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Abstract
While data has driven many technological advancements, the ubiquitous collec-

tion and sharing of data have caused a privacy trust crisis in our society. Developers
play a crucial role in creating apps that respect user expectations and data usage
norms, as they have a deep understanding of app behavior and can adjust the design
accordingly. However, developers are not privacy experts. Developing a privacy-
friendly app is often a challenging task due to their lack of 1) awareness of privacy
issues, 2) knowledge of privacy best practices, and 3) time for handling privacy re-
quirements. These problems have become more and more salient with the advent
of a flurry of privacy requirements from platform providers (e.g., Google Play and
Apple App Store) and laws (e.g., GDPR, CCPA), creating urgent needs for effective,
opportune, and usable privacy support for developers.

Hence, I propose Privacy Support for Developers as a new area of interest at the
intersection of privacy, HCI, and software engineering research. The first challenge
is that although there has been some research on developers’ challenges for handling
privacy requirements, they tend to be more descriptive than prescriptive. Therefore,
our community still lacks a clear direction of how to solve the problems. To fill in
this gap, I first synthesize developers’ needs for designing privacy-enhancing devel-
oper support based on my work and past literature to provide a roadmap for future
explorations into this problem.

Informed by the identified needs, I present my work that pioneers a novel type of
developer tooling: Privacy-Enhancing Integrated Development Environment (IDE)
Plugins. I propose privacy annotation, a type of structured metadata that embeds pri-
vacy information such as data use purposes directly in code. Based on this concept, I
designed, implemented, and evaluated three plugins for Android Studio, the official
IDE for Android development, to increase developers’ awareness and knowledge of
privacy best practices and to reduce the work required for complying with privacy
requirements. With one set of annotations, my tools offer privacy support in multiple
aspects, including 1) detection of sensitive API calls and third-party SDKs to support
accurate understanding, documentation, and disclosure of data practices, 2) just-in-
time reminders and lightweight code repair features (quick-fixes) to help develop-
ers conform to best practices, and 3) annotation-based declarative programming to
generate in-app privacy notices and privacy nutrition labels required by app stores.
My studies demonstrated that my tools effectively improved developers’ awareness
and adoption of privacy best practices, reduced the workload for completing privacy
compliance tasks, and enhanced the accuracy of the generated privacy notices.
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Chapter 1

Introduction

Data privacy has become an essential social problem of this era. A study by the Pew Research
Center in 20191 showed that about six-in-ten Americans believed it was not possible to go
through daily life without having their data collected by companies and governments, and a ma-
jority of Americans felt they had limited understanding and little control over the data collected.
Furthermore, a flurry of privacy scandals in recent years have raised concerns of legislators,
consumer advocates, and the general public [47].

Consequently, stakeholders have undertaken many different approaches to address these pri-
vacy concerns. Privacy laws such as General Data Protection Regulation (GDPR) and California
Consumer Privacy Act (CCPA) were enacted to provide EU and California residents with better
privacy protection. Platform providers like Google and Apple have rolled out privacy features
for consumers and platform-level policies that impose privacy requirements for developers. Re-
searchers investigated end-users’ perceptions and concerns about privacy, which yielded design
recommendations and novel technologies for helping users manage their privacy in everyday dig-
ital activities such as sharing accounts with partners or colleagues [131, 149], posting on social
media [42, 164], or talking to a smart speaker [14, 37, 54].

Developers play an important role in complying with the legal and platform requirements for
privacy and in following the design recommendations for building privacy-friendly apps from
the ground up. However, as compared to the large body of research that aims to provide better
privacy support for users, much less attention has been paid to developers’ challenges and needs.
Developers are often not privacy experts and may face various challenges for implementing a
privacy-friendly app even if they genuinely care about user privacy. These problems have become
more and more salient with a growing body of privacy requirements from platform providers
(e.g., Google Play and Apple App Store) and laws (e.g., GDPR, CCPA), creating urgent needs
for designing effective, opportune, and usable privacy support for developers.

Hence, I propose Privacy Support for Developers as a new area of interest at the intersection
of privacy, HCI, and software engineering research. The first challenge is that although there has
been some research on developers’ challenges for handling privacy requirements, they tend to
be more descriptive than prescriptive. Therefore, our community still lacks a clear direction of

1https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-
concerned-confused-and-feeling-lack-of-control-over-their-personal-
information/
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how to solve the problems. To fill in this gap, I first applied human-centered methods [118] to
investigate developers’ perceptions about privacy and their challenges when handling different
privacy tasks (Chapter 3). I synthesize developers’ needs to inform the design of privacy support
for developers based on my work and past literature (Chapter 4). The needs consist of three
themes: 1) Improve accountability, namely to help developers set actionable goals for privacy and
clarify and track their responsibilities; 2) Lessen Burden, namely to either offload or streamline
privacy tasks for developers; 3) Increase Engagement, namely to remind developers to actively
reflect on and improve their privacy practices and provide compelling incentives for voluntary
adoption of privacy-enhancing tools.

Informed by the identified needs, I demonstrate my exploration into a specific type of solu-
tion: Privacy-Enhancing IDE Plugins Aided by Privacy Annotations. I propose privacy anno-
tation, a type of structured metadata that embeds privacy information such as data use purposes
directly in code. Based on this concept, I designed and implemented plugins for Android Studio,
the official IDE for Android development, to increase developers’ awareness and knowledge of
privacy best practices and to reduce the work required for complying with privacy requirements.

The overarching design goal of my privacy-enhancing IDE plugins is that with one set of
annotations, my tools can offer developers various types of privacy support, such as reminding
developers of privacy issues and offering quick-fixes for the issues while programming (see my
tool Coconut, detailed in Chapter 5, automatically generating privacy user interfaces to enhance
data transparency and control for users (see my tool Honeysuckle, detailed in Chapter 6), and
helping Android developers create accurate privacy nutrition labels which are required by the
major mobile app stores (see my tool Matcha, detailed in Chapter 7). The three tools have been
built sequentially on top of the previous version, and I have released Matcha, which is the latest
work of my thesis on the plugin store and has received more than a hundred installs by real-
world Android developers. With a unified privacy annotation, developers who install the plugin
and annotate their code for creating privacy nutrition labels can also take advantage of the privacy
features offered by the other two systems.

1.1 Thesis Outline

In this thesis, I first provide an overview of background and related work (Chapter 2). Then I
introduce my empirical studies that aimed to identify the challenges developers encounter while
managing privacy requirements (Chapter 3). The findings from these studies were synthesized
into design principles for privacy support for developers (Chapter 4). Then I describe the de-
sign, implementation, and evaluation of the three IDE plugins for addressing these needs (Chap-
ter 5, Chapter 6, Chapter 7). Finally, I examine the three tools I have developed and discuss
the possibilities of unifying and generalizing the concept of privacy annotation beyond Android
development and Java programming. I also delve into the challenges of designing effective and
user-friendly privacy support for developers, as well as potential future research directions to
tackle these challenges (see Chapter 8).

Below I briefly summarize the three IDE plugins that I designed and studied to tackle various
privacy challenges in Android app development.
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1.1.1 Coconut: An IDE Plugin for Developing Privacy-Friendly Android
Apps (Chapter 5)

My research showed developers had passive attitudes towards privacy issues and had partial and
vague understandings of privacy. These issues suggest the need for tooling to keep developers
better engaged in protecting user privacy, which inspired my first work, Coconut, an IDE plugin
to help developers build privacy-friendly Android apps. Coconut detects sensitive API calls and
helps developers add auto-filled privacy annotations. It offers real-time privacy suggestions and
quick-fixes based on the privacy annotations. The privacy overview panel aggregates privacy
information from annotations to help developers manage all data practices in one place. My
developer study showed that adding privacy annotations were perceived as easy and helpful. The
privacy suggestions effectively reduced excessive data use based on Android best practices. The
privacy overview panel helped developers precisely recall their apps’ data practices and write
more accurate privacy policies.

1.1.2 Honeysuckle: Annotation-Guided Code Generation of In-App Pri-
vacy Notices (Chapter 6)

Developers’ lack of privacy knowledge has resulted in low adoption of in-app privacy notice and
dark patterns in privacy notice design, suggesting the need for tooling to automate privacy tasks
to mitigate developer’s workload, such as designing and implementing privacy UIs. Hence, I
designed and built Honeysuckle, a developer tool that leverages privacy annotations to generate
code for multiple designs of privacy notice UIs. This approach also promotes the standardization
of privacy notices because of the consistency of the generated UIs. Honeysuckle contains an IDE
plugin subsystem based on Coconut and directly interacts with developers. In a lab study, devel-
opers created in-app privacy notices much faster with a significantly lower cognitive load using
Honeysuckle’s annotation-based code generation than manually writing API calls. Honeysuckle
allows developers without expert privacy knowledge to create privacy notices following the best
practices with little extra work. Having developers focus on what rather than how, Honeysuckle
demonstrates a viable path to promote standard privacy notice designs, making it easier for users
to compare privacy practices across apps.

1.1.3 Matcha: An IDE Plugin for Creating Accurate Privacy Nutrition
Labels (Chapter 7)

The lack of knowledge about privacy requirements among developers makes it difficult for them
to fully utilize their expertise in app development to meet those requirements. For example,
misunderstandings of label terminology and data practices among third-party SDKs can lead
to widespread inaccuracies in self-reported privacy nutrition labels required by the Apple and
Google app stores.

To help developers create accurate privacy nutrition labels, I designed, built, and evaluated
Matcha, an IDE plugin that leverages the synergies between developers’ knowledge and source
code analysis to create accurate privacy nutrition labels for Android apps. By detecting sensitive
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API calls that may access and transmit personal data, Matcha guides developers to add privacy
annotations to complement important details such as purposes and backend storage practices
that cannot be inferred automatically. Matcha then translates the annotations to the label. My lab
studies with Android developers working on a real-world app that they developed showed that
Matcha improved the accuracy of data safety labels compared to using the Google Play console,
and all developers preferred Matcha to the developer console. I have open-sourced Matcha2 and
released it on the JetBrains official plugin marketplace and have seen the plugin gaining adoption
by real-world developers.

1.2 Research Contributions
This dissertation makes the following contributions:

• A framework that outlines the primary obstacles in achieving Privacy by Design (PbD)
and the corresponding design guidelines for creating developer tools for privacy, derived
from findings of my studies and prior literature on developers’ attitudes, knowledge, and
behaviors regarding privacy-related requirements in software engineering.

• The proposal of the concept of privacy annotation, a type of structured metadata that em-
beds privacy information such as data use purposes directly in code; creating different
designs of privacy annotations for various privacy tasks and presenting a unified design of
privacy annotations in the end.

• Three IDE (IDE) plugins to help address privacy-related challenges in Android develop-
ment, with the assistance of privacy annotations.

• Developer studies that thoroughly evaluated the efficacy and usability of my IDE plugins.

2https://matcha-ide.github.io
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Chapter 2

Background and Related Work

Portions of this chapter were adapted from my published papers:

Li, Tianshi, Yuvraj Agarwal, and Jason I. Hong. “Coconut: An IDE plugin for developing privacy-
friendly apps.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
2.4 (2018): 1-35. [96]

Li, Tianshi, et al. “Honeysuckle: Annotation-guided code generation of in-app privacy notices.”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 5.3 (2021): 1-
27. [100]

This chapter summarizes the background and related work that motivated and inspired my
dissertation research in the following structure. First, I introduce prior literature that identified
privacy issues for everyday users (Section 2.1). I also mention users’ current coping strategies
and their limitations, alluding to opportunities that better engagement of developers may generate
better solutions. Then, I summarize prior research that proposed design or technological methods
to better protect users (Section 2.2) and recent efforts from legislature and platforms (e.g., Google
and Apple) for regulating developers’ use of sensitive data (Section 2.3). As I discuss their
benefits, I also highlight the inherent limitations of the two directions due to the lack of input
from developers and the lack of scaffolding for developers. Finally, I summarize prior research
on developers’ practices and challenges when dealing with security and privacy requirements and
discuss existing developer support for security and privacy (Section 2.4). Most of the developer-
centered literature was focused on the security side of the problem, which led to very different
needs as compared to privacy.

2.1 Privacy Issues for Everyday Users
Privacy is a crucial challenge for our society. According to a recent study conducted by Pew
Research Center [1], roughly six-in-ten Americans believe “it is not possible to go through daily
life without having their data collected” and over eighty percent of Americans felt they had
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little/no control over their data collected by companies and the government. To regain users’
trust, it is necessary to establish a thorough understanding of the main privacy issues for everyday
users and how users cope with these issues. In this section, I discuss three main issues: violations
of users’ expectations, tensions between privacy and usability, and issues with privacy notices
and controls.

2.1.1 Data Collection Violating Users’ Expectations
Users need to have a clear understanding of how their data is collected, used, and shared and have
a correct estimate of the corresponding privacy risks. However, this task can be very challenging
for users for various reasons.

According to the contextual integrity theory [123], the legitimacy of data flows depends on
the contexts characterized by an array of attributes, including the data subject, the data type, the
sender, and receivers of the data, and the transmission principles. This means that users need
to know a lot of detailed information, including but not limited to what data is collected, for
what purposes, how the data is processed, whether it is retained and associated with personally
identifiable information (PII), and whether it is shared with any third parties. However, many
users do not have sufficient technical literacy to understand all of these data practices. Kang
et al. [83] conducted a study about people’s mental models of the Internet and found that people
without an education background in computer science or related fields had simpler models of the
Internet and correspondingly perceived fewer privacy threats.

Using data for purposes different from users’ expectations is a common type of violation of
users’ expectations for privacy. Lin et al. [104] introduced privacy as expectations as a model
for privacy and observed via a crowdsourcing study that users’ perceived necessity of an app
accessing a specific type of data had a strong correlation with the users’ perceived comfort level
of granting the app access to the data. However, research has also shown that while some data
collection may have a seemingly legitimate reason, they may also be used for other purposes that
surprise users or even creep users out [104, 144].

The lack of awareness for the actual data practices has led to a myriad of high-profile pri-
vacy scandals. For example, the famous Facebook–Cambridge Analytica data scandal [7] can
be attributed to several types of violation of expectations. First, when the user installed the per-
sonality quiz app, they may not realize that a lot of information, including that of their friends,
was shared with the third-party app. Second, while they initially installed the app for taking
personality tests, the data was later used for a different purpose – political advertising.

Note that the violation of expectations could happen for a seemingly legitimate data use.
In 2019, Google [8] and Apple [2] both acknowledged that contractors could listen to audio
clips collected by their voice assistants that may include sensitive information about the users.
Although the goal was to improve the transcription quality, this type of data sharing practices
still felt very surprising to general users, especially for people who are less familiar with the
development process of a machine learning model.

Lacking correct expectations of data practices has negative implications on users, including
not being able to make informed decisions on whether to disclose sensitive information or grant
access to sensitive resources. It may also have a negative impact on developers as users may
choose to err on the side of caution and do not share data if they do not understand the reason for
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collecting it [34]. Developers have the best knowledge about how their apps handle users’ data, so
they are responsible for providing detailed disclosure about their privacy practices, especially for
the parts that are likely unexpected to users (e.g., the Google and Apple voice assistant example).
However, as the complexities of data practices are brought to another level with the proliferation
of AI technologies and digital devices equipped with rich sensors, this is not a simple task for
developers.

2.1.2 Tensions Between Privacy and Usability

People often express their privacy concerns, but their actions suggest otherwise – this is known as
the privacy paradox [91]. The tensions between privacy and usability are one reason that account
for users’ paradoxical behaviors. Users may be willing to trade off their privacy when the data
is necessary to achieve goals that are beneficial to them. For example, my recent research about
COVID-19 contact-tracing apps showed that the most popular design choice actually needed
to collect more data in a centralized way and therefore more privacy-invasive than other solu-
tions [97]. In a follow-up study, I more explicitly demonstrated that perceived benefits were a
stronger motive for people to install the app than better privacy [98]. However, even if the users
choose to allow data collection, it does not mean they do it comfortably. As Bonné et al. [34]
showed in an experience-sampling study of Android users’ decisions with the runtime permission
requests, about 10% of the decisions of granting access were made reluctantly.

On the other hand, users sometimes have to trade off usability for privacy. Cobb et al. [42]
found that users became app-dependent as they had to adjust their behaviors to manage what
is displayed by the online status indicators, such as giving up using the phone just to make it
look like they are asleep or at work. Sannon et al. [139] studied how, when, and why people
lied online to protect their privacy. Similarly, Kang et al. [83] found users may simply limit
or change information shared online to protect their privacy. Privacy concerns have also led to
chilling effects [114].

To help users successfully navigate through the complicated trade-offs between privacy and
usability, the developers need to build in more flexible and fine-grained choices for users. Unfor-
tunately, users often have to make a difficult choice between privacy and usability. As shown in
the controversial news about Google assistant [5], if a user did not want a contractor to listen to
their audio recordings, the only way at that time was to to give up personalization.

2.1.3 Issues with Privacy Notices and Controls

Privacy policies are required by laws and are currently the essential way for users to learn about
the privacy practices of digital services. However, it has long been known that privacy policies
are lengthy, vague, full of legalese and hard to understand. In 2008, McDonald and Cranor [113]
estimated that it would take an individual 244 hours a year if they wanted to read through the pri-
vacy policies of all the sites they visited and 154 hours a year if they skimmed them. This level of
cost means it is virtually impossible for users to gain a complete understanding of how a website
or an app uses their data if privacy policies are the only available form of disclosure. In addition
to the readability and understandability issue, prior research also uncovered the prevalent errors

7



in privacy policies, including discrepancies between what are stated in the privacy policies and
the actual data practices [22, 180] and internal contradictions [21].

For mobile apps, the operating system provides a permission system to protect sensitive re-
sources such as location, microphone, and local storage. Users can see all the permissions re-
quested by the app before installation, which provides them with a straightforward way to learn
about what sensitive data may be collected by the app. However, Felt et al. [59] evaluated the
Android permission systems and found that only 17% participants paid attention to the permis-
sions during app installation and only 3% correctly answered all the comprehension questions.
Because purpose is an important type of information that needs to be provided by developers,
Apple requires iOS app developers to specify a purpose description for permissions requested by
the app and Google also provides similar recommendations for developers. However, Liu et al.
[108] showed only 25% of the sampled Android apps provided rationales. Furthermore, among
the rationales provided by developers, a lot of them were either incorrect or did not provide
further information than the default permission request message.

For mobile apps, there are many system-level privacy features for improving data trans-
parency and control, such as the runtime permission requests. There are also other features
introduced in more recent releases. For example, in iOS, an icon will show up on the notification
bar when audio or location recording is ongoing. Another feature is to alert users if an app just
copied data from their clipboard. The system also occasionally reminds users of background
location access of a certain app [12]. Although these features do improve transparency, the
lack of customization of what information is displayed and when and how it is displayed makes
them inherently insufficient to accommodate the varying privacy preferences among different
people [105] and under different contexts [104].

Some apps and websites provide internal privacy settings, while prior research has also iden-
tified numerous usability issues with them. One problem is their poor discoverability. Chen et al.
[38] found in a user study that 47.12% of the privacy settings of the sampled apps were diffi-
cult to find and 9.64% could not be located by any participant. Their further analysis revealed
the poor discoverability was mainly due to the problematic hierarchy of the apps’ user interface
and the confusing descriptions. Similarly, Habib et al. [68] studied the data deletion and out-opt
choices displayed on 150 websites and found that privacy choices were located inconsistently
across websites and may be confusing and difficult to use. These studies suggest that although
the app-level or website-level privacy settings may provide more customized privacy controls,
the usability issues made it difficult for users to take advantage of them. Besides, achieving stan-
dardization in the design and placement of these privacy settings may be a promising direction
to improve their usability, which is later explored in my work Honeysuckle, a tool for generating
privacy interfaces based on developer-specified annotations (Chapter 6).

Another usability issue of the internal privacy settings lies in correctly configuring them. The
default values often allowed for more data collection, and Krsek et al. [93] showed that reflective
writing made Facebook users more likely to select more private configuration settings than the
default settings. This suggests that developers should either choose more privacy-friendly default
values or employ techniques to help users make the best choice that balance their need for privacy
and utility.

All in all, current privacy notices and controls still fall short providing users with enough
support for protecting their privacy. To make more helpful privacy notices and controls, we need
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to leverage developers’ rich knowledge about how and why their apps collect user data and their
ability to integrate contextualized, fine-grained privacy notices and controls. However, we also
need to regulate and standardize their implementation to ensure the privacy interfaces that they
help generate are accurate, consistent, and usable. My tool Honeysuckle mainly aims to tackle
this problem (detailed in Chapter 6).

2.2 Research on Mitigation Approaches for Users
This section provides an overview of past research that proposed design or technical approaches
to tackle the above privacy issues. Although most of these proposals have not been deployed on
a large scale, they provide insights into the pros and cons of different methods and shed light on
how to solve these privacy issues. I also discuss to what extent developers need to be involved to
achieve the goal.

2.2.1 Designing Alternative Formats of Privacy Notices
To improve data transparency and control, researchers have proposed other formats of privacy
notices beyond privacy policies and the permission systems.

Standardized Privacy Notices

Website privacy policies are well known for being long and difficult to read [79, 113]. To make
it easier for users to quickly glean important information from those policies and to compare
privacy practices between websites, researchers have explored multiple ways to offer privacy
summaries that are standardized, succinct, and both human-readable and machine readable.

Platform for Privacy Preferences Project (P3P) is an early exploration of this idea by the
World Wide Web Consortium [44]. The goal was to let website developers specify their privacy
practices in a standard machine-readable format, so users can specify their privacy preferences
for one time and use their agents to automate their decisions every time they visit a website. How-
ever, this attempt was not successful largely because it depends on self-regulation and developers
could provide incorrect information or simply do not prepare the policy file. The annotation idea
I proposed and designed with in Coconut (Chapter 5) and Honeysuckle (Chapter 6) is to some
extent in the same spirit of P3P, but I tried to increase the incentive for adoption by aligning
it with existing privacy requirements and improve the accuracy by incorporating some program
analysis to check developers’ input.

Kelley et al. [86] proposed and evaluated a design for privacy nutrition labels for websites,
drawing on lessons from the food nutrition labeling literature such as adopting a standardized
and brief format. Kelley et al. [87] evaluated the proposed privacy label design, comparing it
with shorter tabular and text variants as well as traditional long privacy policies in a large-scale
randomized controlled trial. The researchers found that standardized labels could increase both
speed of finding information and accuracy of users’ comprehension. They found that privacy
labels allowed users to better compare policies, and users found standardized formats more en-
joyable to read.
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In 2013, Kelley et al. [88] followed up with a privacy nutrition label design for mobile apps,
demonstrating that labels presented clearly and at relevant times could affect users’ decisions
when choosing between similar apps. Later Emami-Naeini et al. [55] proposed a privacy and
security label for Internet of Things devices and showed it could help consumers incorporate
privacy and security into their IoT device purchase decisions.

Researchers have also investigated how to maximize the benefits of privacy labels by explor-
ing and evaluating design variants of privacy nutrition labels in multiple dimensions [31, 45, 55,
87, 116, 140, 151]. This line of work has yielded design recommendations for improving the
design of privacy nutrition labels.

However, my recent work has shown that developers have numerous challenges in creating
privacy nutrition labels accurately and updating them on time (Chapter 3). Therefore, I created
an IDE plugin named Matcha to tackle this problem by aiding in the privacy label generation
process with the help of code analysis (Chapter 7).

In-App Privacy Notices

Research in usable privacy has argued that effective privacy notices should be concise, contex-
tualized, and emphasize unexpected data practices [64, 104, 134, 140]. I use the term in-app
privacy notices to refer to notices that are well-integrated into the app’s interaction flow and
customized based on a deep understanding of the app’s design and data practices.

However, designing effective in-app privacy notices is not a trivial task. Several common
issues need to be taken into account to achieve a usable and useful design. For example, de-
velopers need to reduce the notice complexity by using concise description and plain language,
mainly for two reasons. First, prior research has found that it takes a great deal of time to read
through lengthy privacy policies [113] and understand the data practices and corresponding im-
plications [58]. Second, the limited screen space constrains the amount of information that can
be conveyed [140]. Furthermore, developers need to grapple with notice fatigue [140, 141] and
habituation [84, 140, 141] by finding a balance between increasing transparency and decreasing
disruption. A common approach to addressing these issues is to use multi-layered notices [140]
that can first present data practices that are less expected by users initially and further present
more information on demand [104]. However, there is no one-size-fits-all definition of unex-
pected data practices, and developers need to analyze their own app design and conduct user
studies to understand the perceptions of different audiences [105, 106].

Prior research has proposed many designs of in-app privacy notices such as just-in-time pri-
vacy notices [43] and privacy dashboards that show the access frequency of specific data [19, 28].
My work Honeysuckle supports annotation-guided generation of these features for Android apps
(see details in Section 6.2.1).

2.2.2 Automated Assistance for Managing Privacy
Researchers and practitioners have also investigated ways to help users gain better control over
their data. One type of these tools focus on avoiding third-party web tracking, including tech-
nologies for measuring online tracking behaviours [57] and detecting and preventing the use of
cookie-based tracking [6], device fingerprinting [4], and other tracking techniques [136].
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For mobile privacy, researchers and practitioners have also explored building privacy man-
agers as third-party apps. Examples include monitoring data collection and alert users about a
data access [18, 41], and monitoring network traffic to alert users about potential leaks of sensi-
tive personal data [135, 148, 150]. Some work has even demonstrated the feasibility of inferring
the purposes of data use by analyzing the semantics of the decompiled code [163] or data traf-
fic [80]. Despite the benefits of offering better privacy protection in a plug-and-play manner,
these privacy manager apps also have limitations, including 1) performance degradation caused
by the overhead of dynamic program analysis or running a VPN to intercept all network traffic, 2)
imposing extra privacy risks when allowing a third-party app to monitor data flows and intercept
network traffic (though this may have been addressed with native privacy monitoring tools such
as the App Privacy Report introduced since iOS 15.21), 3) automated analysis has limited ability
in inferring fine-grained data usage information, and 4) potentially breaking or compromising
the app’s functionality when blocking the data collection or transmission, and anonymizing and
obfuscating the data.

Overall, current technologies show great promises in helping protect users from malicious
data use and third-party data use, while there is still a large room for improvement regarding
helping users manage the first-party data collection practices for benign purposes. A main goal of
my dissertation research is to study how to unleash the synergy between developer’s knowledge
about how their own apps and technologies that can analyze and infer data practices.

2.3 Regulation and Platform Requirements for Developers
In addition to protective techniques for users, we also witnessed a lot of efforts for regulating
developers’ privacy practices over the past five years. Below, I summarize some requirements of
the two most impactful privacy laws (GDPR and CCPA) and privacy requirements from the two
major mobile app stores.

2.3.1 GDPR

The EU General Data Protection Regulation (GDPR) went into effect on May 25, 2018. It
is among the toughest privacy and security law in the world. Upon violations, the EU data
protection authorities can impose fine up to C20 million. Organizations are subject to GDPR
regardless of where they are located, as long as the collect or process data of EU residents. GDPR
involves requirements that cover a wide range of data protection principles and privacy rights. To
be GDPR-compliant, organizations must determine the proper lawful basis for data processing
and document the basis and communicate them with the data subject. Some requirements are
still fairly abstract, making compliance a difficult goal for small-to-medium-sized companies or
independent developers.

While GDPR has placed more strict requirements on data controllers and processors, research
has shown its limitations and enforcement challenges. For example, the rights for data portability
may be misused as weapons to steal other users’ data by issuing fraudulent requests. In addition,

1https://support.apple.com/en-us/HT212958
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although many websites are trying to comply with GDPR requirements by requesting explicit
consent for using cookies, many of the consent dialog designs employed dark patterns [33, 125]
and caused a lot of hassles for users [49]. Prior research has also found violations of GDPR [122].

2.3.2 CCPA

The California Consumer Privacy Act (CCPA) is a state statute to enhance privacy protection for
California residents. CCPA went into effect on January 1, 2020. Similar to GDPR, it secures
new privacy rights including the right to know, the right to delete, the right to opt-out, and the
right to non-discrimination. Under the right to know, the CCPA requires businesses to give
consumers certain information in a “notice at collection”, including a specific requirement for a
“Do Not Sell” link if the data may be sold. The CCPA also provides an opt-out icon [3] following
recommendations based on user research [46, 69], which can be used by consumers to tell the
company to stop selling their data.

2.3.3 Privacy Requirements from App Stores

The Apple App Store and the Google Play store have also announced a series of privacy require-
ments for developers that want to release apps on their platforms. Although they are not laws,
they still have a significant impact on developers as failing to comply with them may cause the
app to be banned from the app stores. Both app stores require apps to provide a privacy policy.
Recently, these app stores announced further requirements for improving transparency. Drawing
on the idea of privacy nutrition label originated from the academia [86, 88], the Apple App Store
introduced App Privacy Details in Dec. 2020 and the Google Play Store introduced a Google
Safety Section in Feb. 2022. Both are required to be self-reported by developers.

2.4 Developer-Centered Research for Security & Privacy

Developers have an in-depth understanding of their apps’ behaviors and are responsible for cor-
rectly handling privacy requirements throughout the app development process. However, devel-
opers are humans, too. They may be susceptible to insufficient abilities and cognitive biases
when handling privacy requirements. In addition, they may have limited time for privacy due to
the constraints of other factors such as app performance, communication with other colleagues,
time pressure, and so on.

To design better privacy support for developers, we need to treat them as users and employ
human-centered research methods to understand their challenges [118]. This section summarizes
prior research that investigated developers’ practices and challenges for security and privacy and
existing developer support for enhancing the security and privacy of their apps. Since prior
research has shown a strong bias towards security-related studies and tools while having limited
understanding about privacy issues, I conducted multiple developer studies focused on privacy
(Chapter 3), from which (and prior work) I synthesize needs for designing privacy support for
developers in Chapter 4.
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2.4.1 Developers’ Practices and Challenges for S&P

To provide proper developer support, we need to understand what accounts for common privacy
issues in the Android ecosystem. Research on this topic is growing, but is still at a relatively
early stage and shows a strong bias towards security-related issues.

One fundamental issue relates to how much developers value privacy and how much they pay
attention to it. Prior work has found that developers may make design decisions that trade off
privacy for better usability or for features they would like to have [16, 27, 70, 109], which may be
in contrast to users’ actual preferences for more privacy guarantees [143]. Developers also feel
that security is the responsibility of other parties [82, 137, 171], which suggests that developers
who work independently or in an organization that cannot afford a specialized security team may
pay less attention or have a harder time dealing with security issues.

Several researchers have investigated the gap between widely acknowledged principles for
data privacy and how developers actually understand privacy. Although most of this work looks
at developers outside of Android, the findings should be generalizable for our needs since the
studies involved few platform-specific details. For example, Hadar et al. found that developers
hold a partial understanding of privacy, mostly limited to security concerns, and the organiza-
tional privacy climate was an important factor playing into their perceptions of privacy [70].
Sheth et al. found that developers preferred data anonymization to using privacy policies to re-
duce privacy concerns, and there exists a large disparity between developers’ and users’ belief on
the same issue [143]. This body of work suggests many developers have a vague and incomplete
understanding of what may raise users’ privacy concerns and what might actually compromise
their privacy.

Some papers drill down into more technical details. One frequently reported issue was that
developers may lack knowledge of potential privacy invasions and corresponding coping strate-
gies. For example, many developers are not aware that some advertising and analytics third-
party libraries automatically share users’ personal data with service providers [29]. This is likely
due to poor readability of the privacy policies of third-party services [27] and insufficient expo-
sure to privacy guidelines [29]. A number of papers studied the limitation of existing program-
ming models and developer support, such as program analyzers detecting security vulnerabilities
[145, 168, 169], security APIs / personal data APIs [16, 17, 77, 165], and official documentation
/ other information sources for security [15, 16, 60]. However, most of this body of work focuses
solely on security.

Understanding how developers comprehend privacy guidelines and how these principles in-
fluence implementation can be useful for informing the design of better developer tools. How-
ever, as noted earlier, current work mostly focuses on security, and offers little insight about other
aspects of privacy like data retention, purpose limitation, and privacy notices.

2.4.2 Developer Support for S&P

Here, we review past work in developer support for privacy/security, focusing mostly on Android.
We also discuss some gaps in these tools.
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Documentation and Tutorials for Privacy/Security

Developer support for educating developers of essential privacy principles is primarily limited to
privacy guidelines [24, 43, 71, 127, 128, 129, 130, 132, 158] or official documentation from the
platform [51]. Although they are carefully designed to be comprehensive and written in plain
language, Balebako et al. [29] found that developers still have a low awareness of them. Acar
et al. [15] found that they were harder to use than informal information sources such as QA sites.
These sources are also highly distributed, with advice spread out across many guidelines. Lastly,
they tend to only offer high-level advice, such as only using sensitive data when necessary, which
may not be easy to apply concretely. These issues indicate the need for a better form to educate
developers of these privacy principles in practice.

Static Analyzers for Privacy/Security

Several program analyzers have been built to detect security vulnerabilities for Java and An-
droid [39, 112, 120, 133]. However, past work found a lack of adoption of these analyz-
ers [168, 169], suggesting that perceived importance of security and visibility of peer developers
using these tools are important factors influencing adoption. Furthermore, these analyzers are
mostly used by security experts rather than normal developers [159], echoing past findings that
some developers tend to treat security (and likely privacy as well) as the responsibility of special-
ized teams [82, 137, 171]. There are also information flow analyzers which can detect malicious
or unwanted information leaks from an app [23, 56, 65, 95, 126]. However, it is currently unclear
how to map these leaks to specific privacy risks, let alone helping developers mitigate those risks.

IDE-Level Support for Privacy/Security

There are some existing IDE plugins for detecting security vulnerabilities in Android [9, 75,
121, 172], which can offer developers real-time feedback on security issues as they are coding,
and in some cases even provide developers with a direct solution to fix the problem. There is
also some IDE-level support for other privacy-related issues. For example, Android Lint tries
to mitigate over-privileged data tracking behaviors by detecting hardware identifier usage, and
suggests alternative and more privacy friendly choices like advertising ID or instance ID [9].
However, the amount of IDE-level support to help developers handle other privacy-related issues
is much more limited than security issues.

Support for Enforcing Privacy Policy Compliance

Researchers have investigated how to automate compliance checking of privacy policies, much
of which relies on manual review. For example, Bing has an internal system [142] that can
automatically check code compliance with privacy policies. Researchers have also looked at
new programming models for enforcing privacy policies by factoring out specification of security
and privacy concerns from the rest of the program [173, 174]. In this line of work, privacy is
handled in a top-down approach, with privacy policies first specified and then enforced in the
implementation. In contrast, we tackle this problem in a bottom-up way, asking developers to
think about and annotate essential information about privacy practices when constructing code.
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My research showed that Coconut (Chapter 5) may help developers create higher-quality privacy
policies and Matcha (Chapter 7) help developers create more accurate privacy nutrition labels.

Support for Creating Privacy Policies

Developers can use online privacy policy generators (e.g., freeprivacypolicy.com, generatepriva-
cypolicy.com, appprivacy.net) to make privacy policies for their apps. These generators typically
step developers through a series of questions, which are often too coarse to capture enough de-
tails of the personal data use. Furthermore, in our interviews we found that developers may not
have an accurate and up-to-date understanding of their apps’ data collection behaviors, suggest-
ing that these tools may not be able to solicit reliable answers. Some programming models [102]
are specifically designed to streamline analyzing how personal data is processed, which can be
potentially used to help generate privacy policies. My tool Coconut (Chapter 5) applies a similar
idea by reminding the developer to add annotations about how the personal data is used, which
could be more accessible to developers and may also promote the adoption of these privacy-
friendly programming models. My tool Honeysuckle (Chapter 6) and Match (Chapter 7) take the
idea further by directly generating privacy notice interfaces using annotations and synthesizing
and translating low-level annotations to standardized privacy nutrition labels respectively.
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Chapter 3

Needfinding Studies for Privacy Support
for Developers

Portions of this chapter were adapted from my published papers:

Li, Tianshi, Yuvraj Agarwal, and Jason I. Hong. “Coconut: An IDE plugin for developing privacy-
friendly apps.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
2.4 (2018): 1-35. [96]

Li, Tianshi, et al. “Understanding Challenges for Developers to Create Accurate Privacy Nutrition
Labels.” Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 2020. [101]

Li, Tianshi, et al. “How Developers Talk About Personal Data and What It Means for User Privacy: A
Case Study of a Developer Forum on Reddit.” Proceedings of the ACM on Human-Computer Interaction
4.CSCW3 (2021): 1-28. [99]

Tahaei, Mohammad, Tianshi Li, and Kami Vaniea. “Understanding Privacy-Related Advice on Stack
Overflow.” Proceedings on Privacy Enhancing Technologies 1 (2022): 18. [155]

Tahaei, Mohammad, et al. “Charting App Developers’ Journey Through Privacy Regulation Features
in Ad Networks.” Proceedings on Privacy Enhancing Technologies 1: 24. [156]

Although there has been some work studying privacy issues from the developer’s perspective,
there is little work on the constructive side that aims to design solutions for these issues. To fill
this gap, I took the first step to conduct studies that aimed to understand developers’ perceptions,
practices, and challenges that are related to privacy. In this chapter, I first briefly overview my
studies and summarize takeaways for designing more effective and usable privacy support for
developers. Then in the next chapter, I will present a framework of design principles for privacy
support for developers derived from the findings of my work and prior literature.
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3.1 Interviewing Android Developers About Creating Privacy-
Friendly Apps

As I set out on my research about helping developers with privacy in 2017, most work on privacy
focused on end-users and surprisingly little research looked into how to leverage developers’
capacity to better improve privacy for users. Some prior literature examined developers’ security
attitudes and built developer tooling for security, while paying little attention to designing and
evaluating privacy-enhancing tooling that suits developers’ capacity and needs.

Hence, I started off by interviewing nine Android developers to understand how they manage
privacy in practice when developing apps, their general understanding of privacy, their mental
models for some well-acknowledged data protection principles, and specific steps and practices
used for addressing privacy issues. Balebako et al. [29] also conducted interview studies with
mobile app developers to study their privacy and security behaviors, which examined developers’
perceptions and behaviors regarding privacy using high-level questions. In contrast, I inquired
specifically about how apps that the participants had recently developed used personal data, and
mapped out these personal data practices to fundamental privacy principles (Table 3.1) to identify
misconceptions and incorrect behaviors for privacy.

In the following, I present what I learned from the interview about developers’ attitudes and
the challenges they face regarding privacy. These findings shed light on how to design developer
tools to promote privacy best practices, and also lay a foundation for the design of Coconut
(Chapter 5). I conclude each finding with a brief discussion on how to apply it to the design of a
tool that tackles the corresponding issue.

Privacy Attitudes: Developers Do Care About Privacy, Though They May Only Hold a
Partial Understanding of Privacy.

I identified three types of attitudes towards privacy from my interviews. The first type is devel-
opers who explicitly or implicitly expressed the idea that developers are responsible for carefully
handling users’ sensitive data. For example, P6 treated privacy as “definitely something I con-
sider important.”; P8 mentioned that “My apps are very privacy sensitive, so I try not to keep
a lot of information ... From my perspective, I just want to build the application that helps the
user.” However, each of them only considered partial aspects of privacy, such as collecting data
only when users have fully consent to it (P1), preventing using identifiable information (P1),
minimizing data usage (P2, P6, P7, P8), or encrypting or obfuscating data before sending it out
of the phone (P4, P8). Besides, most participants have low awareness of privacy concerns related
to data sharing and data retention.

The second type is developers who care about privacy but tend to only rely on external advice
such as dedicated teams on security/privacy or privacy requirements of the app store. This is
similar to what has been identified in [82, 137, 171]. P5 for example worked at a large company
with a dedicated security team and hundred millions of customers. He said, “According to me,
this whole logic was to abstract it (privacy), ... I mean that, there is a different security team in
the company, so it’s their job to do this.” Interestingly, he also mentioned that the security team’s
late notice of changing HTTP to HTTPS caused some extra overhead, which could be avoided if
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privacy/security were taken into consideration in advance: “... what we did was we implemented
HTTPS, but the app got slower. And all the product managers told us that you could not release
this because the app was slower compared to previous versions, so we had to make different
optimizations in other parts of the application in order to counter that.”

The third type is developers who have a passive attitude towards privacy and lack motivation
in protecting privacy. For example, P3 commented that he was motivated to explicitly inform
users about how the personal data is used only when forced to do so: “If you can make tool with
as little information about the user explicitly asked, the better, because most people don’t like to
give out a lot of information, especially if it’s not a trusted developer.”

The lack of consideration for privacy and the incomplete understanding of different aspects
of privacy suggest that developers may need to be better educated about privacy. It also suggests
that developer tools for privacy should help developers handle privacy in a systematic way, which
provides a broad coverage of different aspects of privacy and the corresponding privacy issues.

Inaccurate Understanding of App Behaviors Creates Hurdles to Making Appropriate Pri-
vacy Notices.

Knowing what data one’s app uses and how it is used is a prerequisite for providing users with
accurate and helpful privacy notices. However, I observed that 5 participants’ responses about
their data practices were inconsistent with the actual case. Three potential causes emerged. First,
developers did not have sufficient knowledge in how some system and third-party APIs worked,
especially the underlying data collection behaviors of third-party libraries. Second, developers
were unable to keep up with the implementation details of the latest app versions, due to fast
iterations. For example, developers might collect more data because of a new feature, or remove
some data collection behaviors because the feature did not work out or they did not need the data
anymore. The third reason is team dynamics. The members of a development team vary, and new
members need to be onboarded about existing data practices. Similarly, when someone leaves
the team, it may be a problem if what that person knows is not well documented. As such, a
developer tool can mitigate this issue by explicitly informing developers of what data is obtained
from API calls, automatically tracking data practices across multiple versions, and presenting the
data practices as an alternative to manually maintained documentation.

Lacking Knowledge of Feasible, Less Privacy Invasive, Alternatives

Managing privacy often involves tradeoffs with app functionality, usability, and performance.
However, while sometimes there are less privacy-invasive alternatives, such as using a random-
ized ID rather than a MAC address, they are not used due to lack of developer awareness. For
example, 7 participants stored data with a unique identifier or other PII such as email address
or user name. Three used hardware identifiers such as Android ID, IMEI, or Bluetooth MAC
address. Using hardware identifiers for tracking purposes is privacy invasive if the data is leaked
since it is persistent and can be linked to a specific user/device. In fact, I found that developers
did not really need to use these hardware IDs, and were oblivious to their privacy ramifications
and unaware of better alternatives.
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As such, another useful feature for a developer tool is to proactively remind them of privacy-
preserving alternatives that can achieve similar goals.

Privacy Is Treated as a Secondary Task

My findings are consistent with prior work which demonstrated that developers tended to con-
sider privacy as less critical than other factors such as usability [16, 27, 109]. For example, P3
told us that his app would pop up its own alert dialog explaining how it would use the permission
to obtain data and for what purposes. However, when I tested the app, it did not show such an
alert dialog along with the permission request. Later he explained that another feature for a fast
release was given priority ahead of privacy considerations, delaying the in-app privacy notice
implementation.

To address this issue, a developer tool should be able to keep track of what tasks for pri-
vacy have not been completed yet, and support privacy task management and reminder at the
appropriate timing.

Developers May Lack Motivation for Privacy When There Are Few Constraints in What
They Can Do.

Developers are susceptible to ignoring privacy issues when the design of the programming model
lacks sufficient constraints. Android’s ‘identity’ permission lets developers programmatically get
information related to users’ identity, such as account name and email address. However, since
multiple data items are controlled by one permission, developers can also use the information
that they do not need once users grant the permission. Participants P3 and P6 said that they
collected and stored account name and email address information when they only needed the
latter. Besides, a developer might request a permission for one purpose but use it for other
purposes because they feel these features are hard to justify, such as for a potential future project
(P5). As another example, some sensitive data is not protected by permissions in some versions
of Android, such as IP address and some device IDs like Android ID, so developers may be less
motivated to constrain the use of such data or explain it to the user.

It is important to prevent apps from being over-privileged in terms of privacy when the
system-level constraints are too coarse or even non-existent. One possible direction that has
been explored in recent work is to design better programming models [102]. However, there are
often multiple APIs to obtain the same user data and developers can choose to use other APIs
regardless. I believe that adding suitable privacy support to the developer tools themselves can
help with this issue. For example, a developer tool can detect the use of APIs that access personal
data, and remind developers to only use data needed for legitimate purposes.

3.2 Analyzing Discussions About Personal Data on r/androiddev
While my Android developer interviews provided valuable insights into the challenges develop-
ers face in handling privacy in mobile app development, the direct inquiries inevitably prompted
developers to think more about privacy than they might in their normal work environment, po-
tentially leading to biased responses. To gain a more comprehensive picture, we need to better
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Table 3.1: Privacy guidelines used to inform the interview and developer tool design. These
guidelines discuss best practices around user-facing notices and control for privacy, data collec-
tion, data transmission, and data retention.

Name of the privacy guidelines

California Attorney General Mobile Privacy Guide [71]
Article 29 Opinion on Apps (European Union) [132]

Future of Privacy Forum and the Center for Democracy & Technology Best Practices [127]
GSM Association (GSMA) Mobile Privacy Principles [24]

National Telecommunications and Information Administration (NTIA) Short Form Notice [158]
Federal Trade Commission (FTC) Mobile Privacy Disclosures [43]

Office of the Privacy Commissioner (OPC) Good Privacy Practices (Canada) [129]
Office of the Australian Information Commissioner Mobile Practice Guide (Australia) [128]

Information Commissioner’s Office (ICO) Privacy in Mobile Apps (UK) [130]
Android Best Practices for Permissions and Identifiers [51]

understand developers’ attitudes and practices regarding privacy in a natural condition when not
explicitly prompted about the concept.

To this end, I chose to study privacy-related discussions in some online developer forums.
Online developer forums are a special type of community of practice which offer a place for
developers to informally help others solve development-related problems and share developer
news. These websites are a major resource of knowledge for developers in general [25, 32],
making them also a potential place to disseminate knowledge about data use and privacy. Fur-
thermore, developers sometimes write posts that detail the data practices of their own applications
to provide background for a question or solicit suggestions about app design, making these sites
a window into how developers use personal data and handle privacy risks in the real world.

In the following, I introduce my analysis of /r/androiddev, a developer forum on Reddit fo-
cused on Android development. Android is the most popular smartphone platform today, taking
roughly 87% of the global market share. /r/androiddev started in June 2009 and now has over
144k members, with roughly 12 new threads and 175 new posts per day. Unlike Stack Overflow,
which is designed to answer technical questions, /r/androiddev allows and encourages in-depth
discussion on a broad range of Android-development-related issues, such as giving feedback on
high-level app designs, suggesting useful libraries, and discussing news for Android developers.
This difference could potentially give rise to more interesting discussions with respect to privacy.

Rather than focusing specifically on the term “privacy” as in prior work [66, 154], I consider
discussions of personal data use more broadly, looking at when and how privacy concerns arise
in these discussions. The concept of “personal data”, defined as any information that is related
to an identified or identifiable person [10], is more concrete and related to all aspects of data
privacy, such as data collection, data sharing, data storage, user-facing notices, and user control
of their data. In addition, developers sometimes discuss privacy concerns without using the word
privacy. For example, developers might discuss privacy aspects of a data use case (e.g., only
collecting the minimum data needed) without mentioning the word “privacy”.
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With this new angle, I aim to investigate the following research questions:
RQ1 What types of discussions do developers have about personal data in an online community

of practice?

RQ2 When developers talk about personal data, how do they discuss privacy-related issues?

RQ3 What risky data practices (e.g., sharing data with third parties) are discussed by develop-
ers?

A research assistant and I conducted a qualitative analysis of 207 threads with 4772 posts
from the /r/androiddev sub-forum mentioning different forms of personal data. We performed
bottom-up open coding on the sampled posts to build a typology of discussions on personal
data use, and conducted follow-up analyses to understand what types of posts generated privacy
concerns or mentioned risky data privacy practices.

We found that privacy-related issues were occasionally discussed on this developer forum
(about 20% threads that discussed personal data also discussed privacy, see Figure 3.1). How-
ever, most discussions of privacy were triggered by external events (e.g., restrictions to enhance
privacy from the operating system and app store policies), showing that developers passively
react to privacy requirements most of the time. Furthermore, developers often expressed that
complying with these requirements incurred a high cost with little benefit for themselves.

0.0 0.2 0.4 0.6 0.8
Ratios of threads containing in-depth privacy discussion

Planning development

Solving technical problems

Seeking app feedback

Reacting to external events

Sharing info/opinions

Figure 3.1: More than 80% of threads in the category “Reacting to external events” had in-depth
privacy discussions, while only around 10% of threads in the other four categories had in-depth
privacy discussions. This suggests that Android developers in this forum tended to act passively
to handle privacy in their apps, with most of them only discussing privacy-related issues when
stimulated by external events such as API design change, policy change, receiving app removal
notices and user reviews.

We showed that developers frequently mentioned risky data practices such as sending data out
of the device and sharing data with third parties when discussing the design and implementation
of specific apps (see Figure 3.2). However, they rarely discussed privacy issues that these risky
data practices may involve.

Based on these findings, I believe there are a set of improvements that Android OS, app store,
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Figure 3.2: The ratios of threads that contained risky data practices of a certain app were higher
in the “Planning development” (67%), “Seeking app feedback (53%)” and the “Solving technical
problems” (47%) categories, possibly because these topics are about the development process of
a specific app.

and developer forums can make to promote better privacy practices in Android app development.
For example, Android OS should be more upfront about the design rationale when introducing
new API designs for privacy; Android OS and app stores may want to complement the current
data-restriction-based approaches with clear and publicly visible privacy metrics to encourage
developers to adopt better privacy practices; and developer forums can help posters frame ques-
tions in a way that is more likely to prompt feedback on privacy. More specific suggestions can
be found in my published CSCW paper [99].

3.3 Analyzing Privacy Advice on Stack Overflow
Privacy tasks can be challenging for developers, resulting in privacy frameworks and guidelines
from the research community which are designed to assist developers in considering privacy
features and applying privacy-enhancing technologies in early stages of software development.
However, how developers engage with privacy design strategies is not yet well understood.

On a similar vein as my analysis of /r/androiddev, my colleague and I analyzed another
popular online developer forum, Stack Overflow, to understand whether it serves as a quality
information source for developers who seek privacy advice. Specifically, we looked at the types
of privacy-related advice developers give each other and how that advice maps to Hoepman’s
privacy design strategies [74]. We qualitatively analyzed 119 privacy-related accepted answers
on Stack Overflow from the past five years and extracted 148 pieces of advice from these answers.

We find that some privacy design strategies, inform, hide, control, and minimize, are
advised frequently by developers, and some strategies, abstract, separate, enforce, and
demonstrate, are rarely advised. Our results suggest that the under-stated privacy design strate-
gies need to be promoted by improving privacy education to increase developers’ awareness of
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these strategies and building tools to help developers adopt these strategies in software develop-
ment.

Our findings show that complying with regulations and their consequences, and approaches
to ensuring confidentiality are two common themes of advice. Most advice was related to rela-
tively traditional privacy-enhancing technologies such as asking for user consent, access control,
encryption, and stripping personal information to de-identify data. On the contrary, novel tech-
nologies such as differential privacy and federated learning were rarely proposed as solutions to
privacy-related software development questions on Stack Overflow.

Furthermore, existing privacy frameworks are often focused on mitigating privacy risks re-
lated to first-party data practices, while we observed a large portion of discussions regarding
practical techniques to protect privacy when using third-party services or libraries. This finding
suggests that the importance and challenges of handling third-party data practices need to be
emphasized in these frameworks, and practical developer tools are needed to help developers
understand and control third-party data practices.

3.4 Interviewing iOS Developers About Creating Privacy La-
bels

To identify more concrete challenges, I then focused on specific privacy-related tasks that devel-
opers need to handle. One example is the creation of privacy nutrition labels.

In 2009, Kelley et al. [86] proposed and evaluated the first privacy nutrition label for websites.
In this seminal work, they argued that companies should provide a clear, uniform, brief summary
of what data is collected along with how it is used and shared (similar to a standardized nutrition
label on food) to complement privacy policies, which are often lengthy, ambiguous, and hard to
understand. In 2013, some of the same authors proposed privacy nutrition labels for mobile apps
[88]. After a decade, this concept has finally made its way from the research lab into the two
major mobile app stores. As of December 2020, Apple requires all apps to provide app privacy
details, which the Apple app store displays as a privacy label in an App Privacy section on each
app’s product page to empower users to learn about the app’s collection and use of data before
installation (Figure 3.3 left). Following Apple’s new requirements, Google also announced that a
similar safety section would be rolled out in the Google Play app store in early 2022 (Figure 3.3
right).

The usefulness of privacy nutrition labels and any future standardized privacy notices is
highly contingent on their accuracy. However, we had little understanding of developers’ ability
to create accurate privacy nutrition labels. Even assuming that developers are motivated to create
accurate privacy labels, it is not a trivial task. Developers need to comprehend the definitions
of all of the data types and uses in the app store’s framework. They also need to understand the
data practices of their apps, including practices associated with any third-party libraries they may
have included. Finally, they need to choose the proper disclosures to describe the data practices
of their apps. Furthermore, developers need to be aware of any changes in the app’s data prac-
tices and update the privacy nutrition labels in a timely manner. This process may be challenging
for developers who are often not experts in privacy and treat privacy as a secondary goal [27, 96].
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Figure 3.3: An example of iOS’ privacy labels (left) and Android’s tentative design for its forth-
coming safety section (right).
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Apple’s large-scale deployment of the privacy nutrition label concept offers an opportunity
to study how developers create privacy labels for their apps. In this study, I took the first step
to examine the usability and understandability of privacy nutrition labels from the developers’
perspective by probing iOS developers’ perceptions and practices around Apple’s privacy labels.
By identifying common errors and challenges that developers face when creating Apple privacy
labels, I aimed to uncover limitations in Apple’s privacy label design and offer timely design
recommendations for platforms that want to deploy privacy nutrition labels. Using Apple privacy
labels as an example, my findings may also shed light on how to support developers to provide
accurate information in any future standardized privacy notices.

More formally, I have three research questions:
RQ1 What are developers’ perceptions about privacy labels?

RQ2 What types of errors or misunderstandings do developers exhibit when creating privacy
labels?

RQ3 What challenges do developers face in filling out forms to create privacy labels accurately
and efficiently?

I investigated these research questions by observing 12 iOS app developers creating an Apple
privacy label and interviewing them about this process remotely. During the study, I asked the
participants to create a privacy label for a real-world app that they developed. I then interviewed
them to identify potential mismatches between the actual data collection behavior of the app
and what they initially specified in the privacy label, examined what caused the inaccuracies,
and probed their attitudes and actions regarding privacy labels. I qualitatively analyzed the in-
terview transcripts using a bottom-up open coding approach to identify developers’ perceptions,
recurring errors and misunderstandings, and challenges regarding Apple privacy labels. These
findings directly inspired the design of Matcha (Chapter 7), an IDE plugin for addressing these
challenges to help developers create more accurate privacy nutrition labels.

Although most participants felt positive about Apple’s Privacy Labels and were willing to
disclose their data practices, I found that errors and misunderstandings were still prevalent in
the privacy labels generated during the study. Specifically, nine out of the 12 participants made
errors, and seven confirmed and fixed them during the interview.1 Moreover, among the eight
apps that already had a privacy label before the study, six of the participants re-created a privacy
label in the study that was inconsistent with the label published on the App Store. Table 3.2
provides an overview of developers’ recurring errors and misunderstandings that may lead to
errors.

Next I delved into developers’ challenges for creating accurate privacy labels to identify pos-
sible causes of errors and misunderstandings discussed above. I grouped these challenges into
three themes, shown in Table 3.3. The first two themes are related to gaps in developers’ knowl-
edge, and the last theme is related to complexities that developers may encounter throughout the
app development life cycle.

The first theme is Unknown Unknowns, which encompass situations where developers were

1I changed the study protocol slightly after the first two participants. For these two participants, I only told them
they were encouraged to correct their errors but did not prompt them about particular errors. Since I found that
developers did not seem to have enough incentives to actively make corrections, I changed the protocol and actively
confirmed the potential errors that I identified during the interview with the other ten participants.
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Table 3.2: An overview of recurring errors and misunderstandings in privacy label identified
during the study (RQ2).

Error Type Error Name Explanation

Underreporting Missing Linked Data Not reporting data stored with identifiable data
as linked because the data itself is not identifi-
able.

Missing Third-party Data
Use

Not reporting all third-party data use.

Missing Data Types Not reporting all collected data types based on
Apple’s definition.

Missing Interaction Out-
side the App

Not reporting data collection happening outside
the app.

Missing Optional Data
Practices

Not reporting certain data practices because they
were optional.

Overreporting Overreporting Tracking Over-generalizing tracking scenarios (Apple’s
definition only considers data linked with third-
party data for advertising measurement purposes
or shared with data brokers as data used to track
users)

Reporting Unstored Data Reporting data not stored on the back-end as col-
lected

Reporting Apple SDK
Data Use

Reporting data collected by Apple SDK (Per
Apple’s guideline, developers are not responsi-
ble for disclosing Apple’s data collection)

unaware of the errors that they may have introduced into the privacy labels. Under these circum-
stances, developers often trusted in their own judgement (and were sometimes wrong), and only
realized their problems later on with the help of external prompts. This was sometimes caused by
the misalignment between a developer’s intuitive interpretation of what a term means and how
Apple defines it. While Apple uses definitions of privacy-related terms (e.g., data used to track
users) that are relatively unusual and specific (i.e., only linking user data to third-party data for
advertising-related purposes are considered tracking), many developers assumed more general
definitions (e.g., considering any continuous background location recording as tracking), leading
to errors in their privacy labels. Furthermore, developers had trouble correctly disclosing data
practices of third-party libraries, partly because they were not fully aware of the libraries’ data
practices and because they did not know about the existence of resources that could help them
with this task.

The second theme is Known unknown, which refers to situations where developers felt unsure
about their own understanding. I learned about developers’ confusion about Apple’s require-
ments and uncertainty about their understanding and their answers for generating the privacy
label. Specifically, all but one participants found certain concepts and definitions hard to under-
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stand because they used unfamiliar jargon, unfamiliar technologies, or concepts that were not
commonly used in countries other than the U.S. (summarized in Table 3.4).

The third theme of challenges concerns factors that caused significant overhead in creat-
ing privacy labels, which is orthogonal to the previous themes about knowledge gaps that may
cause inaccuracies in the privacy labels. Most participants felt this task overwhelming and time-
consuming due to information load, especially for first timers. The vagueness and ambiguities
in the definitions aggravated the problem, since developers had to read certain definitions sev-
eral times to gain enough confidence in their understanding. As many developers work in team
settings, it was concerning that creating privacy labels will create extra communication cost.
I identified many challenges for creating and maintaining privacy labels regarding developers’
communication with different entities, such as other developers, their boss, their clients, and
their former employers. In addition, many participants developed one web app for both the Ap-
ple App Store and the Google Play Store, which means that they need to handle requirements on
both platforms.

3.5 Usability Studies About the Privacy Regulation Features
for Ad Networks

Mobile apps enable ad networks to collect and track users. App developers are given “configu-
rations” on these platforms to limit data collection and adhere to privacy regulations; however,
the prevalence of apps that violate privacy regulations because of third parties, including ad net-
works, begs the question of how developers work through these configurations and how easy they
are to utilize. My colleagues and I study privacy regulations-related interfaces on three widely
used ad networks using two empirical studies, an expert review and think-aloud sessions with
eleven developers, to shed light on how ad networks present privacy regulations and how usable
the provided configurations are for developers.

We find that information about privacy regulations is scattered in various places on the stud-
ied ad networks, making it difficult for developers to know what to do to comply with privacy
regulations. Participants were frustrated with the amount of documentation they had to read,
terms and abbreviations that they did not understand, and highlighted the need for a central place
for all the information about privacy regulations. One of the strategies that they would apply to
make their app compliant with regulations was to follow the documentation as it is, highlighting
the importance of having privacy-friendly defaults on the documentation.

I believe it is important to improve the documentation design by dedicating a section to
privacy, unifying the terms and language used to explain privacy, eliminating the dark patterns,
and integrating the privacy features in the developers’ workflow. Future research should study
how to support developers in performing privacy tasks, for example, by building test systems to
assist developers in complying with privacy regulations (and also knowing when they are or are
not compliant) and improving developers’ mental models about ad networks to go beyond the
concept of notice-and-consent, which is potentially rooted in the ad networks’ language. Such
improvements may make developers aware of privacy-invasive business models of ad networks
as well as the detrimental privacy consequences of data collection by ad networks on users.
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Table 3.3: An overview of developer’s challenges for filling out privacy labels accurately and
efficiently (RQ3).

Challenge Level Challenge Type Summary of Challenges

Unknown un-
knowns

Blinded by Preconceptions Developers were overconfident in their pre-
conceptions of certain concepts (e.g., data
collection, linking, tracking) while their un-
derstanding differed from Apple’s defini-
tions.

Knowledge Blindspots Developers were not familiar with Apple
privacy labels and did not know resources
that could help them with the task.

Misinterpreting Definitions Developers misinterpreted Apple’s defini-
tions and did not realize the issue without
external prompts.

Known un-
knowns

Limitations of the Apple’s
Documentation

Developers found part of the developer tool
and the official documentation hard to un-
derstand, confusing, or ambiguous.

Lacking Team and Org Sup-
port

Developers were only responsible for part
of the project and did not know all data
practices.

Complexities Overwhelmed due to Info
Load

Developers needed to spend a lot of time
and effort to read and understand the large
amount of information in the official con-
tent.

Memory Challenge Developers struggled with multiple types of
memory challenges, such as recalling the
exact definitions of certain concepts and
their apps’ data practices.

Challenges of Cross-
platform Apps

Developers who developed cross-platform
apps needed to deal with duplicate require-
ments from different platforms.

Communication Cost Developers had trouble communicating and
collaborating with their teammates, em-
ployers, and clients to create and update
privacy labels.
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Table 3.4: A summary of expressions that more than one developers found confusing or hard to
comprehend in Apple’s official documentation and the web-based developer tool for filling out
privacy labels.

Reasons for confusion Expressions that developers found hard to understand

Unfamiliar tech concept screen name, social graph, hashed email ad-
dress/phone number, approximate location services,
a latitude and longitude with three or more decimal
places, link the data back to users’ identity, the Mo-
tion and Fitness API

Jargon data broker, third-party data, purchase tendencies
Difference by country credit score

30



Chapter 4

Design Principles Synthesized from My
Studies and Prior Literature

By analyzing the findings of my studies (Chapter 3) and prior literature (Chapter 2), I synthesized
three key design principles for privacy support for developers, which are 1) Codify Accountabil-
ity; 2) Lessen Burden; 3) Leverage Agency (summarized in Table 4.1). In the following, I
explicate each principle using concrete examples.

4.1 Codify Accountability
Developers are accountable for privacy. However, they face challenges in operationalizing the ab-
stract concept of privacy, having a clear understanding of their responsibilities, and contributing
their knowledge of app behaviors to privacy audits. There is need for better scoping developers’
responsibilities and studying how to hold developers accountable for privacy.

4.1.1 Operationalize Privacy
Privacy is a complex concept, whose definition has been discussed as a longstanding research
question for legal, social science, and computer science scholars. Therefore, it is not surprising
that transferring the high-level goal of improving privacy to actual design and implementation
tasks is only going to be more challenging for developers.

Table 4.1: An overview of the three key design principles for privacy support for developers.

Theme Key Message

Codify Accountability Set clear scope of responsibilities for developers and hold
developers accountable for privacy.

Reduce Burden Reduce the burden of privacy for developers
Leverage Agency Guide and incentivize developers to actively find and fix

privacy issues

31



Prior research has already shown that developers tended to reduce the concept of privacy to
security concerns [70]. Sheth et al. [143] mentioned that developers preferred data anonymiza-
tion to using privacy policies to reduce privacy concerns. My interviews with Android devel-
opers further investigated this problem by probing developers’ general perceptions of privacy
(Section 3.1). I found that many participants only considered partial aspects, such as collecting
data only when users have fully consent to it, preventing using identifiable information, mini-
mizing data usage, or encrypting or obfuscating data before sending it out of the phone. Most
participants have low awareness of privacy concerns related to data sharing and data retention.

This body of work suggests many developers have a vague and incomplete understanding of
what may raise users’ privacy concerns and what might actually compromise their privacy, which
calls for the following design goal for developer support:

Need #1: Developers need actionable goals to tackle the abstract concept of privacy.

4.1.2 Clarify Division of Labor
Privacy involves various types of stakeholders, and sometimes it may get unclear who is re-
sponsible for which part. Mhaidli et al. [115] studied app developers’ adoption of ad networks
and showed that app developers considered ad networks responsible for addressing the privacy
risks posed by ads. Therefore, developers keep the default settings in these ad networks without
considering the impact on privacy risks and financial benefits. The same issue also manifested
in our studies about the privacy regulation-related interfaces of three widely used ad networks
(Section 3.5). In addition, my studies have repeatedly shown that some developers said they were
unconcerned about privacy because it was not their responsibility (Section 3.1, Section 3.4).

To leverage the unique values that developers can offer and also respect the limit of their
abilities, a clear division of labor for privacy is needed. In addition to issues that have been
relatively well studied in the past such as the relationship between developers and ad networks,
further research is needed to analyze how to divide the labour between developers and other
entities such designers, privacy engineers, lawyers, and managers, as well as more high-level
parties such as app development platforms.

Need #2: Developers need a clear scope of privacy responsibilities.

4.1.3 Support Auditing
Internal and external privacy audits play an essential role in minimizing privacy risks and building
trust with end users. Currently this type of task is usually led internally by privacy or security
compliance teams and externally by app store platforms. Developers need to participate in this
process, as they have first-hand knowledge about the app implementation details. They often
provide these details by filling out forms about how they implemented the actual data practices.
However, my research has shown that developers could also have inaccurate understanding of
app behaviors (Section 3.1, Section 3.4) due to 1) insufficient understanding of how some API
works, especially ad libraries, 2) having difficulty in tracking changes of data practices across
different versions, and 3) lacking documentation of data practices when previous developers
have left the team. Therefore, better tools need to be built for helping developers manage data
practices and attribute privacy-related changes to specific developers.
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Another problem is that current software systems often consist of subsystems written in dif-
ferent languages and using different SDKs. These subsystems may take care of different part of
the data flows. For example, a mobile app may have a client app installed on the user device
to collect data, a backend server that stores data, and also third-party services that it shares data
with and gathers data from. The developers who build and maintain these subsystems may also
be different people. To generate an accurate and attributable privacy audit report, it requires great
interoperability across these subsystems. The privacy annotations proposed by my work shows
a possible direction to solve this problem. These annotations are supported by many program-
ming languages and can be embedded in code so developers can easily add them when coding a
new feature. They follow a standard format, so it is also straightforward for each subsystem to
generate a machine-readable summary using a standard form for the entire system.

Need #3: Mechanisms for attributing developers to their privacy-related work are needed.

4.2 Reduce Burden

Developers often lack expertise in privacy matters, and they must juggle numerous competing
priorities, such as app performance, collaboration with colleagues, and time constraints. Recog-
nizing these limitations in developers’ skills and capacity, it is essential to explore more effective
support mechanisms that can enhance privacy outcomes while minimizing the workload.

4.2.1 Automate Privacy Tasks

Currently, laws and platforms define many privacy tasks that need to be handled by developers,
while I argue that developers do not have the ability and bandwidth to handle all of them correctly.
Fortunately, some tasks only require developers to provide a little information, and the rest of the
work can be offloaded to an automated system.

One example is the creation of in-app privacy notices. Although privacy laws and app mar-
ketplaces have various requirements for providing in-app privacy notices, many developers have
never heard of these requirements, let alone knowing best practices for designing and imple-
menting clear, informative, and standardized privacy notices. Theoretically speaking, developers
only need to specify the information that can not be accurately inferred using program analysis
techniques (e.g., data use purposes, whether certain data will be transmitted off the device), and
let the tool automatically generate a variety of in-app privacy notices using the information. In
this way, developers need to write much less boilerplate code, making the privacy features easier
to implement and maintain. In addition to saving on the burden for developers, emancipating
developers from handling the design and implementation details and adopting a standardized de-
sign made by privacy experts improve the quality of the privacy features. This is the key idea
behind my work Honeysuckle, which is detailed in Chapter 6.

Need #4: Developers need to be emancipated from privacy-related tasks whenever it is
possible, especially when they do not provide irreplaceable values and when standardiza-
tion is needed.
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4.2.2 Aid in Privacy Tasks

In contrast to tasks that can be automated, there are privacy tasks that rely on knowledge in the
developer’s head and can not be automated. For these tasks, we can provide a guided process to
help developers handle them accurately and efficiently.

One example is the two major mobile app stores’ requirements for creating privacy nutrition
labels in a self-report manner. My research has shown that iOS developers could not accurately
report their apps’ data practices due to various problems (Section 3.4). Interestingly, there are
techniques or resources that can mitigate these problems, while it is difficult for developers to
find and and apply them.

For example, although many widely used third-party libraries such as Google Analytics and
the Facebook SDK provided documentation for this task, developers did not know these re-
sources exist, partly because they did not use the right search terms. Furthermore, program
analysis techniques can easily detect all data accesses of the app and third-party libraries used by
the app. Although this is not sufficient to satisfy all the disclosure requirements, it can greatly
streamline the task and prevent inaccuracies due to memory challenges as identified in my stud-
ies. Another issue is developers may not promptly update the privacy labels upon changes of
data practices because they found the creation process complicated and confusing, and hence did
not want to frequently go through it. My work Matcha (Chapter 7) is an IDE plugin that lever-
age these opportunities to help developers generate accurate privacy nutrition labels and make
prompt updates for them.

Need #5: Developers need assistance for privacy tasks that must be handled by them.

4.2.3 Reduce Demands

While dealing with one requirement is already challenging for developers (e.g., creating privacy
nutrition labels), what they are facing in real life is a collection of requirements from different
sources (e.g., different privacy laws, requirements from different platforms). This requires us to
take a holistic view when estimating the cost for developers caused by privacy requirements.

Since these privacy requirements are mostly driven by the same privacy principles, they are
likely to correlate and overlap with each other, such as the introduction of the same idea “privacy
nutrition label” by Google and Apple. Nevertheless, because the privacy requirements were
often designed independently, the subtle inconsistencies between similar requirements may lead
to even more confusions and errors. For example, I noticed that Apple and Google used the same
word “data collection” in their privacy label design while they selected very different meanings,
which could cause trouble for cross-platform apps to comply with the privacy label requirements
of both platforms (Section 3.4).

Need #6: Developers need support for handling privacy requirements from different
sources.
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4.3 Leverage Agency
Although setting up concrete privacy requirements both directly prompt developers to take ac-
tions to protect privacy [99, 153] and help with enforcement, existing privacy requirements and
the way they are enforced can not solve all privacy issues, especially when it comes to the com-
plex trade-offs between privacy and usability regarding first-party data practices and the apps’
main functionality. Therefore, we need to investigate how to take advantage of developers’
knowledge about their app and abilities to adjust their app design. Specifically, I argue that there
needs to be more research on how to encourage and support developers to learn more about
privacy and reflect more on their data practices to detect privacy issues proactively.

4.3.1 Increase Awareness
As I analyzed the subreddit themed around Android development (r/androiddev), I found most
privacy-related discussions were triggered by external events such as new platform policies re-
garding privacy, while privacy-related discussions rarely emerged when discussing the design
and development of specific apps (Section 3.2). The low visibility of privacy-related discussions
on an online developer forum is a specific case of the low visibility of privacy in development-
related activities in general, which reflects developers’ lack of awareness of privacy issues, best
privacy practices, and design strategies to enhance privacy (Section 3.5). Overall, developers
often lack the awareness about what are potential privacy issues and how to solve these issues.

Education is one direction to address this problem. We can more systematically study how
developers learn privacy knowledge and acquire privacy skills and design better curricula and
techniques to facilitate the learning process. Another direction is to make privacy a first-class fea-
ture in the software development ecosystem to increase its visibility. My tool Coconut explored
this idea by providing developers with contextualized reminders of potential privacy issues and
suggestions of solutions (Chapter 5).

Need #7: Developers need tools that increase their awareness of privacy issues and the
corresponding solutions.

4.3.2 Incentivize Adoption
Developers often treat privacy as a secondary consideration (Balebako et al. [29], Section 3.1).
A fundamental challenge for designing privacy support for developers is there is little incentive
for voluntary adoption of tools that help improve privacy. Prior research has identified personal
concerns, client or company requirements, platform feedback, and laws and regulations as drivers
of privacy questions on Stack Overflow [154] and identified platform policy updates and privacy-
related updates in the operating system and developer API and as triggers of privacy-related
discussions on r/androiddev (Section 3.2). Therefore, one potential way to incentivize adoption
is to leverage these existing drivers. Namely, we can design tools that appeal to these more urgent
needs when also provide support that help with other privacy goals.

Another idea is to design support to achieve other primary goals of developers while offering
beneficial side effects for privacy. One example is PrivacyStreams [102], which is a programming
model that is designed to streamline the use of personal data while simultaneously improving
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transparency because it is also easier to analyze how the data is processed and what granularity
of data is used.

Need #8: Developers need incentives for taking privacy-protective actions that are not
directly required and enforced by any parties.
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Chapter 5

Coconut: An Android Studio IDE plugin
For Privacy

This chapter was adapted from my published paper:

Li, Tianshi, Yuvraj Agarwal, and Jason I. Hong. “Coconut: An IDE plugin for developing privacy-
friendly apps.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
2.4 (2018): 1-35. [96]

In the previous chapters, I adopted a human-centered approach to examine developers’ strengths
and weaknesses in handling privacy-related tasks. Then I outlined an array of design principles
to guide further research into the design space of privacy support for developers.

In this thesis, I made the first foray into the vast design space of privacy support for devel-
opers by focusing on a specific type of tooling: privacy-enhancing IDE plugins aided by privacy
annotations. In this and the next two chapters, I present the design, implementation, and evalua-
tion of three IDE plugins that tackle different privacy problems. These plugins were developed
sequentially, with each plugin building upon the previous one. This approach enables the cre-
ation of a unified solution (i.e., adding privacy annotations) to address various privacy issues. In
Chapter 8, I reflect on how my design principles were realized in the three tools and discuss how
to unify the privacy annotation design and generalize it to other programming languages.

5.1 Introduction

Privacy has become a growing concern with today’s smartphone apps, and the need for develop-
ers to protect users’ privacy has become more urgent with the advent of new privacy regulations,
such as the EU General Data Protection Regulation (GDPR). However, developers still face many
challenges in handling privacy, which has resulted in many apps using sensitive personal data in a
problematic manner [18, 56, 176]. Prior research has identified various causes of this misbehav-
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ior. For example, copying-and-pasting can be convenient, but can also introduce security bugs
[60]. Unusable documentation and guidelines result in a lack of awareness and understanding
of recommended security practices [15]. Poorly designed security and personal data APIs may
incur extra overhead to conform to the principles of data privacy [17, 77, 78, 102]. Perhaps most
importantly, developers usually treat privacy as a secondary concern [16, 27, 109], and have an
incomplete understanding of what needs to be considered regarding data privacy protection [70].

Researchers and practitioners have developed a number of tools to promote secure coding
[40, 111, 121, 147, 172]. However, there is currently little support to help developers in creating
privacy-friendly apps. Specifically, how to design usable tools to facilitate certain aspects of
privacy (e.g. privacy notices, data retention, and data sharing) has received little attention. Prior
work suggests that these under-investigated aspects are indeed areas where developers lack the
most awareness and understanding [70].

My overall goal is to create tools to help app developers manage the complex requirements
for privacy, especially for those who work independently or in a relatively small organization that
cannot afford a privacy team. I first conducted semi-structured interviews with nine Android de-
velopers to examine their understanding of privacy and how they deal with privacy issues. Several
of my findings echo those from prior work, such as the tendency to de-prioritize privacy-related
tasks and being unaware of the personal data automatically shared with some third-party adver-
tising libraries [29]. I also identified additional challenges that have not yet been documented
in existing literature. For example, developers may have inaccurate understanding of how their
apps handle personal data, due to frequent iterations of the app and lack of documentation in
collaboration scenarios.

Figure 5.1: The main features of Coconut. A: LocationAnnotation is a customized Java Anno-
tation with certain fields (e.g. “purpose”) that help developers describe how and why the object
‘location’ obtained from the “requestLocationUpdates” API call is used. B: Coconut can give
real-time feedback of potential privacy issues (highlighted in purple) and, in some cases, offer
a quick fix. Here, the quick fix makes it easy to change the code to only collect coarse-grained
location data. C: Coconut also uses these annotations to generate a summary of personal data
practices in the app.

The findings from prior work and my interviews indicate the need for new mechanisms and
tools to support privacy when developing apps. Towards this end, I designed and implemented
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Coconut, an IDE plugin for Android Studio, the most popular IDE for Android development.
Figure 5.1 shows a screenshot of Coconut. Coconut uses heuristics to detect code that handles
personal data, and asks the developer to add an annotation that describes how and why the per-
sonal data is used. Each annotation is a customized Java annotation of key-value pairs, with keys
predefined for the specific type of personal data used (see Figure 5.1A). While programming,
Coconut offers real-time feedback on potential privacy concerns by highlighting the annotation.
In some cases, Coconut can offer quick fixes that make it easy to directly adopt the recommended
practice (see Figure 5.1B). Lastly, all annotations are gathered in the “PrivacyChecker” summary
panel, to facilitate review (see Figure 5.1C).

I conducted a between-subjects lab study with 18 Android developers to evaluate the usability
and effectiveness of Coconut. The results suggest that Coconut could help developers deal with
privacy issues from multiple aspects, such as avoiding violations of privacy principles, gaining
more knowledge in the apps’ behavior, and providing better privacy notices to end users.

This chapter makes the following research contributions:
• I present the design and implementation of Coconut, an Android Studio plugin for privacy,

which nudges developers to think about privacy while programming, improves developers’
understanding of the app’s personal data use, increases developers’ knowledge of alterna-
tive options to achieve a better trade-off for privacy, and motivates developers to search
and learn about privacy.

• I present the results of my lab studies of Coconut. My results show that developers using
Coconut can build more privacy-preserving apps, gain a better understanding of how their
app handles personal data, and write better privacy notices for users. I also observed
other privacy challenges, such as developers inadvertently introducing privacy issues while
tweaking their code for some functionality to work.

5.2 Coconut Design and Implementation

The goal of Coconut is to get developers to think about privacy and make it a natural part of their
app development process. I decided to build my tool as an IDE plugin, thereby enhancing the
Android Studio development environment already familiar to, and used by, all developers. I first
present a hypothetical use case of my tool, and then describe the design of the plugin along with
my design rationale.

5.2.1 Coconut Use Case

Here, I present a fictional scenario to help illustrate how Coconut can help developers write
privacy-preserving apps. Ann is developing a run tracking app, and a core feature of this app is
to render the current route on the screen in real time, and then upload the route to the remote
server database, where it is backed up.

Ann decides to use the requestLocationUpdates among the series of LocationManager
APIs. After writing the API call in the Android Studio IDE, Coconut uses simple heuristics to
detect this API, and requests the developer add a @LocationAnnotation annotation to the
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(a) When the location API is detected, the plugin requires an annotation of the corresponding data type
attached to the returned location data.

(b) Coconut offers a quickfix to generate a skeleton annotation with some fields auto-filled based on
code analysis. This example shows the result after applying the quickfix. An explanation of the field is
displayed when hovering on the field name.

(c) Potential privacy issues are defined as a warning and highlighted in purple. Where possible, quickfixes
are provided so that developers can apply another option with one click if they think it is a better fit for
their purposes.

Figure 5.2: Building a run tracking and mapping app with Coconut: When collecting location
data for rendering the route on the map, a ‘@LocationAnnotation’ annotation is needed to de-
scribe how and why the location data is used.

returned location object. (Figure 5.2a). Ann uses a quickfix to automatically generate an anno-
tation skeleton with several fields (i.e. dataType, frequency) automatically filled in based on
the parameters in the API call (i.e., GPS_PROVIDER, min time and distance interval for location
updates), while other fields that can not be inferred from the code need to be filled manually.
Ann then inspects each of them and fills them out one by one. When she is not sure about what
she is supposed to put in a particular field (e.g., visibility), she just hovers on the field name
to read a further explanation in the tooltips (Figure 5.2b).

Filling out the annotation gets Ann to think through this use of location data. She first exam-
ines the collection of predefined purposes and picks LocationPurpose.map_and_navigation
for her case. She then elaborates a bit more about this purpose in the field purposeDescription.
During this process, she is reminded to check that she has a legitimate purpose to collect loca-
tion data. When it comes to visibility, she decides that the data is only needed when the
user is using the app, so she opts for Visibility.WHILE_IN_USE. After resolving all “errors”
marked with a red underline, she attends to the warning at the value LocationDataType.FINE
GRAINED_LATITUDE_LONGITUDE highlighted in purple (Figure 5.2c). Before reading this
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tooltip, she has a rough idea that she can collect fine-grained location because the ACCESS_FINE_LOCATION
permission is requested, but she does not know the exact accuracy of “fine-grained location”, or
what other accuracy is available in Android. After exploring the quickfixes for this warning, she
learns more about the alternatives and finally decides to stick with the original choice because it
best fits her purpose.

(a) When network traffic is detected, the plugin requires a ‘NetworkAnnotation’ attached to the target
network request data.

(b) After completing all required annotations. NetworkAnnotation describes how the data is transmitted,
other personal data annotation describes what data will leave the phone at this point.

Figure 5.3: Building a run tracking and mapping app with Coconut: When sending the routes
to the remote server, a ‘@NetworkAnnotation’ annotation is needed to describe how the data is
transmitted out of the phone, along with other annotations (e.g. the ‘@LocationAnnotation’) that
describe what data may leave the phone at this point and what the purposes are.

When sending the routes to the remote server, a ‘@NetworkAnnotation’ annotation is needed
to describe how the data is transmitted from the phone, along with other annotations (the ‘@Lo-
cationAnnotation’) that describe what personal data may leave the phone and for what purposes
(see Figure 5.3). Ann starts to construct a network request to send the routes aggregated from the
location data to the remote server. Similar to the location API in the previous example, Coconut
detects the network connection, and requires developers to add a ‘@NetworkAnnotation’ that
describes how data is transmitted out of the phone (Figure 5.3a). In addition, Coconut also re-
quires Ann to annotate what data may leave the phone at this point. Since this request contains
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location gathered previously, Ann just reuses the prior annotation. The final result is presented
in Figure 5.3b.

Figure 5.4: The developer can examine the global personal data practices using the Privacy-
Checker window. Personal data practices are categorized by data type and whether it leaves the
internal runtime environment. All cells that display data use instances are clickable and can help
the developer navigate to the corresponding code snippet when they click on it.

When writing the privacy policy for this app, Ann reviews personal data practices using the
PrivacyChecker window (see Figure 5.4). One month later, Ann finishes the app and plans to
release it on the app store. The app store requires her to provide a privacy policy for her app.
She starts looking at other apps’ privacy policies and tries to adapt them to her app’s practices.
During this process, she uses the PrivacyChecker tool window, which is a feature of Coconut
that gathers all data practices from the annotations. By referring to the annotations, Ann can
precisely describe how personal data is used for the current version of the app, including how the
location data is collected for tracking running routes and how data is sent over the network for
backup purposes.

5.2.2 Designing Coconut to Promote Privacy-Preserving Personal Data Use
Above, I described how an Android developer can use Coconut across the entire development
process to gain a better understanding of app behavior, learn about potential privacy issues and
better choices, and manage data practices. Next, I detail the design of the main features and
explain the underlying design rationale.

Coconut Requires the Developer to Annotate Personal Data Practices in a Pre-Defined For-
mat.

Privacy annotation is a key feature of Coconut. Table 5.1 summarizes all the custom privacy
annotations I designed for Coconut. To implement this concept, I use Java Annotations1, a form
of syntactic metadata in Java. Coconut has two major kinds of annotations, namely ‘source an-
notations’ like @LocationAnnotation, and ‘sink annotations’ like @NetworkAnnotation.
Using these two types of annotation, developers can track how personal data flows within an
app. More specifically, the source annotation specifies where the personal data is acquired, and
the sink annotation specifies where it leaves the app. Since developers are likely to have an in-
complete understanding of privacy as discussed in Chapter 3, I draw on previous research in data

1https://docs.oracle.com/javase/tutorial/java/annotations/
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privacy modeling [81, 85] to design the fields for each type of annotation, so that they cover im-
portant aspects of data privacy that are supposed to be described in the privacy policy. Coconut
runs code inspection continuously in the background.

If a relevant API call is detected and the corresponding annotation is missing, it is treated as a
“missing-annotation error”, and the API name will be marked with the same indicator of compile
error in Android Studio (i.e. a red squiggly underline) to inform developers that this is a required
task. Table 5.2 summarizes all the sensitive API calls that Coconut automatically monitors and
prompts the developer to add an annotation for.

Coconut Helps Generate Annotations and Checks the Consistency Between Annotation and
Code Using Code Analysis.

Figure 5.5: The entire @UniqueIdentifierAnnotation is automatically generated because Coconut
is pre-programmed with the implicit data collection behavior of Google AdMob library.

To reduce cognitive load when annotating personal data practices, and to mitigate errors in
annotation due to carelessness or misconception of how the API works, Coconut analyzes the
code and infers the value of certain fields of an annotation or even the entire annotation. For
example, the datatype field in Figure 5.2b and the entire @UniqueIdentifier annotation
in Figure 5.5 are automatically generated. In addition, Coconut also automatically locates the
object that contains the personal data which the annotation should be attached to.

Additionally, if there is a discrepancy between the value of these fields in the annotation
and the behavior of the code, Coconut will report an “annotation-code inconsistency warning”
and highlight the corresponding field name in red. I use a different color than normal warnings
in Android Studio and other types of warnings in Coconut, so that developers can establish a
mapping in their mental model between the color and the type of issue. This feature helps
developers stick to the most updated and accurate understanding of their apps’ behavior.

Coconut Provides Real-Time Feedback on Potential Privacy Issues.

Coconut offers a “privacy-concern warning” when any potential violation of privacy principles
is detected (e.g. network traffic not encrypted; using hardware identifier when not necessary;
collecting user data for purposes that may not be clear to users), or when the developer may not
know that there exists less privacy-invasive approaches to achieve similar goals (e.g. changing
parameters to get coarse-grained data when high accuracy is not needed; using APIs designed
for privacy [102]). The corresponding field value is highlighted in purple to notify the developer.

To address the issue of developers not being able to balance the trade-off between privacy and
other factors, Coconut provides developers with alternative recommendations in the tooltips. If
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possible, I also provide quickfixes that can directly apply the recommended change in the code.
As a result, developers’ awareness of alternatives increases, so that they can make more informed
design decisions. The quickfix feature may also lower the threshold for adopting recommended
practices.

Coconut Gathers Personal Data Practices in One Place to Facilitate Review.

Coconut offers PrivacyChecker, a tool window that gathers all the personal data practices de-
scribed by the annotations. It displays the data used internally and the data that may leave the
the internal runtime environment in separate panels, and categorizes them by personal data types
(See Figure 5.4).

The content in the panel is constructed dynamically, so the developer will always have a clear
understanding in the personal data practices of a certain version. Developers can also review what
privacy issues still exist based on unresolved Coconut “privacy-concern warnings”

5.2.3 Implementation

I built a proof-of-concept prototype of Coconut, which consists of two parts: an Android Studio
plugin and a privacy annotation support library. The plugin was developed using the IntelliJ
Platform SDK2. I use this SDK to monitor API usage by capturing file changes in the IDE in
real-time, to inform developers of privacy errors and warnings by registering errors/warnings
using code inspection APIs, to generate pre-filled annotation skeleton and fix privacy issues by
manipulating the code via the syntax tree, and to present the personal data use in the app in a tool
window. The version for my lab study comprises 7770 lines of Java code, most of which is used
for establishing the basic framework and handling the user interface.

The current implementation supports analyzing a selected group of system APIs and third-
party libraries that use personal data. The scope was determined with the goal of providing suf-
ficient flexibility in the programming tasks of my lab study (described in Section 5.3.2). Given
the current framework, this list can be easily extended. Recent research has demonstrated the
long-tail distribution in the usage of third-party libraries [41], which suggests that it is feasible
to cover a wide range of personal data collection behaviors caused by third party libraries. There
are always-running threads that monitor the use of these APIs. When a target API is detected,
the system will infer the target location of annotations for this API, check if all required annota-
tions are provided, valid, and consistent with the actual code behavior, and also check for other
potential privacy issues. The privacy errors and warnings and the automatic quickfixes provided
by Coconut are presented in Table 5.3.

Privacy annotations are customized Java annotations, which need to be predefined in Co-
conut’s privacy annotation support library. The source and sink annotation annotate the code
when the data is acquired and when it leaves the app. The third-party lib annotation is used
to specify some configurations not defined in the code. For example, AdMob offers developers
a web-based management system to specify whether the location-based advertising service is

2https://www.jetbrains.org/intellij/sdk/docs/welcome.html
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enabled. And I request the developer to also specify the same thing in the annotation so that
Coconut can correctly infer the code behavior.

5.2.4 Pilot Study and Feedback
During the development process of Coconut, I solicited early feedback from six developers to im-
prove usability. I accepted suggestions that I felt were feasible for the first prototype of Coconut.
For example, I observed that developers tended to quickly test how to use new APIs. However,
an error that prevents compilation (e.g. a missing or incomplete annotation) made it harder to just
try out an API. Consequently, I updated Coconut to let developers temporarily ignore annotation
compile errors. However, missing annotations still appear as errors, and need to be addressed
before building the final app, because I still treat these annotations as a requirement.

5.3 Coconut Evaluation

5.3.1 Participants
To evaluate the usability and effectiveness of Coconut, and to gain a better understanding of
how developers handle users’ personal data with and without my tool, I conducted a series of
in-lab studies with 18 participants from March to May 2018. My participants were recruited
from two sources. The first source was developers on LinkedIn. I used "Android Developer" as a
keyword and set the location filter to my local area to make sure developers can come to my lab
to participate in the study. I found 30 qualified candidates in total and then contacted them using
LinkedIn InMail. The second source was computer science students at my university. I posted
an advertisement in a related Facebook group and email lists, and also put up physical posters
for this study in my school. The study was approved by my university’s IRB.

Among the 18 participants (14 males, 4 females), 8 self-identified as professional Android
developers. All participants were over 18 years old and were familiar with using Android Studio.
I used a between-subjects design, with a control group (not using the plugin) and an experimental
group (using the plugin). I controlled the number of professional Android developers to be the
same in each group. Both groups had an average of 2.5 years of Android development experience.
Participants in the experimental group published an average of 2.3 apps on Google Play Store,
and the control group 2.2. See Table 5.4 for more information.

5.3.2 Study Task Design
Study participants were asked to complete two programming tasks: a warm-up task and a main
task. The warm-up task helped participants get familiar with the programming environment, and
also served as a reference of their expertise in developing Android apps that handle personal data.
In the warm-up task, developers needed to handle a run-time permission request for location,
collect the actual location data, and display the current latitude and longitude on the main UI.

When designing the main task, I focused on three key aspects: the feasibility of finishing it
within a limited amount of time, the scope of the privacy principles it can cover, and the eco-
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logical validity of the use cases. The high-level goal of the main task was to build a weather
app. I drew on a widely-used feature in popular weather apps such as The Weather Channel3

and AccuWeather4, which is to provide location-based weather information. Multiple privacy
principles should be considered here. First, the granularity of location should be subject to the
purpose of getting weather information, which does not need to be very precise (purpose limita-
tion). Second, the app needs to send the location data to a third-party weather provider service to
get the weather information, which entails data sharing practices for the core functionality of the
app and should be clearly conveyed to the users in advance, to conform to the privacy principles
about providing privacy notices, especially for data practices that may be implicit to end users.

In addition to the core functionality, I also included some requirements for monetization and
analytics. These are common purposes for using personal data, but fewer end users are aware
of them, which may lead to privacy concerns. For app monetization, I asked developers to inte-
grate a banner ad using Google’s AdMob library, which is the most popular advertising library
on the market. Prior research has demonstrated that using these libraries can cause severe pri-
vacy concerns because they can collect users’ location data in the background when the location
permission is granted, which most users and developers are not aware of [29]. For analytics, I
asked developers to store the location data locally and assume it would be used for analyzing
users’ location history. Since location history can disclose sensitive information about a person,
it should be stored securely. I also required developers to collect a unique identifier for the user
and to store it with the location data. The selection of a unique identifier affects whether the
personal data is properly anonymized, and is also subject to the purpose limitation principle.

For both the warm-up and main task, developers were free to choose any system APIs and
parameters to use for collecting location data, generating/acquiring the unique identifier, and
storing the data. I provided skeleton code that handled things not related to the focus of this
study, such as updating the UI and initiating the network request to the weather web API5, to
save time and let participants focus on privacy.

5.3.3 Study Procedure

The study lasted for 1.5 to 2 hours. All participants came to my lab. I provided them with a
laptop (Mac OS or Windows based on their preferences) and an Android phone for development
and testing. Both Android Studio IDE and my Coconut plugin were installed. This study follows
a between-subjects design. Both groups did the warm-up task without the plugin enabled, and
only the experimental group had the plugin enabled for the plugin training process and the main
task. Participants were compensated with a $75 Amazon gift card.

After introducing the study goals and logistics, both groups started with the warm-up task,
which required them to obtain the current latitude-longitude location data and display it on the
screen. Both groups had 40 minutes for the warm-up task. The warm-up task was designed to
familiarize the participants with the development environment. It is also designed to compare
the performance of the two groups when both in the control condition.

3https://play.google.com/store/apps/details?id=com.weather.Weather
4https://play.google.com/store/apps/details?id=com.accuweather.android
5api.openweathermap.org
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Next, the experimenter walked participants in the experimental group through a tutorial of
my Coconut plugin, which used the same fictional use case in Section 5.2.1. The experimenter
explained the semantics of the source and sink annotations, explained the meaning of each field
of the annotations involved in this example, showed how to expand the field definition tooltip by
hovering on the field name, and introduced the three types of feedback from Coconut: “missing-
annotation error”, “annotation-code inconsistency warning”, and “privacy-concern warning”.
The tutorial was always available to the user during the study. This training process was to
familiarize them with programming with Coconut, especially the concept of annotations.

Figure 5.6: An example of the weather app in the main task.

Then both groups were asked to complete the main task of building a weather app (Fig-
ure 5.6). Only the participants in the experimental group had the plugin enabled. Both groups
had one hour to work on the main task. I explicitly asked developers from both groups to imagine
they were developing an app that would be used by real users and to take privacy into considera-
tion during the development process.

After finishing all programming tasks, I asked participants to fill out an exit survey that
had three sections. The first section asked them to write a privacy policy for the weather app
they just built. When writing the privacy policy, both groups could refer to the code they just
wrote. The experimental group could also use the PrivacyChecker to review their data practices,
as documented in their annotations. The second section had some factual questions about the
personal data practices of their app. The experimental group had a third section which solicited
feedback about the Coconut plugin.

Finally, the experimenter briefly interviewed the participants, asking about what considera-
tions they had for privacy when developing the app, what they thought about the plugin (only
for the experimental group), and the rationale behind some of their behaviors, such as ignoring
web resources that contained more privacy-preserving options, ignoring particular privacy er-
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rors/warnings or not addressing them properly, and not correctly answering the factual questions
in the exit survey. Notes were taken during the process.

The screens of the laptop and the Android phone were videotaped for later analysis, and no
audio was recorded. Screen recordings were played back to developers during the exit inter-
views to help prompt their memories. During the study, developers could use any web resource.
However, I required them to only use native APIs or Google Play Service APIs when obtaining
personal data due to the scope of APIs currently supported by Coconut.

In the training process, I would answer any question they had regarding the plugin. During
the programming tasks, I only answered clarification questions on task requirements, what they
could do (such as which part of the code they could change), and what resources they could use.
If the participant did not successfully finish the warm-up task within the specified time, I would
offer hints on what they were doing wrong (for both groups) afterwards. In this way, I could
observe more use of Coconut in the experimental group during the main task when ensuring both
groups received the same amount of help.

During each session, one experimenter observed the participant and took notes. These notes
include the actions the developer took, the search queries they used, and the thoughts they ex-
pressed verbally. After the study, the experimenter reviewed screen recordings to count the time
spent on each task and subtask and document some coding and information foraging behaviors.

5.3.4 Privacy Policy Evaluation Methodology

To avoid potential bias, I invited two external judges to evaluate the privacy policies created by
participants, as collected from the first section of the survey. One was a Ph.D. student studying
usable privacy; the other was a master’s student from a privacy engineering program and also
had research experience in usable privacy.

I invited the judges to come to my lab for this evaluation session. During the session, all
information was presented to the judge in one spreadsheet. Data from the two conditions were
aggregated and stripped of any group information. I first introduced to them the expected per-
sonal data practices if the entire task was completed, and presented all valid responses of privacy
policies with a description of the actual behavior of each app, since not all developers finished all
task requirements. I created two different spreadsheets for these judges. The responses and app
behavior description in these two spreadsheets were the same, with the order randomly shuffled
to minimize any ordering bias.

I asked the judges to first skim through all of the responses and then came up with a set of
criteria for judging these blurbs of privacy policies. I relied on their expertise and did not give
detailed instructions on how to judge the quality of privacy policies. Judge 1 referred to the Fair
Information Practices6 as the main criteria, and also added two more requirements “providing
true information” and “avoiding jargon” for evaluating the truthfulness and readability of privacy
policies. Judge 2 did not refer to any specific material. He considered requirements including
“providing accurate description”, “providing useful information”, “using plain language”, “ex-
plaining all data being collected in the app”, “specifying the purpose of using personal data”,
“providing users with ways to control data use”, “informing users of data sharing practices”.

6https://iapp.org/resources/article/fair-information-practices/
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Overall, their standards for good privacy policies almost overlapped. I asked the judges to assign
the rating for each response from 1 to 10, with 1 being the worst quality and 10 the best, based on
the rubrics they developed. They were also asked to think aloud and explain the reason for each
rating. The experimenter took notes in the meanwhile. The two judges conducted the evaluation
separately and independently.

5.3.5 Methodological Limitations

Acquiring a large sample for lab studies that involve observing programming process has long
been recognized as difficult. First, it is often hard to recruit software developers who usually
have a much higher income than the study compensation [16]. Second, the length of such studies
can be several hours due to the programming task, which can be hard to scale up. In my study,
I recruited 18 developers for a between-subject study, which was similar to many prior studies
with similar designs [35, 89]. However, the small sample size may still have implications on the
confidence to draw conclusions from the study results. Besides, although I have recruited devel-
opers with diverse development backgrounds from multiple sources, half of my participants were
still college student developers, which may not be representative enough of the entire population
of Android developers.

Although I have tried to design tasks that contain realistic use scenarios and explicitly asked
both groups to treat it as an app with real users, the lab study method still has its inherent limita-
tions. Because of the constraint on the time to finish the tasks, some of them may start building
the app with less careful plans and exhibit more fast prototyping behaviors than usual. Besides,
developers in both groups may pay more attention to privacy than usual, because they were
primed by the notion of privacy before working on the main task. Regarding the use of Coconut,
developers who used this plugin for the study may react more actively and positively towards the
plugin’s suggestions and warnings. On the other hand, their performance may also be negatively
impacted by the unfamiliarity and lack of trust of the tool because of the short-term exposure in
the lab session.

Some potential benefits of Coconut need to be examined with a larger and less controlled
study. For example, when developers work on a large-scale project, they may find the annota-
tions and the summary panel more useful for maintaining a correct understanding of the apps’
behavior; when they are not subject to the study task requirements, the process of doing anno-
tations and the feedback conveyed through the annotations may trigger more radical changes in
the design of the app to improve privacy.

5.4 Results

5.4.1 Research Questions

Nudging developers to adopt better privacy practices while programming can be challenging. For
example, some developers may habitually ignore and fail to address warnings, and it is unclear
whether developers can understand the underlying privacy concerns when filling the annotations.
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As such, I aimed to examine the overall effectiveness of Coconut using the following research
questions:

• RQ1: Can Coconut help developers avoid more privacy violations?
• RQ2: Can Coconut help developers gain a better understanding of their app’s personal data

practices (RQ2.1) and write better privacy policies (RQ2.2)?
• RQ3: Do developers consider Coconut to be useful and usable?

Previous studies on how developers think about and handle privacy mostly used retrospective
inquiries. In contrast, my lab study allowed us to closely observe how developers deal with
privacy issues while programming. Thus, I added a fourth research question:

• RQ4: What kind of challenges for privacy do developers face while programming and
when they have been primed with the notion of privacy in advance of the main task?

5.4.2 Results of the Warm-up and Main Task Completion Are Similar Be-
tween Two Conditions

I first present the results about task completion and the time spent on each task. Table 5.5
presents an overview of how participants in the control and the experimental group performed in
the warm-up task and the main task.

For those who completed the warm-up task, the average time for the control and the experi-
mental group was 27 and 24 minutes respectively. For those who completed the main task, the
average time for the control and the experimental group was 41 and 47 minutes respectively. The
average time spent on annotations (including completing the annotation, reading the tooltips,
attending to and resolving issues specified in the annotation) was 10 minutes. The number of
people who completed the main task was the same, while developers in the experimental group
spent slightly more time than those in the control group, possibly because of the extra cost of
annotation and the time spent on thinking about and dealing with privacy considerations. I will
further detail how developers perceive this cost in the following section as well as in the discus-
sion section at the end.

The success rate of the warm-up task was similar across the two groups, which suggest the
app development expertise was well balanced. I did not expect the success rate of the warm-up
task would be low, since I pre-tested these tasks with a convenience sample of graduate students
who had experience with Android programming and mobile privacy. My results suggest that
obtaining location data, which includes requesting location permission for the app, selecting the
location API to use, and debugging, can be very challenging for average developers. Note that
the main task had a higher completion rate, because parts of the main task overlapped with the
warm-up task.

5.4.3 Coconut Can Help Developers Write More Privacy-Preserving Code

Overall, the comparison between the two groups shows an improvement for privacy when us-
ing Coconut. More developers using Coconut only collected coarse-grained location data for
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weather information, only shared coarse-grained location data with the AdMob library, used
private storage for sensitive personal data, and selected the proper unique identifiers (Table 5.5).

I also examine why some developers using Coconut stayed with less optimal solutions, such
as getting fine-grained location data when the purpose did not require this level of accuracy. I
observed that some developers tended to ignore warnings. It could be that my choice of using
different colors from normal warnings in Android Studio led to developers not recognizing the
warning. Participant E4 also mentioned that he did not always trust the auto-generated annota-
tion, and he would like to first manually verify them several times to develop trust. This issue of
trust was discussed further as one of the limitations of my methodology in Section 5.3.5.

5.4.4 Coconut Can Help Developers Better Understand an App’s Behavior
Table 5.6 presents the responses to the second section of my post-study survey, which tested
developers’ comprehension of their apps’ behaviors. Some questions were not applicable for
developers who did not finish all required tasks, so some of the total counts (the denominator in
the fraction) was less than nine (size of each group).

For the overall comparison between these two groups, I only calculated descriptive statistics
because of the missing values due to the uncompleted tasks. I accumulated the number of all
valid answers and correct answers to calculate a overall correct answer rate. The overall rate of
correct answers for the experimental group was 88.14%, higher than the control group (66.67%).
The habit to ignore warnings and the insufficient trust in the auto-generated content may explain
some incorrect answers of developers using Coconut.

I expected developers who finished the weather feature to answer that the data was transmitted
to the server that hosts the weather API, and developers who integrated the banner ad to answer
that the data was transmitted to Google’s servers. However, most developers in the control group
failed to identify these two facts, especially the one for the ad library. The follow-up interviews
showed that the auto-generated annotations for this third-party library helped Coconut users learn
about this data sharing practice. The interview results also suggested that although developers
from both groups would know that the location was sent to a weather website if asked directly
about it, it was harder to recall it from memory without the prompt of annotations.

5.4.5 Coconut Can Help Developers Write Better Privacy Policies
I collected 18 privacy policies written for the weather app, and there was one invalid answer
from E2, which just contains one vague phrase “highly recommended”. This may be because
that person did not know what privacy policy means. In the following result analysis, I discarded
this outlier. I calculated an average of the scores from the two judges as the final store for each
privacy policy.

The median of the aggregated final scores for the privacy policies of the experimental group
and the control group were 5.875 and 2.750 respectively, and the former was significantly higher
(Mann-Whitney U Test7, U = 6.0, p < .005). This suggests that using Coconut can help
developers write better privacy policies.

7I use Mann-Whitney U Test because the ratings do not follow a normal distribution.
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Overall, the experimental group’s privacy policies covered more points in the two exter-
nal judges’ criteria, including “purpose specification”, “statement truthfulness”, “giving opt-out
options”, “discussing security protections”, “openness of implicit data practices (such as data
storing and data egress)”, and “readibility”. Several aspects exhibited the most salient improve-
ment, including “purpose specification”, “statement truthfulness”, and “openness of implicit data
practices”.

5.4.6 Coconut Is Perceived as Useful and Usable

Since the requirement of adding annotations can incur more cost to the developers, I specifically
asked them to evaluate if they perceived annotations as disruptive and time-consuming. I also
established a baseline by asking them to rate other kinds of coding tasks, such as adding a permis-
sion check before using a protected API and adding try-catch blocks to handle exceptions. The
results (presented in Figure 5.7a) suggest that developers perceived a moderate cost for adding
annotations, which was comparable to the cost of these existing requirements. Besides, they may
gradually feel more comfortable with it after using it as part of their regular development process
for a while. When asked why they did not consider the annotation to be very disruptive, some
participants ascribed that to the quickfix that generates annotation skeletons and the flexibility to
defer filling the annotation.

My survey results also suggest that developers considered many features of Coconut to be
very useful, and had great interest in using it for their future projects (See Figure 5.7b). Partici-
pants explicitly mentioned how they benefited from Coconut in the interviews, including thinking
more about privacy and recognizing privacy issues that they were previously unaware of because
of the annotations (E1, E4, E5, E6, E7), gaining more knowledge of their app’s behavior because
of the auto-filled values in an annotation (E2, E3, E6, E7, E8), getting to know more options and
making better design decisions due to the real-time feedback (E5, E6, E9), and streamlining the
process of reviewing the personal data practices using the PrivacyChecker overview panel (E1,
E4, E6, E9).

5.4.7 Challenges to Handling Personal Data Properly Observed While Pro-
gramming.

My lab study also provided us with an opportunity to observe how developers deal with privacy
concerns while programming. I present some new challenges and how Coconut helped address
them.

Challenges for Privacy in the Information Foraging Process

Similar to prior work that studied the implications of information sources on code security [15],
I also observed challenges for privacy involved in the information foraging process. Developers
used a wide range of information resources during the development process, including official
tutorials, API documentation, Q&A sites such as Stack Overflow, tutorials from other websites,
and code examples on GitHub. Many of the official tutorials were designed to take privacy into
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(a) The results of how disruptive and time-consuming developers perceived about the new requirement
of adding annotations (Coconut), and some existing requirements in Android Studio, including adding
code to check whether corresponding permissions are granted before invoking personal data API (check
permission) and adding try-catch blocks (try-catch) on a 7-point likert scale (1 for not disruptive/time-
consuming at all, 7 for very disruptive and time-consuming).
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(b) Perceived usefulness of Coconut and key features, as well as how much developers are willing to use
Coconut, on a 7-point likert scale (1=not useful/willing to use at all, 7=very useful/wiling to use). feature-
A: generate pre-filled annotation skeleton; feature-B: navigate between the API call and annotation for
the API call; feature-C: change annotation to the speculated value (when an inconsistency is detected);
feature-D: change code to privacy-preserving options.

Figure 5.7: Results of the plugin evaluation part of the survey: most developers found Coconut
and features of Coconut very useful, and considered the cost of adding annotations as moderate
and comparable to existing requirements. The median values of each group of results are marked
in the box.
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consideration. For example, the code example in “Get the last known location”8 only requests the
ACCESS_COARSE_LOCATION permission, so developers might not collect location data too fine-
grained for their purposes if they just followed the default option. Similarly, the “Best practices
for unique identifier” tutorial9 gives an extensive overview of principles and recommendations
for specific use cases to choose the proper unique identifier that protects users’ privacy.

However, according to the observed developers’ behavior and the exit interview results, de-
velopers did not make proper use of these resources to improve privacy, for four reasons.

First, some developers already had some experience with the APIs and a rough implementa-
tion plan. As such, they either searched very specific keywords that did not elicit these resources
in the search result, or directly skipped them because they wanted to just see a code snippet that
could refresh their memory of how to use a certain API (C2, C4, E8).

Second, some developers found or had the expectation that there would be too much infor-
mation in such documentation, and instead favored Q&A sites that had more concrete examples
to show “how this API works in context, more than just API doc that explains what’s the func-
tionality of each API in detail” (C7).

Third, some official tutorials did not cover all necessary steps, which caused trouble for
novice developers. Although 14 participants opened the “Get the last known location” tutorial
which recommended developers to use Google Play services location APIs, only 3 of them suc-
cessfully implemented the required feature with these APIs. Most developers got stuck when
setting up the Google Play Services in their project because there were no direct code examples
in that tutorial to refer to. As a result, many developers sought other resources for help, and
finally switched to using LocationManager APIs, which were easier to implement, but had
fewer granularity options, and required the developers to manage the low-level location provider
specification manually.

Fourth, developers did not always fully grasp the recommendations and the rationale behind
them. E3 admitted that although he saw the principle “Avoid using hardware identifiers” in the
“Best practices for unique identifiers” guidelines, he did not pay much attention to it because
he was lazy. Furthermore, I frequently observed during the coding process (and confirmed in
the interview) that developers tended to directly jump to code examples or keywords related to
code. For example, the same “Best practices for unique identifiers” document directly caused
C6 to search how to acquire Android ID when it actually opposed using Android ID for his case,
because he immediately noticed the keyword SSAID (Android ID) without paying attention to
the context where the keyword appeared. The results further motivated the need for a tool that
could actively check with the developer about their understanding of the behavior of the code
and remind them of better options.

The Common Strategy of “Getting the App to Work First” May Get in the Way of Privacy.

When interviewed about the rationale behind the decision-making process, some developers re-
ferred to a common theme: “doing things just for getting the app to work first” (C7, E2, E4).
Additionally, I frequently saw study participants do fast testing of APIs, which can act in conflict
with privacy requirements.

8https://developer.android.com/training/location/retrieve-current
9https://developer.android.com/training/articles/user-data-ids
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The location collection task was the most complex one because it involved a run-time permis-
sion request and because there were multiple APIs (e.g. location APIs from LocationManager,
FusedLocationProviderApi, and FusedLocationProviderClient) and parameters to
choose from. Furthermore, sometimes the sensor data may not be available or might update too
slowly. When the app did not work as expected, developers with little experience in these APIs
tended to try out each solution they found online or simply tweaked some parameters in the API
call until it worked. Meanwhile, some decisions that may be less privacy friendly (such as using
fine-grained location) were made because the app happened to work after changing the parameter
that determined the granularity, although it was not the right solution (C7).

My plugin can be helpful in mitigating this issue. For example, E8 in the experimental group
also faced the problem of not getting the location update fast enough. The right solution is to
change the parameter that controls the minimum update time interval. At first, she changed
the parameter that controls the granularity of the location data, and happened to get the app
to work temporarily. However, after this change, the parameter LocationDataType.FINE_
GRAINED_LOCATION was highlighted in purple, which indicated a potential privacy concern.
Then she kept investigating this problem and finally found the correct solution. This example
shows that my annotations and real-time code inspection can help developers stay aware of any
new privacy concerns in their code. Even if they decide to not deal with the concerns immedi-
ately, the warning can work as a reminder so they will not forget about it and handle it in the
future.

5.5 Appendix: Lab Study Survey Questionnaire

5.5.1 Section 1: Writing a Privacy Policy for the App
• How would you describe the personal data practices of your weather app to your users?

Imagine this is a paragraph in the privacy policy of your weather app.

5.5.2 Section 2: Factual Questions About the App Behavior
• What is the granularity of the location data that you collected for getting the local weather

info? (Select all that apply)

Fine-grained (10 meter accuracy under the best situations).

Coarse-grained (>100 meter accuracy).

Block-level (100 meter accuracy).

City-level (10km accuracy).

I’m not sure.
• What is the granularity of the location data that you collected for the analytics purpose and

were buffered on the phone? (Select all that apply)

Fine-grained (10 meter accuracy under the best situations).

Coarse-grained (>100 meter accuracy).
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Block-level (100 meter accuracy).

City-level (10km accuracy).

I’m not sure.
• How frequently does the app access location data for getting weather information?
• How frequently does the app access location data for analytics purposes?
• Are users able to reset the unique identifier that you choose?

Yes, they can reset it.

No, they can’t reset it.

I’m not sure.
• What is the scope of use of the unique identifier that you chose?

It’s shared by all other apps on the same device.

Only my app use this identifier to identify the user.

I’m not sure.
• Did you store the location data in a way that is only accessible to your app?

Yes.

No.

I’m not sure.
• Did you store the unique identifier in a way that is only accessible to your app?

Yes.

No.

I’m not sure.
• Where will the location data be transmitted to in the current version of the app? (Please

list all places that you can think of)

5.5.3 Section 3: Feedback on Coconut
(Only for the experimental group; Screenshot examples are omitted; All questions required a
subjective rating on a 1 to 7 likert scale, in which 1 means strongly disagree and 7 means strongly
agree)

• I felt that having to use annotations was disruptive.
• I felt that adding annotations was time-consuming.
• I felt that this error (checking permission) message was disruptive. Skip this question if

you don’t know what it means.
• I felt that this error (checking permission) message was time-consuming. Skip this ques-

tion if you don’t know what it means.
• I felt that this error (adding try-catch block) message was disruptive. Skip this question if

you don’t know what it means.
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• I felt that this error (adding try-catch block) message was time-consuming. Skip this ques-
tion if you don’t know what it means.

• I found the “Add LocationAnnotation annotation” type of quickfixes useful. Skip this
question if you don’t know what this quickfix is.

• I found the “Navigate to the annotation” type of quickfixes useful. Skip this question if
you don’t know what this quickfix is.

• I found the “Use the speculated value for this field” quickfix useful. Skip this question if
you don’t know what this quickfix is.

• I found the "Use Google Instance ID instead" type of quickfixes useful. Skip this question
if you don’t know what this quickfix is.

• I found this IDE plugin useful.
• Please describe in one sentence what you think the purple highlight indicates and what

you would do if you see that during programming. Skip this question if you never saw this
before.

• Please describe in one sentence what you think the red highlight indicates and what you
would do if you see that during programming. Skip this question if you never saw this
before.

• Please describe in one sentence what you think the red squiggly underline indicates and
what you would do if you see that during programming.

• I would like to use this IDE plugin in the future for my own projects.
• Do you have suggestions for other features for this plugin to help developers with privacy

when developing apps?
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Table 5.1: Annotations included in the current proof-of-concept prototype for the lab study: Lo-
cationDataType (location representation type such as latitude-longitude, altitude, speed, etc.),
Visibility (data accessed when app is in foreground or background), UIDType, UIDScope,
UIDResettability, AccessControlOption are pre-defined enum classes defined in the privacy an-
notation library.

Annotation Type Annotation Definition
Source Annotation

Location
• LocationDataType dataType
• Visibility visibility
• LocationPurpose purpose
• String purposeDescription
• String frequency

UniqueIdentifier
• UIDType uidType
• UIDScope scope
• UIDResettability resettability
• UIDPurpose purpose
• String purposeDescription

UndefinedPersonalDataType
• String dataType
• Visibility visibility
• String purposeDescription
• String frequency

NotPersonalData N/A
Sink Annotation

Network
• String retentionTime
• String destination
• String purposeDescription
• boolean encryptedInTransmission

Storage
• String retentionTime
• String purposeDescription
• AccessControlOption accessControl

Third-party Lib Annotation
AdmobAnnotation isLocationDataEnabledInAppSettings58



Table 5.2: APIs being tracked, and the corresponding annotation(s) required for the API in the
current proof-of-concept prototype for the lab study.

package containing the API API name Required annotation(s)
Data Source API

LocationManager getLastKnownLocation, requestLocationUp-
dates, requestSingleUpdate Location annotation

FusedLocationProviderClient getLastLocation, requestLocationUpdates
FusedLocationProviderApi getLastLocation, requestLocationUpdates
android.provider.Settings Secure.getString (only track when corre-

sponding parameter has the value "an-
droid_id")

UniqueIdentifier annotation

java.util.UUID randomUUID
TelephonyManager getDeviceId
TelephonyManager getImei
TelephonyManager getMeid
TelephonyManager getLine1Number
android.net.wifi.WifiInfo getMacAddress
BluetoothAdapter getAddress
com.google.android.gms.iid InstanceID.getId (Google Instance ID)
com.google.android.gms.ads identifier.AdvertisingIdClient.Info.getId

(Google Advertising ID)
Data Sink API

SharedPreferences.Editor putBoolean, putFloat, putInt, putLong, put-
String, putStringSet

Storage annotation, cor-
responding source an-
notation(s) or NotPer-
sonalData annotation

java.io OutputStream.write, Writer.write,
Writer.append...

com.android.volley RequestQueue.add Network annota-
tion, corresponding
source annotation(s)
or NotPersonalData
annotation

Third-party Lib API
com.google.android.gms.ads AdView.loadAd Admob annotation cor-

responding source and
annotation(s) for data
collected by the third
party at this point. An-
notations for this API
are automatically gener-
ated.
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Table 5.3: Privacy issues that can be detected in the current proof-of-concept prototype for the lab
study. These issues are detected by combining the code analysis and the annotations completed
by the developer. Automatic quickfixes are also provided for developers, which can be applied
with one click.

Severity Privacy
issue

Explanation How to fix

Error Missing
valid anno-
tation

The required annotation is not attached
to the target variable, or when the an-
notation is not completed with valid
values

Coconut can generate pre-
filled annotation skeletons

Warning Inconsistent
annotation

The values in the annotation are incon-
sistent with what is speculated from
the code. For example, such a warning
will be generated if the user specifies
PRIVATE_ACCESS in the Storage an-
notation while Coconut finds the data
is actually stored in the public area by
analyzing the API parameters.

Coconut can automatically
modify the annotation to
match the actual code behav-
ior or automatically modify
the API call to adapt to the
value specified in the anno-
tation

Warning Potential
violation
of purpose
limitation

The current data collection does not
match the best practice for the purpose
specified by the developer. For exam-
ple, such a warning will be generated
if the user collects a hardware ID (e.g.
MAC address) for tracking user behav-
ior within the app.

Coconut can automatically
modify the code to acquire
a UID that fits the purpose
specified by the developer
best

Warning Implicit
data col-
lection that
may not be
expected by
users

The visibility is specified as
IN_BACKGROUND in the cor-
responding source annotation, or
the background data collection is
initiated by a third-party library whose
behavior is already known

The tooltip of the warn-
ing reminds the developer to
provide explicit explanation
of this data collection behav-
ior in the privacy notice for
users.
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Table 5.4: Background information of the lab study participants regarding Android develop-
ment (yrs of exp: how many years of experience do they have in Android development; active?:
whether they were actively working on any Android development project as a software devel-
oper; pro?: whether they had worked as a professional Android developer; all apps: how many
Android apps they had developed; playstore apps: how many apps were published on the Google
Play store; made privacy policy?: whether they had the experience in making privacy policies.)

ID yrs of exp active? pro? all apps playstore apps made privacy policy?

C1 4 ✓ ✓ >5 3 ✓

C2 2.5 ✓ ✓ 3 1
C3 3 ✓ ✓ 3 3
C4 4 4 2
C5 2 ✓ >5 3
C6 4 ✓ >5 8
C7 1 3 0
C8 1 ✓ 3 0
C9 1 ✓ 3 0

E1 4 ✓ ✓ >5 4
E2 1 ✓ ✓ 2 0
E3 4 ✓ >5 12 ✓

E4 3 ✓ ✓ 3 1
E5 1 1 1
E6 1 ✓ 3 0
E7 4 3 0
E8 2.5 ✓ 3 1
E9 2 3 2
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Table 5.5: Overview of lab study results. C1-C9 are the nine participants in the control group, and
E1-E9 the experimental group using Coconut. Some developers did not complete all the tasks,
denoted ‘–’. Practices better for privacy are in bold. The meaning of each column are as follows.
“warm-up”: time spent on warm-up task; “main”: time spent on main weather app; “weather
loc.”: granularity of location for weather info (fine-grained: about 10m accuracy, coarse-grained:
about 100m); “ad loc.”: granularity of location collected by AdMob library; “storage”: whether
data stored locally is only accessible to this app (private) or also other apps (public); “UID”: type
of unique identifier in the weather app (GUID is custom globally unique IDs. Google Instance ID
and GUID are user-resettable, app-level unique identifiers which are recommended. Android ID
and Telephony ID are hardware identifiers in some versions of Android which are more privacy
invasive. See more at [52])

ID warm-up main weather loc. ad loc. storage UID

C1 22’34” 32’25” coarse fine private Google Instance ID
C2 19’54” 38’47” fine fine private GUID
C3 38’27” 37’30” fine fine public Android ID
C4 – 53’19” fine fine private GUID
C5 – – coarse fine private –
C6 – – fine fine – pseudo UID
C7 – – fine fine private Telephony ID
C8 – – fine – – –
C9 – 44’19” fine fine – GUID

E1 15’14” 60’ fine fine private GUID
E2 – – coarse coarse – –
E3 22’51” 30’34” coarse fine private GUID
E4 25’27” 51’14” fine fine private GUID
E5 – – fine – – –
E6 – – coarse – – –
E7 17’29” 34’29” coarse coarse private Google Instance ID
E8 38’58” 58’44” coarse coarse private GUID
E9 – – coarse coarse private –
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Table 5.6: Percentage of correct answers to factual questions regarding apps’ behavior. For the
fraction after the percentage, the denominator indicates the number of people that answered this
question, and the numerator indicates the number of people who answered it correctly. The last
row (‘Total’) calculates the percentage by directly accumulating the number of total answers and
total correct answers in each group.

Control Coconut

What is the granularity of the location data that you collected for get-
ting the local weather info?

66.67%
(6/9)

88.89%
(8/9)

What is the granularity of the location data that you collected for the
analytics purpose and were buffered on the phone?

75.00%
(6/8)

100.0%
(6/6)

How frequently does the app access location data for getting weather
information?

77.78%
(7/9)

75.00%
(6/8)

How frequently does the app store location data for analytics pur-
poses?

75.00%
(6/8)

100.0%
(6/6)

Are users able to reset the unique identifier that you choose? 100.0%
(7/7)

80.00%
(4/5)

What is the scope of use of the unique identifier that you chose? 71.43%
(5/7)

100.0%
(5/5)

Did you store the location data in a way that is only accessible to your
app?

50.00%
(3/6)

83.33%
(5/6)

Did you store the unique identifier in a way that is only accessible to
your app?

83.33%
(5/6)

80.00%
(4/5)

Where will the location data be transmitted to in the current version
of the app? (Please list all places that you can think of)

11.11%
(1/9)

88.89%
(8/9)

Total 66.67%
(46/69)

88.14%
(52/59)
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Chapter 6

Honeysuckle: Annotation-Guided In-App
Privacy Notice Generation

This chapter was adapted from my published paper:

• Li, Tianshi, et al. “Honeysuckle: Annotation-guided code generation of in-app privacy
notices.” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies 5.3 (2021): 1-27. [100]

In this chapter, I present my second IDE plugin, Honeysuckle, which is designed to help
developers integrate various types of privacy notices into the app interaction flow with low cost.
Honeysuckle was built atop Coconut and reused much of the code analysis engine. Specifically,
I streamlined the annotation design and introduced an additional XML file for UI configuration
(see Section 6.2.3), enhanced the code analysis engine by covering more data types and data
transmission APIs (see Section 6.2.4), and added a custom Gradle plugin to achieve the compile-
time code modification that is a new requirement for Honeysuckle (see Section 6.2.4).

6.1 Introduction
Effective privacy notices are essential for helping users make informed privacy decisions. In
the context of mobile apps, usable privacy researchers have advocated various in-app privacy
notices that are concise, informative, and user-friendly [19, 140]. This body of work, along with
increasing consumer concerns about privacy and an encouraging trend in recent privacy laws
(e.g., GDPR) and policies (e.g., Google Developer Policies), has led to smartphone operating
systems introducing many privacy features such as runtime permissions, background location
access alerts, and visible indicators of ongoing audio recording.

However, while system features like these can increase data transparency to some extent,
they are often coarse-grained [166] and limited to data types predefined by the operating sys-
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tem [12, 13]. As such, this leaves much of the responsibility of providing effective in-app pri-
vacy notices on app developers’ shoulders, which is a difficult task for several reasons. First, it
has been repeatedly found that developers tend to focus more on security factors over aspects of
privacy such as data transparency [70, 99, 143]. Second, developers’ incomplete understanding
of the concept of “privacy” may create inherent barriers to the adoption of techniques like in-app
privacy notices. Third, the design and implementation of effective in-app privacy notices can be
a challenging task even for developers who care about transparency issues. For instance, devel-
opers do not always know all data practices of their apps, especially when the app behavior gets
complicated and involves the use of third-party libraries [29, 150], or when the data practices
are not well documented [96]. Fourth, developers have limited knowledge about design choices
and best practices for privacy notices, which has led to uninformative or even misleading ones in
real-world apps [108, 125]. Lastly, there is little developer support to help developers keep pace
with ever-changing legal and policy requirements, and systematically improve their apps’ data
transparency [99].

In this chapter, I present Honeysuckle, a developer tool consisting of a plugin for the An-
droid Studio IDE, a plugin for the Gradle build system, and a privacy notice library (Figure 6.1).
Combined, these components jointly support a new approach of implementing in-app privacy
notices, namely annotation-based generation of privacy notices. Instead of treating each privacy
notice as a separate feature to implement, Honeysuckle only requires developers to (a) use Java’s
existing annotation feature to annotate each data source and sink with descriptions of data prac-
tices, e.g. declaring the purpose of data use; and (b) optionally modify a configuration file to
fine-tune the frequency and visibility of the privacy notices. Honeysuckle can then transparently
generate code at compile time that links to my privacy notice library, implementing the privacy
notice UIs based on these privacy annotations, the configuration file, and code analysis results.
Figure 6.2 illustrates how annotations are used to generate privacy notices and demonstrates a
list of example privacy notices that can be generated using Honeysuckle.

My novel annotation-based approach is grounded in three key design considerations that can
benefit both developers and users. First, it gives developers control over the generated UI to
provide context information and configure the behaviors of privacy notices at a relatively fine
granularity. Second, it reduces the implementation and maintenance cost of in-app privacy no-
tices by minimizing redundant information and providing alerts for inconsistency. Third, my
IDE plugin offers features that can help developers track and annotate all places that collect,
store, and transmit sensitive user data (i.e., data sources and sinks), which improves the accuracy
and comprehensiveness of information conveyed in the privacy notices. Overall, I believe Hon-
eysuckle demonstrates a viable path forward to reducing the barriers to adopting in-app privacy
notices while also improving the consistency of in-app privacy notices across apps by different
developers.

To evaluate Honeysuckle, I conducted a within-subjects programming study with 12 Android
developers. During the study, each participant was asked to implement and integrate in-app
privacy notices (as demonstrated in Figure 6.2) for two popular open-source apps, a notification
manager app with over 1M installs and a note-taking app with over 100K installs. A challenge,
however, is that the current state of the art is to build these privacy notices manually, which would
not be a good baseline for comparison since it clearly takes a great deal of time and energy to
design and implement these notices. That is, I felt that I would not learn much against offering
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IDE plugin facilitates developers 
to annotate sources and sinks of 

personal data flows

Programming time

Build system plugin modifies 
the codebase to insert the 

generated code 

Compile time Execution time

The generated code calls APIs of 
the Honeysuckle library to 

show privacy notices

Figure 6.1: Honeysuckle consists of three components: an IDE plugin, a build system plugin, and
a privacy notice library. As illustrated by the flowchart, the three components each play a role
at the programming time, the compile time, and the execution time of an app’s life cycle to help
developers implement in-app privacy notices. The IDE plugin facilitates developers to annotate
the code, and the annotation will later be used to generate privacy notice code. The generated
code will be inserted into the app during compile time by my build system plugin. Finally, the
generated code calls APIs provided by my library to show privacy notices during runtime.

no support. Instead, I decided to compare my annotation-based approach (a relatively unfamiliar
approach for participants) against simply using my own privacy notice library. I felt that this
approach would be a reasonable approximation of how developers or large organizations might
provide reusable privacy notices.

My results show that the annotation-based approach proposed by Honeysuckle significantly
reduced the time and the cognitive load of implementing fine-grained, contextualized privacy no-
tices for the two open source apps than using my library directly. Within the 40-minute allocated
time, all 12 developers completed all the required privacy notices using the annotation-based
approach, while only 2 developers completed the same task using the library. All participants
considered the annotation-based approach much easier to use and learn than the library-based
approach because the clear step-by-step guidance provided by my Honeysuckle IDE plugin ef-
fectively reduced the learning curve, the use of quick-fixes and code generation allowed devel-
opers to write much less code, and the use of annotations reduced redundancies and made the
code easier to comprehend.

This chapter makes the following contributions:
• I present the design and implementation of Honeysuckle, an Android developer tool that

offers annotation-based generation of privacy notices. Honeysuckle consists of an IDE
(Android Studio) plugin, a build system (Gradle1) plugin, and a privacy notice library.

• I conducted a controlled, within-subjects programming study to evaluate these two ap-
proaches of implementing in-app privacy notices supported by Honeysuckle. My results
show that the annotation-based approach helped developers build in-app privacy notices
faster with significantly lower cognitive load than manually implementing and integrating
them using a library.

1Gradle is an open-source build automation system that is widely used for Android development. It simplifies
the process of compiling, testing, and packaging your app by automatically handling tasks like dependency man-
agement, incremental compilation, and code generation. Gradle uses a domain-specific language based on Groovy
or Kotlin DSL to define build scripts, allowing developers to customize and optimize the build process to suit their
project requirements. In Android Studio, Gradle is integrated to provide a seamless development experience, making
it the default build system for Android apps.
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  PermissionNotice.showAllDialog(getApplicationContext(),
    new PersonalDataGroup[]{PersonalDataGroup.Location},
    dialog -> ActivityCompat.requestPermissions(MainActivity.this,
      new String[]{Manifest.permission.ACCESS_FINE_LOCATION}, 0));
  ActivityCompat.requestPermissions(MainActivity.this,
    new String[]{Manifest.permission.ACCESS_FINE_LOCATION}, 0);  

In function onboardingPage:

  Location loc = getLastKnownLocation();
  HSNotificationUtils.pushPrivacyNotification(getApplicationContext(),
    “location_for_optimizing_locally_relevant_news”);

In function optimizeLocallyRelevantNews:

  @Source(
    sourceData = DataType.Location,
    purposeName = R.string.for_optimizing_locally_relevant_news)
  Location loc = getLastKnownLocation()

In function optimizeLocallyRelevantNews:

In function MainActivity.onCreate:

  privacyCenterBtn.setOnClickListener(v -> {
    startActivity(new Intent(
      MainActivity.this, PrivacyCenterActivity.class));
  });

  @Source(
    sourceData = DataType.Location,
    purposeName = R.string.for_sharing_location_with_friends)
  Location loc = getLastKnownLocation()

In function shareLocationWithFriends:

Library Annotation

In function MainActivity.onCreate:

  privacyCenterBtn.setOnClickListener(v -> {
    startActivity(new Intent(
      MainActivity.this, PrivacyCenterActivity.class));
  });

In file MyPrivacyInfoMap.java:

  putSourcePrivacyInfo(
    “location_for_optimizing_locally_relevant_news”,
    PersonalDataGroup.Location,
    "For optimizing locally relevant news”,
    ONE_TIME_COLLECTION, false, NOTIFICATION_ALWAYS_POP_OUT, true);

In file MyPrivacyInfoMap.java:

  putSourcePrivacyInfo(
    “location_for_sharing_location_with_friends”,
    PersonalDataGroup.Location,
    “For sharing location with friends”,
    ONE_TIME_COLLECTION, false, NOTIFICATION_ALWAYS_POP_OUT, true);

Invoke privacy 
notice center

Declaration 
of data 

practices

Just-in-time 
notice 1

Just-in-time 
notice 2

Permission 
explanation 

dialog

In Configuration 

In Control Logic

In Control Logic

  Location loc = getLastKnownLocation();
  HSNotificationUtils.pushPrivacyNotification(getApplicationContext(),
    “location_for_sharing_location_with_friends”);

In function shareLocationWithFriends:

Figure 6.3: An illustration of code changes required to implement the same in-app privacy no-
tices for two location features using the library and the annotation-based method. In the code,
green highlights indicate lines that were added; red indicates lines that are removed; grey in-
dicates lines that are unchanged. Between the two conditions, the dashed lines connect code
that conceptually serves the same goal, and the solid line connects the same code. We can see
that using annotations substantially reduces the amount of code that developer needs to write.
The annotation-based approach also supports a more uniform format while the library-based ap-
proach requires developers to handle low-level implementation tasks using different APIs and
declare data practices in a different place from the actual sources and sinks (outside the control
logic).

6.1.1 Motivating Example: Library vs. Annotation

Below, I offer two scenarios to help convey the intuition of how Honeysuckle’s two approaches
for in-app privacy notices work. Bao is an Android developer working on a social media app and
has just finished two features using location data. The first feature silently accesses the latest GPS
location when the user refreshes the news feed, to optimize the relevance of the results based on
the current location (mainly implemented in the function optimizeLocallyRelevantNews).
The second feature allows users to view their current location in a map and send the location to
selected friends.

She aims to implement three types of in-app privacy notices to enhance data transparency,
as recommended by the usable privacy literature. First, she wants to show a dialog that ex-
plains both purposes before location permission requests are made, to help users make informed
decisions [104, 157, 166]. Second, she wants to show just-in-time notifications when the app
accesses location data to notify users about the data collection behavior and the corresponding
purpose [140]. Lastly, she wants to implement a privacy notice center to provide an overview of
all data practices and the purposes of this app, and allow users to configure the notice visibility
and frequency based on their preferences [140]. Figure 6.2 shows the reference designs of these
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privacy notices.
One straightforward way to implement in-app privacy notices is to treat different types of

privacy notices as different features and handle them individually. Hence, in the first scenario,
I demonstrate how Bao can implement the three target features using the Honeysuckle library
APIs. The “Library” column of Figure 6.3 illustrates the main code changes that Bao needs
to make. She needs to manually track code that handles location data collection and loca-
tion permission requests and modify the code to implement the privacy notices. She needs
to declare information about the data practices such as the purpose in a separate file from the
actual data source or sink. She also needs to choose the proper APIs for different types of
privacy notices (in this example, HSNotificationUtils.pushPrivacyNotification and
PermissionNotice.showAllDialog), and to integrate the privacy notice center into the app.
This entire process involves a lot of manual work. Informally, I observe that while this library
approach is feasible, there will be challenges in terms of implementation and maintenance for
apps with more data practices, especially if the types of required privacy notices change [11, 99].
I also re-iterate that currently for Android, there is no support for building these kinds of privacy
notices.

The second scenario demonstrates an alternative approach, namely shifting from “imple-
menting the features” to “declaring the data practices”. This time Bao only needs to declare
the data practices by adding annotations to code that handles the collection of location data in
different contexts and manually integrate the privacy center so she can decide where to embed it.
Honeysuckle can then automatically generate other code for in-app privacy notices (which still
uses my library under the hood) and insert it at the right place in the source code. This method
is a variation of the classic idea of “model-based user interface design” [117], which aimed to
reduce developers’ workload by having them focus on what rather than how. In addition, my
Honeysuckle IDE plugin runs an always-on code analysis to detect code signatures of APIs that
may be related to the collection, storage, and transmission of sensitive user data, so as to prompt
developers to add these annotations in real time and provide quick-fixes to streamline the task.
This can further reduce the burden of manually tracking all data practices and may improve the
coverage and accuracy of the in-app privacy notices accordingly.

6.2 Honeysuckle Design and Implementation

To help developers who are not privacy experts implement in-app privacy notices following the
best practices, I designed and implemented Honeysuckle. My design is mainly driven by the
three design goals:
D1 Give developers control over the privacy notice UI.

D2 Reduce the implementation and maintenance cost of privacy notices.

D3 Increase the accuracy and coverage of privacy notices regarding the actual app behavior.
D1 is a basic requirement as developers need to have sufficient flexibility to customize the

generated interfaces to tailor to the app behavior. In addition, this design goal is also crucial for
leveraging developers’ knowledge about their apps to generate in-app privacy notices that can
accommodate different users’ privacy preferences under different contexts [104]. D2 is moti-
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vated by the implementation and maintenance cost challenge as explained in Chapter 3. Since
developers usually treat privacy as a secondary concern [27, 96], minimizing the workload of
implementing privacy features is an important requirement for voluntary adoption. D3 is moti-
vated by the challenges of developers lacking awareness and knowledge about privacy and often
not having a precise and up-to-date understanding of their own apps’ data practices as discussed
in Chapter 3.

Honeysuckle consists of three components: an Android Studio plugin, a Gradle plugin, and
a privacy notice library. Developers can use the Honeysuckle library alone to implement privacy
notices in a conventional way, which gives developers control (D1 ✓), albeit at the cost of still
significant implementation and maintenance effort (D2 ✗). Developers may also not be able
to keep track of all data practices due to challenges detailed in Chapter 2, which can result in
inaccurate or incomprehensive privacy notices (D3 ✗)

Alternatively, developers can use the entire Honeysuckle system to annotate the code and
modify a configuration file to generate code that calls the library to create in-app privacy notices.
This method greatly reduces the implementation and maintenance effort (D2 ✓) and provides
the same control over the generated UI. (D1 ✓). Furthermore, my Honeysuckle Android Studio
plugin provides features that help increase the accuracy and coverage of data practices declared
in the annotations to improve the generated privacy notices (D3 ✓).

In the following, I first present the design of the in-app privacy notices supported by Honey-
suckle. Then I describe how I designed Honeysuckle to support the two approaches mentioned
above to implement these in-app privacy notices. I describe the implementation of the main
modules of Honeysuckle at the end.

6.2.1 Privacy Notice Designs and Rationales

I present the design of the in-app privacy notices supported by Honeysuckle and explain their
relationship with best practices advocated by prior literature. My design decisions concern two
aspects: timing and content.

Timing

According to Schaub et al. [140], the timing of these notices is a key consideration. I designed
three types of privacy notices corresponding to three timing options described in that paper: at
setup, just in time, and on demand.
T1 at setup: A dialog shown before permission requests that proactively explains the purposes

of the permission request and the related data egress and retention behavior (Figure 6.2
(a)).

T2 just in time: A just-in-time notification that appears immediately as the data is accessed or
sent off the device by the app (Figure 6.2 (b)).

T3 on demand: A privacy center that contain a hierarchical overview of all sensitive data prac-
tices in this app. Unlike the previous two types, the privacy center shows up on demand,
so it can contain more in-depth information about the apps’ data practices (Figure 6.2
(c)(e)(f)).
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Information

Privacy notices should reduce potential notification fatigue and habituation by highlighting un-
expected and sensitive data practices. My design is based on recommendations of prior research,
common practices of real-world systems, and requirements of privacy laws. I detail each design
and the supporting literature below.

I1 Data use purpose: Prior research has recommended apps to explicitly explain their purposes
of data use to users especially before permission requests to help them make informed
decisions and also feel more comfortable with sharing data with the app [104, 157, 166].
These recommendations were later adopted by the Android official documentation about
best practices regarding permission requests [50].

I2 Third-party data use: Research has showed that 3rd-party data use causes most privacy con-
cerns because they are unlikely to be expected by users and are often used for purposes
such as targeted advertising that do not provide direct benefits to users [41, 152]. Many
privacy laws and app store policies now require developers to explicitly specify data shar-
ing with third parties in privacy policies.

I3 Data egress and retention: Data egress and retention can both lead to higher secondary data
use and data breach risks. Researchers have proposed program analysis techniques to
automatically detect [63] and alert users about these sensitive data practices [110].

I4 Background access: Background data access is likely unexpected by the user, and therefore
deserves more explicit alerts [134, 140]. For example, both iOS and Android allow users
to only grant permission to location collection in the foreground. iOS also occasionally
alerts users about background location collection.

I5 Data access frequency and time: Prior research has demonstrated that showing when and how
frequently an app has accessed sensitive data can nudge users to improve their awareness
of sensitive data practices and take more action to protect their privacy [19, 28].

6.2.2 Honeysuckle Library-Only Mode
I designed a library for implementing all the proposed features. Figure 6.3 shows an example of
how to use the library to implement in-app privacy notices for two location features in a social
media app. Developers need to use three different APIs to implement privacy notices shown at
different times.

For T1, developers replace all permission requests with PermissionNotice.showAllDialog
function calls to show the permission explanation dialog.

For T2, developers call the function HSNotificationUtils.pushPrivacyNotification
after all data sources and sinks to show a just-in-time notification when the data is collected or
sent off the device. A string identifier of the current data usage needs to be passed as a parameter
to retrieve the purpose of the current data usage and configurations about how to show the pri-
vacy notice declared in a separate file (see the MyPrivacyInfoMap.java in Figure 6.3 as an
example; details will be provided later).

For T3, developers call startActivity and pass PrivacyCenterActivity.class as
a parameter to open the privacy center. PrivacyCenterActivity is an activity class defined
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by the Honeysuckle library. It can automatically load data practices declared in the configuration
file and populate the privacy center with these data practices at runtime. Note that developers
need to manually call this API both when using the library alone and when using annotations
to generate privacy notices, because developers should be able to determine where to embed the
entry point of the privacy center in their apps.

In addition to the three APIs, developers also need to declare what information will be
presented in the privacy notices (based on information types listed in Section 6.2.1) and de-
fault configurations about how to show the privacy notices for each source and sink using the
putSourcePrivacyInfo and putSinkPrivacyInfo APIs. Each API call creates and regis-
ters an instance in a global privacy information map that is used to populate privacy notices at
runtime, so the first parameter of the API call needs to be a unique identifier for retrieving the
instance. Developers need to pass five parameters to putSourcePrivacyInfo: the data type
by choosing a predefined option, the purpose of data use, whether the data is used by a third-
party library, whether the data will be stored or sent off the device, and whether it is a one-off,
periodic, or continuous data collection. For each data sink, developers need to provide all of the
parameters above, as well as a list of the identifiers of all the sources of the data flow to the sink,
and a string that describes the type of data that will leave the sink node. My Honeysuckle library
can automatically determine whether the app collects sensitive data in the background, hence
developers do not need to handle this themselves.

Regarding how and which type of privacy notices is shown, developers need to pass two pa-
rameters. One is an enum parameter that determines how frequently the just-in-time notification
will pop up (e.g., one possible option is NOTIFICATION_ALWAYS_POP_OUT as demonstrated in
Figure 6.3). The other is a boolean parameter that indicates whether to record the timestamps
of a data collection, data retention, or data egress activity and show them in the privacy notice
center (see Figure 6.2 (c) (d) and (e)).

6.2.3 Honeysuckle Annotation-Based Code Generation Mode
Although the Honeysuckle library can help generate in-app privacy notices, it comes at a signifi-
cant development cost due to all the repetitive code that has to be added. For instance, developers
need to explicitly specify information already encoded in the source and sink API such as the
data type, whether it is a third-party API, and whether it is a one-off or periodic data access. Fur-
thermore, using the Honeysuckle library alone leads to higher maintenance effort since the code
that handles privacy UI is scattered across the project. These limitations suggest that the library
approach may not effectively achieve design goal D2. In the meanwhile, using the Honeysuckle
library alone may also not satisfy the design goal D3 because developers may not recall all the
data practices of their app and not keep up-to-date documentation [29, 96].

To address these problems, I propose annotation-based code generation. The key idea is to
move from having developers directly implement in-app privacy notices to having them declare
relevant privacy-related information using custom Java annotations and a UI XML configuration.
my build system plugin can then automatically generate code that implements in-app privacy
notices based on that information at compile time.

To help developers add annotations that cover all sources and sinks and include accurate in-
formation (addressing D3), I designed the Honeysuckle IDE plugin to give developers real-time
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feedback to help them identify missing annotations or annotations with errors. My IDE plugin
also provides several automation features, such as quick-fixes to annotation errors and automati-
cally generating a default UI XML configuration for each source and sink. These features further
streamline the actions developers need to do at programming time, thus helping with D2.

Annotation and UI XML Configuration

I put the information related to data practices in annotations that are directly embedded in the
control logic right next to the corresponding data sources and sinks and put the information about
the UI behavior in a separate UI XML configuration file (see examples in Figure 6.2). The an-
notations and the UI XML configuration together serve the same goal of the privacy information
map in the library mode (Section 6.2.2), while the new method leverages the software design
principle of separation of concerns to result in code that is easier to read, maintain, and analyze.

Table 6.1: @Source and @Sink annotation definition in Honeysuckle.

Annotation type Annotation fields

@Source
sourceData (DataType enum value)
purposeName (int, String resource ID)

@Sink
sources (@Source list)
sinkData (int, String resource ID)
purposeName (int, String resource ID)

Table 6.1 demonstrates the definition of the two main annotations: @Source and @Sink.
While programming, developers need to annotate the sources and sinks of the sensitive data flows
in their app using these two annotations. The two annotations only need the purposes of data use
and the connection between sources and sinks from developers, because other information in
privacy notices can be automatically inferred and inserted into the generated code at compile
time.

I designed the UI XML configuration to provide developers with some options to control
how to show the privacy notices at the granularity of <datatype,purpose> pairs. Note that
multiple API calls can be used collectively to achieve the same purpose. In my terminology, they
are considered as the same sources and sinks.

Honeysuckle IDE Plugin

The two main design goals of the IDE plugin are to help improve the accuracy and coverage of
annotations and streamline the editing of annotations and the UI XML configuration. To achieve
this goal, my IDE plugin provides developers with step-by-step guidance to walk through a
usual workflow for implementing in-app privacy notices using the annotation-based approach as
demonstrated in Figure 6.4.

This workflow can be roughly divided into three steps (corresponding to A, B, C in Fig-
ure 6.4), although there is no strict order restriction. In the first two steps, developers can see
all the source and sink API calls that remain to be annotated marked in code and listed in the
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Figure 6.4: This figure demonstrates the main features of the Honeysuckle IDE plugin via an
example use case. First, the app developer opens the PrivacyUIIntegration panel (A-1) to
see what code accesses sensitive user data (i.e., data sources) as detected by the plugin. Then
she can use the quick-fix “Add Source annotation” (A-2) to add an annotation for each of these
sources and complete required fields in the annotation (e.g., purposeName) (A-3) to resolve the
“(incomplete)” errors. Similarly, she needs to annotate “sinks” that may store or send sensitive
user data off device (B-4) with the help of quick-fixes (B-5). To indicate how data flows, she also
needs to explicitly specify all sources (represented by the source annotations) that may reach this
sink (B-6). Lastly, she can modify an XML configuration file automatically generated by the
IDE plugin to fine tune the UI behavior (C-7). For example, she can adjust whether to show JIT
notification for each source and sink to avoid overwhelming users with unimportant notifications
(C-8).
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a. Reminding dev to remove invalid UI configuration entry

b. Reminding dev to fix non-existing @Source referred in @Sink

c. Reminding dev to fix source data type inconsistent with the API

Figure 6.5: This figure demonstrates three types of auto-checks that can be conducted by the
Honeysuckle IDE plugin. The general design principle is that the IDE plugin only aims to provide
timely reminders to developers about annotations and UI configuration entries that may be invalid
or outdated, and expects the developers to take the initiative to fix the issue.

“Privacy UI Integration” panel (Figure 6.4 (1) and (4)). Then they can use the quick-fixes to add
a partially filled @Source (or @Sink) annotation to the source (or sink) code. There are three
design considerations for the quick-fixes that I want to highlight. First, for the purposeName

field, my quick-fix will generate a “for_” prefix to nudge developers to use expressions like “for
labeling locations in notes” that provide concrete explanations of the data use purpose rather
than simply paraphrase generic permission requests [108]. This consideration is also explained
to developers in error messages for missing annotations. Second, for each sink, I have mul-
tiple quick-fixes that each generate a @Sink annotation with an existing @Source annotation
filled in the sources field (Table 6.1). I also have quick-fixes to add more @Source annota-
tions to @Sink annotations. Third, since false positives are inevitable in automatically detected
sources [76] and sinks [23], I allow developers to use NoPersonalDataCollected to explic-
itly indicate that sensitive user data is not collected at this point to suppress the alerts. However,
there is a risk that developers may provide false information and I further measure and address
this issue in Chapter 7.

In the third step, developers can use the “Privacy UI Configuration” panel to examine the
current UI XML configuration in the panel or in the original code. To minimize the code that
developers need to write, my IDE plugin automatically updates the configuration file if new
sources and sinks have been added. Therefore, developers only need to modify this file if they
want to change certain options. Furthermore, code auto-completion is provided when developers
edit the configuration file (Figure 6.4 (8)).
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@NoSpecificUseCase informs the IDE plugin that @Sink will be 
deferred to where the helper function “”writeToFile  is called

Honeysuckle IDE plugin can guide developers to find the new 
potential “sinks” using quick-fixes and by refreshing the “Privacy 

UI integration” task list

Figure 6.6: Annotation and IDE design example: Sometimes an app might have helper functions
to collect, store, or transmit data, which leads to a tricky case that one sensitive API call can be
used for multiple purposes. In this example, the app creates a helper function “writeToFile” that
calls a system API “osw.append(text)” to write data to files. However, because the helper function
is called from two different contexts which store different data for different purposes, directly
adding a @Sink annotation to the “text” variable is not sufficient for distinguishing between these
two contexts when the app is running. Therefore, I added a new annotation @NoSpecificUseCase
to allow developers to provide a cue to Honeysuckle to skip the @Sink requirement for the
current level of the function call stack, so developers can annotate @Sink for helper function
calls to distinguish data use in different contexts.

In addition to the usual workflow, my IDE plugin also runs code inspection continuously
to help developers identify and fix invalid or outdated annotations and UI configuration entries
(Figure 6.5). To raise developers’ awareness, annotations that contain these errors will be both
marked in the code and indicated in the two panels. To achieve a balance between convenience
and control, I only show the errors and provide some quick-fixes to help resolve the errors, thus
relying on developers to take the initiative to make the actual changes.

During the development of Honeysuckle, I observed that some developers may create helper
functions that are often called under different contexts for different purposes. In this situation,
directly annotating the source or sink in the helper function will have to conflate the different
purposes and therefore fail to provide contextualized privacy notices. In the following, I use an
example of a writeToFile helper function (Figure 6.6) to demonstrate how my Honeysuckle
IDE plugin help handle this task using a new annotation: @NoSpecificUseCase.

My method is analogous to a Java method throwing an exception and require the caller to
handle things. When a developer chooses to use the @NoSpecificUseCase annotation to indi-
cate that the original sensitive sink API can be used for multiple purposes in different situations,
the IDE expands the sink API list to also include the helper function itself. The IDE plugin then
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analyzes which parameter of the helper function can reach the initial sink target variable (text),
and identifies the second parameter as the new target variable of the helper function. Then the
developer can either use the quick-fixes to navigate to the helper function calls or refresh the
“Privacy UI Integration” to reveal additional tasks due to the addition of the helper function
as a new sink. This can be a recursive process in which developers can keep adding multiple
@NoSpecificUseCase until a specific use case is available. For @Source annotations, the
process is similar except that the return value of the helper function will be treated as the new
target variable.

Honeysuckle Build System Plugin

As alluded earlier, my build system plugin can generate code for providing in-app privacy notices
using the Honeysuckle library based on the annotations, the UI XML configuration, and the code
analysis results. A specific design goal of my build system plugin is that when generating the
in-app privacy notice code, there should be as little impact on the programming, debugging, and
execution of other code as possible. One related design choice is that the mapping between the
line number and code should remain the same after modification, so that developers can debug
the app with the source code as usual. Towards this end, Honeysuckle appends all the additional
code for each source and sink in the same line.

6.2.4 Honeysuckle Implementation

Code analysis (IDE plugin)

Source detection
(data collection)

Sink detection
(data store, network reqs)

Flag errors and show 
quick-fixes 

“Privacy UI integration” 
panel (annotation tasks)

“Privacy UI Config” panel 
(Edit UI XML config)

Support for adding 
annotations and editing UI 

config file (IDE plugin)

Modify code and swap 
compile source

(Build system plugin)

Show privacy notices at 
execution time

(Library)

Figure 6.7: Honeysuckle system overview. The three colors correspond to the three components:
the IDE plugin, the build system plugin, and the library.

My system consists of three main modules: an IDE plugin (implemented for Android Studio),
a build system plugin (implemented for Gradle), and an Android library for creating in-app
privacy notices. Figure 6.7 presents four main functionalities of Honeysuckle and I introduce the
implementation for each of them below.

IDE Plugin: Code Analysis

The code analysis subsystem of Honeysuckle was built on top of the analysis engine of Coconut
(Chapter 5), which supports real-time API call detection based on method signature matching.
I expanded the source and sink API list of Coconut and ended up with 568 source APIs and
76 sink APIs supported by Honeysuckle. Source APIs are defined as APIs that directly trigger
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sensitive data collection and sink APIs are APIs that store or send data out of the phone. First-
party APIs were selected by reviewing the Android documentation and Third-party APIs were
selected using stacktraces of third-party libraries collected by Chitkara et al. [41]. Honeysuckle
covers 18 sensitive data types, two of which were adapted from Coconut (location and unique
id) and the other 16 types were added by us. The sensitive data types are listed in Table 6.2.

Table 6.2: Honeysuckle sensitive data type coverage

Permission Requirement Data Type

Protected by dangerous permissions Calendar
Call Logs
Camera
Contacts
Location

Microphone
Body Sensor

Sms
User Account

Partially protected by dangerous permissions Unique Identifier
User File

Protected by other permissions Notification
Accessibility (UI events)

Motion Sensor

Not protected by permissions User Input
Clipboard

Running Apps
System Logs

To evaluate the code analysis subsystem, I selected 75 open-sourced Android apps on GitHub
by searching for recently updated repos (by July 2020) that contain a Google Play link and de-
clare what Google defined as “dangerous permissions” in the manifest. I cross-checked the API
calls detected by Honeysuckle against the API calls detected by doing a method signature search
on the Smali code2 of these apps and obtained the same results. This shows that Honeysuckle
can accurately detect all known source and sink APIs. Furthermore, Honeysuckle detected 23
sensitive API calls per app on average (median = 12, std = 40) and detected at least one sensi-
tive API call for 70 out of the 75 apps. This suggests that although I did not aim to optimize for
coverage, Honeysuckle can already detect a sizable number of sensitive API calls so developers
do not need to manually keep track of them.

2Smali is a human-readable intermediate code format generated by decompiling an app apk which expands every
API call to its complete method signature.
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IDE Plugin: Support for Adding Annotations and Editing UI Configuration

My IDE plugin runs code inspections continuously using the API BaseJavaLocalInspectionTool
to maintain a record of all the current data practices, annotations, and UI XML confifuration.
With this information, I implemented the “Privacy UI integration” panel and the “Privacy UI
Config” panel using the ToolWindowFactory API. The quick-fixes are implemented using the
LocalQuickFix API. All the above APIs are provided by the IntelliJ Platform SDK.

Regarding the feature to automatically generate UI XML configuration for new sources and
sinks, I chose to initiate the modification of the configuration file only after the user clicks the
tab to switch to the “Privacy UI Configuration” panel. This method can help avoid generating
configuration for intermediate editing results.

Build System Plugin

I chose to develop a plugin for Gradle, which is the most widely used build system for Android
development. I implemented custom Gradle tasks and then packaged the tasks into a plugin that
can be applied in any Android project by adding one line of code similar to importing a library3.

As the app starts compiling, my Gradle plugin will send a compile start signal to a local
server run in the IDE plugin so IDE plugin can export the detected sensitive API calls to a file.
Then the Gradle plugin inserts privacy notice UI code in the project at proper places based on
the sensitive API calls detected by the IDE plugin, the annotations provided by developers for
these API calls, and the UI configuration file. After finishing compilation, the source code will
be reverted back to the original version that only contains the annotations but not the privacy
notice UI code.

Library

The main functionality of my Honeysuckle library is to provide APIs for different types of in-app
privacy notices. The permission explanation dialog is implemented using the AlertDialog sys-
tem API. The just-in-time notification is implemented as an Android notification using the system
API. The privacy center is mainly implemented as a Preference UI, which is a common way
for Android apps to implement app settings. I used an open-source library MPAndroidChart4

to implement the data access frequency diagram in the privacy center. I also defined my custom
Java annotations (e.g., Table 6.1) in the Honeysuckle library.

6.3 Honeysuckle Evaluation: Comparing the Annotation and
Library Approach

To evaluate the effectiveness of the two methods supported by Honeysuckle in helping develop-
ers implement fine-grained, in-app privacy notices for real-world projects, I conducted a within-

3Developing Custom Gradle Plugins. https://docs.gradle.org/current/userguide/
custom_plugins.html

4https://github.com/PhilJay/MPAndroidChart
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subjects programming study with 12 Android developers to examine the following research ques-
tions:

RQ1 What are their effect on developers’ time performance in implementing privacy notices?

RQ2 What are their effect on developers’ cognitive load of implementing privacy notices?

RQ3 What are their effect on developers’ perceived usefulness and usability?

RQ4 How do developers perceive the two methods?

6.3.1 Participants
Out of the 12 participants, 11 were freelance Android developers recruited from a freelancing
platform (Upwork). The other participant signed up for the study after seeing my recruiting
ads posted on Twitter. In a pre-study survey, I asked participants to provide demographic in-
formation. 3 participants self-identified as female, and 9 as male. The average age was 31.3
(std = 9.49,min = 22,max = 56) years old.

I also requested my participants to provide their background in Android development. My
participants reported 4.3 years of Android development experience on average (std = 1.5,min =
2,max = 7). 8 of 12 participants self-reported that they have released Android apps on an app
store (e.g., Google Play, F-Droid). One participant answered that his most popular app achieved
10M+ installs, another participant 1M+ installs, and a third participant 10K+ installs. All partic-
ipants considered themselves familiar with Java and Android Studio.

Lastly, I asked them about their prior experience in handling private data and using Java
annotations in general. 11 out of 12 self-reported that they have created Android apps that access
users’ personal data (e.g., geolocation, device ID), with the other participant answering “I’m not
sure”. However, when choosing from a list of different types of privacy notices, most participants
reported only creating privacy policies and requesting system permissions to provide privacy
notices. This finding supports my working assumption that developers rarely adopt other types
of privacy notices for their apps. Regarding the use of Java annotations, all participants have at
least used some simple features such as adding @SuppressLint to clear IDE warnings/errors.
3 out of 12 participants reported that they have previously used annotations for code generation.

6.3.2 Control and Experimental Conditions
The experimental condition of my study is to use Honeysuckle to modify a real-world app to
implement the five types of example privacy notices. The control condition is to use the library I
developed for Honeysuckle to generate the example privacy notices introduced in Section 6.2.2.
To minimize the carryover effect in within-subjects study design, I chose two popular open-
source apps, AcDisplay5 (a notification manager app) and OmniNotes6 (a note-taking app) and
asked each participant to work on different projects using the two methods. Both projects use
Java as the main programming language and are of similar complexity. OmniNotes contains
around 231 Java files and 21714 lines of Java code; AcDisplay contains around 331 Java files

5https://github.com/AChep/AcDisplay
6https://github.com/federicoiosue/Omni-Notes
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and 59489 lines of Java code. Regarding sensitive data use, OmniNotes contains 10 sources and
2 sinks, and AcDisplay contains 13 sources and 4 sinks.

Note that I chose to use the library as the baseline condition instead of asking developers to
achieve the task without any support, because otherwise UI design and implementation issues
would clearly dominate the amount of the time on task and it would be unequal comparison
with annotations and would not generate insightful results. I searched for Android libraries
that support developers to implement these three in-app privacy notices but to no avail, likely
because there has yet to be sufficient need to drive the development of such libraries. Hence I
asked participants to use the Honeysuckle library in the library condition, which is also what
my generated code calls to show the privacy notices, to provide a relatively equal comparison
between the two approaches.

I sequentially assigned participants to the following groups based on their signup order:
1 modify AcDisplay using annotations + modify OmniNotes using library

2 modify OmniNotes using library + modify AcDisplay using annotations

3 modify OmniNotes using annotations + modify AcDisplay using library

4 modify AcDisplay using library + modify OmniNotes using annotations

6.3.3 Procedure
I conducted my study remotely via Zoom because my participants resided in multiple locations.
After the participant signed the consent form, the experimenter turned on screen recording to
record the entire session for further analysis. The entire study took around 2.5 hours and mainly
consisted of two programming tasks (corresponding to the two conditions). Developers had at
most 40 minutes for each programming task, and then spent 5 minutes to fill out a NASA-TLX
questionnaire [72] to measure the cognitive load and a Technology Acceptance Model Scale
(TAMS) questionnaire [48] to measure the perceived usefulness and usability of my tool. For the
two programming tasks, developers modified different apps to implement privacy notices using
different methods. Since I wanted to evaluate the programming methods rather than examine
developers code comprehension skills, I provided documentation of the apps’ data practices con-
taining all the information needed to make the privacy notices so the developer could focus on
using the provided tools to achieve the goal.

Before each programming task, the experimenter used a toy app as an example to teach the
participant how to use annotations and the library to achieve the task. Specifically, the exper-
imenter first implemented privacy notices for half of the sources and sinks in the toy app, and
then asked the participant to complete the rest of privacy notices. During this process, the ex-
perimenter answered all the questions the participant had regarding the method of the current
condition. For the library condition, I ensured that developers had access to the example app
code during the main programming task so they could refer to them when needed.

After completing the two programming tasks and filling out the surveys, the experimenter
asked several follow-up questions regarding their thoughts about the two methods, such as which
part of the tool was hard to use, what could be improved, and what they thought about the
generated privacy notice UIs. Upon completion, each participant was compensated with 75 USD.
This study was approved by my university’s IRB.

82



6.3.4 Study Environment
I set up a virtual workstation using a VNC server on a Google Cloud virtual machine, so all
participants could work on the programming tasks in this virtual workstation. The experimenter
could view and interact with the same interfaces during the study to do live coding during the
warm up tasks and to provide guidance to help developers quickly get used to this new environ-
ment.

6.3.5 Methodological Limitations
This study design has a few limitations. First, I selected two apps for developers to add privacy
notices to, rather than apps they developed themselves. The lack of familiarity with the app may
lead to additional challenges in modifying the source code compared to real-world situations.
Furthermore, although presenting all the data practices to developers helps control the variable
of participants’ understanding of the data practices and focuses on comparing the efficiency in
the two conditions, it simplifies the task and reduces ecological validity. Lastly, the cloud-based
study environment may not provide a setting that the developer is familiar with, which could
affect their performance.

6.4 Results

6.4.1 Quantitative Results (RQ1-3)
I present the results to the first three research questions below.

Time on Task (RQ1)

All developers completed the task in the Honeysuckle condition in the allotted time, while only
2 developers (P7 and P9) completed the task when using the library. Furthermore, for these 2
developers, it took them longer time to finish when using the library than using the annotation.
P7 used 22 minutes to finished the task using the annotation and 37 minutes using the library. P9
used 14 minutes to finished the task using the annotation and 27 minutes using the library.

Cognitive Load (RQ2)

I analyzed the six dimensions of cognitive load measured by NASA-TLX on a scale of 1 to 100
(lower is better) [72]. Honeysuckle achieved a statistically significant reduction in cognitive load
using a paired t-test (p < .001, t=5.09). Figure 6.8 shows that Honeysuckle helped reduce the
cognitive load across all six dimensions, especially for mental load and perceived success.

Usefulness and Usability (RQ3)

I analyzed the perceived usability and usefulness of Honeysuckle and the privacy notice library
measured using TAMS on a scale of 1 to 7 (lower is better, 1=extremely likely, 7=extremely
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Figure 6.8: NASA-TLX ratings of the Annotation and Library conditions (lower is better). Using
the annotation-based approach of Honeysuckle significantly reduces the overall cognitive load as
compared to using the library to implement the same runtime privacy notices. The error bars
represent the 95% confidence intervals.

unlikely) [48]. I then calculated the sum of all ratings in the usability subscale and the useful-
ness subscale and compare them between the two conditions. For both usability and usefulness,
Honeysuckle received significantly better (lower) ratings under paired t-tests (for usability, p =
.02, t=2.76; for usefulness, p = .02, t=2.67). The mean usability rating of Honeysuckle is 1.45
and the mean usability rating of the library is 2.56. The mean usefulness rating of Honeysuckle
is 1.27 and the mean usefulness rating of the library is 2.30. Overall, developers perceived both
tools to be useful and usable, and perceived Honeysuckle to be more useful and usable than the
library.

6.4.2 Qualitative Feedback (RQ4)
One researcher transcribed the interviews, conducted thematic analysis following previous guide-
lines [36], and held regular meetings with Jason Hong and Yuvraj Agarwal (who are my coau-
thors of the Honeysuckle IMWUT paper) to review the analysis process and discuss the findings.
The identified themes are categorized as feedback on programming methods or feedback on the
generated privacy notices.

Feedback on Programming Methods

When comparing the two methods, all participants preferred the annotation method than the
library method. Without being asked, P2, P7, P10, P11 said they hoped to see a public release of
Honeysuckle so they can use it for their own projects. For example, P7 said that “I hope any of
these can be launched. Anyone of them would be cool, but my preference would be the plugin.”
This echos the fact that there is very limited developer support for building in-app privacy notices
and suggests both the Honeysuckle library and annotation can improve app’s transparency when
also making developer’s life a lot easier. Below, I present themes emerged from participants’
explanations of their preferences.
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1 2 3 4 5 6 7
Usability ratings (1=Extremely likely, 7=Extremely unlikely)

Learning to implement privacy notices using [tool] would be easy.

I would find it easy to use [tool] to do what I want it to do.

My usage of [tool] would be clear and understandable.

I would find [tool] to be flexible to use.

It would be easy for me to become skillful at using [tool].

I would find [tool] easy to use.

Tool
Annotation
Library

Figure 6.9: Perceived usability ratings of the annotation-based approach and the library (lower is
better, 1=extremely likely, 7=extremely unlikely). Overall, the annotation-based approach was
perceived as more usable than the library. The error bars represent the 95% confidence intervals.

1 2 3 4 5 6 7
Usefulness ratings (1=Extremely likely, 7=Extremely unlikely)

Using [tool] in my job would enable me to accomplish tasks.

Using [tool] would improve my job performance.

Using [tool] in my job would increase my productivity.

Using [tool] would enhance my effectiveness.

Using [tool] would make it easier to do my job.

I would find [tool] useful in my job.

Tool
Annotation
Library

Figure 6.10: Perceived usefulness ratings of the annotation-based approach and the library (lower
is better, 1=extremely likely, 7=extremely unlikely). Overall, the annotation-based approach was
perceived as more useful than the library. The error bars represent the 95% confidence intervals.
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Productivity. Six participants (P1, P3, P4, P7, P11, P12) mentioned that they felt a lot more
productive when using the annotation method than the library. Specifically, they felt using anno-
tations allowed them to write less code and achieve the task faster. For example, P4 mentioned
using annotations could “avoid a lot of parameters for calling the APIs”, which is because my
annotation design reduces a lot of redundancies by automatically generating multiple types of
notices using one annotation. Developers also praised the automated source and sink detection
and quick-fixes offered by Honeysuckle IDE plugin. For example, P3 mentioned “Just being
able to go through some automated steps makes it more efficient to add annotations”.

Mental Load. Nine participants (P1, P2, P4, P7-P12) said that using annotations helped
reduce the mental load in many ways. For example, P8 loved the automated suggestions offered
by the IDE plugin because “It simply tells me where I need to add annotations and I don’t need
to consciously take effort to do that”. On the contrary, using the library “felt very tedious” (P2)
and they found it challenging to “remember what API to use” (P7). Moreover, using the library
requires the developer to “manually track many things at the same time”, including naming the
sources and remembering the names when defining connections between sources and sinks in the
privacy info map (P9). When using annotations, this task is made much easier by the quick-fixes
of the IDE plugin.

Learnability and Usability. Nine participants (P2, P4-P7, P9-P12) discussed the learnability
and usability of the two methods. Some people found the annotation tool easy to learn. For
example, P11 said “The tool is new to me, but I didn’t need to think much to figure out what to
do. The plugin has made it very simple.” Conversely, some participants shared a slightly different
feeling that “the annotations may have slightly steeper learning curve, but after getting the hang
of it, using it is way easier” (P7). The difficulty was mainly in understanding how to specify the
source in a sink annotation (P2, P10) and handle helper functions (P2, P5, P10). This result echos
the fact that only three out of the twelve participants had used annotations for code generation
before the study. However, the unfamiliarity with annotations did not seem to hinder the usage
of annotations for privacy notice generation. P4 even said “Normally I don’t like annotations,
but for this task I like it. It’s very easy to use.”

Code Comprehension. Four participants (P1, P7, P8, P11) mentioned that using annotations
made the code “organized” (P1) and “very easy to read” (P8). P8 further explained that “all the
configuration goes to the XML, so the annotation only keeps simple information”.

Teamwork. P4 and P9 explicitly discussed different benefits of using annotations and the
IDE plugin for teamwork. P4 liked the quick-fixes for generating annotation templates because
it helps everyone in a team code in the same format. P9 was thinking about the situation when
developers working in a larger group that have a separate privacy team. He explained that “The
IDE automatically analyzes all the sources and sinks, so the privacy team can focus on the
privacy work such as checking if privacy notices have been implemented for all of them.”

Feedback on the Generated Privacy Notices

When asked about their favorite design among the three privacy notices as a user, eight partici-
pants picked the privacy center (P1, P3, P5-P9, P12), three picked the permission notice (P4, P10,
P11), and only one picked the just-in-time notification (P2). Participants preferred the privacy
center the most because it contained more information about the app’s data practices and it was
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available to the user at any time. They also generally found the permission notice and the just-
in-time notification useful, for they use a “streamlined format” (P2) and provide “finer-grained
detail than what you get with regular permissions” (P3).

Some people also touched upon potential issues about these privacy notices, categorized into
two themes:

Notification Overload Problem. P3 and P5 expressed their concerns about the notification
overload problem specifically for the just-in-time notice design. P3 elaborated her concerns using
the Starbucks app as an example,

“I use the Starbucks app, and I guarantee you it’ll be blurting at you all the time
some privacy notifications, but would that improve my experience? I’m not sure
because I kind of know at the back of my head that they’re probably doing that and
I guess I’m okay with they know where I am”.

Similarly, P5 said “receiving many notifications from an app can be annoying from a user per-
spective”. I have considered this issue when designing Honeysuckle and allow developers to
control default visibility for each just-in-time notification to balance user experience and privacy.
However, there are still issues such as developers can only make static decisions so the generated
UI can not accommodate to different privacy concerns of different users. In Section 8.4, I discuss
potential ways to further improve privacy using the annotations.

Factors That Impede Adoption. Some participants also explicitly discussed or implied fac-
tors that may prevent them from using Honeysuckle in real life. First, although many participants
have been familiar with system permissions, in-app privacy notice was quite a foreign concept
to them. For example, P4 was confused when first seeing the permission notice and asked “Is
this extra dialog useful?” P3 mentioned that she had worked with many clients but had never
encountered a requirement of implementing in-app privacy notices. Second, currently Honey-
suckle has to rely on developer’s input for some fields in the annotation such as purposes and can
not automatically verify them, causing the risk of generating misleading privacy notices if the
developer does not provide accurate information. P1 said “You can not ensure that the developer
will be an honest developer and he will tell you his true intentions of the data”. However, I want
to note that this is a general challenge facing any kind of privacy notices. I discuss potential
mitigation methods in Section 8.4.1.
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Chapter 7

Matcha: An IDE Plugin for Creating
Accurate Privacy Nutrition Labels

In this chapter, I present my third IDE plugin, Matcha, which is designed to help Android de-
velopers create accurate privacy nutrition labels (named "data safety label" on the Google Play
store). Matcha was built atop Honeysuckle and reused much of the code analysis engine. Specif-
ically, I expanded on the annotation design to cover essential attributes required for generating
the privacy nutrition labels (see Section 7.2.2), introduced an XML configuration file for cus-
tomizing the privacy label disclosure information about third-party SDKs (see Section 7.2.2),
enhanced the code analysis engine by automatically detecting and generating privacy labels for
popular third-party SDKs (see Section 7.2.5), and added a privacy label generation module and
UI support specifically for this task.

7.1 Introduction
Privacy nutrition labels are short, uniform, machine-readable notices that allow users to learn
about how their data is collected and used at a glance [55, 86, 88]. Inspired by this idea, the
two major mobile app stores, Apple app store and Google Play store, introduced a privacy label
section in 2020 and 2022 respectively.1 This section is displayed on the public page of each
app and presents data use information self-reported by the app developers. As of August 26,
2022, 60% of apps on the Apple app store and 44% of apps on the Google Play store have filled
out forms to create these labels. However, researchers [26, 92, 101, 103, 177] and consumer
advocates [61] have raised numerous concerns about these labels given their current design. One
key concern revolves around the accuracy of the labels themselves, which could fundamentally
undermine the entire effort if consumers lose confidence in the stated data practices.

Currently, developers alone are responsible for accurately creating the privacy label. How-
ever, my research found that this seemingly straightforward task was very challenging for de-
velopers (Chapter 3). First, developers’ understanding of their app’s data practices may be
incorrect or incomplete due to memory errors or unexpected data collection from third-party
libraries [27, 29, 96, 115, 156]. Second, developers may not be capable of correctly translating

1“app privacy details” on the Apple app store and “data safety section” on the Google Play store
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their understanding to the privacy label because of misinterpretations of the terminology used to
describe the data practices [101].

Using automated program or network analysis can provide insights into an app’s data usage,
but it is not a perfect replacement for developers in this process. The output of these analyses are
not directly useful to end users and need to be converted to more high-level summaries of data
practices. However, automated techniques for detecting data flows [23, 56] and categorizing them
into concepts such as data types [76, 119] and purposes [80, 162] inevitably suffer from imperfect
accuracy. Furthermore, after data leaves the device, it is infeasible to determine how data is
further stored, shared, or repurposed without access to the backend server. In these situations,
the developer’s knowledge is needed to elucidate the detailed data usage and correct errors made
by the automated analysis.

This work explores a new design space for tools that can improve the accuracy of standardized
privacy notices by leveraging the synergies between developers and automated program analysis.
I present the design, implementation, and evaluation of Matcha, a plugin for the Android Studio
IDE to help developers create accurate Google Play data safety labels. Figure 7.1 summarizes
how Matcha works: First, Matcha analyzes the app’s codebase and provides suggestions about
first-party code that accesses or transmits user data and third-party SDKs that automatically
collect or share user data. Then it asks developers to confirm or reject the suggestions by adding
custom Java annotations and editing an auto-generated XML spec file for first-party and third-
party data practices respectively. Finally, Matcha uses the annotations and XML to generate a
CSV file that can be imported into the developer console to create the label.

The design of Matcha is inspired by my prior research on privacy-enhancing IDE plugins
based on code annotations. Annotations have been used as a tool to increase the developer’s
awareness of privacy issues and reinforce best practices [96], facilitate the documentation of
data practices [96], and streamline the implementation of in-app privacy UIs [100]. However, a
fundamental problem remains unanswered: How to support developers to add annotations that
accurately represent their app’s data practices? With Matcha, I aim to investigate this problem
in depth.

The design challenge lies in how to achieve a good balance between reducing developers’
burden and soliciting accurate information from them. To achieve this goal, I first analyzed
the Google Play data safety label to design the annotations and the XML spec that covers all
the required information for generating the label. I then conducted pilot studies using an initial
prototype and found that developers’ overconfidence and incorrect mental model of what the
plugin can or cannot do made them reject correct suggestions by the plugin. Furthermore, I
noticed that my participants generally lacked basic knowledge about Java annotations, which
became another barrier to providing accurate information. These findings informed my final
design of the Matcha IDE plugin.

Creating privacy labels requires adequate knowledge about the app. Therefore, we evaluated
Matcha with 12 developers working on their own apps. Matcha helped 11 out of the 12 par-
ticipants improve the accuracy of their data safety labels as compared to using the Google Play
developer console. Our analysis showed that Matcha was effective in addressing errors due to
misunderstanding of the task of creating data safety labels, misunderstanding of the third-party
libraries’ data practices, forgetfulness, and misunderstanding of code behaviors. All developers
favored Matcha to the developer console mainly due to the improved label accuracy, the user-
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startActivityForResult(
    intent,
    PICK_IMAGE);

'com.google.firebase
:firebase-storage'

mDatabase.child("Users”)
    .child(uid)
    .setValue(newUser);

@DataAccess(
  id = photo_attachment,
  dataType = {
    PhotosAndVideos_Photos})
Intent intent;

PSL_DATA_COLLECTION_COLLECTS_PERSONAL_DATATRUE REQUIRED
PSL_DATA_COLLECTION_ENCRYPTED_IN_TRANSITTRUE MAYBE_REQUIRED
PSL_DATA_COLLECTION_USER_REQUEST_DELETETRUE MAYBE_REQUIRED

@DataTransmission(
  accessId = {photo_attachment},
  collectionAttribute = {
    TransmittedOffDevice.True,
    OptionalCollection.False…},
  sharingAttribute = {
    SharedWithThirdParty.False})
NewUserInDbModel newUser;

<library-custom-usage name="Cloud 
Storage Firebase" verified=“true”>
  <data 
type="PersonalInfo_UserIds”> If 
you use Cloud Storage for Firebase 
with Firebase Authentication…
  </data>
</library-custom-usage>

Figure 7.1: An overview of how Matcha helps developers create accurate privacy labels. Matcha
conducts code analysis to provide suggestions about code that accesses user data and transmits
data out of the app, as well as 3rd-party SDKs that collect and share user data. Then it guides
developers to confirm, refine, or reject the suggestions by adding custom Java annotations and
modifying an auto-generated XML file, which account for first-party and third-party data prac-
tices respectively. Finally, Matcha uses the annotations and XML to generate a CSV file that can
be imported into the Google Play developer console to create the required label.
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Figure 7.2: An overview of the required tasks in the “Privacy Labels” guidance panel. On the
left, there is a summary of the five tasks for providing the required information (A). The subtasks
for the currently selected step are displayed in the middle (B). And a short tutorial for the current
step is available on the right (C).

friendly interface and learnability, and the educational benefits it provides in understanding their
app’s data practices. Drawing on my experiences, I discuss general design recommendations
for developer tools for creating accurate standardized privacy notices. Matcha has been open-
sourced and released on the plugin store 2.

This chapters makes the following contributions:
• The design and implementation of Matcha, an IDE plugin for helping developers create

accurate Google Play data safety labels.
• Evaluation studies with Android developers working on their own real-world apps (N =
12), demonstrating the efficacy and usability of Matcha.

• Design recommendations for developer tools for creating accurate standardized privacy
notices.

7.1.1 Matcha Use Case

The example below demonstrates the typical workflow for using Matcha to create a Google Play
data safety label. Carol is notified by the Google Play store that she needs to create a data safety
label for her app. She tries the default approach, which is to answer questions about how her
app collects and shares user data on the Google Play developer console. However, the task is
overwhelming and she is not sure whether she has provided all the information accurately. Then
she discovers Matcha, an IDE plugin designed for this task, and gives it a try.

In Matcha’s “Privacy Label” guidance panel, she sees five tasks for creating the label (Fig-
ure 7.2-A) and clicks on the first task. She finds a short tutorial (Figure 7.2-C) and a list of
subtasks (Figure 7.2-B), and learns that she needs to annotate data access API calls detected by
Matcha. Her job is to verify whether each API call indeed accesses user data, and if so, specify
what types of data it accesses. In the first subtask, she uses Matcha’s quickfix to add the annota-
tion (an IDE feature for repairing code issues) (Figure 7.3-D). A dialog pops up, guiding her to
choose the data type “In App Search History” from a list of predefined options (Figure 7.3-E).
Matcha then automatically adds a @DataAccess annotation to the variable search_et (Fig-
ure 7.3-F). Carol defines a unique id R.string.user_search_history for this access so she

2Matcha project website: https://matcha-ide.github.io
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Figure 7.3: For each detected API call that may access user data, the developer can use the
quickfix (D) to add the annotation. The quickfix displays a dialog asking the developer to
select the data type(s) accessed by this API call from a list of predefined options customized
for the API (E). Matcha then adds the annotation at the proper place and uses the developer’s
answer to fill in the dataType field value (F). The developer needs to declare a unique ID
(R.string.user_search_history) for the access instance for future reference.

G H

Figure 7.4: An example of finding more data access instances based on keyword search results
to complement the API-based detection.

can refer to it later. She completes the other subtasks in the same manner.
API-based detection may not be sufficient at times, such as when the developer uses an un-

common library. Therefore, in the second task, Matcha uses keyword search to help her identify
accesses to data types not detected in the first task (Figure 7.4-G). She double clicks each data
type to skim through all the detected keywords. Then she identifies a few more data types ac-
cessed by the app (Figure 7.4-H) and uses Matcha’s quickfix to add the additional @DataAccess
annotations.

Next, she performs the third task, which is to annotate API calls that may transmit data out
of the app. These data transmissions may count as data collection and sharing, unless they do
not send user data out of the app (e.g., a hard-coded request to fetch a web page) or fall under
certain exemptions. To help discern whether any user data collection or sharing occurs, Matcha
needs information from Carol that cannot be automatically inferred. Carol applies Matcha’s
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Select data source by access IDs

Check data collection practices: basic definition, special rules, 
exemptions

Check data sharing practices: basic definition, special rules, 
exemptions

I
J

Figure 7.5: An example of the dialog for guiding the developer to annotate a data transmission
instance (I) and the relationship between the answers provided through this dialog and the result-
ing @DataTransmission (J). The information solicited from the developer includes where the
transmitted data is originally accessed, whether the data is collected or shared and if so, whether
the collection and sharing practices are exempt from disclosure per Google’s definitions.

K

L

Figure 7.6: An example of editing the auto-generated XML specification of a third-party SDK’s
data practices to make it compatible with the app’s usage of the SDK. Each <data> tag contains
a condition (K) under which certain data type is collected or shared by the SDK. The developer
can keep or delete the <data> tag based on how they use the SDK and finally set the verified
attribute to true (L).

quickfix and answers the questions in the pop-up dialog (Figure 7.5-I). The quickfix then adds
a @DataTransmission annotation (Figure 7.5-J). After adding annotations for all the detected
API calls in the third task, she reviews the keyword search results regarding other data transmis-
sions in the fourth task, and adds additional annotations.

The final task relates to data automatically collected and shared by third-party SDKs, which
are a main cause of data collection [41]. Some SDKs always collect or share user data, while
others allow developers to configure the data use. Matcha can detect the most popular commer-
cial SDKs on Google Play. For the data use configured outside of the app code, it generates
an XML file to help the developer review all the potential data collection and sharing behaviors
and the conditions under which they occur. When Carol reviews the XML, a tooltip shows up
pointing to the condition under which the user name will be collected by the Firebase Authenti-
cation SDK (Figure 7.6-K). She considers it irrelevant to her use of the SDK and then removes
the corresponding <data> tag. After verifying all the instances, she sets the attribute verified
to true to indicate the completion status to Matcha (Figure 7.6-L).

After providing all the required information, Carol switches to the “Label Preview” view to

94



M

N

Figure 7.7: The developer can preview the data safety label using “Label Preview” (M) and
generate the data safety section CSV by clicking the button (N). The layout is similar to the
preview feature on Google Play developer console, while Matcha provides more features to help
the developer understand the connection between the code and the label, such as whether the data
collection or sharing is caused by the app, by libraries, or by both. The developer can expand
each record and trace back to the corresponding line of code.

check out the resulting label (Figure 7.7-M). She notices that her app both collects and shares
data, while the sharing is only caused by the third-party SDKs in the app. She then clicks the
“Generate Data Safety Section CSV” button (Figure 7.7-N) to export the data safety label into a
CSV, which she later uploads to the Google Play developer console to fulfill the requirement.

7.1.2 Background and Related work
Website privacy policies are notoriously long and difficult to read [113]. To tackle the prob-
lem, researchers proposed “privacy nutrition labels” more than a decade ago, to offer a clear,
uniform, and succinct format for disclosing data usage. Many variants have been proposed for
websites [86], mobile apps [88], and IoT devices [55]. Prior research has shown that standard-
ized labels can help users find information about how their data is used faster [87], improve
comprehension of privacy practices [87], and nudge consumers to make more privacy-conscious
purchase choices [55, 88].

Apple introduced the App Privacy section to the Apple App Store in December 2020, marking
the first large-scale deployment of privacy nutrition labels in real life. Google followed with the
Data Safety section, their version of privacy nutrition labels, to the Google Play Store in May
2022. The introduction of privacy labels to the two major app stores has multiple potential
benefits. First, users can directly gain a better understanding of an app’s data use [87, 113].
Second, it gives developers a systematic and structured way to disclose their data practices to
end users [101]. Third, the standardized and machine-readable format facilitates the research
and deployment of novel formats of privacy notices to help users further synthesize, analyze, and
compare app data practices [140].

However, researchers have identified numerous problems with these privacy labels. One issue
is the prevalent inaccuracies in these labels. Balash et al. [26] found that many apps seemed likely
to collect user data but did not declare any data collection in their labels. Li et al. [103] suggested
that many Apple privacy labels may be outdated. Kollnig et al. [92] found that many apps used
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tracking libraries and sent data to known tracking domains but reported no data collected. Xiao
et al. [170] found apps whose data flows were inconsistent with their privacy labels. Other work
focuses on usability issues. Zhang et al. [177] interviewed 24 lay users about the Apple privacy
labels and uncovered problems with the usability, understandability, and effectiveness of these
labels. Li et al. [101] studied the usability and understandability of Apple privacy labels from
the developer’s perspective and identified many barriers that prevent developers from creating
accurate privacy labels. These findings suggest that the accuracy and usability problems are
interdependent.

I present Matcha, an IDE plugin, to improve the accuracy of privacy labels by addressing the
usability and comprehension challenges for developers [101]. Although I focus on Google data
safety labels because they support importing labels generated by external tools, I consider the
developer-in-the-loop, machine-facilitated idea generalizable to other types of privacy nutrition
labels and standardized privacy notices. I derive recommendations for designing developer tools
in the same vein from in-depth studies on Matcha and discuss them at the end of this chapter.

Other tools also exist for creating privacy nutrition labels for iOS or Android apps. For
example, Privado.ai3 is a commercial tool for creating a Google Play data safety label. Gardner
et al. [62] reports on the preliminary feedback from developers on a tool for creating an Apple
privacy label. However, I are the first to conduct in-depth studies to show that my tool (Matcha)
can improve the accuracy of the privacy label created for real-world apps by the original app
developers. As compared to these tools, Matcha streamlines the process for creating privacy
labels by integrating the functionality into the IDE rather than using a separate website. This
makes it easier for developers to check the actual app implementation when needed, following
a code-centered approach. Developers found the annotations flexible to use and felt it would be
even easier to add if they were doing it while implementing the app.

7.2 Matcha Design and Implementation

In this section, I present the design goals of Matcha, how my design fulfills these goals, the
findings and improvements from my pilot developer studies, and my system implementation.

7.2.1 Design goals

I drew upon prior literature to inform my design goals. Li et al. [101] discovered that one obstacle
to creating accurate Apple privacy labels was that developers needed to quickly process a large
amount of new information, including lengthy and complicated definitions of concepts like data
collection, linking, and tracking. The similarities between the Apple and Google label filling
process suggest that Android developers may also suffer from information overload issues. I
argue that developers will benefit from more scaffolding, which leads to my first design goal:

D1 The privacy label questions should be deconstructed and situated within the context in which
developers handle the specific code that deals with user data.

3https://www.privado.ai/data-safety-report
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Developers know how their apps work, but prior research suggests they suffer from issues
such as forgetfulness [96], lack of knowledge about other team members’ code [96] and third-
party SDK’s data practices [29], and misinterpretations of terms in privacy labels [30, 101].
Hence, I set the second design goal:

D2 The tool should help developers overcome limitations in their ability to create accurate pri-
vacy labels.

Automated code analysis can be used to identify some user data practices that need to be
reported in the data safety label. However, it still has limitations. First, it mainly analyzes data
practices within the client app and cannot provide information about how data is used after it is
sent from the device. Second, although algorithms exist to infer purposes of data use [80, 162]
and data types that are not tied to a specific API [76, 119], they do not have perfect accuracy.
This suggests that automated code analysis cannot be relied on completely, which leads to my
last design goal.

D3 The tool should give developers control to refine or reject the automated analyses when they
are not accurate.

To satisfy D1, I designed Matcha as an IDE plugin. I adopted the idea of using annotations to
document data practices in code from prior work [96, 100], allowing developers to only answer
the related privacy label questions for each data access and transmission point by adding annota-
tions. I divide the design of Matcha into two parts. In the first part, I focus on determining what
types of information to solicit from developers and in what format. In the second part, I focus on
the interaction design to help developers provide accurate information about their data use.

7.2.2 Matcha Code Format Design
Data collection and sharing are the two core concepts in the Google Play data safety label. Cur-
rently, the developer needs to report data types that are collected and shared and supply additional
details such as the purposes of collection and sharing, whether the data is processed ephemerally
(not stored on the backend), and whether the collection is optional or required. Moreover, they
need to check whether the data collection and sharing practices fall under any of the exemption
rules so it does not need to be disclosed on the label. Prior research has suggested that devel-
opers do not have the time and ability to comprehend and apply these complex concepts [101].
To address this issue, I designed the specific code format of developer input as a scaffolding for
providing all the required information accurately.

Privacy annotations for explicit data flows within apps

To avoid misunderstandings of data collection and sharing per Google’s definitions, I designed
the Matcha privacy annotations based on two more specific concepts: data access and transmis-
sion. Data access refers to code that reads user data into the app’s internal memory, and data
transmission refers to code that sends the data off the device or to other apps on device. The re-
lationship between the two groups of concepts is illustrated in Figure 7.8. The annotation design
is summarized in Table 7.1. The @DataAccess and @DataTransmission indicate where the
app accesses and transmits user data, respectively. Since data collection and sharing only happen
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Mobile Device

Client App
App Backend Third parties

Other Apps

@DataTransmission

@DataTransmission

@DataAccess

Collect
Share
Collect+Share

@DataTransmission

@DataTransmission 

3rd-party SDK XML Spec

Figure 7.8: An illustration of the mapping between the developer input (i.e., annotations and
the SDK XML spec) and Google’s definitions of data collection and sharing. For example, the
developer needs to add a @DataAccess annotation when the data is accessed within the app,
and then add a @DataTransmission annotation about how it is collected at the app backend
and further shared with third parties. By asking developers to add data access and transmission
annotations rather than directly deal with the label-specific concepts, Matcha reduces errors due
to misunderstanding of the label terms while keeping developers in control of the label.

with data transmission, I design the collectionAttribute and sharingAttribute fields
in @DataTransmission to answer the additional collection and sharing questions from the de-
veloper console and check the exemptions for collection and sharing. Developers can also use
@NotPersonalDataAccess and @NotPersonalDataTransmission to explicit indicate no
data is accessed or transmitted.

XML spec for implicit data flows due to third-party SDKs

A third-party library’s data collection and sharing may depend on how the app uses it. For
example, in the motivating example the Firebase Authentication library only collects the user’s
display name if the developer provides it (Figure 7.6). Therefore, I designed an XML file to allow
developers to customize the third-party data disclosure based on their use of the library. The
XML addresses two limitations of only using annotations. First, since much of the configuration
of library data use happens outside of the app, such as in the web console, it is hard to determine
a fixed location for the annotation to check if the required annotation is added. In the XML, the
developer can set the verified attribute to true to indicate that they have finished checking a
specific library. Second, the data collection and sharing conditions cannot fit into the annotations.
In the XML, Matcha generates a <library-custom-usage> tag for each library and populates
it with multiple <data> tags that contain the collection and sharing conditions. Developers can
choose to either keep or remove the data tag based on the condition.

7.2.3 Pilot Test of Matcha
To achieve D2, I offer suggestions for data access and transmission and quickfixes for adding
annotations based on automated code analysis. To achieve D3, I let developers have the final say,
namely, they can ignore any suggestions, and the label creation only relies on the annotations and
the XML spec that they can modify. This raises a crucial question for my interaction design: Are
developers capable of correctly comprehending the suggestions and building on them to create
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Table 7.1: The table shows the four annotations I designed for the task and their field members
that hold different types of information needed for the label. I provide more details about how
@DataTransmission handles collection and sharing in Table 7.2 and Table 7.3.

Annotation Fields Note

@DataAccess
id A unique ID defined by the developer

to refer to this access when later anno-
tating data transmissions.

dataType A list of Enum values of predefined
data types accessed by the app and
held in the annotated variable

@NotPersonalDataAccess – For explicitly indicating no personal
data is accessed here. It is useful for
dismissing an irrelevant data access
suggestion.

@DataTransmission

accessId A list of IDs indicating where the
transmitted data is originally accessed.
The IDs are previously defined in
@DataAccess.

collectionAttribute A list of Enum values of collection-
related information.

sharingAttribute A list of Enum values of sharing-
related information.

@NotPersonalDataTransmission – For explicitly indicating no personal
data is transmitted out here. It is useful
for dismissing an irrelevant data trans-
mission suggestion.
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Table 7.2: The collectionAttribute field of the @DataTransmission annotation encodes
the data collection information as a list of predefined attribute values. This table shows the
groups of attributes that need to be completed in this field, as well as the corresponding collection
questions and the exempt conditions of collection defined by Google.

Attribute name Values Original questions / Exempt condi-
tions

TransmittedOffDevice True or False Is this data collected, shared, or both?

NotStoredInBackend True or False Is this data processed ephemerally?

EncryptedInTransit True or False Is all of the user data collected by your
app encrypted in transit?

OptionalCollection True or False Is this data required for your app,
or can users choose whether it’s col-
lected?

UserToUserEncryption True or False User data that is sent off device, but
that is unreadable by you or anyone
other than the sender and recipient as
a result of end-to-end encryption does
not need to be disclosed.

CollectedFor Seven options: App func-
tionality; Analytics; De-
veloper communications;
Advertising or market-
ing; Fraud prevention,
Security and compliance;
Personalization; Account
Management

Why is this user data collected? Select
all that apply.

an accurate data safety label? I tackled this question by conducting IRB-approved pilot studies
with five developers on their own apps using an initial prototype that provides basic support for
adding annotations and editing the XML spec. The participants first created the label for their
apps using the developer console and then using Matcha. I asked them to think aloud during
the process. Below, I summarize issues that emerged from the studies and how they informed
the improvement of my system design and implementation. The final design is introduced in
Section 7.2.4.

Ignoring unexpected suggestions:

Some developers appeared to be affected by confirmation bias, namely they ignored suggestions
about data practices that did not match their expectations. For example, P3’s app had a feature for
sharing with other people the user’s high score, the game screenshot, and a short message pro-
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vided by the user. Although the data is not very sensitive, it still falls under the “App activity” data
category per Google’s definition. However, P3 quickly added the @NotPersonalDataAccess
annotation to dismiss the Matcha’s suggestion. He explained that “I don’t think high score is
personal info...because I only have one data access and one data transmission.” This problem
suggests that developers tended to place more trust in their own understanding than in the sys-
tem’s advice when they are in conflict. This created significant obstacles to using automated
code analysis to correct the developer’s misunderstandings. To address this problem, I consulted
the guidelines for human-AI interaction [20] because building trust is the main goal of construct-
ing efficient AI-infused systems. Specifically, I designed more proactive and contextualized
guidance to help developers establish a clearer mental model of what Matcha can do and how
Matcha’s suggestions work.

Difficulty of handling Java annotations:

My participants faced challenges in adding the annotations due to unfamiliarity with Java anno-
tation syntax. For example, Java annotations can only be added to a few specific code elements,
such as a variable declaration. This troubled developers when they needed to manually determine
where to add the annotation. Another example is when developers declare multiple variables on
the same line separated by a comma (e.g., EditTextnameText,ageText;). If the developer
wanted to apply different annotations to each variable, they needed to first separate the variables
into different lines and then add annotations. During the pilot tests, I found that these seemingly
trivial issues with annotations greatly hindered my participants’ abilities to accomplish this task.
Therefore, I further optimized the support for adding annotations in the final version of Matcha
to help developers automatically trace where to add the annotations and reformat their code.

Error-prone direct editing of annotations:

Some errors were because developers had to manually edit annotations to complete all the fields.
First, since my participants were first-time users of Matcha and unfamiliar with the Google data
safety label design, they felt overwhelmed by the number of fields they needed to manually
complete and the number of predefined values they can select from. Second, my initial version
only supported adding an annotation with one data type at a time; however, during my pilot
studies I observed that it was common for some data accesses to fall under multiple data types,
such as a user’s name also used as a user ID. Although direct editing may be more efficient for
expert users, it was too error-prone and confusing for novices. Therefore, I created a dialog for
guiding the developer to fill out all the required information to generate the annotation.

7.2.4 Final design of the IDE plugin

The final design of the Matcha IDE plugin is informed by the findings from the pilot tests. I
present an overview of the five tasks for creating the label and the main supporting features for
these tasks.
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(a) Data type options customized based on
the API call.

(b) Transmission and storage pre-checked based on
the API call.

Figure 7.9: Examples of quickfix dialogs customized based on the API calls to avoid errors and
improve learnability and usability.

A five-step process

The Matcha label creation process consists of five steps. The first two steps are for adding data
access annotations and the next two steps are for adding data transmission annotations, so the
transmission annotations can refer to the access IDs defined in the access annotations. In the first
and third steps, Matcha guides developers to do a precise API-based search, by which they can
see all the detected API calls without the required annotation. The detected API calls without
a proper annotation will also be flagged as an error within the code editor with a red squiggly
underline. Developers need to check each API call to add the annotation. In the second and the
fourth steps, Matcha uses fuzzy keyword-based search to present a list of data types that are not
covered in existing data access annotations. Then the developer can double click each data type
to show the keyword search results in a pop-up dialog. Adding annotation is a voluntary task at
the second and the fourth steps, which means the developer only needs to add an annotation when
the detected keywords relate to accessed or transmitted user data. In the last step, the developer
modifies the auto-generated XML spec file to adapt it based on their usage of the library.

Quickfixes for adding annotations

To address the issue with direct annotation editing due to unfamilarity with Google data safety la-
bel and Java annotations, Matcha offers quickfixes with a dialog to guide the annotation creation
(see Figure 7.3 and Figure 7.5). For detected API calls, the quickfix can automatically locate
which variable to annotate. The developers can also click on any variable and use the quickfix
to add an annotation. The quickfix for access API calls can narrow down the list of data type
choices. For example, if the detected API is LocationManager.getLastKnownLocation,
the available choices are only approximate location, precise location, and none of the above
(Figure 7.9a). The quickfix for transmission API calls can auto-fill some transmission attributes.
For example, if the detected API is from the Firebase Cloud Storage for uploading a picture to a
cloud-based database, the “data being transmitted off the device” and “data being stored” options
are automatically checked (Figure 7.9b). I note that expert users can still modify the generated
annotations in any way they want while using the dialog to constrain and validate the developer’s
input could both reduce the chance of novice users accidentally making errors and make the tool
easier to learn and use [124].
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(a) A tooltip suggesting next action.
(b) A tooltip explaining the generated annota-
tion.

Figure 7.10: Examples of the contextualized, proactive tooltips to give developers just-in-time
support and education about the annotations.

Contextualized and proactive guidance

To help developers understand what Matcha can do and how Matcha suggestions work, I de-
signed just-in-time tooltips that automatically pop up next to the related code when the developer
first encounters certain types of Matcha suggestions and give instructions on what action to take
(Figure 7.10a). Matcha also provides tooltips that are only informational (no action needed),
such as explaining what the auto-generated annotation has to do with the creation of the data
safety label (Figure 7.10b). In addition to the just-in-time tooltips, Matcha also offers a more
systematic introduction of each step in a help panel (see Figure 7.2).

Label preview

To help developers better understand how the data safety label is generated, I design a label pre-
view panel (see Figure 7.7). For each data type that is collected or shared, a note of “by library,”
“by app,” or “by app and library” is provided, indicating the source of this data collection or
sharing. After expanding each data type, it will show further information like the data collection
or sharing purposes, as well as the related code links. These links allow the developer to check
which annotations, custom library usage records in the XML file, or third-party libraries that
always collect user data led to the generation of this particular data safety label entry.

7.2.5 Matcha System Implementation
The Matcha IDE plugin was developed using the IntelliJ Platform SDK4. We have released the
plugin on JetBrain’s official plugin store and open sourced it on GitHub5.

Our API-based detection was built upon the code analysis subsystem of Coconut [96]. For
data access, we augmented the Coconut API list with APIs from the official guidelines for this
task6. For transmission, we kept the APIs about network requests from Coconut and added on-
device sharing API calls for the sharing-only condition. Our final API list contains 91 data access
APIs and 45 data transmission APIs.

We implemented the keyword search using the IntelliJ SDK’s findManager.findInProject
API. Our keyword list comes from three sources: (1) permissions mapped with specific data types

4https://plugins.jetbrains.com/docs/intellij/welcome.html
5https://matcha-ide.github.io
6https://developer.android.com/guide/topics/data/collect-share
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in Google’s official guideline7, (2) keywords extracted from Google’s data type definitions8, and
(3) keywords extracted from open-sourced Android apps using a TF-IDF algorithm. For the third
approach, we selected 75 apps by searching for recently updated GitHub repos (in July 2020) that
contain a Google Play link and declare dangerous permissions in the manifest. To identify the
keyword candidates for the data types to be reported in the safety label, we tokenized the Java
files from these projects and split the variables, treated each file as a document, and calculated
the TF-IDF of each word per document. We then selected files containing the data access API
calls and ranked words appearing in them based on the average TF-IDF values. Finally, a re-
searcher reviewed the top results and incorporated words related to the data type into the final
list. Matcha’s keyword search feature is case-insensitive. Our final version covers 180 unique
keywords (see Table 7.5 and Table 7.4 for details).

Matcha scans the app’s build.gradle file to detect third-party SDKs and fills out the required
data collection and sharing practices in the generated label. We covered popular commercial
SDKs included in the Google Play SDK Index9. We also added SDKs developed by Google
that provided privacy label guidelines. The SDK list is dynamically loaded every time our plugin
loads by requesting a JSON file hosted remotely, allowing the list to be updated without updating
the entire plugin. Our final version for the study covers 58 unique third-party SDKs (see Table 7.6
for details).

For the SDKs that involve optional data collection and sharing practices, Matcha generates
XML code to allow for further customization by the developer. For each detected SDK, Matcha
generates a <library-custom-usage> tag with the initial value of the verified attribute
set to false. Then it inserts <data> tags under the <library-custom-usage> to represent the
data collection and sharing instances derived from the guidelines of the SDK.

7https://developer.android.com/guide/topics/data/collect-share
8https://support.google.com/googleplay/android-developer/answer/

10787469?hl=en#data_types
9https://developer.android.com/distribute/sdk-index
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search

Other User-
Generated Content

bios, note, response

Other User Activi-
ties

gameplay, dialog option

Web Browsing Web Browsing
History

browser, cookie, browser cache, browsing cache,
search, web view

App Info and
Performance

Crash Logs crash, stack trace
Diagnostics ActivityManager, ApplicationErrorReport, Appli-

cationExitInfo, BatteryManager, Benchmark, De-
bug, HealthStats, Macrobenchmark, PowerManager,
StrictMode, battery, loading time, latency, frame rate,
diagnostics

Other App Perfor-
mance Data

performance

Table 7.5: Matcha keyword list (based on permissions). Matcha uses keyword search to comple-
ment the API-based detection of code that accesses sensitive user data.

Category Data Type Keywords

Personal Info

Name BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Email Address BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
User ID BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Address BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Phone Number BIND_AUTOFILL_SERVICE, GET_ACCOUNTS,

READ_CALL_LOG, READ_PHONE_NUMBERS,
READ_PHONE_STATE, READ_SMS
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Race and Ethnicity BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Political or Reli-
gious Beliefs

BIND_AUTOFILL_SERVICE, GET_ACCOUNTS

Sexual Orientation BIND_AUTOFILL_SERVICE, GET_ACCOUNTS
Other Personal
Info

BIND_AUTOFILL_SERVICE, GET_ACCOUNTS

Financial Info

User Payment Info BIND_AUTOFILL_SERVICE
Purchase History
Credit Score
Other Financial
Info

Calendar Calendar Events READ_CALENDAR, WRITE_CALENDAR
Photos and
Videos

Photos READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Videos READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Contacts Contacts ACCEPT_HANDOVER, ADD_VOICEMAIL, AN-
SWER_PHONE_CALLS, CALL_PHONE, PRO-
CESS_OUTGOING_CALLS, READ_CALL_LOG,
READ_CONTACTS, READ_PHONE_NUMBERS,
READ_PHONE_STATE, READ_SMS,
RECEIVE_MMS, RECEIVE_SMS, RE-
CEIVE_WAP_PUSH, SEND_SMS,
WRITE_CONTACTS

Location
Approximate Lo-
cation

ACCESS_COARSE_LOCATION, AC-
CESS_MEDIA_LOCATION

Precise Location ACCESS_FINE_LOCATION, AC-
CESS_MEDIA_LOCATION

Health and
Fitness

Health Info ACTIVITY_RECOGNITION, BODY_SENSORS
Fitness Info ACTIVITY_RECOGNITION, BODY_SENSORS

Messages
Emails
Sms or Mms READ_SMS, RECEIVE_MMS, RECEIVE_SMS,

RECEIVE_WAP_PUSH, SEND_SMS,
WRITE_SMS

In-App Messages
Device or Other
IDs

Device or Other
IDs

AD_ID, READ_PRIVILEGED_PHONE_STATE

Files and Docs Files and Docs READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE, MAN-
AGE_EXTERNAL_STORAGE
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Audio Files
Voice or Sound
Recordings

CAPTURE_AUDIO_OUTPUT, RECORD_AUDIO,
READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Music Files READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

Other User Audio
Files

CAPTURE_AUDIO_OUTPUT, RECORD_AUDIO,
READ_EXTERNAL_STORAGE,
WRITE_EXTERNAL_STORAGE

App Activity

App Interactions QUERY_ALL_PACKAGES
Installed Apps
In-App Search
History
Other User-
Generated Content
Other User Activi-
ties

Web Browsing Web Browsing
History

App Info and
Performance

Crash Logs
Diagnostics BATTERY_STATS
Other App Perfor-
mance Data

Table 7.6: Matcha third-party SDK list. Matcha can automatically detect 58 third-party SDKs
and automatically fill out the data collection and sharing practices based on the SDK’s documen-
tation. The list is primarily curated based on the Google Play SDK Index and also contains a few
SDKs developed by Google which also provided such type of documentation.

SDK Names Maven ID Matching Pattern

AdMob .*com.google.android.gms:play-services-
ads.*|.*com.google.android.gms:play-services-ads-lite.*

Ironsource .*com.ironsource.sdk:mediationsdk.*
Vungle .*com.vungle:publisher-sdk-android.*
AppsFlyer .*com.appsflyer:af-android-sdk.*
Adjust .*com.adjust.sdk:adjust-android.* |.*com.android.installreferrer:installreferrer.*

|.*com.adjust.sdk:adjust-android-webbridge.*
Chartboost .*com.chartboost:chartboost-sdk.*
Tapjoy .*com.tapjoy:tapjoy-android-sdk.*
Google Play Games
Services

.*com.google.android.gms:play-services-games.*

Firebase Authentication .*com.google.firebase:firebase-auth.*|.*com.google.firebase:firebase-
auth-ktx.*
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Firebase App Check .*com.google.firebase:firebase-appcheck.*|.*com.google.firebase:firebase-
appcheck-debug.*|.*com.google.firebase:firebase-appcheck-safetynet.*
|.*com.google.firebase:firebase-appcheck-playintegrity.*

Firebase Cloud Fire-
store

.*com.google.firebase:firebase-firestore.*|.*com.google.firebase:firebase-
firestore-ktx.*

Cloud Functions for
Firebase

.*com.google.firebase:firebase-functions.*|.*com.google.firebase:firebase-
functions-ktx.*

Firebase Cloud Mes-
saging

.*com.google.firebase:firebase-messaging.*|.*com.google.firebase:firebase-
messaging-ktx.*

Cloud Storage for Fire-
base

.*com.google.firebase:firebase-storage.*|.*com.google.firebase:firebase-
storage-ktx.*

Crashlytics .*com.google.firebase:firebase-crashlytics.*|.*com.google.firebase:firebase-
crashlytics-ktx.*|.*com.google.firebase:firebase-crashlytics-ndk.*

Dynamic Links .*com.google.firebase:firebase-dynamic-
links.*|.*com.google.firebase:firebase-dynamic-links-ktx.*

Google Analytics .*com.google.firebase:firebase-analytics.*|.*com.google.firebase:firebase-
analytics-ktx.*

Firebase In-App Mes-
saging

.*com.google.firebase:firebase-inappmessaging.*|.*com.google.firebase:firebase-
inappmessaging-display.*|.*com.google.firebase:firebase-
inappmessaging-ktx.*|.*com.google.firebase:firebase-inappmessaging-
display-ktx.*

Firebase Installations .*com.google.firebase:firebase-installations.*|.*com.google.firebase:firebase-
installations-ktx.*

Firebase ML model
downloader

.*com.google.firebase:firebase-ml-modeldownloader.*|.*com.google.firebase:firebase-
ml-modeldownloader-ktx.*

Performance Monitor-
ing

.*com.google.firebase:firebase-perf.*|.*com.google.firebase:firebase-
perf-ktx.*

Realtime Database .*com.google.firebase:firebase-database.*|.*com.google.firebase:firebase-
database-ktx.*

Remote Config .*com.google.firebase:firebase-config.*|.*com.google.firebase:firebase-
config-ktx.*

RevenueCat .*com.revenuecat.purchases:purchases.*
|.*com.revenuecat.purchases:purchases-store-amazon.*

User Messaging Plat-
form SDK

.*com.google.android.ump:user-messaging-platform.*

reCAPTCHA Enter-
prise

.*com.google.android.gms:play-services-recaptcha.*

ARCore .*com.google.ar:core:.*
ML Kit .*com.google.android.gms:play-services-mlkit-barcode-

scanning.*|.*com.google.android.gms:play-services-mlkit-face-
detection.*|.*com.google.android.gms:play-services-mlkit-image-
labeling.*|.*com.google.android.gms:play-services-mlkit-image-
labeling-custom.*|.*com.google.android.gms:play-services-mlkit-
language-id.*|.*com.google.android.gms:play-services-mlkit-text-
recognition.*|.*com.google.android.gms:play-services-code-scanner.*|
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.*com.google.mlkit:barcode-scanning.*|.*com.google.mlkit:camera.*
|.*com.google.mlkit:digital-ink-recognition.*|.*com.google.mlkit:entity-
extraction.*|.*com.google.mlkit:face-detection.*|.*com.google.mlkit:image-
labeling.*|.*com.google.mlkit:image-labeling-
custom.*|.*com.google.mlkit:language-
id.*|.*com.google.mlkit:linkfirebase.* |.*com.google.mlkit:object-
detection.*|.*com.google.mlkit:object-detection-
custom.*|.*com.google.mlkit:playstore-dynamic-
feature-support.*|.*com.google.mlkit:pose-
detection.*|.*com.google.mlkit:pose-detection-accurate.*
|.*com.google.mlkit:segmentation-selfie.*|.*com.google.mlkit:smart-
reply.*|.*com.google.mlkit:text-recognition.*|.*com.google.mlkit:text-
recognition-chinese.*|.*com.google.mlkit:text-recognition-
devanagari.*|.*com.google.mlkit:text-recognition-
japanese.*|.*com.google.mlkit:text-recognition-
korean.*|.*com.google.mlkit:translate.*

Google Cast (cast-tv) .*com.google.android.gms:play-services-cast-tv.*
Google Maps .*com.google.android.gms:play-services-maps.*
Google Pay - Wallet
SDK

.*com.google.android.gms:play-services-wallet.*

Google Pay - Tapand-
Pay SDK

.*com.google.android.gms:play-services-tapandpay.*

SafetyNet .*com.google.android.gms:play-services-safetynet.*
Google Play Integrity .*com.google.android.play:integrity.*
Snowplow Android
Tracker

.*com.snowplowanalytics:snowplow-android-tracker.*

Kochava .*com.kochava.base:tracker.*
Airship SDK .*com.urbanairship.android:urbanairship-

fcm.*|.*com.urbanairship.android:urbanairship-
hms.*|.*com.urbanairship.android:urbanairship-message-
center.*|.*com.urbanairship.android:urbanairship-
adm.*|.*com.urbanairship.android:urbanairship-preference-
center.*|.*com.urbanairship.android:urbanairship-automation.*

Appodeal SDK for An-
droid

.*com.appodeal.ads:sdk.*

Apptentive .*com.apptentive:apptentive-android.*
Branch .*io.branch.sdk.android:library.*
Braze Android SDK .*com.appboy:android-sdk-ui.*
Bugsnag .*com.bugsnag:bugsnag-android.*
CleverTap Android
SDK

.*com.clevertap.android:clevertap-android-sdk.*
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Fyber Marketplace
SDK

.*com.fyber:marketplace-sdk.*

HyprMX .*com.hyprmx.android:HyprMX-SDK.*
Instabug .*com.instabug.library:instabug.*
Interactive Media Ads
(IMA) SDK

.*com.google.ads.interactivemedia.v3:interactivemedia.*

MoEngage Android
SDK

.*com.moengage:moe-android-sdk.*

Ogury SDK .*co.ogury:ogury-sdk.*
Pangle Ad SDK .*com.pangle.global:ads-sdk.*
Pollfish .*com.pollfish:pollfish-googleplay.*
PubMatic OpenWrap
SDK

.*com.pubmatic.sdk:openwrap.*

Singular SDK .*com.singular.sdk:singular_sdk.*
Smaato NextGen SDK .*com.smaato.android.sdk:smaato-sdk.*|.*com.smaato.android.sdk:smaato-

sdk-rewarded-ads.*|.*com.smaato.android.sdk:smaato-sdk-
banner.*|.*com.smaato.android.sdk:smaato-sdk-interstitial.*

Start.io (Formerly Star-
tApp)

.*com.startapp:inapp-sdk.*

Taboola SDK .*com.taboola:android-sdk.*
Verve Group HyBid
SDK (formerly PubNa-
tive)

.*net.pubnative:hybid.sdk.*

7.3 Matcha Evaluation
I conducted remote studies with 12 developers on their own apps in August, September, and
November, 2022. I observed each participant creating the data safety label first using the Google
Play developer console and then using Matcha. Each interview took 1.5 to 2 hours. The study
was approved by my institution’s Institutional Review Board.

7.3.1 Study Design Considerations
It is challenging to evaluate the efficacy of interventions for improving the accuracy of a privacy
label. Unlike many developer tools that can be evaluated with uniform tasks in well-controlled
settings [53, 96, 100, 160, 161], a tool for creating the privacy label must be evaluated by de-
velopers who have adequate knowledge about the app. Otherwise, it is possible that the errors
are simply due to unfamiliarity. Two potential methods exist for achieving this goal. The first
method is to ask participants to develop an app with specific data practices and then create the
label. This method ensures that participants have a sufficient understanding of the app and the
data practices can be fully controlled. However, even developing a small Android app can cost
thousands to tens of thousands of dollars, making it too costly for a user study. Hence, I used the
second method, which is to ask participants to work on a real-world app they already developed.
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However, asking participants to work on their own apps leads to new issues. First, I cannot
obtain the ground truth of the data practices of these apps to verify the developer’s answers.
Second, since everyone is working on a different app, I cannot make direct comparisons between
their performances. Third, it is hard to recruit many participants who already have an Android
app and are willing to install a plugin to analyze their code and allow researchers to look at
their code. Consequently, the common between-subjects study design, which would randomly
assign participants to the baseline or experimental condition and compare results under different
conditions, is not possible for us.

Given these challenges, I decided to use a mixed-methods study design to answer this re-
search question: How effective is Matcha for correcting the errors in the privacy label of the
same app created by Google’s official tool? I conducted remote interviews to observe how de-
velopers created the label using the Google Play developer console and then using Matcha. I
asked the developer to verify the changes caused by Matcha to compensate for the unavailabil-
ity of the absolute ground truth. My less-controlled, more realistic study setting placed higher
requirement on the robustness of my tool, so I spent additional time testing and improving my
prototype to make it work with arbitrary apps [67].

7.3.2 Participants

12 developers participated in my study. I coded the data iteratively and stopped recruiting when
reaching a theoretical saturation in my qualitative analysis [73]. This sample size is consistent
with the evaluation studies of novel programming tools in past research [53, 100, 107, 178].
Most participants were recruited from freelancer websites, including eight from Freelancer10 and
one from Upwork.11 The other three participants signed up by filling out a pre-screening survey
after seeing my recruitment messages distributed on Twitter, Slack groups, or from personal
connections. The pre-screening survey asked them to provide an Android app that they recently
developed, their role(s) in the development process and included questions to test their Android
development knowledge.

Once the candidate participants passed the screening and decided on an app to use for the
study, I asked them to fill out the pre-study survey and schedule the interview. In the pre-study
survey, I asked my participants to confirm that they were comfortable installing the plugin to
analyze their code and sharing their screen to show part of the code to the researcher during the
interview. Each participant was compensated $70 for participating in the interview.

My participants were from eight different countries and the apps were developed either as
part of their job, a hobby, or for a course project. Nine out of the 12 participants had experience
in publishing apps on the Google Play store, though some of them chose not to use Google Play
apps for my study due to NDA restrictions. My sample included six Google Play apps, with
the most popular one having more than one million downloads. I append details about each
participant in Table 7.7.

10https://www.freelancer.com
11https://www.upwork.com
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7.3.3 Study Procedure
At the beginning of the study, I briefed the participant on the study goals and obtained their
consent for audio and screen recording. Before the main tasks, I first provided the participants
with a brief introduction to the Google Play data safety label. Then I asked the participants to
introduce the app they had selected.

In the first task, the participant created the label for the selected app using the developer
console. Participants logged into the developer console using an account I created for the study.
I asked them to handle this task as they normally would and encouraged them to use any resources
they would normally consult, except for the app’s current label if available. In the second task,
the participant created the label using Matcha. I first asked them to download the plugin and
helped them set up the environment. I created a short tutorial video (2 minutes 42 seconds) for
Matcha and asked them to watch it before working on the task. If they were not sure about how to
fill in certain information, I asked them to answer based on their best understanding and explain
their rationale. After creating the label, I asked them to import the CSV into the Google Play
developer console to create the label. Participants were asked to think aloud during both tasks.
I discuss the potential implications of a learning effect due to the two-task within-subjects study
design along with other methodological limitations in Section 7.3.5.

I conducted a brief semi-structured interview after the main tasks. I asked the developer to
examine the discrepancies between the two labels and tell us which version was more accurate
and what caused the error. Then I asked them to tell us which tool they preferred and why, and
asked how easy or hard it was to use Matcha, whether anything was surprising or confusing in
Matcha, and whether they learned anything about their app from the study.

7.3.4 Qualitative Analysis Method
I qualitatively coded the interview transcripts along with the screen recordings. First, I coded
important user actions, such as when and how they added annotations and modified the XML
spec entries. Then I coded the developer’s verbal responses using a bottom-up open coding
method [138] to synthesize interesting points that emerged during the think-aloud process of the
main tasks and the post-study interviews. I met with other team members weekly to discuss the
findings and derive themes from the findings. The coding process was facilitated by the software
MAXQDA. I provide my complete codebook in Table 7.8.

7.3.5 Methodological Limitations
My study method has some limitations that require caution for interpreting certain results. First,
using Matcha after using the developer console may result in a learning effect: the increased fa-
miliarity with the task might have contributed to the improvement in accuracy caused by Matcha.
However, the process of using the two tools and the questions the developers answer are both very
different, which suggests the learning effect may be small. My qualitative analysis of the error
causes provides further insights into which improvements were caused by Matcha. Second, the
identified errors are not exhaustive since the ground truth is not available. As such, the errors an-
alyzed in this chapter should only be interpreted as the errors that Matcha can help detect and fix,
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rather than all possible errors. However, the code analysis performed by Matcha should result in
more accurate results than previous research that has only relied on developers’ reflections [101].
Third, my study design may lead to a sampling bias, as all developers developed the app individ-
ually or in a small team. Consequently, my findings may not apply to developers who work in a
relatively large company. Lastly, my study design is focused on studying the use of Matcha on a
completed app, while Matcha can also be used during the app development process. I defer the
latter use case to future research.

7.4 Results
Overall, I found that Matcha helped developers correctly report a lot more data collection and
sharing practices. Both objective measurements and subjective feedback suggest that Matcha was
easy to learn and use. All participants preferred Matcha over Google’s tool because it improved
label accuracy, contextualized questions in the code, and helped them learn more about data
safety labels and the app’s data practices.

7.4.1 Matcha Improved Label Accuracy
When reviewing the two labels created in the study, my participants considered all Matcha labels
correct, except for F2, who correctly classified gender as “other personal information” in the
console while then misclassifying it as “sexual orientation” using Matcha. Since misclassifica-
tion errors do not affect the number of data types and purposes, I do not consider it separately in
my quantitative analysis. All participants except for F6 used Matcha to fix some errors in their
labels. The proportion of participants who have fixed errors in their labels using Matcha was
11/12 (approximately 92%) with a Wilson confidence interval [167] of (64.6%, 98.5%) at the
95% confidence level.

Matcha helped report 1.8 times as many data types collected or shared by the app (92 vs. 52)
and 3.0 times as many purposes for data collection and sharing (212 vs. 70) as compared to the
baseline Google developer console.

7.4.2 Types of Errors Fixed by Matcha
My first analysis examines the errors corrected by Matcha in terms of the error type (e.g., under-
reporting vs. over-reporting), the error source (e.g., first-party vs. third-party), and the related
data practices. Table 7.9 presents an overview of the errors.

Under-reporting vs. over-reporting

The great majority of errors corrected by Matcha are under-reporting errors (77%). In other
words, more data practices were missed in the baseline label and were added by Matcha than
the other way around. This demonstrates that using Matcha can help developers report more
comprehensive data practices. Note that Matcha also helped report more collected and shared
data types for the three Google Play apps than their real-world labels. There were also a number
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of over-reporting errors corrected (23%), which means Matcha helped developers avoid reporting
more data collected or shared than their app actually did.

First-party vs. third-party

A significant fraction of errors corrected by Matcha were caused by third-party libraries that
automatically collect or share data (78%) than by first-party code (22%). This was mostly due to
the use of Firebase services for basic functionality and for analytics, as well as other advertising
and utility libraries.

Fixed errors related to different data practices

More errors fixed by Matcha were related to data collection (70%) than data sharing (30%).
However, I want to note that the improvement for data sharing might be more essential, because
no data sharing was reported in baseline labels, whereas some data collection was already re-
ported in baseline. This suggests developers had more severe awareness gaps regarding data
sharing. Furthermore, sharing data with third parties is more sensitive [41], which means the
Matcha labels can better inform users of the privacy risks.

7.4.3 Matcha Helped Tackle Common Challenges for Creating Accurate
Privacy Labels

I identified four themes in participants’ explanations of errors fixed by Matcha. The participant
IDs (F1 to F12 as defined in Table 7.7) are labeled for each theme to denote who mentioned
it during the interview. I found that Matcha helped address common issues that can lead to
misunderstanding of data practices and inaccurate privacy nutrition labels. [29, 96, 101].

Help tackle data safety label knowledge gaps (F2, F4, F5, F8, F9, F10, F11, F12)

Matcha was able to help fix errors due to misunderstandings of the data safety label taxonomy.
One recurring issue was developers failed to pay attention to unfamiliar data types. For example,
F2 said “I did not even think of ‘other user-generated content.’” Matcha helped them focus on
a specific API call and a subset of data types related to the API, which helped correct these
errors. Matcha also helped correct errors related to misunderstandings about data collection and
sharing. For example, F8 initially thought he should report the list of installed apps as collected
while the data was only used on device and therefore did not count as collection per Google’s
definition. In Matcha, the quickfix dialog explicitly asked whether the data is transmitted out
of the device rather than whether the data is collected, which resolved the problem without the
developer having to read and comprehend the lengthy definitions of data collection himself.

Help reduce errors related to third-party libraries (F1, F2, F3, F5, F8, F9, F11)

I found that Matcha helped correct errors due to a range of misperceptions about third-party
libraries. Some developers did not know they should consider third-party libraries when creating
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the label. For example, F3 considered the data collected by Firebase was “collected by a different
platform” but not part of his app. Some developers were unaware of data collected and shared by
libraries. For example, F2 explained for the under-reporting errors due to Firebase cloud storage
that “I didn’t know that the library was doing that on its own behind the scenes.”

Interestingly, Matcha has also helped developers who already had some expectation of the
third-party data practices. Most of them solely relied on their understanding of the libraries’ data
practices to answer the questions, which resulted in inaccurate results. For example, F1 said “our
data is sent to Firebase server, that’s why I am selecting these” as he thought out aloud during
the first task. However, later Matcha revealed that Firebase collected more data then he expected.
Only F11 searched the exact data practices of an advertising library used in his app. However,
he was not aware that there was a specific guide provided for this task and chose to refer to the
privacy policy. The ambiguous wording of the privacy policy then caused errors in the first label
that were later corrected by Matcha. Matcha also fixed errors related to other Firebase libraries
that he did not expect to collect user data.

Help reduce errors due to forgetfulness (F1, F2, F3, F6, F7, F10, F12)

One common source of errors that Matcha helped fix is due to forgetfulness. They could simply
be an oversight – “it just escaped my mind” (F3), or have deeper reasons. For example, F6 forgot
the use of a third-party library and explained that “I didn’t actually recall that because I was not in
charge of this part.” F7 forgot he integrated the Admob library a long time ago. Both errors were
caught by Matcha. In line with findings from earlier research [101], I found developers mostly
answered questions from memory when using the developer console. Matcha’s systematic review
of data practices helped developers to find and disclose more data types than they would have
otherwise. For example, although F2 checked the Firebase database in the first task, he forgot
certain tables and therefore missed certain collected data types, which he later caught with the
help of Matcha.

Help tackle technical knowledge gaps (F1, F2)

Matcha could prompt the developer to research unfamiliar technical concepts when adding the
annotations. For example, F2 was unsure about the precisions of the location data. Matcha
helped him figure it out by promping him to add annotations for the LocationManager.

getLastKnownLocation API, which in turn led him to search for this API online. Matcha
also helped correct misundertandings about permissions. For example, F1 thought the Admob
library could not obtain approximate location data because the app did not request location per-
missions. However, he later learned from Matcha that the Admob library used the user’s IP
address to derive the approximate location, which was not controlled by the permission system.

7.4.4 Perceived Benefits and Challenges of Using Matcha

When asked to compare the two tools, all participants preferred Matcha over the developer con-
sole. I analyzed their answers and identified four themes of benefits offered by Matcha. I also
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analyzed the questions developers brought up during the think-aloud process and the post-study
interview to gain insights into the challenges of using Matcha.

Benefit of Matcha: Improved accuracy (F1, F2, F4, F7, F8, F10, F11)

The primary benefit of using Matcha was the improved accuracy, which could outweigh the time
cost. As put by F2, “Accuracy wise, I would prefer the tool Matcha...For an app that I’m going to
publish on Google Play, I would use Matcha, because like, I emphasize accuracy over efficiency.”

Benefit of Matcha: Ease of use (F2, F5, F6, F7, F9, F11, F12)

Many participants considered Matcha easy to learn and use. F6 felt the quickfixes for adding
annotations were “pretty convenient”. F7 said “I thought it might be complicated. But when I
started a bit, it becomes easier to use”. F2 considered it would be easier if he annotated his
code as he developed the app. It was observed that those who devoted more efforts to providing
accurate information in the initial task via the developer console tended to find more value in the
ease of use of Matcha. For example, F11 was the only person who did an in-depth search into the
data practices of his app due to third-party SDKs in the first task (as mentioned in Section 7.4.3).
He expressed a preference for Matcha because “it is very easy, it saves a lot of time, and plus it
is more accurate as compared to the Google Play console, which is very lengthy, and I have to
read through all the options and then check the boxes, and I have to consult the documentation.”

Benefit of Matcha: Informative tool (F2, F6, F5, F7, F8, F9)

Many participants liked Matcha because it was informative and helped them learn a lot about
their app and the data safety label. For example, F8 felt that using Matcha helped him gain a
better understanding of his app: “Before using your plugin, I was quite sure that I have submitted
all the information that I’m getting, but after using the plugin, I am more knowledge about what’s
going on in my app.”

Benefit of Matcha: Better engagement (F2, F6, F10)

Some participants liked that Matcha contextualized all the questions around specific code, which
better engaged them with this task than the developer console. F6 explained that:

The developer console does have everything written on it, but it’s hard to actually
relate that to your own code, because it’s just a bunch of instructions. While the
plugin could remind you of what you have written. For my example, I don’t actually
remember if I ever imported the WeChat SDK. I really don’t remember that. And the
console wouldn’t actually remind me of anything.

Benefit of Matcha: Better flexibility (F3, F6, F12)

Some participants considered using code to specify data practices gave them more flexibility. F3
mentioned that he preferred the plugin because “It gave me the flexibility I needed and made me
feel like I was still doing development work. All I had to do was add annotations and it generated
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labels for me.” F12 even thought of the benefits of Matcha’s annotation-based method for future
app updates: “If I update the app to another version, it’s easy to change the annotation and
create a new CSV file.”

Challenge of using Matcha: Redundancy of suggestions and developer input (F2, F6, F5,
F8)

A recurring issue raised by developers was regarding the redundancy in Matcha suggestions and
developer input. One source of redundancy was in the keyword search results. Some keywords
were considered too generic and resulted in many false positives. For example, F6 felt that the
term “search” for the target data type “search history” was not effective because it was often
used in code for unrelated purposes. Another source of redundancy was in the required input
from the developer. Since the API calls that collect the same type of data could be used for
different purposes, I asked the developers to always separate them with different annotations.
However, F2 complained about the need to annotate requestLocationUpdates after annotat-
ing getLastKnownLocation, which both get the same type of data and for the same purpose
in his use case. Future work may consider improving the design with more context-aware sug-
gestions.

7.4.5 Efficiency of Matcha
My analysis of developers’ action traces offers insights into the efficiency and learning curve of
Matcha.

Overall time performance comparison

It took my participants 30 minutes on average to complete the task using Matcha (std = 15 min-
utes), while it only took 9.8 minutes using the developer console (std = 9.3 minutes). Although
developers were able to complete the task faster using the developer console, they did so at the
cost of accuracy.

Time for adding annotations

I further analyzed the time for adding privacy annotations, which is a novel task I introduced
in Matcha. I demonstrate that adding each annotation only requires a small amount of time.
Each access annotation (@DataAccess or @NotPersonalDataAccess) took 1.3 minutes on
average to add (std = 1.6 minutes). Each transmission annotation (@DataTransmission or
@NotPersonalDataTransmission) took 1.3 minutes on average (std = 1.6 minutes) to add.
I further show in Figure 7.11 that the time of adding both types of annotations decreases over
time, suggesting my participants’ performance improved with practice.

7.4.6 Developers’ Reactions to Matcha Suggestions
Finally, I analyze developers’ reactions to the detected API calls and libraries to demonstrate
the importance of keeping developers in the loop to refine the ambiguity and inaccuracy in the

117



0 1 2 3 4 5 6 7
Annotation Index

0

100

200

300

400

500

600

700

In
te

rv
al

 (s
ec

on
d)

(a) Time to add an access annotation
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(b) Time to add a transmission annotation

Figure 7.11: Distributions of time to add an access annotation (i.e., @DataAccess or @NotPer-
sonalDataAccess) and a transmission annotation (i.e., @DataTransmission or @NotPersonal-
DataTransmission.), ordered by the indices of annotations for each participant. For the reliability
of the results, I only include the annotation indices with at least three people’s data. The two
figures show that it took participants longer to add the first access annotation, while the time
drastically decreased at the second annotation and became stable afterward, suggesting an easy
learning curve.
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Matcha suggestions. Matcha detected 10 access API calls and 6.3 transmission API calls on
average per app, which led to 4.9 access annotations and 5.2 transmission annotations added
by participants on average per app. Note that the number of required annotations are fewer
than the detected API calls because multiple API calls can share one annotation. Among the
59 access annotations, 40 were @DataAccess annotations; among the 62 transmission anno-
tates, 28 were @DataTransmission annotations. Others were considered as irrelevant and re-
sulted in a @NotPersonalDataAccess and @NotPersonalDataTransmission to dismiss
the suggestion. For example, the user password and files provided by the app rather than the
user were the two types of data most commonly labeled as @NotPersonalDataAccess in my
study; and data stored locally on device, network request without user data, and data transmis-
sion practices that meet the exemption criteria were the common reasons for @NotPersonal
DataTransmission.

Furthermore, F6, F7, and F10 each added a @DataAccess annotation for a data type that
was not detected by API calls based on keyword matches, showing the potential of drawing on
the developers’ knowledge of the app to complement the API-based code analysis results.

7.5 Design Implications for Developer Tools for Creating Stan-
dardized Privacy Notices

I have shown the design of Matcha successful in helping developers substantially improve the
accuracy of their data safety label (Section 7.4.1 and Section 7.4.2), being easy to learn and use
(Section 7.4.4 and Section 7.4.5), and being preferred by all study participants (Section 7.4.4).
Below, I discuss general design recommendations for developer tools for creating standardized
privacy notices based on what worked well in Matcha.

Contextualize the task around code

My studies showed that when using the developer console, developers rarely checked the code to
verify their understanding. Moreover, developers had trouble systematically reviewing the code
on their own. The design of Matcha suggests that showing questions around the related code can
help developers provide more accurate answers and learn more about their app (Section 7.4.4).
This finding echos prior studies [90, 94, 175] that found the code was central to what program-
mers wanted to focus on, and the most successful tools help programmers find the right code for
their tasks.

Provide scaffolding for embedding privacy information into code

Despite the promising benefits of making privacy information part of the code, it is difficult for
developers to manually handle the task given the complexity of the required information and
the difficulty of handling an unfamiliar programming feature (e.g., the annotation). In Matcha,
the use of the quickfix dialog helped ensure an accurate and correctly-formatted input as well as
easing the learning curve. The dialog allows for more space for presenting the full questions in
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a structured format and verifies the developer’s input before it is submitted. This method both
provides sufficient guidance for novice users and flexibility for expert users.

Break down the high-level task into low-level questions

Standardized privacy notices need to lump low-level practices into higher-level categories to im-
prove the clarity of the notice to lay people. However, as developers often have misperceptions of
the standard taxonomy [101], it is helpful to break down each high-level concept into lower-level
questions that probe each aspect of the concept separately. For example, Matcha helped the de-
velopers correct their misunderstanding of “data collecion” and “data sharing” by separating data
accesses and transmissions and asking about special cases and exemption conditions explicitly
when the developer added transmission annotations (Section 7.4.3).

Use proactive guidance and actionable suggestions

One of the main challenges in creating accurate labels is that developers tend to be overconfi-
dent in their answers and unaware of their own errors and knowledge gaps (Section 7.2.3 and
Section 7.4.4). To better engage the developers in this type of tasks, I used proactive guidance
such as the just-in-time tooltips and the errors flagged in code for API calls without a proper
annotation (Figure 7.10). I also tried to break down the entire task into smaller actionable steps.
My suggestions of accesses and transmissions are grounded in these actionable steps to force the
developer to interact with them and ponder on them.

Use precise and specific suggestions

A fundamental challenge in this type of task is to balance the recall and precision of the sug-
gestions. My study showed that the precise and specific API-call based suggestions were better
received than more generic keyword-based suggestions (Section 7.4.4). Although it is still nec-
essary to have something like the keyword-based detection that emphasizes a good recall rate,
it would be more effective if the precision is also improved so the correct suggestions are not
buried in a large volume of irrelevant suggestions.

7.6 Appendix: Pre-Study Survey
Thank you for agreeing to participate in this [anonymized institution name] study on creating the
Google Play data safety section. We look forward to interviewing you.

For this interview study, we will ask you to create the data safety section for one Android app
that we selected from your recent Android apps. The selected app has been sent to you. If you
are not sure which app to report on, please message us to ask.

In this pre-study survey, we would like to ask a few questions about you and the selected app.
At the end of the survey, you will see a scheduling link where you can make a booking for our
interview.

(1) What is your participant ID for this study? (The ID was sent to you.)
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(2) What is the Google Play link to the app that you will report on? (The selected app was sent
to you. If your app is not on Google Play, just provide the name of the app that you entered
in the screening survey.)

(3) Please confirm that your app is mainly developed in Java (not other languages/frameworks
such as Kotlin, Unity, Flutter, Cordova etc.)

• Yes, my app is mainly developed in Java
• No, my app is developed in other languages/frameworks

(4) Which option best describes this Android app?
• Commercial project
• Research project
• Course project
• Hobby Project
• Other [Free form response expected]

(5) (If the Q4 answer is commercial project) How many employees work in the company that
developed this app?

• 1-4
• 5-9
• 10-19
• 20-49
• 50-99
• 100-249
• 250-499
• 500-999
• 1,000 or more

(6) Is this an individual-developed app or a group-developed app?
• individual
• group

(7) (if the Q6 answer is individual) How many people participated in the development of this
app (including app design, mobile app, and server side development) ?

• 2-5
• 6-10
• 11-20
• more than 20

(8) Which of these roles describe your job for developing this app? (Please select all that apply)
• Mobile App Developer
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• Backend Developer
• Data Scientist and Analyst
• Designer
• Project Manager
• Security Engineer
• Privacy Engineer
• Quality Assurance Analyst
• Other roles (please specify) [Free form response expected]

(9) Note that during the study, you will try out an Android Studio plugin and use it to generate
the data safety label for your selected app. Therefore, please make sure to install Android
Studio and have your app’s source code readily available on the machine you use for the
interview. Since our plugin may guide you to add annotations in your app’s code, we
recommend you to either create a copy of your app or commit all changes before the
study. We need to collect the data safety labels you created during the study solely for
research purposes, and we will not collect other data about your app. Feel free to remove
the annotations and uninstall the plugin after the study. I have read and understood the
requirements above and still want to participate in this study. If you have any concerns,
please contact me before submitting the survey.

• Yes
• No

(10) What is the version of your Android Studio?

(11) Are you a professional Software Developer, i.e. software development is the major compo-
nent of your job?

• Yes
• No

(12) Did you major in computer science or related fields in school?
• Yes
• No

(13) What is your gender?
• Man
• Woman
• Non-binary/third gender
• Prefer not to answer

(14) What is your age group?
• 18-24
• 25-34
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• 35-44
• 45-54
• 55-64
• 65+
• Prefer not to answer

(15) In which country do you currently reside?

7.7 Appendix: Interview Script

7.7.1 Introduction
Thanks for agreeing to participate in our study. First, I need to read our standard introduction, as
required by our study protocol.

Our group at CMU has been doing research for many years on tools for developers. We
are currently working on a research project about the Google Play safety labels, which is a
new feature of the Google Play store that shows details of Android apps to end users. Android
developers are now required to provide the privacy details for their apps by answering certain
questions about data collection and sharing. The general goal of our research is to learn about
how Android developers accomplish this task to help us improve a developer tool we design and
build to streamline this task.

We understand that you have developed an app named [the app name]. We would like to
have you complete the task of creating a safety label for the selected app using different methods.
We expect the entire study session to take approximately 90 minutes, though timing may vary
depending on the complexity of the app. The study involves two tasks. In the first task, we
will ask you to create the label on the Google Play developer console. Then we will ask you to
create the label again using a different method. Finally, we will ask some follow-up questions
regarding the labels you created during the study, how you perceive certain concepts, and whether
you encountered any difficulty during the process. Since we want to observe how you completed
this task, we would like you to share your screen during the interview. We need to record both
the audio and the screen during the entire interview solely for analysis purposes. We will use
Zoom to make the recordings. Only researchers in our group working on this project will have
access to the recordings. The interviews will be transcribed automatically by Zoom and we may
include parts of the transcripts in our research papers that do not identify you, your app, or your
organization.

In the second task, we would like you to try out an Android Studio plugin developed by our
lab. We would like you to install the plugin on your Android Studio and then open the source
code of the selected app in this Android Studio. The plugin will guide you to create a csv file that
you can import into the Google Play developer console to complete the safety label requirement.
We will ask you to send us the csv file for analysis purposes. The plugin will not collect any
other information about your app and you can either choose to keep it installed or remove it after
the study.

Do you have the latest version of Android Studio IDE installed? Some features of the plugin
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may not work well if you’re not using the latest version of Android Studio. [Proceed after getting
their affirmative answer]

Do you have the source code prepared on this machine? Is it OK to install the plugin on your
Android Studio? [Proceed after getting their affirmative answer]

And in the second task/later part of the study, the plugin may potentially guide you to make
some slight modifications to your app, such as adding annotations and adding a configuration
file. We highly recommend you to make a copy of your source code or commit all the previous
changes before the study. Is this OK with you? [Proceed after getting their affirmative answer]

Your participation is entirely voluntary and you may quit the study at any time. If you don’t
feel comfortable answering a question, feel free to skip it and it will not affect your compen-
sation. You must be 18 or older to participate in this study. You will be compensated $70 for
participating. The interview will be conducted remotely through the computer. Since the inter-
view will be recorded, it is important that you be in a private room, and not in an open-space
cubicle, for example. These recordings may be stored on protected computers at CMU and on
Zoom, with transcripts potentially edited using a service called Otter. There are no expected risks
or benefits to you for participating, beyond the benefits of helping improve the understanding of
privacy labels in general and helping you improve the accuracy of your label.

This study was approved by the Institutional Review Board (IRB) at CMU. We will not
identify you, your app, or your organization in any publications that come out of this research
without your written permission.

Is that all OK? If yes, please sign the consent form.
Is it OK if I record the interview? [Start recording after receiving their positive answer]

7.7.2 Background Questions

Now I’ll introduce some background about the Google data safety section, which is the main
topic we’re discussing today. I prepared some slides and I’m gonna share my screen.

(The slides contain screenshots of Google Play safety labels. After showing the slides, ask
the following questions)

• Have you heard about them before?
• Have you created any of these labels before?
• Have you heard about the iOS privacy label before? If so, have you created it for any iOS

apps?

Before we get started, I’d love to learn a little bit more about your app. Can you briefly tell
me:

• What’s the app designed for?
• What was your role in the development?
• Is it still under active development?
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7.7.3 Task 1: Use Google Play Developer Console to Create the Label
Verbal instruction: Now I’ll introduce today’s first task. I’d like you to log into the google play
developer console using a test account provided by us, and create a label of the selected app. The
label should accurately represent the data practices of the selected app.

Please handle this task as you normally would and take as long as you need. You are welcome
to look at any documentation you would normally consult, except for the app’s privacy label if
it’s available. In order for us to see any resources you use, please either share your full screen or
open any additional resources in the same window where you’re completing the task.

If you need a resource that is not currently available or would ordinarily ask somebody for
help, please say aloud what resources you would use and who you would usually contact.

Please try to keep thinking aloud during this process. Basically that means tell me whatever
comes to your mind when working on this task, such as say your thought process aloud or voice
any questions or comments you have. When you think you’re done, just let me know.

7.7.4 Task 2: Use Matcha to Create the Label
Verbal instruction: Our lab developed an Android Studio plugin to help you create the safety
label in a semi-automated way. In the second task, you will create the label again using this tool.
Now let me help you install the plugin and set up the environment.

[After installing the plugin] I have prepared a short video introducing how to use this plugin.
I’ll send the link to you. Could you play it from your end? This video contains some sound.
Please let me know if the sound doesn’t work correctly on your end.

[After the tutorial] Do you have any questions?
[After answering their questions] Now let’s go back to the IDE. Similar to the first task,

please try to keep thinking aloud during this process. Basically that means tell me whatever
comes to your mind when working on this task, such as say your thought process aloud or voice
any questions or comments you have.

7.7.5 Post-Study Interview
Now I would like to compare the two safety labels that you just created. For the first label you
just created on the developer console, please open the developer console to show the preview.
For the second label created with Matcha, please switch to the “label preview” tab in the IDE
plugin. Put the two windows side by side so we can compare the results. We’re anticipating there
may be some discrepancies.

Before we compare the results, I want to reassure you that the goal of this study is not to
measure your ability, and discussing these discrepancies will help us understand the effectiveness
of our tool and identify challenges developers may encounter when handling this task, so please
don’t be shy in noting any inaccuracies in either label. Your perspective is really helpful, and no
identifying information will be shared about you, your app, or your company, in our report.

When I go through each discrepancy instance between the two versions, could you tell me;
• Which version do you think is more accurate?
• What do you think could possibly cause the difference between the two privacy labels?
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Next, I’d like to ask a few questions about your experience using the two tools.
How is the experience of using the Google Play developer console and Matcha? Which one

do you prefer? Why?
What do you think about using Matcha to generate privacy labels in general?
[Showing the key features of Matcha using a few slides] Could you tell me which are the

three features of Matcha that you felt the most useful and why?
We hope to deploy this tool in the future and would like feedback to help us improve the

design and implementation. Is there anything that we can improve in this tool that can make
you more likely to install and use it? Any other thoughts to share? We’ll continue working on
Matcha, if you have any friends that might be interested in it, let us know!
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Table 7.3: The sharingAttribute field of the @DataTransmission annotation encodes the
data sharing information as a list of predefined attribute values. This table shows the groups of
attributes that need to be completed in this field, as well as the corresponding sharing questions
and the exempt conditions of sharing defined by Google.

Attribute name Values Original questions / Exempt con-
ditions

SharedWithThirdParty True or False Is this data collected, shared, or
both?

OnlySharedWithServiceProviders True or False Sharing is exempt if transferring
user data to a “service provider”
that processes it on behalf of the
developer.

OnlySharedForLegalPurposes True or False Sharing is exempt if transferring
user data for specific legal pur-
poses, such as in response to a le-
gal obligation or government re-
quests.

OnlyInitiatedByUser True or False Sharing is exempt if transferring
user data to a third party based
on a specific user-initiated action,
where the user reasonably expects
the data to be shared.

OnlyAfterGettingUserConsent True or False Sharing is exempt if transferring
user data to a third party based on
a prominent in-app disclosure and
consent that meets the require-
ments described in our User Data
policy.

OnlyTransferringAnonymousData True or False Sharing is exempt if transfer-
ring user data that has been fully
anonymized so that it can no
longer be associated with an indi-
vidual user.

SharedFor App functionality;
Analytics; Developer
communications; Ad-
vertising or marketing;
Fraud prevention, Se-
curity and compliance;
Personalization; Ac-
count Management

Why is this user data shared? Se-
lect all that apply.
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Table 7.4: Matcha keyword list (based on definitions and the keywords extracted from open-
sourced projects that contain sensitive API calls). Matcha uses keyword search to complement
the API-based detection of code that accesses sensitive user data.

Category Data Type Keywords

Personal Info

Name name
Email Address email
User ID uid, user id
Address home address, city, country, zip code
Phone Number phone, default dialer
Race and Ethnicity race, ethnicity, african, indian, asian
Political or Reli-
gious Beliefs

political, religious

Sexual Orientation sexual orientation, gay, lesbian, transgender, bisex-
ual, queer

Other Personal
Info

birth, nationality, gender, male, female, non-binary,
veteran

Financial Info

User Payment Info credit card, billing, cvv, routing number, account
number, bank

Purchase History purchase
Credit Score credit score
Other Financial
Info

salary, debt

Calendar Calendar Events calendar, attendee
Photos and
Videos

Photos photo, barcode, image, picture, media
Videos video, recording, media

Contacts Contacts contact, call history, interaction duration

Location
Approximate Lo-
cation

location, city, country, ip address

Precise Location location, latitude, longitude
Health and
Fitness

Health Info health, medical, medicine, symptom, disease, doc-
tor, physician, sleep, wellness, therapist, emergency,
emergencies, period, pregnancy

Fitness Info fitness, exercise, workout, sport, diet, nutrition

Messages
Emails email, sender, recipient, subject
Sms or Mms message, sms, mms, sender, recipient, subject
In-App Messages message, chat, reply, replies, comment, sender, recip-

ient, subject
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Table 7.7: Participant Overview. Our sample features a good sample of developers and apps
across several dimensions, including participant’s geographic location (Location), app develop-
ment purpose (Purpose), app development team size (Team), app downloads (Downloads), the
current data safety label on Google Play (Current label), and participant’s role(s) in the devel-
opment team (Participant’s Role(s)). Nine out of the 12 participants had prior experience in
publishing apps on the Google Play store (Play). The app development purposes involve four
options, covering situations when the participant developed the app as part of their job (Job), as
part of their hobby (Hobby), for a course project (Course), and for a research project (Research).

ID Play Location Purpose Team Downloads Current label Participant’s Role(s)

F1 yes Pakistan Job 2-5 1M+ No data shared, 4 data
types in 3 categories
collected (App activity,
App info and perfor-
mance, and Device or
other IDs)

Mobile App Developer,
Designer

F2 no U.S. Course 2-5 Not Play N/A Mobile App & Backend
Developer, Designer

F3 no Nigeria Hobby 1 Not Play N/A Mobile App & Backend
Developer, Designer,
Project Manager

F4 yes Ukraine Hobby 1 Not Play N/A Mobile App Developer
F5 yes Georgia Job 2-5 50K+ No data shared, 6 data

types in 4 categories
collected (Personal
info, Photos and videos,
App activity, and De-
vice or other IDs)

Mobile App Developer

F6 no U.S. Course 2-5 Not Play N/A Mobile App & Backend
Developer

F7 yes Pakistan Job 1 Not Play N/A Mobile App Developer
F8 yes Pakistan Job 1 100+ No data shared, no data

collected
Mobile App Developer

F9 yes Bangladesh Hobby 1 500+ Not provided Mobile App Developer
F10 yes Egypt Course 1 Not Play N/A Mobile App Developer
F11 yes Pakistan Job 1 100K+ Not provided Mobile App Developer
F12 yes India Job 1 100K Not provided Mobile App Developer

129



Table 7.8: The complete codebook of our qualitative analysis of the interview recordings

Theme Code Memo Example

Cause
of error

Forgetfulness The developer mentioned
they forgot something about
their apps, such as libraries
integrated in the app or a
feature implemented in the
app.

“Sorry, I forgot about this
section. It was for users to
add text to their photos” (F7)

Library The developer mentioned
misunderstanding related to
third-party libraries.

“This one is more precise,
because I did not know that
the library was was doing it
on its own behind the screen.
So that’s why I did not put
this information.” (F2)

Misunderstanding
about the task

The developer mentioned
they did not understand
something related to the data
safety label creation task.

“I did not know that I need
to report out other user gen-
erated content.” (F2)

lack technical knowl-
edge

The developer mentioned
something that demonstrated
their misunderstanding
about technical concepts.

“I’m not sure if that is if I’m
actually using the precise lo-
cation are like an approxi-
mate location. That’s where
I’m confused.” (F2)

Comment
on
Matcha

prefer Matcha - infor-
mative

The developer mentioned
Matcha helped them learn
useful information.

“I never care about data col-
lection and I don’t even look
at what we do. So I think I
learned a lot from this” (F5)

prefer Matcha - better
flexibility

The developer mentioned
Matcha gave them better
flexibility in the label cre-
ation process.

“I want it because it gives me
the flexibility and it give me
the feeling of a developer’s
mindset.” (F3)

prefer Matcha - better
engagement

The developer mentioned
Matcha better involved them
in the task.

“It’s a lot more involved
process when you’re using
Matcha than Google Play
console.” (F2)

prefer Matcha - accu-
racy

The developer mentioned
Matcha improved the label
accuracy.

“I prefer the plugin because
it can search the privacy leak
for developers.” (F4)

prefer Matcha - easy to
use

The developer mentioned
Matcha was easy to learn
and use.

“I think the quickfix for the
annotation is pretty conve-
nient” (F6)

issue - redundancy The developer complained
that several tasks felt repet-
itive and unnecessary to
them.

“Like for some strange rea-
son I think, it looks for the
word search, but isn’t search
really common?” (F6)
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Table 7.9: Analysis of errors fixed by Matcha. The baseline column refers to the number of data
types and purposes reported using the developer console, and the added and removed column
refer to what Matcha helped add or remove as compared to the baseline version. Most fixed errors
are related to under-reporting issues (much more data types and purposes added than removed)
and caused by third-party libraries.

Data Type Data Purpose
Baseline Added Removed Baseline Added Removed

1st-party collect 21 8 13 34 15 20
3rd-party collect 18 44 11 22 107 15
1st-party share 1 2 1 2 2 2
3rd-party share 12 20 9 12 64 9

Total 52 74 34 70 188 46
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Chapter 8

Conclusion

With the proliferation of computing systems that rely on personal data, developers are facing in-
creasing responsibilities to protect user privacy throughout the software development life cycle.
While we often take it for granted that developers should handle all the tasks well, most devel-
opers are not privacy experts and are already overloaded with other more salient requirements
such as functionality and performance. Unfortunately, existing developer support for privacy is
limited, fragmented and ad-hoc, which increases the implementation and maintenance cost for
privacy and deepens the awareness and knowledge barriers.

This thesis takes the first step to explore an important yet understudied space, which is to
mitigate the privacy issues in software systems by providing better developer support. By ana-
lyzing prior literature and conducting in-depth developer studies, I established a framework that
summarizes the fundamental challenges for achieving Privacy by Design (PbD) and the corre-
sponding design principles for building developer tooling for privacy. Then I propose the concept
of privacy annotation and present three IDE plugins that work hand in hand with privacy anno-
tations for mobile app development following these design principles. My evaluation studies
demonstrated that my tools effectively improved the apps’ privacy practices and enhanced devel-
opers’ knowledge of privacy. This was achieved by seamlessly integrating privacy-related tasks
into the app development process through the addition of privacy annotations.

In this final chapter, I first review my design principles by reviewing the three IDE plugins
and the corresponding design principles that guided their design (Section 8.1). The three IDE
plugins are all developed for Android Studio and built atop one another, so it is possible to inte-
grate them into one system to allow developers to benefit from all the privacy support by adding
one set of annotations. This requires a unified privacy annotation design, which I will discuss
in (Section 8.2). Then I discuss the generalizability of my work, including the feasibility and
challenges of supporting other privacy tasks (Section 8.3.2) and other programming languages
(Section 8.3.1). Finally, I will provide an outlook on how to expand the methods proposed in this
thesis to tackle further challenges in privacy and other significant concerns that are frequently
deemed “secondary” in software development (Section 8.4).
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8.1 Reviewing Design Principles in IDE Plugins Supported by
Privacy Annotations

In Chapter 4, I present a set of design principles inspired by human-centered studies for designing
developer support for privacy. These principles significantly informed the design process of the
systems I present in this thesis. Below I will summarize how the design of my privacy-enhancing
IDE plugins and privacy annotations adheres to the design principles.

First, the idea of requesting developers to add privacy annotations in code is informed by
the Codify Accountability principle, as it helps convert the vague concept of “protecting privacy”
to concrete, actionable tasks “adding annotations”. In addition, by tracking who added privacy
annotations, we could attribute developers to corresponding privacy practices in the system im-
plementation.

My first attempt Coconut (Chapter 5) is an Android Studio plugin that offers developers real-
time feedback on privacy issues (Leverage Agency - Need #7 Increase Awareness) and quick-fixes
(Lessen Burden - Need #5 Aid in Privacy Tasks). Coconut also offers an interactive overview
panel that summarizes all the data collection and transmission activities based on the annotations
(Code Accountability - Need #3 Support Auditing).

Then I designed Honeysuckle (Chapter 6) on top of Coconut, which supports annotation-
guided generation of in-app privacy notices (Lessen Burden - Need #4 Automate Privacy Tasks).

Finally I designed Matcha (Chapter 7), which helps Android developers generate a privacy
nutrition label based on their annotations. Matcha uses simple code analysis to provide devel-
opers suggestions for code that potentially handles sensitive user data (Lessen Burden - Need #5
Scaffold and Streamline Privacy Tasks) and then allows developers to confirm, refine, or dismiss
the suggestions by adding different types of annotations (Leverage Agency - Need #7 Increase
Awareness). This method greatly reduces developers’ burden while still keeping them in the
loop. Since the two major app stores now require developers to create privacy nutrition labels,
there are natural incentives for developers to install the tool (Leverage Agency - Need #8 Incen-
tivize Adoption). To this end, I have released the Matcha plugin on the plugin store and many
real-world developers have installed it on their IDE.

Finally, although the three IDE plugins have been implemented as separate tools, they are
built on top of one another and has the potential to be integrated into one tool and supported
by one unified design of privacy annotation, which I will discuss in the rest of this chapter.
This means the developers can benefit from all their features by adding one set of annotations,
simplifying the process of complying with multiple privacy requirements (Lessen Burden - Need
#6 Reduce Demands).

8.2 Towards a Unified Design of Privacy Annotation

Below I first summarize how the privacy annotation design evolved throughout the design process
of the three IDE plugins, and then present a unified design of privacy annotation.
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8.2.1 Evolution of Privacy Annotation Design

The key design goal of privacy annotations is to use a lightweight format for documenting com-
prehensive information required for essential development tasks related to privacy. The design
of privacy annotations has evolved significantly during the development of the three systems to
achieve this goal.

Some changes were made to streamline the design. In Coconut, I defined annotations for data
sources of different data types (e.g., @LocationAnnotation), and annotations for data trans-
mission and local storage (i.e., @NetworkAnnotation and StorageAnnotation). While in
Honeysuckle, there is only one annotation for all the data sources (i.e., the @Source annotation)
and one for all data sinks (i.e., @Sink). The data types are specified in a field of the source an-
notation (e.g., @Source(sourceData=DataType.FineGrainedLocation)). This change
makes each API call require at most one source annotation and one sink annotation, reducing
bulky code. In addition, my studies showed that although there is a quickfix that helps devel-
opers automatically generate and add annotations, some developers still prefer to manually add
the annotations. With the improved design, it is easier for developers to remember the two an-
notation types, allowing them to manually add annotations with the help of syntax-based code
completion.

Some changes were made to increase the readability of the code. In Matcha, I rename
@Source and @Sink annotations to @DataAccess annotations and @DataTransmission an-
notations, respectively. Because the evaluation studies of Honeysuckle showed that it was not
clear what source and sink meant to some developers.

Some changes were made to increase the coverage of privacy-related information, often in-
formed by specific task requirements. Coconut and Honeysuckle annotations contain fields that
describe the purposes for accessing or transmitting user data. In Matcha, I expanded on the
purpose-related fields by replacing them with two new fields in the sink annotation: collection
Attribute and sharingAttribute. These fields supply the required information for generat-
ing privacy nutrition labels. These fields accept predefined String values that describe various at-
tributes, including purposes, optional vs. mandatory collection, data retention on remote servers,
end-to-end encryption, and whether and how data is shared with third parties. This change not
only increases the coverage of the data practice attributes, but it also improves the extensibility
of the annotation design. If more information is required in future versions of annotations, the
annotation design does not need to add new fields; it only needs to add new predefined String
values for the new attributes. This makes it possible to ensure backward compatibility.

Some changes were made to increase the expressiveness of privacy annotations, often in-
formed by the task requirements. In Honeysuckle, I introduced the field id in source annotations
and accessId in sink annotations. I retained this design in Matcha but renamed the fields to
improve readability. This small change allows developers to explicitly link data sources and data
sinks to specify how user data flows across the app. Honeysuckle uses the data flow information
to generate privacy notices that remind users of potential data transmission before it happens.
Matcha uses the data flow information and other fine-grained information provided in the source
and sink annotations to create a comprehensive and fine-grained representation of how the app
collects and shares user information. This aids in the creation and updating of privacy nutrition
labels.
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@DataAccess

@DataTransmission

@DataAccess(
  id = photo_attachment,
  dataType = {
    PhotosAndVideos_Photos})
Intent intent;

@DataTransmission(
  accessId = {photo_attachment},
  collectionAttribute = {
    TransmittedOffDevice.True,
    OptionalCollection.False…},
  sharingAttribute = {
    SharedWithThirdParty.False})
NewUserInDbModel newUser;

specifies accessed 
data types

specifies how and why 
data is transmitted out 

of the app

@MultipleUseCases@NotPersonalDataAccess

@NotPersonalDataTransmission

exempts “false positive” access API 
detection (i.e., accessing non-personal)

exempts “false positive” transmission API 
detection (i.e., not transmitting off device or 
transmitting non- personal data)

raises the annotating requirement 
to the function that contains 
detected API call
(usually for handling sensitive 
system APIs called in a self-defined 
helper function)

Figure 8.1: A proposal of unified design of privacy annotations. By adding one set of privacy
annotations following this design, a developer theoretically can take advantage of the features of
all the three IDE plugins I built for privacy.

Furthermore, Honeysuckle annotations handle a special yet crucial case: having one API
call used for different purposes, which is most commonly observed in system API calls within
self-defined helper functions. I designed the @NoSpecificUseCase annotation to indicate this
situation and developed features of the IDE plugin that guide developers to use this annotation
to defer adding @Source and @Sink annotations until they reach the upper-level helper function
that is called in contexts with specific purposes.

Overall, the information contained in Matcha annotations is essentially a superset of the other
two designs. The primary distinction is that Matcha does not include the @NoSpecificUseCase
annotation from Honeysuckle annotations. The Matcha annotations use a more streamlined and
extensible design, making them even easier to add and modify than the initial annotation design
in Coconut.

8.2.2 A Proposal of Unified Design of Privacy Annotations
Figure 8.1 presents my final design of privacy annotations for client apps development in Java.
This design combines the Matcha annotation design with a @MultipleUseCases annotation1.
Hence, it allows developers to specify essentially all the information held in the three designs of
privacy annotations and benefits from all the features of the three IDE plugins. It is worth noting
that a few fields that contain minor or redundant information are left out (e.g., the resettability
field in the @UniqueIdentifierAnnotation in Coconut), and some other useful information
that is not mentioned in the original design of Matcha (e.g., free-form description of data use
purposes) can be easily added by asking developers to add the purpose description strings fol-
lowing a certain format (e.g., with a prefix of “purpose_text:”) to the collectionAttribute
and sharingAttribute fields in the transmission annotation.

8.3 Generalizability of Privacy Annotations
In my thesis, I examined a specific case of designing privacy annotations for the development of
an Android client app in Java. The privacy tasks that my tool supported were primarily derived

1@MultipleUseCases is renamed from @NoSpecificUseCase in the Honeysuckle annotation to
improve readability
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from privacy laws, platform policies, and Android privacy best practices. In the following, I
discuss the generalizability of the privacy annotation concept to other languages and privacy-
related development tasks.

8.3.1 Generalizability for Other Programming Languages
There are many scenarios beyond Android client apps written in Java that require improved
developer support for privacy. These include server-side code and apps developed using various
technologies such as web, IoT, and AR/VR. Consequently, it is essential to migrate privacy
annotations to other programming languages to address these diverse needs.

I expect this idea to be applicable to other languages, because annotation/attribute is also
used in other mainstream programming languages. Nowadays, Kotlin has become another ma-
jor programming language for developing Android apps. Java annotations are fully compatible
with Kotlin. Additionally, Kotlin has its own support of annotation, which allows developers to
declare an annotation by putting the annotation modifier in front of a class.

Many other languages also support developers to attach metadata to code in different ways.
For example, C# supports adding custom attributes to various types of programming elements,
which was similar to Java’s annotations. Python has the decorator feature, which is a function
that takes another function and extends the behavior of the latter function without explicitly
modifying it. Its syntactic sugar allows developers to use decorators in a simpler way with the @
symbol to annotate a function, similar to the style of a Java annotation. TypeScript also supports
defining custom decorators that can be used to annotate a class declaration, method, accessor,
property, or parameter. As a result, privacy annotations can be relatively easily migrated to C#,
Python, and TypeScript with some level of customization.

For languages that do not have a formal support for annotation or decorator yet, privacy
annotations can be added in an alternative format such as free-form comments, or by extending
the language syntax and writing a transpiler to do source-to-source translation.

Transferring privacy annotations to an individual programming language is relatively straight-
forward. However, a more sophisticated challenge arises when a real-world software system
consists of multiple parts written in different languages. For example, the frontend website may
be coded in TypeScript, while the backend server is coded in Python. As data may be transmitted
across these subsystems, there needs to be a unified format to convert privacy annotations from
different languages into intermediate files. These files can then be aggregated to generate a com-
prehensive picture of the data practices of the entire system. Aggregating privacy annotations
across systems can further consolidate the annotation design and reduce errors, as some fields
that previously needed to be manually filled can now be automatically inferred (e.g., server-end
data retention practices, which are currently specified in the data transmission annotation as a
collection attribute).

8.3.2 Generalizability for Other Privacy Tasks
Privacy requirements are constantly evolving as emerging technologies and applications give rise
to new privacy risks. The finalized privacy annotation design can help developers comply with
multiple privacy requirements. However, the extent to which the same design can assist with
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other existing privacy requirements and future requirements remains to be studied. A potential
method to conduct this evaluation is to perform a heuristic evaluation of the privacy annotation
design based on influential privacy theories and frameworks, such as the contextual integrity
theory [179] and the privacy harm taxonomy by Solove [146].

However, no privacy annotation design can be completely future-proof. The unified privacy
annotation design supports extensibility in two ways. First, as discussed in Section Section 8.2.1,
new data collection and sharing attributes can be added as string values to cover new factors while
ensuring backward compatibility. Additionally, separate config files can be used to document
further information to complement the annotations, such as the privacy notice UI config file in
Honeysuckle and the library data practice config file in Matcha.

8.4 Delving Deeper into Privacy Annotations: Future Work
and Potential Applications

I believe the privacy annotation idea has much greater potential for improving privacy handling
in software development than what I have accomplished in my thesis. In this regard, I am enthu-
siastic to further investigate several directions, which I will outline below.

8.4.1 Annotations for Privacy Control and Audit

Privacy in mobile app development still faces many challenges, including the needs for better
privacy controls and support for auditing. How can we engage and support developers to tackle
these challenges? For my short-term goal, I plan to use privacy annotations and design better
tooling to help developers build mobile apps that natively support privacy notices and controls,
and to make it easier to audit the apps’ data use. I seek to expand annotation-based privacy notice
generation to privacy control generation; build systems to support end-to-end auditing with both
privacy annotations for frontend data collection and backend data storage; and use static and
dynamic program analysis to help different entities audit annotated apps.

8.4.2 Annotations for Privacy in Collaborative Software Development

Despite the potential for helping coordinate privacy-related design choices in software develop-
ment across a team, my thesis research has mainly studied the use scenario of individual develop-
ers. Hence, another short-term goal is to investigate how to apply annotations to improve privacy
in collaborative software development. Following the same human-centered approach, I plan to
first conduct in-depth studies to gain understanding the privacy-related in software development
teams. I plan to start by studying the open source community as an example. By inspecting
the public commit histories, issues, and code reviews, I seek to understand developers’ attitudes,
practices, and challenges with respect to privacy. Then I seek to draw on the privacy annotation
idea and design developer tooling to tackle the identified challenges.
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8.4.3 Annotations for Privacy in Emerging Technologies
Emerging technologies, such as AR/VR, IoT, and blockchain, present new challenges for de-
veloping privacy-preserving apps. How can we help developers easily build compelling and
privacy-preserving apps with these technologies? To this end, I plan to categorize threats into
general threats that are consistent with mobile apps and unique threats about specific technolo-
gies. Then, I aim to design developer support to tackle the corresponding issues, drawing on
my prior research on mobile app developer support. For example, I plan to transfer annotation-
based privacy notice generation from mobile apps to VR apps. In addition, I intend to study
the re-identification risks of collecting body motion data that do not apply to mobile apps, and
designing tooling that supports privacy-preserving body motion data collection for VR app de-
velopers.

8.4.4 Annotations for Other Problems
Nowadays, developers are tasked with meeting crucial requirements that they may have limited
knowledge of. Privacy is one such example. As a long-term goal, I aim to explore this ques-
tion: How can we further support developers to deal with other important requirements that
are outside of their primary goal and domain expertise? For instance, accessibility is also a
pressing issue in mobile apps that developers face similar challenges for. Developers are not ac-
cessibility experts, they have limited knowledge about accessibility best practices, and they have
limited time to tackle the various accessibility needs from different users. Hence, I seek to apply
similar ideas, such as giving developers real-time accessibility checks on their user interface de-
signs within the IDE and generating interfaces based on annotations that can adapt to different
input/output modality preferences.
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