs needed for supervised finetuning through automated feedback. Our approach is similar to
“rejection sampling” techniques, where high quality examples are mined through repeated sam-
pling (i.e., generating output candidates), scoring, and selection (i.e., rejecting samples that do
not meet a certain criterion). Figure 8.2 illustrates parts of this process applied to StarChat-Beta
and provides some intuition for why this approach works. While the StarChat-Beta base model
has poor performance overall for SwiftUI code generation, frequently producing uncompilable
code or very simple UIs, we successfully detected a subset of higher-quality examples using
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Figure 8.3: A flow diagram representation of the filter-then-train approach used for supervised
finetuning. A list of descriptions is fed into an LLM model, which is used to generate a synthetic
dataset. The generated dataset is scored, filtered, and de-duplicated to improve its quality. This
data is used to finetune the LLM model, which restarts the process.

compilation success and CLIP score as filtering conditions. The initial proportion of “mined”
examples is extremely small (400 out of 100,000). However, the model’s performance improves
with each iteration of training on mined examples. As a result, it progressively generates a higher
percentage of high-quality data that pass the filter. We repeated this process four times starting
with the StarChat-Beta base model. We name the finetuned model UICoder-SFT, to reflect that
it is a “descendant” of the StarCoder [174] model, and it has undergone supervised finetuning
(SFT).

Sample Generation.

We used a randomized strategy for sampling and generating code, where the program selected
random screen descriptions from our training datasets fed them into the model to generate code.
Selection was done independently, resulting in some prompts having multiple outputs and others
being skipped altogether. During each training iteration, we allocated roughly a week for sample
generation, which resulted in around 200,000 total samples.

Data Filtering.

We used three methods to filter generated data for high-quality finetuning examples: i) compila-
tion success, ii) CLIP-based output relevance, and iii) de-duplication. Early iterations had many
examples filtered out due to compilation failure since the the base model was not effective at
generating syntactically-correct SwiftUI code. During later iterations, more samples were re-
jected due to output relevance and the de-duplication filter. The total number of mined examples
also increased over time, due to more of the generated samples fulfilling the requirements. We
also adjusted the hyperparameters of some filters to be more selective over time, to obtain higher
quality training samples and also due to memory constraints.

Compilation Success. We keep only fully compilable programs (compile warnings are ig-
nored). This is necessary because filters used in later stages rely on the rendered output of the
SwiftUI code, which is not possible to generate without a working program. However, compi-
lation success alone is not a sufficient metric for output quality and introduces biases into the
dataset. In our early experiments, we attempted to finetune our model without any other filtering
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steps and identified failure cases: i) the model produced only simple outputs, since programs
with fewer lines of code are less likely to contain errors and ii) the generated outputs were not
relevant to the input description. These observations led us to the development of additional
features to counteract these biases.

CLIP Score. The CLIP score filter uses a vision-language model [137] to assign a nu-
merical score to each input/output pair that measures how well the generated UI matches the
input description. We constructed a natural-language prompt template that included tags such as
“screenshot of a mobile app. award winning design.” and the input description itself. The CLIP
model was used to encode both the constructed prompt and screenshot into an embedding space,
where a score was computed using the cosine similarity of the embeddings. Finally, we used a
percentile-based threshold to keep the samples with the highest scores.

Based on early observations, we found that CLIP’s matching score had drawbacks. One com-
mon error that we noticed was attributed to the model’s tendency to give a high matching score if
the image contains the original prompt text, due to the model’s ability to “read” or recognize text
robustly inside of images. These errors, sometimes called “typographic errors” [108], resulted
in failure cases where the model included a Text element with words from the original prompt.
To address this problem, we modified the CLIP score to also incorporate the original ground-
truth screenshot as a part of the calculation. While the goal is not to reconstruct the ground-truth
screenshot, it helps avoid typographic errors by encouraging the model to produce screenshots
similar to realistic samples.

De-duplication. Filtering by compilation success and output relevance alone may still result
in biases in the generated data. We performed data de-duplication to remove examples that
resulted in highly similar outputs. We used a density-based clustering algorithm [84], which is
a type of clustering algorithm that doesn’t require prior knowledge of # of clusters, to group
examples based on the CLIP embeddings of their rendered screenshots. This process makes it
easier to identify groups of outputs that result in a highly similar appearance or layout. For each
identified cluster, we keep only the example that has the highest CLIP score.

8.3.4 Preference Alignment
Following supervised finetuning, LLMs often undergo an additional alignment stage to better
match with human preferences or meet specific criteria like helpfulness and harmlessness. Unlike
supervised finetuning, where the model is trained to match pre-determined outputs for each input,
alignment techniques allow the model to generate its own output candidates, and then provide
a numeric reward or pairwise preference labels as training signals. We hypothesized that our
model could benefit from this process by implicitly learning to “prefer” output candidates with
high reward values while avoiding those with low CLIP scores or compilation errors. Unlike
previous work [231, 289] that used human ratings for alignment, we explore the use of rankings
generated using the Swift compiler and the CLIP model.

Ranked Sample Generation.

To generate data for preference modeling, we modify our data generation strategy to produce
paired examples, which in our case is an input prompt paired with several possible code im-
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plementations. It was difficult to apply this generation strategy from the the beginning of the
supervised finetuning stage since it requires that the model has a sufficient compilation rate to
generate multiple compilable outputs for the same input prompt. After randomly selecting a
screen description, we use the LLM to generate 10 outputs for the same input through a set of
manually created sampling configurations. Note that while it is possible to repeatedly sample the
model with the same configuration, we found that more output diversity could be achieved with
different sampling profiles.

Once multiple outputs are generated for each input, they are ranked using pairwise rules,
where higher rankings indicate higher quality.

• All compilable samples are ranked above non-compilable samples.
• Compilable samples are ranked by their CLIP score.
• Non-compilable samples are ranked by the number of error-free lines (i.e., lines that do

not contain a compiler error) divided by the total number of lines in the program.

Modeling Approaches

We used three different modeling approaches to further finetune UICoder-SFT with the generated
preference pairs, which resulted in three variations of the model: UICoder-DPO, UICoder-Top,
and UICoder-Filtered.

UICoder-DPO was trained using an algorithm called Direct Preference Optimization (DPO).
At a high level, DPO involves repeatedly selecting a pair of outputs for each training input -
a “chosen” output that is ranked higher than a “rejected” output.[246]. The DPO algorithm
repeatedly selects these pairs, and the model is trained to estimate a reward value that is higher
for the preferred output. The DPO algorithm requires significantly more GPU VRAM than
supervised finetuning, so we used 4-bit quantization with the QLoRA technique so that it could
fit on a single A100 GPU [74].

UICoder-Top was trained using the previous stage’s objective, but with the top output for each
input as the target. Unlike the previous filtering method which skipped “hard” input examples,
this approach exposes the model to all input prompts during training, which we hypothesized
could be more effective.

Finally, as a point of comparison, we applied one more iteration of the previously used filter-
then-train algorithm that ignored rankings to the newly generated data. We refer to this model as
UICoder-Filter.

8.4 Training Infrastructure
In this section we provide a description of the infrastructure built to support model training. Our
setup i) generates large volumes of SwiftUI code, ii) renders the SwiftUI code to screenshots,
and iii) scores, filters, then de-deduplicates the synthetic dataset before finetuning our model.
The servers are connected to a cloud storage provider that allows them to share files between
each other.

Code Generation Server. The code generator is used to generate a large number of Swif-
tUI programs using our model. The code generator orchestrated a fleet of worker nodes each
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Figure 8.4: Training infrastructure flow diagram that shows the role of the code generation server,
UI rendering server, and training server.

of which each downloads the latest model weights from cloud storage. Since we used a pool
of servers shared among our organization, the number of worker nodes varied throughout the
training process. Generally, we had roughly 40-50 workers running continuously, each equipped
with multiple NVIDIA P100, V100, or A100 GPUs. 1

Each code generation node repeatedly sampled a description of a UI from our training datasets
using uniform random sampling and constructed a prompt using our model’s prompt template. A
SwiftUI program was then generated by sampling our model until a pre-defined stop token was
reached. Under some training configurations, multiple outputs were generated from the same
description. Because programs were generated using stochastic, temperature-based sampling,
this could potentially result in different variations of a UI. Generated SwiftUI programs were
periodically uploaded to network storage.

UI Renderering Server. The UI renderer was used to convert SwiftUI programs to rendered
screenshots. It consisted of a main routing server that coordinated multiple worker nodes and
image asset renderers. Each worker node runs macOS with XCode and the iOS simulator that
repeatedly i) downloads queued SwiftUI programs, ii) renders them to screenshots, then iii)
uploads the results to the network storage. The image asset renderers ran text-to-image models
that generated image assets referenced by the SwiftUI code. The SwiftUI program is first run
once to determine the required image assets by parsing the error logs for missing image asset
names. The asset names are used to generate image assets, which are included in the project for
a subsequent run.

Before program compilation, we applied automated program repairs (APRs) to try to auto-
matically fix common errors. While LLMs can be used to find and resolve bugs [88], we found
that current open-source LLMs i) could not effectively repair bugs associated with compiler er-
rors and sometimes even introduced additional errors into the code, ii) made large changes to
the original code including sometimes completely rewriting it, and iii) were slow since they re-
quired running another inference through a large model. We focused on lightweight, heuristic
repairs based on regular expressions, which we hypothesize to be useful for many types of sim-
ple code transformations. We manually authored a small number of repairs that are not meant

1Worker nodes with P100 or V100 GPUs ran the inference with the float32 data type to support the full
precision required for the dynamic range of the model’s native bfloat16 floating point format.
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to fix all errors in a given program, but are able to identify and repair certain types of bugs with
high precision. We used a combination of matching-based repairs and compiler-guided repairs.
Matching-based repairs used regular expressions to match common errors in the source code,
such as whitespace errors caused by tokenization, and correct them. Compiler-guided repairs
used the compiler errors output by the Swift compiler to localize and fix errors through manually
written heuristics. This process was slower because it involved running the compiler multiple
times.

Training Server. The model trainer downloaded and collated the i) input descriptions,
ii) generated SwiftUI programs, and iii) the rendered UI screenshots. A text-image matching
model [137] was used to embed score each rendered UI screenshot by computing the cosine sim-
ilarities between i) the embedded input description, and ii) the embedded reference screenshot.

Depending on the training stage, different algorithms for dataset generation and model train-
ing were applied. During the earlier training phase, a subset of high-scoring examples including a
description paired with a code implementation were used supervised finetuning. During the later
phase, the scores were used to generate a dataset of ranked outputs, now a description paired
with two ranked code implementations, for preference-based training. All models were trained
using LoRA method [130] to improve training speed and efficiency.

When the model training finished, the updated model was uploaded to the network-backed
storage so that the code generator used the newest version of the model for the next iteration of
the training loop.

8.5 Experiments
We conducted experiments to i) measure the performance of our model over time, ii) measure
the impact of our data on different LLMs and iii) compare against the performance of other
baselines.

8.5.1 Evaluation Dataset
To support our experiments, we created an evaluation dataset of 200 UI descriptions, which is
roughly the size of other LLM coding benchmarks [57]. We created an evaluation set by ran-
domly selecting 100 screenshots from a held-out set of Android screenshots and 100 screenshots
from a held-out set of iOS screenshots. We chose to construct the evaluation set by annotating
randomly sampled screenshots instead of asking people to freely write their own list of descrip-
tions. We did this to increase the diversity of tested prompts and the match the distribution of
screenshots that are found in everyday apps, rather than focusing on the easiest ones to recall. We
acknowledge that a drawback of this approach is that may not match the frequency of prompts
actually fed into our system during real-world use, and we leave the longitudinal evaluation that
would be needed to accurately collect these prompts to future work.

Each screenshot was manually annotated with a description that usually consisted of 1-3
sentences (mean 23.6 words, min 8 words, max 71 words). Compared to screen descriptions
in existing datasets [296], our descriptions were longer and contained more variation since our
guidelines were less rigid (i.e., no constraints on sentence structure or description length). There
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weren’t any exact string matches between the descriptions in the evaluation set and the descrip-
tions from the training set, but there may still be n-gram overlap (e.g., “sign-in screen of a fitness
app” and “sign-in screen of a banking app”) or other semantic similarities (e.g., “login screen”
and “sign-in screen”). We consider this acceptable, since many screens are variations of each
other and are built to achieve the same goal, and eliminating all similar descriptions would pre-
vent the model from seeing a large class of examples during training (e.g., eliminating all sign-in
screens from the training data).

For each tested model or API, we generated and rendered one program for every input in our
evaluation set using the default sampling parameters and prompt template of that model, which
we collected from their official web demos. If no official web demo could be located, we used
the UICoder sampling parameters, which led to reasonable performance. Since the purpose of
the evaluation is to evaluate the generated code and layout, we replaced all image assets with the
same placeholder image: Image(systemName: "photo").

8.5.2 Metrics
Measuring the quality of generated UIs is challenging, and to the best of our knowledge there
is no automated benchmark that can evaluate description-based UI code generation, unlike for
general-purpose coding where benchmarks such as HumanEval [57] may be used. One source of
difficulty for UIs is that there is no single expected source of output that is used in common unit-
testing approaches for code generation. Previous work has used objective functions grounded in
cognitive principles [228, 229, 287] to measure UI layout quality, however they do not measure
performance related to code or adherence to the input prompt.

In our work, we used a combination of metrics to evaluate different aspects of UI code: i)
compilation rate, ii) CLIP score, and iii) a numeric Elo score based on human preference ratings.

Compilation Success. Compilation success was measured by calculating the ratio of com-
pilable programs from the 200 input descriptions found in the evaluation set. Programs were
compiled using the iOS version and Swift compiler included with Xcode 14. A high compilation
rate suggests that the model has a good mastery of the syntax needed for generating correct code.

CLIP Score. Similar to our training procedure, we use the CLIP score as a fast, automated
method to evaluate output relevance and quality. Previous work has shown a correlation with
human judgments when evaluating text-to-image generation [123], and the CLIP score is more
reproducible since it doesn’t rely on human ratings, which may vary between people or over time.
For evaluation, we used a larger and more accurate CLIP model than the one used in our training
pipeline (OpenCLIP ViT-G/14 vs ViT-B/32 [137]), since the memory and efficiency constraints
that applied during training were not relevant during evaluation. A high CLIP score suggests that
the model’s outputs are relevant to the input description.

Human Preference Elo. Following recent LLM evaluation techniques [332], we used pair-
wise human ratings to calculate Elo ratings for evaluated models [82]. This method is preferred
over asking annotators for absolute ratings or full rankings because it greatly reduces the cogni-
tive load but requires more samples for a full comparison. Each model starts out with an initial
Elo rating, which is set to 1000, as done in prior work [332]. Pairs of models were randomly
chosen and their rendered outputs in the form of screenshots were presented to six human raters
who selected a preferred output or declared a tie. Raters were unable to see the name of the mod-
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els that generated the outputs. If one of the models’ code did not compile, it was automatically
marked as a loss, and if both did not compile, a tie was recorded.

In total, around 3000 pairwise comparisons were recorded. For each comparison, the score
of the “winner” was increased while the score of the “loser” was decreased based on the prior
rating gap between the two compared models. This method resulted in a calibrated rating score
where the difference of two models’ Elo ratings can be used to predict their “winning” proba-
bility vs. any other model. The Elo rating encompassed both aspects of code correctness and
output quality and could be used to compare two models’ overall performance. For models with
low compilation rate, their Elo score was primarily determined through the compilation check;
however, it is unlikely that they could generate complex UIs with limited grasp of syntax. On the
other hand, comparisons between models with higher compilation rate primarily reflected output
relevance and UI design quality.

8.5.3 Performance Over Time

Figure 8.5: We measured model performance over time during the training process of the
UICoder-SFT model. We plot two automatically calculated metrics: compilation rate and CLIP
score. In general, the compilation rate and CLIP score increased with more training iterations,
and the largest rate of improvement occurred during early iterations. The training process was
not entirely homogeneous: we gradually incorporated different parts of our dataset between iter-
ations (shown in the margins of the plot), which contributed to fluctuations in performance. Note
that unlike Figure 8.2, metrics in this plot were calculated over the evaluation set; therefore, a
different compilation rate is reported for StarChat-Beta.

We measured the impact of our training procedure by running automatic evaluations of the
UICoder model after each iteration, starting from the initial StarChat-Beta base model to the
fourth iteration that resulted in UICoder-SFT. The results of this experiment are shown in Figure
8.5. Overall, there is a positive trend between the number of training iterations and the perfor-
mance of both metrics, and the largest rate of improvement occurs during the first iteration. The
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highest compilation rate was reached after the fourth iteration (0.79), while the highest CLIP
Score was reached on the third iteration (0.40). Following the first iteration, we noticed that
an increase in one metric sometimes led to a decrease in the other. Upon manual inspection,
we noticed that more complex and longer programs were likely to have higher CLIP scores but
were also more likely to contain an error. We believe that further tuning of our filters and de-
duplication stage could help mitigate this in the future.

Additional UI descriptions were incorporated at various points in the training process based
on our manual observations and tests. For example, at the initial iteration from 0 to 1 we started
with only human-authored descriptions found in Screen2Words [296]. However, by inspecting
the outputs generated after the first iteration, we noticed that the model tended to produce rel-
atively simple outputs and struggled to understand more detailed descriptions, which led us to
include LLM-augmented and paraphrased descriptions. Similarly, we later included iOS screen-
shots, since the Android UIs in Screen2Words [296] and RICO [72] use different design patterns
and UI components. These changes likely contributed to some of the fluctuations in model per-
formance measured over the course of training.

Both the plotted metrics (Figure 8.5) and later performance measurements (Table 8.1) sug-
gest that automated metrics have mostly converged to a maximum value. Nevertheless, it could
be beneficial to continue running training iterations to take advantage of small incremental im-
provements or new, potentially automatically-collected sources of data [315].

8.5.4 Finetuning Other Models from Generated Data
We trained the UICoder models through a multi-iteration training process, however this is time-
consuming because it requires repeatedly generating, evaluating, and training on self-generated
data. Therefore, we explored the possibility of using data generated during UICoder’s training
to finetune other LLMs, without needing to repeat the self-generation process.

Distilled Models. Model distillation refers to the practice of using the results of a larger
“teacher model” to finetune or train a smaller “student model.” This practice is frequently em-
ployed to use the often superior results of proprietary models to train other more open models,
but can also be used to transfer skills from a smaller purpose-built model to a larger general
model through reverse-distillation. Distillation might be beneficial in our scenarios for three rea-
sons. i. Given the rapid pace of base model improvements, it could be efficient to “rebase” an
existing UICoder model onto a newer improved base model rather than repeat the multi-iteration
training process starting with the improved base model. ii. Larger, general-purpose LLMs may
have a higher capacity to store knowledge but are much more compute-intensive to train us-
ing our self-generation approach. It could be beneficial to transfer the specialized knowledge
learned by UICoder to the general-purpose model, which might gain overall improved perfor-
mance by combining each models’ strengths. iii. Finally, UICoder data could be used to “distill”
a smaller model, which might be necessary for low-compute applications. For our evalution, we
chose three models to represent each of these scenarios. Octocoder is a more recent version of
our base model, StarChat-Beta [215]. Octocoder was released after we began our model train-
ing, so we investigate the possibility of rebasing UICoder onto an improved model. MPT-30B-
Instruct [282] is a 30B LLM that is double the size of UICoder and was finetuned on a collection
of permissively-licensed general-purpose instruction-following datasets. MPT-7B-Instruct [282]
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is a smaller 7B version of MPT-30B-Instruct that is half the size of UICoder and might be useful
for efficient deployment.

We used training examples generated from the last iteration of UICoder training to distill
these models using the same hyperparameters. We refer to the resulting models as Octocoder++,
MPT-30B-Instruct++, and MPT-7B-Instruct++.

Results. We used automated metrics to measure the performance of these models before and
after the distillation process. Both initial and distilled model performance were highly dependent
on the size of the base model, where larger model sizes led to better performance. The best-
performing model was MPT-30B-Instruct which had a compilation rate of 0.14 → 0.78 and
CLIP score of 0.351 → 0.401. This was followed by MPT-7B, with a compilation rate of
0.13 → 0.69 and a CLIP score of 0.350 → 0.395. Although Octocoder was a 15B model
trained on code, it had the worst performance with a compilation rate of 0.06→ 0.51 and a CLIP
score of 0.235 → 0.382. This may have been due to a mismatch between Octocoder’s training
data, which was based on scraped commit messages, and the types of UI descriptions relevant
to our task. Overall, all models’ compilation rates and CLIP scores were greatly improved by
distillation, which suggests the utility of UICoder-generated data for finetuning other models.

8.5.5 Baseline Comparison

We compared the performance of UICoder models, distilled models, and several classes of base-
lines.

Baseline Models. We categorized baselines into three categories: i) proprietary models, ii)
restricted models and iii) permissive models. We evaluated two baselines for each category.

Currently, proprietary models have the best performance, but are accessible only through
web API requests and often have usage restrictions. We included GPT-4 and GPT-3.5-Turbo as
proprietary baselines, since they have been shown to excel at a wide range of tasks, including
code generation [43, 196]. Details about the models’ architecture and training procedure are not
publicly released [227]; however, GPT-3, a predecessor to both models, is known to have 175B
parameters [41].

Restricted baselines are freely downloadable models with license or usage restrictions (i.e.,
no commercial use), due to the use of a proprietary model in generating training data. 2 We
included WizardCoder [196] and MPT-30B-Chat [282] as restricted baselines. WizardCoder
is a 15B model that at time of writing is the highest-performing downloadable model on the
HumanEval benchmark [196], and was trained using a sophisticated distillation algorithm to
query complex training examples from GPT-4. The same examples were used to finetune Star-
Coder [174]. MPT-30B-Chat is one of the strongest general-purpose models that can fit on a
single A100 GPU at default precision [282]. Note that MPT-30B-Chat is different from MPT-
30B-Instruct, in that the chat model was finetuned using output from ChatGPT and GPT-4.

Finally, we included StarChat-Beta [291] and OctoCoder [215] as permissive baselines,
which were both trained on permissively-licensed code repositories and instruction-tuning datasets.
StarChat-Beta is our base model, and we included OctoCoder because at the time of writing it is

2Some models, such as LLaMA and LLaMA-2 are not freely downloadable because they require a license
application to first be approved by Meta to access the weights.
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the best-performing permissive model on variations of the HumanEval benchmark [215]. Similar
to StarChat-Beta and UICoder models, OctoCoder is also derived from StarCoder [174].

Table 8.1: Table of automated metrics and Elo ratings computed for each model on the evaluation
set. Compilation rate refers to the portion of outputs that led to a compilable SwiftUI program.
CLIP Score is an automatically computed estimation of quality based on the CLIP similarity
score between the rendered screenshot and the original input prompt. The CLIP Score is only
computed for the portion of compilable programs. The Elo rating is computed from pairwise
human preference data. CLIP Scores and Elo ratings are displayed as mean± standard deviation.

Model Params Compilation CLIP Score Elo

GPT-3.5-Turbo - 0.88 0.416± 0.069 1224± 15.2
GPT-4 - 0.81 0.419± 0.070 1189± 15.1
WizardCoder 15.5B 0.23 0.393± 0.071 870± 12.9
MPT-30B-Chat 30B 0.27 0.368± 0.073 873± 12.9
StarChat-Beta 15.5B 0.03 0.334± 0.041 773± 10.2
Octocoder 15.5B 0.06 0.235± 0.068 777± 10.5

UICoder-Filtered 15.5B 0.79 0.404± 0.063 1099± 15.2
UICoder-Top 15.5B 0.82 0.396± 0.061 1084± 15.7
UICoder-DPO 15.5B 0.75 0.393± 0.060 1091± 15.6

MPT-7B-Instruct++ 7B 0.69 0.395± 0.064 1015± 14.4
Octocoder++ 15.5B 0.51 0.382± 0.061 959± 14.8
MPT-30B-Instruct++ 30B 0.78 0.401± 0.063 1047± 15.0

Results. We ran all three metrics for the baseline comparison experiment. The results are
summarized in Table 8.1 and Figure 8.6 shows the expected human ratings for every pair of eval-
uated models. Overall, the proprietary models had the best performance, followed by UICoder
models, then models distilled from UICoder data. GPT-3.5-Turbo had the highest compilation
rate and the highest Elo score, while GPT-4 had the highest CLIP Score. It was somewhat sur-
prising that GPT-3.5 had a higher compilation rate than GPT-4, since GPT-4 is often considered
a stronger model. Upon manual inspection, we hypothesized that GPT-4 often tried to produce
longer and more complex code implementations, which made mistakes slightly more likely. A
lower compilation rate also affected the Elo score, since uncompilable programs were automat-
ically counted as losses in the pairwise comparisons. The higher CLIP score suggests that the
compilable GPT-4 programs had high visual relevance to the input prompt.

Variations of the UICoder models approached the performance of the proprietary GPT mod-
els, and UICoder-Top had a higher compilation rate than GPT-4. All three UICoder variants had
roughly the same level of performance, which suggests that the additional preference alignment
stage did not lead to significant improvements, possibly due to sub-optimal hyperparameters or
the additional model quantization needed to run the training algorithm.

Distilled models finetuned from the final iteration of generated data had slightly lower per-
formance than the UICoder models themselves, which together with our performance over time
experiments (Figure 8.5) suggests that multiple training iterations are needed to maximize perfor-
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Figure 8.6: Matrix shows the predicted win probability of model A against model B.

mance. MPT-30B-Instruct++ was the best-performing distilled model, possibly due to its larger
model size, and although Octocoder++ is pre-trained in large amounts of code, it performed
worst out of the distilled models. MPT-7B-Instruct++ maintains relatively high performance
with a much smaller size, which is encouraging from an efficiency standpoint.

All other downloadable models fared considerably worse. Most of the programs generated
by these models failed to compile due to calling undefined variables or functions. Restrictive
models performed better than permissive ones, due to the use of larger amounts of finetuning
data generated from proprietary model APIs. It is possible that the distilled proprietary data did
not contain many Swift-related coding examples and querying proprietary models specifically
for more UI-related tasks could further boost performance. Notably, StarCoder-Beta, our base
model, was ranked in last place, likely due to the scarcity of Swift and SwiftUI code in its training
code. Our results suggest that our method is highly effective at improving its capabilities, since
after training, UICoder has became one of the top performing models.

8.6 Discussion & Future Work

Much current work on code generation focuses on code that can be validated purely with unit
testing, as demonstrated by the widely used HumanEval benchmark [57]. User interface code is
often quite different from unit testable code, however, as UI code can rarely be described in terms
of defined input/output pairs or the output of a mathematical function. UI code has a lifecycle that
is longer than a single function call, must react to human events, and often relies on “back-end”
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Figure 8.7: Screenshots rendered from SwiftUI code generated by our UICoder models. Overall,
the generated UIs follow the original description; however, there are several instances where part
of the input was ignored. Note that during the evaluation study, all images were replaced with
the same placeholder icon, but for illustration purposes we manually included stock photos and
icons. The model-generated code used to render these screenshots were not modified in any way
except to update image asset names, but we generated multiple outputs for each input description
and chose the best one through manual inspection.

technologies to populate its data. Furthermore, UI code often defines a visual design, for which
there are many technically “correct” alternatives and the quality of any particular alternative may
be influenced by the tastes of the user who views it and the context in which it is shown, such
as on a mobile device vs. a traditional desktop computer. Thus, we believe that generating
high-quality UI code is a substantial challenge beyond typical code generation tasks.

Another challenge for UI code generation is that this problem cannot be solved with just the
knowledge of a programming language, such as Python or Swift. UIs are produced by toolkits,
which are APIs that extend the language with specific functionality for user interfaces. There are
many UI toolkits, each with its own features and peculiarities. Even if a programming language
is well represented in the training set for an LLM, any particular UI toolkit for that language will
almost certainly be less represented. Languages with poor representation in training sets, such
as Swift, will have UI toolkits with even less representation.
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These aspects demonstrate the challenge faced by UICoder. Not only was it required to gen-
erate user interface code, which is already hard, but it faced the challenge of doing so with a
language and API (Swift and SwiftUI) that are poorly represented in LLM training sets. Thus,
we think it is particularly impressive that the method presented here was able to boost perfor-
mance on compilability and visual relevance to levels that are nearly competitive with the best
available proprietary LLMs. Furthermore, our method was able to boost performance without
the introduction of any new human-generated code, which can be very expensive to collect and
curate.

While we focused specifically on Swift and SwiftUI, our method is not specific to either
the language or the API that is used. Further experimentation is required, but we believe our
method should be applicable to other languages and their UI toolkits, even if they have a low
representation in standard code training sets. The compilability aspect of our approach might
also be applicable to teaching code generation models how to use other kinds of non-UI APIs
with low training set representation.

8.6.1 Limitations of Automated Feedback
The goal of our training object is to maximize the automated scores provided by a compiler and
the CLIP vision-language model. Although our experiments (Figure 8.5) suggest that we have
mostly achieved this goal by “saturating” these metrics, usage-based testing and collected human
ratings indicate there is still room for improvement. In this section, we discuss the limitations of
our currently chosen feedback mechanisms and discuss opportunities for improvement.

Swift Compiler. The Swift compiler provides ground truth for compilation success, but this
only returns a sole binary value, which equates the quality of any two non-compiling programs
regardless of the number of defects. Based on our observations (Figure 8.2), this incentivizes the
model to avoid errors, rather than learning how to correct them, resulting in very simple outputs.
We attempted to rank generated programs by the proportion of error-free lines of code to total
program length [187] (Section 8.3.4) but found that this actually led to decreased a compilation
rate in the case of the UICoder-DPO model. A more useful signal would be to count the number
of changes needed to “fix” a failing program, but this cannot be directly computed from compiler
output (e.g., correcting a typo in a single method definition could resolve multiple errors). Thus,
we believe an important future direction is incorporating PL or verification techniques as a better
source of automated feedback for language syntax.

CLIP Score. Compared to the discrete binary output provided by the compiler, the CLIP
score provides a finer-grain numerical output. We found that CLIP could detect overall output
relevance and large disparities in output quality (e.g., eliminating “obviously” bad designs), but
it wasn’t well-equipped for comparing subtle design choices or detecting some types of visual
defects. Figure 8.8 shows our trained model still exhibits errors that are uncharacteristic of
human developers, including data formatting, text-overflow, inaccessible controls, poor style, and
contrast. We see three avenues for improving CLIP’s performance. First, we hypothesize that a
major reason for CLIP’s limitations is the small fraction of its training examples that included UI
screenshots. One promising approach to improve CLIP’s performance is to fine-tune the CLIP
model using datasets specific to user interfaces, such as Screen2Words [296], or even fine-tune
on a subset of high-quality text-image pairs generated by UICoder. The CLIP model is also
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Figure 8.8: We show four types of failure cases observed in generated data. Data formatting
errors occur when a sub-optimal method is used to represent data (e.g., numbers) as text or
other widgets. Here, the temperature portion of the weather app is shown with unrealistically
high decimal precision. Text overflow errors occur when the model makes text too big for its
container, which causes it to overflow onto multiple lines. Some interactive controls generated
by the model are not constructed using the correct container, making them not tappable during
actual use. Finally, the model can make sub-optimal styling decisions that make text hard to
read due to low contrast. Note that all icons and images in these samples were replaced with
placeholders.

known to struggle with certain tasks such as object-counting and reasoning [245], which could
be relevant for some types of prompts, e.g., “a login page with three buttons stacked vertically.”
Integrating additional models, such as those that can explicitly detect UI elements [331] and
structure [313], or tools that detect style and accessibility-related errors [17], could help address
the shortcomings of the CLIP model. Finally, because CLIP only accepts image input, it can
only evaluate a dynamic, interactive UI with a screenshot of its default state. Integrating crawler-
based approaches [185, 315] that can directly interact with UI affordances could provide a more
holistic evaluation of UI quality.

8.6.2 Going Further with Human Guidance

We focused on fully automated methods for training LLMs to generate SwiftUI code. There are
cost and efficiency benefits to this approach, however we found that automated metrics alone
are insufficient for measuring UI quality. A natural question is: “What are opportunities for
humans to further improve the process?” In this section, we discuss opportunities for efficiently
incorporating human guidance during training and evaluation.

Improved Training. Previously, human annotators provided guidance during the training
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process by i) creating labeled examples for the supervised finetuning stage and ii) providing pref-
erence ratings during the model alignment stage. Authoring labeled examples is an expensive
and time-consuming process that requires finding, training, and compensating skilled developers
to write many SwiftUI code examples. Our results suggest that the UICoder-SFT model, trained
with self-generated labeled data is an effective substitute. Our method falls short when gener-
ating preference rankings needed for alignment training, due to scoring imperfections from our
automated measurements. In general, rating UIs is much easier than authoring them, since the
process is much faster and does not require coding knowledge to complete. In future work, we
plan to explore preference-based human feedback and test the improvement of human-provided
rankings over automatically generated ones.

Efficient Evaluation. We did use human preference rankings to evaluate and compare model
performance using the Elo rating system to estimate the relative performance of models. While
the Elo score seems to be a more reliable indicator of UI quality than automated methods such
as CLIP, one drawback is that it is time-consuming to run the evaluation and the Elo ratings may
be difficult to reproduce because they are dependent on the pool of human raters. An interesting
future direction would be to use human ratings to first train a separate model to predict human
ratings [90], then use the resulting model as a more reliable automated evaluator in place of CLIP.
Similar to the “reward model” used by RLHF techniques [231], such a model would facilitate
more efficient evaluation through human-calibrated data.

A complementary direction would be to pursue opportunities for richer human evaluation,
beyond simple preference ranking. For example, a human rater could provide feedback such as
“Don’t use grey backgrounds when displaying black text” (Figure 8.8), which could automati-
cally adjust the scores of multiple samples that contain the described characteristic. Because all
screenshots are rendered directly from code, it is also possible to map image regions directly to
locations in the code, raising opportunities for other types of fine-grained feedback interactions,
e.g., a human might mark a badly placed UI element and then feedback could be given to the
model about the code that placed this element.

8.7 Conclusion
In this chapter, we introduced a novel method that uses automated tools such as a code com-
piler and a pre-trained vision-language model to finetune LLMs to generate UI code from user-
provided textual descriptions. Unlike other instruction-following LLMs that are trained on ex-
pensive human feedback or output from a stronger proprietary model, our technique trains LLMs
entirely using high-quality examples mined from self-generated data. We applied five iterations
of our algorithm to an existing open-source LLM, resulting in nearly one million generated Swif-
tUI programs, which were then filtered and refined to train the UICoder model. In a series of
experiments that measured both automated metrics and human preferences, UICoder and other
models trained with our method outperformed all other downloadable baselines by a large margin
and approached the performance of larger proprietary models.
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9
UIClip: A Data-driven Model for Assessing

User Interface Design

9.1 Preamble

Content in this chapter is based on a paper that has been conditionally accepted to UIST 2024
[317]. The work was done with my collaborators, Yi-Hao Peng, Xin Yue Li, Amanda Swearngin,
Jeffrey P. Bigham, and Jeffrey Nichols. In this chapter, I use the term “we” to collectively refer
to myself and my collaborators.

The UICoder system described in Chapter 8 presented an alternative to Reflow’s layout op-
timization approach 7 by first generating declarative UI code that could be compiled into a fully
interactive application. Both approaches had trade-offs. Reflow could re-use many parts of the
original rendered UI, which could lead to more consistent user experience, and its formulation
lent itself more naturally to certain types of objectives (e.g., spatially-dependent interaction).
On the other hand, UICoder’s code generation approach had advantages such as theoretically
supporting more substantial changes, but it also required the model to also understand learn the
syntax of the UI programming language, which introduced additional complexity. In both cases,
however, the resulting UIs often contained design defects, such as mis-aligned UI elements (in
Reflow) or poor layout and color choice (in UICoder). This is due, in part, to the lack of an
automated assessment method that can identify and penalize the presence of bad design choices
while encouraging ones. To this end, this chapter introduces UIClip, a data-driven model for
assessing the quality of UI designs. I show that UIClip can be used to improve these automated
UI generation approaches by scoring output quality and integrated into design tools for human
designers.

UI design is a difficult yet important task for ensuring the usability, accessibility, and aes-
thetic qualities of applications. In our paper, we develop a machine-learned model, UIClip, for
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assessing the design quality and visual relevance of a UI given its screenshot and natural language
description. To train UIClip, we used a combination of automated crawling, synthetic augmen-
tation, and human ratings to construct a large-scale dataset of UIs, collated by description and
ranked by design quality. Through training on the dataset, UIClip implicitly learns properties of
good and bad designs by i) assigning a numerical score that represents a UI design’s relevance
and quality and ii) providing design suggestions. In an evaluation that compared the outputs of
UIClip and other baselines to UIs rated by 12 human designers, we found that UIClip achieved
the highest agreement with ground-truth rankings. Finally, we present three example applications
that demonstrate how UIClip can facilitate downstream applications that rely on instantaneous
assessment of UI design quality: i) UI code generation, ii) UI design tips generation, and iii)
quality-aware UI example search.

What makes a good user interface (UI)? It is hard to comprehensively articulate what sepa-
rates a good UI design from a bad one, and the task of UI design is challenging even for experts
with years of training and practice. Guidelines exist that list some general principles [223, 268],
but they are often insufficient or difficult to operationalize, especially for novice designers. Be-
cause of this, many application UIs today contain common design problems, which can nega-
tively impact usability, accessibility, and design aesthetics.

The most holistic method of evaluating UIs is usability testing, which can uncover UI de-
sign flaws, accessibility problems, and software bugs, but it is generally a time-consuming and
costly process. Approximate assessments, such as heuristic evaluation, rely on experts apply-
ing a set of pre-defined principles to rapidly identify potential problems and estimate overall UI
quality. However, even these abbreviated strategies can be difficult to employ consistently or in
the absence of a knowledgeable expert.

To this end, computational methods have been developed to estimate the quality of UIs, taking
into account factors such as visual aesthetics [209], cognitive principles [228], and context [230].
Because of their automated nature, they unlock new opportunities for UI design [278, 287] and
evaluation [212]. However, most of these prior computational approaches are limited. Some
techniques apply objectives and metrics inspired by cognitive principles [209, 228], such as
visual complexity, layout quality, and color harmony to UI designs, but their outputs still re-
quire interpretation and cannot, for example, be used to compare the quality of two candidate
designs. Other approaches are toolkits that learn user-specific models for generating adaptive
interfaces [99, 100, 101], and they also cannot be applied to more generalized UI design tasks.

Our paper introduces a novel computational model, UIClip, that estimates the design quality
of any UI from its screenshot and a textual description. Specifically, UIClip generates a numerical
score predicts two aspects of design quality: i) the presence of design defects and ii) design
preferences based on human rankings. UIClip is based on the well-known CLIP vision-language
model [245], and it uses a natural language description of the UI coupled with a screenshot to
assign a numerical score that estimates design quality. CLIP, by default, is not well-suited for
judging UI quality and relevance. Therefore, to train UIClip, we developed a novel technique for
synthetically generating a large-scale dataset of UIs ranked by design quality. Our strategy takes
existing UIs (e.g., web pages) and intentionally introduces design defects by modifying style
and layout attributes. The process created pairs of original and “jittered” interfaces and allowed
the models to learn the differentiation between these pairs. We used this method to generate 2.3
million pairs of UIs coupled with their quality-related descriptions. To align our model with real-
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world design preferences, we collected 1.2K ratings from designers on an extra UI set. These
ratings were used to refine UIClip and validate the effectiveness of our model.

We benchmarked UIClip with other large vision-language models (LVLM) by evaluating
them on a held-out set of UI screens. We assess the models on three tasks, including design
quality, improvement suggestions, and design relevance. The results showed that UIClip outper-
formed all other models in every task, despite being smaller in size. Finally, to demonstrate the
utility of UIClip, we present three example applications that use our model to provide different
types of computational UI design assistance: i) quality-aware UI code generation, ii) UI design
suggestion generation, and iii) quality-aware UI example retrieval.

To summarize, our work makes the following contributions:

1. A large-scale dataset of UI designs and descriptions comprised of synthetic and human-
generated design ratings.

2. A computational model that scores UI screenshots based on relevance to a textual descrip-
tion and design quality.

3. Three example applications that demonstrate how UIClip can be used to facilitate down-
stream applications: i) a tool that improves the quality of UI code generated by LLMs,
ii) a tool that generates design recommendations for a UI screenshot, and iii) a UI design
search engine.

To facilitate research in this area, we plan to release all the training code, data, and models.

9.2 Datasets for UI Design Quality
While several UI datasets exist, they are annotated for other applications, such as element de-
tection [44, 72], natural language description [296], and app categorization [167]. Although
some prior work has rated model-generated UI code [100, 269], to our knowledge, no publicly
available, large-scale dataset exists for UI design assessment. To this end, we collected over 2.3
million UI screenshots, each paired with natural language text that includes a caption, design
quality, and design defects. Since it is prohibitively costly and time-consuming to collect enough
human-annotated data to train deep learning models, the majority of our data (over 99.9%) is
synthetically generated, and a small set of human ratings is collected from designers. We refer to
our synthetically-generated dataset as JITTERWEB and our human-rated dataset as BETTERAPP.

9.2.1 Synthetic Data
JITTERWEB is a synthetic dataset of 2.3 million examples created through automated web crawl-
ing, data augmentation, and captioning. Recent research has shown that UIs on the web (e.g.,
web pages), are a useful source of data for data-driven UI modeling, due to the relative ease
of applying automated crawling techniques and extracting semantic metadata from the browser
[156, 316]. The main idea behind our synthetic data approach was to first visit an existing web
page and record its appearance (i.e., take a screenshot), then randomly apply several jitter func-
tions that are designed to intentionally degrade the design quality of the web page in different,
controllable ways and record the resulting appearances (examples shown in Figure 9.1). Jitter
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Figure 9.1: Our synthetic dataset was comprised of UIs that were processed by jitter functions
to introduce design defects. In this figure, we visualize the effect of each jitter function indepen-
dently, although up to three jitter functions can be applied simultaneously. Our crawler captures
screenshots for multiple devices (desktop, tablet, and mobile), but due to space constraints, we
only show rendered mobile examples.
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functions are implemented as snippets of JavaScript code that, for example, add random noise to
CSS attributes or swap colors in the web page’s color palette. The result of applying this process
to a web page is one “original” sample paired with several variations of itself, each with a set of
known design defects. While the jitter functions typically lead to negative changes, as one would
expect from randomly-adjusting ground-truth styles, some might be neutral or even positive (i.e.,
label noise). Through an informal inspection of 100 randomly selected jittered UIs, we found
that 9 had similar quality with “original” ones.

Data Collection

We followed the collection methodology of WebUI [316], where a headless Chrome browser
was used to visit thousands of websites with different simulated client devices (e.g., mobile
phone, desktop, tablet). It was not possible to directly re-use the publicly-released WebUI data,
which consists of screenshots and extracted metadata, because our data augmentation pipeline
necessitates loading the website in a browser to run the jitter functions, which are implemented
as JavaScript code. Unlike the crawler used in WebUI, we adopted a simpler architecture that
directly crawls URLs from publicly available datasets. We crawled nearly 300,000 web pages,
using URLs from the MC4 dataset provided by the Allen Institute for AI [78], which is an
adaptation of the original C4 dataset [247] frequently used to train large language models [33,
63, 164, 289]. This dataset has undergone screening to remove explicit content [78]. In addition,
we excluded URLs that resulted in 404 errors.

JITTERWEB was randomly partitioned into training (80%), validation (10%), and test (10%)
splits by web page URL. We further randomly selected 201 samples from the original test split,
to make it the same size as the test split from our human-rated data (BETTERAPP) for model
evaluation.

Jitter Functions

Jitter functions are JavaScript code snippets that are used to controllably introduce design de-
fects into web pages. To design these functions, we reviewed various guidelines on usability and
design evaluation found in design textbooks [186, 268], online resources [112, 310], and pub-
lished literature [197]. While undoubtedly useful for informing application design, many of the
principles described in these resources could not be assessed by looking at a single screenshot
(e.g., “error prevention,” “user control and freedom”). We ultimately chose the CRAP guide-
lines [306], which are four general principles for UI visual design relevant to our task: contrast,
repetition, alignment, and proximity. We developed the jitter functions based on a combination
of these guidelines and what is possible to programmatically adjust through JavaScript and CSS
styling.

Below, we describe the functions that we implemented and the CRAP principles that inspired
them:

• Colors

Color Swap (contrast, repetition) - Randomly swaps the colors of elements on the
web page
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Color Noise (contrast, repetition) - Adds numerical noise to CSS attributes for RGB
values

• Font

Font Size (contrast, repetition) - Randomly swaps the font sizes of text elements in
the page (e.g., swapping the size of subheading text with the size of body text)

Text Noise (contrast, repetition) - Adds numerical noise to CSS attributes for text size
• Contrast

Text Color (contrast) - The contrast of text is decreased so that it appears closer to its
container’s color

Background Color (contrast) - Makes the background color of containers containing
text closer to the color of the text.

• Spacing (alignment, proximity) - Adds numerical noise to CSS attributes for margin and
padding

• Complexity (contrast, repetition, alignment, proximity) - Randomly removes images, text,
and other element styling

• Layout (alignment, proximity) - Modifies CSS related to element layout such as flow (e.g.,
horizontal or vertical).

The jitter functions are composable, and when the crawler visits a web page, it chooses up
to three functions via uniform random sampling to apply sequentially before taking a screenshot
of the jittered UI. Figure 9.1 shows an example of a web page processed by each of our jitter
functions.

Description Generation

Each UI screenshot was associated with a natural language description that includes a caption,
design quality, and a list of design defects (inferred from the applied jitter functions). The full
description is formatted by concatenating multiple components: i) a constant prefix (“ui screen-
shot.”), ii) a design quality tag (“poor design” if the screen has been jittered, otherwise “well-
designed”), iii) a list of design defects (e.g., if the “text contrast” jitter function was applied, a
suggestion would be “bad text contrast”), and iv) a caption describing the screenshot. Figure 9.2
provides a visual illustration of this process.

The design-related components are inferred from the jittering process. To generate the cap-
tion, we used a set of pre-trained models to predict [166, 296], then paraphrase [141] a caption
from the UI screenshot. In the generation process, we specifically avoided the use of models
with restrictive usage agreements or trained using data from models with restrictive usage agree-
ments 1. Because the introduction of design defects by jitter functions may affect the accuracy
of the captioning model, we generate the caption for each original UI, and then propagate the
caption to all its variations.

1The terms of service of proprietary model providers such as OpenAI, Llama, and Claude prohibit using their
model outputs to train other models. Therefore we avoid them and also other “distilled” models trained on their
output.
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Figure 9.2: Our process for generating text descriptions for JITTERWEB. Based on a set of
randomly-chosen jitter functions, several design defects are introduced, e.g., color swap, color
noise, font swap. These design defects are recorded as a part of the jittered UI’s caption, which
helps our model associate design defects with the UI screenshot.

9.2.2 Human-rated Data
While our synthetic approach to automatically generating pairs of design preferences can be
efficiently scaled to millions of screenshots, it also has drawbacks. In the synthetic dataset,
preferences are only generated between variations of the same screen, which does not reflect
comparison between independent designs. While we used established design principles to author
jitter functions, they may not represent the actual distribution of design flaws across real-world
apps, e.g., small element margins may be a very common problem “in-the-wild” but is only
represented in one of our heuristics. Finally, a part of the creation process for the synthetic
dataset involves using a pre-trained UI screenshot captioning model for caption generation. This
model may produce incorrect captions that limit a downstream model’s ability to understand UI
design relevance. To this end, we collected the BETTERAPP dataset using feedback from human
designers. BETTERAPP addresses the drawbacks of synthetic data by i) comparing UI screens
from different apps, ii) collecting design defects from real apps, and iii) using human-improved
UI captions.

As a starting point, we used an existing public dataset called VINS [44], which contains
screenshots of iOS apps, Android apps, design mockups, and lower-fidelity design artifacts such
as wireframes. Because it was originally used for design search and element detection appli-
cations, the VINS dataset contains screenshot images and element annotations. For our appli-
cation, we only use the screenshot images and not the lower-fidelity wireframes. In addition
to VINS data, we also included screenshots of UIs rendered by an open large-language model
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[142] prompted to generate HTML code given natural language descriptions in our dataset. We
hypothesized that these samples would contain more variation in design quality and more design
defects, which could be useful for learning design quality.

To prepare the data for our rating procedure, we applied several additional processing steps.
We first applied the same automated captioning model [166] used to construct synthetic examples
to assign an initial caption to each dataset in VINS. These captions were later improved by
participants. We used a pre-trained sentence embedding model [249] to generate a fixed-size
embedding for each screen based on its auto-generated caption. Finally, we applied the DBSCAN
clustering algorithm [84] to group together screenshots with similar captions. As a result of this
process, the screenshots are collated so that screens of similar functionality can be found in the
same cluster (e.g., all login screens). We clustered the VINS and synthetic examples separately,
so clusters are only made entirely of either real-world or synthetic UIs. Designers were then
asked through pairwise comparisons to assign relative rankings between UI screens in the same
cluster.

Figure 9.3: A screenshot of the application used for collecting human design ratings. Participants
first decide whether the pair of screenshots can be described by a single caption (A). If possible,
an improved caption is authored (B). Participants select one option that better matches the caption
(C) and provide their reasons for doing so (D).
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Designer Rating Procedure

We recruited 12 designers (ages 20-32, 11 female and 1 male) as participants at a university with
varying levels of experience through word of mouth. The participants had varying backgrounds.
Some had up to 8 years of industry experience in UI/UX design. Others had more informal
experience, but all were enrolled or had taken graduate-level courses focused on the design and
implementation of UIs. Participants spent around 1.5 hours rating UI screenshots, with the goal
of reaching at least 100 screenshots. Participants were compensated $10 per hour (rounded up)
for their time.

Participants were first asked to review an online resource that describes and provides ex-
amples of the CRAP visual design principles [146]. Participant ratings were collected using a
custom-built web application (Figure 9.3). The start page of the application displayed instruc-
tions and recorded a visitor ID, which allowed analysis of rating consistency.

Following the start page, the web application repeatedly i) selects a random cluster from
the processed data then ii) randomly selects two UIs from within the cluster to display. The
participant was then asked to do the following steps:

1. Write a short, one-sentence caption that contains enough detail to describe both screen-
shots. If one of the screenshots is irrelevant (e.g., due to clustering error), write a caption
for the first screenshot.

2. Provide a relative ranking between the two screenshots given the options “A is better” or
“B is better.”

3. Select all relevant CRAP principles that were important in determining the ranking, unless
“about the same” was selected in the prior step.

In total, we collected around 1200 ratings from all participants. We ignored pairs that could
not be described by a single caption, which led to 892 rating pairs. To measure inter-rater reli-
ability (IRR), we initially had each participant evaluate the same set of 10 predetermined pairs.
Afterward, the rating pairs were distributed randomly. We used this initial set to compute Krip-
pendorff’s alpha score, with α = 0.37. We discuss the factors influencing these ratings in Section
7.2, attributing the variation to the task’s inherent subjectivity and variable individual prefer-
ences, such as familiarity with Android or iOS apps.

Similar to our synthetic generation approach, responses from each step are used to construct
different parts of each UI screenshot’s text description. The human-authored or human-refined
caption from step 1 is used to improve the original auto-generated one. The relative ranking from
step 2 is used to infer the correct design-quality tag, where the preferred example is assigned
“well-designed” and the other is assigned “poor design.” The selected principles from step 3
are used to construct a set of design defects for the non-preferred screenshot. For example, if a
participant selected the contrast principle as a reason for choosing A over B, then “bad contrast”
is added to the generated description of B. Note that the same screenshot can appear in more than
one randomly sampled pair, which could result in conflicting descriptions e.g., if it was preferred
in one round but not in another. Our training algorithm is robust to these collisions and over time
learns to approximate a score based on the proportion of times it was preferred.

To generate BETTERAPP training (70%), validation (10%), and test (20%) splits, we ran-
domly partitioned the UI clusters, which ensured that both UI screenshots from rated pairs al-
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ways occurred within the same split. We chose the split percentages for BETTERAPP so that the
size of the test set is roughly equivalent in size to other popular model benchmarks [57]. The
final sizes of the splits were: train (618 pairs), validation (73 pairs), and test (201 pairs).

9.3 UIClip
We used the JITTERWEB and BETTERAPP datasets to train a computational model UIClip, that
assesses UI designs from screenshots. While our datasets could be applied to train any model,
such as large vision-language models [22, 191] that typically include the language decoder from
an LLM, we adopted the CLIP architecture [245] as it is designed to produce a numerical score,
which is similar to our objective of scoring designs. Specifically, our model accepts two inputs:
i) an image (e.g., screenshot) of a UI and ii) textual description. The model produces a single
numerical output, which represents a combined assessment of design relevance and quality. In
addition, while much of our training dataset contains HTML code, we chose to focus on UI
appearance (i.e., image input) rather than source code because it allowed our model to be more
universally applicable, regardless of underlying toolkit implementation.

UIClip is based on OpenAI’s CLIP B/32, which contains 151 million parameters. CLIP B/32
is a dual-encoder transformer model (i.e., consisting of an image and text encoder) that accepts
i) a textual description and ii) an image as inputs, then encodes both into a shared embedding
space. The image encoder is a vision transformer that accepts a fixed-size 224x224 image as
input, splits it up into 32x32 pixel patches, and then encodes the patches into a 512-dimensional
embedding. The text encoder is a transformer that accepts text sequences of up to 77 tokens
(each token roughly corresponds to a word) and also produces a 512-dimensional embedding.
The outputs of these two encoders are often used to produce a single numerical value, which is
computed as the dot product of the image and text embeddings. CLIP’s dot product output can
be interpreted in many ways, with a common one being the semantic similarity of the two inputs
e.g., the text “a dog” and an image of a dog would produce a high score. CLIP was trained on
roughly 400 million pairs of images and text captions scraped from the internet, which it used to
learn these semantic associations. While CLIP is often successful in general image classification
or association tasks, these internet crawls often lack data for more domain-specific tasks such as
understanding images taken by satellites, autonomous vehicles, and medical images [245]. As
we show in our baseline evaluation, CLIP also performs poorly on UI screenshots, which are
relatively rare in the model’s original training data.

The purpose of our training procedure is to finetune the CLIP B/32 to i) improve relevance
scoring among UI screenshots and descriptions and ii) incorporate design quality as a factor in
the score, and iii) associate descriptions of design defects with screenshots of UIs that contain
them. We refer to our model as UIClip, since it is a descendant of CLIP that is optimized for UIs.

9.3.1 Training
We trained UIClip in four stages that incorporated different data sources and training objectives,
which were designed for different use cases and tasks. In the first training stage, which we
refer to as “pre-training,” we trained UIClip using the JITTERWEB dataset and the same training
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objective used in the original CLIP implementation [245]. We found this useful for applications
related to retrieval and associating UI screenshots with relevant descriptions. In the second stage,
we switched UIClip’s training objective to an alternative loss function that specifically focuses on
distinguishing good from bad UI designs. These two stages are then repeated for the BETTERAPP

dataset, where each stage uses model weights from the previous stage as a starting point. During
all stages of training, we adopt a pre-processing methodology similar to the one used in the
original CLIP paper [245] and subsequent reproductions [61], where a random-crop strategy is
used to capture different parts of UI screenshots.

CLIP Pretraining Objective

During the pre-training stage, we used the same training objective as the base CLIP model [245],
which is described by Equation 9.1.

LCLIP = −
∑
i

ln
evi·wi∑
j e

vi·wj
−
∑
j

ln
evj ·wj∑
i e

vi·wj
(9.1)

Where, wi refers to the i-th text embedding in the batch and vj refers to the j-th image embedding
in the batch.

To give a high-level overview of the process, this training objective involves repeatedly sam-
pling a minibatch of N examples from the training dataset, where each example consists of an
image (UI screenshot) and a textual description (caption with a design quality tag and applied jit-
ters). The model generates embeddings for all text w1...N and images v1...N in the minibatch, then
computes an NxN similarity matrix between all combinations of images and text. The objec-
tive then computes the cross entropy loss to match each image with its original text description,
and vice versa. The intuition behind this process is that the representations of corresponding
images and text will gradually become more similar in the shared embedding space, while mis-
matched pairs will be pushed apart. In the case of UIClip, screenshots will be matched to textual
descriptions containing the appropriate design quality tag, design suggestions, and caption.

Pairwise Contrastive Objective

A drawback of the standard CLIP objective is that the minibatches used to compute its loss are
randomly sampled from the entire training dataset. Because the size of a minibatch is much
smaller than the size of the entire training dataset, there is very low chance that a minibatch will
contain examples of closely-related UI screenshots e.g., both a jittered and non-jittered version of
a webpage. We hypothesized that this would make it more difficult for the model to learn relation-
ships between these related UIs, which is necessary for assessing the relative quality of related
designs. Therefore, we modified the training objective to explicitly compare pairs of related UI
screens. Our method is similar to previous methods for pairwise contrastive learning [119], but
we use a cross-entropy loss, which is more compatible with the pre-training objective, instead of
the margin-based one.

This training objective, shown in Equation 9.2, trains the model so that the embedding of the
preferred screenshot has a higher dot product with a text description indicating good design (i.e.,
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a design quality tag of “well-designed”) than the embedding of the non-preferred screenshot.

Lpair = − ln
ev

+·w+

ev+·w+ + ev−·w+ (9.2)

Where v+ refers to the embedding of the preferred screenshot, v− is the embedding of the non-
preferred screenshot, and w+ is the embedding of the text description.

9.3.2 Inference
Preprocessing

CLIP has a fixed image input size of 224x224 pixels, which presents challenges for encoding
UI screenshots during inference given that many mobile apps are designed with high height-
to-width aspect ratios and dimensions can vary significantly between UIs captured on different
devices. Naive pre-processing methods such as image scaling or image cropping can result in
significant distortion or exclude important information. One way to address this is to make
architectural changes to the model, using similar strategies to previous work [166]. We adopt
a simpler strategy to handle variable image sizes using a sliding window strategy. The input
screenshot is first resized so that its smaller dimension is equal to 224 pixels. A 224x224 window
slides across the larger dimension of size d where the number of evenly-spaced steps is equal to
⌊ d
224
⌋ + 1, so that the entire image is covered with the minimal amount of overlapped area. The

image encoder is used to compute an embedding for each window of the screenshot, and then all
embeddings are averaged together.

UIClip Score

The UIClip score represents a combination of the relevance of the text description and the UI
screenshot and the design quality of the UI screenshot. Computing the UIClip score requires i) a
screenshot of the UI to be evaluated and ii) a user-provided caption describing the intended pur-
pose of the UI. A full textual description is constructed by pre-pending a prefix “ui screenshot.
well-designed. ” to the user-provided caption. The resulting score between the encoded screen-
shot and the encoded full description represents a score that describes how well the screenshot
adheres to a “well-designed” UI with the target caption.

Design Suggestions

During training, UIClip learns to associate screenshots with with natural language descriptions
containing design defects that are potentially contained within them. However, because UIClip
doesn’t contain a decoder network, it cannot directly generate text like other auto-regressive
transformers [244].

Instead, we develop an alternative approach that uses UIClip to detect possible design defects
in an input screenshot, then surfaces them as warnings to the user to fix. For each possible
defect, a natural language description is constructed by pre-pending the corresponding prefix
to the caption, e.g., “ui screenshot. poor design. bad text sizing. login screen.” We consider

156



Figure 9.4: Model performance on design choice prediction, which involves identifying the pre-
ferred UI screenshot from a pair. UIClip models (with bold font) perform the best on held-out
human-rated pairs from BETTERAPP and synthetically-generated pairs from JITTERWEB. Most
baselines perform poorly, around the level of random chance.

all design defects introduced by our jitter function (e.g., “bad text sizing”) and the four CRAP
principles (e.g., “bad alignment”). We computed the similarity score between the input image
and these text descriptions that corresponded to design defects. To determine the design defects
that are surfaced, we dynamically compute a threshold. The threshold is computed as the image’s
similarity score with a caption without any defect tags, e.g., “ui screenshot. poor design. login
screen.” Design suggestions can also be limited to a smaller number of categories (e.g., only
the four CRAP principles) through pre-defined mappings. For example, since the color noise
jitter could affect both contrast and repetition, we map “bad color choice” to warnings for these
classes.

9.4 Evaluation
The purpose of our evaluation is to quantify multiple aspects of UIClip’s design assessment
capabilities and to compare its performance against several state-of-the-art baseline models and
ablation conditions. We focused on tasks that correspond to three use-cases: i) design quality
assessment, ii) design suggestion generation, and iii) design relevance. In all three tasks, UIClip
outperformed baseline models that are several orders of magnitude larger.

9.4.1 Procedure
We conducted a quantitative evaluation that measured model performance using held-out exam-
ples from our datasets.

Baselines

We chose several baselines that consist of different types of multimodal machine-learning mod-
els. Originally, we planned to include AIM [228], which is a software package for computing
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various metrics for UIs. However, there is no definitive way to convert these metrics into design
ratings, so we excluded it as a baseline. Therefore, we limit our analysis to the machine-learned
models described below.

• Proprietary Large Vision-Language Models (only accessible via APIs)
OpenAI GPT-4V - GPT-4V is a model developed by OpenAI that has been shown to
excel at a variety of tasks [3].

Anthropic Claude-3-Opus - Claude-3-Opus is a model that was introduced by An-
thropic at March 2024. It is the largest and most powerful variant among the three
Claude-3 models [7].

Google Gemini-1.0-Pro - Google Gemini-1.0-Pro (Vision) is a model that was intro-
duced by Google in December 2023 [281]. It’s the most powerful publicly available
model among the three Gemini-1.0 models (Gemini-1.0-Ultra was announced but not
publicly available at the time we performed this benchmarking).

• Open-source Large Vision-Language Models (model weights are publicly available)
LLaVA-1.6-13B - LLaVA [192] is a model that was trained using a combination of
training examples generated by proprietary large language and vision-language mod-
els as well as publicly available visual reasoning and image caption datasets. We
used the 13B model (with ViT-L/14 [329] as the vision encoder and Vicuna-13B [62]
as the language decoder) as one of our baselines, which is the largest model that we
could fit on our GPU hardware.

Qwen-VL-Chat-7B - Qwen-VL-Chat [22] is similar to LLaVA, but it was trained us-
ing an alternative pre-training objective and datasets. This model (with ViT-bigG [98]
as the vision encoder and Qwen-7B [22] as the language decoder) is notable because
its pre-training data contained images of documents, which we hypothesized could
be relevant for understanding UIs as well.

• CLIP Models
CLIP B/32 - We used the unmodified CLIP B/32 model, which was trained by OpenAI
on 400M image-text pairs known as the WebImageText dataset.

MetaCLIP H/12 - Recent research has focused on improving the performance of
CLIP models by scaling model size [61] and curating larger and higher-quality multi-
modal training datasets [98]. MetaCLIP H/12 is a recent model to achieve state-of-
the-art performance for CLIP-like models. It is roughly 6 times larger than CLIP
B/32 and was trained on roughly 6 times more data [323].

• CLIP Models with Alternative Data
CLIP B/32 + Screen2Words - We trained CLIP B/32 on the largest (to our knowledge)
publicly-released dataset of UI screenshots paired with human-authored natural lan-
guage captions using the default CLIP training objective.

CLIP B/32 + non-jittered websites - We trained CLIP B/32 on only non-jittered web-
sites from JITTERWEB using the default CLIP training objective.

• UIClip
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CLIP B/32 + jittered websites - We trained CLIP B/32 on all data from JITTERWEB

using the default CLIP training objective.

CLIP B/32 + jittered websites + web pairs - We trained CLIP B/32 on all data from
JITTERWEB using both the default CLIP objective and the paired contrastive objec-
tive.

CLIP B/32 + jittered websites + web pairs + human pairs - This model consists
of CLIP B/32 trained on JITTERWEB and BETTERAPP using both the default CLIP
objective and the paired contrastive objective.

Model Inference

LVLM models rely on a natural-language prompt to instruct them on how to process the image
input. We constructed a prompt that asked the model to use the CRAP principles to choose
the better design of two UI screenshots and provide the most relevant CRAP principles for its
decision. We provided the model with the same short description of the CRAP principles we
gave our designers who rated the BETTERAPP dataset. Since some models could only accept one
image input, we concatenated two UI screenshots side by side into a single image. In preliminary
tests, we verified that all models could distinguish the inputs by asking them to describe the left
and right screenshots of the input image.

We iterated through several versions of prompts which included well-known strategies for
eliciting step-by-step reasoning [149]. We chose the best natural language prompt from our
tests and used it for all models. The format of the prompt is provided in the appendix (We also
included an example of GPT-4V’s output when accessed through the web interface in Figure 9.6,
with a slightly modified prompt that allowed it to provide additional reasoning). We used the
default parameters (e.g., temperature and top-p) for all the LVLMs we compared. UIClip and
other CLIP-based models used the inference strategies described in Section 9.3.2.

9.4.2 Results
We focused on evaluating three aspects of design assessment: i) UI design quality assessment,
ii) design suggestion generation, and iii) design relevance.

Design Quality

We evaluated a model’s design quality assessment by measuring its accuracy in identifying the
“preferred” UI from an example pair. The results of our experiments are shown in Figure 9.4.

In general, design quality assessment is a difficult task for all tested models, especially when
evaluating human-rated pairs of real app screens. Our results are shown in Figure 9.5. For
both BETTERAPP and JITTERWEB, the UIClip variant trained with web pairs performed the
best, with an average overall accuracy of 75.12%. In particular, we see large improvements in
detecting design defects in web pages (87.1%), which is what the majority of the training process
and data focused on.

These improvements are notable because CLIP B/32, which was the base model of all UIClip
variants, performed the worst out of all baselines. CLIP B/32 performed especially poorly for
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Figure 9.5: Model performance on design suggestion prediction, which involves generating
design suggestions for a UI based on detected design flaws. We used the macro-averaged F1
score to measure performance across four CRAP principles. In addition, we introduce a choice-
adjusted metric that ignores generated suggestions if they led to the incorrect choice. Using both
metrics, UIClip models (with bold font) perform the best on held-out pairs from BETTERAPP

and JITTERWEB.

jittered websites, where a further analysis revealed it erroneously associated certain types of
jitters (e.g., dark, unreadable backgrounds) with better design. This suggests that our training
procedure and data are effective for learning design quality, especially when compared to other
publicly available sources of captioned UIs (e.g., Screen2Words) or general-purpose multi-modal
data (e.g., MetaCLIP H/12).

Incorporating human ratings appeared to lead to slightly degraded performance (overall ac-
curacy of 73.88%), possibly due to insufficient data. As noted previously, the UIClip with CLIP
pre-training objective alone was less effective at improving design quality assessment capabilities
because paired UI examples are often not found in randomly sampled minibatches. Nevertheless,
it had the third-highest overall accuracy of 65.42%.

Despite their much larger size, all LVLMs performed very poorly on design quality assess-
ment, often around the level of random guessing. Interestingly, GPT-4V (overall 51.58%) refused
to provide a response for around 10% of examples, stating “I’m sorry, I can’t help you with that.”
In this regard, open models such as LLaVA performed better than GPT-4V, even though LLaVA
was trained by distilling GPT-4V output. However, since LLaVA was not trained to refuse re-
quests [191], it ended up with a higher overall performance for design choice prediction (with
54.59% prediction accuracy).

Design Suggestions

We evaluated all models’ design suggestion capabilities by comparing the model-generated out-
put to the CRAP principles selected by designers when rating UI quality in BETTERAPP. There
were four possible CRAP principles that could have been chosen for each comparison, which we
formulate as a multi-label classification problem with four labels. Since designers were allowed
to omit reasoning for comparisons, we ignored comparisons where none of the CRAP principles
were selected.
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Figure 9.6: An example of incorrect design assessment and reasoning from GPT-4V. We asked
GPT-4V to compare two screenshots. We fed in the same prompt used in our baseline evaluation,
except in this case, we allowed GPT-4V to list its reasoning. The screenshot on the right is the
original application screenshot. The screenshot left is a variation of the same interface with a
design defect where the text is too large and overflows, affecting readability and coherence. GPT-
4V erroneously states the left screenshot is better designed and provides irrelevant and incorrect
reasoning.

Again, design suggestion was a challenging task for all tested models. Some LVLM baselines
listed all four CRAP principles for almost every single example, despite being prompted to only
choose the most relevant principles. This appears to be consistent with prior work on using LLMs
for heuristic evaluation [81], where similar models often provided a large number of irrelevant
design suggestions.

In our case, this phenomena led to artificially high recall for models such as Gemini (87.11%
recall) and GPT-4V (84.57% recall). Thus, we introduced a choice-adjusted F1 metric that ig-
nored models’ design suggestions if it led to choosing the wrong preferred UI, i.e., right rea-
soning but wrong answer. This lowered all models’ recall to more realistic levels, e.g., Gemini’s
recall was lowered to 49.17% and GPT-4V was lowered to 46.58%. Some open LVLM baselines,
such as Qwen-VL-Chat, also had trouble following our prompt and often ignored instructions that
asked them to provide reasoning for their answers.

Under both methods of calculation, UIClip variants had the best performance, with the web
pre-trained variant performing the best when all examples were considered and the full UIClip
variant performing the best when adjusted for choice accuracy.

CLIP variants that were trained on other sources of data did not achieve high performance,
since their training data did not include information about present design defects that would help
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them make suggestions.

Design Relevance

Finally, we also evaluated a model’s ability to compute UI relevance, which is useful for assessing
designs and for various applications that require example retrieval [44, 132].

To measure UI relevance, we adopted a metric commonly used in information retrieval known
as mean reciprocal rank (MRR). An embedding is computed for the preferred screenshot in
BETTERAPP and JITTERWEB. For each description in the evaluation set, we appended the
prefix “ui screenshot. well designed. ” and computed its text embedding. The text embedding is
used the calculate similarity scores with all screenshots, which is used to sort them in descending
order (i.e., highest similarity first). The rank of the first element with the same description was
recorded. Since a lower rank is desirable (indicating higher similarity with the corresponding
image), MRR (higher is better) is computed as the average of all reciprocal ranks. A higher
MRR indicates better retrieval performance. Because there is no straightforward way to generate
rankings from LVLMs, we only evaluate models based on the CLIP architecture.

The results of our retrieval evaluation are shown in Table 9.1. The variant of UIClip pre-
trained on JITTERWEB using the default CLIP objective achieves the highest MRR score for
both BETTERAPP (0.3851) and JITTERWEB (0.4085). UIClip variants trained using pairwise
loss were the worst performers, with MRRs lower than the original CLIP B/32 base model, be-
cause the objective focuses on the design-comparison task. In our discussion, we provide more
detailed reasoning for this phenomenon.

Nevertheless, our evaluation still shows that our datasets are useful for learning design rele-
vance, especially when training objectives are closely aligned. For example, applying the CLIP
objective to JITTERWEB is much more effective than alternate data sources and nearly doubles
(0.2000→ 0.3968) the overall retrieval performance of the base CLIP B/32 model.

Table 9.1: Model Performance on UI Retrieval for both BETTERAPP and JITTERWEB datasets.
The variant of UIClip trained with the CLIP pretraining objective (i.e., without paired data)
performed the best, while other variants of UIClip had poor performance, due to the pairwise
objective’s high prioritization of design choice accuracy.
Model MRR (BetterApp) MRR (JitterWeb)

MetaCLIP H/12 0.2722 0.2350
CLIP B/32 0.2534 0.1466
CLIP B/32 + Screen2Words 0.2938 0.1130
CLIP B/32 + Web 0.3467 0.3766
CLIP B/32 + Jit. Web 0.3851 0.4085
CLIP B/32 + Jit. Web + Web Pairs 0.0962 0.0924
CLIP B/32 + Jit. Web + Web Pairs + Human 0.1096 0.1214
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9.5 Example Applications
Based on the three capabilities of UIClip that we evaluated, we present a suite of example appli-
cations that illustrate how common user-facing design tools can be enhanced with our model.

9.5.1 Improving UI Code Generation

Figure 9.7: UI Generation Example Application. UIClip is used to rank rendered UI code
provided by an external LLM. The user can describe a UI (A) and compares different LLM-
generated results (B). We ranked these options based on UIClip’s scores and displayed them
alongside the rendered screenshot (C). Note that UIClip ranked the first screenshot on the left as
the highest quality (D), while we received the third screenshot from the left as the first choice
output from our LLM (E).

We built a web application that allows users to generate rendered UI screenshots from a
natural language description of a UI. To use the interface (Figure 9.7), users enter their descrip-
tions in a textbox, which is formulated in a prompt. The prompt is fed into an external LLM
(OpenAI GPT-3.5), which generates web code (HTML/CSS) using the description. We sampled
n = 5 different outputs and rendered each into a screenshot using the script that programmati-
cally controlled a browser. If the web code referenced external images, we replaced them with a
placeholder image to render. Screenshots were fed into UIClip and were scored against the input
prompt. The screenshot of the results ranked in descending score order is returned to the user.
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This is a simple example of how UIClip could be used to improve the output of genera-
tive models, most similar to existing “best-of-n sampling” approaches. The method can also be
incorporated into the additional vision checkup [266] and used for feedback in self-improving
generative model outputs [202]. Our technique is simple to implement and does not require
access to the underlying model’s weights; however, it is computationally expensive during infer-
ence because multiple candidate solutions must be generated. If model weights are available, this
process could be further improved by applying UIClip’s filtering during the training process of
generative models, or if UIClip was used as a reward model in reinforcement learning fine-tuning
approaches [116, 231]. We leave these investigations to future work.

9.5.2 UI Design Tips

Figure 9.8: UI Design Tips Example Application. We use our design suggestion generation
algorithm to generate design suggestions from a user-provided description and user-uploaded UI
screenshot. This example shows suggestions to improve the readability of text and color choice
for the application.

We built a tool that allows users to upload screenshots of UI designs to generate design tips
using our model’s design suggestion capabilities. We developed a web application (Figure 9.8)
that allows users to upload a screenshot of an app or UI design, and our system generates tips
that are surfaced to the user, although a similar idea could be better integrated into, for example,
UI design applications for improved ease-of-use. One limitation of our current application is
that it might suggest improving text contrast, but it is unable to provide additional information
for which part of the UI led to the recommendation. This is due to our problem formulation
that pairs descriptions with entire screenshots and doesn’t contain location information. Future
improvements can help address this by collecting the relevant data and incorporating that into text
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descriptions, or by sliding a smaller window across the UI screenshot and associating generated
design suggestions to the location of the window. We leave these additional features to future
work.

9.5.3 UI Example Retrieval

Figure 9.9: UI Example Retrieval Example Application. In this use case, the designer searches
for examples of login screens queried from a set of LLM-generated UIs, many of which have
design flaws. While both UIClip and CLIP B/32 gives a diverse range of applications, we see
that there are more design flaws present from CLIP B/32. Some screens exhibit poor color
contrast (A) which may imply that the component is disabled, duplicate elements (B) that can
confuse end users, and overall poor formatting and overflow layouts (C).

UI design search has been explored by many prior works [44, 72, 156], and it has the poten-
tial to accelerate the design process by providing relevant examples that designers use to seek
inspiration during early phases of the design process. Existing systems built for UI example
retrieval have focused on querying and indexing UI screenshots by their layout (e.g., to support
finding designs similar to an exemplar) or captions (e.g., to support natural-language or free-form
search). Since UIClip contains both an image and text encoder, it is possible to support both of
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these use cases, although our example application focuses on handling text-based queries. Our
application uses a similar procedure to our UI relevance evaluation, where model-computed em-
beddings are used to retrieve and sort screenshots based on the user’s query. UIClip’s score can
take into account both the relevance and quality of retrieved examples, and we incorporate a
negative prompt that biases the query vector away from simple or ambiguous designs [257].

We built a web application that contains a search box where the user enters their query. Figure
9.9 shows examples of screens retrieved for a set of queries indexed by UIClip and the vanilla
CLIP model.

9.6 Discussion

Our experiments and example applications show that UIClip’s design assessment capabilities can
improve many machine-assisted design tools. In this section, we discuss UIClip’s implications,
limitations, and directions for future work.

9.6.1 Data-driven Learning of UI Design

Our paper introduces techniques for machine-learning a generalized scoring function (c.f. per-
sonalized functions [100]) that quantifies aspects UI design. We discuss our work’s data and
algorithm contributions.

We hypothesized that a large volume of data (millions of examples) is important for effec-
tively learning to assess designs, similar to how seasoned human designers develop their intuition
through years of experience. This hypothesis was largely supported by our experimental results.
We showed the substantial benefits of training on our large-scale dataset of UI designs, leading
to improvements over alternate datasets (e.g., Screen2Words [296]) that more human-authored
descriptions but fewer overall samples. When we incorporated our own human-rated BETTER-
APP dataset, we found that in most cases, it did not result in substantial changes, most likely due
to insufficient data volume.

At the same time, dataset size alone is not enough to ensure good design assessment per-
formance. For example, MetaCLIP H/12 was trained on a total of 2.5 billion pairs. Our pa-
per introduces training objectives targeted at different aspects of design quality. We employed
two objectives for training UIClip, a batch-wise contrastive objective (i.e., CLIP’s pretraining
objective) and a pairwise contrastive objective, designed specifically for quality comparisons.
Based on our results, the pairwise objective represents a tradeoff where it achieves higher fo-
cus on design-comparison tasks by focusing on pairs of relevant screens but incurs a penalty on
retrieval-related tasks, since it is not trained to distinguish irrelevant examples from a diverse
minibatch. We leave further investigation of how to optimally combine these two training objec-
tives to future work; although given the relatively small size of our model, we believe it would
be feasible to use different variations for application-specific scenarios.
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9.6.2 Formulating UI Design Quality

UIClip’s current model architecture is designed around the assumption that design quality can be
represented by a numerical score. However, there are many nuances that cannot be captured by
this formulation.

Within the context of our collected data, we distinguish between assessing UIs for design
defects and understanding more subtle design preferences. JITTERWEB was constructed by in-
troducing “jitters” into web pages, that intentionally violate design guidelines. In these cases,
one might expect to more objectively identify the preferred screen, since the alternative screen
would contain a defect. We found this case well captured by our formulation, as shown by our
models’ higher performance on the JITTERWEB test data. One technical limitation of our jitter-
ing approach is that it requires renderable source code for UIs, which is more easily obtained for
websites (HTML, JavaScript, CSS). Although our initial results suggest that design defects can
be similarly detected for mobile apps, future work could further tailor this approach to other UI
toolkits.

Examples from BETTERAPP are more representative of design preferences. Many of its
samples were real-world apps, which are often designed professionally and less likely to contain
design defects. To verify this, we analyzed design quality performance on the subset of synthetic,
LLM-generated screens within BETTERAPP and compared it with the app screens from VINS.
Many of the LLM-generated screens (as shown in Figure 9.9) contain design defects, which po-
tentially led to easier comparisons. UIClip’s accuracy for rating the quality of synthetic screens
(67.65%) was much higher than for real app screens (57.89%). This trend was true for almost
all other tested models, where the average of all models’ accuracy on synthetic screens (56.05%)
was higher than real apps (51.50%). It is also possible that UIClip is not trained to detect cer-
tain types of design defects present in real-world apps, e.g., violations that require the semantic
understanding of content, such as information flow hierarchy.

Besides the nature of design defects in real-world apps, design preferences could also vary
by person and can be influenced by standards set by tech companies. For example, it is reason-
able to expect that someone who frequently uses iOS devices might feel more familiar with iOS
screenshots over Android ones. The design language of the same platform can change over time,
causing corresponding shifts in user perception, e.g., some screenshots in VINS were from the
older Rico dataset [72]. To address some of these limitations, UIClip could be finetuned with
user-provided preference pairs [100] or augmented so that it incorporates platform-specific de-
sign into its prompt, e.g., “android material design screenshot. well-designed.” Finally, UIClip’s
score is not meant to fully encapsulate the factors that constitute a “good design,” and our model
can sometimes misevaluate creative or bold designs that intentionally meant to deviate from
common design patterns.

9.6.3 Supporting UI Design Applications

Related to our problem formulation is the types of design-assistance tasks that UIClip can sup-
port. Despite only producing a numerical score as output, we introduced inference techniques
that extend beyond simple UI scoring and allow for a limited generation of natural language de-
sign suggestions. We developed three example applications that demonstrate how UIClip could
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facilitate some forms of automated design assistance. While we did not conduct formal user
evaluations of our example applications, we built these applications based on validated systems
described in the literature, which suggest they would provide value to users.

However, there are many types of design assistance that are not yet supported by UIClip. For
example, while UIClip can infer the presence of design defects in a screenshot, there is currently
no straightforward method to localize them (e.g., footer bar has poor color contrast). We believe
this capability is important for practical use since it provides cues for designers to address the
detected flaws. One promising approach, previously applied to other visual design tasks [262], is
to augment our current model with model explainability frameworks to understand which parts
of the image contribute to predictions. Future iterations of the UIClip could also be trained on
sub-windows of a UI for finer-grain inference of fault location, similar to how object detection
architectures work. Finally, UIClip could be fine-tuned with more detailed natural language
descriptions that associate spatial information with predicted flaws (e.g., “bad color contrast in
footer bar”) or even provide suggested fixes (e.g., “bad color contrast. make footer darker”),
although this would necessitate a more complex inference algorithm.

Recent trends in machine learning suggest that model architectures that generate free-form
text can be more easily scaled and provide more flexible feedback. Our evaluation found that
VLMs generally performed poorly, and prior work suggests that LLMs are prone to providing
irrelevant design suggestions [81]. A qualitative assessment of current LLM responses (Figure
9.6) suggests that current LLMs produce realistic-sounding but inaccurate reasoning. However,
we believe that our work could be useful in improving foundation models such as LVLMs. For
example, the UIClip model could be used as a “reward model” that guides their UI generation
(Section 9.5.1) and design assessment capabilities. Furthermore, our datasets could be reformat-
ted and used to fine-tune LVLMs for UI-related tasks [169].

Finally, most machine learning models, including UIClip and LVLMs are limited in that they
can only process a single state of the UI (i.e., a screenshot) when responding to text prompts.
Because of this limitation, our current approach focuses on assessing the visual design of a single
screen using the CRAP visual design principles. A more holistic evaluation of both UI design
and usability depends on a deeper understanding of interface functionality and app navigation
flows, which requires both observation and interaction. To support this, we envision that models
like UIClip, could be integrated into interactive systems, such as crawlers, that can interact with
and explore different parts of an entire app [279, 315].

9.7 Conclusion
In this chapter, we introduce a computational model called UIClip, which is designed to automat-
ically assess various aspects of UI design: i) design quality, ii) UI relevance, and iii) providing
design suggestions. Our model is trained from a large-scale dataset of 2.3 million UIs that we col-
lected and augmented with synthetic and human ratings of design quality. In an evaluation with
several strong baselines, we demonstrate our model’s performance in UI design understanding
in our three target UI tasks, showing that UIClip outperforms all other baselines in all tasks. Fi-
nally, we introduce three example applications that demonstrate how UIClip can facilitate novel
applications through its automated design assessment capabilities: i) UI code generation, ii) UI
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Table 9.2: Hyperparameters of models and algorithms used in our paper.
Algorithm Hyperparam. Value

UIClip (JitterWeb pretraining) Batch Size 128
Epochs 1
Learning Rate 5e− 7
Weight Decay 0.2
Adam Beta 1 0.9
Adam Beta 2 0.98
Adam Epsilon 1e− 6

UIClip (JitterWeb pairwise, BetterApp) Batch Size 256
Epochs 1
Learning Rate 5e− 7
Weight Decay 0.2
Adam Beta 1 0.9
Adam Beta 2 0.98
Adam Epsilon 1e− 6

BetterApp DBSCAN Epsilon 0.1
Min samples 5
Metric Cosine Similarity

design tips generation, and iii) quality-aware UI example search. Overall, our work constitutes a
first step in assessing the design of UIs using computational modeling.

9.8 Hyperparameters
Table 9.2 provides hyperparameters for various models and algorithms used in our paper. Our
CLIP training hyperparameters were based on values from the original CLIP paper [245], and
were manually adjusted to fit on our hardware and based on performance observations.

9.9 Large Vision-Language Model Prompt
Below, we provide the prompt that was used to evaluate UI screenshots in our quantitative study.
The prompt below is used to evaluate a screenshot of an e-commerce application and contains
the same description of CRAP guidelines that we gave to human raters.

This image contains two screenshots of user interfaces stacked
horizontally (left and right). Both UIs can be described by the
description:

An e-commerce application interface
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Recall the CRAP guidelines for visual design, which stands for
contrast, repetition, alignment, and proximity.

The C.R.A.P principles, coined by Robin Patricia Williams in her non-
designers’ design book, are a set of guidelines aimed at improving the
visual appeal and effectiveness of graphic designs. These principles

are essential for creating visually appealing and user-friendly
designs. CRAP stands for:
Contrast: This principle suggests that elements that are not the same
should be very different so that they stand out. Using contrast can
attract the viewer’s attention and help organize information. It can
be applied through variations in color, size, typeface, and other
visual elements.
Repetition: Repetition involves repeating some aspect of the design
throughout the entire piece. This can include the consistent use of
colors, fonts, and logos, which helps to create a cohesive and
harmonious look. Repetition strengthens a design by tying together
individual elements and can enhance the overall sense of unity.
Alignment: Every element should have a visual connection with
something else on the page. This doesn’t mean that elements always
need to be in a straight line, but rather that they should be visually
connected in a way that makes the entire design appear well organized

. Proper alignment eliminates disorder, connects elements, and creates
a visually logical structure.

Proximity: Items that relate to each other should be grouped together,
which helps in organizing information and reducing clutter. By

effectively grouping related elements, the design becomes easier to
comprehend, and relationships between elements become clearer to the
viewer. Proximity can also help in creating focal points in a design.

Based on these guidelines, provide a response that indicates which UI
screenshot is better designed. The first part of your response should
contain one of two choices: ’left’, ’right.’ The second part of your
response should contain a comma-separated list of which CRAP
principles (if any) are most relevant to your choice. Do not provide
explanations, and separate the first and second part of your response
with a new line.
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10
Conclusions & Future Work

This dissertation investigates a new approach for addressing a fundamental challenge in human-
computer interaction: creating interfaces that make computers useful to all people in all contexts.
Traditionally, this has been difficult because most UIs have been manually created to be used in
pre-defined ways, without much opportunity for adaptation. The assumptions baked into “one-
size-fits-all” UIs are often unable to accommodate the diversity of user abilities, usage contexts,
and use-cases. My research has shown that by building systems that can computationally under-
stand UIs and how they are used, we can be dynamically optimized UIs to better serve digital
content and functionality. I’ve focused on establishing the technical foundation for this approach,
by developing systems for machine-driven user understanding, UI understanding, and UI gener-
ation.

10.1 Contributions

To summarize, I’ve made contributions in each of these three areas. In the area of user un-
derstanding, I first showed (in Chapter 3) that supporting interface customization alone is not
enough to improve user experience, since users often do not know about configurations that they
would benefit from, especially accessibility-related features. I show that systems that understand
usage context and proactively recommend adjustments have greater potential to improve user
experience. In a user study with 19 older adults who used our recommender system while per-
forming everyday tasks, we showed that the majority (74%) of predicted recommendations were
rated as helpful. Nevertheless, this approach of mapping usage behaviors to existing features
has traditionally been limited, since applications often do not properly expose their semantics
to external services, such as accessibility features. In the area of UI understanding, I showed
that it is possible to overcome this barrier using data-driven ML models that predict interface
layout (Chapter 4), structure (Chapter 5), and functionality (Chapter 6) from visual information
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(i.e., screenshots), which is how UIs are assumed to be used. Finally, I combined both user and
UI understanding to dynamically generate UIs that meet the specific needs of users. Chapter
7 presents a system that optimizes an existing UI layouts for a user’s personalized interaction
profile, resulting in 9% faster target acquisition times. Because Chapter 7 focused on optimizing
an existing layout, only small changes could be applied without violating pre-existing design
constraints, such as alignment and spacing. To this end, I presented techniques for UI code gen-
eration (Chapter 8) and automated ML-driven design assessment (Chapter 9) that can result in
more significant modifications while maintaining design quality.

10.2 Future Work
My future work will focus on several areas that stem from my initial research.

10.2.1 Computational UI Understanding
Within the framework presented in this dissertation, there are many promising directions for
future work.

User Understanding

Understanding users and their context at a higher resolution can facilitate more targeted person-
alization and adaptation of interfaces. Most work on user understanding, including the work I
presented, categorizes human behavior into a fixed number of categories, which limits how this
information can used. The system in introduced in Chapter 3 uses a set of heuristics to detect a
fixed number of user behaviors, which suggest different accessibility needs. While this is suffi-
cient for simple feature recommendation (e.g., a link that navigates to the font size settings page),
it is more challenging to, for example, compute more specific values needed by those features
(e.g., the optimal font size). In Chapter 7, I used a higher resolution representation to model the
relationship between a user’s interaction difficulty (e.g., target acquisition speed and error rate)
and a UI’s spatial layout, which allowed for more precise adjustments to be applied. However,
this work focused on a narrow part of user interaction that could be greatly expanded to enable
more complex optimizations.

UI Understanding

Advances in ML techniques, such as large multi-modal models have great shown potential in
facilitating more accurate machine understanding of visual inputs, such as UIs. Recent work
suggests that large “foundation” models can learn from much larger datasets and are able to de-
tect more complex patterns that arise in the data, allowing them to replace and surpass smaller,
domain-specific models that were previously required. A number of challenges remain for incor-
porating these approaches into UI understanding systems. Although foundation models are often
trained on billions of documents and images, only a small fraction of the data consists of UIs,
which limits their applicability. In Chapters 4 and 6, I introduced methods for efficiently scaling
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up the size of UI datasets through automated crawling techniques. Another challenge is assign-
ing semantic labels, such as widget locations and functionality, to these automatically collected
examples. Current training pipelines for large language and multi-modal models have focused on
collecting labels from specially trained annotators or incorporating user feedback (e.g., thumbs
up and thumbs down). In Chapter 6, I explored an approach inspired by “human-like” learning,
which allows a model-driven agent to learn from the results of self-guided explorations instead
of large pre-labelled datasets. In addition to labeling attributes of static screenshots, these explo-
ration strategies may also allow systems to understand higher-level interactions and flows within
applications, rather than single UI states. Similar strategies could also be applied to train large
foundation models and improve their understanding of UI data. Thus, a promising future direc-
tion for UI understanding is building systems that not only use UIs as humans do, but to learn to
use UIs as humans do.

UI Generation

Generating high-quality UIs is a challenging task that requires a combination of user and UI un-
derstanding, and advances in those areas will also improve UI generation. A specific challenge is
encoding HCI and UI design concepts into objectives and constraints needed for automated gen-
eration. In Chapter 7, I showed that using smaller personalized models trained on user calibration
data in conjunction with optimization techniques could lead to small levels of improvements for
narrow tasks (e.g., target acquisition). Larger state-of-the-art ML approaches are promising in
that they can potentially learn more generalizable evaluation metrics from richer sources of data.
However, in Chapter 8 and 9, I showed that foundation models struggle to identify simple design
defects (e.g., UIs with poor color contrast) and fail to learn the relationship between descriptions
of UIs and their visual representations In both cases, I proposed synthetic data generation and
training techniques to improve existing foundation models, and a promising future direction is to
continue to improve the UI evaluation capabilities of these models.

10.2.2 Expanding Opportunities for Interface Improvement

The framework I present in this dissertation is targeted at applying computational UI understand-
ing to improve user experience with existing applications. I’ve shown that ML models can often
successfully understand and operate UIs, separating an application’s content and functionality
away from its “default” interaction. However, in many cases, it unclear what the best replace-
ment interaction or interface is. Within the bounds of traditional 2-D graphical UIs, this could
mean shifting the placement of a UI layout or mapping data and actions to alternative widgets.
Thus far, my work has explored these possibilities using optimization techniques (Chapter 7)
and code generation (Chapter 8). A promising future direction is to further investigate this space
of interface improvements and associated tradeoffs. Finally, as emerging computing modalities
such as mixed reality and conversational agents become more prevalent, they could provide new
flexibility in presenting applications. Given that these are still areas of active research and devel-
opment, this are opportunities for defining interactions and conventions that are accessible and
context-aware from the ground up.
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10.2.3 UI Design and Development Tools
Another area of future work is building tools that makes it easy for designers and developers
build higher quality interfaces that adhere to best practices. The models I’ve developed for
detecting and repairing UIs during application runtime can be used across in the development
process, aiding UI design, implementation, and testing. Similar to assistive technology, much
of the existing development infrastructure and tooling (e.g., UI tests and app monkeys) can be
made more robust by reducing reliance on metadata provided by specific toolkits. This could also
allow third parties (e.g., mobile app stores) to crawl submitted apps and verify that meet usability
and accessibility criteria. Since many of the systems I developed are designed to perceive UIs
using the same modalities as most humans do (i.e., through visual information), they could serve
as useful predictors of future user experience. For example, model predictions could be used
to verify human-authored designs, e.g., a button does not visually appear to be tappable, which
could suggest that stronger visual signifiers are needed. Chapter 9 presents a ML-model to assess
the aesthetic quality of UI designs, which was trained on, among other things, ratings from 12
human designers. Both these examples are aimed at providing rapid and actionable feedback at
early stages of design, where it is normally difficult to obtain feedback. Finally, my work on UI
program generation can reduce the friction UI mockup design and implementation (i.e., design
handoff), facilitating more rapid prototype iteration and testing. For all these avenues, further
research is needed to understand how best to design these tools so that they fit the developer
preferences and workflows.

10.2.4 Bridging HCI and Computational Techniques
Finally, my work has demonstrated a broader need for formulating HCI concepts (e.g., usability,
accessibility, and visual aesthetics) in ways that are compatible with state-of-the-art computa-
tional approaches (e.g., machine learning, optimization). This is challenging because in HCI,
they have traditionally been measured using qualitative and subjective methodologies (e.g., user
studies), while most computational approaches requires them to be deterministic and quantifi-
able, e.g., objective functions. Chapters 7 and 9 in this dissertation show my initial work towards
this goal, which has involved using data collected using HCI methodologies (e.g., a user study)
to train machine learning that can rapidly simulate human feedback. Both examples showed
promising results but also highlighted several challenges, such as matching the expressiveness
of human feedback and preserves the composition of individual feedback (instead of “regressing
to the mean”). Another challenge stems from the data requirements of recent “large” models
with millions or billions of parameters. To this end, I’ve released several large-scale datasets
(Chapters 4 and 9) from my work and developed approaches (Chapters 4 and 6) for sustainably
and efficiently collecting updated examples of UIs, which often undergo content and design re-
freshes. In future work, I plan to continue research in bridging methodologies and techniques
between these two fields.
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