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Abstract
In this thesis, we propose a novel measurement methodology for long term mon-

itoring and assessment of stroke survivors’ functional motion. Our long-term goal is
to measure and provide feedback about changes in functional movements that hap-
pen in everyday environments across days, months or years.

The research contained in the thesis consists of three parts. First, therapists were
interviewed to determine common observations they make about stroke survivors
functional activity for the purpose of assessment. Protocol analysis was used to gain
insight onto parts of the body as well as motor symptoms that were particular points
of focus.

Next, a prototype system was built to measure functional movement and its abil-
ity to capture statistics that discriminate between levels of functional impairment
was tested. The technologies explored were primarily chosen because they are inex-
pensive and robust. They include simple computer vision and force sensing devices.
Several different score prediction paradigms were tested, including some that are
task specific and others that score movements, like lifts or grasps, across many tasks.
We illustrate the accuracy of each paradigm, and discuss several of the underlying
statistics found to correlate strongly and consistently with functional score. These
statistics included the measured variance about the elbow and motion of the torso.

Finally, we present initial results from an effort to bring low cost and automated
assessment technologies to the home. Cameras and force sensing devices were in-
stalled in the home of a single stroke survivor, and desktop activity was measured in
this environment over the course of two weeks.

We believe that the technologies we highlight in this thesis have the capacity to
inexpensively enhance the quality and character of therapy that stroke survivors re-
ceive after hospital discharge. This is primarily because they can focus therapy on
real world tasks that take place in the home. We expect the tools we prototype here
ultimately to enable: 1. Quantification of long term changes in functional mobility;
2. Evaluation of interventions that relate to functioning; 3. Motivating feedback
about real world movement quality.
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Introduction

Not long ago, most doctors thought recovery from stroke spanned weeks or months after an in-

jury. Recent research, however, has shown that significant motor gains can take place several

months, and even years after the acute phase of care and long after individuals have been dis-

charged from a hospital [78, 134]. This means that the period where rehabilitation may be useful

is much longer that was originally thought possible. As a result, research has placed a stronger

emphasis on rehabilitation paradigms for chronic stroke survivors and those who are no longer

in hospitals.

Research in neuroscience, occupational and physical therapy stresses several therapeutic

principles that correlate strongly with positive long term rehabilitation outcomes after stroke.

Some of these principles include: frequent and repetitive practice of movement with body parts

most affected by stroke [64]; practice of motions that are functionally meaningful [79, 85]; and

practice of motions that are personally meaningful to the individual [101].

In the United States the therapy administered to facilitate recovery, however, rarely addresses

these principles overall. This is largely due to restrictions imposed by insurance providers. Medi-

care, for example, has routinely enforced caps on the amount of outpatient therapy it will reim-

burse and a moratorium on caps is set to expire [4]. This means most people in this country do

not receive the duration or intensity of monitored practice that research suggests to be worth-

while. In addition, monitored therapy rarely takes place in the home or involves the same objects

that clients regularly use. Medicare currently will only fund home visits by therapists for those

who are physically unable to leave the house [3].

In this thesis, we propose a method to augment long term monitoring and assessment of

stroke survivors’ functional activity in the home. To do this, we cheaply and robustly quantify

functional motion of the upper extremities of stroke survivors in ways that can both discriminate

between levels of disability and detect changes in mobility over time. Moreover, we do this in a

fashion that is consistent with existing functional assessments. Our ultimate goal is to measure
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and provide feedback about changes in real functional movements that happen in everyday envi-

ronments. We want to do this over long periods of time, such as months or years.

The technologies we explore in the these were primarily chosen because they are cheap and

robust. These include simple computer vision and force sensing devices. As a part of the work,

we built a prototype system to measure functional movement and tested its ability to capture

statistics that discriminate between levels of functional impairment. We also deployed our sys-

tem to an individual’s home and explored issues surrounding functional measurement in this

environment.

This thesis makes contributions to different but potentially overlapping fields of research. On

a technical level, the work represents both a novel application area and set of evaluation metrics

for vision based kinematic trackers. It also expands upon the study of functional force percep-

tion, which is changing as the capacity to measure force improves. For the clinical community,

the work illustrates an approach to assessment that is appropriate for homes or workplaces, and

which can theoretically operate automatically, over long stretches of time.

We believe that the technologies we highlight hold the capacity to inexpensively enhance the

intensity of therapy that chronic stroke survivors currently receive. They can additionally focus

therapy on real world tasks in the home. We expect, then, the tools prototyped here ultimately

to enable: 1. Quantification of long term changes in real functional mobility; 2. Evaluation

of interventions’ that relate to real world functioning; 3. Motivating feedback about real world

movement quality.

Organization of the Thesis

The organization of this document is as follows:

In Chapter 1, we present clinical and technical background. We describe a range of move-

ment features that are typical after stroke and present assessments that are popularly used to
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quantify impairment. We also describe technologies currently employed in stroke rehabilitation

as well as technologies most appropriate for inexpensive, home-based therapy.

In Chapter 2, we describe the system we developed for observation and assessment of func-

tional movement. We describe a range of features the tool is capable of extracting both from

visual and force data.

In Chapter 3, we present results from a protocol analysis study with therapists. This study

was designed to identify visually perceptible features that therapists regularly use to make func-

tional assessments of their clients.

In Chapter 4, we attempt to automate functional assessments with our engineered devices.

Our goal is to automatically discriminate between levels of disability as accurately as a human

expert. We also examine features our automated system prioritizes in order to make assessments,

and compare these features to those prioritized by humans in Chapter 3.

In Chapter 5, we deploy our engineered devices to a single stroke survivors’ home. We

explore the issues surrounding this deployment and outline future work that will make use of the

data that was acquired in this environment.

In Conclusion, we discuss remaining obstacles that must be tackled before a feedback sys-

tem can be developed, and outline related projects for the future.
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Chapter 1

Background Work

Figure 1.1 illustrates the kind of measurement and assessment system we are looking to enable

through our research. At the left is a stroke survivor at home unloading his dishwasher. Invis-

ibly situated in the environment are low cost cameras and force sensing devices that measure

his activity. In this particular example, the character and quality of grasps are being evaluated;

each time the stroke survivor grasps an object in the dishwasher, movement data corresponding

to his grasp is being extracted and a numeric assessment of this data is being automatically made.

The research described in this thesis seeks to enable the development of systems, like the one

depicted in Figure 1.1, that evaluate the quality of real world lifts and grasps of objects in a fash-

ion that is consistent with existing clinical assessments. Like existing clinical assessments, we

seek to make evaluations that are sensitive to the variation in monitored performance over days

or weeks, and that can discriminate any one person’s level of disability from that of others who

have been impaired by stroke.

Automated assessments at home hold the capacity to enable retrospective review of perfor-

mance data with therapists. They can also allow therapists to intervene should a stroke survivor’s

ability to perform functional tasks at home deteriorate, or to alter the character of practice that

takes place at home so as to better encourage recovery. In short, they can augment the quality

of rehabilitation be measuring performance outcomes as they relate directly to real world perfor-
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Figure 1.1: Idealized assessment system in the home of a client. Our goal is to create an au-
tomated system that invisibly measures the quality of real world functioning. Here, a system
evaluates functional grasps of a stroke survivor as he unloads the dishwasher. Every grasp is as-
signed a “motor quality” score that is validated against other clinical assessments, like the FMA
or AMAT. The recordings enable retrospective review of functional performance changes that
take place in the real world.
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mance.

In this chapter we describe the literature that has informed our progress toward the automated

assessment of functional movement. The work comes from several different fields of research:

occupational therapy; rehabilitation engineering and science; computer vision and human com-

puter interaction. In our review of the literature, we focus on rehabilitation of the upper body, in

particular on the hands and arms. We are particularly concerned, moreover, with assessment as it

relates to functional object manipulations, of the variety that commonly take place in the home.

We first review clinical literature that describes common characteristics of upper extremity

movement after stroke as well as guidelines for effective therapy. Therapy guidelines, of course,

are constantly being revised as research matures and new evidence is generated; what we present

here, then, serves more as a snapshot of the state of the art than a definitive guide. We also look

at various assessment paradigms for the upper extremity that are commonly employed during

rehabilitation after stroke.

We then draw upon literature in computer vision, rehabilitation engineering and human com-

puter interaction to describe ways technology can fill gaps in care. We place a particular empha-

sis on force measurement and computer vision devices and algorithms. We look at advances in

kinematic tracking, for example, which promise soon to bring robust and clinically meaningful

measurements of the body to a wide variety of environments. We also explore rehabilitation

specific applications in force sensing and tracking, and the other force measurement paradigms

that have inspired our work.

All of the technical and clinical work ultimately inform the development of the prototype

system that is illustrated in Figure 1.2. Our prototype tracks the upper bodies of stroke survivors

in three dimensions as they grasp and lift various functional objects. Force applied to objects is

also measured during several functional tasks. Based on measurements, functional assessments

of both “grasps” and “lifts” are automatically produced. These machine-generated scores are

consistent with assessments made by human experts but, unlike the human scores, the machine-

generate scores can be made continuously, for long periods of time, like weeks or months.
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Figure 1.2: Current implementation of an automated assessment system. Our prototype tracks
the upper bodies of stroke survivors in three dimensions as they grasp and lift various func-
tional objects. Force measurements are made during several functional tasks, as well. Based on
measurements, the quality of perceived ‘grasps” and “lifts” is automatically evaluated.

1.1 Clinical Background

1.1.1 Common Symptoms after Stroke

The variety of sequelae that persist after stroke is large and depends upon features such as the

nature of the physical injury and the age of the injured individual [56]. Despite this variation,

stroke survivors are evaluated using fairly consistent criteria when determining motor progress

for medical and insurance purposes. In this section, we make an effort to explain relatively com-

mon sequelae that are taken into consideration during assessments. Many have informed the

development of instruments like the Fugl-Meyer Assessment [42], the Wolf Motor Functioning

Test [147], or the Arm Motor Ability Test [62].

A. Hemiparesis. Six months after a stroke, more than 50% of stroke survivors will exhibit

one-sided partial paralysis on the side of the body that is contra-lateral to a brain lesion; this is

called hemiparesis [2]. Immediately after a stroke, many individuals exhibit no voluntary move-

ment at all on the affected side. A complete lack of movement is called flaccidity. Weakness
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may be present even as recovery takes place; studies have found persistent upper limb weakness

to affect the majority of stroke survivors [69].

Persistent weakness influences the maximum forces that stroke survivors are able to produce.

In prior research, individuals with hand impairments were found to be significantly less likely to

be able to produce the torque required to achieve functional goals, like turning a key in a lock

[123]. In [75], stroke survivors’ maximum finger forces were found to be reduced relative to

controls by about 36%.

Figure 1.3: Flexor and extensor synergies.

B. Limb Synergies. Stroke survivors often exhibit stereotyped movement defined by patterned

muscle tightness and restricted range of motion during volitional movement. These patterns of

movement are termed muscle synergies and may be mediated in part through a reflex system

[91]. Two typical muscle synergies that influence upper body motion in stroke survivors are the

flexor and extensor synergy. The flexor synergy couples external rotation and abduction at the

shoulder with elbow flexion and wrist supination. The extensor synergy couples internal rotation

and adduction of the shoulder with elbow extension and wrist pronation. Some combination of
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flexor and extensor synergy is combined to form the canonical hemiparetic posture described by

[20]. See Figure 1.3 for an illustration of these synergy patterns.

In 1970, Signe Brunnstrom created a mechanism to organize stroke survivors into categories

that are largely defined by limb synergies [20]. These categories are known as the Brunnstrom

Stages and were developed alongside protocols for interventions that relate to each stage. There

is significant debate as to whether individuals pass through Brunnstrom Stages in a predictable

manner as they recover from stroke, and whether the treatment options promoted by Brunnstrom

are indeed optimal or advisable [144]. Nevertheless, her categorizations are useful to describe

a wide range of post-stroke motor pathology and they have shaped research in occupational and

physical therapy.

In the low Brunnstrom Stages, individuals remain largely flaccid on their most affected side

and are unable to produce movement on their own. In the middle stages, voluntarily movement

returns, yet it is dominated by synergy. If, for example, an individual attempts to flex at the el-

bow, he or she may also supinate the wrist without intention. Finally, at the highest Brunnstrom

Stage, individuals can freely move about each joint independently. Motion about the elbow is

not coupled with motion about the wrist. Motion of each finger can be solicited independently,

without resulting in massed finger flexion or massed extension.

Patterns of constraint force consistent with the flexor and extensor synergies have been mea-

sured in the point to point motion of hemiparetic individuals, particularly as they are executed

in a horizontal plane [108, 109]. Some combination of flexor and extensor synergies in stroke

survivors has also been shown by EMG studies, albeit influenced by weakness [83].

An assessment designed to measure the impact of synergies on voluntary movement is called

the Fugl-Meyer Assessment (FMA). The FMA scores individuals’ ability to move in agreement

with and outside of coordinated patterns that are consistent with synergies. Scoring takes the

relative independence of joints into account [42].

C. Spasticity and Clonus. Coupled with the presence of muscle synergies, roughly 30-40% of
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stroke survivors [69] have velocity-dependent increases in their stretch reflexes, which is called

spasticity [68]. This may manifest as hypertonicity (increased muscle tone), coupled with clonus

(involuntary sets of rapid muscle contractions), exaggerated tendon reflexes, muscle spasms, or

fixed joints.

Spasticity and synergy both contribute to the jerky upper body motion that is commonly

measured in stroke survivors [63], as well as in disturbed coordination around joints [73]. In

addition, spasticity and synergy contribute to lack of force control. Prior studies have shown a

dominance of forces produced by the flexors among stroke survivors, which increases as affected

muscles are used [23]. An inability to control the extent of flexion also contributes to excess grip

force commonly measured among stroke survivors during functional motions [48]. Such grasp-

ing impairments are particularly significant in that grasping impairment is a major determinant

of stroke survivors’ capacity to achieve functional goals [122].

Spasticity and clonus also depend on the environment and task constraints. In a study of

spinal cord injured patients, for example, spasticity in the lower limbs became noticeably worse

at night [81]. Heat can also reduce the presence of spasticity and spasms, at least temporarily

[22].

D. Sensory Disturbances. Even with some volitional motion intact, roughly 30% of stroke

survivors still suffer some form of sensory impairment [69]. This sensory impairment may affect

the modulation of grip forces during manipulation tasks. Healthy individuals have been seen to

modulate their grip forces as the acceleration of the objects they are holding increases or de-

creases. Stroke survivors may be comparatively slow in modulating force during tasks where

objects are moved and they may fail to correctly estimate forces required to keep an object stati-

cally elevated [96]. Disturbed timing of force corrections has also been found to differ between

periods where exerted forces are decreasing rather than increasing [65]. The commonly per-

ceived delay in the onset of muscle contractions during manipulations after a stroke [137] may

be the result of impairment to descending motor pathways in addition to ascending ones.
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Figure 1.4: Torso compensation during reaches. At the right is an individual who never had a
stroke reaching for an object. At the left is a stroke survivor reaching for an object at the same
location. The stroke survivor uses much more motion of the torso to complete the reach.

E. Compensatory Strategies. Regardless of the Brunnstrom stage that represents an individual

stroke survivor’s movement ability, stroke survivors compensate for their deficits. As Bernstein

first noted in 1967 [15], the human body has numerous degrees of freedom; any particular func-

tional task can be achieved by several different combinations of motion about joints. Stroke

survivors often use these excess degrees of freedom to compensate for their disabilities. They

may, for example, recruit more proximal degrees of freedom when distal extremities are weak

or otherwise impaired. In the upper body, hemiparetic individuals have been found to lean ex-

cessively into a reach so as compensate for an impairment at the elbow or shoulder [111], as is

illustrated in Figure 1.4. Additionally, stroke survivors have been found to modify the orientation
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of their hands and wrists to compensate for weak or impaired extensors [13, 111, 112].

Opportunities to compensate are offered to stroke survivors not only by extra degrees of

freedom in the body but also by the environments in which they operate. For example, stroke

survivors may rely on the table to support the weight of their arms during reaches or they may

use passive object properties, like friction, to maintain a grasp [112]. These kinds of grasps and

manipulations may be fully functional. In [111], for example, those disabled by stroke were

able to transport impaired hands to the same physical locations as their unimpaired counterparts.

The impact of the environment on functioning is one reason that we stress measurement in the

environments in which people actually live and work.

An assessment designed to measure the presence of compensatory trunk motion is called

the Reaching Performance Scale (RPS) [74]. Preliminary trials of therapy in which the torsos

of stroke survivors were restrained during therapy have also been shown to positively influence

stroke survivors’ coordination and range of motion [90].

There are, of course, several other ways in which stroke survivors can be impaired. An es-

timated 23% suffer hemi-neglect [69], for example, which is a disruption or blockage of the

visio-spatial field on the side of the body that is most impaired by stroke. The symptoms above,

however, provide a rough picture of several common physical impairments that influence gross

upper body motion; it is admittedly incomplete.

1.1.2 Guidelines for Effective Therapy

Not very long ago, most doctors thought recovery from stroke could span only several weeks or

months after an injury. Recent research, however, has shown that significant motor gains after a

stroke can take place several months, and even years after the acute phase of care, and long after

individuals have been discharged from a hospital [36, 38, 92, 133].

An increased awareness of the duration of recovery has led to the development of a variety
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of new therapies and interventions that target chronically impaired individuals. One example is

found in the Constraint Induced Movement Therapy (CIMT) movement, which has been widely

adopted in clinics. CIMT requires the restraint of clients’ more functional, or mobile, side of the

body, to ensure that the more impaired side of the body sees regular use. CIMT has been found

to yield functional motor improvements as well as associated neural re-mappings as many as 12

years after a stroke [135].

Along with these new interventions has come a set of evidence-based guidelines for effective

post stroke therapy. Evidence, of course, keeps mounting and guidelines keep being revised.

Some guidelines as they currently stand follow.

A. To the degree possible, therapy should emphasize use of body parts impaired by stroke.

Many stroke survivors have a tendency to rely on the parts of their body that are least damaged

by a stroke. This tendency has been termed “learned nonuse” [130, 131] and is commonly seen

as a barrier to effective therapy, despite the fact that it may produce functional motion. It has

been estimated that 25-30% of stroke survivors exhibit learned nonuse [130]. Lack of limb use,

in fact, does result in atrophy, both in terms of the plasticity of muscles and connective tissues

as well as in terms of neural representation. Shrinking neural representations associated with

limb movements have been evidenced by primate studies wherein limbs impaired by stroke were

forcibly restrained. Increased use of an impaired limb, by contrast, can help maintain or expand

the number of neurons whose activity is associated with that limb. This expansion, moreover,

has been seen to take place not only days or weeks after a stroke but months or years after injury

[76, 78]. Other gains as a result of the CIMT strategy include improved quality of motion and

better long-term functioning vital to independent living [134].

B. Intense, repetitive practice of movements yields motor improvements. Research in oc-

cupational and physical therapy stresses repeated, intense practice of motion during therapy. In

a research synthesis by Kwakkel et al. [67], for example, statistically significant improvements
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in ADL performances and in neuromuscular and functional outcome variables were associated

with longer rehabilitation duration and intensity. The robotic rehabilitation community has con-

tributed a substantial amount of additional evidence to support the use of intense and repetitive

practice during therapy. Studies of clients who have made use of the MIT Manus [49], for ex-

ample, have established that intense, repetitive practice of reaching motions can yield motor

improvements relating to movement smoothness and speed [64].

An important feature of results produced by the MIT Manus is that they include not only those

with moderate impairments but also severely impaired chronic stroke patients as well. Moder-

ately and severely impaired patients were both found to benefit from a massed-practice therapy

paradigm with intensive, frequent, and repetitive treatment of isolated motions [86].

C. Practice of functional tasks is preferable to practice where tasks are simulated. It has long

been understood that task specific constraints inform the character of movements that individuals

use. Research in occupational therapy, for example, has shown motor impaired individuals to use

decidedly different movement strategies in contexts where they are pantomiming functional tasks

than in environments where they actual execute tasks [55, 85]. Wu has demonstrated that motor

impaired individuals will reach more smoothly to a real coin than to a non-coin [149]. A meta-

analysis of studies comparing exercise programs in which functional tasks were practiced versus

programs containing rote or elemental exercises showed functional activities to yield better qual-

ity of movement [79]. Several other studies have stressed the importance of supporting functional

activities in therapy environments in order to achieve optimal recovery [77, 97, 135, 146].

If individuals train to tasks that do not emulate real world functioning, they may compro-

mise the transfer of motor learning to real world tasks. In some early studies of reach retraining,

for example, subjects were found to exhibit motor gains on tests resembling their training, but

not in the context of functional assessments [143]. Therapists are therefore increasingly em-

phasizing the task specificity of re-training after stroke. Research in Constraint-Induced Move-

ment Therapy, for example, and has shown that intense and task specific training can positively
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influence functional performance and associated cortical reorganization [133]. The potential

effect of functional task practice on brain plasticity has been similarly stressed by work in

[10, 11, 77, 97, 135, 146]. The use of natural objects and environments during rehabilitation

is also recommended by occupational therapy texts [136]. Research relating to cerebral palsy

has shown that learning in real task environments may prove most meaningful to those whose

sensory systems are impaired; those least able to use the intrinsic feedback from their bodies may

most depend on the environment to gauge performance success [142].

D. Practice at home may be cheaper than practice in the clinic, and at least as effective.

The environments that have the most functional importance to people after a stroke are those

in which they actually work and live. Moreover, rehabilitation at home may be substantially

less expensive that rehabilitation in clinics. In a study of 110 stroke survivors in Sweden, for

example, a home rehabilitation paradigm was shown to yield equivalent patient outcomes as tra-

ditional rehabilitation in terms of total motor capacity, manual dexterity, walking, self-reported

independence in the activities of daily living, frequency of activities, and health-related quality

of life [88]. Similar results were reported by the Domino Study Group [45], which followed 327

stroke survivors as they participated in either traditional or home rehabilitation. In the Domino

study, the treatment of the home-based subjects was found to be significantly cheaper than the

treatment of hospital-based counterparts. Moreover, these home based rehabilitated individuals

had better household and leisure abilities at six months than those treated in clinics [44]. Similar

results were found in a study of 86 stroke survivors in South Australia [8], although the potential

negative effect of home rehabilitation on caregivers in the home was noted.

The home is also known to be an environment that is comfortable, stimulating and familiar to

stroke survivors. In a study of stroke professionals’ attitudes, 11 of 32 professionals felt a stimu-

lating environment to be critical to patient motivation, and all said that the clinic did not provide

this stimulating environment [87]. The home, then, may provide an attractive, motivating and

cost effective alternative to traditional clinical environments for many therapy clients.
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E. Practice in the context of motivating activity is vital. Keeping clients motivated through

the repetitive practice of almost anything can be challenging. Several studies, however, have

indicated that when clients are allowed to set their own goals for rehabilitation, participation in

and compliance with therapeutic interventions increase [101]. In a recent survey of 32 therapists,

more than half indicated they felt setting relevant goals to be a key to keeping clients of therapy

motivated [87]. The Canadian Occupational Performance Measure (COPM) is an assessment

that emphasizes individual client goals. It assesses clients’ perception of motor progress relative

to tasks that are most important to their quality of life. Its efficacy and validity, as well as its

effect on motivation, has now been tested for a wide range of client groups, including stroke

survivors [12].

Based on these guidelines, we focus in this thesis on assessment tools that are flexible, can be

installed in real functional environments, are inexpensive, and can facilitate repetitive practice of

a variety of tasks over the long term.

1.1.3 Guidelines for Assessment

Whatever the character of therapy an individual receives after a stroke, determining the effect

of this therapy is crucially important. A positive outcome from therapy, however, can mean

many things. It can mean people are able to independently perform tasks of daily living, or

move smoothly and without hesitation. Assessments in physical and occupational therapy reflect

these different interpretations of positive outcomes. Insurance companies tend to pay heed to

assessments that are functional in nature, such as the Functional Independence Measure (FIM)

or The Barthel Index of Activities of Daily Living (BI) [26, 80]. Assessments like these inform

decisions to sponsor supportive care. The BI and the FIM are by far the most commonly used

measures of functional disability [115], yet neither is sensitive to the particular motor strategy an
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individual uses to complete a task; rather, they measure the degree to which functioning requires

assistance.

Research suggests that emphasizing function over underlying movement quality, however,

can lead to the development of poor movement strategies that, while successful, may impede

further recovery [9] and promote ”learned non-use”.

To make detailed measurements that relate to the underlying quality of motion, many re-

searchers make use of the Fugl-Meyer Assessment (FMA) [115]. The FMA was designed to

measure the effect of synergies on voluntary movement; it scores ability to move within and

without coordinated patterns that are consistent with synergistic couplings. Scoring takes the rel-

ative independence of joints into account [42]. Emphasizing outcomes that do not relate to real

world functioning, however, has been shown to be as problematic as training to increase func-

tional outcomes alone. This is because training outside of functional activity is not guaranteed to

result in functional gains [143].

Increasingly, assessments have come to emphasize quality of motion evaluations in the con-

text of motions that have functional benefit. Examples of such hybrid assessments include the

Wolf Motor Function Test (WMFT) [147], the Canadian Occupational Performance Measure

(COPM) [12], and the Arm Motor Ability Test (AMAT) [62]. The AMAT is an assessment that

inspires and informs much of the dissertation research reported here, so we explain it in some

detail.

The Arm Motor Ability Test (AMAT) weighs functional capacity of the upper limbs against

motor quality and speed. The test has been shown to have high inter-rater reliability, sensitivity

to change, and concurrent validity with other leading assessments, including the WMFT [62]. As

a result of the assessment, observed functional performance of stroke survivors is mapped onto

two scales. One scale evaluates functional capacity and the other evaluates quality of underlying

motion. Each task on the assessment is sub-divided into a set of components such as lifting a

sandwich to the lips or dialing a number on the telephone. Individual ratings relate to these sub-

components and are summed to create an aggregate score. For the Quality of Movement scale,
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The Arm Motor Ability Test (AMAT)
Task/Subtask OK to Delete?
Cut “Meat” No
1. Pick up knife and fork
2. Cut “meat” (Play-Doh)
3. Fork to mouth
Foam “Sandwich” No
4. Pick up foam “sandwich”
5. “Sandwich” to mouth
Eat With Spoon No
6. Pick up spoon
7. Pick up dried kidney bean with spoon
8. Spoon to mouth
Drink From Mug Yes
9. Grasp mug handle
10. Mug to mouth
Comb Hair No
11. Pick up comb
12. Comb hair
Open Jar
13. Grasp jar top
14. Screw jar top open
Tie Shoelace No
15. Tie shoelace
Use Telephone
16. Phone received to ear
17. Press phone number
Wipe Up Spilled Water (7 ml) Yes
18. Wipe up water (six movements)
19. Discard towel in wastebasket
Put on Cardigan (Jacket-Style) Sweater No
20. Affected arm in sleeve, sweater over shoulder
21. Button two lower buttons
Put On T-Shirt No
22. Arms in T-shirt sleeves
23. Head through neck hole
24. Pull down and straighten shirt
Prop On Extended Arm Yes
25.Prop on extended affected arm, reach across body
with unaffected arm, pick up small object
Light Switch/Door No
26. Pincer grasp of light switch and flip down
27. Grasp door handle, rotate handle, open door
28. Close door

Table 1.1: Tasks on the AMAT. Those that [62] finds to be redundant are indicated.19



the ratings are: 0 = no use, 1 = very poor, 2 = poor, 3 = fair, 4 = almost normal, and 5 = normal.

The complete list of tasks and subtasks on the AMAT is given in Table 1.1.

To generate scores, the AMAT manual requests a clinician to pay attention to features like

“dexterity of paretic fingers, the extent to which the head moves downward when the sandwich

is brought to the mouth ... and the fluidity and precision with which movements are performed.”

[132]. “Fluidity of motion” may be influenced by conditions such as excess spasticity, weakness

and pathological synergy. “Dexterity of the fingers” may reflect observations of grasping impair-

ment, while head movement “downward” may reflect observation of a compensatory motion.

Prior studies have indicated a certain degree of redundancy in the Arm Motor Ability Test.

Both the functional scale and the quality of motion scale, for example, were found to be highly

correlated in practice [62]. In the same study, several tasks and subcomponents were found to

relate poorly to aggregate scores. The authors therefore suggest removing one of the two scales,

and deleting specific tasks. In our work, we have chosen to follow this advice, so we make use of

a single scale and reduced task list. We also drop tasks we feel are not amenable to measurement

with the devices we have engineered. Tasks that are dropped as per the suggestion of [62] are

indicated in Table 1.1. We also dropped other tasks that were not confined to a desktop.

Whatever assessment that is used, the goal of the assessment remains primarily the same. An

assessment must be sensitive to variation in disability and should be able to measure change. It

should be repeatable, consistent, and relatively quick to administer. Enforcing these properties,

however, may not be easy. This is partly because stroke survivors exhibit day-to-day biological

variability in their performance; spasticity, for example, depends on temperature and time of day

[22, 81]. Variability makes measuring performance outcomes in a repeatable and reliable fash-

ion very difficult. Additionally, most standard assessments are reported on ordinal scales. It is

impossible to numerically differentiate these scales, meaning that small changes in function may

be lost.
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1.2 Technical Background

There are many barriers to providing the kind of care that literature has shown to be most ef-

fective. For one, insurance providers, particularly in the United States, place strict limits on the

duration, location and timing of therapy that they will fund. Medicare, for example, has routinely

enforced caps on the amount of outpatient therapy it will reimburse and a moratorium on caps

is set to expire [3]. Moreover, home visits are hard to come by; Medicare will currently only

reimburse home visits for individuals who are physically unable to leave the house [4]. This is in

spite of evidence that people regain motor skills most readily in those environments where they

feel comfortable and where tasks have real functional benefit [85, 149].

In addition to the barriers from insurance, psychological barriers can negatively effect the

quality and character of therapy. “Learned nonuse” is one of these psychologic barriers. In addi-

tion and as posited by [18], stroke survivors may develop a low “self-efficacy” [33]. They may

feel they are incapable of activity and resist engaging in therapy due to a fear of failure post-

injury.

Physical and psychological limitations on therapy have inspired technical researchers to ex-

plore the potential for engineered devices, like robots or virtual environments, to fill gaps in

care. There are obvious benefits of engineered devices for rehabilitation. Engineered tools, for

example, can deliver hours upon hours of care without ever fatiguing. These same devices can

deliver tightly regulated regimens of therapy, and they can precisely measure even the subtlest of

change in mobility as it takes place. Finally, engineered devices can attempt to make what may

be boring and repetitive practice more interesting, by contextualizing practice within games or

inside augmented or altered feedback paradigms [18, 107, 116].

In this section, we first describe several engineered systems that have sought to facilitate

semi-supervised or independent rehabilitation in an increasingly diverse range of environments.

We then move on to explain technologies that remain largely unexplored by the rehabilitation

engineering community, and the ways these technologies may potentially be applied. We focus
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in particular on video-based kinematic tracking, and sparse, task specific tactile sensing. Such

technologies are of interest to us primarily because they are inexpensive. In addition, they are

attractive because they can be integrated into “natural” environments like homes and workplaces

without being very obvious. The desire to maintain the integrity of the environment in which

people live and function guides our research.

1.2.1 Engineered Rehabilitation Devices for the Upper Body

Machine assisted biofeedback is one of the oldest forms of machine enhanced post-stroke ther-

apy; this perhaps began with the invention of electromyography (EMG) but the first published

reports of its use in clinics appear in the 1950s and 1960s [93]. Its clinical importance is still

unclear, but it nevertheless has many of the qualities of the kinds of systems we desire. EMG

devices are relatively inexpensive, portable, and they can be used in the home. Moreover, the

intervention appears equivalent to traditional physiotherapy interventions that similarly target

strength or muscle coordination [46].

More recently, there has been a great deal of work from the robotics and graphics com-

munities to engineer systems that retrain relatively complex reaching motions [38, 106]. The

MIT-MANUS is perhaps the most well known and widely deployed of these systems; it consists

of a manipulandum which operates in a plane. Individuals hold the manipulandum as they make

reaching motions to targets on a table top; the device assists as assistance is required. Tests of

massed, repetitive MANUS-guided reach practice have now been made with over 250 stroke

survivors, and have been shown to produce significant benefits both in terms of increased motor

control and strength [64]. Other robots [21, 59, 106] similarly use force feedback either to assist

individuals as they reach [59, 106], to surreptitiously increase the difficulty of reaches as patients

improve [18], or to otherwise alter the character of motor learning that takes place [117].

Unfortunately, the ability to translate motor gains acquired during periods of reach training

to every day functional motion is not guaranteed. In early trials with the MIT-MANUS, for ex-
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ample, motor gains achieved through robot training were seen only for movements of the form

that were practiced. Motor gains, moreover, did not influence tests of functional performance of

everyday activities [143]. Additional research has therefore focused on partnering robotic reha-

bilitation devices with movements and situations that more directly relate to real tasks. Notewor-

thy examples of the integration of functional simulations in virtual rehabilitation environments

include that found in the Automated Constraint-Induced Therapy Extension (AutoCITE) system

[82, 132], those recently developed for the MIT-MANUS [37], and that found in the Activities of

Daily Living Exercise Robot (ADLER) therapy system [57]. The T-WREX [116] also is being

used to simulate functional tasks, and Brewer has extended finger retraining with the PhanToM

device to target functionally inspired pincer grasps [18].

Task specific training for stroke survivors in VR environments may in fact be similar to task

training in the real world with a human coach. Several studies indicate VR training transfers

well to motor performance real world environments [53] and others indicate that VR training

may outperform real world training in some ways. Specifically, in [114], individuals who were

trained in a VR environment to execute a “steadiness test” were able to translate what they had

learned to real world performance even while task interference was taking place. Those trained

in the real world, by contrast, had greater difficulty performing the learned task in the presence

of task interference. There is still relatively little data about the benefits and drawbacks of VR

training for motor impaired populations, however; further research is necessary. See [50] for a

thorough review of results in Virtual Environment training after stroke.

In this thesis we seek to enable task training in environments in which functional movements

are ordinarily situated. Toward this end, we have chosen measurement technologies that are not

ordinarily deployed in VR systems. Rather than a tracking system requiring markers [100, 128],

for example, we have selected technologies that, with some additional development, we believe

can be cheaply and easily integrated into pre-existing functional environments like homes and

workplaces.

We additionally seek to emphasize the development of technologies that are flexible and low
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cost. Related efforts to engineer low cost and home appropriate therapy systems have focused

on interactions with desktop computers that are mediated by a mouse [107], a force feedback

joystick [99] or force feedback driving wheel [52]. There is now considerable enthusiasm at

the prospect of employing the Wii for home based rehabilitation games, as well. Desktop com-

puter mediated interfaces, however, do not readily allow for motor practice that is task specific

or which relates to those tasks that may be most motivating to an individual. Computer vision

and task specific force sensing provides a relatively flexible set of input devices.

1.2.2 Kinematic Tracking for the Upper Body

A kinematic tracker is a device that can follow human beings in images and which is conscious

of the location of limbs. For a kinematic tracker, humans are not simply blobs; they are fully

articulated objects with limb segments that hinge at joints. It is possible to get some information

about joint angles from these devices, while with with a blob based tracker it is not.

Tracking people’s kinematics is a problem that has received substantial attention from the com-

puter vision community [24, 103, 119, 121]. As tracking algorithms and tools improve, the com-

puter vision community moves closer to producing reasonable alternatives to laboratory based

motion capture that do not require markers. In some situations, markerless pose estimation and

tracking has been shown to be accurate relative to commercial systems that track the reflections

of infra red light off of markers [7]. The potential application of such tools to the field of reha-

bilitation science and technology, however, still largely remains unexplored.

Vision based kinematic tracking tools hold many qualities that make them desirable for re-

habilitation applications. The most obvious is that vision based tools are inexpensive relative

to commercial motion tracking devices; a VICON camera currently costs over $10,000 and an

6 camera system retails for more than $75,000. In addition, computer vision based toolscan be

more easily moved around than motion capture technologies. They also image both the motion

of individuals as well as the environments in which they operate, which makes interpretable re-
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view of motion possible in a way that is somewhat more difficult with systems that do not store

images. Finally, computer vision tools increasingly prove to be robust, even in situations where

there are no markers on the body or bodies being tracked [24, 103, 119, 121]. The main obstacle

to the use of kinematic tracking in rehabilitation is that much of the tracking work is still at the

research stage, and the use of existing software for visual tracking requires considerable effort

and expertise.

Based on the potential strengths of these tools, we engineered a kinematic tracker for our

research. We decidedly simplified the human tracking problem, however, in an effort to make

our system reliable, robust to a variety of environments, and ready to be deployed. In this thesis,

for example, we make use of colored markers to delineate limb segments in the upper body and

we also make use of more cameras than may be required. This is to insure that we reliably detect

limb segments, that we are robust to occlusions, and that we are guaranteed a certain degree of

spatial accuracy in our tracking. In the future, however, we plan to use automatic tools to ac-

quire and track the appearance of limb segments, as in [103]. We also plan to drop unnecessary

cameras from the system, and build kinematic reconstructions with increasingly small camera

sets. Reconstructions achieved with a single camera are found in [95, 124, 139]. The system we

currently have is amenable to the iterative inclusion of more complicated algorithms to facilitate

cheaper and more complex tracking.

Kinematic trackers frequently place priors on the body’s kinematics and/or dynamics. A prior

is basically a belief about the likely configurations of the body, and it is used to guide searches

for body parts between frames and to discard detected configurations that seem improbable. Pri-

ors on human motion and/or kinematic configurations can be trained from sets of 2D images of

the body [58] or 3D data from motion capture [17, 119, 120]; they may also be based on some

engineered knowledge about the shape of the body [61] or content of the motion taking place.

The difficulty, however, is that many kinematic trackers fail easily. They may detect body parts

in places that they do not exist and, once detections have taken place, they may fail to recover

the position of the body. This is due in part to the fact that priors are usually very complicated;
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training based on a small set of data may fail to capture the true range of foreseeable body con-

figurations. Humans can move very quickly and in unexpected ways, so forming a sound belief

about where a particular body will be from one time point to the next can be very difficult.

To augment the predictive power of priors on the human body, many modern applications

make additional use of bottom-up part detectors at each frame. A bottom up part detector is

a device that responds to patches of an image that look like limb segments, irrespective of the

patches’ locations in the image, or proximity to other limb segments. A bottom up detector, then,

does not depend on a generative dynamic or kinematic prior to suggest possible poses; rather, it

introduces assemblages of individually detected body as pose possibilities. The use of body part

detectors at each frame makes tracking look a lot like object recognition, where the object of

interest is a human body. This way of looking at the problem has become popular and has made

kinematic trackers more robust; examples can be found in [103, 121].

In our work, we stress a similar bottom-up approach to part detection and tracking in the

interest of robust tracking. In our system, the appearance of body parts is made relatively easy

due to the colored swatches of cloth we ask individuals to wear on limb segments as they are

being tracked. At each frame, we consider not only locations for limbs that are dynamically or

kinematically reasonable, but also locations in the frame that bear the right colors. Parts of the

frame that are correctly colored represent our “bottom up” limb hypotheses; parts that are kine-

matically or dynamically reasonable, by contrast, are top down.

Future work will explore the development of tools to remove the colored swatches. More

specifically, we must integrate automatic appearance acquisition for limb segments into our sys-

tem. There are several examples of automatic limb detection and appearance acquisition. In

[39], for example, filters are engineered to respond to pairs of oriented edges and patches of ap-

pearance that conform to the size and appearance of a limb segment. Potential “parts” are then

assembled to form probable body configurations according to some kinematic prior. In [102],

parts contained in probable assemblages are used to further refine appearance models. Another

example of automatic appearance acquisition is found in [104], where appearance models are
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built when the body configurations conform to stereotyped “poses”. These poses are common to

many human activities; one, for example, is a side view of an open legged stance that is gener-

ated mid gait cycle. Among stroke survivors, of course, stereotyped poses may be slightly more

difficult to detect and parameterize.

Perhaps the main contribution of this thesis to the field of computer vision is its use of clinical

metrics to evaluate the quality of kinematic tracking. Recent years have seen many instances in

which kinematic reconstructions, be they based on single or multi-view camera input, are numer-

ically judged relative to motion capture data [7, 72]. Evaluation criteria include squared error in

3D point reconstruction, joint angle error, or false-positive/missed-detection rates based on the

overlap between estimated body configurations and configurations provided by motion capture.

The right evaluation metric is not clear [41]. We circumvent these issues altogether. In our case,

a good kinematic reconstruction is one that can relate well to and predict a clinician’s functional

score.

1.2.3 Force Sensing in Hand Therapy

Our vision system focuses on the motion of the torso, shoulders and elbows. Finer motion of the

hands and fingers, however, is not captured with vision based tools. To augment the data stream

at the hands and fingers, we additionally explore the use of very sparse arrays of force sensors

placed on objects. The force sensors that we use are thin, low cost, flexible printed circuits.

When pressure is applied to the sensors, the resistance of these circuits change. The resistance of

each circuit can then be read electronically, and converted to units that represent Newtons. Each

sensor that we use costs roughly $7, and we limit ourselves to the use of 8 sensors on the surface

of any object.

There are several motor symptoms common to stroke survivors that we can hope to detect

with sparse arrays of force sensors. For example, we know that stroke survivors frequently ex-

hibit a lack of force control that is manifest both in the amount and the timing of force they
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produce [48? ]. We also know grip forces produced by the flexors tend to dominate in stroke

survivors, and that these forces increase as affected muscles are used and may result in excess

force during functional manipulation [23]. Disability in hands is known to significantly inhibit

functional capacity [122], which has made devices to help retrain hands of great interest in the

field of rehabilitation science and assistive technology.

The range of force sensing applications that target hand rehabilitation after stroke is currently

small but is quickly growing and becoming diverse. Many existing systems have been inspired

by results generated in robotic rehabilitation research for the arm. There is substantial variation,

however, in the precise configuration of devices and the amount of force information used to

guide training. In [84], for example, a VR environment is tested which tracks the kinematics

of the hand during periods of grasps, and its use in therapy is evaluated against two devices

that assist users in the control of force they produce. One is a pneumatic device, that utilizes

EMG controlled bladders to facilitate finger extension; the other is a user-controlled orthotic.

This orthotic has a cable which assists the users as they need it, and the force on the cable is

monitored. Both assistive devices generated positive preliminary results when integrated into

repetitive reach and grasp therapies, while the practice without assistance yielded no change in

functional hand status. A similar rehabilitation application for the hand which requires force

sensing is found in [18]; here force that is produced during pincer grasps between thumb and

index finger is monitored with two force feedback devices. As with [84], use of this device in the

context of a repetitive practice paradigm has yielded promising hand therapy outcomes across a

variety of virtual feedback conditions.

There are many devices used in hand rehabilitation applicationse. The CyberGrasp glove[1],

for example, facilitates very high degree of freedom kinematic tracking of the hand, yet it is

both very expensive and heavy (more than 500g); this makes it unsuitable for most clinical ap-

plications. The pneumatically powered glove in [84] is light by comparison. PhanTom devices

can deliver force to individual fingertips, but are complicated to use in multi-fingered grasping

applications.
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Instead of using a wearable device, we sense the force that is produced by clients of therapy

on the surface of objects. There are several reasons for this, but perhaps the most significant is

that we seek to respect channels of intrinsic feedback that come normally with functional manip-

ulations. Moreover, we want to facilitate easy transfer of learning to real world domains. We do

not, however, currently offer any kind of assistance to individuals as they produce force on ob-

jects, nor do we offer any haptic corrections of applied force as in [31]. At this point, we simply

seek to demonstrate that measurements at the object level can discriminate level of disability and

capture change in functional status over time.

Force sensing on object surfaces, of course, has its own challenges. For one, force sensing

resistors are small, not terribly flexible, they conform poorly to curved or deformable surfaces,

and large arrays can become expensive. Despite all of these difficulties, force measurement at

the surface of objects has been explored in a variety of user input and robot control tasks. In [98],

for example, relatively high resolution contact forces were used to constrain the configuration of

synthesized three fingered grasps with reasonable accuracy. High resolution patterns of pressure

recorded at the interface between a body and chair have also been used to posit configurations of

the torso and legs [129]. The authors of [129] use their predicted configurations to allow sitters to

control an animated car. Finally, reconstructions of full body posture have been generated from

foot pressure data in [150], also for the purpose of animation and avatar control.
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Chapter 2

The Measurement Device

Our goal in this thesis is to inexpensively and robustly quantify functional motion of the upper

extremities of stroke survivors in ways that can both discriminate between levels of disability and

detect changes in mobility over time. Moreover, we seek to do this in a range of environments

and in a fashion that is consistent with assessments like the Arm Motor Ability Test (AMAT).

Typically when therapists use the AMAT to assess function, they watch as clients perform

upper body tasks, like raising a comb to the head or dialing a telephone. Each subtask is scored

on a 6 point scale (0 to 5) according to the quality of the underlying motion (i.e. its smoothness,

fluidity) as well as functional efficacy. Those who receive a 0 may be completely flaccid on the

hemiparetic side and unable to complete any given task on the assessment. Those who receive a

5, by contrast, may have motion that is indistinguishable from individuals who have never had

a stroke. Various post-stroke symptoms may be manifest among individuals with intermediate

scores, such as muscle synergy (i.e. increased flexion in characteristic patterns [20]), spasticity,

or jerky, uncoordinated motions.

The research in this thesis suggests we can automatically perform assessments that are con-

sistent with expert humans. Unlike human observers, however, automated systems can operate

at any time of day, in a variety of locations and for a very long period of time.

The assessment tools we have chosen to use were selected first and foremost based on their
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Figure 2.1: The experimental setup. At left is a desktop instrumented with cameras and at the
right is a colorful jersey used to facilitate tracking.

Figure 2.2: The views provided by cameras.

cost and their ability to be integrated into living and work environments. In the future instanti-

ation of our system, we do not want individuals to notice the presence of measurement devices.

We do not want them wearing markers or using objects with wires, for example, as these may

negatively influence the character of their motion as well as their comfort. At this time, however,

we are using markers on the body and wires placed on objects simply to prove that automated as-

sessments are possible. To the degree possible, we have made engineering decisions to facilitate

easy integration of markerless and wireless technologies.

2.1 Hardware

The hardware elements we use to make measurements of desktop functioning are:

1. Cameras. A desktop has been instrumented with eight commercial camcorders, as illus-
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trated in Figure 2.1. One pair of wide angle views exists to image the motion of the torso and

arms in context, a second pair images mid range views, and the last two pairs focus on the hands

and torso respectively. For stereo reconstructions, we currently make use of six of the eight cam-

eras; we do not use data from the two close up views of the hands.

Each camera (a JVC GRDV 2000 or GRDV 3000) has 1 CCD and records progressive scan

video at a rate of 30 frames per second. Cameras are synchronized with flashes from a red LED;

one LED is located in the corner of each camera’s view. A single flash denotes the start of a

motion and a second flash denotes its stop.

Video is compressed in real time to MPEG2 format with an Axis 250 MPEG-2 Video Server.

The computer which interfaces with the camera network is a 3 GHz PC with a 800 MHz front

side bus. All communications between the computer and cameras are mediated by an ethernet

network.

2. Markers. During recording sessions, we currently request each subject to wear a colored

jersey, as in Figure 2.1. This allows us to easily localize and track individual limb segments of

the upper body. In addition, the table top we use has been painted green to make background seg-

mentation straightforward. The green covers only a limited portion of the background, however,

meaning that there is still substantial background variation to be dealt with during processing.

3. Instrumented Objects. The system contains a selection of objects that have been in-

strumented with force sensing resistors. The objects for which we report results in this thesis

include telephone keys, a selection of wooden blocks, and a spoon. The telephone and the spoon

relate to tasks on the Arm Motor Ability Test (described in Chapter 2; see Table 2.1). The

wooden blocks correspond to tasks on the Action Research Arm Test (ARAT) [140]. Images and

schematics of the objects are shown in Figure 2.3 through 2.7.

In each object, 6mm square force sensing resistors are sandwiched between plates that link

solid interior and exterior shells. The force sensors that we use are thin, low cost, flexible printed
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Figure 2.3: A selection of force sensing objects. These include a force sensing phone, a cube and
eating utensils.

Figure 2.4: The interior and exterior of the force sensing spoon. Force sensors are placed at
junctures between plates. Plates are attached to one another with compliant foam.
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Figure 2.5: The interior and exterior of a force sensing cube. The construction is similar to the
spoon; sensors are placed between plates at junctures.

Figure 2.6: The interior and exterior of the force sensing telephone. Here, force sensors are
placed at the juncture between the button and a rigid interior plate.
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Figure 2.7: A force sensing object while being manipulated. In the top row is the individual
using the spoon at three instants in time. In the middle row, the locations of the force perceived
by the handle of the spoon are illustrated. The darker the color of a location, the more force
recorded at that location. At the bottom is a force profile from the spoon. Force from all sensors
is summed and illustrated over time.
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circuits. When pressure is applied to the sensors, the resistance of these circuits change. The

resistance of each circuit can then be read electronically, and converted to units that represent

Newtons. The interior and exteriors of objects are connected to one another with a compliant

foam material. The goal in this design is to maximize the transmission of force that is generated

during grips and manipulations through the force sensing resistors. All objects contain between

4 and 8 force sensing resistors. The interiors of objects are illustrated in Figures 2.4 through 2.6.

When our system is running, force is sampled at 300 Hz and subsequently down-sampled to

match the rate of the video. We use Data Translation’s DT 9800 board with 16 channel inputs

and USB link to perform analog to digital conversion. Acquired force data is synchronized with

video by means of a single 5V electronic pulse that is fed to channel zero of the analog to digital

converter; this is subsequently matched with the blinking of LEDs.

2.2 Software

There have been two iterations of software in our system and more are planned for the future. In

both iterations, force and vision sensing were involved. In this section we describe the software

developments that relate to both components. Measurements reported in subsequent chapters

were generated with the most recent instantiation of the system.

2.2.1 Vision

Our vision software creates three dimensional estimates of upper body limb segment locations,

as follows:

A. First, six of the eight cameras are calibrated. We omit the two cameras that feature close

up views of the hands. To calibrate cameras, we use the Matlab Camera Calibration toolbox,

which is based on the work of [151]. This requires a planar pattern to be viewed by each camera
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(a) Original image. (b) Detected blobs. Many areas look like skin, as is
indicated by pink.

(c) Filtered parts, assembled into an arm. (d) Complete 3D reconstruction, back-projected onto
image.

Figure 2.8: Vision processing stages. In the top left is the original image. To the right, clusters
of pixels corresponding to possible limb segments are detected. These limb segments are then
aggregated into ellipses, as illustrated in the bottom left. Finally, ellipses are triangulated across
views to make a three dimensional reconstruction of the upper body. A reconstruction, back
projected onto the original image, is illustrated at the bottom right.
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at several different orientations. A single image of a planar pattern shared across all cameras

determines the world origin. We rotate and translate the camera centered calibration matrices

supplied by the Calibration Toolbox so they align with the corner of this shared planar pattern.

B. Second, beginning and end segments of a selected motion are located based on LED

blinks. A simple piece of software scans selections of frames in each camera that correspond

to the location of LEDs. When these areas become saturated with light, the onset of a recoding

is said to begin. Unfortunately, the software is somewhat sensitive and is triggered by quick

changes in lighting, changes in the position of the LED relative to the camera, and light back-

ground colors encroaching on the LED location. Data, then, is currently corrected by hand.

C. Camera frames are extracted from the video and down sampled. Elements of video

corresponding to motion of interest are decompressed and stored as sets of 740 x 480 JPEG

frames. These sets are then further down-sampled using bicubic interpolation by a factor of four,

to speed processing. All JPEG images that are processed by the kinematic software are 185x120

pixels in dimension. The low resolution of these images in encouraging and means that we may

be able to use substantially cheaper cameras with less resolution (around $10 USD) in future

system iterations, assuming color quality is good.

D. In each frame from a given camera, limb segments are detected based on their color.

For each color of the jersey, we train a quadratic logistic regression, as in [103]. One regression

is trained for each camera and each subject. To train, regions corresponding to colors of interest

are selected in images. Pixels inside selections are labelled ’positives’ and pixels in a 50 x 50

pixel area around that selection are labelled ’negatives’. To be more specific, training involves

using the Newton-Raphson method to locate coefficients β that maximize this value, summed
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across all ’positives’ and ’negatives’:

l =
y ∗ log(p)

(1− y) ∗ log(1− p)
. (2.1)

Here, y is a vector of ones and zeros corresponding to ’positives’ and ’negatives’ in training data.

The variable p represents the probability that a given y will be one assuming a given input, x:

p =
1

1 + exp(−x ∗ β)
. (2.2)

In our application, x is made of RGB values for selected pixels along with their squares and an

offset variable.

Trained coefficients, or β, are then used to map pixels in all other frames onto either zero

or one using a thresholded version of p. A one indicates membership in a part of interest. An

example of an image after pixels have been mapped onto likely parts is illustrated in Figure 2.8.

After detection, pixels corresponding to parts are grouped into blobs, or contiguous regions.

These regions are parameterized as ellipses.

D. ‘Potential limb segments’ are filtered in each frame with simple kinematic trees. To

remove blobs that do not relate to limb segments, we use two very simple kinematic trees in a

fashion inspired by [120]. Kinematic trees are tools that facilitate reasoning about connections

between limb segments. Each potential limb segment is a blob, and the presence of a blob in-

creases the probability that blobs for related limbs will be found close to it. Mathematically, the

probability that a given set of blobs relates to a limb segment can be expressed like this:

P (p1, p2, p3|I) =
∏

(i,j)εE

P (pi|pj)
3∏

i=1

P (pi|I). (2.3)

In this equation, each pi represents the strength of our belief that a given limb segment, i, can

lie at a a particular location in the image. Our model has three limb segments, so this is why the
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equation contains p1, p2 and p3. These three segments are the upper arm, the lower arm and the

hand.

P (pi|pj) represents the strength of our belief that the ith limb segment can lie at a given

location, assuming we already know where the jth lies. The term E denotes the complete set

of linkages between body parts that we choose to reason about. In our model, we have a link

between the upper and lower arm, and one between the lower arm and either hand. P (pi|I), by

contrast, represents the strength of our belief that the ith limb segment can lie at a given location,

given the image patch that is at that location. If we are looking for a blue image patch at a loca-

tion that is green, for instance, P (pi|I) will be very low.

Strengths of beliefs are determined by training. We use the same images selected for color

training to additionally train beliefs. Based on parts selected for training color classifiers, we

compute the relative angles between limb segments and the relative differences between adjacent

segment centers. P (pi|pj) is then defined to be a normal distribution centered at these idealized

angles and locations. P (pi|I) is similarly determined based on the color, size and shape of a

given blob relative to blobs we selected during training.

An example of a ‘filtered’ arm is illustrated in Figure 2.8.

E. Filtered ‘parts’ are combined across multiple views to make a three dimensional recon-

struction of arms’ locations. After filtering, we are left with a set of ellipses in each image that

are adjacent to one another and that represent our belief about the location of arms. To recon-

struct a three dimensional picture of the location of arms from sets of corresponding ellipses, we

must find corresponding points across images.

In our application, we use points located at the extremes of ellipses to create correspondences

across frames. Two points are located on the major axes of each ellipse, and two on the minor

axes. Sets of points are then combined across multiple views by locating three dimensional lines

that, when projected, pass through camera centers as well as individual points. Reconstructed

points in 3 dimensions are determined to be those which are closest to a complete set of corre-
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sponding 3D lines. This 3D point is defined as [27]:

N∑
i

(wi(Id− uiu
′
i))P =

N∑
i

(wi(Id− uiu
′
i))ci. (2.4)

Here, i is an index referring to an individual camera view, P is a reconstructed three dimensional

point, ci is the ith camera’s center, and ui is the direction of the ray extending from the camera’s

center to the point. Id is the identity matrix. Finally, wi is an independent weighting factor

for each view, indicating the level of “trust” we have in that view. We can use the value for

P (p1, p2, p3|I), determined during filtering.

Any four three-dimensional points reconstructed from corresponding ellipses define a cylin-

der in space. These cylinders we use to estimate the location and orientation of each target limb

segment. In practice, we do not allow the width of cylinders to exceed a pre-defined threshold.

A reconstruction is illustrated in Figure 2.8.

F. Finally, results are refined by locating the three dimensional intersections of cylinder

axes. The closest three dimensional points between the cylinder corresponding to the upper arm

and the cylinder corresponding to the lower arm are used to define the locations of the elbow.

These locations are in turn used to adjust the estimated positions of cylinders that correspond to

both the lower and the upper arms.

A picture of elbow angles that are estimated using the kinematic tracker is shown in Figure

2.9.

2.2.2 Force

Our force software augments the three dimensional reconstructions of arms with information

about the hands and fingers. Force data is processed as follows:

A. Sensors on objects are calibrated. To calibrate objects, known forces were applied to each
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Figure 2.9: Elbow angles as reconstructed by the vision system. Elbow angles are shown at two
different points in time during a grasp and lift motion. The angles relating to the left limb are
illustrated in red, while those relating to the right limb are illustrated in green.

sensor on the objects individually. More specifically, we measure the resistance from each sensor

when no force is applied, as well as when forces of 1, 2 and 4 Newtons are applied. A bicubic

interpolation was then used to connect these measurements, and to estimate the number of New-

tons that correspond to different voltage outputs.

Examples of calibration curves are illustrated in Figure 2.10. These curves are for the sen-

sors inside the spoon. A significant issue here is that fact that, during calibration, sensors are

exposed while, during manipulation, sensors are sandwiched between plates. This means that

the exact number of Newtons recorded by each object depends on the ability of force to be trans-

mitted through external plates. Calibrations, then, only provide a very rough idea of the number

of Newtons recorded on object surfaces; they are by no means precise.

B. Beginning and end segments of a selected force data are located based on the presence of

a 5V voltage pulse. As with the vision data, a simple piece of software scans force data to detect
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Figure 2.10: Calibration curves for one object.

the presence of a 5V indicator pulse. When the pulse is detected, the onset of a force recording

is said to begin. The same technique is used to detect force recording terminations.

2.3 Remaining System Challenges

There are several modifications of the system that we would like to see in the future and which

we believe will substantially enhance the measurement accuracy of the tools we have developed.

Some of recommended system modifications follow.

2.3.1 Short Term Modifications

A. Multi-camera calibration. The calibration routines we currently use minimize re-projection

errors in individual cameras. What would be preferable, however, is to perform calibration across

all cameras. A multi camera calibration would minimize the re-projection errors of three dimen-

sional points to which that all cameras simultaneously contribute location information. A camera

calibration toolbox of this kind can be found in the work of [127].

B. Utilization of dense correspondences to make three dimensional reconstructions. Our
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reconstruction method turns dense regions of color into into a small number of points. Three

dimensional reconstructions are based on the triangulation of these points. Condensing such rich

information about parts into representative points, however, may discard useful position infor-

mation. In future iterations, denser methods of part reconstruction should be explored. In the

literature at the densest reconstruction extreme is the work of [24], which employs voxel carving

to construct parts. For real time tracking a sparser set of correspondences may be required.

C. Utilization of three dimensional, as opposed to or in addition to two dimensional, kine-

matic tree filtering. We currently employ kinematic trees only in two dimensional images, as in

[39]. This ensures that the arm segments in each two-dimensional image appear reasonable from

frame to frame. There is, however, no such constraint on the appearance of three dimensional

reconstructions from frame to frame. A three-dimensional kinematic filter, as in [119] may re-

duce errors the manifest at the reconstruction stage. A three dimensional tree, for example, can

inform estimates as to the position of the elbow in three-dimensional space. Currently, this po-

sition is constructed on a frame by frame bases, and is located at the intersection of upper and

lower arm cylinders. When these cylinders become almost parallel, the intersection of cylinders

can change very radically from frame to frame. With a three dimensional filter, spurious elbow

reconstructions could be eliminated.

2.3.2 Long Term Modifications

Desirable long term software modifications include:

A.Development of a real-time system. In order to enable feedback, we must operate in real

time. Currently, it takes roughly 2 seconds per frame to generate a three dimensional estimate of

the body’s location from six corresponding frames. This is because out system software exists
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in Matlab, and it operates on JPEG images, not on video directly. Several real time tracking

systems do currently exist, however, such as the one developed by [148].

B.Removal of visual markers. In addition, we want to integrate markerless tracking of the kind

found in [103, 119, 139]. This requires re-engineering the kinematic tree we have developed

to make it reason about more complicated limb appearances that contain texture information in

addition to color.

C. Automatic appearance acquisition for limbs. Automatically locating bright colors in im-

ages is fairly straightforward; we do not need to tell our system the initial location of limb

segments. In systems where limbs share more features with the background, however, the initial

location of limb segments is not obvious. Because this is the case, we want to integrate automatic

acquisition of limb appearances in some future iteration. Automatic acquisition of the appear-

ance of limbs is discussed in [103, 104].

C. Automatic segmentation of interesting motion. Motion segmentation requires some limited

form of activity recognition. We discuss this in our conclusions and outline of future work.

D. Wireless force tracking. Finally, the objects we have developed are currently connected

to a Data Translation board with long wires. Wires influence people’s style and comfort when it

comes to manipulating objects. In the future, we must explore wireless options for communicat-

ing force information to the computer.
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2.4 Prior Software Iterations

2.4.1 Vision

A prior iteration of the vision system tracked the position of balls placed on joints of the body

instead of swatches of color. For the sake of completeness, we detail some tracking variations in

our prior system here.

A. In our prior system, we tracked spherical balls placed on joints. The location of each

ball was identified in the first frame from each camera by hand. Each target was followed from

frame n to frame n + 1 using the mean-shift algorithm of [29].

The mean shift algorithm is a mode seeking algorithm, which attempts to shift the window

of focus in an image such that the distribution of colors found in that window matches the distri-

bution of colors in a target. The closeness of a match between two color distributions is defined

by the Bhattacharya coefficient, which is as follows:

ΣN
n=1

√
P (candidatecolor == color(n))

P (targetcolor == color(n))
. (2.5)

Here, ΣN
n=1 represents a summation over all pixels in a window, P (candidatecolor) represents a

distribution over all colors in a candidate window, and P (targetcolor) represents a distribution

of color in a target window. In our implementation, we used a search window that was 25 pixels

wide. We additionally weighted elements of the histogram by their distance from the center of

each window, as in [29].

In order to avoid losing targets at any point, we also made use of simple circle detectors at

every frame. This involved first subtracting the mean color of each target from an image, and

dividing by the target’s color variance. Resulting colors were then thresholded and those closest

to zero used to form candidate ’blobs’ corresponding to markers.

Only circular blobs were considered candidate markers. ”Circularity” was detected by evalu-
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ating the eignenvectors and eigenvalues of each blob’s spatial covariance. Symmetric blobs have

eigenvalues that are roughly equal. The likelihood that a given blob corresponded to a marker,

then, was said to be inversely proportional to:

d(eig(1); eig(2)), (2.6)

where eig(1) is the eigenvalue corresponding to the first eigenvector of the blob’s spatial covari-

ance, eig(2) the second, and d(x; y) a simple distance function.

Finally, goodness of fit achieved by our simple circle detector was weighed against the fit

achieved by the mean shift tracker. Goodness of fit was defined by the Bhattacharya coefficient;

the solution with the highest Bhattacharya coefficient was saved.

B. Detected makers were combined across multiple views to make a three dimensional

reconstruction of joint locations. The same technique to combine multiple views was used

for this iteration. The sole difference is that correspondences were based on points at detected

marker locations, not on regions corresponding to parts of a colored jersey.

This prior iteration of the vision software was abandoned simply because the reliable de-

tection of markers was difficult given their relative size. The region based tracker facilitates

more robust localization and tracking of body parts.
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Chapter 3

Assessment by Human Experts

We begin with an exploration of the ways in which human therapists assess stroke survivors.

There are many reasons we want to do this. First, we want to establish targets for our automated

system. We want to make sure that our automated system assigns scores that are comparable to

scores from human experts, and which agree with human experts as much as humans agree with

one another.

More importantly, perhaps, we seek to gain insight into the kinds of features that experts think

to be important when determining the capabilities of stroke survivors. There are two reasons to

want this insight. First, the features that humans emphasize will help us select foci for automated

perceptions. If, for example, the human experts think that range of motion at the elbow is a

diagnostic feature, we will make sure that this feature is measured, and measured as accurately

as possible, by the machine. Second, we want to determine how best to provide feedback about

measured movement to therapists. With our automated system, we desire to emphasize features

that humans care about; we do not want to distract from clinicians’ lines of reasoning, instead of

supporting them.

Because we are most interested in assessments that relate to real world functioning, we focus

primarily on assessment in the context of the Arm Motor Ability Test (AMAT). This is because

the elements on the AMAT directly emulate functional activity in a way that other assessments,
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like the Fugl-Meyer Assessment, do not. We also look at select elements of the Action Research

Arm Test (ARAT), as the ARAT is more commonly used than the AMAT. Based on the work we

report here, we establish the variation, repeatability and consistency of humans as these features

relate to either assessment. We also determine those features the humans focus on during AMAT

assessment, and get some sense as to the variation in their assessment criteria.

The same data that we show to human experts in this chapter will be used to train an auto-

mated assessment device in the next chapter. In this chapter, then, we record video and force data

from several stroke survivors in a laboratory environment; we then show the video to human ex-

perts and ask for their opinions of the stroke survivors’ functional capability. In the next chapter,

we feed the same video and force information to a machine, and train the machine to determine

functional health in a way that conforms with the opinions of the human experts.

3.1 Background on the Assessments

The Arm Motor Ability Test (AMAT) is an upper body assessment of stroke survivors that was

developed in 1987. Items on the assessment are contextualized within functional tasks, like eat-

ing a sandwich or using a telephone. Therapists are required to subdivide each of these tasks into

constituent components, like grasping or lifting; each component is then scored independently

on a 0-5 scale. A zero indicates inability to use the affected side of the body during functioning,

while a five indicates performance that is indistinguishable from that of a person who has never

had a stroke. A complete list of the tasks on the AMAT can be found in Table 1.1.

The AMAT manual provides criteria that therapists are expected to use in order to make

assessments [132]. For example in the sandwich task, the manual asks therapists to attend to fea-

tures like the “dexterity of paretic fingers, the extent to which the head moves downward when

the sandwich is brought to the mouth ... and the fluidity and precision with which movements are

performed.” A more complete list of criteria with which to judge movement quality as suggested

by the manual can be found in Table 3.1.
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Score Criteria to judge movement quality
0 No movement is initiated.
1 Partial range of motion accomplished but movement is

dominated by synergy; there is gross lack of coordina-
tion between limb segments, or limb is non-functional for
weight bearing activities.

2 Movement is accomplished but is influenced by synergy or
is accomplished by excessive compensatory movement of
the trunk, head, or contra-lateral upper extremity. Lacks
either proximal control or fine motor ability, or movement
is performed very slowly, or limb is minimally useful in
weight bearing activities.

3 Some isolated movement exists, but it is influenced to some
degree by synergy. Alternately, movement is performed
slowly, or moderate lack of coordination and lack of ac-
curacy is manifest. Primitive grasping patterns are present
and weight bearing activities are performed with difficulty.

4 Movement is close to normal but slightly slower or lacks
precision, fluidity or precise coordination. Able to perform
weight bearing activities but with mild hesitancy or mild
difficulty.

5 Normal movement, fluid and coordinated activity. Speed of
movement appears to be within normal limits.

Table 3.1: Criteria to assess movement quality from the AMAT manual.
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There are, however, still a wide range of possible observations that an individual expert may

find to be relevant during a given evaluation. A particular therapist may consider “dexterity”, for

example, to be a function of the speed or smoothness of a particular movement. Dexterity may

also be judged on the affected side relative to the unaffected, or it may be judged independently.

This means these measures are fairly subjective.

Despite this possible variation, the AMAT has high inter-rater and intra-rater reliability. In

[62], for example, two therapists used the AMAT to assess 33 stroke survivors at two points of

time; Spearman correlations comparing the two therapists were found to be over 0.97 [126]. The

internal consistency of the AMAT, as judged by Cronback’s alpha [30], was over 0.93, as was

the test-retest reliability.

The Action Research Arm Test (ARAT) is a similar assessment of functioning, in that it is

highly repeatable and consistent. Where the AMAT focuses on gross upper mobility in the con-

text of explicitly functional tasks, the ARAT focuses primarily on dexterity of the hands and

fingers. Sections are devoted to grasping, gripping, pinching as well as gross movement. There

are 19 elements on the assessment in total. Items are arranged in order of difficulty; if a person

cannot complete a task, tasks that are more difficult are automatically scored at zero. This saves

time during the administration of the test; in practice it takes no more than 10 min to administer

[32].

On the AMAT, each element is scored on a 4 point scale, where 0 reflects no motion and 3

reflects movement that appears “normal”. Differentiating between a score of 2 and 3, however,

requires slightly more subtle judgements. Wagenaar et. al. set time limits for each item to help

discriminate scores in the middle of the range [144]; scores are also automatically docked if in-

dividuals lean excessively during task performance.

As with the AMAT, the ARAT has been shown to be reliable and valid despite the potential

variability in assessment criteria. In [141], for example, 2 therapists were asked to assess 20

stroke patients both in the laboratory and based on video tape. Therapists were also asked to

review video tapes of stroke survivors at two different points of time. Inter-rater and intra-rater
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correlation coefficients were both found to be over 0.98. A similar study wherein 3 therapists

assessed 105 stroke patients resulted in an inter-rater correlation coefficient (ICC) of 0.98 [51].

3.2 Protocol Analysis

Scores that agree on the AMAT or ARAT may be determined by therapists using different cri-

teria. Some therapists, moreover, may not be fully aware of the criteria they are using to make

their decisions [145]. Decisions that take place in clinics occur under conditions of uncertainty

[28], which admits additional possibilities for variation in the features to which clinicians attend.

Protocol analysis is a methodology for verbally eliciting thought sequences in an effort to

shed light onto underlying reasoning as it takes place [35]. The technique assumes it is possible

for subjects to verbalize their task-related thoughts without altering their thoughts or their perfor-

mance of tasks. In a study of pediatric nurses who were asked to verbalize their decision-making,

no impact of verbalization was found on clinical performance [70].

Protocol analysis has often been used to explore variations in clinical reasoning. One study,

for example, used the technique to explore methods of expert physical therapists in the treatment

of cerebral palsy [34], and to differentiate these methods from those of novices. Others have used

the technique to study clinical decisions made by nurses [43, 138]. More recently, the method

has been deployed to understand user-interface requirements as they relate to a variety of com-

puter supported medical tasks [54]. In [54], the working behavior of pediatric oncologists was

examined so as to design interfaces that seamlessly integrate into pre-existing patterns of clinical

reasoning.

In this work, we use protocol analysis to identify variations and commonalities in assess-

ment criteria that are used by therapists to reason about perceived motor performance. We do

this partly to understand those observable and measurable performance features that are weighed

heavily by humans. More importantly, perhaps, we seek to learn features that are important

to therapists so as to optimize the way we provide feedback. The ultimate goal is to provide
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Therapist Years in Neuro-rehabilitation AMAT familiarity ARAT familiarity
1 11 Basic Intermediate
2 15 Basic Basic
3 11 Intermediate Basic

Table 3.2: Demographics on expert therapists.

feedback with an automated system that conforms with existing patterns of clinical reasoning.

3.3 Methods

The subjects for the protocol analysis were three expert Occupational Therapists. All were cer-

tified and licensed with at least 10 years experience in neuro-rehabilitation after stroke. Two had

AMAT specific training, and all had at least basic familiarity with the AMAT and ARAT. Some

demographic information on the experts is found in Table 3.2.

Each therapist was asked to assess a sample of eight stroke survivors. Stroke survivors were all

at least one year post stroke, had a stable medical condition, and Mini Mental Scores, which are

tests for cognitive functioning, over 24 (where the maximum is 30). The protocol was approved

by the Carnegie Mellon Institutional Review Board and all stroke survivors gave consent. Data

from this same population was used to automate assessments; results from this automation effort

are reported in Chapter 4.

All stroke survivors were tested for spasticity, pain and sensory deficits. To test for spasticity,

the Ashworth Scale was employed at the elbow and wrist [71]. A higher number on this scale

indicates that more velocity dependent reflex activity was recorded when parts of the body were

passively moved by the therapist. The Visual Analog Scale (VAS) was used to determine the pain

individuals experienced both at rest and during motion [118]. This is a test in which individuals

self-report about pain using a ten point scale, where ten is the highest. The Semmes-Weinsten

test was used to measure tactile deficits. This test requires a therapist to touch a blind-folded

client with filaments of varying diameters. Location specific deficits are detected when individ-
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Table 3.3: Basic demographics of participating stroke survivors. The M.M.E. is a short test of
cognitive functioning. The Ashworth tests for spasticity about various joints.
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Table 3.4: Lifestyle demographics and Fugl-Meyer (FMA) scores of the subject pool.
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AMAT Task/Subtask
Task 1: Cut ”Meat”
1. Pick up knife and fork
2. Cut ”meat” (Play-Doh)
3. Fork to mouth
Task 2: Foam ”Sandwich”
4. Pick up foam ”sandwich”
5. ”Sandwich” to mouth
Task 3: Eat With Spoon
6. Pick up spoon
7. Pick up dried kidney bean with spoon
8. Spoon to mouth
Task 4: Comb Hair
9. Pick up comb
10. Comb hair
Task 5: Open Jar
11. Grasp jar top
12. Screw jar top open
Task 6: Use Telephone
13. Phone received to ear
14. Press phone number

ARAT Task
Task 1: Lift 10 cm block
Task 2: Lift 2.5 cm block
Task 3: Lift 5 cm block

Table 3.5: AMAT and ARAT tasks chosen for protocol analysis.

57



uals fail to feel filaments. Finally, all stroke survivors were assessed using the upper body and

coordination portion of the Fugl-Meyer Assessment (FMA) [42], which tests for the presence of

muscle synergy patterns. The combined high score on these portions of the test is a 74; a higher

number indicates less synergistic coupling was detected.

Basic demographics of the stroke survivors and results of assessments are listed in Table 3.3

and 3.4. The mean age of the pool was 66 years old and subjects were, on average, 12 years post

stroke. All subjects were right handed and five of the eight had lesions on the left side of the

brain.

After screening, each stroke survivor performed six elements of the Arm Motor Ability Test

and three elements of the Action Research Arm Test in a laboratory environment. The AMAT

and ARAT elements selected for performance are all listed in Table 3.5.

Both the AMAT and ARAT were administered by therapist number three. Locations of

Figure 3.1: Object locations for the AMAT and ARAT.

objects were placed in standardized locations on the desktop; these locations are illustrated in

Figure 3.1. The starting position for each subject was with torso touching the back of the chair,
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elbows at roughly 90 degree angles, and hands located in designated spots on the counter top.

This is also illustrated in Figure 3.1. Stroke survivors were asked to perform tasks at the com-

mand of an investigator and at a comfortable movement speed, and to return their hands to the

starting locations at each movement’s completion. During performances, all stroke survivors

were measured with a motion capture device as well our measurement instruments, described in

Chapter 2.

Performances of assessments were video-taped from eight angles, as illustrated in Figure 2.2.

Each camera was approximately 1 meter from the subject, and all cameras focused on the motion

of the upper body and hands. Care was taken to provide views that showed the position of the

back relative to the chair, so that determinations of leaning behavior could be made based on

review of the video.

For the inter-rater reliability study, the therapists were asked to review the recorded video

Figure 3.2: A screen shot of the interface used by therapists to make assessments. At the top
are the views that were recorded of each stroke survivor. Clicking on a view plays the video
corresponding to that view in the main window.

tape of each stroke survivor. The eight recorded views were provided to therapists and were or-

ganized according to the interface illustrated in Figure 3.2. Clicking on any one of the viewpoint
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icons at the top of this interface would make the video corresponding to that viewpoint play in

the main window on the screen.

For the intra-rater reliability study, therapist number three was asked to make two assess-

ments of the stroke survivors at different periods of time. The first assessment was made in the

lab and was based on observations of task performance in real time. The second assessment was

made after 12 months had passed, in an effort to erase recall of the earlier assessment period.

These second assessments were based on recorded video, which was organized, as before, ac-

cording to the interface illustrated in Figure 3.2.

Finally, during all video based assessments, therapists were asked to verbalize their decision

making process. The instructions provided to each therapist requested that they generate a con-

stant stream of verbalizations while reviewing video; if therapists were silent for more than a few

seconds, they were prompted by the investigator. Audio recordings of all verbalizations were

subsequently transcribed and coded for data analysis.

3.4 Reliability Results

Reliability of assessments was determined based on the intra-class correlation coefficient (ICC)

[105]. The ICC assesses rating reliability by comparing the variability of different ratings of the

same subject to the total variation across all ratings and all subjects. In order to determine these

variations, we must make some assumptions about the sources of variation. For our inter-rater

results, we assumed that each rating was generated by a different individual and so scores are

drawn randomly. For the intra-rater situation, we assumed the raters to be the same and so scores

are drawn from the same distribution.

We computed ICCs relating not only to the whole battery of AMAT and ARAT tasks, but

relating to each task on the AMAT and for each subject individually. This was done in an effort

to identify tasks or subjects that therapists found particularly difficult to assess. Finally, in order

to identify potential rater bias, we employed a series of two tailed paired t-tests comparing each
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Figure 3.3: AMAT scores from all therapists. These are scores that have been summed over all
six tasks in the battery.
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Figure 3.4: Deviation in therapists’ aggregate AMAT scores from the mean.
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Therapist 1 2 3
1
2 0.4736 (-0.24, 4.49)
3 0.1809 (2.51, 7.24) 0.0011 (4.64, 9.36)

Table 3.6: Table of p-values for paired t-tests between raters’ scores on the AMAT.

therapist to the others.

1. Inter-rater reliability on the AMAT. Aggregate AMAT scores generated by each ther-

apist are shown in Figure 3.3. A different color indicates each therapist and the mean of all

scores is drawn in black. The ICC computed across therapists was 0.96. Paired t-tests revealed

a tendency of therapist number three to assign relatively high scores to subjects. P-values for

two-tailed paired t-tests relating scores from this third therapist to the first and second were

0.18 and 0.001 respectively. The complete set of calculated p-values for t-tests is found in Ta-

ble 3.6. The 95% confidence intervals surrounding mean differences between therapists’ scores

reflect therapist three’s positive bias; the upper and lower bounds on these intervals are found

inside parentheses in Table 3.6. A graph illustrating deviations between therapists’ scores and

the means of all scores is shown in Figure 3.4.

Dividing AMAT scores by task and subject reveals certain tasks and subjects that admit more

Therapist 1 2 3
1
2 0.052 (-0.24, 4.90)
3 0.296 (-2.07, 3.07) 0.048 (-0.74, 4.40)

Table 3.7: Table of p-values for paired t-tests of AMAT scores for subject number three.

Therapist 1 2 3
1
2 0.076 (-1.07, 4.07)
3 0.000 (1.10, 6.24) 0.071 (-0.40, 4.74)

Table 3.8: Table of p-values for paired t-tests of AMAT scores for subject number six.
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Figure 3.5: AMAT scores organized by subject.

63



variability in scoring than others. Subjects number three and six, for example, were particularly

disputed by the therapists. The ICC values for these subjects’ scores were -0.78 and 0.30 respec-

tively. For scores related to subject number three, paired t-tests revealed an inclination on the

part of therapists three and one to assign relatively high scores. The p-values for paired t-tests as

well as 95% confidence intervals surrounding mean differences between paired scores are given

in Table 3.7. For subject number six, the third therapist is once again found to be more inclined

to assign high scores than her colleagues. P-values for paired t-tests related to the assessment of

subject six are given in Table 3.8.

ICC values across tasks suggest the most highly contended tasks to be the “Cutting Meat”

Therapist 1 2 3
1
2 0.15 (-1.1146, 3.6146)
3 0.41 (-1.6146 3.1146) 0.02 (-0.36462 4.3646)

Table 3.9: Table of p-values for paired t-tests of AMAT scores for task number one.

Therapist 1 2 3
1
2 0.05 (-0.99, 3.74)
3 0.11 (-0.99, 3.74) 0.00 (0.39, 5.11)

Table 3.10: Table of p-values for paired t-tests of AMAT scores for task number three.

Therapist 1 2 3
1
2 0.50 (-1.99, 2.74)
3 0.08 (-1.24, 3.49) 0.05 (-1.61, 3.11)

Table 3.11: Table of p-values for paired t-tests of AMAT scores for task number four.

task (task number one), the “Bean and Spoon” task (task number three) and the “Combing Hair”

task (task number four). ICCs for these tasks were 0.926, 0.920, and 0.945 respectively. All other

tasks featured ICCs over 0.95. For disputed tasks we also report differences between therapists.

As in all prior tests, therapist number three had a tendency to produce scores that were slightly
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Figure 3.6: AMAT scores organized by task.
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higher than those of the others. The most notable exception is found in task number one, where

therapists one and three produce comparable scores. Therapist number two has a tendency to

produce scores that are lower than her colleagues. The notable exception here is task number

four, where therapist number one and two score consistently. P-values for all paired t-tests, and

corresponding 95% confidence intervals, are found in Tables 3.9, 3.10 and 3.11.
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Figure 3.7: AMAT scores from one therapist at different times.

2. Intra-rater reliability on the AMAT. The AMAT scores of the single therapist that was asked

to make assessments at two time points are shown in Figure 3.7. The computed ICC relating the

first and second set of scores was 0.90. A paired t-test between the first and second set of scores

suggested a slightly positive, but not statistically significant bias in ratings assigned to individ-

uals at the later time point and based on video. The p-value for a paired t-test was 0.18, and

the 95% confidence interval surrounding the mean difference between ratings was bound from

above by 6.24 and below by 1.51. A graph illustrating deviations in scores at either time point is

shown in Figure 3.8.
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Figure 3.8: Deviation from the mean of one therapist’s AMAT scores at two times.
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Figure 3.9: ARAT scores from all therapists.

Therapist 1 2 3
1
2 0.1114 (-1.61, 3.11)
3 0.3506 (-2.24, 2.49) 0.1803 (-1.74, 2.99) *

Table 3.12: Table of p-values for paired t-tests on the ARAT.
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Figure 3.10: Deviation in therapists’ ARAT scores from the mean.

3. Inter-rater reliability on the ARAT. Aggregate ARAT scores generated by each thera-

pist are shown in Figure 3.9. On this assessment, the ICC value relating therapists to one another

was 0.96. Paired t-tests showed no consistent bias between therapists; results from these tests

are given in Table 3.12. As before, the upper and lower bounds on the 95% confidence inter-

vals surrounding mean differences are placed inside parentheses. A graph illustrating deviations

between each therapist’s scores and the mean is shown in Figure 3.10. Interestingly, therapist

number two assigned the maximum score to five of the eight subjects. The range of scores as-

signed to these same individuals by the same therapist on the AMAT, however, is 37 points,

which represents more than 50% of the AMAT scale. A fairly strong ceiling effect is therefore

present on the ARAT for this therapist, and, as a result, her scores do not discriminate between

subjects as effectively as the AMAT.

4. Intra-rater reliability on the ARAT. ARAT scores from the single therapist asked to

make assessments at two time points are shown in Figure 3.11. The computed ICC relating the

first and second set of scores was 0.98. A paired t-test between the first and second set of scores
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Figure 3.11: ARAT scores from one therapist at different times.
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Figure 3.12: Deviation from the mean of one therapist’s ARAT scores at two times.
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Therapist correlation
1 0.9004
2 0.7188
3 0.9543

Table 3.13: Correlations between AMAT and ARAT scores.

suggested no significant difference in ratings assigned at either time point. The p-value for a

paired t-test was 0.18, and the 95% confidence interval surrounding the mean difference between

ratings at either time point was bound from above by 2.6 and from below by -2.1. A graph

illustrating deviations in scores at either time point is shown in Figure 3.12.

5. Correlation between AMAT and ARAT scores. Finally, we report the degree to which

scores assigned by therapists on the AMAT agree with scores on the ARAT. Spearman correla-

tions between each therapist’s scores on either assessment are shown in Table 3.13. The correla-

tion is particularly low for rater number two, as this therapist assigned the maximum score to five

subjects on the ARAT but not on the AMAT . Correlations between AMAT and ARAT scores

from the other therapists are comparatively high; all are over 0.90.

3.5 Discussion of Reliability

All of the reliability results, both intra and inter-rater, are comparable to, but slightly lower

than, those found in previous literature. An ICC of 0.96 for the inter-rater reliability score of

the AMAT is slightly lower than the correlation reported by [62]. Our number, however, re-

flects mean agreement between three therapists instead of two. For the ARAT, an ICC of 0.96 is

slightly lower than the ICC of 0.98 reported by [51]. In [51], however, assessments of more than

105 individuals were compared; our sample size and task set is tiny by comparison.

The intra-rater agreements are also comparable to results reported in prior literature. An

intra-rater reliability ICC of 0.90 compares that of 0.93 reported in [62]. An intra-rater ICC of
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0.98 on the AMAT is equal to that reported by [141].

Our intra-rater results indicate that, for select items, the ARAT is a more repeatable assess-

ment than the AMAT. This seems reasonable, given that the portion of the ARAT that is our

focus is composed of a small set of tasks that all require very short movements. The portion of

the AMAT that we have selected, by comparison, is composed of a wide variety of relatively

complex tasks that must be divided into sub-tasks and scored independently.

While the ARAT is quick and repeatable relative to the AMAT, it fails to discriminate as ac-

curately between levels of disability. This is most manifest in scores from therapist number two.

Therapist number two assigns five individuals the same score when using the ARAT; these same

individuals receive scores on the AMAT that cover more than 50% of the AMAT’s complete

range. The overall correlation between the AMAT and ARAT scores from this therapist is only

0.72, indicating fairly poor correspondence.

The tradeoff illustrated by these results is not surprising; assessments that are quick and easy

to repeat may fail to discriminate between levels of disability in the same way that a more com-

plicated, lengthy assessment can. Lengthy yet sensitive assessments, then, can perhaps benefit

most from automated or semi-automated interventions.

In this thesis, we focus primarily on automating assessments that correlate with the AMAT.

The AMAT was chosen because is relates to explicitly functional task performance, and it has

been shown to feature high inter-rater and intra-rater reliability. More importantly, however, the

AMAT is a sensitive instrument that is capable of discriminating between a wide variety of func-

tional impairments. When we automate assessments, we will look first and foremost to match or

correlate perfectly with AMAT scores that are assigned by expert therapists. Moreover, we will

seek to match AMAT scores at least to the same degree that trained therapists match one another.

We will additionally expect to guarantee the repeatability of automated assessments in a way that

is provably difficult for humans.
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3.6 Protocol Analysis Results

Identical assessment scores may not necessarily reflect the same assessment heuristics. Where

one therapist may focus on the hands of a subject to assign his or her scores, another may focus on

movement of the elbows or shoulders. To better understand the variation in underlying heuristics

used by therapists, we look more closely at the verbalizations that were made as assessments

took place.

Verbalizations were analyzed both qualitatively and quantitatively. To begin a qualitative

analysis, areas where raw scores assigned by the therapists disagreed were the first point of

focus. The hypothesis guiding this focus was that areas in which raw scores disagreed would

correspond to areas in which assessment heuristics differed.

Based on qualitative results, emergent themes in verbalizations were selected for coding.

Codes were assigned to all transcripts of the therapists’ assessments. Distributions of codes were

then analyzed to see if areas of disagreement could be measured numerically. Distributions of

codes were also used to determine features of particular interest to the therapists.

3.6.1 Qualitative Overview of Verbalizations

Some themes that characterize areas of expert disagreement follow:

1. During assessments, therapists sometimes attended to different parts of subjects’ bodies.

This is most apparent in transcriptions related to subject six. Words that therapists use to describe

this subject as he performs the “telephone” task follow:

Therapist one: “Given the leaning, he is definitely at a three ... to pick up the phone. To dial the

number he is pretty efficient and precise. There is a little bit of synergy b/t the thumb and fingers

during (finger) extension (to push the buttons).”

Therapist two: “He could turn (the receiver) around in his hand, that was pretty good. I think he
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does well pushing the buttons; he has more trouble hanging (the receiver) up with his uninvolved

side.”

Therapist three: “Picking up the phone he kind of twirls it around in his hand but I am not sure

if that is spasticity. I think it is confusion about the set up and the wires. He does a fine job of

pressing those numbers.”

All therapists similarly focus on the fingers and hands of the stroke survivor as the task is

performed. The first therapist looks closely at the “thumb and fingers” of the subject, and both

the second and third look at the way the subject twirls the telephone receiver “in his hand”. Only

the first therapist, however, comments upon the tendency of the subject to lean as he reaches and

she removes points from his score for this feature in particular. All therapists, therefore, focus on

hands, but only one looks at the torso in order to make a functional judgement. This difference in

focus, moreover, reflects a difference in resulting score. This first therapist assigns a combined

score of seven to the subject in question, while the others give the same performance a combined

score of ten.

2. Therapists sometimes differed in their analysis of cognitive issues. This is most apparent

in the group’s discussion of subject eight’s performance of the “comb task”:

Therapist one: “She overshoots to get to the comb. It is a jerky motion. There is kind of an

imprecision ... some of it is being silly but then some of it is lack of control. Especially on the left

side, there is a jerk.”

Therapist two: “She just lacks fine coordination and she is really exaggerated with her motions.

She lacks fluidity.”

Therapist three: “For the comb task she gets a four for all the fumbling to pick up the comb. I

think that is a motor planning issue. Her orientation in space seems like a problem. And comb-

ing, her gesture ... has an odd velocity to it. It is nothing like actually combing your hair. So I
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will give her a four. But I don’t think this is because of spasticity, I think it is other things. Lack

of coordination and motor planning and overacting to compensate for that.”

The first therapist calls the subject’s task performance “silly” but does not attribute a major

cognitive deficit to this subject. Therapist number two similarly calls the observed motion “ex-

aggerated”. Therapist number three, by contrast, sees “overacting” as a form of compensation

for a possible “motor planning” deficit. She further postulates the subject to be having difficulty

with “orientation in space”.

These different evaluations of cognitive deficits do not explain a disagreement in raw scores,

however. Therapists two and three assign the same score to this task performance, yet therapist

three paints a very obviously different picture of the subject’s cognitive faculties than her peers.

It is therapist number one that assigns the lowest score to this task performance.

So what can explain the difference in assigned score? The low score from therapist num-

ber one may relate to a stronger emphasis on, or at least a different interpretation of, perceived

movement jerk. More specifically, therapist one seems to see the jerk in the subject’s movement

as a symptom of a low level motor control problem while the others see the low level control in

this subject as intact. Therapists two and three see jerk as a product of “exaggeration” or “over-

acting”. Both see “odd velocity” or lack of“fluidity”, yet they both believe the movements to be

controlled. The first therapist, by contrast, is the only therapist who sees jerk as related to “lack

of control”, which may at least partly explain the difference in the relative weight placed on this

feature.

3. Therapists sometimes placed different weights on creative and functional problem solv-

ing. The following transcriptions relate to assessments of the “spoon and bean” task from subject

three:

Therapist one: “I am giving him a three to pick up spoon based on his in-hand adjustments. He
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used an unusual grasp; it is a really interesting grasp. He is ... dominated by synergy but accu-

rate.”

Therapist two: “He is very slowly picking up the spoon and getting the bean on the spoon. His

hand is very pronated!”

Therapist three: “I am giving him a three for picking up spoon. I can see problem solving going

on. He has learned to function with spasticity; once he gets the spoon (into his hand) he can

make it work for him.”

Therapist number three sees the subject as “problem solving” with the spoon and credits the

individual for being able to “make it work for him” despite his spasticity. Therapist number one

is similarly impressed by the grasping strategy of this subject, and calls his grasp “really interest-

ing”. Therapist number two, however, focuses on the speed and orientation of the hand, without

commenting on the subject’s “problem solving” ability or capacity to complete the task. For this

task, therapist number two gives the subject a score of five, while the other two therapists, both

of whom attend to functional problem solving skills, give the same subject a score of nine.

An emphasis on creative problem solving across the therapists, of course, is not the only

difference between the therapists’ comments. It is, however, the difference that seems to predict

the disagreement in scores. Therapists also reveal different attention to features like “synergy”,

“spasticity”, speed of motion or orientation of the wrist.

Despite differences, expert therapists were found to share several common assessment heuris-

tics. Some examples of similar attention to observed movement features follow.

1. Therapists similarly emphasized grasping heuristics. The following transcriptions illus-

trate this; all relate to the same performance of the jar task:

Therapist one: “He grasps the jar top pretty well ... He kind of hooks his hand over the top (of
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the jar) in order to get his fingers around it.”

Therapist two: “He grasped the jar top fine. He is holding the neck (of the jar) in order to twist

the jar top open. He lacks fine precision in the grasping of the jar lid.”

Therapist three: “(This subject) surprises me. He has some wrist movement while he is turning

which is very nice to see.”

All three of the therapists are extremely attentive to very specific details of the grasp that is

used during the jar opening task. Therapist one notes the manner in which the subject “hooks his

hand” over the jar top and therapist two similarly notes the lack of “fine precision” during the

grasp. Therapist three, however, sees “wrist movement” during the grasp that is not attended to

by the other therapists. While all three are very attentive to the hands and fingers of this subject,

therapist number three assigns the subject a comparatively high score. She gives him an eight for

the task, while the others assign a seven.

2. Therapists placed comparable emphases on compensatory motion. The kind of com-

pensations most commented upon by the expert therapists included use of the table to stabilize

movements, leaning during reaches or manipulations, as well as use of the uninvolved arm. One

example, relating to the a subject’s performance of the “comb” task:

Therapist one: “To pick up the comb she really leans forward with her trunk and uses that in

exchange for her lack of shoulder. Combing is not very well controlled. You see shoulder eleva-

tion.”

Therapist two: “She brings her head to her hand.”

Therapist three: “I have to give her a three. She is just putting her whole body into it. She has

a very weak wrist. I think part of the problem is weakness as much as spasticity ... and for the

combing she does not do the back (of her head) and she is ducking a lot”.
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All three therapists similarly comment on the subject’s use of the head and torso to complete

the task. Therapist number one, however, is the only therapist that comments on the use of the

shoulder during the task performance, while therapist number three comments on the orientation

of the wrist. While all three therapists focus on the torso, then, not all focus equally on other

body parts, like the shoulder or wrist.

For this task, therapists one and two agree, while therapist number three assigns a compara-

tively high score. Results from the paired t-test results, however, indicate that therapist number

three has a general tendency to assign higher scores than her peers. This may explain the dif-

ference in scores here, although differences may also be explained by differing emphases on

features like “shoulder elevation”, or an unequal weighting on torso compensation.

3. Therapists were often similarly attentive to the presence of muscle synergies. The follow-

ing verbalizations relate to a single performance of the “sandwich” task:

Therapist one: “There is some synergy in the hand.”

Therapist two: “There is a good deal of synergy in that.”

Therapist three: “She gets a three for picking up the sandwich because it is definitely influenced

by synergy ... but she does accomplish (the task) with effort.”

On this task, all of the therapists comment on the synergy manifest in the subject’s movement.

Moreover, they all equally weight the impact of this feature, and assign identical scores to the

task performance. Each of the three therapists give this particular task performance a six.

3.6.2 Quantitative Exploration of Verbalizations

The qualitative analysis of the therapists’ verbalizations revealed that, at times, therapists simi-

larly attend to features like smoothness of motion or the use of the torso during reaches. At other
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times, therapists disagree as to their emphasis on features like cognitive capacity, or hand orien-

tation. Moreover, discrepancies in the ways that the therapists reason about the task performance

often seem to relate, at least in part, to discrepancies in the numeric scores they assign.

In an effort to quantitatively characterize the verbalizations of the various experts, codes were

developed for features that seemed to best capture areas of disagreement among the experts as

well as areas of shared emphasis. Histograms of codes were then compared to one another in an

effort to see if areas of disagreement and agreement could be captured numerically.

Two different varieties of codes were developed for the transcripts. The first variety de-

scribed the parts of the body to which a therapist was attending while she spoke. These parts

of the body were relatively coarsely considered and included the “head and torso”, “arms” and

“hands or wrist”. Body location codes were used to capture moments when one therapist per-

ceived leaning with the torso where the others did not, for example.

The second variety of codes described movement features commonly used to characterize the

impact of stroke. These included features like “smoothness”, “speed”, “spasticity” and “muscle

synergy”. Movement feature specific codes were designed to capture moments when one ther-

apist saw “synergy” where another saw “spasticity”, or where one focused on the “speed” of a

motion while the others focused on movement “jerk”.

A complete set of codes developed to label transcriptions can be found in Table 3.14. This

same table provides some examples of transcriptions that were said to correspond with the vari-

ous codes. All codes was considered to be binary variables associated with the transcription for

a given therapist, subject and task performance. Two instances of the word “hand” in a specific

transcription, then, resulted in a single assignment of the “HAND” code to that transcription.

A potential issue here is that several of the movement quality codes are coupled. Smoothness,

for example, is affected by the presence of synergy as well as spasticity. Speed may be affected

by strength or weakness. The codes, however, reflect the use of words that appear frequently in

the transcripts themselves.

In order to verify the consistency of codes, two judges were asked to independently code
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CODE Example of corresponding text from transcription
BODY PART CODES:
HAND “I am going to give him a three because he doesn’t extend

all his digits into a full lumbrical grip.”
ARM “While cutting the meat he is abducting his shoulder.”
HEAD/TORSO “While combing his hair he is really moving his head.”

MOVEMENT FEATURE
CODES:
STRENGTH/WEAKNESS “I think part of the problem is weakness.”
SYNERGY “There are definitely synergy patterns going on in this guy.”
COMPENSATION Compensation with the unaffected arm: “He has to use the

right (unaffected) hand to position the fork.”
Compensation with the torso: “She kind of fixes her elbow
in flexion and uses her trunk to push the buttons.”
Compensation with the table: “It is almost like she is coun-
terbalancing her body by putting her uninvolved hand under
the table so that she can leverage her involved arm up to her
mouth.”

SPASTICITY “He has interesting functional use with spasticity.”
COGNITION “He makes a lot of decisions; I am not convinced that the

lack of decisions is stroke related, it might just have to do
with aging.”

SPEED “The task is performed slowly.”
SMOOTHNESS “I put combing at three given the tremor you see there.”

“There is kind of an imprecision and based on the jerks,
some of it is being silly but then some of it is lack of control
especially on the left side there is a jerk.”

Table 3.14: Codes applied to transcriptions.
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selections of recorded data. Selections were randomized across the subjects and tasks on the

AMAT. Eighteen recorded selections were used for coding verification, representing slightly

more than 10% of recorded data.

Matrices of coding agreement are found in Figure 3.13. Brightness along the diagonal

of these matrices is scaled to reflect the number of instances where the two independent judges

agreed in the the application of that code to a particular transcription. When judges did not agree,

an entry was made in the “No Code Assigned” column.

Cohen’s Kappa was used to measure agreement between judges [25]. For body location spe-

cific codes, the Kappa value was 0.45, while for movement feature specific codes the Kappa was

0.52. The Kappa related to the use of all codes in total was 0.55. Disagreements resulted when,

for example, comments relating to “grasps” were interpreted by one judge as involving the arm,

and another the hand. Despite these kinds of disagreements, the computed Kappas indicate mod-

erate agreement between the judges in the use of codes.

One judge completed coding the entire set of transcriptions from the therapists. A total of

297 codes were assigned to the transcriptions in total. Therapists number one and three were as-

signed approximately 11 terms per transcription on average. Therapist number two was assigned

only 7 codes per transcription, on average. The overall frequencies of codes that were applied to

transcriptions are illustrated in Figure 3.14. The ICC value relating the three therapists’ distribu-

tions of body specific codes was found to be 0.85, while for movement feature specific codes it

was 0.57.

Computed ICCs indicates that therapists were, for the most part, relatively consistent in their

emphasis on specific body parts during assessments, yet less consistent in their emphasis on par-

ticular movement features. The hands were by far the most prioritized body part by the therapists,

and they represented roughly 50% of all assigned codes. The torso followed, representing 27%

of assigned codes, and the final 22% of codes related to arms. Smoothness and compensation

were the most prioritized movement features among the therapists, each representing roughly

22% of assigned movement codes.
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1.  HANDS            

2.  ARM              

3.  HEAD/TORSO       

11. NO CODE ASSIGNED 

(a) Body Locations

4.  SMOOTHNESS       

5.  SYNERGY          

6.  STRENGTH/WEAKNESS

7.  COMPENSATION     

8.  SPEED            

9.  SPASTICITY       

10. COGNITION        

11. NO CODE ASSIGNED 

(b) Motor Features

Figure 3.13: Matrices of agreement in code assignment between two independent coders. Bright-
ness along the diagonal is scaled to reflect the number of instances where two independent judges
agreed in the the application of a code. Entries in the “No Code Assigned” column reflect dis-
agreements.
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Figure 3.14: Frequencies of assigned codes. Each color represents data from a different therapist.
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3.7 Discussion of Protocol Analysis Results

Protocol analysis proved to be a useful tool to explore assessment heuristics regularly employed

by therapists when conducting the AMAT. Results indicate therapists to be relatively consistent

in their focus on different parts of the body during assessments, and slightly less consistent in

the focus on different movement features.

Different assessment heuristics do seem to relate to different assignments of scores, but this is

hard to capture quantitatively. An effort to code transcriptions revealed a loose, and quantifiable,

relationship between attention to different parts of the body during assessments and resulting dif-

ferences in score assignments, but this relationship was not found to be statistically significant.

It also proved to be much easier to code for attention to different body parts that for attention

to different motor symptoms. This may be in part because some of the codes used for motor

symptoms are coupled. Speed, for example, can be the influenced by synergy, and smoothness

can be influenced by spasticity.

The protocol analysis results have two different implications on the development of an auto-

mated assessment system. These are as follows:

First, the results indicate different parts of the body and movement features that might be of

use when developing an automated system, and they indicate the relative weighting that experts

place on each of these features and body parts. The therapists prioritized observations relating

to the hands and fingers, as should, conceivably, an automated assessment device. Moreover, the

experts were found to prioritize the smoothness, compensatory strategies, and speed; an auto-

mated system should perhaps do the same.

Second, the results point to a dilemma that a system which provides feedback about func-

tional assessments must address. The same numeric score on an assessment was found to relate

to several different assessment heuristics on the part of individual therapists. Even if a machine
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can produce numeric scores that are identical to an expert, then, there is still some ambiguity

about how to report results. Which details will be most valuable to a given therapist? The variety

of heuristics discovered through protocol analysis indicate that a variety of feedback options are

required.
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Chapter 4

Predicting Assessments in the Lab

4.1 Introduction

Recovery from stroke is a long term process. Stroke survivors have been shown to make signif-

icant gains several months and even years after the acute phase of their care, and long after they

have been discharged from a hospital [36, 38, 92, 133]. A growing understanding of the duration

of stroke recovery has led to an increased interest in therapies for chronic stroke survivors, and

therapies that can be used cost-effectively outside of clinics in individual homes.

Some evidence-based guidelines for therapy after stroke include: emphasis of body parts

most impaired by stroke; intense, repetitive practice of movements; practice of functional tasks;

and practice in motivating and comfortable environments, like the home. Unfortunately, insur-

ance in the United States rarely covers the kind of therapy that is most recommended by research.

Medicare, for example, has routinely enforced caps on the amount of outpatient therapy it will

reimburse and a moratorium on caps is set to expire [4]. Home visits can be even harder to come

by; Medicare will currently only reimburse individuals who are physically unable to leave the

house [3]. A significant gap, then, exists between the kinds of therapy that is available to stroke

survivors, and the kinds of therapy the literature suggests for optimal outcomes.

In this thesis, we explore the potential for simple vision and force sensing technologies to fill
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gaps in post-stroke health care. We specifically envision a situation in which cheap, ubiquitous

technologies are integrated into the homes and workplaces of stroke survivors for long term mon-

itoring after hospital discharge. There, we expect technology to measure changes in movement

quality as they relate to real functional behavior. The benefits of this kind of measurement are

many: it can help therapists to better judge outcomes as they relate to real world tasks, enable

coverage of long term rehabilitation that takes place in the home, and facilitate novel forms of

motivating feedback.

The need for home-based rehabilitation options is well understood in the rehabilitation sci-

ence community. Many example systems that have been developed, however, focus primarily on

interactions with desktop computers and are mediated by external input devices. In [107], for

example, mobility measurements are made with a mouse, while in [99] a force feedback joystick

serves as an input device. There is now considerable enthusiasm at the prospect of using the

Wii for home based rehabilitation games as well. Although desktop systems have demonstrated

promising potential to capture changes in mobility that take place at home, they do not readily

allow for practice that is task specific or flexible. Moreover, these example systems require an

individual to hold or wear a device as they practice.

Computer vision and task specific force sensing hold the potential to provide a desirable set

of input devices for rehabilitation applications. They can potentially track movement changes

that take place in relatively natural environments. While commercial motion tracking technolo-

gies currently require markers to be placed on the body, future trackers may ultimately require

none [24, 103, 119, 121]. Force sensing embedded in functional objects similarly promises to

create measurement situations that are relatively flexible and “natural” in that they do not require

gloves or other potentially uncomfortable mediating devices. Video camera systems and force

sensing systems are also comparatively cheap. A commercial motion capture device can cost

as much as $10,000 for a single camera, and a whole system may cost over $75,000. In the re-

search we present here, each camera is worth less than $800 and we can potentially suffice with

cameras that cost under $20 each. The force sensing resistors that we use are also affordable;
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each currently costs roughly $7, and there are no more than 8 in a single instrumented object. Fi-

nally, a potential benefit to be derived from video based tracking systems is that they can provide

interpretable feedback. Commercial motion tracking systems, by comparison, image solely the

motion of markers, which may make easily interpretable review of recorded data challenging.

In this chapter, we show that simple vision and force sensing tools can be used to discriminate

levels of physical and functional health among stroke survivors across a variety of tasks. We do

this by taking measurements from stroke survivors as they perform desktop tasks and relating the

measurements to assessments of health on the Arm Motor Ability Test (AMAT). The hypothesis

that guides the research is as follows:

Inexpensive vision and force sensing tools can measure statistics of ordinary functional mo-

tion that both correlate with and predict the impairment of stroke survivors.

Our results demonstrate the possibility of measurement devices that can extract clinically

meaningful measurements of stroke survivors cheaply and in functionally important environ-

ments, like homes and workplaces.

4.2 Methods

This chapter relates to the same data that was acquired and analyzed by human experts in the

previous chapter. Where the last chapter revolved around the analysis of the data as made by

humans, however, this chapter revolves around analysis of the same data as made by machines.

The methods for data collection were previously described; we clarify and repeat some of the

salient details in these methods here.

Basic demographics of the stroke survivors and results of their intake assessments are listed

in Table 3.3 and 3.4. One stroke survivor (ID #5) was excluded from the machine analysis due to

flaccidity on the impaired side, which was reflected in an FMA score below 25. The remaining
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subjects in the pool were all right handed and five of the seven had lesions on the left side of the

brain.

Recording of AMAT performances took place in a motion capture lab at Carnegie Mellon

University. Prior to any recording, all subjects were outfitted with a set of motion capture mark-

ers in addition to a colorful jersey of our design. The markers and jersey were used to facilitate

easy tracking with both a commercial motion capture device and the tracker of our design (de-

scribed in Chapter 2). Tracks from the commercial motion capture served as a tracking “gold

standard” for the purpose of evaluation. They also facilitated the search for descriptive kinematic

statistics.

The locations of motion capture markers are illustrated in Figure 4.1. Markers were placed

(a) Points for Reconstruction from Video (b) Points for Reconstruction from Motion Capture

Figure 4.1: Points from video and motion capture that were used to reconstruct 3D kinematics.

on the head, at the sternum and clavicle as well as at the base of the neck. In addition, markers

were placed on the acromion process of either arm, the lateral epicondyle of either humerus and

the styloid processes of the ulna. Only a subset of these markers, however, were used to estimate

the motion of the upper body. This subset was chosen to most directly match the tracking capac-

ity of the video based system, and it included markers on the acromion processes, elbows and

wrists.

The kinematic statistics generated by the video-based system, by comparison, related to three
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Figure 4.2: Force sensing spoon

point estimates from each arm. One of these points was located at the posterior end of the cylin-

der fit for the upper arm. The second was located at the anterior end of the lower arm’s cylinder,

and the final one was located at the point closest to the axes of upper and lower arm cylinders.

Points used to estimate upper extremity kinematics from either system are illustrated in Figure

4.1.

Force measurements of the subjects were also made with an instrumented spoon during the

performance of one task. The spoon was instrumented with eight 6mm force sensing resistors lo-

cated at junctures between internal plates. The spoon, and its internal construction, is illustrated

in Figure 4.2. It weighed approximately 8 oz, its handle was cylindrical, wooden, covered with

a very thin layer of compliant foam, and was 9 inches in length.

All subjects were asked to perform six elements of the Arm Motor Ability Test in the motion

capture lab, four of which were selected for the purpose of machine analysis. These four elements

are listed in Table 4.1. The other two elements were omitted either because they were bi-manual

tasks, or tasks which were frequently occluded across video and motion capture cameras by an

assisting human therapist. All elements of the AMAT were guided by a trained Occupational

Therapist, and the starting locations for objects were standardized according to AMAT instruc-
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AMAT Task/Subtask
“Sandwich” Task
1. Pick up foam “sandwich”
2. “Sandwich” to mouth
“Spoon” Task
3. Pick up spoon
4. Pick up dried kidney bean with spoon
5. Spoon to mouth
“Comb” Task
6. Pick up comb
7. Comb hair
“Jar” Task
8. Grasp jar top
9. Screw jar top open

Table 4.1: AMAT Tasks

tions [132]. Starting positions for subjects required that the torso touch the back of the chair,

elbows be at roughly 90 degree angles, and hands be located on designated spots on the counter

top.

Subjects performed tasks at the command of an investigator and at a comfortable movement

speed. Once they were finished, they were asked to return their hands to their starting locations.

While motions were made, data pertaining to the motions were captured with the commercial

motion capture system, the video cameras and the force sensing object, if it was used. Measure-

ment devices were synchronized with a button press by the investigator at the start and close of

every task.

The video camera angles that were used are illustrated in Figure 2.2. Each camera was ap-

proximately 1 meter from the subject, and all cameras focused on the motion of the upper body

and hands. Six views were used for the purpose of kinematic reconstruction. Care was taken to

provide views that showed the position of the back relative to the chair.

The “verified” AMAT scores that served as ground truth for our automation efforts were the

means of those reported in the previous chapter. These scores were generated by three thera-

pists, each of whom was asked to retrospectively review the video of stroke survivors’ AMAT
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performances in the lab. “True” scores for each subject were said to be the average across this

expert group. All of the expert raters were certified and licensed occupational therapists with at

least 10 years experience in neuro-rehabilitation for stroke survivors. Two had AMAT specific

training, and all had at least basic familiarity with the AMAT. Some demographic information

on the experts used to produce “verified” AMAT scores are found in Table 3.4.

4.3 Data Analysis

4.3.1 Extracting Movement Features from Recorded Data

From the recorded data, several movement features were extracted with machines. Some were

purely based on kinematics while others were based solely on the force data. A third category

of statistics related recovered kinematics and force data. These statistics, as well as the clinical

justification for their measurement, follow.

Kinematic Statistics:

1. Movement smoothness. Prior work has shown stroke survivors’ point to point arm move-

ments to be jerky relative to the motion of people who never had a stroke [63]. There are many

ways to parameterize this jerkiness, however [113]. A common form involves summing the third

derivative of the hand’s trajectory through space as it moves, as follows [40]:

T∑
t=1

(
d3x(t)

dt3
)2 (4.1)

Here, t is a time index, and x(t) is the hand trajectory which has been indexed by parameter t.

An alternative smoothness metric is to compute the number of peaks in a speed profile; this

has been done in prior studies of the motion of healthy subjects [19] and stroke survivors [60].

Fewer peaks represent a motion that has fewer periods of acceleration and deceleration, and is
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therefore relatively smooth.

In our work, we compute smoothness as both the sum of squared jerk AND the number of

peaks in the velocity profile of the “end effector”. The “end effector” was defined as the point

located on subjects’ wrists. Before computing any derivatives, however, position data relating to

these were smoothed with a median filter of width 5. They were additionally smoothed with a

fourth order butterworth filter.

2. Torso displacement. In 1967, Bernstein noted that the human body has numerous and

redundant degrees of freedom [15]; any particular functional task can therefore be achieved by

several different combinations of motion about joints. Stroke survivors may capitalize on these

excess degrees of freedom to compensate for their disabilities. In the upper body in particular,

hemiparetic individuals have been found to lean excessively into a reach so as compensate for an

impairments at the elbow or shoulder [111].

To measure torso compensation during reaches, we computed the motion of a point on the

body that corresponds loosely to the position of the sternum. This point was located equidistant

between point estimates for either shoulder. The mean, variance and total displacement of this

point was computed as a measure of torso motion during task performances.

3. Use of the unimpaired arm. Extra degrees of freedom are found not only in the tor-

sos, but in the less impaired side of stroke survivors’ bodies. Learned compensations that rely

heavily on parts of the body less impaired by stroke have been characterized as ”learned nonuse”

[130, 131] and is commonly seen as a barrier to effective therapy. It has been estimated that

25-30% of stroke survivors exhibit learned nonuse [130].

As a coarse measurement of “learned nonuse” we compute the motion of the less impaired

end effector during tasks. More specifically, we compute the mean speed and total distance trav-

eled by the less impaired wrist. Once again, before any derivatives of motion were calculated,

data was smoothed with median and butterworth filters.
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4. Shoulder abduction and flexion, elbow flexion. Stroke survivors may exhibit stereo-

typed movement defined by patterned muscle tightness and restricted range of motion around

the joints during volitional movement. These patterns of movement are termed muscle synergies

and they may be mediated in part through the reflex system [91]. Two typical muscle synergies

that influence upper body motion in stroke survivors are the flexor and extensor synergy. The

flexor synergy couples external rotation and abduction at the shoulder with elbow flexion. The

extensor synergy couples internal rotation and adduction of the shoulder with elbow extension.

Some combination of flexor and extensor synergy is combined to form the canonical hemiparetic

posture described in [20].

To capture the influence of synergies, we estimate abduction and flexion of the shoulder as

well as flexion of the elbow. Flexion of the elbow is computed as the angle of the two vectors

that connect the elbow to the the shoulder and wrist. Shoulder angles are slightly more difficult

to compute. Flexion is computed by projecting the vector connecting the elbow and shoulder

onto the plane defined by the body’s midline (the sagittal plane). The angle between this projec-

tion and a vector that is normal to the table is said to reflect flexion. Abduction is computed by

projecting the arm vector onto the plane defined by the table. The angle between this projection

and the vector which connects the two shoulders is said to reflect abduction. Measurements are

complicated by the fact that the table top in not orthogonal to the coronal or sagittal plane; this

means that measurements of flexion and abduction carry redundant information.

We additionally compute the degree to which motion about the elbow is coupled with abduc-

tion at the shoulder. The statistic that we use to measure this “coupling” is mutual information

[94]. This is a statistic that has been previously used in graphics research to help character-

ize “naturalness” in human movement [110]. Mutual information between joints is defined as

follows:

I(x, y) =
∑
yεY

∑
xεX

p(x, y)log
p(x, y)

p(x)p(y)
dxdy (4.2)
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where x represents an angle recorded at the elbow, y is an angle at the shoulder, p(x, y) is the

joint probability density function joining elbow and shoulder angles, while p(x) and p(y) are the

marginal distributions of angles for either body part. In our research, we estimate probability

densities with very coarse histograms spanning 5 bins.

5. Mean and maximum speed. Prior studies of the kinematics of stroke survivors have

shown that, during recovery, movements appear to be composed of many short sub-movements.

This results in speed profiles that are not only jerky but slow relative to healthy controls. As

subjects recover, the speed profiles of stroke survivors tend to feature shallower valleys between

velocity peaks, and the mean speed tends to become significantly higher [113]. To be consistent

with this prior research, we compute mean and maximum speed of the impaired wrist during

movements in an effort to capture the relationship between speed and impairment.

“Movement Arrest Period Ratio” (MAPR) [14] has also been used to reflect recovery after

a stroke. This statistic is the proportion of time that the recorded speed of a motion exceeds a

given percentage of the peak speed. We compute MAPR as it relates to the movement of the

point located at subjects’ more impaired wrist.

Force Features

1. Mean, variance and maximum recorded force. Prior studies have shown a dominance

of forces produced by the flexors among stroke survivors, which increase as affected muscles are

used [23]. An inability to control the extent of flexion contributes to excess grip force commonly

measured among stroke survivors during functional motions [48].

To capture force disturbances, we measure the peak, average and variances in forces pro-

duced by subjects during object manipulation. All forces are measured in volts, converted to

Newtons, and then summed across all the sensors placed on an object. These summed forces are

then median and gaussian filtered with filters that are a sixth of a second in width. The gaussian
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filter’s standard deviation is a thirtieth of a second.

2. Smoothness of force. Jerky motion [113] influences not only smoothness in measured

kinematics but smoothness in the application of force to objects. To capture this, we measure

smoothness of force production. As with the kinematic data, smoothness in force profiles is mea-

sured as the sum of squared jerk as well as and the number of force profile peaks.

2. Force MAPR. Finally, as with the kinematic data, we measure the proportion of time that

the recorded force exceeds a given percentage of the peak force. This we define a force related

“Movement Arrest Period Ratio” (MAPR).

Kinematic and Force Statistics:

1. Distance between the points of peak acceleration and peak force. Healthy individuals

modulate their grip forces as the velocity of the objects they are holding increases or decreases.

Peak force production in these individuals tends to coincide with the peak acceleration of objects.

Stroke survivors may be comparatively slow in modulating force during tasks where objects are

moved [96]. Disturbed timing of force corrections has also been found to differ between periods

where exerted forces are decreasing rather than increasing [65].

To measure the relationship between acceleration and force modulation, we compute the

squared time between peak force production and peak acceleration, as measured with either

tracking device.

4.3.2 Predicting AMAT scores

Prediction of AMAT scores requires first choosing features to select those that are highly dis-

criminatory, and then regressing chosen features onto AMAT scores in an effort to create a
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function that can predict scores in the absence of a clinician. We then perform an evaluation of

the constructed regressions using a cross-validation technique.

1. Choosing features. To choose features, we use a correlation based metric. More specifi-

cally, we compute the correlation between the mean of AMAT scores assigned by humans (and

denoted Y ) and sets of kinematic or force features that correspond with these scores. In the equa-

tion for correlation which follows, we assume there are i machine generated features for each

subject, and each set of a given feature is denoted Xi. R(i) represents the computed correlation

between the ith feature set and the AMAT scores produced by humans:

R(i) =
cov(Xi, Y )√

var(Xi ∗ var(Y ))
(4.3)

To build the best linear regression, we seek features for which correlations strongly depart

from zero. These features are the ones that, when evaluated individually, discriminate between

scores assigned to the various subjects in the context of a linear model. To quantify the deviation

of each computed correlation from zero, we compute the following test statistic, t, for each

correlation:

t =
R(i)− 0

SE(R(i))
(4.4)

Here, SE(R(i)) is the estimate of the standard error in the ith feature’s correlation with AMAT

scores:

SE(R(i)) =

√
1−R(i)2

n− 2
(4.5)

Computed t statistics are distributed according to t distributions. Those t statistics that lie at

the tails of these distributions indicate significant departures from zero, and can be identified by

computing associated p-values. Smaller p-values indicate t statistics that are located farther from

the center of the distribution.

As explained in great detail in [47], there are several limitations to correlation based criteria
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for the purpose of choosing features. For one, R(i) can only detect linear dependencies between

AMAT scores and input variables. Moreover, as [47] illustrates very clearly, there are instances

in which input variables that are completely useless independently can provide performance im-

provements for the purpose of prediction when considered in conjunction with other features.

Alternative feature selection methods involve selecting subsets of features that collaboratively

yield strong prediction performance.

In this work, however, we are at a distinct disadvantage in that we have an extremely small

set of data with which to explore complex or multi-dimensional relationships between variables.

For feature selection, then, we limit ourselves to strictly linear and uni-dimensional methods, and

hope for richer data sets with which to explore subsets of feature interactions in the future. In the

meantime, we capture feature interactions that the clinical literature suggests to be probable by

computing input features that make multi-variate associations, like mutual information between

joints or the distance between peaks force production and acceleration.

2. Producing regressions. In the same way that our variable selection methods are linear, so

is our prediction methodology. More specifically, we use ridge regressions that have been trained

on subsets of recorded data to automatically predict the AMAT scores of stroke survivors. Before

employing ridge regression, however, we first normalize computed statistics so as to make each

feature comparable with others. This involves centering each feature with respect to the mean

for that feature across stroke survivors, and dividing by the feature’s standard deviation.

Ridge regression is a form of penalized linear regression. Ordinary linear regressions may

suffer when input variables are correlated with one another or collinear; collinear inputs create

solutions that are not unique and therefore variable. Ridge regression handles this problem by

constraining those coefficients that a regression can produce. This results in better generalization

of the regressions to unseen data. More specifically, ridge regression minimizes the following

expression:
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SSEλ = Σn
j=1(Yj − Σm

i=1Xi,jβj)
2 + λΣn

j=1β
2 (4.6)

In our case, j corresponds to the identification number of a subject and i corresponds to a partic-

ular feature; m is the total number of features and n the number of subjects. Xi, j is the value of

ith feature for subject j and Yj is his or her AMAT score. The values for β represent coefficients

relating input variables, X , to output variables, Y . The term λΣn
j=1β

2 is a soft constraint on

coefficients. It is used to produce solutions that are more numerically stable, less prone to over

fitting, and, as a result, typically more capable of generalizing to data outside the training set

than ordinary least squares.

3. Evaluation of predictions. In order to evaluate our predictions of scores, we employ a

cross validation technique. Cross validation requires that we repeatedly create regressions using

a subset of recorded data and test prediction accuracy on data outside of this subset. In our case,

we repeatedly use data from six subjects to train a ridge regression function relating motor statis-

tics to functional scores. We then use constructed functions to predict the score of the seventh

stroke survivor, and evaluate the accuracy of our prediction against the mean of scores assigned

by human experts. As a measure of the accuracy of this prediction, we report the sum of squared

error in scores across all subjects.

One of the potential subtleties here is the fact, during a single iteration of cross validation,

we construct seven different regression functions to predict scores. Each regression maps six

individuals’ features onto six AMAT scores and the resulting regression is then used to predict

the score of the seventh. Several different sets of regression coefficients are therefore generated

to make predictions, which weight and re-weight features differently each time. In this research

we are primarily interested in prediction outcomes and not the underlying weighting of features

used to make predictions. We therefore shoot for stable predictors, more so than stable weights

on sets of feature inputs.
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The form of regression that we have chosen to use has two different parameters that impact

performance. The first is the p-value used to select promising features. The second is the λ value

that is used to constrain ridge regressions. In our results we report first the effects of the p values

used to select features. Then, we select p values which minimize the sum of squared prediction

error. Finally, we explore the impact of the choice of λ on these optimized predictors.

In the results which follow, we first report on key movement statistics that were found to

correlate strongly with functional score. We also look at our ability to measure these statistics

accurately with our devices relative to motion capture, and the degree to which all measured

statistics depend on their task constraints.

Next, we look at the capacity of measured statistics to predict functional scores. We construct

several different regressions, some of which are trained on data from task segments and others

which are trained on data from complete tasks. Each regression is evaluated relative to the others,

and relative to regressions trained solely with motion capture.

The sections which follow, then, are:

1. An analysis of statistics that correlate with AMAT scores, as computed over complete

tasks.

2. An analysis of statistics that correlate with AMAT scores, as computed over task segments.

3. Prediction of AMAT scores, for a range of different regressions.

4.4 Analysis of Complete Tasks

In this section, all statistics were computed across entire task performances, from the initial onset

of movements to the end of movements.
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4.4.1 Kinematic Correlations with AMAT scores

Sandwich Spoon
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.066 (-0.74) 0.047 (-0.76) *** 0.085 (-0.71) 0.31 (-0.46) **
sum displacement 0.092 (-0.71) 0.094 (-0.69) *** 0.016 (-0.78) 0.017 (-0.6) ***
variance displacement 0.17 (-0.58) 0.01 (-0.88) * 0.22 (-0.54) 0.42 (-0.37)
Shoulder Statistics
mean abduction 0.49 (0.32) 0.59 (0.25) 0.56 (0.27) 0.51 (0.31)
variance abduction 0.54 (0.29) 0.6 (-0.23) 0.0076 (0.74) 0.059 (0.76) ***
mean flexion 0.17 (0.61) 0.7 (-0.16) 0.83 (-0.088) 0.65 (-0.2)
variance flexion 0.33 (0.44) 0.64 (-0.22) 0.0047 (0.92) 0.24 (0.53) **
Elbow Statistics
mean flexion 0.24 (-0.47) 0.15 (-0.62) 0.48 (-0.32) 0.2 (-0.54)
variance flexion 0.053 (0.78) 0.029 (0.82) *** 0.049 (0.77) 0.055 (0.77) ***
Inter-joint Statistics
abduction/elbow info 0.12 (0.67) 0.66 (-0.22) 0.11 (0.65) 0.26 (0.52)
flexion/elbow info 0.52 (0.32) 0.26 (-0.51) 0.23 (0.53) 0.042 (0.79) *
Speed Statistics
mean speed 0.56 (0.28) 0.67 (0.21) 0.0052 (0.69) 0.051 (0.44) ***
max speed 0.58 (0.23) 0.78 (0.16) 0.64 (0.23) 0.26 (-0.5)
MAPR 0.0005 (-0.93) 0.069 (-0.74) *** 0.95 (0.014) 0.74 (0.16)
length of segment 0.71 (-0.18) 0.71 (-0.18) 0.068 (-0.74) 0.068 (-0.74) ***
Smoothness Statistics
jerk 0.53 (0.29) 0.75 (-0.14) 0.46 (-0.34) 0.25 (-0.52)
peaks 0.61 (-0.25) 0.64 (-0.23) 0.021 (-0.84) 0.018 (-0.86) ***
Unimpaired Statistics
mean other side 0.5 (-0.32) 0.76 (-0.16) 0.041 (-0.79) 0.2 (-0.56) **
sum other side 0.6 (-0.25) 0.7 (-0.19) 0.033 (-0.81) 0.069 (-0.74) ***

Table 4.2: Measured kinematics for the sandwich and spoon tasks. These statistics were com-
puted over data from entire task performances.

P-values that relate computed kinematic statistics to the mean of expert assigned AMAT

scores are reported in Table 4.2 and 4.3. In parentheses next to these p-values are correlations

between statistics and AMAT scores. A single asterisk in a column indicates a significant p

value was detected at the .1 level for the video based system only. A double asterisk indicates

significance at the .1 level for the motion capture based statistic only. A triple asterisk indicates

significance at the .1 level for both the motion capture and the video based system.

Several kinematic statistics were strongly connected to functional health across all analyzed
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Comb Jar
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.16 (-0.61) 0.25 (-0.53) 0.06 (-0.75) 0.033 (-0.81) ***
sum displacement 0.27 (-0.39) 0.49 (-0.31) 0.0084 (-0.9) 0.0052 (-0.92) ***
variance displacement 0.17 (-0.61) 0.22 (-0.56) 0.27 (-0.49) 0.099 (-0.7) *
Shoulder Statistics
mean abduction 0.57 (0.26) 0.82 (0.1) 0.63 (0.23) 0.5 (0.32)
variance abduction 0.48 (0.33) 0.64 (-0.22) 0.31 (0.45) 0.39 (0.37)
mean flexion 0.91 (0.029) 0.23 (-0.55) 0.44 (-0.39) 0.082 (-0.45) *
variance flexion 0.52 (-0.31) 0.78 (0.13) 0.13 (0.66) 0.28 (0.48)
Elbow Statistics
mean flexion 0.37 (0.43) 0.53 (-0.29) 0.14 (-0.65) 0.25 (-0.52)
variance flexion 0.14 (0.47) 0.4 (0.39) 0.28 (-0.48) 0.28 (-0.49)
Inter-jointStatistics
abduction/elbow info 0.0014 (-0.95) 0.85 (-0.093) ** 0.24 (-0.48) 0.69 (0.18)
flexion/elbow info 0.25 (-0.51) 0.3 (0.47) 0.81 (-0.1) 0.64 (0.21)
Speed Statistics
mean speed 0.48 (0.32) 0.13 (0.63) 0.29 (-0.48) 0.49 (-0.33)
max speed 0.41 (0.36) 0.33 (0.45) 0.23 (-0.54) 0.21 (-0.51)
MAPR 0.21 (0.53) 0.24 (0.52) 0.42 (0.31) 0.22 (0.53)
length of segment 0.79 (0.13) 0.79 (0.13) 0.085 (-0.71) 0.085 (-0.71) ***
Smoothness Statistics
jerk 0.49 (0.32) 0.66 (0.22) 0.27 (-0.51) 0.55 (-0.29)
peaks 0.83 (0.11) 0.88 (0.078) 0.28 (-0.5) 0.057 (-0.76) *
Unimpaired Statistics
mean other side 1 (-0.021) 0.015 (-0.19) * 0.77 (-0.14) 0.57 (-0.27)
sum other side 0.74 (0.13) 0.56 (-0.18) 0.026 (-0.83) 0.078 (-0.68) ***

Table 4.3: Measured kinematics for the comb and jar tasks. These statistics were computed over
data from entire task performances.

101



−0.4 −0.2 0 0.2 0.4 0.6

30

35

40

45

50

55

60

65

70

mean torso displacement

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

mean torso displacement

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(a) Sandwich

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

30

35

40

45

50

55

60

65

70

mean torso displacement

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

mean torso displacement

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(b) Spoon

−1 −0.5 0 0.5 1 1.5

30

35

40

45

50

55

60

65

70

mean torso displacement

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

mean torso displacement

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(c) Comb

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

30

35

40

45

50

55

60

65

70

mean torso displacement

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

mean torso displacement

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(d) Jar

Figure 4.3: Mean torso displacement vs. AMAT score
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tasks. These statistics related primarily to motion of the torso and elbow. Across tasks, all of the

recorded torso displacement statistics correlated negatively with functional score. These corre-

lations were consistently significant for both the mean and total torso displacements computed

by either measurement device. A similar but less statistically significant negative correlation was

found to exist between the variance in torso displacement and functional score.

Mean torso displacement for all tasks is illustrated in Figure 4.3. In the graphs, red corre-

sponds to data that was generated by the motion capture based system and blue corresponds to

the measurements produced by the system of our design. Every data point is numbered with the

identification of the subject to which the data belongs. Data points have also been mean cen-

tered. This has been done to facilitate visual matching between measurements from our system

and those of the motion capture device. For three of these tasks, the p value relating mean dis-

placement as determined by motion capture to AMAT score indicates significance at the .1 level,

and for the remaining task the p value is .16. P values for our system indicate significance for

two of the tasks.

Elbow variance was also found to relate strongly to functional score for two of the four tasks.

These variances, computed for all tasks, are illustrated in Figure 4.4. For two of the tasks, the

motion capture and video based statistics indicate a significant relationship to functional score at

the .1 level. For the comb task, this p value is slightly higher, at 0.14. In all cases, a greater vari-

ance in the angle recorded at the elbow was associated with a stronger functional score. Mean

elbow flexion, by contrast, was frequently negatively associated with functional score. The more

acute the recorded angle at the elbow, on average, the lower the AMAT score. This relationship,

however, was not found to be significant at the .1 level.

Elbow variance is negatively correlated with functional score for the jar task. The range of

recorded variances for this task, however, was more restricted than for others in the battery. Vari-

ances in elbow flexion typically ranged between +/- 10 degrees while, for the jar task, this range

was reduced by roughly 50%. Mean elbow flexion was still negatively correlated with functional

score for both the jar task as well as the others. The p value relating mean elbow flexion and

103



−15 −10 −5 0 5 10

30

35

40

45

50

55

60

65

70

variance elbow flexion

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

variance elbow flexion

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(a) Sandwich

−10 −5 0 5 10 15

30

35

40

45

50

55

60

65

70

variance elbow flexion

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

variance elbow flexion

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(b) Spoon

−20 −15 −10 −5 0 5 10 15 20 25

30

35

40

45

50

55

60

65

70

variance elbow flexion

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

variance elbow flexion

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(c) Comb

−5 0 5 10 15

30

35

40

45

50

55

60

65

70

variance elbow flexion

m
ea

n 
A

M
A

T
 s

co
re

 fo
r 

ta
sk

variance elbow flexion

1

2

3

4

6

7

8

1

2

3

4

6

7

8

motion capture
video

(d) Jar

Figure 4.4: Variance in elbow flexion by AMAT score.
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Statistic P-value (correlation)
Mean force 0.35 (0.42)
Max force 0.76 (-0.12)
Variance force 0.48 (-0.33)
Jerk 0.95 (0.04)
Peaks 0.12 (-0.77)
MAPR 0.25 (0.53)
force entropy 0.83 (-0.12)
force ratio 0.89 (0.088)
Ratio Difference 0.56 (0.29)

Table 4.4: Force Statistics from the Spoon Task.

AMAT score for the jar task is 0.14, and the correlation is strongly negative, at -0.65.

Finally, the mutual information recorded between abduction at the shoulder and elbow flexion

proved to be strongly related to functional score in many tasks. For the comb task, this mutual

information is very strongly and negatively associated with functional score. The stronger the

link between flexion and and abduction for this task, the lower the functional score. This same

negative relationship exists for the jar task as well, while for the other tasks, the motion capture

based statistic is positively correlated with score. Significant relationships, however, do not exist

for any task other than the comb task.

4.4.2 Force Correlations with AMAT scores

Examples of force profiles from each subject that were recorded with the force sensing spoon

are illustrated in Figure 4.5. A table of computed force statistics, and the p values relating these

statistics to functional scores, is found in Table 4.4.

The statistic that was found to be most strongly related to functional status was the number

of peaks in the recorded force profiles. The more the number of peaks in profiles, on average,

the lower the subject’s functional score. The p value relating this particular statistic to AMAT

score is 0.12, and the correlation is -0.77. The number of peaks as related to AMAT scores is

illustrated in Figure 4.6. The statistic for jerk does not correlate with AMAT score.
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Figure 4.5: Examples of Force Profiles
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Figure 4.6: Peaks in force profile recorded during the ”Spoon” Task.
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AMAT Task/Subtask Category of Motion
”Sandwich” Task
1. Pick up foam ”sandwich” Grasp
2. ”Sandwich” to mouth Lift
”Spoon” Task
3. Pick up spoon Grasp
4. Pick up dried kidney bean with spoon Manipulation
5. Spoon to mouth Lift
”Comb” Task
6. Pick up comb Gasp
7. Comb hair Lift
”Jar” Task
8. Grasp jar top Grasp
9. Screw jar top open Manipulation

Table 4.5: AMAT segments and the Movement Categories.

The MAPR computed for force was also loosely, and positively, associated with functional

score, as was the mean force. None of these associations, however, were significant. Those with

higher functional scores therefore had a tendency to produce consistently larger forces than those

with lower functional scores.

4.5 Analysis of Task Segments

In an effort to better understand task-specific statistics of motion, elements of the AMAT were de-

composed into pieces. Pieces of tasks that shared similar movement requirements were grouped

together for this portion of the analysis. All grasps for objects were grouped into one category,

all manipulations of objects were grouped into a second category, and lifts of the hand from the

table to the mouth or head were grouped into a third category. Task components and the cate-

gories of movement to which they were assigned are given in Table 4.5. All data segmentations

were executed by hand and based on a review of the video. Results which follow relate to these

segments of data and to the identified categories of motion to which they correspond.
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4.5.1 Correlations between AMAT scores and grasping statistics

Sandwich Spoon
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.24 (-0.51) 0.03 (-0.81) * 0.1 (-0.68) 0.29 (-0.46)
sum displacement 0.1 (-0.6) 0.01 (-0.89) * 0.026 (-0.83) 0.14 (-0.62) **
variance displacement 0.42 (-0.37) 0.016 (-0.86) * 0.25 (-0.51) 0.72 (-0.16)
Shoulder Statistics
mean abduction 0.47 (0.34) 0.61 (0.24) 0.67 (0.2) 0.57 (0.26)
variance abduction 0.53 (0.3) 0.3 (-0.46) 0.094 (0.69) 0.15 (0.63) **
mean flexion 0.28 (0.5) 0.64 (-0.22) 0.14 (-0.62) 0.36 (-0.39)
variance flexion 0.39 (0.37) 0.55 (-0.27) 0.031 (0.82) 0.058 (0.76) ***
Elbow Statistics
mean flexion 0.057 (-0.72) 0.11 (-0.68) ** 0.04 (-0.65) 0.11 (-0.71) **
variance flexion 0.13 (0.65) 0.4 (0.38) 0.21 (0.61) 0.14 (-0.61)
Inter-joint Statistics
abduction/elbow info 0.22 (0.55) 0.77 (-0.15) 0.14 (0.64) 0.091 (-0.7) *
flexion/elbow info 0.78 (0.13) 0.99 (-0.017) 0.33 (0.44) 0.97 (0.036)
Speed Statistics
mean speed 0.9 (-0.069) 0.39 (-0.4) 0.51 (0.3) 0.11 (-0.67)
max speed 0.74 (0.15) 0.23 (-0.54) 0.74 (0.16) 0.19 (-0.57)
MAPR 0.0012 (-0.95) 0.042 (-0.79) *** 0.43 (-0.35) 0.067 (-0.74) *
length of segment 0.69 (-0.18) 0.69 (-0.18) 0.059 (-0.74) 0.059 (-0.74) ***
Smoothness Statistics
jerk 0.6 (0.25) 0.073 (-0.74) * 0.7 (0.19) 0.25 (-0.54)
peaks 0.69 (0.19) 0.91 (-0.048) 0.069 (-0.72) 0.056 (-0.75) ***
Unimpaired Statistics
mean other side 0.74 (-0.16) 0.43 (-0.38) 0.22 (-0.55) 0.6 (-0.25)
sum other side 0.74 (-0.16) 0.41 (-0.39) 0.018 (-0.85) 0.41 (-0.37) **

Table 4.6: Measured kinematics for the sandwich and spoon tasks. These statistics relate to
segments of data corresponding to grasps.

P-values that relate computed kinematic statistics for grasping motions to the mean of ex-

pert assigned AMAT scores are reported in Table 4.6 and 4.7. As before, correlations between

statistics and AMAT scores are reported next to each p value in parentheses. A single asterisk

in a column indicates a significant p value at the .1 level for the video statistic, a double asterisk

indicates the same for the motion capture statistic and a triple asterisk indicates significance for

statistics from both devices.

Torso displacement again correlated consistently and negatively was associated with func-
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Comb Jar
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.3 (-0.48) 0.37 (-0.42) 0.011 (-0.56) 0.092 (-0.7) ***
sum displacement 0.25 (-0.5) 0.28 (-0.45) 0.024 (-0.82) 0.056 (-0.77) ***
variance displacement 0.25 (-0.52) 0.38 (-0.42) 0.47 (-0.32) 0.33 (-0.45)
Shoulder Statistics
mean abduction 0.73 (0.16) 0.78 (0.13) 0.69 (0.19) 0.66 (0.21)
variance abduction 0.39 (0.39) 0.57 (0.26) 0.18 (0.58) 0.15 (0.61)
mean flexion 0.34 (-0.38) 0.37 (-0.43) 0.65 (-0.22) 0.51 (-0.31)
variance flexion 0.68 (0.22) 0.61 (0.24) 0.015 (0.86) 0.08 (0.72) ***
Elbow Statistics
mean flexion 0.21 (-0.45) 0.16 (-0.63) 0.17 (-0.6) 0.44 (-0.37)
variance flexion 0.89 (0.064) 0.44 (0.36) 0.43 (-0.37) 0.55 (-0.28)
Inter-joint Statistics
abduction/elbow info 0.23 (0.5) 0.28 (0.5) 0.52 (0.3) 0.29 (0.48)
flexion/elbow info 0.84 (0.08) 0.53 (-0.31) 0.4 (0.39) 0.92 (-0.04)
Speed Statistics
mean speed 0.39 (-0.35) 0.88 (0.077) 0.35 (-0.43) 0.96 (-0.026)
max speed 0.78 (-0.14) 0.77 (0.13) 0.26 (-0.5) 0.37 (-0.4)
MAPR 0.47 (0.31) 0.66 (0.2) 0.018 (0.32) 0.22 (-0.49) **
length of segment 0.65 (-0.22) 0.65 (-0.22) 0.078 (-0.72) 0.078 (-0.72) ***
Smoothness Statistics
jerk 0.58 (0.25) 0.54 (0.28) 0.26 (-0.51) 0.03 (-0.81) *
peaks 0.87 (0.066) 0.45 (-0.35) 0.57 (-0.26) 0.046 (-0.78) *
Unimpaired Statistics
mean other side 0.37 (-0.42) 0.19 (-0.58) 0.75 (-0.15) 0.59 (-0.25)
sum other side 0.52 (-0.3) 0.17 (-0.61) 0.078 (-0.71) 0.11 (-0.59) **

Table 4.7: Measured kinematics for the comb and jar tasks. These statistics relate to segments of
data corresponding to grasps.
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tional score. This significance of this negative correlation was strongest as it related to the total

torso displacement measured by both systems. Negative correlations are also found for both

the variance and mean displacement. Total displacement as measured by motion capture during

grasps was significantly related to AMAT score at the .1 level for three tasks, and this level of

significance was achieved for the video based statistics for two tasks.

More interestingly, perhaps, the mean elbow flexion recorded during grasps emerged as a
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Figure 4.7: Mean elbow flexion by AMAT score during Grasps.

strong indicator of functional health in this subset of data. Significant correlations between the
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average flexion of the elbow and score were found to exist at the .1 level for two of the four tasks.

No such significant correlations were detected during the analysis of entire task data. Figure 4.7

illustrates the mean flexion, as recorded by both devices, recorded during grasps. As before,

red corresponds to motion capture data and blue corresponds to the data from our system. Data

points are once again numbered to facilitate visual matching between measurements.

4.5.2 Correlations with AMAT scores for Periods of Lifting

Sandwich Spoon
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.24 (-0.45) 0.38 (-0.4) 0.012 (-0.7) 0.22 (-0.54) **
sum displacement 0.33 (-0.42) 0.62 (-0.23) 0.26 (-0.5) 0.33 (-0.44)
variance displacement 0.52 (-0.3) 0.67 (-0.2) 0.57 (-0.26) 0.36 (-0.43)
Shoulder Statistics
mean abduction 0.52 (0.3) 0.56 (0.28) 0.61 (0.24) 0.58 (0.26)
variance abduction 0.41 (0.38) 0.23 (0.54) 0.59 (0.25) 0.44 (0.36)
mean flexion 0.036 (0.56) 0.98 (-0.018) ** 0.83 (0.1) 0.8 (-0.1)
variance flexion 0.36 (0.4) 0.31 (0.46) 0.53 (0.3) 0.76 (0.15)
Elbow Statistics
mean flexion 0.66 (-0.21) 0.51 (-0.29) 1 (-0.0017) 0.44 (-0.36)
variance flexion 0.2 (0.59) 0.096 (0.7) * 0.039 (0.81) 0.017 (0.86) ***
Interjoint Statistics
abduction/elbow info 0.95 (0.038) 0.72 (-0.17) 0.75 (0.17) 0.093 (0.68) *
flexion/elbow info 0.73 (0.15) 0.59 (0.26) 0.079 (0.73) 0.051 (0.76) ***
Speed Statistics
mean speed 0.28 (0.49) 0.32 (0.45) 0.22 (0.57) 0.2 (0.56)
max speed 0.72 (0.21) 0.56 (0.29) 0.38 (0.43) 0.87 (0.082)
mapr 0.27 (0.5) 0.37 (-0.41) 0.65 (0.22) 0.84 (-0.097)
length of segment 0.89 (-0.053) 0.89 (-0.053) 0.56 (-0.27) 0.56 (-0.27)
Smoothness Statistics
jerk 0.55 (-0.28) 0.91 (-0.036) 0.94 (-0.039) 0.25 (-0.52)
peaks 0.22 (-0.5) 0.48 (-0.31) 0.18 (-0.58) 0.23 (-0.52)
Unimpaired Statistics
mean other side 0.12 (-0.68) 0.96 (0.029) 0.045 (-0.79) 0.14 (-0.63) **
sum other side 0.1 (-0.69) 0.99 (-0.0033) 0.13 (-0.66) 0.18 (-0.58)

Table 4.8: Measured kinematics for the sandwich and spoon tasks. These statistics all relate to
data recorded during segments corresponding to lifts.
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Comb
Mocap Video

Torso Statistics
mean displacement 0.14 (-0.64) 0.3 (-0.47)
sum displacement 0.45 (-0.28) 0.7 (-0.18)
variance displacement 0.13 (-0.65) 0.16 (-0.62)
Shoulder Statistics
mean abduction 0.45 (0.34) 0.78 (0.13)
variance abduction 0.4 (0.39) 0.68 (-0.2)
mean flexion 0.2 (0.41) 0.41 (-0.39)
variance flexion 0.95 (0.032) 0.83 (0.1)
Elbow Statistics
mean flexion 0.37 (0.41) 0.36 (-0.45)
variance flexion 0.022 (0.62) 0.53 (0.29) **
Interjoint Statistics
abduction/elbow info 0.038 (-0.79) 0.45 (0.32) **
flexion/elbow info 0.58 (-0.27) 0.43 (0.32)
Speed Statistics
mean speed 0.63 (0.22) 0.34 (0.43)
max speed 0.32 (0.43) 0.33 (0.45)
mapr 0.22 (0.54) 0.59 (0.27)
length of segment 0.64 (0.22) 0.64 (0.22)
Smoothness Statistics
jerk 0.46 (0.34) 0.66 (0.22)
peaks 0.84 (0.1) 0.71 (0.19)
Unimpaired Statistics
mean other side 1 (-0.0085) 0.78 (-0.066)
sum other side 0.57 (0.25) 0.93 (0.082)

Table 4.9: Measured kinematics for the comb task. These statistics all relate to data recorded
during segments corresponding to lifts.
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Figure 4.8: Variance in elbow flexion by AMAT score during Lifts.
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(a) High scoring subject

(b) Low scoring subject

Figure 4.9: Lifts performed by two subjects, one with a high AMAT score and one a low one.
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P-values for statistics recorded during periods of lifting are reported in Tables 4.8 and 4.9.

During segments that correspond to lifts of the hand to the mouth or head, variances in mo-

tion about joints were positively correlated with functional score. The most significant of these

correlations related to the range of motion measured about the elbow. Motion capture based

p-values reflecting the strength of the relationship between elbow range and AMAT score were

below 0.2 for all tasks and below 0.1 for two of the three tasks in the category. The same is true

for statistics recorded by the device of our design. Elbow range of motion, as measured by both

systems, is reported across all tasks in Figure 4.8. Figure 4.9 illustrates an individual with a high

AMAT score performing one of the recorded lifts as well as a low scoring individual performing

the same lift. The difference in variance around the elbow between these subjects is visible.

Positive correlations also were found to exist between variances in shoulder abduction and

functional score. Correlations between this statistic and AMAT score were consistently found to

be positive for data from the motion capture system, but the association is not significant.

Smoothness was also a more significant feature during lifts. Recorded jerk based on motion

capture and our system was negatively and significantly related to functional score for the spoon

task. The peaks statistic was also negatively and strongly related to functional score for this task.

Strong negative correlations with smoothness metrics also exist for the sandwich task.

4.5.3 Correlations with AMAT scores for Manipulations of Objects

During the two manipulation segments, statistics relating to a static body posture once again

came into play. Individuals with higher functional scores tended to lean in less towards the

objects that were being manipulated, and they tended to extend at the elbow and abduct at the

shoulder more greatly. Recorded flexion, by contrast, was found to be negatively correlated with

functional status for periods of manipulation. The strength of this correlation is especially great

for the spoon task. Computed statistics for this portion of tasks are given in Table 4.10.

The motion capture based p value relating mean elbow flexion to functional score is .06 for the
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Spoon Jar
Mocap Video Mocap Video

Torso Statistics
mean displacement 0.18 (-0.59) 0.67 (-0.22) 0.035 (-0.8) 0.051 (-0.77) ***
sum displacement 0.089 (-0.7) 0.54 (-0.29) ** 0.019 (-0.85) 0.071 (-0.74) ***
variance displacement 0.51 (-0.32) 0.71 (0.17) 0.088 (-0.72) 0.055 (-0.77) ***
Shoulder Statistics
mean abduction 0.71 (0.17) 0.71 (0.17) 0.64 (0.22) 0.4 (0.41)
variance abduction 0.16 (0.6) 0.13 (0.64) 0.4 (0.38) 0.26 (0.53)
mean flexion 0.91 (-0.044) 0.65 (-0.21) 0.34 (-0.44) 0.055 (-0.46) *
variance flexion 0.24 (0.54) 0.084 (0.46) * 0.42 (-0.37) 0.57 (-0.28)
Elbow Statistics
mean flexion 0.055 (-0.76) 0.001 (-0.88) *** 0.1 (-0.68) 0.12 (-0.67)
variance flexion 0.22 (0.55) 0.28 (0.5) 0.7 (0.15) 0.83 (-0.098)
Inter-joint Statistics
abduction/elbow info 0.5 (0.33) 0.68 (0.19) 0.84 (0.073) 0.38 (0.4)
flexion/elbow info 0.71 (0.19) 0.9 (0.067) 0.43 (-0.38) 0.66 (0.21)
Speed Statistics
mean speed 0.79 (-0.12) 0.011 (0.65) * 0.019 (0.48) 0.43 (0.39) **
max speed 0.12 (0.29) 0.36 (0.47) 0.046 (-0.78) 0.47 (-0.36) **
MAPR 0.38 (-0.41) 0.17 (0.62) 0.1 (0.69) 0.57 (0.29)
length of segment
Smoothness Statistics
jerk 0.011 (-0.88) 0.16 (-0.6) ** 0.9 (-0.049) 0.44 (-0.37)
peaks 0.087 (-0.69) 0.065 (-0.75) *** 0.29 (-0.48) 0.18 (-0.59)
Unimpaired Statistics
mean other side 0.058 (0.76) 0.48 (0.36) ** 0.5 (-0.33) 0.57 (0.27)
sum other side 0.37 (0.32) 0.16 (-0.61) 0.16 (-0.67) 0.79 (0.14)

Table 4.10: Measured kinematics for manipulations (i.e. getting bean, opening jar).
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Figure 4.10: Mean elbow flexion by AMAT score during Manipulations.

Grasping Manipulation Lifting
Statistic P-value P-value P-value
Mean force 0.43 (0.37) 0.91 (-0.041) 0.35 (0.42)
Max force 0.78 (0.13) 0.86 (-0.08) 0.76 (-0.12)
Variance force 0.062 (0.77) * 0.57 (0.23) 0.48 (-0.35)
Jerk 0.77 (0.14) 0.96 (-0.03) 0.95 (-0.04)
Peaks 0.01 (-0.76) * 0.47 (-0.32) 0.12 (-0.77)
MAPR 0.037 (-0.73) * 0.19 (-0.59) 0.25 (0.53)
Ratio Difference 0.79 (0.12) 0.19 (-0.55) 0.92 (-0.037)

Table 4.11: Force Statistics from the Spoon Task.

spoon task and .1 for the jar task. Elbow flexion statistics from both systems are illustrated in

Figure 4.10.

Finally, both the jerk statistic and the number of peaks in the velocity profile proved to be

a strong indicator of functional health for the spoon task. The peaks statistic proved to be a

stronger indicator of health than the jerk statistic for the jar task. All correlations are negative;

the more jerk the lower the functional score.
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Figure 4.11: A low and high scoring individual using the force sensing spoon.
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Figure 4.12: Peaks in Force Profile by AMAT score during Grasp and Lift.
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Figure 4.13: Variance in Force Profile by AMAT score during Grasp and Lift.

4.5.4 Force Correlations with AMAT scores

Force statistics that were associated with functional score during the spoon task also varied from

segment to segment. During several segments the number of peaks in the force profile was

a strong indicator of functional health. The strength of the association, however, varied from

segment to segment. During the grasp as well as the lift portions, p values for the association

were below 0.15. In all cases, the correlation with score is negative. The variance in force was

also an indicator of functional health during the grasping portion of the movement. The direction

of the correlation, however, changes between the grasp and the lift. During the lift, variance was

greater in individuals with lower functional scores than in those with higher functional scores.

This is not the case during the grasp. The complete list of p values for computed statistics and

associated correlations is given in Table 4.11.

Examples of force profiles recorded from individuals are illustrated in Figure 4.11. At the left

is an individual with a low functional score and at the right an individual with a high functional

score. The variation in force produced by the low functioning individual is visibly larger during

the lift portion of the task than that for the high functioning one. Force gets large as this low

scoring individual raises the arm to the head; for the high scoring individual it remains relatively

constant. Almost the reverse situation, however, exists during the grasping portion of the task.

The number of peaks in the force profiles during two task segments is illustrated in Figure
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4.12. For two of these task segments, the association between peaks and score is below .15; the

more peaks the lower the AMAT score. The variation in force during these same task segments is

illustrated in Figure 4.13. There is a different correlation between variation and functional score

during either task segment.

4.5.5 Kinematic Accuracy

When we optimize the accuracy of our measurement devices we focus on statistics that prove to

be most salient indicators of functional health. Figure 4.14 illustrates the relationship between

the information each computed statistic carries about functional status and our ability to measure

this statistic accurately relative to a motion capture device. In the figure, black lines reflect

correlations between the statistics as measured by the different kinematic tracking devices. Red

lines represent the p-values which relate statistics, as determined by motion capture, to expert

assigned functional scores. Blue lines are the p-values from our kinematic measurement system.

All correlations as well as p-values have been averaged across the four tasks in the battery.

At the top portion of the figure, computed statistics are organized by increasing correlation

between the measurement devices. At the bottom, statistics are organized according to decreasing

p-values for motion capture based statistics. We would ideally like to see, when p-values for the

motion capture system are low, that correlations between our system and motion capture are high.

Conversely, when p-values are not significant, we can more easily afford to find correlations

between measurement devices that are low.

Figure 4.15 points to several informative statistics that prove to be difficult to capture with the

device we have designed. Perhaps the most notable of these is the computed mutual information

relating elbow flexion and shoulder abduction. The average motion capture-based p-value for

this statistic is below .2, yet the correlation between motion capture and our system is less than

.5. It should be noted that this mutual information statistic combines two kinematic signals, each

of which carries its own noise. One signal is the abduction computed at the shoulder and the
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Figure 4.14: Correlations between devices and associated p-values for kinematic statistics.
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other is flexion computed at the elbow. Abduction is captured poorly relative to motion capture,

as the correlation here is just over .5. Correlations between elbow variances computed by either

system are comparatively strong, and over .9 consistently. Shoulder abduction suffers in that it

is not computed in a body centered coordinate frame, and is coupled with shoulder flexion.

Similarly, the mean speed of the hand and wrist computed on the less impaired side of the

body was found to carry diagnostic information and yet was measured relatively poorly with our

device. P values for this statistic are below .3 on average, and yet measurement correlations are

roughly .5. There is, however, not much motion on the unimpaired side of the body, on average,

during the performance of tasks.

Finally, the computed smoothness statistics also proved to be difficult to capture accurately,

relative to motion capture. The number of peaks proved to carry more diagnostic information

than computed jerk for the particular tasks.

4.5.6 Discussion

In this section, we first discuss force and kinematic statistics and their associations with AMAT

score. We then look at the task specificity of these statistics, and finally we evaluate the accuracy

of the kinematic measurement system of our design relative to motion capture.

1. Kinematic statistics and their relationship to functional scores. Some kinematic statis-

tics are strong indicators of functional status across entire tasks, while others relate better to func-

tional score when associated with task segments. Many segments, moreover, exhibit kinematics

that are comparable across tasks, while the kinematics of other segments are less comparable

across tasks.

The motion of the torso and elbow both proved to correlate consistently and strongly with

functional health across all tasks. Prior research has indicated the movement of the torso to be

strongly related both to functional health and stroke severity [74, 89, 90]. In [89], for example,
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stroke survivors were found to recruit more torso motion during reaches to objects than con-

trols, while several more distal features of movement, like the size and timing of grip aperture,

remained relatively unaffected. Our results are consistent with these prior results, and illustrate

that torso motion can serve as a robust indicator of functional across a wide variety of tasks.

Stroke survivors also commonly exhibit excess elbow flexion and flexion that is more strongly

coupled with shoulder abduction than people who have never had a stroke. Research with robot

arms has provided data demonstrating abnormal coupling of elbow flexion and shoulder abduc-

tion, which results in a work area for stroke survivors that is reduced relative to people that have

never had a stroke [? ]. Research with robots has also measured constraint forces that are consis-

tent with the flexor synergy, which couples elbow flexion and shoulder abduction during reaching

tasks [108]. The precise statistics used to measure joint coupling, however, varies from paper to

paper. In [74], for example, inter-joint coordination is measured in terms of the smoothness of

motion in an inter-joint space. Mutual information, by contrast, is used to quantify joint syner-

gies for the purpose of naturalistic human animation in [110].

The salience of both elbow and torso motion, however, was found to depend on the partic-

ular portion of tasks being examined. In general, during periods of grasping and manipulation,

statistics relating to a static gross posture were more indicative of functional health than during

periods where the gross upper body was set into motion. During both grasps and manipulations,

for example, individuals who were more impaired tended to lean more extensively into the table

and flex more at the elbow. During lifts, by contrast, variances about the joints were diagnos-

tic. Elbow variance was the most significantly informative of measured statistics during lifts,

although variances in shoulder statistics also proved to be consistently and positively correlated

with AMAT score.

Smoothness statistics were only found to be of significance during periods of object manip-

ulation; a weaker association was found during periods of object lifting. Prior research has laid

much emphasis on smoothness as a means by which to measure the recovery of stroke patients.

In [113], for example, five statistics of smoothness were measured with a robotic device in the
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hemiparetic arm of 31 individuals recovering from stroke. Four of the five metrics showed in-

creases as recovery occurred. The authors postulate that increases in smoothness are the result of

better control over sub-movement blending. Krebs et al. [63] also report that movements made

by patients recovering from stroke become smoother as recovery proceeds. In our study, how-

ever, smoothness disturbances are most manifest during periods where individuals are required

to hold their bodies relatively steady.

Our data, however, may suffer in that it is relatively low fidelity. High fidelity measurements

of measurements made of Huntington’s patients, for example, have shown these individuals to

exhibit jerk manifesting 200 to 300 ms after a movement’s onset [125]. 200ms, however, repre-

sents only 5 data samples when recording at our system’s rate of 30 Hz. These points are reduced

to 4 when computing the number of peaks in a profile and 2 when computing jerk. Our ability to

detect subtle tremors is therefore very limited.

Another kinematic statistics that revealed a strong dependence on task constraints is the mu-

tual information computed between joints. Mutual information was only diagnostic during the

comb task, and most significantly during the period where the comb was lifted to the back of the

head. Other lifts in the “lifting” category did not elicit informative amounts of shoulder abduc-

tion. The lift in the comb task, then, differs significantly in its kinematics relating to the shoulder

from the other tasks in the battery.

2. Force statistics and their relationship to functional scores. Like the kinematic statis-

tics, several force measurements proved to be strong indicators of functional status across entire

tasks, while others related better to functional score when associated with task segments.

Smoothness of force proved to be the strongest indicator of functional health in our study.

This is consistent with results reported by [66], who demonstrated that, in the context of a force

tracking task, decreases in force smoothness could be associated with motor recovery due to

rehabilitation. In our work, smoothness is best measured by counting the number of peaks in

the recorded force profile. The jerk statistic, by comparison, produces associations that are less
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consistently significant.

This smoothness statistic, however, is not an equally strong indicator of functional health for

all task segments. During grasps and lifts, for example, the number of peaks in the force profile

is a better indicator of health than during the period of manipulation .

Prior research has indicated stroke survivors to exhibit lower peak grip forces, on average,

than healthy controls [16, 75]. These same individuals, however, may exert more force than is

necessary during object manipulations [96]. Grip strength, moreover, has been shown to be a

very sensitive indicator of initial limb recovery in individuals who are acute stroke survivors [5]

and it predicts later recovery fairly accurately as well [6]. Our results, however, failed to show a

statistically consistent and significant relationship between mean and maximum forces produced

by subjects and functional score. The mean force applied to the spoon handle is an indicator of

health during the grasps of the object, but not at any other time. Moreover, mean force here is

positively correlated with score, not negatively.

In general it appears that, in our study, individuals who were less impaired tended to pro-

duce more force on the handle of the object, and they maintained this force fairly consistently

throughout the task. More impaired individuals, by contrast, use less force on average, but there

were moments of time during the task where they applied much more force than may have been

required. The range of force that is produced varies substantially among the more impaired indi-

viduals during manipulation and lift. This lack of control of the force profile is not only manifest

in the variance of forces recorded by the handle, but also in the number of peaks in the resulting

force profile.

3. Task Specificity of Measured Statistics. Results illustrate the task-specificity of discrim-

inating kinematics. In the three tasks that require lifts to the mouth with the hand, for example,

elbow variance positively relates to functional health. For the fourth task, this variance negatively

relates to functional health. This fourth task, however, which involves opening a jar on the desk-

top, does not require the same extent of elbow motion as do the other tasks. Similarly, coupling
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between elbow flexion and shoulder abduction was shown to carry diagnostic information for the

comb task in a way that it is not for the others. This task is the only task that requires individuals

to lift their arms over the head and to touch the back of their heads with a hand. It necessarily

elicits abduction in a way the other tasks do not.

The influence of task constraints on the diagnostic utility of kinematics after stroke is well

represented in the literature. In [89], for example, limitations in range about the shoulder and

elbow were more likely to discriminate stroke survivors from healthy controls when measured

during reaches to targets that were far from the body. Reaches to locations at half an arm’s length

from the body were comparatively less likely to yield discriminating statistics. Task and loca-

tion constraints have been similarly emphasized in [149], wherein motor impaired individuals

were shown to reach more smoothly to real coins than to a non-coins. Several other studies have

shown motor impaired individuals to use decidedly different movement strategies in contexts

where they are pantomiming functional tasks than in environments where they execute tasks for

real [55, 85]. It is not a surprise that diagnostic kinematics depend on the tasks to which they

relate.

Despite the variations in tasks, however, many task elements were found to share comparable

kinematics. All of the lifts in the task, for example, produced elbow variances that discriminated

between subjects. Even though one lift is of a slightly different nature than the others, as it re-

quires abduction, it is still comparable to the other lifts in the battery. These common kinematics

give us reason to believe that it may be possible to determine functional health based on the per-

ception of task segments, like lifts, irrespective of the tasks to which they belong. This is an idea

we will explore further when we predict scores.

4. Accuracy of Kinematic Statistics Relative to Motion Capture. Not only do our results

point to salient kinematics, they identify statistics that are relatively difficult or easy to approx-

imate with a low cost tracking device like that which we have designed. Our device performs

accurately relative to a VICON when it comes to capturing the salience of torso motion and el-

126



bow flexion. Capturing shoulder abduction and smoothness statistics, by comparison, prove to

be difficult given our low cost devices.

Because our measurements of shoulder flexion and abduction are not in body centered co-

ordinates, there is some redundancy between the estimates of shoulder flexion and abduction.

Moreover, for at least one subject (number 7), the fit of the jersey was loose at the shoulder. The

proximal ends of cylinders approximating the upper arms of this subject were biased towards

midline as a result. Finally, for the task involving the comb in particular, the field of view of the

cameras is too small to capture shoulder abduction sufficiently. This task requires individuals

to reach above and behind their heads, yet there no cameras were placed behind subjects. At

maximum abduction for many subjects, then, the arm disappears from view. Video camera based

reconstructions suffer as a result.

4.6 Predicting Scores

In this section, we evaluate the ability of statistics with low p-values to predict scores of stroke

survivors in the absence of a clinician. We test several different paradigms.

First, we train one regression for each task with data that was generated across the entire task

performance. We call this Predictor Number 1.

Second, we train a regression for each part of each task. One is trained to predict scores on

the lift segment of the sandwich task, for example, and a second is trained on data from the grasp

segment for this same task. Automatic scores are defined as the sum of predicted scores across

all segments for a given task. We call this Predictor Number 2.

Third, we explore the ability to create regressions that generalize across tasks. We train one

regression on all the kinematic data from the lifts, a second on data from all grasps, and a third on

the data from manipulations. We then use resulting functions to predict the scores for lifts on all

tasks, as well as scores for grasps and manipulations. As before, automatic scores are defined as
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the sum of predicted scores across all segments for a given task. We call this Predictor Number 3.

4.6.1 Prediction with Complete Task Data
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Figure 4.15: Prediction errors for all predictive schemes. Errors are reported as the mean per-
centage of error for subjects. A 10% error for a 10 point task, then, is an error of 1 point. For a 15
point task, it is an error of 1.5 points. Results reported are error rates as computed over multiple
values of p and λ.

For all regressions, a range of parameters for the p-value threshold and λ were tested. Values

for λ were varied between .5 and 15, and values for the p-value threshold were varied between

.01 and .61. In Figure 4.15 we report the mean and variances in errors for all regressions. Errors
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Figure 4.16: Predictions for the sandwich task. At the top are predictions made using all task
data (i.e., using Predictor 1). In the middle are predictions made using task segments (i.e., using
Predictor 2). At the bottom are predictions made using a generalized prediction scheme (i.e.,
using Predictor 3). In dotted lines are corresponding assessments from human experts.
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Figure 4.17: Predictions for the spoon task. At the top are predictions made using all task data
(i.e., using Predictor 1). In the middle are predictions made using task segments (i.e., using
Predictor 2). At the bottom are predictions made using a generalized prediction scheme (i.e.,
using Predictor 3). In dotted lines are corresponding assessments from human experts.
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Figure 4.18: Predictions for the comb task. At the top are predictions made using all task data
(i.e., using Predictor 1). In the middle are predictions made using task segments (i.e., using
Predictor 2). At the bottom are predictions made using a generalized prediction scheme (i.e.,
using Predictor 3). In dotted lines are corresponding assessments from human experts.
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Figure 4.19: Predictions for the jar task. At the top are predictions made using all task data
(i.e., using Predictor 1). In the middle are predictions made using task segments (i.e., using
Predictor 2). At the bottom are predictions made using a generalized prediction scheme (i.e.,
using Predictor 3). In dotted lines are corresponding assessments from human experts.
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are reported as the mean percentage of predicted scores that are in error for subjects. A 10%

error for a 10 point task, then, is an error, on average, of 1 point. For a 15 point task, it is an error

of 1.5 points. Results for the video and force based system of our design are reported in blue,

while results for the motion capture based systems are reported in red.

Figures 4.16 through 4.19 illustrate results for the best regressions, as parameterized by the

optimal p-value threshold and λ coefficients. In these figures, the red lines are scores predicted

by the motion capture based system and the blue lines are predictions from the system of our

design. The dotted lines correspond to scores from each of the three human experts. At the top

of each figure are predictions made with regressions trained on specific parts of each task (i.e.

Predictors Numbered 2). In the middle are results from regressions trained on data from entire

tasks (i.e. Predictors Numbered 1). At the bottom of each figure are predictions from regressions

trained on groups of motions sharing similar kinematic characteristics (i.e. Predictors Numbered

3). To generate this last figure, one regression was trained to predict the scores of all lifts across

tasks, another on grasps and a third on manipulations.

In general, the motion capture system outperformed the device of our design. For the many

of the tasks, motion capture reduced error by roughly 30%. The exception is the jar task, where

our system slightly out-performed motion capture.

It is debatable as to whether Predictors Numbered 1 outperform Predictors Numbered 2. For

the sandwich, comb and spoon task, motion capture regressions trained on individual parts out-

performed the regressions trained on data from entire tasks. For the jar task, the reverse is true.

In general, it seems that Predictors Numbered 2 are at least as good or better than Predictors

Numbered 1 more often, yet the strength of each paradigm depends on the task.

The generalized motion capture regressions (i.e. Predictors Numbered 3) perform compara-

bly to either of other prediction paradigms for tasks when looking at motion capture data. In

addition, the generalized regressions tend to produce results that are more consistent across val-

ues of λ and p. The variance in error is significantly reduced relative to that of other regressions

for all tasks.
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The worst results relate to the comb task. This is perhaps not surprising given our system, as

we have a limited range of view and video based reconstructions suffer as a result. Error here

is frequently over 15% of the AMAT range for this task, while it is under 15%, on average, for

all other tasks. For both systems, some of the best prediction results relate to the spoon task.

This is surprising in a way in that the spoon task has the most sub-components and therefore

admits more possible error than the other tasks. In general, slight over-estimation of the scores

at the low and of the scale is a frequent source of error, as is slight under-estimation of scores at

the high end of the scale. The subjects with scores in the middle of the range, by contrast, are

modelled fairly accurately.

Figures 4.20 and 4.21 illustrate the impact of the selection of p-value and λon the differ-

ent regressions. Of interest here is the comparison between task specific regressions (Predictors

Numbered 1 and 2) and the generalized regressions (Predictors Numbered 3). The generalized

regressions tend to perform best when p values used to filter features are extremely low. When

p values are varied, however, performance remains reasonably stable. With the task specific re-

gressions, by contrast, slight changes in the threshold on p values can have a very dramatic effect

on performance. This is especially well illustrated for the sandwich and comb task.

Predictors Numbered 3 have an advantage over the others in that they were trained on more

data. Data from all four tasks were assembled during training, meaning that p values reflect

significance in linear fits over four times the number of data points. The relative stability and

smoothness of error variation that relates to changes in p-values is most likely a result of the

volume of data.

Changes in λ, by contrast, tended to have a much smoother and more predictable impact on

results. For many of the regressions, the optimal value of λ is around 2 or lower, and performance

becomes worse as values for λ increase. This is very much the case for both the spoon and jar

task. The other tasks are less sensitive to changes in the λ parameter, on average.
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Figure 4.20: The impact of varying the p value threshold. The x axes are varying p values
thresholds and the y axes are the mean error percentage across all subjects.
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Figure 4.21: The impact of varying λ. The x axes are varying λ values thresholds and the y axes
are the mean error percentage across all subjects.
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4.6.2 Prediction with Force Data Alone

In this section, we evaluate the ability of statistics based on recorded force data to augment or

impair the predictive capacity of the kinematic data. We focus on the spoon and bean task, as

this is the only analyzed task for which force data was recorded. To test the value of the force

data we proceed as follows:

First, we train regressions with only the kinematic data from the motion capture device.

Second, we train regressions with only the kinematic data from the device of our design.

Third, we train regressions with only the force data from the force sensing spoon.

Finally, we train regressions with both the force and kinematic data from the tools that we

developed.

In all cases, we design regressions based on total data as well as parts of the spoon task (Predictors

Numbered 1 and 2).

In Figure 4.22 we illustrate error rates for all regressions. Errors are once again reported as the

mean percentage of error across subjects. A 10% error for a 15 point task is an error, on average,

of 1.5 points. As before, each set of regressions was built using several different values for λ and

p-value parameters. P values ranged from .01 to .21, and the λ values ranged from .5 to 15. Each

point on the graph, then, represents the mean and standard deviation in error across all of these

parameter values. In Figure 4.23 are example predictions made with force data alone, kinematic

data alone, as well as both streams of data.

In Figure 4.22, red are results from the motion capture device. Next, are results from the

tools of our design using kinematic data alone. To the right of this are results from the force data

alone. Finally, are results using both the force and kinematic data.

The motion capture device outperforms all of the tools of our design consistently. When

looking out our device, force data alone generates predictions that are comparable to those based

on kinematic data alone. The force data produces less average error when computed over the

entire task, and more when computed over parts. The reverse is true when looking at kinematic
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Figure 4.22: A comparison of predictions made with force data and kinematic data. Errors are
reported as the mean percentage of error for subjects. A 10% error for a 15 point task is an error
of 1.5 points. Results reported are error rates as computed over multiple values of p and λ.
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Figure 4.23: Predictions made with force and kinematic data separately. At the top are predic-
tions made using kinematic data alone. In the middle are predictions made using force data alone.
At the bottom are predictions made with both sources of data. In dotted lines are corresponding
assessments from human experts. In light blue are predictions based on all task data (i.e., using
Predictor 1). In dark blue are predictions using task segments (i.e., using Predictor 2)
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data alone. Moreover, when the force data is combined with the kinematic data, the overall error

of predictions is smaller than for kinematic or force data alone. But, predictions become slightly

more sensitive to variations in p-value and λ.

4.6.3 Discussion

The key contribution of this chapter is to demonstrate that robust predictors of functional health

can be produced using low cost and home appropriate devices. Prior work has demonstrated

several kinematic or force statistics that correlate strongly with functional health [5, 6]; what we

demonstrate here is that many of these correlations can be detected across a wide variety of tasks

and used to predict scores in the absence of a clinician. We additionally show that these predic-

tions can be made with relatively cheap technologies, like cameras and force sensing resistors.

Several motor statistics in particular seem to strongly relate to functional status irrespective

of the constraints of our particular task set. The most notable of these is the displacement of

the torso during reaches and manipulations of objects on the desktop. Other kinematic and force

statistics, by contrast, contain information about functional status only during select portions of

the tasks to which they belong. Such statistics include abduction at the shoulder, variance in

flexion about the elbow, or the number of peaks in the recorded force profile on the surface of

objects that are manipulated.

Interestingly, the measured features that most strongly related to functional health do not di-

rectly relate to those features that were emphasized by humans in the last chapter. While the

system relied heavily on perception of the elbow and torso, the human experts focused pre-

dominantly on movement of the hands and fingers during their verbalizations. Moreover, the

humans focused heavily on smoothness. Our system, however, has a very difficult time captur-

ing smoothness statistics reliably and consistently. These differences in human, as opposed to

machine, perception may complicate the provision of feedback.

In this chapter, we also illustrate several modelling options options for automatic score pre-
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diction that yield reasonable results. We can, for example, model each task independently or

we can model each task as the sum of its parts. We can also create generalized regressions that

operate across tasks.

The use of generalized regressions to predict functional scores opens the doors to interesting

future research. A general predictor of lifts, for example, will not work on all lifts but it may

work on lifts that share some common features, like start and end position of the hand. Scores for

lifts in the context of the comb task, for example, were not well predicted by regressions in our

study. So how broadly can a general tool be used to score the functional health of lifts? Which

lifts are comparable, and which are not?

In the future, we would like to see stroke survivors monitored continuously by low cost and

ubiquitous monitoring devices at home. We would like to see discriminatory task elements, like

lifts to the mouth or reaches to targets, automatically detected and evaluated as they take place

during real, every day routines. here, we prototype a system that is consistent with our long term

vision, but which works in the context of a laboratory environment and with several simplifica-

tions. Although the current system makes use of markers and objects that have wires, we are

optimistic that the state of the art is such that markerless algorithms and wireless devices can

easily be integrated into the measurement framework we have outlined. Our current work, then,

serves as a baseline for development and technical optimization.

For the clinical community, we seek to provide food for thought relating to the kinds of ther-

apy, and therapeutic activity, that might take place in the home. For the technical community, by

contrast, we provide a set of application oriented evaluation criteria with which to determine the

utility of algorithms, particularly those which relate to kinematic tracking and activity recogni-

tion.
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Chapter 5

Future Work: Moving to the Home

The results from the last chapter demonstrate a reasonable capacity to predict functional scores

on the AMAT automatically, robustly, and with inexpensive devices. Moreover, they illustrate

the potential to predict functional health based on the perception of lifts, grabs and object ma-

nipulations that take place in the context of several different tasks.

In the future, we want to deploy automatic assessment tools in a range of stroke survivors’

homes and workplaces. There, we expect to make functional assessments continuously, over

days or weeks or months, and based on the perception of activity as it actually takes place in real

functional environments. We expect to perceive lifts, grabs and manipulations as they relate to

a wide variety of functional activity, and to extract those lifts and grabs that carry the most in-

formation about functional health. We will then summarize our findings for review by therapists

or clients of therapy, thereby providing a record of functional change as it is situated in the real

world and over long stretches of time.

In order to get a feel for the kinds of problems that are specific to deployment in homes and

workplaces, we made a preliminary effort to instrument a single stroke survivor’s home. This in-

volved transporting all of the cameras and force sensing objects to a private home, and installing

them in his basement recreation room. Once installed, we measured a variety of desktop activity

on the part of this stroke survivor over a two week period.
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The exercise 200 GB of data that will fuel future research. The information we acquired

promises to provide insight into how robust our assessment technologies are to new environ-

ments and how accurately we can track performance quality relating to activity outside of the

clinic. The installation, moreover, has clearly illustrated some of the challenges and difficulties

that are specific to home deployment.

In this chapter, we report a preliminary set of results from this initial home deployment. The

results that are quantitative relate to the force information that was acquired. The kinematic

data, by contrast, required time consuming daily calibrations of cameras; calibration and recon-

struction, then, remains a work in progress. Nevertheless, we illustrate some of the challenges

encountered; much work, however, is left for future research.

5.1 Methods

A single stroke survivor was recruited for the study in the home. This individual was a single

83 year old male, 13 years post-stroke and he was recruited through a local area stroke support

group. As in prior studies, the participant was screened for both cognitive as well as basic phys-

ical and functional health. The preliminary assessments he was asked to perform included the

Semmes-Weinstein, the upper body and speed portion of the Fugl-Meyer Assessment (FMA) and

the Visual Analog Scale (VAS). He was also assessed using the Mini-Mental Exam (MME) and

the Ashworth scale at the elbow and wrist. Results from preliminary assessments are given in

Table 5.1. All assessments were conducted in the home and by a licensed Occupational Therapist

with more than 10 years experience working with stroke survivors.

After initial screening, the investigator and an Occupational Therapist visited the home of the

stroke survivor and met both with him and his wife. This visit was made to determine the most

appropriate site for measurement equipment, as well as to determine the activities to be measured

in the home. The visit was also made so as to connect with others who were living in the home

and to inform them of the intention, purpose and duration of the study.
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Table 5.1: Basic demographics of the participating stroke survivor.

145



AMAT Task/Subtask
Task 1: Cut ”Meat”
1. Pick up knife and fork
2. Cut ”meat” (Play-Doh)
3. Fork to mouth
Task 2: Foam ”Sandwich”
4. Pick up foam ”sandwich”
5. ”Sandwich” to mouth
Task 3: Eat With Spoon
6. Pick up spoon
7. Pick up dried kidney bean with spoon
8. Spoon to mouth
Task 4: Comb Hair
9. Pick up comb
10. Comb hair
Task 5: Open Jar
11. Grasp jar top
12. Screw jar top open
Task 6: Use Telephone
13. Phone received to ear
14. Press phone number

ARAT Task
Task 1: Lift 10 cm block
Task 2: Lift 2.5 cm block
Task 3: Lift 5 cm block

Table 5.2: AMAT and ARAT tasks chosen for home recording.

1. Designing the Activity Regimen. The activity regimen for home practice was designed to

span no more than two hours in length. It was also designed to be performed at an instrumented

desktop situated in the subject’s home, every week day over a two week period. The activities

that were chosen for measurement were of three varieties:

First, the same elements of the AMAT that had been measured in the laboratory were se-

lected for performance. These activities were chosen so as to easily and directly permit use of

those assessment devices that were trained in the laboratory. These activities are listed in Table
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5.2.

Second, three elements of the Action Research Arm Test (ARAT) were selected for daily

performance. These activities required the participant to grasp and lift blocks of three different

dimensions, and to place these blocks on top of a small box. ARAT activities were selected

because they involved simple, constrained lifts and grasps confined to the same work area as the

AMAT. Diagnostic kinematic and dynamic statistics relating to AMAT, then, were expected to

generalize well to these tasks. ARAT activities are also listed in Table 5.2.

Finally, we selected activities that were less constrained, but which contained easily de-

tectable lifts, grasps, and manipulations confined to the desktop. This last category of activity

was designed primarily to be motivating to the participant, to be easily decomposable into task

segments, and to elicit movement on the more impaired side of the body that was challenging

but not exhausting. After discussion with the subject and therapist, daily games of checkers were

selected as the activity of interest. These games were to take place on a larger than normal board,

however, so as to promote reaches spanning the whole table. The board that was agreed upon

was 18 x 18 inches in size; the farthest squares were located roughly a full arm’s length from the

subject during game play.

2. Instrumenting the Home. The site that was chosen for the location of our system was the

participant’s basement recreation room. This was a room roughly 200 square feet in size, with

low overhead ceilings, roughly 8 feet high; it was the regular site for family card games. There

were no windows in the room and hence no ambient light, making the room easy to control for

the purpose of measurement with cameras. It was also adjacent to the garage, making the trans-

portation of large or heavy equipment relatively simple.

The installation spanned an area that was roughly 64 square feet in size. It consisted of eight

cameras, as before, all of which were installed on poles that were designed to hold commercial
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lights. These poles, which were cast iron, extended from the floor to the ceiling and were stably

affixed to large cast iron bases. Four poles were erected roughly one foot from each of the four

corners of a card table; this table was 3 feet by 3 feet in size and its surface was 2 and a half feet

from the floor.

Video from the eight cameras was sent to a set of AXIS MPEG2 severs, which converted the

video to MPEG2 format in real time. These MPEG2 streams were then sent via Ethernet through

a desktop computer; data was subsequently stored on an external hard drive. The desktop was

a 3 GHz PC with a front side bus. Force data from the objects was acquired through a Data

Translation DT 9800 analog to digital converter. Wires ran from the objects to this converter

box, which was connected to the same desktop machine via a USB connection. All of the de-

vices were synchronized at the onset and offset of recording with a button press that came from

the investigator. This button press would simultaneously send a flash of light to each recording

camera and a pulse to the analog to digital converter.

Two challenging features of the installation were the negotiation of electricity requirements

and the safe storage of wire and cable. The MPEG2 boxes required 8 amps in total; to avoid

blowing fuses that might be rated only for 15 amperes we therefore used multiple circuits. Ac-

cessing these circuits, however, required the use of extension cables. The extension cables and

the wires related to the setup all combined to create a potentially hazardous situation in the house,

as they were easy to trip over. To alleviate this risk, the investigator agreed to store cables se-

curely in the home at the end of each day and re-cable instruments before daily recordings. This

proved to be an acceptable and safe arrangement, but it added a created a substantial amount of

additional work. Not only was work created as a result of the cabling itself, but work was created

when cameras were bumped or touched during the re-wiring. Bumping and touching of cameras

meant that calibrations for each day of recording are each somewhat unique.

Finally, to facilitate easy visual tracking, we once again asked the subject to wear a brightly

colored jersey. This jersey was custom tailored for the subject, to insure a proper fit. It was

also made of a slightly lighter fabric, as recording took place when the weather was warm. Prior
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Figure 5.1: The cotton jersey.

Figure 5.2: Views of the subject performing activities in the home.

jerseys were made of fleece which, while providing a very nice and matte surface with consistent

colors, were hot. The cotton jersey is illustrated in Figure 5.1.

3. Performing the Activity Regimen. Recordings of activity took place every weekday over

a two week period. The protocol for every day of activity remained the same. The investigator

would arrive at the home of the participant, put cables for the recording devices in place, adjust

cameras, and turn the system on. The subject would then be outfitted with the colorful jersey

and seated at the desktop in the basement recreation room. Once seated, he would perform the
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six elements of the AMAT and the three elements of the ARAT. Finally, the day’s activity would

close with extended games of checkers. During these games, the investigator sat opposite the

participant at the card table, and served as his opponent. Before any activity took place, the

subject was informed that he was permitted to take rests whenever he needed, or to terminate

recording at any point.

During the performance of the AMAT and ARAT elements, the starting locations for objects

were standardized according to either assessment’s instructions [132]. These starting positions

required the subject to have his back touch the back of the chair, his elbows at roughly 90 degree

angles, and hands on designated spots on the counter top. The starting location for the checker-

board was also standardized from day to day; this location was such that the farthest squares on

the board were roughly a full arm’s length from the subject’s sternum.

AMAT and ARAT tasks were performed at a comfortable movement speed and at the prompt-

ing of an investigator. Once the subject was completed with these tasks, he was asked to return

his hands to their starting locations. During game play, starting and stopping locations were more

flexible. The subject was asked to keep his hands visible during game play, and not to rest them

under the table and on top of his lap.

An illustration of activities as they took place in the home is found in Figure 5.2. In the

top row, the subject is performing an element of the ARAT with a force sensitive block. In the

bottom row, the investigator and the subject are engaged in a game of checkers on an 18 x 18

inch board.

During the performance of activities, data was captured with video cameras and force sensing

objects, if they existed. All measurement devices were synchronized with a button press by the

investigator.

3. “Ground Truth” Data. In order to generate “ground truth” data relating to the functional

health of the individual in the home, we asked a licensed Occupational Therapist to make visits

to the house periodically. During these visits, the therapist watched performances of the AMAT
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and ARAT, and assessed the quality of the perceived motions. The first visit was made on Day 3

of the recording, the second visit on Day 5, and the last two visits were on Day 8 and 10.

5.2 Data Analysis

The first two days of recording primarily served to provide an opportunity to debug the camera

setup and the activity regimen. By day three, a rhythm had been established and recordings pro-

ceeded in a more smooth and organized fashion. As a result, we discard the first two days of

recording and focus our results on the data generated after Day 2.

We report results relating to the force data here. Before computing any statistics on the force

profiles, we clipped them so that the first sample represents the first moment when the computed

force was over 5% of the maximum force, and the last sample represents the last moment when

the recorded force is over this threshold. The spoon task is slightly complicated by the fact that

the subject remains holding the spoon at the end of this task, in many instances.

After clipping, the following statistics were computed across recorded force profiles:

1. The mean, variance and maximum recorded force. To capture potential force disturbances

or changes in force distribution across time, we measured the peak, average and variances of

forces produced during object manipulations. All forces were measured in volts, converted to

Newtons, and then summed across all the sensors placed on an object. These summed forces

were then median filtered with a filter that was a sixth of a second in width. They were also

passed through a fourth order Butterworth filter, to remove high frequency noise.

2. Smoothness of force. To capture jerks in the force profiles, we measured smoothness of force

production. As in prior studies, smoothness in force profiles was measured as the sum of squared

jerk as well as and the number of force profile peaks.

3. Force MAPR. Finally, we measured the proportion of time that the recorded force exceeded a

given percentage of the peak force. This we define a force related “Movement Arrest Period Ra-
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tio” (MAPR). It may how ever be more accurately termed a “Force Arrest Period Ratio” (FAPR).

In order to determine the relative significance of any of these features, we tested the strength

of their association with the AMAT scores assigned by the human expert. AMAT scores, how-

ever, were only assigned at 4 time points, while force recordings were made over 8 complete

days. In order to fill in the blanks, AMAT scores from the human were linearly interpolated

between days. The expected score for a given day between the therapist’s visits was therefore

assumed to be a linear interpolation of the two scores assigned both before and after that day.

To test for the significance of the various force features, we correlated the interpolated AMAT

scores from the human and the computed force features. We then looked for correlations that

strongly departed from zero. To quantify the deviation of each computed correlation from zero,

we computed the following test statistic, t, for each correlation:

t =
R(i)− 0

SE(R(i))
(5.1)

Where i is the index of a particular feature (i.e. mean or maximum force, for example) and

SE(R(i)) is the estimate of the standard error in this features feature’s correlation with AMAT

scores over time. Computed t statistics are distributed according to t distributions. Those t

statistics that lie at the tails of these distributions indicate significant departures from zero, and

can be identified by computing associated p-values. Smaller p-values indicate t statistics that are

located farther from the center of the distribution.

5.3 Preliminary Results

Figure 5.3 illustrates the AMAT scores that were assigned to the participant by the therapy expert

over the two week interval. Each of these scores is the sum of scores that were produced on the

six tasks in the battery. The scores for each task are shown in Table 5.3.
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Table 5.3: AMAT scores over a two week period.

153



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

52

54

56

58

60

62

64

66

68

70

evaluation number

A
M

A
T

 s
co

re

AMAT evaluations over a two week period

Figure 5.3: AMAT scores across a two week period.
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Figure 5.4: Cube force profiles across a two week period.

Figure 5.4 illustrates the sum of force measurements as measured across all the sides of the

7.5 cm cube during the performances of the ARAT. The Y axes on these graphs is measured in

Newtons and the X axes span the number of samples acquired during the task. In Figure 5.5 are

the sum of force profiles recorded from the handle of the force sensing spoon. The X axes span,

as before, the number of recorded samples.

In Tables 5.4 and 5.5 are results from the correlations between the computed force statistics

and the interpolated AMAT scores from the expert. Numbers in each column correspond to the p-

values that test for the strength of each correlation and, in parentheses next to these p values, are

the correlations themselves. An asterisk indicates significant association with functional score at
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Figure 5.5: Spoon force profiles across a two week period.

Statistic P-value (corr)
Mean 0.049 (0.77) *
Maximum 0.24 (0.49)
Variance 0.013 (-0.86) *
Jerk 0.22 (-0.55)
Peaks 0.057 (-0.76) *
MAPR 0.13 (0.66)

Table 5.4: Force statistics from the cube.

Statistic P-value (corr)
Mean 0.73 (0.18)
Maximum 0.33 (0.43)
Variance 0.17 (-0.61)
Jerk 0.23 (-0.55)
Peaks 0.022 (-0.51) *
MAPR 0.27 (0.5)

Table 5.5: Force statistics from the spoon.
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Figure 5.6: Peaks in force profiles, from two objects, across a two week period.

the .1 level.

Finally, in Figure 5.6 are graphs of the number of peaks in force profiles as related to

functional scores. One the left of the figure are peaks in profiles recorded by the cube, and on the

right are peaks recorded by the spoon. Each point corresponds to a different day of measurement,

and the days have been indicated by numbers on the graphs.

Both objects record increases in maximum forces across the various days of use that are

associated with increases in functional score, but these associations are not significant at the .1

level. The cube does record significant associations between functional score and the variance

in force, the mean force produced, as well as the number of peaks in the force profile. The only

significant association between force statistics and functional score for the spoon relates to the

number of peaks in the force profile. In all cases, the variance in force is negatively associated

with functional score. The is the same for the recorded jerk as well as the number of peaks in the

force profile. The mean and maximum forces, by contrast, are positively correlated with score,

as is the force related MAPR.

The same directions in correlations, for the most part, are found in the associations between

force statistics and functional score in the laboratory environment. In the lab study, the mean
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force recorded by the force sensing spoon was positively correlated with functional score, as was

the MAPR. The most significant association between a force statistic and AMAT score in the lab

related to the peaks statistic, and the same is true here.

5.4 Discussion

It is encouraging so see that results in the home relate to the results from the laboratory study.

Where the results in the laboratory were used to discriminate between functional health across

many individuals, however, here the results discriminate between the functional status of the

same individual across many days. This gives us reason to believe that predictive regressions

trained in the lab with data from many individuals can potentially be used to track the perfor-

mance change of a single individual in the home.

Moreover, it is encouraging to see that the performance trends that are captured by one object

can generalize across objects. Trends captured by the force sensing cube were also well reflected

in the data from the force sensing spoon. The individual force profiles from the spoon, however,

are decidedly more complicated than those from the cube. Nevertheless, the objects obviously

share some similarities when it comes to the manner in which they are manipulated across days.

The reasons for the change in the home, however, remains somewhat unclear. Some con-

founding variables that may have impacted motor performance include:

1. Familiarity with the Protocol. The recording setup as it currently stands does not in-

tegrate seamlessly into the home. It requires a fair amount of setup time and a fair amount of

learning on the part of the subject. The objects have wires and the individual who interacts with

the system must wear a jersey. All of these elements make for an unusual situation that requires

at least a little bit of time to become fully comfortable with. The improvements in the recorded

scores, then, could be the product of increased familiarity with the recording setup and with the

measurement protocol.
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2. Better Preparation for Recording. Coupled with the increased familiarity with the recording

setup came an increased ability on the part of the subject to prepare for recordings. The record-

ing setup was located in the subject’s basement recreation room. Getting to the setup required

the participant to climb down a full flight of stairs. During the first few days of recording, this

climb down the stairs occurred immediately before recordings began. The climb, moreover, was

by far the most tiring activity of the day as may very well have influenced performance at the

desktop for some time afterwards. After a few days of familiarity with the recording protocol,

however, the subject would prepare for sessions by entering the recreation room perhaps twenty

minutes before the sessions began. He would work in his office and recover strength; by the time

recording began on these later days, then, he was relatively well rested. This difference may also

have impacted the quality of later, versus earlier, scores.

Irrespective of the reason for the increase in scores, we demonstrate that statistics which

capture this increase can be captured with low cost devices.

5.5 Conclusion and Future Work

The purpose of this portion of the work is really to demonstrate that it is feasible to instrument

the home of stroke survivors with low-cost sensing devices, and to record clinically meaningful

motion in this environment. Some of our preliminary results tell us that:

1. Low cost measurements made in the home can, in fact, capture clinically meaningful

change. Force data yields several statistics that capture functional change over a two week pe-

riod. Many of these statistics, moreover, seem to directly relate to meaningful statistics in the

laboratory. Such statistics include the number of peaks in the force profile as well as the mean

force recorded on objects surfaces.

2. Manipulations of different objects share characteristic force features. In the laboratory,
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we found that kinematic data from different tasks were comparable. Torso displacement, for

example, related strongly to functional score across the tasks that were measured. Here, we find

that force statistics also share similarities across tasks. This is encouraging, and tells us that task

sub-components may possibly be defined not only as they relate to kinematics, but as they relate

to force data as well.

3. Information rich activity regimens can be both designed and measured in the home. One

of the interesting features about our work in the home is that it involved partnering the capacities

of a particular individual with the strengths of our measurement devices. Walking into the home,

we knew we needed to restrict the activities we recorded to those that would be likely to emulate

the laboratory study. A therapist and a stroke survivor worked within these constraints and in the

home to select activities that would be motivating, fun, and clinically meaningful. This way of

interacting with clients in the home emulates what we expect to have happen in the future. We

expect to build devices that are capable of measuring functional change as it relates to key kinds

of movements, and we expect that clients of therapy and therapists will design home rehabilita-

tion programs that keep this in mind.

Although we present encouraging initial results here, we still must work to recover kinematic

data. Kinematic data proved to be more challenging to process in the home environment than it

did in the lab. There are several reasons for this:

First, the calibrations from data to day changed slightly in the home. This adds a considerable

amount of work to the data processing problem, as calibrations are currently done largely by

hand. It is therefore important that we work on some alternative, automatic calibration tools for

home deployments in the future.

Second, the lighting, although it was fairly controlled, made for difficult processing of colors. In

the home situation, light came from low overhead ceilings. These lights, moreover, were almost

directly over the subject. As a result, the subject’s head in images is often extremely white in
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color. The harsh overhead lighting also created very extreme shadows on the body of the subject.

These shadows mean that individual colors on the jersey may have many manifestations in a

given image. To ameliorate this situation, we must engineer color detectors that are conscious of

shadows. We must also strengthen our kinematic tracker by engineering stronger constraints on

the shapes and sizes of filtered limbs.

These problems, however, also present new opportunities. The difficulty of the tracking

situation in the home challenges the limits of the tracking tools we have already developed, and

inspires the integration of new tools and technologies into our system. Difficulties, then, outline

our next iteration of software development, and ensure that we will continue to lie at the edge of

what is possible.
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Chapter 6

Conclusion

6.1 Summary

The main purpose of this research is to explore inexpensive and robust measurement devices

that are sensitive to motor pathologies typical to stroke survivors, and which can theoretically

operate invisibly and continuously in the home. We have offered three pieces of research in this

dissertation, all of which provide incremental movement toward our long term goal.

First, we interviewed therapists to determine the ways in which they typically assess clients

of therapy in the context of functional activity. We did this by executing a protocol analysis of

therapists, which asked them to verbalize their decision making process as it was taking place.

From this exercise, we learned that therapists tend to emphasize the hands and fingers of their

clients more than any other body part. We also learned that they heavily emphasize smoothness

in perceived motion when they are making their functional determinations.

Next, we looked to automate assessments with low cost devices and in a fashion that is con-

sistent with therapists. Our technologies of choice were video cameras as well as objects instru-

mented with small arrays of force sensing resistors. Our results indicate that automation using

low cost technologies is possible in a laboratory context. Moreover, we show that automatic

tools can be built to predict functional scores based on the observation of lifts, manipulations
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and grasps that come from many different tasks. The measured statistics that were found to cor-

relate most strongly with functional score included variance about the elbow and motion of the

torso. The smoothness of force applied to the surface of objects, as measured in terms of the

number of peaks in the force profiles, also strongly related to functional health.

Finally, we explored the possibility of making automated assessment in the home. To do this,

we transported all of our measurement devices to the home of a stroke survivor and measured

his functional desktop activity over the course of two weeks. Preliminary results indicate our

measurement devices are capable of measuring performance change in this context in a way that

is consistent with the opinions of human experts.

Future Work

The results we have produced thus far are encouraging, yet there is still a substantial amount

of work left before we achieve our goal. Some of the work that must take place includes:

1. Refinement of the system. The system we have developed thus far is an interesting proto-

type, but it is far from being really useful. For one, it is not real time. Tracking results currently

take slightly less than a second per frame to produce, which means that a second of video may

take 30 seconds of processing time to analyze. The algorithms that we use, however, are all fairly

simple and should be able to operate at 10 frames per second, conservatively. To develop a real

time system, however, a substantial software engineering thrust is required. Moreover, calibra-

tion is still largely done by hand both across the cameras and objects. And finally, the system

still requires markers and wires, which inhibits the “naturalness” of the environment in which it

is situated. These elements must be removed for a mature instantiation of our system.

2. Testing with more subjects. In Appendix 1 are results from power analysis. These in-

dicate that, in order to confidently claim that our system can produce accurate functional scores
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for stroke survivors, we need data from at least 25 stroke survivors. We must therefore test

with more individuals. Moreover, preliminary work illustrates that our system has a tendency

to under-estimate the scores of high functioning individuals and to over-estimate scores of low

functioning individuals. It may be the case that three separate classifiers will produce the most

accurate results. One would be for individuals at the high end of the AMAT range, one for those

in the middle, and one at the low end.

3. The development of feedback paradigms. Finally, none of the work presented here

is really useful unless it is used to provide feedback about motor performance to therapists or

clients of therapy. What we have learned through protocol analysis, however, is that therapists

may prioritize features like smoothness or motion of the hands. These features, however, are very

difficult to measure with the devices that we have designed. There is an open question, then, as

to how useful feedback that we can provide about the gross motion of the upper body will be.

The utility of this information must be tested in the context of a biofeedback intervention, once

our technologies are real-time and robust.
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