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Abstract

Students use intelligent tutors and other typemtaractive learning environments in a
considerable variety of ways. In this thesis, &iflety work to understand, automatically detect,
and re-design an intelligent tutoring system togtda a behavior | term “gaming the system”.
Students who game the system attempt to succete ilearning environment by exploiting
properties of the system rather than by learnirgrttaterial and trying to use that knowledge to
answer correctly.

Within this thesis, | present a set of studies ain@wards understanding what effects gaming
has on learning, and why students game, using dioation of quantitative classroom
observations and machine learning. In the courskesfe studies, | determine that gaming the
system is replicably associated with low learniinge data from these studies to develop a profile
of students who game, showing that gaming studeat® a consistent pattern of negative affect
towards many aspects of their classroom experégmntstudies.

Another part of this thesis is the development &maghing of a detector that reliably detects
gaming, in order to drive adaptive support. Irstthesis, | validate that this detector transfers
effectively between 4 different lessons within theédie school mathematics tutor curriculum
without re-training, suggesting that it may be imdegtely deployable to that entire curriculum.
Developing this detector required developing newmree learning methods that effectively
combine unlabeled data and labeled data at diffepetn sizes in order to train a model to
accurately indicate both which students were gansind when they were gaming. To this end, |
adapted a modeling framework from the Psychomélitesture — Latent Response Models
(Maris, 1995), and used a variant of Fast Correlati@sd&l Filtering (Yu and Liu 2003) to
efficiently search the space of potential models.

The final part of this thesis is the re-design ofexisting intelligent tutoring lesson to adapt to
gaming. The re-designed lesson incorporates anateiiragent (“Scooter the Tutor”) who
indicates to the student and their teacher whetherstudent has been gaming recently. Scooter
also gives students supplemental exercises, intordier the student a second chance to learn
the material he/she had gamed through. Scooteraesithe frequency of gaming by over half,
and Scooter’s supplementary exercises are as$edtatsubstantially better learning; Scooter
appears to have had virtually no effect on therathedents.
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Chapter One

Introduction

In the last twenty years, interactive learning Emments and computerized educational supports
have become a ubiquitous part of students’ classeaperiences, in the United States and
throughout the world. Many such systems have becosny effective at assessing and
responding to differences in student knowledge @yhition (Corbett and Anderson 1995;

Martin and vanLehn 1995; Arroyo, Murray, Woolf, andeBl 2003; Biswas et al 2005). Systems
which can effectively assess and respond to cogjdifferences have been shown to produce
substantial — and statistically significant — leagrgains, as compared to students in traditional
classes (cf. Koedinger, Anderson, Hadley, and M&&7; vanLehn et al 2005).

However, even within classes using interactivailegenvironments which have been shown to
be effective, there is still considerable variatiostudent learning outcomes, even when each
student’s prior knowledge is taken into accounte Thesis of this dissertation is that a
considerable amount of this variation comes frofieinces in how students choose to use
educational software, that we can determine whathaliors are associated with poorer learning,
and that we can develop systems that can autorihatiedect and respond to those behaviors, in
a fashion that improves student learning.

In this dissertation, | present results showing thi@e way that students use educational software,
gaming the systenis associated with substantially poorer learningiehmmore so, in fact, than

if the student spent a substantial portion of eelelss ignoring the software and talking off-task
with other students (Chapter 2). | then develop adelovhich can reliably detect when a student
is gaming the system, across several differesarisgrom a single Cognitive Tutor curriculum
(Chapter 3). Using a combination of the gaming deteand attitudinal questionnaires, |

compile a profile of the prototypical gaming stutlemowing that gaming students differ from
other students in several respects (Chapter 4)xtlg@nbine the gaming detector and profile of
gaming students, in order to re-design existing i@tige Tutor lessons to address gaming. My
re-design introduces an interactive agent, Scdbgeil utor, who signals to students (and their
teachers) that he knows that the student is garang, gives supplemental exercises targeted
towards the material students are missing by garf@hgpter 5). Scooter substantially decreases
the incidence of gaming, and his exercises areias=bwith substantially better learning. In
Chapter 6, | discuss the larger implications of ttissertation, advancing the idea of interactive
learning environments that effectively adapt net jo differences in student cognition, but
differences in student choices.

Gaming the System

| define “Gaming the System” as attempting to sedda an educational environment by

exploiting properties of the system rather thardayning the material and trying to use that
knowledge to answer correctly. Gaming strategieseen by teachers and outsiders as misuse of
the software the student is using or system thatstiudent is participating in, but are

distinguished from cheating in that gaming does viotate explicit rules of the educational

setting, as cheating does. In fact, in some sitnatstudents are encouraged to game the system —
for instance, several test preparation compangeh tstudents to use the structure of how SAT



guestions are designed in order to have a higlurghility of guessing the correct answer.
Cheating on the SAT, by contrast, is not recommeahtyg test preparation companies.

Gaming the System occurs in a wide variety of diffeeducational settings, both computerized
and offline. To cite just a few examples: Arbrefd898) found that students ask teachers or
teachers’ aides to give them answers to math pnstbefore attempting the problems
themselves. Magnussen and Misfeldt (2004) have fouaidstindents take turns intentionally
making errors in collaborative educational gamesder to help their teammates obtain higher
scores; gaming the system has also been docunermtndr types of educational games (Klawe
1998; Miller, Lehman, and Koedinger 1999). Cheng and Veagai[2005) have found that
students post irrelevant information — in large ditas — to newsgroups in online courses which
are graded based on participation.

Within intelligent tutoring systems, gaming the s/® has been particularly well-documented.
Schofield (1995) found that some students quickly kdito ask for the answer within a
prototype intelligent tutoring system which did nmnalize help requests, instead of attempting
to solve the problem on their own — a behavior gsiit@lar to that observed by Arbreton (1998).
Wood and Wood (1999) found that students quickly angeatedly ask for help until the tutor
gives the student the correct answer, a findingjaaged by Aleven and Koedinger (2000).
Mostow and his colleagues (2002) found in a readingy tilat students often avoid difficulty by
re-reading the same story over and over. Alevdrhancolleagues (1998) found, in a geometry
tutor, that students learn what answers are mkshfito be correct (such as numbers in the
givens, or 90 or 180 minus one of those numbers), grttiase numbers before thinking through
a problem. Murray and vanLehn (2005) found that studarsing systems with delayed hints (a
design adopted by both Carnegie Learning (Aleven 2@@#l)by the AnimalWatch project (Beck
2005) as a response to gaming) intentionally makeseatdrigh speed in order to activate the
software’s proactive help.

Within the intelligent tutoring systems we studiede primarily observed two types of gaming
the system:

1. quickly and repeatedly asking for help until theotwives the student the correct answer
(as in Wood and Wood 1999; Aleven and Koedinger 2000)

2. inputting answers quickly and systematically. Retance, entering 1,2,3,4,... or clicking
every checkbox within a set of multiple-choice arsywntil the tutor identifies a correct
answer and allows the student to advance.

In both of these cases, features designed to h&tlpdant learn curricular material via problem-
solving were instead used by some students totbehweirrent problem and move forward within
the curriculum.

The Cognitive Tutor Classroom

All of the studies that | will present in this dessation took place in classes using Cognitive
Tutor software (Koedinger, Anderson, Hadley, andrkla995). In these classes, students
complete mathematics problems within the Cognifiegor environment. The problems are
designed so as to reify student knowledge, makuagst thinking (and misconceptions) visible.
A running cognitive model assesses whether theeatigdanswers map to correct understanding



or to a known misconception. If the student’s arrsaéncorrect, the answer turns red; if the
student’s answers are indicative of a known miggtion, the student is given a “buggy message”
indicating how their current knowledge differs framrrect understanding (see Figure 1-1).
Cognitive Tutors also have multi-step hint featyrestudent who is struggling can ask for a hint.
He or she first receives a conceptual hint, andreguest further hints, which become more and
more specific until the student is given the ans{see Figure 1-2).

Students in the classes studied used the Cogriitiv@r 2 out of every 5 or 6 class days, devoting
the remaining days to traditional classroom lectaned group work. In Cognitive Tutor classes,
conceptual instruction is generally given througlditional classroom lectures — however, in
order to guarantee that all students had the sameaptual instruction in our studies, we used
PowerPoint presentations with voiceover and siraplenations to deliver conceptual instruction
(see Figure 1-3).

The research presented in this dissertation wadwmiad in classrooms using a new Cognitive
Tutor curriculum for middle school mathematics (Kaeger 2002), in two suburban school
districts near Pittsburgh. The students participgtin these studies were in th&g" grades
(predominantly 12-14 years old). In order to guarartteat students were familiar with the
Cognitive Tutor curriculum, and how to use the tiggand — presumably — how to game the
system if they wanted to), all studies were coretlist the Spring semester, after students had
already been using the tutors for several months.

You have chosen anincorrect variable - please read the scenario
maore carefully and choose a variable that will helpyou answer the
gquestion it asks.

File Edit Tutor ‘Mindows Help

Figure 1-1: The student has made an error associatavith a misconception, so they receive a “buggy
message” (top window). The student’s answer is laksl in red, because it is incorrect (bottom
window).



You have already labeled a hlankwith 5, and your scale is 5

The next blankwill be 5 +35=10

L by-sn-6's skills
File Edit Tutor Windows Help

—| Understanding categorical variables
] | Understanding numerical variables
) | Determining whether & wariable can be used in & bar graph
T Placing the independert variable onthe X axis
——| Placing the dependent variable on the ¥ axis
] | Choosing the lower bound of an axis
] | Fincing the smallest value in & data set
——| Fincting the largest value in a data set
] | Fincling The range of & data set
] | Choosing an appropriste scale

— Labeling the first value onthe axis

— Labeling second value on the axis

— Labeling subsequert values on the axis
EE T N S S S —] Platting the first poirt

—] Platting subsequert poits

- (2[4

diagram E O & 3

Bxercise
{minutes)

Figure 1-2: The last stage of a multi-stage hint: fie student labels the graph’s axes and plots points
in the left window; the tutor’s estimates of the atdent’s skills are shown in the right window; the
hint window (superimposed on the left window) allows the tutor to give the student feedback. Other
windows (such as the problem scenario and interpration questions window) are not shown.

K 13 r
Numerical Data ‘W

When you write numbers along an
axis, keep a few things in mind:

2) The same number shouldnt be
repeated twice

10 15 20 25 30 35 40

—
10Q5 )20 25 30

Figure 1-3: Conceptual instruction was given via PeerPoint with voice-over,
in the studies presented within this dissertation.

Effectiveness of Existing Cognitive Tutors

It is important, before discussing how some stuslsntceed less well in Cognitive Tutors than
others, to remember that Cognitive Tutors are acegtionally educationally effective type of
learning environment overall. Cognitive Tutors h&veen validated to be highly effective across a
wide variety of educational domains and studiesgiVe a few examples, a Cognitive Tutor for
the LISP programming language achieved a learnaig gimost two standard deviations better
than an unintelligent interactive learning envircgmh (Corbett 2001); a Cognitive Tutor for
Geometry proofs resulted in test scores a let@aayhigher than students learning about
Geometry proofs in a traditional classroom (Andarstorbett, Koedinger, and Pelletier 1995);
and an Algebra Cognitive Tutor has shown in a numifestudies conducted nationwide to not
only lead to better scores on the Math SAT standaad test than traditional curricula



(Koedinger, Anderson, Hadley, and Mark 1997), but oalesult in a higher percentage of
students choosing to take upper-level mathematiosses (Carnegie Learning 2005). In recent
years, the Cognitive Tutor curricula have come ige in an increasing percentage of U.S. high
schools — about 6% of U.S. high schools as of the 2004 <2b@®| year.

Hence, the goal of the research presented hereti®mowngrade in any way the effectiveness of
Cognitive Tutors. Cognitive Tutors are one of thest effective types of curricula in existence
today, across several types of subject matteteabhswithin this dissertation | will attempt to
identify a direction that may make Cognitive Tut@gen better. A majority of students use
Cognitive Tutors thoughtfully, and have excellezdrning gains; a minority, however, use tutors
less effectively, and learn less well. The goidleofesearch presented here is to improve the
tutors for the students who are less well-serveekisting tutoring systems, while minimally
affecting the learning experience of students Wieady use tutors appropriately.

It is worth remembering that students game theeaysin a variety of different types of learning
environments, not just in Cognitive Tutors. Thougdo not directly address how gaming affects
student learning in these systems, or how thesemsgsshould adapt to gaming, it will be a
valuable area of future research to determine h@athesis’s findings transfer from cognitive
tutors to other types of interactive learning eoriments.

Studies

The work reported in this thesis is composed oéé&classroom studies, multiple iterations of the
development of a system to automatically detecimgmanalytic work, and the design and
implementation of a system to adapt to when stusigiaime.

The first study (“Study One”) took place in the Byyof 2003. In Study One, | combined data
from human observations and pre-test/post-testes,do determine what student behaviors are
most associated with poorer learning, finding thaming the system is particularly associated
with poorer learning (Chapter 2). Data from this @yuwvas used to create the first gaming
detector (Chapter 3); in developing the gaming dieted¢ determined that gaming split into two
automatically distinguishable categories of behaagsociated with different learning outcomes
(Chapter 3). Data from Study One was also usefutiareloping first hypotheses as to what
characteristics and attitudes were associatedgaitiing (Chapter 4).

The second study (“Study Two”) took place in theigp of 2004. In Study Two, | analyzed
what student characteristics and attitudes arecaded with gaming (Chapter 4). | also
replicated our earlier result that gaming is asgediwith poorer learning (Chapter 2), and
demonstrated that our human observations of gamadygood inter-rater reliability (Chapter 2).
Data from Study Two was also used to refine ouectetr of gaming (Chapter 3).

The third study (“Study Three”) took place in thprihig of 2005. In Study Three, | deployed a
re-designed tutor lesson that incorporated an atgve agent designed to both reduce gaming
and mitigate its effects (Chapter 5). | also gatddrether data on which student characteristics
and attitudes are associated with gaming (Chaptarsiig this data in combination with data
from Study Two to develop a profile of gaming studgChapter 4). Finally, Data from Study
Three was used in a final iteration of gaming deteienprovement (Chapter 3).
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Chapter Two

Gaming the System and Learning

In this chapter, | will present two studies whictopide evidence on the relationship between
gaming the system and learning. Along the way |llpresent a method for collecting
guantitative observations of student behavior ag tise intelligent learning environments in
class, adapted from methods used in the off-tablaWier and behavior modification literatures,
and consider how this method’s effectiveness camipéfied with machine learning.

Study One

By 2003 (when the first study reported in this disgeneawas conducted), gaming had been
repeatedly documented, and had inspired the regdeadi intelligent tutoring systems both at
Carnegie Mellon University/Carnegie Learning (doemed later in Aleven 2001, and Murray
and vanLehn 2005) and at the University of Massachaiggticumented later in Beck 2005).
Despite this, there was not yet any published emdehat gaming was associated with poorer
learning.

In Study One, | investigate what learning outcoraes associated with gaming, comparing these
outcomes to the learning outcomes associated \thér dehaviors. In particular, | compare the
hypothesis that gaming will be specifically assediaith poorer learning, to Carroll's Time-On-
Task hypothesis (Carroll 1963; Bloom 1976). Under Césdlime-On-Task hypothesis, the
longer a student spends engaging with the learmatgerials, the more opportunities the student
has to learn. Therefore, if a student spends agréaction of their time off-task (engaged in
behaviors where learning from the material is hetgrimary goal) they will spend less time on-
task, and learn less. If the Time-On-Task hypotlsesiere the main reason why off-task behavior
reduces learning, then any type of off-task belaiioluding talking to a neighbor or surfing the
web, should have the same (negative) effect onitgpas gaming does.

Methods

| studied the relationship between gaming and leayin a set of 5 middle-school classrooms at
2 schools in the Pittsburgh suburbs. Student agegedfrom approximately 12 to 14. As
discussed in Chapter 1, the classrooms studiedtalare part in the development of a new 3-
year Cognitive Tutor curriculum for middle schooathematics. Seventy students were present
for all phases of the study (other students, abdertg one or more days of the study, were
excluded from analysis).

1t is possible to define on-task as “looking at #treen”, in which case gaming the system is viasesh on-task
behavior. Of course, the definition of “on-task” dege on what one considers the student’s task te b&lo not
consider just “looking at the screen” to be that.task
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| studied these classrooms during the course lobd € class period) Cognitive Tutor lesson on
scatterplot generation and interpretation — thiséesis discussed in detail in Appendix A. The
day before students used the tutoring software;, tiewed a PowerPoint presentation giving
conceptual instruction (shown in Chapter 1).

I collected the following sources of data to iniggdge gaming'’s relationship to learning: A pre-
test and post-test to assess student learning titgiare field observations to assess each stsdent’
frequency of different behaviors, students’ endairse test scores (which incorporated both
multiple-choice and problem-solving exercises) measure of general academic achievément
We also noted each student’s gender, and colleeteded log files of the students’ usage of the
Cognitive Tutoring software.

The pre-test was given after the student had fiegskiewing the PowerPoint presentation, in
order to study the effect of the Cognitive Tutothrar than studying the combined effect of the
declarative instruction and Cognitive Tutor. Thegbtest was given at the completion of the
tutor lesson. The pre-test and post-test were drém prior research into tutor design in the
tutor's domain area (scatterplots), and are disdussdetail in Appendix B.

The guantitative field observations were conduetgbllows: Each student’s behavior was
observed a number of times during the course ¢f eass period, by one of two observers. |
chose to use outside observations of behaviorrridithe self-report in order to interfere
minimally with the experience of using the tutor was concerned that repeatedly halting the
student during tutor usage to answer a questioar(@hich was done to assess motivation by
deVicente and Pain (2002)) might affect both learnind an/off-task behavior. In order to
investigate the relative impact of gaming the sysie compared to other types of off-task
behavior, the two observers coded not just theuBrqy of off-task behavior, but its nature as
well. This method differs from most past observadicstudies of on and off-task behavior, where
the observer coded only whether a given studenbwaask or off-task (Lahaderne 1968;
Karweit and Slavin 1982; Lloyd and Loper 1986; Lee, Kalhd Nyre 1999). The coding scheme
consisted of six categories:

1. on-task -- working on the tutor

2. on-task conversation-- talking to the teacher or another student abdhe subject
material

off-task conversation— talking about anything other than the subject enizt

4. off-task solitary behavior— any behavior that did not involve the tutoringta@are or
another individual (such as reading a magazinarfing the web)

5. inactivity -- for instance, the student staring into spacepotting his/her head down on
the desk for the entire 20-second observation period

6. gaming the system- inputting answers quickly and systematicallgl/@nquickly and
repeatedly asking for help until the tutor gives #tudent the correct answer

2 We were not able to obtain end-of-course test dataone class, due to that class’s teacher ataliyediscarding the
sheet linking students to code numbers.
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In order to avoid bias towards more interestingli@matic events, the coder observed the set of
students in a specific order determined beforecthgs began, as in Lloyd and Loper (1986). Any
behavior by a student other than the student culyéreing observed was not coded. A total of
563 observations were taken (an average of 70.4 pesatagm), with an average of 8.0
observations per student, with some variation dudifferent class sizes and students arriving to
class early or leaving late. Each observatiordl&st0 seconds — if a student was inactive for
the entire 20 seconds, the student was coded as ibeicigve. If two distinct behaviors were seen
during an observation, only the first behavior obse was coded. In order to avoid affecting the
current student’s behavior if they became awasewleee being observed, the observer viewed the
student out of peripheral vision while appearindptak at another student. In practice, students
became comfortable with the presence of the olbseveey quickly, as evinced by the fact that we
saw students engaging in the entire range of siiuakaviors.

The two observers observed one practice classl pegether before the study began. In order to
avoid alerting a student that he or she was cugrdér@ing observed, the observers did not observe
any student at the same time. Hence, for this stwdycannot compare the two observers’
assessment of the exact same time-slice of a $ttehavior, and thus cannot directly compute
a traditional measure of inter-rater reliabilityhd two observers did conduct simultaneous
observations in Study Two, and | will present ateirrater reliability measure for that study.

Results

Overall Results

The tutor was, in general, successful. Student$ fx@m 40% on the pre-test to 71% on the
post-test, which was a significant improvement, 68)57.59, p<0.01. Knowing that the tutor
was overall successful is important, since it kstials that a substantial number of students
learned from the tutor; hence, we can investigdtatwharacterizes the students who learned
less.

Students were on-task 82% of the time, which is withie previously reported ranges for average
classes utilizing traditional classroom instruc{bloyd and Loper 1986; Lee, Kelly, and Nyre
1999). Within the 82% of time spent on-task, 4% was spékingwith the teacher or another
student, while the other 78% was solitary. The masident off-task behavior was off-task
conversation (11%), followed by inactivity (3%), andask solitary behavior (1%). Students
gamed 3% of the time — thus, gaming was substanakycommon than off-task conversation,
but occurred a proportion of the time comparabléntictivity. More students engaged in these
behaviors than the absolute frequencies might stiggE% of the students were observed
engaging in off-task conversation at least once, 2dfé abserved gaming the system at least
once, 21% were observed to be inactive at leastanmt8% were observed engaging in off-task
solitary behavior at least once. 100% of the studesres @bserved working at least once.

A student’s prior knowledge of the domain (measumgthe pre-test) was a reasonably good
predictor of their post-test score, F(1,68)=7.59, p<0.01, r=A32udent’s general level of
academic achievement was also a reasonably galictqref the student’s post-test score,
F(1,61)=9.31, p<0.01, r=0.36. Prior knowledge and the geneehldieacademic achievement
were highly correlated, F(1,61)=36.88, p<0.001, r=0.61; whentikederms were both used as
predictors, the correlation between a student'sigaitevel of academic achievement and their
post-test score was no longer significant, F(1,60)=p89.,17.

13



Gender was not predictive of post-test performaf¢®,68)=0.42, p=0.52. Neither was which

teacher the student had, F(3,66)=0.5,p=0.69.

Gaming the System and Off-Task Behavior: Relationgls to Learning
Only two types of behavior were found to be sigarfitly negatively correlated with the post-test,
as shown in Table 2-1.

r

Prior General Gaming the| Talking | Inactivity | Off-Task | Talking | Gender| Teache
Knowledge| Academic System | Off-Task Solitary | On-Task
(Pre-Test) | Achievement Behavior
Post- 0.32 0.36 -0.38 -0.19 -0.08 -0.08 -0.24 -0.08 | n/a, ni/s
Test

Table 2-1: The correlations between post-test scoend the other measures in Study One

Statistically significant relationships are in boldace

The behavior most negatively correlated with pest-score was gaming the system. The
frequency of gaming the system was the only ok@havior which was significantly correlated
with the post-test, F(1,68)=11.82, p<0.01, r=-0.38. The impagdamfing the system remains
significant even when we control for the studepite*test and general academic achievement,
F(1,59)=7.73, p<0.01, partial correlation = -0.34.

No other off-task behavior was significantly catet with post-test score. The closest was the
frequency of talking off-task, which was at bestgirally significantly correlated with post-test
score, F(1,68)=2.45, p=0.12, r=-0.19. That relationship reducElt59)=2.03, p=0.16, partial
correlation r=-0.22, when we controlled for pre-tastl @eneral academic achievement.
Furthermore, the frequencies of inactivity (F(1,68)=0p#0.51, r=-0.08) and off-task solitary
behavior (F(1,68)=0.42, p=0.52,r=-0.08) were not significantheleded to post-test scores.

Unexpectedly, however, the frequency of talkinthéoteacher or another student about the

subject matter was significantly negatively caedlto post-test score, F(1,68)=4.11, p=0.05, r= -

0.24, and this remained significant even when we obett for the students’ pre-test and general
academic achievement, F(1,59)=3.88, p=0.05, partial correfati®.25. As it turns out, students
who talk on-task also game the system, F(1,68)=10.52,p<0.037 r3Mis relationship remained
after controlling for prior knowledge and gener@d@emic achievement, F(1,59) = 8.90, p<0.01,
partial correlation = 0.36. The implications of thisding will be discussed in more detail in
Chapter Four, when we discuss why students gamsyitem.

To put the relationship between the frequency ohipg the system and post-test score into
better context, we can compare the post-test safretsidents who gamed with different
frequencies. Using the median frequency of gamimgng students who ever gamed (gaming
10% of the time), we split the 17 students who ever dgdmnte a high-gaming half (8 students)
and a low-gaming half (9 students). We can then gara the 8 high-gaming students to the 53

never-gaming students. The 8 high-gaming studentamscore at post-test was 44%, which was

significantly lower than the never-gaming studentean post-score of 78%, F(1,59)=8.61,

p<0.01. However, the 8 high-gaming students also haeilg@nre-tests. The 8 high-gaming

students had an average pre-test score of 8%, wild seoring over 17%, while the 53 never-
gaming students averaged 49% on the pre-test. Ghisndne might hypothesize that choosing

14



to game the system is mainly a symptom of not kngwamuch to start with, and that it has no
effect of its own.

However, as was earlier discussed, gaming renw@imsated to post-test score even after we
factor out pre-test score. This effect can betilaised by comparing the 8 high-gaming students
to the 24 never-gaming students with pre-test sceqesl to or less than 17% (the highest pre-
test score of any high-gaming student). When wehis, we find that the 24 never-gaming/low-
pre-test students had an average pre-test scai®pbut an average post-test score of 68%,
which was substantially higher than the 8 high-gagrstudents’ average post-test score (44%), a
marginally significant difference, t(30)=1.69, p=0.10. Thffeence is shown in Figure 2-1.

Figure 2-1: The difference in learning gains betweaehigh-gaming and non-gaming students,
among students with low pre-test scores, in Study 2.

Study Two

| conducted a second study, which focused both lonstudents game, and replicated the finding
that gaming was negatively associated with learfing study will be briefly discussed in terms
of what it told us about the relationship betweaming and learning, and will be discussed at
greater length in Chapter Four, in terms of whattoikd us about why students game.

In this study, | investigated gaming using both witative field observations, and a machine-
learned detector of harmful gaming (see Chaptere&hr The machine-learned detector had two
notable advantages over the observational datd, fie detector offered more precise
assessments of gaming frequency, by virtue dfilisydo assess every action, rather than just a
sample of action sequences. Secondly, the detedahe ability to automatically distinguish
between two types of gaming behavior: harmful ggraimd non-harmful gaming. These
behaviors appeared the same during observatiomnvdraetimmediately distinguishable by the
detector. They were also associated with diffdesarning consequences — across data sets, only
harmful gaming leads to poorer learning.
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Methods

Study Two took place within 6 middle-school classngaat 2 schools in the Pittsburgh suburbs.
Student ages ranged from approximately 12 to 14. Asisé&d in Chapter One, the classrooms
studied were taking part in the development of & Beyear Cognitive Tutor curriculum for
middle school mathematics. 102 students were préseall phases of the study (other students,
absent during one or more days of the study, werlei@ed from analysis).

| studied these classrooms during the course ok#mee Cognitive Tutor lesson on scatterplot
generation and interpretation used in Study OneeTday before students used the tutoring
software, they viewed a PowerPoint presentationngivconceptual instruction (shown in
Chapter One). Within this study, | combined the kalving sources of data: a questionnaire on
student motivations and beliefs (to be discussedhapter Four), logs of each student’s actions
within the tutor (analyzed both in raw form, andrtlugh the gaming detector), and pre-
test/post-test data. Quantitative field observasiovere also obtained, as in Study One, as both a
measure of student gaming and in order to imprineegaming detector's accuracy.

Inter-Rater Reliability

One important step that | was able to take in Stligdyo was conducting a full inter-rater
reliability session. As discussed earlier in thépter, in Study One, the two observers did not
conduct simultaneous observation, for fear ofiakpe student that he or she was currently being
observed. However, the two observers found that afshort period of time, students seemed to
be fairly comfortable with the their presence; leeruring Study Two, they conducted an inter-
rater reliability session. In order to do this, tia® observers observed the same student out of
peripheral vision, but from different angles. Theservers moved from left to right; the observer
on the observed student’s left stood close beadtudent to the left of the observed student,
and the observer on the observed student’s rigbtidurther back and further right, so that the
two observers did not appear to hover around dessigdent.

In this session to evaluate inter-rater reliahjlibe two observers agreed as to whether an action
was an instance of gaming 96% of the time. Cohen’s (306@f 0.83, indicating high reliability
between these two observers.

A third observer took a small number of observationthis study (8% of total observations), as
well, on two days when multiple classes were aogusmmultaneously, and one of the two
primary observers was unable to conduct obsergati®acause this observer filled in on days
when one of the two primary observers was unalaililvas not possible to formally investigate
inter-rater reliability for this observer; howewis observer was conceptually familiar with
gaming, and was trained within a classroom by drleeotwo primary observers.

Results
As in Study One, a student’s off-task behavior|wekng gaming, was not significantly correlated
to the student’s post-test (when controlling foeqiest), F(1,97)=1.12, p= 0.29, partial r = - 0.11.

By contrast to Study One’s results, however, tglkin-task to the teacher or other students was
also not significantly correlated to post-test ¢colting for pre-test), F(1,97)=0.80, p=0.37,
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partial r = - 0.09 (I will discuss the links betweelkitey on-task and gaming in Chapter Four).
Furthermore, asking other students for the answespecific exercises was not significantly
correlated to post-test (controlling for pre-teg¥)1,97)=0.52, p=0.61, partial r = 0.05.

Surprisingly, however, in Study Two, a studengsjfrency of observed gaming did not appear to
be significantly correlated to the student’s pest-{when controlling for pre-test), F(1,97)=1.16,
p= 0.28, partial r = 0.07. Moreover, whereas the pergerdhstudents in Study One who gamed
the system and had poor learning (low pre-test, post-test) was more or less equal to the
percentage of students who gamed the system bua hagh post-test, in Study Two almost 5
times as many students gamed the system and hight adst-test as gamed the system and had
poor learning. This difference in ratio between tve studies (shown in Table 2-2) was
significant,c?(1, N=64)=6.00, p=0.01.

However, this result is explainable as simplyfamtifice in the ratio of two types of gaming,
rather than a difference in the relationship betmvgaming and learning. These two types of
gaming, harmful gaming and non-harmful gaming, ianenediately distinguishable by the
machine learning approach discussed in Chapterélhrebrief, students who engage in harmful
gaming game predominantly on the hardest stepdewtudents who engage in non-harmful
gaming mostly game on the steps they already knibvw evidence that these two types of
gaming are separable will be discussed in greeti@it oh Chapter Three.

According to detectors of each type of gaming Ifdion just the data from Study One), over
twice as many students engaged in non-harmful gautiian harmful gaming in Study Two.
Harmful gaming, detected by the detector traineddata from Study One, was negatively
correlated with post-test score in Study Two, wieentrolling for pre-test, F(1,97)=5.78, p=0.02,
partial r= - 0.24. By contrast, hon-harmful gamingdasected by the detector, was not
significantly correlated to post-test score in $tlievo, when controlling for pre-test,
F(1,97)=0.86, p=0.36, partial r = 0.08. The lack of significamretation between observed
gaming and learning in Study Two can thus be attidol entirely to the fact that our observations
did not distinguish between two separable categafidehavior — harmful gaming and non-
harmful gaming.

Study One Study Two Study Two
(observations) | (observations) (detector)
Gamed, had low post-test 11% 7% 22%
(Harmful gaming)
Gamed, had high post-test 13% 34% 50%
(Non-harmful gaming)

Table 2-2: What percentage of students were ever seengaging in each type of gaming,
in the data from Study One and Study Two

When we look at the specific students detected gingan harmful gaming, we see a similar
pattern to the one observed in Study One. Lookungf jwithin the students with low pre-test
scores (17% or lower, as with Study One), we segré-R-2 that students who gamed
harmfully more than the median (among students agsessed as gaming harmfully) had
considerably worse post-test scores (27%) than tderggiwho never gamed (59%), while
having more-or-less equal pre-test scores (4.3% v&iZ2Ug. The difference in post-test scores
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between these two groups is marginally signifidés®)=1.78, p=0.08, and in the same direction
as the this test in Study One.
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Figure 2-2: The difference in learning gains betwaehigh-harmful-gaming and non-harmful-gaming
students, among students with low pre-test score, Study Two.

Study Two also gave us considerable data as tetwtgnts game. These results will be discussed
in Chapter Four.

Contributions

My work to study the relationship between gaming éearning has produced two primary
contributions. The first contribution, immediatefglevant to the topic of this thesis, is the fact
that it demonstrates that a type of gaming theeysf‘harmful gaming”) is correlated to lower
learning. In Study One, | assess gaming using qaine field observations and show that
gaming students have lower learning than otheresits] controlling for pre-test. In Study Two,

| distinguish two types of gaming, and show thaideints who engage in a harmful type of
gaming (as assessed by a machine-learned deteterjower learning than other students,
controlling for pre-test. In both cases, gamingdetts learn substantially less than other students
with low pre-test scores.

The second contribution is the demonstration thaanqtitative field observations can be a useful
tool for determining what behaviors are correlatéth lower learning, in educational learning
environments. Quantitative field observations havieh history in the behavioral psychology
literature (Lahaderne 1968; Karweit and Slavin 1982; Liayd Loper 1986; Lee, Kelly, and
Nyre 1999), but had not previously been used to astetent behavior in interactive learning
environments. The method | use in this dissertatioiapts this technigue to the study of
behavior in interactive learning environments, ¢jiag the standard version of this technique in
a seemingly small but useful fashion: Within thethod | use in this dissertation, the observer
codes for multiple behaviors rather than just éithough this may seem a small modification,
this change makes this method useful for diffeedintg between the learning impact of multiple
behaviors, rather than just identifying charactiesof a single behavior. The method for
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guantitative field observations used in this diss@n achieves good inter-rater reliability, and
has now been used to study behavior in at leasbtiagr intelligent tutor projects (Nogry 2005;
personal communication, Neil Heffernan).

Our results from Study Two suggest, however, thaargitative field observations may have
limitations when multiple types of behavior apptabe identical at a surface level (differing,
perhaps, in when they occur and why — | will disdhés issue in greater detail in upcoming
chapters). If not for the gaming detector, trained the results of the quantitative field
observations, the results from Study Two would happeared to disconfirm the negative
relationship between gaming and learning discovere8tudy One. Hence, quantitative field
observations may be most useful when they can ipdiced with machine learning that can
distinguish between sub-categories in the obsenvalt categories. Another advantage of
machine learning trained using quantitative fieldservations, over the field observations
themselves, is that a machine-learned detector lmarmore precise — a small number of
researchers can only obtain a small sample ofvaltiess of each student's behavior, but a
machine-learned detector can make a prediction tadery single student action.
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Chapter Three

Detecting Gaming

In this chapter, | discuss my work to develop daative detector for gaming, from developing an
effective detector for a single tutor lesson, teettgping a detector which can effectively transfer
between lessons. | will also discuss how the aetaatomatically differentiates two types of
gaming. Along the way, | will present a new macHegning framework that is especially useful
for detecting and analyzing student behavior antivation within intelligent tutoring systems.

Data

| collected data from three sources, in order taltle to train a gaming detector.

1. Logs of each student's actions, as he/she usddttire

2. Our quantitative field observations, telling us hoften each student gamed

3. Pre-test and post-test scores, enabling us to ahierwhich students had negative learning
outcomes

Log File Data

From the log files, we distilled data about eaclidsent action. The features | distilled for each
action varied somewhat over time — on later rusided additional features that | thought
might be useful to the machine learning algorithmdeveloping an effective detector.

In the original distillation, which was used to fite first version of the model (on only the
scatterplot lesson), | distilled the following feags:

The tutoring software’s assessment of the actionas the action correct, incorrect and
indicating a known bug (procedural misconceptiangorrect but not indicating a known
bug, or a help request?

The type of interface widget involved in the actienvas the student choosing from a pull-
down menu, typing in a string, typing in a numbglgtting a point, or selecting a checkbox?
The tutor’'s assessment, after the action, of thabalbility that the student knew the skill
involved in this action, called “pknow” (derivedingsthe Bayesian knowledge tracing
algorithm in (Corbett and Anderson 1995)).

Was this the student’s first attempt to answerdet help) on this problem step?
“Pknow-direct”, a feature drawn directly from thatdr log files (the previous two features
were distilled from this feature). If the currenttian is the student’s first attempt on this
problem step, then pknow-direct is equal to pkndmrt if the student has already made an
attempt on this problem step, then pknow-direct-k Pknow-direct allows a contrast
between a student’s first attempt on a skill he/khews very well and a student’s later
attempts.
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How many seconds the action took.

The time taken for the action, expressed in terfthe number of standard deviations this
action’s time was faster or slower than the meae taken by all students on this problem
step, across problems.

The time taken in the last 3, or 5, actions, exprssethe sum of the numbers of standard
deviations each action’s time was faster or slthaerthe mean time taken by all students on
that problem step, across problems. (two variables)

How many seconds the student spent on each oppdytda practice the primary skill
involved in this action, averaged across problems.

The total number of times the student has gotters tpecific problem step wrong, across all
problems. (includes multiple attempts within onelgem)

What percentage of past problems the student maweseon this problem step in

The number of times the student asked for help aadm errors at this skill, including
previous problems.

How many of the last 5 actions involved this problktep.
How many times the student asked for help in tret &actions.
How many errors the student made in the last 5 astio

In later distillations (including all those wherattempted to transfer detectors between tutor
lessons), | also distilled the following features:

Whether the action involved a skill which studemts,the whole, knew before starting the
tutor lesson

Whether the action involved a skill which studems,the whole, failed to learn during the
tutor lesson.

Additionally, | tried adding the following featureshich did not improve the model’s ability to
detect gaming.

How many steps a hint request involved

The average time taken for each intermediate stephint request (as well as one divided by
this value, and the square root of 1 divided by vhise)

Whether the student inputted nothing

Non-linear relationships for the probability theudent knew the skill

Making an error which would be the correct ansveeranother cell in the problem

Overall, each student performed between 50 and 500hadtiche tutor. Data from 70 students
was used in fitting the first model for the scatlet lesson, with 20,151 actions across the 70
students — approximately 2.6 MB of data in total. Bg time we were fitting data from 4 lessons,
we had data from 300 students (with 113 of the studexpieesented in more than 1 lesson), with
128,887 actions across the 473 student/lesson pairs — apptelyi 28.1 MB of data in total.

% The original log files lacked information which ¢dibe used to distill this feature, and the follog/feature
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Observational and Outcome Data

The second source of data was the set of humardcoldgervations of student behavior during
the lesson. These observations gave us the ap@texjpnoportion of time each student spent
gaming the system. However, since it was not dlear all students game the system for the
same reasons or in exactly the same fashion, westigient learning outcomes in combination
with our observed gaming frequencies. | dividedlestis into three sets: students never observed
gaming the system, students observed gaming thensygho were not obviously hurt by their
gaming behavior, having either a high pretest soogehigh pretest-posttest gain (this group will
be referred to as GAMED-NOT-HURT), and students olesved gaming the system who were
apparently hurt by gaming, scoring low on the pest-(referred to as GAMED-HURT). | felt

that it was important to distinguish GAMED-HURT stualents from GAMED-NOT-HURT
students, since these two groups may behave diffefeven if an observer sees their actions as
similar), and it is more important to target intentions to the GAMED-HURT group than the
GAMED-NOT-HURT group. Additionally, learning outcomes had been found to be useful in
developing algorithms to differentiate cheating -behavior similar to gaming — from other
categories of behavior (Jacob and Levitt 2003).

Modeling Framework

Using these three data sources, | trained a madptedict how frequently an arbitrary student
gamed the system. To train this model, | used almoation of Forward Selection (Ramsey and
Schafer 1997) and lterative Gradient Descent (Boyd \éaddenberghe 2004), later introducing
Fast Correlation-Based Filtering (cf. Yu and Liu 3)Qvhen the data sets became larger. These
techniques were used to select a model from a gppdcdent Response Models (LRM) (Maris
1995).

LRMs provide two prominent advantages for modelimgr data: First, hierarchical modeling
frameworks such as LRMs can be easily and naturaéig to integrate multiple sources of data
into one model. In this case, | needed to make smgrained predictions about how often each
student is gaming and compare these predictiorexisting labels. However, the data | used to
make these coarse-grained predictions is unlalfislegyrained data about each student action.
Non-hierarchical machine learning frameworks cdodédused with such data — for example, by
assigning probabilistic labels to each action —ibig simpler to use a modeling framework
explicitly designed to deal with data at multipgedls. At the same time, an LRM’s results can be
interpreted much more easily by humans than thalte®f more traditional machine learning
algorithms such as neural networks, support venotachines, or even most decision tree
algorithms, facilitating thought about design ingaltions.

Traditional LRMs, as characterized in Maris (1995)e a hierarchical modeling framework
composed of two levels: an observable level amtiarh(or “latent” level) — the gaming detector,
shown in Figure 3-1, has three levels: one obserlaméand two hidden (“latent”) levels.

In the outermost layer of a traditional LRM, the INRs results are compared to observable data.
In the outermost layer of my model, the gaming d&ie makes a prediction about how
frequently each student is gaming the system, ddbé&b;...G',, . The gaming detector’s
prediction for each student is compared to the nlexkproportions of time each student spent

22



gaming the system, G.G, (I will discuss what metrics we used for these pamsons
momentarily).

In a traditional LRM, each prediction of an obselvguantity is derived by composing a set of
predictions on unobservable latent variables —famele, by adding or multiplying the values of
the latent variables together. Similarly, in thengay detector, the model's prediction of the
proportion of time each student spends gaming mpmused as follows: First, the model makes a
(binary) prediction as to whether each individuadsent action (denoted P is an instance of
gaming — a “latent” prediction which cannot be dilg validated using the data. From these
predictions, G...G',, are derived by taking the percentage of actionshvre predicted to be
instances of gaming, for each student.

In a traditional LRM, there is only one level oftéat predictions. In the gaming detector, the
prediction about each action B made by means of a linear combination of treatteristics of
each action. Each action is described by a setrahpeters; each parameter is a linear, quadratic,
or interaction effect on the features of each actiistilled from the log files. More concretely, a
specific parameter might be a linear effect (amater valuea, multiplied by the corresponding
feature value X-a, X), a quadratic effect (parameter vafyanultiplied by feature value X
squared -a X7, or an interaction effect on two parameters (peet@r valuea, multiplied by
feature value Xmultiplied by feature value Xa X X).

A prediction P, as to whether action m is an instance of gamirgsystem is computed as #
a, X, +a, X,+a, X,+ ... +a, X, wherea, is a parameter value andiXthe data value for the
corresponding feature, for this action, in the kigs. Each prediction Pis then thresholded
using a step function, such that if B0.5, P, = 0, otherwise P'= 1. This gives us a set of
classifications P'for each action within the tutor, which can ther lused to create the
predictions of each student’s proportion of gami@,...G',,.

For each student, “Student #7"

/_f Actions \

\

data for each feature Fentures
distilled about each action / -

is used to predict whether
that action is gaming.
(o Hp +og oy Fog ¥y + o By

Those predictions are in turn \\“ ///
16

used to predict what proportion 9,
of actions are gaming. ‘ ‘

Each student’s predicted proportion of
gaming actions can be compared to that 22%
student’s observed frequency of gaming,

when calculating the model’s goodness of fit.
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Figure 3-1: The gaming detector.

Model Selection

For the very first detector, trained on just thatgerplot lesson, the set of possible parametess wa
drawn from linear effects on the 24 features disduslBeve (parameter*feature), quadratic effects
on those 24 features (parameter*fediurand 23x24 interaction effects between features
(parameter* featuytfeature), for a total of 600 possible parameters. As discuearlier, 2 more
features were added to the data used in later hesedor a total of 26 features and 702 potential
parameters. Some detectors, given at the end ofhthpter, omit specific features to investigate
specific issues in developing behavior detectoh® -emnitted features, and the resultant model
spaces, will be discussed when those detectalssaussed.

The first gaming detector was selected by repeatadiiing the potential parameter that most
reduced the mean absolute deviation between ouehpyddictions and the original data, using
Iterative Gradient Descent to find the best valaedach candidate parameter. Forward Selection
continued until no parameter could be found whigtpreciably reduced the mean absolute
deviation.

In later model-selection, the algorithm searchesktof paths chosen using a linear correlation-
based variant of Fast Correlation-Based Filterindu (and Liu 2003). Pseudocode for the
algorithm used for model selection is given in Fig8-2. The algorithm first selected a set of 1-
parameter models that fit two qualifications: Fiesach 1-parameter model of gaming was at least
60% as good as the best possible 1-parameter modehdSetctwo parameters had a closer
correlation than 0.7, only the better-fitting 1-pararmemodel was used.

Once a set of 1-parameter models had been obtameiis fashion, the algorithm took each
model, and repeatedly added the potential parantbgrmost improved the linear correlation
between our model predictions and the original dasang Iterative Gradient Descent (Boyd and
Vandenberghe 2004) to find the best value for eactlidate parameter. When selecting models
for a single tutor lesson, Forward Selection cargth until a parameter was selected that
worsened the model’s fit under Leave-One-Out-Cra&sdidation (LOOCV); when comparing
models trained on a single tutor lesson to modelmed on multiple tutor lessons, Forward
Selection continued until the model had six pararstin order to control the degree of
overfitting due to different sample sizes, and $oom how much overfitting occurred due to
training on data from a smaller number of tutorstass.

After a set of full models was obtained, the mawdiéh the bestA' * was selected' was averaged
across the model’s ability to distinguish GAMED-HURstudents from non-gaming students,
and the model’s ability to distinguish GAMED-HURT tadents from GAMED-NOT-HURT
students.

4 A'is both the area under the ROC curve, and the phility that if the model has one student from eaglihe two
groups being classified, it will correctly identifisich is which. Ais equivalent to W, the Wilcoxon statistic between
signal and noise (Hanley and McNeil 1982). It @nsidered a more robust and atheoretical measwgensitivity than
D' (Donaldson 1993).
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Two choices in this process are probably worthudisiag: the use of Fast Correlation-Based
Filtering only at the first step of model selecti@md the use of correlation and @t different
stages. | chose to use Fast Correlation-Basedrifdfdor only the first step of the model search
process, after finding that continuing it for a @ed step made very little difference in the
eventual fit of the models selected — this chom=ghe model-selection process considerably,
with little sacrifice of fit. | chose to use two tries during the model selection process, after
noting that several of the models that resultednftbe search process would have excellent — and
almost identical — correlations, but that often tm&del with the best correlation would have
substantially lower Athan several other models with only slightly lowerrelation. Thus, by
considering Aat the end, | could achieve excellent correlatioth &' without needing to use ‘A
(which is considerably less useful for iteratiaglignt descent) during the main model selection
process.

Goal: Find model with good correlation to observed data, and good A’

Preset values:

s - How many steps to search multiple paths using FCBF (after
s steps, the algorithm stops branching)

p - What percentage of the best path’s goodness-of-fit is acceptable
as an alternate path during FCBF

m - The maximum acceptable correlation between a potential path’s most
recently added parameter and any alternate parameter with a better
goodness-of-fit

z - The maximum size for a potential model (-1 if LOOCV is used to set
model size)

Data format:
A candidate model is expressed as two arrays: one giving the list of
parameters used, and the second giving each parameter’s coefficient.

Prior Calculation Task: Find correlations between different parameters
For each pair of parameters,
Compute linear correlation between the pair of parameters,
across all actions, and store in an array

Main Training Algorithm:
Set the number of parameters currently in model to O
Set the list of candidate models to empty
MODEL-STEP (empty model)
For each candidate model (list populated by MODEL-STEP)
Calculate that model’'s A’ value (for both GAMED-HURT versus NON-GAMING,
and GAMED-HURT versus GAMED-NOT-HURT)
Average the two A’ values together
Output the candidate model with the best average A’.

Recursive Routine MODEL-STEP: Conduct a step of model search
Input: current model
If the current number of parameters is less than s,
Subgoal: Select a set of paths
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For each parameter not already in the model
Use iterative gradient descent to find best model that includes both the
current model and the potential parameter (using linear correlation to
the observed data as the goodness of fit metric).
Store the correlation between that model and the data
Create an array which marks each parameter as POTENTIAL
Repeat
Find the parameter P whose associated candidate model has the highest
linear correlation to the observed data
Mark parameter P as SEARCH-FURTHER
For all potential parameters Q marked POTENTIAL
If the linear correlation between parameter Q and parameter P
is greater than m,mark parameter Q as NO-SEARCH
If the linear correlation between the model with parameter Q and the
observed data, divided by the linear correlation between the
model with parameter P and the observed data, is less than
p, mark parameter Q as NO-SEARCH
Until no more parameters are marked POTENTIAL
For each parameter R marked as SEARCH-FURTHER
Use iterative gradient descent to find best model that includes both
the current model and parameter R (using linear correlation to the
observed data as the goodness of fit metric).
Recurse MODEL-STEP (new model)
Else
Subgoal: Complete exploration down the current path
Create variable PREV-GOODNESS; initalize to -1.
Create variable L, initialize to -1
Create array BEST-RECENT-MODEL
Repeat
For each parameter not already in the model
Use iterative gradient descent to find best model that includes both
the current model and the potential parameter (using linear
correlation to the observed data as the goodness of fit metric).
Store the correlation between that model and the data
Add the potential parameter with the best correlation to the model
If z=-1 (i.e. we should use cross-validation to determine model size)
Create an blank array A of predictions (of each student’'s game freq)
For each student S in the data set
Use iterative gradient descent to find best parameter values for
the current model, without student S
Put prediction for student S, using new parameter values, into
array A
Put the linear correlation between array A and the observed data into
variable L
If L>PREV_GOODNESS
PREV_GOODNESS =L
Put the current model into BEST-RECENT-MODEL
Else
Put the current model into BEST-RECENT-MODEL
Until (the model size =z OR PREV_GOODNESS > L)
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Add BEST-RECENT-MODEL to the list of candidate models

Figure 3-2: Pseudocode for the machine learning adgithm used to train the gaming detector

Statistical Techniques for Comparing Models
The following methods will be used to conduct stital analyses in this chapter:

This chapter will involve analyses where | commngle models to chance, compare single
models to one another, and where | aggregate ara/orpare multiple models across multiple
lessons. The Avalues for single models will be compared to ¢haising Hanley and McNeil's
(1982) method, and the 'Avalues for two models will be compared to one fsrtousing the
standard Z-score formula with Hanley and McNeill982) estimation of the variance of ah A
value (Fogarty, Baker, and Hudson 2005). Both of thrasthods give a Z-score as the result.
Hanley and McNeil's method also allows for the ghtton of confidence intervals, which will be
given when useful.

Aggregating and comparing multiple models’ effextass to each other, across multiple lessons,
is substantially more complex. In these cases,rhogels’ performance varies across lessons will
be of specific interest. Therefore, rather thart pggregating the data from all lessons together,
and determining a single measure, | will find a suga of interest (which will be either Ar
correlation) for each model in each lesson, and tiee meta-analytic techniques (which | will
discuss momentarily) to combine data from one modemultiple lessons, and to compare data
from different models across multiple lessons.

In order to use common meta-analytic techniquesyill convert A values to Z-scores as
discussed above. Correlation values will be cat/éntZ-scores by converting the correlation to
a Fisher Zr and then converting that Fisher Zr t&acore (Ferguson 1971) — a comparison of
two Z-scores (derived from correlations) can themimde by inverting the sign of one of the Z-
scores and averaging the two Z-scores.

Once all values are Z-scores, between-lesson c@uaparwill be made using Stouffer’s method
(Rosenthal and Rosnow 1991), and within-lesson corapas will be made by finding the mean
Z-score. The mean Z-score is an overly conservadggmate for most cases, but is
computationally simple, and biases to a relatilely degree for genuinely intercorrelated data
(Rosenthal and Rubin 1986) (and high intercorrelai®hkely, when comparing effective models
of gaming in a single data set). After determinmgomposite Z-score using the appropriate
method, a two-tailed p-value is found.

Because comparisons made with Stouffer's methddtemitl towards a higher Z-score than
comparisons that are made with mean Z-score (becatiglifferent assumptions), | will note
which method is used in each comparison, denotorgparisons made with Stouffer's method

® The technique used to convert from values to Z-scores (from Hanley and McNeil, 1988h break down, for very
high values of Ain the few cases where a calculated Z-scorgfgehithan the theoretical maximum possible Z-score,
given the sample size, | use the theoretical maxinmstead of the calculated value.
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Z, comparisons made using mean-Z scofe ahd comparisons made using both methogs Z
Z-scores derived using only Hanley and McNeil's moelt (including Fogarty et al’s variant), with
no meta-analytic aggregation or comparison, witiy be denoted Z.

Additionally, since Z-scores obtained through Sfeut method will be higher than Z-scores

obtained through the mean Z-score method, it woblkel inappropriate to compare a Z-score

aggregated with Stouffer's method to another Z-scaggregated with the mean Z-score

method. To avoid this situation, when | conduct quamisons where both types of aggregations
need to occur (because there are both betweemlassowithin-lesson comparisons to be made),
I will always make within-lesson comparisons befargy between-lesson comparisons or
aggregations.

To give a brief example of how | do this, let uketdhe case where | am comparing a set of
models’ training set performance to their testsaformance (either ‘Aor correlation), across
multiple lessons. The first step will be to compdioe each lesson, the performance of the model
trained on that lesson to each of the models foictvithat lesson is a test set (using the
appropriate method for Aor correlation). This gives, for each lesson, & afeZ-scores
representing test set-training set comparisons.nTlleose Z-scores can be aggregated within-
lesson using the mean Z-score method, giving usglesZ-score for each lesson. Next those Z-
scores can be aggregated between-lessons usinffei@&omethod, giving a single Z-score
representing the probability that models perfornitdrewithin the training set than the test sets,
across all lessons. This approach enables me ¢laoboth within-lesson and between-lesson
comparisons in an appropriate fashion, without prapriately comparing Z-scores estimated by
methods with different assumptions.

A Detector For One Cohort and Lesson

My first work towards developing a detector for gagntook place in the context of a lesson on
scatterplot generation and interpretation. | evaiiu gathered data on this lesson from three
different student cohorts, using the tutor in thrdeéferent years (2003, 2004, 2005); my first
work towards developing a gaming detector used thelydata from 2003, as the work occurred
in late 2003, before the other data sets were colletael 2003 Scatterplot data set contained
actions from 70 students, with 20,151 actions in totgbpreximately 2.6 MB of data.

| trained a model, with this data set, treating hd6AMED-HURT and GAMED-NOT-
HURT students as gaming. | will discuss the actlethils of this model (and other models) later
in the chapter — focusing in this section on the el effectiveness. The ROC curve of the
resultant model is shown in Figure 3-3.

The resultant model was quite successful at glasgithe GAMED-HURT students as gaming
(A' = 0.82, 95% Confidence IntervaljA= 0.63-1.00, chance 'A=0.50). At the best possible
threshold value this classifier correctly identifies 88% of the GEM-HURT students as
gaming, while only classifying 15% of the non-gamingents as gaming. Hence, this model can
be reliably used to assign interventions to the GADHURT students.

® je, the threshold value with the highest ratiovee¢n hits and false positives, given a requirentienthits be over
50%
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However, despite being trained to treat GAMED-NOT-HRT students as gaming, the same
model was not significantly better than chance lassifying the GAMED-NOT-HURT
students as gaming (A0.57, 95% CI(A=0.35-0.79). Even given the best possible threshold
value, the model could not do better than correaintifying 56% of the GAMED-NOT-
HURT students as gaming, while classifying 36% ofrtbe-gaming students as gaming.
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Figure 3-3: The model’s ability to distinguish stuents labeled as GAMED-HURT or GAMED-NOT-HURT,
from non-gaming students, at varying levels of seiiwity, in the model trained on the 2003 Scatterpbt data.
All predictions used here derived by leave-out-oneross-validation.

Since it is more important to detect GAMED-HURT stdents than GAMED-NOT-HURT
students, we investigated whether extra leveragld be obtained by training a model only on
GAMED-HURT students. In practice, however, a crossdidated model trained only on
GAMED-HURT students did no better at identifying te GAMED-HURT students (A'=0.77,
95% CI(A) = 0.57-0.97) than the model trained on all students. ko our further research, we
will use the model trained on both groups of studda identify GAMED-HURT students.

It is important to note that despite the signifitanegative correlation between a student's
frequency of gaming the system and his/her postdesre, both in the original data (r= -0.38,
F(1,68)=11.82, p<0.01) and in the cross-validated model (r= -6@668)=4.79, p=0.03), the
gaming detector did not just classify which studdatl to learn. The detector is not better than
chance at classifying students with low post-testes (A= 0.60, 95% CI(A=0.38-0.82) or
students with low learning (low pre-teahd low post-test) (A =0.56, 95% CI(A=0.34-0.78).
Thus, the gaming detector is not simply identifyial gaming students, nor is it identifying all
students with low learning — it is identifying theidents who gameandhave low learning: the
GAMED-HURT students.
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Transfer Across Classes

After developing a detector that could effectivdistinguish GAMED-HURT students from
other students, within the context of a single tuesson and student cohort, the next step was to
extend this detector to other tutor lessons andett cohorts. In this section, | will talk about
my work to extend the detector across student d¢shor

Towards extending the detector across student ¢tshbcollected data for the same tutor lesson
(on scatterplots), in a different year (2004). The 200t d=t contained actions from 107
students, with 30,900 actions in total. The two cohd2803 and 2004) were similar at a surface
level: both were drawn from students thahd ¢ grade non-gifted/non special-needs Cognitive
Tutor classrooms in the same middle schools ingheurban Pittsburgh area. However, our
observations suggested that the two cohorts behdiWedently. The 2004 cohort gamed 88%
more frequently than the 2003 cohort, t(175)=2.34, p=0.62t a lower proportion of the
gaming students had poor learning(1, N=64)=6.01, p=0.01. This data did not directly tell us
whether gaming was different in kind between the populations — however, if gaming differed
substantially in kind between populations, we thdupat two populations as different as these
were likely to manifest such differences, and tthesse populations provided us with an
opportunity to test whether our gaming detector wabust to differences between distinct
cohorts of students.

The most direct way to evaluate transfer acrosslptipns is to see how successfully the best-fit
model for each cohort of students fits to the otbehort (shown in Table 3-1). As it turns out, a
model trained on either cohort could be transferasdis to the other cohort, without any re-
fitting, and perform significantly better than ctanat detecting GAMED-HURT students. A
model trained on the 2003 data achieves aof .76 when tested on the 2004 data, significantly
better than chance, Z=2.53, p=0.01. A model trained on2b@4 data achieves an &t 0.77
when tested on the 2003 data, significantly better tfzamce, Z=2.65, p=0.01.

Additionally, a model trained on one cohort is sfgantly better than chance — or close — when
used to distinguish GAMED-HURT students from GAMEDNOT-HURT students in the
other cohort. A model trained on the 2003 data aclseme A of 0.69 when tested on the 2004
data, marginally significantly better than chan¢el.69, p=0.09. A model trained on the 2004
data achieves an'Af 0.75 when tested on the 2003 data, significantlyebdtian chance,
Z=2.03, p=0.04.

Although the models are better than chance whendfierred, there is a marginally significant
overall trend towards models being significantlitdsein the student population within which
they were trained than when they were transfereetthé other population of students, Z1.89,
p=0.06. This trend is weaker at the individual compparidevel. Only the difference in
distinguishing GAMED-HURT students from GAMED-NOT-H URT students, in the 2004
data set, is statistically significant, Z=1.97, p=0.0% ifference in distinguishing GAMED-

’ An alternative explanation is that the two obsesweere more sensitized to gaming in Study Two tBaudy One;
however, if this were the case, the detector shbeldhore accurate for the Study Two data than thel{sOne data,
which is not the case. Additionally, in the Studjr€e control condition, the frequency of gamingpired to almost
exactly in between the frequencies from Studies @weTwo, implying that the two observers becameensensitized
to gaming from Study One to Study Two, and then &me less sensitized (or observant) between Study ahat
Study Three.
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HURT students from GAMED-NOT-HURT students, in the 2003 data set, is not quite
significant, Z=1.57, p=0.12. The difference in distinginghGAMED-HURT students from
non-gaming students is not significant in eitheret@003 or 2004 cohorts, Z=0.59, p=0.55,
Z=1.30, p=0.19.

It was also possible to train a model, using thia éfl@m both student cohorts, which achieved a
good fit to both data sets, shown in Table 3-1. Timedel was significantly better than chance in
all 4 comparisons conducted — the least significa# the unified model’'s ability to distinguish
GAMED-HURT students from non-gaming students, 40.80, Z=3.08, p<0.01. There was not
an overall difference between the unified model taedmodels used in the data sets they were
trained on, across the 4 possible comparisops086, p=0.33. There was also not an overall
difference between the unified model and the modskd in the data sets they were not trained
on, across the 4 possible comparisons®94, p=0.35.

Overall, then, although the model does somewhatebéh the original cohort where it was
trained, models of gaming can effectively be temsfl across student cohorts.

Training | G-H vs no game, G-H vs no game, | G-H vs G-N-H,  G-H vs G-N-H,
Cohort 2003 cohort 2004 cohort 2003 cohort 2004 cohort
2003 0.85 0.76 0.96 0.69*

2004 0.77 0.92 0.75 0.94
[Both 08 086 | 08 08

Table 3-1. Our model’s ability to transfer betweenstudent cohorts.Boldface signifies both that a model is
statistically significantly better within training cohort than within transfer cohort, and that the maodel is
significantly better than the model trained on bothcohorts. All numbers are A' values. ltalics denotea model
which is statistically significantly better than chance (p<0.05); asterisks (*) denote marginal signéfance
(p<0.10).

Transfer Across Lessons

Transferring Detectors Trained on a Single Lesson — Part One

Upon determining that a gaming detector developeddne student cohort could transfer to
other student cohorts, within the same lesson, reyt istep was to investigate whether | could
transfer my detector between tutor lessons.

My first step towards extending the detector actassr lessons was to collect data for a second
tutor lesson, covering 3D-geometry. Almost exadily $ame set of students used this tutor, and
used the scatterplot lesson in 2004: the only diffeemt sample were because of absence from
class. The geometry data set contained actions frbinstudents, with 30,696 actions in total.
Both the scatterplot and geometry lessons wererdfemn the same middle-school mathematics
curriculum and were designed using the same gempedgogical principles, although the
scatterplot lesson had a greater variety of widgedsa more linear solution path. Our observers
did not notice substantial differences betweentiipes of gaming they observed in these two
lessons. Overall, there was fairly low overlap éatwthe students observed gaming in each
lesson: 15 students were observed gaming in batbries39 students were observed gaming in
neither lesson, and 42 students were observed gamamg lesson but not the other.
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The most direct way to evaluate transfer acrosomasis to see how successfully the best-fit
model for each tutor lesson fits to the other tugson (shown in Table 3-2). As it turns out, a
model trained on one lesson did not transfer paldidy well to the other lesson, without re-
fitting. When distinguishing between GAMED-HURT stdents and non-gaming students, a
model trained on the Scatterplot data achieves ‘anf .55 when tested on the Geometry data,
not significantly better than chance, Z=0.75, p=0.55. Adeldrained on the Geometry data
achieves an 'Aof 0.53 when tested on the Scatterplot data, alsosmgnificantly better than
chance, Z=0.27, p=0.79.

Similarly, a model trained on one lesson is noniicantly better than chance when used to
distinguish GAMED-HURT students from GAMED-NOT-HURT students in the other
cohort. A model trained on the Scatterplot data iaghs an Aof 0.41 when tested on the
Geometry data, not significantly different than obe, Z=-0.84, p=0.40. A model trained on the
Geometry data achieves ahdk 0.63 when tested on the Scatterplot data, notiggmtly better
than chance, Z=1.14, p=0.25.

Additionally, there is a significant overall tretmvards models being significantly better in the
lesson within which they were trained than whenytiveere transferred to the other lesson,
Z =4.28, p<0.001. This trend is also present at the individomparison level, in all four cases.
The difference in distinguishing GAMED-HURT studerg from non-gaming students, in the
Scatterplot lesson (Aof 0.92 versus 0.53), is statistically significant, Z=31®40.01. The
difference in distinguishing GAMED-HURT students dm non-gaming students, in the
Geometry lesson (Aof 0.80 versus 0.55), is statistically significant, Z=2/88).01. The
difference in distinguishing GAMED-HURT students im GAMED-NOT-HURT students,

in the Scatterplot lesson (Af 0.94 versus 0.41), is statistically significant, 264p<0.001.
Finally, the difference in distinguishing GAMED-HUR students from GAMED-NOT-
HURT students, in the Geometry lesson '(Af 0.90 versus 0.63), is statistically significant,
Z=2.13, p=0.03.

It was, however, possible to train a model, usioity lblata sets, which achieved a good fit to both
data sets, as shown in Table 3-2. This model wasifisigntly better than chance at
distinguishing GAMED-HURT students from non-gamingstudents, both in the Scatterplot
lesson, A= 0.82, Z=3.41, p<0.01, and the Geometry lessdrs B.77, Z=4.62, p<0.001. The
model was also marginally significantly better tichance at distinguishing GAMED-HURT
students from GAMED-NOT-HURT students in the Scattgplot lesson, A= 0.70, Z=1.79,
p=0.07, and significantly better than chance at disistting GAMED-HURT students from
GAMED-NOT-HURT students in the Geometry lesson, A= 0.82, Z=4.10, p<0.001.

There was not an overall difference between theéasghmodel and the models used in the lessons
they were trained on, across the 4 possible coroparig =1.38, p=0.16, but the unified model
was significantly better than the models used @léssons they were not trained on, across the 4
possible comparisons, Z2.69, p=0.01.

Overall, then, a unified model can be developedciwviiansfers across cohorts, but if a model is
trained on just one cohort, it does not appearamsfer well to another cohort.
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Training G-H vs no game, G-H vs no game| G-H vs G-N-H, G-H vs G-N-H,
Lesson SCATTERPLOT GEOMETRY SCATTERPLOT GEOMETRY
SCATTERPLOT | 0.92 0.55 0.94 0.63
GEOMETRY 0.53 0.80 0.41 0.90

(BOTH [ 082 | 077 | 0.70* 082

Table 3-2. Models trained on the scatterplot lessgrthe geometry lesson, and both lessons togetherl Aodels
trained using only the 2004 students. Boldface detes the model(s) which are statistically significaty best in a
given category. All numbers are A' values. Italicddenote a model which is statistically significantlybetter than
chance (p<0.05); asterisks (*) denote marginal siifitance (p<0.10).

Transferring Detectors Trained on Multiple Lessons

In order to investigate whether a detector trairad multiple lessons would transfer to new
lessons, | collected data from two additional lessim the middle school Cognitive Tutor
curriculum, on probability (2004) and percents (2005). THiata collection consisted of
guantitative field observations giving an estinfateeach student’'s frequency of gaming, using
the method discussed in Chapter 2, pre-tests antipsts (see Appendix B), and log file records
of each student’s actions within the tutor. Addit#ly, in Study Three, | collected data from a
new student cohort using the scatterplots lessdre probability lesson contained actions from
41 students, with 10,759 actions in total, the percezgsdn contained actions from 53 students,
with 16,196 actions in all, and the 2005 scatterplot datdatoed actions from 63 students, with
20,276 actions in all. Hence, | now had data from faffiecent lessons to use, shown in Table 3-
3, to investigate whether a detector trained on ipldtlessons could be used on another tutor
lesson from the same curriculum.

Lesson Number of students Number of actions
SCATTERPLOT 268 71,236

PERCENTS 53 16,196
GEOMETRY 111 30,696
PROBABILITY 41 10,759

Table 3-3. Quantity of data available for training, for four different tutor lessons.

Training a Detector on a Single Lesson — Part Two

My first step was to train a detector on each adsen lessons individually. | then tested this
detector for the degree of over-fit to individuals$ons, by testing the detector both on the
training lesson, and the other three lessons. is ffrocess of training, as well as all of the
training | will report in this section, | trainedaeh model to a size of 6 parameters, rather than
using Leave-One-Out-Cross-Validation to determinach model's size, enabling me to focus
this investigation on over-fitting due to lessomther than over-fitting occurring for other
reasons (such as sample size). In all cases, dwinigg, only gamed-hurt students were treated
as gaming.

The models had an average & 0.86 at distinguishing students who gamed in tlaeniful

fashion from students who did not game, in thertiag lessons, significantly better than chance,
Z =10.74, p<0.001. The models had an averagef B.71 at making the same distinction in the
transfer lessons, also significantly better thaanch, Z = 2.12, p=0.03. Overall, the models were
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significantly better at distinguishing harmful gamgiin the training lessons than in the transfer
lessons, £=3.63, p<0.001.

The models had an average & 0.79 at distinguishing students who gamed in tlaeniful
fashion from students who gamed in the non-harnfifighion, in the training lessons, which was
significantly better than chance, 25.07, p<0.001. The models had an averagefA).74 at
making the same distinction in the transfer lessaiso significantly better than chance, Z
=2.86, p<0.01. Overall, however, the models were notfisignily better at distinguishing
harmful gaming in the training lessons than in trensfer lessons, Z0.56, p=0.58.

The models had an average correlation of 0.57 betiieenbserved and predicted frequencies of
harmful gaming, in the training lessons, signifityretter than chance, Z 12.08, p<0.001.
Within the transfer lesson, the models had an ayeicorrelation of 0.22 in the transfer lessons,
which was also significantly better than chance=2.40, p=0.02. Overall, the models had a
better correlation in the training lessons thanha transfer lessons, £5.15, p<0.001.

Hence, on two of the three metrics of interestjnilag a detector on each lesson individually
produced models that were much better within thesés they were trained, than in the other
lessons. The overall pattern of results from tlveseparisons is shown in Table 3-4.

Metric Training lesson average Transfer lesson average
A' (GAMED-HURT versus NON-GAMING) 0.86 0.71
A' (GAMED-HURT versus GAMED-NOT-HURT) |0.79 0.74
Correlation 0.57 0.22

Table 3-4. Models trained on just one of the fourdssons. Italics denotes when models were, in aggpee,
statistically significantly better than chance. Ballface denotes when models were significantly bettéor training
lessons than transfer lessons.

Training a Detector on All Four Lessons

The next step was to train a detector on all fauthe lessons together, as a benchmark for how
good we could expect a multi-lesson detector to ibeprder to compare this detector’s
effectiveness to detectors trained on a singlerless

The model trained on all four lessons appearecetedually as effective, across lessons, as the set
of four models each trained on a single lesson feerdeir training lessons. The model trained
on all four lessons had an averageff.85 at distinguishing students who gamed in thetful
fashion from students who did not game, comparedroaverage 'Aof 0.86 for the models
trained on single lessons, not a statisticallyisogmt difference, 7 = 0.38, p=0.70. The model
trained on all four lessons had an averagef A.80 at distinguishing students who gamed in the
harmful fashion from students who gamed in the r@rmful fashion, compared to an average
A' of 0.79 for the models trained on single lessonschviivas not a statistically significant
difference, 7_= 0.12, p=0.90. Finally, the model trained on all foessbns had an average
correlation of 0.60 between the observed and preditespiencies of harmful gaming, in the
training lessons, compared to an average cornelati6.57 for the models trained single lessons,
not a statistically significant difference, Z 0.53, p=0.60.
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Hence, a model can be trained on all four lessdnishnis on the whole equally as effective as
four models trained on individual lessons, testinty on the training sets. The overall pattern of
results from these comparisons is shown in Table Bag. features of the model trained on all

four lessons will be discussed in detail latehéndhapter.

Metric Training on one lessonTraining on all lessong
A' (GAMED-HURT versus NON-GAMING) 0.86 0.85

A' (GAMED-HURT versus GAMED-NOT-HURT) | 0.79 0.80

Correlation 0.57 0.60

Table 3-5. Comparing a model trained on all lessort® models trained on just one of the four lessonwithin the
training lessons. All models were statistically gnificantly better than chance, on each metric. Nanodel as
significantly better than any other model, on any ratric.

Training a Detector on Three of Four Lessons

The next question is whether a detector trainedharitiple lessons will be more effective when
transferred to a new lesson than a detector traomeflist one lesson. To investigate this issue, |
will train a set of detectors on three of four bétlessons together, and then test each of these
detectors on the fourth, left-out, lesson. This Iwehable me to investigate whether models
trained on multiple lessons transfer well to otlemsons, from the same curriculum. Since the
current gold standard for performance is how weléctor does when trained on a single lesson
(on the training-set), | will compare the effectnass of multiple-lesson trained detectors, on the
lesson they were not trained on, to single-lessained detectors, on the lesson they were trained
on.

The models trained on three lessons had an avéxagé 0.84 at distinguishing students who
gamed in the harmful fashion from students who dat game, in the training lessons, and an
average Aof 0.80 at making the same distinction in the trangssons. The models trained on
one lesson, as discussed earlier, achieved @06 at making this distinction. The difference
between the multi-lesson-trained models’ test-setfgrmance was not significantly different
than the single-lesson-trained models’ training-petformance, Z = 1.36, p=0.17. In other
words, models trained on three lessons do not parkiatistically worse when transferred to a
fourth lesson than models trained on a single kepsoform on the lesson they were trained on.

The models trained on three lessons had an avekagé 0.78 at distinguishing students who
gamed in the harmful fashion from students who ganre the non-harmful fashion, in the
training lessons, and an averagd®$0.80 at making the same distinction in the trangégsons.

At the same, the models trained on single lessaad &n A of 0.79 at making the same
distinction, in the lesson they were trained on eTdlifference between the test-set performance
of the models trained on three lessons, and theifg-set performance of the models trained on
single lessons was not significant, Z0.67, p=0.50.

The models trained on 3 lessons had an averagdatmmeof 0.55 between the observed and
predicted frequencies of harmful gaming, in thenirey lessons, and an average correlation of
0.41 in the transfer lessons. By comparison, the msddshed on one lesson, as discussed earlier,
achieved an average correlation of 0.57 in the trgis@ts. The models trained on one lesson had
a marginally significantly better correlation inetlraining set than the models trained on 3
lessons, in the test sets, Z 1.74, p=0.08. It is worth remembering, however, thatrtiuelels
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trained on one lesson had a correlation of 0.22 éntdist sets, significantly worse than the models
trained on 3 lessons performed in the test seiss2.46, p=0.01.

Overall, then, training models on 3 lessons prodacesodel which is consistently effective on
the lessons it is trained on — about as good asdelni@ined on any one of the lessons alone. At
the same time, models trained on 3 detectors showiderably less degradation in transferring
to another lesson than models trained on a singkeaor. In fact, the models trained on 3
lessons were not significantly worse on each nsotlalisfer lesson than a model trained on one
lesson was on its training lessons, in 2 of 3 metfidaterest. The overall pattern of results is
shown in Table 3-6.

Metric Training on one lessonTraining on 3 of 4 Training on one
(training lessons) lessons lesson
(transfer lessons) (transfer lessons
A' (GAMED-HURT versus NON-GAMING) 0.86 0.80 0.71
A' (GAMED-HURT versus GAMED-NOT-HURT) | 0.79 0.80 @7
Correlation 0.57 0.41 0.22

Table 3-6. Comparing models trained on all lessort® models trained on just one of the four lessonsyithin the
training lessons. All models were statistically gnificantly better than chance, on each metric. Grg boxes
denote indicate when a model was worse than the hemodel for that metric (light grey=marginal significance,
dark grey = significance).

Transferring Across Lessons — Summary

To sum our results on transferring our gaming deteacross lessons: Training the detector on a
single lesson results in a detector that perforamsiderably worse when transferred to a new
lesson. However, if we train a detector on multipsons, it is effective both within the lessons i
was trained for, and on a new lesson that it wdastraied for. The results obtained here are
from within a single tutor curriculum (cf. Koeding2002), and can not be guaranteed to
generalize to outside that curriculum. That salte evidence presented in this section suggests
that a gaming detector trained on a small numbdes$ons (three) from a tutor curriculum will
be effective on other lessons from the same ciuncu

Other Investigations of the Gaming Detector

A Tradeoff: Detecting Exactly When Students Game

The detector | have introduced in this chapter ighty effective at detecting which students
game, and how often. However, this detector hamaadtion, based on its design, in detecting
exactly when students game. This limitation conreshie detector’'s use of a student’s prior
history. If, for example, a student is assessaghasng because — among other reasons — they
have made a fast error on a problem step afterngakiconsiderable number of errors on that
step in past problems, it is not entirely clear thbe the gaming occurred on the current fast
error, or on one or more of the past errors. Theed®r should be treated as neutral in regards to
this question — the most we should infer from theed®or is that gaming has occurred on the
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step of the problem the student just answeredtheigaming may have occurred on this step in a
past problem.

This distinction is important for two reasons: Ejrsome interventions may be confusing or
annoying if they are delivered an entire probletarahe gaming actually occurred (for instance,
a message saying “You just gamed! Stop gaming!djtiéndally, analyses that depend on
determining exactly when students game (which s@né in Chapter Four) may be distorted if
this issue is not addressed.

Therefore, to develop clearer knowledge on exadibn students games, | developed a gaming
detector which does not use any data from the sittglections in prior problems (with the
exception of the probability the student knows tuerent skill, since this metric is unlikely to be
vulnerable to the same problem). This involved ryaaly the following features so that they only
involved data from the current problem:

How many seconds the student spent on each oppityttm practice this skill, within the
current problem.

The total number of times the student has gotters thpecific problem step wrong, in the
current problem

The number of times the student asked for help @dmerrors at this skill, in the current
problem

| also removed the following feature:
What percentage of past problems the student maeseon this step in

The resultant detector has 25 features, for a tdt@b0 potential parameters. When this detector
is trained on all 4 tutor lessons, it is moderalke$g effective than the detector trained usingehes
features. In particular, it is statistically sigzahtly less successful at distinguishing harmful-
gaming students from non-gaming students, Z 2.00, p=0.05, although the magnitude of the
difference between detectors is not very large (A82 versus'A 0.85). It appears to achieve
better performance at distinguishing harmful-gamgtgdents from non-harmful-gaming
students (A= 0.82 versus'A 0.80), Z_= 1.02, p=0.31. It also appears to achieve a worse
correlation (r=0.48 versus r=0.60), but this differenoetisignificant, Z_= 1.47, p=0.14.

Metric Predictions using | Predictions without data
data from past from past problems
problems

A' (GAMED-HURT versus NON-GAMING) 0.85 0.82

A' (GAMED-HURT versus GAMED-NOT-HURT) 0.80 0.82

Correlation 0.60 0.48

Table 3-7. Comparing models that make predictions sing data from past problems, to a model that onlyses
data from the current problem, within the training lessons. All models were statistically significalyt better than
chance, on each metric. Dark grey boxes denote imdite when a model was statistically significantly arse than
the best model for that metric.

The bottom line is that trying to be more confidemé know exactly when a student is gaming
may slightly lower our ability to be certain we wnexactly how much each student is gaming.
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Hence, the analyses in the remainder of the diasent use the model which uses data from past
problems, unless otherwise noted (one analysistimeand of Chapter Four, uses the model
which is more accurate at detecting exactly whahesits game, in order to isolate properties of
the situations when students game).

Modifying the Detector For Use in a Running Tutor

Another issue in the development of our detectoersgad when we used our detector to drive
adaptation within our tutor (the tutor’'s adaptat®are discussed in detail in Chapter Five; in
general, the discussion in this section may make isense after you have read Chapter Five).
The detector | have discussed within this chaererifiably effective at detecting gaming in
student logs. However, the detector had to be mediin subtle ways to be useful for driving
adaptation in a running tutor. This is specificdligcause the tutor that adapts to gaming is
different from the tutors the detector was trair@y in that itadapts to gaming

Hence, the detector that we used in the adaptivert{in Study Three, Chapter Five) differs
from the detector discussed in the rest of thigptdra in that it explicitly accounts for the
possibility that some types of interventions vaWer the future probability of gaming, on the
specific steps of the problem-solving process wheratervention occurred. Developing a
principled policy for changing the detector’'s agwesits after an intervention would require data
on student behavior after an intervention; by d&éin, this sort of data will not be available the
first time | introduce an intervention. At the sartime, not adapting in some fashion to an
intervention raises the possibility of the systeting like a “broken record”: repeatedly
intervening on the same step, after the studenshagped gaming. This is a very real possibility,
since the detector uses the student’s past adcodrelp it decide if a student is gaming — past
history may be less useful for interpreting thelefw’s current actions, after an intervention.

To address this possibility, | chose a simple “detedforgiveness or no forgiveness” policy for
interventions. Within this policy, non-intrusive t@rventions, such as the animated agent looking
unhappy (see Chapter Five) had no effect on thedlet’s future assessments. Additionally, if
the student gamed during an intervention, futureementions were unchanged. However, if a
student received an intrusive intervention, such s&t of supplementary exercises (see Chapter
Five), and did not game during that interventiohey received full forgiveness on the problem
step that intervention was relevant to: all pastdry for that step (which is used to make
predictions about whether a student is gaming n@a8 deleted, and the history used in the
gaming detector’s predictions for that step beggmirafrom a clean slate. Another option, of
course, would be to use a detector that nevemastdistory — however, this decision (as
discussed in the previous section) would reswdtgenerally less effective detector.

The usefulness of the resulting detector in drivaigptations will be discussed in detail in
Chapter Five.

Detector Features

In general, the features used in best-fitting medellow a similar pattern, across different
training sets. In this section, | will discuss soohéhe larger cross-model trends and their
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implications; complete detail on each of the modléliscuss in this section is given in Appendix
C.

One of the first features incorporated into virtyavery best-fitting model is a pattern of making
a number of errors on the same step, across preblEor example, the best-fitting model for the
Study 1 Scatterplot data (“model S1”) has, as #sfiéature, “ERROR-NOW, MANY-
ERRORS-EACH-PROBLEM”, which identifies a student asnore likely to be gaming if the
student has already made at least one error oouttient problem step within this problem, and
has also made a large number of errors on thidgarostep in previous problems. The exact same
feature (same parameters, slightly different aoefft) is the first feature in the best-fitting meld
using all data (“model F”). Even the model trainecdhot take past problem data (“model NPP”)
into account has a feature close to this one digstdeature: “MANY-ERRORS-THIS-
PROBLEM?”, which identifies a student as more liketybe gaming if the student has made a
large number of errors on the current problem stepe current problem.

In virtually every model, this type of featureafimed by addressing special cases. These special
cases can be expressed either by increasing thebpity that many errors on some types of
problem steps are evidence of gaming (multiplecghwidgets in both model S1 and the Study 1
and 2 Scatterplot model (the model used in Study ®edel S1S2"), and asymptotic skills in
model S1S2), or by reducing the probability that mamgrs on some types of problem steps are
evidence of gaming (point plotting in models F aWeP, entering numbers in model NPP). The
only model that did not contain a special caséisfnature was model S1 — in this case, the data
set may have been too small to reliably capturentiat special cases.

Help plays a smaller role than would have beenctegdrom the original definition of gaming.
Model S1 did not have internal details of help resiadsuch as the number of times the student
asked for an additional hint, or how long he or spent on each hint), and had no hint-related
features. After building model S1, future data settected added data that could be used to
distill internal details of help requests, but tdid not improve overall model fit, and thus data
about internal details of help requests was nal ustater models. Nonetheless, help requests do
appear in models S1S2, F, and NPP, though nevereaBirétt feature selected. Model S1S2’s
fourth feature,"HIGH-PERCENTAGE-OF-HELP-REQUESTS-ON -EASILY-
LEARNED-SKILLS”, identifies a student as more likglto be gaming if he or she frequently
requests help on the skills which students, in ggnkearn on their first couple opportunities to
practice the skill. Model F's second feature, “AS&IFOR-HELP-ON-WELL-KNOWN-
STEPS”, identifies a student as more likely to bening (or to have gamed in the past) if the
student asks for help on skills that he or sheahlaigh probability of knowing. In effect, this
feature suggests that the student may have indabegbtained correct answers through lucky
guesses, or through problem-specific strategiesleldPP’s second feature, “CLUSTER-OF-
HELP-REQUESTS-WHILE-ENTERING-STRINGS”, identifies a student as more likely to
be gaming if the student asks for help severaldime short period of time on skills that require
entering a string.

Interestingly, models F and NPP refine the linklwetn gaming and help use with later features.
Model F’s fifth feature,"CLUSTERS-OF-HELP-REQUESTS-ARE-NOT-GAMING”,

identifies that a cluster of help requests in quigkcession is not gaming. This feature serves to
refine Feature “ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS ", reducing the intensity
of “ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS"s effects when a student who has
done well on early problems finds some featurelatiea problem enigmatic across several steps.
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Model NPP’s sixth feature, “ASKING-FOR-LOTS-OF-HELP-IS-NOT-GAMING”, is
similar, suggesting that a high proportion of hedgguests on a single skill within one problem is
unlikely to be gaming.

Another type of feature that occurs in several nwea feature that specifically identifies well-
known skills or slow actions as unlikely to siggéyning. In model S1, “SLIPS-ARE-NOT-
GAMING” identifies that if a student has a high probabibfyknowing a skill, the student is less
likely to be gaming, even if he or she has madeyreanors recently. In model F, “SLOW
CORRECT-ANSWERS-ARE-NOT-GAMING” suggests that slow correct answers are not
gaming. In model NPP, “SLOWACTION-AFTER-MANY-ERRORS-IS-NOT-

GAMING” indicates that if a student makes a slowtian after making a number of errors, they
are probably not gaming.

Overall, then, the models largely included the s&pes of features, capturing similar types of
behavior, but with differences at the margins — pretlominantly in the later features selected
(which were more likely to capture special cat@syestingly, the model that appeared to have
the greatest appearance of overfitting was mode? Stigh 5 of 6 features appearing to deal with
special cases — one possibility is that this mtrdéhed on a considerable amount of data but
from only the Scatterplot lesson, is overfit to iregle lesson it was trained on (instead of the
individual students it was trained on)

Each of the models discussed in this section audied in complete detail, feature by feature, in
Appendix C.

Contributions

My work towards developing a generalizable detaaftgaming has produced three primary
contributions. The first contribution, immediatefglevant to the topic of this thesis, is the fact
that we have developed a gaming detector thatafelyfworks on a number of tutor lessons, and
which can be used to detect gaming within new tl#ssons without large degradations in
performance. This work establishes that is possibiievelop a behavior detector that can
transfer effectively between fairly different lesseithin-curriculum. The results presented here
also suggest that it is beneficial to train on mpldtlessons, to obtain a detector which can be
generalized to lessons beyond the original traitesgons.

The second contribution is in the adaptation ofsyghometric framework, Latent Response
Models, for use in machine-learned behavior datectiRMs have a number of advantages for
behavior detection, being able to naturally takeaathge of multiple sources of data at different
grain-sizes. My work in adapting LRMs to this taskolved developing a new type of three-level
LRM, and inventing a new algorithm — based on forevaelection, iterative gradient descent,
and Fast Correlation-Based Filtering, to searchdpace of potential LRMs. The techniques |
developed for learning LRMs have proved usefuljusttin developing a detector of gaming, but
have also proved useful for mining information dtmiher types of behavior in Cognitive Tutor
log files (see Chapter 4 for a fuller discussiothefuse of LRMs for data mining). | believe that
LRMs will be useful in a considerable range of h@radetection and data mining problems —
essentially, whenever there is fine-grained data fog files that can be combined with
aggregate, user-by-user data.
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A third contribution of this portion of my thesis itowards understanding what sorts of data is
useful in developing detectors to understand stubehavior. It is not surprising that both log

file data, and direct observations of the behasfiénterest are useful. It is interesting, however,
that it is still useful to have direct observatiomgen when those direct observations cannot be
directly linked to specific actions in the logdildt is also interesting that we needed data from
outcome measures in order to interpret our detéctesults. Wthout measures of each student’s
learning, it would have appeared that our deteat@®e only succeeding in detecting some
gamers. With that data, it becomes clear that cetedtors can successfully distinguish two types
of gaming at the same time that they can distinggaming students from non-gaming students.
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Chapter Four
Understanding Why Students Game

In this chapter, | discuss my work towards develggai profile of why students game. In order to
do this, | will consider evidence from two attitndi surveys, student statements as they worked
with the tutor, and evidence from our detector@svhat behaviors are associated with gaming.
Along the way, | will present disconfirmatory evide for some of the most popular explanations
for why students game.

Study One

Ouir first study on gaming demonstrated that gamivas associated with poor learning
outcomes. It also provided some evidence on witictests game, evidence that | used in order
to generate hypotheses as to why students chogserte. | then investigated these hypotheses in
detail in Studies Two and Three.

In this section, | will discuss the evidence frotmdy One, relevant to this issue. Details on this
study (sample size, population, and so on) ara@iv€hapter Two, as is evidence on the effects
of gaming and other behaviors on learning; in gastion, | will present evidence from Study
One on what characterizes the students who game.

The first distinguishing characteristic about gagstudents, from Study One, is their degree of
prior knowledge about the subject matter in theotdesson. Not all students with low pre-test
scores gamed the system, but all of the studentsgamed frequently (more than the median
amount of gaming, among gaming students) had loavtpst scores. More generally, there was a
significant correlation between how frequentlyweht gamed the system and their pre-test
score, F(1,68)=5.31,p=0.02, r=-0.27. There was an apparent alargirelation between
frequency of gaming and performance on the tegeokral academic achievement, F(1,61)=2.77,
p=0.10, r=-0.21, but this relationship ceased to be ngaifisance when we controlled for each
student’s performance on the pre-test, F(1,60)=0.22, p=0.64.

There was also not a significant relationship betwe&hat teacher the student had and the
frequency of gaming the system, F(3,66)=0.99,p=0.41. Theralsanot a significant
relationship between gaming the system and off-teiavior, F(1,68)=0.33, p=0.57. The 8
high-gaming students engaged in off-task beha\igush as talking to other students or surfing
the web) with about the same frequency (15%) as therfgaming students did (14%). We
interpreted the lack of connection between ganaind off-task behavior as evidence that
gaming did not occur due to lack of interest in er&tl — if students gamed solely out of lack of
interest, we might expect them to engage more fatjy in completely off-task behavior as well.

However, theravasa fairly strong relationship between a studenggufency of gaming the
system and that student’s frequency of talkindnéoteacher or another student about the subject
matter, F(1,68)=10.52,p<0.01, r=0.37. This relationship remaifted@ntrolling for prior
knowledge and general academic achievement, F(1,59D/8:0.01, partial correlation = 0.36.
One possible explanation for this finding is thaters, when they talk about the subject matter,
were attempting to obtain the answers to problertisout having to try to figure out the answer
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(a strategy similar to gaming), a behavior observédditional classrooms (Arbreton, 1998).
Interestingly, this type of help-seeking behavias bbeen found to be associated with having
performance goals rather than learning goals (Aobrel998). However, another possible
explanation for the relationship between gaming tatidng to the teacher is that when a teacher
observes a student gaming, he/she tries to helpttitent with the material.

Finally, there was not a statistically significeelationship between gender and the frequency of
gaming the system, F(1,68)=1.02, p=0.31.

Prior Knowledge | General Academiq Other Off-Task Talking | Gender
(Pre-Test) Achievement Behavior On-Task
Gaming the System -0.27 -0.21 0.07 0.37 0.12

Table 4-1. The correlations between gaming the sysh and other measures, in Study One.
Statistically significant relationships are in boldace, marginally significant relationships are in falics

Evidence from the Gaming Detector

One advantage of developing a detector for gansitigat it extended our evidence about student
gaming. Before developing the detector, we knevehvbtudents gamed the system, and how
often; our detector gave us additional evidenaau@@h not completely conclusive evidence) on
whenstudents gamed the system. The detector was @ble this, because it made predictions
about whether each action was a gaming incidenbate to predicting each student’s frequency
of gaming. In this section, | will discuss whatwere able to learn about gaming, from analyzing
the first version of our gaming detector (trainedjast the Study One data from the scatterplot
lesson).

Our detector shed light on gaming in several fashid he first was in how gaming actions are
distributed across a student’s actions. 49% of theetabets gaming predictions occurred in
clusters where at least 2 of the nearest 4 actioresalgo instances of gaming. To determine the
chance frequency of such clusters, | ran a MontéoGamulation where each student’s instances
of predicted gaming were randomly distributed axtbat student’s 71 to 478 actions. In this
simulation, only 5% (SD=1%) of gaming predictions a@zliin such clusters. Hence, our
detector predicted that substantially more gamicigpas occur in clusters than one could expect
from chance.

The second was in dividing gaming into two distibehaviors, harmful gaming and non-harmful
gaming. These two types of gaming appeared idéntidhe observers in Study One (and in each
study afterwards), but in training the gaming déted found that students in these categories
were behaviorally distinct (see Chapter Three). ifddally, the two types of gaming were
associated with substantially different learnintcomes. Students who engaged in harmful
gaming showed almost no learning, while students ®igaged in non-harmful gaming scored
well on the post-test (in some cases, apparendsuse they already knew the material at pre-
test). In the rest of this section, | will refer $tudents who gamed in the harmful fashion as
GAMED-HURT students, and students who gamed in tm®n-harmful fashion as GAMED-
NOT-HURT students.

Beyond simply distinguishing harmful gaming fromnAlearmful gaming, the gaming detector
suggested that there was at least one substaitiatedce between GAMED-HURT and
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GAMED-NOT-HURT students: when they choose to gameThis difference manifested itself
when | compared the model’s predicted frequengyaafing on “difficult skills”, which the tutor
estimated the student had under a 20% chance of kgo{@0% was the tutor's estimated
probability that a student knew a skill upon stagtithe lesson), to the frequency of gaming on
“easy skills”, which the tutor estimated the studead over a 90% chance of knowing. The
gaming detector predicted that students in the GABHEHURT group gamed significantly more
on difficult skills (12%) than easy skills (2%), t(7)=2y849).02 for a two-tailed paired t-test. By
contrast, the gaming detector predicted that stusiém the GAMED-NOT-HURT group did

not game a significantly different amount of thea& on difficult skills (2%) than on easy skills
(4%), t(8)=1.69, p=0.13. This pattern of results (shown inldab2) suggested that the
difference between GAMED-HURT and GAMED-NOT-HURT st udents may be that
GAMED-HURT students chose to game exactly when itlwhurt them most (which in turn
may explain why GAMED-HURT students learned less!).

Students Hardest skills (under 20% Easiest skills (over 90% Significance of
probability that the student knows)probability that the student knowsllifference

GAMED-HURT 12% 2% p=0.02

GAMED-NOT-HURT | 2% 4% p=0.13

Table 4-2. How frequently students game on stepsdi have different levels of understanding of.

The evidence that GAMED-HURT students game overwhehgly on the hardest skills
suggests another hypothesis for why these studeaytde gaming. The choice to withdraw effort
exactly where the consequences will be highestsseamilar to the set of behaviors termed
“learned helplessness”, where students activeig affort on difficult challenges in order to
justify the failure that they expect will occur aedjess of how hard they work (Dweck 2000). In
this case, perhaps students who game attribute ¢la€ely difficulties in a tutor lesson (which stem
from low prior-knowledege) to a more global lackaptitude, and avoid the difficult challenges
implicit in learning the tutor material.

Study Two

After analyzing data from our first study, and frdine gaming detector, we conducted a second
study to determine why students game. As discuas€tdapter Two, this study also replicated
our earlier finding that gaming was negatively eissed with learning.

In this study, we used an attitudinal questionn&irassess student attitudes, and then
determined which attitudes were most associateld atmful gaming (as assessed by the gaming

detector). We also collected further data on tHatienship between different types of student
behavior.

Hypotheses

In Study Two, we investigated four broad hypothes®ssut why students game, shown in Table
4-3.
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Students game because they... Relevant literature

have performance goals instead of learning goals lliolEand Dweck, 1988)

have learned helplessness, stemming from educhtority (Dweck, 1975; Dweck, 2000)

dislike the tutor/computer (Frantom, Green, and Hoffmann 2002)
are prone to deception in educational settings Safason 1978)

Table 4-3. Study Two hypotheses on why students gam

The performance goals hypothesis stemmed from eeédm Study One, showing that students
who gamed the system also talked more about tHecuhatter with the teachers and other
students. We hypothesized that students who talkerabout the subject matter may actually be
trying to get others to give them the answer, aavedr found to be correlated to performance
goals (Arbreton 1998). For this reason, both our resegroup (e.g. Baker, Corbett, Koedinger,
and Wagner 2004) and other researchers (Martinez-MidinBoulay, and Luckin 2004)
hypothesized before this study that students gameause of performance goals. The anxiety
hypothesis came from evidence that students gantleeosteps they know least well, based on
potential links between gaming and learned helpkess(see Chapter Three). The teachers we
work with also hypothesized that gaming would benexted with anxiety, based on their
classroom experiences and intuition.

Methods

Study Two took place within 6 middle-school classe? schools in the Pittsburgh suburbs.
Student ages ranged from approximately 12 to 14. Asiséed in Chapter One, the classrooms
studied were taking part in the development of & Beyear Cognitive Tutor curriculum for
middle school mathematics. 102 students were préseall phases of the study (other students,
absent during one or more days of the study, werlei@ed from analysis).

| studied these classrooms during the course ok#mee Cognitive Tutor lesson on scatterplot
generation and interpretation used in Study OneeTday before students used the tutoring
software, they viewed a PowerPoint presentationngivconceptual instruction (shown in
Chapter One). Within this study, | combined the foling sources of data: a questionnaire on
student motivations and beliefs, logs of eachesitigl actions within the tutor (used with the
gaming detector, to make predictions of how oftanhestudent gamed), and pre-test/post-test
data. Quantitative field observations were als@iobt, as in Study One, as both a measure of
student gaming and in order to improve the gamiegedtor's accuracy. These observations had
high inter-rater reliability (see Chapter Two).

The questionnaire consisted of a set of self-repgadstions given along with the pre-test, in
order to assess students’ motivations and beliéks. questionnaire items were drawn from
existing motivational inventories or from items disscross many prior studies with this age
group, and were adapted minimally (for instance, words “the computer tutor” was regularly
substituted for “in class”, and questions were gédrfrom first-person to second-person for
consistency). All items were pre-tested for compnsibility with a student from the relevant age
group before the study.

The questionnaire included items to assess:
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Whether the student was oriented towards performaaclearning (2 items, 4 choices)
(e.g. Mueller and Dweck 1998)
“We are considering adding a new feature to the maer tutors, to give you more
control over the problems the tutor gives you. diyhad your choice, what kind of
problems would you like best?
A) Problems that aren’t too hard, so | don’t getnypavrong.
B) Problems that are pretty easy, so I'll do well.
C) Problems that I'm pretty good at, so | can shbat I'm smart
D) Problems that I'll learn a lot from, even if ow't ook so smart.”
“Some classes that use computer tutors also htraeceadit projects. If you had your
choice, what kind of extra projects would you nti&stto do?
A) An extra-credit project that is easy, so | canaybetter grade.
B) An extra-credit project where | could learn abciitgs that interested me.
C) An extra-credit project in an area I'm pretty gaidso | can show my
teacher what | know.
D) An extra-credit project that isn’'t very difficufp | don’t have to work too
hard.”

The student’s level of anxiety about using thertfitems, scale 1-6) (e.g. Harnisch,
Hill, and Fyans 1980)

“When you start a new problem in the tutor, do Yeal afraid that you will do poorly?”
“When you are working problems in the tutor, do yfeel that other students understand
the tutor better than you?”

The student’s level of anxiety about using compuf&ritem, scale 1-6) (e.g. Harnisch,
Hill, and Fyans 1980)

“When you use computers in general, do you feelicafthat you will do something
wrong?”

How much the student liked using the tutor (2 iterssale 1-6) (e.g. Mueller and Dweck,
1998)

“How much fun were the math problems in the lasthgaiter tutor lesson you used?”
“How much do you like using the computer tutor tonk through math problems?”

The student’s attitude towards computers (1 itenaJesd-6) (e.g. Frantom, Green, and
Hoffman 2002)
“How much do you like using computers, in general?”

If the student was lying or answering carelesslyhemquestionnaire. (1 item, 2 choices)
(e.g. Sarason 1978)

“Is the following statement true about YOU? ‘| neweorry what other people think of
me’. TRUE/FALSE”

In analyzing the relationship between gaming angdent attitudes, | will use the gaming
detector’'s assessments as a measure of each 'studgdence of harmful and non-harmful
gaming rather than direct observations of gamimy, tivo reasons: First, because the direct
observations do not distinguish between harmfuliggnand non-harmful gaming whereas the
detector successfully makes this distinction — dred ttivo types of gaming may arise from
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different motivations. Second, because the gamatgatior's assessments are more precise than
the classroom observations — 2-3 researchers carolotalin a small number of observations of
each student’s behavior, but the gaming detectontke a prediction about every single student
action.

Finally, the same pre-tests and post-tests useftisly One were given in order to measure
student learning. See Appendix B for a full dismrssf these tests.

Results

Within Study Two, two types of questionnaire itemvgre found to be significantly correlated to
the frequency of gaming, as shown in Table 4-4: desttls attitude towards computers, and a
student’s attitude towards the tutor. Students vgamed in the harmful fashion (as assessed by
the detector) liked computers significantly lesantithe other students, F(1,100)=3.94, p=0.05, r
=-0.19, and liked the tutor significantly less thae tither students, F(1,100)= 4.37, p=0.04, r= -
0.20. These two metrics were related to each othev:rhach a student liked computers was also
significantly positively correlated to how muchuwaent liked the tutor, F(1,100)= 11.55, p<0.01,
r= 0.32. Gaming in the non-harmful fashion was not etated to disliking computers, F(1,100)
=1.71, p=0.19, or disliking the tutor, F(1,100)=0.40, p=0.53.

By contrast, our original hypotheses for why stasiemght game did not appear to be upheld by
the results of this study. Neither type of gamingswcorrelated to having performance goals
(defined as answering in a performance-orientechidas on both questionnaire items),
F(1,100)=0.78, p=0.38, F(1,100)=0.0,p=0.99. Furthermore, a student'secepmrel of anxiety
about using the tutor was not associated with cingo> game the system, in either fashion,
F(1,100) = 0.17, p=0.68, F(1,100) = 1.64, p= 0.20 and a student’s relewaedf anxiety about
using computers was not associated with choosingatme the system, in either fashion,
F(1,100)=0.04, p=0.84, F(1,100) = 0.58, p=0.45. Finally, a student'soddadie or answer
carelessly on the questionnaire was not associatiecchoosing to game the system, in either
fashion, F(1,98)=0.37, p=0.55, F(1,98)= 0.95, p=0.33.

Performanceg  Anxiety Anxiety Lying/ Liking Liking
Goals about Using | about Using| Answering | Computers| the
Computers the Tutor Carelessly Tutor
Gaming the System 0.00 -0.02 -0.04 0.06 -0.19 -0.20
(Harmful fashion)
Post-Test 0.15 -0.02 0.04 0.03 -0.32 0.10

Table 4-4. Correlations between gaming the systerthe post-test (controlling for pre-test), and item®n the
Study Two motivational/attitudinal questionnaire. Satistically significant relationships (p<0.05) arein italics.

One interesting side-result was that while harntiaming was correlated with poorer learning
(see Chapter Two), and harmful gaming was corrdlaigéth negative computer attitudes,
negative attitudes towards computers were asscigiidn poorer learning, even when we
controlled for the relationship between harmful gagnand learning, F(1,96)= 8.48, p<0.01. The
link between harmful gaming and post-test also lieeth marginally significant when computer
attitudes (along with pre-test) were partialed del,96)=3.54, p=0.06. By contrast, a student’s
attitude towards the tutor was not significantlyrretated to his/her post-test score, F(1,97) =
0.99, p=0.32, controlling for pre-test.
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At this point, our original hypothesis (that gamistems from performance goals) appeared to be
disconfirmed. On the other hand, we now knew thaidents who game dislike computers and
the tutor. This raised new questions: Why do studewho dislike computers and the tutor
game? What aspects of disliking computers andutwe aire associated with gaming?

One possibility we considered is that a student Wwhe a negative attitude towards computers
and the tutor may believe that a computer cannatlyegive educationally helpful hints and
feedback — and thus, when the student encountererrabhshe does not understand, she may
view gaming as the only option. Alternatively, adsint may believe that the computer doesn’t
care how much he learns, and decide that if thepzer doesn’t care, he doesn't either. A third
possibility we considered is that a student mayegas a means of refusing to work with a
computer she dislikes, without attracting the testhattention. All three of these possibilities ar
consistent with the results of Study Two; in Stud@ifiree, we will probe the link between
disliking computers and the tutor and the choicgéme the system more deeply.

Relationship Between Gaming and Talking to the Teher:

Failure to Replicate Earlier Result

One of our more suggestive findings from Study @ that gaming was correlated to talking
to the teacher or other students on-task were tated. However, this finding was not replicated
in Study Two. There was not a significant relatilipsbetween observed gaming and talking on-
task, t(103)= 1.07, r = -0.10, p = 0.29 for a two-tailed t-test; between detected gaming

(combined across types) and talking on-task, t(92)= 1 8®.11, p=0.29 for a two-tailed t-test.

In Study Two, we collected observations that letspst talking on-task into two groups of
behavior: requesting answers, and all other typdalking on-task (including discussing the
subject matter and discussing how to find the answdeither of the two types of gaming were
significantly correlated to either of the two typdgalking on-task (four comparisons, none with
p lower than 0.14).

Evidence on Performance Goals

At the beginning of Study Two, a primary hypothesias that performance goals would be
associated with a student’s choice to game thersydtiowever, as discussed earlier in this
chapter, this hypothesis was not upheld: we didfimat a connection between whether a student
had performance goals and whether that student daime system. Instead, performance goals
appeared to be connected to a different patterbatfavior: working slowly, and making few

errors.

Students with performance goals (defined as ansgvémi a performance goal-oriented fashion
on both questionnaire items) answered on tutor [@mwobsteps more slowly than the other
students, F(1,29276)=39.75, p<0.001, controlling for the studeméstest score and the

student’'s knowledge of the current tutor $tepverall, the median response time of students
with performance goals was around half a secomeeslihan that of the other students (4.4s .vs.
4.9s). Students with performance goals also mader femers per problem step than other

students, F(1,15854)= 3.51, p=0.06, controlling for the stuslgme-test score. Despite having a

® It is necessary to control for the student’s kmalgk of the current step for this analysis, sitegests who make
more errors would be expected to have more actiorekills they know poorly — and actions on slklewn poorly
might be faster or slower in general than well-knaskills.
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different pattern of behavior, students with penfi@nce goals completed the same number of
problem-steps as other students, because slowiensaatere offset by making fewer errors,
t(100)=0.17, p=0.86 (an average of 159 steps were completedidytstwith performance goals,
compared to 155 steps for other students). Similatlydents with performance goals did not
perform significantly better or worse on the passtt (controlling for pre-test) than other
students — if anything, the trend was in the directiof better learning among students with
performance goals, F(1,97)=2.13, p=0.15.

One possible explanation for why students with grenince goals worked slowly and avoided
errors rather than gaming is that these studentg have focused on performance at a different
grain-size than we had expected. We had hypothédizat students with performance goals
would more specifically have the goal of perfornvredl over the course of days and weeks, by
completing more problems than other students — al glo@umented in past ethnographic
research within Cognitive Tutor classes (Schofte8®5). We hypothesized that, in order to
realize that goal, students would game the systéomvever, a student with another type of
performance goal might focus on maintaining positperformance minute-by-minute. Such a
student would set a goal of continually succeedirtbe tutor, avoiding errors and attempting to
keep their skill bars continually rising. Thesedstouts could be expected to respond more slowly
than other students, in order to avoid making esrer which is the pattern of behavior we
observed.

On the whole, within Study Two, students with pemfilance goals used the tutor differently
than other students, but by working slowly and dwvj errors rather than by gaming the system.
It is not yet entirely clear why students with penfiance goals chose to use the tutor in this
fashion — one possible explanation is that thesgests focused on performance at a different
grain-size than expected. In general, it appeaas plerformance goals are not harming student
learning, since students with performance goalndehthe same amount as the other students.
Therefore, recognizing differences in student gaald trying to facilitate a student in his/her
goal preferences (cf. Martinez-Miron, duBoulay, ahdckin 2004) may lead to better
educational results than attempting to make allstus adopt learning goals.

Study Three

After analyzing data from Studies One and Two, waducted a third study to hone in on why
students game. In this study we focused on investig, in greater detail, the link between
gaming and disliking computers and the tutor. Toestigate this issue, we used a design similar
to the design in Study Two, giving students antattinal questionnaire to assess their attitudes,
and then determining which attitudes were most eisged with harmful gaming (as assessed by
the gaming detector).

Hypotheses

In Study Three, we investigated a set of 6 studbatacteristics that we thought might inform
our understanding of why students choose to gameaylkstem, shown in Table 4-6.
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Label | Student Characteristic

The student believes that computers in genenal the tutor in specific, are not very useful.
The student believes that computers don't/cadtly care how much he/she learns.

The student has a tendency towards passive-aggresss (Parker and Hadzi-Pavlovic 2001
The student believes that computers/the tutaraedhis/her sense of being in control
The student is not educationally self-driven

The student dislikes math

mMm|oO|O|®| >

Table 4-6. Characteristics studied, in relation tdharmful gaming, in Study Three.

Characteristics A through D were drawn from thetdture, as potential hypotheses motivating
the link between disliking computers/the tutor agaming the system, shown in Table 4-6.
Characteristics E and F represent more indirecepbaél links between disliking computers/the
tutor and gaming the system; we hypothesized thatstudent were not self-driven or disliked
math, he or she might dislike a tutoring systent thade him or her persist in completing math
problems. Characteristic E appears to be consistghtresults published by Arroyo and Woolf
in 2005 (at the same time as Study Two was publisiheele tmonths after Study Three had
finished running), indicating that making more ers@and spending less time reading help, a
pattern of behavior which likely includes gamirsgeorrelated to having the goal of completing
work with an intelligent tutor lesson as quickly as pues

The items used to assess these attitudes and théstes are given in Table 4-7. All items were
drawn from existing attitudinal inventories or hiaglen validated in prior studies. Some items
were adapted minimally in order to shift their dam#o the context of a tutoring system.

Item Associated Item Drawn From
Characteristic

“Most things that a computer can be used for, ldan A Selwyn, 1997

just as well myself.”
“The tutor’s help system is effective in helping me | A Lewis, 1995
complete problems.”

“I feel that the tutor, in its own unique way, is B Bickmore and Picard, 2004
genuinely concerned about my learning.”

“The tutor treats people as individuals” B Cupach and Spitzberg, 1983
“The tutor ignores my feelings” B Cupach and Spitzberg, 1983

“At times | tend to work slowly or do a bad jobon | C Parker and Hadzi-Pavlovic, 2001
tasks | don’'t want to do”

“I tend to try to get out of things by making up C Parker and Hadzi-Pavlovic, 2001
excuses”

“| often forget things that | would prefer not to'd C Parker and Hadzi-Pavlovic, 2001
“Using the tutor gives me greater control over my | D Dillon et al, 1998

work”

“I am in complete control when | use a computer” | D Selwyn, 1997

“I study by myself without anyone forcing me to E Knezek and Christensen, 1995
study.”

“I try to finish whatever | begin” E Knezek and Christensen, 1995

“I enjoy working on a difficult math problem” F Knezek and Christensen, 1995
“Math is boring” F Knezek and Christensen, 1995

Table 4-7. Items used within the Study Three quesinnaire.
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Methods

Study Three took place within 5 middle-school classe? schools in the Pittsburgh suburbs.
Student ages ranged from approximately 12 to 14. Asiséed in Chapter One, all students were
participating in a year-long Cognitive Tutor clasaching middle school mathematics, and the
study was conducted in the spring semester, dftdests had used the Cognitive Tutor for long
enough that they presumably had learned how to gathey wanted to, and would not be
discovering gaming for the first time during thedy. 108 students participated in this study; 95
students completed at least part of the questiogrraid used the Cognitive Tutor during at least
one class session during the half of the studyastdo this chapter (and will be used in analysis
where appropriate).

Study Three had two parts. In this chapter, we diticuss the first part of Study Three — the
second part of Study Three, concerning a pair @rirentions to respond to gaming, will be
discussed in detail in Chapter Five. In the firattpof Study Three, students used an unmodified
Cognitive Tutor lesson drawn from their standardrzzulum. Half of the students (53% of
students present for the entire study) worked \gitesson on converting between percents and
other mathematical representations; the other sitsd@orked with a lesson on creating and
interpreting scatterplots of data. All studentsdiiee tutor for 80 minutes of class time (spread
across either 2 or 3 class days, in accordance iWétedces in school period length between
school districts). Before and after using the tustndents completed a pre-test and post-test in
order to measure their learning. Along with the-pest, students completed a questionnaire on
their attitudes and characteristics, made up ofitdras in Table 4-7. All questionnaire items
were given as Likert scales, from 1 to 6. A studegtise for each of the characteristics in Table
4-6 is the average of their responses on each oékeant items in Table 4-7, with scores
reversed as necessary for inter-scale consistency.

In Study Three, as in Study Two, we use the machaaened detector of harmful gaming
(described in Chapter Three) to indicate what pndjom of the time each student engaged in a
specific type of gaming found to be associated pothrer learning. | use the detector rather than
human observations for the same reason | useddteetor in Study Two — greater precision, and
the ability to distinguish between harmful gamimglanon-harmful gaming. In the analyses
presented here, | use a detector trained on data the Scatterplot lesson in Studies One and
Two.

Results

The characteristic most correlated to harmful gagr(es assessed by the gaming detector) in
Study Three was a lack of educational self-drikar@cteristic E), F(1,92)=6.10, p=0.02, r = 0.25.
To make the relationship between harmful gaming koé of educational self-drive more
concrete, if we compare the least self-driven gdaant students to the most self-driven quartile
of students, we find that the least self-drivenrjleaengaged in harmful gaming 68% more
frequently than the most self-driven quartile (6.2%hef time versus 3.7% of the time), a
marginally significant but fairly large differentid4)=1.88, p=0.07, effect size = 0.71 SD. This
result is compatible with the recent findings byayo and Woolf (2005), where a student’s
reported desire to complete their work with thedtuas quickly as possible with minimal effort
(measured in their study by the item “I just wantedjet the session over with, so | went as fast
as possible without paying much attention”) (a dikaly related to lack of educational self-drive)
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was found to be correlated to making more errodsraading help more quickly (behaviors
connected to gaming).

Another characteristic significantly correlatecheymful gaming in Study Three was disliking
math (characteristic F), F(1,92)=4.20, p=0.04, r= 0.21. To nfakedlationship between harmful
gaming and disliking math more concrete, the ql&df students that disliked math the most
engaged in harmful gaming 63% more frequently thargtretile of students who liked math
the best (4.9% of the time versus 3.0% of the time)pagh this difference fell short of statistical
significance, t(44)=1.54, p=0.13, effect size = 0.60 SD.

No other characteristic was significantly correlateharmful gaming, as shown in Table 4-8.
However, although the belief that computers andttiter are not useful (characteristic A) was
not significantly correlated to harmful gaming, P3)=2.51,p=0.12, r= 0.16, the trend was
strong enough to suggest that this hypothesis neaydrth investigating in greater detail in
future studies. None of the other three charadiessB,C, and D) were significantly correlated
with harmful gaming, F(1,90)=1.55, p=0.22, r=0.13; F(1,92)=0.76, p= 0.3&0r=0.
F(1,93)=0.17, p=0.68, r= 0.04.

Belief that | Belief that Tendency Belief that The Disliking
Computers/| Computers/ towards Computers/ | studentis math
the Tutor are the Tutor passive- the Tutor not self- (3]

not useful | are uncaring aggressiveness reduce control|  driven

(A) (B) (©) (D) (E)

Gaming the System 0.16 0.13 0.10 0.04 0.25 0.21
(Harmful fashion)

Table 4-8. Correlations between gaming the systenmd characteristics assessed in this study.
Statistically significant relationships (p<0.05) ae in italics.

Evidence from the Gaming Detector — Studies Two aiidhree:
What Steps Do Students Game On?

After Study One, a gaming detector trained withtjtree data from Study One (a single lesson,
on scatterplots) provided evidence suggestingstadents gamed in the harmful fashion far
more on the hardest steps than the easiest stéesdardest is defined as a lower than 20%
probability that the student knows the skill at ttime, and easiest is defined as a higher than
90% probability that the student knows the skill & thme).

In this section, | replicate this analysis withienproved detector trained on four tutor lessons,
including the data from Studies Two and Three preeed here (discussed in detail in Chapter
Three). For this analysis, | use the detector &dito make the most accurate predictions about
exactly when eadtudent is gaming (model “NPP” in Appendix C), rattthan a detector

trained to make the most accurate overall predistbout which students game and how often,
since the goal of the analysis presented heredistesmine when students game.

Using this detector, we find that students gameatfally over twice as often on the hardest steps
as on the easiest steps (34% of the time versus 1b#tohE), a significant difference,

° This detector, as noted in Chapter 3, has a teoyglen overestimate how often all students gambpatih it still
accurately identifies gaming students and corehat#l to actual gaming.
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t(293)=13.92, p<0.001, for a paired t-test. Overall, therestatéstically significant linear
relationship between the difficulty of a step, &nel frequency of gaming, F(1, 3748)= 224.5,
p<0.001, r=- 0.24, shown in Figure 4-1.

This result is especially interesting, in lightlloé fact that this detector does not include the
probability the student knows the skill in any tf $even features (not by design — it just wasn't
selected for during model selection); hence, thieepaobserved is an emergent property of the
data, not just a consequence of a specific femtuhne model.
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Figure 4-1. Relationship between the probability te student knows a skill,
and their harmful gaming frequency, across four tubr lessons

Profile of a Gaming Student

Taking the results from the three studies presehi&@, we can now advance a fairly complete
profile of the students who choose to game in theful fashion.

A prototypical student who games the system inithienful fashion:

Is not educationally self-driven (Study Three)
Dislikes mathematics (Study Three)

Dislikes computers (Study Two)

Dislikes the tutor (Study Two)

Has low prior knowledge of the subject area (St0dg)
Has low general academic achievement (Study One)
Games on the hardest steps (Across Studies)

At the same time, gaming students are not (by coiapa to other students):
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Prone to talking to other students, off-task (Studge)

Prone to other types of off-task behavior (StudyePn

Focused on performing well in class instead ohlagr(Study Two)
Anxious about learning (Study Two)

Passive-Aggressive (Study Three)

One other finding, showing that gaming studentktah-task more often, appeared in the data
from Study One, but was not replicated in laterdsts.

These findings, in aggregate, suggest that theopypical gaming student is systematically
displeased with and uninterested in their matheosatiasses, and is generally uninterested in
putting effort into their studies. Perhaps for teegasons, this student has already fallen behind
other students in their class, and is making dewssthat will cause him or her to fall further
behind over time.

In order to develop cognitive tutor curricula tlwain help all students achieve to their maximum
potential, we need to design tutors that take thrggsming students into account. In Chapter Five,
| will discuss an intervention that we developedattempt to help these students catch up with
the rest of their peers.

Contributions

There are two contributions from this chapter oétthesis. The first contribution is obvious and
direct. My research into why students game hadtegsin considerable knowledge about what
behaviors, attributes, motivations, and beliefsattarize the students who choose to game. This
knowledge can then be expressed as a profilerotatypical gaming student, which | do as part
of this thesis.

The second contribution is less direct but is demare important. By understanding richly the

characteristic of gaming students, | was able sigthea system that responds effectively and
appropriately to gaming. | will discuss this systamd its effects in Chapter Five.
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Chapter Five
Adapting to Gaming

In this chapter, | will present a study involvingeadesigned tutor lesson that adapts
automatically when students game. | will show thgtre-design resulted in reduced gaming and
improved learning — although apparently for diffénevasons. | will also discuss some negative
aspects of my design, and ways to improve it irfthee.

Design Process

In this section, | will discuss the process | ugere-design a tutor lesson to respond to gaming. |
followed the following procedure, which is similarexisting views of good design process (Beyer
and Holtzblatt 1998, Laurel 2003, Preece, Rogers, and SXz20f, Dix, Finlay, Abowd, and

Beale 2004).

Find the Problem

Understand the Problem

Define the Parameters of the Solution

Develop and Vet Potential Solutions

Develop and Critique Prototype/Implementation

aprwONPRE

Finding and Understanding the Problem

The beginning of the design process is discusse@-sénse — in previous chapters. In order to
find the problem, | did research (see Chapter Twhjch determined that one type of gaming
was associated with substantially poorer learnittgniCognitive Tutors, whereas other
behaviors were not. In order to understand the |@oh | collected data on which students game
in the harmful fashion, and used this data to carddta profile of those students (see Chapter
Four).

It is possible to conceive these steps as fallitgjde of the design process — viewing design only
as the process of developing the artifact. Howéweaew the problem discovery and research
steps as the most cruguelrts of designing the interactive system discussts chapter. It

would make little sense to re-design tutors to adagaming, if it wasn't clear from the data that
gaming was associated with poorer learning. Silypjildmwas important to develop a profile of
gaming students, in order to have some understanofinvhy students choose to gameitivigut
data indicating why students game, a clever desigight, using otherwise excellent design
practice, design an intervention that increasesmggaand reduces learning.

Defining the Parameters of the Solution
After determining — to some level of approximatiotihe problem, the next step was to
determine what conditions the new design shoul@fyatin many cases, the parameters for an

ideal solution are selected intuitively, and arespecified in advance. In this case, we specified
two parameters before beginning the design process:
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1. The design must improve the learning of students whrrently game
2. The design must change the tutor minimally for ots who do not game

Both of these parameters may seem obvious, bereifffrom prior approaches to addressing
gaming and/or common views of how to address gantintiie years before the research
reported in this dissertation began, at least twampnent intelligent tutoring research groups
(Carnegie Mellon/Carnegie Learning and the Univaraif Massachusetts at Amherst)
independently chose a preventative approach tovgamteng (cf. Aleven 2001, Beck 2005).
These groups decided to prevent gaming, by chartgegutor features that they had observed
being gamed, in order to prevent the gaming behaviey had seen. Researchers at Carnegie
Mellon and Carnegie Learning did so by introducengnvo-second delay between each level of
hint, to prevent a student from clicking throughts at high speed; researchers at the University
of Massachusetts designed their system to notrgglebefore the student had spent a minimum
amount of time on the current problem.

My approach differs from the preventative approadiwo ways: First, my goal is to improve
gaming students’ learning (parameter 1). Reducamgigg may be one way to accomplish that
goal, but it is not a requirement. Given my paraengt| would consider a solution where gaming
students learned substantially more but continwegiime a complete success. The preventative
approach, on the other hand, focuses primarilyemtucing gaming: if gaming is reduced, the
approach was successful (cf. Beck 2005). Presumahdy |barning is the end goal of the
preventative approach, but it is not emphasized @drcing gaming.

Secondly, my approach sets affecting non-gamindgstis minimally as an explicit goal. The
preventative approach, as thus far implementeceaggo violate this principle. Many students
use help in an appropriate fashion (Wood and Wo6e% Aleven 2001) — delaying students’
access to help may make help facilities less ueghdse students.

An additional issue with the preventative approactiat trying to redesign tutors to directly
prevent students from gaming the system may leaa t&rms race, with students figuring out
new ways to game the system in response to thesigited tutor. In fact, Murray and vanLehn
(2005) have now shown exactly this happening, for opelpr type of gaming prevention.
Murray and vanLehn determined that students usitgtar which had delayed help (much as
the Carnegie Mellon/Carnegie Learning tutors didwetloped new strategies for gaming, which
enabled them to still rapidly obtain answers andete problems by exploiting properties of
the system’s help and feedback. These studentsvdigtl a way to elicit answers by tricking the
software’s proactive help (a feature which is@dsoof the Carnegie Mellon/Carnegie Learning
tutors) into giving help without delays, by rapidgpeating the same error several times in a row.
While this type of gaming could also be prevenied, far from certain that students would not,
then, discover yet another way to game the system.

Developing and Vetting Potential Solutions
My work to develop and vet potential solutions éstesl of several steps, carried out in
collaboration with a diverse set of experts in botharea of research and other areas of research.

The process took the form of multiple cycles ofrstrming, prototyping, and critique.

In the first cycle, | brainstormed and wrote up dgsions of several potential designs alone, and
with my thesis advisors (Albert Corbett and KennKibedinger). The goal of this iteration was
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to document the ideas of the people most familiin the research project, before bringing in
outsiders, in order to avoid losing the ideas efpieople most steeped in the existing data. The
brainstorming in this stage did not involve formpabcess, but generated a number of potential
design solutions. These solutions were writteneagdptions and theoretical justifications,
documenting why | thought each solution might béeefive. One such solution is shown in
Design Example 5-1.

One possible intervention would be to use a combination of
Self-modeling
Self-monitoring.

A student would be chosen to receive the intervention if they werevelseequently gaming
the system on the previous class day (by the system).

Self-modeling

At the beginning of the class session, the student would be shown a 5-milaatiocoof
examples of proper use of the tutor, from their own behavior on the previousf.dalage et al,
2000). These examples would be automatically identified using a varit@ ghming detection
algorithm, training instead on the behavioral patterns of non-gaming studdntégh learning
gains. Since no student was observed gaming more than half of the time i1 Stwihuld be
possible to find a reasonably high number of positive examples. The examplds@shown
using Aleven et al's (2005) Protocol Player.

As the student watched the examples of proper use, annotation would be iaatlynca¢ated by
the system and given to the student. This annotation would explain what the stade&loing in
these examples, and why this type of behavior was an effective way téréaarte tutor. The
annotation would be modeled on previous protocols for delivering self-modelangantions,
used by school psychologists. The annotation would emphasize the fact gtatldre was
watching his or her own behavior.

Self-monitoring

After the collection of examples had concluded, the student would begin wibektutor, as
normal. To implement self-monitoring, every 5 minutes, the system would ask thatgtud
identify whether they thought they had been using the software in a leari@ntgdrfashion (cf.
Dalton et al, 1999), and would give the student appropriate feedback oseffi@issessment.
Rather than interrupting the student in the middle of thinking about a stesg|fmeonitoring
system would pop up immediately after the student had completed a steplf-ilnengering
part of the system would also pop up sooner than after 5 minutes, if théotheddmgdrithm
determined that the student was gaming the system.

If the student’s gaming did not reduce below a pre-chosen threshold during theofdliese

intervention, the student would receive the intervention again on tbeviog tutor day. If the
student’s gaming did reduce, then they would not receive the intervention again.
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Research plan

The system with a combination of these two interventions would be téstedrfid compared to
a traditional system. If it was effective at reducing the incidengawing, an area of future
work would be to see whether it was necessary to use both interventions, fegrvaimet would
suffice.

Design Example 5-1. Design solution from solitaryrainstorming

In Design Example 5-1's favor, the solution was yaiell theoretically justified. It also met the
second parameter of the solution — affecting noniggratudents minimally (in fact, in this
design, non-gaming students would not be affecteadla On the other hand, it only addressed
gaming, not the lower learning associated with gamt hus, this design would only fulfill the
first parameter of the solution — improving gamimgdents’ learning — if the link between
harmful gaming and poorer learning was causalgpssed to gaming and lower learning both
arising from some other quantity, such as the studet putting effort into learning the material
throughout their tutor usage). Another potentiabgiback to this design is that the intervention
is not very tightly linked to the student’s behavibe intervention does not begin to occur until
the student has already gamed for an entire adas#os, and afterwards interrupts the student
every five minutes, regardless of whether or netsthdent has ceased gaming.

The next step was to bring in outside ideas, thioagtructured brainstorming session. In this
session, | brought in experts with a collectionlifferent types of expertise: two teachers familiar
with Cognitive Tutors, one educational technologgearcher, an interaction designer, and a
behavior modification specialist. My primary ralethis session was as a facilitator rather than as
a participant — | helped to explain the phenomengarhing and the technological potentials and
limitations, but did not actively take part in theainstorming of solutions, or the critique part of
the session, in order to learn the participantsaglrather than re-hashing my own ideas.

| began the session by giving the participantsost gitesentation on the data from Studies One
and Two, regarding the learning outcomes assocwitdgaming, and the existing evidence on
why students choose to game the system. | themgBsd the functionality and limitations of the
gaming detector, and showed the participants dfpgudents gaming the system. One of the
teachers also demonstrated for the other partitgpsome of the gaming behaviors he had
observed in the classroom.

| then asked participants to brainstorm possiblgglesolutions (using IDEO'’s rules of
brainstorming — Kelley and Littman 2001), writing eadka on a separate post-it note. This part
of the process began with a burst of solutionsetfthie first burst slowed, the participants began
to discuss what sorts of attributes a good soludtaould have, while still brainstorming more
solutions. The behavior modification specialisbramended the other participants that they
think, in their solutions, about how the systengsponses could be expected to change the
students’ behavior. He also discussed the bewéfiaving a clear and understandable link
between a student’s gaming behavior and the systesgonse. The teachers answered a number
of questions from the other participants about wélassroom conditions were like, and what
kinds of roles a teacher could potentially plag solution. The interaction designer and
educational technology researcher answered a nwhfaestions from the other participants
about what sorts of interactions the software coesonably be expected to support.
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The participants then clustered the post-it note®irelated solutions. They then voted on which
solutions they liked best, using stickers. Eaatigpant could assign 10 stickers however they
preferred. After voting, each participant choselat®n or solution cluster that they liked (with
no requirement to choose a popular solution; &go participants chose the same solution) and
developed a storyboard/scenario for that solutsmhition cluster. Finally, | asked each
participant to present their solution to the gro@md had each participant critique the others’
solutions.

Some of the solutions that were selected for stayding included:

Behavior Modification Specialist: After the studegagmes, the system erases some of
their most recent answers (perhaps just two regsop&rhaps an entire problem), giving
the message “I think you were guessing. Maybe gold clo these steps again on tiie 1
try, without hints”. The participants thought th#tis solution could remove the
incentive for gaming, since it slows the studedloAn example page from the
storyboard is shown as Design Example 5-2.
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Design Example 5-2. Excerpt from Behavior Modificabn Specialist’'s storyboard on
moving student back in the problem after he/she gaes the system.
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Teacher: Put a face on the screen, in the upper-left corner (impossible to cover up)
that looks happy when the student is using the software correctly, and looks upset
when the student is gaming. The participants thought that this solution could
communicate to the teacher that the student is gaming, enabling the teacher to
take action. A few examples of post-it notes relevant to this design idea are show
as Design Example 5-3, and an excerpt from the teacher’s storyboard is shown in
Design Example 5-4.

Design Example 5-3. Brainstorming examples for ideaf
giving the tutor a face that looks upset when thetgdent is gaming.
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Design Example 5-4. Excerpts from Teacher's storylamd on
giving the tutor a face that changes expression whehe student is gaming.
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Educational Technology Researcher and Teacher: Wahstiadent is gaming, give them
sub-problems that depend upon the same knowledtgeeastep(s) they gamed through,
until the student can get a step right on the firgt The participants thought that this
solution could give students a second chance tio tea material they had bypassed by
gaming. An example page from the storyboard is srasDesign Example 5-5

Design Example 5-5. Excerpt from Educational Techrdogy Researcher’s storyboard on
giving supplemental exercises to gaming students.

The storyboarding was valuable, in that it gaveesgood explication of some of the earlier ideas.
However, the eventual solutions (which will be d&sed in the following sections) were fairly
different in detail from the storyboards. The daa that | eventually adopted was a
combination of two of the most popular ideas frdm brainstorming, and matched closely the
spirit of the original ideas, even as it differeait the storyboards in detail. Thus, the most
important steps were probably the brainstorming emiihg steps. However, it is important to
note that the brainstorming step was heavily emdchy the presentation of the relevant data at
the beginning, and by the dialogue between thesthfit experts, each bringing their different
knowledge and skills to the problem.
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As the eventual solution differed in detail fronetktoryboards, the storyboarding step might
appear, on the surface, to have been of low dlmeever, the critique and in-depth discussion
of the storyboards was quite valuable. | selettedno ideas | used in part because the negative
aspects brought forward during the critique seelassl serious and more addressable than the
negative aspects of other designs, such as mogager back to the beginning of the problem
(Design Example 5-2). Storyboarding and critiquirglgs us to learn not just what each of the
participants think would be useful, but what théynk the problems and challenges will be, for
each potential solution.

Overall, each of the salient aspects of this siredtbrainstorming session could potentially be
transferred to other participatory design sessi@rteorough (but not overly long) discussion of
the data relevant to the design situation helpsdiagign team inform their ideas, and would be
useful in a variety of situations. Bringing in aiety of different types of expertise often adds to
the complexity of arranging a session, but inceetigepotential space of ideas and perspectives
the mix of specialties in this session involveld fieactitioners (the teachers), and multiple types
of relevant academic expertise. One might expesiine situations, that having such a broad
mix of expertise would run the risk of lack of coomitation problems or lack of respect for
different skills and perspectives; however, thsneéa problem in this structured brainstorming
session. Next, the actual step of brainstorming) sdme side-discussion allowed while solutions
are proposed, is widely useful. In this case, thimdeas of the eventual design were articulated
during this step. Voting then helped narrow downigthsolutions are generally best-liked, and in
fact the ideas | used were two of the four ideas giot many votes and were selected to be
fleshed out in storyboards (two participants skedcthe same idea). Finally, storyboarding and
critique, at the end of a design session, givexaellent opportunity to get some perspectives on
the potential designs before investigating thenthier.

My plan, prior to this session, had been to runtipi¢ sessions, but | was unable to bring
together a group of the diversity and quality | wasking a second time, and thus ended up only
running a single structured brainstorming session.

Developing and Critiquing a Prototype

After the structured brainstorming session, | condal the ideas developed in the teacher and the
educational technology researchers’ storyboafdsddhat signals whether a character is gaming,
and supplemental exercises) into a single design ahd created a set of storyboards. | engaged
in one-on-one critique sessions with teachers famiith the Cognitive Tutors (beyond the
teachers who had participated in the structuredhstarming session), school principals, my
advisors, PhD students in Human-Computer Interaatiand one high school student, iterating
the design after each session. | then implemertediesign, and had PhD students in HCI use
and critigue the implemented system. My intentidritas point was to next conduct critiques

with students from the appropriate age group, bwabk unable to obtain an appropriate
population of participants in the time availablédoe deployment (the students who participated
in Study Three, could not be used because of tlssibitity that the critique would affect the
results of the later study; there was not a langeigh sample to remove students from the study
population for participation in a critique sessidipnetheless, the system had gone through
several iterations of design and critique by theetit was eventually deployed.
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At the point when | developed the first storyboartie ideas from the brainstorming session
were still somewhat undefined — several differerdet®for supplemental exercises had been
proposed during the storyboarding and critique, aederal types of interactions had also been
proposed for the face.

In my first storyboards of the system’s interactiothh the student (Design Example 5-5), the
student had the choice of working with one of nplki characters. Although allowing the
students to choose or even personalize their diearaould likely have had positive effects on the
students’ desire to work with the character (cfrdowa and Lepper 1996) or attitudes towards
the character, this choice was removed from thed tiesign, primarily because of limited
implementation time. As can be seen, the origiisaldf choices had one option that was just a
face (much as in the original ideas from the btamsing session). However, during the critique
sessions (with adults), the puppy and cat were rmunie popular than the face — so when |
narrowed down to one character, | chose the pujmsyead of the original idea from the
brainstorming sessions, the face). It would haen Ipgeferable to make this decision based on
students’ opinions, but as already mentioned,wais not possible due to time and logistical
constraints. In practice, attitudes towards thegupharacter’'s appearance were mixed — some
students found him very cute, while others thougitvas “dorky” or “really white”. In general, a
character will probably be more helpful if he og ghrespected, so it is probably valuable toreithe
give the students a choice between charactergsggrda character who is not “dorky”.

One aspect of the character that was refined ademgn sessions was the character’'s expressions
of negative emotion, when the student was gamimigcided not to follow the suggestion in
Design Example 5-3 that the system refer to the gansitudent as a “jerk”, since this might
upset the student (and potentially anger his/heepss), but instead had the agent look first sad
(Figure 5-2), then angry (Figure 5-4). Some of the momenplex emotions shown in Design
Example 5-4 (such as looking “puzzled” or “quizz)oaBre not used, because of concerns about
effectively communicating these emotions in therabti@r and uncertainty as to exactly when
these emotions should be used. Considerable efftmdss design sessions, went into refining
Scooter’s expressions of anger, so that he waly elegry-looking, but without looking scary or
creepy. The solution shown in Figure 5-4 effectivest this goal, not seriously upsetting any
students, though some students became confusedadeether the agent was angry, or on fire.

Desigh Example 5-5. Excerpt from my storyboards dhe system’s interaction with the student.
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The character’s interaction with the student waghe final version, simpler than in the some of
the original ideas. In some of the design ideasfiloe brainstorming session, as well as in some
of the storyboards (see Design Example 5-6), theacter gives specific advice on the student’s
gaming actions — advising the student to read thinahg hint *carefully*, or to try to get the
answer right on the first try. However, the gamitgtector only gives information as to what
steps the student was likely to be gaming on, ratiy how the student gamed — making the
generation of an appropriate message non-trivialearly implementation selected a message at
random; when this implementation was being testeckitiquer pointed out that the messages
appeared inappropriate and might cause studeritsrik the system was ineffective, and not take
the system seriously. Developing a better altereathat figured out not just that the student was
gaming, but which message was most appropriateaapg to be potentially fairly time-
consuming. Hence, | removed the more specific ngessdimiting the character's comments on
gaming to “Work carefully, so you can learn.” (Feg&-2).

Design Example 5-6. Excerpt from my storyboards dhe system’s interaction with the student.

The final design for the supplemental exercisesalsmssomewhat simpler than many solutions
suggested during the structured brainstorming ees€ine popular suggestion during the
structured brainstorming session was knowledgercation dialogs, leading the student
through each step of the process of determiningatever; however, developing a system that
could present sophisticated knowledge constructialogs is not a simple task (Heffernan,
2001), and seemed to be more complex than necessasysdghisticated open-ended items had
the risk that they would slow the student consitbra- especially if the student was floundering.
Therefore, | selected multiple-choice items, whigére both easier to implement, and had some
bound on how long they would take the student tmptete.

As can be seen from these examples, the evensighdept the spirit of the original ideas from
the structured brainstorming session, but wasyfdifferent in details from the storyboards
produced at the end of the structured brainstorngagsion. The design process used, with
iterations of critique and re-design, refined amgbroved the original, somewhat abstract designs,
bringing their broad ideas and themes into conteith the realities of what can be implemented
(in the given time), and testing out how speci@atires manifest themselves when worked out in
detail, and how those features can be improvedeiinted.

Final Design
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The design which resulted from this process intgatlia new component to the students’
intelligent tutoring software — Scooter the Tutocddter was designed to both reduce the
incentive to game, and assist students in leathiagnaterial that they were avoiding by gaming
the system. Scooter was also designed to minimifdlgt students who were not gaming.

Scooter the Tutor is a puppy character, using geapinom the Microsoft Office Assistant
(Microsoft Corporation 1997), graphically modifiedéaable Scooter to display emotions not
used in Microsoft Office. Pedagogical agents hasnhused in several prior educational systems
(Mathan and Koedinger 2003; Graesser et al, 2003; JohRSokel, and Lester 2000; Wang et

al, 2005). In specific, the Microsoft Office Assistahticrosoft Agent has been used in two
educational systems (Mathan and Koedinger 2003; Maas@eConati 2005). Multiple studies
have, in recent years, suggested that the mererme®sf a pedagogical agent does not improve
learning but that agents can affect learning podyiif used in a fashion that enables new types of
educational interactions (Graesser et al, 2003; Waiagj 2005).

Scooter was designed to focus on students who tesystem. The gaming detector discussed

in Chapter Three (specifically, versions of theed#drs trained only on student data from the
scatterplot lesson, and from the percents lesggpectively) is used to assess whether, and to
what degree, a student has been gaming the sydtarstudent is assessed as not having engaged
in any gaming recently (in the last 10 actions), &rdooks happy and gives the student positive
messages (Figure 5-1). If the detector assesseh¢hstident may have gamed on 1 of the last

10 actions, Scooter looks upset, and gives the stadearning message (Figure 5-2). When the
student is assessed to have been gaming on aB lesstnt actions, Scooter does one of two
things, based on whether the student had gotteargect answer on their last action. If the last
answer was correct, Scooter gives the studentod sepplementary exercises designed to give the
student another chance to cover the material thatstudent may have bypassed while gaming
the system (Figure 5-3). If the answer was incori®@eboter looks angry, to signal to the student
that he or she should now stop gaming, and tryebtiye answer in a more appropriate fashion
(Figure 5-4). Scooter also looks angry if a studees to game him during a supplementary
exercise.

Figure 5-1. Scooter the Tutor, when the student hasot been gaming
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Figure 5-2. Scooter the Tutor, looking moderately nhappy when the student is believed
to have been gaming moderately

Figure 5-3. Scooter the Tutor, intervening to giva supplementary exercise to a gaming student
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Figure 5-4. Scooter the Tutor, looking angry whenhe student is believed to have been gaming heavily,
or attempted to game Scooter during a supplementargxercise (see Figure 5-3)

The supplementary exercises cover the materiahic@at in the steps the student recently gamed
through. The supplementary exercises have thretsleall questions given in the supplementary
exercises are multiple choice. In each of thetfirgtlevels of an exercise, the student is asked to
answer one of the following two types of questions:

1. Questions which require understanding one of thecepts required to answer the step
the student gamed through (for example: “What kaidrariable goes on the Y axis of a
Scatterplot?)

2. Questions about what role the step they gamed tiinquiays in the overall process of
solving the problem (for example: “Why do we nex#riow the largest value of height
in this part of the problem?”)

If the student gets either the first or second l@f¢he exercise correct, Scooter returns the
student to the regular tutor exercise (telling stiedent “That'’s right! Let's get back to work. Be
sure to work through every step carefully.”). Tiuelent only gets one chance to answer the first
or second level of the exercise.

If the student gets both the first and second |®fe¢he exercise wrong, he or she is given a third,
very easy level. We included this third level hsd students would not flounder indefinitely. The
third level items involve a concept relevant todtep the student gamed through, but are very
easy (for example: “What is the first value of heig the table?”). If a student gets the thirddev
right, he or she returns to the regular tutor eigarif a student gets the third level wrong,
Scooter assumes that the student was trying to d@meand is more likely to give further
interventions on the problem step involved, in theire (see the discussion of how the detector
changes its assessments after Scooter’s intengntigar the end of Chapter Three).

As an additional note, Scooter did not offer supmatary exercises for problem steps that only
involved asymptotic skills: i.e., skills that eith# students knew before starting the tutor, or

skills not generally learned by students as theg tee tutor. The rationale for this design choice
was that there would be no gain from giving sup@etary exercises on these problem steps, and
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thus supplementary exercises would waste the ditsidieme. Therefore, if a student gamed
heavily on a step only involving asymptotic sk8spoter looked angry instead of giving
supplementary exercises.

My hypothesis, in designing Scooter, was that Ssrowbuld benefit students in three fashions.
First, by representing how much the student hachlzmaming, Scooter would make gaming more
accountable — the students’ teachers would be@kfeov which students had recently been
gaming. Additionally, there is evidence that simiplforming someone about how often they
engage in a problematic behavior can reduce thetvioer's incidence (Sarafino 2001).

Second, Scooter was intended to invoke social norsisidents (cf. Reeves and Nass 1996) by
becoming visibly angry when students gamed a gedf encouraging the student to use the
software more appropriately. While it is not comnfonsoftware agents to become visibly angry
(in fact, Picard (1997) views anger as an exampleppropriate emotion in an affective system),
it is a very natural behavior in this context. Humeachers become angry with students who
game the system (I will present qualitative dattni® effect, later in the chapter). It also seems
reasonable to posit that if a student working vathuman tutor engaged in the sort of gaming
behavior students attempt with our Cognitive Tutéssich as systematically entering every
number from 1 to 38), the human tutor would becomeetip§herefore, | hypothesized that
when Scooter becomes angry, it will invoke sodahs, and will lead the student to game the
system less.

Third, by giving students supplemental exercisegetad to the material the student was gaming
through, Scooter gives students another opportunitgarn material they have not learned.
Students who game bypass specific material, andtifdent games on the same problem step
across multiple problems, he or she may never ¢fgirece to learn that material. Hence,
Scooter’s supplementary exercises give a studeobad chance — and another way — to learn
material he or she may otherwise miss entirely.ithkadhlly, it was my hypothesis that these
exercises would change the incentive to game — adigeming might previously have been seen
as a way to avoid work, it would now be seen diigéo extra work.

Study Three

The third study | conducted as part of the thes@swhe first study which attempted to test the
effect of using the gaming detector to interven@mwh student gamed. In this study, | contrasted
a traditional tutor to a tutor with an animated agéScooter) designed to both prevent gaming
and offer additional learning support to studentsovgamed. This study also gave evidence on
why students game, discussed in Chapter Four.

Methods

Study Three took place within 5 classes at 2 schatie the Pittsburgh suburbs. Student ages
ranged from approximately 12 to 14. As discussed irpéh@®ne, all students were participating
in a year-long Cognitive Tutor class teaching m&dsithool mathematics, and the study was
conducted in the spring semester, after studerdsusad the Cognitive Tutor for long enough to
know how to use the tutor in a number of ways. 108estis participated in this study, but there
was considerable missing data: not all students pressent for all portions of the study, not all
students answered all of the questions on the mumstires, some students’ data had to be
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discarded for some parts of the study becausetefialasome teachers taught during the study
(this will be discussed momentarily) and some stigléog file data was lost due to network
outages. The degree of data loss was too largmpdyseliminate all students who had some data
loss, but the type of data loss did not seem apjatgpfor imputation (too much dependent-
measure data was lost). Therefore, in each anadysisdent will be included if | have all of their
data relevant to that analysis.

Study Three had two parts. In the first part of thieidy, students used an unmodified Cognitive
Tutor lesson, drawn from their standard curriculutalf of the students (53% of students

present for the relevant parts of the study) wonkéH a lesson on converting between percents
and other mathematical representations; the otla¢friaorked with a lesson on creating and
interpreting scatterplots of data. We used the fiest of the study as both a control condition

for the second part of the study, and to study witgtracteristics are associated with the choice to
game, in an unmodified tutor lesson (this aspe@tatly Three is discussed in Chapter Four).

In the second part of the study, students used difired Cognitive Tutor lesson, which
incorporated Scooter. Scooter was designed, assdest in the previous section, with two design
goals: to reduce gaming, and to give additiongbsrtgo students who persisted in gaming the
system. All students who used the percents lessaeék one used the scatterplot lesson in week
two; all students who used the scatterplot lessameiek one used the percents lesson in week
two. Thus, in the original design of this studyl,sdudents served as both control condition (in
week one) and experimental condition (in week twath tutor lesson counter-balanced between
conditions.

Unfortunately, at one of the two schools, the teashdecided to cover material relevant to the
percents lesson, because of state standards ekaing,the same week the experimental
condition was being run. Since this might biasdaudr of the experimental condition in multiple
ways, | will not use data from the percents lessqrérimental condition from that school. This
leaves only a relatively small amount of dataastde the percents lesson/experimental
condition. Thus, all discussion of Scooter’s irgations (of any type) will involve only the
students who used the scatterplot lesson as tke@rienental condition. While this data loss was
unfortunate, restricting the data set used in aniaty Scooter’s effects makes it possible to draw
inferences which are not confounded.

For each lesson, the students first viewed conakpistruction, delivered via a PowerPoint
presentation with voiceover and simple animatisheyn in Chapter One). In the experimental
condition, this PowerPoint also included a briescigption of Scooter. Then students completed
a pre-test, used the tutor for 80 minutes acrossipleltlass periods (a different number of class
periods between schools, but constant within eabbd), and completed a post-test. Test items
were counterbalanced across the pre-test and psstand are shown in Appendix B. At the
beginning and end of the entire study, studentsletad a questionnaire on their learning
attitudes and beliefs (discussed in Chapter Faun, their attitude towards the tutor (pre-test) or
Scooter (post-test), including both Likert scalkenits (1-6) and one open-ended question, asking
for other thoughts or comments on the tutor/ScootarTable 5-1, we show the pre-test and
post-test items used to compare students’ preatitisides towards the tutor in general, with
their post-test attitudes towards Scooter. Thesed were designed such that they differed only
in whether they referred to “the tutor” or “Scodteo make comparisons as exact as possible.

| Post-Test Item | Corresponding Pre-Test Item |
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“Scooter treats people as individuals” “The tuteats people as individuals”

“Scooter ignores my feelings” “The tutor ignorey faelings”

“| feel that Scooter, in his own unique way, is “| feel that the tutor, in its own unique way, is
genuinely concerned about my learning.” genuinely concerned about my learning.”
“Scooter is friendly” “The tutor is friendly”

“Scooter is smart” “The tutor is smart”

“l would like it if Scooter was a part of my regula
tutor”

“Scooter is irritable”

“Scooter wants me to do well in class”

Table 5-1. Items used within the Study Three queginnaire, to assess the students’ attitudes towar@&cooter.

In addition to the pre-test and post-test measuteftained log files, which | used to distill
several measures of Scooter’s interactions withstadent, including the frequency with which
Scooter got angry, and the frequency with whichaBarogave a student supplementary exercises.

Finally, I collected observational data on eacHesttis frequency of gaming, using the same
guantitative observational method and observeirs @sidies One and Two (see Chapter Two).

Deciding what to use to measure gaming in this gtisca difficult decision, since both human
observation (Chapter Two) and the gaming deted@irdpter Three) have considerable
disadvantages in this situation. The human obsEmathave the serious drawback that they
cannot distinguish harmful gaming from non-harm@aming; | cannot even use pre-post gains
to classify students into these categories, sireetervention may have improved some the
learning of some students in the harmful gaminggaty, making them appear to be engaging in
non-harmful gaming. Thus, if | use the human obsgians, | will be conflating two types of
gaming. At the same time, if | use detector, | viodl using the same measure to both drive
intervention and as a measure of the interventieiféstiveness, probably introducing bias into
analyses (if the gaming detector only catchesohéitie types of harmful gaming behavior, and
half of harmful gaming students completely desishat type of gaming behavior, but continue

in all other types of harmful gaming, then my dédeevould say that the number of students
seen gaming harmfully decreased by 50%, whereadyaatlustudents continued to game
harmfully but some did so less frequently). Becatifee potential bias introduced by using the
gaming detector, in this study | will use data frima human observers as the measure of gaming.
| will address the possibility that the effectsabserved gaming frequency came from changes in
non-harmful gaming in the Results section.

Results

The first and most immediately noticeable effecinagbrporating Scooter in the tutor was a
sizeable, though only marginally significant, reiurcin the frequency of observed gaming.
Students who used the scatterplot lesson as tbeirat condition gamed an average of 5.5% of
the time within that lesson, while students whodiiee scatterplot lesson as their experimental
condition gamed an average of 2.4% of the time withé lesson, t(100)=1.86, p=0.07, effect
size = 0.49. Interestingly, this drop appeared to occur as @ @mdhe number of students seen
gaming in each condition, rather than as a drotharate at which the remaining gaming
students gamed. 33% of students were seen gaming gt#tterplot/ control condition, while
18% of students were seen gaming in the scatterpipériamental condition, a marginally
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significant differenceg*(1,N=102)= 3.30, p=0.07 The average gamer in the scatterplot/ control
condition gamed 17% of the time, while the averagesgamthe scatterplot/ experimental
condition gamed 14% of the time, which was not a §icamt difference, t1(23)=0.74, p=0.47. Of
course, the reduction in gaming might have beemoin-harmful gaming; | will address this
possibility later in this section.

% of students ever seen gaming

35
30

25
20

15

10

Control Experimental

Figure 5-5. The occurrence of gaming (observed) ach condition, for the Scatterplot lesson.

Despite the apparent reduction in gaming, howethare was not an apparent improvement in
learning. Overall, students in the scatterplot/cohtondition scored 44% on the pre-test and
66% on the post-test, a 22 point gain, whereas studietite® scatterplot/experimental condition
scored 37% on the pre-test and 62% on the post-test, aigbgain. The difference in students’
gains between conditions was not significant, t(70)=(p38,73.

There was the appearance of a difference in tagoakhip between pre-test and post-test
between the two conditions; as can be seen in &8, students who scored between 0% and
50% on the pre-test appear to have done better opdketest in the experimental condition,
with the difference largest (15 points) among thdadents who scored 0% on the pre-test.
However, the aptitude-treatment interaction was siginificant, F(1,69)=1.71, p=0.20.

Y10 put these frequencies into context, 24% of sttslevere observed gaming in either fashion in Stddg, and
41% of students were observed gaming in eitheidiash Study Two.
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Figure 5-6. The relationship between pre-test andgst-test in each condition
(only data from the Scatterplot lesson is shown, fdest comparability).

However, gamers are a small subset of the ovexalilgtion — therefore, differences in gamers’
learning may be swamped by normal variation irréls¢ of the population. Only a third of
students were ever observed gaming in the cordgraliton — and moreover, the gaming detector
and interventions are designed for a specific swbsleis subset. Interestingly, the relationship
between gaming and post-test performance even epfzeswitch direction between conditions,
as shown in Figure 5-7. In the control condition, re@aming is associated with poorer learning,
as in Study One (see Chapter Two); in the experitalerondition, by contrast, more gaming
actually appears to be associated with more lepsnthough the interaction effect between the
effects of gaming and the condition is not sigmifi F(1,81)=1.84, p=0.18.

It is worth noting, by the way, that this trend (tarck of a trend) is evidence that the reduction in
observed gaming did not come from reducing theuesgy of non-harmful gaming with no
reduction in harmful gaming. If that had been thase, we would expect gaming to be much
more strongly associated with poorer learning smaRkperimental condition, which was not the
case.
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Figure 5-7. The relationship between gaming and pbsest, in each condition
(best-fit lines are shown rather than empirical da&, for comprehensibility).

Hence, Scooter appears to have had an overall effeaming, but not on learning (though
there was a trend towards greater learning). Howene all gaming students received the same
number of Scooter’s interventions. Hence, it maybeh looking at the students who got the
most interventions from Scooter, to see how/if tlggiming behavior and learning was affected
by Scooter. In the following sections, | will examthe behavioral and learning outcomes
associated with each type of intervention, anadyttie two types of interventions separately,
since the two types of interventions were givesuiotly different situations and may have had
different effects.

Scooter's Supplementary Exercises

In this section, | will examine the outcomes assed with Scooter’s supplementary exercises (an
example exercise is shown in Figure 5-3). Scooter géairly small number of exercises. No
student received a set of exercises from Scootmoomthan 3.2% of problem steps (12 sets), the
median student received a set of exercises on 1.48dbém steps (3 sets), and many students
received no exercises at all.

But, on the other hand, Scooter’s exercises weigrnasl to exactly the problem steps students
gamed on (according to the detector), so the esesanight have disproportionate effects on
learning.

One possible model for how learning could relataumber of supplementary exercises received
is that there could be a linear relationship — tr@ersupplementary exercises a student receives,
the more they learn. However, a linear model igadine fact that the students who never receive
supplementary exercises don’t receive supplemexiangises because they don’'t engage in
harmful gaming, and that not engaging in harmfulngag is generally associated with better
learning (see Chapter Two).

Therefore, it may be more reasonable to expeatelationship between supplementary exercises

and learning to be as follows: students who recein&ipplementary exercises show good
learning, students who receive many supplemenxargises show good learning, and the
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students in the middle show poorer learning. Irnt fius is exactly the relationship we find,
shown in Figure 5-8.

Figure 5-8. The Learning Gains Associated With Redgng
Different Levels of Supplemental Exercises From Soter
(Empirical data shown)

The third of students that received the most suppatary exercises had significantly better
learning than the other two thirds, t(37)=2.25, p=0.03; therall difference between all three
groups is also significant, F(2,36)=3.10, p=0.06.

Hence, it appears that the students who receivedrtbst supplementary exercises learned more
than the other students in the class. In the remdairof the section, | will analyze this finding in
more depth. However, before doing so, | will ficeinsider whether there is a more meaningful
place to split between groups than thé& @@ércentile. To do so, | will develop a model dé th
relationship between supplemental exercises amdrigayains. The empirical relationship
between these quantities is shown in Figure 5-& inore broken-down form.
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Figure 5-9. The Learning Gains Associated With Re¢éng
Different Levels of Supplemental Exercises From Soter
(Empirical data shown)

(5" quartile did worse on post-test than pre-test)

Given the relationship we can see in Figure 5-8 itot surprising that a linear function does a
poor job of modeling the relationship between posipgain and the number of supplemental
exercises, achieving dofr0.02. A reverse bell-curve also does a poor jofpuadratic function
does not even converge as a reverse bell-cuteadrtonverging to a nearly linear positive
relationship which also has &wf 0.02 (2 parameters). A “V” function (segmented regjoa

with a single split, 3 parameters) achieves @10, which is still not very good. A bimodal
model (segmented regression on quadratic functatiisa single split, 5 parameters), however,
achieves a substantially betfefi0.36.

The improved fit given by the bimodal model does simply appear to be the result of adding
more parameters. The bimodal model achieves a &1Q.64, whereas the best-fitting model
which treats this relationship as a linear functimhieves a BIf 2.98, and the best-fitting “V”
model achieves a Bl©f 6.82. Hence, the difference in BlGetween the bimodal and linear
models is 2.34, which is equivalent to a p-value of (Ra2tery 1995), and the difference in BIC
between the bimodal and “V” models is 6.18, whiclyiswalent to a p-value of 0.003. Hence, a
bimodal model appears to be more appropriate taltiia than other potential models.

The best-fitting bimodal model states that the exteel pre-post gain equals (giving P for the
percentage of steps where the student receivadbasgpplemental exercises):

If P<0.0122, 0.63 — 62.91P + 12553.13P 2
IfP 0.0122, 1.83 — 66.24P + 3507.28P 2

This function can also be written (somewhat momaprehensibly) as:

If P<0.0122, 0.31 — 12553.13*(0.005-P) 2
IfP 0.0122, 0.57 — 3507.28 *(0.019-P) 2

In this model, 0.31 and 0.57 represent the two modegaldes, and 0.005 and 0.019 represent
the two modes’ X-values. 0.0122 represents the mokt Bgét-point between the two halves of
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the distribution: when the student receives a seipehtary exercise 1.22% of the time (th& 63
percentile). The graph of the relationship givertty bimodal model is shown in Figure 5-10.
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Figure 5-10. The Learning Gains Associated With Regiving
Different Levels of Supplemental Exercises From Soter
(Predictions from best-fitting bimodal model shown)

We can now use the division between the two hal¥éise bimodal model (supplemental
exercises = 1.22%) to divide the students into a grbspidents who received many
supplemental exercises group, and a group of studdro received fewer supplemental exercises.
The students who received many supplemental egerices/e an average pre-post gain of 46%,
compared to an average pre-post gain of 11% for tliests who received fewer exercises,
t(37)=2.48, p=0.02, effect size = 79

To look at the difference another way, although shedents who received many exercises were
substantially lower at pre-test (20% versus 53%), th@towps were essentially equal by the
post-test (66% versus 64%), as shown in Figure 5-11.nf@Action effect is statistically
significant, F(1,37)=6.16, p=0.02, for a repeated-measures\ANQ is also important to note
that there is not a ceiling at 66%: 28% of all stude3834(of students in the top 3 eighths, 25%
of the other students) had perfect scores on thst-fest; there is also not a post-test floor effect
some students in each groups had low post-tes¢scor
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Figure 5-11. The Learning Gains Associated With Rezving
Different Levels of Supplemental Exercises From Soder

That said, students with lower pre-test scoresabel expected to catch up to students with
higher pre-test scores, in some situations (fomge, if most students knew skills A,B, and C
after using the tutor but many students did not wnall of these skills before using the tutor),
and it's possible that the effect we're observinddcbe explained in this fashion. One way to
investigate this possibility would be to compatglehts with low pre-test scores in each group —
this step, however, substantially reduces sangdeand therefore strongly biases any statistical
comparison towards non-significance.

There is another way to investigate this possyhilitithout drastically reducing sample size:
comparing each group of students’ actual gainsa@ains that we could have expected they
would gain. We can figure out a baseline amounémaect each student to gain, using data from
the control condition to fit an expected functioativeen each student’s pre-test and post-test.
The best-fitting function for the control conditiodata (with an of 0.25 to the actual data in

that condition) is

Post-Test = 0.44 + (0.56)Pre-Test

If we predict each experimental-condition studeptst-test using this formula, we find that
according to this prediction, the students who nesg more supplementary exercises could have
been expected to perform 19 percentage points worige post-test than the students who
received fewer supplementary exercises. Insteagyvko, the students who received more
supplementary exercises performed 2 percentages petteon the post-test than the students
who received fewer supplementary exercises. Im wibrels, the students who received the most
supplementary exercises gained 21 more points eetatthe other students than predicted, a
marginally significant difference, t(37)=1.71, p=0.09 fwvatailed t-test.

Hence, it appears that the pattern shown in FightEL can not be explained as all students with
low pre-test scores catching up to the rest ofdlass. Instead, it appears that students who
received the most supplementary exercises learoedthan the other students, and this greater
learning enabled them to catch up to the rest efdlass. It's also worth noting that this pattern
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is the exact opposite of the one seen in the eatliglies of gaming’s effects on learning (see
Chapter Two), where students who frequently gamadexd behind the rest of the class and fell
further behind by the post-test, rather than catchip, as the students who receive many
supplementary exercises do.

Interestingly, however, though there appears ta bennection between receiving more exercises
from Scooter and increased learning, Scooter’sisgsrdo not appear to have led to the decrease
in gaming reported in the previous section. If Sede exercises directly led students to reduce
their gaming, we would expect the students whoivedemore exercises to reduce their gaming
over time. There is no evidence of such a decrEagee 5-12 shows the frequency in gaming
over the 3 days of the study among the studentsreteived many exercises received in the
scatterplot/experimental condition, compared to shedents who received fewer exercises.
Among the students who received more exercisebené¢ne apparent increase in gaming from
day 1 (7%) to day 2 (10%), nor the apparent decreaseninggrom day 2 (10%) to day 3 (7%),
was statistically significard’(1,N=155)= 0.31, p=0.587(1,N=105)= 0.17, p=0.68. Overall, the
students who received more exercises gamed sagiiyienore than the students who received
fewer exercises;’(1,N=388)= 24.33, p<0.001.
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Figure 5-12. Gaming Over Time, in the Scatterplot/Eperimental Condition

Case Studies

In this section, | will present a pair of case g#gdo put some of the effects observed in thidystu
into context. Specifically, | will compare a pdih@h-gaming students, one in the
scatterplot/experimental condition, and the othethe scatterplot/control condition — and show
how Scooter changed the student’s experience iscterplot/experimental condition.

Experimental Condition
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“Chris” (not his/her real name; also, gender wasecorded in this study) was a 9th-grade
student. Chris had a low pre-test score (17%) andjla post-test score (100%).

On the pre-test, Chris demonstrated a common misemion (cf. Baker, Corbett, and
Koedinger 2001), where students select variables wiuald be more appropriate for a bar
graph than a scatterplot (one categorical variafitbone quantitative variable); however, for the
one correct variable, Chris selected an appropske and bounds. Chris plotted points, but
they were not evaluated (in accordance with a teglyaused grading policy for the scatterplot
lesson’s tests), since plotting values along aatabwariables is not necessarily the same as
plotting values along quantitative variables.

On the post-test, Chris performed perfectly. Clsigraph had the correct two variables, both of
the correct type (quantitative). Both axes had@pr@priate scale, and all points were plotted
correctly.

Chris was observed gaming 10% of the time in the @xpetal condition (in the 91st percentile
of all students), and received supplementary eesron 2.4% of problem steps (also in the 91st
percentile of all students). In absolute terms,i€heceived 9 sets of supplementary exercises in
the 66 minutes he used the tutor. 6 of those 9 setx@ftises directly concerned how to tell the
difference between what types of variables shaulgsbd in scatterplots and what types of
variables should be used in bar graphs, or corgténeeactual step of choosing which variable to
use in the graph. In other words, Chris receivethall number of exercises, but these exercises
were focused exactly on the skill he most need&shta — and he learned that skill. (Point
plotting, which Chris also appeared to learn frora-fest to post-test, is learned all students by
the time they have plotted a small number of poinBaker, Corbett, Koedinger, and Schneider
2003).

Interestingly, after showing impressive learninggaChris wrote on the post-test (on the open-
ended response question) that “Scooter can beamenying. Please do not put him on regular
tutor” — indicating that, although Chris had impresslearning — quite likely due to using
Scooter — Chris disliked Scooter.

Control Condition
“Pat” was a 9th-grade student. Like Chris, Pat hddva pre-test score (0%), but unlike Chris,
Pat had a low post-test score (17%).

Like Chris, Pat demonstrated a common misconceptiorthe pre-test where students select
variables which would be more appropriate for egbaph than a scatterplot (one categorical
variable and one quantitative variable). For the correct variable, Pat made a related
misconception, treating a quantitative variablé asvere a categorical variable. Like Chris, Pat
plotted points, but they were not evaluated (inoagdance with a repeatedly-used grading policy
for the scatterplot lesson’s tests), since plpti@ues along categorical variables is not neibgssa
the same as plotting values along quantitativelblas.

On the post-test, Pat showed only moderate impromenover the pre-test. Like on the pre-test,
Pat selected variables which would be more ap@tepidr a bar graph than a scatterplot (one
categorical variable and one quantitative variaHi@yever, on the post-test, Pat selected an
appropriate scale and bounds for the one correietble, avoiding the earlier error where Pat
treated a quantitative variable as if it were aategl.
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Pat was observed gaming 10% of the time in the arpatal condition, exactly the same
proportion of the time as Chris — although in thésson 10% gaming was only in the 71st
percentile of all students. Pat was never seennggoni the problem steps where it is possible to
treat a quantitative variable as nominal — and neasgte this error on the post-test. Pat gamed

19 times' (or 4.75 times per problem completed) on the probééeps which directly concerned
how to tell the difference between what types ofdes should be used in scatterplots and what
types of variables should be used in bar graplt@nmerned the actual step of choosing which
variable to use in the graph. Therefore, had Panhbe the experimental condition, it seems

likely he/she would have received some numberppiiementary exercises on these skills. As Pat
was in the control condition, however, he/she did receive any supplementary exercises.

Hence, Pat made a variable choice error on thegst-gamed on the steps which would have
taught him the relevant skill, and made the samerem the post-test. Chris made the exact
same error on the pre-test, and gamed on the stépsh would have taught him the relevant
skills — but then Chris received 9 sets of suppleargrgxercises on these skills, and avoided the
error on the post-test. This provides some illustraon how a small number of supplementary
exercises could be associated with substantiaiigagains — they were targeted by the gaming
detector towards exactly the steps that students axiding learning by gaming.

Scooter’s Expressions of Displeasure

In this section, | will examine the outcomes assed with Scooter becoming angry (a example is
shown in Figure 5-4). Scooter became angry consilyemadire often than he gave supplementary
exercises. The median student saw an angry Scht of the time, and the student who saw
an angry Scooter the most often saw an angry Sct88% of the time.

There did not appear to be a strong associatiowdxat viewing an angry Scooter more often,
and better learning. Although there was some afgpe® of a trend towards greater learning for
students who received more expressions of angerSoooter (see Figure 5-13), there was
neither a significant linear relationship betwegpressions of anger and learning, t(39)=0.32,
p=0.75, nor did students who received the most expressi anger have a significantly larger
average learning gain than other students, t(37)=0.486p=€ffect size = 0.20comparing the

top quartile to the other students.

1 Using the same detector used in the experimentalition

2 1f we select a different cutoff point, it does mtange significance; for the top 3/8 versus tierb/8, t(37)=0.41,
p=0.68; for a median split, t(37)=0.15, p=0.88;tfar top third versus the other two thirds, t(37)6, p=0.87.
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Figure 5-13. The Learning Gains Associated With Rexving
Different Levels of Expressions of Anger From Scoet.

Additionally, there is no evidence of a relatiopsbetween Scooter’s frequency of expressions of
anger, and a reduction in gaming over time. Fidi#e8 shows the frequency in gaming over the
3 days of the study among the top quartile of sttsléin terms of seeing an angry Scooter) in the
scatterplot/experimental condition, compared to dfleer students in this condition. As Figure
5-11 shows, neither group of students substantiabiywghd their gaming over the course of the
study. Among the students who saw an angry Sceolmgemost often, neither the apparent
decrease in gaming from day 1 (7%) to day 2 (6%), napparent increase in gaming from day
2 (6%) to day 3 (13%), was statistically significziit, N=79)= 0.04, p=0.84’(1,N=50)= 0.83,
p=0.36.
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Figure 5-13. Gaming Over Time, in the Scatterplot/Eperimental Condition
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Why Did Gaming Reduce?

As mentioned earlier in this chapter, there wamarginally significant) overall reduction in
gaming in the condition where Scooter is preserawdver, neither students who saw an angry
Scooter more often nor students who received mgrplementary exercises reduced their
gaming over time.

It is possible that simply knowing Scooter was @mgsand that he would look unhappy when
students gamed, and that the teacher would see&co@s sufficient to explain the reduction in
gaming from the control condition to the experimaintondition. Students who were less
committed to gaming might not want to game if thieyew their teacher would know. Thus,
although Scooter’'s mood may not have directly tffethe students who saw an angry Scooter,
Scooter’s presence may have motivated studentsitbgaming during the entire lesson.

Student Attitudes Towards Scooter

At this point, we know that Scooter had positivéeets towards reducing gaming, and appeared
to improve some students’ learning through his gmppntary exercises. These elements suggest
that Scooter was a useful and positive additicthéoclassroom experience. However, it is also
important to consider whether the students foundhkirmy with Scooter a positive experience. In
this section, | will examine data on studentstadis towards Scooter, in comparison to their
attitudes to the regular tutor (before using Scoot@ince most students enjoy working with the
tutor (Schofield 1995; Baker, Roll, Corbett, and Koegin 2005), this should be a reasonably
strong comparison.

In doing so, | will consider three groups of stutdeattitudes towards Scooter: students who
received considerable numbers of supplementalisa®ithe set of students who were identified
as having received more supplemental exercisksr #athis chapter), students who received
considerable numbers of expressions of anger fommt&, and students who were in neither of
these groups (and therefore primarily saw a danbigpy Scooter).

It's reasonable to expect that there will be pet-tifferences between these groups (since, as
discussed in Chapter Four, one of the factors lmads to gaming is disliking the tutor) —
therefore, the goal of this section will not bectimpare these three groups of students to each
other (which is likely to lead to the unsurprisiggult that students who see a happy dancing
puppy enjoy that more than seeing an angry, crifiappy), but to see how each of these three
groups of students liked Scooter, in comparisotiédr regular tutor.

All of the items that | will discuss in this seaticnvolve Likert scales, from 1 to 6. For the
majority of items, 1 indicated “Strongly Disagrertl® indicated “Strongly Agree” — | will
explicitly indicate cases where the scale is exe®n all items, the middle possible average
response is 3.5 — however, each student individuedigied to indicate 3 or 4.

Student Attitudes Towards Scooter —Students Villeal Résrgy Supplementary Exercises

The students who received a considerable numbarggflementary exercises from Scooter were
neutral to negative towards Scooter. These studedsan average response of 2.9 to the
guestion “I would like it if Scooter was a partna§ regular tutor” (with a 95% confidence band of
1.8-3.9, encompassing the middle possible value, 3.5).
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However, across the five items that compared Sctmthe tutor, there was a significant trend
towards students’ attitudes towards Scooter bewwgi than their pre-test attitudes towards the
tutor, t(13) = 2.78, p=0.02, for a two-tailed paired t-tddte students’ average pre-test rating of
the tutor was 3.9 and their average post-test rasingcooter was 3.0.

The students who received more supplementary eesrcited Scooter lower than their regular
tutor on the items asking whether Scooter/the tuteats people as individuals, t(13) =2.22,
p=0.05, for a paired t-test, whether Scooter/the tuissmart, t(13)=4.94, p<0.001, for a paired t-
test, and whether Scooter/the tutor is friendlf,3(=2.39, p=0.03. It is surprising that these
students gave Scooter low ratings on being smdrtraating students like individuals, since
Scooter was using assessments of individual difesan order to offer what turned out to be
highly effective adaptations to these very studemisnce, one might say that Scooter actually
wassmart andvastreating people as individuals. Nonetheless, thesdts suggest that even if
Scooter succeeded in these goals, it was not appparde very students who benefited. It may
be interesting to investigate, in a followup studiiat these students attribute their learning to in
this lesson.

The other two items did not decrease significanilye overall pattern of responses of the
students who received the most supplementary sgeris shown in Table 5-2.

Test Item Pre-Test Mean Post-Test Mean| Statistical
Significance (p)
“The tutor/Scooter is smart” 4.9 3.1 <0.001
“The tutor/Scooter treats people as individuals” .83 3 0.05
“The tutor/Scooter ignores my feelings” 3.2 3.5 0.27
(item goes in opposite direction to others
“The tutor/Scooter is friendly” 3.9 2.9 0.03
“| feel that the tutor/Scooter, in its/his own ung] 3.6 3.3 0.36
way, is genuinely concerned about my learning.”
“Scooter is irritable.” n/a 3.9 n/a
“l would like it if Scooter was part of my regular n/a 2.9 n/a
tutor.”

Table 5-2. Differences between pre-test attitudeswards the tutor, and post-test attitudes towards &oter,
among the students who received the most supplemany exercises (top 3/8)

Student Attitudes Towards Scooter —Students Wientiyr&&pw an Angry Scooter

The students who saw an angry Scooter the most @ttte top quartile in the scatterplot/
experimental condition) were also very displeasedsame aspects of Scooter, but —
interestingly — different aspects than the studerite received the most supplementary exercises.
These students had a mean response of 3.6 to théayudsvould like it if Scooter was a part of
my regular tutor” — exactly in the middle of the gib& response range.

However, there is evidence that these studentsageherally low opinion of Scooter. These
students tended to agree with the sentence “Scoieitable” (average response of 4.7, 95%
confidence band=4.0-5.4, significantly different thaarate). Additionally, across the five items
that compared Scooter to the tutor, there was aifsignt trend towards students’ attitudes
towards Scooter being lower than these studergstgat attitudes towards the tutor, t(6)=2.79,
p=0.03, for a paired t-test. The students’ averagdgstrating of the tutor was 3.7 and their
average post-test rating of Scooter was 2.3.
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These students trended towards rating Scooter |oaar the tutor on each of the five
comparison items. The trend was statistically iggmt for their opinions of Scooter’s
intelligence, t(7)=4.46, p<0.01, for a paired t-test, andtivbr Scooter ignored their feelings,

t(7)=-3.86, p<0.01, for a paired t-test. The trend was rimaty significant — or nearly so — for

the other three items, t(6) = 1.80, p=0.12, t(7) = 1.69, p=0.1¥%1(95, p=0.10. The overall

pattern of responses of the students who recehadhbst supplementary exercises is shown in

Table 5-3.
Test Item Pre-Test Mean Post-Test Mean| Statistical
Significance (p)
“The tutor/Scooter is smart” 5.3 2.9 <0.01
“The tutor/Scooter treats people as individuals” 6 4 3.4 0.12
“The tutor/Scooter ignores my feelings” 3.3 4.1 <0.01
(item goes in opposite direction to others
“The tutor/Scooter is friendly” 4.5 3.4 0.14
“| feel that the tutor/Scooter, in his/its own uné 4.4 3 0.10
way, is genuinely concerned about my learning.”
“Scooter is irritable.” n/a 4.7 n/a
“l would like it if Scooter was part of my regular n/a 3.6 n/a

tutor.”

Table 5-3. Differences between pre-test attitudeswards the tutor, and post-test attitudes towards &oter,
among the students who saw an angry Scooter the niadten (top quartile)

Student Attitudes Towards Scooter — Other Students
The students who neither saw an angry Scooter thst @wften nor received the most
supplementary exercises were overwhelmingly néodvalrds Scooter. These students had a

mean response of 3.6 to the question “I would likeStcooter was a part of my regular tutor” —
exactly in the middle of the possible responsegang

These students tended to agree with the sentermeoté&r is irritable” (average response of 4.2,
95% confidence band=3.6-4.8, significantly different ttlaance). However, across the five items
that compared Scooter to the tutor, there wasta significant trend towards students’ attitudes
towards Scooter being lower than these studergstqat attitudes towards the tutor, t(19)=1.29,

p=0.21, for a paired t-test.

These students rated Scooter lower than their sggutor on the items asking whether
Scooter/the tutor is smart, t(18) =2.05, p=0.06, for a paitedt. The other four items did not
decrease significantly. The overall pattern ofaasps of these students is shown in Table 5-4.
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Test Item Pre-Test Mean Post-Test Mean| Statistical
Significance (p)
“The tutor/Scooter is smart” 4.8 4.1 0.06
“The tutor/Scooter treats people as individuals” 4 4 4.0 0.29
“The tutor/Scooter ignores my feelings” 3.4 3.5 0.73
(item goes in opposite direction to others
“The tutor/Scooter is friendly” 4.4 3.9 0.31
“| feel that the tutor/Scooter, in his/its own uné 3.9 4 0.99
way, is genuinely concerned about my learning.”
“Scooter is irritable.” n/a 4.2 n/a
“I would like it if Scooter was part of my regular n/a 3.6 n/a
tutor.”

Table 5-4. Differences between pre-test attitudeswards the tutor, and post-test attitudes towards &oter,
among the students who did not receive the most splemental exercises, or see an angry Scooter the shoften.

Student Attitudes Towards Scooter — Summary

Overall, then, the students whose experiences mvest substantially affected by Scooter appear
to have liked him least. The trend towards disliki®cooter was moderately more pronounced
among those students who saw an angry Scooter ¢iseaften (by comparison to the students
who saw the most supplementary exercises). Heltiseugh Scooter had positive effects towards
reducing gaming, and appeared to improve some stsidearning through his supplementary
exercises, there is considerable room for improweimenaking working with Scooter a more
enjoyable, positive experience.

On the other hand, the students who did not se@agry Scooter very often or receive many
supplementary exercises were more or less newttaids Scooter. This finding suggests that, at
minimum, this design fulfilled the second solutiparameter identified at the beginning of this
chapter -- change the tutor minimally for studemtso do not game.

Thus, this design can be considered a reasonatiesss The students who received many
supplemental exercises appear to have had bettemlg, though they disliked several aspects of
Scooter. The students who received few intervest{of either type) from Scooter were largely
unaffected, in either learning or attitudes. Ori tstudents who received many expressions of
anger from Scooter appeared to have had their xyoerwith the tutor changed for the worse —
and even these students, while they did not enfarkivwg with Scooter, did not appear to have
learned less than other students. This outcome, dwegever, suggest that perhaps future
versions of Scooter should retain his supplemexticises while finding a less irritating way to
communicate to the student and their teacher thatdtudent has been gaming.

Contributions

There are two contributions from this chapter oétthesis. The first contribution is obvious and
direct. In this chapter, | have presented a reglesil tutor which reduces the number of students
who game and enables gaming students who receiwe sugplementary exercises to catch up to
the rest of the class.

The re-designed lesson presented is not withouwtsla most importantly, the students who most

benefited from the system tended to like it lesttheir regular tutor. It will be important to
investigate if Scooter can be made more likealthout reducing his educational effectiveness.
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It will also be worthwhile to explore Scooter’'sigedurther. For example, the reduction in

gaming did not appear to be associated with theieg gains some students saw. It may be

more effective, in future design iterations, tottrynot reduce gaming, so that we can better see
which students would benefit from supplementary@sges (this approach treats gaming not as a
problem in itself, but as a sign that the studee¢ds help). It may also be possible to detect when
non-gaming students could benefit from supplemgnéxercises (it might be of value, for
instance to give supplemental exercises on anyvhiene the student had had difficulty across
several problems, regardless of whether the stg@enéd the system).

This chapter makes a second contribution, havindotevith process. In this chapter, | presented
a system which was reasonably successful onyitBrsedeployment, despite addressing an issue
in student learning in interactive learning envimants that had largely not been previously
addressed. | believe that such rapid success taheeaxplained by good design process. Most of
the original hypotheses (from our group, and otlesearchers) for what behaviors should be
connected with poorer learning (Chapter Two) andvitny students game (Chapter Four), were
completely incorrect (at least within the learnemyironment studied), and therefore probably
would have led to the design of useless or evarteuoductive systems. The extensive research
| conducted at the beginning of the design cyckidiled in Chapters Two and Four) prevented
such an error. Additionally, my early ideas for Howespond to gaming, even though informed
by the research in those chapters, seem, in retcsgubstantially flawed in comparison to the
design used in Study Three. In this chapter, | shmw structured brainstorming (with a diverse
and enthusiastic group of experts) and repeatetype-and-critique cycles helped me to
considerably improve the design of the system predén Study Three. The exact contributions
of good design process can be difficult to arttewtait’'s not possible to run a controlled
experiment where the same designer or designéey &itllow good process or fail to do so.
Nonetheless, a design process can be judged bytwhaduces — and the system presented here,
though far from perfect, appears to have beenssonadole success.
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Chapter Six

Conclusions and Future Work

This thesis makes a number of contributions, acsessral fields. In this chapter, | will
summarize these contributions, and discuss soraeefdirections for the program of research
presented in this dissertation.

Human-Computer Interaction:
How Do Student Decisions When Using Educational Sys tems Affect
Their Learning?

Findings

It has been known for some time that students whe a variety of types of educational
technology game the system, attempting to suceead educational environment by exploiting
properties of the system rather than by learnirgrttaterial and trying to use that knowledge to
answer correctly.

In this thesis | establish that only a minoritystfidents game the system, but that the choice to
game the system is associated with considerabtgpearning than other seemingly non-
productive behaviors, such as talking off-task.

| also establish, however, that not all typesavhigg are associated with equally poor learning
outcomes, showing that gaming behavior within thteliigent tutoring system studied divides
into “harmful gaming” and “non-harmful gaming”, atftht these two types of gaming are
automatically distinguished by machine learning.

Techniques

To establish these findings, | used a pair of tegies which are likely to be useful for detecting
and modeling other types of student behavior. Tirst fechnique is quantitative field
observation. Quantitative field observation haigtahistory in the behavioral psychology
literature (Lahaderne 1968; Karweit and Slavin 1982; Liayd Loper 1986; Lee, Kelly, and
Nyre 1999). The method | use in this dissertation addpis technique to the study of behavior
in interactive learning environments, changingtéehnique in a seemingly small but useful
fashion: Within the method | use in this dissertati the observer codes for multiple behaviors
rather than just one. Although this may seem a bmatlification, this change makes this
method useful for differentiating between the léagnmpact of multiple behaviors, rather than
just identifying characteristics of a single betvaviihe method for quantitative field observations
used in this dissertation achieves good inter-nagigability, and has now been used to study
behavior in at least two other intelligent tutoojects (Nogry 2005; Neil Heffernan, personal
communication).

The data from quantitative observation becomes evae useful, | have found, when analyzed
with a psychometrically-inspired machine learniragrfework — in this case, a Latent Response
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Model. Learning Latent Response Models from theadahabled me to differentiate between two
types of gaming which were indistinguishable to harobservers. The model also made more
precise predictions about how often each studemegahe system.

Machine Learning:
Developing Detectors of Student Behavior

Findings

In this dissertation, | present a gaming deteckattverifiably works on a number of tutor
lessons, and which can be used to detect gamigwmiew tutor lessons without large
degradations in performance. This work establishasis possible to develop a behavior detector
that can transfer effectively between fairly défélessons within-curriculum. The results
presented here also suggest that it is benefictahin on multiple lessons, to obtain a detector
which can be generalized to lessons beyond thimakigaining lessons.

Techniques

In order to develop this detector, | adapted a pseyetric framework, Latent Response Models,
for use in machine-learned behavior detection. LRMse a number of advantages for behavior
detection, being able to naturally take advantdgeuttiple sources of data at different grain-
sizes. My work in adapting LRMs to this task inveti’7developing a new type of three-level
LRM, and inventing a new algorithm — based on fordvaelection, iterative gradient descent,
and Fast Correlation-Based Filtering, to searchgpace of potential LRMs. The techniques |
developed for learning LRMs have proved usefuljusitin developing a detector of gaming, but
have also proven useful for mining information ahmher types of behavior in Cognitive Tutor
log files. | believe that LRMs will be useful ircansiderable range of behavior detection and data
mining problems — essentially, whenever there &sdirained data from log files that can be
combined with aggregate, user-by-user data.

Educational Psychology:
What Distinguishes the Students who Choose to Game the
System?

Findings

In this dissertation, | presented three studieschitgive data on what behaviors, attributes,
motivations, and beliefs characterize the studehts choose to game. | use this data to develop a
profile of a prototypical gaming student, whichdeuin Study Three to develop an intervention
which responds (reasonably) appropriately to gandihg profile shows that gaming students
have a consistent pattern of disliking virtuallgrgnaspect of their classroom environment, and
are generally not self-driven, across educati@méxgts; however, these students do not have a
goal of performing well in the tutor instead ofrieiag (contrary to earlier predictions).
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Human-Computer Interaction:
Towards Responding Automatically and Appropriately  to Gaming

Findings

In this dissertation, | have presented a re-designeor which reduces gaming, and enables
gaming students who receive many supplementargisgeto catch up to the rest of the class.

The re-designed lesson presented is not withowtsla most importantly, the students who most
benefited from the system tended to like it lesmtkheir regular tutor. It will be important to
investigate if Scooter can be made more likealtteout reducing his educational effectiveness.

Techniques

This system, beyond making considerable progresstis improving the learning outcomes of
some students who are poorly served by existingi@agTutors, is an illustration of the benefit
of good design process. This system was reasaatagssful on its very first deployment, despite
addressing an issue in student learning in interad¢arning environments that had largely not
been previously addressed. It appears, given doime @arly hypotheses for what behaviors
should be connected with poorer learning (Chaptero) and for why students game (Chapter
Four), that incorporating empirical research inte first stages of the design process was a big
win; similarly, a comparison of early design idedhe eventual design used in Study Three
suggests that structured brainstorming (with adieend enthusiastic group of experts) and
repeated cycles of prototyping-and-critique le@ ®ubstantially better design. It is my intention
to investigate, after the completion of this disson, how design techniques can help make the
next version of Scooter more effective and enjeyibin he was in Study Three.

Future Directions
Improving Scooter

Though Scooter was effective at reducing gamindimaproving learning for the students who
received substantial numbers of supplementaryisggrthere is considerable room for improving
Scooter. | intend to study whether Scooter camyeroved by studying whether we can make
him more enjoyable to use (without compromisingédffectiveness), whether it is better to avoid
reducing gaming and focus the system towards gmimig supplementary exercises (treating
gaming less as a problem in itself, and more gl student needs help), and whether it is
possible to detect when non-gaming students coaltebt from supplementary exercises.

Student Behavior and Learning Across Different Types of Interactive
Learning Environments

In this dissertation, | have applied new technigioegesearching how student behavior in
educational systems affects their learning, inraetudy the links between behavior and
learning in one type of educational system, focusmone behavior associated with particularly
poor learning.
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In the coming years, | hope to research how belnsigioch as gaming affect learning in other
types of educational environments, towards devayopigeneral framework for how students
interact with educational environments, and what gducational consequences of these decisions
are.

One important part of this program of research wélthe continued development of tools and
techniques to facilitate this type of researctparticular, | hope to develop tools which can
scaffold both the quantitative observation and cletebuilding process. Both of these processes,
as applied in this dissertation, were effectiveMeny time-consuming. It may be possible to
scaffold the process of collecting human obsengtmombining existing technology which can
play back a student’s actions as he/she usesiagusgstem (cf. deVicente and Pain 2002,
Aleven et al 2005) with software that provides struetor conducting systematic observations.
Once a researcher has collected observationsdefigtoehavior, these tools will enable that
researcher to immediately use the data from tHeseovations to develop a detector of the
behaviors they observed, using psychometric mapgimeworks such as Latent Response
Models or more standard machine learning framewailsh as those found in the WEKA
Machine Learning package. The detector developettaben be readily integrated, through an
API, into existing interactive learning environmsnt

Adaptation to Differences in Student Behavior, Across D ifferent Types of
Learning Environments

As | work towards developing a framework for houdsints interact with educational
environments, | plan also to study how educatieyatems can appropriately and effectively
adapt to the wide variety of potential student hatwes. Towards this end, | plan to modify
several types of interactive learning environm@rdgm intelligent tutoring systems to
educational games and exploratory learning envieots), so that they adapt to educationally
relevant differences in student behavior. A paldidy interesting future area of research will be
whether different types of interactive learningissniments can respond to similar behaviors in
similar ways, and what types of adaptation carffeeterely combined within one system.
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Appendix A:
Cognitive Tutor Lessons Used in this Dissertation

The studies presented in this dissertation used fGognitive Tutor lessons: lessons on
Scatterplots, Percents, Probability, and 3D-Geometil four lessons were drawn from an

existing Cognitive Tutor curriculum for middle-sablomathematics. Each of the lessons had
been designed in accordance with the principlegAimderson et al, 1995). In each lesson,
immediate feedback was given for student errorsereor would turn red, and if the student’s

action indicated a known bug, then the tutor poppgal a remedial explanation of why the

behavior was incorrect (but did not give the studdéwe correct answer). Each lesson also
incorporated on-demand hints, which gave the staderset of hints to help them solve the

current problem-step, culminating in a “bottom-cdhint”, which gave the answer. Unlike in the

Geometry Tutor (cf. Aleven and Koedinger 2000), theraswot a Glossary of terms and

concepts.

Scatterplot Lesson

The scatterplot lesson was originally designedyanMBaker (the author of this dissertation), in
collaboration with Ken Koedinger, Albert Corbetnc&Michael Schneider. Its design is discussed
in detail in (Baker, Corbett, Koedinger, and Schtesi 2003; Baker, Corbett, and Koedinger
2004). The scatterplot lesson was used in every stulisidissertation.

The scatterplot lesson consisted of a set of pnadlén each problem, the student was given a
data set and needed to use this data set to gereegaiph. The student then used this graph to
answer a set of questions about the data set.

The process of generating the scatterplot wasllasvi First, the student used a Contrasting
Cases Scaffold (see Figure A-1), designed to he@stihdent decide which variables to use by
helping them distinguish which variables were appate for a scatterplot. In this scaffold, each
variable in the data set is listed, and for eaclabi@ the student must first identify whethersta
quantitative (“numerical”) variable or a categdneaiable. After doing so, the student must
identify whether that variable is appropriate appropriate for a scatterplot (quantitative
variables are appropriate, categorical varial#easod), and whether that variable is appropriate or
inappropriate for a bar graph (a bar graph usesranable of each type, so taken individually, a
variable of either type is appropriate for use limiagraph). By having the student decide whether
each variable would be appropriate for a scattespld/or a bar graph, the scaffold assists the
student in understanding the distinction betweeagh two representations of data. Moreover,
the student makes this distinction immediately mfl@nsidering the feature (variable type) that
distinguishes the cases, reinforcing the connedt@&ween the contrasting cases and the feature
that contrasts them.
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Figure A-1. The Contrasting Cases Scaffold, from th Scatterplot Lesson

After completing the Contrasting Cases Scaffolde #tudent chose and labeled the variables on
the X and Y axis, by typing a variable name intidaak along each axis (labeled 1 and 2 in Figure
A-2). Next, the student chose each axis’s boundsseal#, using an interface designed to scaffold
this process (Figure A-3). After this, the studeabéled values along each axis (labeled 3 in
Figure A-2), based on the bounds and scale he ohati@lready chosen.

Figure A-2. The Graph Creation Interface, from theScatterplot Lesson
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Figure A-3. The Scale and Bounds Scaffold, from th8catterplot Lesson

Next, the student plotted points on the graph bigkdhg on the point tool and then clicking on
the graph where they wished to place the pointr @gample at label 4 in Figure A-2) A
hashmark on each axis (labeled A-5 in Figure 2) atdit the mouse’s current location along the
axis, to prevent the student from making errors tlu@ot being able to visually translate the
cursor’s location across the screen. If a stygletted a point incorrectly, then the point would
turn red, and could either be deleted with the tel®ol or moved to another location via
clicking-and-dragging.

Finally, the student answered a set of interpretatjuestions (some examples are shown in

Figure A-4). The interpretation questions requirdgddents to reason about the graph, including
its trend, outliers, monotonicity, extrapolatiomdain comparison to other graphs.
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Figure A-4. Some Interpretation Questions, from theScatterplot Lesson

3D Geometry Lesson

The 3D Geometry lesson was originally developedlbgrt Corbett, K. Chris Scarpinatto,
Natasha Kamneva, and Connie Deighan. Data from etitsl using the 3D Geometry lesson was
used to train the multi-lesson gaming detector.

The 3D Geometry lesson consisted of a set of problén each problem, the student was given a
diagram which showed a geometric object. The studeaded to determine this object’s surface
area.

The process for determining the surface area widlews. The student first identified each of

the object’s faces, giving each congruent face inrthe worksheet in Figure A-5. After

identifying the faces, the student worked from teftight in each row. First, the student

identified the length of one of the face’s sides| the length of a side perpendicular to that side.
The student then identified the face’s shape (fistance, rectangle or triangle). The student used
the information he/she had just identified to congthe face’s surface area. The student then
determined the number of congruent sides, and pligtil to find the total surface area of the set
of congruent faces. After following this procedfoeall faces, the student added all of the surface
areas together to find the total surface areahferobject.
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Figure A-5. The 3-D Geometry Lesson

Probability Lesson

The Probability lesson was originally developedlbgrt Corbett and K. Chris Scarpinatto.
Data from students using the Probability lesson usegl to train the multi-lesson gaming
detector.

The Probability lesson consisted of a set of probleovering concepts in probability and
fractions. In each problem, the student was giveataf questions, each of which required the
student to identify the probability of selectingeoobject out of a set of objects. In some
problems, the frequency of each category of objastshown with pictorial objects, as in Figure
A-6; in other problems, a bar graph was used to skaeh category’s frequency.

The process of answering a question was as falgmirsy from left to right in the worksheet in
Figure A-6): First, the student identified how maitgms were in the target set. Next, the
student counted the total number of items. The studused these two values to find an
unreduced fraction (termed, in this unit, an unredd probability). The student then determined
the greatest common factor of the fraction’s nutieerand denominator. Finally, the student
divided both numerator and denominator by the ggsatommon factor to derive a reduced
fraction.
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Figure A-6. The Probability Lesson

Percents Lesson

The percents lesson was originally developed bgraorbett and K. Chris Scarpinatto. The
percents lesson was used in Study Three, anditotira multi-lesson gaming detector.

The percents lesson consisted of a set of problenes.ch problem, the student was given a
diagram which showed a set of groups and each greige. The student needed to use the
information in this diagram, to determine what pen¢, fraction, and decimal of the whole a
groups (or combination of groups) represented.

Each problem consisted of multiple questions. Thecpss of answering a question was as follows
(going from left to right in the worksheet in FigaiA-7): First, the student identified how many
items were in the target set. Next, the studentted the total number of items. The student

used these two values to find an unreduced fracfibe student then converted this fraction to a
fraction out of 100, and used this fraction to deavgercent. Then the student computed a
decimal from the percent, and finally the studemhputed the reduced version of the fraction.

By computing each of these different representatiorquick succession, the student not only
learned how to compute a percent, but how percelgtsimals, and fractions relate to one

another.

102



Figure A-7. The Percents Lesson
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Appendix B:
Pre-Test and Post-Test Learning Assessments

For each of the lessons we studied in this diggemtal developed two nearly isomorphic tests
(referred to in each case as Form A and Form Bidme cases, these tests were based off earlier
end-of-year or unit tests developed by Albert Cttbéay Raspat, and Katy Getman. In each
case, half of the students received Form A as treitest and Form B as their post-test; the
other half of the students received Form B as tpegrtest and Form A as their post-test. Only
the Scatterplot lesson was used across multiptiestuand for that lesson, the same tests were
used in all 3 studies.

Scatterplot Lesson

For the Scatterplot lesson, each test consistadsafgle multi-step exercise. In the exercises,
students were given a data set with two quantiatariables to use, and two “distractor” variables
(one quantitative, one nominal) which were not apiate to use to answer the given question.
The students were then asked to draw a scattetplsitow the relationship between the two
guantitative variables. The tests were scoredimg®f how many of the steps of the problem-
solving process were correct; the items were debigmthat it was often possible to get later
steps in the problem correct even after makingsiaké — for example, choosing the wrong
variable did not always preclude selecting an @pjate scale for that variable.
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Test Scatterplot-A

The king of Babylon is considering building a number of tall towers acrosarttief
Mesopotamia. His Grand Vizier recommends against it, suggestingp¢hatimber of injuries
from falling may increase in cities with more towers. This data shioevsumber of towers and
markets each town has, and the number of injuries each year.

Please draw a scatterplot, to show if cities with more towers haweinjories.

Show all work, on this sheet or on scratch paper.

Hint: Scatterplots are made up of dots.

City Injuries Markets Towers
Babylon 29 19 8
Uruk 13 5 3
ur 20 16 6
Kish 37 5 7
Nippur 1 7 1
Lagash 16 8 4
Eridu 24 12 6
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Test Scatterplot-B

This data shows the height of several basketball players, the numleces pf fan mail they
receive each day, and how many points they score, on average, each game.

Basketball Player Height Number of Points Pieces of fan mail
(in inches) (average) (thousands)

Terrence 79 15 10

Bill 77 12 10
Derek 80 12 6
Cedric 82 14 3
John 81 13 5
Gordon 76 16 7
Shang 80 11 11

Please draw a scatterplot, to show if taller basketball playersayetfan mail.
Show all work, on this sheet or on scratch paper.
Hint: Scatterplots are made up of dots.
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3D Geometry Lesson

For the 3D-Geometry lesson, each test consistedsoigle multi-step exercise. In the exercises,
students were given a problem where they had terahéte the surface area of a complex solid,
which had both triangular and rectangular shapé® Jtudents were given credit in terms of how
many of the component skills they exercised cdyrédentifying the number of sides, correctly
using the rectangle area formula, correctly udiegriangle area formula, and correctly adding
together each side’s area to find the total sudieea).
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Test 3D-Geometry-A

James is building a new birdhouse, shown in the picture below (all numbers are in
inches). He needs to buy wood to cut into pieces to make the walls, ceiling, and floor of
the birdhouse. How many square inches of wood will he need?

(Hint: you may want to figure out how many square inches of wood he will need for each
wall of the birdhouse)
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Test 3D-Geometry-B

Rebecca is building a new birdhouse, shown in the picture below (all numbers are in
inches). She needs to buy wood to cut into pieces to make the walls, ceiling, and floor of
the birdhouse. How many square inches of wood will she need?

(Hint: you may want to figure out how many square inches of wood she will need for
each wall of the birdhouse)
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Probability Lesson

For the Probability lesson, each test consistexis#t of exercises, testing the student’s ahwlity t
compute the probability of randomly selecting oategory out of a set of categories. The first
and second exercises give the size of each categoryerical form; the third exercise gives the
size of each category using a bar graph. Thewestsscored in terms of how many of the
exercises were correct (with partial credit ginathé event of an obvious arithmetical error).
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Test Probability-A

1) A bag contains 3 red marbles, 5 blue marbles, and 6 yellow marbles. If Lori
chooses one of these marbles without looking, what is the probability that she will
choose marble that i®ot blue?

2) A bag contains 4 apples, 7 pears, 5 plums, and 4 oranges. If Justin randomly takes

one fruit out of the bag without looking, what is the probability that Justin will

pick an apple or orange?

3) The graph below shows the hair colors of all the students in a class.

Class Hair Color

Number of Students

red blonde black brown

Hair Color

What is the probability that a student chosen at random from this class has htack hai
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Test Probability-B

1) A bag contains 4 red marbles, 2 blue marbles, and 7 yellow marbles. If Lara
chooses one of these marbles without looking, what is the probability that she will
choose a marble thatri®t blue?

2) A bag contains 3 apples, 4 pears, 10 plums, and 3 oranges. If Dustin randomly

takes one fruit out of the bag without looking, what is the probability that Dustin

will pick an apple or orange?

3) The graph below shows the hair colors of all the students in a class.

Class Hair Color

Number of Students

red blonde black brown

Hair Color

What is the probability that a student chosen at random from this class has htack hai
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Percents Lesson

For the Percents lesson, each test consistedetfod exercises, testing the different skills cader
in the percents lesson. The first exercise askelsts to write a fraction using given numbers of
several different categories. The second exeskee atudents to write a percent value of the
occurrence of one type of object in a picture shgwwo sets of objects; this exercise was
scaffolded by asking students to first write ativa¢ and by the fact that there were 10 objects in
total (10 is an easy number to convert to a perc&hg.third exercise asked students to write a
percent value when they were given numbers fositeeof the category and the total number of
objects — in this case, the total number was afaftl00, but a harder one than 10. The fourth
exercise asked students to convert fractions tepty — the fractions had denominators that
were factors of 100, but a harder ones than 10. Fintbh#yfifth exercise asked students to convert
percents to fractions. The tests were scored mgeaf how many of the exercises were correct
(with partial credit given when an exercise watigircorrect).
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Test Percents-A

On the following problems, you may use a calculator, if you wish.

1) Suppose you buy 100 cans of soda for your birthday party. If 60 cans are cola, 24 are
root beer, and 16 are lemon-lime, what percent of the cans are root beer?

2) Bob’s pet store has a number of puppies and kittens for sale, shown below.

What fraction of the animals are puppies?

What percent of the animals are puppies?

3) There are 25 jellybeans in a deluxe assortment and 15 of them are strawberry.
What percent of the jellybeans are strawberry?
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4) For each of the following fractions, write the equivalent percent
Fraction Percent
7/10
1/4

8/50

5) For each of the following percents, write the equivalent reduced fraction
Fraction Percent
35%
25%

4%
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Test Percents-B

On the following problems, you may use a calculator, if you wish.

1) At the Henderson Tree Farm, there are currently 100 trees. 40 of them are bleie spruc
27 are Douglas Fir, and 33 of them are white pine. What percent of the treesiglasD
Firs?

2) Bob’s pet store has a number of puppies and kittens for sale, shown below.

What fraction of the animals are kittens?

What percent of the animals are kittens?

3) At the new Pittsburgh Aquarium, there is a tank with 40 fish. 16 of the fish are Neons.
What percent of the fish are Neons?
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4) For each of the following fractions, write the equivalent percent
Fraction Percent
3/5
1/2

12/50

5) For each of the following percents, write the equivalent reduced fraction
Fraction Percent
45%
90%

6%
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Appendix C:
Gaming Detectors

Original Detector (Scatterplot, Study One) “Model S 1"

The first detector of gaming was developed usidyg data from the Scatterplot lesson from
Study One.

This model had four features:

Feature £“ERROR-NOW, MANY-ERRORS-EACH-PROBLEM?”, identifies a student as
more likely to be gaming if the student has alremdyle at least one error on this problem step
within this problem, and has also made a large remoberrors on this problem step in previous
problems. It identifies a student as less likelggagaming if the student has made a lot of errors
on this problem step in the past, but now probabigerstands it (and has not yet gotten the step
wrong in this problem).

Feature F“QUICK-ACTIONS-AFTER-ERROR?”, identifies a student as more likely to be
gaming if he or she has already made at leastromreon this problem step within this problem,
and is now making extremely quick actions. It idfeeg a student as less likely to be gaming if he
or she has made at least one error on this probtemwithin this problem, but works slowly
during subsequent actions, or if a student ansgugckly on his or her first opportunity (in a
given problem step) to use a well-known skill.

Feature £"MANY-ERRORS-EACH-PROBLEM-POPUP”, indicates that making many
errors across multiple problems is even more itidicaf gaming if the problem-step involves a
popup menu. In the tutor studied, popup menus aedufor multiple choice questions where the
responses are individually lengthy; but this ersablstudent to attempt each answer in quick
succession.

Feature E"SLIPS-ARE-NOT-GAMING”, identifies that if a student has a high probabitty
knowing a skill, the student is less likely to benghg, even if he or she has made many errors
recently. Feature feounteracts the fact that featurgsaRd F, do not distinguish well-known
skills from poorly-known skills, if the student halseady made an error on the current problem
step within the current problem.

These features are expressed formally in Table C-1.

Name Coefficient Feature

Fo: “ERROR-NOW, | -0.0375 pknow-direct *

MANY-ERRORS-EACH- number of errors the student has made on this

PROBLEM" problem step (across all problems)

Fy: "QUICK- +0.094 pknow-direct *

ACTIONS-AFTER- time taken, in SD above (+) or below (-) the mea

ERROR” time for all students, on this problem step gasrall problems)
F,.: “MANY-- +0.231 number wrong on this problem step (acrbgg@blems),
ERRORS-EACH- if the problem step uses a popup menu

PROBLEM-POPUP”
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F3:“SLIPS-ARE-NOT- | - 0.225 pknow *
GAMING” how many errors the student made on last 5rtio

Table C-1. The original detector of gaming, trainecbn the Study 1 Scatterplot data

Detector Used in Study 3 (Scatterplot, Studies 1 an d 2)
“Model S1S2”

The detector used in Study 3 was developed usirgyfdan Studies 1 and 2, in the Scatterplot
lesson: 107 students, 30,900 actions in total.

This model had six features. Interestingly, thesdures appear to mostly represent special cases,
compared to the more general features in the algimodel. One plausible explanation is that
this model has become over-fit to the Scatterpssbn.

Feature £“MANY-ERRORS-EACH-PROBLEM-ON-ASYMPTOTIC-SKILLS”,

identifies a student as more likely to be gamirthéfstudent makes many errors, across
problems, on asymptotic skills (skills which studeim general, did not learn while using the
tutor). This feature likely represents a studehbvs gaming on precisely the most difficult
steps.

Feature F“HIGH-PERCENTAGE-OF-ERRORS-ON-MULTIPLE-CHOICE?”, id entifies
a student as more likely to be gaming if he orrehkes a high percentage of errors on the easily-
gameable popup menus. This feature is highly siol&eature Efrom the original model.

Feature E"DON'T-COUNT-STAYING-CONTINUALLY-ON-THE-SAME-STEP- AS -
GAMING”, appears to identify a student as less lk® be gaming if he or she makes an error
or requests help, after having spent at least dtieedast five actions on the current problem
step. This step’s main effect is actually to causequence of errors on the same step as gaming
only once (rather than 4 or 17 times) — when the sttifieally gets the action correct. As such,
this feature moves the measure of gaming towarnast-g@aming-once-per-gaming-episode,
probably a more accurate measure than count-gaimiegch-gaming-action.

Feature E“HIGH-PERCENTAGE-OF-HELP-REQUESTS-ON-EASILY-LEARNE D-
SKILLS", identifies a student as more likely to ge@ming if he or she frequently requests help on
the skills which students, in general, learn orirtfiest couple opportunities to practice the skill
This feature suggests that gaming students arérgek&lp on skills, which if they attempted to
learn, they would quickly learn.

Feature E"SLOW-BUGS”, identifies a student as gaming if he or &ilees more than 2
seconds to answer with a misconception. While @meilmagine that gaming students are more
likely to have misconceptions, it's unclear whwstaesponses would ever be associated with
gaming.

Feature E“AN-ERROR-PRONE-STEP-WHEN-THE-STUDENT-HAS-BEEN-

ANSWERING-SLOWLY”, is even more challenging to intgret. This feature indicates that a
student is more likely to be gaming — or have gaméie past — if he or she slowly answers on
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three steps and then reaches a step where he baslehistory of errors. Featurgd-also very
weak, never reducing an action’s probability ofiggroy more than 5-6%.

These features are expressed formally in Table C-2.

Name Coefficient Feature
Fo: “MANY-ERRORS-EACH- +0.2 number of errors the student has made an thi
PROBLEM-ON-ASYMPTOTIC- problem step (across all problems),
SKILLS on asymptotic skills
F1.: “HIGH-PERCENTAGE-OF- +0.11875 percentage of errors,
ERRORS-ON-MULTIPLE-CHOICE” on mu|tip|e_choice popup menus
F,: “DON'T-COUNT-STAYING- -1.01 number of recent actions that have beenismptbblem step,
CONTINUALLY-ON-THE-SAME- when the student makes an error or requests help
STEP-AS-GAMING”
F3.: “HIGH-PERCENTAGE-OF- +0.9 percentage of help requests,
HELP-REQUESTS-ON-EASILY- on skills most students learn quickly
LEARNED-SKILLS”
F,:“SLOW-BUGS” +0.2875 time taken,

when demonstrating a misconception
Fs : “AN-ERROR-PRONE-STEP- +0.0125 A high percentage of errors *
WHEN-THE-STUDENT-HAS-BEEN- time taken, in SD above (+) or below (-) the mea
ANSWERING-SLOWLY time for all students, on the last 3 problenpste

Table C-2. The detector of gaming used in Study &&ined on Scatterplot data from Studies 1 and 2)

Final Detector (Trained on All Available Data) “Mod el F”

The final detector of gaming in this dissertatioasrdeveloped using all of the data in this
dissertation: 4 lessons, 473 students, 128,887 actionsln tot

This model had six features. One of the featuremiexact duplicate of a feature in the original
detector (Ein both models). Interestingly, four of the sixtig@s appear to primarily represent
behavior that isotgaming (as compared to one of four in the origtetkctor). It is possible
that the greater diversity of lessons trained okerat more possible to identify special-case
behaviors in a particular tutor lesson that migteowise appear to be gaming.

Feature £“ERROR-NOW, MANY-ERRORS-EACH-PROBLEM?”, identifies a student as
more likely to be gaming if the student has alremdyle at least one error on this problem step
within this problem, and has also made a large remoberrors on this problem step in previous
problems. It identifies a student as less likelggagaming if the student has made a lot of errors
on this problem step in the past, but now probabigerstands it (and has not yet gotten the step
wrong in this problem). This was also the firsttéga in the original model, though it is more
emphasized in this model.

Feature F“"ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS”, identifies  a student as
more likely to be gaming (or to have gamed in thstpif the student asks for help on skills that
he or she has a high probability of knowing. Ireeff this feature suggests that the student may
have in the past obtained correct answers throuicjtylguesses, or through problem-specific
strategies.
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Feature E"POINT-PLOTTING-ERRORS-ARE-NOT-GAMING”, identifies that students
may make a large number of errors on point plot{inghe scatterplot tutor) without the
intention of gaming.

Feature E“"PAST-ERRORS-ON-A-NOW -KNOW N-SKILL-ARE-NOT-GAMING”,

identifies that if a student has a history of makimany errors on a skill, but also now has a high
probability of knowing the skill (obtained througfetting right answers on the first try), they
have probably stopped gaming (if they had beenmgmireature Fis very weak, having a
maximum possible effect of reducing an action’saidity of gaming by 5.6%

Feature E“CLUSTERS-OF-HELP-REQUESTS-ARE-NOT-GAMING”, identifies that a
cluster of help requests on different problem siep®t gaming. This feature is non-intuitive,

but serves to refine Featurg Feducing the intensity of Is effects when a student who has done
well on early problems finds some feature of & fateEblem enigmatic across several steps.

Feature E“SLOW-CORRECT-ANSWERS-ARE-NOT-GAMING”, identifies —
unsurprisingly — that slow correct answers are aotigg.

These features are expressed formally in Table C-3.

Name Coefficient Feature

Fo: “ERROR-NOW, MANY- -0.4375 pknow-direct *

ERRORS-EACH-PROBLEM” number of errors the student has made on this
problem step (across all problems)

F1: “ASKING-FOR-HELP-ON- + 0.8625 pknow,

WELL-KNOWN-STEPS” when the student is requesting help

F,.: “POINT-PLOTTING-ERRORS- | - 0.8625 number of errors in the last 5 steps,

ARE-NOT-GAMING” when the student is plotting a point

F3 : “PAST-ERRORS-ON-A-NOW- - 0.05625 pknow *

KNOWN-SKILL-NO-LONGER- percentage of the time the student has gotenutrent skill

MATTER" wrong, in the past

F, : “CLUSTERS-OF-HELP- -0.1375 number of help requests in the last 8 steps

REQUESTS-ARE-NOT-GAMING” when the student is requesting help

Fs : “SLOW-CORRECT-ANSWERS- | -0.13125 time taken on the current step,

ARE-NOT-GAMING” for correct answers

Table C-3. The final detector of gaming, trained orall students and lessons

Detector Designed For More Exact Assessment of When Gaming
Occurs “Model NPP”

In order to analyze the tradeoff between detedtiogg much each student games and detecting
when each student games, | trained a detector wdiels not use information from past

problems when assessing whether an action is tamagsof gaming. This detector was developed
using all of the data in this dissertation: 4 lessd73 students, 128,887 actions in total.

This model had seven features. As with the full elpdeveral of the features appear to primarily
represent behavior thatm®tgaming.
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Feature E“ MANY-ERRORS-THIS-PROBLEM?, is strikingly similar to the first feature in
several of the other models. This feature iderstifiestudent as more likely to be gaming if the
student has made a large number of errors on toislgm step in the current problem — in other
detectors, the corresponding feature also incluaid¢a from past problems.

Feature F“CLUSTER-OF-HELP-REQUESTS-WHILE-ENTERING-STRINGS”,
identifies a student as more likely to be gamirtgefstudent asks for help several times in a short
period of time on skills that require entering arsg.

Feature E“SLOW -ACTION-AFTER-MANY-ERRORS-IS-NOT-GAMING”, suggests
that if a student makes a slow action after makimymber of errors, they are probably not
gaming.

Feature E“POINT-PLOTTING-ERRORS-ARE-NOT-GAMING”, suggests t hat a number
of errors made during point plotting is unlikelylbte gaming. This feature is analogous to Feature
F, in the full model.

Feature F“CLUSTERS-OF-ACTIONS-ON-SKILLS-EVERYONE-LEARNS-ARE -
NOT-GAMING”, suggests that a cluster of actions (&ther errors or help requests) made on
skills everyone learns are unlikely to be gamingioGsly, in the model used in Study 3, help
requests on such easily learned skills are assbwidlh gaming — the closest any of our models
comes to directly contradicting a different model.

Feature E“ASKING-FOR-LOTS-OF-HELP-IS-NOT-GAMING”, suggests that a high
proportion of help requests on a single skill witbihe problem is unlikely to be gaming. Feature
F. is very weak, having a maximum possible effaetdafcing an action’s probability of gaming
by 3.1%

Feature E“MULTIPLE-TRIES-WHEN-ENTERING-NUMBERS-IS-NOT-GAMIN G’
suggests that a cluster of actions (ie either phelp requests) on a single skill within one
problem, when the skill involves entering a numizeunlikely to be gaming. Featurgis
probably best seen as refining Featyre F

These features are expressed formally in Table C-4.

Name Coefficient Feature
Fo: “MANY-ERRORS-THIS- +0.54375 number of errors the student has madkisn
PROBLEM” problem step (in the current problem)
F1: “CLUSTER-OF-HELP- + 0.5375 number of help requests in the last 8step
REQUESTS-WHILE-ENTERING- when the student is entering a string
STRINGS”
F,.: “SLOW-ACTION-AFTER- - 0.04375 time taken on the current step *
MANY-ERRORS-IS-NOT-GAMING” number of errors the student has made on this

problem step (in the current problem)
F3: “POINT-PLOTTING-ERRORS- -0.525 number of errors the student has made bis |t
ARE-NOT-GAMING” problem step (in the current problem),

when the student is plotting a point
F4 : “CLUSTERS-OF-ACTIONS-ON- | -0.875 number of the last 5 actions that have loeethis problem step
SKILLS-EVERYONE-LEARNS-ARE- on skills most students learn quickly
NOT-GAMING”
Fs : “ASKING-FOR-LOTS-OF-HELP- | -0.03125 percentage of help requests in this pnojsdguared
IS-NOT-GAMING”
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Fe : “MULTIPLE-TRIES-WHEN-
ENTERING-NUMBERS-IS-NOT-
GAMING”

-0.14375

number of the last 5 actions that have beethis problem step,

when the student is entering a number

Table C-4. The detector of gaming, trained on alltadents and lessons, using no data from past probtes
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