
Modeling  
Goal-Directed User Exploration  in  

Human-Computer Interaction  

 
Leonghwee Teo 

February 2011 

CMU-HCII-11-102 

 
Human-Computer Interaction Institute 

School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15123 

 
Thesis Committee : 

Bonnie E. John (Chair) 
Aniket Kittur  
Brad A. Myers 

Peter L. Pirolli (Palo Alto Research Center) 

 
Submitted in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy 

 
Copyright © 2011 Leonghwee Teo 

 
 
 
 

This work was supported in part by IBM, NASA, Boeing, NEC, PARC, the Office of Naval Research 
(ONR) under contract number N00014-03-1-0086, and a Scholarship from DSO National 
Laboratories. The views and conclusions in this document are those of the author and should not be 
interpreted as representing the official policies, either expressed or implied, of IBM, NASA, Boeing, 
NEC, PARC, DSO, ONR, or the U.S. Government. 



 
ii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords : CogTool-Explorer, CogTool, Predictive Human Performance Cognitive Modeling, Human 

Behavior Representation, Exploratory Behavior, Information Foraging, Information Scent, 

Hierarchical Visual Search, User-Interface Design, User-Interface Evaluation, SNIF-ACT, AutoCWW, 

ACT-R 



 

 

iii   

3 

 

 

 

 

 

 

 

 

 

 

 

 

for the benefit of all sentient beings 



 
iv 

ABSTRACT 
Designing user-interfaces so that first-time or infrequent users can accomplish their goals by 

exploration has been an enduring challenge in Human-Computer Interaction. Iterative user-testing 

is an effective but costly method to develop user-interfaces that support use through exploration. A 

complementary method is to use modeling tools that can generate predictions of user exploration 

given a user-interface and a goal description. 

Recent computational models of goal-directed user exploration have focused on predicting user 

exploration of websites and demonstrated how predictions can inform user-interface design. These 

ÍÏÄÅÌÓ ÅÍÐÌÏÙ ÔÈÅ ÃÏÍÍÏÎ ÃÏÎÃÅÐÔÓ ÏÆ ÌÁÂÅÌ ÆÏÌÌÏ×ÉÎÇ ÁÎÄ ÉÎÆÏÒÍÁÔÉÏÎ ÓÃÅÎÔȡ ÔÈÁÔ ÔÈÅ ÕÓÅÒȭÓ 

choice is partly determined by the semantic relevance between the ÕÓÅÒȭÓ ÇÏÁÌ ÁÎÄ ÔÈÅ ÏÐÔÉÏÎÓ 

presented in the user-interface. However, in addition to information scent, other factors including 

the layout position and grouping of options in the user-interface also affect user exploration and the 

likelihood of success. 

This dissertation contributes a new model of goal-directed user exploration, called CogTool-

Explorer, which considers the layout position and the grouping of options in the user-interface in 

concert with a serial evaluation visual search process and information scent. Tests show that 

predictions from CogTool-Explorer match participant data better than alternative models that do 

not consider layout position and grouping. This dissertation work has also integrated the CogTool-

Explorer model into an existing modeling tool, called CogTool, making it easier for other 

researchers and practitioners to setup and generate predictions of likely user exploration paths and 

task performance using CogTool-Explorer. 



 

 

v  

5 

ACKNOWLEDGEMENTS 
My advisor, Bonnie  John. Thank you for the guidance, critiques, encouragements and opportunities 

that you have so generously given me, for the space and time I need to learn what must have been 

so obvious to you, and for keeping me on track towards the light at the end of the tunnel. 

My thesis committee members (in alphabetical order), Aniket Kittur , Brad Myers  and Peter Pirolli . 

Thank you for the insightful comments and questions that made my dissertation better, and for 

your patience and words of encouragement as I worked on my research.   

Creator of AutoCWW, Marilyn Blackmon , and the creators of SNIF-ACT, Wai-Tat Fu and Peter 

Pirolli . Thank you for such inspirational work that seeded my research and is the standard I will 

continue to strive towards. Thank you for all the help and advice you have given me. 

Members of the CogTool software development team (in alphabetical order), Brett Harris , Michael 

Horowitz , Don Morrison  and Ryan Myers. Thank you for helping make CogTool-Explorer so much 

easier to use. 

Esteemed researchers (in alphabetical order), Rachel Bellamy , Stuart  Card, Ed Chi, Wayne Gray, Tim 

Halverson , Anthony Hornof , Andrew Howes , Peter Polson , Dario Salvucci, Vladislav "Dan" 

Veksler , Richard Young , and many others. From in-depth discussions to simple words of 

encouragement, thank you for making a difference in my PhD journey. 

My mentor, Naresh Kumar . Thank you for the many opportunities that you have provided me to 

grow and mature professionally. 

My parents, Mr. Teo Thio Koon  and Mdm. Lee Wai Chun. Thank you for your countless sacrifices 

and selfless love, and for nurturing me in my formative years. 

My wife, Yeo Lay. Thank you for sharing my pains and joys throughout these years as I worked on 

my PhD, for the sayangs when I needed comforting, and for the constant encouragement that kept 

me going. Thank you for being my best friend. 

My spiritual teacher and friend, His Holiness Yisie Vorle Kunsang Jigme Dorje . Thank you for 

your teachings and showing me the Path.  



 
vi 

TABLE OF CONTENTS 
Abstract iv 

Acknowledgements v 

Table of Contents vi 

List of Figures and Tables xi 

1 Introduction  ..................................................................................................................................................................... 1 

1.1 Research Gaps in Modeling .............................................................................................................................. 1 

1.2 Modeling Tool for Practitioners ..................................................................................................................... 2 

1.3 Organization of Dissertation............................................................................................................................ 3 

2 Related Work ................................................................................................................................................................... 4 

2.1 Observational Studies and Surveys .............................................................................................................. 4 

2.2 Experimental Studies .......................................................................................................................................... 5 

2.3 Theories and Models ........................................................................................................................................... 8 

2.3.1 CE+, IDXL and LICAI+ .............................................................................................................................. 10 

2.3.2 CoLiDeS ......................................................................................................................................................... 11 

2.3.3 Information Foraging Theory, WUFIS and SNIF-ACT ................................................................ 12 

2.3.4 MESA .............................................................................................................................................................. 14 

2.3.5 Exploratory Act and Normalization Assumption ........................................................................ 14 

2.3.6 DOI-ACT ........................................................................................................................................................ 15 

2.3.7 Research Progression in Prior Theories and Models ................................................................ 17 

2.4 Visual Search ........................................................................................................................................................ 18 

2.4.1 Eccentricity and Inhibition of Return ............................................................................................... 18 

2.4.2 Grouping ....................................................................................................................................................... 19 

2.4.3 Visual Search in User Exploration ..................................................................................................... 20 

2.5 Device Models ...................................................................................................................................................... 21 

2.6 Modeling Tools .................................................................................................................................................... 23 



 

 

vii   

7 

3 Research Gaps ............................................................................................................................................................... 25 

3.1 Consideration of Layout Position ................................................................................................................ 25 

3.2 Consideration of Grouping ............................................................................................................................. 28 

3.3 Implementation as a Tool ............................................................................................................................... 29 

4 CogTool-Explorer ......................................................................................................................................................... 31 

4.1 Consideration of Layout Position ................................................................................................................ 32 

4.1.1 Add Perceptual-Motor Behavior ........................................................................................................ 32 

4.1.2 Add a Visual Search Strategy ............................................................................................................... 33 

4.1.3 Preserve Layout Position ...................................................................................................................... 34 

4.1.4 Operation of CogTool-Explorer 1.0 ................................................................................................... 34 

4.1.5 Test of CogTool-Explorer 1.0 ............................................................................................................... 34 

4.2 Consideration of Grouping ............................................................................................................................. 38 

4.2.1 Multi -Page Layout .................................................................................................................................... 41 

4.2.1.1 Operation of CogTool-Explorer 1.0 in the Multi-Page Layout ........................................... 42 

4.2.1.2 Test of CogTool-Explorer 1.0 .......................................................................................................... 44 

4.2.1.2.1 Task Performance Measures and Comparison Metrics ................................................ 44 

4.2.1.2.2 Comparison Results ..................................................................................................................... 46 

4.2.1.3 Refinement of Infoscent Estimate for Top-Level Links........................................................ 48 

4.2.1.4 Addition of Reselection Behavior .................................................................................................. 52 

4.2.1.5 Refinement of GoBack Behavior .................................................................................................... 56 

4.2.1.5.1 Addition of Confidence ............................................................................................................... 59 

4.2.1.5.2 Updating of Confidence .............................................................................................................. 63 

4.2.1.6 Alignment to Human-scale Speed of Execution ...................................................................... 66 

4.2.1.6.1 Refinement of Perceptual-Motor Requirements in Task ............................................. 66 

4.2.1.6.2 Refinement of Duration to Access Information Scent ................................................... 69 

4.2.1.7 Summary of the Performance of CogTool-Explorer 1.1 ....................................................... 72 

4.2.2 Half-flatten Layout ................................................................................................................................... 75 

4.2.2.1 Enable Group Relationships in CogTool-Explorer 1.2 .......................................................... 77 

4.2.2.2 Consider Groups: Operation of CogTool-Explorer 1.2.......................................................... 78 



 
viii  

4.2.2.3 Ignore Groups: Operation of CogTool-Explorer 1.2 .............................................................. 81 

4.2.2.4 Test of CogTool-Explorer 1.2 .......................................................................................................... 82 

4.2.3 Multi -Group Layout ................................................................................................................................. 85 

4.2.3.1 Consider Groups: Operation of CogTool-Explorer 1.2.......................................................... 86 

4.2.3.2 Ignore Groups: Operation of CogTool-Explorer 1.2 .............................................................. 88 

4.2.3.3 Test of CogTool-Explorer 1.2 .......................................................................................................... 89 

4.2.4 Comparison of CogTool-%ØÐÌÏÒÅÒ ÔÏ !ÕÔÏ#77ȭÓ 0ÒÅÄÉÃÔÉÏÎÓ ............................................... 92 

4.2.4.1 Multi -Page Layout................................................................................................................................ 93 

4.2.4.2 Half-flatten Layout .............................................................................................................................. 95 

4.2.4.3 Multi -Group Layout............................................................................................................................. 98 

4.2.5 Summary of Results .............................................................................................................................. 100 

4.3 Integration of CogTool-Explorer into CogTool ................................................................................... 102 

4.3.1 Import of Webpages from Websites .............................................................................................. 102 

4.3.2 Specification of Groups........................................................................................................................ 104 

4.3.2.1 Textual Cues of Widgets, Groups and Remote Labels ........................................................ 105 

4.3.3 Retrieval of Information Scent Scores .......................................................................................... 108 

4.3.4 Setup of Model Runs ............................................................................................................................. 110 

4.3.5 Presentation of Model Runs .............................................................................................................. 112 

4.3.6 Another Usage Example of the Modeling Tool .......................................................................... 112 

4.3.7 Further Design Iteration of Modeling Tool User-Interface .................................................. 115 

5 Contributions, Limitations and Future Work ................................................................................................ 116 

5.1 Contributions .................................................................................................................................................... 116 

5.2 Verification at the Mouse-Click Level ..................................................................................................... 116 

5.3 Layout-specific Knowledge ......................................................................................................................... 117 

5.4 Tasks, Parameters and Generality ............................................................................................................ 118 

5.5 Information Scent Scores ............................................................................................................................. 118 

5.6 Other Factors .................................................................................................................................................... 119 

References ............................................................................................................................................................................. 120 



 

 

ix  

9 

Appendices ............................................................................................................................................................................ 125 

A-1: CogTool Project Window .................................................................................................................................. 126 

A-2: Predict Novice Exploration Dialog ................................................................................................................ 127 

A-3: Predict Novice Exploration Dialog: Task Tab ........................................................................................... 128 

A-4: Predict Novice Exploration Dialog: Simulated User Tab ..................................................................... 129 

A-5: CogTool-Explorer Results and Settings ...................................................................................................... 130 

A-6: CogTool-Explorer Model Runs........................................................................................................................ 131 

A-7: CogTool-Explorer Collapsed View ................................................................................................................ 132 

A-8: CogTool Task Group ............................................................................................................................................ 133 

A-9: CogTool Task Group with CogTool-Explorer Task ................................................................................. 134 

A-10: Rename CogTool-Explorer Task.................................................................................................................. 135 

A-11: CogTool-Explorer Expanded View ............................................................................................................. 136 

A-12: Predict Novice Exploration from Existing KLM Model ...................................................................... 137 

A-13: Automated Creation of Task Group ........................................................................................................... 138 

A-14: Predict Novice Exploration from Existing CogTool-Explorer Task .............................................. 139 

A-15: CogTool-Explorer Results and Settings .................................................................................................... 140 

A-16: Change Result Summary Format for CogTool-Explorer Task ......................................................... 141 

A-17: Percent Success of CogTool-Explorer Task ............................................................................................ 142 

A-18: CogTool-Explorer Expanded View and Comments Fields ................................................................ 143 

B-1: Visualization of CogTool-Explorer Model Runs ....................................................................................... 144 

B-2: Visualization of CogTool-Explorer Model Runs: Filtered #1 ............................................................. 145 

B-3: Visualization of CogTool-Explorer Model Runs: Filtered #2 ............................................................. 146 

B-4: Comparison of CogTool-Explorer Model Runs ........................................................................................ 147 

B-5: Comparison of CogTool-Explorer Model Runs: Filtered #1 ............................................................... 148 

B-6: Comparison of CogTool-Explorer Model Runs: Filtered #2 ............................................................... 149 

 



 
x 

C: Source Code of CogTool-Explorer 1.2 .............................................................................................................. 150 

D: Python Script to Process CogTool-Explorer 1.2 Log Files ....................................................................... 182 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

xi  

11 

FIGURES 
Figure 1 : The Cricket Graph menu interface (from Rieman et al., 1996) 6 

Figure 2: Example of a main webpage layout in Blackmon et al. (2002; 2003; 2005) 7 

Figure 3: Example of a 2-level hierarchy layout in Blackmon et al. (2002; 2003; 2005) 8 

Figure 4: DOI-Tree Visualization (Budiu & Pirolli, 2007) 16 

Figure 5: An example layout with semantically cohesive groups, group labels and background 

color in Halverson and Hornof (2008) 

20 

Figure 6: Mockup of a website UI design in CogTool. CogTool can convert the mockup into an 

ACT-R device model that an ACT-R model can interact with. 

22 

Figure 7: A search goal and webpage used in AutoCWW Experiment 2 (Blackmon et al., 

2002). Each search goal had one correct link on the webpage. The correct link for the goal 

Ȱ#ÁÎÏÎ ÌÁ×ȱ ÉÓ Ȱ4ÈÅÏÌÏÇÙ Ǫ 0ÒÁÃÔÉÃÅÓȱȢ !ÕÔÏ#77 ÉÄÅÎÔÉÆÉÅÄ ÌÉÎËÓ Ȱ2ÅÌÉÇÉÏÕÓ &ÉÇÕÒÅÓȱ ÁÎÄ 

Ȱ2ÅÌÉÇÉÏÎÓ Ǫ 2ÅÌÉÇÉÏÕÓ 'ÒÏÕÐÓȱ ÁÓ ÃÏÍÐÅÔÉÎÇ ÌÉÎËÓ ÔÈÁÔ ÁÒÅ ÁÌÓÏ ÓÅÍÁÎÔÉÃÁÌÌÙ ÒÅÌÁÔÅÄ ÔÏ ÔÈÅ 

goal. The left picture shows the original layout. The right picture shows a modified layout 

wiÔÈ ÌÉÎËÓ Ȱ4ÈÅÏÌÏÇÙ Ǫ 0ÒÁÃÔÉÃÅÓȱ ÁÎÄ Ȱ2ÅÌÉÇÉÏÕÓ &ÉÇÕÒÅÓȱ Ó×ÁÐÐÅÄȢ 4ÈÅ ÈÙÐÏÔÈÅÓÉÓ ÉÓ ÔÈÁÔ 

users would be more likely to click on the correct link in the modified layout than in the 

original layout. 

26 

Figure 8: 0ÁÒÔÉÃÉÐÁÎÔÓȭ ÍÅÁÎ ÃÌÉÃËÓ ÏÎ ×ÅÂÐÁÇÅ ÁÎÄ ÐÅÒÃÅnt first click success by target 

column (Standard error shown) 

27 

Figure 9: Overview of CogTool-Explorer. White background indicates pre-existing 

components and external resources. Light blue indicates new or refined components 

contributed by this dissertation. 

31 

Figure 10: An example run of CogTool-Explorer 1.0 in the two-column layout. 35 

Figure 11: -ÅÁÎ ÃÌÉÃËÓ ÏÎ ×ÅÂÐÁÇÅ ÂÙ ÔÁÒÇÅÔ ÃÏÌÕÍÎȟ ÃÏÍÐÁÒÉÎÇ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÐÅÒÆÏÒÍÁÎÃÅ 

to predictions by CogTool-Explorer 1.0 and AutoCWW (Standard Error shown) 

36 

Figure 12: 0ÅÒÃÅÎÔ ÆÉÒÓÔ ÃÌÉÃË ÓÕÃÃÅÓÓ ÂÙ ÔÁÒÇÅÔ ÃÏÌÕÍÎȟ ÃÏÍÐÁÒÉÎÇ ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÐÅÒÆÏÒÍÁÎÃÅ 

to predictions by CogTool-Explorer 1.0 (Standard error shown) 

37 

Figure 13: An example of flattening two levels of webpages (left) into a single webpage 

(right) by grouping the links from each 2nd-level webpage onto a single webpage. These 

webpage examples are from AutoCWW experiments in Blackmon et al. (2005) and Toldy 

(2009). 

38 

 



 
xii  

Figure 14: (a) The multi-page layout where each link in the top-level webpage (also referred 

to as a top-level link) led to its corresponding 2nd-level webpage of links, (b) the half-

flatten layout where selecting a top-level link reveals the 2nd-level links grouped under 

that top-level link, and (c) the multi-group layout where the 2nd-level links are grouped 

into nine groups. 

39 

Figure 15: The Microsoft Encarta Website 40 

Figure 16: In the multi-page tasks, participants start on the top-level page (leftmost) and on 

selecting a link, transits to 2nd-level pages. Participants may go back to the top-level page, 

or may select a link to go to its 3rd-level page. In a 3rd-level page, participants can check if 

they have succeeded in the task, and if not, go back to the 2nd-level page and continue 

exploration. 

41 

Figure 17: An example run of CogTool-Explorer 1.0 in the multi-page layout. 42 

Figure 18: CogTool-Explorer 1.0 compared to participant data in the multi-page layout. Each 

data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level page 

in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

48 

Figure 19: CogTool-Explorer 1.0a compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie 

on the green diagonal line. The red line is the best fitting line for the data points. 

51 

Figure 20: CogTool-Explorer 1.0b compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie 

on the green diagonal line. The red line is the best fitting line for the data points. 

54 

Figure 21: LinkClicks by CogTool-Explorer 1.0b compared to participant data, broken down 

by the four quartiles shown in Table 5. Each data point represents a link in a task. If model 

behavior perfectly matched participant data, all data points will lie on the green diagonal 

line. The red line is the best fitting line for the data points. 

55 

 

Figure 22: CogTool-Explorer 1.0c compared to participant data in the multi-page layout. Each 

data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level page 

in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

59 

Figure 23: CogTool-Explorer 1.0d compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie 

on the green diagonal line. The red line is the best fitting line for the data points. 

62 



 

 

xiii   

13 

Figure 24: CogTool-Explorer 1.0e compared to participant data in the multi-page layout. 

Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level 

page in a task. If model behavior perfectly matched participant data, all data points will lie 

on the green diagonal line. The red line is the best fitting line for the data points. 

65 

Figure 25: Part of the mock-up of the multi-page layout in CogTool-Explorer 1.0e. The entire 

mock-up is composed of 103 webpages (one top-level page, nine 2nd-level pages and 

ninety-three 3rd-level pages). This figure shows the top-level page, a 2nd-level page and a 

3rd-level page. 

67 

Figure 26: Part of the mock-up of the multi-page layout in CogTool-Explorer 1.0f. The entire 

mock-up is composed of 103 webpages (one top-level page, nine 2nd-level pages and 

ninety-three 3rd-level pages). This figure shows the top-level page, a 2nd-level page and a 

3rd-level page. 

68 

Figure 27: CogTool-Explorer 1.1 compared to participant data in the multi-page layout. Each 

data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) a 2nd-level page 

in a task. If model behavior perfectly matched participant data, all data points will lie on 

the green diagonal line. The red line is the best fitting line for the data points. 

70 

Figure 28: Results over seven iterations from CogTool-Explorer 1.0 to CogTool-Explorer 1.1 

in the multi-page layout. The blue diamond markers and the left vertical axis are for 

Correlation, where higher is better. The red square markers and the right vertical axis are 

for % Average Absolute Error, where lower is better. 

74 

Figure 29: In the half-flatten tasks, participants start in the top-level page (leftmost) and on 

selecting a link, transits to 2nd-level pages. Participants can see both top-level links and 

2nd-level links in 2nd-level pages. Participants may select a top-level link to go to another 

2nd-level page, or may select a 2nd-level link to go to its 3rd-level page (not shown here). In 

a 3rd-level page, participants can check if they have succeeded in the task, and if not, go 

back to the 2nd-level page and continue exploration. 

75 

Figure 30: Blue rectangles show the visual elements available at different stages of a group-

based hierarchical exploration process in the half-flatten layout. Figure (a) shows on 

transiting to a 2nd-level page and Figure (b) shows after going back from the group of 2nd-

level links. 

76 

Figure 31: An example run of Consider Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. 

79 

Figure 32: An example run of Ignore Groups by CogTool-Explorer 1.2 in the half-flatten 

layout. 

82 

 

 



 
xiv 

Figure 33: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the half-flatten layout. Each data point in (a) (b) (c) and (d) represents 

a task, and in (e) and (f) a link in a task. If model behavior perfectly matched participant 

data, all data points will lie on the green diagonal line. The red line is the best fitting line 

for the data points. 

84 

Figure 34: In the multi-group tasks, participants can see all nine groups of links on the top-

level page. Selecting a link will transit to 3rd-level pages like those in the multi-page and 

half-flatten layouts (not shown here). In a 3rd-level page, participants could check if they 

had succeeded in the task, and if not, go back to the top-level webpage and continue 

exploration. 

85 

Figure 35: An example run of Consider Groups by CogTool-Explorer 1.2 in the multi-group 

layout. 

87 

Figure 36: An example run of Ignore Groups by CogTool-Explorer 1.2 in the multi-group 

layout. 

89 

Figure 37: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the multi-group layout. Each data point in (a) (b) (c) and (d) 

represents a task, and in (e) and (f) a link in a task. If model behavior perfectly matched 

participant data, all data points will lie on the green diagonal line. The red line is the best 

fitting line for the data points. 

91 

Figure 38: Results of MeanClicksToSuccess by CogTool-Explorer 1.1 and AutoCWW, 

compared to participant data in the multi-page layout. Each data point represents a task. 

If model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 

94 

Figure 39: Results of MeanClicksToSuccess by CogTool-Explorer 1.2 and AutoCWW, 

compared to participant data in the half-flatten layout. Each data point represents a task. 

If model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 

97 

Figure 40: Results of MeanClicksToSuccess by CogTool-Explorer 1.2 and AutoCWW, 

compared to participant data in the multi-group layout. Each data point represents a task. 

If model behavior perfectly matched participant data, all data points will lie on the green 

diagonal line. The red line is the best fitting line for the data points. 

99 

Figure 41: )Î #ÏÇ4ÏÏÌȭÓ &ÒÁÍÅ 7ÉÎÄÏ×ȟ ÕÓÅÒÓ ÃÁÎ ÄÒÁÇ ÁÎÄ ÄÒÏÐ ÓÔÁÎÄÁÒÄ 5) ×ÉÄÇÅÔÓ ÓÕÃÈ ÁÓ 

buttons and links from a palette of widgets onto a frame. A frame represents a display 

ÓÔÁÔÅ ÉÎ ÔÈÅ 5)Ȣ )Î #ÏÇ4ÏÏÌȭÓ $ÅÓÉÇÎ 7ÉÎÄÏ×ȟ ÕÓÅÒÓ ÃÁÎ ÃÒÅÁÔÅ ÄÉÆÆÅÒÅÎÔ ÆÒÁÍÅÓ ÁÎÄ ÓÐÅÃÉÆÙ 

how interface actions on a widget, such as a mouse click, changes the display state of the 

UI, by drawing transitions from that widget in its frame to another frame. 

103 



 

 

xv  

15 

Figure 42: Import HTML Pages dialog box 104 

Figure 43: To specify existing widgets form a group, the practitioner would multiple select 

ÔÈÅÓÅ ×ÉÄÇÅÔÓ ÁÎÄ ÔÈÅÎ ÉÓÓÕÅ ÔÈÅ Ȱ'ÒÏÕÐȱ ÃÏÍÍÁÎÄ ÆÒÏÍ ÅÉÔÈÅÒ ÔÈÅ Ȱ-ÏÄÉÆÙȱ ÍÅÎÕ ÏÒ ÉÔÓ 

keyboard shortcut. This will create a group composed of the previously selected widgets 

ÁÎÄ ÔÈÅ ÎÅ×ÌÙ ÃÒÅÁÔÅÄ ÇÒÏÕÐ ×ÉÌÌ ÂÅ ÁÕÔÏÍÁÔÉÃÁÌÌÙ ÓÅÌÅÃÔÅÄ ×ÉÔÈ ÔÈÅ ÇÒÏÕÐȭÓ ÂÏÕÎÄÉÎÇ 

box highlighted in green (Figure a). Selecting a widget that is a member of a group will 

highlight the widget with a gray border (which is standard CogTool behavior) and also 

highlight the group with a red border (Figure b). 

105 

Figure 44: The multi-group layout with the Performing Arts group selected, highlighted by a 

green bounding box. 

107 

Figure 45: The multi-ÇÒÏÕÐ ÌÁÙÏÕÔ ×ÉÔÈ ÔÈÅ 2ÅÍÏÔÅ ,ÁÂÅÌ Ȱ0ÅÒÆÏÒÍÉÎÇ !ÒÔÓȱ ÓÅÌÅÃÔÅÄȟ 

highlighted by a gray bounding box. Selecting a Remote Label will also highlight its 

owner, in this example the Performing Arts group, with a red bounding box. 

108 

Figure 46: 3ÅÌÅÃÔ Ȱ'ÅÎÅÒÁÔÅ $ÉÃÔÉÏÎÁÒÙȱ ÆÒÏÍ ÔÈÅ ÃÅÌÌ ÁÔ ÔÈÅ ÉÎÔÅÒÓÅÃÔÉÏÎ ÏÆ Á 4ÁÓË $ÅÓÃÒÉÐÔÉÏÎ 

and a UI mockup to generate infoscent scores for every Displayed Label and textual-cue 

in the UI design. The modeler can inspect and modify parameters and infoscent scores 

using the Dictionary Viewer window (bottom of Figure). For example, the highlighted row 

in the Viewer has its cosine parameter changed from 0.5 to 1.5 to disable further 

elaboration. 

109 

Figure 47: 3ÅÌÅÃÔ Ȱ2ÅÃÏÍÐÕÔÅ 3ÃÒÉÐÔȱ ÆÒÏÍ ÔÈÅ ÃÅÌÌ ÁÔ ÔÈÅ ÉÎÔÅÒÓÅÃÔÉÏÎ ÏÆ Á 4ÁÓË $ÅÓÃÒÉÐÔÉÏÎ 

and a UI mockup to bring up the dialog box to set up model runs, including the number of 

runs to do, parameter values such as k ɉȰ%ÁÇÅÒÎÅÓÓȱɊȟ ÔÈÅ ÆÒÁÍÅ ÔÏ ÓÔÁÒÔ ÅØÐÌÏÒÁÔÉÏÎ ÆÒÏÍȟ 

and the frame or frames that indicate a successful model run. Each model run will be 

ÌÉÓÔÅÄ ÉÎ #ÏÇ4ÏÏÌȭÓ 0ÒÏÊÅÃÔ 7ÉÎÄÏ× ÁÎÄ ÃÁÎ ÂÅ ÆÕÒÔÈÅÒ ÉÎÓÐÅÃÔÅÄ ÉÎ #ÏÇ4ÏÏÌȭÓ 3ÃÒÉÐÔ 3ÔÅÐ 

Window. 

111 

Figure 48: -ÏÃËÕÐ ÏÆ ÔÈÅ #ÏÎÔÒÏÌ $ÉÓÐÌÁÙ 5ÎÉÔ ɉ#$5Ɋ ÏÆ Á "ÏÅÉÎÇ χχχȭÓ ÃÏÃËÐÉÔȢ !n image of 

the CDU was used as the background image of this frame. Button widgets were created 

over the parts of the image where a real button would be and text label widgets were 

created over the parts of the image where textual information would be displayed in the 

#$5ȭÓ ÄÉÓÐÌÁÙȢ .ÏÔÅ ÔÈÁÔ ÔÈÅ ÔÅØÔ ÓÔÒÉÎÇ Ȱ)ÎÉÔÉÁÌÉÚÁÔÉÏÎ 2ÅÆÅÒÅÎÃÅ ÐÏÓÉÔÉÏÎȱȟ ×ÈÉÃÈ 

ÄÅÓÃÒÉÂÅÓ ÔÈÅ $ÉÓÐÌÁÙÅÄ ,ÁÂÅÌ Ȱ).)4 2%&ȱȟ ×ÁÓ ÅÎÔÅÒÅÄ ÁÓ ÐÁÒÔ ÏÆ ÔÈÅ $ÉÓÐÌÁÙÅÄ ÌÁÂÅÌ 

before the Auxiliary Text field was implemented in CogTool-Explorer. Here, ÔÈÅ Ȱ).)4 

2%&ȱ ÂÕÔÔÏÎ ÉÓ ÓÅÌÅÃÔÅÄ ɉÈÉÇÈÌÉÇÈÔÅÄ ×ÉÔÈ Á ÇÒÁÙ ÂÏÒÄÅÒȟ ×ÈÉÃÈ ÉÓ ÓÔÁÎÄÁÒÄ #ÏÇ4ÏÏÌ 

ÂÅÈÁÖÉÏÒɊ ÁÎÄ ÔÈÅ -ÏÄÅ +ÅÙÓ ÇÒÏÕÐ ÔÈÁÔ ÔÈÅ Ȱ).)4 2%&ȱ ÂÕÔÔÏÎ ÂÅÌÏÎÇÓ ÔÏ ÉÓ ÈÉÇÈÌÉÇÈÔÅÄ 

with a red border (which is new in CogTool-Explorer). 

113 



 
xvi 

TABLES 
Table 1: Comparison of related work and CogTool-Explorer by scope of exploratory 

behavior, modeling approach, factors considered, extent of model implementation and 

implementation as a modeling tool for practitioner use. A white cell indicates non-

consideration and darker shades indicate different or progressively more sophisticated 

consideration. See Notes for details. 

9 

Table 2: CogTool-Explorer 1.0 compared to participant data in the multi-page layout 46 

Table 3: CogTool-Explorer 1.0 and 1.0a compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

50 

Table 4: CogTool-Explorer 1.0a and 1.0b compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

53 

Table 5: The 36 tasks in the multi -page layout sorted by decreasing %Success by participants 

and grouped into 4 quartiles of 9 tasks each. Table also shows the breakdown of 

%Success and LinkClicks by CogTool-Explorer 1.0b in these 4 quartiles. 

55 

Table 6: Percentage of go-back actions from 2nd-level pages by CogTool-Explorer 1.0b as a 

function of the GoBackCost parameter, compared to participants. CogTool-Explorer 1.0c 

uses the GoBackCost parameter value of 1. 

58 

Table 7: CogTool-Explorer 1.0b and 1.0c compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

58 

Table 8:  CogTool-Explorer 1.0c and 1.0d compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

62 

Table 9: CogTool-Explorer 1.0d and 1.0e compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

65 

Table 10: CogTool-Explorer 1.0e and 1.1 compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

70 

Table 11: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the half-flatten layout. The better results are highlighted in bold. 

83 

Table 12: Consider Groups and Ignore Groups by CogTool-Explorer 1.2 compared to 

participant data in the multi-group layout. The better results are highlighted in bold. 

90 

Table 13: CogTool-Explorer 1.0 and 1.1 compared to participant data in the multi-page 

layout. The better results are highlighted in bold. 

100 

 



 

 

xvii   

17 

Table 14: CogTool-Explorer 1.1 compared to participant data in the multi-page layout, and 

CogTool-Explorer 1.2 compared to participant data in the half-flatten and multi-group 

layouts. The best results are highlighted in bold. 

101 

Table 15: Seven iterations of a model, the changes made in CogTool-Explorer to produce 

each iteration, the time it took to make those changes, and the %Success of the resulting 

model. (Adapted from Table 1, John et. al., 2009) 

114 

 





 

 

1  

1 

1 INTRODUCTION 
Designing user-interfaces (UIs) so that first-time or infrequent users can accomplish their goals by 

exploration has been an enduring challenge in Human-Computer Interaction (HCI). Early examples 

include automated teller machines and public information kiosks that people walk up and use. A 

more contemporary example is the World-Wide-Web (WWW or Web), where users may be skilled 

in general website navigation, but lack prior knowledge of where the desired information resides in 

varied and constantly evolving websites. Both Franzke (1995) and Cox (2002) suggested that users, 

who have some experience in a software application or device, or other similar software 

applications or devices, may be more likely to attempt and be successful at exploration. These users 

may only use the software sporadically or are only familiar with parts of the software, compared to 

skilled users who know exactly what to do in the UI to accomplish a task, and novice users who lack 

too much knowledge in both the design of the UI and the task domain to be successful in 

exploration. To support this group of users who are not complete experts or novices, UI design 

should support use through exploration. 

Fortunately, HCI practice and research has risen to this challenge. Iterative user-testing is an 

effective but costly method to develop UIs that support use through exploration. A complementary 

method is to use modeling tools that can generate predictions of user exploration given a UI and a 

task. Predictive modeling tools can help evaluate and weed out a larger number of early UI designs. 

Model predictions can also inform the design process by highlighting the probable causes that 

might lead to poor user task performance. Predictive human performance models have been 

successfully used to evaluate and design UIs for skilled routine interactive tasks (John & Kieras, 

1996). If users have to explore and learn an unfamiliar UI, models such as CE+ (Polson and Lewis, 

1990), IDXL (Rieman, Young & Howes, 1996) and LICAI+ (Kitajima, Soto & Polson, 1998) describe 

how knowledge representation, mental model construction and label-following drive user behavior 

during exploration. More recent models like MESA (Miller & Remington, 2004) and SNIF-ACT 2.0 

(Fu & Pirolli, 2007), and tools like Bloodhound (Chi et al., 2003) and AutoCWW (Blackmon, Kitajima 

& Polson, 2005) have focused on predicting user exploration of websites and demonstrated how 

predictions can inform UI design. These models of user exploration employ the common concepts of 

label-following and information scentȟ ÔÈÁÔ ÔÈÅ ÕÓÅÒȭÓ ÃÈÏÉÃÅ ÉÓ ÐÁÒÔÌÙ ÄÅÔÅÒÍÉÎÅÄ ÂÙ ÔÈÅ ÓÅmantic 

relevance between the uÓÅÒȭÓ ÇÏÁÌ ÁÎÄ ÔÈÅ ÏÐÔÉÏÎÓ ÐÒÅÓented in the UI. 

However, there are other factors beside information scent (or infoscent for short) that influence 

exploration and the likelihood of success, and models and tools that do not consider these factors 

would make less accurate predictions. The goal of this dissertation is to include some of these other 

factors in a process model and modeling tool for more accurate predictions of user exploration, to 

better inform UI design. 

1.1 RESEARCH GAPS IN MODELING 
In addition to infoscent, the layout of the UI also affects the choices made during exploration, 

because a user is not likely to select an option that he or she did not look at and evaluate, and 

competing options (i.e. options that are semantically relevant to a particular task but are incorrect 

for the task) seen before the correct option might be chosen instead. Furthermore, the spatial and 



 
2 

semantic grouping of options in a UI also affects user exploration, where competing options nested 

inside a group with a competing group heading (i.e. a text label identifying a group) was found to be 

especially problematic for successful exploration (Blackmon et al., 2005; Kitajima, Polson & 

Blackmon, 2007). Although infoscent, visual search, layout position and grouping affect user 

exploration, prior research like Bloodhound and AutoCWW consider only a subset of these factors 

in their model predictions, which could result in inaccurate predictions when these factors matter 

and interact in the UI and task. For example, Section 3.1 describes an analysis of participant data 

and AutoCWW predictions that was done as part of this dissertation, where predictions did not 

match data at a more detailed level of analysis when visual search and layout position were not 

considered together with infoscent. 

To address these gaps, this dissertation contributes a new modeling tool called CogTool-Explorer, to 

make more accurate predictions of goal-directed user exploration compared to prior modeling 

tools. The research work in this dissertation primarily focuses on the modeling and predictions by 

CogTool-Explorer, with a secondary focus on making CogTool-Explorer into a tool for practitioner 

use. The thesis of this dissertation is: 

A modeling tool for goal-directed user exploration of user-interfaces, that considers 

the information scent, the visual search process, and the layout and grouping of 

options in the user-interface in concert, can make more accurate predictions of user 

exploration compared to tools that do not. 

1.2 MODELING TOOL FOR PRACTITIONERS 
To encourage HCI practitioners to use modeling tools alongside user testing and other HCI 

methods, it must be easy to set up the model for a given UI and task, run the model and obtain 

prediction results. However in most prior research, such as CE+, IDXL and LICAI+, the research 

effort focused on implementing, testing and refining theory, and was not explicitly concerned with 

the implementation of a more flexible tool for modeling UI designs beyond the designs used in the 

particular research project. Later research on tools like Bloodhound and AutoCWW made it 

possible for practitioners to use "ÌÏÏÄÈÏÕÎÄȭÓ ÁÎÄ !ÕÔÏ#77ȭÓ underlying predictive models 

without the need to write or edit software code. Both tools are tailored to model exploration of 

webpages and websites. In Bloodhound, the practitioner can specify an entire website by entering 

its Web address. In AutoCWW1, the practitioner has to manually enter the text label of links from 

the webpages being modeled. 

The approach in this dissertation is to implement CogTool-Explorer as part of an existing modeling 

tool called CogTool (John, Prevas, Salvucci & Koedinger, 2004). CogTool is a publicly available 

modeling tool2 that can predict skilled performance times from tasks demonstrated on a mockup of 

a UI design. Compared to earlier established modeling methods, CogTool reduced the time taken by 

both expert and novice modelers to create a correct model of skilled interactive behavior by an 

                                                             
1 Accessed on January 17, 2011 at http://autocww.colorado.edu/~brownr/ACWW.php  

2 Downloaded on January 17, 2011 from http://cogtool.hcii.cs.cmu.edu/  



 

 

3  

3 

order of magnitude, and significantly reduced the variation between novice modelers in predicting 

the task execution time of skilled interactive behavior (John, 2010). In CogTool, the practitioner can 

create a mockup of a UI by dragging and dropping standard UI widgets such as buttons, menus and 

links, from a palette of widgets onto frames. A frame represents a display state in the UI. The 

practitioner can specify how interface actions on a widget, such as a mouse button press or click, 

changes the display state by drawing transitions from that widget in its frame to another frame. The 

practitioner can easily create a predictive model of skilled behavior by demonstrating the exact 

interaction steps of a task in the UI mockupȢ /Î Á ÓÉÎÇÌÅ ÃÏÍÍÁÎÄ ÔÏ ȰÇÏȱȟ #ÏÇ4ÏÏÌ ×ÉÌÌ ÒÕÎ ÔÈÅ 

model and generate the prediction. 

In CogTool-Explorer, the practitioner will provide a text description of the exploration goal and on a 

ÓÉÎÇÌÅ ÃÏÍÍÁÎÄ ÔÏ ȰÇÏȱ, the CogTool-Explorer model will explore and interact with the UI mockup 

to attempt to complete the task. The practitioner can then view and save the prediction results from 

CogTool-Explorer. To support the new requirements and functionality of CogTool-Explorer, this 

dissertation adds to CogTool new menu options, dialogs and supporting modules for creating large 

UI mockups, specifying group relationships in the UI mockup and to generate the infoscent scores 

that will be used by the model. Through this integration of CogTool-Explorer into CogTool, the hope 

is that it will extend the success of CogTool, and thus CogTool-Explorer, in delivering usable 

modeling to HCI practitioners. 

1.3 ORGANIZATION OF DISSERTATION 
Section 2 reviews related work on goal-directed user exploration in HCI, focusing on their key 

findings and limitations. Section 3 synthesizes the outcomes from the review of related work and 

highlights the three research gaps that are the focus of this dissertation. Section 4 presents 

CogTool-Explorer, describing in detail the modeling and implementation work done to address 

these research gaps, and the test results from comparing CogTool-Explorer to both human data and 

AutoCWW predictions. Section 5 concludes with the contributions , limitations and future work  of 

this dissertation research. Appendices A and B present further UI designs that pertain to the 

integration of CogTool-Explorer into CogTool, and Appendices C and D contain the source code of 

the CogTool-Explorer model and the script that was used to process ÔÈÅ ÍÏÄÅÌȭÓ ÌÏÇ ÆÉÌÅ. 



 
4 

2 RELATED WORK 
Section 2.1 reviews related observational studies and surveys that found evidence for goal-directed 

user exploration in various real-world computing task environments. Section 2.2 reviews related 

experimental studies that identified some of the factors that influence the choices made during user 

exploration. Section 2.3 reviews theories and models that were developed to explain the user 

exploration process and replicate results from the experimental studies. Section 2.4 reviews 

findings from eye-tracking studies of visual search that have a bearing on user exploration. Section 

2.5 reviews related work to develop accurate device models of the UI on which exploration by a 

model takes place. Section 2.6 reviews related work to develop modeling tools intended for use by 

HCI practitioners. 

2.1 OBSERVATIONAL STUDIES AND SURVEYS 
Rieman (1994; 1996) had 14 participants keep a week-long log of their daily work activities, to find 

out how often they had to explore in their normal  work activities. Whenever the participants 

ȰÌÅÁÒÎÅÄ ÓÏÍÅÔÈÉÎÇ ÎÅ× ÁÂÏÕÔ ÔÈÅÉÒ ÃÏÍÐÕÔÅÒ system or some other equipment in ÔÈÅÉÒ ×ÏÒËȱ 

(Rieman, 1994, p. 51), they were to record the event and the strategy or strategies they used. A 

surprising finding was the low occurrence of about 1 learning event for every 8 hours of computing 

time, although Rieman noted that the recorded events were of varying complexities and at different 

grain sizes, so a single recorded event could have been a number of individual events. The 

ÉÎÔÅÒÅÓÔÉÎÇ ÆÉÎÄÉÎÇ ×ÁÓ ȰÔÈÅ ÓÉÍÉÌÁÒÉÔÙ ÉÎ ÔÈÅ ÌÅÁÒÎÉÎÇ ÓÔÒÁÔÅÇÉÅÓ ÒÅÃÏÒÄÅÄ ÁÃÒÏÓÓ Á ÖÅÒÙ ×ÉÄÅ range 

of situations ÁÎÄ ÕÓÅÒÓȱ (Rieman, 1994, p. 59) and that there was ȰÓÉÇÎÉÆÉÃÁÎÔ ÅÖÉÄÅÎÃÅ ÔÈÁÔ ÔÈÅ 

three preferred strategies are trying things out, reading the manual and asking for helpȱ (Rieman, 

1994, p. 59). Participants rÅÐÏÒÔÅÄ ÕÓÉÎÇ ÔÈÅ ÓÔÒÁÔÅÇÙ ÏÆ ȰÔried differenÔ ÔÈÉÎÇÓ ÕÎÔÉÌ ÉÔ ×ÏÒËÅÄȱ ÆÏÒ 

over half (37 out of 60) of all recorded learning events in computer-based activities. 

At the end of the dairy study, Rieman conducted structured interviews with the participants. When 

ÁÓËÅÄ Ȱ×hen you get a new piece of softwareȟ ÈÏ× ÄÏ ÙÏÕ ÌÅÁÒÎ ÔÏ ÕÓÅ ÉÔȩȱ ɉ2ÉÅÍÁÎȟ ρωωτȟ ÐȢ φςɊȟ 

half the participants (7 out of 14) identified ȰÅØÐÌÏÒÉÎÇ ÉÔÓ ÆÕÎÃÔÉÏÎÁÌÉÔÙȟ ÕÓÕÁÌÌÙ ÉÎ ÔÈÅ ÃÏÎÔÅØÔ ÏÆ 

ÁÃÔÕÁÌ ÔÁÓËÓȱ (Rieman, 1994, p. 63) as one of the ways to familiarize themselves with the software. 

When asked how they figured out the way to do something they did not know in a program they 

already knew, more than half of the participants (9 out of 14) identified trying things out or 

exploration as the first strategy they used. The interviews also revealed that when the participants 

used the exploration strategy, all but one (13 out of 14) did so in the context of a task. Participants 

felt that goal-directed exploration was more productive and could be made relevant to actual work 

activities. Only one participant reported doing task-free exploration of new software. 

The above investigations by Rieman were before the Web became a major real-world computing 

activity . Byrne, John, Wehrle and Crow (1999) conducted a video and verbal protocol study of Web 

use and found that the times spent on Locate (finding  that information or link on a webpage, which 

typically requires some visual search) and Go To (any activity which caused the browser to display 

a particular webpage) activities were ranked second and third  highest, after the time spent on Use 

information activities. In contrast, the time spent on Configure (changing the state of the browser, 

such as the size, location and number of browser windows) and React (when the browser demands 



 

 

5  

5 

something of the user typically in the form of responding to a dialog box) activities combined was 

less than any one of these top three activities. This suggests that exploration on the Web is more 

about finding and using information. The focus of exploration is now on the hyperlinked UI of 

varied and constantly evolving websites and not on the UI of the browser application. 

Morrison, Pirolli and Card (2001) analyzed a survey on Web activities and found that 96% of 

information seeking activity on the Web was searching for a particular or multiple pieces of 

information triggered by a goal. The other 4% were repeated visits to monitor information updates 

and general searching for information not triggered by a goal. This suggests that information 

seeking on the Web, like the exploration of software and devices by the participants in Rieman 

(1994; 1996), was almost always done in the context of a goal-directed task. 

The results from these studies suggest that goal-directed user exploration does indeed happen in 

real-world computing tasks. Exploration of the UI to learn a new piece of software or to figure out 

how to perform a task in existing software was a preferred approach; a strategy at least as often 

used as reading manuals and asking for help. In user activities on the Web, exploration of websites 

to locate desired information was the dominant activity, which is not surprising considering the 

varied and constantly evolving designs of websites. In both cases, exploration was almost always 

done in the context of a task goal. 

2.2 EXPERIMENTAL STUDIES 
Franzke (1994; 1995) conducted one of the first detailed experiments on computer users using 

unfamiliar software for the first time. Seventy-six participants, who all had experience with 

Macintosh computers but had never used a graphing software application, were given a task 

description to draw and modify graphs using one of four graphing software applications. Two of 

these were versions of an application called Cricket Graph (Figure 1), which was the subject of 

modeling in later research (discussed in the review of IDXL and LICAI+ in Section 2.3.1). The key 

result from the study was that participants took more time to select the correct option on the 

screen if the semantic distance between the label of the correct option and the task description was 

larger. Franzke defined 4 levels of semantic distance in increasing order: 

1. Overlap ɀ words that were identical to words as presented in the task description, such as if 

ÔÈÅ ÇÏÁÌ ×ÁÓ ÔÏ ȰÃÒÅÁÔÅ Á ÇÒÁÐÈȱ ÁÎÄ ÔÈÅ menu item had the label ȰÇÒÁÐÈȱ 

2. Synonym ɀ words that were synonymous to words in the task description, such as if the 

ÇÏÁÌ ×ÁÓ ÔÏ ȰÃÒÅÁÔÅ Á ÇÒÁÐÈȱ and the menu item had ÔÈÅ ÌÁÂÅÌ ȬȬÃÈÁÒÔȭȭ 

3. Inference ɀ words that were semantically related to words in the task description but 

required some inference, ÓÕÃÈ ÁÓ ÉÆ ÔÈÅ ÇÏÁÌ ×ÁÓ ÔÏ ȰÃÒÅÁÔÅ Á ÇÒÁÐÈȱ and the menu item had 

the label ȬȬÄÒÁ×ÉÎÇ ÔÏÏÌÓȭȭ 

4. No Link ɀ words that had no direct semantic link to words in the task description, such as if 

ÔÈÅ ÇÏÁÌ ×ÁÓ ÔÏ ȰÃÒÅÁÔÅ Á ÇÒÁÐÈȱ and the menu item had the label ȰÆÉÌÅȱȢ 

Franzke also identified two other factors that increased the time participants took to select the 

correct option on the screen. One was the number of options on the screen. The more options there 



 
6 

were, the longer the exploration time, especially if the correct option had a poor label (i.e. large 

semantic distance from the goal). The other factor was hidden options, where ÐÁÒÔÉÃÉÐÁÎÔÓ ȰÔÏÏË 

longer to discover direct manipulation interactions on unlabeled objects, such as double-clicks on 

graph objects, drag-and-ÄÒÏÐ ÏÐÅÒÁÔÉÏÎÓȟ ÅÔÃȢȱ (Franzke, 1995) 

Blackmon and colleagues (2002; 2003; 2005) and Kitajima et al. (2007) conducted and analyzed a 

series of experiments where participants were presented with the text description of a search goal 

for an encyclopedia article and asked to navigate a main webpage (Figure 2) or a 2-level hierarchy 

of webpages (Figure 3) to find the target webpage which contained the article. The link labels were 

short texts describing encyclopedia topics. The topics links were further grouped into related topics 

and each group was given a non-interactive heading label (on the main webpage) or an interactive 

heading link (in the 2-level hierarchy of webpages). Selecting a topic link would display a webpage 

that listed all the encyclopedia articles under that topic. 

Blackmon et al. used Latent Semantic Analysis (LSA; Landauer, McNamara, Dennis & Kintsch, 2007) 

to compute an engineering approximation (LSA cosine value between two LSA document vectors) 

of the semantic similarity  between the text of each topic link  and the goal description, and between 

the text of each heading label/link  and the goal description. They found that participants took more 

clicks to find the target webpage when the target webpage was located under a topic link  that was 

computed to be weakly related to the goal, and took less clicks when the topic link  was strongly 

related to the goal. This result is in agreement with  FranzkeȭÓ semantic distance, except that 

Franzke scored the semantic distances between on-screen labels and the task description by hand. 

Blackmon et al. also used LSA to compute an engineering approximation of participantsȭ familiarity  

with the text of each topic link (LSA term vector length and term frequency count in the semantic 

space that represented the reading knowledge level of the participants). They found that 

Figure 1:  The Cricket Graph menu interface (from Rieman et al., 1996) 



 

 

7  

7 

participants took more clicks if the correct topic link  was computed to be unfamiliar to the 

participants. 

Blackmon et al. (2005) further  found that participants took more clicks to find the target webpage if 

there were competing links on the webpage (i.e. topic links that were computed to be similar to the 

goal but did not lead to the target webpage), especially when the competing links were nested 

under a competing heading (i .e. a heading label/link that was computed to be similar to the goal but 

whose group did not contain any topic links that led to the target webpage). 

These experimental studies increased our understanding of one of the key factors that influence 

goal-directed user exploration, namely the semantic relevance of the options presented in the UI 

with respect to the exploration goal. For most well-designed UIs, a reasonable assumption is that 

options are appropriately labeled. By label-following, users are more likely  to be successful in 

exploration if they select options with labels that are semantically relevant to the goal. 

Furthermore, while the semantics of individual options matter, the semantics arising from 

organizing structures such as groups and group headings also affect exploration success. 

Figure 2 : Example of a main webpage layout in Blackmon et al. (2002; 2003; 2005) 



 
8 

2.3 THEORIES AND MODELS 
Theories and computational models of goal-directed user exploration seek to explain the findings 

and replicate the results from observational and experimental studies. Pioneering theoretical and 

modeling research was done in the larger context of skill acquisition in HCI through learning by 

exploration. The research question in CE+, IDXL and LICAI+ was how users explore and learn a new 

software application, and how learning by exploration affects further exploration and improves 

task performance. 

The advent of the Web presents a different task environment for goal-directed exploration, where 

finding information from within webpages in websites is the dominant activity (Byrne et al., 1999; 

Morrison et al., 2001). Research in this domain focuses more on the intricacies of label-following in 

determining exploration success, and less on the discovery and learning of interface actions on UI 

widgets, possibly because the majority of webpages on the Web do not support interface actions 

other than a mouse click on a text or graphic link. Some models have a visual search process, and 

models differ in their modeling approach, derivation of infoscent, representation of the device UI 

and the extent of implementation. Table 1 provides a summary of the theories and models reviewed 

in the following sub-sections. 

 

Click! 

Figure 3: Example of a 2-level hierarchy layout in Blackmon et al. (2002; 2003; 2005) 



 

 

 

9 

Goal 

Formation
Learning

Interface 

Action

Label-

Following

Visual 

Search

Information 

Scent

Layout 

Position
Grouping

Global Evaluation and 

Decision
Human raters

Relative 

position

Contains non-executable 

components

Serial Evaluation and 

Local Decision
Mixed Approach

Mixed 

Approach

Executable components but 

not fully integrated

Algorithmically 

assigned

Absolute 

position
Executable Model

CE+ (1990)

IDXL (1996)

LICAI+ (1998)

CoLiDeS (2000) [a] [a] [a] [a] [b] [b] [b]

WUFIS (2001)

Bloodhound (2003) [c]

SNIF-ACT 1.0 (2003)

MESA (2004) [d]

Cox's Model (2004)

Bumbry's Model (2004)

AutoCWW (2005) [e] [e]

SNIF-ACT 2.0 (2007) [f] [f]

DOI-ACT (2007) [g] [h] [i]

CogTool-Explorer

Related Work (Year)

Modeling Approach Model Implementation
Tool for 

Practitioner

Scope of Exploratory Behavior Factors Considered

 

 

 

 

 

 

 

 

Table 1: Comparison of related work and CogTool-Explorer by scope of exploratory behavior, modeling approach, factors 
considered, extent of model implementation and implementation as a modeling tool for practitioner use. A white cell indicates 
non-consideration and darker shades indicate different or progressively more sophisticated consideration. See Notes for details. 
 
Notes: 
[a]  CoLiDeS inherits from LICAI+ and adds a visual attention cycle [b]. 
[b]  CoLiDeS makes reference to visuospatial bottom-up processes and knowledge-driven top-down processes for its visual attention cycle and 

globally selects the optimal group or option. 
[c]  Bloodhound is not publicly available but is available for licensing. 
[d]  MESA is neutral as to the actual order in which the links are evaluated by randomly ordering links for each run and then taking 

performance averages across many runs. 
[e]  ACWW inherits its modeling approach from CoLiDeS and globally analyses all groups and links on a webpage for navigation problems. 
[f]  SNIF-ACT 2.0 assumes a left-right then top-down visual search path over the links on a webpage and encodes the ordering before the 

model runs. 
[g]  DOI-ACT prefers to shift visual attention further afield to the right, which assumes knowledge specific to the DOI tree UI layout, is different 

from the eccentricity heuristic favored by other models of visual search and may not be appropriate for other UI layouts in general. 
[h]  DOI-ACT uses information scent scores from human raters as well as algorithmically assigned scores. 
[i]  DOI-ACT assumes top-down visual search over the nodes in a group, but uses the absolute xy-coordinates of groups when evaluating and 

selecting a group. 



 
10 

2.3.1 CE+, IDXL AND LICAI+ 
Polson and Lewis (1990) combined three components into the CE+ model to give an account of 

learning by exploration: 

1. Cognitive Complexity Theory (CCT; Kieras & Polson, 1985) to execute production rules and 

run the model. A production rule specifies a list of clauses and a list of actions. A rule will 

ȰÆÉÒÅȱ ÁÎÄ ÅØÅÃÕÔÅ its actions if the state of the model satisfies its clauses. Productions rules 

coordinate the execution of the second component. 

2. A label-following variant of the hill -climbing strategy to choose among options. In hill-

climbing, the strategy is to select the option that appears to offer the greatest progress 

toward the goal (Greeno & Simon, 1988). CE+ chooses the option whose description 

overlaps most with the goal, provided that the option has not been tried before. 

3. EXPL (Lewis, 1986; 1988) to compare the prior display state of the system with the display 

state after an interface action was taken, and apply one of three heuristics to infer a causal 

relationship. This learned relationship is then encoded as a production rule which the CCT 

component may fire in the future. 

While each of the above components was implemented as executable models in their own prior 

research, CE+ was not integrated into a single executable model (Table 1: Model Implementation). 

Instead, Polson and Lewis presented an account of a few hill -climbing and learning steps under the 

control of production rules ÉÎ Á ȰÈÁÎÄ ÓÉÍÕÌÁÔÉÏÎȱ ÏÆ the model. 

Rieman et al., (1996) used both empirical observations from the Cricket Graph task in FranzkeȭÓ 

(1994; 1996) experiment and theoretical arguments to define the Iteratively Deepening 

Exploratory Learning (IDXL) model. Like CE+, IDXL draws upon several separate models to account 

for the range of behavior in exploratory  learning (Table 1: Scope of Exploratory Behavior). In the 

Cricket Graph task, participants were given a task description, but not step-by-step instructions, to 

draw and modify graphs using the software Cricket Graph. IDXL has an instruction -taking model of 

how participants might learn task instructions, and an analogy model of how participants can map 

instructions or past experience to novel situations.  

IDXL has a guided depth-first search with iterative deepening (gDFID) strategy to model the 

exploration of pull-down menus in Cricket Graph that preceded the selection of a menu item (see 

Figure 1 for pull-down menus in Cricket Graph). Guided by the heuristic to limit its search to items 

semantically related to the task, the model serially scans the hierarchy of pull -down menus in an 

iterative-deepening process. The process iteratively  scans deeper submenus and iterativ ely applies 

more costly comprehension methods to further evaluate menu items. At each step after a menu 

item is evaluated, the model may scan another menu item, further evaluate a menu item or choose a 

menu item that it found satisfactory. Rieman et al. stressed that large scale patterns of behavior 

should emerge out of local decisions. Through this serial evaluation process, )$8,ȭÓ ÂÅÈÁÖÉÏÒ 

ÒÅÆÌÅÃÔÓ ÌÏÃÁÌ ÄÅÃÉÓÉÏÎÓ ÏÎ ÉÎÄÉÖÉÄÕÁÌ ÌÁÂÅÌÓȟ ÉÎ ÃÏÎÔÒÁÓÔ ÔÏ ,)#!)Ⱦ,)#!)ϹȭÓ approach (discussed 

below) of evaluating a large set of labels simultaneously (see Table 1: Modeling Approach). 



 

 

11  

11 

In evaluating the IDXL model, Rieman et al. stated that the goal of IDXL was to achieve a qualitative 

match to behavioral patterns observed in participants. The implemented IDXL model addressed the 

first few steps of the Cricket Graph task, with the rest of the evaluation done by a qualitative 

ÃÏÍÐÁÒÉÓÏÎ ÏÆ ÔÈÅ ÍÏÄÅÌȭÓ ÂÅÈÁÖÉÏÒ ÔÏ ÏÂÓÅÒÖÅÄ ÐÁÒÔÉÃÉÐÁÎÔ ÂÅÈÁÖÉÏÒ (Table 1: Model 

Implementation). 

Kitajima and Polson (1997) created the Linked Model of Comprehension-Based Action Planning 

and Instruction Taking (LICAI), the predecessor of LICAI+, to model the formation of an exploration 

goal from task instructions and the selection of actions during exploration in the same Cricket 

Graph task. LICAI is based on the Construction-Integration (CI; Kintsch, 1988; 1998) framework 

that is developed to model text comprehension. The basic mechanism is the CI cycle: the 

construction of a network of propositions representing the ÒÅÁÄÅÒȭÓ ÇÏÁÌȟ ÔÈÅ ÎÅØÔ ÓÅÎtence read and 

existing knowledge, followed by the integration of this network by spreading activation through the 

network. The most activated nodes in the proposition network at the end of the integration 

represent the interpretation of the text. 

LICAI uses the basic CI framework to model the formation of an exploration goal from task 

instructions as text comprehension. LICAI extends the CI framework to handle interface actions by 

encoding not just the labels of on-screen options in the proposition network, but also the actions 

afforded by these on-screen options. A new integration process first identifies the three most 

activated options, followed by a second integration to identify the most activated interface action. 

The proposition network contains all on-screen options at once. This means that LICAI globally 

identifies the three most optimal on-screen options, in contrast to the serial evaluation and 

localized decisions in IDXL (Table 1: Modeling Approach). The follow-up model, LICAI+ (Kitajima et 

al., 1998), adds the learning and recall of previous interface actions to affect future exploration. 

CE+, IDXL and LICAI+ seek to provide an account for a range of user behaviors during exploration 

(Table 1: Scope of Exploratory Behavior). All three models are concerned with  the discovery, 

learning and knowledge of interface actions. In IDXL and LICAI+, this might had been motivated by 

participants who were unaccustomed to the direct-manipulation intensive UI of a graphing 

software application such as Cricket Graph. All three models make exploration choices based on 

label-following. In these models, label attractiveness for the task was manually specified, whereas 

many subsequent models use automated methods to compute an engineering approximation of 

label attractiveness (Table 1: Information Scent). Subsequent models also use either the serial 

evaluation and localized decision approach like in IDXL, or the global evaluation and decision 

approach like in LICAI+ (Table 1: Modeling Approach). 

2.3.2 COLIDES 
Comprehension-based Linked-model of Deliberate Search (CoLiDeS; Kitajima, Blackmon & Polson, 

2000; 2005) is an extension of LICAI/LICAI+ for Web navigation. CoLiDeS adds an attention CI cycle 

when a user encounters a webpage with many links (Table 1: Scope of Exploratory Behavior, notes 

[a] and [b] ). The attention cycle parses the webpage into sub-regions and focuses attention on a 

sub-region most simÉÌÁÒ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÇÏÁÌȢ The action selection CI cycle from LICAI then identifies 

the few most attractive links from the attended-to sub-region and then the most attractive interface 



 
12 

action. Both cycles globally identify the optimal choice. CoLiDeS also proposes five independent 

factors that combine to measure the attractiveness of a sub-region or a link  with respect to the 

exploration goal: 

1. 4ÈÅ ÄÅÇÒÅÅ ÏÆ ÓÅÍÁÎÔÉÃ ÓÉÍÉÌÁÒÉÔÙ ÂÅÔ×ÅÅÎ ÔÈÅ ÕÓÅÒȭÓ ÇÏÁÌ ÁÎÄ ÔÈÅ sub-regionȭÓ ÈÅÁÄÉÎÇ ÏÒ 

link label. A more similar heading or link is more likely to be selected. 

2. Whether there is an adequate level of relevant background knowledge to successfully 

elaborate the sub-regionȭÓ ÈÅÁÄÉÎÇ ÏÒ ÌÉÎË label. A heading or link that triggers an 

inadequate level of relevant background knowledge is not likely to be selected. 

3. Whether a word used in the heading or link label is a low-frequency term in the useÒȭÓ 

background knowledge. A heading or link that is a low-frequency term is not likely to be 

selected. 

4. The frequency with which the user has encountered the screen widget or specific heading 

or link. Screen elements on frequently navigated paths are more likely to be selected. 

5. 7ÈÅÔÈÅÒ ÔÈÅÒÅ ÉÓ Á ÌÉÔÅÒÁÌ ÍÁÔÃÈÉÎÇȟ ÐÁÒÔÉÁÌ ÏÒ ÃÏÍÐÌÅÔÅȟ ÂÅÔ×ÅÅÎ ÔÈÅ ÕÓÅÒȭÓ goal and the 

heading or link (e.g., looking for information about Type 2 Diabetes and seeing a link labeled 

Ȱ4ÙÐÅ ς $ÉÁÂÅÔÅÓȱɊȢ A heading or link with a liteÒÁÌ ÍÁÔÃÈ ÔÏ ÔÈÅ ÕÓÅÒȭÓ ÇÏÁÌ ÉÓ ÍÏÒÅ ÌÉËÅÌÙ ÔÏ 

be selected. 

CoLiDeS has not been implemented into an executable model (Table 1: Model Implementation, note 

[b] ), but has led to the development of an analytical method called Cognitive Walkthrough for the 

Web (CWW; Blackmon, Polson, Kitajima & Lewis, 2002) and a tool called Automated Cognitive 

Walkthrough for the Web (AutoCWW; Blackmon, Kitajima & Polson, 2005). AutoCWW implements 

the CoLiDeS concept of sub-regions, and the first three of the five factors listed above using LSA 

computed measures. However, information about sub-regions and links within sub-regions entered 

into AutoCWW by the practitioner does not indicate layout position (Table 1: Layout Position). 

Section 3.1 describes an analysis of participant data and AutoCWW predictions where predictions 

did not match data at a more detailed level of analysis because layout position was not considered. 

Section 2.6 describes the AutoCWW tool in more detail. 

2.3.3 INFORMATION FORAGING THEORY, WUFIS AND SNIF-ACT 
Information Foraging Theory (Pirolli & Card, 1997; Pirolli, 2007) seeks to explain human 

information -seeking and information-usage behaviors, on the basis that information seekers are 

adaptive and rational, and will modify their strategies or the information structure in  the task 

environment to maximize information returns  from information -seeking activities. Two concepts in 

Information Foraging Theory, namely Information Patch and Information Scent, are used in the 

models Web User Flow by Information Scent (WUFIS; Chi, Pirolli, Chen & Pitkow, 2001), Scent-

based Navigation and Information Foraging in the ACT cognitive architecture 1.0 (SNIF-ACT 1.0; 

Pirolli & Fu, 2003) and SNIF-ACT 2.0 (Fu & Pirolli, 2007), to explain and predict goal-directed 

exploration of websites. In these models of Web exploration, information patch refers to individual 

webpages, sub-sites of webpages, or entire websites, between which users navigate. Information 



 

 

13  

13 

scent refers to the assessment of proximal cues, such as the text label of a link on the current 

webpage, on how likely the link will lead to webpages with information that satisfy the task. 

Information scent drives label-following behavior. 

WUFIS (Chi et al., 2001) models the probability distribution of users following each link on a 

webpage. These probabilities are based on the information scent of each link given the goal 

description, and are computed using Term Frequency by Inverse Document Frequency (TF.IDF), a 

common technique in statistical natural language processing. WUFIS represents these webpages, 

links and probabilities in a matrix , represents the goal in a vector, and simulates the flow of users 

through the website by iterative matrix multiplication . The matrix multiplication over entire 

webpages of links implements a global decision that optimally flow users through all links based on 

their  information scents. The outcome is a probability distribution of the webpages users are likely 

to end up in the website. However, its matrix representation and multiplication approach do not 

capture or consider the layout position of links on a webpage (Table 1: Layout Position), thus, may 

have the same problem as AutoCWW where model predictions may not match participant data at a 

more detailed level of analysis when layout matters. WUFIS is the underlying prediction model in 

the tool Bloodhound and Section 2.6 describes Bloodhound in detail. 

SNIF-ACT 1.0 (Pirolli & Fu, 2003) is the first of two process models of Web navigation based on 

Information Foraging Theory and implemented in the ACT-R cognitive architecture (Anderson & 

Lebiere, 1998; Anderson et al., 2004). SNIF-ACT 1.0 models the process of a user visiting a webpage, 

evaluating the links on the webpage, selecting a link to go to a new webpage, or going back to a 

previous webpage. On visiting a webpage, the infoscent of each link is computed using Pointwise 

Mutual Information (PMI), as an approximation to the spreading activation in human declarative 

memory when assessing inter-word relatedness. Each link on the webpage is represented by a 

production rule that if fired will select that link. All rules then compete and the rule with the highest 

utility (i.e. infoscent) fires. Through this process, SNIF-ACT 1.0ȭÓ assumes that all the links on a 

webpage get evaluated before the decision to globally select the best link (Table 1: Modeling 

Approach). The model does not capture the layout position of links, thus link selections are not 

influenced by layout position (Table 1: Layout Position). Fu and Pirolli (2007) further analyzed 

participant performance data and found that while the infoscent of a link predicted participaÎÔÓȭ 

choices better than the on-screen position of the link, participants did tend to select links located at 

the top of the webpage over those located at the bottom of the webpage. 

SNIF-ACT 2.0 (Fu & Pirolli, 2007) removes the assumption that all links get evaluated. In its place, 

SNIF-ACT 2.0 serially evaluates each link on the webpage and uses a Bayesian Satisficing process 

that adaptively decides when to stop evaluating links on a webpage and select the best one so far. 

This local decision to stop or continue is not fixed, but is dependent on the infoscent of the links 

that have been evaluated so far (Table 1: Modeling Approach). However in SNIF-ACT 2.0, the links 

on the webpage are encoded left-right then top-down into a linear list which the model evaluates 

serially. This ordering may not be appropriate for other UI layouts (Table 1: Layout Position, note 

[f]) . Fu and Pirolli (2007) ÎÏÔÅÄ ÔÈÁÔ Ȱ3.)&-ACT was developed at a level of abstraction that was not 

sensitive to different visual layouts of the webpageÓȱ (p. 400) ÁÎÄ ÔÈÁÔ Á ȰÔÈÅÏÒÙ ÏÆ ÁÔÔÅÎÔÉÏÎ 



 
14 

allocation as a function of different visual layouts is definitely important in predicting navigational 

behaviorȱ (p. 400). 

2.3.4 MESA 
Method for Evaluating Site Architectures (MESA; Miller & Remington, 2004) models the interaction 

between website architecture (the number of links per webpage and the depth of the website), 

quality of links (infoscent) and human cognition limitations (serial evaluation of links due to visual 

attention and limited working memory) . Like SNIF-ACT 2.0, MESA simulates the exploration 

process one step at a time. MESA is constrained to focus on and evaluate one link at a time to reflect 

the limitation  of human visual attention. MESA uses a threshold strategy where the model 

immediately selects the first encountered link with an infoscent that exceeds a fixed threshold 

value. The threshold strategy is combined with an opportunistic strategy that will  lower the 

threshold value if there are no links on the webpage that exceeds the original threshold value. The 

opportunistic strategy will  then scan the webpage again and select the first encountered link that 

exceeds the lower threshold value, or if none exceeds the threshold value, the model will back up to 

the parent webpage. To reflect limited human working memory, MESA does not remember all the 

threshold values it used as it traverses the webpages. This means that after the threshold value is 

lowered, the model will  henceforth select less relevant links as links get evaluated. 

-%3!ȭÓ serial evaluation process and cognitive limitations mean that later link selections and 

webpage visits depend on the links and webpages already visited. The current threshold value 

depends on what other webpages have already been visited on the exploration path and a lowered 

threshold value may result in additional links being selected. Miller and Remington specifically 

contrasted this local decision process of MESA to the global decision process of WUFIS (Table 1: 

Modeling Approach, note [d]) . However, -%3!ȭÓ ÆÏÃÕÓ És on site structure and not on the structure 

or layout of links in a webpage. -%3!ȭÓ ÒÅÐÒÅÓÅÎÔÁÔÉÏÎ ÏÆ ÔÈÅ 5) ÈÁÓ a fixed order in which links get 

evaluated for each run. Miller and Remington (2004) explained ÔÈÁÔ ȰMESA is neutral as to the 

actual order in which the links are ÅÖÁÌÕÁÔÅÄȱ ɉÐȢ ςσσɊ ÁÎÄ ÔÈÁÔ Ȱ-%3!ȭÓ ÒÅÐÒÅÓÅÎÔÁÔÉÏÎ ÅÓÔÁÂÌÉÓÈÅÓ 

a fixed order in which links are evaluated for each run. For our simulations, we can remove the 

effect of order by randomly ordering links for each run and then taking performance averages 

across many runsȱ (p. 234). The authors further  ÎÏÔÅÄ ÔÈÁÔ ÔÈÅÙ ȰÈÁÖÅ ÎÏÔ ÃÏÎÓÉÄÅÒÅÄ ÔÈÅ ÅÆÆÅÃÔ ÔÈÁÔ 

grouping or ordering links has on navigation timesȱ (Miller & Remington, 2004, p. 261) (Table 1: 

Grouping and Layout Position). Like AutoCWW and WUFIS, MESA does not capture or consider the 

layout position of links on a webpage, thus, may have the same problem as AutoCWW where model 

predictions may not match participant data at a more detailed level of analysis when layout 

matters. 

2.3.5 EXPLORATORY ACT AND NORMALIZATION ASSUMPTION 
Young (1998) and Young and Cox (2000) presented a rational analysis of explorator y choice 

framework that uses the concept of Explorator y Act (EA) to account for both free exploration to 

ÌÅÁÒÎ ÁÂÏÕÔ ÔÈÅ ÄÅÖÉÃÅȟ ×ÈÅÒÅ ÔÈÅ ÅÆÆÉÃÉÅÎÃÙ ÏÆ ÔÈÅ %! ÉÓ ÄÅÆÉÎÅÄ ÔÏ ÂÅ ÔÈÅ ÉÎÆÏÒÍÁÔÉÏÎ ÇÁÉÎ ɉЎ)Ɋ ÐÅÒ 

unit cost (C) of the act, and focused exploration to complete a particular  goal, where the efficiency of 

the EA is defined to be the probability (P) that it will lead to the goal (G) minus the cost (C) of 

getting to the goal. At each step in the exploration, the efficiencies of all the EAs possible at that 



 

 

15  

15 

moment are calculated and the EA with the highest efficiency gets selected and executed. This 

framework provides for both free and focused exploration to happen in an interleaved fashion. 

However, normalization between the two different efficiency computations was unresolved (Young 

& Cox; 2000) and not implemented (Cox & Young, 2004). 

A key assumption in the framework is that when an EA makes an assessment of the likelihood (i.e. 

infoscent) that an option will lead to the goal, the assessment is dependent on all the other 

assessments on other options that have been made. This normalization assumption implies that the 

infoscent of on-screen options that have been evaluated will affect the decision of whether to select 

an on-screen option or to continue to assess another option. While the normalization assumption is 

different from the Bayesian Satisficing processs in SNIF-ACT 2.0, the observable outcome from 

these two processes is that the models adaptively decides to continue evaluate another option or 

stop evaluating options based on the infoscent of options that have been evaluated so far. Thus, like 

SNIF-ACT 2.0, the exploration process is serial and based on local decisions. 

Based on this framework and its normalization assumption, Cox and Young (2004) and Brumby and 

Howes (2004) developed models to explain observed behavior in an experiment on menu 

exploration (Brumby & Howes, 2003), where participants were given an information search goal 

and asked to search a vertical menu of 16 items with  1 correct item and 15 distracters. Cox and 

YoungȭÓ model is implemented as a LISP program outside the confines of a cognitive architecture. 

The normalization assumption is implemented by simply normalizing each infoscent estimate over 

the sum of all estimates after an assessment or reassessment of a menu item. Brumby and Howesȭ 

model is implemented as an ACT-R model. Its normalization assumption is implemented using ACT-

2ȭÓ ÓÐÒÅÁÄÉÎÇ ÁÃÔÉÖÁÔÉÏÎ ÍÅÃÈÁÎÉÓÍ by (1) having a slot for each menu item in its ACT-R goal chunk, 

(2) updating the slot when its corresponding menu item gets evaluated and (3) utilizing ACT-2ȭÓ 

ÓÏÕÒÃÅÓ ÏÆ ÁÃÔÉÖÁÔÉÏÎ ÍÅÃÈÁÎÉÓÍ ÔÏ ȰÓÈÁÒÅȱ Á ÆÉØÅÄ ÔÏÔÁÌ ÁÍÏÕÎÔ ÏÆ ÓÏÕÒÃÅ ÁÃÔÉÖÁÔÉÏÎ through these 

slots to all declarative knowledge chunks associated with the menu items. The higher the activation 

of those knowledge chunks ÁÓÓÏÃÉÁÔÅÄ ×ÉÔÈ Á ÍÅÎÕ ÉÔÅÍȟ ÔÈÅ ÈÉÇÈÅÒ ÔÈÅ ÉÔÅÍȭÓ infoscent. 

Normalization takes place because the total amount of source activation is fixed. 

(Ï×ÅÖÅÒȟ ÉÎ ÂÏÔÈ #ÏØȭÓ ÁÎÄ "ÒÕÍÂÙȭÓ ÍÏÄÅÌÓȟ ÔÈÅ model is pre-configured with the number of items 

in the menu and that number is essential for the computations involved in the normalization. The 

authors did not offer a psychologically plausible explanation for how the model, and likewise the 

user, would know this number beforehand. 

2.3.6 DOI-ACT 
To investigate the interaction between infoscent and more complex on-screen layouts, Budiu and 

Pirolli (20 07) developed DOI-ACT, an ACT-R model of navigation in degree-of-interest (DOI) trees 

(Figure 4). Compared to the linear lists of options and the predominant top-to-bottom order of 

evaluation in SNIF-!#4 ςȢπȟ #ÏØȭÓ ÁÎÄ "ÒÕÍÂÙȭÓ models, the DOI tree lays out options (or nodes) in 

both dimensions on screen. The DOI-ACT model may attend to any group of nodes on the screen, 

although it still evaluates nodes within a group in a serial top-to-bottom order (Table 1: Layout 

Position, note [i]) . DOI-ACT has two main components: (1) a visual search component that parses 

the screen into visual groups and selects the most salient one to attend next, and (2) a semantic 



 
16 

component that examines the nodes in the most salient visual group and decides on which one to 

click. To better reflect the taxonomical organization of information in the DOI tree, DOI-ACT uses 

two measures of infoscent: category scent and similarity scent. Category scent measures how much 

the search goal is a member of the class denoted by the label of a node. Budiu and Pirolli collected 

category scent scores from human category ratings of 1760 word pairs via a Web questionnaire. 

Similarity scent is computed using PMI, as is the case in the SNIF-ACT models (Table 1: Information 

Scent, note [h]) . 

Each time the model wants to attend to a new visual group, a parallel process calculates the visual 

salience of each visual group on-screen and the one with the highest visual salience is selected. The 

visual salience function is composed of the following factors: 

¶ Horizontal distance (D) between the center of the group and the node last clicked 

¶ Number of descendants (N) of the node last clicked that are within the group 

¶ Category scent (S) defined as either an average of all category scents of previously visited 

nodes in the group, or, if no nodes were visited, the maximum category scent of all the 

parents for all the nodes in the group, and 

¶ Inhibition factor (I ) to reduce the salience of items that have been clicked recently so that 

the model has knowledge of what had been already visited and tend not to select the same 

groups over and over again 

The horizontal distance (D) factor in the salience function means that a group that is further away 

to the right side (positive direction) of the screen is more attractive. Budiu and Pirolli (2007) noted 

ÔÈÁÔ ÐÁÒÔÉÃÉÐÁÎÔÓȟ Ȱonce they are on the right path, using distance as the main factor is a strategy 

that optimizes the time to the solution (the farthest away descendants of the current node would 

need to be clicked to get to the solution most quickly)ȱ (p. 848). While this may be appropriate for 

Figure 4:  DOI-Tree Visualization (Budiu & Pirolli, 2007) 



 

 

17  

17 

the DOI tree layout in Budiu and Pirolli (2007), it may not be appropriate for other UI layouts in 

general (Table 1: Visual Search, note [g]) . Section 2.4.1 reviews eye-tracking experiments on other 

types of UI layout that found participants tended to fixate and attend on options nearest to the 

current point of visual attention. 

2.3.7 RESEARCH PROGRESSION IN PRIOR THEORIES AND MODELS 
As shown in Table 1: Scope of Exploratory Behavior, pioneering research (CE+, IDXL, 

LICAI+/CoLiDeS) seek to provide an account for a range of user exploratory behaviors, but may 

have been challenged to implement all the behaviors into a fully executable model (Table 1: Model 

Implementation). Evaluation was by qualitative comparison of the model to observed patterns of 

exploratory behavior. Subsequent research focused on label-following and visual search, and all 

were implemented as executable models. Evaluation of the later models was by quantitative 

comparisons of predictions from model runs to observed participant data. 

All the models reviewed have label-following driven by infoscent, and successive research work 

have identified different components that make up infoscent (Table 1: Label Following). Some 

related work used human ratings or had the modeler assign the infoscent values in the models, 

which was useful and sufficed for the development and testing of theory. Other related work 

developed and used computational methods, such as LSA and PMI, to automatically generate an 

engineering approximation of infoscent, which has been shown to predict label-following behavior 

(Table 1: Information Scent). The use of methods like LSA and PMI remove the assignment of 

infoscent values as a free parameter in the model, and have the potential to make tools like 

Bloodhound and AutoCWW usable for practitioners (Table 1: Tool for Practitioner). 

All the models reviewed use one of two modeling approaches, either a global evaluation of all 

available options and selection of the globally optimal choice, or a serial evaluation of available 

options and selection by local decision that may not be globally optimal (Table 1: Modeling 

Approach). The latter approach reflects the constraint of visual attention and the lower level visual 

search process during exploration, and is used by all the models that consider UI layout position 

(Table 1: Layout Position). In these models, the serial processing of options is accompanied by 

mechanisms to stop and make a selection (e.g. SNIF-!#4 ςȢπȭÓ "ÁÙÅÓÉÁÎ 3ÁÔÉÓÆÉÃÉÎÇȟ -%3!ȭÓ 

threshold value ÁÎÄ 9ÏÕÎÇȭÓ .ÏÒÍÁÌÉÚÁÔÉÏÎ !ÓÓÕÍÐÔÉÏÎ ÉÎ #ÏØȭÓ ÁÎÄ "rumbÙȭÓ ÍÏÄÅÌÓ). The serial 

evaluation of options may not necessarily evaluate all available options before a selection is made, 

therefore the order in which options get evaluated directly affects the selections made during 

exploration. 

The order of evaluation is dependent on visual search which is influenced by the layout and other 

visual properties of the UI, and by prior knowledge, strategies or preferences that the person may 

have. SNIF-ACT 2.0 and #ÏØȭÓ model include UI layout information  but the information consist of a 

linear list  of options in their on-screen spatial ordering (i.e. before-after) instead of their actual on-

screen positions (Table 1: Layout Position). "ÒÕÍÂÙȭÓ ÍÏÄÅÌ ÉÎÃÌÕÄÅs on-screen positions but the 

UI layout was a relatively simple one-dimensional vertical list of menu items. DOI-ACT has an 

accurate representation of the two-dimensional DOI tree UI but its visual search process assumes 

knowledge specific to the DOI tree UI layout and may not transfer to other UI layouts (Table 1: 



 
18 

Visual Search, note [g]) . The next two sections will  review relevant work in visual search and UI 

device models. 

2.4 VISUAL SEARCH 
Psychological research on visual search (see Wolfe, 1998 for a review) has identified numerous 

basic features (e.g. color, orientation, size and spatial frequency) that are available pre-attentively. 

While simple search targets could be identified pre-attentively (referred to as parallel search or 

efficient search), more complex targets with a conjunction of features have to be searched for and 

examined under attention (referred to as serial search or inefficient search). Pre-attentive bottom-

up processing (stimulus-driven local differences in features that ȰÐÏÐ-ÏÕÔȱ a visual object, and local 

similarities in features that group visual objects) and top-down processing (user-driven control  to 

limit  features and values, such as a certain color or orientation) guide the subsequent deployment 

of attention in visual search. 

2.4.1 ECCENTRICITY AND INHIBITION OF RETURN 
A factor that influences the deployment of visual attention is eccentricity. Targets take longer to 

locate as their distance from the current point of visual attention increases, which may be due to 

the decline of visual acuity in the periphery, and that it is simply a longer distance for the eye to 

travel. Assuming there is no privileged knowledge favoring certain on-screen objects (as there was 

in the case of DOI trees discussed in Section 2.3.6), the most efficient strategy will be to make the 

shortest possible shift. Rational human behavior to optimize search efficiency will tend to next look 

at nearby objects rather than objects further afield. 

Halverson and Hornof (2006; 2007) modeled the eye-tracking data of participants searching text 

labels in a two-dimensional layout on screen. Instead of following a prescribed visual search path as 

was in their earlier model (Hornof & Halverson, 2003; Hornof, 2004), the new model attends to the 

next label with the least eccentricity from its current point of visual attention. To account for 

human variability, a fluctuation factor (i.e. noise) is applied when the eccentricity of each on-screen 

object gets updated for a new eye position. Fleetwood and Byrne (2006) modeled the eye-tracking 

data of participants searching graphical icons in a two-dimensional layout on screen similar to 

those found in graphical UIs. Their  visual search model shifts attention to the next candidate icon 

nearest to the icon that is the current focus of visual attention, as was observed in their 

ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÅÙÅ-tracking data. 

Another factor that influences the deployment of attention is called ȰÉÎÈÉÂÉÔÉÏÎ ÏÆ ÒÅÔÕÒÎȱ ÉÎ ÔÈÅ 

visual search literature. Although empirical evidence for inhibition of return has been mixed and is 

not well understoodȟ 7ÏÌÆÅ ɉρωωψɊ ÁÒÇÕÅÄ ÔÈÁÔ ȰÖÉÓÕÁÌ ÓÅÁÒÃÈ ÍÏÄÅÌÓ ×ÉÔÈ Á ÓÅÒÉÁÌ ÓÅÁÒÃÈ 

component need to ask how attention ȬËÎÏ×Óȭ ×ÈÅÒÅ ÉÔ ÈÁÓ ÂÅÅÎȱ (p. 55) ÁÎÄ ȰÔÈÅÒÅ ÍÕÓÔ ÂÅ ÓÏÍÅ 

way to keep track of the loci and/or objects that have been examined and rejected in the course of a 

searchȱ (p. 55). Analysis of eye-tracking data of participants searching text labels (Halverson & 

Hornof, 2006; 2007) and graphical icons (Fleetwood & Byrne, 2006) showed that participants 

rarely fixate on an object more than once. Their  visual search models to explain participant  data 

implement inhibition of return:  the visual search proceeds withou t replacement, i.e after an on-

screen object has been visually attended and fully identified it will not be attended again.  



 

 

19  

19 

2.4.2 GROUPING 
The pre-attentive, bottom-up stimulus-driven processing of similarities in local features group 

visual objects. Wolfe (199ψɊ ÎÏÔÅÄ ÔÈÁÔ ȰÓeveral theories of search rely on grouping mechanisms to 

make conjunction search more efficientȱ (p. 51) ÁÎÄ ȰÍost grouping accounts suggest that search 

can be speeded by processing and rejecting distracters in groups rather than one at a timeȱ (p. 51). 

Wolfe (1998) concluded ÔÈÁÔ ȰÐrobably a truly satisfactory model of search will need low level 

grouping in addition to top-down and bottom-up selection processesȱ (p. 52). 

From analyzing eye-tracking data of participants searching graphical icons, Fleetwood and Byrne 

(2006) suggested that pre-attentive visual features like icon color and shape made up groups of 

icons, and participants constrained their search to within a group of icons that shared common 

features with the target icon, before moving to a further group that also shared common features 

with the target icon. Their ACT-R model of icon search uses the ACT-R vision module to pre-

attentively identify candidate icons that share features with the target icon. The group-based search 

behavior emerges from the model shifting attention to the next candidate icon nearest to the icon 

that is the current focus of visual attention, i.e. eccentricity coupled with common visual features 

led to group-based visual search. 

Hornof and Halverson (2003) had participants search for text labels in both labeled and unlabeled 

groups. Groups were spatially demarcated on screen and labeled groups had an additional on-

screen label next to the group. All labels were either three-letter words (e.g. BEG, MAX, RED) or 

three-letter pseudo-words (e.g. VIN, KEZ, ZIL) and randomly assigned to groups. In both conditions, 

participants were given the exact target label to search for, and in the labeled group condition, 

participants were also given the exact label of the group where the target label resided. Participants 

completed the search tasks in the labeled group condition faster than in the unlabeled group 

condition. The authors suggested that participants knew or learned to use the strategy of first 

searching for the given group label and then the target text label. (ÏÒÎÏÆȭÓ ɉςππτɊ ÍÏÄÅÌ ÏÆ ÔÈÅÓÅ 

visual search tasks employs such a strategy. 

Hornof (2004) explained that semantics was removed from the above text label search tasks by 

using those three-letter words and pseudo-words, and by randomly assigning labels on screen and 

into groups. Halverson and Hornof (2008) began to investigate the effect of semantic grouping on 

visual search by using meaningful group and text labels ɉÅȢÇȢ ȰÊÅ×ÅÌÒÙȱȟ ȰÁÎËÌÅÔȱȟ ȰÂÒÁÃÅÌÅÔȱȟ 

ȰÃÕÆÆÌÉÎËȱɊȟ varying the semantic cohesiveness of text labels within a group (cohesive versus non-

cohesive) and varying between using labeled versus unlabeled groups (see Figure 5). Participants 

were given the exact target label to search for but were not given the label of the group where the 

target label resided. The main result was that participants completed the search tasks faster when 

groups were cohesive. Halverson and Hornof suggested that participants may judge the semantic 

relevance of a cohesive group after evaluating one or a few labels in the group, and that enabled 

participants to discount and skip a group if the group was not semantically likely to contain the 

target label. In the non-cohesive group condition, it was not possible to discount a group in that way 

and participants had to evaluate the labels more exhaustively. 



 
20 

2.4.3 VISUAL SEARCH IN USER EXPLORATION 
Prior research has provided insight into the visual features and processes that guide visual search. 

Eccentricity, inhibition-of-return and grouping have been implemented in models and model 

predictions had good fits to eye-tracking data. However, most prior research had participants 

searching for exact known targets, which is less likely to be the case if the user is unfamiliar with 

the UI and exploring. Experimental results from Blackmon et al. (2005) and Halverson and Hornof 

(2008) showed that semantic grouping affects exploration task performance. More research is 

needed, but it is evident that both the positions and semantics of individual options, and the 

positions and semantics arising from organizing structures on screen, have an effect on exploration. 

For the visual search process to correctly consider layout position and grouping, the visual search 

must take place on an accurate representation of the UI being explored. The next section reviews 

research on UI device models. 

Figure 5:  An example layout with semantically cohesive groups, 
group labels and background color in Halverson and Hornof (2008) 



 

 

21  

21 

2.5 DEVICE MODELS 
There are two approaches in some prior research work : the human modeler (1) write s a software 

program that replicates the behavior of the UI being explored, or (2) fill s in software data 

structures with information about  the UI being explored. An example of the software program 

approach is IDXL, which implemented Ȱa minimal simulation of the Cricket Graph interface with 

which the model interactsȱ (Rieman et al., 1996, p. 756). The simulation reports to the model the 

menu item that is at a particular location in the menu system whenever the model directs its 

attention to that location. The simulation also responds to actions by the model, such as the 

selection of a menu item, and changes the simulation state to reflect that a sub-menu has appeared. 

An example of the data structure approach is LICAI+, where the modeler writes  propositions for 

each on-screen object in the Cricket Graph interface to capture information like text label, action 

afforded, etc. These propositions are then included in the integration process of LICAI+. These two 

approaches in IDXL and LICAI+ provide the modeler with complete control over the device model. 

The modeler can directly change the device model by rewriting software code or changing data 

values, which is convenient for modeling research. However, the software program approach 

requires sufficient knowledge of an additional programming or modeling language to create the 

simulation, and both approaches, especially the data structure approach, involve much manual 

effort on the part of the human modeler; both approaches are not practical for practitioner use. 

A third ÁÐÐÒÏÁÃÈ ÉÓ ÔÏ ÐÒÏÖÉÄÅ ÔÈÅ ÐÒÏÃÅÓÓ ÍÏÄÅÌ ȰÄÉÒÅÃÔȱ ÁÃÃÅÓÓ ÔÏ ÔÈÅ ÁÃÔÕal UI, by automatically 

translating the output from the actual UI into a representation accessible by the model, and 

translating the actions of the model into input on the actual UI. Simulated Hands and Eyes (SHE; 

Misker, Taatgen & Aasman, 2001) and Segmentation/ Manipulation (SegMan; Amant, Riedl, Ritter & 

Reifers, 2005) are two examples of this approach. The long-term goal is for the model to interact 

with the same actual UI that people interact with. Practitioners can then bring an actual software or 

device they want to test to the model ÁÎÄ ÕÓÅ ÔÈÅ ÍÏÄÅÌ ÌÉËÅ Á ȰÂÌÁÃË-ÂÏØȱȢ (Ï×ÅÖÅÒȟ SHE depends 

on software hooks into the actual UI and only works for software written in certain programming 

languages. SegMan uses image-processing techniques on screen-captures of the actual UI but 

sometimes failed to translate parts of the UI. 

A fourth  approach strikes a middle-ground between the first  two approaches and the third 

approach. The process model interacts with a simulated UI or access data records that represent 

the UI, but the simulated UI or data records are constructed automatically or semi-automatically 

prior to the running of the model. Bloodhound, the practitioner tool implementation of WUFIS 

(discussed in Section 2.6), automatically fills up its data matrix by crawling and parsing webpages 

from a given website. In CogTool, the practitioner can mock up the UI design by dragging and 

dropping standard UI widgets, such as buttons, menus and links, from a palette of widgets onto 

frames (Figure 6). A frame represents a display state of the UI, and interface actions such as a 

mouse button press or click on a widget can be specified by drawing transitions from that widget in 

its frame to another frame. CogTool automatically creates an ACT-R device model from a mockup of 

a UI design. The ACT-R device model is a program that simulates the UI that an ACT-R model can 

look at and interact with. 



 
22 

The first two approaches may be more efficient and work well in modeling research for theory 

development like in IDXL and LICAI+, but are too difficult and time-consuming for practitioners. 

The third approach is an attractive goal in the long term, but the automated translation currently 

either only works for some UIs or may mistranslate parts of the UI, thus, more research is needed. 

The third approach also makes testing UI redesigns potentially difficult  as it entails modifications to 

the UI of the actual software or device. The fourth approach requires less specialized technical 

knowledge and effort compared to the first two approaches, and provides the modeler or 

practitioner  the option to inspect and check the device model for correctness prior to running the 

model. In the case of CogTool, this approach makes it much easier to create and test UI redesigns by 

modifying the UI mockup instead of the actual software or device. 

Figure 6 : Mockup of a website UI design in CogTool. CogTool can convert the 
mockup into an ACT-R device model that an ACT-R model can interact with. 



 

 

23  

23 

2.6 MODELING TOOLS 
Automated Cognitive Walkthrough for the Web (AutoCWW; Blackmon et al., 2005) is a publicly 

available tool accessible on the Web3 to help practitioners analyze one or more webpages for 

difficultie s users may face during exploration of a website. AutoCWW draws its theoretical basis 

from CoLiDeS and uses LSA to compute engineering approximations of semantic similarity and 

familiarity  (Table 1: Modeling Approach, note [e], and Information Scent). To analyze a webpage, 

the practitioner  manually enters the text description of likely exploration goals, the heading labels 

of all sub-regions on the webpage and the text labels of all links on the webpage. The analyst then 

flags the correct link or links for each goal, sets up one or multiple analyses with different sets of 

parameters (e.g. different LSA semantic spaces for users of different reading levels, different text 

label elaborations, etc) and submits the analysis request to AutoCWW. AutoCWW analyzes the 

submitted goals, headings and links for potential problems by computing the LSA cosine, its 

measure of semantic similarity , between the text of the goal description and the text of each 

heading, and between the text of the goal description and the text of each link. AutoCWW also 

computes the LSA term vector length and frequency counts of the heading texts and link texts, to 

evaluate if the user, as represented by the selected LSA semantic space, has an adequate level of 

relevant background knowledge to be familiar with the headings and links (see Section 2.3.2 on 

CoLiDeSȭ ÆÉÖÅ ÆÁÃÔÏÒÓ ÔÈÁÔ ÃÏÍÂÉÎÅ ÔÏ ÍÅÁÓÕÒÅ ÔÈÅ ÁÔÔÒÁÃÔÉÖÅÎÅÓÓ ÏÆ Á ÌÁÂÅÌ). 

AutoCWW reports if the correct link or links on the webpage might be unfamiliar to the user 

(Unfamiliar Correct Link) or might be too semantically different from the goal to be chosen (Weak-

Scent Correct Link). AutoCWW reports if there are incorrect links that are semantically related to 

the goal and thus compete with the correct link. By analyzing the headings of sub-regions, these 

competing links may be nested under a correct or incorrect heading that is semantically related to 

the goal (Competing Link under Correct Heading or Competing Link under Competing Heading). 

AutoCWW regards a search goal that results in any link being reported with one or more of these 

problems as a goal With Problems, where users are more likely to have difficulties during 

exploration. From the number and types of problematic links identified on a webpage for a 

particular search goal, AutoCWW predicts the mean number of link clicks users will make to select 

a correct link on that webpage for that search goal. AutoCWW assembles the analysis results in 

Microsoft Excel spreadsheets and emails the spreadsheets to the practitioner. 

Bloodhound (Chi et al., 2003) is a Web-based tool to predict the percentage of users that will reach 

the target webpage and be successful in exploration, and the ranking of webpages that users are 

most likely to visit when exploring a website with a search goal. Unlike AutoCWW, Bloodhound4 is 

not publicly available but is available for licensing. Bloodhound provides a Web-based UI for 

practitioners to run WUFIS, which models the probability distribution of an arbitrary number of 

users following each link on a webpage (Section 2.3.3 describes how WUFIS works). To use 

Bloodhound, the analyst submits the Web address of the webpage where exploration starts 

                                                             
3 Accessed on January 17, 2011 at http://autocww.colora do.edu/~brownr/ACWW.php  

4 Retrieved on January 17, 2011 from 

http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm  



 
24 

(exploration is limited to the webpages under the same domain as the starting Web address), the 

keywords of one or multiple search tasks and the Web address of the target webpage for each of the 

tasks. Bloodhound uses this information to setup the data matrix in WUFIS and runs the model. 

Bloodhound then displays a webpage that reports the average success rate (percentage of users 

predicted to find the target webpages) over all the search tasks, the success rate for each task, and 

the webpages that were most often visited over all the search tasks. 

Both AutoCWW and Bloodhound provide a UI for practitioners to enter the necessary information 

to setup an analysis or model run, and generate predictions of exploration task performance. Both 

return their predictions in a format that is accessible to the practitioner: spreadsheets from 

AutoCWW and a webpage of results from Bloodhound. Besides AutoCWW and Bloodhound, the rest 

of the models reviewed were not further developed into tools for practitioner use (Table 1: Tool for 

Practitioner) . Setting up, running and extracting prediction results from those models typically 

involve software programming, manipulating data formats and managing multiple files, activities 

that are tedious but acceptable for a modeling researcher, but not practical for a HCI practitioner. 



 

 

25  

25 

3 RESEARCH GAPS 
Table 1 summarizes the review of prior related  work  presented in Section 2. Inspecting the table 

reveals seven research gaps as indicated by the seven columns with a majority of white cells. There 

is a lack of further research on the Goal Formation, Learning and Interface Action aspects of 

exploratory behavior (see these columns in Table 1) after LICAI+/CoLiDeS. This dissertation does 

not seek to address these three research gaps, which are orthogonal to the research focus of this 

dissertation and can be topics for future work. The next research gap in Visual Search ties in with 

and is "manifested" through the two research gaps in Layout Position and Grouping, in terms of 

how visual search over layout position and grouping on screen affect user exploration. Finally, 

there is the research gap from the scarcity of work in developing Tools for Practitioners . 

Table 1 also reveals that automated methods to compute the infoscent scores (present in 7 out of 

13, Table 1: Information Scent) that drive label-following (present in 13 of 13, Table 1: Label-

Following) have been progressively developed and successfully used in a number of prior models 

and tools. This dissertation does not seek to advance the state-of-the-art in algorithms to compute 

the infoscent scores that drive label-following. Instead, this dissertation will utiliz e a proven 

method like LSA to control for the semantic component of the model while developing the visual 

search, layout position and grouping components of the model. 

This dissertation focuses on the research gaps in Visual Search, Layout Position, Grouping and Tool 

for Practitioner. Sections 3.1 and 3.2 will address Layout Position and Grouping in conjunction with 

Visual Search. Section 3.3 will address Tool for Practitioner. 

3.1 CONSIDERATION OF LAYOUT POSITION 
Only 4 out of the 13 prior related works consider the effect of layout position in conjunction with 

visual search on user exploration (Table 1: Visual Search and Layout Position). Visual search over 

layout position in IDXL and SNIF-ACT 2.0 serially evaluates on-screen options based on their spatial 

ordering (i.e. before-after) instead of their actual on-ÓÃÒÅÅÎ ÐÏÓÉÔÉÏÎÓȢ "ÒÕÍÂÙȭÓ ÍÏÄÅÌ ÕÓÅÓ ÏÎ-

screen positions but the UI layout was a relatively simple one-dimensional vertical list of menu 

items. DOI-ACT includes a more complex two-dimensional UI layout but its visual search assumes 

knowledge specific to the DOI tree UI layout and prefers to shift visual attention further afield to the 

right , which is different from the eccentricity heuristic favored by other models of visual search 

(Fleetwood & Byrne, 2006; Halverson & Hornof, 2006; 2007; Halverson, 2008) and may not be 

appropriate for other UI layouts in general. DOI-ACT further assumes top-down visual search over 

the nodes within a group. In modeling tools, both Bloodhound and AutoCWW do not capture the 

layout of the UI. Their global evaluation processes, inherited from WUFIS and CoLiDeS respectively, 

are neutral to the order in which a person would evaluate the options on the UI. 

However, the layout position of options in a UI may affect the exploration choices actually made, 

because a user is not likely to choose an option that he or she did not look at and evaluate, and 

competing options seen before the correct option might be chosen instead. Figure 7 illustrates this 

with an actual webpage from AutoCWW Experiment 2 (Blackmon et al., 2002), and a modified 

version of the same webpage. Assuming a predominant left-to-right visual scan pattern, the 

expectation is that participants would be more likely to click on the correct link if it appeared in the 



 
26 

left column than if it appeared in the right column. If true, this is significant because a user clicking 

on an incorrect link can increase the number of interaction steps and time spent exploring the 

wrong branches in a large and complex website.  

To investigate the effect of layout position, a further analysis of AutoCWW Experiment 2 was done 

as part of this dissertation (Teo and John, 2008, reproduced in detail here). The experiment 

webpages are publicly accessible on the Web and Dr. Marilyn Blackmon generously shared the 

participant log files with us. The experiment had 64 search tasks, 32 of which were attempted on a 

webpage with 32 links in two 16-link columns (Figure 7). Each task was successfully performed by 

22 or 23 participants. We analyzed only the 22 tasks for which AutoCWW judged the correct link to 

be semantically related to the goal, reasoning that if the user could not recognize that the correct 

link as related to the goal, then its position on the webpage would not matter. 

Figure 8 shows the analysis by column position of the correct link on the webpage for the two 

performance measures reported in the AutoCWW experiments: the number of clicks performed on 

the webpage, where the last click was on the correct link (mean clicks on webpage), and the 

percentage of trials where the first click on the webpage was on the correct link (percent first click 

success). Although these measures are highly (negatively) correlated, they represent two subtly 

different usability concerns. Mean clicks is important if a design team has data suggesting that users 

will be willing to explore a bit, but will leave the website if it takes too long to find what they want. 

Percent first click success is important if a usability requirement is expressed as a certain 

Figure 7:  A search goal and webpage used in AutoCWW Experiment 2 (Blackmon et al., 2002). 
%ÁÃÈ ÓÅÁÒÃÈ ÇÏÁÌ ÈÁÄ ÏÎÅ ÃÏÒÒÅÃÔ ÌÉÎË ÏÎ ÔÈÅ ×ÅÂÐÁÇÅȢ 4ÈÅ ÃÏÒÒÅÃÔ ÌÉÎË ÆÏÒ ÔÈÅ ÇÏÁÌ Ȱ#ÁÎÏÎ ÌÁ×ȱ 
ÉÓ Ȱ4ÈÅÏÌÏÇÙ Ǫ 0ÒÁÃÔÉÃÅÓȱȢ !ÕÔÏ#77 ÉÄÅÎÔÉÆÉÅÄ ÌÉÎËÓ Ȱ2ÅÌÉÇÉÏÕÓ &ÉÇÕÒÅÓȱ ÁÎÄ Ȱ2ÅÌÉÇÉÏÎÓ Ǫ 
2ÅÌÉÇÉÏÕÓ 'ÒÏÕÐÓȱ ÁÓ ÃÏÍÐÅÔÉÎÇ ÌÉnks that are also semantically related to the goal. The left 
picture shows the original layout. The right picture shows a modified layout with links 
Ȱ4ÈÅÏÌÏÇÙ Ǫ 0ÒÁÃÔÉÃÅÓȱ ÁÎÄ Ȱ2ÅÌÉÇÉÏÕÓ &ÉÇÕÒÅÓȱ Ó×ÁÐÐÅÄȢ 4ÈÅ ÈÙÐÏÔÈÅÓÉÓ ÉÓ ÔÈÁÔ ÕÓÅÒÓ ×ÏÕÌÄ ÂÅ 
more likely to click on the correct link in the modified layout than in the original layout. 



 

 

27  

27 

percentage of users achieving their goals without error. Since these measures are different, we 

carry them through our analysis. 

Participants indeed made significantly fewer clicks when the correct link was in the left column (M 

= 1.12 clicks, SD = 0.13) than in the right column (M = 1.38 clicks, SD = 0.15) (F (1, 20) = 19.0, p < 

0.01). They also had a significantly higher percent first click success when the correct link was in 

the left column (M = 90.4, SD = 7.9) than in the right column (M = 66.4, SD = 19.6) (F (1, 20) = 16.0, 

p < 0.01). These results support our hypothesis and suggest a predominant left-to-right visual scan 

pattern as was also found in eye-tracking studies of visual search in similar text layouts with 

participants from a similar culture (Halverson & Hornof, 2006; 2007). 

We wanted to find out if existing models would be able to predict this effect of layout position on 

participant task performance. The obvious choices were the two modeling tools, AutoCWW and 

Bloodhound, as that meant we could readily generate predictions from these models as intended by 

their authors. Unfortunately, Bloodhound5 is not publicly available. There are 5 other prior related 

works that consider layout (Table 1: Layout Position), however, IDXL is not a fully executable 

model; ÂÏÔÈ #ÏØȭÓ ÁÎÄ "rumbÙȭs models performed exploration in a one-dimensional list of menu 

items but did not describe how their models should explore a two-dimensional layout; the details of 

the algorithm that determines and pre-encodes the sequence of link evaluations in SNIF-ACT 2.0 

were not available; and DOI-ACT assumes knowledge specific to the DOI tree UI layout and uses 

human ratings for category scent scores. Thus, we could not readily create and run these models to 

generate predictions. Although AutoCWW does not consider layout position, we went ahead and 

submitted these tasks to AutoCWW and compared its predicted mean clicks on webpage by column 

position of the correct link. 

We entered the paragraph of text under the line Ȱ)ÔÅÍ ÔÏ ÆÉÎÄȱ ÁÓ ÔÈÅ ÇÏÁÌ statement (see top of 

Figure 7), and entered the 2-column webpage of 32 links as 16 links under 2 sub-regions. 

AutoCWW is designed to work with regions that have heading text, but the columns did not have 

heading text. Therefore, we entered the goal text as the heading text for both columns, thus, both 

                                                             
5 Retrieved on January 17, 2011 from 

http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm  

Figure 8:  0ÁÒÔÉÃÉÐÁÎÔÓȭ ÍÅÁÎ ÃÌÉÃËÓ ÏÎ ×ÅÂÐÁÇÅ ÁÎÄ ÐÅÒÃÅÎÔ 
first click success by target column (Standard error shown) 



 
28 

columns were judged by AutoCWW as being related to the goal and all links were eligible to 

compete. We set AutoCWW ÔÏ ÕÓÅ ÔÈÅ Ȱ'ÅÎÅÒÁÌͺ2ÅÁÄÉÎÇͺÕÐͺÔÏͺρÓÔͺÙÅÁÒͺÃÏÌÌÅÇÅ ɉσππ ÆÁÃÔÏÒÓɊȱ 

semantic space, and then set AutoCWW to do the default full elaboration on the link texts because 

the original link texts are short, but to do no elaboration on the heading texts because the columns 

are not semantic or categorical groupings of the links. For each task, AutoCWW predÉÃÔÅÄ ÔÈÅ ÔÁÓËȭs 

mean clicks on webpage. 

As expected, AutoCWW did not predict any significant difference between search tasks with the 

correct link in the left column compared to in the right column (F (1, 60) = 0.16, p > 0.05). There are 

two reasons why AutoCWW did not predict the difference in ÐÁÒÔÉÃÉÐÁÎÔÓȭ ÐÅÒÆÏÒÍÁÎÃÅȢ 4ÈÅ ÆÉÒÓÔ is 

that the information requested by AutoCWW about sub-regions and links within sub-regions does 

not contain any layout position, so essential information is lacking (Table 1: Layout Position). The 

second reason is that the AutoCWW analysis globally evaluates all sub-regions and links base on 

information scent alone (Table 1: Modeling Approach, note [e]). The analysis does not consider 

layout position information , which is not available in the first place. 

We did not submit these tasks to Bloodhound because it is not readily available. Like AutoCWW, the 

webpage and link information that Bloodhound captures does not contain layout position 

information. Bloodhound also globally evaluates all links on a webpage and flow the probability 

ÄÉÓÔÒÉÂÕÔÉÏÎ ÏÆ ÕÓÅÒÓ ÏÐÔÉÍÁÌÌÙ ÄÏ×Î ÅÁÃÈ ÌÉÎË ÂÁÓÅÄ ÏÎ ÔÈÅ ÌÉÎËȭÓ infoscent. Therefore, we also 

expect Bloodhound would not predict this effect. 

This further analysis of AutoCWW Experiment 2 showed that layout position matters in goal-

directed user exploration but is not predicted if existing models and tools lack a device model with 

layout position information and an evaluation process that uses layout information. To address this 

research gap: 

This dissertation integrates information scent with a visual search process and an 

accurate representation of the UI layout, in a model of goal-directed user exploration. 

3.2 CONSIDERATION OF GROUPING 
Groups in the UI can arise from proximity, color, density, etc. For example, experiments by 

Blackmon et al. (2002, 2003 and 2005) and Halverson and Hornof (2008) had groups demarcated 

by proximity  and color (Figures 2 and 5). Analysis of experimental results by Blackmon at el. 

(2005), Kitajima at el. (2007) and Halverson and Hornof (2008) suggested that the infoscent and 

the grouping of on-screen options affect exploration task performance. 

Only 3 out of the 13 prior related works consider the effect of grouping on user exploration (Table 

1: Grouping). CoLiDeS and AutoCWW do consider grouping, but the groups lacked layout position 

inform ation and are globally evaluated and selected based solely on highest infoscent in the UI 

(Table 1: Grouping and Layout Position). DOI-ACT defines groups based on the vertical proximity 

betwÅÅÎ ÎÏÄÅÓȟ ÃÏÎÓÉÄÅÒÓ ÔÈÅ ÇÒÏÕÐÓȭ layout positions, and uses a serial evaluation and local 

decision process. However as mentioned earlier, its visual search assumes knowledge specific to 

the DOI tree UI layout and prefers to shift visual attention further afield to the right, which is 



 

 

29  

29 

different from the eccentricity heuristic favored by other models of visual search and may not be 

appropriate for other UI layouts in general. 

Grouping affects user exploration and more research is needed to include groups as a factor in 

modeling goal-directed user exploration. The approach in this dissertation is for the human 

modeler to define the groups and provide the group information  to the exploration model, which is 

the same approach taken by Blackmon et al. (2002, 2003, 2005), Halverson and Hornof (2006, 

2007, 2008), and in DOI-ACT. This allows research on how groups affect user exploration to 

progress in parallel with other psychological research on how groups are formed and recognized. 

To address this research gap: 

This dissertation integrates information scent with a hierarchical visual search 

process and an accurate representation of the UI layout that includes grouping, in a 

model of goal-directed user exploration. 

3.3 IMPLEMENTATION AS A TOOL 
Only 2 out of the 13 prior related works implement the research models into tools for practitioner 

use (Table 1: Tool for Practitioner). One approach to speed up this process is to integrate the model 

into an existing modeling tool that has demonstrated success in reducing the effort required of a 

practitioner . One such tool is CogTool (John at el., 2004). CogTool provides facilities for a 

practitioner to create, save and modify a mockup of a UI design, features which are absent from 

AutoCWW and Bloodhound. CogTool includes a model of skilled task performance time, based on 

the Keystroke Level Model (KLM; Card, Moran & Newell, 1980; 1983), and implemented in the ACT-

R cognitive architecture. CogTool automatically creates a KLM when the practitioner demonstrates 

a sequence of interaction steps on the UI mockup, and automatically inserts Mental Operators into 

the KLM, which has been an error-prone step for practitioners. CogTool then executes the KLM 

ACT-R model and presents the predicted task performance times to the practitioner in various 

visualizations, for the practitioner to compare between UI designs and improve the designs for 

better task performance. 

To efficiently make the model of goal-directed user exploration available to the rest of the HCI 

community: 

This dissertation implements the model of goal-directed user exploration as part of 

CogTool. 

The advantage of this approach compared to building a separate new tool is that the existing 

facilities in CogTool that are common to both the KLM and the goal-directed user exploration 

model, such as the ability to mockup a UI design with layout position information, do not have to be 

re-implemented. Tool development effort can focus on adding to CogTool the new facilities that are 

required by the user exploration model, such as the generation of infoscent scores and the 

specification of groups in the UI design. Another advantage is that the new model of goal-directed 

user exploration can reach out quickly to the existing group of CogTool users, and these users can 

benefit from the increased capabilities of CogTool to make predictions of both skilled and 

exploratory behavior on the same UI mockup. 



 
30 

For ease of reference, the new model of goal-directed user exploration developed in this 

dissertation and the additions made to CogTool to integrate and support the new model shall be 

referred to as CogTool-Explorer. 



 

 

31  

31 

4 COGTOOL-EXPLORER 
Section 3 presented the three research gaps in modeling goal-directed user exploration that are the 

focus of this dissertation: (1) consideration of layout position, (2) consideration of grouping and (3) 

implementation as a tool. Section 4 presents CogTool-Explorer, a solution researched and 

developed in this dissertation to address these gaps. In particular, Section 4.1 presents modeling 

work done in CogTool-Explorer 1.0 to address the first research gap in consideration of layout 

position. Section 4.2 presents further modeling work done in CogTool-Explorer 1.1 and CogTool-

Explorer 1.2 to address the second research gap in consideration of grouping. Section 4.3 presents 

design and implementation work done to integrate CogTool-Explorer 1.2 into CogTool, to address 

the third research gap in implementation as a tool. Overall, the modeling, analysis and development 

work  leading up to CogTool-Explorer 1.2 provide support for the thesis of this dissertation 

presented in Section 1.1. 

Figure 9 presents an overview of CogTool-Explorer. Items in white background indicate 

components and external resources that existed prior to this dissertation, and are used by CogTool-

Figure 9:  Overview of CogTool-Explorer. White background indicates 
pre-existing components and external resources. Light blue indicates 
new or refined components contributed by this dissertation. 



 
32 

Explorer. Items in blue indicate the new work that was done in this dissertation. 

CogTool-Explorer consists of a model of goal-directed user exploration implemented in the ACT-R 

cognitive architecture (region M). The model simulates a user (region U) with an exploration goal 

and semantic knowledge exploring the UI of a device (region D). The model serially evaluates the 

infoscent of on-screen widgets in the device (in region D) guided by its visual search process and 

knowledge about grouping (in region U). When the model chooses a widget in the UI, the device 

model will update the UI with the next frame and its widgets specified by the transition in response 

to the interface action on the widget. This cycle continues until the exploration goal is met or time 

allowed for the model to run is up. This exploration takes place on a device model that accurately 

represents the UI of the actual device. 

The CogTool-Explorer model is implemented as part of CogTool for use by practitioners (region T). 

In CogTool-Explorer, a practitioner can automatically or manually create the device model that 

represents the UI of the actual device (lower left of region T), automatically extract the text labels of 

widgets from the device model and retrieve infoscent scores based on the widget labels and the 

goal description from an external database (upper left of region T), setup the CogTool-Explorer 

model and specify model parameters (upper right of region T), and run the model to get predictions 

of likely exploration paths (lower right of region T). In the course of developing CogTool-Explorer, 

the model will be evaluated by comparing its predictions to data collected from participants 

performing the same exploration tasks. 

4.1 CONSIDERATION OF LAYOUT POSITION 
Following the analysis of participant data from the two-column layout described in Section 3.1, we 

developed the first CogTool-Explorer model (renamed CogTool-Explorer 1.0 in this dissertation) to 

consider both infoscent and layout position to make more accurate predictions of goal-directed 

user exploration (Teo & John, 2008, reproduced in detail below). CogTool-Explorer 1.0 integrates a 

serial evaluation model, with a visual search process and a UI device model that preserves layout 

positions. These are the three necessary components to consider layout position and CogTool-

Explorer 1.0 uses them all successfully to make more accurate predictions.  

4.1.1 ADD PERCEPTUAL-MOTOR BEHAVIOR 
CogTool-Explorer 1.0 uses the SNIF-ACT 2.0 model to serially evaluate links on the page one at a 

time. The model evaluates the linkȭÓ ÉÎÆÏÓÃÅÎÔ with respect to the goal, remembers the link as the 

best link if it has the highest infoscent so far in the page, and then decides to either choose the best 

link seen so far in the page, or continues to look at and read another link. Each action is associated 

with an ACT-R production and the production with the higher utility is chosen. CogTool-Explorer 

1.0 uses the same utility update equations as SNIF-ACT 2.0 (see 8: Utility equations in Fu & Pirolli, 

2007) to update the utilities associated with these two productions every time after a link is 

evaluated and then decides which action to take: 



 

 

33  

33 

 

ReadAnother:          [Eq. 1] 
 
 
ChooseBest:           [Eq. 2] 

 

Fu and Pirolli (2007) explained: 

U(n) represents the utility of the production at cycle n, and U(n+1) represents the 

updated utility of the production at cycle n+1, IS(link) represents the information 

scent of the current attended link, N(n) represents the number of links attended on 

the Web page at cycle n, IS(Best Link) is the highest information scent of the links 

attended on the Web page, k is a scaling parameter. (p. 380) 

Since the model may not evaluate all links on a webpage before making a selection, the order in 

which links are evaluated has a direct effect on its predicted exploration choices. However, the 

original SNIF-ACT 2.0 model did not move a simulated eye and evaluate links in an order that 

reflected how links may be looked at in a webpage, instead it  used webpage and link information 

collected by Bloodhound, encoded the links directly into ACT-R declarative memory chunks and 

ȰÌÏÏËÅÄ ÁÔȱ links by retrieving them from declarative memory (Fu, W.-T., personal communication, 

September 18, 2006). In CogTool-Explorer 1.0, we modified the SNIF-ACT 2.0 model with new 

model code to implement the perceptual and motor actions of looking at links on the webpage and 

clicking on the selected link during a model run, and modified the support code to use alternative 

computations of infoscent besides the original PMI function. The selection of an infoscent function, 

and values for several model parameters, will be discussed in Section 4.1.5 about our test of 

CogTool-Explorer 1.0. 

4.1.2 ADD A VISUAL SEARCH STRATEGY 
To guide the newly added perceptual-motor actions in CogTool-Explorer 1.0, we further modified 

the SNIF-ACT 2.0 model to add a visual search strategy based on the Minimal Model of Visual Search 

(Halverson & Hornof, 2007). The visual search strategy is implemented in the ACT-R vision module 

augmented with the EMMA model of visual preparation, execution and encoding (Salvucci, 2001). 

This strategy starts in the upper-left corner of an accurate representation of the webpage 

(described in Section 4.1.3) and proceeds to look at the link nearest ÔÏ ÔÈÅ ÍÏÄÅÌȭÓ ÃÕÒÒÅÎÔ ÐÏÉÎÔ ÏÆ 

visual attention (xy-coordinates), ×ÈÅÒÅ ȰÎÅÁÒÅÓÔȱ ÉÓ subjected to a fluctuation factor. CogTool-

Explorer 1.0 uses the same fluctuation factor as Halverson and Hornof (2007), which is the normal 

distribution with a mean of 1 and a standard deviation of 0.3. CogTool-Explorer 1.0 maintains its 

point of visual attention when the page changes, and exhibits inhibition of return by performing  the 

visual search without replacement, that is, on visiting a page, each link may be looked at and 

evaluated by the model at most once, However, in a later visit  to the same page, those links may be 

looked at and evaluated again. Eye-tracking studies and modeling by Halverson and Hornof (2006, 

2007) found that such a strategy explained for 59% of all systematic eye-scan patterns in their 

visual search experiments of similar text layouts. 



 
34 

4.1.3 PRESERVE LAYOUT POSITION 
For CogTool-Explorer 1.0 to correctly consider the order of serial evaluation, the model must 

interact with  an accurate device model of the webpage. CogTool-Explorer 1.0 leverages the ability 

of CogTool to accurately represent a UI design, in particular the on-screen position, dimension and 

text label of every link on the webpage (Figure 6). Earlier versions of CogTool-Explorer required 

webpages to be mocked up by hand. To automate this process, we implemented in CogTool-

Explorer 1.0 the ability to crawl and submit a list of URLs to WebRender (Reeder, Pirolli & Card, 

2001), a webpage rendering tool, to render and extract the position, dimension, text and target URL 

of each link fro m the actual webpage (later versions of CogTool-Explorer, from CogTool-Explorer 

1.0a onwards in Section 4.2.1.3, use the open source XULRunner instead of the proprietary 

WebRender, and further streamlined and automated the process; Section 4.3.1 describes this in 

more detail). CogTool-Explorer 1.0 then assembles this information into the format that can be 

imported into CogTool to automatically create an accurate UI mockup of all these webpages and 

links. CogTool then converts this mockup into an ACT-R device model, with which the CogTool-

Explorer 1.0 model can interact. 

4.1.4 OPERATION OF COGTOOL-EXPLORER 1.0 
Figure 10 illustrates an example run of the CogTool-Explorer 1.0 model in the two-column layout. 

Given ÔÈÅ ÄÅÓÃÒÉÐÔÉÏÎ ÏÆ ÔÈÅ ÅØÐÌÏÒÁÔÉÏÎ ÇÏÁÌ Ȱ#ÁÎÏÎ ,Á×ȱ ɉparagraph of text ÕÎÄÅÒ Ȱ)ÔÅÍ ÔÏ ÆÉÎÄȱ ÁÔ 

the top of the webpage) and at least one visible link on the current page (underlined text labels), 

CogTool-Explorer 1.0ȭÓ point of visual attention starts in the top-left corner of the page (step 1) and 

moves its visual attention to the link  Ȱ0ÅÏÐÌÅ ÉÎ ÔÈÅ 5ÎÉÔÅÄ 3ÔÁÔÅÓȱ ÎÅÁÒÅÓÔ ÔÏ ÉÔÓ ÃÕÒÒÅÎÔ ÐÏÉÎÔ ÏÆ 

visual attention (step 2a), ÅÖÁÌÕÁÔÅÓ ÔÈÅ ÌÉÎËȭÓ infoscent with respect to the exploration goal (step 

2b) and remembers the link as the best link if it has the highest infoscent so far in the page. The 

model may then decide to look at and evaluate another link ɉȰ-ÕÓÉÃÉÁÎÓ ÁÎÄ #ÏÍÐÏÓÅÒÓȱȟ Ȱ4ÈÅÏÌÏÇÙ 

ÁÎÄ 0ÒÁÃÔÉÃÅÓȱ, etc, in step 2c) or it may decide to select the best link seen so far in the page (step 3). 

When CogTool-Explorer 1.0 decides to select the best link, it  will look back at the best link 

Ȱ4ÈÅÏÌÏÇÙ ÁÎÄ 0ÒÁÃÔÉÃÅÓȱ, move a simulated mouse pointer over the link and click on it (step 4). In 

response to the clickȟ ÔÈÅ ÄÅÖÉÃÅ ÍÏÄÅÌ ÆÏÌÌÏ×Ó ÔÈÅ ÌÉÎËȭÓ ÔÒÁÎÓÉÔÉÏÎ ÔÏ ÔÈÅ next page, bringing the 

new links into the visual field of the model. Each run of the model can be different because of noise 

in the model, thus, the path of the model on each run is analogous to predicting the exploration 

choices of a single human trial. 

4.1.5 TEST OF COGTOOL-EXPLORER 1.0 
We compared the participant  data from the 22 tasks in the two-column layout to predictions by 

CogTool-Explorer 1.0 and by AutoCWW. As explained in Section 3.1, although AutoCWW does not 

consider layout position, there were no models that do consider layout position available to test 

against, thus, we wanted to check that CogTool-Explorer 1.0 performed at least as well as 

AutoCWW. We first directed CogTool-Explorer 1.0 to import the actual webpages used in that 

experiment and automatically create the device model. To be as comparable as possible to the 

AutoCWW analysis, we set CogTool-Explorer 1.0 to use the same LSA values of infoscent as 

AutoCWW used when it evaluated the links. Because those LSA values were from -1 to +1, with 

links related to the goal on the order of +0.5, whereas the original SNIF-!#4 ςȢπȭÓ infoscent values 



 

 

35  

35 

for the same links were on the order of +25, we scaled the LSA values by a factor of 50 to be useable 

with CogTool-Explorer 1.0. 

4ÈÅ ÍÏÄÅÌȭÓ local decision to stop and select the best link so far or continue to look at another link 

is not fixed, but is dependent on the infoscent of the links that have been evaluated so far, and 

moderated by parameters t and k. t is the variance of the ACT-R noise function that is applied to the 

infoscent value each time a link is evaluated, to reflect the variability a user might display when 

accessing infoscent. k (see Eq. 2) affects how rapidly the decision to stop switches as a function of 

the infoscent values encountered, to reflect a userȭÓ ȰÒÅÁÄÉÎÅÓÓȱ ÔÏ stop and select the best link. Fu 

and Pirolli (2007) explained: 

In the equation specified in the text, we set a = 1 for the read-next-link production; 

and a = 1 + k for the click-link production. By setting the value of a for click-link to a 

higher value, we assume that in general, following a link is more likely to lead to the 

target page than attending to the next link on the same Web page. k is a free 

parameter that we used to fit the data. (p. 408) 

The choice of k may be partly influenced by the layout of links on the page. For example, on a query 

search results webpage, k would be smaller to reflect a higher readiness to stop since the most 

related links appear near the top of the webpage. If the layout of links is not organized, k would be 

larger to reflect a lower readiness to stop since the correct link might be anywhere on the webpage. 

Figure 10:  An example run of CogTool-Explorer 1.0 in the two-column layout. 








































































































































































































































































































