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ABSTRACT

Designing userinterfaces so that firsttime or infrequent users can accomplish their goals by
exploration has been an enduring challenge irluman-Computer Interaction. Iterative usertesting

is an effective but costly method to develop useinterfaces that support use though exploration. A
complementary method is to use modeling tools that can generate predictions of user exploration
given a userinterface and a goal description.

Recent computational models of goadlirected user exploration have focused on predicting user

exploration of websites and demonstrated how predictions can inform useinterface design. These
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choice is partly determined by the semantic relevance between th® OA 06 O Cci1 A1 AT A OE.
presented in the userinterface. However, in addition to information scent, other factors including

the layout position and grouping of options in the useinterface also affect user exploration and the

likelihood of success.

This dissertation contributes a new model of goatirected user exploration, called CogToel
Explorer, which considers the layout position and the grouping of options in the usénterface in
concert with a serial evaluation visual search process and informiain scent. Tests show that
predictions from CogTootExplorer match participant data better than alternative models that do
not consider layout position and grouping. This dissertation work has also integrated the CogTeol
Explorer model into an existing moaling tool, called CogTool, making it easier for other
researchers and practitioners to setup and generate predictions of likely user exploration paths and
task performance using CogToeExplorer.
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Figure 1: The Cicket Graph menu interface (from Rieman et al., 1996)

Figure 2: Example of a main webpage layout in Blackmon et al. (2002; 2003; 2005)
Figure 3: Example of a 2level hierarchy layout in Blackmon et al. (2002; 2003; 2005)
Figure 4: DOFTree Visualzation (Budiu & Pirolli, 2007)

Figure 5: An example layout with semantically cohesive groups, group labels and backgrour
color in Halverson and Hornof (2008)

Figure 6: Mockup of a website Ul design in CogTool. CogTool can convert the mockup imo .
ACT-R device model that an AGR model can interact with.

Figure 7: A search goal and webpage used in AutoCWW Experiment 2 (Blackmon et al.,
2002). Each search goal had one correct link on the webpage. The correct link for the gc
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goal. The left picture shows the original layout. The right picture shows a modified layout
wiOE 1 ETEO O4EATTT CU O O0OAAOGEAAOGS AT A 02
users would be more likely to click on the correct link in the modified layout than in the
original layout.

Figure8: 0 AOOEAEDAT 006 | AAT A InHistElok siccesshitArgeA C A
column (Standard error shown)

Figure 9: Overview of CogToolExplorer. White background indicates preexisting
components and external resources. Light blue indicates new or refined components
contributed by this dissertation.

Figure 10: An example run of CogToeExplorer 1.0 in the two-column layout.

Figure 11: - AAT AT EAEO 11 xAADPACA AU OAOCAO ATl
to predictions by CogToolExplorer 1.0 and AutoCWW (Standard Error shown)

Figure 12: 0 AOAAT O ZEOOO Al EAE OOAAAOO AU OAOCA
to predictions by CogToolExplorer 1.0 (Standard error shown)

Figure 13: An example of flattening two levels of webpages (left) into a single webpage
(right) by grouping the links from each 2d-level webpage onto a single webpage. These

webpage examples are from AutoCWW experiments in Blackmon et al. (2005) and Told
(2009).
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Figure 14: (a) The multi-page layout where each link in the togevel webpage (al® referred
to as a toplevel link) led to its corresponding 2d-level webpage of links, (b) the haif
flatten layout where selecting a toplevel link reveals the 2d-level links grouped under
that top-level link, and (c) the multigroup layout where the 2d-level links are grouped
into nine groups.

Figure 15: The Microsoft Encarta Website

Figure 16: In the multi-page tasks, participants start on the togevel page (leftmost) and on
selecting a link, transits to 2d-level pages. Participants may go lok to the top-level page,
or may select a link to go to its B-level page. In a 8-level page, participants can check if
they have succeeded in the task, and if not, go back to the-Revel page and continue
exploration.

Figure 17: An example run ofCogTootExplorer 1.0 in the multipage layout.

Figure 18: CogTootExplorer 1.0 compared to participant data in the multipage layout. Each
data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) ad2evel page
in a task. Ifmodel behavior perfectly matched participant data, all data points will lie on
the green diagonal line. The red line is the best fitting line for the data points.

Figure 19: CogTootExplorer 1.0a compared to participant data in the multipage layout.
Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) @-Evel
page in a task. If model behavior perfectly matched participant data, all data points will i
on the green diagonal line. The red line is the best fitting lenfor the data points.

Figure 20: CogTootExplorer 1.0b compared to participant data in the multipage layout.
Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d)&-Rvel
page in a task. If model behavior perfectlynatched participant data, all data points will lie
on the green diagonal line. The red line is the best fitting line for the data points.

Figure 21: LinkClicks by CogTocExplorer 1.0b compared to participant data, broken down
by the four quartiles sltown in Table 5 Each data point represents a link in a task. If mode
behavior perfectly matched participant data, all data points will lie on the green diagonal
line. The red line is the best fitting line for the data points.

Figure 22: CogTootExplorer 1.0c compared to participant data in the multipage layout. Each
data point in (a) and (b) represents a task, in (c) a link in a task, and in (d) ad2evel page
in a task. If model behavior perfectly matched participant data, all data points will lien
the green diagonal line. The red line is the best fitting line for the data points.

Figure 23: CogTootExplorer 1.0d compared to participant data in the multipage layout.
Each data point in (a) and (b) represents a task, in (c) a link in a taskdain (d) a 2nd-level
page in a task. If model behavior perfectly matched participant data, all data points will li
on the green diagonal line. The red line is the best fitting line for the data points.
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Figure 24: CogTootExplorer 1.0e compared to paticipant data in the multi-page layout.
Each data point in (a) and (b) represents a task, in (c) a link in a task, and in (d)&-Rvel
page in a task. If model behavior perfectly matched participant data, all data points will li
on the green diagonalihe. The red line is the best fitting line for the data points.

Figure 25: Part of the mockup of the multi-page layout in CogToeExplorer 1.0e. The entire
mock-up is composed of 103 webpages (one televel page, nine ®-level pages and
ninety-three 3rd-level pages). This figure shows the tofevel page, a ®-level page and a
3rd-level page.

Figure 26: Part of the mockup of the multi-page layout in CogToeExplorer 1.0f. The entire
mock-up is composed of 103 webpages (one televel page, nine ®-level pages and
ninety-three 3d-level pages). This figure shows the tofevel page, a ®-level page and a
3rd-level page.

Figure 27: CogTootExplorer 1.1 compared to participant data in the multipage layout. Each
data point in (a) and (b) represerts a task, in (c) a link in a task, and in (d) a®level page
in a task. If model behavior perfectly matched participant data, all data points will lie on
the green diagonal line. The red line is the best fitting line for the data points.

Figure 28: Results over seven iterations from CogTodExplorer 1.0 to CogTocExplorer 1.1
in the multi-page layout. The blue diamond markers and the left vertical axis are for
Correlation, where higher is better. The red square markers and the right vertical axisear
for % Average Absolute Error, where lower is better.

Figure 29: In the half-flatten tasks, participants start in the toplevel page (leftmost) and on
selecting a link, transits to 2d-level pages. Participants can see both tapvel links and
2nd-level links in 2nd-level pages. Participants may select a telpvel link to go to another
2nd-level page, or may select a®level link to go to its 3d-level page (not shown here). In
a 3d-level page, participants can check if they have succeeded in thekaand if not, go
back to the 2d-level page and continue exploration.

Figure 30: Blue rectangles show the visual elements available at different stages of a greup
based hierarchical exploration process in the haffiatten layout. Figure (a) shows on
transiting to a 2nd-level page and Figure (b) shows after going back from the group ofd2
level links.

Figure 31: An example run of Consider Groups b§ogTootExplorer 1.2 in the haltflatten
layout.

Figure 32: An example run of Ignore Groups bgogToolExplorer 1.2 in the haltflatten
layout.
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Figure 33: Consider Groups and Ignore Groups by CogTeBkplorer 1.2 compared to 84
participant data in the halfflatten layout. Each data point in (a) (b) (c) and (d) represents
atask, and in (e) and {fa link in a task. If model behavior perfectly matched participant
data, all data points will lie on the green diagonal line. The red line is the best fitting line
for the data points.

Figure 34: In the multi-group tasks, participants can see all ningroups of links on the top 85
level page. Selecting a link will transit to 8-level pages like those in the multpage and
half-flatten layouts (not shown here). In a 8-level page, participants could check if they
had succeeded in the task, and if not, diack to the toplevel webpage and continue

exploration.

Figure 35: An example run of Consider Groups b§ogToolExplorer 1.2 in the multi-group 87
layout.

Figure 36: An example run of Ignore Groups bZogTootExplorer 1.2 in the multi-group 89
layout.

Figure 37: Consider Groups and Ignore Groups by CogTeBkplorer 1.2 compared to 91

participant data in the multi-group layout. Each data point in (a) (b) (¢) and (d)
represents a task, and in (e) and (f) a link in a task. If model behavior perfectly magah
participant data, all data points will lie on the green diagonal line. The red line is the bes
fitting line for the data points.

Figure 38: Results ofMeanClicksToSucceby CogToolExplorer 1.1 and AutoCWW, 94
compared to participant data in the mult-page layout. Each data point represents a task.
If model behavior perfectly matched participant data, all data points will lie on the green
diagonal line. The red line is the best fitting line for the data points.

Figure 39: Results ofMeanClicksToStcessy CogToolExplorer 1.2 and AutoCWW, 97
compared to participant data in the halfflatten layout. Each data point represents a task.
If model behavior perfectly matched participant data, all data points will lie on the green
diagonal line. The red line $ the best fitting line for the data points.

Figure 40: Results ofMeanClicksToSucceby CogToolExplorer 1.2 and AutoCWW, 99
compared to participant data in the multigroup layout. Each data point represents a task
If model behavior perfectly matched jrticipant data, all data points will lie on the green
diagonal line. The red line is the best fitting line for the data points.

Figure41:) T #1 C41 11860 &OAI A 7ET AT xh OOAOO AAT 103
buttons and links from a paletteof widgets onto a frame. A frame represents a display
OOAOA ET OEA 5)8 )1 #1Cc411180 $AOECT 7E

how interface actions on a widget, such as a mouse click, changes the display state of tl
Ul, by drawing transtions from that widget in its frame to another frame.



Figure 42: Import HTML Pages dialog box 104

Figure 43: To specify existing widgets form a group, the practitioner would multiple select 105
OEAOA xEACAOO AT A OEAT EOOOCRA GFEARA @' TOHEM®
keyboard shortcut. This will create a group composed of the previously selected widgets
AT A OEA TAxi U AOAAOGAA ¢cOi 0P xEIT AA AOGO
box highlighted in green (Figure a). Selecting a widgéhat is a member of a group will
highlight the widget with a gray border (which is standard CogTool behavior) and also
highlight the group with a red border (Figure b).

Figure 44: The multi-group layout with the Performing Arts group selected, highligted by a 107
green bounding box.
Figure 45: The multi-C OT OB 1 AUl 6O xEOE OEA 2Ai 1T OA , A 108
highlighted by a gray bounding box. Selecting a Remote Label will also highlight its
owner, in this example the Performing Arts group, wh a red bounding box.
Figure 46: 3 A1 AAO O' AT AOAOA S$EAOQEI T AOU6 &AOI I OE 109
and a Ul mockup to generate infoscent scores for every Displayed Label and texicak
in the Ul design. The modeler can inspect andodify parameters and infoscent scores
using the Dictionary Viewer window (bottom of Figure). For example, the highlighted row

in the Viewer has its cosine parameter changed from 0.5 to 1.5 to disable further
elaboration.

Figure 47: 3 A1 AAO OB ANEDPB®DOOAEOI I OEA AAI1T AO OE/111
and a Ul mockup to bring up the dialog box to set up model runs, including the number «
runs to do, parameter values such dsj O %A CAOT AOOoqh OEA AEOAI

and the frame or frames that indicate a successful model run. Each model run will be

I EOOAA ET #1 C41118680 001 EAAO 7ET AT x AT A
Window.
Figure 48: - | AEOD 1T £ OEA #1171 0011 $EOPI AU rarmagedf j 113

the CDU was used as the background image of this frame. Button widgets were created
over the parts of the image where a real button would be and text label widgets were
created over the parts of the image where textual information would be dispyed in the
#$560 AEODPI Aus .1 OA OEAO OEA OA@O OOOEI
AAOAOEAAOG OEA SEODPI AUAA |, AAAT 0O).)4 2%&
before the Auxiliary Text field was implemented in CogToeExplorer. Here OE A O) .
2%&06 AOOOIT EO OAI AAOAA j EECEI ECEOAA xE
AAEAOGET 0q AT A OEA -TAA +AUO coOi 6P OEAO
with a red border (which is new in CogToolExplorer).
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1 INTRODUCTION

Designing userinterfaces (Uls) so that first-time or infrequent users can accomplish their goals by
exploration has been a enduring challenge in HumarComputer Interaction (HCI). Early examples
include automated teller machines and public infomation kiosks that people walk up anduse. A
more contemporary example is te World-Wide-Web (WWW or Web), where users may be skilled
in general website navigation, butack prior knowledge of where the desired information residesin
varied and constantly evolving websitesBoth Franzke (1995 and Cox (2002) sugge®d that users,
who have some experience in asoftware application or device, or other similar software
applications or devices,may be more likely to attemptand be successful aéxploration. These users
may only use the software sporadically or are only familiar with pas of the software, compared to
skilled users who know exactly what to dan the Ul to accomplish a taskand novice users who lack
too much knowledge in both the design of thell and the task domainto be successful in
exploration. To support this groupof users who are not complete experts or noviced)l design
should supportuse throughexploration.

Fortunately, HCI practice and research has risen to this challengkerative user-testing is an
effective but costlymethod to develop Us that support usethrough exploration. A complementary
method is to use modeling tools that can generate predictions of usekploration given a Uland a
task. Predictive modeling tools can help evaluate and weed out a larger number of eddydesigns.
Model predictions @an also inform the design process by highlighting the probable causes that
might lead to poor user task performance. Predictive human performance models have been
successfully used to evaluate and desigdls for skilled routine interactive tasks (John& Kieras,
1996). If users have to explore and learn an unfamiliadl, models such as CE+ (Polson and Lewis,
1990), IDXL (Rieman, Yound Howes, 1996) and LICAI+ (Kitajima, Sot& Polson, 1998)describe
how knowledge representation, mental model construction ad labekollowing drive user behavior
during exploration. More recent models likeMESA Miller & Remington, 2004)and SNIFACT 2.0
(Fu & Pirolli, 2007), and tools like Bloodhound (Chi &al., 2003) and AutoCWW/(Blackmon, Kitajima

& Polson, 2005) have focusd on predicting user exploration of websitesand demonstrated how
predictions can inform Ul design. These models ofiser exploration employ the common concept of
label-following and information scen  OEAO OEA OOA08 O AET EAhanttO DPAOOI
relevance betweenthe DA O3 O CT Al Al dntedictde UL POET T O POAO

However, there are other factors beside inforration scent (or infoscentfor short) that influence
exploration and the likelihood of success, and models and tools that do not cader these factors
would make less accurate predictionsThe goal ofthis dissertation is to include some ofthese other
factors in a process model and modeling toofor more accurate predictionsof user exploration,to
better inform Ul design.

1.1 RESEARCHAPSIN MODELNG

In addition to infoscent, the layout of theUl also affects the choices made during exploration,
because auser is not likely to select an option that he or she did not look at and evaluate, and
competing options (i.e. options that are semaically relevant to a particular task but are incorrect
for the task) seen before the correct option mighbe chosen insteadFurthermore, the spatial am



semantic grouping of options in aUl also affects user explorationwhere competing options nested
inside agroup with a competing group headindi.e. a text label identifying a group)wvas found to be

especially problematic for successful exploration(Blackmon et al, 2005; Kitajima, Polson &

Blackmon, 2007. Although infoscent, visual search, layoutposition and grouping affect user

exploration, prior research like Bloodhound and AutoCWW-consider only a subset of these factrs

in their model predictions, which could result in inaccurate predictions when hese factors matter
and interact in the Ul and taskFor example,Section 31 describesan analysisof participant data

and AutoCWWohpredictions that was done as part of this dissertation,where predictions did not

match dataat a more detailed level of analysisvhen visual search and layoufosition were not

consideredtogether with infoscent.

To addressthesegaps, this dissertation contributes a new modeling tool calledCogToolExplorer, to
make more accurate predictions of goatlirected user exploration compared to prior modeling

tools. The research workin this dissertation primarily focuseson the modeling and predictions by
CogTootExplorer, with a secondary focuson making CogToolExplorer into a tool for practitioner

use. The thesis of this dissertation is:

A modeling tool for goadirected user exploration of userinterfaces that considers
the information scent the visual search process, and the layout and grouping of
options in the usetinterface in concertcan make more accurate predictions of user
exploration compared to tools that do not.

1.2 MODHINGTOOL FOHPRACTITIONERS

To encourage HCI practitioners to use modeling tools alongside user testingand other HCI
methods, it must be easy to set ughe model for a given Ul and task, run the model and obtain
prediction results. Howeverin most prior research, such aE+ IDXL and LICAIl+the research
effort focused on implementing, testing and refining theory, anavas not explicitly concerned with
the implementation of a more flexible tool for modeling Ul designs beyond the designsedin the
particular research project. Later research on tools like Bloodhound and AutoCWW made it
possible for practitioners to use" 1 1T T AET OT A8 O AlnderlyihgOpbeldi¢tive 7ndodels
without the need to write or edit software code Both tools are tailored to model exploration of
webpages and websitesIn Bloodhound, the practitioner can specify an entire website by entering
its Web address In AutoCWW, the practitioner has to manually enter the text labelof links from
the webpagesbeing modeled.

The approach in thisdissertation is to implement CogToolExplorer aspart of an existing modeling
tool called CogTool (John, Prevas, Salvucci &oedinger, 2004). CogToolis a publicly available
modeling tool2 that can predictskilled performance times from tasks demonstraed on a mockupof
a Ul design Compared to earlier establishedmodeling methods, CogTool reduced the time taken by
both expert and novice modelers to create a correct model of skilleteractive behavior by an

1 Accessed on January 17, 2011 http://autocww.colorado.edu/~brownr/ACWW.php

2 Downloaded on January 17, 2011 fromttp://cogtool.hcii.cs.cmu.edu/



order of magnitude, and significantly reduced he variation between novice modelersin predicting
the task execution time of skilled interactive behavior (John, 2010) In CogToolthe practitioner can
create a mockip of a Ul by dragging ad dropping standard Ul widgetssuch as buttons, menus and
links, from a palette of widgetsonto frames. A frame represents a display statén the Ul. The
practitioner can specify howinterface actionson a widget such as a mouse button press or click,
changes the display state ypdrawing transitions from that widget in its frame to another frame.The
practitioner can easily create apredictive model of skilled behavior by demonstrating the exact
interaction steps of a taskin the Ul mockup8 /1 A OET CI A AT i1 AT A OI
model and generate the prediton.

In CogTootExplorer, the practitioner will provide a text description of the exploration goaland on a
OET Ccl A AT I I thelCAgTADIEXpIQr€ Mmadel will explore and interact with the Ul mockup
to attempt to complete the task The practitioner canthen view and save the predictionresults from
CogTootExplorer. To support the new requirements and functionality of CogTootExplorer, this
dissertation adds to CogTool new menu options, dialogs arsdipporting modules for creating large
Ul mockups, speifying group relationshipsin the Ul mockup and to generate the infoscent scores
that will be used by the modelThrough this integration of CogToolExplorer into CogTool, the hope
is that it will extend the success ofCogTool, and thus CogTodExplorer, in delivering usable
modeling to HClpractitioners.

1.3 ORGANIZATION OBPISSERTATION

Section 2 reviews related work on goaldirected user exploration in HCI, focusing ontheir key
findings and limitations. Section 3 synthesizes the outcomes from the review oélated work and
highlights the three research gaps thatare the focus ofthis dissertation. Section 4presents
CogTootExplorer, describing in detail the modeling and implementation work doneto address
theseresearch gaps, and the test results from compag CogTootExplorer to both human data and
AutoCWW predictions.Section5 concludes with the contributions, limitations and future work of
this dissertation research Appendices A and B present furthelJl designs that pertain to the
integration of CogTod-Explorer into CogTool, and Appendice€ and D contain the source code of

O

OCI

the CogToolExplorer modeland the scriptthat was used to procesOEA 1T AA1 80 11 C AEEI A



2 RELATEDWORK

Section 2.1 reviewselated observational studies and surveysthat found evidence for goaldirected
user exploration in various real-world computing task environments Section 2.2 reviewsrelated
experimental studiesthat identified some of the factorsthat influence the choices made duringiser
exploration. Section 2.3 reviewstheories and modelsthat were developed to explain the user
exploration process and replicate results from the experimental studies. Section 2.4reviews
findings from eye-tracking studies of visual search that have a bearing amser exploration. Section
2.5 reviews related work to develop accurate device models of théJl on which exploration by a
model takes place Section 2.6eviews related work to developmodeling tools intended for use by
HCI practitioners.

2.1 OBSERVATIONASTUDIES ANCBURVEYS

Rieman (1994;1996) had 14 participants keep a weeklong log of their daily work activities, to find

out how often they had to explorein their normal work activities. Whenever the participants

01 AAOT AA O1 1 AGEET ¢ 1 Asysterh drisdnd othérEeduipdent Anl G BDACEORA Ox | OE 6
(Rieman, 1994, p. 51)they were to record the event and the strategy or strategies they used.

surprising finding was the low occurrence of about 1 learning event for every 8 hours abmputing

time, although Rieman noted that the recorded eants were of varying complexities and at different

grain sizes, so a single recorded event could have been a number of individual everithe

ET OAOAOGOGET ¢ Z£ETAEI ¢ xAO OOEA OEI EI AOEOU rérige OEA 1 A
of situations AT A O @ikrn®,d994, p. 59)and that there wvasOOE CT EAEAAT O AOEAAT ,
three preferred strategies aretrying things out, reading the manualand asking for helm (Rieman,

1994, p. 59) Participants rADT OOAA OOET C riéiikered® OGBRICCO I &H ®®I EO
over half (37 out of 60) of all recorded learning eventsn computer-based activities

At the end of the dairy studyRiemanconducted structured interviews with the participants. When

A O E A Wen ydu get a new piece of softwah ET x AT UT O 1 AAOT O OOA EOe
half the participants (7 out of 14) identified OA@D1 1T OET ¢ EOO &£O01 AOET 1T Al EOQUh
AAOOAI (Ri@ag 994 p. 63as one ofthe ways to familiarize themselves with the softwae.

When asked how they figured outhe way to do something they didnot know in a program they

already knew, more than half of the participants (9 out of 14) identified trying things out or

exploration as thefirst strategy they used. The interviews alsaevealedthat when the participants

used theexploration strategy, all but one(13 out of 14) did so in the context of a task. Participants

felt that goaldirected exploration was more productive and could be made relevant to actual work

activities. Only ore participant reported doing taskfree exploration of new software.

The above investigations by Riema were before the Web became a major realorld computing
activity. Byrne, John, Wehrle and Crow (1999) conductedwadeo and verbal protocol studyof Web
use andfound that the timesspenton Locate(finding that information or link on a webpage which
typically requires some visual search) andso To(any activity which caused the browser to display
a particular webpage activities were ranked second and tird highest, after the time spent onUse
information activities. In contrast,the time spent onConfigure(changing the state of the browser,
such as the size, locatioand number of browser windows) and React(when the browser demands



something of the use typically in the form of responding to a dialog box) activities combined was
less than any one of these top three activitieg his suggests that gploration on the Web is more
about finding and using information. The focus of exploration is now on the hyerlinked Ul of
varied and constantly evolving websites and not on the Ul of the browser application.

Morrison, Pirolli and Card (2001) analyzed asurvey on Web activities and found that 96% of
information seeking activity on the Web was searching for a pdicular or multiple pieces of
information triggered by a goal. The other 4% were repeated visits to monitor information updates
and general searching for information not triggered by a goalThis suggess$ that information
seeking on theWeb, like the exploration of software and devices bythe participants in Rieman
(1994; 1996), was almost always doneén the context of a goaldirected task.

The results from these studies suggest that goalirected user exploration does indeed happen in
real-world computing tasks. Exploration of theUl to learn a new piece of software or to figure out
how to perform a task in existing sftware was a preferred approach;a strategy at least as often
used as reading manuals and asking for help. In usectivities on the Web, exploration of websites

to locate desired information was thedominant activity, which is not surprising considering the

varied and constantly evolving designs of websitesIn both cases, exploration waslmost always

done in the context of a task goal.

2.2 EXPERRIMENTALSTUDIES

Franzke (1994; 1995) conducted one of the first detailedexperiments on computer users using
unfamiliar software for the first time. Seventysix participants, who all had experience with
Macintosh computers but had never used a graphing ftware application, were given a task
description to draw and modify graphsusing one of four graphing software applications Two of

these were versions of an application called Cricket Grap (Figure 1), which was the subject of
modeling in later research(discussed in thereview of IDXL and LICAI+ in Section 2.3.1The key
result from the study was that participants took more time to select the correcbption on the

screen if thesemantic distancdetween thelabel of the correct option and the task desciption was

larger. Franzke defined 4 levels of semantic distande increasing order.

1. Overlapz words that were identical to words as presented in thetask description, such asf
OEA Cci Al xAO O1 OAeiifkd Badthe 1aGedOAPIAD EAGl A OEA
2. Symonym z words that were synonymousto words in the task description, such as if the
CIl Al xAO Ol oW bdrkdukemhadQBAPEAAAT OOAEAODOGS
3. Inference z words that were semantically reldged to words in the task description but
required some ifference OOAE AO EA OEA CI1 Abndthédn@nu@dmhadA OAAOA
the labelOOAOAXxET ¢ O1T 11 06868
4. No Linkz words that had no direct semantic link to words in the tasldescription, such as if
OEA CT Al xAO Odnd titeAénd ifed Kad the 1aBe0OOMVEEE 6A 6 8
Franzke also identified two otherfactors that increased the time participants took to select the
correct option on the screen.Onewas the number of options on the screen The more options there
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Figure 1: The Cricket Graph menu interface (from Rieman et al., 1996)

were, the longer theexploration time, especidly if the correct option had a poor label (i.e. large
semantic distance from the goal) The other factor washidden options, whereD AOOEAEDAT OO
longer to discover direct manipulation interactions on unlabeled objects, such as doubtdicks on

graphobjects, dragand-A OT B 1 b A O ARpdfidkd, ®85) AOA 86

Blackmon and colleagues (20022003; 2005) and Kitajima et al.(2007) conducted and analyzeda

series of experiments whereparticipants were presented with the text description of a search goal
for an encyclopedia articleand asked to navigate a mainwebpage(Figure 2) or a 2-level hierarchy

of webpages(Figure 3) to find the target webpagewhich contained the article The link labels were

short texts describing encyclopedia topics The topicslinks were further grouped into related topics

and each group was given a neinteractive heading label(on the main webpage)or an interactive

heading link (in the 2-level hierarchy of webpages).Selecting a topic link would display avebpage
that listed all the encyclopediaarticles under thattopic.

Blackmonet al.usedLatent Semantic Analysis (LSA; Landauer, McNamara, DennsKintsch, 2007)
to compute an engineering approximation (LSA cosine value between two LSA document vectors)
of the semanticsimilarity betweenthe text of each topiclink and the goaldescription, and between
the text of each heading labélink and the goal description They found that participants took more
clicks to find the targetwebpagewhen the targetwebpagewas located under a tpic link that was
computed to be weakly related to the goal, antbok less clicks when the topidink was strongly
related to the goal. This resultis in agreementwith Franzked ©@emantic distance except that
Franzke scoredthe semantic distances betweeron-screenlabels and the task descriptiorby hand.
Blackmon et al.also used LSA to compute an engineering approximatiarf participantséfamiliarity
with the text of each topiclink (LSA term vector length and term frequency count in the semantic
space that represented the reading knowledge level of the participants). Theyound that

O



Find encyclopedia article about Audiometer
Audiometer, instrument for testing hearing. The audiometer is an essentially simple instrument that produees pure tones of various
fixed pitches (frequencies) heard through headphones. Hearing is tested one ear at a time. The operator can switch between frequencies
and repeat the process with each frequency. Typically, sensitivity may be tested at frequencies of 125 hertz (Hz, or cycles per second),
250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, and 12,000 Hz. As an alternative to testing the normal mode of hearing through
headphones, hearing by bone conduction can be tested. Hearing is never uniform over all frequencies and commonly varies widely at
different frequencies. Internally, audiometers consist of a transistorized, variable-frequency audio oscillator—usually a simple feedback
device—capable of producing a sinusoidal (near sine-wave) output.
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Figure 2 : Example of a main webpage layd in Blackmon et al. (2002; 2003; 2005)

participants took more clicks if the correct topiclink was computed to be unfamiliar to the
participants.

Blackmon et al.(2005) further found that participants took mare clicks to find the targetwebpageif
there were competing linkson the webpage(i.e. topic links that were computed to be similarto the
goal but did not lead to the targetwebpagéd, especially when the competing links weranested
under acompeting headindi.e. a heading label/linkthat was computed to be similarto the goal but
whose groupdid not contain any topiclinks that led to the targetwebpagg.

These experimental studies increasedour understanding of one of the key factors that influence
goaldirected user exploration, namely the semanticelevance of the options presented in theUl
with respect tothe exploration goal.For most well-designed Uls, a reasonable assumption is that
options are appropriately labeled. Bylabel-following, users aremore likely to be successful in
exploration if they select options with labels that are semantically relevant to the goal
Furthermore, while the semantics of individual options matter, the semantics arising from
organizing structures such as groups and groupdadingsalso affect exploration success.



Find encyclopedia article about Audiometer

| Audiometer, instrument for testing hearing. The audiometer is an essentially
simple instrument that produces pure tones of various fixed pitches (frequencies)
‘heard through headphones. Hearing is tested one ear at a time. The operator can
switch between frequencies and repeat the process with each frequency. Typically,
sensitivity may be tested at frequencies of 125 hertz (Hz, or cycles per second), 250
Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, and 12,000 Hz. As an alternative
to testing the normal mode of hearing through headphones, hearing by bone
conduction can be tested. Hearing is never uniform over all frequencies and
commonly varies widely at different frequencies. Internally, audiometers consist of a
transistorized, variable-frequency audio oscillator -- usually a simple feedback device
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Figure 3: Example of a 2level hierarchy layout in Blackmon et al. (2002; 2003; 2005)

2.3 THEORIES ANIMODELS

Theories and computational models of goatlirected user exploration seekto explain the findings

and replicate the results from observational and experimental studies. Pioneering theoretical and
modeling researchwas done in the larger context of skill acquisition in HCI throughlearning by
exploration. The research question in CE+, IDXL and LICAI+ was how users explore and learn a new
software application, and how learning by exploration affectdurther exploration and improves
task performance.

The advent of theWeb presents a different task environment for goaldirected exploration, where
finding information from within webpagesin websites is the dominant activity(Byrne et al., 1999;
Morrison et al.,2001). Research in this domairfocusesmore on the intricacies of labelfollowing in
determining exploration success, and less on the discovery and learninginferface actions on Ul
widgets, possibly becausethe majority of webpageson the Web do not support interface actions
other than a mouseclick on atext or graphic link. Some models have visual search process, and
models differ in their modeling approach, derivation of infoscent, representation of the device Ul
and the extent of implemertation. Table 1provides a summary of thetheories and modelsreviewed
in the following sub-sections.



Scope of Exploratory Behavior Factors Considered Tool for
Goal Learnin Interface Label- Visual Modeling Approach Information Layout Groupin Model Implementation Practitioner
Formation 9 Action [ Following| Search Scent Position ping
Global Evaluation ar Relative Contains non-executablg
. Human raters "
Decision position components

Serial Evaluation an Mixed Approact Mixed Executable components bl
Local Decision P Approach not fully integrated
Algorlthmlcally Absg.lute Executable Model
assigned position

Related Work (Year)

CE+

IDXL

LICAI+

CoLiDeS

WUFIS

Bloodhound

SNIF-ACT 1.0 (2003

MESA (2004

Cox's Model (2004

Bumbry's Model (2004 _

AutoCWW (2005 I
SNIF-ACT 2.0 (2007 Il ]
DOI-ACT (2007, [

[CogTool-Explorer | | |

Table 1: Comparison of related work and CogToeExplorer by scope of exploratory behavior, modeling approach, factor:
considered, extent of model implementation and implementation as a modeling tool for practitioner use. A white cell indicate
non-consideration and darker shades indicate different or ppgressively more sophisticated consideration. See Notes for details.

Notes:

[a] CoLiDeS inherits from LICAI+ and adds a visual attention cycle [b].

[b] CoLiDeS makes reference to visuospatial bottomnp processes and knowledgelriven top-down processes dr its visual attention cycle and
globally selects the optimal group or option.

[c] Bloodhound is not publidy available but is available for licensing.

[d] MESA is neutral as to the actual order in which the links are evaluated by randomly ordering linkksr each run and then taking
performance averages across many runs.

[e] ACWW inherits its modeling approach from CoLiDeS drglobally analyses all group and links on a webpage for navigation problems.

[l SNIFACT 2.0 assumes a lefight then top-down visual search path over the links on a webpage and encodes the ordering before tt
model runs.

[g] DOFACT prefers to shift visual attention further afield to the right, which assuneknowledge specific to the DOtree Ul layout, is different
from the ecentricity heuristic favored by other models of visual search and may not be appropriate for other Ul layouts in general.

[h] DOFACT uses information scent scores from human raters as well as algorithmically assigned scores.

[ DOFACT assumes tomlown visual search over the nodes in a group, but uses the absolutgcoordinates of groups when evaluating and
selecting a group.




2.3.1 CE+|DXLANDLICAI+
Polson and Lewis (1990)combined three componentsinto the CE+model to give an account of
learning by exploration:

1. Cognitive Complexity Theory (CCT; Kierask Polson, 1985)to execute production rulesand
run the model. A production rule specifies a list of clauses and a list of actions. A rule will
OEEOA S Aits ActiohfAhk &t@ehof themodel satisfiesits clauses.Productions rules
coordinate the execution of the secondcomponent

2. A labeHollowing variant of the hill-climbing strategy to choose among options. In hil
climbing, the strategy is to select the option that appears to offethe greatest progress
toward the goal (Greeno & Simon, 1988)CE+ chooses the optionwhose description
overlaps most with thegoal, provided that theoption has not been tried before.

3. EXPL (Lewis, 1986; 1988) to compare the prior display state of the systewith the display
state after an interface action was taken, and apply one of three heuristics to infer a causal
relationship. This learned relationshipis then encoded as a production rule which the CCT
component may fire in the future.

While each of theabove components was implemented as executable models in their own prior
research, CE+was not integrated into a single executable modg[Table 1: Model Implementation).
Instead, Polson and Lewispresented anaccount ofa few hill-climbing and learning stepsunder the
control of productionrulesei A OEAT A tiefoddli AGET 16 1 £

Rieman et al.(1996) used both empirical observations from theCricket Graph taskin Franzked O
(1994; 1996) experiment and theoretical arguments to define the Iteratively Deepening
Exploratory Learning (IDXL) model. Like CE+, IDXIdraws upon several separate models to account
for the range of behavior in exploraory learning (Table 1: Scope of Exploratory Behavior)In the
Cricket Graph taskparticipants were given a task desdption, but not step-by-step instructions, to
draw and modify graphs using the software Cricket GraphDXL hasan instruction -taking model of
how participants might learn task instructions, and an analogy model of how participants camap
instructions or past experience to novel situations.

IDXL has aguided depth-first search with iterative deepening (gDFID) strategy to model the

exploration of pull-down menus in Cricket Graptthat precededthe selection d a menu item (see

Figure 1 for pull-down menus in Cricket Graph). Guided by the heuristic to limit its search to items

semantically related to the task, the modeserially scars the hierarchy of pull-down menus in an

iterative -deepeningprocess The processiteratively scars deepersubmenus anditerativ ely applies

more costly comprehension methods to further evaluate menu items. At each step after a menu

item is evaluated, the modemay scananother menu item, further evaluate a menu itenor choose a

menu item that it found satisfactory. Rieman et al. stessed that large scale patterns of behavior

should emerge out oflocal decisions. Through this serial evaluation process ) $8, 6 0 AAEAOQOEI
OAmEI AAOO 11T AAT AAAEOEITT O 11 EIT AE Capphodch (disciisded Al Oh E
below) of evaluatinga large set of labels simitaneously (see Table 1 Modeling Approach)



In evaluating the IDXL model, Rieman et al. stated that the goal of IDXL was to achiegealitative

match to behavioral patterns observed in participants. Thanplemented IDXL model addressed the

first few steps of the Cricket Graph taskwith the rest of the evaluation done by a qualitative

Al i PAOEOT 1 I £/ OEA 1T1TAAIT 60 AAEAOEI(TableOl MotdeA OAOOA A
Implementation).

Kitajima and Polson (1997 created the Linked Model of Comprehension-Based Action Planning

and Instruction Taking (LICAI), the predecessor of LICAI4tp model the formation of an exploration

goal from task instructions and the selection ofactions during exploration in the same Cricket

Graph task. LICAI is based on theConstruction-Integration (Cl; Kintsch, 1988 1998) framework

that is developed to model text comprehension. The basic mechanism isthe Cl cycle: the
constructionof a network of propositions representingtheOAAAA 08 O C1 fencareddand 1 A@ 0
existing knowledge, followed bythe integration of this network by spreading activation through the

network. The most activated nodes in the proposition network at the end of the integration
representthe interpretation of the text.

LICAI uss the basic Cl framework to model the formation of an exploration goal from task
instructions as text comprehensionLICAI extendsthe Clframework to handle interfaceactions by
encoding not just the labels of orscreen optiors in the proposition network, but also theactions
afforded by these onscreen options. A new integration process first identifies the three most
activated options, followed bya second integration to identify themost activated interface action.
The proposition network contains all on-saeen options at once. This means that LICAI globally
identifies the three most optimal ontscreen options, in contrast to the serial evaluation and
localized decisions in IDXI(Table 1. Modeling Approach) The follow-up model, UCAI+ (Kitajima et
al., 1998), addsthe learning and recall of previousnterface actions to affect future exploration.

CE+, IDXL and LICAIseekto provide an account for a range oliser behaviors during exploration
(Table 1: Scope of Exploratory Behavior) All three models are concerned with the discovery,
learning and knowledge ofinterface actions. InIDXL and LICAI+, this might had beemotivated by
participants who were unaccustomed to the direct-manipulation intensive Ul of a graphing
software application such asCricket Gaph. All three models make exploration choices based on
labelfollowing. In these models label attractiveness for the task was manually specifiedwhereas
many subsequent modelsuse automated methods to compute an engineering approximation of
label attractiveness (Table 1. Information Scent). Subsequent modelsalso use either the serial
evaluation and localized decision approach like in IDXL, or thglobal evaluation and decision
approachlike in LICAI+(Table 1: Modeling Approach)

2.3.2 COLIDES

Canprehension-basedLinked-model of Déliberate Search (CoLiDeS; KitajimaBlackmon & Polson
2000; 2005) is an extension ofLICAVLICAI+ for Web navigation CoLiDeSadds anattention Cl cycle
when a user encounters avebpagewith many links (Table 1: Scope of ExploratoryBehavior, notes
[a] and [b]). The attention cycle parses thewebpageinto sub-regions and focuses attention on a
sub-regionmostsimE1 AO OT O ETRe aQidnfs@ettion AT tyAld fi@nlICAl then identifies
the few most attractive link s from the attended-to sub-region and then the mostattractive interface



action. Both cycles globallyidentify the optimal choice.CoLiDeSalso proposes five independent
factors that combine to measure the attractiveness ofa sub-region or a link with respect to the
exploration goal:

1. 4EA AACOAA 1T &£ OAI AT OEA OEI EI AdE€yidnd DA EARKIET QE A
link label. A more similar heading or link is more likely to be selected.

2. Whether there is an adequate levebf relevant background knowledgeto successiully
elaborate the sub-regiond © E A A A E 1lapel. 1A Cheading ToE link that triggers an
inadequate level ofrelevant background knowledge isnot likely to be selected.

3. Whether a word used in the heading or linklabel is a low-frequency term in the useD 8 O
background knowledge A heading or link that is a lowfrequency term is not likely to be
selected.

4. The frequency with which the user ha encountered the screerwidget or specific heading
or link. Screen elements on frequently navigated paths are morékEly to be selected

5. 7TEAOEAO OEAOA EO A 1 EOAOAI | AOAEE paafanddd OOEAI
heading or link (e.g., looking for information about Type 2 Diabetes and seeing a link labeled
04 UDA ¢ hdlidgOAidkavithaa litekOAT [ AOAE O OEA OOA0OB80O (i
be selected.

CoLiDeShas not beenimplemented into an executablemodel (Table 1: Model Implementation, note
[b]), but has led to the development of an analyticahethod called Cognitive Walkthrough for the
Web (CWW,; Blackmon,Polson, Kitajima& Lewis, 2002) and a tool called Automated Cognitive
Walkthrough for the Web (AutoCWW, Blackmon, Kitajima& Polson, 2005. AutoCWWimplements
the CoLiDeS concept ofub-regions, and the first three of the five factorslisted aboveusing LSA
computed measuresHowever, information about sub-regions and links within sub-regions entered
into AutoCWW by the practitioner does not indicate layout position (Table 1. Layout Position)
Section 31 describesan analysisof participant data and AutoCWW predictions where predictions
did not match dataat a more detailed level of analysi®ecauselayout position was not considered.
Section 2.6 describeshe AutoCWWtool in more detail.

2.3.3 INFORMATIONFORAGINGITHEORYWUFISAND SNIFACT

Information Foraging Theory (Pirolli & Card, 1997 Pirolli, 2007) seeks to explain human
information -seeking and informatiornrusage behaviors, on the basis that information seekers are
adaptive and rational, and will modify their strategies or the information structure in the task
environment to maximize information returns from information -seeking activities.Two conceptsin
Information Foraging Theory, namely Information Patch and Information Scenf are used in the
models Web User Flow by Information Scent (WUFIS; Chi, Pirolli, Chen & Pitkow, 2001), Scent-
based Navigation and Information Foraging in the ACT cognitive architecture 1.0 SNIFACT 1.0
Pirolli & Fu, 2003) and SNIFACT 2.0(Fu & Pirolli, 2007), to explain and predict goaldirected
exploration of websites. In these models ofWeb exploration, information patch refers toindividual
webpages, subsites of webpages or entire websites,between which users navigate. mformation



scent refers to the assessment ofproximal cues, such as the textabel of a link on the current
webpage on how likely the link will lead to webpageswith information that satisfy the task.
Information scent drives labelfollowing behavior.

WUFIS (Chi et al.,, 2001)models the probability distribution of users following each link ona

webpage These probabilities are based onthe information scent of each link given thegoal

description, and arecomputed using Term Frequency bylnverse Document Frequency (TF.IDF) a
common technique in statistical natural language processing?VUFISrepresents thesewebpages

links and probabilities in a matrix, represents the goal in a vectorand simulates the flow of users
through the website by iterative matrix multiplication. The matrix multiplication over entire

webpagesof links implements aglobal decisionthat optimally flow users through all link s based on

their information scents. The outcome is a prbability distribution of the webpagesusers are likely
to end up in the website.However, its matrix representation and multiplication approachdo not

capture or consider thelayout position of links on awebpage(Table 1: Layout Position), thus, may

have the same problem agutoCWWwhere model predictions may not match participant data at a
more detailed level of analysisvhen layout matters. WUFIS is the underlyingprediction model in

the tool Bloodhound andSection 2.6 describe®loodhoundin detail.

SNIFACT 1.0(Pirolli & Fu, 2003) is the first of two process models of Web navigation basedon
Information Foraging Theory andimplemented in the ACT-R cognitive architecture (Anderson&
Lebiere,1998; Anderson et al. 2004). SNIFACT1.0 modelsthe process ofa user visiting awebpage
evaluating the links on thewebpage selecting a link to go to a new webpage or going back to a
previous webpage On visiting awebpage the infoscent of each linkis computed usng Pointwise
Mutual Information (PMI), as an approximation tothe spreading activation in human declarative
memory when assessing interword relatedness Each link on thewebpageis represented by a
production rule that if fired will select that link. All rules then compete and the rule with the highest
utility (i.e. infoscent) fires. Through this process SNIFACT 1.@ @ssumesthat all the links on a
webpage get evaluated before the decisionto globally select the best link (Table 1. Modeling
Approach). The model does not capturehte layout position of links, thus link selections are not
influenced by layout position (Table 1. Layout Position) Fu and Piolli (2007) further analyzed
participant performance data and found thatwhile the infoscent of a link predicted participal O O 8
choices better than the orscreen position of the link, participantsdid tend to select linkslocated at
the top of thewebpageover thoselocated at the bottom of thewebpage

SNIFACT 2.0(Fu & Pirolli, 2007) removesthe assumption that all links get evaluatedin its place

SNIFACT 2.0serially evaluates each link on thavebpageand usesa Bayesian Satisficingorocess

that adaptively decides when to stop ealuating links on awebpageand select the best one so far.

This local decision to stop or continue is not fixed, but is dependent on thénfoscent of the links

that have been evaluated so fafTable 1: Modeling Approach) However in SNIFACT 2.Qthe links

on the webpageare encoded leftright then top-down into a linear list which the model evaluates

serially. This ordering may not be appropriate for otherUl layouts (Table 1. Layout Position,note

[f]) . Fu and Pirolli (2007)T T OA A O RAETDwaOdevelpped at level of abstraction that was not

sensitive to different visual layouts of thewebpaged @p. 400) AT A OEAO A OOEAIT OU 1



allocation as a function of different visual layouts is definitely important in pedicting navigational
behaviord(p. 400).

2.3.4 MESA

Method for Evaluating Ste Architectures (MESA;Miller & Remington,2004) models the interaction
between website architecture (the number of links per webpage and the depth of the website),
quality of links (infoscent) and human cognition limitations (serial evaluation of linksdue to visual
attention and limited working memory). Like SNIFACT 2.0, MESA simulates the exploration
process one step at a timeMESAIs constrained tofocus on and evaluate one link at a time to reflect
the limitation of human visual attention. MESA uses a threshold strategy where thenodel
immediately selectsthe first encountered link with an infoscentthat exceedsa fixed threshold
value. The threshold strategy is combined with anopportunistic strategy that will lower the
threshold valueif there are no links on thewebpagethat exceedsthe original threshold value.The
opportunistic strategy will then scan thewebpageagain andselectthe first encountered link that
exceeds the lower threshold value, or if none exceeds tligreshold value, the model will backup to
the parent webpage To reflect limited human working memory, MESAdoes not emember allthe
threshold valuesit used asit traverses the webpages This means that after the threshold value is
lowered, the model will henceforth selectlessrelevant links as links getevaluated.

- %3 ! séridl evaluation process and cognitive limitations mean thatlater link selections and

webpage visits depend on thelinks and webpagesalready visited. The current threshold value

depends on what otherwebpageshave already been visited on the exploration path and a lowered

threshold value may result in additional links being selected Miller and Remington specifically

contrasted this local decision processof MESA tothe global decison process ofWUFIS(Table 1

Modeling Approach,note [d]) . However,- %3 ! & O s drl ske@ifuctiite and not on the sucture

or layout of links in awebpage- %3 ! 8 O OADOAOAT Cedixeddrder inlwhaich@riksiget5 ) EAO
evaluated for each run.Miller and Remington (2004) explained O E AMESAOs neutral as to the

actual order in which the links areA OAT OAOAAG | P-8%3X!obod] A BOAEAOADET 1
a fixed order in which links are evaluated for each run. For our simulations, we can m®ve the

effect of order by randomly ordering links for each run and then taking perfanance averages

across many run®(p. 234). The authorsfurther T | OAA OEAO OEAU OEAOA 1106 Al1l
grouping or ordering links has on navigationtimeso (Miller & Remington, 2004,p. 261) (Table 1:

Grouping and Layout Position)Like AutoCWWand WUFISMESAdoes not capture or consider the

layout position of links on awebpage thus, may have the same problem adutoCWWwhere model

predictions may not match participant data at a more detailed level of analysisvhen layout

matters.

2.3.5 EXPLORATORYACT ANDNORMALIZATIONASSUMPTION

Young (1998) and Young and Cox (2000)presented a rational analysis of exploratory choice

framework that uses the concept oExploratory Act (EA) to account for both free explorationto

i AAOT AAT 66 OEA AAOEAAR xEAOA OEA AEEEAEAT AU 1T £ 6
unit cost (O of the act,and focused exploratiorio complete aparticular goal, where the efficiency b

the EA is defined to be the probability (P) that iwill lead to the goal (G) minus the cost (C) of

getting to the goal At each step in the explorationthe efficienciesof all the EAs possible at that



moment are calculatedand the EA with the highest iciency gets selectedand executed This
framework provides for both free and focused exploration tohappen in an interleaved fashion.
However, normalization between the two different efficiency computationswas unresolved (Young
& Cox 2000) and not imdemented (Cox& Young 2004).

A key assumptionin the framework is that when an EAmakes an assessment dhe likelihood (i.e.

infoscent) that an option will lead to the goal the assessments dependent on all the other

assessmenton other options that have been made. Thisormalization assumption impliesthat the

infoscent of on-screen optionsthat have been evaluatedvill affect the decision of whether to select
an on-screenoption or to continue to assess another optionWhile the normalization assumpton is

different from the Bayesian Satisficingprocesss inSNIFACT 2.0, the observable outcomé&om

these two processess that the modelsadaptively decides to continueevaluate another optionor

stop evaluating options basedn the infoscent of options that have been evaluated so fairhus, ike

SNIFACT 2.0, the exploration process is serial and based on local decisions.

Based on this framework and its normalization assumptionCox and Young (2004) and Brumby and

Howes (2004) developed models to explainobserved behavior in an experiment on menu

exploration (Brumby & Howes, 2003), where participantswere given an information search goal

and asked tosearcha vertical menu of 16 itemswith 1 correct item and 15 distracters.Coxand

Youngd Model isimplemented as a LISP prgram outside the confines of aognitive architecture.

The normalization assumption isimplemented by simply normalizing eachinfoscent estimate over

the sum of all estimates afteran assessment or reassessment of a menu iterumby and Howeso

model isimplemented as an ACTR model Its normalization assumption isimplemented using ACT

280 OPOAAAET C A AQE) bavidgalklot for eAcAnteAuliténinl its ACTR goal chunk,

(2) updating the slot when its correspondingmenu item gets evaluated and(3) utilizing ACT-2 8 O

Ol OOAAO 1T £ AAOCEOGAOGEIT 1 AAEAT EOI O Odnkigdthése A /EE DA
slots to all declarative knowledge chunks associated with thenenu items. The higher the activation

of those knowledge chunks AOOT AEAOAA xEOE A [ AT O Griodcert OEA T
Normalization takes place lecausethe total amount of source activation is fixed

(T xAOGAOh ET AT OE #1 @8 @odkllishretomigured with e ninibédr Afited O E A

in the menuand that number is essential for the computations involved irthe normalization. The

authors did not offer apsychologically plausible explanation for how the model, and likewise the

user, would know this number beforehand.

2.3.6 DOIFACT

To investigatethe interaction betweeninfoscent and more complexon-screen layouts Budiu and
Pirolli (2007) developed DOIACT, an AC'R model of navigation in degreef-interest (DOI) trees
(Figure 4). Compared to the linear lists of optionsand the predominant top-to-bottom order of
evaluationin SNIF! #4 ¢ 8mh # 1 ZBodddeld, the\DOI tteédysfout options (or nodes) in
both dimensions onscreen. he DOIACT model may attend to any group aiodeson the screen,
although it still evaluatesnodes within a group in a serial top-to-bottom order (Table 1. Layout
Pasition, note [i]) . DAO-ACT hastwo main components:(1) a visual search component that parses
the screen into visual groups and selects the most salient one to attend next, and (2) a semantic
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Figure 4: DOFTree Visualization (Budiu & Pirolli, 2007

component tha examines the nodes in the most salient visual group andecides on which one to
click. To better reflect the taxonomical organization of information in the DOI tree, DOACT uses
two measures ofinfoscent: category scent and similarity sent. Category sent measureshow much

the search goals a menber of the class daoted by the label of a nodeBudiu and Pirollicollected
category scent scoredrom human category ratingsof 1760 word pairs via a \eb questionnaire.
Similarity scent is computed using PMlasis the case inthe SNIFACTmodels (Table 1: Information

Scentnote [h]).

Each time the model wants tattend to a new visual group, a parallel process calculates the visual
salience of each visual group oscreen and the one with the highest visualadience isselected The
visual salience functionis composed othe following factors:

1 Horizontal distance (D)between the center of the group and the node last clicked

1 Number of des@ndants (N)of the node last clicked that are within the group

9 Category scent (S)defined aseither an average of alkcategory scents of previously visited
nodes in the group, or,if no nodes were visited, the maximum category scent of alhe
parents for all the nodes in the groupand

1 Inhibition factor (1) to reduce the salence of items that have been clicked recentlyo that

the model has knowledge of what had been already visited and tend not to select the same
groups over and over again

The horizontal distance (D) factorin the salience functionmeansthat a group that & further away
to the right side (positive direction) of the screen is more attractiveBudiu and Pirolli (2007) noted
that optimizes the time to thesolution (the farthest away descendants of the current nodavould
need to be clicked to geto the solution most quickly)d (p. 848). While this may be appropriate for



the DOI tree layout in Budiu and Pirolli (2007), itmay not be appropriate for other Ul layous in
general (Table 1 Visual Searchnote [g]). Section 2.4.1 reviews ey&racking experiments on other
types of Ul layoutthat found participants tended to fixate and attend on options nearest to the
current point of visual attention.

2.3.7 RESEARCHPROGRESSIIN PRIORTHEORIES ANIMODELS

As shown in Table 1: Scope of Exploratory Behavior,iomeering research (CE+, IDXL,
LICAI+/CoLiDeS)seek to provide an account for a range afser exploratory behaviors, but may
have been challengedo implement all the behaviors into a fully execuiable model(Table 1. Model
Implementation). Evaluationwas by qualitative comparison of the modelto observed patterns of
exploratory behavior. Subsequent research focused on labé&bllowing and visual search, and all
were implemented as executable models Evaluation of thelater models was by quantitative
comparisons ofpredictions from model runs to observed participantdata.

All the models reviewed have labefollowing driven by infoscent, and successive research work
have identified different components that make upinfoscent (Table 1: Label Following) Some
related work used human ratings or had the modeler assign thanfoscent values in the models,
which was useful andsufficed for the development and testing of theory. Otherrelated work
developed and used computationamethods, such as LSA and PMb automatically generate an
engineering approximation ofinfoscent, which has been shown to predict labefollowing behavior
(Table 1 Information Scent). The use of methods like L& and PMIlremove the assignment of
infoscent values as a free parametein the model, andhave the potential to maketools like
Bloodhound and AutoCWWusable for practitioners (Table 1 Tool for Practitioner).

All the models reviewed use one of two modelip approaches either a global evaluation ofall
available options and selection of the globally optimal choice, or a serial evaluation of available
options and selection by local decision that may not be globally optimgTable 1. Modeling
Approach). The latter approachreflects the constraint of visual attention andthe lower level visual
search processduring exploration, and is used by all the models thatonsider Ul layoutposition
(Table 1. Layout Position) In these models, the serial processing of dijpns is accompanied by

mechanisms to stop and make a selectione. SNIF!I #4 ¢8ndO " AUAOEAT 3AOQE
threshold valueAT A 917 OT ¢8O0 . 1 Oi AIEE U &40 &iaicabUA0ad Oy iDrekdiia

evaluation of optionsmay not necessarily evalate all available options before a selection is made,
therefore the order in which options get evaluated directly affects the selections made during
exploration.

The order of evaluation is dependent orvisual searchwhich is influenced by the layout and dber
visual properties of the Ul, and by prior knowledgestrategies or preferencesthat the person may
have.SNIFACT 2.0 and# | @hiodel include Ul layout information but the information consist of a
linear list of options in their on-screen spatial ordering (i.e. beforeafter) instead of their actual on-
screen positiors (Table 1 Layout Position)" OO1 AU O | TsAiscreek poditiord Ak the
Ul layout was a relatively simpleone-dimensional vertical list of menu items. DOFACT has an
accurate representation of thetwo-dimensional DOI tree Ul but its visualsearch processassumes
knowledge specific to the DOlree Ul layout and may not transfer to other Ul layouts(Table 1.



Visual Searchnote [g]). The next two sectionswill review relevant work in visual search andUl
device models.

2.4 VISUALSEARCH

Psychological esearch on visual search (see Wolfe, 1998 for a review) has identified numerous
basic features (e.gcolor, orientation, size andspatial frequency) that are available pre-attentively.
While simple search targets could be identified preattentively (referred to as parallel searchor
efficient search, more complex targets witha conjunction of featureshave to be searched for and
examined underattention (referred to as serial searchor inefficient searcl). Pre-attentive bottom-
up processing(stimulus-driven local differencesin featuresthat O B {i 8D & disual object, andocal
similarities in features that group visual objectg and top-down processing(user-driven control to
limit features ard values such asa certain color or orientation) guide the subsequent deployment
of attention in visual search.

2.4.1 ECCENTRICITY ANINHIBITION OFRETURN

A factor that influences the deployment ofvisual attention is eccentricity. Targets take longer to
locate as their distance fromthe current point of visual attention increases which may be due to
the decline of visual acuity in the periphery, and that it issimply a longer distancefor the eyeto

travel. Assuming there is no privileged knowledge favoring @rtain on-screen objects(as there was
in the case of DOI trees discussdd Section 2.3.9, the most efficient strategywill be to make the

shortest possibleshift. Rational human behavior to optimize search efficiency wiltend to next look
at nearby obgctsrather than objects further afield

Halverson and Hornof 006; 2007) modeled the eyetracking data of participants searching text
labelsin a two-dimensional layout on screenInstead of following a prescribed visual search path as
was in their earlier model (Hornof & Halverson, 2003 Hornof, 2004), the new modelattends to the
next label with the least eccentricity fom its current point of visual attention. To account for
human variability, a fluctuation factor (i.e. noise) is applied wherthe eccertricity of each on-screen
object getsupdated for a new eye positionFleetwood and Byrne 2006) modeled the eyetracking
data of participants searchinggraphical iconsin a two-dimensional layout on screensimilar to
those found in graphical Uls Their visual search model shif$ attention to the next candidate icon
nearest to the icon that is the current focus of visual attentionas was observed intheir
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Another factor that influences the deployment of attention is called ET EEAEOET T 1T £ OAO(
visual search literature. Although empirical evidence for inhibition of return has been mixednd is

not well understoodh 711 £ZA j pwwyq AOCOAA OEAO OOEOOAI OA A
component need to ask hovattention OE T TxxEQROA E O (pESSXATMAAGOEAOA 1 OO0 A,
way to keep track of the loci and/or objects that havéeenexamined and rejected in the course of a

searcho (p. 55). Analysis of eyetracking data of participants searchingtext labels (Halverson &

Hornof, 2006; 2007) and graphical icons Fleetwood & Byrne, 2006) showed that participants

rarely fixate on an object more than once.Their visual searchmodels to explain participant data

implement inhibition of return: the visual search proceedswithout replacement, i.e after an on

screen object has been visually attended and fully identified it will not be attended again.



2.4.2 GROUPING

The pre-attentive, bottom-up stimulus-driven processing of similarities in local features group
visual objects Wolfe (1999 @ 1 1 O Aelerabtkedri®s oOs@arch rely on grouping mechanisms to
make conjunction search more efficieri(p. 51) AT A os©drouping accounts suggest that search
can be speeded by processing and rejecting distracters imogips rather than one at aimed(p. 51).
Wolfe (1998) concluded O E A dbalhyba truly satisfactory model of search will need low level
grouping in addition to top-down and bottom-up sdection processe®(p. 52).

From analyzing eye-tracking data of participants searching graphicalicons, Fleetwood and Byrne
(2006) suggestedthat pre-attentive visual features likeicon color and shape madaip groups of
icons, and participants constrained their search to withina group of icons that shared common
features with the target icon,before moving to a further group that also shared common features
with the target icon. Their ACT-R model of icon searchuses the ACIR vision module to pre-
attentively identify candidateicons that share features with thearget icon. The group-based search
behavior emergesfrom the model shifting attention to the next candidate icon nearest to the icon
that is the current focus of visual attention i.e. €centricity coupled with common visual features
led to group-based visual search.

Hornof and Halverson(2003) had participants searchfor text labelsin both labeled and unlabeled

groups. Groups were spatially demarcated on screen and labeled groups had an additional-on

screen label next to the group. Allabels were either three-letter words (e.g. BEG, MAX, RED)r

three-letter pseudo-words (e.g. VIN, KEZ, ZIL) and randomly assign&algroups. In both conditions,

participants were given the exact target label to search forandin the labeled group condition,

participants were also given the exactlabel of the graup where the target label residedParticipants

completed the search taskdn the labeled group condition faster than in the unlabeled group

condition. The authors suggested that participants knew or learned to use tharategy of first

searching for the gven group label and thenthe target text label ( T OT T £6 O j ¢mnmt q 11 AA
visual searchtasksemploys such a strategy.

Hornof (2004) explained that semantics was removed fronthe above text label search tasks by
using thosethree-letter words and pseudo-words, and byrandomly assigning labelson screen and
into groups. Halversonand Hornof (2008) beganto investigate the effectof semantic grouping on
visual search by using meaningful group and text labels j A8C8 OEAxAIl OU6 h
O A @& A Aérgriy the semantic cohesivenes®f text labels within a group €ohesive versus non
cohesive and varying betweenusing labeled versusunlabeled groups (see Figure 5) Participants
were given the exact target label to search for buvere not given the label of the group where the
target label resided The main result wasthat participants completed the search task$aster when
groups were cohesiveHalverson and Hornof suggested that participants may judge the semantic
relevance of acohesivegroup after evaluating one or a few labels in the group, and that enabled
participants to discount and skip a group if the group was not semantically likely to contain the
target label. In the noncohesive group condition, i was not possibleto discount agroup in that way
and participants had to evaluate the labels more exhaustively

o
>
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jewelry nuts
- anklet - cashew
- bracelet - peanut
- cufflink - almond
- ring - walnut
- crown - pistachio
cloth building part homes
- denim - basement - shack
- wool - attic - house
- linen - bedroom - igloo
- polyester - backdoor - dormitory
- cashmere - balcony - trailer
farm animals birds extinct animals
- sheep - cardinal - tyrannosaurus
- goat - woodpecker - brontosaurus
+ COW - bluebird - dinosaur
- duck - hawk - dodo
- chicken - pigeon - pterodactyl

Figure 5: An example layout with semantically cohesive groups,
group labels and background color in Halversn and Hornof (2008)

2.4.3 VISUALSEARCH INUSEREXPLORATION

Prior research has provided insight into the visual features and processes that guide visual search.
Eccentricity, inhibition-of-return and grouping have been implemented inmodels and model
predictions had good fits to eyetracking data. However, most prior research had participants
searching for exact known targets, whichs less likely to be the case if the user is unfamiliar with
the Uland exloring. Experimental results from Blackmon € al. (2005) and Halverson and Hornof
(2008) showed that semantic grouping affets exploration task performance. More research is
needed but it is evident that both the positions and semantics of individual opions, and the
positions andsemantics arising from organizingstructures on screen have an effect on exploration

For the visual search process to correctly consider layout position and grouping, the visual search
must take place on an accurate representian of the Ul being explored.The next section reviews
research on Ul device models.



2.5 DEVICEMODEIS

There are wo approachesin some prior research work: the human modeler (1)write s a software
program that replicates the behavior of the Ul being exploredor (2) fills in software data
structures with information about the Ul being explored An example of the software program
approach is IDXL, which implemented G minimal simulation of the Cricket Graph interface with
which the model interactsd (Riemanet al., 1996, p. 756). The simulationeports to the model the
menu item that is at a particular location in the menu systemwhenever the model directs its
attention to that location. The simulation also responds to actions by the model, such as the
selectionof a menu item, and changes the simulation state to reflect that a satenu has appeared.
An exampleof the data sructure approach is LICAI+, where the modelerwrites propositions for
each onscreen object in the Cricket Graph interface to capture inforation like text label, action
afforded, etc. These propositions are then included in thategration process of LICAI+These two
approachesin IDXL and LICAl+provide the modeler with complete control over the device model.
The modeler can directly changdhe device model by rewriting software code or changing data
values, which is convenient for modeling research However, the software program approach
requires sufficient knowledge of an additional programming or modeling languageo create the
simulation, and both approaches, especially the data structure approach, involvauch manual
effort on the part of the human modelerboth approachesare not practical for practitioner use.

Athrd ADDOT AAE EO O bDOiT OEAA OEA bObAAKYyGutdmatidallyl OAE O,
translating the output from the actual Ul into a representation accessible by the model, and

translating the actions of the model into input on the actual UlSmulated Hands andEyes (SHE;

Misker, Taatgen & Aasman2001) andSegnentation/ Manipulation (SegMan;Amant, Riedl, Ritter &

Reifers, 2005) aretwo examples of this approach. The lonrterm goal is for the model to interact

with the same actual Ul that people interact with. Practitioners can then bringn actual software or

device they want to test to themodel AT A OOA OEA | 1-AAd6 8 E(ESAE Aspdidarnl AAE

on software hods into the actual Ul and only works for software written in certain programming

languages. SegMan uses imageocessing techniques on screewaptures of he actual Ul but

sometimes failedto translate parts of the Ul

A fourth approach strikes a middleground between the first two approaches and the third
approach. The process model interact with a simulated Ul or access data records that represent
the Ul, but the simulated Ul or data records are constructed automatically or serautomatically
prior to the running of the model. Bloodhound, the practitioner tool implementation of WUFIS
(discussed in Section 2.5 automatically fills up its data matrix by crawling and parsingwebpages
from a given website.In CogTool, he practitioner can mock up the Uldesign by dragging and
dropping standard Ul widgets, such as buttons, menus and links, from a palette of widgets onto
frames (Figure 6). A frame represents a display state of the Ul, andnterface actionssuch & a
mouse button press or clickon a widgetcan be specifiedby drawing transitions from that widget in
its frame to another frame CogTool automatically creates an AGR device modefrom a mockup of

a Ul design. The AGR device model is a program that simulates the Ul that an AGI model can
look at andinteract with.
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Figure 6: Mockup of a website Ul design in CogTool. CogTool can convert ti
mockup into an ACTR device model that an AGR model can interact with.

The first two approaches may be more efficient and workwell in modeling research for theory
development like in IDXL and LICAI+but are too difficult and time-consuming for practitioners.
The third approach is an attractive goal in the long term, buthe automated translation currently
either only works for some Ulsor may mistranslate partsof the Ul, thus,more research is needd.
The third approach also makes testing Ul redesignsotentially difficult as itentails modifications to
the Ul of the actual software or deviceThe fourth approach requires less specialized technical
knowledge and effort compaed to the first two approaches and provides the modeler or
practitioner the option to inspect and check the device model for correctnegsrior to running the
model. In the case of CogTool, this approach makesntich easierto create and test Ul redesigns by
modifying the Ul mockup instead of theactual software or device.



2.6 MODELINGIOOLS

Automated Cognitive Walkthrough for the Web (AutoCWW Blackmon et al, 2005) is a publicly
available tool accessible on theWeb?to help practitioners analyze one or more webpages for
difficultie s users may faceduring exploration of a website AutoCWW draws its theoretical basis
from CoLiDeS and uses LSA to compute engineering approximations of semantic similarity and
familiarity (Table 1. Modeling Approach, note [e], and Information ScentJo analyze awebpage
the practitioner manually enters the textdescription of likely exploration goals, the heading labels
of all sub-regions on the webpageand the text labels ofall links on the webpage The analyst then
flags the correctlink or links for eachgoal, sets upone or multiple analyseswith different sets of
parameters (e.g different LSA semantic spaces for users of different reading levels, different text
label elaborations, etc) and submits the analysis requesd AutoCWW AutoCWW analyzes the
submitted goals, headings andinks for potential problems by computing the LSA cosine, its
measure of semanticsimilarity , between the text of the goal description and the text of each
heading, andbetween the text of the goal description and the text of each link. AutoCWW also
computes the LSA term vector length ahfrequency counts of the headingexts and link texts, to
evaluate if the user, as represented by the selected LSA semantic space,draadequate levelof
relevant background knowledgeto be familiar with the headings and links (see Section 2.3.20n
CoLiDe® AZAEOA MEAAOTI OO0 OEAO AT 1 AETA YOI 1T AAOGOOA OEA AOGC
AutoCWW reports if the correct link or links on the webpage might be unfamiliar to the user
(Unfamiliar Correct Link) or might be too semantically different from the goal to be chosen (Weak
Scent Correct Link) AutoCWWreports if there are incorrect links that are semantically related to
the goaland thus compete with the correct link.By analyzing the headings osub-regions, these
competing links may benested under acorrect or incorrect heading that issemantically relaed to
the goal (Competing Link under Correct Headingor Competing Link under Competing Heading).
AutoCWWregards a search goal that results in any llnbeing reported with one or more of these
problems as a goal With Problems, where users are more likely to have difficulties during
exploration. From the number and types of problematic links identified on a webpage for a
particular search goal AutoCWWopredicts the mean number oflink clicks userswill maketo select

a correct link on that webpage for that search goal. AutoCWW assembles the analysis results in
Microsoft Excel spreadsheets and emails the spreadsheets to the practitioner.

Bloodhound (Chi et al., 2003) is a Web-based toolto predict the percentageof usersthat will reach
the target webpage andbe successful in exploration, and the ranking offebpagesthat users are
most likely to visit when exploring a website with a search goalUnlike AutoCWW, Bloodhound is
not publicly available but is available for licensing. Bloodhound provides aWeb-based Ul for
practitioners to run WUFIS, whichmodels the probability distribution of an arbitrary number of
users following each link on awebpage (Section 2.3.3 describes how WUFIS worls). To use
Bloodhound, the analyst submits theWeb address ofthe webpage where exploration starts

3 Accessed on January 17, 2011 http://autocww.colora do.edu/~brownr/ACWW.php

4 Retrieved on January 17, 2011 from
http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm



(exploration is limited to the webpagesunder the same domain as the starting Wb address) the
keywords of one or multiple £arch tasks and thaVeb address of the targetvebpagefor each of the
tasks. Bloodhound uses this information to setup thedata matrix in WUFISand runs the model.
Bloodhound then displays a webpage thateports the average success ratépercentage of users
predicted to find the target webpageg over all the search tasks, the success rate for each task, and
the webpagesthat were most oftenvisited over all the search tasks

Both AutoCWWand Bloodhound provide a Ul for practitioners to enter the necessaryniormation
to setup an analysis or model runand generate predictions of eploration task performance. Bth
return their predictions in a format that is accessibé to the practitioner: spreadsheets from
AutoCWWand awebpageof results from Bloodhound. Besides AutoCWWand Bloodhound, the rest
of the models reviewed were not further developed into tools for practitioner uséTable 1: Tool for
Practitioner). Setting up, running and extracting prediction results fsm those models typically
involve software programming, manipulating data formats and managing multiple files, activities
that are tedious but acceptablefor amodeling researcher, but notractical for a HCI practitioner.



3 RESEARCHGAPS

Table 1 summarizes e review of prior related work presentedin Section 2 Inspecting the table
revealssevenresearch gaps as indicated by theevencolumns with a majority of white cells.There

is a lack of further research on the Goal Formation, Learning and Interface Action aspects of
exploratory behavior (seethese columns inTable 1) after LICAI+/CoLiDeS This dissertation does
not seek to address these three research gaps, which are orthogonal to the research focus of this
dissertation and can be topics for future workThe next research gap in Visual Searcties in with

and is "manifested" through the two research gapsn Layout Position and Grouping, in terms of
how visual search overlayout position and grouping on screen affect user explorationFinally,
there is theresearch gapirom the scarcity of work indeveloping Tools for Pratitioners .

Table 1 also reveals that atomated methods to computethe infoscent scores(present in 7 out of
13, Table 1. Information Scent)that drive label-following (present in 13 of 13, Table 1: Labe}l
Following) have been progessively developed and successfully used a number of prior models
and tools. This dissertation doesnot seek to advance the stat®f-the-art in algorithms to compute
the infoscent scores that drive label-following. Instead, this dissertation will utilize a proven
method like LSA to control for the semantic component of the model while developing the visual
search, layout position and grouping componentsf the model

This dissertation focuses on the research gaps in Visual Search, Layout Position, Gnogipind Tool
for Practitioner. Sections 3.1 and 3.2 will address Layout Position and Grouping in conjunction with
Visual Search. Section 3.3 will address Tool for Practitioner.

3.1 CONSIDERATIONFLAYOUTPOSITION

Only 4 out of the 13 prior related works consider the effect of layout position in conjunction with
visual searchon user exploration (Table 1:Visual Search and.ayout Position). Visual seach over
layout position in IDXLand SNIFACT 2.0 serially evaluateon-screen options based on their spatial
ordering (i.e. beforeafter) instead of their actual onOAOAAT BT OEOEI 1 08 " 001 AUB «
screen positions but the Ul layout was a relatively simple ondimensional vertical list of menu
items. DOIACT includes a more complex twalimensional Ul layoutbut its visual searchassumes
knowledge specific to the DOtree Ul layoutand prefers to shift visual attention further afield to the
right, which is different from the eccentricity heuristic favored by other models of visual search
(Fleetwood & Byrne, 2006; Halverson & Hornof, 2006; 2007; Halverson, 2008) and may not be
appropriate for other Ul layouts in general DOFACT further assumes topdown visual search over
the nodes within a group. In modeling tools, both Bloodhound and AutoCWW do not capture the
layout of the Ul. Their global evaluation processes, inherited from WUFIS and CoLiDeS respectively,
are neutral to the order in which a person would evaluate the options on the UI.

However, the layout positionof options in a Ulmay affect theexploration choices actually made,
because a useis not likely to choose an optionthat he or she did not lookat and evaluate, and
competing options seen before the correct option mgyht be chosen insteadFigure 7illustrates this

with an actual webpage fromAutoCWW Experiment 2 (Blackmonet al.,2002), and a modified
version of the same webpage. Assuming a predominant ldfi-right visual scan pattern, the
expectation isthat participants would be more likely to click on the correct link if it appeared in the
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Canon law .Canon law is an ecclesiastical law or code of laws established by a church council. Canon law is
usually the body of legislation of various Christian churches dealing with matters of constitution or discipline.
ilthough all religions have regulations, the term applies mainly to the formal systems of the Roman Cathalic,
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of mutual concem (for example, marriage and divorce).
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F|gure 7: A search goal and webpage used in AutoCWE\kperlment 2 (Blackmon et al., 2002).
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picture shows the original layout. The right picture shows a modified layout with links
O4EAT I AT A O2A1 ECEI 6O &ECO
more likely to click on the correct link in the modified layout than in the original layout.

left column than if it appeared in the right columnlf true, this is significant becausea userclicking
on an incorrect link can increase the number of interaction steps and time spent exploring the
wrong branches in a large and complex website.

To investigate the effect oflayout position, a further analysis ofAutoCWW Experiment 2 was done
as part of this dissertation (Teo and John, 20Q8reproduced in detail herg. The experiment
webpages are publicly accessible on the Web and Dr. Marilyn Blackmon generbushared the
participant log files with us. The experiment had64 search tasks, 32 ofvhich were attempted on a
webpagewith 32 links in two 16-link columns (Figure7). Each task wassuccessfully perbrmed by
22 or 23 participants. We analyzed only the 22asks for which AutoCWWijudged the correct link to

be semantically related to the goal, reasoning that if the user could not recognize that the correct

link as related to the goal, then its position on the wepage would not matter.

Figure 8 shows the andysis by column position of the correct link on the webpage for the two
performance measures reported in theAutoCWWexperiments: the numbe of clicks performed on
the webpage where the last click was on th correct link (mean clicks onwebpage), and the
percentage of trialswhere the first click on thewebpagewas on the correct link (percent first click

success). Although these measures are highly (negatively) correlated, they represent two subtly
different usability concerns. Mean clicks is important if design team has data suggesting that users
will be willing to explore a bit, but will leave the website if it takes too long to find what they want.

Percent first click success is important if a

usability requirement is expressed as a certain
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first click success by target column (Standard error shown)
percentage of users achieving their goals without error. Since these measures are different, we
carry them through our analysis.

Participants indeed made significantly fewer clicks when the correct link was in the left column (M
= 1.12 clicks, SD = 0.13) than in thight column (M = 1.38 clicks, SD = 0.15)((1, 20) = 19.0,p <
0.01). They also had a significantly higher percent first click success when the correct link was in
the left column (M = 90.4, SD = 7.9) than in the right column (M = 66.4, SD = 19B}1(, 20) = 16.0,

p < 0.01). These results support our hypothesis and suggest a predominant kdtright visual scan
pattern as was also found in eydracking studies of visual search in similar text layouts with
participants from a similar culture (Halverson& Hornof, 2006; 2007).

We wanted to find out if existing models would be able to predict this effect of layout position on
participant task performance. The obvious choices were the two modeling tools, AutoCWW and
Bloodhound, as that meant we could reatli generate predictions from these models as intended by
their authors. Unfortunately, Bloodhound is not publicly available. There are5 other prior related
works that consider layout (Table 1: Layout Position) however, IDXL is not a fully executable
model; AT OE # 1 @inBUDBAbdAls performedexploration in a onedimensional list of menu
items but did not describe how their models should explore &vo-dimensional layout; the details of
the algorithm that determines and preencodesthe sequence of lik evaluations in SNIFACT 2.0
were not available; and DOIACT assumes knowledge specific to the DQiee Ul layout and uses
human ratings for category scentscores Thus, we could not readily create and run these modet®
generate predictions.Although AuoCWW does not consider layout position, we went ahead and
submitted these tasks to AutoCWW andomparedits predicted mean clicks on webpagéy column
position of the correct link.

We entered theparagraph oftext under the line O) OAT O1  /EE IstAtdmenh(€ee ©OER C1 Al
Figure 7), and entered the 2column webpage of 32 links as 16 links under 2sub-regions.
AutoCWW:is designed to work with regions that have heading textbut the cdumns did not have

heading text Therefore, we entered the goal texas the heading text for both columns, thus, both

5 Retrieved on January 17, 2011 from
http://www2.parc.com/istl/groups/uir/projects/bloodhound/bloodhound.htm



columns were judged byAutoCWW as being related to the goal and all links were eligible to

compete. We setAutoCWW O1 OOA OEA O' AT AOAT _ 2AAAEI C. 0P O  pt
semantic space, and thenet AutoCWW?1to do the default full elaboration on the link texts because

the original link texts are short, but to do no elaboration on the heading texts because the columns

are not semantic or categorical groupings of the links. For each taskutoCWWpredE AOAA ©EA OAO
mean clicks on webpage

As expected AutoCWW did not predict any significant difference between search tasks with the

correct link in the left column compared to in the right column F (1, 60) = 0.16,0 > 0.05).There are

two reasons why AutoCWWdid not predict the difference inDAOOEAEDAT 008 DADAI O Al
that the information requested by AutoCWW about sub-regions and links within sub-regions does

not contain anylayout position, soessential information is lacking (Table 1: Layout Position). The

second reason is thathe AutoCWW analysis globally evaluates all susegions and links base on

information scent alone (Table 1: Modeling Approach, note [e]) The analysis does not consider

layout position information, which is notavailable in the first place.

We did not submitthese tasksto Bloodhound because iis not readily available.Like AutoCWW, the

webpage and link information that Bloodhound captures doesnot contain layout position

information. Bloodhound also globally evaluates all links on awebpage and flow the probability
AEOOOEABOGEIT 1T &£ OOAOO 1 POEI Al lintdbscent Thérefork AVt &lsol ET E A
expect Bloodhoundwould not predict this effect.

This further analysis of AutoCWW Experiment 2 showed that layout position matters in goal

directed user exploration but is not predicted if existing models andtools lack a device model with

layout position information and an evaluation process that uses layout informationTo address this

research gap:

This dissertation integrates information scentwith a visual search processand an
accuraterepresentation of the Ul layoyin a model ofgoal-directed userexploration.

3.2 CONSIDERATIONFCGROURNG

Groups in the Ul can arise from proximity, color, density, etc. For example, experiments by
Blackmon ¢ al. (2002, 2003 and2005) and Halverson and Hornof (2008) had groups demarcated
by proximity and color (Figures 2 and 5) Analysis of experimental results by Blackmon at el.
(2005), Kitajima at el. (2007) and Halversonand Hornof (2008) suggesed that the infoscent and
the grouping of on-screen optionsaffect exploration task performance

Only 3 out of the 13 prior related worksconsider the effect of groupingon user exploration (Table
1: Grouping).CoLiDeSand AutoCWWdo consider groupng, but the groups lacked layout position
information and are globally evaluated and selected based solely on highdasfoscent in the Ul
(Table 1: Grouping and Layout Position). D@ACT defines groups based on the vertical proximity
betwAAT TT AAOh AT 1T OByAU poSitiord, EaAd use® b &ebidd valuation and local
decision process. However as mentioned eatrlier, its visual search asswsrienowledge specific to
the DOl tree Ul layout and prefers to shift visual attention further dield to the right, which is



different from the eccentricity heuristic favored by other models of visual search and may not be
appropriate for other Ul layouts in general.

Grouping affects user exploration and more researcls needed to include groupsas afactor in
modeling goaltdirected user exploration. The approach in this dissertation is for the human
modeler to define the groups and provide the groupinformation to the exploration model, which is
the same approach taken by Blackmon et al. (2002, 2003, 2005), Halversonand Hornof (2006,
2007, 2008), and in DOFACT. This allows research on how groupsaffect user exploration to
progress in parallel with other psychologicalresearch on how groups are formedand recognized
To address this research gap:

This dissertation integrates information scent with a hierarchical visual search
process and an accurateepresentation of the Ul layouthat includesgrouping, in a
model ofgoal-directed userexploration.

3.3 IMPLEMENTATION AS AOOL

Only 2 out ofthe 13 prior related works implement the research models into tools for practitioner
use (Table 1: Tool for Practitioner) One approach to speed ughis processis to integrate themodel
into an existing modeling tool that has demonstrated success in reducing the efforequired of a
practitioner. One such tool is CogToo{John at el, 2004). CogTool provides facilities for a
practitioner to create, save and modify a mockup of a Ul design, features which are absent from
AutoCWW and Bloodhound. CogTool includes a modeff skilled task performance time, basean
the Keystroke Level Model (KLM; Card, Morar& Newell, 1980; 1983, and implemented in the ACT

R cognitive architecture. CogTool automatically creates a KLM when the practitioner demonstrates
a sequence of interactin steps on the Ul mockup, and automatally inserts Mental Operatorsinto
the KLM, which has been an erreprone step for practitioners. CogTool then execugethe KLM
ACT-R model and presents the predicted task performance times to the practitiongén various
visualizations, for the practitioner to compare between Ul designs and improve the designs for
better task performance.

To efficiently make the model of goaldirected user exploration available to the rest of the HCI
community:

This dissertationimplements the model ofgoal-directed userexploration as part of
CogTool

The advantage of this approach compared to building a separateew tool is that the existing
facilities in CogTool that are common to both the KLM anthe goaldirected user exploration
model, such as the ability to mockup a Ul design with layout position informatigmo not have to be
re-implemented. Tool developmenteffort can focus on addingo CogToolthe new facilities that are
required by the user exploration model, such as thegeneation of infoscent scoresand the
specification of groups in the Ul design. Another advantage is that the new model gbaldirected
user exploration can reach outquickly to the existing group ofCogToolusers, andthese userscan
benefit from the increased capabilities of CogTool to make predictions of both skilled and
exploratory behavior on the same Ul mockup



For ease of referencethe new model of goaldirected user exploration developed in this
dissertation and the additions made to CogTool to intetate and support the newmodel shall be
referred to asCogToolExplorer.



4 COGIOOL-EXPLORER

Section 3presentedthe three research gapsn modeling goaldirected user explorationthat are the
focus of this dissertation (1) consideration of layout positin, (2) consideration of groupingand (3)
implementation as a tool. Section 4 presents CogTodExplorer, a solution researched and
developed in this dissertation to address these gap$n particular, Section 4.1 presents modeling
work done in CogTootExplorer 1.0 to address the first research gap in consideration of layout
position. Section4.2 presents further modeling work done in CogToolExplorer 1.1 and CogToaol
Explorer 1.2to address the second researchap in consiceration of grouping. Section 4.3 presets
design and implementation workdone to integrate CogToolExplorer 1.2 into CogToal to address
the third research gap in implementation as a toolOverall, the modeling,analysis and development
work leading up to CogTootExplorer 1.2 provide support for the thesis of this dissertation
presented in &ction 1.1.

Figure 9 presents an overview of CogToolExplorer. Items in white background indicate
components and external resources thagxisted prior to this dissertation, and are used by CogTool

(T) Tool for Modeling Goal-Directed User Exploration
(implemented in CogTool)

(M) Model of Goal-Directed User Exploration
(implemented in ACT-R)
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Figure 9: Overview of CogToolExplorer. White background indicates
pre-existing components and external resourced.ight blue indicates
new or refined components contributed by this dissertation



Explorer. Items in blueindicate the new work that was done in this dissertation.

CogToolExplorer consists of a model of goadlirected user exploration implemented in the ACIR
cognitive architecture (region M). The model simulates a usefregion U) with an exploration goal
and semantic knowledgeexploring the Ul ofa device(region D). The model serially evaluateshe
infoscent of on-screen widgetsin the device (inregion D) guided by its visual search procesand
knowledge about grouping (in region U). When the model choosesa widget in the U| the device
model will update the Ulwith the next frame and its widgets specified by the transitionin response
to the interface actionon the widget. Thiscycle continues until the exploration goal is metor time
allowed for the model to run is up This exploration takes place on a devicenodel that accurately
represents the Ul of the actual device.

The CogToolExplorer model is implemented as part of CogTool for use by practitionefsegion T).
In CogTootExplorer, a practtioner can automatically or manually create the device model that
represents the Ul of the actual devic@ower left of region T), automatically extract the text labes of
widgets from the device model and retrieveinfoscent scores based onthe widget labels and the
goal description from an external databasdupper left of region T), setup the CogToeExplorer
model and specify model parametergupper right of region T), andrun the modelto get predictions
of likely exploration paths (lower right of region T). In the course of developing CogTodtxplorer,
the model will be evaluated by comparing its predictions to data collected from participants
performing the same exploration tasks.

4.1 CONSIDERATION OEAYOUTPOSITION

Following the analysis of participant data from the two-column layout described in Section 3.1we
developedthe first CogTootExplorer model (renamed CogTooExplorer 1.0 in this dissertation)to
consider both infoscent and layout position to make more accurate predictions ofgoaldirected
user exploration (Teo & John, 2008reproduced in detail below). CogToolExplorer 1.0 integrates a
serial evaluation model, with a visualsearch processand a Ul devicemodel that preserves layout
positions. These are the three necessarycomponents to consider layout position and CogTool
Explorer 1.0uses them all successfullyo make more accurate predictions

4.1.1 ADDPERCEPTUAtMOTORBEHAVIOR

CogTootExplorer 1.0 usesthe SNIFACT 2.0 modeko serially evaluate links on thepage oneat a
time. The model evaluaes thelinkd O E 1 #iath @eBpkdt 10 the goal remembers the linkas the
best link if it has the highest infoscent so far in the pageandthen decidesto either choosethe best
link seen so far n the page, orcontinuesto look at andread another link. Each action is associated
with an ACT-R production and the production with the higher utility is chosen.CogTootExplorer
1.0 uses the same utility update equations as SNIKCT 2.0(see 8: Utility equations in Fu & Pirolli,
2007) to update the utilities associated with these two productions every time after a link is
evaluatedand thendecides which action to take



Uln +1) = L)+ IS (link)
ReadAnother: 1+ N(n) o

]I(I \‘:I b, ‘.I( o ‘I “
ChooseBest: Uln+1) = Uln)+ IS \Bmh\[,m!.) [Eq. 2
1+ %+ N(n)

Fu and Pirolli (2007) explained:

U(n) represents the utility of the production at cyclen, andU(n+1) represents the
updated utility of the production at cycle n+1, IS(link) represents the information
scent of the current attended link,N(n) representsthe number of links attended on
the Web page at cycla, IS(Best LinR is the highest information scent of the links
attended on theWeb pagek is a scalingparameter. (p. 380)

Since themodel may not evaluate all links a a welpage before making a selection the order in
which links are evaluatedhas a direct effect on its prediced exploration choices.However, te
original SNIFACT 20 model did not move a simulated eye and evaluate links in an order that
reflected how links may be looked ain a webpage, insteadt used webpage and linkinformation
collected by Bloodhound, encodd the links directly into ACT-R declarative memory chunks and
O1 1T 1 E hnks byArédeving them from declarative memory (Fu, W-T., personal communication,
September 18, 2006) In CogTootExplorer 1.0, we modified the SNIFACT 2.0 model withnew
model codeto implement the perceptual and motor actions of loking at links on the webpage and
clicking on the selected linkduring a model run, and modified the support code to use alternative
computations ofinfoscent besides the original PMifunction. The sdection of an infoscent function,
and values forseveral model parameters will be discussed in 8Bction 4.1.5 about our test of
CogTootExplorer 1.0.

4.1.2 ADDA VISUALSEARCHSTRATEGY

To guide the newly addedperceptualmotor actions in CogTootExplorer 1.0, we further modified
the SNIFACT 2.0 model taadd a visual search strategyased onthe Minimal Model of Visual Search
(Halverson & Hornof, 2007). The visual search strategy ismplemented in the ACTR vision module
augmentedwith the EMMA model of visual peparation, execution and encoding (Salvucci, 2001).
This strategy starts in the upperleft corner of an accurate representation of thewebpage
(described in Section 4.1.3) and proceeds to look at the linknearestOT OEA 11T AAT 80O
visual attention (xy-coordinates), x EAOA O Asdbfeded @da fluetation factor. CogTool
Explorer 1.0 usesthe samefluctuation factor as Halverson and Horno{2007), which is the normal
distribution with a mean of 1 and a standard deviation of 0.3CogToolExplorer 1.0 maintains its
point of visual attention when the page changes, arekhibits inhibition of return by performing the
visual search without replacement,that is, on visiting a page, each link may be looked aand
evaluatedby the modelat most one, However,in alater visit to the samepage, those linkanay be
looked atand evaluatedagain. Eyetracking studies and modelingby Halverson and Hornof(2006,
2007) found that such a strategy explaiad for 59% of all systematic eyescan patterns intheir
visual searchexperiments of similar text layouts.
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4.1.3 PRESERVEAYOUTPOSITION

For CogToolExplorer 1.0 to correctly consider the order of serial evaluation, the model must
interact with an accurate device model of the webpage. CogTodExplorer 1.0 leverages the ability
of CogTool to accurately represent a Ul design, in gigular the on-screen position, dimension and
text label of every link on the welpage (Figure §. Earlier versions of CogToolExplorer required
webpagesto be mocked up by hand. To automag¢ this process, v implemented in CogTool
Explorer 1.0 the ability to crawl and submit a list of URLsto WebRender(Reeder, Pirolli& Card,
2001), a webpage rendering tool, to render anextract the position, dimension text andtarget URL
of eachlink from the actual webpageg(later versions of CogTocExplorer, from CogTootExplorer
1.0a onwards in Section 4.2.1.3,use the open source XULRunner instead of the proprietary
WebRender and further streamlined and automated the process; Section 4.3dkescribes this in
more detail). CogToolExplorer 1.0 then assemblesthis information into the format that can be
imported into CogTool to automatically create an accurat&l mockup of all these webpages and
links. CogToolthen converts this mockup into an ACT-R device mode| with which the CogToot
Explorer 1.0model can interact.

4.1.4 OPERATION OKCOGI OOI-EXPLORERL.O

Figure 10illustrates an example run of the CogToeExplorer 1.0 model in the two-column layout.

GivenOEA AAOAOEDOEI T 1T £ OEA pAragiaphiof@ektOE IATA OCIOAIOAD# BT 1T 1&
the top of the webpage)and at least onevisible link on the current page (underlined text labels),
CogTootExplorer 1.08 @bint of visual attention starts in the top-left corner of the page(step 1) and

moves itsvisual attention to thelink O0 AT b1 A ET OEA 51 EOAA 30AO0A0G6 TA
visual attention (step 2a), AOAT OA O A GnfoSderhwith fEdpdetitathe exploration goal (step

2b) and remembers the link as the best link if it has the high&t infoscent so far in the pageThe

model may then decide to look at and evaluate another link O- OOEAEAT O AT A #1101 b1 OAC

response to the clichk OEA AAOGEAA 11T AAT Al 11 hextPagtidging tliel ES O O«
new links into the visual field of the model. Each run of the model can be differentdsuse of noise

in the model, thus, the path of the model on each run is analogous to predictitige exploration
choices of a single human trial.

4.1.5 TEST OFCOGIOOL-EXPLORERL.O

We compareal the participant data from the 22 tasksin the two-column layout to predictions by
CogToolExplorer 1.0 andby AutoCWW. As explained in Section 3.1, althougAutoCWW does not
consider layout position,there were no models that do consider layoutposition available to test
against thus, we wanted to check that CogToeExplorer 1.0 performed at least as well as
AutoCWW. We first directed CogToolExplorer 1.0 to import the actual webpages used irnthat
experiment and auomatically create the device model To be as comparable as possible to the
AutoCWW analysis, we set CogToolExplorer 1.0 to use the sameLSA values of infoscent as
AutoCWW used when it evaluaed the links. Because thosd.SAvalues were from -1 to +1, with
links related to the goal on the order of +0.5, whereathe original SNIF! # 4  dn®scéntvalues



Figure 10: An example run of CogToeExplorer 1.0 in the two-column layout.

for the same links were on the order of +25, we scaled theSAvalues by a factor of 50 to be usedd
with CogTootExplorer 1.0.

4 EA | Tlosahdedsion to stop and select the best linkso faror continue to look at another link
is not fixed, but is dependent on thanfoscent of the links that have been evaluated so far, and
moderated by parameterst and k.t is the variance of theACT-R noise functionthat is applied to the
infoscent value each time a link is evaluated, toeflect the variability a user might display when
accessinginfoscent. k (see Eq. 2)affects how rapidly the decisionto stop switches as a function of
the infoscent values encounterel, to reflect a used O O & & A Atépland select the best linkFu
and Pirolli (2007) explained:

In the equation specified in the text, we set a = 1 for the reatkext-link production;
and a = 1 + k for the clickink production. By setting the value & a for click-link to a
higher value, we assume that in general, following a link is more likely to lead to the
target page than attending to the next link on the same Web page. k is a free
parameter that we used to fit the data(p. 408)

The choice ok may bepartly influenced by the layout of links on thepage. For example, on a query
search results welpage,k would be smaller to reflect a higher readiness tstop since the most
related links appear near the top of the wepage. If the layoutof links is not organized,k would be
larger to reflect a lower readiness tastop sincethe correct link might be anywhere on the webpage.





























































































































































































































































































































































































































































