

CrowdForge:
Crowdsourcing Complex Work

Aniket Kittur, Boris Smus, Robert E. Kraut

February 1, 2011

CMU-HCII-11-100

Human-Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract: Micro-task markets such as Amazon’s Mechanical
Turk represent a new paradigm for accomplishing work, in which
employers can tap into a large population of workers around the
globe to accomplish tasks in a fraction of the time and money of

more traditional methods. However, such markets typically
support only simple, independent tasks, such as labeling an image

or judging the relevance of a search result. Here we present a
general purpose framework for accomplishing complex tasks

using micro-task markets. Our approach is inspired by the
MapReduce framework for distributed processing and provides a
scaffolding for complex human computation tasks. We describe
our general framework, a web-based prototype, and case studies

on article writing and decision making that demonstrate the
benefits of the approach.

This work has been funded in part by the National Science
Foundation under grants OCI-0943148 and IIS-0968484. Any

opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not

necessarily reflect the view of the sponsors.

Keywords: crowdsourcing, Mechanical Turk, human computation, distributed processing, MapReduce, coordination.

INTRODUCTION
Crowdsourcing has become a powerful mechanism for accomplishing work online. Hundreds of thousands of
volunteers have completed tasks including classifying craters on planetary surfaces (clickworkers.arc.nasa.gov),
deciphering scanned text (recaptcha.net), and discovering new galaxies (galaxyzoo.org). Crowdsourcing has
succeeded as a commercial strategy for accomplishing work as well, with companies accomplishing work ranging
from crowdsourcing t-shirt designs (Threadless) to research and development (Innocentive).

One of the most interesting developments is the creation of general-purpose markets for crowdsourcing diverse
tasks. For example, in Amazon’s Mechanical Turk (MTurk), tasks range from labeling images with keywords to
judging the relevance of search results to transcribing podcasts. Such “micro-task” markets typically involve short
tasks (ranging from a few seconds to a few minutes) which users self-select and complete for monetary gain
(typically from 1-10 cents per task). These markets represent the potential for accomplishing work in a fraction of
the time and money required by more traditional methods [5][12][19][21].

However, the types of tasks accomplished through MTurk have typically been limited to those that are low
complexity, independent, and require little time and cognitive effort to complete. Here we describe a framework for
extending micro-task markets to support complex, interdependent tasks. Our framework is based on insights from
the organizational behavior literature for understanding the kinds of coordination dependencies involved in complex
tasks, and from the distributed computing literature for techniques to support those dependencies in distributed
human computation. We make three primary contributions:

 We identify the coordination requirements necessary to crowdsource complex tasks, and describe a framework
to support a variety of task types. The framework systematically breaks complex problems down into simpler
tasks by creating subtasks that define and create other subtasks and distributes these tasks to workers. Output
from subtasks can be evaluated and consolidated via additional outsourced tasks.

 We instantiate the framework in a prototype system for architecting the problem and managing the solution
flow. We demonstrate the utility of the system through case studies using the prototype to solve complex
problems including writing an article and researching a purchasing decision. We show quantitative evidence
that the approach works better than asking a single individual to solve the problem, even controlling for the total
wages offered.

 We demonstrate how the system can extend to more complex flows that include verification phases, and
provide evidence that such phases can lead to better outcomes. We also describe how the system can be
extended to support arbitrarily complex and recursive flows.

MECHANICAL TURK
According to Amazon, Mechanical Turk is “marketplace for work that requires human intelligence.” Using it,
employers post tasks, which Amazon terms “Human Intelligence Tasks” or “HITs.” These are self-contained tasks
that worker can select, work on, submit an answer, and collect a reward for completing.

There has been an increasing amount of research on Mechanical Turk recently. A large number of studies have
examined the usefulness of MTurk as a platform for collecting and evaluating data for applications including
machine translation [4] image databases [7], and natural language processing [19]. There have also been studies
examining the use of MTurk as a platform for experiments in perception [5][10], judgment and decision making
[11], and user interface evaluation [12]. Sorokin & Forsyth use Mechanical Turk to tag images in computer vision
research and suggest voting mechanisms to improve quality [21]. Little et al. [15] introduced TurkIt, a toolkit for
iterative tasks in MTurk, which we will discuss in more detail later in the paper.

MTurk encompasses a large and heterogeneous pool of tasks and workers; Amazon claims over 100,000 workers in
100 different countries, and as of the time of writing there were approximately 80,000 HITs available. The typical
task on MTurk is self-contained, simple, repetitive, and short, requiring little specialized skill and often paying less
than minimum wage. For example, during February 2010, we scraped descriptions of 13,449 HIT groups posted to
Mechanical Turk. The modal HIT was allotted 60 minutes for completion and paid $0.03 US. We should note that
the allotted time is often much greater than the actual completion time; assuming that workers received the US
minimum wage of $7.25/hour or 12 cents per minute, a wage of $.03 per task implies that many tasks take a fraction
of a minute to complete. Examples of tasks include identifying objects in a photo or video, de-duplicating data,
transcribing audio recordings, or researching data details.

There are a number of reasons why these kinds of tasks are so common. Most workers (who call themselves
“turkers”) spend less than 8 hours per week on MTurk, and use it as a way to convert free time into a supplementary

source of income, for pocket money, as a hobby, or to kill time, but not as their primary job [9]. As a result most
turkers will not engage in long or complex tasks. Another potential explanation is the reward structure of
Mechanical Turk, in which employers can reject work for any reason without giving an explanation. For example, to
deal with spam, many employers summarily reject submitted work if it doesn’t agree with others’ submissions.
Workers are unlikely to engage in long or complex tasks if there is a high probability that they will not get paid even
if they completed the work in good faith. These rejections can have a serious impact on future earning too, since
employers often ban workers whose prior work has been rejected over some threshold. This results in MTurk being
a crowdsourcing market in which the average capacity for long or complex work is quite low.

COORDINATION IN COMPLEX TASKS
In contrast to the typical tasks posted on Mechanical Turk, much of the work required in many real-world work
organizations and even many temporary employment assignments is often more complex, interdependent, and
requires significant time and cognitive effort [16]. These tasks require substantially more coordination among co-
workers than do the simple tasks typically seen on micro-task markets. The impact of micro-task markets would be
substantially greater if they could also be applied to these more complex and interdependent task.

Consider for example the task of writing a short article about a locale for a public relationship campaign, a
newspaper, a travel guide or an encyclopedia. This is a complex and highly interrelated task that involves many
subtasks, such as deciding on the scope and structure of the article, finding and collecting relevant information,
writing the narrative, taking pictures, laying out the document and editing the final copy. Furthermore, if more than
one person is involved in the task, each person needs to coordinate in order to avoid redundant work and to make the
final product coherent. Many kinds of tasks ranging from researching where to go on vacation to planning a new
consumer product to writing software share the properties of being complex and highly interdependent, requiring
substantial effort from individual contributors.

These difficulties with coordinating complex tasks are not unique to crowdsourcing. Organizational scholars have
long investigated coordination across individuals and parts of a firm. Williamson won a Nobel Prize in economics
for his theory of transaction costs [24], identifying the conditions under which it is efficient for a company to buy
goods and services on a market instead of hiring employees to produce the work in house. According to this view,

markets are efficient only when the costs of
identifying an appropriate supplier, defining the
exchange (e.g., the nature of the goods to be
produced and its price), policing and enforcing the
contract and settling the transaction are less than can
be accomplished if the transaction were conducted
in-house. Using employers may reduce transactions
costs because at employees at least partially identify
with the interests of the company and agree to be
supervised and directed by managers. In an early
paper, Malone and his colleagues argued that
electronic markets may reduce the costs of search,
bargaining, enforcement and settlement and
dramatically expand the types of goods and services
that can be offered on electronic markets [17]. The
goal of our research to continue to reduce these
transaction costs, by disaggregating and re-
aggregating complex, multi-person tasks so that task
definition, production and supervision can all be
done in micro-task markets.

Task partitioning with division of labor is one of the
most commonly used methods for coordinating tasks.
Adam Smith in his classic The Nature and Causes of
the Wealth of Nations [22] described the efficacy
benefits associated with it. Via division of labor, a
greater pool of agents can work in parallel, the agents

Coordination
Dependencies

Organizational
science

Distributed
computing

Shared
resources

Resource
allocation

Mapping tasks to
processors

Producer/
Consumer

Prerequisite
constraints

Managing serial
computations

Transfer Distributing data
(transfer)

Usability Distributing data
(format)

Task/subtask Top-down task
goals

Parallelizing
computations

Dynamic subtask
generation

Table 1. Types of coordination dependencies relevant to
crowdsourcing complex tasks (from [16]) and concepts

they map to from organizational science and distributed
computing.

can be specialized for the tasks they perform, and they can complete an assignment without losing time switching
from task to task [2].

This approach works well when the tasks involve what Van de Ven et al. [23] call “pooled interdependence”, in
which the group product is a simple aggregation of the individually produced products. Such tasks are typical of
those currently supported by Mechanical Turk, such as judging the relevance of a search result or finding company
information on a web. However, aggregating the results of individually produced tasks does not work as well when
the work is complex and the component tasks are interdependent. Splitting a interdependent project into subtasks
incurs costs: those subtasks need to be assigned to workers suited to the task; workers may need to be trained; timing
of subtasks may need to be coordinated; the results of one subtask may be the input to other subtasks; the approach
taken in one subtask may constrain the work taken in another; standards and quality may need to be enforced across
subtasks; subtasks may need to be integrated and made consistent; and so forth. These are the sorts of conditions
that Williamson suggested make some types of work difficult to accomplish efficiently in a market.

Many of these challenges are exacerbated in crowdsourcing markets. Because individual participants in micro-task
markets do not want to and may not be capable of engaging in long or complex tasks, work must be broken down
into many small pieces that can be quickly accomplished, leading to high coordination costs for interdependent
workers. Tasks must be simple enough for workers to easily learn and complete. More generally, the nature of the
workers and their relationship with the company posting the work produces additional challenges. With low
commitment by companies and high turnover among the workers, there is minimal opportunity for training. Current
micro-task markets have little built-in support for managing the flow of tasks, either in terms of time or input-output,
and workers generally complete tasks independently with no knowledge of what others have done, making it
difficult to enforce standards and consistency.

To identify the types of coordination we will need to support for crowdsourcing complex tasks we turn to previous
work on coordination in organizational behavior [16][17][18][23]. In particular, Malone & Crowston [16] suggest a
useful taxonomy of interdependencies that require coordination that we draw on in our current work. These
dependencies are summarized in Table 1 and described in more detail below:

Managing shared resources. Whenever a limited resource needs to be shared, coordinating resource allocation
becomes important. Allocating a fixed pool of workers to multiple tasks that must be completed under a deadline is
a classic example of managing shared resources. In producing a newsletter under a deadline, for example, the fixed
staff of writers, editors and proof readers need to be allocated so that all the planned stories are written, and all of
them don’t demand work from an overtaxed editing and proofing staff at the last minute. Moreover, unless all
subtasks are known beforehand, this allocation could change depending on how tasks are split up. Therefore a
dynamic task allocation process is needed to manage worker resources throughout the task flow.

Managing producer/consumer relationships. In many situations one activity produces something required as
input for another activity. For example, the structure of an article needs to be decided on before the sections can be
written. This leads to a number of dependencies: 1) prerequisite constraints: certain activities need to take place
before others; 2) transfer: the output of one activity needs to be shared with another; 3) usability: the output of one
activity needs to be in such a form that it can be used by another. For successful coordination in complex tasks each
of these dependencies must be supported.

Managing task/subtask dependencies. There are many different ways a task can be divided into subtasks [18]. In a
top-down approach, a single person (e.g., the task creator) could specify all of the subtasks (and sub-subtasks, etc.)
to decompose a task into. However, in many cases decomposition of the task may itself be a part of the process.
For example, the task creator may not be able to a priori specify all the sections for an article or the classes for a
software program in advance. Supporting both top-down specification of the task goals and bottom-up identification
of subtasks is crucial for crowdsourcing complex tasks in which subtasks may be generated and completed
dynamically.

APPROACH
Our goal is to support the coordination dependencies
involved in complex work through micro-task
markets. As previously mentioned, most tasks on
these markets are simple and self-contained with no
challenging coordination dependencies. The audio
transcription tasks posted by Castingwords.com are a
rare exception to the typical MTurk task.
Castingwords breaks up an audio stream into
overlapping segments, and workers are employed to
generate transcriptions from each audio segment.
These transcriptions are then verified by other
workers, whose work is later automatically put
together into a complete transcription. Unlike the
standard micro-market task, the disaggregation of an
audio file into smaller transcription tasks and the use
of a second wave of workers to verify the work done
by the transcriptions involves the producer/consumer
dependency and others of the dependencies identified
in the previous section. It also provides a simple
model for many of the elements of our approach. For
example, the transcription task can be broken up into the following elements:

 A pre-specified partition that breaks up the audio into smaller subtasks

 A flow that controls the sequencing of the tasks and transfer of information between them

 A quality control phase that involves verification of one task by another worker

 Automatic aggregation of the results

The TurkIt toolkit for MTurk [15] extends some of these elements by enabling task designers to specify iterative
flows. Little and colleagues use as an example a text identification in which the results of multiple workers’ outputs
are voted on and the best sent to new workers, whose work is then voted on, and so forth. Viewed according to the
elements above, this is a producer/consumer dependency, with a flow between a production task (text identification)
and a quality control task (voting) that also serves to
aggregate the results.

Our goal is to generalize these elements into a framework
that supports the crowdsourcing of highly complex work.
Specifically, our framework aims to support:

 Multi-level partitions in which a task can be broken
up by more than one partition

 Dynamic partitioning so that workers themselves can
decide how to partition a task, with their results
generating new subtasks during the flow (rather than
the task designer needing fully specify partitioning
beforehand)

 Complex flows involving many tasks and many
workers

 A variety of quality control methods including
voting, verification, or merging items

 Intelligent aggregation of results both automatically
and by workers.

 A simple method for specifying and managing tasks
and flows between tasks

To accomplish these goals our approach draws on
concepts from the distributed computing literature [1][20].
Malone and Crowston [16] note the general parallels

Figure 2: Partial results of a collaborative
writing task.

Figure 1: Overview of framework for splitting up and
recombining complex human computation tasks.

between coordination in human systems and computer systems. Crowdsourced labor markets can be viewed as large
distributed systems in which each person, such as a worker on Mechanical Turk, is analogous to a computer
processor that can solve a task requiring human intelligence. In this way a crowdsourcing market could be seen as a
loosely coupled distributed computing system [1].

Key challenges in distributed computing include partitioning computations into tasks that can be done in parallel,
mapping tasks to processors, distributing data to and between processors, and fault tolerance [1][20]. Many of these
challenges map to the coordination dependencies identified earlier, as shown in Table 11. This suggests that some
solutions to managing distributed computing with multiple processors may be profitably applied to crowdsourcing
as well.

A simple, well-known, and widely used distributed computing model is Google’s MapReduce framework [6].
MapReduce was inspired by functional programming languages in which a large array of data is processed in
parallel through a two step process: first, key/value pairs are each processed to generate a set of intermediate
key/value pairs (the Map phase). Next, values with identical intermediate keys are merged (the Reduce phase).
Although there are many other models of distributed computing [1][20], key advantages of MapReduce include: 1)
its simplicity, allowing programmers without experience in parallel programming to easily make use of distributed
system resources; 2) a large variety of real world problems have been found amenable to representation in Map and
Reduce tasks.

Our approach builds on the general approach to distributed computing exemplified by MapReduce of breaking down
a complex problem into a sequence of simpler subtasks using a small set of subtask types (e.g., Maps and Reduces).
We define three types of subtasks:

 Partition tasks, in which a larger task is broken down into discrete subtasks

 Map tasks, in which a specified task is processed by one or more workers

 Reduce tasks, in which the results of multiple workers’ tasks are merged into a single output

CrowdForge abstracts away many of the programming details of creating and managing subtasks by treating
partition/map/reduce steps as the basic building blocks for distributed process flows, enabling complex tasks to be
broken up systematically and dynamically into sequential and parallelizable subtasks.

In partition tasks, workers are asked to create a high level partitioning of the problem, such as creating an outline of
an article with section headings or a list of criteria for buying a new car. In our system the partitioning is made an
explicit part of the task itself, with subtasks dynamically created based on the results of the partition step.
Importantly, this means that the task designer does not have to know beforehand all of the subtasks that will be
generated: defining the division of labor and subtask design are shifted to the market itself.

In map tasks, a specified processing step is applied to each item in the partition. These tasks are ideally simple
enough to be answerable by a single worker in a short amount of time. For example, a map task for article writing
could ask a worker to collect one fact on a given topic in the article’s outline. Multiple instances of a map tasks
could be instantiated for each partition; e.g., multiple workers could be asked to collect one fact each on a topic in
parallel.

Finally, reduce tasks take all the results from a given map task and consolidate them, typically into a single result. In
the article writing example, a reduce step might take facts collected for a given topic by many workers and have a
worker turn them into a paragraph.

Any of these steps can be iterative. For example, the topic for an article section defined in a first partition can itself
be partitioned into subsections. Similarly, the paragraphs returned from one reduction step can in turn be reordered
through a second reduction step.

CASE STUDIES
Before describing implementation details of the system we first provide examples and evidence of how the system
works in practice through two case studies: article writing and researching a purchase decision.

Article writing

The first complex task we explored was writing an encyclopedia article. Writing an article is a challenging and
interdependent task that involves many different subtasks: planning the scope of the article, how it should be

1 Fault tolerance is not included in the table as it does not map well to the identified coordination dependencies. However, we
will address this issue in more detail in the section on quality control below.

structured, finding and filtering information to include, writing up that information, finding and fixing grammar and
spelling, and making the article coherent. While there are examples of collaborative writing on the Internet, notably
Wikipedia, previous work has shown that the success of harnessing a large group of contributors is often dependent
on a small core of leaders that do a large proportion of the work and organize the contributions of others [13][14].
This poses a challenge in micro-task markets where individuals may not be willing to spend the large amount of
effort needed to be a leader and may not be able to communicate with others in order to coordinate or influence their
behavior. Furthermore, because of the many related subtasks, article writing encompasses many of the coordination
dependencies in Table 1. Finally, many of the subtasks involved, such as assembling the relevant information or
doing the actual writing, can be time consuming and complex. These characteristics make article writing a
challenging but representative test case for our approach.
To solve this problem we created a simple flow consisting of a partition, map, and reduce step. The partition step
asked workers to create an article outline, represented as an array of section headings such as “History” and
“Geography”. In an environment where workers would complete high effort tasks, the next step might be to have
someone write a paragraph for each section. However, the difficulty and time involved in finding the information for
and writing a complete paragraph for a heading is a mismatch to the low work capacity of micro-task markets. Thus
we broke the task up further, separating the information collection and writing subtasks. Specifically, each section
heading from the partition was used to generate map tasks in which multiple workers were asked to submit a single
fact about the section (turkers were also asked to submit a URL reference to the source of the fact to encourage high
quality fact collection).
Next, the reduction step asked other workers to create a paragraph for each section based on the facts collected in the
map step. By separating the collection of information and writing into two stages we could significantly decrease the
cost of each stage, making the task more suitable for micro-task workers. In addition, we benefit from other effects
such being able to collect more and more diverse information when more workers were involved. The partition-map-
reduce process is illustrated in Figure 2. Finally, since the sections of encyclopedic articles are relatively
independent, the resulting paragraphs were themselves reduced into an article by simply concatenating them2.
We used this approach to create five articles about New York City. Articles cost an average of $3.26 to produce,
and required an average of 36 subtasks or HITs, each performed by an individual worker. Partition-workers
identified 5.3 topics per article in the partition step. The average number article ended with 658 words. A fragment
of a typical article is shown in Figure 2; this article consisted of 955 words and 7 sections: brief history, getting
there, basic layout, neighborhoods, getting around, attractions and ethnic diversity. It was completed via 36
different HITs for a total cost of $3.15.
To verify the quality of these collaboratively written articles, we compared them to articles written individually by
workers and to the entry from the Simple English Wikipedia on New York City [25]. To produce a comparison

group of individually written articles, we created eight
HITs which each requested one worker to write the full
article. To control for motivations associated with
reward, we paid these individuals $3.05, approximately
the same amount as the average group payment. The
resulting articles consisted of an average of 393 words,
approximately 60% the length of the collaborative
written articles.

We then evaluated the quality of all articles by asking a
new set of workers to each rate a single article based on
four dimensions: use of facts, spelling and grammar,
article structure, and personal preference. Fifteen
workers rated each article on five-point Likert scales.
We averaged the ratings of the 15 raters across the four
dimensions to get an overall quality score for each
article.

On average the articles produced by the group were of
higher quality than those produced individually (see
Figure 3: mean quality for group-written articles = 4.01

2 For other kinds of articles there could be another crowdsourced reduce phase that integrates the paragraphs.

Figure 3: Rated quality of articles about New York
City produced by Mechanical Turk workers acting
individually or as a group using our framework
compared to the quality of the same article on the
Simple English Wikipedia

versus 3.75 for individually-written ones, t(11)=2.17, p=.05).

The average quality for the group-written articles was roughly the same as the Simple English Wikipedia article
(Wikipedia quality=3.95). Not only was the average quality of the group articles higher than the individually
written ones, but as Figure 3 also shows, the variability was lower as well (t(11)=-2.43, p=.03), with a lower
proportion of poor articles.

Overall, we found that using CrowdForge to crowdsource the complex and interdependent task of article writing
worked surprisingly well. Despite the coordination requirements involved in managing and integrating the work of
dozens of workers, each contributing only a small amount of work, the group-produced articles were rated higher
and had lower variability than individual-produced articles -- even though individuals were paid the same amount as
the whole group and did not have to deal with coordination challenges -- and similar in quality to corresponding
Simple Wikipedia articles.

Quality Control
In the article writing study each partition task was completed by a single worker. This creates the possibility that a
single bad partition (i.e., outline) could have a large negative effect on the whole task. We found this did occur in
one of the group articles, with a bad outline’s effects cascading down the task chain. It is remarkable that despite this
brittleness, we still found a robust advantage of the group condition over the individual condition, speaking to the
strength of the approach. However, in many cases we would like to minimize the likelihood of any task failing due
to a single low quality worker by combining multiple workers’ results.

Our approach to dealing with this challenge is to utilize additional Map or Reduce tasks to supporting fault tolerance
and quality control. For example, to represent Castingwords transcription flow, described earlier, in the CrowdForge
framework, workers verifying the results of other workers’ outputs can be represented as a Map task that applies a
verification function to each value. Other kinds of quality control processes can also be applied; for example, voting
on the best choice can be represented as a Reduce task in which a single output is chosen from multiple workers’
outputs based on the vote. Other kinds of human intelligence tasks could also be used, such as a Reduce task in
which workers combine the best aspects of other workers’ outputs rather than choosing a single best output. An
advantage of this approach is that quality control steps are treated the same as other kinds of subtasks, minimizing
added complexity. This also means that many different kinds of quality control can be used depending on the task
and the kind of fault tolerance desired, as opposed to forcing task designers to use a single mechanism such as
voting or verification.

To test the utility of different quality control methods in
the article writing case we ran an additional experiment
on MTurk. We were especially interested in whether
more complex quality control methods that require
human intelligence -- such as combining the best aspects
of multiple workers’ outputs -- would work better than
methods such as simple voting. Merging results (in this
case, article outlines) could have a number of advantages
over voting. The likelihood of a poor outline could be
reduced, since at the very least – if workers did no
merging at all – the best of the outline options should be
chosen. It is also possible that the merged outlines could
be better than the initial outlines, if the best aspects of
each of multiple outlines were combined, or if seeing
multiple outlines at once facilitates comparison between
them and thus leads to better outlines.

To test these hypotheses we ran an experiment on
quality control of article outlines. In the first phase we
asked 20 turkers to each independently generate an
outline for an article on the recent Gulf of Mexico oil
spill using the same procedure as in the article writing
case study above. We then took these 20 outlines and
randomly assigned them into 20 different sets of three
outlines (outlines could be in more than one set). Each
set was given to a different turker, who were asked to

Figure 4. Histograms of participants preference
choices for initial and merged outlines.

create a new outline for the article using elements from the 3 outlines in his or her set (i.e., a Reduce task). Turkers
were instructed to use any elements from any of the outlines they had available, but were not allowed to add new
elements. This resulted in 20 merged outlines.

For evaluation we crossed the 20 initial and 20 merged outlines, resulting in 400 paired comparisons between an
original outline and a merged one. We then asked turkers to choose which outline in each comparison would result
in a better article. To ensure that turkers evaluated both outlines, they were also required to identity which elements
in the two outlines were the same, with the caveat that elements did not need to be worded exactly the same in the
two outlines as long as they were conceptually similar. This question follows the best practices outlined in [12] for
subjective tasks, by using a verifiable question that forces the worker to do much of the processing they would need
to in order to make a good evaluation: by comparing the two outlines, they could then evaluate factors such as which
elements were missing from one outline, and the level of cohesion of the different elements. An outline’s quality
score is the number of comparisons that it won.

Results showed that the merged outlines were rated as better outlines more often than the initial outlines: 61% of
merged outlines were chosen compared to 39% of initial outlines. A binomial test revealed the results as statistically
significant (p < .001). Histograms of choice preferences for individual outlines are shown in Figure 4. The results
indicate that merged outlines had fewer poor outlines: while 7 of the initial outlines were preferred 35% or less of
the time, no merged outlines had preference values lower than 35%. Furthermore, the best merged outlines were
considered better than the best initial outlines: the best initial outline was preferred 74% of the time, while 3 merged
outlines were preferred more than that with the highest preferred 90% of the time. Together these results suggest that
complex quality control tasks such as combining the results of multiple workers’ outputs can be more effective than
simple voting. CrowdForge makes such quality control tasks simple to implement as Reduce tasks.

Researching a purchase

We also investigate a different task— researching purchase decisions—in order to test the generality of the
framework. Modern purchasing decisions can be overwhelming because of large numbers of choices and
information about each choice. Though there is a lot of information available to help a consumer make intelligent
purchasing choices, it is often distributed across unrelated forums and websites across the Internet. Purchase
decisions could benefit from an intelligent, personalized processing of the options. We applied our framework to
commission decision matrices, in this case to help consumers compare automobiles.

The previous example described a unidimensional partition process for accomplishing complex work. This example
extends the framework by showing how one can partition the initial task on multiple dimensions (or, equivalently,
repartition each element of the original partition). In the partition HIT for this problem, one worker was given a
short description of a consumer in the market for a car (a hypothetical suburban family that drives their two children
to and from school and enjoys occasional road trips) and asked to submit criteria for an automotive purchase that
would be relevant to that persona. Another worker was given the same description and requested to submit a list of
potential cars that might be interesting for the persona to buy. Combining the resulting lists yielded a matrix
resembling a blank product comparison table, in which for example, a Honda Odyssey could be compared to a Ford
Escape on dimensions such as reliability and safety. In the map step, workers were asked to submit facts for one cell
in the table, for example evidence relevant to safety ratings for the Honda Odyssey they might find from an online
review of the car. Finally, in the reduce step workers were given all the facts for a cell collected by workers in the
map step, and were asked to write a single sentence consolidating them.

We used this approach to commission a personalized car purchase recommendation table for the hypothetical family
described above. In the partition step we asked some workers to submit potential car make/models relevant to the
family, and others to submit purchasing criteria they
thought the family might employ. For simplicity, we
accepted the three most commonly cited items from
each dimension: the cars Honda Odyssey, Ford Escape
and Nissan Pathfinder crossed with the evaluation
criteria room, price and safety rating. Other workers
then found relevant facts for each cell, and yet others
consolidated those facts into a sentence according to
the process described above. The entire task was
completed in 54 different HITs for a total cost of
$3.70. An excerpt from the resulting product

Figure 5: An excerpt from the product
comparison table

comparison table is shown in Figure 5. While the
CrowdForge frame was successful in producing the
comparison, table, we had no success getting even a
single worker to generate a similar product comparison
chart individually, even when offering more money than
we paid the entire group.

PROTOTYPE
We implemented a software prototype to test our
approach by allowing task designers to indirectly use
MTurk to solve complex problems. It was this prototype
that generated the HITs used in the experiments
described above. The prototype allows task designers to
break complex problems down into sub-problems, to
specify the relationship between the sub-problems, and
to generate a solution using MTurk. The system consists
of a web user interface for the task designer, and a
backend server which interfaces with Amazon’s MTurk
servers. The web user interface in Figure 6 allows users
to define each step in the problem solving process and to specify the flow between each step. The server-side
component creates MTurk HITs, consumes their results, and generates new HITs as needed. The prototype is written
in Python using Django [8], a high-level web framework for rapid application development. Boto [3], a Python
interface to Amazon Web Services, is used to communicate with MTurk.

The system abstracts the entire process as a problem, which references multiple HIT Templates (which may be either
partitions, maps, or reduces), and a flow that defines the dependencies between the HIT Templates. The prototype
allows multiple problems to exist in parallel, each one tracking its own currently active HIT Template. HIT
Templates are parameterized templates used to create HITs on MTurk, specifying basic parameters like title, HTML
body and compensation amount. Finally, flows manage the sequential coordination between HITs, as well as
transferring data between HITs.

The system uses a notification-based flow control mechanism to manage which tasks and templates are posted.
Every few minutes the system monitors active problems for four kinds of events, and fires notifications as needed.
The result retrieved notification fires when the system detects a new result from MTurk. The HIT expired
notification fires when a HIT that was posted by the prototype expires due to the HIT lifetime running out. The HIT
complete notification fires when all instances of a HIT were completed by turkers. The stage complete notification
fires when all HITs of the currently active HIT Template are completed or expired.

The simplest predefined flow (Figure 1) starts with a partition HIT Template, the result of which is fed into a map
HIT Template, the results of which are fed into a
reduce HIT Template. Transitions between these three
HIT Templates occur when the stage complete
notification fires. In the article writing example, this
flow takes the article outline generated by a worker
completing a partition HIT, and creates map HITs to
collect facts for each heading in the outline. Note that
this process is dynamic: the number of headings does
not need to be specified beforehand by the task
designer. Once all map HITs for a heading are
complete, the flow posts a reduction HIT to
consolidate all facts collected in the map HITs into a
paragraph. The prototype has several such predefined
flows, but also allows developers to write custom
flows and register them with the system.

COMPLEX FLOWS

The example of article writing assumed a simple
linear flow from partitioning to mapping to reduction. Figure 7. Nested subtasks forming a complex flow.

Figure 6: Creating a problem with the web
user interface.

This linearity may not be powerful enough to represent some tasks. For example, a textbook may have a complex
outline more closely resembling a tree than a list. This hierarchical outline can be achieved by modifying the
partition hit type: in addition to collecting headings, include a checkbox allowing workers to specify whether or not
each heading should be further partitioned. As previously mentioned, the CrowdForge prototype allows developers
to implement additional flows for more complex cases. If the turker specifies to partition a heading into sub-
headings, the tree flow should create partition HITs. Otherwise, the tree flow should create map HITs as in the
simple flow.
In the more general case, subtasks can be themselves be broken down into partition, map and reduce phases (Figure
7). The notification-based architecture of the CrowdForge prototype allows this kind of nesting to be implemented
as a custom flow; future work will allow the creation of nested flows using the GUI tools only.
CONCLUSION
In this paper we presented a general-purpose framework for solving complex problems through micro-task markets.
Based on concepts from coordination science and distributed computing, the CrowdForge framework provides a
systematic and dynamic way to break down tasks into subtasks and manage the flow and dependencies between
them. Key contributions of the framework include support for dynamic and multi-level partitions, complex flows,
quality control, complex aggregation, a GUI for task designers, and a simple unifying framework for task and flow
management. We demonstrate through two case studies how the framework can break down complex tasks such as
writing an article or researching a purchase decision into flows of partition, map, and reduce subtasks. In the article
writing case we showed that CrowdForge-produced articles were rated more highly and had lower variability than
individual-produced articles, despite the coordination requirements of managing and integrating dozens of workers,
and were rated of similar quality as Simple Wikipedia articles. In an extension to this example, we showed how to
insert a quality control step in the flow and demonstrated the value of combining the best aspects of multiple
workers’ outputs rather than simple voting. In the purchase decision case we were unable to get even a single
individual to complete the task given the high effort involved, but could accomplish the goal using CrowdForge with
low monetary costs.

As general purpose markets continue to evolve, there is a growing need to be able to solve a wider range of tasks of
increasing complexity and coordination requirements. Furthermore, as the nature of work itself becomes more
distributed, such an approach has the potential to change the way that work gets done, enabling many more people to
be involved in solving complex problems ranging from business intelligence to writing software. However, markets
don’t work well for complex tasks when the employer cannot define exactly what they want in advance or if the
contract is difficult to pre-define. The CrowdForge framework reduces this need for predefinition by allowing for
subtasks to be dynamically generated by the market itself.

There are a number of directions we are exploring for future work. Most immediately, one challenge is extending
our GUI to support more complex, nested flows so that task designers with no programming experience can
complete arbitrarily complex work that involves high coordination dependencies. Looking further ahead, we are
interested in exploring the possibilities of the CrowdForge framework in other kinds of task markets. For example, if
the framework was applied to a market in which the expertise of individual workers was known (e.g., in a
corporation) there might be greater opportunities for managing resource allocation of workers to appropriate tasks.
Feedback about the selection and quality of their past work could also be useful for improving resource allocation if
the system had a shared memory of individual workers’ history across tasks.

Our approach is also an example of how coordination solutions can cut across multiple fields. Coordination theorists
have emphasized that some principles of coordination generalize across radically different entities being
coordinated, as when principles from economics are used to schedule tasks for a computer operating system [16].
Here we tie coordination science to distributed computing, demonstrating how principles from the domain of
coordinating computer systems can be used to coordinate human activity.

ACKNOWLEDGMENTS
This work has been funded in part by the National Science Foundation under Grants OCI-0943148 and IIS-0968484.
We would also like to thank Susheel Khamkar for his valued contributions.

REFERENCES
[1] Bal, H.E., Steiner, J.G. and Tanenbaum, A.S. Programming languages for distributed computing systems.

ACM Computing Surveys (CSUR) (1989) vol. 21 (3).

[2] Becker, G.S. and Murphy, K.M. The division of labor, coordination costs, and knowledge. The Quarterly
Journal of Economics (1992) vol. 107 (4) pp. 1137-1160

[3] Boto, http://code.google.com/p/boto/

[4] Callison-Burch, C. Fast, cheap, and creative: evaluating translation quality using Amazon's Mechanical Turk.
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1-
Volume 1 (2009) pp. 286-295

[5] Cole, F., Sanik, K., DeCarlo, D., Finkelstein, A., Funkhouser, T., Rusinkiewicz, S., and Singh, M. How well
do line drawings depict shape? In ACM SIGGRAPH (2009), 1–9.

[6] Dean, J. and Ghemawat, S. Map Reduce: Simplified data processing on large clusters. Communications of the
ACM-Association for Computing Machinery-CACM, 51, 1 (2008), 107-114.

[7] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L. "ImageNet: A large-scale hierarchical image
database," cvpr, pp.248-255, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009

[8] Django, http://www.djangoproject.com

[9] Ipeirotis, P. (2010, Mar 3). The New Demographics of Mechanical Turk. http://behind-the-enemy-
lines.blogspot.com/2010/03/new-demographics-of-mechanical-turk.html. Retrieved 9-21-20

[10] Heer, J. and Bostock, M. Crowdsourcing graphical perception: using mechanical turk to assess visualization
design. Proceedings of the 28th international conference on Human factors in computing systems (2010) pp.
203-212

[11] Horton, J. J., Rand, D.G. and Zeckhauser, R.J., The online laboratory: Conducting experiments in a real labor
market (2010). NBER Working Paper Series, Vol. w15961.

[12] Kittur, A., Chi, E., Suh, B. Crowdsourcing User Studies With Mechanical Turk. In Proceedings of CHI (2008).

[13] Kittur, A., Lee, B., Kraut, R. E. Coordination in Collective Intelligence: The Role of Team Structure and Task
Interdependence. In Proceedings of CHI (2009).

[14] Kittur, A. and Kraut, R. E. 2008. Harnessing the wisdom of crowds in wikipedia: quality through coordination.
CSCW '08. ACM, New York, NY, 37-46

[15] Little, G., Chilton, L., Goldman, M. and Miller, R. TurKit: Tools for iterative tasks on mechanical turk.
SIGKDD Workshop on Human Computation (2009).

[16] Malone, T. and Crowston, K. The interdisciplinary study of coordination. ACM Computing Surveys, 26,
(1994), 87-119.

[17] Malone, T., Yates, J. and Benjamin, R. Electronic markets and electronic hierarchies. Communications of the
ACM, 30 (6). 484-497.

[18] Mintzberg, H. 1979. The Structuring of Organizations.Prentice-Hall, Englewood Cliffs, N.J.

[19] Snow, R., O'Connor, B., Jurafsky, D., and Ng, A.Y. Cheap and fast---but is it good?: evaluating non-expert
annotations for natural language tasks. Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics (EMNLP 2008), 254-263.

[20] Skillicorn, D.B., Talia, D. Models and languages for parallel computation, ACM Computing Surveys 30(2)
(1998) 123–169.

[21] Sorokin, A., Forsyth, D. Utility data annotation with Amazon Mechanical Turk, First IEEE Workshop on
Internet Vision at CVPR 08.

[22] Smith, A. The Nature and Causes of the Wealth of Nations. Liberty Classics, Indianapolis:, 1776.

[23] Van de Ven, A., Delbecq, A. and Koenig, R. Determinants of coordination modes within organizations.
American Sociological Review, 41 (1976), 322-338.

[24] Williamson, O. Transaction-Cost Economics: The Governance of Contractual Relations. The Journal of Law
and Economics, 22 (2). 233.

[25] Wikipedia Simple entry on New York City, http://simple.wikipedia.org/wiki/New_York_City

