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Abstract: Micro-task markets such as Amazon’s Mechanical 
Turk represent a new paradigm for accomplishing work, in which 
employers can tap into a large population of workers around the 
globe to accomplish tasks in a fraction of the time and money of 

more traditional methods.  However, such markets typically 
support only simple, independent tasks, such as labeling an image 

or judging the relevance of a search result.  Here we present a 
general purpose framework for accomplishing complex tasks 

using micro-task markets. Our approach is inspired by the 
MapReduce framework for distributed processing and provides a 
scaffolding for complex human computation tasks. We describe 
our general framework, a web-based prototype, and case studies 

on article writing and decision making that demonstrate the 
benefits of the approach. 
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INTRODUCTION 
Crowdsourcing has become a powerful mechanism for accomplishing work online.  Hundreds of thousands of 
volunteers have completed tasks including classifying craters on planetary surfaces (clickworkers.arc.nasa.gov), 
deciphering scanned text (recaptcha.net), and discovering new galaxies (galaxyzoo.org). Crowdsourcing has 
succeeded as a commercial strategy for accomplishing work as well, with companies accomplishing work ranging 
from crowdsourcing t-shirt designs (Threadless) to research and development (Innocentive). 

One of the most interesting developments is the creation of general-purpose markets for crowdsourcing diverse 
tasks.  For example, in Amazon’s Mechanical Turk (MTurk), tasks range from labeling images with keywords to 
judging the relevance of search results to transcribing podcasts. Such “micro-task” markets typically involve short 
tasks (ranging from a few seconds to a few minutes) which users self-select and complete for monetary gain 
(typically from 1-10 cents per task).  These markets represent the potential for accomplishing work in a fraction of 
the time and money required by more traditional methods [5][12][19][21]. 

However, the types of tasks accomplished through MTurk have typically been limited to those that are low 
complexity, independent, and require little time and cognitive effort to complete.  Here we describe a framework for 
extending micro-task markets to support complex, interdependent tasks.  Our framework is based on insights from 
the organizational behavior literature for understanding the kinds of coordination dependencies involved in complex 
tasks, and from the distributed computing literature for techniques to support those dependencies in distributed 
human computation.  We make three primary contributions: 

 We identify the coordination requirements necessary to crowdsource complex tasks, and describe a framework 
to support a variety of task types.  The framework systematically breaks complex problems down into simpler 
tasks by creating subtasks that define and create other subtasks and distributes these tasks to workers.  Output 
from subtasks can be evaluated and consolidated via additional outsourced tasks. 

 We instantiate the framework in a prototype system for architecting the problem and managing the solution 
flow.  We demonstrate the utility of the system through case studies using the prototype to solve complex 
problems including writing an article and researching a purchasing decision.  We show quantitative evidence 
that the approach works better than asking a single individual to solve the problem, even controlling for the total 
wages offered. 

 We demonstrate how the system can extend to more complex flows that include verification phases, and 
provide evidence that such phases can lead to better outcomes. We also describe how the system can be 
extended to support arbitrarily complex and recursive flows. 

MECHANICAL TURK 
According to Amazon, Mechanical Turk is “marketplace for work that requires human intelligence.” Using it, 
employers post tasks, which Amazon terms “Human Intelligence Tasks” or “HITs.” These are self-contained tasks 
that worker can select, work on, submit an answer, and collect a reward for completing.  

There has been an increasing amount of research on Mechanical Turk recently. A large number of studies have 
examined the usefulness of MTurk as a platform for collecting and evaluating data for applications including 
machine translation [4] image databases [7], and natural language processing [19].  There have also been studies 
examining the use of MTurk as a platform for experiments in perception [5][10], judgment and decision making 
[11], and user interface evaluation [12]. Sorokin & Forsyth use Mechanical Turk to tag images in computer vision 
research and suggest voting mechanisms to improve quality [21]. Little et al. [15] introduced TurkIt, a toolkit for 
iterative tasks in MTurk, which we will discuss in more detail later in the paper.  

MTurk encompasses a large and heterogeneous pool of tasks and workers; Amazon claims over 100,000 workers in 
100 different countries, and as of the time of writing there were approximately 80,000 HITs available.  The typical 
task on MTurk is self-contained, simple, repetitive, and short, requiring little specialized skill and often paying less 
than minimum wage. For example, during February 2010, we scraped descriptions of 13,449 HIT groups posted to 
Mechanical Turk. The modal HIT was allotted 60 minutes for completion and paid $0.03 US. We should note that 
the allotted time is often much greater than the actual completion time; assuming that workers received the US 
minimum wage of $7.25/hour or 12 cents per minute, a wage of $.03 per task implies that many tasks take a fraction 
of a minute to complete. Examples of tasks include identifying objects in a photo or video, de-duplicating data, 
transcribing audio recordings, or researching data details.  

There are a number of reasons why these kinds of tasks are so common.  Most workers (who call themselves 
“turkers”) spend less than 8 hours per week on MTurk, and use it as a way to convert free time into a supplementary 



 

 

source of income, for pocket money, as a hobby, or to kill time, but not as their primary job [9]. As a result most 
turkers will not engage in long or complex tasks.  Another potential explanation is the reward structure of 
Mechanical Turk, in which employers can reject work for any reason without giving an explanation. For example, to 
deal with spam, many employers summarily reject submitted work if it doesn’t agree with others’ submissions. 
Workers are unlikely to engage in long or complex tasks if there is a high probability that they will not get paid even 
if they completed the work in good faith. These rejections can have a serious impact on future earning too, since 
employers often ban workers whose prior work has been rejected over some threshold. This results in MTurk being 
a crowdsourcing market in which the average capacity for long or complex work is quite low. 

COORDINATION IN COMPLEX TASKS 
In contrast to the typical tasks posted on Mechanical Turk, much of the work required in many real-world work 
organizations and even many temporary employment assignments is often more complex, interdependent, and 
requires significant time and cognitive effort [16]. These tasks require substantially more coordination among co-
workers than do the simple tasks typically seen on micro-task markets. The impact of micro-task markets would be 
substantially greater if they could also be applied to these more complex and interdependent task.  

Consider for example the task of writing a short article about a locale for a public relationship campaign, a 
newspaper, a travel guide or an encyclopedia. This is a complex and highly interrelated task that involves many 
subtasks, such as deciding on the scope and structure of the article, finding and collecting relevant information, 
writing the narrative, taking pictures, laying out the document and editing the final copy.  Furthermore, if more than 
one person is involved in the task, each person needs to coordinate in order to avoid redundant work and to make the 
final product coherent. Many kinds of tasks ranging from researching where to go on vacation to planning a new 
consumer product to writing software share the properties of being complex and highly interdependent, requiring 
substantial effort from individual contributors. 

These difficulties with coordinating complex tasks are not unique to crowdsourcing. Organizational scholars have 
long investigated coordination across individuals and parts of a firm.  Williamson won a Nobel Prize in economics 
for his theory of transaction costs [24], identifying the conditions under which it is efficient for a company to buy 
goods and services on a market instead of hiring employees to produce the work in house.  According to this view, 

markets are efficient only when the costs of 
identifying an appropriate supplier, defining the 
exchange (e.g., the nature of the goods to be 
produced and its price), policing and enforcing the 
contract and settling the transaction are less than can 
be accomplished if the transaction were conducted 
in-house. Using employers may reduce transactions 
costs because at employees at least partially identify 
with the interests of the company and agree to be 
supervised and directed by managers.  In an early 
paper, Malone and his colleagues argued that 
electronic markets may reduce the costs of search, 
bargaining, enforcement and settlement and 
dramatically expand the types of goods and services 
that can be offered on electronic markets [17].  The 
goal of our research to continue to reduce these 
transaction costs, by disaggregating and re-
aggregating complex, multi-person tasks so that task 
definition, production and supervision can all be 
done in micro-task markets. 

Task partitioning with division of labor is one of the 
most commonly used methods for coordinating tasks. 
Adam Smith in his classic The Nature and Causes of 
the Wealth of Nations [22] described the efficacy 
benefits associated with it. Via division of labor, a 
greater pool of agents can work in parallel, the agents 

Coordination 
Dependencies 

Organizational 
science 

Distributed 
computing 

Shared 
resources 

Resource 
allocation 

Mapping tasks to 
processors 

Producer/ 
Consumer 

Prerequisite 
constraints 

Managing serial 
computations 

Transfer Distributing data 
(transfer) 

Usability Distributing data 
(format) 

Task/subtask Top-down task 
goals 

Parallelizing 
computations 

Dynamic subtask 
generation 

Table 1. Types of coordination dependencies relevant to 
crowdsourcing complex tasks (from [16]) and concepts 

they map to from organizational science and distributed 
computing.  



 

 

can be specialized for the tasks they perform, and they can complete an assignment without losing time switching 
from task to task [2].   

This approach works well when the tasks involve what Van de Ven et al. [23] call “pooled interdependence”, in 
which the group product is a simple aggregation of the individually produced products. Such tasks are typical of 
those currently supported by Mechanical Turk, such as judging the relevance of a search result or finding company 
information on a web.  However, aggregating the results of individually produced tasks does not work as well when 
the work is complex and the component tasks are interdependent. Splitting a interdependent project into subtasks 
incurs costs: those subtasks need to be assigned to workers suited to the task; workers may need to be trained; timing 
of subtasks may need to be coordinated; the results of one subtask may be the input to other subtasks; the approach 
taken in one subtask may constrain the work taken in another; standards and quality may need to be enforced across 
subtasks; subtasks may need to be integrated and made consistent; and so forth.  These are the sorts of conditions 
that Williamson suggested make some types of work difficult to accomplish efficiently in a market. 

Many of these challenges are exacerbated in crowdsourcing markets. Because individual participants in micro-task 
markets do not want to and may not be capable of engaging in long or complex tasks, work must be broken down 
into many small pieces that can be quickly accomplished, leading to high coordination costs for interdependent 
workers.  Tasks must be simple enough for workers to easily learn and complete. More generally, the nature of the 
workers and their relationship with the company posting the work produces additional challenges. With low 
commitment by companies and high turnover among the workers, there is minimal opportunity for training. Current 
micro-task markets have little built-in support for managing the flow of tasks, either in terms of time or input-output, 
and workers generally complete tasks independently with no knowledge of what others have done, making it 
difficult to enforce standards and consistency.   

To identify the types of coordination we will need to support for crowdsourcing complex tasks we turn to previous 
work on coordination in organizational behavior [16][17][18][23].  In particular, Malone & Crowston [16] suggest a 
useful taxonomy of interdependencies that require coordination that we draw on in our current work. These 
dependencies are summarized in Table 1 and described in more detail below: 

Managing shared resources. Whenever a limited resource needs to be shared, coordinating resource allocation 
becomes important. Allocating a fixed pool of workers to multiple tasks that must be completed under a deadline is 
a classic example of managing shared resources. In producing a newsletter under a deadline, for example, the fixed 
staff of writers, editors and proof readers need to be allocated so that all the planned stories are written, and all of 
them don’t demand work from an overtaxed editing and proofing staff at the last minute. Moreover, unless all 
subtasks are known beforehand, this allocation could change depending on how tasks are split up.  Therefore a 
dynamic task allocation process is needed to manage worker resources throughout the task flow. 

Managing producer/consumer relationships. In many situations one activity produces something required as 
input for another activity. For example, the structure of an article needs to be decided on before the sections can be 
written. This leads to a number of dependencies: 1) prerequisite constraints: certain activities need to take place 
before others; 2) transfer: the output of one activity needs to be shared with another; 3) usability: the output of one 
activity needs to be in such a form that it can be used by another.  For successful coordination in complex tasks each 
of these dependencies must be supported. 

Managing task/subtask dependencies. There are many different ways a task can be divided into subtasks [18]. In a 
top-down approach, a single person (e.g., the task creator) could specify all of the subtasks (and sub-subtasks, etc.) 
to decompose a task into.  However, in many cases decomposition of the task may itself be a part of the process.  
For example, the task creator may not be able to a priori specify all the sections for an article or the classes for a 
software program in advance. Supporting both top-down specification of the task goals and bottom-up identification 
of subtasks is crucial for crowdsourcing complex tasks in which subtasks may be generated and completed 
dynamically. 



 

 

APPROACH 
Our goal is to support the coordination dependencies 
involved in complex work through micro-task 
markets. As previously mentioned, most tasks on 
these markets are simple and self-contained with no 
challenging coordination dependencies. The audio 
transcription tasks posted by Castingwords.com are a 
rare exception to the typical MTurk task. 
Castingwords breaks up an audio stream into 
overlapping segments, and workers are employed to 
generate transcriptions from each audio segment. 
These transcriptions are then verified by other 
workers, whose work is later automatically put 
together into a complete transcription.  Unlike the 
standard micro-market task, the disaggregation of an 
audio file into smaller transcription tasks and the use 
of a second wave of workers to verify the work done 
by the transcriptions involves the producer/consumer 
dependency and others of the dependencies identified 
in the previous section. It also provides a simple 
model for many of the elements of our approach. For 
example, the transcription task can be broken up into the following elements: 

 A pre-specified partition that breaks up the audio into smaller subtasks 

 A flow that controls the sequencing of the tasks and transfer of information between them 

 A quality control phase that involves verification of one task by another worker 

 Automatic aggregation of the results 

The TurkIt toolkit for MTurk [15] extends some of these elements by enabling task designers to specify iterative 
flows. Little and colleagues use as an example a text identification in which the results of multiple workers’ outputs 
are voted on and the best sent to new workers, whose work is then voted on, and so forth. Viewed according to the 
elements above, this is a producer/consumer dependency, with a flow between a production task (text identification) 
and a quality control task (voting) that also serves to 
aggregate the results. 

Our goal is to generalize these elements into a framework 
that supports the crowdsourcing of highly complex work.  
Specifically, our framework aims to support: 

 Multi-level partitions in which a task can be broken 
up by more than one partition 

 Dynamic partitioning so that workers themselves can 
decide how to partition a task, with their results 
generating new subtasks during the flow (rather than 
the task designer needing fully specify partitioning 
beforehand) 

 Complex flows involving many tasks and many 
workers 

 A variety of quality control methods including 
voting, verification, or merging items 

 Intelligent aggregation of results both automatically 
and by workers.  

 A simple method for specifying and managing tasks 
and flows between tasks 

To accomplish these goals our approach draws on 
concepts from the distributed computing literature [1][20]. 
Malone and Crowston [16] note the general parallels 

Figure 2: Partial results of a collaborative  
writing task. 

Figure 1: Overview of framework for splitting up and 
recombining complex human computation tasks. 



 

 

between coordination in human systems and computer systems. Crowdsourced labor markets can be viewed as large 
distributed systems in which each person, such as a worker on Mechanical Turk, is analogous to a computer 
processor that can solve a task requiring human intelligence. In this way a crowdsourcing market could be seen as a 
loosely coupled distributed computing system [1]. 

Key challenges in distributed computing include partitioning computations into tasks that can be done in parallel, 
mapping tasks to processors, distributing data to and between processors, and fault tolerance [1][20]. Many of these 
challenges map to the coordination dependencies identified earlier, as shown in Table 11. This suggests that some 
solutions to managing distributed computing with multiple processors may be profitably applied to crowdsourcing 
as well. 

A simple, well-known, and widely used distributed computing model is Google’s MapReduce framework [6]. 
MapReduce was inspired by functional programming languages in which a large array of data is processed in 
parallel through a two step process: first, key/value pairs are each processed to generate a set of intermediate 
key/value pairs (the Map phase). Next, values with identical intermediate keys are merged (the Reduce phase). 
Although there are many other models of distributed computing [1][20], key advantages of MapReduce include: 1) 
its simplicity, allowing programmers without experience in parallel programming to easily make use of distributed 
system resources; 2) a large variety of real world problems have been found amenable to representation in Map and 
Reduce tasks. 

Our approach builds on the general approach to distributed computing exemplified by MapReduce of breaking down 
a complex problem into a sequence of simpler subtasks using a small set of subtask types (e.g., Maps and Reduces). 
We define three types of subtasks: 

 Partition tasks, in which a larger task is broken down into discrete subtasks 

 Map tasks, in which a specified task is processed by one or more workers 

 Reduce tasks, in which the results of multiple workers’ tasks are merged into a single output 

CrowdForge abstracts away many of the programming details of creating and managing subtasks by treating 
partition/map/reduce steps as the basic building blocks for distributed process flows, enabling complex tasks to be 
broken up systematically and dynamically into sequential and parallelizable subtasks.  

In partition tasks, workers are asked to create a high level partitioning of the problem, such as creating an outline of 
an article with section headings or a list of criteria for buying a new car.  In our system the partitioning is made an 
explicit part of the task itself, with subtasks dynamically created based on the results of the partition step. 
Importantly, this means that the task designer does not have to know beforehand all of the subtasks that will be 
generated: defining the division of labor and subtask design are shifted to the market itself.  

In map tasks, a specified processing step is applied to each item in the partition. These tasks are ideally simple 
enough to be answerable by a single worker in a short amount of time. For example, a map task for article writing 
could ask a worker to collect one fact on a given topic in the article’s outline. Multiple instances of a map tasks 
could be instantiated for each partition; e.g., multiple workers could be asked to collect one fact each on a topic in 
parallel. 

Finally, reduce tasks take all the results from a given map task and consolidate them, typically into a single result. In 
the article writing example, a reduce step might take facts collected for a given topic by many workers and have a 
worker turn them into a paragraph. 

Any of these steps can be iterative. For example, the topic for an article section defined in a first partition can itself 
be partitioned into subsections. Similarly, the paragraphs returned from one reduction step can in turn be reordered 
through a second reduction step. 

CASE STUDIES 
Before describing implementation details of the system we first provide examples and evidence of how the system 
works in practice through two case studies: article writing and researching a purchase decision. 

Article writing 

The first complex task we explored was writing an encyclopedia article. Writing an article is a challenging and 
interdependent task that involves many different subtasks: planning the scope of the article, how it should be 

                                                           
1 Fault tolerance is not included in the table as it does not map well to the identified coordination dependencies. However, we 
will address this issue in more detail in the section on quality control below. 



 

 

structured, finding and filtering information to include, writing up that information, finding and fixing grammar and 
spelling, and making the article coherent. While there are examples of collaborative writing on the Internet, notably 
Wikipedia, previous work has shown that the success of harnessing a large group of contributors is often dependent 
on a small core of leaders that do a large proportion of the work and organize the contributions of others [13][14]. 
This poses a challenge in micro-task markets where individuals may not be willing to spend the large amount of 
effort needed to be a leader and may not be able to communicate with others in order to coordinate or influence their 
behavior. Furthermore, because of the many related subtasks, article writing encompasses many of the coordination 
dependencies in Table 1. Finally, many of the subtasks involved, such as assembling the relevant information or 
doing the actual writing, can be time consuming and complex. These characteristics make article writing a 
challenging but representative test case for our approach. 
To solve this problem we created a simple flow consisting of a partition, map, and reduce step.  The partition step 
asked workers to create an article outline, represented as an array of section headings such as “History” and 
“Geography”. In an environment where workers would complete high effort tasks, the next step might be to have 
someone write a paragraph for each section. However, the difficulty and time involved in finding the information for 
and writing a complete paragraph for a heading is a mismatch to the low work capacity of micro-task markets. Thus 
we broke the task up further, separating the information collection and writing subtasks. Specifically, each section 
heading from the partition was used to generate map tasks in which multiple workers were asked to submit a single 
fact about the section (turkers were also asked to submit a URL reference to the source of the fact to encourage high 
quality fact collection).  
Next, the reduction step asked other workers to create a paragraph for each section based on the facts collected in the 
map step. By separating the collection of information and writing into two stages we could significantly decrease the 
cost of each stage, making the task more suitable for micro-task workers. In addition, we benefit from other effects 
such being able to collect more and more diverse information when more workers were involved. The partition-map-
reduce process is illustrated in Figure 2. Finally, since the sections of encyclopedic articles are relatively 
independent, the resulting paragraphs were themselves reduced into an article by simply concatenating them2.  
We used this approach to create five articles about New York City.  Articles cost an average of $3.26 to produce, 
and required an average of 36 subtasks or HITs, each performed by an individual worker. Partition-workers 
identified 5.3 topics per article in the partition step. The average number article ended with 658 words.  A fragment 
of a typical article is shown in Figure 2; this article consisted of 955 words and 7 sections: brief history, getting 
there, basic layout, neighborhoods, getting around, attractions and ethnic diversity.  It was completed via 36 
different HITs for a total cost of $3.15. 
To verify the quality of these collaboratively written articles, we compared them to articles written individually by 
workers and to the entry from the Simple English Wikipedia on New York City [25]. To produce a comparison 

group of individually written articles, we created eight 
HITs which each requested one worker to write the full 
article. To control for motivations associated with 
reward, we paid these individuals $3.05, approximately 
the same amount as the average group payment. The 
resulting articles consisted of an average of 393 words, 
approximately 60% the length of the collaborative 
written articles. 

We then evaluated the quality of all articles by asking a 
new set of workers to each rate a single article based on 
four dimensions: use of facts, spelling and grammar, 
article structure, and personal preference. Fifteen 
workers rated each article on five-point Likert scales. 
We averaged the ratings of the 15 raters across the four 
dimensions to get an overall quality score for each 
article.  

On average the articles produced by the group were of 
higher quality than those produced individually (see 
Figure 3: mean quality for group-written articles = 4.01 

                                                           
2 For other kinds of articles there could be another crowdsourced reduce phase that integrates the paragraphs. 

   
Figure 3: Rated quality of articles about New York 
City produced by Mechanical Turk workers acting 
individually or as a group using our framework 
compared to the quality of the same article on the 
Simple English Wikipedia 



 

 

versus 3.75 for individually-written ones, t(11)=2.17, p=.05).   

The average quality for the group-written articles was roughly the same as the Simple English Wikipedia article 
(Wikipedia quality=3.95).  Not only was the average quality of the group articles higher than the individually 
written ones, but as Figure 3 also shows, the variability was lower as well (t(11)=-2.43, p=.03), with a lower 
proportion of poor articles.  

Overall, we found that using CrowdForge to crowdsource the complex and interdependent task of article writing 
worked surprisingly well. Despite the coordination requirements involved in managing and integrating the work of 
dozens of workers, each contributing only a small amount of work, the group-produced articles were rated higher 
and had lower variability than individual-produced articles -- even though individuals were paid the same amount as 
the whole group and did not have to deal with coordination challenges -- and similar in quality to corresponding 
Simple Wikipedia articles.  

Quality Control 
In the article writing study each partition task was completed by a single worker. This creates the possibility that a 
single bad partition (i.e., outline) could have a large negative effect on the whole task. We found this did occur in 
one of the group articles, with a bad outline’s effects cascading down the task chain. It is remarkable that despite this 
brittleness, we still found a robust advantage of the group condition over the individual condition, speaking to the 
strength of the approach. However, in many cases we would like to minimize the likelihood of any task failing due 
to a single low quality worker by combining multiple workers’ results. 

Our approach to dealing with this challenge is to utilize additional Map or Reduce tasks to supporting fault tolerance 
and quality control. For example, to represent Castingwords transcription flow, described earlier, in the CrowdForge 
framework, workers verifying the results of other workers’ outputs can be represented as a Map task that applies a 
verification function to each value. Other kinds of quality control processes can also be applied; for example, voting 
on the best choice can be represented as a Reduce task in which a single output is chosen from multiple workers’ 
outputs based on the vote.  Other kinds of human intelligence tasks could also be used, such as a Reduce task in 
which workers combine the best aspects of other workers’ outputs rather than choosing a single best output. An 
advantage of this approach is that quality control steps are treated the same as other kinds of subtasks, minimizing 
added complexity. This also means that many different kinds of quality control can be used depending on the task 
and the kind of fault tolerance desired, as opposed to forcing task designers to use a single mechanism such as 
voting or verification. 

To test the utility of different quality control methods in 
the article writing case we ran an additional experiment 
on MTurk. We were especially interested in whether 
more complex quality control methods that require 
human intelligence -- such as combining the best aspects 
of multiple workers’ outputs -- would work better than 
methods such as simple voting. Merging results (in this 
case, article outlines) could have a number of advantages 
over voting. The likelihood of a poor outline could be 
reduced, since at the very least – if workers did no 
merging at all – the best of the outline options should be 
chosen. It is also possible that the merged outlines could 
be better than the initial outlines, if the best aspects of 
each of multiple outlines were combined, or if seeing 
multiple outlines at once facilitates comparison between 
them and thus leads to better outlines. 

To test these hypotheses we ran an experiment on 
quality control of article outlines. In the first phase we 
asked 20 turkers to each independently generate an 
outline for an article on the recent Gulf of Mexico oil 
spill using the same procedure as in the article writing 
case study above. We then took these 20 outlines and 
randomly assigned them into 20 different sets of three 
outlines (outlines could be in more than one set). Each 
set was given to a different turker, who were asked to 

Figure 4. Histograms of participants preference 
choices for initial and merged outlines. 



 

 

create a new outline for the article using elements from the 3 outlines in his or her set (i.e., a Reduce task). Turkers 
were instructed to use any elements from any of the outlines they had available, but were not allowed to add new 
elements. This resulted in 20 merged outlines.  

For evaluation we crossed the 20 initial and 20 merged outlines, resulting in 400 paired comparisons between an 
original outline and a merged one. We then asked turkers to choose which outline in each comparison would result 
in a better article. To ensure that turkers evaluated both outlines, they were also required to identity which elements 
in the two outlines were the same, with the caveat that elements did not need to be worded exactly the same in the 
two outlines as long as they were conceptually similar. This question follows the best practices outlined in [12] for 
subjective tasks, by using a verifiable question that forces the worker to do much of the processing they would need 
to in order to make a good evaluation: by comparing the two outlines, they could then evaluate factors such as which 
elements were missing from one outline, and the level of cohesion of the different elements. An outline’s quality 
score is the number of comparisons that it won.   

Results showed that the merged outlines were rated as better outlines more often than the initial outlines: 61% of 
merged outlines were chosen compared to 39% of initial outlines. A binomial test revealed the results as statistically 
significant (p < .001). Histograms of choice preferences for individual outlines are shown in Figure 4. The results 
indicate that merged outlines had fewer poor outlines: while 7 of the initial outlines were preferred 35% or less of 
the time, no merged outlines had preference values lower than 35%. Furthermore, the best merged outlines were 
considered better than the best initial outlines: the best initial outline was preferred 74% of the time, while 3 merged 
outlines were preferred more than that with the highest preferred 90% of the time. Together these results suggest that 
complex quality control tasks such as combining the results of multiple workers’ outputs can be more effective than 
simple voting. CrowdForge makes such quality control tasks simple to implement as Reduce tasks. 

Researching a purchase 

We also investigate a different task— researching purchase decisions—in order to test the generality of the 
framework. Modern purchasing decisions can be overwhelming because of large numbers of choices and 
information about each choice. Though there is a lot of information available to help a consumer make intelligent 
purchasing choices, it is often distributed across unrelated forums and websites across the Internet. Purchase 
decisions could benefit from an intelligent, personalized processing of the options. We applied our framework to 
commission decision matrices, in this case to help consumers compare automobiles. 

 

The previous example described a unidimensional partition process for accomplishing complex work. This example 
extends the framework by showing how one can partition the initial task on multiple dimensions (or, equivalently, 
repartition each element of the original partition). In the partition HIT for this problem, one worker was given a 
short description of a consumer in the market for a car (a hypothetical suburban family that drives their two children 
to and from school and enjoys occasional road trips) and asked to submit criteria for an automotive purchase that 
would be relevant to that persona. Another worker was given the same description and requested to submit a list of 
potential cars that might be interesting for the persona to buy. Combining the resulting lists yielded a matrix 
resembling a blank product comparison table, in which for example, a Honda Odyssey could be compared to a Ford 
Escape on dimensions such as reliability and safety. In the map step, workers were asked to submit facts for one cell 
in the table, for example evidence relevant to safety ratings for the Honda Odyssey they might find from an online 
review of the car. Finally, in the reduce step workers were given all the facts for a cell collected by workers in the 
map step, and were asked to write a single sentence consolidating them. 

We used this approach to commission a personalized car purchase recommendation table for the hypothetical family 
described above. In the partition step we asked some workers to submit potential car make/models relevant to the 
family, and others to submit purchasing criteria they 
thought the family might employ. For simplicity, we 
accepted the three most commonly cited items from 
each dimension: the cars Honda Odyssey, Ford Escape 
and Nissan Pathfinder crossed with the evaluation 
criteria room, price and safety rating. Other workers 
then found relevant facts for each cell, and yet others 
consolidated those facts into a sentence according to 
the process described above. The entire task was 
completed in 54 different HITs for a total cost of 
$3.70. An excerpt from the resulting product 

Figure 5: An excerpt from the product  
comparison table 



 

 

comparison table is shown in Figure 5. While the 
CrowdForge frame was successful in producing the 
comparison, table, we had no success getting even a 
single worker to generate a similar product comparison 
chart individually, even when offering more money than 
we paid the entire group. 
 

PROTOTYPE 
We implemented a software prototype to test our 
approach by allowing task designers to indirectly use 
MTurk to solve complex problems. It was this prototype 
that generated the HITs used in the experiments 
described above. The prototype allows task designers to 
break complex problems down into sub-problems, to 
specify the relationship between the sub-problems, and 
to generate a solution using MTurk. The system consists 
of a web user interface for the task designer, and a 
backend server which interfaces with Amazon’s MTurk 
servers. The web user interface in Figure 6 allows users 
to define each step in the problem solving process and to specify the flow between each step. The server-side 
component creates MTurk HITs, consumes their results, and generates new HITs as needed. The prototype is written 
in Python using Django [8], a high-level web framework for rapid application development. Boto [3], a Python 
interface to Amazon Web Services, is used to communicate with MTurk. 

The system abstracts the entire process as a problem, which references multiple HIT Templates (which may be either 
partitions, maps, or reduces), and a flow that defines the dependencies between the HIT Templates. The prototype 
allows multiple problems to exist in parallel, each one tracking its own currently active HIT Template. HIT 
Templates are parameterized templates used to create HITs on MTurk, specifying basic parameters like title, HTML 
body and compensation amount. Finally, flows manage the sequential coordination between HITs, as well as 
transferring data between HITs.  

The system uses a notification-based flow control mechanism to manage which tasks and templates are posted. 
Every few minutes the system monitors active problems for four kinds of events, and fires notifications as needed. 
The result retrieved notification fires when the system detects a new result from MTurk. The HIT expired 
notification fires when a HIT that was posted by the prototype expires due to the HIT lifetime running out. The HIT 
complete notification fires when all instances of a HIT were completed by turkers. The stage complete notification 
fires when all HITs of the currently active HIT Template are completed or expired. 

The simplest predefined flow (Figure 1) starts with a partition HIT Template, the result of which is fed into a map 
HIT Template, the results of which are fed into a 
reduce HIT Template. Transitions between these three 
HIT Templates occur when the stage complete 
notification fires. In the article writing example, this 
flow takes the article outline generated by a worker 
completing a partition HIT, and creates map HITs to 
collect facts for each heading in the outline. Note that 
this process is dynamic: the number of headings does 
not need to be specified beforehand by the task 
designer. Once all map HITs for a heading are 
complete, the flow posts a reduction HIT to 
consolidate all facts collected in the map HITs into a 
paragraph. The prototype has several such predefined 
flows, but also allows developers to write custom 
flows and register them with the system. 

COMPLEX FLOWS 

The example of article writing assumed a simple 
linear flow from partitioning to mapping to reduction. Figure 7. Nested subtasks forming a complex flow. 

Figure 6: Creating a problem with the web  
user interface. 



 

 

This linearity may not be powerful enough to represent some tasks. For example, a textbook may have a complex 
outline more closely resembling a tree than a list. This hierarchical outline can be achieved by modifying the 
partition hit type: in addition to collecting headings, include a checkbox allowing workers to specify whether or not 
each heading should be further partitioned. As previously mentioned, the CrowdForge prototype allows developers 
to implement additional flows for more complex cases. If the turker specifies to partition a heading into sub-
headings, the tree flow should create partition HITs. Otherwise, the tree flow should create map HITs as in the 
simple flow. 
In the more general case, subtasks can be themselves be broken down into partition, map and reduce phases (Figure 
7). The notification-based architecture of the CrowdForge prototype allows this kind of nesting to be implemented 
as a custom flow; future work will allow the creation of nested flows using the GUI tools only. 
CONCLUSION 
In this paper we presented a general-purpose framework for solving complex problems through micro-task markets. 
Based on concepts from coordination science and distributed computing, the CrowdForge framework provides a 
systematic and dynamic way to break down tasks into subtasks and manage the flow and dependencies between 
them. Key contributions of the framework include support for dynamic and multi-level partitions, complex flows, 
quality control, complex aggregation, a GUI for task designers, and a simple unifying framework for task and flow 
management. We demonstrate through two case studies how the framework can break down complex tasks such as 
writing an article or researching a purchase decision into flows of partition, map, and reduce subtasks. In the article 
writing case we showed that CrowdForge-produced articles were rated more highly and had lower variability than 
individual-produced articles, despite the coordination requirements of managing and integrating dozens of workers, 
and were rated of similar quality as Simple Wikipedia articles.  In an extension to this example, we showed how to 
insert a quality control step in the flow and demonstrated the value of combining the best aspects of multiple 
workers’ outputs rather than simple voting. In the purchase decision case we were unable to get even a single 
individual to complete the task given the high effort involved, but could accomplish the goal using CrowdForge with 
low monetary costs.  

As general purpose markets continue to evolve, there is a growing need to be able to solve a wider range of tasks of 
increasing complexity and coordination requirements. Furthermore, as the nature of work itself becomes more 
distributed, such an approach has the potential to change the way that work gets done, enabling many more people to 
be involved in solving complex problems ranging from business intelligence to writing software. However, markets 
don’t work well for complex tasks when the employer cannot define exactly what they want in advance or if the 
contract is difficult to pre-define. The CrowdForge framework reduces this need for predefinition by allowing for 
subtasks to be dynamically generated by the market itself. 

There are a number of directions we are exploring for future work. Most immediately, one challenge is extending 
our GUI to support more complex, nested flows so that task designers with no programming experience can 
complete arbitrarily complex work that involves high coordination dependencies. Looking further ahead, we are 
interested in exploring the possibilities of the CrowdForge framework in other kinds of task markets. For example, if 
the framework was applied to a market in which the expertise of individual workers was known (e.g., in a 
corporation) there might be greater opportunities for managing resource allocation of workers to appropriate tasks. 
Feedback about the selection and quality of their past work could also be useful for improving resource allocation if 
the system had a shared memory of individual workers’ history across tasks.  

Our approach is also an example of how coordination solutions can cut across multiple fields. Coordination theorists 
have emphasized that some principles of coordination generalize across radically different entities being 
coordinated, as when principles from economics are used to schedule tasks for a computer operating system [16].  
Here we tie coordination science to distributed computing, demonstrating how principles from the domain of 
coordinating computer systems can be used to coordinate human activity. 
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