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Abstract 

An ultimate goal of education is to help learners become self-regulated, autonomous learners who can continue 

to learn beyond formal school education by strategically choosing to use available resources around them. My 

dissertation approaches this grand question with a specific focus on the topics of choosing to use visual 

representations strategically and effectively learning with them during algebra problem solving. Visual 

representations are a type of instructional aids that help learners’ sense-making processes during problem 

solving and learning. I have used classroom experiments, user-centered design, and educational data mining 

approaches to investigate and support students’ learning with visual representations and their learning of 

strategic use of visual representatios. 

In my dissertation, I studied two key questions: 1) how might we support students’ effective and efficient 

algebra learning with visual representations? and 2) how might we support students’ self-regulated, strategic 

use of visual representations during algebra learning? In earlier work, I conducted five studies involving user-

centered research and classroom experiments to design and establish novel interactive visual scaffolding called 

“diagrammatic self-explanation” in the context of intelligent tutoring software for algebra learning. In my later 

work, I conducted three design and experimental studies to design and evaluate an adaptive metacognitive 

intervention that supports students’ self-regulated use of visual scaffold in the intelligent tutoring software in 

classroom. 

 

My work with about 20 middle-school teachers and 500 students in the U.S. provides several new contributions 

in the field of the learning sciences. Among others, my dissertation shows that novel, interactive diagrammatic 

self-explanation activities for algebra designed with teachers supported effective and efficient learning. My 

work also shows that a metacognitive intervention designed with middle-school students facilitated students’ 

strategic choices in using visual scaffolding in an interactive learning environment and enhanced both 

conceptual and procedural learning in early algebra, a challenging dual goal in the field. 
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1 Chapter 1: Introduction 

An ultimate goal of education is to help learners become self-regulated, autonomous learners who 

can continue to learn by themselves beyond formal school education (Chin et al., 2019; Cutumisu et 

al., 2015; Schwartz & Arena, 2013). In today’s world where one’s surrounding environment is 

changing rapidly, one cannot follow a designed career path. Rather, life in the 21st-century is like a 

“kayaker navigating white water”; learners need to read the currents, assess benefits and risks, choose 

to use tools and resources strategically, and exercise skills to quickly adapt to changes in society 

(Pendleton-Jullian & Brown, 2018). This rapidly-changing, unknown future makes it more important 

than ever to design and study instruction that helps learners become self-regulated and autonomous. 

How might we foster learners of the 21st century who can autonomously learn by effectively and 

efficiently using available resources?  

My dissertation addresses this grand question with a focus on the specific topics of strategically 

choosing to use visual representations and learning with them during math problem solving. Visual 

representations are a type of instructional aid that help learners’ sense-making processes during 

problem solving and learning (Rau, 2017). By visualizing information that would be difficult to 

convey with textual or verbal information, visual representations help learners notice and understand 

important features of the target content (e.g., scientific concepts) (Larkin & Simon, 1987; Rau, 2017). 

Choosing to use visual representations (when it is optional to use visual representations) is an 

important self-regulated learning skill (Clarebout & Elen, 2006; Zimmerman, 2008; Zimmerman & 

Pons, 1986); using visual representations is a strategy that learners can choose to adopt or not (e.g., 

learners might not use visual representations for the sake of faster problem solving) but using them 

can effectively aid problem solving and learning when learners actively engage with visuals in a 

meaningful way (Booth & Koedinger, 2010; Uesaka et al., 2007). Past studies have examined only 

one aspect of visual use (i.e., if students spontaneously use diagrams, Uesaka & Manalo, 2012). My 

dissertation research uses classroom experiments and fine-grained data from a tutoring system to 

investigate students’ detailed choice behaviors involving the use of visual representations (e.g., 

“when and how do students choose to and not to use visuals?”). This is an important yet under-

studied area of self-regulated use of visual representations. 

If choices matter in learning, researchers need to appropriately measure learner choices (Cutumisu 

et al., 2015; Schwartz & Arena, 2013). Advanced learning technologies such as Intelligent Tutoring 

Systems (ITSs) provide an opportunity to design a wide range of learning environments and to assess 

learner choices appropriately (Kulik & Fletcher, 2016). Research with ITSs to date has largely 

focused on supporting learners’ domain-level knowledge and skills (e.g., mathematics, Aleven & 
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Koedinger, 2002) but recent efforts have also shown the promise and evidence of intelligent systems 

in supporting self-regulated learning skills, including the skill of choosing to seek help (Roll et al., 

2011), choosing to ask for feedback (Tan & Biswas, 2006), choosing to use self-regulated learning 

strategies during problem solving (Azevedo et al., 2009), and choices involving problem selections 

in an intelligent system (Long & Aleven, 2017). Among many advantages of ITSs, a particular 

advantage in the context of choice-based learning is that ITSs provide fine-grained, step-by-step 

learning and performance data that allow researchers to understand students’ learning processes and 

choice behaviors in the designed learning environment, which is critical in assessing students’ 

learning processes (Ben-Eliyahu & Bernacki, 2015, Roll & Winne, 2015). My work leverages fine-

grained ITS log data to uncover students’ learning processes and patterns involving the use of visual 

scaffolding, aiming to contribute to better understanding of students’ self-regulated use of visual 

representations in problem solving. 

My entire work in the dissertation, consisting of eight studies, uses various methodological 

approaches to investigate the following open questions in the field of the learning sciences:  

 

1. How might we design a learning environment to support students’ algebra learning and problem-

solving processes with visual representations (Studies 1-5)? and 

 

2. How might we design a learning environment to support students’ self-regulated use of visual 

representations (Studies 6-8)?  

 

Exploring these open questions makes important theoretical and practical contributions: 

theoretically, my series of studies advances scientific understanding of how students learn with visual 

representations and how to support their learning and performance using various forms of an 

instructional scaffold called “diagrammatic self-explanation.” It also helps understand how to 

support students’ effective strategies involving the use of visual representations. Practically, my work 

offers knowledge on how researchers and designers can use a user-centered approach to design 

instructional tools, and how educators and designers can structure their learning activities using 

visual representations to promote effective, efficient, and meaningful learning.  

Throughout my eight studies, I have closely worked with more than 20 K-12 math teachers at 15 

schools and about 500 students in researching how visual representations as a form of scaffolding 

could best be leveraged to support learners. Specifically, I designed and evaluated a novel form of 

scaffolding student learning with visual representations called diagrammatic self-explanation. I use 
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user-centered design, classroom experiments, and data mining techniques to uncover the complex 

nature of domain-specific learning (i.e., use visual representations to learn math concepts and skills), 

self-regulated learning (i.e., choose to and not to use visual representations in a meaningful way), 

and the relations between the two. My dissertation work can be categorized into two bigger topics, 

illustrated in Figure 1. To be more specific, I have: 

• Designed and tested, in a series of classroom and design studies, different ways of using visual 

scaffolding (called “diagrammatic self-explanation”) to support student learning and 

problem-solving performance in early algebra (Studies 1-5, with 303 students, see also Table 

1) 

 

• Designed and tested, in a series of classroom and design studies, metacognitive support to 

help students strategically choose to and not to use visual scaffolding in algebra learning 

(Studies 6-8, with 203 students, see also Table 2) 

 

 

Fig. 1. My thesis studied two topics involving the use of visual representations in algebra learning.  
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My studies make the following specific contributions to the broad field of the learning sciences 

(Tables 1 and 2). Tables 3 and 4 provide detailed descriptions of my studies and what research 

questions were addressed in each study. 

Table 1. Major contributions of my studies (Studies 1-5). 

Supporting student learning with visual representations in algebra (Studies 1-5) 

Contribution area What was known already What my research adds 

Instructional design 

Many instructional design models 
are used to prescribe what to do to 
design instruction (designers’ “over-
reliance” on models). 

Provides a user-centered, systematic 
method (“Pedagogical Affordance 
Analysis”) to identify pedagogical 
affordances and constraints in designing 
instructional tools by working with 
educators 

Self-explanation 

It is challenging to design a self-
explanation activity that effectively 
and efficiently supports both 
student learning and performance 
during learning.  

Designed “confirmatory diagrammatic self-
explanation” and “anticipatory 
diagrammatic self-explanation”, two novel 
interactive self-explanation strategies 
(URL) 
 

Classroom studies showed that these 
strategies support both learning and 
problem-solving performance. 

Mathematical  
cognition 

Tape diagrams, a popular visual 
representation in algebra 
instruction were considered a useful 
tool to support student learning but 
few studies have achieved their 
effect on student learning. 

Designed and tested visual scaffold using 
tape diagrams (confirmatory and 
anticipatory diagrammatic self-
explanation)  
 
Classroom studies show their benefits on 
student learning of algebra concepts and 
strategies. 

Educational practice 

Despite an increasing interest 
among educators in using tape 
diagrams, few useful resources 
existed. 

Designed a digital template of various 
types of tape diagrams and distributed it as 
an Open Educational Resource (URL) 

 

https://tomnag.github.io/Tutorfiles/LynnetteDiagrams3/HTML/Lynnettediagramsfirst.html
https://tinyurl.com/tapetemplate
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Table 2. Major contributions of my studies (Studies 6-8). 

Promoting self-regulated, strategic choices in using visual representations in algebra (Studies 6-8) 

Contribution area What was known already What my research adds 

Diagram research 
Studies have mostly looked at 
students’ spontaneous diagram use 
when diagram use is investigated 

Using fine-grained temporal data from an 
intelligent tutor, I found that students’ use 
patterns and how they change over time 
are also important in studying diagram use 
during learning 

Self-regulated  
learning 

Interventions aimed at supporting 
self-regulated learning have not 
always been successful at improving 
domain-level knowledge and skills 

Designed a metacognitive intervention 
with students, which helped students learn 
better conceptual and procedural 
knowledge than students without the 
metacognitive intervention 

Behavior change  
research 

Many behavior change models 
assume straightforward target 
behaviors, reducing its applicability 
to complex human activities 

Developed the Metacognitive Choice 
Behavior Model, which can be applied to 
behavior adoptions that involve 
complicated choice-making behaviors and 
processes 

Mathematical  
cognition 

In algebra instruction, few studies 
have shown instructional strategies 
that support both conceptual and 
procedural learning 

Designed a metacognitive intervention 
that helped students learn both 
conceptual and procedural knowledge in 
algebra 

Intelligent Tutoring 
Systems (ITSs) 

There are not many ITSs that are 
designed with users (educators and 
learners), especially those aimed at 
improving metacognition and self-
regulated learning 

Designed features of an algebra ITS to 
support self-regulated learning with users 
(middle-school students), which helped 
students learn effectively in the classroom 
environment 

Choice making in  
learning 

Studies on students’ choice 
behaviors typically examine 
aggregated choice measures (e.g., 
sum of the number of certain 
behaviors), making it hard to 
understand how choice behaviors 
change over time 

Investigated students’ fine-grained choice 
behaviors in an algebra intelligent tutoring 
system and found that students’ strategic 
choice behaviors seemed to affect 
effective learning, which would not have 
been observed with aggregated data only 
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Table 3. Studies included in this dissertation (Studies 1-5). 

Supporting student learning with visual representations in algebra (Studies 1-5) 

Study # Date Research Question(s) Participants 
Outcomes/ 
Publications 

Study 1 
Fall 2018 
- Spring 
2019 

“How might we re-design an existing 
visual representation (tape diagrams) to 
help struggling middle-school students 
learn conceptual knowledge in algebra?” 

8 middle-school 
teachers 

Nagashima, Yang 
et al., 2020 

Study 1 
Spring 
2019 

“How do tape diagrams help learners 
think conceptually in early algebra?” 

7 middle-school 
students 

Nagashima, Yang 
et al., 2020 

Study 2 
Spring 
2019 

“Will the use of tape diagrams in early 
algebra through a scaffolded sense-
making activity called “diagrammatic 
self-explanation” help students learn 
conceptual knowledge  

41 middle-school 
students, 2 
teachers, 2 
classes, 1 school 

Nagashima, Bartel 
et al., 2020 

Study 3 
Spring 
2020 

“How might we support both learning 
and performance in early algebra using 
tape diagrams  

108 middle-
school students, 
5 teachers, 9 
classes, 2 schools 

Nagashima, 
Bartel, Yadav et 
al., 2021 

Study 4 
Spring 
2020 

“Will scaffolded use of tape diagrams in 
an Intelligent Tutoring System help 
student learning and performance 
regardless of their prior knowledge?” 
 

“How do learner interactions with visual 
representations influence their symbolic 
equation solving in an Intelligent 
Tutoring System?” 

84 middle-school 
and elementary-
school students, 
2 teachers, 3 
classes, 1 school 

Nagashima, 
Bartel, Tseng et 
al., 2021 

Study 5 
Spring 
2021 

“Will interleaving scaffolded problems 
and un-scaffolded problems enhance 
better learning than giving scaffolded 
problems all the time?” 

63 middle-school 
students, 1 
teacher, 5 
classes, 1 school 

Nagashima, Ling 
et al., 2022 



12 

 

Table 4. Studies included in this dissertation (Studies 6-8). 

Promoting self-regulated, strategic choices in using visual representations in algebra (Studies 6-8) 

Study #  Date Research Questions Participants 
Outcomes/ 
Publications 

Study 6 Fall 2021 

“How will students choose to use tape 
diagrams during problem solving in an 
Intelligent Tutoring System?” 
 
“Will students’ choices in using tape 
diagrams predict learning outcomes?” 

26 middle-school 
students, 2 
teachers, 2 
classes, 1 school 

Nagashima, 
Tseng et al., 
2022 

Study 7 
Spring 
2022 

“How might we design a metacognitive 
intervention that helps students think 
deeply and strategically about using tape 
diagrams during algebra problem 
solving?” 

8 middle-school 
students 

 

Study 8 
Spring 
2022 

“Will students who receive a 
metacognitive intervention on diagram 
use demonstrate strategic use of tape 
diagrams, better learning performance 
and learning outcomes?” 

140 middle-school 
students, 2 
teachers, 2 
schools 

 

 

Studies reported in this dissertation have been published in conferences (see below). For 

papers published at the International Conference of the Learning Sciences and at the Annual 

Meetings of the Learning Sciences, the International Society of the Learning Sciences owns the 

copyright and the permission for the reuse of published texts, tables, and figures has been 

obtained, only for the use in this document. For the papers published at the Annual Meetings 

of the Cognitive Science Society, the Cognitive Science Society holds the copyright and the use 

of published texts, tables, and figures is allowed under a Creative Commons Attribution 4.0 

International License (CC-BY). 
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2 Chapter 2: Theoretical Background 

2.1 Learning with Visual Representations 

We use visual representations to navigate everyday problem-solving and decision-making situations 

(Lurie & Mason, 2007). For example, when driving, we perceptually recognize road signs and 

quickly take actions based on what the signs tell us. Visual representations are also critical in teaching 

and learning. As seen in many textbooks, visual representations play an important role in scaffolding 

learning of scientific and mathematical concepts in a variety of study domains, especially science, 

technology, engineering, and mathematics (STEM) domains (Ainsworth & Loizou, 2003; Fukuda et 

al., 2021; Rau, 2017).  

Many types of visual representations are used in learning research and instructional practice. A 

shared principle among many types of visual representations is that visual representations make the 

“unseen” visible (Arcavi, 2003). By visualizing what would otherwise not be seen (or not be as easy 

to see), visual representations benefit human sense making (Arcavi, 2003; Larkin & Simon, 1987; 

Lurie & Mason, 2007). For instance, we use visual data representations (e.g., bar charts) to see 

patterns and get insights in data, which would be hard to quickly learn if there was no use of such 

data visualizations. 

A number of studies have demonstrated the effect of using visual representations on human 

learning (e.g., Rau et al., 2015; Suyatna et al., 2017; Yun & Paas, 2015). Visual representations 

benefit problem solving and learning as they illustrate complex concepts and situations visible, 

accessible, and comprehensive (Larkin & Simon, 1987; Rau, 2017). However, it has also been found 

that the benefits of visual representations are not universal. Some prior studies have found 

detrimental or mixed effects of visual representations (e.g., Magner et al., 2014) and other studies 

have found that visual representations are not effective for all subgroups of students (e.g., Cooper et 

al., 2018; van Garderen & Montague, 2003). Many factors moderate the effects of learning with 

visual representations, including prior knowledge, ability, age, as well as how the learning with visual 

representations is supported (e.g., Booth & Koedinger, 2012). Thus, careful design of visual 

representations and the accompanying instruction may be essential to meaningfully support student 

interactions with visual representations, especially for younger, lower-achieving students, and those 

who have lower prior knowledge (Davenport et al., 2008). Because these groups of students are the 

ones who need the most instructional support to achieve their learning goals, it is important that 

visual representations, as instructional scaffolding, are designed to help these groups of students. 
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One of the many domains in which visual representations are frequently used is early algebra. 

Among many visual representations used for algebra teaching, one specific type called “tape 

diagrams” is used frequently in practice (Fukuda et al., 2021; Murata, 2008) and in research (Booth 

& Koedinger, 2012; Chu et al., 2017). Most commonly, tape diagrams are used during instruction in 

Japan and Singapore, two countries where mathematics performance is high compared to the 

performance of many other developed countries (Fukuda et al., 2021; Lee et al., 2013; Murata, 2008). 

For instance, Singapore and Japan are ranked #1 and #4, respectively, for the 8th grade mathematics 

achievement ranking in the 2019 Trends in International Mathematics and Society Study (TIMSS) 

(Mullis et al., 2019). As shown in Figure 2, tape diagrams use bar-type representations to show how 

the different quantities are related in an equation (Murata, 2008). Despite its prevalence in 

instructional practice in Asia and a growing interest in other countries (e.g., in the US, see Common 

Core State Standards Initiative, 2010), however, little evidence is available regarding the 

effectiveness of tape diagrams for helping students learn in algebra. A small number of prior studies 

have investigated the effect, on student’s problem-solving performance, of providing tape diagrams 

alongside the corresponding equation (Booth & Koedinger, 2012; Chu et al., 2017). These studies 

showed that tape diagrams can lead to increased accuracy in problem solving and can reduce 

conceptual errors. Yet, it was also found that tape diagrams failed to help lower-grade and low-

achieving students in enhancing problem solving accuracy (Booth & Koedinger, 2012) or in 

understanding the meaning of tape diagrams (Chu et al., 2017). Moreover, despite the belief that tape 

diagrams help students with conceptual understanding (Murata, 2008), whether and how tape 

diagrams could support student learning had never been explored, prior to the work presented in this 

thesis (the studies mentioned above investigated effects on performance, not learning). In sum, while 

tape diagrams appear to have the potential to influence students’ conceptual and procedural learning 

in equation solving, it is unclear if and how they could be used to do so. 
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Fig. 2. Example tape diagrams found in prior research. (A) Booth & Koedinger, 2012, (B) Chu et al., 2017, 

(C) Morin et al., 2017, and (D) Murata, 2008. The figure itself was obtained from Anna Bartel, with permission. 

The mixed effects mentioned above, especially the different effects for subgroups of students, 

raise the question of how visual representations, including tape diagrams, might support learning for 

a wide range of students. Such differences in the benefits suggest that visual representations may 

need to be re-designed to scaffold students’ sense-making of the target concepts and content well 

(Booth & Koedinger, 2010; Davenport et al., 2008). In particular, it is important that visual 

representations are designed and used based on an understanding of their “pedagogical affordances” 

(i.e., action possibilities of an instructional tool that would help achieve the instructional goal, 

Mawasi et al., 2021; Nagashima, Yang et al., 2020). Pedagogical affordances offer implications for 

how to effectively (re-)design instructional tools. The earlier part of my dissertation takes a lens of 

pedagogical affordances in designing the visual representation and learning technologies. “How 

might we re-design tape diagrams so that students, especially low-performing students, could benefit 

from using the visual representation in algebra problem solving?” 
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2.2 Scaffolding Learning with Visual Representations by Leveraging Pedagogical 

Affordances 

Visual representations are considered as a form of instructional scaffolding (or instructional aids) 

(Hubber et al., 2010; Tippett, 2016). One role of instructional scaffolding is to support learners’ 

sense-making of the target content and thereby facilitate effective and efficient problem solving and 

learning (Pea, 2004). However, designing effective visual representations for a specific learning 

context, learning goal, and learners requires a clear understanding of what the visual representation 

communicates to learners, what it adds to what learners know already, and how it will guide learners 

towards a desired instructional goal. In other words, understanding what affordances exist between 

the visual representation and target learners would help design an effective instructional scaffold. 

For the above-mentioned question, how might we re-design tape diagrams so that students, 

especially low-performing students, could benefit from using the visual representation in algebra 

problem solving?, I used pedagogical affordances as an approach to identify how to re-design a visual 

representation to better scaffold learners. Pedagogical affordances refer to action possibilities of an 

instructional tool that could help educators and learners achieve instructional goals (Nagashima, 

Yang et al., 2020; c.f., Pea, 1993; Wu & Puntambekar, 2012). Identifying pedagogical affordances 

will help increase the likelihood that the tool will benefit student learning while helping to avoid a 

situation in which the tool will affect learning in an undesired way (Martin, et al., 2018; Nagashima, 

Yang et al., 2020).  

Prior studies have investigated what pedagogical affordances are embedded in various 

instructional tools (Airey & Erikson, 2019; Bano et al., 2017; Foster, et al., 2011, Krauskopf et al., 

2012; Wu & Puntambekar, 2012), but the pedagogical affordances are usually examined without 

carefully considering how they interact with actual teaching and learning contexts. These past studies 

on pedagogical affordances typically take a top-down approach, in which pedagogical affordances 

are identified through literature review, examinations of technological features, or inferences based 

on theoretical assumptions. Such a top-down approach for understanding pedagogical affordances, 

however, does not sufficiently inform real-world pedagogical practices, where the use of 

instructional tools involves a dynamic decision-making process where stakeholders define an 

instructional goal and examine the context in which teaching and learning occur (Lim, 2007). 

Gresalfi (2013) argues that affordances in a practical context of technology use need to be examined 

and understood in relation to whether and how individuals realize affordances. Affordances are 

inherently a relational concept (Faraj & Azed, 2012; Gibson, 1997; Greeno, 1994); that is, 

affordances of an object can best be analyzed by examining the interactions between the object, the 
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environment, and the individual(s) interacting with the object (Gibson, 1977; Gresalfi et al., 2012). 

Depending on the interactions, affordances may or may not be realized.  

In particular, when it comes to pedagogical affordances, instructional goals play an important role 

in that certain affordances will become more relevant than others depending on the goal defined 

(Bower, 2008; Dickey, 2003; Foster et al., 2012; Mawasi et al., 2021). Furthermore, top-down 

methods may overlook affordances that are less obvious (Bower, 2008). Hence, existing approaches 

are not necessarily adequate for capturing pedagogical affordances and constraints that offer 

pragmatic implications, making them less useful for dynamic instructional contexts. There is a 

growing need for addressing complex instructional contexts that involve different stakeholders’ goals 

when designing and adopting tools (e.g., Ahn et al., 2019; Holstein et al., 2019). Therefore, it is 

increasingly important that the pedagogical affordances of an instructional tool are identified and 

understood in relation to a targeted instructional goal. 

A grounded, human-centered approach may be effective for identifying pedagogical affordances 

and constraints that consider instructional practices. Particularly, an approach that incorporates 

educators’ pedagogical knowledge would be effective, given that educators play an essential role 

when instructional tools are adopted in classrooms and help students realize affordances (Gresalfi et 

al., 2012; Koehler & Mishra, 2009; Krauskopf et al., 2012; Putnam & Borko, 2000; Tan et al., 2012). 

Educators have professional pedagogical knowledge known as Technological Pedagogical Content 

Knowledge (TPACK) (Foster et al., 2012; Kohler & Mishra, 2009; Krauskopf et al., 2012). Their 

ability to identify and react to these affordances allows them to leverage instructional tools and 

support students as they interact during learning. It is, therefore, worth exploring how educators’ 

pedagogical knowledge could be leveraged in analyzing pedagogical affordances of instructional 

tools. For example, Dickey (2003) explored pedagogical affordances of a 3D virtual learning 

environment for the goal of promoting constructivist learning by observing and interviewing a 

university instructor. Their bottom-up approach investigated the interaction between the tool, the 

instructor, and students to understand affordances. However, the process of identifying affordances 

was rather unclear, making the method unreproducible. To date, no systematic, goal-oriented method 

for eliciting pedagogical affordances and constraints using educators’ pedagogical knowledge is 

available, despite its potential usefulness for understanding pedagogical affordances and constraints. 

In Study 1, described below, I developed Pedagogical Affordance Analysis, a novel, systematic, user-

centered method for identifying pedagogical affordances. I applied the approach to create a version 

of tape diagrams that is well-suited to the goal of enhancing conceptual knowledge among middle-

school students. 
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Pedagogical Affordance Analysis (Study 1) informed an instructional idea for a scaffolded form 

of diagrammatic self-explanation, a strategy in which students would explain target learning content 

by using diagrams (Ainsworth & Iacovides, 2005). I designed, tested, and established two different 

ways in which diagrammatic self-explanation can be embedded as an interactive scaffold in an 

Intelligent Tutoring System: “confirmatory diagrammatic self-explanation” (i.e., students use 

diagrams to explain their problem-solving steps that they have already solved in a conventional, non-

diagrammatical notation, in Study 2) and “anticipatory diagrammatic self-explanation” (i.e., students 

use diagrams to explain their future problem-solving steps before attempting to solve the step in a 

conventional, non-diagrammatical notation, in Studies 3-5). Figures 3 and 4 show how the team and 

I designed and implemented confirmatory and anticipatory diagrammatic self-explanation in the 

domain of early algebra. 

A series of classroom studies (described more in detail in Chapter 3) have shown that these 

diagrammatic self-explanation scaffolds, added to the conventional problem-solving notation, 

support students’ problem-solving performance (during the learning activity) and their learning 

outcomes. Across four classroom experiments (Studies 2-5), I found that 1) confirmatory 

diagrammatic self-explanation supports students’ conceptual learning, 2) anticipatory diagrammatic 

self-explanation (Figure 4) enhances students’ problem-solving performance during the learning 

activity, and that 3) anticipatory diagrammatic self-explanation helps students makes an effective 

transition from using informal problem-solving strategies (e.g., guessing) to the formal problem-

solving strategy in algebra (Koedinger et al., 2008). Please read more on my past studies in Chapter 

3.  
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Fig. 3. Confirmatory diagrammatic self-explanation. (a) Students first select a diagram that represents the 

given equation (i.e., 19 = 3x + 4 in this example). (b) Then they will solve the first step in the symbolic form 

(i.e., subtracting 4 from both sides of the equation). (c) After that, students will select a diagram that matches 

what they just did (i.e., subtracting 4 from both sides). (d) This interaction continues until students solve the 

problem. 
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Fig. 4. Anticipatory diagrammatic self-explanation. (a) Students start by selecting a diagram that matches the 

given equation (i.e., 7x = 4x + 9 in this example). (b) Then they will select a diagram that shows a strategic 

next step to do. (c) Students, once they select a correct representation (explain through selecting a diagram), 

they will be prompted to enter the step in the symbolic representation. (d) Students enter the step in symbols. 

(e) This interaction continues until solving the equation. [Try the tutor here] 

https://tomnag.github.io/Tutorfiles/LynnetteDiagrams3/HTML/Lynnettediagramsfirst.html
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2.3 Learning to Self-Regulate the Use of Visual Representations 

Although the question of how students learn with visual representations has been researched 

extensively, including in my past studies, there is scarce research on how students learn to self-

regulate the use of visual representations (i.e., being able to strategically choose whether, when, and 

how to use visual representations). As illustrated in Chapter 1, it is critical that learners acquire the 

self-regulated skill of appropriately choosing to use external resources (e.g., hints in Cognitive 

Tutors, Roll et al., 2011), including visual representations (Uesaka et al., 2007). According to Pintrich 

(1995, 1999) and Zimmerman (1990), self-regulated learning involves learner control over their own 

behaviors, motivation, and cognition. Using visual representations strategically is an important self-

regulation skill; based on theories of self-regulation, it can be derived that learners would attempt to 

control whether they will use a visual representation or not during problem solving (behavior) by 

assessing if they understand the visual and how beneficial it would be to use the visual (cognition) 

and by developing the confidence in using the visual (motivation/self-efficacy).  

Without such a self-regulatory skill of using visual representations, learners would not be able to 

use visual representations effectively and efficiently in future problem-solving situations, both in and 

out of school (Uesaka & Manalo, 2006, 2012; Uesaka et al., 2010). In fact, it is known in prior 

research that learners do not spontaneously use visual representations when there is no support for 

using visual representations (Uesaka & Manalo, 2006). Few studies have been conducted to 

investigate when and how learners spontaneously choose to use visual representations during 

problem solving. For example, Uesaka et al. (2010) tested if verbally encouraging students to use 

visual representations and assigning practice in diagram construction tasks would facilitate 

spontaneous use of diagrams with 86 Japanese 8th graders. They found that the combination of verbal 

encouragement and practice facilitated spontaneous diagram use in a subsequent practice session, 

but spontaneous use of diagrams did not increase when only one of those strategies was provided 

(Uesaka et al., 2010). Another study has found that peer instruction on using visual representations 

(Uesaka & Manalo, 2007) is effective in promoting spontaneous visual use (Uesaka & Manalo, 

2012). More broadly, there are several other prior studies that examined students’ spontaneous use 

of available resources other than visual representations (e.g., Duffy & Azevedo, 2015; van Harsel et 

al., 2022). Some studies also demonstrated that metacognitive interventions could help students to 

be self-regulated (e.g., Roll et al., 2011; Schwonke et al., 2013). For instance, interventions such as 

explicit instruction on a targeted self-regulatory skill can help learners become more self-regulated 

(also see Zepeda et al., 2015). 
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Despite the growing body of studies on self-regulated learning skills, none of the prior studies on 

the use of visual representations investigated whether students’ choices in using visual 

representations result in better performance (during the learning process) and learning outcomes, and 

what interventions could help students be strategic in using visual representations (e.g., Bielaczyc et 

al., 1995). In other words, it is not yet known if any intervention could support learners in 

strategically choosing to use visual representations and how it may or may not improve performance 

and learning (Wu et al., 2020). It is vital to investigate whether students’ self-regulated use of visual 

representations can result in better performance and learning. Therefore, research is needed to 

understand what support would help learners strategically choose to use visual representations and 

help them achieve better performance and learning (Chin et al., 2019; Bransford & Schwartz, 1999; 

Nagashima, Tseng et al., 2022; Schwartz & Arena, 2013).  

What is a strategic use of visual representations (tape diagrams, in my studies)? Is more use always 

better than any other use patterns? Given a lack of past studies on strategic use of visual 

representations, it is hard to define what exactly constitutes a strategic use of visual representations. 

However, with regard to this question, my dissertation suggests some principles that help us 

understand what a strategic use of visual representations would look like, at least in the context of 

using tape diagrams during algebra problem solving. 

 

2.4 Promoting Strategic Use of Visual Representations  

How might we facilitate self-regulatory use of visual representations during problem solving that 

would help students perform and learn better? To approach this question, I have explored relevant 

literature in the areas of self-regulated learning and behavior change, two fields that can inform 

effective approaches for my research question. In this section, I review key relevant theoretical views, 

existing models, and relevant prior work in these areas. 

Self-regulated learning perspective 

Self-regulated learning can be defined as “the process whereby students activate and sustain 

cognition, behaviors, and affects, which are systematically oriented toward attainment of their goal” 

(Sabourin et al., 2013; Schunk, 2008). While various other definitions of self-regulated learning exist 

in the literature (Pintrich, 1995; Zimmerman, 2002, 1999, 1990, 1986), self-regulation of learning 

can be characterized by its two key features and processes. First, self-regulated learners proactively 

seek and choose to adopt learning strategies (that are often effortful) and are aware of the processes 
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and outcomes associated with the adoption of certain learning strategies (Cleary & Zimmerman, 

2004; Zimmerman, 2013). Second, self-regulated learners carefully observe and examine their 

proactive adoption of certain learning strategies, often based on feedback they receive (e.g., on their 

own learning outcomes, processes, and skill acquisition). In other words, self-regulated learners do 

not only choose to use effortful-yet-effective strategies but also attend to the effectiveness of using 

the strategies in relation to their own knowledge and skills, self-efficacy, motivation, and actual 

benefits that the adoption of the strategy produce (Cleary & Zimmerman, 2004). Learners may adjust 

or quit the use of the strategies if they (metacognitively) do not see benefits and usefulness for their 

learning and own goals. 

Researchers have investigated processes involving self-regulated learning to uncover 

metacognitive, cognitive, and motivational processes that play a role in self-regulated learning (Ben-

Eliyahu & Bernacki, 2015). They have proposed several different models and theoretical frameworks 

that attempt to describe the processes involving self-regulation. For example, Zimmerman and 

Campillo (2003) describe self-regulated learning processes through a cyclical model that is 

composed of “forethought”, “performance”, and “self-reflection” phases (Figure 5). In the 

forethought phase, students analyze the presented task (e.g., its difficulty and familiarity) and plan a 

learning goal (Cleary & Zimmerman, 2013). Another core characteristic of the forethought phase is 

its emphasis on students’ motivational aspects; students analyze tasks and establish goals based on 

their self-efficacy beliefs, interests, and utility value they see in the task (i.e., task utility) (Panadero 

& Alonso-Tapia, 2014). In the performance phase, students carry out the learning task, observe their 

own learning processes, and control their behaviors based on the needs they see during performance. 

For example, students might change the strategy they use based on what they observe in their own 

task performance. Finally, in the self-reflection phase, students evaluate their own performance, and 

react to it to improve their performance. These sub-components within the self-reflection phase are 

called self-judgement and self-reaction, respectively (Panadero & Alonso-Tapia, 2014) and they are 

dependent on each other. For instance, if learners realize that there is room for improvement in their 

own work (self-judgement), they may adaptively adjust their strategy use to improve their 

performance (self-reaction).  
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Fig. 5. Zimmerman & Campillo (2003)’s model of self-regulated learning. It consists of three stages in a cyclic 

form (“forethought”, “performance”, and “self-reflection” stages)  

Another model that is widely used in education research, especially studies of self-regulated 

learning in computer-supported learning environments (Matcha et al., 2019), is Winnie and Hadwin 

(1998)’s COPES model that involves four main phases: task definition, goal setting and planning, 

enactment of tactics and strategies, and adaptation (Matcha et al., 2019; Winne & Hadwin, 1998). 

These four stages are described as: 

 

1. Task definition: Learners develop a model of the task. 

2. Goal setting and planning: Learners create goals relative to their model of the task and then select 

cognitive operations—study tactics and learning strategies—they forecast could achieve their goals. 

3. Enactment of tactics and strategies: Learners apply tactics and strategies. As they do, tactics and 

strategies create provisional updates to knowledge and beliefs. 

4. Adaptation: As operations create products and when information evaluating products is accessible, 

learners may monitor learning and adapt features of the three foregoing phases if progress deviates from 

standards specified in goals. 

 

As seen in the description above, Winne and Hadwin (1998)’s model and Zimmerman and 

Campillo (2003)’s model share similar phases and processes that involve learning. Zimmerman and 

Campillo (2003)’s forethought phase corresponds to Winne and Hadwin (1998)’s task definition and 
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goal setting and planning stages. The performance phase involves enactment of tactics and 

strategies, and the self-reflection phase (Zimmerman & Campillo, 2003) corresponds to the 

adaptation phase (Winne & Hadwin, 1998). However, it is possible that some adjustments are made, 

depending on the learning context. For instance, Adaptation may happen during performing the task 

(i.e., the performance phase in Zimmerman & Campillo, 2003). Likewise, self-reflection might 

happen while performing the task. 

Studies have applied these theoretical models to investigate student learning, and design and test 

interventions aimed at supporting students’ self-regulated learning in various subject domains. In 

relation to my dissertation topic, some studies investigated students’ self-regulated use of learning 

strategies when learners had the choice of using (or the order of using) those learning strategies. For 

instance, Foster et al. (2018) found that novice first-year college students, when they are given a 

choice as to whether to use example problems or practice problems, do not choose to select tasks 

following the example-based-learning principle (i.e., start with examples, and gradually transition to 

practice problems) in mathematics. van Harsel et al. (2022) ran a study with university students 

investigating students’ use of worked examples, tutorial videos, and practice problems when the 

choice as to which of those types of learning materials to use for their mathematics learning was up 

to students. Results showed similar patterns to Foster et al. (2018)’s findings that students did not 

follow established learning principles in learning with the three types of materials. van Harsel et al. 

(2021) also conducted an experiment in which they tested the effect of a self-regulated learning 

intervention (i.e., a video teaching established principles for learning with examples and practice 

problems). They found that students who received the intervention showed choice behaviors that 

follow the established effective principles but it did not lead to better learning outcomes (van Harsel 

et al., 2021). 

Studies have also used computer-supported learning environments to investigate students’ choice 

behaviors and their relations with performance and learning (Greene et al., 2021). For example, a 

series of studies on “choice-based assessments” (Schwartz & Arena, 2013; e.g., “Posterlet” by 

Cutumisu, et al., 2019, 2015) have found that, when students were given a choice of seeking either 

positive or negative feedback on the design of posters that they made in a computer-supported 

interactive learning environment, the frequency of seeking negative feedback was significantly 

correlated with learning gain on poster design principles. Their findings show the importance of 

measuring and focusing on students’ choice behaviors in research on learning technologies. Another 

example is Schwonke et al. (2013) in which they used “cue cards” that show hints that students can 

use to learn when and how to use system-provided hints in an ITS for geometry. An experiment with 

60 students in Germany found that students with low prior knowledge benefited from the 
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metacognitive prompt. They also found that students, regardless of their prior knowledge level, 

solved problems more efficiently (less time spent on the task). However, the intervention did not 

affect how students used hints in the tutoring software (i.e., did not affect their choice behaviors) 

(Schwonke et al., 2013). Roll et al. (2011) developed the Help Tutor, an ITS that provides instruction 

on strategic help-seeking behaviors. Their classroom studies have found that the Help Tutor 

improved students’ help-seeking behaviors and those strategic help-seeking behaviors transferred to 

a new learning environment (Roll et al., 2011). The most successful intervention aimed at supporting 

students’ choice behaviors (not only measuring students’ choices) to date is perhaps Chin et al 

(2019)’s experiment in which they tested the effect of instruction of design thinking strategies (Rauth 

et al., 2010) on students’ choice behaviors in a transfer environment. They found that instructing 

design thinking helped lower-prior knowledge students choose to use important design-thinking 

principles (e.g., seeking feedback) in a transfer environment (Chin et al., 2019). 

Despite the growing interest in measuring students’ choice behaviors as described above (Chin et 

al., 2019; Schwartz & Arena, 2013), few studies address self-regulated use of visual representations. 

When use of visual representations is considered, most studies focus on spontaneous use of visual 

representations as an autonomous, “ideal” behavior that learners should engage with. For instance, 

Uesaka and Manalo (2010) found that teachers’ verbal encouragement on diagram use and offering 

practice opportunities for using diagrams helped students spontaneously draw diagrams (on a paper) 

in math problem solving. Also, Wu et al. (2020) tested the effect of a computer-supported drawing 

prompt (i.e., suggesting the use of drawing to support understanding of the content) on students’ 

spontaneous drawing (on paper). They found that students who received the prompt self-reported 

that they used drawings more than those who did not receive the prompt. However, the data came 

from students’ self-report and the lack of fine-grained data on students’ actual choice behaviors 

(when and how students drew) makes it difficult to understand the effect of the prompt on students’ 

choice behaviors and how they might be associated with students’ performance (Ben-Eliyahu & 

Bernacki, 2015; Bernacki, 2017; Zhou & Winne, 2012). Other studies also exist where students had 

an option of using or not using visual scaffold (Duffy & Azevedo, 2015) or choosing to use among 

multiple types of visual scaffolding (Mavrikis et al., 2018; Rummel et al., 2016). However, these 

studies do not focus on students’ choices involving use of visual scaffolding (Duffy & Azevedo, 

2015), and even when they do, they do not focus on how learners’ choice behaviors and their learning 

and performance are associated (Mavrikis et al., 2018).  

Furthermore, despite the importance of using temporal data in examining students’ self-regulated 

choice behaviors (Greene et al., 2021), past studies on students’ choice making in an interactive 

learning environment (and other contexts) do not provide any insights into how students’ choice 
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behaviors might change over time. It is reasonable to think that learners’ adoption of self-regulated 

choice behaviors is not consistent (Bernacki, 2017; Bernacki et al., 2015). For instance, learners may 

first use ineffective strategies to explore the learning environment and may gradually learn to use 

effective strategies (as they gain knowledge and skills during learning). Aggregated data (e.g., 

average number of using certain strategies) might obscure such meaningful changes in the choice 

behaviors (Zhou & Winne, 2012). 

Behavior change perspective 

Another established area of research that is closely related to self-regulated learning is the field of 

behavior change. Behavior change theories, most frequently used in fields such as healthcare and 

criminology, aim to understand and support people’s (stages of) behavior changes and their 

processes. Despite several shared characteristics with self-regulation theories in learning, behavior 

change theories differ in that they, as the name suggests, tend to focus more on behavioral outcomes 

than on metacognitive and motivational processes. Regarding this difference, Oppezzo and Schwartz 

(2013) note that the goal of self-regulated learning interventions is to develop “habits of mind” 

whereas that of behavior change focuses on developing “habits of behaviors” (p. 485).  

Behavior change models typically depict multiple stages that one would go through to change a 

less-desired behavior to an ideal behavior. For example, The Transtheoretical Model (TTM) of 

Behavior Change (Prochaska et al., 1992) describes five stages of behavior change (pre-

contemplation, contemplation, preparation, action, and maintenance, see Figure 6). This linear 

model, however, assumes that a logical person would proceed through these stages of behavior 

change to attain an ideal behavior through coherent, reasonable decision-making processes, which is 

not often true (West, 2005). Another model used widely is the Theory of Planned Behavior (TPB, 

Ajzen, 1991). Figure 7 illustrates the model. This model, extended based on another similar theory 

called the Theory of Reasoned Action, focuses on one’s perceptions regarding the behavior (personal 

attitudes), their own beliefs about how the behavior is perceived by others (e.g., “All of my friends 

smoke too, so smoking is not bad”, subjective norms), and self-efficacy involving the behavior 

change (perceived behavioral control, Bandura, 2000). However, it simplifies the change from 

intention to behavior, failing to capture metacognitive processes that one would go through (see 

models of self-regulated learning introduced earlier).  
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Fig. 6. The Transtheoretical Model of Behavior Change (TMM) by Prochaska et al. (1992). It consists of five 

stages and it is expected that people, when engaged in behavior change, follow these stages. 

 

 

 

Fig. 7. Theory of Planned Behavior (TPB) by Ajzen (1991). The theory focuses on one’s own beliefs and self-

efficacy regarding the behavior change that contributes to their intention and behavior change. 

Oppezzo and Schwartz (2013) abstracted these traditional models to create a four-stage model 

(pre-intend, intend, implement, and inhabit stages) and discussed its application to self-regulated 

learning in an interactive learning environment (Figure 8). The pre-intend phase is the state in which 

students are still not sure whether to invest their effort to adopt the new strategy (e.g., seeking 

negative feedback). When students understand the benefits of using the strategy, they will then move 

to the intend phase. In this phase, they have not yet implemented the strategy, but they have 

understood benefits of using it and they are interested in changing their behavior. In the implement 
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phase, students implement the strategy. The inhabit phase is where students sustain the behavior after 

implementing the strategy. To sustain the behavior, they often engage in metacognitive processes 

such as self-reflection and self-evaluation to determine their performance and outcomes of the 

adoption of the new behavior. In the inhabit stage, students no longer need to be motivated to use the 

strategy (Oppezzo & Schwartz, 2013). 

 

 

Fig. 8. A model proposed by Oppezzo & Schwartz (2013) based on several preceding behavior change models. 

It simplifies stages of change into four linear phases. 

A distinctive characteristic of many behavior change models and interventions is that they target 

behavioral outcomes that are considered undoubtfully important by the society, and therefore they 

encourage people to maintain it after the behavior change has occurred. For instance, for a popular 

target behavior such as to stop smoking, once the behavior change has occurred (i.e., when one stops 

smoking), the goal of many behavior change models is to maintain it to the level that the person does 

not require further motivation to keep the behavior. This assumption limits the applicability of many 

behavior change models to the fields such as the learning sciences where “ideal” target behavior 

outcomes can involve a complicated learning activity with deep metacognitive processes regarding 

the adoption of the behavior. For example, when the target outcome is the use of visual 

representations, there may be cases where the use of visual representations is not ideal (e.g., to avoid 

over-scaffolding students’ problem solving, Long & Aleven, 2017). There have not been attempts in 

behavior change literature that are aimed at supporting behaviors that involve strategic use of the 

target behavior (i.e., where a key question is “how and in what situation should students use the 

strategy?”).  

My dissertation will address this complexity in researching students’ choice behaviors through 

integrating behavior change models and models of self-regulated learning. Specifically, I propose 

Metacognitive Choice Behavior Model (Figure 9), developed based on Oppezzo and Schwartz 

(2013) and Zimmerman and Campillo (2003)’s models introduced earlier. The Metacognitive Choice 

Behavior Model divides learners’ main behaviors into two categories (choose to implement and 
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choose not to implement) to address learners’ multiple choice behaviors in the use of a target strategy 

and thought processes. It also incorporates a cyclic form of self-regulation (Zimmerman & Campillo, 

2003) and therefore connects the reflect phase with the intend phase so that students’ reflection feeds 

back to their intention of using the strategy for the next opportunity. An important characteristic of 

this model compared to other behavior change models is that the goal of the Metacognitive Choice 

Behavior Model is to promote metacognitive processes involving choice behaviors (e.g., deep 

thinking about when to use a target strategy) rather than promoting a certain choice behavior than 

others. 

 

Fig. 9. Metacognitive Choice Behavior Model. In this model, choice behaviors are divided into two behavior 

types (choose to implement or choose not to implement) to appropriately capture the choice behaviors and the 

thought processes. Also, the reflect phase feeds back to the intend phase since learners’ reflection of their 

choice behaviors might influence their intention regarding the use of the target strategy when the next 

opportunity arises. 
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3 Chapter 3: Learning with Visual Representations  

3.1 Study 1: Designing Visual Scaffolding with Pedagogical Affordance Analysis 

(PAA)1 

In the first part of my dissertation work, I explored how we might design visual representations for 

supporting student learning of conceptual knowledge in early algebra, starting out with a user-

centered research study with middle-school mathematics teachers in the US. This qualitative 

investigation aimed at identifying pedagogical affordances and constraints of tape diagrams. Through 

this work, I developed Pedagogical Affordance Analysis (PAA), a novel systematic, human-

centered, action-oriented method for eliciting pedagogical affordances and constraints of an 

instructional tool by leveraging educators’ pedagogical knowledge (Nagashima, Yang et al., 2020). 

PAA can be applied to both an existing tool (e.g., for the purpose of when analyzing how an existing 

tool is aligned with the in-tended goal of instruction) and early prototypes of a to-be-designed tool 

(e.g., for the pur-pose of improving the design or functionality of an early prototype) (Coburn & 

Penuel, 2016). It employs a human-centered approach in identifying affordances and constraints that 

are specific to an instructional goal defined up front.  

In what follows, I describe PAA and its procedure. I then present a case study of its ap-plication 

to designing tape diagrams. To the best of our knowledge, PAA is the only available systematic 

method that elicits educators’ pedagogical knowledge in understanding pedagogical affordances and 

constraints.  

Pedagogical Affordance Analysis (PAA): Definition and procedure  

I define pedagogical affordances as action possibilities of an instructional tool that could potentially 

help achieve a particular instructional goal (also see Masoudi et al., 2019, McGrenere & Ho, 2000). 

We define pedagogical constraints as action possibilities or incapability of an instructional tool that 

 
1  You can read more about this work in the following publications: 

 

Nagashima, T., Yang, K., Bartel, A. N., Silla, E. M., Vest, N. A., Alibali, M. W., & Aleven, V. (2020). Pedagogical Affordance 

Analysis: Leveraging teachers’ pedagogical knowledge for eliciting pedagogical affordances and constraints of instructional tools. In 

M. Gresalfi & I. S. Horn (Eds.), 14th International Conference of the Learning Sciences 

 

Nagashima, T., Bartel, A. N., Silla, E. M., Vest, N. A., Alibali, M. W., & Aleven, V. (2020). Enhancing conceptual knowledge in early 

algebra through scaffolding diagrammatic self-explanation. In M. Gresalfi & I. S. Horn (Eds.), 14th International Conference of the 

Learning Sciences (pp. 35-43). Nashville, TN: International Society of the Learning Sciences. 
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would put a limit on achieving the goal. Constraints, in other words, are limitations of the tool (or 

constraints on the utility of the tool) with respect to a stated pedagogical goal. By leveraging 

educators’ unique knowledge, researchers and designers can find pedagogical affordances and 

constraints that would otherwise be missed if educators were not included in the processes of analysis 

and design. PAA is characterized by its three unique features: 

• Action-oriented: In PAA, designers or researchers work with educators, or professional 

practitioners who possess real-world pedagogical knowledge, in contrast to the top-down 

approaches, which do not involve teaching experts. Educators are asked to demonstrate their 

pedagogical knowledge on one or more pedagogical tasks that are relevant to the targeted 

instructional goal(s). PAA aims to identify pedagogical affordances and constraints by 

analyzing the demonstrated pedagogical strategies rather than directly asking educators to 

identify affordances and constraints. 

 

• Goal-oriented: PAA requires a specific instructional/learning goal, an integral part in 

designing and adopting instructional tools in general. PAA aims to elicit pedagogical 

affordances and constraints in relation to the defined goal. This allows designers to identify 

pedagogical affordances that are relevant and specific to the goal. It also helps identify 

pedagogical constraints, which are not typically explored but offer useful information 

regarding the design and analysis of the tool. 

 

• Comparative: In PAA, participants are asked to demonstrate their usual pedagogical 

strategies without the tool and then potential approaches using the target tool on the same 

task. Unlike other available approaches, PAA systematically elicits pedagogical affordances 

and constraints by comparing and contrasting those two types of demonstrations, discovering 

affordances and constraints relative to participants’ preferred pedagogical approaches. This 

approach also helps identify design implications that can be obtained through comparison 

(e.g., incorporating an element of a teachers’ usual pedagogical strategy into the design of 

the target tool to overcome a pedagogical constraint). 

PAA comprises four steps (Figure 10), some of which are informed by existing methods such as 

Cognitive Task Analysis (Clark & Estes, 1996) and prior attempts at measuring PCK (e.g., Krauss 

et al., 2008).  
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1. In Step 1, designers and educators meet to set an instructional/learning goal to be targeted 

by the tool of interest.  

2. In Step 2, designers (potentially together with educators) decide and provide teachers one 

or more pedagogical tasks targeted at the given goal and ask them to demonstrate a 

pedagogical strategy that they would usually choose for each task.  

3. Following the demonstration of their usual strategy, for each of the same set of tasks, 

teachers are asked to demonstrate a pedagogical strategy that they would choose if they 

were using the target tool. Questions regarding the strategies may be asked to the educator 

if necessary. The session is video- or audio-recorded for later analysis.  

4. Once data collection is complete, in Step 3, designers analyze the demonstrated strategies 

with and without the tool using a grounded theory approach (Strauss & Corbin, 1994). 

They elicit themes regarding the pedagogical strategies, separately for the demonstrations 

with and without the target tool. Designers and educators may return to Step 2 and are 

encouraged to reconsider their sample of participants when necessary (i.e., theoretical 

sampling) (Strauss & Corbin, 1994).  

5. Finally, in Step 4, designers synthesize the themes across those two demonstration types 

through comparison and contrast, identifying pedagogical affordances and constraints of 

the tool for the goal defined. 

 
  

Fig. 10. Procedure of Pedagogical Affordance Analysis, which consists of four steps. PAA identifies 

affordances and constraints through examining educators’ pedagogical demonstrations. 
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Applying Pedagogical Affordance Analysis 

I applied PAA to our research project in which I explored how we might re-design tape diagrams 

to support students’ conceptual learning in early algebra. 

Method 

I conducted PAA with eight middle school mathematics teachers in the United States who had taught 

algebra in their career. They participated either in-person (n = 2) or remotely via teleconferencing 

software (n = 6). Two of the teachers reported seeing tape diagrams in the past, and none reported 

ever using tape diagrams in their teaching.  

We defined enhancing conceptual knowledge in equation solving among low-achieving middle-

school students with tape diagrams as our target instructional goal for our application of PAA (Figure 

10, Step 1). The goal in this case study was primarily defined by a researcher, namely, the author of 

this proposal, informed by the goal of the larger research project and the literature review conducted. 

However, teachers and I discussed the importance of learning conceptual knowledge in mathematics 

at the beginning of the PAA sessions. All eight teachers in the study agreed that teaching conceptual 

knowledge in algebra is both important and difficult. 

In defining tasks used in PAA, as teachers’ pedagogical includes knowledge about students’ errors 

and how to help students correct their own misunderstandings (Krauss et al., 2008; Park & Oliver, 

2008; Shulman, 1986), we decided to assign teachers tasks in which they would conceptually explain 

common errors of algebra problem solving to students. We first asked teachers to generate a few 

examples of common errors and suboptimal strategies they see frequently in their students’ work. 

When they were not able to generate such errors, we showed them examples of common student 

errors in equation solving reported in Booth et al. (2014). For each of the errors, we first asked 

teachers to demonstrate, while thinking aloud, their usual pedagogical approaches (i.e., instructional 

approaches that teachers would usually choose in their teaching) to helping students correctly 

understand the concept (Figure 10, Step 2). Following that, we introduced tape diagrams, explaining 

that they show relationships among different quantities in an equation. We presented a simple tape 

diagrams together with a sample algebraic equation, in which tapes corresponded to the two sides of 

the equation (see Figure 11 for an example). The alignment of the tapes was not necessarily fixed in 

a certain position and the size of the tapes was not necessarily proportional to the actual value being 

represented by the tapes. We asked teachers to demonstrate, while thinking aloud, the strategies they 

would choose if they were to use tape diagrams in their explanations (Figure 10, Step 3). Two 

learning sciences graduate students analyzed approximately eight hours of video recordings 

following a grounded theory approach. They conducted the analysis separately for the 
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demonstrations with and without tape diagrams. They went from open coding to axial coding, and 

then conducted selective coding to elicit themes. (Figure 3, Step 4).  

 

 

Fig. 11. Example tape diagrams. 

Results 

By analyzing how teachers explained students’ common errors and suboptimal strategies, we found 

five themes regarding their usual pedagogical strategies (usual strategies: US) and eight themes 

regarding their strategies using tape diagrams (tape diagram strategies: TDS) (Table 5). We describe 

these themes in detail below. 

Table 5. Themes regarding teachers’ usual pedagogical strategies and strategies with tape diagrams. 

Themes regarding usual  

pedagogical strategies 

Themes regarding strategies  

with tape diagrams 

  

US1: Teachers use familiar real-world 

examples and plain numbers so that 

students can relate to their own prior 

knowledge 
 

US2: Teachers choose pedagogical 

approaches and tools that can be used 

for a variety of problems and 

operations 

 

US3: Teachers want students to make 

a transition from concrete to abstract 

thinkers 

TDS1: Teachers use the lengths of tapes as a visually-

intuitive representation of mathematical equivalence 

 

TDS2: Teachers use tape diagrams to visually show 
students how equations and equation transformations can 

be represented 

 

TDS3: Teachers use the size of tapes to help students 

understand equation transformations 

 

TDS4: Teachers use tape diagrams to help students avoid 

errors 
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US4: Teachers want students to show 

their thinking process rather than only 

the answer 

 

US5: Teachers want students to 

visually understand the structure of 

equations and valid ways of 

transforming them 

TDS5: Teachers feel that students need to be trained to 

use tape diagrams since they might be too abstract for 

students 

 

TDS6: Teachers find it difficult to differentiate unlike 

terms with tape diagrams 

 

TDS7: Teachers do not want students to guess the value 

of variables without solving 

 

TDS8: Teachers are frustrated that tape diagrams were 

not useful in representing certain equation types and 

operations 

 

I then synthesized the themes to identify pedagogical affordances and constraints of tape diagrams 

(Table 6, Figure 12). Specifically. I compared or contrasted each TDS theme with each US theme, 

and then elicited an affordance or constraint of tape diagrams. For instance, TDS2 and US5 are both 

about communicating concepts visually. This produced an affordance, which we call PA1: Visually 

depict equations, relationships among quantities, and transformations. Similarly, contrasting TDS8 

with US2 elicited a tape diagrams’ pedagogical constraint of not being flexible in representing 

various operations and equations (PC3). When no relevant (similar or opposite) US themes aligned 

with a specific TDS is found, TDS themes themselves were classified either as affordances or 

constraints of tape diagrams, depending on whether the theme is about helping or hindering the goal 

of learning conceptual knowledge in algebra (examples of these are PA2, PA3, PA4, and PC4). 

Figure 12 illustrates which TDSs and USs informed pedagogical affordances and constraints we 

identified. 
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Table 6. Pedagogical affordances and constraints of tape diagrams for teaching conceptual knowledge 

(relevant themes for each, in parentheses). 

Pedagogical affordances of  

tape diagrams 

Pedagogical constraints of  

tape diagrams 

PA1: Visually depict equations, 

relationships among quantities, and 

transformations (US5/TDS2) 

 

PA2: The length of tapes visualizes the 

concept of equivalence (TDS1) 

 

PA3: The size of tapes, when proportional to 

the actual value of the number being 

represented, works as an indicator for 

understanding a next step (TDS3) 

 

PA4: Help students avoid making 

conceptual errors by visualizing errors with 

tape diagrams (TDS4) 

PC1: Unable to differentiate unlike terms (e.g., 

variables and constant terms) (US2/TDS6) 

 

PC2: Students are not necessarily familiar with tape 

diagrams (US1/US3/TDS5) 

 

PC3: Not flexible in representing various operations 

and equations (US2/TDS8) 

 

PC4: Students might guess the answer by measuring 

the length/size of tapes (TDS7) 
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Fig. 12. Relationships between Usual Strategies (US), Tape Diagram Strategies (TDS), Pedagogical 

Affordances (PA) and Pedagogical Constraints (PC) 

Note that the elicited pedagogical affordances and constraints are specific to the instructional goal 

of teaching conceptual knowledge with tape diagrams in early algebra. In other words, it is very 

possible that some or all of these pedagogical affordances and constraints would not have been 

elicited if the goal had been defined differently. Also, as affordances are analyzed in relation to the 

individual(s) interacting with the object, those with different background knowledge, skills, and 

experiences might perceive different affordances and constraints (McGrenere & Ho, 2000). 

Therefore, the fact that I found these pedagogical affordances and constraints with teachers does not 

guarantee that middle-school students, the target learners, will perceive all of these pedagogical 

affordances and constraints (Mawasi et al., 2021; Wisittanawat & Gresalfi, 2021). Therefore, I then 
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explored how we might use the elicited pedagogical affordances and constraints to redesign tape 

diagrams as a way to offer scaffolding support for middle-school students (Clements & McMillen, 

1996). 

In the case study, my purpose of using PAA was not only to identify pedagogical affordances and 

constraints of tape diagrams but to leverage the identified affordances and constraints to redesign 

tape diagrams to help students to build up conceptual knowledge in algebra. Even small design 

features (e.g., visual signaling cues) used to highlight important instructional information can have 

an impact on student perception, understanding, and learning, particularly among struggling students 

(e.g., Barbieri et al., 2019; de Koning et al., 2010; Yung & Paas, 2015). In the following section, we 

describe how I redesigned the tape diagrams.  

 

3.2 Study 2: Supporting Conceptual Understanding through Confirmatory 

Diagrammatic Self-Explanation  

Design process 

After conducting the PAA, I worked with one of the participating teachers to redesign tape diagrams 

based on the pedagogical affordances and constraints we found. The teacher was chosen because of 

their willingness for helping further. The teacher and I met approximately 90 minutes to discuss the 

elicited affordances and constraints. During the discussion, we also brainstormed additional features 

that could effectively scaffold students’ understanding of concepts.  

The discussion largely focused on designing visual cues that could emphasize the affordances. 

Given that many teachers demonstrated their strategies by manipulating tape diagrams in the PAA, 

we first created a physically-manipulable prototype of tape diagrams with additional features based 

on the pedagogical affordances and constraints identified. Specifically, using magnets and a 

whiteboard, we developed a prototype that emphasizes PA1, PA2, and PA3 (Figure 13). The design 

also attempted to overcome PC1 by color-coding variables and constants, informed by one of the 

usual strategies (US5). The teacher and I generated these design features based on their prior teaching 

and design experience as well as by revisiting some of the teachers’ demonstrations during the PAA. 

In prior studies using tape diagrams, these features had not been explicitly designed (e.g., sizes of 

tapes are inconsistent) or never been attended to at all (e.g., color-coding variables and constants). 

We also decided, after discussion, that it is better to avoid modeling certain equation types (e.g., 

equations with negatives), informed by PC3. 
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Fig. 13. Physically-manipulable tape diagrams, designed to emphasize pedagogical affordances and 

overcome/avoid pedagogical constraints. Green magnetic blocks are used to visualize constant terms. 

User study with middle-school students 

Method 

To investigate whether the affordances and constraints of tape diagrams are materialized when 

middle-school students interacted with them, I conducted one-on-one, in-person user-study sessions 

with seven students in the United States, whose grade level ranged from Grades 5-7. During the 

sessions, participants were presented with four worked examples of equations in symbolic notation 

containing common errors and asked to explain the errors in the examples. I used the four common 

errors reported by teachers the most. After students attempted to explain errors, I then introduced the 

participants to the redesigned tape diagrams (Figure 13). I gave a short description of what tape 

diagrams are and then asked them to identify the errors in the worked examples by allowing them to 

manipulate the tape diagrams. All sessions were video-recorded. Two researchers analyzed a total of 

approximately 4.5 hours of video recordings of participants’ explanations of the incorrect worked 
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examples, and coded if and how participants’ explanations of errors reflected the pedagogical 

affordances and constraints of tape diagrams that we found.  

 

Results 

First, we found that, when asked to explain errors with tape diagrams, students who had not been 

able to identify errors without tape diagrams (i.e., when given only the equation in symbolic notation) 

tended to refer to the features of tape diagrams in their explanations, whereas those who had 

identified errors correctly without tape diagrams relied on their own schema of understanding 

concepts when explaining with tape diagrams. For example, a student who had not successfully 

identified any error without tape diagrams referred to the size of tape diagrams (PA3) when 

explaining the error of not keeping the sides of an equation equal (e.g., 3x + 2 = 8 becoming 3x + 2 

– 2 = 8 – 8) with tape diagrams: “you take away 2 and 8 and then, you can see that 2 isn’t as the same 

size as 8. So, you are not taking away an even amount.” These same students also frequently 

mentioned when using tape diagrams that variables and constants were “different”, a design feature 

(namely, color coding of constant and variable terms) that, as explained, we added to overcome PC1. 

On the other hand, students who identified errors correctly with the symbolic notation only explained 

the error of not keeping the sides of an equation equal with tape diagrams by saying, “they are not 

equal” or “unbalanced”, which does not seem to be particularly referring to tape diagrams’ unique 

affordances. One of them even mentioned, “heavier,” when explaining the unbalanced situation 

(referring to the visual representation familiar to him: a balance scale). However, the analysis also 

revealed that our prototype over-scaffolded students in figuring the value of the variable. 

Specifically, the use of unit blocks (green-colored magnets in Figure 6) allowed several students to 

find the answer without solving an equation, by counting the number of blocks corresponding to the 

size of the variable. This behavior was seen especially among students who had not been able to 

identify errors without tape diagrams. This instance indicates that a feature meant to support PA3 

inadvertently activated PC4. 

 

Discussion 

The user study suggested the potential effectiveness of emphasizing specific affordances of tape 

diagrams to support conceptual understanding of equation solving. The evaluation sessions suggest 

that the re-designed tape diagrams seemed particularly useful for students who had been unable to 

explain errors without the visual. It also informed us that overcoming PC1 through color-coding 

variables and constants differently would potentially be effective. However, the use of unit blocks as 

a way to visually show the meaning of the size of tapes did not show any particular benefit; rather, 
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it activated a pedagogical constraint by making it easy to guess the value of the variable (PC4). 

Because the teacher I worked with and I both agreed that the behavior of guessing should be avoided 

to encourage students to think of equation-solving steps conceptually and algebraically, as we 

describe below, we decided not to use unit blocks in the following re-design iteration. 

Design process 

In the next design phase, to make a scalable tool that can be used by many students at a time, I 

decided to design a digital learning tool that leverages tape diagrams. Since prior studies on tape 

diagrams found that merely presenting tape diagrams of an equation did not benefit lower-grade and 

low-achieving students (Booth & Koedinger, 2012; Chu et al., 2017), I also decided to design an 

activity that integrates the redesigned tape diagrams as a core component of students’ learning 

processes in addition to the re-design of tape diagrams themselves. The following paragraphs 

describe the design process of the tape diagrams themselves and the learning activity. 

The re-design of the tape diagrams involved one change while keeping other features consistent, 

based on the findings from the think-aloud evaluation in the first evaluation study. Specifically, I 

kept the vertical lines to emphasize the equality, color-coded tapes to visually differentiate variables 

and constants, and the size of tapes, which was set proportional to the actual number represented. To 

avoid activating the pedagogical constraint of facilitating the guessing of the solution of an equation 

by measuring the length of tapes they perceive (PC4), during this second re-design interaction, I 

decided to use tapes/bars instead of unit blocks (see Figures 14-17). 

To further help students realize pedagogical affordances of tape diagrams for conceptual 

understanding of algebra, I designed a learning activity that integrates tape diagrams as a core 

component of students’ learning processes. I extended an existing Intelligent Tutoring System (ITS) 

for algebra (Long & Aleven, 2014) by embedding a novel form of “diagrammatic self-explanation” 

(Ainsworth & Iacovides, 2005), by which I mean a scaffold that helps students use a diagrammatic 

representation to confirm and correct their conceptual understanding in step-by-step problem solving 

with tape diagrams. Specifically, in the new form of diagrammatic self-explanation, which I call 

“confirmatory diagrammatic self-explanation,” students are asked to explain their equation 

transformations by choosing an appropriate tape diagram representation from among three options 

given, in which two were conceptually-incorrect diagrams. The activity, designed based on the 

pedagogical affordances and constraints found in the PAA and through a short prototyping session 

with a teacher, aims to further emphasize the pedagogical affordances and avoid mis-using 

constraints. For example, by visualizing step-by-step equation transformations, we aimed to 

emphasize the affordance that tape diagrams visually depict equations, relationships among 
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quantities, and transformations (PA1). Also, the ITS shows incorrect tape diagram options that were 

modeled after students’ common errors found in literature and in our user study sessions (PA4: Tape 

diagrams help students avoid making conceptual errors by visualizing errors with tape diagrams). 

Additionally, the activity does not include equations with negative numbers or complex equations 

such as those with parentheses (PC3). 

Our diagrammatic self-explanation was also informed by established instructional principles 

reported in the field of the learning sciences. We incorporated two instructional principles, namely, 

self-explanation (Bisra et al., 2018; Chi et al., 1989; Rittle-Johnson & Loehr, 2017) and contrasting 

cases (Schwartz et al., 2011), in the learning activity. 

Self-explanation is a learning strategy in which learners attempt to make sense of what they study 

by generating explanations to themselves, which helps integrate new information with their own 

prior knowledge (e.g., Chi et al., 1989; Rittle-Johnson et al., 2017). Self-explanation has been found 

to enhance conceptual understanding across many areas in mathematics (e.g., Aleven & Koedinger, 

2002; Rau et al., 2015; also see meta-reviews by Bisra et al., 2018; Rittle-Johnson et al., 2017). 

Pairing explanations with visual representations, which often contain information that is difficult to 

represent in text (Larkin & Simon, 1987), could potentially have an even greater effect, as both visual 

representations and explanations help learners process information and connect related information 

together (Rau, 2017). Even more effective in fostering conceptual knowledge might be prompting 

students to explain their thinking through visual representations, as opposed to verbal self-

explanation of visual representation (Ainsworth & Loizou, 2003). However, as the traditional form 

of diagrammatic self-explanation (i.e., explaining through generating drawings or through sketching) 

may increase cognitive load due to the unstructured nature of the prompts (Ainsworth & Scheiter, 

2021; Fiorella & Zhang, 2018; Wu & Rau, 2018), I wanted to create a better scaffolding prompt that 

can support struggling students. 

The use of contrasting cases is another established instructional strategy; Multiple examples that 

differ in an important instructional feature are shown next to each other to help learners notice the 

features. Prior research suggests that contrasting cases will best benefit learners when learners are 

engaged in a sense-making activity, such as explaining the cases (Schwartz et al., 2011; Sidney et 

al., 2015).  

My confirmatory diagrammatic self-explanation activity was designed to foster sense-making of 

the diagrams and making connections between symbolic and diagrammatic representations by using 

both contrasting cases and self-explanation. First, students select an appropriate diagrammatic 

representation for the given equation from among three contrasting cases presented by the system 

(Figure 14). When they make a mistake (i.e., select the wrong diagram), the ITS gives a feedback 
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message (Figure 15). They then solve the equation in its symbolic form on the left-hand side of the 

screen (Figures 16, 17). They are asked to explain each of the equation transformations they perform 

(e.g., subtract 2 from both sides of 3x + 2 = 8) by selecting the appropriate diagrammatic 

representation, again from among three options given (contrasting cases, Figure 17). Diagram 

choices are generated automatically based on the equation transformation input that the student 

provides. These diagram options were designed so that each incorrect diagram differs from the 

correct diagram with respect to a single conceptual aspect (Schwartz et al., 2011). For example, the 

three diagrams in Figure 17 show the action of dividing the equation by 2, correctly (left) and 

incorrectly (middle and right). The diagram on the left and the diagram in the middle differ in terms 

of the lengths of tapes on each side in the resulting diagrams (i.e., whether the tape on the top and 

bottom have the same length). The diagram on the left and that on the right have the same length but 

differ in the action performed: division (left) or subtraction (right). 

 

 

Fig. 14. Student selects a diagrammatic representation that corresponds to the given equation on the left. 

 

 

Fig. 15. Feedback message is given when an incorrect attempt is made. The message here says, “Look at the 

tapes for 8x and 2x. Do they have appropriate sizes?” 
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Fig. 16. Student solves the first step of the given equation. 

 

 

Fig. 17. Student explains the problem-solving step by selecting an appropriate diagrammatic representation. 

 

 

Study 2.2: A Classroom Experiment for Testing the Effectiveness of Confirmatory 

Diagrammatic Self-Explanation 

Method  

I then tested whether the ITS, whose design was extended based on the elicited pedagogical 

affordances and constraints, would help achieve the goal of supporting low-prior knowledge 

students’ understanding of conceptual knowledge in equation solving (e.g., lower grade, lower prior 
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knowledge students). I conducted a 2 × 2 (Diagram/No-Diagram: diagrammatic self-explanation or 

no diagrammatic self-explanation, Grade: 5th or 6th grade) between-subjects pretest-intervention-

posttest experiment in middle-school classrooms.  

Participants 

A total of 45 students participated in the study (19 5th and 26 6th graders). Four students in the 6th 

grade were in advanced classes (two of them were in Pre-algebra and the other two were in Algebra 

I). All others were in their grade-level math class. 

Materials 

Together with my collaborators at the University of Wisconsin-Madison, I developed pretest and 

posttest assessments to assess students’ conceptual and procedural knowledge of basic algebra. The 

test contained several items drawn from prior studies (e.g., Chu et al., 2017; Fyfe et al., 2018; Rittle-

Johnson et al., 2011) as well as some new items. The conceptual knowledge items consisted of seven 

multiple-choice questions and four open-ended questions, which assessed a wide range of conceptual 

knowledge constructs based on the categorization made in Crooks and Alibali (2014), including 

equality, variables and like/unlike terms, inverse operations, isolating variables, and the concept of 

keeping both sides of an equation equal. We also included three procedural knowledge items, 

including two problem-solving items (e.g., “solve for x: 3x + 2 = 8”) and one multiple-choice item 

to test if tape diagrams also enhance students’ procedural skills. In addition, to assess students’ 

understanding of tape diagrams, we included two tape diagram items (one multiple-choice, one open-

ended). We developed two isomorphic versions of the test that varied only with respect to the specific 

numbers used in the items; participants received one form as pretest and the other as posttest (with 

versions counterbalanced across subjects). 

Procedure 

The study took place during regular mathematics class in the students’ classrooms. Students within 

each grade were randomly assigned to either the Diagram condition or the No-Diagram condition. 

The advanced students mentioned above were separately randomly assigned so that each condition 

would have two Pre-algebra students and one Algebra I student. In the Diagram condition, students 

practiced with the ITS version with the confirmatory diagrammatic self-explanation. In the No-

Diagram condition, students used a version of the tutor showing the equation-solving part only 

(Figure 18). Thus, the only difference between the Diagram and No-Diagram conditions was whether 

or not students self-explained their solution steps in the form of diagrams. Per teacher report, the 
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students had never used tape diagrams in class. Both ITSs had 20 problems across five different 

problem types (Table 7).  

 

 

Fig. 18. A version of the ITS with no diagrammatic self-explanation 

 

Table 7. Types of equations the tutor included and the number of problems in the tutor. 

Level Equation type Example Number of problems in the tutor 

Level 1 x + a = b x + 3 = 6 6 

Level 2 ax + b = c, ax = b 2x + 3 = 7, 6x = 12 6 

Level 3 ax = bx + c 8x = 2x + 6 4 

Level 4 ax + b + cx + d 4x + 1 = 3x + 10 4 

 

All students first worked on the paper-based pretest for 20 minutes. Then the teacher passed out 

two instructional handouts and read them out loud. The handouts explained how to use the tutor and 

described tape diagrams, and read them out loud. Students then practiced equation solving via their 

assigned tutor version using school-provided computers. After 40 minutes of working with the tutor, 

students took the paper-based posttest for 20 minutes. Students were given access to both tutor 

versions after the study. Figure 19 shows the study procedure. 

 



49 

 

Fig. 19. Study procedure 

Results  

Open-ended items were coded for whether student answers were correct or incorrect by two 

researchers (Cohen’s kappa = .83). Data from three 5th-graders and one 6th-grader were excluded 

because they did not complete the study; therefore, data from 41 students, namely, 16 5th-graders (8 

Diagram, 8 No-Diagram) and 25 6th-graders (13 Diagram, 12 No-Diagram) were included in the 

analysis. Table 6 presents raw pretest and posttest performance on conceptual knowledge (CK), 

procedural knowledge (PK), and understanding of tape diagrams (TD) items. The maximum scores 

for CK, PK, TD were 11, 3, and 2, respectively (Table 8). 

Overall pretest performance did not differ either between the conditions, F(1, 37) = .27, p = .60, 

or between grades, F(1, 37) = .94, p = .33; pretest scores on each of the item subsets (CK, PK, and 

TD) also did not differ between conditions or grades. The average number of tutor problems 

attempted did not differ between conditions (Diagram: M = 16.14, SD = 3.35, No-Diagram: M = 

17.75, SD = 3.61), F(1, 37) = .51, p = .48, or grades (5th: M = 16.13, SD = 3.77, 6th: M = 17.44, SD 

= 3.34), F(1, 37) = .44, p = .51. 

To analyze how the conditions may have affected students’ posttest performance, I conducted 

three ANCOVAs, each with the same independent variables (diagram condition and grade) and 

covariate (pretest, to control for prior knowledge), but with a different dependent variable (CK, PK, 

or TD). First, we investigated the effect of the condition (diagrammatic self-explanation or not) on 

the conceptual knowledge items (CK) on the posttest. For scores on CK items, I found a main effect 

of diagrammatic self-explanation, F(1, 36) = 8.01, p < .01, partial η2 = .06, and a significant 
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interaction between diagram condition and grade, F(1, 36) = 6.18, p = .02, partial η2 = .15. A post-

hoc analysis revealed that 5th-graders benefited from diagrammatic self-explanation (F[1, 13] = 8.31, 

p = .01, partial η2 = .39), whereas no difference between the Diagram and No-Diagram conditions 

was found for 6th-graders (Figure 20, panel a). No significant main effects nor interactions were 

found for students’ performance on PK items. For TD items, there was a main effect in favor of 

diagrammatic self-explanation, F(1, 36) = 5.58, p = .02, partial η2 = .22, but no main effect of grade 

nor any interaction (Figure 20, panel b). 

Table 8. Means and standard deviations (in parentheses) for CK, PK, and TD on the pretest and posttest. 

 CK  

(maximum score: 11) 

PK 

 (maximum score: 3) 

TD  

(maximum score: 2) 

  pretest posttest pretest posttest pretest posttest 

5th Diagram 
4.75 

(1.28) 

6.38 

(1.85) 

2.13 

(.99) 

2.00 

(.93) 

0.88 

(.35) 

1.50 

(.54) 

5th No-Diagram 
5.38 

(2.07) 

4.88 

(1.89) 

2.38 

(.74) 

2.50 

(1.07) 

0.75 

(.46) 

0.88 

(.64) 

6thDiagram 
6.46 

(2.15) 

7.23 

(2.09) 

1.62 

(.96) 

2.08 

(.96) 

0.92 

(.28) 

1.46 

(.52) 

6th No-Diagram 
6.50 

(2.71) 

7.25 

(2.42) 

1.33 

(.98) 

1.67 

(1.23) 

0.83 

(.39) 

0.92 

(.80) 
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                             (a)                                                                                    (b) 

Fig. 20. Students’ posttest scores on conceptual knowledge items (a) and tape diagram items (b) by grade and 

condition 

To further investigate why only 5th-graders benefited from having diagrams, I examined the 

strategies that students used to solve the procedural items on the pretest and posttest. I examined 

strategies because students’ strategy use might affect how they perform and learn with tape diagrams 

(Chu et al., 2017). Also, the design of tape diagrams attempted to promote the use of formal problem-

solving strategies rather than informal strategies such as guessing by replacing unit blocks with bars 

to represent numbers. Two researchers coded the strategies by adapting the coding scheme used by 

Chu et al. (2017) and Koedinger et al. (2008), which includes both formal (algebraic) and informal 

(non-algebraic) ways of solving equations (Table 9; Cohen’s kappa = .82). For this strategy coding, 

I was primarily interested in the Algebra strategy (see Table 9) because the goal of the equation-

solving instruction in the school where the study took place was to help students learn the formal 

algebraic strategy. For the two problem-solving items on the pretest, there was a significant 

difference in use of the Algebra strategy between the two grades, but not between the Diagram/No-

Diagram conditions. Whereas 80% of 6th-graders used the Algebra strategy at least once, only 6% 

of 5th-graders used it (χ2[1, n = 41] = 21.24, p < .01). The difference shrank dramatically at posttest, 

but remained significant: 88% of 6th-graders used Algebra strategy, whereas 56% of 5th-graders 

used it (χ2 [1, n = 41] = 5.33, p = .02). We used McNemar’s test to compare the frequency of Algebra 

strategy use at pretest and posttest. Fifth-grade students increased their use of the Algebra strategy 
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significantly from pretest to posttest (p = .01), but 6th-grade students did not (p = .72). These findings 

suggest that equation-solving practice with the ITS helped the 5th-graders transition from informal 

to formal strategy use. This shift is masked in the raw pretest to posttest accuracy data on equation-

solving items, but it is visible in the strategy choices that students made. 

Table 9. Strategies used to solve equations, adapted from Chu et al. (2017) and Koedinger et al. (2008).  

Strategy name Description 
Example answer for  

3x + 2 = 8 

Algebra 
Student uses algebraic manipulations to find 

an answer 

3x = 6 

           x = 6/3 = 2 

Unwind 
Student works backward using inverse 

operations to find an answer 

8 – 2 = 6 

   6/3 = 2 

Guess & Check 
Student tests potential solutions by 

substituting different values 

3*2 + 2 = 8 

    6 + 2 = 8 

Other Student uses other non-algebraic strategies 
3 + 2 = 5 

      8/5 = 1.6 

Answer Only 
Student provides an answer without 

showing any written work 
x = 2 

No Attempt 

Student leaves problem blank or explicitly 

indicates that she/he does not know how to 

solve the problem 

“I don’t know” 

 

Discussion 

In Study 2, conducted in school classrooms, we experimentally investigated whether our 

diagrammatic self-explanation, designed through Pedagogical Affordance Analysis, can enhance the 

learning of conceptual knowledge in early algebra. The results showed that confirmatory 

diagrammatic self-explanation supported learning of conceptual knowledge among lower-grade 

students. Also, the post-test performance on tape diagram items showed that diagrammatic self-
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explanation helped students, regardless of their grade or prior knowledge, to correctly understand the 

tape diagram representation. These findings differ from those reported in prior literature on using 

tape diagrams in algebra, which showed increased performance with diagrams and correct 

understanding of diagrammatic representations only among higher-grade or higher-ability students 

(e.g., Booth & Koedinger, 2012; Chu et al., 2017). Regarding students’ procedural knowledge, we 

did not find that diagrammatic self-explanation helped students solve problems more accurately. 

Further investigation suggested that our diagrammatic self-explanation with the redesigned tape 

diagrams is useful when students are transitioning from informal to formal algebraic strategies in 

equation solving. Overall, pretest performance did not differ between 5th- and 6th-graders, but a 

detailed coding of students’ problem-solving strategies revealed that 5th-graders initially relied on 

informal strategies to solve equations, whereas 6th-graders relied mostly on algebraic strategies. A 

follow-up interview with a teacher from the school also confirmed that, prior to the study, the 5th-

graders had only been exposed to arithmetic equation solving whereas 6th-graders had consistently 

been required to use the algebraic strategy to solve equations. In other words, 5th grade students may 

have a weak understanding of algebraic notation and operations. We also observed the same pattern 

in Study 1, in which students who were not able to correctly identify errors in worked examples used 

features of tape diagrams when explaining the errors.  

 

 

3.3 Study 3: Supporting Learning and Performance through Anticipatory 

Diagrammatic Self-Explanation 2 

Design and motivation 

Studies 1 and 2 showed that the use of tape diagrams through a scaffolded form of diagrammatic 

self-explanation helped students acquire conceptual knowledge in early algebra. In the next study 

phase, I extended the confirmatory diagrammatic self-explanation tutor to design a novel, scaffolded 

way of using visual representations in problem solving: anticipatory diagrammatic self-explanation 

(Nagashima, Bartel, Tseng et al., 2021; Nagashima, Bartel, Yadav et al., 2021: Renkl., 1997). 

 
2  You can read more on Study 3 in Nagashima, T., Bartel, A. N., Yadav, G., Tseng, S., Vest, N. A., Silla, E. M., Alibali, M. W., & 

Aleven, V. (2021). Using anticipatory diagrammatic self-explanation to support learning and performance in early algebra. In E. de 

Vries, J. Ahn, & Y. Hod (Eds.), 15th International Conference of the Learning Sciences (pp. 474–481). International Society of the 

Learning Sciences 
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In anticipatory diagrammatic self-explanation, students are asked to explain future problem-

solving steps by selecting a visual representation that shows a correct and strategic step (Figures 21–

23). This contrasts with confirmatory diagrammatic self-explanation, in which students are asked to 

explain the step that they have already solved. Anticipatory diagrammatic self-explanation is 

informed by the idea of “anticipative reasoning”, proposed by Renkl (1997) as a highly successful 

self-explanation pattern that they observed in their study. 

Anticipatory diagrammatic self-explanation would potentially support both student learning and 

performance during the learning activity; while it keeps all the core elements in the confirmatory 

diagrammatic self-explanation (e.g., step-by-step diagrammatic steps), it may support a new 

cognitive process in its interaction where students may deeply engage with diagrammatic steps to 

think, “what would be correct and strategic to do next?” In algebra problem solving, such anticipatory 

self-explanation, in contrast to confirmatory self-explanation (tested in Study 2), may support 

inference generation about strategic problem-solving steps. If students consider the mathematical 

symbols as the target representation to learn, engaging in step-level anticipatory self-explanation 

could help students understand strategic next steps, which would improve both understanding of 

strategic solution steps and problem-solving performance. 

 

 

Fig. 21. The ITS starts by asking a learner to select a correct diagram for the given equation. The ITS gives 

correctness feedback on the learner’s choice of diagram. 
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Fig. 22. Next, the ITS asks the learner to explain (by selecting a diagram) what would be a correct and strategic 

step to take next. The ITS gives feedback on the choice of diagram. 

 

 

Fig. 23. After selecting a correct and strategic step, the learner enters the step in symbols. 

Method 

In Study 3, I investigated the effectiveness of anticipatory diagrammatic self-explanation on student 

learning and performance. The research question of the study was: will anticipatory diagrammatic 

self-explanation, embedded in an ITS, support students’ learning and performance? I hypothesized 

that the anticipatory diagrammatic self-explanation would promote students’ conceptual 

understanding, enhance procedural skills, and help students learn formal algebraic strategies (H1). I 

also hypothesized that the anticipatory diagrammatic self-explanation would enhance performance 

during problem solving in the ITS in that students with the support will perform better on learning 

process measures while solving symbolic problem-solving steps (e.g., fewer hint requests and fewer 

incorrect attempts per step), and will solve a similar number of problems as students who do not 

receive the scaffolded self-explanation support (H2). 

 

Participants  

I conducted a classroom experiment at two private schools in the United States. Participants included 

55 6th graders and 54 7th graders across nine class sections taught by four teachers. The experiment 

was conducted in October 2020, when both schools adopted a hybrid teaching mode in which the 

majority of students (n = 102) attended study sessions in-person and the rest attended remotely (n = 

7). Teachers were present in the in-person classrooms. 

 

Test instruments 
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I developed web-based pretest and posttest assessments (using Qualtrics) to assess students’ 

conceptual and procedural knowledge of basic algebra. The tests contained several items drawn from 

Study 2 as well as new items we created based on discussions with collaborators at the University of 

Wisconsin-Madison. The conceptual knowledge items consisted of eight multiple-choice questions 

and one open-ended question. Also included were four problem-solving items (e.g., “solve for x: 3x 

+ 2 = 8”), with two items that were similar to those included in the ITS and two transfer items 

involving negative numbers. I developed two isomorphic versions of the test that varied only with 

respect to the specific numbers used in the items; participants received one form as pretest and the 

other as posttest (with versions counterbalanced across subjects). 

 

Procedure 

For each class, the study covered two regular mathematics class periods. The classes were virtually 

connected to the experimenters and remote learners through a video conferencing system. Students 

were randomly assigned to either the Diagram condition or the No-Diagram condition. In the 

Diagram condition, students used the ITS with anticipatory diagrammatic self-explanation. In the 

No-Diagram condition, students used the ITS with no self-explanation support (the same ITS version 

I used in Study 2). 

On the first day, all students first worked on the web-based pretest for 15 minutes. Then a teacher 

or the experimenter showed a 5-minute video to all students, which described how to use the ITS and 

what tape diagrams represent to all students. Next, students practiced equation solving using their 

randomly-assigned ITS version for approximately 15 minutes. On the second day, students started 

the class by solving equation problems in the assigned ITS for approximately 15 minutes. After 

working with the ITS, students took the web-based posttest for 15 minutes. Figure 24 illustrates the 

study procedure. 

 

Fig. 24. Study procedure 
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Results 

Effects on learning outcomes 

One 6th grader was absent for the second day and excluded from the analysis; therefore, I analyzed 

data from the remaining 108 students, namely, 54 6th-graders (28 Diagram, 26 No-Diagram) and 54 

7th-graders (27 Diagram, 27 No-Diagram). Open-ended items were coded for whether student 

answers were correct or incorrect by two researchers (Cohen’s kappa = .91).  

I first tested hypothesis H1 (benefits of anticipatory diagrammatic self-explanation with respect 

to learning outcomes). I analyzed the data using hierarchical linear modeling (HLM) because the 

study was conducted in nine classes taught by four teachers at two schools. According to both AIC 

and BIC, a two-level model showed the best fit, in which students (level 1) were nested in classes 

(level 2). The inclusion of teachers (level 3) and schools (level 4) did not improve the model fit. I 

ran two HLMs with posttest scores on CK and PK as dependent variables, type of ITS assigned as 

the independent variable, and pretest scores (either CK or PK given the dependent variable) as a 

covariate. For both CK and PK, there was no significant effect of the Diagram/No-Diagram condition 

(CK: t(99.3) = -1.030, p = .31, PK: t(99.4) = -0.292, p = .77). I also ran two additional HLMs, 

regressing pretest-posttest raw gains for CK and PK (dependent variables) on type of ITS. There was 

a significant gain from pretest to posttest for CK (t(108) = 2.778, p < .01) but not for PK (t(106) = 

1.153, p = .26), and no significant effect of ITS type. This suggests that students in both ITS 

conditions improved in conceptual knowledge but not in procedural knowledge. 

I then analyzed the strategies that students used to solve the problem-solving items on the pretest 

and posttest, following the analysis in Study 2 (Cohen’s kappa = .73, Koedinger et al., 2008). On the 

pretest, 11 students in the Diagram condition and 17 students in the No-Diagram condition used the 

Algebraic strategy on one or more problem-solving items. More students did so on the posttest; 26 

students in the Diagram condition and 23 students in the No-Diagram condition used the Algebraic 

strategy. We used McNemar’s test to compare the frequency of use of the Algebra strategy at pretest 

and posttest for each condition. The increase in frequency was significant (p < .01) for students in 

the Diagram condition but was not significant (p = .11) for students in the No-Diagram condition. 

This pattern also held when we limited the analysis to problems involving negative numbers (transfer 

problems); there was a pretest-posttest increase of only 1 student in the No-Diagram condition, but 

12 students in the Diagram condition (p < .01). These findings suggest that, although students who 

learned with anticipatory diagrammatic self-explanation did not have greater gains on tests of 

conceptual and procedural knowledge, they were more likely to learn the formal algebraic strategy 

and to apply it to problems with no diagram support, even for problem types that they did not practice 

in the ITS (H1, partially supported). 
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Effects on learning processes 

Next, I tested hypothesis H2 (benefits of anticipatory diagrammatic self-explanation with respect to 

learning processes), using log data from the ITS. Specifically, I examined “learning curves”, which 

plot students’ performance within the ITS over time (Rivers et al., 2016). Figure 25 depicts learning 

curves for the two conditions. The y-axis shows the error rate on steps in tutor problems, averaged 

across students and skills, and the x-axis shows the sequence of opportunities for practicing each 

skill. Learning curve analysis assumes that learning occurs when a curve starts with a relatively high 

initial error rate and gradually goes down as students practice the target skills. The curves are fit to 

student performance data using the Additive Factors Model (AFM), a specialized form of logistic 

regression (Rivers et al., 2016). In this study, students practiced a variety of equation-solving skills 

(e.g., subtracting variable terms). We expected that students who learned with diagrammatic self-

explanation support would perform better in the ITS than their peers who did not receive the support 

(H2). On the symbolic problem-solving steps in the ITS, students in the Diagram condition had a 

lower error rate than students in the No-Diagram condition. Figure 25 shows learning curves 

averaged across all symbolic equation-solving skills students in both conditions practiced. Students 

in the Diagram condition made fewer errors than those in the No-Diagram condition, especially on 

the earlier opportunities. Both groups improved as they solved more problems (i.e., both curves show 

a gradual decline), suggesting that, after much practice, the No-Diagram condition eventually 

lowered their error rate to the same level as the Diagram condition.  

In parallel to the trend observed in the learning curves, we found that, when restricting the analysis 

to symbolic steps only (i.e., excluding diagrammatic self-explanation steps), students who received 

the self-explanation support trended toward using fewer hints (t(89.52) = -1.812, p = .07) and spent 

significantly less time on each symbolic problem-solving step (t(99.51) = -2.238, p = .03) than 

students who did not receive the self-explanation support (Table 10). The average number of 

problems solved in the ITS during the (fixed amount of) available time did not differ significantly 

across conditions, (t(99.30) = -0.528, p = .60) (Table 10). 

 

 

 

 



59 

Table 10. Average number of problems solved, number of incorrect attempts, number of hint requests, and 

average time spent on symbolic steps in the ITS (standard deviation). 

 Average number of 

problems solved 

Average number of 

hints requested per step 

Average time 

spent per step 

Diagram 15.40 (9.02) 0.68 (0.96) 15.99 (9.91) 

No-Diagram 16.17 (11.16) 1.02 (1.38) 20.27 (13.95) 

 

 

Fig. 25. Learning curves for the Diagram condition (red) and the No-Diagram condition (green) averaged 

across the skills students practiced during the symbolic problem-solving steps. Dark and light blue lines show 

predicted curves based on the AFM (dark blue: Diagram condition, light blue: No-Diagram condition). 

In summary, the students in both conditions practiced a similar number of problems in the ITS in 

a similar amount of time overall, and the anticipatory diagrammatic self-explanation helped students 

spend less time and ask for fewer hints on symbolic steps (H2, partially supported). In addition, the 

learning curves indicate that students in both conditions learned equation-solving skills eventually, 

but the students in the Diagram condition had a smoother experience with fewer errors. 

Discussion 

We found that anticipatory diagrammatic self-explanation embedded in an Intelligent Tutoring 

System (ITS) helped students learn to apply a formal, algebraic problem-solving strategy to problems 
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outside the ITS and to transfer problems involving negative numbers (H1). Anticipatory 

diagrammatic self-explanation also supported student performance within the ITS, measured by 

lower learning curves, less frequent use of hints, and less time spent on each symbolic equation-

solving step (H2). Anticipatory self-explanation did not lead to differences in posttest scores, 

contrary to H1, but it helped students learn more efficiently; students learned the formal algebraic 

strategy while solving a similar number of problems with less time and fewer errors and hint requests, 

and they achieved similar gains on conceptual knowledge (H2).  

I attribute these findings to the design and learning principles used in supporting anticipatory 

diagrammatic self-explanation. Specifically, I think that the process of selecting the next correct-

and-strategic problem-solving step, depicted diagrammatically, helped students perform better and 

faster on the corresponding step with symbols. On steps with symbols, students had a diagrammatic 

representation of the step available to them on the screen. They could refer to this representation as 

they sought to express the step using mathematical symbols. Engaging in this cognitive process may 

have helped students understand step-level formal strategies in a visual form (e.g., visually seeing 

that constant terms are taken out from both sides of an equation). Comparing and contrasting the 

different tape diagrams may have supported students in selecting steps that were both correct and 

strategic, and it may have helped them avoid using informal strategies, such as guessing. It may be, 

as well, that the better performance resulting from the anticipatory diagrams gave students a bit more 

confidence to take on the challenge of moving towards formal algebra. 

 

3.4 Study 4: Testing the Effectiveness of Anticipatory Diagrammatic Self-

Explanation on Students with Different Prior Knowledge Levels3 

Motivation 

Using the anticipatory diagrammatic self-explanation tutor, I conducted another study 1) to 

investigate whether the benefits of anticipatory diagrammatic self-explanation we found in Study 3 

would be influenced by students’ prior knowledge and 2) to further examine how diagrams scaffold 

students during anticipatory diagrammatic self-explanation.  

 
3  You can read more on Study 4 in Nagashima, T., Bartel, A. N., Tseng, S., Vest, N.A., Silla, E. M., Alibali, M. W., & Aleven, V. (2021). 

Scaffolded self-explanation with visual representations promotes efficient learning in early algebra. In T. Fitch, C. Lamm, H. Leder, 

& K. Teßmar-Raible (Eds.), Proceedings of the 43rd Annual Meeting of the Cognitive Science Society (pp. 1858-1864). Cognitive 

Science Society. 
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Method 

Participants 

I conducted a classroom experiment at a single private school in the United States. Participants 

included 30 5th graders, 17 6th graders, 23 7th graders, and 21 8th graders (total n = 91)4.  These 

students were taught by two teachers across seven class sections. We conducted the experiment in 

October 2020 when the school was operating under a hybrid teaching mode due to the COVID-19 

pandemic. In this hybrid mode, the majority of students (n = 89) attended the study in-person while 

two students attended remotely. Both participating teachers noted that some students had seen tape 

diagrams in learning materials, but the instruction had never focused specifically on tape diagrams. 

 

Procedure 

The study took place during two regular mathematics class periods, in which most of the students 

and the teacher were present “live” in the actual classroom, and in which experimenters and remote 

learners joined through a video conferencing system. Students in each class were randomly assigned 

to either the Diagram condition or the No-Diagram condition. The study procedure was the same as 

that of Study 3 (Figure 17). 

 

Results 

Effects on learning outcomes 

Of the 91 participants, we excluded five students who did not complete the posttest and two other 

students who were at ceiling at the pretest. Therefore, the following analyses focus on remaining 84 

students (26 5th graders, 16 6th graders, 23 7th graders, and 21 8th graders), of whom 41 were in the 

Diagram condition and 43 were in the No-Diagram condition.  

Two researchers separately evaluated all answers for the open-ended items on the pretest and 

posttest (840 student answers) and achieved high inter-rater reliability (Cohen’s kappa = .81). Table 

11 shows pretest and posttest scores on the conceptual knowledge (CK, max: 9) and procedural 

knowledge (PK, max: 4) items. One-way repeated measures ANOVAs showed a significant pretest-

posttest gain across conditions on the procedural knowledge items (F(1, 83) = 12.88, p < .01) and 

positive but non-significant pretest-posttest gain for the conceptual knowledge items (F(1, 83) = 

2.86, p = .09). I then conducted two separate linear regressions, one with conceptual knowledge 

posttest scores and one with procedural knowledge posttest scores as dependent variables. In both 

models, condition (Diagram or No-Diagram), prior knowledge pretest score (combined CK and PK 

 
4  Data of 6th and 7th graders from this sample was also included in the analyses for Study 3 
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scores), and the interaction between the two served as predictors. Additionally, the number of 

problems solved in the ITS and grade level were included as covariates. Grade level was treated as a 

continuous variable, with 5th, 6th, 7th, and 8th grade coded as -1.5, -.5, .5, 1.5, respectively. In both 

models, there was no significant main effect of condition (CK: β = -0.20, t(78) = -0.28, p = .78, PK: 

β = -0.28, t(78) = -0.60, p = .55) and no significant interaction of condition and pretest scores (CK: 

β = .09, t(78) = .76, p = .45, PK: β = .03, t(79) = .39, p = .69). 

Table 11. Mean scores on the pretest and posttest (standard deviations). 

Condition 
Pretest Posttest 

CK  PK CK PK 

Diagram 3.63 (1.93) 1.15 (1.35) 4.10 (2.37) 1.56 (1.52) 

No-Diagram 4.30 (2.29) 1.63 (1.57) 4.47 (2.53) 2.19 (1.82) 

 

Also, to examine whether engaging with anticipatory diagrammatic self-explanation influenced 

students’ use of formal problem-solving strategies, for the procedural pretest and posttest items, two 

researchers coded for whether students used the formal algebraic strategy in solving equations 

(Koedinger et al., 2008). If an answer used algebraic manipulations to reach the solution, it was coded 

as “Algebra” strategy. Otherwise, we coded it as “Non-Algebra” strategy. Two researchers coded all 

672 student answers (Cohen’s kappa = .64). 

There was no difference between the conditions in the number of students who used the Algebra 

strategy at least once on the procedural items neither on the pretest (Diagram: 12 out of 41, No-

Diagram: 20 out of 43, χ2[1, n = 84]  = 2.65, p = .10) nor on the posttest (Diagram: 16 out of 41, No-

Diagram: 22 out of 43, χ2[1, n = 84] = 1.25, p = .26). However, for the two transfer items, I found a 

significant increase in the number of students using the Algebra strategy from pretest to posttest for 

the Diagram condition (from 7 to 16, p = .01), but not for the No-Diagram condition (from 16 to 18, 

p = .72: Figure 26). 
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Fig. 26. The change, by condition (left: No-Diagram condition; right: Diagram condition), from pretest to 

posttest, in the number of students who used the Algebra strategy 

Effects on learning processes 

To investigate students’ performance in the ITS, I analyzed log data collected by the ITS. 

Specifically, I explored the total number of problems solved, the average number of incorrect 

attempts at each problem-solving step, the average number of hints requested at each step, and the 

time spent on each step (Table 12). I only compared the process measures on the symbolic steps, 

excluding the transactions for the diagrammatic steps, to make fair comparisons between the 

conditions. 
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Table 12. The means and standard deviations (in parentheses) of the process measures. 

Condition 
Number of 

problems solved 

Average number of 

incorrect attempts 

per step 

Average number of 

hints requested per 

step 

Average time 

spent per step 

Diagram 
14.22  

(8.47) 

1.07  

(2.03)  

0.31 

 (0.52) 

18.42 

 (13.02) 

No-Diagram 
20.14  

(13.94) 

1.09  

(1.57) 

0.56  

(0.72) 

21.30 

 (17.15) 

 

To examine whether learners in the Diagram condition showed efficient learning, we ran four 

separate linear regressions with each of the process measures as a dependent variable. In all four 

models, condition, pretest score, and their interaction were included as independent variables. 

Additionally, grade level was included as a covariate. Also, we added the number of problems solved 

as a covariate to three of the four models (the ones in which it was not the dependent variable) 

because the number of problems solved was strongly/moderately correlated with each of the three 

other dependent variables.  

First, we found a main effect of pretest scores on the number of problems solved, β = 3.04, t(79) 

= 7.49, p < .01, indicating that as prior knowledge increases, students solved more problems in the 

ITS. This increase was steeper for students in the No-Diagram condition than the Diagram condition, 

β = -1.24, t(79) = -2.12, p = .04 (Figure 27). We then tested simple main effects of condition at one 

standard deviation below the mean for combined pretest scores and one standard deviation above the 

mean for combined pretest scores (see dotted vertical lines in Figure 20). Results showed that among 

those who scored above average on the pretest, learners in the No-Diagram condition solved 

significantly more problems than those in the Diagram condition. β = 3.53, t(79) = 2.69, p < .01. 

However, there was no difference in the number of problems solved between conditions for learners 

who scored below average on the pretest, β = -0.40, t(79) = -0.31, p = .76.  

Regarding hint use and average time spent per step, we found a significant main effect of condition 

(hint use: β = -0.71, t(78) = -3.08, p < .01; time per step: β = -12.18, t(78) = -2.89, p < .01) but no 

significant interactions between condition and pretest score. There were no significant main nor 

interaction effects on the average number of incorrect attempts made per step. These results indicate 

that anticipatory diagrammatic self-explanation helped learners spend less time and request fewer 

hints on symbolic steps than learners with no self-explanation support, but it did not help them make 

fewer errors on symbolic steps. 
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Fig. 27. An interaction between condition and pretest score on the number of problems solved. The slope is 

steeper for the No-Diagram condition than the Diagram condition. The two dotes lines indicate our two tests 

of simple main effects; one standard deviation below and one standard above the mean for combined pretest 

score. 

To uncover how the anticipatory diagrammatic self-explanation scaffolded student performance, 

I examined relations between performance on the diagrammatic steps and the symbolic steps using 

ITS log data from the participants in the Diagram condition (n = 41). I tested if any of the performance 

measures for diagrammatic steps predicted learners’ performance on symbolic steps. I ran three 

additional linear regressions with the same set of predictors of primary interest: pretest scores, the 

average number of incorrect attempts for each diagrammatic step, and the average time spent for 

each diagrammatic step. I did not include the average number of hints requested since only one 

student used hints for diagrammatic steps. I included grade level and the number of problems solved 

as covariates in order to keep the models consistent with other models presented earlier. The 

dependent variables for the three models were the average number of incorrect attempts for each 

symbolic step, the average time spent for each symbolic step, and the average number of hints 

requested for each symbolic step. When controlling for these other variables, the average number of 

incorrect attempts on diagram steps significantly predicted more incorrect attempts on symbolic steps 
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(β = 6.17, t(35) = 2.50, p = .02) and more time spent on symbolic steps (β = 25.64, t(35) = 2.34, p = 

.03). There was also a significant association between more incorrect attempts on diagrammatic steps 

and lower hint use on symbolic steps (β = -1.46, t(35) = -2.32, p = .03). 

Discussion 

Findings from this study indicate that, regardless of their prior knowledge, anticipatory diagrammatic 

self-explanation helped learners solve symbolic steps faster and ask for fewer hints within the ITS, 

and supported them in the transition from informal strategies to the formal algebra strategy use for 

transfer problems with negative numbers on the procedural items in the pretest and posttest. Also, 

despite the additional diagrammatic steps, which almost doubled the number of steps for each 

problem, there was no difference, for students with lower prior knowledge, in the number of 

problems solved between those who received anticipatory diagrammatic self-explanation and those 

who did not. By contrast, for learners with higher prior knowledge, diagrammatic steps led to fewer 

problems solved, suggesting that the diagrams introduced additional workload. Still, the results 

suggest that learners can use inferential activity with tape diagrams to guide their symbolic problem 

solving. Learners with lower prior knowledge may have used the scaffolding to help with selecting 

strategic problem-solving steps. For those with higher prior knowledge, although the new 

representation may have largely captured what they already knew how to do and may not have 

scaffolded them to solve more problems, it still helped them process symbolic steps faster with fewer 

hints. 

How did anticipatory diagrammatic self-explanation support learning and performance? The 

analysis revealed that making more incorrect attempts during anticipatory diagrammatic self-

explanation was associated with more time spent and more incorrect attempts made on the symbolic 

steps, even after controlling for prior knowledge. However, making incorrect diagram selections was 

also associated with fewer hint requests on the symbolic steps. These results suggest that, although 

students who make errors on the diagrammatic steps tend to make more errors and spend more time 

on symbolic steps, anticipatory diagrammatic self-explanation also serves as a guiding step that 

learners could use when entering the next symbolic step. Making incorrect diagrammatic self-

explanations and receiving feedback on their incorrect attempts may allow learners to reflect on their 

selection deeply, rather than processing the multiple-choice diagrammatic step shallowly, leading to 

fewer hint requests made on the symbolic steps. However, we also acknowledge that the observed 

relation between diagrammatic steps and symbolic steps might be a manifestation of a behavior 

known as “gaming the system” (Baker et al., 2008). That is, the multiple-choice diagrams with 
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feedback may have invited quick guessing and therefore students may not have fully engaged with 

diagrams and the ITS. 

I acknowledge several limitations of the study. A sample size of 84 participants is not large. The 

additional analysis for the participants in the Diagram condition was performed with an even smaller 

subset of the data. Therefore, the findings from this study might not correctly reveal causal and 

predictive relationships. Also, the study was conducted in a private school in the United States. 

Future studies are necessary to investigate the impact of the intervention with students at other types 

of schools and in other locations.  

 

3.5 Study 5: Reducing Scaffolding in Anticipatory Diagrammatic Self-Explanation 

through Interleaving Practice 

Motivation 

Studies 3 and 4 have shown consistent findings that anticipatory diagrammatic self-explanation helps 

students’ learning of the formal problem-solving strategy while supporting their problem-solving 

performance in the tutor. These findings made me think of an open, important question of how much 

visual scaffolding is appropriate to support student learning and performance. While providing 

visual support may enhance problem-solving performance when the scaffold is available, it might 

only engage shallow processing of the target knowledge as learners could easily rely on the provided 

visual rather than connecting the visual with the target content meaningfully (Zhang & Fiorella, 

2021). Of particular interest is the fading of visual scaffolding (i.e., “when should learners solve 

problems with the visual scaffolding and when to solve problems with no visual support?”) (Belland 

et al., 2017). Research has shown that fading scaffolds, such as interleaved practice, can support 

robust learning (Rohrer et al., 2015). To date, however, few studies have been conducted on the topic 

of the fading of visual scaffolding (Rau et al., 2010, 2013). There is a lack of thorough understanding 

of the effect of sustaining and fading visual support and how learners interact with visual scaffolding. 

In-depth investigations into the cognitive processes involved in problem solving with visual 

scaffolding would help understand the effect more.    

In the context of early algebra, sustaining or fading visual scaffolding presents an important 

question both for the scientific and practical communities. To date, research on visual representations 

for algebra has only focused on either providing visual support all the time or not providing it at all 

when investigating the effect of learning with visual representations, including my own studies 

(Booth & Koedinger, 2010). This all-or-nothing contrast does not reflect how classroom teaching is 
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conducted; many mathematics textbooks mix problems with visuals and without visuals in teaching 

algebra (Fukuda et al., 2021). Examining how sustaining and fading affects learning and problem-

solving performance will provide important scientific knowledge regarding whether providing visual 

support all the time might or might not over-scaffold learning. For instance, always providing tape 

diagrams may effectively foster conceptual and strategic understanding of problem-solving 

procedures because students can connect the visual information depicted in a tape diagram with 

symbolic representations in an equation. On the other hand, always using such scaffolding in solving 

equation problems also contains a risk of students’ over-reliance on tape diagrams when solving 

symbolic equations (Booth & Koedinger, 2012). That is, students’ learning might get focused on 

rather superficial diagram-to-symbols translation knowledge that might not help to acquire deeper 

knowledge of using visual representations to strategically solve symbolic equations. In Study 5, I 

was interested in whether sustaining visual scaffolding to support problem solving, previously shown 

to be beneficial in my studies, would over-scaffold student learning by comparing two instructional 

strategies: interleaving between problems with diagrams and problems without diagrams and 

providing diagrams for all problem-solving opportunities. Specifically, I examined the following 

research questions5: 

• RQ1: Does providing visual scaffolding at every problem-solving opportunity during algebra 

problem solving over-scaffold student learning, compared to interleaving the visual 

scaffolding? 

• RQ2: Does providing visual scaffolding at every problem-solving opportunity during algebra 

problem solving support efficient problem-solving performance in the ITS, compared to 

interleaving the visual scaffolding? 

• RQ3: How does the visual support influence students’ performance in the ITS? 

RQ1 addresses a fundamental question of whether sustaining the visual scaffolding may or may 

not over-scaffold learners in gaining conceptual and procedural knowledge. Literature on interleaved 

practice argues that interleaving different problem types may support learning because it requires 

extra cognitive effort from learners (e.g., choose different problem-solving strategies) (Rohrer et al., 

2015). Such extra cognitive effort might help students focus on connecting visual information with 

the information in the symbolic representation. In the context of anticipatory diagrammatic 

 
5 To read more about this study, please see: Nagashima, T., Ling, E., Zheng, B., Bartel, A. N., Silla, E. M., Vest, N. A., 

Alibali, M. W., & Aleven, V. (2022). How does sustaining and interleaving visual scaffolding help learners? A 

classroom study with an Intelligent Tutoring System. In Proceedings of the 44th Annual Meeting of the Cognitive 

Science Society. Cognitive Science Society (pp. 1751-1758). 
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explanation, interleaving visual scaffolding might help foster deeper thinking on the part of students 

about problem-solving procedures because students would have to think about future steps on their 

own without visual support for problems without visual scaffolding. This extra effort could result in 

enhanced conceptual and procedural knowledge. On the other hand, when students only receive 

problems in which the visual scaffolding is provided, they might only engage with the shallow 

processing of the content (i.e., copying what is shown in the tape diagrams to the symbolic problem 

solving without deeply engaging with its conceptual and procedural meanings). Therefore, I 

hypothesized: 

• Hypothesis 1. Students who received interleaved visual scaffolding will gain more conceptual 

and procedural knowledge from pretest to posttest, compared to students who received the 

visual scaffolding all the time (i.e., sustaining the visual support over-scaffolds learners) 

RQ2 asks how sustaining versus interleaving visual scaffolding might affect students’ problem-

solving performance during a learning activity (in the ITS). This is measured by performance 

measures, including time spent and accuracy in problem solving (Long & Aleven, 2014). My 

hypothesis for RQ2 was: 

• Hypothesis 2. Students who received the sustained visual scaffolding will solve problems in the 

ITS more efficiently compared to students who received the visual scaffolding in an interleaved 

way. 

I examined RQ3 to uncover, through several different analytical approaches, how students interact 

with the visual scaffolding during problem solving, which is an underexplored area of research on 

the use of visual representations in algebra. I specifically compared students’ performance across 

conditions 1) on problems in which all students, regardless of the visual support frequency, received 

with the visual support and 2) on problems in which students with the interleaved practice received 

no visual support whereas students who were given the visual scaffolding all the time did. By 

comparing and contrasting students’ performance on these two types of problem events, we can have 

a better understanding of the scaffolding effects in the ITS. Specifically, I investigated where any 

observed differences between the conditions (if any) would come from. Therefore: 

• Hypothesis 3.1. Students in both conditions will show similar within-ITS performance on 

problems with the visual support, regardless of the assigned condition, because students in both 

conditions receive the same scaffolding. 
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• Hypothesis 3.2. Students in the Interleaved condition will perform worse on problem-solving 

items in the ITS than those in the All-Diagram condition on problems where only students in 

the All-Diagram condition receive the scaffolding. 

Lastly, using a Knowledge Component modeling approach (a standard technique used in the field 

of educational data mining) (Long et al., 2018; Nguyen et al., 2019), I investigated 3) to what extent 

students use overlapping vs. separate knowledge on symbolic steps with diagrams and without 

diagrams. By labeling Knowledge Components, or fine-grained problem-solving skills in an 

intelligent tutor (Koedinger et al., 2012) differently for solving problems with the visual scaffolding 

and solving problems without the visual scaffolding, we will examine if students’ actual performance 

can be modeled better with such a separation of knowledge. I hypothesized: 

• Hypothesis 3.3. A Knowledge Component model that includes the effect of visual scaffolding 

shows a better fit, assuming that performance with the visual scaffolding is better than that 

without the visual scaffolding. 

Method 

Participants 

I conducted a classroom experiment at a public middle school in the United States. The school is the 

only middle school in the school district in which over 65% of its students come from low-income 

families. At the participating school, 44.7% of students were considered at the “below basic” level, 

based on the state’s standardized assessment results in 2019. Participants in the study included 77 

7th-grade students. These students were taught in five class sections by one teacher. I conducted the 

experiment in May 2021 when the school was operating under a hybrid teaching mode due to the 

COVID-19 pandemic, in which 30 students participated remotely from their own home environment 

and the remaining 47 joined from their classroom with their teacher. The participating teacher noted 

that students’ prior exposure to tape diagrams was minimal. Among the 77 students, 16 students were 

in the Individualized Education Program (i.e., IEP). 

 

Materials 

Web-based pretest and posttest, modified based on those used in Study 3 and 4, were used in the 

study. Test items included six conceptual knowledge items (CK) and seven procedural knowledge 

items (PK). The procedural knowledge items consisted of four items with no tape diagrams (PK-

NoDiagram) and three problems that show a corresponding tape diagram (PK-Diagram). The three 

problems with tape diagrams and three of the four problems without tape diagrams shared the same 
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equation types, and the fourth problem without tape diagrams was a transfer problem that used 

negative numbers. Two isomorphic versions were created and assigned to students in a counter-

balanced way. 

The ITS with anticipatory diagrammatic self-explanation was used in the study. As illustrated in 

Figure 28, students in the All-Diagram condition used the ITS that provided anticipatory 

diagrammatic self-explanation support for all problems whereas those in the Interleaved condition 

used it only for odd-numbered problems (i.e., first problem, third problem, fifth problem, and so on). 

For even-numbered problems, students in the Interleaved condition received a version with no 

diagrammatic steps available. These two ITS versions differ only in whether the ITS provides 

diagrammatic steps or not; in other words, the only difference between the two conditions was that, 

for even-numbered problems, students in the All-Diagram condition solved problems with diagrams, 

but those in the Interleaved condition solved without diagrams. Students, regardless of their assigned 

condition, received the same list of problems in a fixed order which increases problem difficulty as 

students move on. 
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Fig. 28. How we sustained and interleaved visual scaffolding in the experiment. In the Interleaved condition, 

students received the visual scaffolding only on odd-numbered problems. 

Procedure 

The study took place during five regular mathematics class periods, in which approximately half of 

the students and the teacher were present live in the actual classroom, and experimenters and remote 

learners joined through a video conferencing system. Students in each class were randomly assigned 

to either the All-Diagram condition or the Interleaved condition. Sixteen students in IEP were pre-

identified and separately randomly assigned to the groups among them. Also, based on teacher-

reported information regarding students’ regular participation mode (i.e., remote or in-person class 

participation), we randomly assigned students to conditions separately among students joining 

remotely and those joining from the classroom.  

In the first class session, students started by working on the pretest for 20 minutes. Then the 

experimenter showed students in both conditions a five-minute video describing how to use the ITS 
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and what tape diagrams represent. Starting in the second class period, students spent 15-20 minutes 

using the assigned ITS version to practice algebra problem solving. (from the 2nd to 4th periods, the 

total ITS learning time in both conditions was approximately 60 minutes). On the final day, students 

took the web-based posttest for 20 minutes. Students were given access to both ITS versions about a 

week after the study. Figure 29 illustrates the study procedure. 

 

 

 

Fig. 29. Study procedure 

 

Results 

Of the 77 participants who completed the pretest, we excluded 14 students who did not complete 

either the tutor learning activity, the posttest, or both. I think that this high attrition was due to the 

fact that the school was conducting the hybrid instruction (Nagashima, Yadav et al., 2021). The 

following analyses focus on the remaining 63 students, of which 32 were in the Interleaved condition 

and 31 were in the All-Diagram condition.  

Effects on learning outcomes 

Table 13 shows students’ pretest and posttest scores. To test Hypothesis 1 (i.e., students who receive 

interleaved visual scaffolding will gain more conceptual and procedural knowledge, compared to 

students who receive the visual scaffolding all the time), I conducted three separate linear regressions, 
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with conceptual knowledge posttest score (CK), posttest score on procedural items with tape 

diagrams (PK-Diagram), and posttest score on procedural items without tape diagrams (PK-

NoDiagram) as dependent variables, respectively. In all of the models, condition (All-Diagram or 

Interleaved, coded as 0 or 1) and prior knowledge (i.e., pretest scores) served as predictors. We found 

no significant main effect of condition for conceptual learning (β = -0.42, t(62) = -1.22, p = .23), 

procedural learning on items with diagrams (β = -0.17, t(62) = -0.77, p = .44), and procedural learning 

on items without diagrams (β = -0.29, t(62) = -1.12, p = .27). This finding shows that Hypothesis 1 

was not supported; contrary to our expectation, students who solved problems using the tutor that 

gives visual scaffolding for all problem-solving opportunities did not over-scaffold learning. 

Table 13. Pretest and posttest score (standard deviation) by condition. 

Condition 

Pretest Posttest 

CK 

(max: 4) 

PK- 

Diagram 

(max: 3) 

PK- 

NoDiagram 

(max: 4) 

CK 

(max: 4) 

PK-

Diagram 

(max: 3) 

PK-

NoDiagram 

(max: 4) 

All-Diagram 2.82 (1.53) 1.27 (1.15) 2.18 (1.42) 
3.30 

(1.55) 
1.45 (1.25) 2.21 (1.45) 

Interleaved 2.78 (1.39) 1.03 (1.06) 1.84 (1.22) 
2.75 

(1.50) 
1.12 (1.13) 1.72 (1.45) 

 

 

Effects on learning processes 

To address Hypothesis 2 (i.e., students who receive the visual scaffolding all the time will solve 

problems in the ITS more efficiently compared to students who receive the visual scaffolding in an 

interleaved way), I ran four separate linear regressions with four problem-solving performance 

measures (the number of problems solved, average number of hints per symbolic step, average 

number of incorrect steps per symbolic step, and average time spent per symbolic step) as dependent 

variables. I only compared students’ performance on symbolic steps and excluded interactions with 

the diagram steps from the log data. In all four models, condition and pretest score were included as 

independent variables. Table 14 shows descriptive data on the performance measures. 
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Table 14. Average performance measures per symbolic step (standard deviation). 

Condition 
Average number of  

hint requests  

Average number of 

 incorrect attempts  
Average time spent  

All-Diagram 0.16 (0.23) 0.45 (0.63) 6.85 (2.70) 

Interleaved 0.53 (0.64) 0.86 (0.92) 12.0 (6.92) 

 

 

First, I did not find a main effect of condition on the number of problems solved (𝛽 = -3.44, t(60) 

= -1.05, p = .30). In other words, students solved a similar number of problems in the tutor, regardless 

of condition. In the models for the average number of hints per symbolic step, the average number 

of incorrect attempts per symbolic step, and time spent on symbolic steps, I found a significant main 

effect of condition on the average number of hint requests per step (𝛽 = 0.28, t(60) = 2.83, p < .01) 

and average time spent per step (𝛽 = 3.32, t(60) = 2.21, p = .03). I did not find a main effect of 

condition on the number of incorrect attempts made per step, 𝛽 = 0.31, t(60) = 1.67, p = .10. 

Altogether, students in the All-Diagram condition solved problems with fewer hint requests and less 

time on symbolic steps, suggesting that students in the All-Diagram condition solved symbolic steps 

more efficiently than those in the Interleaved condition. These results show that students who 

received the sustained visual scaffolded performed better on symbolic problem-solving measures 

such as hint use and time spent on symbolic steps. These findings partially support Hypothesis 2. 

 

Diagram’s scaffolding effects 

To address Hypotheses 3.1 – 3.3 (i.e., students who receive the visual scaffolding all the time will 

solve problems in the ITS more efficiently compared to students who receive the visual scaffolding 

in an interleaved way), I ran four separate linear regressions with four problem-solving performance 

measures (the number of problems solved, average number of hints per symbolic step, average 

number of incorrect steps per symbolic step, and average time spent per symbolic step) as dependent 

variables. I only compared students’ performance on symbolic steps and excluded interactions with 

the diagram steps from the log data. In all four models, condition and pretest score were included as 

independent variables. Table 15 shows descriptive data on the performance measures. 
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Table 15. Performance measures on odd-numbered problems and even-numbered problems by condition 

(standard deviation). 

Condition 

Odd-numbered problems Even-numbered problems 

Hint  

requests 

Incorrect 

attempts 

Time 

spent 

Hint  

requests 

Incorrect 

attempts  

Time 

spent  

All-Diagram 0.23 (0.31) 0.70 (1.02) 15.1 (9.15) 0.08 (0.19) 0.17 (0.29) 7.51 (5.14) 

Interleaved 0.62 (0.75) 0.99 (1.01) 21.4 (16.0) 0.37 (0.55) 0.49 (0.50) 14.6 (10.4) 

 

 

I first compared students’ performance on odd-numbered problems to examine if students, 

regardless of the condition, performed similarly on scaffolded problems. I ran three separate linear 

regressions with the number of hints used per symbolic step, the number of incorrect attempts per 

symbolic step, and time spent per symbolic step as dependent variables, and condition and pretest 

scores as predictors. I found that students in the All-Diagram condition used significantly fewer hints 

(𝛽 = 0.29, t(60) = 2.48, p = .02) and trended towards spending less time (𝛽 = 5.87, t(60) =1.89, p = 

.06). No significant difference was found on the number of incorrect attempts per symbolic step, 𝛽 

= 0.19, t(60) = 0.78, p = .44. Therefore, Hypothesis 3.1 was not supported; students in the All-

Diagram condition performed better on problems in which students in both conditions received the 

same scaffolding.  

Then, I compared students’ performance on even-numbered problems to understand whether 

students in the Interleaved condition performed poorly on problems with no visual scaffolding (on 

even-numbered problems, only students in the All Diagrams condition had visual scaffolding; 

students in the Interleaved condition worked with the symbolic representation only; see Figure 21). 

The same set of regression models revealed that students in the All-Diagram condition requested 

significantly fewer hints (𝛽 = 0.24, t(60) = 2.67, p = .01), made significantly fewer incorrect attempts 

(𝛽 = 0.30, t(60) = 2.85, p = .01), and spent significantly less time (𝛽 = 6.64, t(60) = 3.31, p = .01) on 

symbolic steps. This finding indicates that students in the All-Diagram condition did better on 

problems in which only those students in the All-Diagram condition received the scaffolding 

(Hypothesis 3.2, supported). 

Knowledge component modeling 

Finally, for H3.3, we conducted Knowledge Component modeling to investigate potential 

mechanisms that may have influenced the observed differences between the conditions. A 
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Knowledge Component (KC) is defined as “an acquired unit of cognitive function or structure that 

can be inferred from performance on a set of related tasks” (Koedinger et al., 2012). Studies on ITSs 

have used Knowledge Component modeling (i.e., modeling student’s knowledge state and growth 

based on student’s performance on a set of KCs) to design and improve instruction in the software 

(Huang et al., 2021). KC models use a specialized form of logistic regression known as Additive 

Factors Models (Rivers et al., 2016). Improving KC models is critical for better understanding 

student learning and performance, and for better designing instructional support in intelligent 

software. Model fit can be evaluated by three metrics, namely, Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), and 3-fold cross validation metrics reported as root mean 

squared error (RMSE), where lower values suggest better model fit (Nguyen et al., 2019). We applied 

the KC modeling approach to our dataset to investigate whether the scaffolding effect of having 

diagrams can be manifested in the model fit. To conduct the KC modeling analysis, we used 

LearnSphere’s DataShop (https://pslcdatashop.web.cmu.edu/). 

In our ITS log data, the original KC model had general algebra problem-solving KCs (see Table 

14). To see if the visual scaffolding effect would be manifested in KCs, we created an additional set 

of KCs that treats the various skills involved in “solving equations with diagrams” as separate skills, 

depending on whether the problems had visual scaffolding or not (Table 16). We compared the 

original KC model with an updated model that considers “solving equations in symbols without 

diagrams” and “solving equations with diagrams,” only for the Interleaved condition (because the 

All-Diagram condition had diagrams for all the problem-solving opportunities). Applying the KC 

modeling approach allows us to see whether students in the Interleaved condition practiced separate 

sets of skills in the tutor. We found that the updated model improved the model fit on AIC and all 

the RMSE values (but not for BIC, see Table 4), which suggests that treating problem-solving skills 

with and without diagrams as distinct better represents the actual student behavior (Stamper et al., 

2013). This suggests that students were solving equations using different skills between problems 

with anticipatory diagrammatic self-explanation and problems without visual support (Hypothesis 

3.3, supported). 
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Table 16. Lists of Knowledge Components for the original and updated models. The updated model treats KCs 

differently for problems with diagram and without diagrams and therefore has additional skills. 

KC type Original model Updated model Description 

KCs for the 

symbolic 
problem-

solving 

steps 

cancel-const 

cancel-const Canceling out constant terms (ax + b – b = c – b) 

cancel-const-d 
Canceling out constant terms when diagrams are 

present 

cancel-var 
cancel-var Canceling out variable terms (ax – cx = cx – cx + b) 

cancel-var-d 
Canceling out variable terms when diagrams are 

present 

combine-like-const 
combine-like-const 

Combining like terms (constant terms, ax + b – b = c – 

b) 

combine-like-const-d 
Combining like terms (constant terms) when diagrams 

are present 

combine-like-var 

combine-like-var 
Combining like terms (variable terms, ax – cx = cx – 

cx + b) 

combine-like-var-d 
Combining like terms (variable terms) when diagrams 

are present 

divide 

divide Dividing an equation by variable coefficient (ax 

divide-d 
Dividing an equation by variable coefficient when 

diagrams are present 

division- 

complex 

division-complex Dividing an “ax + b = cx” equation by “a”  

division-complex-d 
Dividing an “ax + b = cx” equation by “a” when 

diagrams are present 

division- 

simple 

division-simple Dividing an “ax = b” equation by “a”  

division-simple-d 
Dividing an “ax = b” equation by “a” when diagrams 

are present 

subtraction-const 
subtraction-const Subtracting a constant term 

subtraction-const-d Subtracting a constant term when diagrams are present 

subtraction-var 

subtraction-var Subtracting a variable term 

subtraction-var-d Subtracting a variable term when diagrams are present 

KCs for the 
diagram 

steps 

selectd-given-eq selectd-given-eq Selecting a diagram for the given equation 
selectd-subtract-

const 
selectd-subtract-const Selecting a diagram for subtracting a constant term 

selectd-subtract-var selectd-subtract-var Selecting a diagram for subtracting a variable term 

selectd-divide selectd-divide Selecting a diagram for divisions 
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Table 17. Model metrics values for the KC models. 

KC model AIC BIC 
RMSE 

(student blocked) 

RMSE 

(item blocked) 

RMSE  

(unblocked) 

Original 4,431.81 4,894.95 0.3682 0.3088 0.3075 

Updated 4,347.60 4,933.32 0.3675 0.3048 0.3047 

 

Discussion 

Comparing two conditions that differed on the frequency of receiving visual scaffolding during 

algebra problem solving, this study found that engaging anticipatory diagrammatic self-explanations 

for all problem-solving opportunities was a helpful level of scaffolding and did not “over-scaffold” 

learning. Contrary to my expectation that interleaving visual scaffolding might foster better learning, 

reducing the frequency had a host of detrimental effects. In the following, I will provide detailed 

discussions on the results. 

First, sustaining visual scaffolding for every problem-solving opportunity in the ITS did not over-

scaffold learning. Students who received the sustained scaffolding for every problem-solving 

opportunity did not perform differently from students who with interleaved visual scaffolding on any 

of the posttest item categories. In fact, students in the interleaved condition, on average, scored lower 

on the posttest than the pretest on two of the three test item categories whereas students in the All-

Diagram condition improved from the pretest to the posttest, when observed descriptively. This 

descriptive difference might be due to the fact that students in the Interleaved condition did not have 

a very smooth learning experience, as evidenced by the performance differences in the tutor. 

Interleaved visual scaffolding, which made problem solving harder and slower, might have only 

added “un-desirable difficulties” which did not lead to enhanced learning (Bjork & Bjork, 2011; 

Koedinger & Aleven, 2007). 

Also, consistent with my prior studies (Study 3 & 4), engaging in more anticipatory diagrammatic 

self-explanation resulted in better problem-solving performance in the ITS. In-depth analyses using 

the ITS log data revealed that students in the All-Diagram performed better not only on even-

numbered problems, in which only the All-Diagram condition received the scaffolding, but also on 

odd-numbered problems, in which students in both conditions solved exactly the same problem. It is 

possible that the performance differences were due to the increased practice of using the visual 

support to solve equation problems in the All-Diagram condition; students in the All-Diagram 

condition might have become fluent in using the visual scaffolding and therefore solved more 
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efficiently even on odd-numbered problems. These results indicate that the overall performance 

differences did not come only from the problems with no visual scaffolding, but rather came from 

the entire learning experience, including their interaction with the scaffolded problems. This finding 

implies that sustaining the visual scaffolding throughout the entire learning process benefits learners 

by helping them have a smooth learning experience. It is true that students in the All-Diagram 

condition received twice the visual support than the students in the Interleaved condition, and it 

would be reasonable to think that the increased exposure might have helped the students gain 

competence in using diagrams to solve symbolic problems. 

Why did sustaining visual scaffolding benefit students? The Knowledge Component modeling 

analysis provides evidence that students in the interleaved condition exercised different types of skills 

(i.e., Knowledge Components) for problems with visual scaffolding and those without visual 

scaffolding. Students in the sustained condition, on the other hand, were consistently practicing the 

skills of “solving problems with diagrams.” It may be that students who received the scaffolding for 

every problem-solving opportunity benefited because their learning experience was focused and 

consistent. 

However, the findings from the Knowledge Component modeling also indicate that students in 

the interleaved condition were engaged in learning that students in the sustained condition did not 

practice (i.e., solving equations without visual scaffolding). Given that students eventually need to 

be able to solve equation problems without visual scaffolding (e.g., more advanced equation 

problems), it could be that students’ practice with interleaved visual scaffolding may lead to better 

learning outcomes in later phases of equation solving that involve more complicated problem types. 

The current study did not capture this potential benefit because these later stages were not reached. 

Future research could explore this possibility. 
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4 Chapter 4: Supporting Self-Regulated Use of Visual Representations  

4.1 Motivation 

Chapter 3 illustrated how I explored the design of a visual representation for early algebra (namely, 

tape diagrams) and the design and empirical evaluations of instruction using the visual representation 

through multiple instructional strategies (i.e., diagrammatic self-explanation). The focus of 

assessment, or the target instructional goal, in these completed studies had been students’ learning 

of domain-specific knowledge and skills in early algebra, which include conceptual understanding, 

procedural skills, and strategies in solving algebra problems (Chu et al., 2017; Crooks & Alibali, 

2014; Koedinger et al., 2008). In the later work, I made a shift in the targeted learning goal. Instead 

of only focusing on students’ domain-specific knowledge/skills, I also targeted students’ self-

regulatory behaviors involving the use of the visual scaffold (diSessa, 2004). That is, I explored how 

we might facilitate learners’ self-regulatory use of diagrams and whether and how it would affect 

their domain-level learning. This shift in the research question also means a shift in how to assess 

learning. As illustrated in Table 18, rather than restricting the assessment environment in a way that 

students will not be allowed to use available resources, I used a learning/assessment environment 

where students are allowed to use available help (i.e., diagrams) in solving problems. Such an 

environment is more aligned with the authentic learning environment in which learners are not 

restricted in terms of the use of resources around them to navigate everyday problem solving 

(Schwartz & Arena, 2013). Drawing on the idea of “choice-based assessment” (Cutumisu et al., 2015, 

2019; Schwartz & Arena, 2013), I investigated students’ choices with regard to the use of visual 

representations in a learning/assessment environment and how their choices relate to their domain-

level learning. Choice-based assessments have been implemented in a number of prior studies in the 

field of the learning sciences (e.g., Cutumisu et al., 2015) and learner choice has been argued as 

representing a valid self-regulated learning construct (Bransford & Schwartz, 1999; Roll et al., 2011). 
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Table 18. Comparison between Studies 1-5 and Studies 6-8. 

 Studies 1-5 Studies 6-8 

Target learning goal 
Domain-specific knowledge 

and skills 

Self-regulated learning and 

domain-specific knowledge and 

skills 

Why is it important? 

Middle-school students learn 

algebra knowledge and skills to 

prepare for future learning in 

advanced STEM courses 

Choosing to use visual 

representations strategically is a 

critical self-regulated learning skill 

that learners need to acquire 

Assessment approach 

Domain knowledge/skills test 

where learners are not supposed 

to use visual representations 

Choice-based assessment where 

learners can decide whether (or 

not) to use visual representations 

 

4.2 Study 6: Investigating Patterns of Students’ Diagram Use in a Choice-based 

Diagram Tutor 

I first designed Choice-based Diagram Tutor, which gives learners a control over whether and when 

to engage with the anticipatory diagrammatic self-explanation in the tutor, instead of asking learners 

to process anticipatory diagrammatic self-explanation at every problem-solving opportunity (Figures 

30-33).  

 

 



83 

Fig. 30. In the Choice-based Diagram Tutor, students start with an interface in which only the symbolic 

equation-solving window is available.  

 

 

Fig. 31. When students press the “Use Diagrams?” button, the anticipatory diagrammatic self-explanation step 

appears, and students are asked to work on the diagram step. Clicking on the “Hint” button will show multi-

step text-based hints for the diagram step. Correctness feedback is provided based on students’ selection. 

 

 

 

Fig. 32. Once the diagram step is done, students will work on the corresponding symbolic step. The tutor 

provides targeted feedback in text format. Hints are also available, and hints do not direct students to use 

diagrams.  
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Fig. 33. For any equation-transformation steps, students can also choose not to use diagrams. At any point 

during symbolic problem solving, students can press the “Use Diagrams?” button to get the visual scaffolding. 

The tutor does not prompt students to direct students’ attention to a certain choice behavior. 

 

The Choice-based Diagram Tutor helps us understand students’ choice behaviors when the use of 

visual scaffolding is optional. Strategically choosing to use or not to use the visual representation in 

our equation-solving tutor constitutes an appropriate task for measuring learners’ self-regulated 

choice in learning with visual representations (diSessa, 2004). Chin et al. (2019) discuss that a critical 

aspect in designing a choice-based assessment environment is to select a task for which learners have 

a natural tendency not to use the strategy of interest. Using tape diagrams when practicing equation 

solving is considered as having this characteristic at least from two viewpoints. First, engaging with 

anticipatory diagrammatic self-explanation requires additional steps. Because diagram steps are 

given for every transformation step (i.e., steps that make the state of the equation closer to isolating 

the variable), the number of steps would almost double, compared to the problem with no 

diagrammatic self-explanation support. Although my prior studies have consistently demonstrated 

that such additional steps do not affect the total number of problems students solve in a fixed time 

period compared to students who do not have diagrammatic steps (Nagashima, Bartel, Tseng et al., 

2021; Nagashima, Bartel, Yadav et al., 2021), it is a reasonable expectation that middle-school 

students would have a tendency to avoid having to do additional steps. Furthermore, tape diagrams 

introduce a new representation that many middle-school students are not familiar with. Even though 

tape diagrams are increasingly incorporated in classroom instruction (Murata, 2008), they are still, 

at least in the U.S., not yet prevalent (Nagashima, Yang et al., 2020). Therefore, from a learner’s 

point of view, it might not make sense (or might not be attractive) to choose to engage with such a 

new representation when they are given the choice. 

In addition to the decision of whether or not to use diagrams, which I henceforth call spontaneous 

diagram use (Uesaka & Manalo, 2012), I also investigated students’ self-regulated use of diagrams 

in the Choice-based Diagram Tutor. Drawing on models and theories of self-regulated learning, in 

the context of the Choice-based Diagram Tutor, I categorized two types of diagram use (Figure 34): 

• Proactive diagram use: using diagrams before attempting to solve the corresponding symbolic 

step  

• Reactive diagram use: using diagrams after making one or more incorrect attempts on the symbolic 

step 
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Fig. 34. Proactive diagram use represents the use of diagrams before making any attempts on the symbolic 

step, whereas reactive diagram use represents the use of diagrams after making one or more incorrect attempts. 

Any use of diagrams in the tutor falls into one of these categories. These choice categories are 

informed by the literature on help-seeking in computer-based tutoring systems (Aleven & Koedinger, 

2001; Wood & Wood, 1999) and by Zimmerman and Campillo’s (2003) cyclical model of self-

regulation. As described in Chapter 2, Zimmerman and Campillo’s (2003) model captures phases of 

self-regulated behaviors in which learners evaluate the difficulty of the target task (“forethought” 

phase), self-monitor learning strategies (“performance” phase), and evaluate and reflect on the use 

of the strategy (“self-reflection” phase). Under this model, in the Choice-based Diagram Tutor, 

students may choose to use diagrams by assessing the difficulty of the given equation, self-monitor 

how they perform by using diagrams, and adjust their use of the strategy through self-reflection. 

Therefore, it is reasonable to interpret proactive diagram use as self-regulated, well-planned use of 

diagrams (below I examine this conjecture in light of data from students’ work with the Choice-based 

Diagram Tutor), whereas reactive diagram use would represent unplanned diagram use. 
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Pilot classroom study 

I conducted a classroom pilot study in 2021 to investigate how learners interact with the choice-based 

diagram tutor6. The purposes of the study were twofold. First, I collected baseline data regarding 

how much students would choose to use tape diagrams in the Choice-based Diagram Tutor when no 

additional prompts to support students’ choice were used and how that would affect their 

performance and domain-level learning. In other words, I was interested in knowing students’ 

“natural tendency” regarding the use of the visual scaffold when they are given the choice (Chin et 

al., 2019) and what choice can be considered as self-regulated. Second, I investigated if students’ use 

of diagram is associated with their perceptions regarding the utility of using diagrams, and their 

learning outcomes and performance. The following research questions were explored: 

 

RQ1: When given the choice, how frequently will students choose to engage with anticipatory 

diagrammatic self-explanation? 

 

RQ2: Will the self-regulated diagram use be related to their perceptions regarding using diagrams 

during problem solving and other behavioral measures (e.g., prior knowledge)? 

 

RQ3: Will students learn and perform better if they autonomously choose to engage with anticipatory 

diagrammatic self-explanation? 

 

RQ4: Will students who proactively use diagrams more often perform and learn better? 

Method 

Thirty 6th grade students from two classes at a private middle school in the U.S. participated in the 

study. All students participated from their in-person classroom with their own teachers. On the first 

day, participants were asked to work on a 10-minute, web-based pretest. On the second day, one of 

the teachers gave a brief lecture on tape diagrams to all students and then students used the choice-

based tutor to practice problem solving for about 25 minutes. To complete the study, a posttest was 

conducted. The posttest included several survey questions, which asked students their perceptions 

regarding using tape diagrams during algebra problem solving. Per teachers’ report, students had 

never seen tape diagrams at school. 

 
6 To read more about this work, please see: Nagashima, T., Tseng, S., Ling, E., Bartel, A. N., Vest, N. A., Silla, E. M., 

Alibali, M. W., & Aleven, V. (2022). Students’ self-regulated use of diagrams in a choice-based Intelligent Tutoring 

System. In Proceedings of the Annual Meeting for the International Society of the Learning Sciences, Hiroshima, Japan.   
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The pretest and posttest included seven conceptual knowledge items and four procedural 

knowledge items. Among these 11 items, two conceptual items and two procedural items used tape 

diagrams in their problems. Two versions of the test were created and assigned to students in a 

counter-balanced way across pretest and posttest. The survey questions embedded in the posttest 

asked, on a scale of 1-100, 1) if students liked tape diagrams in the tutor, 2) if they felt confident 

about using tape diagrams for problem solving, 3) if they felt that tape diagrams helped learn algebra 

skills, 4) if they felt that tape diagrams helped improve the accuracy of problem solving in the tutor, 

and 5) their general perception regarding how good they are at solving equation problems without 

using diagrams. The survey items were developed partly based on prior research (e.g., Uesaka et al., 

2007) but also designed specifically for the topic of my research to explore various factors that might 

affect students’ diagram use. All students were given the choice-based diagram tutor, which included 

22 problems of four different problem types (called “levels” in the tutor): Level 1) x + a = b, Level 

2) ax + b = c, Level 3) ax = bx + c, and Level 4) ax + b = cx + d, assigned in this order. According to 

the teachers, students had seen Level 1 problems but had never solved equations in a formal way (by 

subtracting “a” from both sides of “x + a = b”) 

Results 

Four students did not complete all study sessions and were therefore excluded from the analysis. 

Remaining data from 26 students were included in the analyses. To answer RQ1 (When given the 

choice, how frequently will students choose to engage with anticipatory diagrammatic self-

explanation?), we calculated the frequency of using diagrams (i.e., clicks made on the “Use 

Diagrams?” button). On average, students solved 9.12 problems (SD = 5.14) and chose to use 

diagrams 2.73 times (SD = 2.29). That is, on average, tape diagrams were used 0.3 times per problem. 

When looking at patterns of diagram use, I found that students tended to request diagrams the most 

for the first problem in each level, but their use decreased as they solved more problems of the same 

type in each level (Figure 35). 
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Fig. 35. Proportion of students who spontaneously used diagrams at least once for each problem. 

 

Next, to explore RQ2 (Will the self-regulated diagram use be related to their perceptions 

regarding using diagrams during problem solving and other behavioral measures?), I first ran a 

linear regression with the rate of (spontaneous) diagram use in the tutor as a dependent variable and 

the scores for the five survey questions as independent variables. Pretest score was also added as an 

independent variable. The model showed that none of the six independent variables predicted the 

frequency of using diagrams in the tutor. Contrary to my expectation, this result suggests that 

students’ prior knowledge and their (post-hoc) perceptions regarding tape diagrams and math ability 

are not associated with the choice behavior. Table 19 shows students’ pretest and posttest scores. 

Table 19. Students’ pretest and posttest scores (standard deviations). 

 All items 

Conceptual 

knowledge  

(max: 7) 

Procedural 

knowledge 

 (max: 4) 

Tape diagram 

knowledge 

 (max: 4) 

Pretest 6.15 (2.01) 3.42 (1.36) 2.73 (1.00) 2.15 (1.05) 

Posttest 6.96 (2.42) 4.04 (1.63) 2.92 (1.05) 2.69 (1.29) 
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To investigate RQ3 (Will students learn and perform better if they autonomously choose to engage 

with anticipatory diagrammatic self-explanation?) and RQ4 (Will students learn and perform better 

if they proactively use diagrams?), we constructed linear regression models with the following 

dependent variables: posttest score, posttest score for items without tape diagrams, average time 

spent per symbolic step, average number of hints used per symbolic step, and average number of 

incorrect attempts for the symbolic steps. We included each of the spontaneous, proactive, and 

reactive diagram use frequencies in each model as independent variables. Overall pretest score was 

included to control for students’ initial knowledge level. Spontaneous diagram use predicted higher 

overall posttest scores; however, this relation did not reach statistical significance (β = 1.47, p = .07). 

Spontaneous diagram use did not predict any other dependent variables. Proactive diagram use, 

however, predicted higher overall posttest scores (β = 2.01, p < .01) and higher posttest scores on 

items without tape diagrams (β = 1.03, p = .04). Reactive diagram use, on the other hand, was 

associated with lower overall posttest scores (β = -4.75, p = .03) and lower posttest scores on items 

without tape diagrams (β = -3.39, p = .01). Reactive diagram use also predicted greater hint use (β = 

5.21, p < .01).  

Discussion 

Although students’ use of diagrams was generally low, students’ proactive diagram use predicted 

higher learning outcomes. This association was also observed on test items that did not include tape 

diagrams, suggesting near transfer of learning. However, as we cannot establish any causal 

relationships from the results, it is possible that certain characteristics that we did not control for led 

both to more proactive diagram use and better learning. For example, proactive diagram use might 

be indicative of superior monitoring ability or a propensity to monitor one’s comprehension more 

frequently, which might lead to other behaviors that might contribute to better learning. 

Study 6 contributes understanding of self-regulated learning with visual representations. 

Specifically, it provides evidence that effective use of visual representations involves more than 

simply using the visual representations spontaneously; rather, proactive use, which I consider as a 

form of self-regulated diagram use that involves assessment of task difficulty and planning of 

whether or not to use diagrams, leads to better learning. In a related, pilot study with eight middle-

school students who thought aloud as they used the tutor, I found that students who tended to 

proactively use diagrams thought deeply about the given problem before attempting to solve it and 

correctly understood diagrams. On the other hand, those with frequent reactive diagram use did not 

seem to understand the diagrams, and therefore seemed to process diagrams in a shallow way (e.g., 
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selecting diagrams that look right). I acknowledge though that different interpretations of these 

patterns of diagram use may be possible. 

4.3 Study 7: Generating Ideas for Metacognitive Interventions with Children 

Study 6 left open an important question: how might we help students become self-regulated learners 

who use diagrams proactively and learn well? To approach this question, I conducted co-design 

sessions with middle-school students to generate ideas and designed metacognitive interventions. 

Method 

Research assistants and I recruited a total of eight students in the U.S. The students included one 4th 

grader, one 5th grader, one 6th grader, four 7th graders, and one 8th grader, and were recruited 

through our previous contacts. Each student remotely met with a researcher for an hour-long session 

in which they first 1) used the Choice-based Diagram Tutor to solve 5-10 problems (to familiarize 

themselves with the tutor) and then 2) brainstormed ideas for promoting self-regulated diagram use. 

Specifically, for the latter part, we gave students three following prompting questions to facilitate the 

idea-generation activity. Each student and the researcher used and shared a Figma board 

(https://www.figma.com/) to draw and write down ideas as they generated. Sessions were video 

recorded for a later analysis. 

 

Prompting questions: 

• “What would be some features that you wish the system to have to help you see the benefits of 

using diagrams?” 

• “What would be some features that will help you feel motivated to think about using diagrams or 

not?” 

• “What would be some features that you wish the system to have to help you think carefully about 

whether or not to use diagrams for solving equation problems?” 

Analysis 

The eight co-design sessions resulted in a total of approximately eight hours of video recordings. To 

consolidate and categorize generated ideas, three researchers performed Affinity Diagramming 

(Lucero, 2015). The research team met twice to engage in all of the core phases of Affinity 

Diagramming (familiarization with data, initial coding, mid-level categorization, high-level 

categorization). 
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Results  

Initial coding produced 117 ideas from students, which were grouped together according to 

similarities. This process produced 13 mid-level themes. Then, the 13 ideas that share similar themes 

were grouped together to make five high-level ideas. In the following, I describe these five ideas. 

1: “Tell me that diagrams are there to help, they are not there for no reason” 

Students wanted to have examples, videos, or tutorials that help them understand why they should 

consider using diagrams. Because students were not familiar with tape diagrams, they were, by 

default, reluctant to even consider using diagrams without such information. Specifically, students 

wanted an explanation of 1) tape diagrams and 2) how they could be useful. 

2: “I want to be prompted to consider using diagrams when they can be helpful” 

Students frequently mentioned, when they thought-aloud while using the tutor, that they would use 

diagrams when they were not sure how to solve the presented problem. Students believed that such 

a moment would be perfect timing for them to think about using diagrams, and therefore 

recommended that being prompted to consider using diagrams at such moments would be helpful. 

3: “Show me how diagrams are helping (or not helping) me” 

Students expressed that they would like to see if there are any improvements they make when they 

used diagrams. What differences do diagrams make? They care about whether using diagrams 

influenced their own problem solving, not only general, established benefits of it. Students mentioned 

that they would be motivated to think about using diagrams if they can clearly see advantages and 

disadvantages of using diagrams to aid their own problem solving. 

4: “A diagram badge can help me think about using diagrams” 

Referring to some educational games (e.g., Duolingo: https://www.duolingo.com/), students wanted 

to have more motivational features, such as a badge that would be given based on their own progress. 

Many students generated the idea of creating a badge for using diagrams; they think that recognizing 

their progress and use of diagrams in the form of a badge would help them keep motivated to learn 

and think about whether to use diagrams. 

5: “Why is this diagram wrong? I need an explanation” 

Finally, several students were confused about the selection of diagrams for diagrammatic steps in the 

tutor. While students visually were able to tell how the diagram choices look different, to further help 

https://www.duolingo.com/


92 

them understand the benefits of using diagrams, students wanted to see an explanation of why 

correct/incorrect diagram options are correct/incorrect.  

Designing interventions to support students’ self-regulated use of diagrams 

To design an intervention for supporting students’ self-regulated diagram use, I used the 

Metacognitive Choice Behavior Model that I proposed in Chapter 2 (Figure 9, also see Figure 39 

below) as a design guide. Specifically, I wanted to create interventions that would affect the 

behavioral stages separately (at different points during the use of the tutor) rather than designing a 

single intervention that could address all the phases. As Oppezzo and Schwartz (2013) argue, 

interventions may be needed at different stages to promote specific behaviors effectively. In my 

design, I focused on the following phases: 

Pre-intend to intend transition 

For one to move from the pre-intend to the intend stage, they need to understand the benefits of using 

the new strategy. Once they successfully understand the benefits, they will be more interested in 

thinking about whether or not to use the strategy. I thought that, in the context of the tutor, this stage 

would be an appropriate time to address the first idea (“Tell me that diagrams are there to help, they 

are not there for no reason”) because the first idea represents a need for understanding benefits of 

using diagrams. 

Intend to choose to implement/choose not to implement transition 

For one to move from the intend to the choose to implement and the choose not to implement phases, 

they need to “see the opportunity” to think whether or not to use the strategy (Oppezzo & Schwartz, 

2013). That is, students would need to recognize the conditions under which diagrams might be 

helpful. If students do not see such an opportunity, they would not be able to even consider about 

using the strategy at the appropriate timing. Therefore, the second idea from the co-design sessions 

(“I want to be prompted to use diagrams when they are helpful”) could be addressed during these 

phases. 

Reflect phase 

Based on the model, it is expected that self-regulated learners reflect on their own performance and 

progress after deciding whether to use the strategy and actually using (or not using) it. Reflection is 

a key to promoting further strategic use of the strategy because students can self-judge their own 

performance and learn from it (e.g., by increasing their use of the strategy if they see its benefit for 
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their own work or reducing their use of strategy if they do not see its benefits). In the reflect phase, 

the ideas 3 (“Show me how diagrams are helping me”) and 4 (“A diagram badge can help me think 

about using diagrams more”) could be appropriately addressed as it indicates a need for reflecting 

on the choice of using or not using diagrams. 

 

Drawing on this framework and students’ ideas, research assistants and I designed the following 

interventions to support students’ self-regulated use of diagrams: 

A tutorial teaching the benefits of using diagrams 

To support students’ transition from the pre-intend to intend phases, we developed an introductory 

tutorial (shown before students start solving problems) that shows what tape diagrams are and how 

they could be useful in solving equations (Figure 36). The tutorial was composed of three screens. 

In the first screen (a), students are introduced to a fictional character (named “Lynnette”). The second 

screen (b) shows students that tape diagrams can help them visually see the structure of equations. 

The third screen (c) teaches students that research has shown that using diagrams help students solve 

problems much faster than students who solved the same problems without using any diagrams. It is 

designed as a brief introduction with minimum interactions. At the end of the tutorial, it asks students 

whether they are interested in using diagrams or not and collects students’ response in the tutor log. 

 

   

                         (a)                                                       (b)                                                       (c) 

Fig. 36. A tutorial consisting of (a) an introduction screen, (b) a screen illustrating how tape diagrams can be 

useful, and (c) a screen teaching what previous research has shown about using tape diagrams. At the end of 

the tutorial, (c) students are asked for their intention regarding using diagrams. 
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Adaptive recommendations providing opportunities for considering diagram use 

To help students see opportunities where the use of the strategy might be particularly helpful (i.e., 

from the intend to the choose to/not to implement phases), we designed and developed an adaptive 

recommendation feature that prompts students to think about whether or not to use diagrams. Note 

that it does not strongly recommend the use of diagrams; it rather encourages students to think about 

using diagrams. The recommendation was designed as a pop-up screen that shows up (a) when 

students make three consecutive incorrect attempts on a symbolic step or (b) when students stay idle 

for 90 seconds on any step. As Figure 37 shows, different messages are shown for these cases. 

Students can click on the “Ok” and “Ok, got it” button to close the window. 

 

      

(a)                                                                                  (b) 

Fig. 37. Adaptive recommendation popup windows shown when (a) students make three consecutive mistakes 

on symbolic steps and when (b) students are idle for more than 90 seconds. 
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A student-facing dashboard that helps students reflect on their use of diagrams 

To help students reflect on their choice behaviors, we designed and developed a student-facing 

dashboard that presents the student’s own problem-solving performance (correctness rate) on 

symbolic steps when they used diagrams and when they did not use diagrams, represented as two 

separate bars in a bar graph. It also shows badges for using diagrams and mastering pre-defined 

Knowledge Components assigned in the tutor. The dashboard is given at the end of every problem 

level/set and shows the information only from the current problem level. To proceed to the next level, 

students need to indicate their feeling of using diagrams using the 5-likert scale “smiley” survey and 

respond to an open-ended textbox asking them for the reasoning behind their choice (Figure 38). 

 

 

Fig. 38. A dashboard screen that is presented at the end of each problem level. Students are shown a bar graph 

showing their own performance with and without diagrams (left) and badges (right). At the bottom right, 

students are asked to select one smiley icon to indicate their current feeling about using diagrams. Once they 

make a selection, the bottom-right smiley area is replaced with an open textbox asking students for the 

reasoning for the selection. 
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These three ideas were then mapped onto the Metacognitive Choice Behavior Model. Following 

Oppezzo and Schwartz (2013)’s argument that different treatments may be needed to promote 

behaviors in each stage of behavior change, we embedded the three core intervention elements into 

the Choice-based Diagram Tutor to develop a metacognitive intervention package. This design of 

the intervention would make it hard to test the effect of individual intervention elements (also see the 

experiment design in Section 4.5) but would allow us to maximize the potential treatment effect on 

students’ learning outcomes. 

As Figure 39 shows, I expected that the tutorial would help students understand the benefits of 

using diagrams, therefore support their transition from the pre-intend phase to the intend phase (i.e., 

students would get interested in thinking about using the strategy). The adaptive recommendations 

are designed to support students’ transition from the intend to choose to implement and choose not 

to implement phases. The recommendations, which are given based on students’ interactions with 

the tutor, would help students see opportunities to consider whether or not to use the strategy 

(Oppezzo & Schwartz, 2013). Lastly, the dashboard would help students reflect on their choice 

behaviors by comparing and contrasting their performance when they use diagrams and when they 

do not use diagrams. Self-reflection with the dashboard may also support students’ decision making 

for the next opportunity (e.g., “I am doing better with diagrams, so I will keep using diagrams”). 
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Fig. 39. Each of the three intervention elements (tutorial, recommendations, and dashboard) works at different 

stages in supporting students’ self-regulated choice-making behaviors. 

 

Further, my colleagues and I also designed and implemented feedback messages for diagram 

selections, one of the ideas that students generated during co-design sessions. For example, as shown 

in Figure 40, when students choose an incorrect diagram, the tutor provides a feedback message 

helping students to understand why it is an incorrect representation. Since it was not clear how this 

feature would fit in the Metacognitive Choice Behavior Model (not as clear as other intervention 

elements), as we describe later, we rather implemented this feature as a general improvement of the 
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Choice-based Diagram Tutor (i.e., not part of the metacognitive intervention package, which we 

tested in Study 8 below). 

 

 

Fig. 40. Feedback messages are shown when students make a (correct and incorrect) diagram selection. 

Messages tell students why the selected diagram is correct or incorrect.  

 

 

 

4.4 Study 8: Supporting Students’ Self-Regulated Use of Diagrams and Math 

Learning 

In May 2022, I conducted an in-vivo classroom study (Koedinger et al., 2009) to experimentally 

investigate the effectiveness of the designed metacognitive intervention package on students’ self-

regulated use of diagrams, their performance (when using the Choice-based Diagram Tutor), their 

learning (from pretest and posttest), and learning transfer in the classroom context. 

 

Research questions 

This experiment tests the effect of the metacognitive intervention package against a control condition 

in which the package was not used (“Metacognitive” condition vs. “Non-Metacognitive” condition, 

respectively). The following questions were examined: 
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Will the metacognitive intervention package designed with children help learners: 

1. (RQ1) use diagrammatic self-explanation strategically during learning, when it is provided 

as an optional resource, 

2. (RQ2) achieve greater performance and learning gains in doing so,  

3. (RQ3) do better on future learning tasks in a transfer environment with diagrams, and 

4. (RQ4) perceive the usefulness of using diagrams compared to learners without the package? 

Also, (RQ5) how is diagram use associated with learning outcomes? 

 

Method: Participants  

A total of 179 students from two schools in the U.S. participated in the study, taught by two teachers. 

The sample included 38 5th graders, 37 6th graders, 86 7th graders, and 18 8th graders. Both teachers 

noted that students’ prior exposure to tape diagrams was minimal. Students in each class were 

randomly assigned to either the Metacognitive condition or Non-Metacognitive condition. In both 

schools, all students participated in the study from their in-person classroom.  

 

Method: Measures 

I used four types of assessment measures: 

Domain knowledge pretest and posttest 

Pretest and posttest that measure students’ conceptual understanding and procedural skills in early 

algebra were developed based on items from Study 3, 4, 5, and 6 (Nagashima, Bartel et al., 2020; 

Nagashima, Bartel, Yadav., 2021) as well as based on prior literature (Booth et al., 2013). Each test 

had 16 multiple-choice conceptual knowledge items and five open-ended procedural items. Two 

isomorphic versions of the test were developed and assigned in a counter-balanced way across pretest 

and posttest. 

Transfer test 

To measure if students’ propensity to proactively use diagrams will transfer in another environment, 

I designed a transfer assessment where students were first given a story problem of early algebra 

(which students never practice in the tutor) and asked about their intention of whether to use diagrams 

or not to solve the problem (Figure 41). The assessment was designed so that, depending on whether 

students proactively decided to use diagrams, a corresponding next screen was assigned (i.e., those 

who chose to use visual help were given a screen with visual help whereas those who chose not to 

use visual help were given a screen without any visual help). Students, regardless of their choice, 
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were then asked to 1) construct a symbolic equation from the story problem and 2) solve the equation 

(Figure 42). However, I realized that text had a misleading error (the sum of three consecutive even 

numbers can never be 45, an odd number). 

 

 

Fig. 41. First screen of the transfer item asking students for their intention of whether to use diagrams. 

                   

Fig. 42. Once students indicate the intention on whether to use diagrams, depending on their selection, one of 

these screens would be assigned. There is no way for them to go back to the previous screen and change their 

choice. The picture on the left shows a version with diagrams, the one on the right shows one without diagrams. 
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Survey on the perception of diagram use 

Drawing on Uesaka et al. (2007)’s questionnaire that measured students’ perceptions regarding use 

of diagrams, I created a brief survey with questions about students’ perceptions of diagram use. The 

survey had five 5-likert scale statements (1 = Strongly Disagree, 5 = Strongly Agree, see Appendix). 

It was administered both on pretest and posttest, administered immediately after the conceptual and 

procedural knowledge items mentioned above (on the same platform, Qualtrics). 

 

Choice behaviors and performance measures in the tutor 

We also collected log data in the Choice-based Diagram Tutor to observe behaviors regarding 

students’ diagram use, as well as other performance measures such as error rates and hint use rates 

(Long & Aleven, 2014). 

Method: Materials 

I used two versions of the Choice-based Diagram Tutor in the study. One version, Metacognitive 

Choice-based Diagram Tutor, was assigned to students in the Metacognitive condition. In the 

Metacognitive Choice-based Diagram Tutor, the three metacognitive intervention elements (the 

tutorial, recommendation pop-ups, and dashboard) were embedded (Figure 43). Specifically, the 

tutorial was implemented at the very beginning of the tutor learning experience (as Level 0 problem 

set) and the recommendations were available throughout Levels 1-12. The dashboard was embedded 

at the end of each problem level (from Level 1 to Level 12) and students were required to interact 

with the dashboard to proceed to the next problem. The tutor version also had feedback messages for 

diagram selections embedded. The other version is the same Choice-based Diagram Tutor version 

we used in Study 6, except for the newly-added feedback messages for diagram selections. In other 

words, the only difference between the two tutor versions was the three intervention elements 

(tutorial, dashboard, and the adaptive recommendations). As described earlier, feedback messages 

for diagram selections were included in both conditions since they were implemented as a general 

improvement of students’ tutor learning experience. Due to the integration of the metacognitive 

interventions package, students in the Metacognitive condition had more tasks to do than those in the 

Non-Metacognitive condition (Figure 43). 
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Fig. 43. Intervention assignment in the Metacognitive condition, in comparison to the Non-Metacognitive 

condition. In the Metacognitive condition, the tutorial was added as the first problem set (Level 0). The 

dashboard was added at the end of each problem set. The adaptive recommendation feature was available 

throughout all the problem sets, except Level 0 (not shown in the figure). 

In both conditions, I used the same problems, assigned in the same order. It was designed so that 

students would see increasingly difficult problems as they proceed in the tutor. Table 20 shows the 

problem types implemented in both versions of the tutor. 

Table 20. Problem levels and types added in both tutor versions, from Level 1 to Level 12 

Problem level Problem type # of problems added 

1 x + a = b 4 

2 ax + b = c 4 

3 ax + b = c 4 

4 ax = bx + c 4 

5 ax = bx + c 4 

6 ax + b = cx + d 4 

7 ax + b = cx + d 4 

8 ax + b = c (bonus content) 4 

9 ax = bx + c (bonus content) 4 

10 ax + b = cx + d (bonus content) 4 

11 ax = bx + c (bonus content) 4 

12 ax + b = cx + d (bonus content) 4 
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Method: Procedure 

The experiment took place during the schools’ regular math class period, for the duration of five 

consecutive days. Figure 44 illustrates the experimental set up and procedure of the study. On the 

first day, following a brief introduction of the study by experimenters, students completed the web-

based pretest. At the beginning of the second day, all students watched a video describing the tutor 

(i.e., the standard tutor functions available to the students in both conditions) and were told that some 

students may see additional features in the system. Starting on the second day till the fourth day, 

students used their assigned tutor to solve equation problems. On the fifth day, students completed 

the posttest and the transfer test. During the experiment, teachers (in the classroom) and 

experimenters (remotely) were present to support students when they had questions. After the study, 

all students were allowed to use both versions of the tutor (data logging stopped at the end of the 

fourth day, when students finished using the tutor in the study). Each study session lasted about 20 

– 35 minutes. The average total time allocated for tutor learning was approximately 60 minutes. 

 

 

Fig. 44. Experimental design, types of assessments used, and the procedure of Study 8 

Results 

Of the 179 students who participated in the study (who started the pretest, Metacognitive: n = 87, 

Non-Metacognitive: n = 92), 168 students completed all parts of the study (pretest, tutor, and 

posttest). This dropout rate (6.1%) was within the expected range of 3.2% - 33.3%, calculated based 

on my previous in-person and remote classroom studies. I also excluded those who scored 100% on 

the pretest (Metacognitive: n = 1, Non-Metacognitive: n = 0), and those who did not complete more 

than 50% of the test items on pretest and/or posttest, which we decided on before testing treatment 

effects (Metacognitive: n = 3, Non-Metacognitive: n = 4). Using the 50% cutoff on pretest and 

posttest makes it possible to get a more accurate estimate of student learning than including all 
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students regardless of their completion status (Chan et al., 2022). Furthermore, I excluded all students 

from two advanced classes (i.e., honors classes in their schools) based on a teacher’s suggestion 

(Metacognitive: n = 11, Non-Metacognitive: n =9), these students were included in the sample 

because teachers wanted the students to experience the study but expected that the students would 

be too advanced for the study content). I included 140 students who remained in the sample after 

applying the above-mentioned exclusion criteria. Of these students, 69 students were in the 

Metacognitive condition and 71 students were in the Non-Metacognitive condition. No statistically 

significant difference was found between the conditions on the dropout/exclusion rate, χ2 (1, N = 

179) = .05, p = .92. 

Since the study aims to establish initial results of the treatment effects in a preferred environment 

(i.e., aiming to show whether the intervention works in the schools volunteered to participate in the 

study) rather than aiming to claim generalizable effects in a broader population, in the following 

analyses, I treat school as “fixed blocks” when examining treatment effects (Hedges et al., 

forthcoming). 

RQ1: Will the metacognitive intervention help learners use diagrams proactively during learning, 

when they are provided as an optional resource? 

From the tutor log data, I first collected data on the frequency of students’ diagram requests (i.e., 

spontaneous diagram use). This data was obtained by counting the number of times students clicked 

on the “Use Diagrams?” button in the tutor. I further calculated students’ proactive diagram use (any 

spontaneous diagram use would be categorized as either proactive or reactive diagram use, Figure 

34). Table 21 shows descriptive statistics of these types of diagram use, divided by conditions. 

Additionally, I calculated students’ proactive diagram use proportion by dividing the amount of 

proactive diagram use by the amount of spontaneous diagram use. 

I ran three separate independent two-sample t-tests to investigate the effect of the intervention on 

students’ use of diagrams. In each model, one of the three diagram use measures was added as a 

dependent variable. In all models, condition (coded as Metacognitive = 1, Non-Metacognitive = 0) 

was added as an independent variable. These t-tests showed that students in the Non-Metacognitive 

condition used diagrams more spontaneously (t(135.3) = 2.03, p = .04). No statistically significant 

difference was found on other diagram use measures. 
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Table 21. Students’ mean spontaneous diagram use, proactive diagram use, and proactive diagram use 

proportion per step. Standard deviations in parentheses. 

 Spontaneous  

diagram use 

Proactive  

diagram use 

Proactive diagram  

use proportion 

Metacognitive .12 (.10) .08 (.06) 59.1% 

Non-Metacognitive .16 (.12) .10 (.06) 62.6% 

 

RQ2: Will the metacognitive intervention help learners achieve greater performance and learning? 

Two researchers separately coded student responses to the procedural items for their correctness with 

a high inter-rater reliability (Cohen’s kappa = .94). Incomplete items were coded as incorrect. Table 

22 shows students’ average pretest and posttest scores on conceptual and procedural knowledge items 

(standard deviations in parentheses).  

 

Table 22. Students’ mean pretest and posttest scores and (standard deviations).  

 Conceptual knowledge 

 (max = 16) 

Procedural knowledge  

(max = 5) 

 Pretest Posttest Pretest Posttest 

Metacognitive 9.78 (2.72) 10.48 (2.49) 1.74 (1.74) 2.88 (2.03) 

Non-Metacognitive 9.28 (2.22) 9.38 (2.15) 1.73 (1.74) 2.35 (1.88) 

 

To examine the treatment effect on student learning, I ran two separate linear regressions with 

condition as an independent variable (Metacognitive = 1, Non-Metacognitive = 0), and conceptual 

knowledge and procedural knowledge were added as a dependent variable, respectively. In both 

models, students’ pretest score (on conceptual knowledge and procedural knowledge, respectively) 

was added as a covariate to control for students’ incoming knowledge before the study. Students in 

the Metacognitive condition learned greater conceptual knowledge (𝛽 = .95, t(137) = 2.52, p = .01) 

and procedural knowledge  (𝛽 = .53, t(137) = 2.08, p = .04) than those in the Non-Metacognitive 

condition (Figure 45). 
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Fig. 45. Students’ learning gains from pretest to posttest on conceptual knowledge (CK) and procedural 

knowledge (PK) in each condition.  

 

I also looked at students’ test scores only on problems that involved tape diagrams (Table 23) and 

ran linear regressions with the same predictors. Models showed that students with the metacognitive 

intervention achieved greater gains on procedural items with tape diagrams compared to those 

without the intervention (𝛽 = .24, t(137) = 2.07, p = .04) but did not show greater significant gains 

on conceptual items with tape diagrams (𝛽 = -.03, t(137) = -.38, p = .70). 

Table 23. Students’ mean pretest and posttest scores on items with tape diagrams. Standard deviations in the 

parentheses. 

 Conceptual knowledge  

(max = 3) 

Procedural knowledge  

(max = 2) 

 Pretest Posttest Pretest Posttest 

Metacognitive 1.42 (.58) 1.26 (.53) .59 (.77) 1.10 (.89) 

Non-Metacognitive 1.45 (.65) 1.31 (.50) .55 (.73) .86 (.78) 
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Next, to examine the treatment effects on students’ problem-solving performance in the tutor, I 

used the following performance measures from the tutor log data: frequency of hint use (i.e., the 

number of hint requests per symbolic step) and error rate (i.e., the number of incorrect attempts per 

symbolic step) (Table 24). We also counted the number of problems students solved in the tutor in 

each condition (Table 24). These measures are typical measures examined in ITS literature (e.g., 

Long & Aleven, 2014). We constructed three separate linear regressions with condition as an 

independent variable, and the frequency of hint use per step (hint request rate), incorrect attempts per 

step (error rate), and the number of problems solved were added as a dependent variable, 

respectively. In all models, students’ overall pretest score was added to control for their prior 

knowledge. The models revealed no effect of the intervention on the hint request rate (𝛽 = -.001, 

t(137) = -.60, p = .54), the error rate (𝛽 = .09, t(137) = 1.30, p = .20), and the number of problem 

solved (𝛽 = .67, t(137) = .32, p = .75). 

Table 24. Students’ average problem-solving performance in the tutor across the conditions. Standard 

deviations in parentheses. 

 Average number of 

hint request per 

symbolic step 

Average number of  

incorrect attempts per 

symbolic step 

Number of 

problems solved 

Metacognitive .003 (.005) .43 (.55) 32.64 (13.52) 

Non-Metacognitive .003 (.005) .36 (.20) 31.25 (13.10) 

 

RQ3: Will the metacognitive intervention help learners perform better on a future learning task in a 

transfer environment with diagrams? 

Students’ responses to each of the transfer tasks (initial proactive choice on whether to use diagrams 

or not, constructing an equation, and solving the equation) were independent of each other and coded 

as a binary variable. Two researchers coded students’ responses with a high inter-rater reliability 

(Cohen’s kappa = .89). Table 25 shows the number of students who successfully solved these transfer 

tasks and those who did not. We constructed three logistic regressions with students’ score 

(successful = 1 or unsuccessful = 0) for each of these transfer tasks separately. In each model, 

condition was added as an independent variable. The models showed no significant effect of the 

treatment on any of the transfer task performance. However, due to the misleading problem text 
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mentioned earlier, this result does not give any conclusive evidence about the effect of the 

intervention on a transfer task. 

Table 25. Number of students in each condition who successfully achieved each of the transfer tasks (and 

proportions). 

 Intention to  

use diagrams 

Construct an 

equation 
Solve the problem 

Metacognitive 48 (69.66%) 5 (7.25%) 5 (7.25%) 

Non-Metacognitive 48 (67.61%) 4 (5.63%) 2 (2.82%) 

 

RQ4: Will the metacognitive intervention help learners perceive the usefulness of using diagrams? 

The average of each student’s responses to the five survey questions was calculated (range: 1-5). 

Table 26 shows students’ average ratings for the survey on pretest and posttest. We ran a linear 

regression with condition and the average survey rating on the pretest as predictors and the average 

score on the posttest as the dependent variable. Students’ average rating on the pretest significantly 

predicted their rating on the posttest (𝛽 = .51, t(130) = 5.67, p < .01) but the condition did not predict 

the rating. 

Table 26. Students’ average rating on the usefulness of using diagrams on pretest and posttest (standard 

deviation in parentheses) 

 Pretest Posttest 

Metacognitive 2.99 (.89) 3.32 (1.11) 

Non-Metacognitive 3.07 (.90) 3.39 (1.00) 

 

 

RQ5: How is diagram use associated with learning outcomes? 

To further get insights into the relations between students’ diagram use and their learning, we 

conducted several correlational analyses. Correlational analyses are typically used in examining 

associations between learner choices and outcomes (Cutumisu et al., 2019). We separately conducted 

correlational analyses for the Metacognitive and the Non-Metacognitive conditions. First, in the Non-

Metacognitive condition, we found that students’ diagram use, proactive diagram use, and proactive 

diagram use proportion were not significantly associated with students’ pretest knowledge nor their 

learning gains from pretest to posttest. In other words, students in the Non-Metacognitive condition 
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used diagrams regardless of their prior knowledge and their use of diagrams did not have any 

relations with their learning. On the other hand, in the Metacognitive condition, students with lower 

prior knowledge (as measured by the pretest) tended to use diagrams more frequently both in a 

spontaneous (r = -.47, p  < .01) and a proactive manner (r = -.41, p  < .01). Students with lower prior 

knowledge also tended to have higher proactive use proportion (i.e., when they used diagrams, they 

tended to use them proactively, r = -43, p < .01). Also, students who tended to use diagrams 

proactively (than reactively) gained more (conceptual and procedural) knowledge from pretest to 

posttest (r = .28, p = .02). None of these relations were observed for students in the Non-

Metacognitive condition.  

 

When did students use diagrams? 

Next, I conducted a further investigation in tutor log data. Specifically, I investigated when students 

used diagrams in the tutor and how that might differ across conditions. As the investigation so far 

only looked at students’ diagram use that was averaged across all problems and problem levels, 

findings so far do not reveal when students used diagrams, which may be a critical factor in students’ 

learning processes. Please note, however, that the following analyses do not involve any testing of 

the statistical significance of any differences, and they are rather descriptive and observational 

differences. 

I first took a detailed look at patterns of diagram use by students in each problem set (and in each 

condition) separately. Figure 46 is a histogram of spontaneous diagram use rate in each problem set. 

As a general pattern, it is observed that many students in both conditions used diagrams on 50% or 

less of the given number of steps where they could have use diagrams in the tutor. Also, in both 

conditions, for the first two levels, the histograms are rather flat, indicating that there are not many 

users who very frequently used diagrams (although there is one student who used diagrams 100% of 

the time in the Non-Metacognitive condition). From Level 3 up to and including Level 5, a distinctive 

pattern emerges where about 1/4 of students in the Non-Metacognitive condition (n = 15) used 

diagrams more often than 50% of the time (about 60%). No such pattern was observed for students 

in the Metacognitive condition (except some students in Level 3). 
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Fig. 46. A histogram of spontaneous diagram use in each problem level. We only examined Levels 1-7 because 

Levels 8-12 were extra problem sets with problems from Levels 1-7. 

When it comes to proactive use proportion (i.e., “how much of diagram use is proactive?”), I found 

another interesting pattern. Figure 47 shows the same graph as Figure 46 but the x-axis is set 

differently. In this graph (Figure 47), the x axis represents proactive use proportion (i.e., proactive 

diagram use divided by spontaneous diagram use). Therefore, students who are at the very far end 

on the right (proactive use proportion = 1.0) always used diagrams proactively when they used 

diagrams. Students on the left side of the graph tended to use diagrams reactively. As shown in Figure 

47, across all problem levels except Level 1, more students in the Metacognitive condition used 

diagrams proactively all the time (proactive use proportion = 1.0) whereas some students in the Non-
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Metacognitive condition (about 1/4 of the students) used diagrams proactively only about 50% of the 

time (the other 50%, for these students, is reactive diagram use). 

 

 

Fig. 47. A histogram of proactive use proportion in each problem level. We only examined Levels 1-7 as Levels 

8-12 were extra problem sets with problems from Levels 1-7. 

Further, I also investigated, within each level, how students’ use of diagrams changed over time 

(on successive problems) and how the change patterns differ between the conditions, a critical aspect 

in examining self-regulated learning (Ben-Eliyahu & Bernacki, 2015). Recall, in each problem set, 

there were four problems, assigned in the same order for all students. These four problems in each 

problem set had the same difficulty (in terms of the structure of the equation) and therefore assumed 

to be the same in terms of the difficulty that students would perceive. Figure 48 shows how students’ 
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spontaneous diagram use changed over time (i.e., over the four successive problems within each 

level) and Figure 49 shows how students’ proactive diagram use changed over time. Figures 48 and 

49 both illustrate the general trend (reported above) that more students in the Non-Metacognitive 

condition used diagrams than in the Metacognitive condition (and proactively).  

However, students in the Metacognitive condition seemed to choose to use diagrams strategically, 

or choose to use diagrams when the use of diagrams would be the most helpful. Of the Levels 1-7 in 

the tutor, Levels 1, 2, 4, and 6 were the problem sets where a new problem type was introduced (i.e., 

Levels 3, 5, and 7 were the repetition of the Levels 2, 4, 6, respectively, with the same equation type 

but different numbers). In both Figures 48 and 49, a trend is observed that students in the 

Metacognitive condition tended to use diagrams (both spontaneously and proactively) at the 

beginning of Levels 1, 2, 4, and 6 whereas they did not request diagrams much on Levels 3, 5, and 

7. Students in the Non-Metacognitive condition do not show the same pattern. 

 

 

Fig. 48.     Patterns of students’ spontaneous diagram use within each problem level. It shows the number of 

students (in proportion) who used diagrams at least once for each problem in each problem set. 
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Fig. 49. Patterns of students’ proactive diagram use within each problem level. It shows the number of students 

(in proportion) who proactively used diagrams at least once for each problem in each problem set. 

Furthermore, in both graphs (but more pronounced in Figure 49 for proactive use), students in the 

Metacognitive condition showed a decreasing pattern of diagram use in Levels 1, 2, 4, and 6 but not 

in other levels. This trend may indicate that many students with the metacognitive intervention used 

diagrams when they saw the new problem type, but they gradually chose not to use the visual 

scaffolding. Because Levels 3, 5, and 7 had the problem types that they had practiced already, many 

of the students did not use the visual scaffolding for the first problem. On the other hand, those in 

the Non-Metacognitive condition do not show such a decreasing trend. Although there is a decreasing 

use pattern in Level 1, students consistently requested the visual scaffold within each problem level 

in other problem levels.   

Discussion 

In Study 8, I conducted an experimental study with 140 students at two schools in the U.S, 

investigating the effects of a metacognitive intervention, designed with input from students from the 
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target population, on students’ strategic choice-making behaviors, domain-level learning, 

performance in the tutor, and on learning transfer.  

First, for our RQ1 (i.e., will the metacognitive intervention help learners use diagrams proactively 

during learning, when it is provided as an optional resource?), the results revealed that students who 

received the metacognitive intervention tended to use diagrams less frequently overall compared to 

those who did not receive any interventions. On proactive use, there was no difference between the 

conditions. However, correlational analyses conducted separately for each condition revealed that 

the metacognitive intervention affected students’ diagram use differently; we found that, in the 

Metacognitive condition, students’ pretest score was negatively associated with more frequent and 

proactive use of diagrams (i.e., students with lower prior knowledge tended to use diagrams 

frequently and proactively). Such associations were not observed for students in the Non-

Metacognitive condition. These findings may imply that the metacognitive intervention effectively 

facilitated students’ diagram use depending on their prior knowledge level. Further, observational 

log data analyses showed that students with the metacognitive intervention seemed to choose to use 

diagrams strategically; specifically, analyses of students’ choice-making processes in each problem 

level found that students with the metacognitive intervention tended to use diagrams when they were 

given a new problem type, but decreased diagram use when they saw the same problem type 

repeatedly.  Considering that a strategic diagram user would use diagrams when they need it as 

scaffold (i.e., when they have low knowledge to try a given task, or when they see a new type of 

problem), the finding indicates that the metacognitive intervention helped students become more 

strategic. This view of the strategic use of diagrams is also well aligned with the theoretical view 

discussed in Chapter 2. In particular, it indicates that students with the metacognitive intervention 

engaged in self-assessment of their own knowledge and task (e.g., “Is this problem familiar?”) to 

decide whether or not to use diagrams for each problem. Of course, it is possible that having the 

dashboard at the end of each problem level might have led students’ propensity to use diagrams at 

the beginning of the next level (rather than careful self-assessment of the task), but it does not explain 

students’ low diagram use when the problems of the same type as those in the previous level repeated. 

However, we acknowledge that these observational analyses are not as rigor as statistical significance 

testing. 

Why did students in the Metacognitive condition use diagrams less frequently? It is interesting to 

ask why the metacognitive interventions did not simply increase the use of diagrams in the tutor. I 

argue that this result can be attributed to the design of the intervention elements. As described in the 

Metacognitive Behavior Change Model, the intervention elements (i.e., the tutorial, the adaptive 

recommendations, and the dashboard) were designed to promote deeper thinking about whether and 
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when to use the target strategy (i.e., whether or not to use diagrams in specific situations), instead of 

merely to increase the use of the strategy, which is the main target of many behavior change models. 

For instance, for some students in the study, the dashboard may have shown a graph suggesting that 

the use of diagrams is not helpful for that student. The dashboard would not encourage students to 

use diagrams but rather encouraged students to think about the diagram use (e.g., “Do you think that 

diagrams are helpful?”). This descriptive (as opposed to prescriptive) nature of the dashboard may 

have contributed to these students’ strategic decisions regarding when not to use diagrams in the 

tutor, and, as discussed in the previous paragraph, may have led to the strategy of “using diagrams 

when I need help.”  In contrast, students without the metacognitive intervention were not prompted 

to think about diagram use, which may have led to the use of diagrams that had no consistent patterns. 

For RQ2 (i.e., will the metacognitive intervention help learners achieve greater performance and 

learning gains?), we found that students who received the metacognitive intervention achieved better 

conceptual and procedural knowledge gains from pretest to posttest. The study did not find any 

effects of the metacognitive intervention on students’ equation-solving performance in the tutor (i.e., 

hint use and error rate). There was also no significant difference in the number of problems solved 

by the students in the Metacognitive condition (M = 32.64 problems in the tutor SD = 13.52) 

compared to the Non-Metacognitive condition (M = 31.25, SD = 13.10). This lack of difference 

(regarding the number of problems solved) is notable, especially if one considers that the students in 

the metacognitive condition had to additional mandatory work on the dashboard in each level and 

the tutorial unit (which we did not count as problems in the analysis, also see Figure 42).  

Why did students in the Metacognitive condition achieve higher learning gains? A critical question 

given the findings on learning is how the intervention helped students in learning conceptual and 

procedural knowledge. The only association found between diagram use and learning was the 

correlation between students’ learning gains and students’ proactive diagram use proportion in the 

Metacognitive condition (i.e., students who used diagrams more proactively tended to learn more, 

regardless of how frequently they used, RQ5). However, descriptive differences discussed above 

suggest that students’ choice-making strategies (i.e., using diagrams more often when solving an 

equation of a new type and less often when seeing the same type of equation afterwards) may have 

contributed to their learning. For instance, it maybe that, by choosing to engage with diagrams when 

they need the scaffold, students engaged with the diagram steps more carefully. They might have 

read the conceptual feedback messages given for those steps as well, which students in the Non-

Metacognitive condition might have missed (as they might have used diagrams more than the amount 

they would have needed). The decreasing pattern in diagram use also implies that students were 

correctly recognizing the type of equations each time (even in Levels 3, 5, and 7, which, by their 
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names, might indicate new, more challenging problem types) and decided whether to request 

diagrams accordingly. It is possible that students with the metacognitive intervention attended to the 

problem structure more carefully and correctly assessed it, and therefore were able to make 

conceptual connections between diagrams and symbolic representations (if they did not correctly 

assess problem difficulty, error rate would go higher, given results from prior studies, Nagashima, 

Tseng et al., 2021). For procedural knowledge, an interpretation could be made that students with 

the metacognitive intervention sometimes proactively chose to practice their procedural skills 

without the visual scaffolding in the Choice-based Diagram Tutor, which many students did not do 

in the Non-Metacognitive condition. In other words, students in the Non-Metacognitive condition 

might have relied too much on the help of diagrams rather than appropriately choosing not to use 

diagrams when they could have tried solving equations without the visual help (Binbarasan-

Tüysüzoglu & Greene, 2015).  

Also, the fact that we found no differences on students’ performance measures in the tutor 

illustrates that, even with less use of diagrams, students in the Metacognitive condition did not make 

significantly more errors than those in the Non-Metacognitive condition and the number of problems 

they solved over the duration of the study was also not reliably different between the conditions. This 

finding may imply that students with the metacognitive intervention were able to appropriately make 

use of the visual scaffolding (i.e., used when needed, and tried solving equations without diagrams 

when they correctly thought they could). 

Our RQ3 asked if the metacognitive intervention helps learners perform better on a future 

learning task in a transfer environment with diagrams. The results did not show any significant 

difference between the conditions on any of the transfer tasks. However, as mentioned previously, 

the problem text had a misleading statement. Hence, the experiment does not give a conclusive 

finding for RQ3.  

For RQ4 (i.e., will the metacognitive intervention help learners perceive the usefulness of using 

diagrams?), we did not find a statistically significant difference between the conditions. This result 

might have some connections with the strategic use of diagrams in the Metacognitive condition; it 

might be that students in the Metacognitive condition proactively chose to use and not to use 

diagrams depending on the situation, therefore the behavior might not have led to a higher score on 

the usefulness of using diagrams (i.e., it may be that they also appreciated the opportunities where 

practicing equation solving without diagrams can be beneficial). 

In sum, this study offers important insights into students’ strategic choice-making behaviors in 

using visual representations during problem solving. Most importantly, the study shows that an 

intervention aimed at promoting self-regulated learning can facilitate domain-level learning. This 
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effect on domain-level learning has been rarely achieved even when the intervention is focused on 

fostering domain learning (but see Rittle-Johnson et al., 2016), and more so when the intervention is 

focused on self-regulation. Although how that happened is still to be explored, there were notable 

differences in how and when students used and did not use diagrams, which might have contributed 

to the strategic use of diagrams in the tutor, as discussed above. This finding illustrated an importance 

of examining student behavior of choosing not to use visual representations during students’ self-

regulated learning. This finding adds new knowledge to the literature in the area of learning with 

visual representations; as opposed to a previously-known principle that argues for the importance of 

spontaneous use of visuals, it exemplifies the importance of conducting a deeper investigation of 

students’ choice-making behaviors regarding when to use and when not to use visuals. In this study, 

such an investigation was possible because of the tutor log data from the Choice-based Diagram 

Tutor. Past research on diagram use has rarely conducted such deeper investigations, mostly because 

of the lack of appropriate assessment environment for that purpose (Uesaka et al., 2010) but even 

with a technology-mediated assessment environment, a choice of not using a strategy has rarely 

received attention (e.g., Cutumisu et at al., 2019). 

Some limitations of the study are worth noting: First, the study tested the effect of the 

metacognitive intervention on a specific strategy of anticipatory diagrammatic self-explanation. It is 

unclear whether the findings from this study would be generalized in other environments and other 

types of visual use. Also, the study does not help us understand individual effects of the intervention 

elements separately. I plan to conduct further analyses to examine how individual components 

associate with students’ diagram use and learning outcomes (e.g., coding students’ responses to the 

dashboard prompts). Finally, how the effect of the intervention on domain-level learning was 

mediated is still unclear. Future analyses will make further deeper investigations. 
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5 Conclusion  

5.1 Concluding Thoughts  

One ultimate goal of education is to foster autonomous, self-regulated learners who can learn on their 

own. Such learners would strategically use available resources around them to keep updating their 

knowledge and skills. The importance of fostering such self-regulated learners is growing rapidly in 

our current society with its massive flow of many types of information (Pendleton-Jullian & Brown, 

2018). One would hope, of course, that such self-regulated behaviors and dispositions will also lead 

to greater domain-level learning. In other words, we want to foster learners who can autonomously 

learn on their own so that they can learn the most out of the given opportunities and seek new 

opportunities. Through a series of design research and experiments in US schools, my dissertation 

makes an attempt at investigating and supporting this challenging goal in the context of using visual 

representations during math problem solving practice.  

Initially, my research focused on learning with visual representations. This is an important 

cognition-focused research topic that has been researched in many relevant studies in various 

domains. My entire work from a design study with teachers (i.e., Pedagogical Affordance Analysis) 

to multiple experiments examining the effect of visual scaffolding (i.e., confirmatory and 

anticipatory diagrammatic self-explanation) on students’ cognitive learning informed many insights 

into how to scaffold algebra learning. Specifically, these studies show that interactive visual 

scaffolding designed with users can support efficient and effective learning in the domain of early 

algebra, a challenging subject known as a “gatekeeper” subject. Across my studies, it has been 

observed and suggested that the interactive diagrammatic self-explanation, through its scaffolded 

interactions (e.g., contrasting cases), help students visually and conceptually understand how 

algebraic equations transform and associated conceptual principles (“conceptual knowledge that 

underlies procedures”, Crooks & Alibali, 2014). Even though diagrammatic self-explanation creates 

additional steps (almost doubling the number of steps required in each problem), this interactive 

scaffold made problem solving efficient with fewer hint requests and lower error rate. These studies 

overcame challenges of designing self-explanation activities with visual representations by providing 

an interactive, effective learning experience with diagrams in a way that is not cognitively demanding 

(Wu & Rau, 2018). 

In the later studies, the focus of the intervention shifted to supporting not only domain-level 

learning (i.e., conceptual and procedural knowledge) but also metacognitive processes that may play 

an important role in learning from visual representations. Using the Metacognitive Choice Behavior 
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Model as a design guide, I designed an intervention package that was aimed at supporting important 

stages of students’ choice making in learning with my intelligent tutor. This metacognitive 

intervention helped students use diagrams strategically, and led to enhanced conceptual and 

procedural learning, important yet challenging dual goal in algebra instruction (Rittle-Johnson, 2016; 

Rittle-Johnson & Alibali, 1999). How could the metacognitive scaffold indirectly address this 

challenging goal of enhancing both conceptual and procedural knowledge?  

An important perspective to consider may be that learning is a multi-faceted human activity. 

Studies on algebra instruction typically test an instructional strategy and technology of interest 

against others, and sometimes with flexible mixture of multiple strategies (Fyfe et al., 2015; Ottmar 

& Landy, 2017; Rittle-Johnson & Star, 2007). Discussion from such studies (including my prior 

studies) tend to focus on further supporting learners by manipulating factors associated with 

cognitive aspects of learning, such as increasing intervention time so that learners can be scaffolded 

for a longer time, changing the order of providing scaffolding, how much scaffolding to give, and 

when to fade the scaffold. However, as my last study showed, students with less use of the visual 

scaffolding could learn better conceptual and procedural knowledge with no detrimental effects on 

problem-solving performance during a learning activity. This effect could hardly be attributed only 

to the amount of dose of the scaffolding. Rather, it could be due to students’ enhanced self-regulated 

learning processes, metacognition, engagement, and/or agency that affected their domain-level 

learning. For instance, it could be that students with the intervention were more engaged in their 

learning experience (e.g., by seeing their own performance with a graph with badges), which may 

have helped them attend to conceptual aspects of diagrams (with focused practice) instead of just 

trying to get by through shallow processing of diagrams (e.g., selecting diagrams that look right). 

Such non-cognitive activities might have been enabled by the combination of the learning 

environment where students had the control over choice and the metacognitive intervention (both of 

these components are needed because, if there was no choice, there would be little that they could 

adjust after reflecting on their own performance, Long & Aleven, 2017). However, of course, this is 

just an example; other interpretations would be possible. For instance, students in the Metacognitive 

condition may have used diagrams when the use of diagrams was the most helpful. 

This complexity around how the indirect effect occurred needs to be investigated further, and I do 

not have a clear answer for it yet. Follow-up experiments could show interesting insights that may 

help us understand the mechanism better. For example, it would be interesting to test whether strictly 

structuring the visual scaffolding (with no choice and the metacognitive intervention) in a way that 

was suggested effective in Study 8 (i.e., use visuals at the beginning for each equation type, and 

gradually fade the scaffolding) would still help students learn (Fyfe et al., 2015). Such a study would 
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help us understand if there is any “optimal” sequencing of scaffolding support (Renkl et al., 2004) in 

the context of early algebra. Or, we may better forget the idea of prescribing “optimal” scaffolding 

to learners and instead focus our efforts on designing for multi-faceted aspects of learning so that 

learners can be effectively supported to find their own optimal learning path.  

 

 

5.2 Limitations  

I acknowledge that my studies have several major limitations. First, all of my studies used a specific 

type of visual representations (i.e., tape diagrams). As other types of visual representations would 

have different pedagogical affordances, it is unclear whether findings would generalize to other types 

of visual representations. Second, relatedly, the design of confirmatory and anticipatory 

diagrammatic self-explanation activities might look different if they are designed with other types of 

representations and in other domains. Third, the choice pattern analysis reported the last study (Study 

8) only offers observational insights and it needs to be validated with statistical analyses. Fourth, 

other interpretations are possible for the results of my studies. For instance, in Study 6, I argued that 

proactive diagram use represents students’ self-regulated diagram use whereas reactive diagram use 

would indicate un-planned diagram use; however, it is possible that reactive diagram use would 

involve meaningful self-regulated learning processes (e.g., realizing their own knowledge gap by 

making mistakes). Finally, Studies 3-8 were conducted remotely during the COVID-19 pandemic 

between 2020 and 2022 (Nagashima, Yadav, & Aleven, 2021). Therefore, it is unclear if the main 

findings would hold in normal classroom settings. For instance, the way teachers interact with 

students would differ between in-person and remote teaching, and it might alter the way interventions 

influence student learning and interactions with my tutors. 

 

 

5.3 Contributions 

My dissertation makes several contributions in the broad field of the learning sciences. In the 

following, I provide major contributions that this entire dissertation makes to this field. 

Contributions to research on instructional design 

Instructional design is a field of study that designs and tests instructional activities, materials, and 

technological programs towards the goal of supporting student learning. However, recent critiques 
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argue that traditional models, such as the ADDIE model (Croxton and Chow 2015; Trust and Pektas 

2018) and 4C/ID model (Güney 2019), have been used to prescribe what to do during instructional 

design processes, causing users’ over-reliance on instructional models (e.g., “I am following the 

model, so I should be doing the right thing”) (Stefaniak & Xu, 2020). Such over-reliance does not 

help users incorporate contextual factors or other practitioners’ perspectives into the design process 

(Stefaniak & Xu, 2020). 

My dissertation addresses this problem. Specifically, Pedagogical Affordance Analysis (PAA) 

provides one approach to overcoming this issue in the field. PAA offers a bottom-up approach in 

(re)designing instructional tools and activities through systematically inviting and integrating 

educators’ viewpoints and pedagogical practices. The idea of “pedagogical affordance” had also 

gained little attention in the field in the past, until PAA. My dissertation offers both theoretical and 

practical contributions to the area of instructional design: It provides 1) new understanding of the 

notion of pedagogical affordance as a relational concept (rather than a fixed concept that can be 

derived from an instructional tool, which has been the main conceptualization of pedagogical 

affordance) and 2) a systematic method that can be applied when examining or re-designing an 

instructional tool. 

Contributions to research on Intelligent Tutoring Systems 

To date, a number of Intelligent Tutoring Systems (ITSs) have been designed, developed, and 

evaluated at scale (Aleven et al., 2009; Koedinger & Corbett, 2006; Kulik & Fletcher, 2016). 

Through their step-by-step guidance, ITSs have not only achieved effective learning in many subject 

domains (Graesser et al., 2001; Melis & Siekmann, 2004; Steenbergen-Hu & Cooper, 2013) but also 

supported metacognitive learning or self-regulated learning (Azevedo, 2005; Long & Aleven, 2017; 

Roll et al., 2011). However, to further enhance the effectiveness of ITSs, it is important to design 

and develop ITSs following user-centered design approaches. In fact, it is not very common that ITSs 

are designed with users, especially when it comes to metacognitive features in ITSs (but see Long et 

al., 2015). 

My dissertation shows that an intelligent tutor and metacognitive support in the tutor designed 

with users (students and educators, Studies 1 and 7) can help achieve challenging instructional goals. 

Specifically, I followed user-centered design approaches in designing diagrammatic self-explanation 

and the metacognitive intervention. The design of these interactions and features that I had in the 

tutor would not have existed if I had not started the design with users. These designs, implemented 

in the equation solving tutor, effectively supported student learning. Therefore, my work makes a 
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contribution that user-centered design approaches can be effectively used to achieve challenging 

learning problems (supporting cognitive and metacognitive learning). 

Contributions to diagram research 

My dissertation offers contributions to the literature on diagram research. In diagram research, past 

studies have focused on examining and supporting spontaneous use of diagrams during problem 

solving (Ainsworth et al., 2011; Manalo & Uesaka, 2012; Uesaka et al., 2012; Uesaka et al., 2010; 

Wu & Rau, 2018). A main approach employed in these past studies to assess students’ spontaneous 

use of diagrams was to examine whether or not and how frequently students drew diagrams on paper 

or through self-report data. Due to the limited nature of these assessments, prior work on diagram 

use was not able to get data on when and how students use diagrams during problem solving.  

Through the design and implementation of the Choice-based Diagram Tutor, my research 

addressed this challenge. Using tutor log data, Studies 6 and 8 investigated not only students’ 

spontaneous use of diagrams but also proactive and reactive use of diagrams, as well as how their 

use patterns changed over time. This rich, fine-grained data suggested that self-regulated, strategic 

users of diagrams would choose to use the visual scaffold when they need it. My dissertation offers 

theoretical and technical contributions of 1) providing theoretical knowledge that not only a mere 

use of diagrams (i.e., frequency of diagram use) but how students use diagrams (i.e., choose not to 

use when unnecessary) is important when students use diagrams during problem solving practice, 

and 2) developing Choice-based Diagram Tutor, a choice-based learning environment (Cutumisu et 

al., 2019; Schwartz & Arena, 2013) that captures students’ choice making behaviors in using 

diagrams. 

Contributions to research on mathematical cognition 

It is essential that students learn both conceptual and procedural knowledge in mathematics, 

especially in early algebra which is often called a “gatekeeper” course to many advanced STEM 

(Science, Technology, Engineering, and Mathematics) courses (Spielhagen, 2006). Instructional 

principles have been developed towards this goal. For instance, studies have shown that comparing 

between multiple solution strategies (Rittle-Johnson & Star, 2009), self-explanation (Booth et al., 

2013), and practice on “non-traditional” problems (e.g., 7 = 4 + 3) (McNeil et al., 2011) can foster 

conceptual knowledge in algebra. Recent research also shows that playful learning technologies can 

contribute to students’ conceptual learning in algebra (Chan et al., 2022; Nagashima et al., 2022). 

For procedural knowledge, intelligent tutoring software has been shown effective (e.g., Long & 



123 

Aleven, 2017). Yet, studies have not been successful at fostering both conceptual and procedural 

knowledge in algebra, except Rittle-Johnson et al. (2016), in which they found that direct instruction 

on mathematical equivalence had significant effect on both conceptual and procedural learning, 

compared to combining conceptual and procedural instruction. However, it has been challenging to 

understand the mechanism through which conceptual learning and procedural learning is supported 

(Rittle-Johnson, 2019). 

My dissertation achieved the challenging goal of supporting both conceptual and procedural 

knowledge in algebra. It also shows results that suggest how such a learning effect was achieved. In 

particular, as discussed in the previous section, my study provides a hint suggesting that it may not 

necessarily be the dose of a scaffold that matters; rather, the use of a scaffold when it is needed (e.g., 

when solving a new type of problem) may be the key to achieving both conceptual and procedural 

learning through focused practice. This was only possible with detailed investigations using the log 

data. 

Contributions to research on self-explanation 

My studies established new interactive forms of self-explanation with visual representations, namely, 

confirmatory diagrammatic self-explanation and anticipatory diagrammatic self-explanation. In 

these self-explanation activities, students would explain their problem-solving steps through the tape 

diagram representation. Previously, self-explanation with visual representations was limited to either 

referring to visual representations to aid problem solving (e.g., referring to diagram of the human 

circulatory system, in Ainsworth & Iacovides, 2005) or drawing visual representations when solving 

a problem (Wu & Rau, 2018, Zhang & Fiorella, 2021). The former type does not fully engage 

students with the visual scaffolding (students do not interact directly with the visual provided) and 

the latter type can be too cognitively demanding (Nagashima, Bartel et al., 2020; Scheiter et al., 

2017). Such poor designs of self-explanation with visual representations pose a challenge to some 

groups of students (e.g., students with low spatial ability), failing to provide effective scaffolding for 

those who need support.  

The interactive diagrammatic self-explanation approaches described in my dissertation address 

these challenges. In both confirmatory and anticipatory diagrammatic self-explanation, students are 

asked to select diagrams to solve problems with the target representation they are supposed to learn 

to use, and students are scaffolded well through the use of established strategies such as contrasting 

cases (Schwartz et al., 2013), hints, and feedback. Further, anticipatory diagrammatic self-

explanation, through its unique, anticipative way of using visual scaffolding (c.f., Renkl, 1997), 

helped students both learn and perform well, a fundamental instructional design issue that previous 
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self-explanation studies have rarely addressed (Bisra et al., 2018; Rittle-Johnson et al., 2017, but see 

Aleven & Koedinger, 2002). Therefore, my interactive diagrammatic self-explanation activities offer 

both theoretical and practical contributions of 1) understanding whether and how interactive 

diagrammatic self-explanation activities help students learn and perform well and 2) providing 

practical instructional strategies that can be used (e.g., through Intelligent Tutoring Systems and 

potentially in other software) in classrooms. 

Contributions to self-regulated learning and behavior change literature 

Studies on self-regulated learning have shown its importance in fostering autonomous learners. 

Empirical studies on self-regulated learning, particularly those conducted using an interactive 

learning environment, have provided detailed insights into how students make self-regulated 

decisions in a learning environment (Azevedo et al., 2009; Leelawong & Biswas, 2008; Roscoe et 

al., 2013). They also explore how students’ self-regulated behaviors may or may not help with 

domain-level learning and performance (Kramarski & Gutman, 2005; Roll et al., 2011). Even with 

the abundant amount of research on this topic, however, it is still unclear how to promote both 

students’ self-regulated behaviors and, as a result of the behaviors, students’ domain-level learning 

and performance. 

Behavior change research, originally from domains such as healthcare and criminology, offers 

similar but different approaches in assessing and supporting human behaviors (Consolvo et al., 

2009). Many behavior change models propose a linear path from an unideal behavior to an ideal 

behavior, reducing their applicability to more complex behavior changes that are of interest in other 

fields, such as in education (Heimlich & Ardoin, 2008). Prior work has made attempts to apply 

behavior change models to learning research (e.g., Oppezzo & Schwartz, 2013) but such new models 

still are not applicable to learning behaviors that involve complicated choice-making processes. 

My dissertation research proposed the Metacognitive Behavior Change Model, a model that 

integrates behavior change models (Prochaska et al., 1992; Oppezzo & Schwartz, 2013) and a 

theoretical framework on self-regulated learning (Zimmerman & Campillo, 2003) to allow for non-

linear metacognitive behavior changes. Such a model did rarely exist in the literature, and it had been 

challenging to appropriately assess and support complicated choice-making processes that are 

important aspect of self-regulated learning. My research contributes a theoretical understanding and 

framework that illustrates the importance of investigating both people’s choices of using and not 

using a target strategy during complex learning processes.  
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Contributions to research on choice making in learning 

As discussed in Chapter 2, in the field of the learning sciences (and several relevant fields), research 

has been conducted to assess and support students’ choice making (Lust et al., 2011; Winters et al., 

2008). Such work covers a wide variety of choices, including a choice of whether to start learning 

with a worked example (van Harsel et al., 2021), a choice of asking for help (Roll et al., 2011), a 

choice of using visual representations (Uesaka et al., 2007), and a choice of using design-thinking 

strategies (Chin et al., 2019). Although these studies offer interesting insights into whether and when 

learners make certain choices and some of them show how their choices relate to learning and 

performance, they fail to provide a detailed account of how students’ choice behaviors may or may 

not change over time. As learners develop skills and knowledge while learning, it is reasonable to 

think that their use of certain strategies may also change over time (Azevedo et al., 2010; Greene et 

al., 2021; Roscoe et al., 2013). This view is also aligned with the view of self-regulated learning, in 

which learners would reflect on their own behavior and adjust their learning strategies. Previous 

studies, however, typically only use aggregated data (e.g., average or sum of the number of strategy 

use) to examine choice behaviors and therefore miss any such changes in students’ choices. Part of 

this issue is due to technological capabilities of research (e.g., without appropriate technology, it is 

difficult to assess such changes). 

My research looked at how students’ choice behaviors changed over time in the Choice-based 

Diagram Tutor and found that students who received the metacognitive intervention showed a 

strategic choice behavior that suggests that they used diagrams when they needed it. This difference 

was masked when I only looked at the aggregated data; examining temporal data allowed me to 

capture this trend. Thus, my research makes theoretical and technological contributions: 

theoretically, it gives initial evidence that changes in how students make choices may be a key to 

better student learning. My research also offers the Choice-based Diagram Tutor, an environment 

that can assess students’ choices and how the choices change over time though tutor log data. 

Contributions to educational practice 

As a learning science researcher, it has always been my hope that my research offers something good 

for educational practices. The field of the learning science has long been exploring various ways to 

work with and support practitioners. For example, new methodological approaches such as Design-

Based Research (Barab & Squire, 2004; Brown, 1992) and in-vivo classroom research (Koedinger 

et al., 2009) have been developed. These methodologies enable researchers and practitioners (e.g., 

educators, administrators) to work together to solve both scientific and real-world problems in 

educational settings. Others from relevant fields have tried different approaches, such as to offer 
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practical instructional guidelines on how to use certain scientifically-proven instructional strategies 

in teaching (Rittle-Johnson et al., 2020) and to use participatory approaches to actively involve 

practitioners in the design process (Ahn et al., 2019; Holstein et al., 2019; Prather et al., 2022). 

Using these methodologies and through other ways, I have made several practical contributions 

during my PhD. First, through employing in-vivo classroom research (Koedinger et al., 2009) in my 

experiments, my research established scientific evidence in a classroom environment (as opposed to 

a more refined setting such as in a lab). In my studies, I have treated any classroom routines (e.g., 

teachers’ interaction with students, students’ seating locations) that would not directly affect research 

questions differently between conditions as part of the classroom environment. I have worked closely 

with teachers before, during, and after a study to reach a mutual agreement on who (e.g., which grade 

levels) is appropriate for the study, what content (e.g., types of equations) is both appropriate and 

beneficial, and what logistical procedure (e.g., how to structure a study schedule) would be the most 

preferred. In other words, to conduct a study in an environment that is as similar as possible to daily 

classroom settings, I value and prioritize teachers’ (who often decides what to teach and how to teach 

in everyday classes) opinions when designing a study. This flexibility towards how to structure a 

study helped me conduct a study in a less-refined classroom environment. Rigorous studies 

conducted in such an environment have meaningful insights to offer for practitioners. 

Still, research articles and findings are not accessible to many teachers for a lot of reasons. 

Teachers may not have time or knowledge (e.g., terminologies) to read scientific articles (Lortie-

Forgues et al., 2021), they may not know where to find such articles, and most importantly, it would 

be difficult to come up with a clear idea of what they could do in their classroom on the following 

day after learning some new research evidence (Higgins et al., 2022; Rittle-Johnson et al., 2020). To 

provide established principles in an accessible form, several initiatives have been developed (e.g., 

What Works Clearinghouse’s Practice Guides). Instead of merely sharing principles, I have 

developed and distributed research materials as Open Educational Resources (OER) that can be 

directly and freely used in everyday instruction. OER are teaching, learning, and research materials 

that are provided under an open license (e.g., Creative Commons licenses) (Hilton, 2016; Nagashima 

& Hrach, 2021; The William and Flora Hewlett Foundation, n.d.) to foster creative reuse, revision, 

and redistribution of educational content and practices. For instance, I created a “tape diagram for 

equations” template for teachers so that they could integrate tape diagrams I designed in their 

teaching materials (distributed using Google Slides – a tool that teachers use to share their 

instructional ideas and content, which I learned by working with teachers). Several teachers have 

used this template to create their own tape diagrams and teach with them. Furthermore, to provide a 

quick means to producing tape diagrams, research staffs and I developed, based on our diagram 

https://docs.google.com/presentation/d/1M_iJOYpFTMfFJjln5MNGiWhoh-zYs0bfyZe8Gbb8Llo/edit#slide=id.p
https://docs.google.com/presentation/d/1M_iJOYpFTMfFJjln5MNGiWhoh-zYs0bfyZe8Gbb8Llo/edit#slide=id.p
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tutors, an intelligent tutor that can produce a tape diagram based on any equation that users input 

(with some restrictions, such as not capable of creating tape diagrams with negatives). Users 

(teachers and students) could use the tool to quickly visualize any equations and visually understand 

how the equations are structured. These materials and tools offer immediate resources for teachers 

to use without spending a lot of time to read scientific articles and reports. 

Finally, working with practitioners during the COVID-19 made me confirm that working with 

practitioners is a core part of my work as a learning science researcher. Reports have been published 

illustrating what it was like to suddenly switch to remote instruction and how difficult it has been for 

teachers to communicate with children and parents during the pandemic (Middleton, 2020; Patrick 

et al., 2020; Stelitano et al., 2021). By establishing a guideline for conducting classroom research 

remotely (Nagashima, Yadav, & Aleven, 2021), which focused on ensuring that practitioners (i.e., 

teachers and students) have a meaningful study participation experience, I have been able to partner 

with many schools and teachers across the country. This guideline focused on aspects of classroom 

research that have often been unnoticed or undiscovered by researchers, such as to provide 

opportunities for school students to interact with researchers (which many students would never have 

a chance to do) (Laursen et al., 2007). In other words, when I worked with practitioners, I carefully 

designed a “study participation experience” for the practitioners so that it would not end up being 

merely a data collection activity but rather a mutual learning experience where both researchers and 

practitioners can maximally benefit from classroom research. This initiative helped reach many 

practitioners who would otherwise not be able to experience study participation, such as those in 

low-income districts and a school located on an island in Hawaii. By remotely connecting with 

classrooms, I have been able to provide meaningful experiences to teachers and students in five states 

in the US while advancing the science of learning. 

Broader implications 

With the increasing use of artificial intelligence technology in everyday life today, it has become 

more critical than ever that “whitewater kayakers” skillfully make good choices in their lives. 

Learners of the 21st century will need to discern between correct information and misinformation, 

strategically respond to various types of recommendations provided by technological systems, and 

also proactively seek information that they need to keep moving forward in the desired direction. In 

such a society, investigating and supporting people’s choices becomes one of the central goals of 

research on human behavior and learning. Deep investigations on people’s choices have a great 

impact and potential in informing future designs of choice architecture embedded in technological 

systems. They will also inform designs of instructional strategies and learning technologies that 

https://preview.ctat.cs.cmu.edu/home
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prepare novice “kayakers” for their future. My dissertation, which examined learning with visual 

representations and learning to self-regulate choices involving the use of visual representations from 

various angles, offers one of the very few rich investigations on how people make choices, and how 

to support strategic choice making and meaningful learning processes.  
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Appendix 1. Tests and surveys used in experiments  

Sample pretest and posttest items used in Study 2.2. 1-6, 10-11 are conceptual items whereas 7-9 are 

procedural items. 

 
 
1. One of the following statements is FALSE. Which one? Circle your answer. 
 
a. 3 + 5 = 8 
b. 7 + 6 = 6 + 6 + 1 
c. 5 + 5 = 5 + 6 
d. All of the above 
e. None of the above 
 
 
2 – 1. Look at the following step for the equation 2x + 4 = 8: 
 
 2x + 4 – 4 = 8 – 8 
 Which of the following is the appropriate description of this step? Circle one answer. 
 

     a. Correct and helpful (it preserves the solution and it gets you closer to the solution) 
     b. Correct but not helpful (it preserves the solution but does not get you close to the correct solution) 

c. Incorrect (it does not preserve the solution) 
d. Helpful though not correct 
e. None of the above 
 
 
2 – 2. Look at the following step for the equation 2x + 4 = 8 (same equation as above): 
 
 2x + 4 – 4 = 8 – 4 
 Which of the following is the appropriate description of this step? Circle one answer. 
 

     a. Correct and helpful (it preserves the solution and it gets you closer to the solution) 
     b. Correct but not helpful (it preserves the solution but does not get you close to the correct solution) 

c. Incorrect (it does not preserve the solution) 
d. Helpful though not correct 
e. None of the above 
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2 – 3. Look at the following step for the equation 2x + 4 = 8 (same equation as above): 
 
 2x + 4 + 4 = 8 + 4 
 Which of the following is the appropriate description of this step? Circle one answer. 
 

     a. Correct and helpful (it preserves the solution and it gets you closer to the solution) 
     b. Correct but not helpful (it preserves the solution but does not get you close to the correct solution) 

c. Incorrect (it does not preserve the solution) 
d. Helpful though not correct 
e. None of the above 
 
 
2 – 4. Look at the following step for the equation 2x + 4 = 8 (same equation as above): 
 
 2x - 6 + 4 + 6 = 8 
 Which of the following is the appropriate description of this step? Circle one answer. 
  

     a. Correct and helpful (it preserves the solution and it gets you closer to the solution) 
     b. Correct but not helpful (it preserves the solution but does not get you close to the correct solution) 

c. Incorrect (it does not preserve the solution) 
d. Helpful though not correct 
e. None of the above 
 
 
 
3. The arrow below is pointing to a symbol. 
 
 2x + 6 = 10 
            ↑ 
 
3 – 1. What is the name of the symbol? 
 
3 – 2. What does the symbol mean?  
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4. Consider the equation, 3x + 2 = 8. What value of x makes the equation true?  Circle one answer. 
 

     a. 1 
     b. 2 

c. 3 
d. 4 
e. All of the above 
f.  None of the above 
g.  Any value of x 
 
 
5. Consider the equation, 251x +1769 = 78x + 5748. This equation is true for x = 23.  
 
Larry (who was not told what value x would have) decides to solve for x.  He subtracts 1769 from both 

sides.  That gives: 
 
251x = 78x + 3979 
 
No need to check if the numbers are correct. We already did for you!  (5748 – 1769 = 3979) 
Without plugging 23 into the equation, can you tell if this new equation is true for x = 23? Please explain 

why or why not. 
 
 
 
6. Which of the following is a like term to 8x? Circle one answer. 
 

     a. 1 
b. 5y 
c. 2x 
d. - 20 
e. All of the above 
f.  None of the above 
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7. Jill is solving the equation, 7n – 6 = 16. The result of her first step is 7n = 22. What operation did Jill use 
in her first step? Circle one answer. 

 
     a. She added 6 to each side 
     b. She subtracted 6 from each side 

c. She multiplied both sides by 6 
d. She divided both sides by 6 
f.  None of the above 
 
 
 
8. Solve for x. Please also write down intermediate steps. 

3x + 7 = 19 
 
 
9. Solve for x. Please also write down intermediate steps. 

7x = 3x + 16 
 

 
10. What you see below is called tape diagrams, which visualize an equation with multiple “tapes”. Choose 

an appropriate diagrammatic representation for the equation, 9 + 3x = 21. Circle one answer. 
            a               b              c 
 
 

 
 
 
 

11. Below is Sonia’s solution steps to the equation, 4x + 4 = 16. Identify an error that Sonia made and explain 
why it is an error.  

 
       4x + 4 = 16 

 4x + 4 – 4 = 16 + 4 
              4x = 20 
    x = 5 
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11-2. For the same solution steps above by Sonia, explain the error and why it is an error using the diagrams 
below, which illustrate her steps.  
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Sample pretest and posttest items used in Studies 3 and 4. 1-8 are conceptual items whereas 9-12 are 

procedural items. 

 
1. Debby is solving an equation. Here is her first solution step: 

         2x + 4 = 8 

2x + 4 – 4 = 8 – 8   

    

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid but it gets closer to the solution  

o NOT valid and it does NOT get you closer to the solution  

o None of the above  
 

 

 

2. Christopher is solving an equation. Here is his first solution step: 

 

 

      2x + 4 = 8 

2x + 4 – 4 = 8 – 4 
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This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid but it gets closer to the solution  

o NOT valid and it does NOT get you closer to the solution  

o None of the above  
 

 

 

3. Joseph is solving an equation. Here is his first solution step: 

 

      2x + 4 = 8 

2x + 4 + 4 = 8 + 4 

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid but it gets closer to the solution  

o NOT valid and it does NOT get you closer to the solution  

o None of the above  
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4. Tiana is solving an equation. Here is her first solution step: 

      2x + 4 = 8 

2x + 4 – 4 = 8  

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid but it gets closer to the solution  

o NOT valid and it does NOT get you closer to the solution  

o None of the above  
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5. Ali is solving an equation. Here is his first solution step: 

      2x + 4 = 8 

2 + 4 – 2 = 8 – 2 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid but it gets closer to the solution  

o NOT valid and it does NOT get you closer to the solution  

o None of the above  
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6. Jill is solving an equation. Here is her first solution step: 

      7n - 6 = 15 

           7n = 21 

What did she do? 

 

o She added 6 to both side  

o She subtracted 6 from both side  

o She multiplied both sides by 6  

o She divided both sides by 6  

o None of the above  
 

7. Marcel is solving an equation. Here's his first solution step: 

      3x + 2 = 10         

5x = 10  

 

Is Marcel's step correct? Why or why not? 

o Correct, because he subtracted 2 from both sides  

o Correct, because he added 2x to both sides  

o Correct, because he subtracted 2 from one side  

o Incorrect, because he tried to add 3x and 2  

o Incorrect, because he did not do the same thing to both sides  

o Incorrect, because he did not isolate the x  
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8.a. Below is Chloe’s solution steps to the equation, 3x + 9 = 18. Click on the area where you see a 

mistake (click on only one area). 

 
 

8.b. What is the mistake and why is it a mistake? Please explain. 

 
 
9. Solve for x. Please show your work: 

3x + 4 = 16 

 
10. Solve for x. Please show your work: 

9x = 2x + 14 

 
11. Solve for x. Please show your work: 

2x – 3 = 9 

 
12. Solve for x. Please show your work: 

2x = –3x + 10 
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Sample pretest and posttest items used in Study 5. 1-5 are conceptual items whereas 6-12 are procedural items. 

 
1. Debby is solving an equation. Here is her first solution step: 

         2x + 4 = 8 

2x + 4 – 4 = 8 – 8   

    

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
 
 
 
2. Christopher is solving an equation. Here is his first solution step: 

      2x + 4 = 8 

2x + 4 – 4 = 8 – 4 

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
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3. Joseph is solving an equation. Here is his first solution step: 

      2x + 4 = 8 

2x + 4 + 4 = 8 + 4 

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
 

 
 
 
 
 

4. Tiana is solving an equation. Here is her first solution step: 

      2x + 4 = 8 

2x + 4 – 4 = 8  

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
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5.a. Below is Sonia’s solution steps to the equation, 4x + 4 = 16. Click on the area where you see a 

mistake (click on only one area). 

 

 
5.b. What exactly is the mistake and why is it a mistake? Please explain. 
 

6. Solve for x. Please show your work: 

3x + 4 = 16  

 

7. Solve for x. Please show your work: 

9x = 2x + 14 

 
8. Solve for x. Please show your work: 

11x + 6 = 8x + 21 

 
9. Solve for x. Please show your work: 

2x – 3 = 9 

 
10. Solve for x. Please show your work. You can use the diagram to help your thinking.    

7 + 8x = 71               
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11. Solve for x. Please show your work. You can use the diagram to help your thinking.  

23x = 8x + 45              

 
 

12. Solve for x. Please show your work. You can use the diagram to help your thinking. 

14x + 5 = 7x + 19         
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Sample pretest and posttest items used in Study 6. 1-5 are conceptual items whereas 6-9 are procedural items 

At the end of the test (only on the posttest), it had a survey asking for their perception of diagram use. 

 
 

1. Debby is solving an equation. Here is her first solution step: 

         2x + 4 = 8 

2x + 4 – 4 = 8 – 8   

    

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
 
 

2. Christopher is solving an equation. Here is his first solution step: 

      2x + 4 = 8 

2x + 4 – 4 = 8 – 4 

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
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3. Joseph is solving an equation. Here is his first solution step: 

      2x + 4 = 8 

2x + 4 + 4 = 8 + 4 

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
 
 
 
 
 
 
 

4. Tiana is solving an equation. Here is her first solution step: 

      2x + 4 = 8 

2x + 4 – 4 = 8  

 

 

This step is: 

o Valid and it gets you closer to the solution  

o Valid but it does NOT get you closer to the solution  

o NOT valid  

o None of the above  
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5. These are called "tape diagrams." Tape diagrams visualize equations. The tape diagram on the 

top shows "x + 2 = 6" and A, B, and C show possible next steps. Please answer the following 

questions. 

 

 

 

 
 

 
5a. Which of the three next steps (A, B, and C) are valid (Choose all that apply)? 

▢ A  

▢ B  

▢ C  

▢ None of these is valid  
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5b. Which of the three next steps (A, B, and C) are valid but do not get you closer to the 

solution (Choose all that apply)? 

▢ A  

▢ B  

▢ C  

▢ None of these is "valid and does not get me closer to the solution"  
 

5c. What is the value of x in this equation? 

o 2  

o 3  

o 4  

o 5  
 

 

 

 

 

 

 

 

 

 

 

6. Solve for x. Please show your work: 

4 + x = 9 



167 

 

7. Solve for x. Please show your work:  

3x + 4 = 16  

 

8. Solve for x. Please show your work. You can use the diagram to help your thinking.  

7 + 8x = 71               

 
 

9. Solve for x. Please show your work. You can use the diagram to help your thinking.  

23x = 8x + 45           

    



168 
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Sample pretest and posttest items used in Study 8. 1-4 are conceptual items whereas 5-9 are procedural items 

At the end of the test (only on the posttest), there was a survey asking for students’ perception regarding 

diagram use and the transfer task. 

 
 

1. If 4x + 10 = 54 is true, state whether each of the following must also be true/valid:  

    

  

 Yes/True/Valid No/False/Not Valid 

4x + 10 - 3 = 54 - 3  o  o  
4x + 10 - 10 = 54  o  o  

4x + 10 + 10 = 54 + 10  o  o  
4x + 10 - 10 = 54 - 54  o  o  
4x + 10 - 10 = 54 - 10  o  o  
4x + 10 - 10 = 54 + 10  o  o  
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2. For 8x + 21 = 61, state whether each of the following will get you closer to the solution (will 

these help you isolate the "x"?): 

    

  

 
Yes, it will get me closer to the 

solution 
No, it will NOT get me closer 

to the solution 

8x + 21 - 3 = 61 - 3  o  o  
8x + 21 + 21 = 61 + 21  o  o  
8x + 21 - 61 = 61 - 61  o  o  
8x + 21 - 21 = 61 - 21  o  o  
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3. Sophie, Kingdom, and Kenji are discussing what would be a good step to take for the equation 

below. Read each one's statement and decide whether each statement is correct or not.  

10x - 40 = 3x - 5     

 

  
 

 Correct Not Correct 

Sophie  o  o  
Kingdom  o  o  

Kenji  o  o  
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4. These are called "tape diagrams." Tape diagrams visualize equations. The tape diagram on the 

top shows "x + 2 = 6" and A, B, and C show possible next steps. Please answer the following 

question. 

 

 
 
 

4a. State whether each of the three next steps (A, B, and C) is valid/true 

 Yes/True/Valid No/False/Not Valid 

A  o  o  
B  o  o  
C  o  o  
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5. Solve for x. Please show your work: 

7 + 3x = 16  

 
6. Solve for x. Please show your work: 

8x + 4 = 76  

 
7. Solve for x. Please show your work: 

25x = 11x + 42  

 
8. Solve for x. Please show your work. You can use the diagram to help your thinking.  

7 + 8x = 71        

 
 

9. Solve for x. Please show your work. You can use the diagram to help your thinking.  

23x = 8x + 45              
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