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Abstract 
 

Students use intelligent tutors and other types of interactive learning environments in a 
considerable variety of ways. In this thesis, I detail my work to understand, automatically detect, 
and re-design an intelligent tutoring system to adapt to a behavior I term “gaming the system”. 
Students who game the system attempt to succeed in the learning environment by exploiting 
properties of the system rather than by learning the material and trying to use that knowledge to 
answer correctly.  
 
Within this thesis, I present a set of studies aimed towards understanding what effects gaming 
has on learning, and why students game, using a combination of quantitative classroom 
observations and machine learning. In the course of these studies, I determine that gaming the 
system is replicably associated with low learning. I use data from these studies to develop a profile 
of students who game, showing that gaming students have a consistent pattern of negative affect 
towards many aspects of their classroom experience and studies.  
 
Another part of this thesis is the development and training of a detector that reliably detects 
gaming, in order to drive adaptive support.  In this thesis, I validate that this detector transfers 
effectively between 4 different lessons within the middle school mathematics tutor curriculum 
without re-training, suggesting that it may be immediately deployable to that entire curriculum. 
Developing this detector required developing new machine learning methods that effectively 
combine unlabeled data and labeled data at different-grain sizes in order to train a model to 
accurately indicate both which students were gaming, and when they were gaming. To this end, I 
adapted a modeling framework from the Psychometrics literature – Latent Response Models 
(Maris, 1995), and used a variant of Fast Correlation-Based Filtering (Yu and Liu 2003) to 
efficiently search the space of potential models.   
 
The final part of this thesis is the re-design of an existing intelligent tutoring lesson to adapt to 
gaming. The re-designed lesson incorporates an animated agent (“Scooter the Tutor”) who 
indicates to the student and their teacher whether the student has been gaming recently. Scooter 
also gives students supplemental exercises, in order to offer the student a second chance to learn 
the material he/she had gamed through. Scooter reduces the frequency of gaming by over half, 
and Scooter’s supplementary exercises are associated with substantially better learning; Scooter 
appears to have had virtually no effect on the other students.  
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Chapter One 
Introduction 

 
In the last twenty years, interactive learning environments and computerized educational supports 
have become a ubiquitous part of students’ classroom experiences, in the United States and 
throughout the world.  Many such systems have become very effective at assessing and 
responding to differences in student knowledge and cognition (Corbett and Anderson 1995; 
Martin and vanLehn 1995; Arroyo, Murray, Woolf, and Beal 2003; Biswas et al 2005). Systems 
which can effectively assess and respond to cognitive differences have been shown to produce 
substantial – and statistically significant – learning gains, as compared to students in traditional 
classes (cf. Koedinger, Anderson, Hadley, and Mark 1997; vanLehn et al 2005). 
 
However, even within classes using interactive learning environments which have been shown to 
be effective, there is still considerable variation in student learning outcomes, even when each 
student’s prior knowledge is taken into account. The thesis of this dissertation is that a 
considerable amount of this variation comes from differences in how students choose to use 
educational software, that we can determine which behaviors are associated with poorer learning, 
and that we can develop systems that can automatically detect and respond to those behaviors, in 
a fashion that improves student learning.  
 
In this dissertation, I present results showing that one way that students use educational software, 
gaming the system, is associated with substantially poorer learning – much more so, in fact, than 
if the student spent a substantial portion of each class ignoring the software and talking off-task 
with other students (Chapter 2). I then develop a model which can reliably detect when a student 
is gaming the system,  across several different lessons from a single Cognitive Tutor curriculum 
(Chapter 3). Using a combination of the gaming detector and attitudinal questionnaires, I 
compile a profile of the prototypical gaming student, showing that gaming students differ from 
other students in several respects (Chapter 4). I next combine the gaming detector and profile of 
gaming students, in order to re-design existing Cognitive Tutor lessons to address gaming. My 
re-design introduces an interactive agent, Scooter the Tutor, who signals to students (and their 
teachers) that he knows that the student is gaming, and gives supplemental exercises targeted 
towards the material students are missing by gaming (Chapter 5). Scooter substantially decreases 
the incidence of gaming, and his exercises are associated with substantially better learning. In 
Chapter 6, I discuss the larger implications of this dissertation, advancing the idea of interactive 
learning environments that effectively adapt not just to differences in student cognition, but 
differences in student choices.  

 
Gaming the System 
 
I define “Gaming the System” as attempting to succeed in an educational environment by 
exploiting properties of the system rather than by learning the material and trying to use that 
knowledge to answer correctly. Gaming strategies are seen by teachers and outsiders as misuse of 
the software the student is using or system that the student is participating in, but are 
distinguished from cheating in that gaming does not violate explicit rules of the educational 
setting, as cheating does. In fact, in some situations students are encouraged to game the system – 
for instance, several test preparation companies teach students to use the structure of how SAT 
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questions are designed in order to have a higher probability of guessing the correct answer. 
Cheating on the SAT, by contrast, is not recommended by test preparation companies.  
 
Gaming the System occurs in a wide variety of different educational settings, both computerized 
and offline. To cite just a few examples: Arbreton (1998) found that students ask teachers or 
teachers’ aides to give them answers to math problems before attempting the problems 
themselves. Magnussen and Misfeldt (2004) have found that students take turns intentionally 
making errors in collaborative educational games in order to help their teammates obtain higher 
scores; gaming the system has also been documented in other types of educational games (Klawe 
1998; Miller, Lehman, and Koedinger 1999). Cheng and Vassileva (2005) have found that 
students post irrelevant information – in large quantities – to newsgroups in online courses which 
are graded based on participation.  
 
Within intelligent tutoring systems, gaming the system has been particularly well-documented. 
Schofield (1995) found that some students quickly learned to ask for the answer within a 
prototype intelligent tutoring system which did not penalize help requests, instead of attempting 
to solve the problem on their own – a behavior quite similar to that observed by Arbreton (1998).  
Wood and Wood (1999) found that students quickly and repeatedly ask for help until the tutor 
gives the student the correct answer, a finding replicated by Aleven and Koedinger (2000).  
Mostow and his colleagues (2002) found in a reading tutor that students often avoid difficulty by 
re-reading the same story over and over.  Aleven and his colleagues (1998) found, in a geometry 
tutor, that students learn what answers are most likely to be correct (such as numbers in the 
givens, or 90 or 180 minus one of those numbers), and try those numbers before thinking through 
a problem. Murray and vanLehn (2005) found that students using systems with delayed hints (a 
design adopted by both Carnegie Learning (Aleven 2001) and by the AnimalWatch project (Beck 
2005) as a response to gaming) intentionally make errors at high speed in order to activate the 
software’s proactive help.  
 
Within the intelligent tutoring systems we studied, we primarily observed two types of gaming 
the system:  

1. quickly and repeatedly asking for help until the tutor gives the student the correct answer  
(as in Wood and Wood 1999; Aleven and Koedinger 2000) 

2. inputting answers quickly and systematically. For instance, entering 1,2,3,4,… or clicking 
every checkbox within a set of multiple-choice answers, until the tutor identifies a correct 
answer and allows the student to advance.   

In both of these cases, features designed to help a student learn curricular material via problem-
solving were instead used by some students to solve the current problem and move forward within 
the curriculum.  

 
The Cognitive Tutor Classroom 
 
All of the studies that I will present in this dissertation took place in classes using Cognitive 
Tutor software (Koedinger, Anderson, Hadley, and Mark 1995).  In these classes, students 
complete mathematics problems within the Cognitive Tutor environment. The problems are 
designed so as to reify student knowledge, making student thinking (and misconceptions) visible. 
A running cognitive model assesses whether the student’s answers map to correct understanding 
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or to a known misconception. If the student’s answer is incorrect, the answer turns red; if the 
student’s answers are indicative of a known misconception, the student is given a “buggy message” 
indicating how their current knowledge differs from correct understanding (see Figure 1-1). 
Cognitive Tutors also have multi-step hint features; a student who is struggling can ask for a hint. 
He or she first receives a conceptual hint, and can request further hints, which become more and 
more specific until the student is given the answer (see Figure 1-2).  
 
Students in the classes studied used the Cognitive Tutor 2 out of every 5 or 6 class days, devoting 
the remaining days to traditional classroom lectures and group work. In Cognitive Tutor classes, 
conceptual instruction is generally given through traditional classroom lectures – however, in 
order to guarantee that all students had the same conceptual instruction in our studies, we used 
PowerPoint presentations with voiceover and simple animations to deliver conceptual instruction 
(see Figure 1-3). 
 
The research presented in this dissertation was conducted in classrooms using a new Cognitive 
Tutor curriculum for middle school mathematics (Koedinger 2002), in two suburban school 
districts near Pittsburgh. The students participating in these studies were in the 7th-9th grades 
(predominantly 12-14 years old).  In order to guarantee that students were familiar with the 
Cognitive Tutor curriculum, and how to use the tutors (and – presumably – how to game the 
system if they wanted to), all studies were conducted in the Spring semester, after students had 
already been using the tutors for several months.  
 

 

Figure 1-1: The student has made an error associated with a misconception, so they receive a “buggy 
message” (top window). The student’s answer is labeled in red, because it is incorrect (bottom 
window).  
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Figure 1-2: The last stage of a multi-stage hint: The student labels the graph’s axes and plots points 
in the left window; the tutor’s estimates of the student’s skills are shown in the right window; the 
hint window (superimposed on the left window) allows the tutor to give the student feedback. Other 
windows (such as the problem scenario and interpretation questions window) are not shown. 

 

 
Figure 1-3: Conceptual instruction was given via PowerPoint with voice-over, 

in the studies presented within this dissertation. 

 
 
Effectiveness of Existing Cognitive Tutors 
 
It is important, before discussing how some students succeed less well in Cognitive Tutors than 
others, to remember that Cognitive Tutors are an exceptionally educationally effective type of 
learning environment overall. Cognitive Tutors have been validated to be highly effective across a 
wide variety of educational domains and studies. To give a few examples, a Cognitive Tutor for 
the LISP programming language achieved a learning gain almost two standard deviations better 
than an unintelligent interactive learning environment (Corbett 2001); a Cognitive Tutor for 
Geometry proofs resulted in test scores a letter grade higher than students learning about 
Geometry proofs in a traditional classroom (Anderson, Corbett, Koedinger, and Pelletier 1995); 
and an Algebra Cognitive Tutor has shown in a number of studies conducted nationwide to not 
only lead to better scores on the Math SAT standardized test than traditional curricula 
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(Koedinger, Anderson, Hadley, and Mark 1997), but to also result in a higher percentage of 
students choosing to take upper-level mathematics courses (Carnegie Learning 2005). In recent 
years, the Cognitive Tutor curricula have come into use in an increasing percentage of U.S. high 
schools – about 6% of U.S. high schools as of the 2004-2005 school year.  
 
Hence, the goal of the research presented here is not to downgrade in any way the effectiveness of 
Cognitive Tutors. Cognitive Tutors are one of the most effective types of curricula in existence 
today, across several types of subject matter.  Instead, within this dissertation I will attempt to 
identify a direction that may make Cognitive Tutors even better. A majority of students use 
Cognitive Tutors thoughtfully, and have excellent learning gains; a minority, however, use tutors 
less effectively, and learn less well. The goal of the research presented here is to improve the 
tutors for the students who are less well-served by existing tutoring systems, while minimally 
affecting the learning experience of students who already use tutors appropriately.  
 
It is worth remembering that students game the system in a variety of different types of learning 
environments, not just in Cognitive Tutors. Though I do not directly address how gaming affects 
student learning in these systems, or how these systems should adapt to gaming, it will be a 
valuable area of future research to determine how this thesis’s findings transfer from cognitive 
tutors to other types of interactive learning environments. 
 

 

Studies 
 

The work reported in this thesis is composed of three classroom studies, multiple iterations of the 
development of a system to automatically detect gaming, analytic work, and the design and 
implementation of a system to adapt to when students game.  
 
The first study (“Study One”) took place in the Spring of 2003. In Study One, I combined data 
from human observations and pre-test/post-test scores, to determine what student behaviors are 
most associated with poorer learning, finding that gaming the system is particularly associated 
with poorer learning (Chapter 2). Data from this study was used to create the first gaming 
detector (Chapter 3); in developing the gaming detector, I determined that gaming split into two 
automatically distinguishable categories of behavior, associated with different learning outcomes 
(Chapter 3). Data from Study One was also useful for developing first hypotheses as to what 
characteristics and attitudes were associated with gaming (Chapter 4). 
 
The second study (“Study Two”) took place in the Spring of 2004. In Study Two, I analyzed 
what student characteristics and attitudes are associated with gaming (Chapter 4). I also 
replicated our earlier result that gaming is associated with poorer learning (Chapter 2), and 
demonstrated that our human observations of gaming had good inter-rater reliability (Chapter 2). 
Data from Study Two was also used to refine our detector of gaming (Chapter 3). 
 
The third study (“Study Three”) took place in the Spring of 2005. In Study Three, I deployed a 
re-designed tutor lesson that incorporated an interactive agent designed to both reduce gaming 
and mitigate its effects (Chapter 5). I also gathered further data on which student characteristics 
and attitudes are associated with gaming (Chapter 4), using this data in combination with data 
from Study Two to develop a profile of gaming students (Chapter 4). Finally, Data from Study 
Three was used in a final iteration of gaming detector improvement (Chapter 3).  
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Chapter Two 
Gaming the System and Learning 

 
 
 
 

In this chapter, I will present two studies which provide evidence on the relationship between 
gaming the system and learning. Along the way, I will present a method for collecting 
quantitative observations of student behavior as they use intelligent learning environments in 
class, adapted from methods used in the off-task behavior and behavior modification literatures, 
and consider how this method’s effectiveness can be amplified with machine learning. 
 

Study One 
 
By 2003 (when the first study reported in this dissertation was conducted), gaming had been 
repeatedly documented, and had inspired the re-design of intelligent tutoring systems both at 
Carnegie Mellon University/Carnegie Learning (documented later in Aleven 2001, and Murray 
and vanLehn 2005) and at the University of Massachusetts (documented later in Beck 2005). 
Despite this, there was not yet any published evidence that gaming was associated with poorer 
learning.  
 
In Study One, I investigate what learning outcomes are associated with gaming, comparing these 
outcomes to the learning outcomes associated with other behaviors. In particular, I compare the 
hypothesis that gaming will be specifically associated with poorer learning, to Carroll’s Time-On-
Task hypothesis  (Carroll 1963; Bloom 1976).  Under Carroll’s Time-On-Task hypothesis, the 
longer a student spends engaging with the learning materials, the more opportunities the student 
has to learn. Therefore, if a student spends a greater fraction of their time off-task (engaged in 
behaviors where learning from the material is not the primary goal)1, they will spend less time on-
task, and learn less. If the Time-On-Task hypothesis were the main reason why off-task behavior 
reduces learning, then any type of off-task behavior, including talking to a neighbor or surfing the 
web, should have the same (negative) effect on learning as gaming does.  
 
Methods 
 
I studied the relationship between gaming and learning in a set of 5 middle-school classrooms at 
2 schools in the Pittsburgh suburbs. Student ages ranged from approximately 12 to 14. As 
discussed in Chapter 1, the classrooms studied were taking part in the development of a new 3-
year Cognitive Tutor curriculum for middle school mathematics. Seventy students were present 
for all phases of the study (other students, absent during one or more days of the study, were 
excluded from analysis). 
 

                                                 
1 It is possible to define on-task as “looking  at the screen”, in which case gaming the system is viewed as an on-task 
behavior. Of course, the definition of “on-task” depends on what one considers the student’s task to be – I do not 
consider just “looking at the screen” to be that task. 
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I studied these classrooms during the course of a short (2 class period) Cognitive Tutor lesson on 
scatterplot generation and interpretation – this lesson is discussed in detail in Appendix A. The 
day before students used the tutoring software, they viewed a PowerPoint presentation giving 
conceptual instruction (shown in Chapter 1).  
 
I collected the following sources of data to investigate gaming’s relationship to learning: A pre-
test and post-test to assess student learning, quantitative field observations to assess each student’s 
frequency of different behaviors, students’ end-of-course test scores (which incorporated both 

multiple-choice and problem-solving exercises) as a measure of general academic achievement2. 
We also noted each student’s gender, and collected detailed log files of the students’ usage of the 
Cognitive Tutoring software. 
 
The pre-test was given after the student had finished viewing the PowerPoint presentation, in 
order to study the effect of the Cognitive Tutor rather than studying the combined effect of the 
declarative instruction and Cognitive Tutor. The post-test was given at the completion of the 
tutor lesson. The pre-test and post-test were drawn from prior research into tutor design in the 
tutor’s domain area (scatterplots), and are discussed in detail in Appendix B.  
 
The quantitative field observations were conducted as follows: Each student’s behavior was 
observed a number of times during the course of each class period, by one of two observers. I 
chose to use outside observations of behavior rather than self-report in order to interfere 
minimally with the experience of using the tutor – I was concerned that repeatedly halting the 
student during tutor usage to answer a questionnaire (which was done to assess motivation by 
deVicente and Pain (2002)) might affect both learning and on/off-task behavior. In order to 
investigate the relative impact of gaming the system as compared to other types of off-task 
behavior, the two observers coded not just the frequency of off-task behavior, but its nature as 
well. This method differs from most past observational studies of on and off-task behavior, where 
the observer coded only whether a given student was on-task or off-task (Lahaderne 1968; 
Karweit and Slavin 1982; Lloyd and Loper 1986; Lee, Kelly, and Nyre 1999). The coding scheme 
consisted of six categories: 
 

1. on-task -- working on the tutor 

2. on-task conversation -- talking to the teacher or another student about the subject 
material 

3. off-task conversation – talking about anything other than the subject material 

4. off-task solitary behavior – any behavior that did not involve the tutoring software or 
another individual (such as reading a magazine or surfing the web) 

5. inactivity -- for instance, the student staring into space or putting his/her head down on 
the desk for the entire 20-second observation period 

6. gaming the system –  inputting answers quickly and systematically, and/or quickly and 
repeatedly asking for help until the tutor gives the student the correct answer   

 

                                                 
2 We were not able to obtain end-of-course test data for one class, due to that class’s teacher accidentally discarding the 
sheet linking students to code numbers. 
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In order to avoid bias towards more interesting or dramatic events, the coder observed the set of 
students in a specific order determined before the class began, as in Lloyd and Loper (1986). Any 
behavior by a student other than the student currently being observed was not coded. A total of 
563 observations were taken (an average of 70.4 per class session), with an average of 8.0 
observations per student, with some variation due to different class sizes and students arriving to 
class early or leaving late. Each observation lasted for 20 seconds – if a student was inactive for 
the entire 20 seconds, the student was coded as being inactive. If two distinct behaviors were seen 
during an observation, only the first behavior observed was coded. In order to avoid affecting the 
current student’s behavior if they became aware they were being observed, the observer viewed the 
student out of peripheral vision while appearing to look at another student. In practice, students 
became comfortable with the presence of the observers very quickly, as evinced by the fact that we 
saw students engaging in the entire range of studied behaviors.  
 
The two observers observed one practice class period together before the study began. In order to 
avoid alerting a student that he or she was currently being observed, the observers did not observe 
any student at the same time. Hence, for this study, we cannot compare the two observers’ 
assessment of the exact same time-slice of a student’s behavior, and thus cannot directly compute 
a traditional measure of inter-rater reliability. The two observers did conduct simultaneous 
observations in Study Two, and I will present an inter-rater reliability measure for that study.  
 
 
Results 
 

Overall Results 
The tutor was, in general, successful. Students went from 40% on the pre-test to 71% on the 
post-test, which was a significant improvement, F(1,68)=7.59, p<0.01. Knowing that the tutor 
was overall successful is important, since it establishes that a substantial number of students 
learned from the tutor; hence, we can investigate what characterizes the students who learned 
less. 
 
Students were on-task 82% of the time, which is within the previously reported ranges for average 
classes utilizing traditional classroom instruction (Lloyd and Loper 1986; Lee, Kelly, and Nyre 
1999). Within the 82% of time spent on-task, 4% was spent talking with the teacher or another 
student, while the other 78% was solitary. The most frequent off-task behavior was off-task 
conversation (11%), followed by inactivity (3%), and off-task solitary behavior (1%).  Students 
gamed 3% of the time – thus, gaming was substantially less common than off-task conversation, 
but occurred a proportion of the time comparable to inactivity. More students engaged in these 
behaviors than the absolute frequencies might suggest: 41% of the students were observed 
engaging in off-task conversation at least once, 24% were observed gaming the system at least 
once, 21% were observed to be inactive at least once, and 9% were observed engaging in off-task 
solitary behavior at least once. 100% of the students were observed working at least once. 
 
A student’s prior knowledge of the domain (measured by the pre-test) was a reasonably good 
predictor of their post-test score, F(1,68)=7.59, p<0.01, r=0.32. A student’s general level of 
academic achievement was also a reasonably good predictor of the student’s post-test score, 
F(1,61)=9.31, p<0.01, r=0.36. Prior knowledge and the general level of academic achievement 
were highly correlated, F(1,61)=36.88, p<0.001, r=0.61; when these two terms were both used as 
predictors, the correlation between a student’s general level of academic achievement and their 
post-test score was no longer  significant, F(1,60)=1.89, p=0.17. 
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Gender was not predictive of post-test performance, F(1,68)=0.42, p=0.52. Neither was which 
teacher the student had, F(3,66)=0.5,p=0.69. 
 
Gaming the System and Off-Task Behavior: Relationships to Learning 
Only two types of behavior were found to be significantly negatively correlated with the post-test, 
as shown in Table 2-1.  

 
 

 Prior 
Knowledge 
(Pre-Test) 

General 
Academic 

Achievement 

Gaming the 
System 

 

Talking 
Off-Task 

 

Inactivity 
 

Off-Task 
Solitary 
Behavior 

Talking 
On-Task 

Gender Teacher 
 

Post-
Test 

0.32 0.36 -0.38 -0.19 -0.08 -0.08 -0.24 -0.08 n/a, n/s 

Table 2-1: The correlations between post-test score and the other measures in Study One.                                                                                      
Statistically significant relationships are in boldface 

 
The behavior most negatively correlated with post-test score was gaming the system. The 
frequency of gaming the system was the only off-task behavior which was significantly correlated 
with the post-test, F(1,68)=11.82, p<0.01, r= -0.38. The impact of gaming the system remains 
significant even when we control for the students’ pre-test and general academic achievement, 
F(1,59)=7.73, p<0.01, partial correlation =  -0.34. 
 
No other off-task behavior was significantly correlated with post-test score. The closest was the 
frequency of talking off-task, which was at best marginally significantly correlated with post-test 
score, F(1,68)=2.45, p=0.12, r= -0.19. That relationship reduced to F(1,59)=2.03, p=0.16, partial 
correlation r=-0.22, when we controlled for pre-test and general academic achievement. 
Furthermore, the frequencies of inactivity (F(1,68)=0.44, p=0.51, r=-0.08) and off-task solitary 
behavior (F(1,68)=0.42, p=0.52,r=-0.08) were not significantly correlated to post-test scores.  
 
Unexpectedly, however, the frequency of talking to the teacher or another student about the 
subject matter was significantly negatively correlated to post-test score, F(1,68)=4.11, p=0.05, r= -
0.24, and this remained significant even when we controlled for the students’ pre-test and general 
academic achievement, F(1,59)=3.88, p=0.05, partial correlation = -0.25. As it turns out, students 
who talk on-task also game the system, F(1,68)=10.52,p<0.01, r=0.37. This relationship remained 
after controlling for prior knowledge and general academic achievement, F(1,59) = 8.90, p<0.01, 
partial correlation = 0.36. The implications of this finding will be discussed in more detail in 
Chapter Four, when we discuss why students game the system. 
 
To put the relationship between the frequency of gaming the system and post-test score into 
better context, we can compare the post-test scores of students who gamed with different 
frequencies.  Using the median frequency of gaming among students who ever gamed (gaming 
10% of the time), we split the 17 students who ever gamed into a high-gaming half (8 students) 
and a low-gaming half  (9 students). We can then compare the 8 high-gaming students to the 53 
never-gaming students. The 8 high-gaming students’ mean score at post-test was 44%, which was 
significantly lower than the never-gaming students’ mean post-score of 78%, F(1,59)=8.61, 
p<0.01. However, the 8 high-gaming students also had lower pre-tests. The 8 high-gaming 
students had an average pre-test score of 8%, with none scoring over 17%, while the 53 never-
gaming students averaged 49% on the pre-test. Given this, one might hypothesize that choosing 
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to game the system is mainly a symptom of not knowing much to start with, and that it has no 
effect of its own. 
 
However, as was earlier discussed, gaming remains correlated to post-test score even after we 
factor out pre-test score. This effect can be illustrated by comparing the 8 high-gaming students 
to the 24 never-gaming students with pre-test scores equal to or less than 17% (the highest pre-
test score of any high-gaming student). When we do this, we find that the 24 never-gaming/low-
pre-test students had an average pre-test score of 7%, but an average post-test score of 68%, 
which was substantially higher than the 8 high-gaming students’ average post-test score (44%), a 
marginally significant difference, t(30)=1.69, p=0.10. This difference is shown in Figure 2-1.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 2-1: The difference in learning gains between high-gaming and non-gaming students,  
among students with low pre-test scores, in Study One. 

 
 

Study Two 
 
I conducted a second study, which focused both on why students game, and replicated the finding 
that gaming was negatively associated with learning. This study will be briefly discussed in terms 
of what it told us about the relationship between gaming and learning, and will be discussed at 
greater length in Chapter Four, in terms of what it told us about why students game. 
 
In this study, I investigated gaming using both quantitative field observations, and a machine-
learned detector of harmful gaming (see Chapter Three).  The machine-learned detector had two 
notable advantages over the observational data. First, the detector offered more precise 
assessments of gaming frequency, by virtue of its ability to assess every action, rather than just a 
sample of action sequences. Secondly, the detector had the ability to automatically distinguish 
between two types of gaming behavior: harmful gaming and non-harmful gaming. These 
behaviors appeared the same during observation, but were immediately distinguishable by the 
detector. They were also associated with different learning consequences – across data sets, only 
harmful gaming leads to poorer learning.   
 
 
 
 

�

��

��

��

��

��

��

��

	�


�

���

��
 ����

��������
���

������������
��
��
��
����
�
� �!
������!�"
�
�#����!!
����������
�� $
���



  16 

Methods 
 
Study Two took place within 6 middle-school classrooms at 2 schools in the Pittsburgh suburbs. 
Student ages ranged from approximately 12 to 14. As discussed in Chapter One, the classrooms 
studied were taking part in the development of a new 3-year Cognitive Tutor curriculum for 
middle school mathematics. 102 students were present for all phases of the study (other students, 
absent during one or more days of the study, were excluded from analysis). 
 
I studied these classrooms during the course of the same Cognitive Tutor lesson on scatterplot 
generation and interpretation used in Study One. The day before students used the tutoring 
software, they viewed a PowerPoint presentation giving conceptual instruction (shown in 
Chapter One). Within this study, I combined the following sources of data: a questionnaire on 
student motivations and beliefs (to be discussed in Chapter Four), logs of each student’s actions 
within the tutor (analyzed both in raw form, and through the gaming detector), and pre-
test/post-test data. Quantitative field observations were also obtained, as in Study One, as both a 
measure of student gaming and in order to improve the gaming detector’s accuracy. 
 
Inter-Rater Reliability 
 
One important step that I was able to take in Study Two was conducting a full inter-rater 
reliability session. As discussed earlier in this chapter, in Study One, the two observers did not 
conduct simultaneous observation, for fear of alerting a student that he or she was currently being 
observed. However, the two observers found that after a short period of time, students seemed to 
be fairly comfortable with the their presence; hence, during Study Two, they conducted an inter-
rater reliability session. In order to do this, the two observers observed the same student out of 
peripheral vision, but from different angles. The observers moved from left to right; the observer 
on the observed student’s left stood close behind the student to the left of the observed student, 
and the observer on the observed student’s right stood further back and further right, so that the 
two observers did not appear to hover around a single student.  
 
In this session to evaluate inter-rater reliability, the two observers agreed as to whether an action 
was an instance of gaming 96% of the time. Cohen’s (1960) κ was 0.83, indicating high reliability 
between these two observers.  
 
A third observer took a small number of observations in this study (8% of total observations), as 
well, on two days when multiple classes were occurring simultaneously, and one of the two 
primary observers was unable to conduct observations.  Because this observer filled in on days 
when one of the two primary observers was unavailable, it was not possible to formally investigate 
inter-rater reliability for this observer; however, this observer was conceptually familiar with 
gaming, and was trained within a classroom by one of the two primary observers.  
 
 
Results 
 
As in Study One, a student’s off-task behavior, excluding gaming, was not significantly correlated 
to the student’s post-test (when controlling for pre-test), F(1,97)=1.12, p= 0.29, partial r = - 0.11. 
By contrast to Study One’s results, however, talking on-task to the teacher or other students was 
also not significantly correlated to post-test (controlling for pre-test), F(1,97)=0.80, p=0.37, 
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partial r = - 0.09 (I will discuss the links between talking on-task and gaming in Chapter Four). 
Furthermore, asking other students for the answers to specific exercises was not significantly 
correlated to post-test (controlling for pre-test), F(1,97)=0.52, p=0.61, partial r = 0.05. 
 
Surprisingly, however, in Study Two, a student’s frequency of observed gaming did not appear to 
be significantly correlated to the student’s post-test (when controlling for pre-test), F(1,97)=1.16, 
p= 0.28, partial r = 0.07. Moreover, whereas the percentage of students in Study One who gamed 
the system and had poor learning (low pre-test, low post-test) was more or less equal to the 
percentage of students who gamed the system but had a high post-test, in Study Two almost 5 
times as many students gamed the system and had a high post-test as gamed the system and had 
poor learning. This difference in ratio between the two studies (shown in Table 2-2) was 
significant, χ2(1, N=64)=6.00, p=0.01. 
 
However, this result is explainable as simply a difference in the ratio of two types of gaming, 
rather than a difference in the relationship between gaming and learning. These two types of 
gaming, harmful gaming and non-harmful gaming, are immediately distinguishable by the 
machine learning approach discussed in Chapter Three. In brief, students who engage in harmful 
gaming game predominantly on the hardest steps, while students who engage in non-harmful 
gaming mostly game on the steps they already know – the evidence that these two types of 
gaming are separable will be discussed in greater detail in Chapter Three.  
 
According to detectors of each type of gaming (trained on just the data from Study One), over 
twice as many students engaged in non-harmful gaming than harmful gaming in Study Two. 
Harmful gaming, detected by the detector trained on data from Study One, was negatively 
correlated with post-test score in Study Two, when controlling for pre-test, F(1,97)=5.78, p=0.02, 
partial r= - 0.24. By contrast, non-harmful gaming, as detected by the detector, was not 
significantly correlated to post-test score in Study Two, when controlling for pre-test, 
F(1,97)=0.86, p=0.36, partial r = 0.08. The lack of significant correlation between observed 
gaming and learning in Study Two can thus be attributed entirely to the fact that our observations 
did not distinguish between two separable categories of behavior – harmful gaming and non-
harmful gaming. 
 

 
 Study One 

(observations) 
Study Two 

(observations) 
Study Two 
(detector) 

Gamed, had low post-test 
(Harmful gaming) 

11% 7% 22% 

Gamed, had high  post-test 
(Non-harmful gaming) 

13% 34% 50% 

Table 2-2: What percentage of students were ever seen engaging in each type of gaming,  
in the data from Study One and Study Two 

 
When we look at the specific students detected engaging in harmful gaming, we see a similar 
pattern to the one observed in Study One. Looking just within the students with low pre-test 
scores (17% or lower, as with Study One), we see in Figure 2-2 that students who gamed 
harmfully more than the median (among students ever assessed as gaming harmfully) had 
considerably worse post-test scores (27%) than the students who never gamed (59%), while 
having more-or-less equal pre-test scores (4.3% versus 4.2%).  The difference in post-test scores 
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between these two groups is marginally significant, t(56)=1.78, p=0.08, and in the same direction 
as the this test in Study One.  
  

 

Figure 2-2: The difference in learning gains between high-harmful-gaming and non-harmful-gaming 
students, among students with low pre-test scores, in Study Two. 

 
Study Two also gave us considerable data as to why students game. These results will be discussed 
in Chapter Four. 
 

Contributions 
 
My work to study the relationship between gaming and learning has produced two primary 
contributions. The first contribution, immediately relevant to the topic of this thesis, is the fact 
that it demonstrates that a type of gaming the system (“harmful gaming”) is correlated to lower 
learning. In Study One, I assess gaming using quantitative field observations and show that 
gaming students have lower learning than other students, controlling for pre-test. In Study Two, 
I distinguish two types of gaming, and show that students who engage in a harmful type of 
gaming (as assessed by a machine-learned detector) have lower learning than other students, 
controlling for pre-test. In both cases, gaming students learn substantially less than other students 
with low pre-test scores.  
 
The second contribution is the demonstration that quantitative field observations can be a useful 
tool for determining what behaviors are correlated with lower learning, in educational learning 
environments. Quantitative field observations have a rich history in the behavioral psychology 
literature (Lahaderne 1968; Karweit and Slavin 1982; Lloyd and Loper 1986; Lee, Kelly, and 
Nyre 1999), but had not previously been used to assess student behavior in interactive learning 
environments. The method I use in this dissertation adapts this technique to the study of 
behavior in interactive learning environments, changing the standard version of this technique in 
a seemingly small but useful fashion:  Within the method I use in this dissertation, the observer 
codes for multiple behaviors rather than just one. Although this may seem a small modification, 
this change makes this method useful for differentiating between the learning impact of multiple 
behaviors, rather than just identifying characteristics of a single behavior. The method for 
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quantitative field observations used in this dissertation achieves good inter-rater reliability, and 
has now been used to study behavior in at least two other intelligent tutor projects (Nogry 2005; 
personal communication, Neil Heffernan). 
Our results from Study Two suggest, however, that quantitative field observations may have 
limitations when multiple types of behavior appear to be identical at a surface level (differing, 
perhaps, in when they occur and why – I will discuss this issue in greater detail in upcoming 
chapters). If not for the gaming detector, trained on the results of the quantitative field 
observations, the results from Study Two would have appeared to disconfirm the negative 
relationship between gaming and learning discovered in Study One. Hence, quantitative field 
observations may be most useful when they can be combined with machine learning that can 
distinguish between sub-categories in the observational categories. Another advantage of 
machine learning trained using quantitative field observations, over the field observations 
themselves, is that a machine-learned detector can be more precise – a small number of 
researchers can only obtain a small sample of observations of each student’s behavior, but a 
machine-learned detector can make a prediction about every single student action.  
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Chapter Three 
Detecting Gaming 

 
 
 
 

In this chapter, I discuss my work to develop an effective detector for gaming, from developing an 
effective detector for a single tutor lesson, to developing a detector which can effectively transfer 
between lessons. I will also discuss how the detector automatically differentiates two types of 
gaming. Along the way, I will present a new machine learning framework that is especially useful 
for detecting and analyzing student behavior and motivation within intelligent tutoring systems.  

 

Data 
 
I collected data from three sources, in order to be able to train a gaming detector. 
 
1. Logs of each student’s actions, as he/she used the tutor 
2. Our quantitative field observations, telling us how often each student gamed 
3. Pre-test and post-test scores, enabling us to determine which students had negative learning 

outcomes 
 
Log File Data 
 
From the log files, we distilled data about each student action. The features I distilled for each 
action varied somewhat over time – on later runs, I added additional features that I thought 
might be useful to the machine learning algorithm in developing an effective detector.  
 
In the original distillation, which was used to fit the first version of the model (on only the 
scatterplot lesson), I distilled the following features: 
 
• The tutoring software’s assessment of the action – was the action correct, incorrect and 

indicating a known bug (procedural misconception), incorrect but not indicating a known 
bug, or a help request?  

• The type of interface widget involved in the action – was the student choosing from a pull-
down menu, typing in a string, typing in a number, plotting a point, or selecting a checkbox?  

• The tutor’s assessment, after the action, of the probability that the student knew the skill 
involved in this action, called “pknow” (derived using the Bayesian knowledge tracing 
algorithm in (Corbett and Anderson 1995)). 

• Was this the student’s first attempt to answer (or get help) on this problem step? 
• “Pknow-direct”, a feature drawn directly from the tutor log files (the previous two features 

were distilled from this feature). If the current action is the student’s first attempt on this 
problem step, then pknow-direct is equal to pknow, but if the student has already made an 
attempt on this problem step, then pknow-direct is -1. Pknow-direct allows a contrast 
between a student’s first attempt on a skill he/she knows very well and a student’s later 
attempts.  
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• How many seconds the action took. 
• The time taken for the action, expressed in terms of the number of standard deviations this 

action’s time was faster or slower than the mean time taken by all students on this problem 
step, across problems. 

• The time taken in the last 3, or 5, actions, expressed as the sum of the numbers of standard 
deviations each action’s time was faster or slower than the mean time taken by all students on 
that problem step, across problems. (two variables) 

• How many seconds the student spent on each opportunity to practice the primary skill 
involved in this action, averaged across problems. 

• The total number of times the student has gotten this specific problem step wrong, across all 
problems. (includes multiple attempts within one problem)  

• What percentage of past problems the student made errors on this problem step in 

• The number of times the student asked for help or made errors at this skill, including 
previous problems. 

• How many of the last 5 actions involved this problem step. 

• How many times the student asked for help in the last 8 actions. 
• How many errors the student made in the last 5 actions. 
 
In later distillations (including all those where I attempted to transfer detectors between tutor 
lessons), I also distilled the following features: 
 
• Whether the action involved a skill which students, on the whole, knew before starting the 

tutor lesson 
• Whether the action involved a skill which students, on the whole, failed to learn during the 

tutor lesson. 
 
Additionally, I tried adding the following features, which did not improve the model’s ability to 
detect gaming. 
 
• How many steps a hint request involved3 
• The average time taken for each intermediate step of a hint request (as well as one divided by 

this value, and the square root of 1 divided by this value) 
• Whether the student inputted nothing 
• Non-linear relationships for the probability the student knew the skill 

• Making an error which would be the correct answer for another cell in the problem 
 
Overall, each student performed between 50 and 500 actions in the tutor. Data from 70 students 
was used in fitting the first model for the scatterplot lesson, with 20,151 actions across the 70 
students – approximately 2.6 MB of data in total. By the time we were fitting data from 4 lessons, 
we had data from 300 students (with 113 of the students represented in more than 1 lesson), with 
128,887 actions across the 473 student/lesson pairs – approximately 28.1 MB of data in total. 

 
 
 
 

                                                 
3 The original log files lacked information which could be used to distill this feature, and the following feature 
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Observational and Outcome Data 
 

The second source of data was the set of human-coded observations of student behavior during 
the lesson. These observations gave us the approximate proportion of time each student spent 
gaming the system.  However, since it was not clear that all students game the system for the 
same reasons or in exactly the same fashion, we used student learning outcomes in combination 
with our observed gaming frequencies. I divided students into three sets: students never observed 
gaming the system, students observed gaming the system who were not obviously hurt by their 
gaming behavior, having either a high pretest score or a high pretest-posttest gain (this group will 
be referred to as GAMED-NOT-HURT), and students observed gaming the system who were 
apparently hurt by gaming, scoring low on the post-test (referred to as GAMED-HURT). I felt 
that it was important to distinguish GAMED-HURT students from GAMED-NOT-HURT 
students, since these two groups may behave differently (even if an observer sees their actions as 
similar), and it is more important to target interventions to the GAMED-HURT group than the 
GAMED-NOT-HURT group. Additionally, learning outcomes had been found to be useful in 
developing algorithms to differentiate cheating – a behavior similar to gaming – from other 
categories of behavior (Jacob and Levitt 2003). 
 

 
Modeling Framework 
 
Using these three data sources, I trained a model to predict how frequently an arbitrary student 
gamed the system. To train this model, I used a combination of Forward Selection (Ramsey and 
Schafer 1997) and Iterative Gradient Descent (Boyd and Vandenberghe 2004), later introducing 
Fast Correlation-Based Filtering (cf. Yu and Liu 2003) when the data sets became larger. These 
techniques were used to select a model from a space of Latent Response Models (LRM) (Maris 
1995). 
  
LRMs provide two prominent advantages for modeling our data: First, hierarchical modeling 
frameworks such as LRMs can be easily and naturally used to integrate multiple sources of data 
into one model. In this case, I needed to make coarse-grained predictions about how often each 
student is gaming and compare these predictions to existing labels. However, the data I used to 
make these coarse-grained predictions is unlabeled fine-grained data about each student action. 
Non-hierarchical machine learning frameworks could be used with such data – for example, by 
assigning probabilistic labels to each action – but it is simpler to use a modeling framework 
explicitly designed to deal with data at multiple levels. At the same time, an LRM’s results can be 
interpreted much more easily by humans than the results of more traditional machine learning 
algorithms such as neural networks, support vector machines, or even most decision tree 
algorithms, facilitating thought about design implications. 

 
Traditional LRMs, as characterized in Maris (1995), are a hierarchical modeling framework 
composed of two levels: an observable level and a hidden (or “latent” level) – the gaming detector, 
shown in Figure 3-1, has three levels: one observable level and two hidden (“latent”) levels.  
 
In the outermost layer of a traditional LRM, the LRM’s results are compared to observable data. 
In the outermost layer of my model, the gaming detector makes a prediction about how 
frequently each student is gaming the system, labeled G'

0
…G'

69 
. The gaming detector’s 

prediction for each student is compared to the observed proportions of time each student spent 
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gaming the system, G
0
…G

69
 (I will discuss what metrics we used for these comparisons 

momentarily). 
 
In a traditional LRM, each prediction of an observed quantity is derived by composing a set of 
predictions on unobservable latent variables – for example, by adding or multiplying the values of 
the latent variables together. Similarly, in the gaming detector, the model’s prediction of the 
proportion of time each student spends gaming is composed as follows: First, the model makes a 
(binary) prediction as to whether each individual student action (denoted P'

m
) is an instance of 

gaming – a “latent” prediction which cannot be directly validated using the data. From these 
predictions, G'

0
…G'

69 
 are derived by taking the percentage of actions which are predicted to be 

instances of gaming, for each student.  
 
In a traditional LRM, there is only one level of latent predictions. In the gaming detector, the 
prediction about each action P

m
 is made by means of a linear combination of the characteristics of 

each action. Each action is described by a set of parameters; each parameter is a linear, quadratic, 
or interaction effect on the features of each action distilled from the log files. More concretely, a 
specific parameter might be a linear effect (a parameter value α

i
 multiplied by the corresponding 

feature value X
i
 – α

i
 X

i
), a quadratic effect (parameter value α

i
 multiplied by feature value X

i
, 

squared – α
i
X

i

2), or an interaction effect on two parameters (parameter value α
i
 multiplied by 

feature value X
i
, multiplied by feature value X

j
 – α

i
X

i
X

j
).  

 
A prediction P

m
 as to whether action m is an instance of gaming the system is computed as P

m
 = 

α
0
 X

0
 + α

1
 X

1 
+ α

2
 X

2 
+ … + α

n
 X

n
, where α

i
 is a parameter value and X

i
 is the data value for the 

corresponding feature, for this action, in the log files. Each prediction P
m
 is then thresholded 

using a step function, such that if  P
m
 ≤ 0.5, P'

m
 = 0, otherwise P'

m
 = 1.  This gives us a set of 

classifications P'
m
 for each action within the tutor, which can then be used to create the 

predictions of each student’s proportion of gaming,  G'
0
…G'

69 
. 
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Figure 3-1: The gaming detector. 

 

Model Selection 
 
For the very first detector, trained on just the scatterplot lesson, the set of possible parameters was 
drawn from linear effects on the 24 features discussed above (parameter*feature), quadratic effects 
on those 24 features (parameter*feature2), and 23x24 interaction effects between features 
(parameter* feature

A
*feature

B
), for a total of 600 possible parameters. As discussed earlier, 2 more 

features were added to the data used in later detectors, for a total of 26 features and 702 potential 
parameters. Some detectors, given at the end of the chapter, omit specific features to investigate 
specific issues in developing behavior detectors – the omitted features, and the resultant model 
spaces, will be discussed when those detectors are discussed. 
 
The first gaming detector was selected by repeatedly adding the potential parameter that most 
reduced the mean absolute deviation between our model predictions and the original data, using 
Iterative Gradient Descent to find the best value for each candidate parameter. Forward Selection 
continued until no parameter could be found which appreciably reduced the mean absolute 
deviation.  
 
In later model-selection, the algorithm searched a set of paths chosen using a linear correlation-
based variant of Fast Correlation-Based Filtering (Yu and Liu 2003). Pseudocode for the 
algorithm used for model selection is given in Figure 3-2. The algorithm first selected a set of 1-
parameter models that fit two qualifications: First, each 1-parameter model of gaming was at least 
60% as good as the best possible 1-parameter model. Second, if two parameters had a closer 
correlation than 0.7, only the better-fitting 1-parameter model was used.  
 
Once a set of 1-parameter models had been obtained in this fashion, the algorithm took each 
model, and repeatedly added the potential parameter that most improved the linear correlation 
between our model predictions and the original data, using Iterative Gradient Descent (Boyd and 
Vandenberghe 2004) to find the best value for each candidate parameter. When selecting models 
for a single tutor lesson, Forward Selection continued until a parameter was selected that 
worsened the model’s fit under Leave-One-Out-Cross-Validation (LOOCV); when comparing 
models trained on a single tutor lesson to models trained on multiple tutor lessons, Forward 
Selection continued until the model had six parameters, in order to control the degree of 
overfitting due to different sample sizes, and focus on how much overfitting occurred due to 
training on data from a smaller number of tutor lessons.  
 
After a set of full models was obtained, the model with the best A' 4 was selected; A' was averaged 
across the model’s ability to distinguish GAMED-HURT students from non-gaming students, 
and the model’s ability to distinguish GAMED-HURT students from GAMED-NOT-HURT 
students.  
 

                                                 
4 A' is both the area under the ROC curve, and the probability that if the model has one student from each of the two 
groups being classified, it will correctly identify which is which. A' is equivalent to W, the Wilcoxon statistic between 
signal and noise (Hanley and McNeil 1982).  It is considered a more robust and atheoretical measure of sensitivity than 
D' (Donaldson 1993). 
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Two choices in this process are probably worth discussing: the use of Fast Correlation-Based 
Filtering only at the first step of model selection, and the use of correlation and A' at different 
stages. I chose to use Fast Correlation-Based Filtering for only the first step of the model search 
process, after finding that continuing it for a second step made very little difference in the 
eventual fit of the models selected – this choice sped the model-selection process considerably, 
with little sacrifice of fit. I chose to use two metrics during the model selection process, after 
noting that several of the models that resulted from the search process would have excellent – and 
almost identical – correlations, but that often the model with the best correlation would have 
substantially lower A' than several other models with only slightly lower correlation. Thus, by 
considering A' at the end, I could achieve excellent correlation and A' without needing to use A'  
(which is considerably less useful for iterative gradient descent) during the main model selection 
process. 

 
Goal: Find model with good correlation to observed data, and good A’ 
 

Preset values:  
σ − How many steps to search multiple paths using FCBF (after  

σ steps, the algorithm stops branching) 
π − What percentage of the best path’s goodness-of-fit is acceptable  

as an alternate path during FCBF 
µ − The maximum acceptable correlation between a potential path’s most 

recently added parameter and any alternate parameter with a better 
goodness-of-fit 

ζ − The maximum size for a potential model (-1 if LOOCV is used to set 
model size) 

 
 Data format: 

A candidate model is expressed as two arrays: one giving the list of  
parameters used, and the second giving each parameter’s coefficient. 

 
Prior Calculation Task: Find correlations between different parameters 

 For each pair of parameters, 
Compute linear correlation between the pair of parameters,  
across all actions, and store in an array 

 
Main Training Algorithm: 
Set the number of parameters currently in model to 0 
Set the list of candidate models to empty 
MODEL-STEP (empty model) 
For each candidate model (list populated by MODEL-STEP) 

Calculate that model’s A’ value (for both GAMED-HURT versus NON-GAMING, 
and GAMED-HURT versus GAMED-NOT-HURT) 

 Average the two A’ values together 
Output the candidate model with the best average A’. 
 
Recursive Routine MODEL-STEP: Conduct a step of model search 
 Input: current model 

 If the current number of parameters is less than σ, 
 Subgoal: Select a set of paths 
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For each parameter not already in the model 
Use iterative gradient descent to find best model that includes both the  

current model and the potential parameter (using linear correlation to 
the observed data as the goodness of fit metric). 

Store the correlation between that model and the data 
Create an array which marks each parameter as POTENTIAL 
Repeat 

Find the parameter P whose associated candidate model has the highest 
linear correlation to the observed data 

Mark parameter P as SEARCH-FURTHER 
For all potential parameters Q marked POTENTIAL 
 If the linear correlation between parameter Q and parameter P  

 is greater than µ, mark parameter Q as NO-SEARCH 
 If the linear correlation between the model with parameter Q and the  

observed data, divided by the linear correlation between the 
model with parameter P and the observed data, is less than 
π, mark parameter Q as NO-SEARCH 

Until no more parameters are marked POTENTIAL 
For each parameter R marked as SEARCH-FURTHER 

 Use iterative gradient descent to find best model that includes both  
the current model and parameter R (using linear correlation to the 
observed data as the goodness of fit metric). 

Recurse MODEL-STEP (new model) 
 Else  

Subgoal: Complete exploration down the current path 
Create variable PREV-GOODNESS; initalize to -1. 
Create variable L, initialize to -1 
Create array BEST-RECENT-MODEL 
Repeat  

For each parameter not already in the model 
Use iterative gradient descent to find best model that includes both  

the current model and the potential parameter (using linear 
correlation to the observed data as the goodness of fit metric). 

Store the correlation between that model and the data 
Add the potential parameter with the best correlation to the model 
If ζ = −1  (i.e. we should use cross-validation to determine model size) 

Create an blank array A of predictions (of each student’s game freq) 
For each student S in the data set 

Use iterative gradient descent to find best parameter values for  
the current model, without student S 

Put prediction for student S, using new parameter values, into 
array A 

Put the linear correlation between array A and the observed data into  
variable L 

If L > PREV_GOODNESS 
 PREV_GOODNESS = L 
 Put the current model into BEST-RECENT-MODEL 

  Else 
Put the current model into BEST-RECENT-MODEL 

Until (the model size = ζ  OR PREV_GOODNESS > L) 
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Add BEST-RECENT-MODEL to the list of candidate models 
  

Figure 3-2: Pseudocode for the machine learning algorithm used to train the gaming detector 

 
 
Statistical Techniques for Comparing Models 
 
The following methods will be used to conduct statistical analyses in this chapter:  
 
This chapter will involve analyses where I compare single models to chance, compare single 
models to one another, and where I aggregate and/or compare multiple models across multiple 
lessons. The A' values for single models will be compared to chance using Hanley and McNeil’s 
(1982) method, and the A' values for two models will be compared to one another using the 
standard Z-score formula with Hanley and McNeil’s (1982) estimation of the variance of an A' 
value (Fogarty, Baker, and Hudson 2005). Both of these methods give a Z-score as the result.5 
Hanley and McNeil’s method also allows for the calculation of confidence intervals, which will be 
given when useful. 
 
Aggregating and comparing multiple models’ effectiveness to each other, across multiple lessons, 
is substantially more complex. In these cases, how models’ performance varies across lessons will 
be of specific interest. Therefore, rather than just aggregating the data from all lessons together, 
and determining a single measure, I will find a measure of interest (which will be either A' or 
correlation) for each model in each lesson, and then use meta-analytic techniques (which I will 
discuss momentarily) to combine data from one model on multiple lessons, and to compare data 
from different models across multiple lessons. 
 
In order to use common meta-analytic techniques, I will convert A' values to Z-scores as 
discussed above. Correlation values will be converted to Z-scores by converting the correlation to 
a Fisher Zr and then converting that Fisher Zr to a Z-score (Ferguson 1971) – a comparison of 
two Z-scores (derived from correlations) can then be made by inverting the sign of one of the Z-
scores and averaging the two Z-scores. 
 
Once all values are Z-scores, between-lesson comparisons will be made using Stouffer’s method 
(Rosenthal and Rosnow 1991), and within-lesson comparisons will be made by finding the mean 
Z-score. The mean Z-score is an overly conservative estimate for most cases, but is 
computationally simple, and biases to a relatively low degree for genuinely intercorrelated data 
(Rosenthal and Rubin 1986) (and high intercorrelation is likely, when comparing effective models 
of gaming in a single data set). After determining a composite Z-score using the appropriate 
method, a two-tailed p-value is found. 
 
Because comparisons made with Stouffer’s method will tend towards a higher Z-score than 
comparisons that are made with mean Z-score (because of different assumptions), I will note 
which method is used in each comparison, denoting comparisons made with Stouffer’s method 

                                                 
5 The technique used to convert from A' values to Z-scores (from Hanley and McNeil, 1982) can break down, for very 
high values of A'; in the few cases where a calculated Z-score is higher than the theoretical maximum possible Z-score, 
given the sample size, I use the theoretical maximum instead of the calculated value.  
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Z
s
, comparisons made using mean-Z score Z

m
, and comparisons made using both methods Z

ms
. 

Z-scores derived using only Hanley and McNeil’s method (including Fogarty et al’s variant), with 
no meta-analytic aggregation or comparison, will simply be denoted Z. 
 
Additionally, since Z-scores obtained through Stouffer’s method will be higher than Z-scores 
obtained through the mean Z-score method, it would be inappropriate to compare a Z-score 
aggregated with Stouffer’s method to another Z-score aggregated with the mean Z-score 
method. To avoid this situation, when I conduct comparisons where both types of aggregations 
need to occur (because there are both between-lesson and within-lesson comparisons to be made), 
I will always make within-lesson comparisons before any between-lesson comparisons or 
aggregations.  
 
To give a brief example of how I do this, let us take the case where I am comparing a set of 
models’ training set performance to their test set performance (either A' or correlation), across 
multiple lessons. The first step will be to compare, for each lesson, the performance of the model 
trained on that lesson to each of the models for which that lesson is a test set (using the 
appropriate method for A' or correlation). This gives, for each lesson, a set of Z-scores 
representing test set-training set comparisons. Then, those Z-scores can be aggregated within-
lesson using the mean Z-score method, giving us a single Z-score for each lesson. Next those Z-
scores can be aggregated between-lessons using Stouffer’s method, giving a single Z-score 
representing the probability that models perform better within the training set than the test sets, 
across all lessons. This approach enables me to conduct both within-lesson and between-lesson 
comparisons in an appropriate fashion, without inappropriately comparing Z-scores estimated by 
methods with different assumptions. 

 
 
A Detector For One Cohort and Lesson 
 
My first work towards developing a detector for gaming took place in the context of a lesson on 
scatterplot generation and interpretation. I eventually gathered data on this lesson from three 
different student cohorts, using the tutor in three different years (2003, 2004, 2005); my first 
work towards developing a gaming detector used only the data from 2003, as the work occurred 
in late 2003, before the other data sets were collected. The 2003 Scatterplot data set contained 
actions from 70 students, with 20,151 actions in total – approximately 2.6 MB of data. 
 
I trained a model, with this data set, treating both GAMED-HURT and GAMED-NOT-
HURT students as gaming. I will discuss the actual details of this model (and other models) later 
in the chapter – focusing in this section on the model’s effectiveness. The ROC curve of the 
resultant model is shown in Figure 3-3.  
 
The resultant model was quite successful at classifying the GAMED-HURT students as gaming 
(A' = 0.82, 95% Confidence Interval(A') = 0.63-1.00, chance A' =0.50). At the best possible 
threshold value6, this classifier correctly identifies 88% of the GAMED-HURT students as 
gaming, while only classifying 15% of the non-gaming students as gaming. Hence, this model can 
be reliably used to assign interventions to the GAMED-HURT students. 

                                                 
6 ie, the threshold value with the highest ratio between hits and false positives, given a requirement that hits be over 
50% 
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However, despite being trained to treat GAMED-NOT-HURT students as gaming, the same 
model was not significantly better than chance at classifying the GAMED-NOT-HURT 
students as gaming (A' =0.57, 95% CI(A')=0.35-0.79). Even given the best possible threshold 
value, the model could not do better than correctly identifying 56% of the GAMED-NOT-
HURT students as gaming, while classifying 36% of the non-gaming students as gaming.  
 

 

Figure 3-3: The model’s ability to distinguish students labeled as GAMED-HURT or GAMED-NOT-HURT, 
from non-gaming students, at varying levels of sensitivity, in the model trained on the 2003 Scatterplot data. 

All predictions used here derived by leave-out-one-cross-validation. 
 
 
Since it is more important to detect GAMED-HURT students than GAMED-NOT-HURT 
students, we investigated whether extra leverage could be obtained by training a model only on 
GAMED-HURT students. In practice, however, a cross-validated model trained only on 
GAMED-HURT students did no better at identifying the GAMED-HURT students (A' =0.77, 
95% CI(A') = 0.57-0.97) than the model trained on all students. Thus, in our further research, we 
will use the model trained on both groups of students to identify GAMED-HURT students.  

 
It is important to note that despite the significant negative correlation between a student’s 
frequency of gaming the system and his/her post-test score, both in the original data (r= -0.38, 
F(1,68)=11.82, p<0.01) and in the cross-validated model (r= -0.26, F(1,68)=4.79, p=0.03), the 
gaming detector did not just classify which students fail to learn. The detector is not better than 
chance at classifying students with low post-test scores (A' = 0.60, 95% CI(A')=0.38-0.82) or 
students with low learning (low pre-test and low post-test) (A' =0.56, 95% CI(A')=0.34-0.78). 
Thus, the gaming detector is not simply identifying all gaming students, nor is it identifying all 
students with low learning – it is identifying the students who game and have low learning: the 
GAMED-HURT students.  
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Transfer Across Classes 
 
After developing a detector that could effectively distinguish GAMED-HURT students from 
other students, within the context of a single tutor lesson and student cohort, the next step was to 
extend this detector to other tutor lessons and student cohorts. In this section, I will talk about 
my work to extend the detector across student cohorts.  
 
Towards extending the detector across student cohorts, I collected data for the same tutor lesson 
(on scatterplots), in a different year (2004). The 2004 data set contained actions from 107 
students, with 30,900 actions in total. The two cohorts (2003 and 2004) were similar at a surface 
level: both were drawn from students in 8th and 9th grade non-gifted/non special-needs Cognitive 
Tutor classrooms in the same middle schools in the suburban Pittsburgh area. However, our 
observations suggested that the two cohorts behaved differently. The 2004 cohort gamed 88% 
more frequently than the 2003 cohort, t(175)=2.34, p=0.027, but a lower proportion of the 
gaming students had poor learning, χ2(1, N=64)=6.01, p=0.01. This data did not directly tell us 
whether gaming was different in kind between the two populations – however, if gaming differed 
substantially in kind between populations, we thought that two populations as different as these 
were likely to manifest such differences, and thus these populations provided us with an 
opportunity to test whether our gaming detector was robust to differences between distinct 
cohorts of students. 
 
The most direct way to evaluate transfer across populations is to see how successfully the best-fit 
model for each cohort of students fits to the other cohort (shown in Table 3-1). As it turns out, a 
model trained on either cohort could be transferred as-is to the other cohort, without any re-
fitting, and perform significantly better than chance at detecting GAMED-HURT students. A 
model trained on the 2003 data achieves an A' of 0.76 when tested on the 2004 data, significantly 
better than chance, Z=2.53, p=0.01. A model trained on the 2004 data achieves an A' of 0.77 
when tested on the 2003 data, significantly better than chance, Z=2.65, p=0.01.  
 
Additionally, a model trained on one cohort is significantly better than chance – or close – when 
used to distinguish GAMED-HURT students from GAMED-NOT-HURT students in the 
other cohort. A model trained on the 2003 data achieves an A' of 0.69 when tested on the 2004 
data, marginally significantly better than chance, Z=1.69, p=0.09. A model trained on the 2004 
data achieves an A' of 0.75 when tested on the 2003 data, significantly better than chance, 
Z=2.03, p=0.04.  
 
Although the models are better than chance when transferred, there is a marginally significant 
overall trend towards models being significantly better in the student population within which 
they were trained than when they were transferred to the other population of students, Z

ms
=1.89, 

p=0.06. This trend is weaker at the individual comparison level. Only the difference in 
distinguishing GAMED-HURT students from GAMED-NOT-HURT students, in the 2004 
data set, is statistically significant, Z=1.97, p=0.05. The difference in distinguishing GAMED-

                                                 
7 An alternative explanation is that the two observers were more sensitized to gaming in Study Two than Study One; 
however, if this were the case, the detector should be more accurate for the Study Two data than the Study One data, 
which is not the case. Additionally, in the Study Three control condition, the frequency of gaming dropped to almost 
exactly in between the frequencies from Studies One and Two, implying that the two observers became more sensitized 
to gaming from Study One to Study Two, and then became less sensitized (or observant) between Study Two and 
Study Three. 
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HURT students from GAMED-NOT-HURT students, in the 2003 data set, is not quite 
significant, Z=1.57, p=0.12. The difference in distinguishing GAMED-HURT students from 
non-gaming students is not significant in either the 2003 or 2004 cohorts, Z=0.59, p=0.55, 
Z=1.30, p=0.19. 

 
It was also possible to train a model, using the data from both student cohorts, which achieved a 
good fit to both data sets, shown in Table 3-1. This model was significantly better than chance in 
all 4 comparisons conducted – the least significant was the unified model’s ability to distinguish 
GAMED-HURT students from non-gaming students, A'=0.80, Z=3.08, p<0.01. There was not 
an overall difference between the unified model and the models used in the data sets they were 
trained on, across the 4 possible comparisons, Z

ms
=0.96, p=0.33. There was also not an overall 

difference between the unified model and the models used in the data sets they were not trained 
on, across the 4 possible comparisons, Z

ms
=0.94, p=0.35. 

 
Overall, then, although the model does somewhat better in the original cohort where it was 
trained, models of gaming can effectively be transferred across student cohorts. 
 

Training 
Cohort 

G-H vs no game, 
2003 cohort 
 

G-H vs no game, 
2004 cohort 
 

G-H vs G-N-H, 
2003 cohort 

G-H vs G-N-H, 
2004 cohort 

2003 0.85 0.76 0.96 0.69* 
2004 0.77 0.92 0.75 0.94 

Both 0.8 0.86 0.85 0.85 

Table 3-1. Our model’s ability to transfer between student cohorts. Boldface signifies both that a model is 
statistically significantly better within training cohort than within transfer cohort, and that the model is 
significantly better than the model trained on both cohorts. All numbers are A' values. Italics denote a model 
which is statistically significantly better than chance (p<0.05); asterisks (*) denote marginal significance 
(p<0.10).   

 
Transfer Across Lessons 
 
Transferring Detectors Trained on a Single Lesson – Part One 
 
Upon determining that a gaming detector developed for one student cohort could transfer to 
other student cohorts, within the same lesson, my next step was to investigate whether I could 
transfer my detector between tutor lessons.  

 
My first step towards extending the detector across tutor lessons was to collect data for a second 
tutor lesson, covering 3D-geometry. Almost exactly the same set of students used this tutor, and 
used the scatterplot lesson in 2004: the only differences in sample were because of absence from 
class. The geometry data set contained actions from 111 students, with 30,696 actions in total. 
Both the scatterplot and geometry lessons were drawn from the same middle-school mathematics 
curriculum and were designed using the same general pedagogical principles, although the 
scatterplot lesson had a greater variety of widgets and a more linear solution path. Our observers 
did not notice substantial differences between the types of gaming they observed in these two 
lessons. Overall, there was fairly low overlap between the students observed gaming in each 
lesson: 15 students were observed gaming in both lessons, 39 students were observed gaming in 
neither lesson, and 42 students were observed gaming in one lesson but not the other. 
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The most direct way to evaluate transfer across lessons is to see how successfully the best-fit 
model for each tutor lesson fits to the other tutor lesson (shown in Table 3-2). As it turns out, a 
model trained on one lesson did not transfer particularly well to the other lesson, without re-
fitting. When distinguishing between GAMED-HURT students and non-gaming students, a 
model trained on the Scatterplot data achieves an A' of 0.55 when tested on the Geometry data, 
not significantly better than chance, Z=0.75, p=0.55. A model trained on the Geometry data 
achieves an A' of 0.53 when tested on the Scatterplot data, also not significantly better than 
chance, Z=0.27, p=0.79.  
 
Similarly, a model trained on one lesson is not significantly better than chance when used to 
distinguish GAMED-HURT students from GAMED-NOT-HURT students in the other 
cohort. A model trained on the Scatterplot data achieves an A' of 0.41 when tested on the 
Geometry data, not significantly different than chance, Z=-0.84, p=0.40. A model trained on the 
Geometry data achieves an A' of 0.63 when tested on the Scatterplot data, not significantly better 
than chance, Z=1.14, p=0.25.  
 
Additionally, there is a significant overall trend towards models being significantly better in the 
lesson within which they were trained than when they were transferred to the other lesson, 
Z

ms
=4.28, p<0.001. This trend is also present at the individual comparison level, in all four cases. 

The difference in distinguishing GAMED-HURT students from non-gaming students, in the 
Scatterplot lesson (A' of 0.92 versus 0.53), is statistically significant, Z=3.01, p<0.01. The 
difference in distinguishing GAMED-HURT students from non-gaming students, in the 
Geometry lesson (A' of 0.80 versus 0.55), is statistically significant, Z=2.88, p<0.01. The 
difference in distinguishing GAMED-HURT students from GAMED-NOT-HURT students, 
in the Scatterplot lesson (A' of 0.94 versus 0.41), is statistically significant, Z=4.30, p<0.001. 
Finally, the difference in distinguishing GAMED-HURT students from GAMED-NOT-
HURT students, in the Geometry lesson (A' of 0.90 versus 0.63), is statistically significant, 
Z=2.13, p=0.03. 
 
It was, however, possible to train a model, using both data sets, which achieved a good fit to both 
data sets, as shown in Table 3-2. This model was significantly better than chance at 
distinguishing GAMED-HURT students from non-gaming students, both in the Scatterplot 
lesson, A' = 0.82, Z=3.41, p<0.01, and the Geometry lesson, A' = 0.77, Z=4.62, p<0.001. The 
model was also marginally significantly better than chance at distinguishing GAMED-HURT 
students from GAMED-NOT-HURT students in the Scatterplot lesson, A' = 0.70, Z=1.79, 
p=0.07, and significantly better than chance at distinguishing GAMED-HURT students from 
GAMED-NOT-HURT students in the Geometry lesson, A' = 0.82, Z=4.10, p<0.001.  
 
There was not an overall difference between the unified model and the models used in the lessons 
they were trained on, across the 4 possible comparisons, Z

ms
=1.38, p=0.16, but the unified model 

was significantly better than the models used in the lessons they were not trained on, across the 4 
possible comparisons, Z

ms
=2.69, p=0.01.  

 
Overall, then, a unified model can be developed which transfers across cohorts, but if a model is 
trained on just one cohort, it does not appear to transfer well to another cohort. 
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Training 
Lesson 

G-H vs no game, 
SCATTERPLOT 

G-H vs no game, 
GEOMETRY 

G-H vs G-N-H, 
SCATTERPLOT 

G-H vs G-N-H, 
GEOMETRY 

SCATTERPLOT  0.92 0.55 0.94 0.63 
GEOMETRY  0.53 0.80 0.41 0.90 
BOTH 0.82 0.77 0.70* 0.82 

Table 3-2. Models trained on the scatterplot lesson, the geometry lesson, and both lessons together. All models 
trained using only the 2004 students. Boldface denotes the model(s) which are statistically significantly best in a 
given category. All numbers are A' values. Italics denote a model which is statistically significantly better than 
chance (p<0.05); asterisks (*) denote marginal significance (p<0.10).   

 
 
Transferring Detectors Trained on Multiple Lessons 

 
In order to investigate whether a detector trained on multiple lessons would transfer to new 
lessons, I collected data from two additional lessons in the middle school Cognitive Tutor 
curriculum, on probability (2004) and percents (2005). This data collection consisted of 
quantitative field observations giving an estimate for each student’s frequency of gaming, using 
the method discussed in Chapter 2, pre-tests and post-tests (see Appendix B), and log file records 
of each student’s actions within the tutor. Additionally, in Study Three, I collected data from a 
new student cohort using the scatterplots lesson. The probability lesson contained actions from 
41 students, with 10,759 actions in total, the percents lesson contained actions from 53 students, 
with 16,196 actions in all, and the 2005 scatterplot data contained actions from 63 students, with 
20,276 actions in all. Hence, I now had data from four different lessons to use, shown in Table 3-
3, to investigate whether a detector trained on multiple lessons could be used on another tutor 
lesson from the same curriculum.  
 

Lesson Number of students Number of actions 
SCATTERPLOT  268 71,236 
PERCENTS 53 16,196 
GEOMETRY  111 30,696 
PROBABILITY 41 10,759 

Table 3-3. Quantity of data available for training, for four different tutor lessons. 

 
Training a Detector on a Single Lesson – Part Two 
My first step was to train a detector on each of these lessons individually. I then tested this 
detector for the degree of over-fit to individual lessons, by testing the detector both on the 
training lesson, and the other three lessons. In this process of training, as well as all of the 
training I will report in this section, I trained each model to a size of 6 parameters, rather than 
using Leave-One-Out-Cross-Validation to determine each model’s size, enabling me to focus 
this investigation on over-fitting due to lesson, rather than over-fitting occurring for other 
reasons (such as sample size). In all cases, during training, only gamed-hurt students were treated 
as gaming.  
 
The models had an average A' of 0.86 at distinguishing students who gamed in the harmful 
fashion from students who did not game, in the training lessons, significantly better than chance, 
Z

s
=10.74, p<0.001. The models had an average A' of 0.71 at making the same distinction in the 

transfer lessons, also significantly better than chance, Z
m 

= 2.12, p=0.03. Overall, the models were 
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significantly better at distinguishing harmful gaming in the training lessons than in the transfer 
lessons, Z

ms 
=3.63, p<0.001. 

 
The models had an average A' of 0.79 at distinguishing students who gamed in the harmful 
fashion from students who gamed in the non-harmful fashion, in the training lessons, which was 
significantly better than chance, Z

s
 =5.07, p<0.001. The models had an average A' of 0.74 at 

making the same distinction in the transfer lessons, also significantly better than chance, Z
m 

=2.86, p<0.01. Overall, however, the models were not significantly better at distinguishing 
harmful gaming in the training lessons than in the transfer lessons, Z

ms 
=0.56, p=0.58. 

 
The models had an average correlation of 0.57 between the observed and predicted frequencies of 
harmful gaming, in the training lessons, significantly better than chance, Z

s
 = 12.08, p<0.001. 

Within the transfer lesson, the models had an average correlation of 0.22 in the transfer lessons, 
which was also significantly better than chance, Z

m 
=2.40, p=0.02. Overall, the models had a 

better correlation in the training lessons than in the transfer lessons, Z
ms 

=5.15, p<0.001. 
 
Hence, on two of the three metrics of interest, training a detector on each lesson individually 
produced models that were much better within the lesson they were trained, than in the other 
lessons. The overall pattern of results from these comparisons is shown in Table 3-4.  
 
 

Metric Training lesson average  Transfer lesson average  

A' (GAMED-HURT versus NON-GAMING) 0.86 0.71 
A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.74 
Correlation 0.57 0.22 

Table 3-4. Models trained on just one of the four lessons.  Italics denotes when models were, in aggregate, 
statistically significantly better than chance. Boldface denotes when models were significantly better for training 
lessons than transfer lessons.  

 
Training a Detector on All Four Lessons 
The next step was to train a detector on all four of the lessons together, as a benchmark for how 
good we could expect a multi-lesson detector to be, in order to compare this detector’s 
effectiveness to detectors trained on a single lesson. 
 
The model trained on all four lessons appeared to be equally as effective, across lessons, as the set 
of four models each trained on a single lesson were for their training lessons. The model trained 
on all four lessons had an average A' of 0.85 at distinguishing students who gamed in the harmful 
fashion from students who did not game, compared to an average A' of 0.86 for the models 
trained on single lessons, not a statistically significant difference, Z

ms
 = 0.38, p=0.70. The model 

trained on all four lessons had an average A' of 0.80 at distinguishing students who gamed in the 
harmful fashion from students who gamed in the non-harmful fashion, compared to an average 
A' of 0.79 for the models trained on single lessons, which was not a statistically significant 
difference, Z

ms
 = 0.12, p=0.90. Finally, the model trained on all four lessons had an average 

correlation of 0.60 between the observed and predicted frequencies of harmful gaming, in the 
training lessons, compared to an average correlation of 0.57 for the models trained single lessons, 
not a statistically significant difference, Z

ms
 = 0.53, p=0.60.  
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Hence, a model can be trained on all four lessons which is on the whole equally as effective as 
four models trained on individual lessons, testing only on the training sets. The overall pattern of 
results from these comparisons is shown in Table 3-5. The features of the model trained on all 
four lessons will be discussed in detail later in the chapter. 
 

Metric Training on one lesson  Training on all lessons 

A' (GAMED-HURT versus NON-GAMING) 0.86 0.85 
A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.80 
Correlation 0.57 0.60 

Table 3-5. Comparing a model trained on all lessons to models trained on just one of the four lessons, within the 
training lessons.  All models were statistically significantly better than chance, on each metric. No model as 
significantly better than any other model, on any metric.  

 
Training a Detector on Three of Four Lessons 
The next question is whether a detector trained on multiple lessons will be more effective when 
transferred to a new lesson than a detector trained on just one lesson. To investigate this issue, I 
will train a set of detectors on three of four of the lessons together, and then test each of these 
detectors on the fourth, left-out, lesson. This will enable me to investigate whether models 
trained on multiple lessons transfer well to other lessons, from the same curriculum.  Since the 
current gold standard for performance is how well a detector does when trained on a single lesson 
(on the training-set), I will compare the effectiveness of multiple-lesson trained detectors, on the 
lesson they were not trained on, to single-lesson trained detectors, on the lesson they were trained 
on.   
 
The models trained on three lessons had an average A' of 0.84 at distinguishing students who 
gamed in the harmful fashion from students who did not game, in the training lessons, and an 
average A' of 0.80 at making the same distinction in the transfer lessons. The models trained on 
one lesson, as discussed earlier, achieved an A' of 0.86 at making this distinction. The difference 
between the multi-lesson-trained models’ test-set performance was not significantly different 
than the single-lesson-trained models’ training-set performance, Z

ms
 = 1.36, p=0.17. In other 

words, models trained on three lessons do not perform statistically worse when transferred to a 
fourth lesson than models trained on a single lesson perform on the lesson they were trained on.  
 
The models trained on three lessons had an average A' of 0.78 at distinguishing students who 
gamed in the harmful fashion from students who gamed in the non-harmful fashion, in the 
training lessons, and an average A' of 0.80 at making the same distinction in the transfer lessons.  
At the same, the models trained on single lessons had an A' of 0.79 at making the same 
distinction, in the lesson they were trained on. The difference between the test-set performance 
of the models trained on three lessons, and the training-set performance of the models trained on 
single lessons was not significant, Z

ms
 = 0.67, p=0.50. 

 
The models trained on 3 lessons had an average correlation of 0.55 between the observed and 
predicted frequencies of harmful gaming, in the training lessons, and an average correlation of 
0.41 in the transfer lessons. By comparison, the models trained on one lesson, as discussed earlier, 
achieved an average correlation of 0.57 in the training sets. The models trained on one lesson had 
a marginally significantly better correlation in the training set than the models trained on 3 
lessons, in the test sets, Z

ms
 = 1.74, p=0.08. It is worth remembering, however, that the models 
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trained on one lesson had a correlation of 0.22 in the test sets, significantly worse than the models 
trained on 3 lessons performed in the test sets, Z

ms
 = 2.46, p=0.01.  

 
Overall, then, training models on 3 lessons produces a model which is consistently effective on 
the lessons it is trained on – about as good as a model trained on any one of the lessons alone. At 
the same time, models trained on 3 detectors show considerably less degradation in transferring 
to another lesson than models trained on a single detector. In fact, the models trained on 3 
lessons were not significantly worse on each model’s transfer lesson than a model trained on one 
lesson was on its training lessons, in 2 of 3 metrics of interest. The overall pattern of results is 
shown in Table 3-6. 
 
 

Metric Training on one lesson 
(training lessons)  

Training on 3 of 4  
lessons 
(transfer lessons) 

Training on one 
lesson 
(transfer lessons) 

A' (GAMED-HURT versus NON-GAMING) 0.86 0.80 0.71 
A' (GAMED-HURT versus GAMED-NOT-HURT) 0.79 0.80 0.74 
Correlation 0.57 0.41 0.22 

Table 3-6. Comparing models trained on all lessons to models trained on just one of the four lessons, within the 
training lessons.  All models were statistically significantly better than chance, on each metric. Grey boxes 
denote indicate when a model was worse than the best model for that metric (light grey=marginal significance, 
dark grey = significance).  

 
Transferring Across Lessons – Summary 

 
To sum our results on transferring our gaming detector across lessons: Training the detector on a 
single lesson results in a detector that performs considerably worse when transferred to a new 
lesson. However, if we train a detector on multiple lessons, it is effective both within the lessons it 
was trained for, and on a new lesson that it was not trained for. The results obtained here are 
from within a single tutor curriculum (cf. Koedinger 2002), and can not be guaranteed to 
generalize to outside that curriculum. That said, the evidence presented in this section suggests 
that a gaming detector trained on a small number of lessons (three) from a tutor curriculum will 
be effective on other lessons from the same curriculum.  

 
 
Other Investigations of the Gaming Detector 
 
A Tradeoff: Detecting Exactly When Students Game 
 
The detector I have introduced in this chapter is highly effective at detecting which students 
game, and how often. However, this detector has a limitation, based on its design, in detecting 
exactly when students game. This limitation comes in the detector’s use of a student’s prior 
history. If, for example, a student is assessed as gaming because – among other reasons – they 
have made a fast error on a problem step after making a considerable number of errors on that 
step in past problems, it is not entirely clear whether the gaming occurred on the current fast 
error, or on one or more of the past errors. The detector should be treated as neutral in regards to 
this question – the most we should infer from the detector is that gaming has occurred on the 
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step of the problem the student just answered, but the gaming may have occurred on this step in a 
past problem.  
 
This distinction is important for two reasons: First, some interventions may be confusing or 
annoying if they are delivered an entire problem after the gaming actually occurred (for instance, 
a message saying “You just gamed! Stop gaming!”) Additionally, analyses that depend on 
determining exactly when students game (which I present in Chapter Four) may be distorted if 
this issue is not addressed.  
 
Therefore, to develop clearer knowledge on exactly when students games, I developed a gaming 
detector which does not use any data from the student’s actions in prior problems (with the 
exception of the probability the student knows the current skill, since this metric is unlikely to be 
vulnerable to the same problem). This involved modifying the following features so that they only 
involved data from the current problem:  

 
• How many seconds the student spent on each opportunity to practice this skill, within the 

current problem. 
• The total number of times the student has gotten this specific problem step wrong, in the 

current problem 
• The number of times the student asked for help or made errors at this skill, in the current 

problem 
 

I also removed the following feature: 
 
• What percentage of past problems the student made errors on this step in 
 
The resultant detector has 25 features, for a total of 650 potential parameters. When this detector 
is trained on all 4 tutor lessons, it is moderately less effective than the detector trained using these 
features. In particular, it is statistically significantly less successful at distinguishing harmful-
gaming students from non-gaming students, Z

ms
 = 2.00, p=0.05, although the magnitude of the 

difference between detectors is not very large (A' = 0.82 versus A' = 0.85). It appears to achieve 
better performance at distinguishing harmful-gaming students from non-harmful-gaming 
students (A' = 0.82 versus A' = 0.80), Z

ms
 = 1.02, p=0.31. It also appears to achieve a worse 

correlation (r=0.48 versus r=0.60), but this difference is not significant, Z
ms

 = 1.47, p=0.14. 

 
Metric Predictions using 

data from past 
problems 

Predictions without data 
from past problems 

A' (GAMED-HURT versus NON-GAMING) 0.85 0.82 
A' (GAMED-HURT versus GAMED-NOT-HURT) 0.80 0.82 
Correlation 0.60 0.48 

Table 3-7. Comparing models that make predictions using data from past problems, to a model that only uses 
data from the current problem, within the training lessons.  All models were statistically significantly better than 
chance, on each metric. Dark grey boxes denote indicate when a model was statistically significantly worse than 
the best model for that metric. 

 
The bottom line is that trying to be more confident we know exactly when a student is gaming 
may slightly lower our ability to be certain we know exactly how much each student is gaming. 
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Hence, the analyses in the remainder of the dissertation use the model which uses data from past 
problems, unless otherwise noted (one analysis, near the end of Chapter Four, uses the model 
which is more accurate at detecting exactly when students game, in order to isolate properties of 
the situations when students game). 

 
Modifying the Detector For Use in a Running Tutor 

 
Another issue in the development of our detector emerged when we used our detector to drive 
adaptation within our tutor (the tutor’s adaptations are discussed in detail in Chapter Five; in 
general, the discussion in this section may make more sense after you have read Chapter Five). 
The detector I have discussed within this chapter is verifiably effective at detecting gaming in 
student logs. However, the detector had to be modified in subtle ways to be useful for driving 
adaptation in a running tutor. This is specifically because the tutor that adapts to gaming is 
different from the tutors the detector was trained on, in that it adapts to gaming.  
 
Hence, the detector that we used in the adaptive tutor (in Study Three, Chapter Five) differs 
from the detector discussed in the rest of this chapter, in that it explicitly accounts for the 
possibility that some types of interventions will lower the future probability of gaming, on the 
specific steps of the problem-solving process where the intervention occurred. Developing a 
principled policy for changing the detector’s assessments after an intervention would require data 
on student behavior after an intervention; by definition, this sort of data will not be available the 
first time I introduce an intervention. At the same time, not adapting in some fashion to an 
intervention raises the possibility of the system acting like a “broken record”: repeatedly 
intervening on the same step, after the student has stopped gaming. This is a very real possibility, 
since the detector uses the student’s past actions to help it decide if a student is gaming – past 
history may be less useful for interpreting the student’s current actions, after an intervention.  
 
To address this possibility, I chose a simple “complete forgiveness or no forgiveness” policy for 
interventions. Within this policy, non-intrusive interventions, such as the animated agent looking 
unhappy (see Chapter Five) had no effect on the detector’s future assessments. Additionally, if 
the student gamed during an intervention, future interventions were unchanged. However, if a 
student received an intrusive intervention, such as a set of supplementary exercises (see Chapter 
Five), and did not game during that intervention, they received full forgiveness on the problem 
step that intervention was relevant to: all past history for that step (which is used to make 
predictions about whether a student is gaming now) was deleted, and the history used in the 
gaming detector’s predictions for that step began again from a clean slate. Another option, of 
course, would be to use a detector that never uses past history – however, this decision (as 
discussed in the previous section) would result in a generally less effective detector. 
 
The usefulness of the resulting detector in driving adaptations will be discussed in detail in 
Chapter Five. 

 
Detector Features 
 
In general, the features used in best-fitting models follow a similar pattern, across different 
training sets. In this section, I will discuss some of the larger cross-model trends and their 
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implications; complete detail on each of the models I discuss in this section is given in Appendix 
C.  
 
One of the first features incorporated into virtually every best-fitting model is a pattern of making 
a number of errors on the same step, across problems.  For example, the best-fitting model for the 
Study 1 Scatterplot data (“model S1”) has, as its first feature, “ERROR-NOW, MANY-
ERRORS-EACH-PROBLEM”, which identifies a student as more likely to be gaming if the 
student has already made at least one error on the current problem step within this problem, and 
has also made a large number of errors on this problem step in previous problems. The exact same 
feature (same parameters, slightly different coefficient) is the first feature in the best-fitting model 
using all data (“model F”). Even the model trained to not take past problem data (“model NPP”) 
into account has a feature close to this one as its first feature: “MANY-ERRORS-THIS-
PROBLEM”, which identifies a student as more likely to be gaming if the student has made a 
large number of errors on the current problem step in the current problem. 
 
In virtually every model, this type of feature is refined by addressing special cases. These special 
cases can be expressed either by increasing the probability that many errors on some types of 
problem steps are evidence of gaming (multiple choice widgets in both model S1 and the Study 1 
and 2 Scatterplot model (the model used in Study 3 – “model S1S2”), and asymptotic skills in 
model S1S2), or by reducing the probability that many errors on some types of problem steps are 
evidence of gaming (point plotting in models F and NPP, entering numbers in model NPP). The 
only model that did not contain a special case of this nature was model S1 – in this case, the data 
set may have been too small to reliably capture potential special cases. 
 
Help plays a smaller role than would have been expected from the original definition of gaming. 
Model S1 did not have internal details of help requests (such as the number of times the student 
asked for an additional hint, or how long he or she spent on each hint), and had no hint-related 
features. After building model S1, future data sets collected added data that could be used to 
distill internal details of help requests, but this did not improve overall model fit, and thus data 
about internal details of help requests was not used in later models. Nonetheless, help requests do 
appear in models S1S2, F, and NPP, though never as the first feature selected. Model S1S2’s 
fourth feature,“HIGH-PERCENTAGE-OF-HELP-REQUESTS-ON-EASILY-
LEARNED-SKILLS”, identifies a student as more likely to be gaming if he or she frequently 
requests help on the skills which students, in general, learn on their first couple opportunities to 
practice the skill. Model F’s second feature, “ASKING-FOR-HELP-ON-WELL-KNOWN-
STEPS”, identifies a student as more likely to be gaming (or to have gamed in the past) if the 
student asks for help on skills that he or she has a high probability of knowing. In effect, this 
feature suggests that the student may have in the past obtained correct answers through lucky 
guesses, or through problem-specific strategies. Model NPP’s second feature, “CLUSTER-OF-
HELP-REQUESTS-WHILE-ENTERING-STRINGS”, identifies a student as more likely to 
be gaming if the student asks for help several times in a short period of time on skills that require 
entering a string.  
 
Interestingly, models F and NPP refine the link between gaming and help use with later features. 
Model F’s fifth feature,“CLUSTERS-OF-HELP-REQUESTS-ARE-NOT-GAMING”,

 

identifies that a cluster of help requests in quick succession is not gaming. This feature serves to 
refine Feature “ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS”, reducing the intensity 
of “ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS”’s effects when a student who has 
done well on early problems finds some feature of a later problem enigmatic across several steps.  
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Model NPP’s sixth feature, “ASKING-FOR-LOTS-OF-HELP-IS-NOT-GAMING”, is 
similar, suggesting that a high proportion of help requests on a single skill within one problem is 
unlikely to be gaming.  
 
Another type of feature that occurs in several models is a feature that specifically identifies well-
known skills or slow actions as unlikely to signify gaming. In model S1, “SLIPS-ARE-NOT-
GAMING”

 
identifies that if a student has a high probability of knowing a skill, the student is less 

likely to be gaming, even if he or she has made many errors recently. In model F, “SLOW-
CORRECT-ANSWERS-ARE-NOT-GAMING” suggests that slow correct answers are not 
gaming. In model NPP, “SLOW-ACTION-AFTER-MANY-ERRORS-IS-NOT-
GAMING” indicates that if a student makes a slow action after making a number of errors, they 
are probably not gaming.  
 
Overall, then, the models largely included the same types of features, capturing similar types of 
behavior, but with differences at the margins – and predominantly in the later features selected 
(which were more likely to capture special cases). Interestingly, the model that appeared to have 
the greatest appearance of overfitting was model S1S2, with 5 of 6 features appearing to deal with 
special cases – one possibility is that this model, trained on a considerable amount of data but 
from only the Scatterplot lesson, is overfit to the single lesson it was trained on (instead of the 
individual students it was trained on) 
 
Each of the models discussed in this section is discussed in complete detail, feature by feature, in 
Appendix C.  
 

 
Contributions 
 
My work towards developing a generalizable detector of gaming has produced three primary 
contributions. The first contribution, immediately relevant to the topic of this thesis, is the fact 
that we have developed a gaming detector that verifiably works on a number of tutor lessons, and 
which can be used to detect gaming within new tutor lessons without large degradations in 
performance. This work establishes that is possible to develop a behavior detector that can 
transfer effectively between fairly different lessons within-curriculum. The results presented here 
also suggest that it is beneficial to train on multiple lessons, to obtain a detector which can be 
generalized to lessons beyond the original training lessons. 
 
The second contribution is in the adaptation of a psychometric framework, Latent Response 
Models, for use in machine-learned behavior detection. LRMs have a number of advantages for 
behavior detection, being able to naturally take advantage of multiple sources of data at different 
grain-sizes. My work in adapting LRMs to this task involved developing a new type of three-level 
LRM, and inventing a new algorithm – based on forward selection, iterative gradient descent, 
and Fast Correlation-Based Filtering, to search the space of potential LRMs. The techniques I 
developed for learning LRMs have proved useful not just in developing a detector of gaming, but 
have also proved useful for mining information about other types of behavior in Cognitive Tutor 
log files (see Chapter 4 for a fuller discussion of the use of LRMs for data mining). I believe that 
LRMs will be useful in a considerable range of behavior detection and data mining problems – 
essentially, whenever there is fine-grained data from log files that can be combined with 
aggregate, user-by-user data.  
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A third contribution of this portion of my thesis is towards understanding what sorts of data is 
useful in developing detectors to understand student behavior. It is not surprising that both log 
file data, and direct observations of the behavior of interest are useful. It is interesting, however, 
that it is still useful to have direct observations, even when those direct observations cannot be 
directly linked to specific actions in the log files. It is also interesting that we needed data from 
outcome measures in order to interpret our detector’s results. Without measures of each student’s 
learning, it would have appeared that our detectors were only succeeding in detecting some 
gamers. With that data, it becomes clear that our detectors can successfully distinguish two types 
of gaming at the same time that they can distinguish gaming students from non-gaming students.  
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Chapter Four 
Understanding Why Students Game 

 
In this chapter, I discuss my work towards developing a profile of why students game. In order to 
do this, I will consider evidence from two attitudinal surveys, student statements as they worked 
with the tutor, and evidence from our detector as to what behaviors are associated with gaming. 
Along the way, I will present disconfirmatory evidence for some of the most popular explanations 
for why students game. 
 
 

Study One 
 
Our first study on gaming demonstrated that gaming was associated with poor learning 
outcomes. It also provided some evidence on which students game, evidence that I used in order 
to generate hypotheses as to why students choose to game. I then investigated these hypotheses in 
detail in Studies Two and Three.    
 
In this section, I will discuss the evidence from Study One, relevant to this issue. Details on this 
study (sample size, population, and so on) are given in Chapter Two, as is evidence on the effects 
of gaming and other behaviors on learning; in this section, I will present evidence from Study 
One on what characterizes the students who game.  
 
The first distinguishing characteristic about gaming students, from Study One, is their degree of 
prior knowledge about the subject matter in the tutor lesson. Not all students with low pre-test 
scores gamed the system, but all of the students who gamed frequently (more than the median 
amount of gaming, among gaming students) had low pre-test scores. More generally, there was a 
significant correlation between how frequently a student gamed the system and their pre-test 
score, F(1,68)=5.31,p=0.02, r= -0.27. There was an apparent marginal correlation between 
frequency of gaming and performance on the test of general academic achievement, F(1,61)=2.77, 
p=0.10, r=-0.21, but this relationship ceased to be near significance when we controlled for each 
student’s performance on the pre-test, F(1,60)=0.22, p=0.64.   
 
There was also not a significant relationship between what teacher the student had and the 
frequency of gaming the system, F(3,66)=0.99,p=0.41. There was also not a significant 
relationship between gaming the system and off-task behavior, F(1,68)=0.33, p=0.57. The 8 
high-gaming students engaged in off-task behaviors (such as talking to other students or surfing 
the web) with about the same frequency (15%) as the never-gaming students did (14%). We 
interpreted the lack of connection  between gaming and off-task behavior as evidence that 
gaming did not occur due to lack of interest in material – if students gamed solely out of lack of 
interest, we might expect them to engage more frequently in completely off-task behavior as well. 
 
However, there was a fairly strong relationship between a student’s frequency of gaming the 
system and that student’s frequency of talking to the teacher or another student about the subject 
matter, F(1,68)=10.52,p<0.01, r=0.37. This relationship remained after controlling for prior 
knowledge and general academic achievement, F(1,59) = 8.90, p<0.01, partial correlation = 0.36. 
One possible explanation for this finding is that gamers, when they talk about the subject matter, 
were attempting to obtain the answers to problems without having to try to figure out the answer 
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(a strategy similar to gaming), a behavior observed in traditional classrooms (Arbreton, 1998). 
Interestingly, this type of help-seeking behavior has been found to be associated with having 
performance goals rather than learning goals (Arbreton, 1998). However, another possible 
explanation for the relationship between gaming and talking to the teacher is that when a teacher 
observes a student gaming, he/she tries to help the student with the material.  
 
Finally, there was not a statistically significant relationship between gender and the frequency of 
gaming the system,  F(1,68)=1.02, p=0.31. 
 

 Prior Knowledge    
(Pre-Test) 

General Academic 
Achievement 

Other Off-Task 
Behavior 

Talking 
On-Task 

Gender 

Gaming the System - 0.27 - 0.21 0.07 0.37 0.12 

Table 4-1. The correlations between gaming the system and other measures, in Study One.                                                                                                    
Statistically significant relationships are in boldface, marginally significant relationships are in italics 
 
 
Evidence from the Gaming Detector  
 
One advantage of developing a detector for gaming is that it extended our evidence about student 
gaming. Before developing the detector,  we knew which students gamed the system, and how 
often; our detector gave us additional evidence (though not completely conclusive evidence) on 
when students gamed the system. The detector was able to do this, because it made predictions 
about whether each action was a gaming incident en-route to predicting each student’s frequency 
of gaming. In this section, I will discuss what we were able to learn about gaming, from analyzing 
the first version of our gaming detector (trained on just the Study One data from the scatterplot 
lesson).  
 
Our detector shed light on gaming in several fashions. The first was in how gaming actions are 
distributed across a student’s actions. 49% of the detector’s gaming predictions occurred in 
clusters where at least 2 of the nearest 4 actions were also instances of gaming. To determine the 
chance frequency of such clusters, I ran a Monte Carlo simulation where each student’s instances 
of predicted gaming were randomly distributed across that student’s 71 to 478 actions. In this 
simulation, only 5% (SD=1%) of gaming predictions occurred in such clusters. Hence, our 
detector predicted that substantially more gaming actions occur in clusters than one could expect 
from chance.  
 
The second was in dividing gaming into two distinct behaviors, harmful gaming and non-harmful 
gaming. These two types of gaming appeared identical to the observers in Study One (and in each 
study afterwards), but in training the gaming detector, I found that students in these categories 
were behaviorally distinct (see Chapter Three). Additionally, the two types of gaming were 
associated with substantially different learning outcomes. Students who engaged in harmful 
gaming showed almost no learning, while students who engaged in non-harmful gaming scored 
well on the post-test (in some cases, apparently because they already knew the material at pre-
test). In the rest of this section, I will refer to students who gamed in the harmful fashion as 
GAMED-HURT students, and students who gamed in the non-harmful fashion as GAMED-
NOT-HURT students. 
 
Beyond simply distinguishing harmful gaming from non-harmful gaming, the gaming detector 
suggested that there was at least one substantial difference between GAMED-HURT and 
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GAMED-NOT-HURT students: when they choose to game.  This difference manifested itself 
when I compared the model’s predicted frequency of gaming on “difficult skills”, which the tutor 
estimated the student had under a 20% chance of knowing (20% was the tutor’s estimated 
probability that a student knew a skill upon starting the lesson), to the frequency of gaming on 
“easy skills”, which the tutor estimated the student had over a 90% chance of knowing. The 
gaming detector predicted that students in the GAMED-HURT group gamed significantly more 
on difficult skills (12%) than easy skills (2%), t(7)=2.99, p=0.02 for a two-tailed paired t-test. By 
contrast, the gaming detector predicted that students in the GAMED-NOT-HURT group did 
not game a significantly different amount of the time on difficult skills (2%) than on easy skills 
(4%), t(8)=1.69, p=0.13. This pattern of results (shown in Table 4-2) suggested that the 
difference between GAMED-HURT and GAMED-NOT-HURT students may be that 
GAMED-HURT students chose to game exactly when it will hurt them most (which in turn 
may explain why GAMED-HURT students learned less!). 
 
 

Students Hardest skills (under 20% 
probability that the student knows) 

Easiest skills (over 90% 
probability that the student knows) 

Significance of 
difference 

GAMED-HURT 12% 2% p=0.02 
GAMED-NOT-HURT 2% 4% p=0.13 

Table 4-2. How frequently students game on steps they have different levels of understanding of.  

 
The evidence that GAMED-HURT students game overwhelmingly on the hardest skills 
suggests another hypothesis for why these students may be gaming. The choice to withdraw effort 
exactly where the consequences will be highest seems similar to the set of behaviors termed 
“learned helplessness”, where students actively avoid effort on difficult challenges in order to 
justify the failure that they expect will occur regardless of how hard they work (Dweck 2000). In 
this case, perhaps students who game attribute their early difficulties in a tutor lesson (which stem 
from low prior-knowledege) to a more global lack of aptitude, and avoid the difficult challenges 
implicit in learning the tutor material.  
 
 

Study Two 
 
After analyzing data from our first study, and from the gaming detector, we conducted a second 
study to determine why students game. As discussed in Chapter Two, this study also replicated 
our earlier finding that gaming was negatively associated with learning.  
 
In this study, we used an attitudinal questionnaire to assess student attitudes, and then 
determined which attitudes were most associated with harmful gaming (as assessed by the gaming 
detector). We also collected further data on the relationship between different types of student 
behavior. 

 
Hypotheses 
 
In Study Two, we investigated four broad hypotheses about why students game, shown in Table 
4-3. 
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Students game because they... Relevant literature 

have performance goals instead of learning goals (Elliott and Dweck, 1988) 
have learned helplessness, stemming from educational anxiety (Dweck, 1975; Dweck, 2000) 
dislike the tutor/computer (Frantom, Green, and Hoffmann 2002) 
are prone to deception in educational settings (cf. Sarason 1978) 

Table 4-3. Study Two hypotheses on why students game.  

 
The performance goals hypothesis stemmed from evidence in Study One, showing that students 
who gamed the system also talked more about the subject matter with the teachers and other 
students. We hypothesized that students who talk more about the subject matter may actually be 
trying to get others to give them the answer, a behavior found to be correlated to performance 
goals (Arbreton 1998). For this reason, both our research group (e.g. Baker, Corbett, Koedinger, 
and Wagner 2004) and other researchers (Martinez-Mirón, du Boulay, and Luckin 2004) 
hypothesized before this study that students game because of  performance goals. The anxiety 
hypothesis came from evidence that students game on the steps they know least well, based on 
potential links between gaming and learned helplessness (see Chapter Three). The teachers we 
work with also hypothesized that gaming would be connected with anxiety, based on their 
classroom experiences and intuition.  

 
Methods 
 
Study Two took place within 6 middle-school classes at 2 schools in the Pittsburgh suburbs. 
Student ages ranged from approximately 12 to 14. As discussed in Chapter One, the classrooms 
studied were taking part in the development of a new 3-year Cognitive Tutor curriculum for 
middle school mathematics. 102 students were present for all phases of the study (other students, 
absent during one or more days of the study, were excluded from analysis). 
 
I studied these classrooms during the course of the same Cognitive Tutor lesson on scatterplot 
generation and interpretation used in Study One. The day before students used the tutoring 
software, they viewed a PowerPoint presentation giving conceptual instruction (shown in 
Chapter One). Within this study, I combined the following sources of data: a questionnaire on 
student motivations and beliefs,  logs of each student’s actions within the tutor (used with the 
gaming detector, to make predictions of how often each student gamed), and pre-test/post-test 
data. Quantitative field observations were also obtained, as in Study One, as both a measure of 
student gaming and in order to improve the gaming detector’s accuracy. These observations had 
high inter-rater reliability (see Chapter Two).  
 
The questionnaire consisted of a set of self-report questions given along with the pre-test, in 
order to assess students’ motivations and beliefs. The questionnaire items were drawn from 
existing motivational inventories or from items used across many prior studies with this age 
group, and were adapted minimally (for instance, the words “the computer tutor” was regularly 
substituted for “in class”, and questions were changed from first-person to second-person for 
consistency). All items were pre-tested for comprehensibility with a student from the relevant age 
group before the study.  
 
The questionnaire included items to assess: 

 



  46 

• Whether the student was oriented towards performance or learning (2 items, 4 choices) 
(e.g. Mueller and Dweck 1998) 
“We are considering adding a new feature to the computer tutors, to give you more 
control over the problems the tutor gives you. If you had your choice, what kind of 
problems would you like best?  

A) Problems that aren’t too hard, so I don’t get many wrong.  
B) Problems that are pretty easy, so I’ll do well.  
C) Problems that I’m pretty good at, so I can show that I’m smart  
D) Problems that I’ll learn a lot from, even if I won’t look so smart.” 

“Some classes that use computer tutors also have extra-credit projects. If you had your 
choice, what kind of extra projects would you most like to do? 

A) An extra-credit project that is easy, so I can get a better grade. 
B) An extra-credit project where I could learn about things that interested me. 
C) An extra-credit project in an area I’m pretty good at, so I can show my 

teacher what I know. 
D) An extra-credit project that isn’t very difficult, so I don’t have to work too 

hard.” 
 

• The student’s level of anxiety about using the tutor (2 items, scale 1-6) (e.g. Harnisch, 
Hill, and Fyans 1980) 
“When you start a new problem in the tutor, do you feel afraid that you will do poorly?” 
“When you are working problems in the tutor, do you feel that other students understand 
the tutor better than you?”  
 

• The student’s level of anxiety about using computers (1 item, scale 1-6) (e.g. Harnisch, 
Hill, and Fyans 1980) 
“When you use computers in general, do you feel afraid that you will do something 
wrong?”  
 

• How much the student liked using the tutor (2 items, scale 1-6) (e.g. Mueller and Dweck, 
1998) 
“How much fun were the math problems in the last computer tutor lesson you used?”  
“How much do you like using the computer tutor to work through math problems?”  
 

• The student’s attitude towards computers (1 item, scale 1-6) (e.g. Frantom, Green, and 
Hoffman 2002) 
“How much do you like using computers, in general?” 
 

• If the student was lying or answering carelessly on the questionnaire. (1 item, 2 choices) 
(e.g. Sarason 1978) 
“Is the following statement true about YOU? ‘I never worry what other people think of 
me’. TRUE/FALSE”  

 
In analyzing the relationship between gaming and student attitudes, I will use the gaming 
detector’s assessments as a measure of each student’s incidence of harmful and non-harmful 
gaming rather than direct observations of gaming, for two reasons: First, because the direct 
observations do not distinguish between harmful gaming and non-harmful gaming whereas the 
detector successfully makes this distinction – and the two types of gaming may arise from 
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different motivations. Second, because the gaming detector’s assessments are more precise than 
the classroom observations – 2-3 researchers can only obtain a small number of observations of 
each student’s behavior, but the gaming detector can make a prediction about every single student 
action.  
 
Finally, the same pre-tests and post-tests used in Study One were given in order to measure 
student learning. See Appendix B for a full discussion of these tests. 
 
Results 
 
Within Study Two, two types of questionnaire items were found to be significantly correlated to 
the frequency of gaming, as shown in Table 4-4: a student’s attitude towards computers, and a 
student’s attitude towards the tutor. Students who gamed in the harmful fashion (as assessed by 
the detector) liked computers significantly less than the other students, F(1,100)=3.94, p=0.05, r 
= -0.19, and liked the tutor significantly less than the other students, F(1,100)= 4.37, p=0.04, r= -
0.20. These two metrics were related to each other: how much a student liked computers was also 
significantly positively correlated to how much a student liked the tutor, F(1,100)= 11.55, p<0.01, 
r= 0.32. Gaming in the non-harmful fashion was not correlated to disliking computers, F(1,100) 
= 1.71, p=0.19, or disliking the tutor, F(1,100)=0.40, p=0.53. 

 
By contrast, our original hypotheses for why students might game did not appear to be upheld by 
the results of this study. Neither type of gaming was correlated to having performance goals 
(defined as answering in a performance-oriented fashion on both questionnaire items), 
F(1,100)=0.78, p=0.38, F(1,100)=0.0,p=0.99. Furthermore, a student’s reported level of anxiety 
about using the tutor was not associated with choosing to game the system, in either fashion, 
F(1,100) = 0.17, p=0.68, F(1,100) = 1.64, p= 0.20 and a student’s reported level of anxiety about 
using computers was not associated with choosing to game the system, in either fashion, 
F(1,100)=0.04, p=0.84, F(1,100) = 0.58, p=0.45.  Finally, a student’s decision to lie or answer 
carelessly on the questionnaire was not associated with choosing to game the system, in either 
fashion, F(1,98)=0.37, p=0.55, F(1,98)= 0.95, p=0.33. 
 

 Performance 
Goals 

Anxiety 
about Using 
Computers  

Anxiety 
about Using 

the Tutor 

Lying/ 
Answering 
Carelessly 

Liking 
Computers 

Liking 
the 

Tutor 
Gaming the System 
(Harmful fashion) 

0.00 -0.02 -0.04 0.06 - 0.19 - 0.20 

Post-Test 0.15 -0.02 0.04 0.03 -0.32 0.10 

Table 4-4. Correlations between gaming the system, the post-test (controlling for pre-test), and items on the 
Study Two motivational/attitudinal questionnaire. Statistically significant relationships (p<0.05) are in italics. 

 
One interesting side-result was that while harmful gaming was correlated with poorer learning 
(see Chapter Two), and harmful gaming was correlated with negative computer attitudes, 
negative attitudes towards computers were associated with poorer learning, even when we 
controlled for the relationship between harmful gaming and learning, F(1,96)= 8.48, p<0.01. The 
link between harmful gaming and post-test also remained marginally significant when computer 
attitudes (along with pre-test) were partialed out, F(1,96)=3.54, p=0.06. By contrast, a student’s 
attitude towards the tutor was not significantly correlated to his/her post-test score, F(1,97) = 
0.99, p=0.32, controlling for pre-test. 
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At this point, our original hypothesis (that gaming stems from performance goals) appeared to be 
disconfirmed. On the other hand, we now knew that students who game dislike computers and 
the tutor. This raised new questions: Why do students who dislike computers and the tutor 
game? What aspects of disliking computers and the tutor are associated with gaming? 
 
One possibility we considered is that a student who has a negative attitude towards computers 
and the tutor may believe that a computer cannot really give educationally helpful hints and 
feedback – and thus, when the student encounters material she does not understand, she may 
view gaming as the only option. Alternatively, a student may believe that the computer doesn’t 
care how much he learns, and decide that if the computer doesn’t care, he doesn’t either. A third 
possibility we considered is that a student may game as a means of refusing to work with a 
computer she dislikes, without attracting the teacher’s attention. All three of these possibilities are 
consistent with the results of Study Two; in Study Three, we will probe the link between 
disliking computers and the tutor and the choice to game the system more deeply. 
 
Relationship Between Gaming and Talking to the Teacher:  
Failure to Replicate Earlier Result 
One of our more suggestive findings from Study One was that gaming was correlated to talking 
to the teacher or other students on-task were correlated. However, this finding was not replicated 
in Study Two. There was not a significant relationship between observed gaming and talking on-
task, t(103)= 1.07, r = -0.10, p = 0.29 for a two-tailed t-test, nor between detected gaming 
(combined across types) and talking on-task, t(92)= 1.06, r = 0.11, p=0.29 for a two-tailed t-test.  
 
In Study Two, we collected observations that let us split talking on-task into two groups of 
behavior: requesting answers, and all other types of talking on-task (including discussing the 
subject matter and discussing how to find the answer). Neither of the two types of gaming were 
significantly correlated to either of the two types of talking on-task (four comparisons, none with 
p lower than 0.14).  
 
Evidence on Performance Goals 
At the beginning of Study Two, a primary hypothesis was that performance goals would be 
associated with a student’s choice to game the system. However, as discussed earlier in this 
chapter, this hypothesis was not upheld: we did not find a connection between whether a student 
had performance goals and whether that student gamed the system. Instead, performance goals 
appeared to be connected to a different pattern of behavior: working slowly, and making few 
errors.  
 
Students with performance goals (defined as answering in a performance goal-oriented fashion 
on both questionnaire items) answered on tutor problem steps more slowly than the other 
students, F(1,29276)=39.75, p<0.001, controlling for the student’s pre-test score and the 
student’s knowledge of the current tutor step8. Overall, the median response time of students 
with performance goals was around half a second slower than that of the other students (4.4s .vs. 
4.9s). Students with performance goals also made fewer errors per problem step than other 
students, F(1,15854)= 3.51, p=0.06, controlling for the student’s pre-test score. Despite having a 

                                                 
8 It is necessary to control for the student’s knowledge of the current step for this analysis, since students who make 
more errors would be expected to have more actions on skills they know poorly – and actions on skills known poorly 
might be faster or slower in general than well-known skills. 
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different pattern of behavior, students with performance goals completed the same number of 
problem-steps as other students, because slower actions were offset by making fewer errors, 
t(100)=0.17, p=0.86 (an average of 159 steps were completed by students with performance goals, 
compared to 155 steps for other students). Similarly, students with performance goals did not 
perform significantly better or worse on the post-test (controlling for pre-test) than other 
students – if anything, the trend was in the direction of better learning among students with 
performance goals, F(1,97)=2.13, p=0.15.   
 
One possible explanation for why students with performance goals worked slowly and avoided 
errors rather than gaming is that these students may have focused on performance at a different 
grain-size than we had expected. We had hypothesized that students with performance goals 
would more specifically have the goal of performing well over the course of days and weeks, by 
completing more problems than other students – a goal documented in past ethnographic 
research within Cognitive Tutor classes (Schofield 1995). We hypothesized that, in order to 
realize that goal, students would game the system. However, a student with another type of 
performance goal might focus on maintaining positive performance minute-by-minute. Such a 
student would set a goal of continually succeeding at the tutor, avoiding errors and attempting to 
keep their skill bars continually rising. These students could be expected to respond more slowly 
than other students, in order to avoid making errors – which is the pattern of behavior we 
observed.  
 
On the whole, within Study Two, students with performance goals used the tutor differently 
than other students, but by working slowly and avoiding errors rather than by gaming the system. 
It is not yet entirely clear why students with performance goals chose to use the tutor in this 
fashion – one possible explanation is that these students focused on performance at a different 
grain-size than expected. In general, it appears that performance goals are not harming student 
learning, since students with performance goals learned the same amount as the other students. 
Therefore, recognizing differences in student goals and trying to facilitate a student in his/her 
goal preferences (cf. Martínez-Mirón, duBoulay, and Luckin 2004) may lead to better 
educational results than attempting to make all students adopt learning goals. 
 

 
 
Study Three 
 
After analyzing data from Studies One and Two, we conducted a third study to hone in on why 
students game. In this study we focused on investigating, in greater detail, the link between 
gaming and disliking computers and the tutor. To investigate this issue, we used a design similar 
to the design in Study Two, giving students an attitudinal questionnaire to assess their attitudes, 
and then determining which attitudes were most associated with harmful gaming (as assessed by 
the gaming detector).  

 
Hypotheses 
 
In Study Three, we investigated a set of 6 student characteristics that we thought might inform 
our understanding of why students choose to game the system, shown in Table 4-6. 
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Label Student Characteristic 

A The student believes that computers in general, and the tutor in specific, are not very useful. 
B The student believes that computers don’t/can’t really care how much he/she learns. 
C The student has a tendency towards passive-aggressiveness (Parker and Hadzi-Pavlovic 2001) 
D The student believes that computers/the tutor reduce his/her sense of being in control 
E The student is not educationally self-driven 
F The student dislikes math 

Table 4-6. Characteristics studied, in relation to harmful gaming, in Study Three. 

 
Characteristics A through D were drawn from the literature, as potential hypotheses motivating 
the link between disliking computers/the tutor and gaming the system, shown in Table 4-6. 
Characteristics E and F represent more indirect potential links between disliking computers/the 
tutor and gaming the system; we hypothesized that, if a student were not self-driven or disliked 
math, he or she might dislike a tutoring system that made him or her persist in completing math 
problems. Characteristic E appears to be consistent with results published by Arroyo and Woolf 
in 2005 (at the same time as Study Two was published, three months after Study Three had 
finished running), indicating that making more errors and spending less time reading help, a 
pattern of behavior which likely includes gaming, is correlated to having the goal of completing 
work with an intelligent tutor lesson as quickly as possible. 
 
The items used to assess these attitudes and characteristics are given in Table 4-7. All items were 
drawn from existing attitudinal inventories or had been validated in prior studies. Some items 
were adapted minimally in order to shift their domain to the context of a tutoring system.  
 
Item 
 

Associated 
Characteristic 

Item Drawn From 

“Most things that a computer can be used for, I can do 
just as well myself.”  

A Selwyn, 1997 

“The tutor’s help system is effective in helping me 
complete problems.”  

A Lewis, 1995 

 “I feel that the tutor, in its own unique way, is 
genuinely concerned about my learning.”  

B Bickmore and Picard, 2004 

“The tutor treats people as individuals”  B Cupach and Spitzberg, 1983 
“The tutor ignores my feelings”  B Cupach and Spitzberg, 1983 
“At times I tend to work slowly or do a bad job on 
tasks I don’t want to do”  

C Parker and Hadzi-Pavlovic, 2001 

“I tend to try to get out of things by making up 
excuses”  

C Parker and Hadzi-Pavlovic, 2001 

“I often forget things that I would prefer not to do”  C Parker and Hadzi-Pavlovic, 2001 
“Using the tutor gives me greater control over my 
work” 

D Dillon et al, 1998 

“I am in complete control when I use a computer” D Selwyn, 1997 
“I study by myself without anyone forcing me to 
study.” 

E Knezek and Christensen, 1995 

“I try to finish whatever I begin”  E Knezek and Christensen, 1995 
“I enjoy working on a difficult math problem”  F Knezek and Christensen, 1995 
“Math is boring”  F Knezek and Christensen, 1995 

Table 4-7. Items used within the Study Three questionnaire.  
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Methods 
 
Study Three took place within 5 middle-school classes at 2 schools in the Pittsburgh suburbs. 
Student ages ranged from approximately 12 to 14. As discussed in Chapter One, all students were 
participating in a year-long Cognitive Tutor class teaching middle school mathematics, and the 
study was conducted in the spring semester, after students had used the Cognitive Tutor for long 
enough that they presumably had learned how to game if they wanted to, and would not be 
discovering gaming for the first time during the study. 108 students participated in this study; 95 
students completed at least part of the questionnaire and used the Cognitive Tutor during at least 
one class session during the half of the study relevant to this chapter (and will be used in analysis 
where appropriate). 
 
Study Three had two parts. In this chapter, we will discuss the first part of Study Three – the 
second part of Study Three, concerning a pair of interventions to respond to gaming, will be 
discussed in detail in Chapter Five. In the first part of Study Three, students used an unmodified 
Cognitive Tutor lesson drawn from their standard curriculum. Half of the students (53% of 
students present for the entire study) worked with a lesson on converting between percents and 
other mathematical representations; the other students worked with a lesson on creating and 
interpreting scatterplots of data. All students used the tutor for 80 minutes of class time (spread 
across either 2 or 3 class days, in accordance with differences in school period length between 
school districts). Before and after using the tutor, students completed a pre-test and post-test in 
order to measure their learning. Along with the pre-test, students completed a questionnaire on 
their attitudes and characteristics, made up of the items in Table 4-7. All questionnaire items 
were given as Likert scales, from 1 to 6. A student’s score for each of the characteristics in Table 
4-6 is the average of their responses on each of the relevant items in Table 4-7, with scores 
reversed as necessary for inter-scale consistency. 
 
In Study Three, as in Study Two, we use the machine-learned detector of harmful gaming 
(described in Chapter Three) to indicate what proportion of the time each student engaged in a 
specific type of gaming found to be associated with poorer learning. I use the detector rather than 
human observations for the same reason I used the detector in Study Two – greater precision, and 
the ability to distinguish between harmful gaming and non-harmful gaming. In the analyses 
presented here, I use a detector trained on data from the Scatterplot lesson in Studies One and 
Two. 
 
Results 
 
The characteristic most correlated to harmful gaming (as assessed by the gaming detector) in 
Study Three was a lack of educational self-drive (characteristic E), F(1,92)=6.10, p=0.02, r = 0.25. 
To make the relationship between harmful gaming and lack of educational self-drive more 
concrete, if we compare the least self-driven quartile of students to the most self-driven quartile 
of students, we find that the least self-driven quartile engaged in harmful gaming 68% more 
frequently than the most self-driven quartile (6.2% of the time versus 3.7% of the time), a 
marginally significant but fairly large difference, t(44)=1.88, p=0.07, effect size = 0.71 SD. This 
result is  compatible with the recent findings by Arroyo and Woolf (2005), where a student’s 
reported desire to complete their work with the tutor as quickly as possible with minimal effort 
(measured in their study by the item “I just wanted to get the session over with, so I went as fast 
as possible without paying much attention”) (a goal likely related to lack of educational self-drive) 
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was found to be correlated to making more errors and reading help more quickly (behaviors 
connected to gaming).  
 
Another characteristic significantly correlated to harmful gaming in Study Three was disliking 
math (characteristic F), F(1,92)=4.20, p=0.04, r= 0.21. To make the relationship between harmful 
gaming and disliking math more concrete, the quartile of students that disliked math the most 
engaged in harmful gaming 63% more frequently than the quartile of students who liked math 
the best (4.9% of the time versus 3.0% of the time), although this difference fell short of statistical 
significance, t(44)=1.54, p=0.13, effect size = 0.60 SD.  
 
No other characteristic was significantly correlated to harmful gaming, as shown in Table 4-8. 
However, although the belief that computers and the tutor are not useful (characteristic A) was 
not significantly correlated to harmful gaming, F(1,93)=2.51,p=0.12, r= 0.16, the trend was 
strong enough to suggest that this hypothesis may be worth investigating in greater detail in 
future studies. None of the other three characteristics (B,C, and D) were significantly correlated 
with harmful gaming, F(1,90)=1.55, p=0.22, r= 0.13; F(1,92)=0.76, p= 0.36, r=0.10; 
F(1,93)=0.17, p=0.68, r= 0.04.  
 

 Belief that 
Computers/ 
the Tutor are 

not useful 
(A) 

Belief that 
Computers/ 
the Tutor 

are uncaring 
(B)  

Tendency 
towards 
passive-

aggressiveness 
(C) 

Belief that 
Computers/ 
the Tutor 

reduce control 
(D) 

The 
student is 
not self-
driven  

(E) 

Disliking 
math  
(F) 

Gaming the System 
(Harmful fashion) 

0.16 0.13 0.10 0.04 0.25  0.21 

Table 4-8. Correlations between gaming the system and characteristics assessed in this study.  
Statistically significant relationships (p<0.05) are in italics. 

 
Evidence from the Gaming Detector – Studies Two and Three:  
What Steps Do Students Game On? 
 
After Study One, a gaming detector trained with just the data from Study One (a single lesson, 
on scatterplots) provided evidence suggesting that students gamed in the harmful fashion far 
more on the hardest steps than the easiest steps (where hardest is defined as a lower than 20% 
probability that the student knows the skill at the time, and easiest is defined as a higher than 
90% probability that the student knows the skill at the time).  
 
In this section, I replicate this analysis with an improved detector trained on four tutor lessons, 
including the data from Studies Two and Three presented here (discussed in detail in Chapter 
Three). For this analysis, I use the detector trained to make the most accurate predictions about 
exactly when each student is gaming (model “NPP” in Appendix C), rather than a detector 
trained to make the most accurate overall predictions about which students game and how often, 
since the goal of the analysis presented here is to determine when students game.  
 
Using this detector, we find that students game harmfully over twice as often on the hardest steps 
as on the easiest steps (34% of the time versus 15% of the time9), a significant difference, 

                                                 
9 This detector, as noted in Chapter 3, has a tendency to overestimate how often all students game, although it still 
accurately identifies gaming students and correlates well to actual gaming.  
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t(293)=13.92, p<0.001, for a paired t-test. Overall, there is a statistically significant linear 
relationship between the difficulty of a step, and the frequency of gaming, F(1, 3748)= 224.5, 
p<0.001, r= - 0.24, shown in Figure 4-1. 
 
This result is especially interesting, in light of the fact that this detector does not include the 
probability the student knows the skill in any of its seven features (not by design – it just wasn’t 
selected for during model selection); hence, the pattern observed is an emergent property of the 
data, not just a consequence of a specific feature in the model. 
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Figure 4-1. Relationship between the probability the student knows a skill,  
and their harmful gaming frequency, across four tutor lessons 

 

Profile of a Gaming Student 
 
Taking the results from the three studies presented here, we can now advance a fairly complete 
profile of the students who choose to game in the harmful fashion. 
 
A prototypical student who games the system in the harmful fashion: 
 

• Is not educationally self-driven (Study Three) 
• Dislikes mathematics (Study Three) 

• Dislikes computers (Study Two) 
• Dislikes the tutor (Study Two) 

• Has low prior knowledge of the subject area (Study One) 
• Has low general academic achievement (Study One) 
• Games on the hardest steps (Across Studies) 
 

At the same time, gaming students are not (by comparison to other students): 
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• Prone to talking to other students, off-task (Study One) 
• Prone to other types of off-task behavior (Study One) 

• Focused on performing well in class instead of learning (Study Two) 
• Anxious about learning (Study Two) 
• Passive-Aggressive (Study Three) 

 
One other finding, showing that gaming students talk on-task more often, appeared in the data 
from Study One, but was not replicated in later studies. 
 
These findings, in aggregate, suggest that the prototypical gaming student is systematically 
displeased with and uninterested in their mathematics classes, and is generally uninterested in 
putting effort into their studies. Perhaps for these reasons, this student has already fallen behind 
other students in their class, and is making decisions that will cause him or her to fall further 
behind over time.  
 
In order to develop cognitive tutor curricula that can help all students achieve to their maximum 
potential, we need to design tutors that take these gaming students into account. In Chapter Five, 
I will discuss an intervention that we developed, to attempt to help these students catch up with 
the rest of their peers.  

 
 
Contributions 
 
There are two contributions from this chapter of the thesis. The first contribution is obvious and 
direct. My research into why students game has resulted in considerable knowledge about what 
behaviors, attributes, motivations, and beliefs characterize the students who choose to game. This 
knowledge can then be expressed as a profile of a prototypical gaming student, which I do as part 
of this thesis.  
 
The second contribution is less direct but is overall more important. By understanding richly the 
characteristic of gaming students, I was able to design a system that responds effectively and 
appropriately to gaming. I will discuss this system and its effects in Chapter Five.    
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Chapter Five 
Adapting to Gaming 

 
In this chapter, I will present a study involving a re-designed tutor lesson that adapts 
automatically when students game. I will show that my re-design resulted in reduced gaming and 
improved learning – although apparently for different reasons. I will also discuss some negative 
aspects of my design, and ways to improve it in the future.   

 
 

Design Process 
 
In this section, I will discuss the process I used to re-design a tutor lesson to respond to gaming. I 
followed the following procedure, which is similar to existing views of good design process (Beyer 
and Holtzblatt 1998, Laurel 2003, Preece, Rogers, and Sharp 2002, Dix, Finlay, Abowd, and 
Beale 2004). 
 

1. Find the Problem 
2. Understand the Problem 
3. Define the Parameters of the Solution 
4. Develop and Vet Potential Solutions 
5. Develop and Critique Prototype/Implementation 

 
Finding and Understanding the Problem 
 
The beginning of the design process is discussed – in a sense – in previous chapters. In order to 
find the problem, I did research (see Chapter Two) which determined that one type of gaming 
was associated with substantially poorer learning within Cognitive Tutors, whereas other 
behaviors were not. In order to understand the problem, I collected data on which students game 
in the harmful fashion, and used this data to construct a profile of those students (see Chapter 
Four).  
 
It is possible to conceive these steps as falling outside of the design process – viewing design only 
as the process of developing the artifact. However, I view the problem discovery and research 
steps as the most crucial parts of designing the interactive system discussed in this chapter. It 
would make little sense to re-design tutors to adapt to gaming, if it wasn’t clear from the data that 
gaming was associated with poorer learning. Similarly, it was important to develop a profile of 
gaming students, in order to have some understanding of why students choose to game. Without 
data indicating why students game, a clever designer might, using otherwise excellent design 
practice, design an intervention that increases gaming and reduces learning.   
 
Defining the Parameters of the Solution 
 
After determining – to some level of approximation – the problem, the next step was to 
determine what conditions the new design should satisfy. In many cases, the parameters for an 
ideal solution are selected intuitively, and are not specified in advance. In this case, we specified 
two parameters before beginning the design process: 
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1. The design must improve the learning of students who currently game 
2. The design must change the tutor minimally for students who do not game 

 
Both of these parameters may seem obvious, but differed from prior approaches to addressing 
gaming and/or common views of how to address gaming. In the years before the research 
reported in this dissertation began, at least two prominent intelligent tutoring research groups 
(Carnegie Mellon/Carnegie Learning and the University of Massachusetts at Amherst) 
independently chose a preventative approach towards gaming (cf. Aleven 2001, Beck 2005). 
These groups decided to prevent gaming, by changing the tutor features that they had observed 
being gamed, in order to prevent the gaming behaviors they had seen. Researchers at Carnegie 
Mellon and Carnegie Learning did so by introducing a two-second delay between each level of 
hint, to prevent a student from clicking through hints at high speed; researchers at the University 
of Massachusetts designed their system to not give help before the student had spent a minimum 
amount of time on the current problem. 
 
My approach differs from the preventative approach in two ways: First, my goal is to improve 
gaming students’ learning (parameter 1). Reducing gaming may be one way to accomplish that 
goal, but it is not a requirement. Given my parameters, I would consider a solution where gaming 
students learned substantially more but continued to game a complete success. The preventative 
approach, on the other hand, focuses primarily on reducing gaming: if gaming is reduced, the 
approach was successful (cf. Beck 2005). Presumably, better learning is the end goal of the 
preventative approach, but it is not emphasized over reducing gaming. 
 
Secondly, my approach sets affecting non-gaming students minimally as an explicit goal. The 
preventative approach, as thus far implemented, appears to violate this principle. Many students 
use help in an appropriate fashion (Wood and Wood 1999; Aleven 2001) – delaying students’ 
access to help may make help facilities less useful to these students.  
 
An additional issue with the preventative approach is that trying to redesign tutors to directly 
prevent students from gaming the system may lead to an arms race, with students figuring out 
new ways to game the system in response to the re-designed tutor. In fact, Murray and vanLehn 
(2005) have now shown exactly this happening, for one popular type of gaming prevention. 
Murray and vanLehn determined that students using a tutor which had delayed help (much as 
the Carnegie Mellon/Carnegie Learning tutors did) developed new strategies for gaming, which 
enabled them to still rapidly obtain answers and complete problems by exploiting properties of 
the system’s help and feedback. These students discovered a way to elicit answers by tricking the 
software’s proactive help (a feature which is also part of the Carnegie Mellon/Carnegie Learning 
tutors) into giving help without delays, by rapidly repeating the same error several times in a row. 
While this type of gaming could also be prevented, it is far from certain that students would not, 
then, discover yet another way to game the system. 
 
Developing and Vetting Potential Solutions 
 
My work to develop and vet potential solutions consisted of several steps, carried out in 
collaboration with a diverse set of experts in both my area of research and other areas of research. 
The process took the form of multiple cycles of brainstorming, prototyping, and critique. 
  
In the first cycle, I brainstormed and wrote up descriptions of several potential designs alone, and 
with my thesis advisors (Albert Corbett and Kenneth Koedinger). The goal of this iteration was 
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to document the ideas of the people most familiar with the research project, before bringing in 
outsiders, in order to avoid losing the ideas of the people most steeped in the existing data. The 
brainstorming in this stage did not involve formal process, but generated a number of potential 
design solutions. These solutions were written as descriptions and theoretical justifications, 
documenting why I thought each solution might be effective. One such solution is shown in 
Design Example 5-1. 

 
 
 
 
 
One possible intervention would be to use a combination of  

• Self-modeling  
• Self-monitoring. 

 
A student would be chosen to receive the intervention if they were observed frequently gaming 
the system on the previous class day (by the system).  
 
Self-modeling 
 
At the beginning of the class session, the student would be shown a 5-minute collection of 
examples of proper use of the tutor, from their own behavior on the previous day (cf. Clare et al, 
2000). These examples would be automatically identified using a variant of the gaming detection 
algorithm, training instead on the behavioral patterns of non-gaming students with high learning 
gains. Since no student was observed gaming more than half of the time in Study 1, it should be 
possible to find a reasonably high number of positive examples.  The examples would be shown 
using Aleven et al’s (2005) Protocol Player. 
 
As the student watched the examples of proper use, annotation would be automatically created by 
the system and given to the student. This annotation would explain what the student was doing in 
these examples, and why this type of behavior was an effective way to learn from the tutor. The 
annotation would be modeled on previous protocols for delivering self-modeling interventions, 
used by school psychologists. The annotation would emphasize the fact that the student was 
watching his or her own behavior.  
 
Self-monitoring 
 
After the collection of examples had concluded, the student would begin work in the tutor, as 
normal. To implement self-monitoring, every 5 minutes, the system would ask the student to 
identify whether they thought they had been using the software in a learning-oriented fashion (cf. 
Dalton et al, 1999), and would give the student appropriate feedback on their self-assessment. 
Rather than interrupting the student in the middle of thinking about a step, the self-monitoring 
system would pop up immediately after the student had completed a step. The self-monitoring 
part of the system would also pop up sooner than after 5 minutes, if the detection algorithm 
determined that the student was gaming the system.  
 
If the student’s gaming did not reduce below a pre-chosen threshold during the course of the 
intervention, the student would receive the intervention again on the following tutor day. If the 
student’s gaming did reduce, then they would not receive the intervention again.  
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Research plan 
 
The system with a combination of these two interventions would be tested first, and compared to 
a traditional system. If it was effective at reducing the incidence of gaming, an area of future 
work would be to see whether it was necessary to use both interventions, or whether one would 
suffice.  

Design Example 5-1. Design solution from solitary brainstorming 

 
 
In Design Example 5-1’s favor, the solution was fairly well theoretically justified. It also met the 
second parameter of the solution – affecting non-gaming students minimally (in fact, in this 
design, non-gaming students would not be affected at all). On the other hand, it only addressed 
gaming, not the lower learning associated with gaming. Thus, this design would only fulfill the 
first parameter of the solution – improving gaming students’ learning – if the link between 
harmful gaming and poorer learning was causal (as opposed to gaming and lower learning both 
arising from some other quantity, such as the student not putting effort into learning the material 
throughout their tutor usage). Another potential drawback to this design is that the intervention 
is not very tightly linked to the student’s behavior: the intervention does not begin to occur until 
the student has already gamed for an entire class session, and afterwards interrupts the student 
every five minutes, regardless of whether or not the student has ceased gaming. 
 
The next step was to bring in outside ideas, through a structured brainstorming session. In this 
session, I brought in experts with a collection of different types of expertise: two teachers familiar 
with Cognitive Tutors, one educational technology researcher, an interaction designer, and a 
behavior modification specialist. My primary role in this session was as a facilitator rather than as 
a participant – I helped to explain the phenomena of gaming and the technological potentials and 
limitations, but did not actively take part in the brainstorming of solutions, or the critique part of 
the session, in order to learn the participants’ ideas rather than re-hashing my own ideas.  
 
I began the session by giving the participants a short presentation on the data from Studies One 
and Two, regarding the learning outcomes associated with gaming, and the existing evidence on 
why students choose to game the system. I then discussed the functionality and limitations of the 
gaming detector, and showed the participants clips of students gaming the system. One of the 
teachers also demonstrated for the other participants some of the gaming behaviors he had 
observed in the classroom. 
 
I then asked participants to brainstorm possible design solutions (using IDEO’s rules of 
brainstorming – Kelley and Littman 2001), writing each idea on a separate post-it note. This part 
of the process began with a burst of solutions. After the first burst slowed, the participants began 
to discuss what sorts of attributes a good solution should have, while still brainstorming more 
solutions. The behavior modification specialist recommended the other participants that they 
think, in their solutions, about how the system’s responses could be expected to change the 
students’ behavior. He also discussed the benefits of having a clear and understandable link 
between a student’s gaming behavior and the system’s response. The teachers answered a number 
of questions from the other participants about what classroom conditions were like, and what 
kinds of roles a teacher could potentially play in a solution. The interaction designer and 
educational technology researcher answered a number of questions from the other participants 
about what sorts of interactions the software could reasonably be expected to support. 
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The participants then clustered the post-it notes into related solutions. They then voted on which 
solutions they liked best, using stickers.  Each participant could assign 10 stickers however they 
preferred. After voting, each participant chose a solution or solution cluster that they liked (with 
no requirement to choose a popular solution; also, two participants chose the same solution) and 
developed a storyboard/scenario for that solution/ solution cluster. Finally, I asked each 
participant to present their solution to the group, and had each participant critique the others’ 
solutions.  
 
Some of the solutions that were selected for storyboarding included:  
 
 
 
 
 
 
 

• Behavior Modification Specialist: After the student games, the system erases some of 
their most recent answers (perhaps just two responses, perhaps an entire problem), giving 
the message “I think you were guessing. Maybe you could do these steps again on the 1st 
try, without hints”. The participants thought that this solution could remove the 
incentive for gaming, since it slows the student down. An example page from the 
storyboard is shown as Design Example 5-2. 

 

 

Design Example 5-2. Excerpt from Behavior Modification Specialist’s storyboard on  
moving student back in the problem after he/she games the system. 
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• Teacher: Put a face on the screen, in the upper-left corner (impossible to cover up) 

that looks happy when the student is using the software correctly, and looks upset 
when the student is gaming. The participants thought that this solution could 
communicate to the teacher that the student is gaming, enabling the teacher to 
take action. A few examples of post-it notes relevant to this design idea are shown 
as Design Example 5-3, and an excerpt from the teacher’s storyboard is shown in 
Design Example 5-4.  

 
 

 

 
 

Design Example 5-3. Brainstorming examples for idea of  
giving the tutor a face that looks upset when the student is gaming. 
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Design Example 5-4. Excerpts from Teacher’s storyboard on  
giving the tutor a face that changes expression when the student is gaming. 
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• Educational Technology Researcher and Teacher: When a student is gaming, give them 

sub-problems that depend upon the same knowledge as the step(s) they gamed through, 
until the student can get a step right on the first try. The participants thought that this 
solution could give students a second chance to learn the material they had bypassed by 
gaming. An example page from the storyboard is shown as Design Example 5-5 

 

  

Design Example 5-5. Excerpt from Educational Technology Researcher’s storyboard on  
giving supplemental exercises to gaming students. 

 
 
The storyboarding was valuable, in that it gave some good explication of some of the earlier ideas. 
However, the eventual solutions (which will be discussed in the following sections) were fairly 
different in detail from the storyboards.  The solution that I eventually adopted was a 
combination of two of the most popular ideas from the brainstorming, and matched closely the 
spirit of the original ideas, even as it differed from the storyboards in detail. Thus, the most 
important steps were probably the brainstorming and voting steps. However, it is important to 
note that the brainstorming step was heavily enriched by the presentation of the relevant data at 
the beginning, and by the dialogue between the different experts, each bringing their different 
knowledge and skills to the problem.  
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As the eventual solution differed in detail from the storyboards, the storyboarding step might 
appear, on the surface, to have been of low value. However, the critique and in-depth discussion 
of the storyboards was quite valuable. I selected the two ideas I used in part because the negative 
aspects brought forward during the critique seemed less serious and more addressable than the 
negative aspects of other designs, such as moving a gamer back to the beginning of the problem 
(Design Example 5-2). Storyboarding and critiquing helps us to learn not just what each of the 
participants think would be useful, but what they think the problems and challenges will be, for 
each potential solution. 
 
Overall, each of the salient aspects of this structured brainstorming session could potentially be 
transferred to other participatory design sessions. A thorough (but not overly long) discussion of 
the data relevant to the design situation helps the design team inform their ideas, and would be 
useful in a variety of situations. Bringing in a variety of different types of expertise often adds to 
the complexity of arranging a session, but increases the potential space of ideas and perspectives – 
the mix of specialties in this session involved field practitioners (the teachers), and multiple types 
of relevant academic expertise. One might expect, in some situations, that having such a broad 
mix of expertise would run the risk of lack of communication problems or lack of respect for 
different skills and perspectives; however, this was not a problem in this structured brainstorming 
session. Next, the actual step of brainstorming, with some side-discussion allowed while solutions 
are proposed, is widely useful. In this case, the main ideas of the eventual design were articulated 
during this step. Voting then helped narrow down which solutions are generally best-liked, and in 
fact the ideas I used were two of the four ideas that got many votes and were selected to be 
fleshed out in storyboards (two participants sketched the same idea). Finally, storyboarding and 
critique, at the end of a design session, give an excellent opportunity to get some perspectives on 
the potential designs before investigating them further.   
 
My plan, prior to this session, had been to run multiple sessions, but I was unable to bring 
together a group of the diversity and quality I was seeking a second time, and thus ended up only 
running a single structured brainstorming session.  
 
Developing and Critiquing a Prototype 
 
After the structured brainstorming session, I combined the ideas developed in the teacher and the 
educational technology researchers’ storyboards (a face that signals whether a character is gaming, 
and supplemental exercises) into a single design idea, and created a set of storyboards. I engaged 
in one-on-one critique sessions with teachers familiar with the Cognitive Tutors (beyond the 
teachers who had participated in the structured brainstorming session), school principals, my 
advisors, PhD students in Human-Computer Interaction, and one high school student, iterating 
the design after each session. I then implemented the design, and had PhD students in HCI use 
and critique the implemented system. My intention at this point was to next conduct critiques 
with students from the appropriate age group, but I was unable to obtain an appropriate 
population of participants in the time available before deployment (the students who participated 
in Study Three, could not be used because of the possibility that the critique would affect the 
results of the later study; there was not a large enough sample to remove students from the study 
population for participation in a critique session). Nonetheless, the system had gone through 
several iterations of design and critique by the time it was eventually deployed. 
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At the point when I developed the first storyboards, the ideas from the brainstorming session 
were still somewhat undefined – several different models for supplemental exercises had been 
proposed during the storyboarding and critique, and several types of interactions had also been 
proposed for the face.  
 
In my first storyboards of the system’s interaction with the student (Design Example 5-5), the 
student had the choice of working with one of multiple characters. Although allowing the 
students to choose or even personalize their character would likely have had positive effects on the 
students’ desire to work with the character (cf. Cordova and Lepper 1996) or attitudes towards 
the character, this choice was removed from the final design, primarily because of limited 
implementation time. As can be seen, the original list of choices had one option that was just a 
face (much as in the original ideas from the brainstorming session). However, during the critique 
sessions (with adults), the puppy and cat were much more popular than the face – so when I 
narrowed down to one character, I chose the puppy (instead of the original idea from the 
brainstorming sessions, the face). It would have been preferable to make this decision based on 
students’ opinions, but as already mentioned, this was not possible due to time and logistical 
constraints. In practice, attitudes towards the puppy character’s appearance were mixed – some 
students found him very cute, while others thought he was “dorky” or “really white”. In general, a 
character will probably be more helpful if he or she is respected, so it is probably valuable to either 
give the students a choice between characters, or design a character who is not “dorky”. 
 
One aspect of the character that was refined across design sessions was the character’s expressions 
of negative emotion, when the student was gaming. I decided not to follow the suggestion in 
Design Example 5-3 that the system refer to the gaming student as a “jerk”, since this might 
upset the student (and potentially anger his/her parents), but instead had the agent look first sad 
(Figure 5-2), then angry (Figure 5-4). Some of the more complex emotions shown in Design 
Example 5-4 (such as looking “puzzled” or “quizzical”) were not used, because of concerns about 
effectively communicating these emotions in the character and uncertainty as to exactly when 
these emotions should be used. Considerable effort, across design sessions, went into refining 
Scooter’s expressions of anger, so that he was clearly angry-looking, but without looking scary or 
creepy. The solution shown in Figure 5-4 effectively met this goal, not seriously upsetting any 
students, though some students became confused as to whether the agent was angry, or on fire.  

 

 

 Design Example 5-5. Excerpt from my storyboards of the system’s interaction with the student.  
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The character’s interaction with the student was, in the final version, simpler than in the some of 
the original ideas. In some of the design ideas from the brainstorming session, as well as in some 
of the storyboards (see Design Example 5-6), the character gives specific advice on the student’s 
gaming actions – advising the student to read through the hint *carefully*, or to try to get the 
answer right on the first try. However, the gaming detector only gives information as to what 
steps the student was likely to be gaming on, not exactly how the student gamed – making the 
generation of an appropriate message non-trivial. An early implementation selected a message at 
random; when this implementation was being tested, a critiquer pointed out that the messages 
appeared inappropriate and might cause students to think the system was ineffective, and not take 
the system seriously. Developing a better alternative, that figured out not just that the student was 
gaming, but which message was most appropriate, appeared to be potentially fairly time-
consuming. Hence, I removed the more specific messages, limiting the character’s comments on 
gaming to “Work carefully, so you can learn.” (Figure 5-2).  

 

 

Design Example 5-6. Excerpt from my storyboards of the system’s interaction with the student.  

 
The final design for the supplemental exercises was also somewhat simpler than many solutions 
suggested during the structured brainstorming session. One popular suggestion during the 
structured brainstorming session was knowledge construction dialogs, leading the student 
through each step of the process of determining the answer; however, developing a system that 
could present sophisticated knowledge construction dialogs is not a simple task (Heffernan, 
2001), and seemed to be more complex than necessary. Less sophisticated open-ended items had 
the risk that they would slow the student considerably – especially if the student was floundering. 
Therefore, I selected multiple-choice items, which were both easier to implement, and had some 
bound on how long they would take the student to complete.  
 
As can be seen from these examples, the eventual design kept the spirit of the original ideas from 
the structured brainstorming session, but was fairly different in details from the storyboards  
produced at the end of the structured brainstorming session. The design process used, with 
iterations of critique and re-design, refined and improved the original, somewhat abstract designs, 
bringing their broad ideas and themes into contact with the realities of what can be implemented 
(in the given time), and testing out how specific features manifest themselves when worked out in 
detail, and how those features can be improved and refined.  
 
Final Design 
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The design which resulted from this process introduced a new component to the students’ 
intelligent tutoring software – Scooter the Tutor. Scooter was designed to both reduce the 
incentive to game, and assist students in learning the material that they were avoiding by gaming 
the system. Scooter was also designed to minimally affect students who were not gaming. 
 
Scooter the Tutor is a puppy character, using graphics from the Microsoft Office Assistant 
(Microsoft Corporation 1997), graphically modified to enable Scooter to display emotions not 
used in Microsoft Office. Pedagogical agents have been used in several prior educational systems 
(Mathan and Koedinger 2003; Graesser et al, 2003; Johnson, Rickel, and Lester 2000; Wang et 
al, 2005). In specific, the Microsoft Office Assistant/ Microsoft Agent has been used in two 
educational systems (Mathan and Koedinger 2003; Manske and Conati 2005). Multiple studies 
have, in recent years, suggested that the mere presence of a pedagogical agent does not improve 
learning but that agents can affect learning positively if used in a fashion that enables new types of 
educational interactions (Graesser et al, 2003; Wang et al, 2005).  
 
Scooter was designed to focus on students who game the system. The gaming detector discussed 
in Chapter Three (specifically, versions of the detectors trained only on student data from the 
scatterplot lesson, and from the percents lesson, respectively) is used to assess whether, and to 
what degree, a student has been gaming the system. If a student is assessed as not having engaged 
in any gaming recently (in the last 10 actions), Scooter looks happy and gives the student positive 
messages (Figure 5-1). If the detector assesses that the student may have gamed on 1 of the last 
10 actions, Scooter looks upset, and gives the student a warning message (Figure 5-2). When the 
student is assessed to have been gaming on at least 3 recent actions, Scooter does one of two 
things, based on whether the student had gotten a correct answer on their last action. If the last 
answer was correct, Scooter gives the student a set of supplementary exercises designed to give the 
student another chance to cover the material that the student may have bypassed while gaming 
the system (Figure 5-3). If the answer was incorrect, Scooter looks angry, to signal to the student 
that he or she should now stop gaming, and try to get the answer in a more appropriate fashion 
(Figure 5-4). Scooter also looks angry if a student tries to game him during a supplementary 
exercise. 
 

 
Figure 5-1. Scooter the Tutor, when the student has not been gaming  
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Figure 5-2. Scooter the Tutor, looking moderately unhappy when the student is believed 

to have been gaming moderately 

 

 

Figure 5-3. Scooter the Tutor, intervening to give a supplementary exercise to a gaming student  
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Figure 5-4. Scooter the Tutor, looking angry when the student is believed to have been gaming heavily,  
or attempted to game Scooter during a supplementary exercise (see Figure 5-3) 

 
 
The supplementary exercises cover the material contained in the steps the student recently gamed 
through. The supplementary exercises have three levels – all questions given in the supplementary 
exercises are multiple choice. In each of the first two levels of an exercise, the student is asked to 
answer one of the following two types of questions: 
 

1. Questions which require understanding one of the concepts required to answer the step 
the student gamed through (for example: “What kind of variable goes on the Y axis of a 
Scatterplot?) 

2. Questions about what role the step they gamed through plays in the overall process of 
solving the problem (for example: “Why do we need to know the largest value of height 
in this part of the problem?”) 

 
If the student gets either the first or second level of the exercise correct, Scooter returns the 
student to the regular tutor exercise (telling the student “That’s right! Let’s get back to work. Be 
sure to work through every step carefully.”). The student only gets one chance to answer the first 
or second level of the exercise. 
 
If the student gets both the first and second level of the exercise wrong, he or she is given a third, 
very easy level. We included this third level, so that students would not flounder indefinitely. The 
third level items involve a concept relevant to the step the student gamed through, but are very 
easy (for example: “What is the first value of height in the table?”). If a student gets the third level 
right, he or she returns to the regular tutor exercise; if a student gets the third level wrong, 
Scooter assumes that the student was trying to game him, and is more likely to give further 
interventions on the problem step involved, in the future (see the discussion of how the detector 
changes its assessments after Scooter’s interventions, near the end of Chapter Three). 
 
As an additional note, Scooter did not offer supplementary exercises for problem steps that only 
involved asymptotic skills: i.e., skills that either all students knew before starting the tutor, or 
skills not generally learned by students as they used the tutor. The rationale for this design choice 
was that there would be no gain from giving supplementary exercises on these problem steps, and 
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thus supplementary exercises would waste the student’s time. Therefore, if a student gamed 
heavily on a step only involving asymptotic skills, Scooter looked angry instead of giving 
supplementary exercises.  
 
My hypothesis, in designing Scooter, was that Scooter would benefit students in three fashions. 
First, by representing how much the student had been gaming, Scooter would make gaming more 
accountable – the students’ teachers would be able to know which students had recently been 
gaming. Additionally, there is evidence that simply informing someone about how often they 
engage in a problematic behavior can reduce that behavior’s incidence (Sarafino 2001).  
 
Second, Scooter was intended to invoke social norms in students (cf. Reeves and Nass 1996) by 
becoming visibly angry when students gamed a great deal, encouraging the student to use the 
software more appropriately. While it is not common for software agents to become visibly angry 
(in fact, Picard (1997) views anger as an example of inappropriate emotion in an affective system), 
it is a very natural behavior in this context. Human teachers become angry with students who 
game the system (I will present qualitative data to this effect, later in the chapter). It also seems 
reasonable to posit that if a student working with a human tutor engaged in the sort of gaming 
behavior students attempt with our Cognitive Tutors (such as systematically entering every 
number from 1 to 38), the human tutor would become upset. Therefore, I hypothesized that 
when Scooter becomes angry, it will invoke social norms, and will lead the student to game the 
system less.  
 
Third, by giving students supplemental exercises targeted to the material the student was gaming 
through, Scooter gives students another opportunity to learn material they have not learned. 
Students who game bypass specific material, and if a student games on the same problem step 
across multiple problems, he or she may never get a chance to learn that material. Hence, 
Scooter’s supplementary exercises give a student a second chance – and another way – to learn 
material he or she may otherwise miss entirely. Additionally, it was my hypothesis that these 
exercises would change the incentive to game – whereas gaming might previously have been seen 
as a way to avoid work, it would now be seen as leading to extra work. 
 

Study Three 
 
The third study I conducted as part of the thesis was the first study which attempted to test the 
effect of using the gaming detector to intervene when a student gamed. In this study, I contrasted 
a traditional tutor to a tutor with an animated agent (Scooter) designed to both prevent gaming 
and offer additional learning support to students who gamed.  This study also gave evidence on 
why students game, discussed in Chapter Four. 
 
Methods 
 
Study Three took place within 5 classes at 2 schools within the Pittsburgh suburbs. Student ages 
ranged from approximately 12 to 14. As discussed in Chapter One, all students were participating 
in a year-long Cognitive Tutor class teaching middle school mathematics, and the study was 
conducted in the spring semester, after students had used the Cognitive Tutor for long enough to 
know how to use the tutor in a number of ways. 108 students participated in this study, but there 
was considerable missing data: not all students were present for all portions of the study, not all 
students answered all of the questions on the questionnaires, some students’ data had to be 
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discarded for some parts of the study because of material some teachers taught during the study 
(this will be discussed momentarily) and some students’ log file data was lost due to network 
outages. The degree of data loss was too large to simply eliminate all students who had some data 
loss, but the type of data loss did not seem appropriate for imputation (too much dependent-
measure data was lost). Therefore, in each analysis, a student will be included if I have all of their 
data relevant to that analysis. 
 
Study Three had two parts. In the first part of the study, students used an unmodified Cognitive 
Tutor lesson, drawn from their standard curriculum. Half of the students (53% of students 
present for the relevant parts of the study) worked with a lesson on converting between percents 
and other mathematical representations; the other half worked with a lesson on creating and 
interpreting scatterplots of data. We used the first part of the study as both a control condition 
for the second part of the study, and to study what characteristics are associated with the choice to 
game, in an unmodified tutor lesson (this aspect of Study Three is discussed in Chapter Four).  
 
In the second part of the study, students used a modified Cognitive Tutor lesson, which 
incorporated Scooter. Scooter was designed, as discussed in the previous section, with two design 
goals: to reduce gaming, and to give additional support to students who persisted in gaming the 
system. All students who used the percents lesson in week one used the scatterplot lesson in week 
two; all students who used the scatterplot lesson in week one used the percents lesson in week 
two. Thus,  in the original design of this study, all students served as both control condition (in 
week one) and experimental condition (in week two), with tutor lesson counter-balanced between 
conditions.  
 
Unfortunately, at one of the two schools, the teachers decided to cover material relevant to the 
percents lesson, because of state standards exams, during the same week the experimental 
condition was being run. Since this might bias in favor of the experimental condition in multiple 
ways, I will not use data from the percents lesson/experimental condition from that school. This 
leaves only a relatively small amount of data relevant to the percents lesson/experimental 
condition. Thus, all discussion of Scooter’s interventions (of any type) will involve only the 
students who used the scatterplot lesson as their experimental condition. While this data loss was 
unfortunate, restricting the data set used in analyzing Scooter’s effects makes it possible to draw 
inferences which are not confounded. 
  
For each lesson, the students first viewed conceptual instruction, delivered via a PowerPoint 
presentation with voiceover and simple animations (shown in Chapter One). In the experimental 
condition, this PowerPoint also included a brief description of Scooter. Then students completed 
a pre-test, used the tutor for 80 minutes across multiple class periods (a different number of class 
periods between schools, but constant within each school), and completed a post-test. Test items 
were counterbalanced across the pre-test and post-test, and are shown in Appendix B. At the 
beginning and end of the entire study, students completed a questionnaire on their learning 
attitudes and beliefs (discussed in Chapter Four), and their attitude towards the tutor (pre-test) or 
Scooter (post-test), including both Likert scale items (1-6) and one open-ended question, asking 
for other thoughts or comments on the tutor/Scooter. In Table 5-1, we show the pre-test and 
post-test items used to compare students’ pre-test attitudes towards the tutor in general, with 
their post-test attitudes towards Scooter. These items were designed such that they differed only 
in whether they referred to “the tutor” or “Scooter”, to make comparisons as exact as possible. 
 
Post-Test Item Corresponding Pre-Test Item 
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“Scooter treats people as individuals”  “The tutor treats people as individuals”  
“Scooter ignores my feelings”  “The tutor ignores my feelings” 
“I feel that Scooter, in his own unique way, is 
genuinely concerned about my learning.” 

“I feel that the tutor, in its own unique way, is 
genuinely concerned about my learning.” 

“Scooter is friendly”  “The tutor is friendly” 
“Scooter is smart” “The tutor is smart” 
“I would like it if Scooter was a part of my regular 
tutor”  

 

“Scooter is irritable”   
“Scooter wants me to do well in class”   

Table 5-1. Items used within the Study Three questionnaire, to assess the students’ attitudes towards Scooter. 

 
In addition to the pre-test and post-test measures, I obtained log files, which I used to distill 
several measures of Scooter’s interactions with each student, including the frequency with which 
Scooter got angry, and the frequency with which Scooter gave a student supplementary exercises.  
 
Finally, I collected observational data on each student’s frequency of gaming, using the same 
quantitative observational method and observers as in Studies One and Two (see Chapter Two).  
 
Deciding what to use to measure gaming in this study is a difficult decision, since both human 
observation (Chapter Two) and the gaming detector (Chapter Three) have considerable 
disadvantages in this situation. The human observations have the serious drawback that they 
cannot distinguish harmful gaming from non-harmful gaming; I cannot even use pre-post gains 
to classify students into these categories, since the intervention may have improved some the 
learning of some students in the harmful gaming category, making them appear to be engaging in 
non-harmful gaming. Thus, if I use the human observations, I will be conflating two types of 
gaming. At the same time, if I use detector, I will be using the same measure to both drive 
intervention and as a measure of the intervention’s effectiveness, probably introducing bias into 
analyses (if the gaming detector only catches half of the types of harmful gaming behavior, and 
half of harmful gaming students completely desist in that type of gaming behavior, but continue 
in all other types of harmful gaming, then my detector would say that the number of students 
seen gaming harmfully decreased by 50%, whereas actually all students continued to game 
harmfully but some did so less frequently). Because of the potential bias introduced by using the 
gaming detector, in this study I will use data from the human observers as the measure of gaming. 
I will address the possibility that the effects on observed gaming frequency came from changes in 
non-harmful gaming in the Results section. 
 
Results 
 
The first and most immediately noticeable effect of incorporating Scooter in the tutor was a 
sizeable, though only marginally significant, reduction in the frequency of observed gaming. 
Students who used the scatterplot lesson as their control condition gamed an average of 5.5% of 
the time within that lesson, while students who used the scatterplot lesson as their experimental 
condition gamed an average of 2.4% of the time within that lesson, t(100)=1.86, p=0.07, effect 
size = 0.49σ. Interestingly, this drop appeared to occur as a drop in the number of students seen 
gaming in each condition, rather than as a drop in the rate at which the remaining gaming 
students gamed. 33% of students were seen gaming in the scatterplot/ control condition, while 
18% of students were seen gaming in the scatterplot/ experimental condition, a marginally 
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significant difference, χ2(1,N=102)= 3.30, p=0.07.10 The average gamer in the scatterplot/ control 
condition gamed 17% of the time, while the average gamer in the scatterplot/ experimental 
condition gamed 14% of the time, which was not a significant difference, t(23)=0.74, p=0.47. Of 
course, the reduction in gaming might have been in non-harmful gaming; I will address this 
possibility later in this section. 
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Figure 5-5. The occurrence of gaming (observed) in each condition, for the Scatterplot lesson.  

 
Despite the apparent reduction in gaming, however, there was not an apparent improvement in 
learning. Overall, students in the scatterplot/control condition scored 44% on the pre-test and 
66% on the post-test, a 22 point gain, whereas students in the scatterplot/experimental condition 
scored 37% on the pre-test and 62% on the post-test, a 25 point gain. The difference in students’ 
gains between conditions was not significant, t(70)=0.34, p=0.73.  
 
There was the appearance of a difference in the relationship between pre-test and post-test 
between the two conditions; as can be seen in Figure 5-6, students who scored between 0% and 
50% on the pre-test appear to have done better on the post-test in the experimental condition, 
with the difference largest (15 points) among those students who scored 0% on the pre-test. 
However, the aptitude-treatment interaction was not significant, F(1,69)=1.71, p=0.20.  
 

                                                 
10 To put these frequencies into context, 24% of students were observed gaming in either fashion in Study One, and 
41% of students were observed gaming in either fashion in Study Two. 
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Figure 5-6. The relationship between pre-test and post-test in each condition  
(only data from the Scatterplot lesson is shown, for best comparability).  

However, gamers are a small subset of the overall population – therefore, differences in gamers’ 
learning may be swamped by normal variation in the rest of the population. Only a third of 
students were ever observed gaming in the control condition – and moreover, the gaming detector 
and interventions are designed for a specific subset of this subset. Interestingly, the relationship 
between gaming and post-test performance even appears to switch direction between conditions, 
as shown in Figure 5-7. In the control condition, more gaming is associated with poorer learning, 
as in Study One (see Chapter Two); in the experimental condition, by contrast, more gaming 
actually appears to be associated with more learning – though the interaction effect between the 
effects of gaming and the condition is not significant, F(1,81)=1.84, p=0.18.  
 
It is worth noting, by the way, that this trend (or lack of a trend) is evidence that the reduction in 
observed gaming did not come from reducing the frequency of non-harmful gaming with no 
reduction in harmful gaming. If that had been the case, we would expect gaming to be much 
more strongly associated with poorer learning in the experimental condition, which was not the 
case.  
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Figure 5-7. The relationship between gaming and post-test, in each condition  
(best-fit lines are shown rather than empirical data, for comprehensibility).  

 
Hence, Scooter appears to have had an overall effect on gaming, but not on learning (though 
there was a trend towards greater learning). However, not all gaming students received the same 
number of Scooter’s interventions. Hence, it may be worth looking at the students who got the 
most interventions from Scooter, to see how/if their gaming behavior and learning was affected 
by Scooter. In the following sections, I will examine the behavioral and learning outcomes 
associated with each type of intervention, analyzing the two types of interventions separately, 
since the two types of interventions were given in subtly different situations and may have had 
different effects.  
 
Scooter’s Supplementary Exercises 
In this section, I will examine the outcomes associated with Scooter’s supplementary exercises (an 
example exercise is shown in Figure 5-3). Scooter gave a fairly small number of exercises. No 
student received a set of exercises from Scooter on more than 3.2% of problem steps (12 sets), the 
median student received a set of exercises on 1.1% of problem steps (3 sets), and many students 
received no exercises at all. 
 
But, on the other hand, Scooter’s exercises were assigned to exactly the problem steps students 
gamed on (according to the detector), so the exercises might have disproportionate effects on 
learning.  
 
One possible model for how learning could relate to number of supplementary exercises received 
is that there could be a linear relationship – the more supplementary exercises a student receives, 
the more they learn. However, a linear model ignores the fact that the students who never receive 
supplementary exercises don’t receive supplementary exercises because they don’t engage in 
harmful gaming, and that not engaging in harmful gaming is generally associated with better 
learning (see Chapter Two).  
 
Therefore, it may be more reasonable to expect the relationship between supplementary exercises 
and learning to be as follows: students who receive no supplementary exercises show good 
learning, students who receive many supplementary exercises show good learning, and the 
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students in the middle show poorer learning. In fact, this is exactly the relationship we find, 
shown in Figure 5-8. 

 
Figure 5-8. The Learning Gains Associated With Receiving  
Different Levels of Supplemental Exercises From Scooter 

(Empirical data shown)   
 
The third of students that received the most supplementary exercises had significantly better 
learning than the other two thirds, t(37)=2.25, p=0.03; the overall difference between all three 
groups is also significant, F(2,36)=3.10, p=0.06. 
  
Hence, it appears that the students who received the most supplementary exercises learned more 
than the other students in the class. In the remainder of the section, I will analyze this finding in 
more depth. However, before doing so, I will first consider whether there is a more meaningful 
place to split between groups than the 67th percentile. To do so, I will develop a model of the 
relationship between supplemental exercises and learning gains. The empirical relationship 
between these quantities is shown in Figure 5-9, in a more broken-down form. 
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Figure 5-9. The Learning Gains Associated With Receiving  
Different Levels of Supplemental Exercises From Scooter 

(Empirical data shown)   
(5th quartile did worse on post-test than pre-test) 

 
Given the relationship we can see in Figure 5-9, it is not surprising that a linear function does a 
poor job of modeling the relationship between pre-post gain and the number of supplemental 
exercises, achieving an r2 of 0.02. A reverse bell-curve also does a poor job – a quadratic function 
does not even converge as a reverse bell-curve, instead converging to a nearly linear positive 
relationship which also has an r2 of 0.02 (2 parameters). A “V” function (segmented regression 
with a single split, 3 parameters) achieves an r2 of 0.10, which is still not very good. A bimodal 
model (segmented regression on quadratic functions with a single split, 5 parameters), however, 
achieves a substantially better r2 of 0.36. 
 
The improved fit given by the bimodal model does not simply appear to be the result of adding 

more parameters. The bimodal model achieves a BIC' of 0.64, whereas the best-fitting model 

which treats this relationship as a linear function achieves a BIC' of 2.98, and the best-fitting “V” 

model achieves a BIC' of 6.82. Hence, the difference in BIC' between the bimodal and linear 

models is 2.34, which is equivalent to a p-value of 0.02 (Raftery 1995), and the difference in BIC' 
between the bimodal and “V” models is 6.18, which is equivalent to a p-value of 0.003. Hence, a 
bimodal model appears to be more appropriate to the data than other potential models. 
 
The best-fitting bimodal model states that the expected pre-post gain equals (giving P for the 
percentage of steps where the student received a set of supplemental exercises): 
 
 If P<0.0122, 0.63 – 62.91P + 12553.13P 2 

 If P �0.0122, 1.83 – 66.24P + 3507.28P 2 

 
This function can also be written (somewhat more comprehensibly) as: 
  

If P<0.0122, 0.31 – 12553.13*(0.005-P) 2 

 If P �0.0122, 0.57 – 3507.28 *(0.019-P) 2 

 
In this model, 0.31 and 0.57 represent the two modes’ Y-values, and 0.005 and 0.019 represent 
the two modes’ X-values. 0.0122 represents the most likely split-point between the two halves of 
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the distribution: when the student receives a supplementary exercise 1.22% of the time (the 63rd 
percentile). The graph of the relationship given by the bimodal model is shown in Figure 5-10.  
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Figure 5-10. The Learning Gains Associated With Receiving  
Different Levels of Supplemental Exercises From Scooter   

(Predictions from best-fitting bimodal model shown)  
 

We can now use the division between the two halves of the bimodal model (supplemental 
exercises = 1.22%) to divide the students into a group of students who received many 
supplemental exercises group, and a group of students who received fewer supplemental exercises. 
The students who received many supplemental exercises have an average pre-post gain of 46%, 
compared to an average pre-post gain of 11% for the students who received fewer exercises, 
t(37)=2.48, p=0.02, effect size = 0.79σ. 
 
To look at the difference another way, although the students who received many exercises were 
substantially lower at pre-test (20% versus 53%), the two groups were essentially equal by the 
post-test (66% versus 64%), as shown in Figure 5-11. The interaction effect is statistically 
significant, F(1,37)=6.16, p=0.02, for a repeated-measures ANOVA. It is also important to note 
that there is not a ceiling at 66%: 28% of all students (33% of students in the top 3 eighths, 25% 
of the other students) had perfect scores on the post-test; there is also not a post-test floor effect – 
some students in each groups had low post-test scores.  
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Figure 5-11. The Learning Gains Associated With Receiving  
Different Levels of Supplemental Exercises From Scooter   

 

 
That said, students with lower pre-test scores could be expected to catch up to students with 
higher pre-test scores, in some situations (for example, if most students knew skills A,B, and C 
after using the tutor but many students did not know all of these skills before using the tutor), 
and it’s possible that the effect we’re observing could be explained in this fashion. One way to 
investigate this possibility would be to compare students with low pre-test scores in each group – 
this step, however, substantially reduces sample size and therefore strongly biases any statistical 
comparison towards non-significance.  
 
There is another way to investigate this possibility, without drastically reducing sample size: 
comparing each group of students’ actual gains to the gains that we could have expected they 
would gain. We can figure out a baseline amount we expect each student to gain, using data from 
the control condition to fit an expected function between each student’s pre-test and post-test. 
The best-fitting function for the control condition data (with an r2 of 0.25 to the actual data in 
that condition) is 
 

Post-Test = 0.44 + (0.56)Pre-Test 
 
If we predict each experimental-condition student’s post-test using this formula, we find that 
according to this prediction, the students who received more supplementary exercises could have 
been expected to perform 19 percentage points worse on the post-test than the students who 
received fewer supplementary exercises. Instead, however, the students who received more 
supplementary exercises performed 2 percentage points better on the post-test than the students 
who received fewer supplementary exercises. In other words, the students who received the most 
supplementary exercises gained 21 more points relative to the other students than predicted, a 
marginally significant difference, t(37)=1.71, p=0.09 for a two-tailed t-test.   
 
Hence, it appears that the pattern shown in Figure 5-11 can not be explained as all students with 
low pre-test scores catching up to the rest of the class. Instead, it appears that students who 
received the most supplementary exercises learned more than the other students, and this greater 
learning enabled them to catch up to the rest of the class. It’s also worth noting that this pattern 
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is the exact opposite of the one seen in the earlier studies of gaming’s effects on learning (see 
Chapter Two), where students who frequently gamed started behind the rest of the class and fell 
further behind by the post-test, rather than catching up, as the students who receive many 
supplementary exercises do. 
 
Interestingly, however, though there appears to be a connection between receiving more exercises 
from Scooter and increased learning, Scooter’s exercises do not appear to have led to the decrease 
in gaming reported in the previous section. If Scooter’s exercises directly led students to reduce 
their gaming, we would expect the students who received more exercises to reduce their gaming 
over time. There is no evidence of such a decrease. Figure 5-12 shows the frequency in gaming 
over the 3 days of the study among the students who received many exercises received in the 
scatterplot/experimental condition, compared to the students who received fewer exercises. 
Among the students who received more exercises, neither the apparent increase in gaming from 
day 1 (7%) to day 2 (10%), nor the apparent decrease in gaming from day 2 (10%) to day 3 (7%), 
was statistically significant, χ2(1,N=155)= 0.31, p=0.58, χ2(1,N=105)= 0.17, p=0.68. Overall, the 
students who received more exercises gamed significantly more than the students who received 
fewer exercises,  χ2(1,N=388)= 24.33, p<0.001. 
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Figure 5-12. Gaming Over Time, in the Scatterplot/Experimental Condition 

 
Case Studies 
 
In this section, I will present a pair of case studies to put some of the effects observed in this study 
into context. Specifically, I will compare a pair of high-gaming students, one in the 
scatterplot/experimental condition, and the other in the scatterplot/control condition – and show 
how Scooter changed the student’s experience in the scatterplot/experimental condition. 
 
Experimental Condition 
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“Chris” (not his/her real name; also, gender was not recorded in this study) was a 9th-grade 
student. Chris had a low pre-test score (17%) and a high post-test score (100%).  
 
On the pre-test, Chris demonstrated a common misconception (cf. Baker, Corbett, and 
Koedinger 2001), where students select variables which would be more appropriate for a bar 
graph than a scatterplot (one categorical variable and one quantitative variable); however, for the 
one correct variable, Chris selected an appropriate scale and bounds. Chris plotted points, but 
they were not evaluated (in accordance with a repeatedly-used grading policy for the scatterplot 
lesson’s tests), since plotting values along categorical variables is not necessarily the same as 
plotting values along quantitative variables. 
 
On the post-test, Chris performed perfectly. Chris’s graph had the correct two variables, both of 
the correct type (quantitative). Both axes had an appropriate scale, and all points were plotted 
correctly.  
 
Chris was observed gaming 10% of the time in the experimental condition (in the 91st percentile 
of all students), and received supplementary exercises on 2.4% of problem steps (also in the 91st 
percentile of all students). In absolute terms, Chris received 9 sets of supplementary exercises in 
the 66 minutes he used the tutor. 6 of those 9 sets of exercises directly concerned how to tell the 
difference between what types of variables should be used in scatterplots and what types of 
variables should be used in bar graphs, or concerned the actual step of choosing which variable to 
use in the graph. In other words, Chris received a small number of exercises, but these exercises 
were focused exactly on the skill he most needed to learn – and he learned that skill. (Point 
plotting, which Chris also appeared to learn from pre-test to post-test, is learned all students by 
the time they have plotted a small number of points – Baker, Corbett, Koedinger, and Schneider 
2003). 
 
Interestingly, after showing impressive learning gains, Chris wrote on the post-test (on the open-
ended response question) that “Scooter can be very annoying. Please do not put him on regular 
tutor” – indicating that, although Chris had impressive learning – quite likely due to using 
Scooter – Chris disliked Scooter. 
 
Control Condition 
“Pat” was a 9th-grade student. Like Chris, Pat had a low pre-test score (0%), but unlike Chris, 
Pat had a low post-test score (17%).  
 
Like Chris, Pat demonstrated a common misconception on the pre-test where students select 
variables which would be more appropriate for a bar graph than a scatterplot (one categorical 
variable and one quantitative variable). For the one correct variable, Pat made a related 
misconception, treating a quantitative variable as if it were a categorical variable. Like Chris, Pat 
plotted points, but they were not evaluated (in accordance with a repeatedly-used grading policy 
for the scatterplot lesson’s tests),  since plotting values along categorical variables is not necessarily 
the same as plotting values along quantitative variables. 
 
On the post-test, Pat showed only moderate improvement over the pre-test. Like on the pre-test, 
Pat selected variables which would be more appropriate for a bar graph than a scatterplot (one 
categorical variable and one quantitative variable). However, on the post-test, Pat selected an 
appropriate scale and bounds for the one correct variable, avoiding the earlier error where Pat 
treated a quantitative variable as if it were categorical. 
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Pat was observed gaming 10% of the time in the experimental condition, exactly the same 
proportion of the time as Chris – although in this lesson 10% gaming was only in the 71st 
percentile of all students. Pat was never seen gaming on the problem steps where it is possible to 
treat a quantitative variable as nominal – and never made this error on the post-test. Pat gamed 
19 times11 (or 4.75 times per problem completed) on the problem steps which directly concerned 
how to tell the difference between what types of variables should be used in scatterplots and what 
types of variables should be used in bar graphs, or concerned the actual step of choosing which 
variable to use in the graph. Therefore, had Pat been in the experimental condition, it seems 
likely he/she would have received some number of supplementary exercises on these skills. As Pat 
was in the control condition, however, he/she did not receive any supplementary exercises. 
 
Hence, Pat made a variable choice error on the pre-test, gamed on the steps which would have 
taught him the relevant skill, and made the same error on the post-test. Chris made the exact 
same error on the pre-test, and gamed on the steps which would have taught him the relevant 
skills – but then Chris received 9 sets of supplementary exercises on these skills, and avoided the 
error on the post-test. This provides some illustration on how a small number of supplementary 
exercises could be associated with substantial learning gains – they were targeted by the gaming 
detector towards exactly the steps that students were avoiding learning by gaming. 
 
Scooter’s Expressions of Displeasure 
 
In this section, I will examine the outcomes associated with Scooter becoming angry (a example is 
shown in Figure 5-4). Scooter became angry considerably more often than he gave supplementary 
exercises. The median student saw an angry Scooter 12.5% of the time, and the student who saw 
an angry Scooter the most often saw an angry Scooter 38% of the time.  
 
There did not appear to be a strong association between viewing an angry Scooter more often, 
and better learning.  Although there was some appearance of a trend towards greater learning for 
students who received more expressions of anger from Scooter (see Figure 5-13), there was 
neither a significant linear relationship between expressions of anger and learning, t(39)=0.32, 
p=0.75, nor did students who received the most expressions of anger have a significantly larger 
average learning gain than other students, t(37)=0.48, p=0.63, effect size = 0.20σ comparing the 
top quartile to the other students.12 
 

                                                 
11 Using the same detector used in the experimental condition 

12 If we select a different cutoff point, it does not change significance; for the top 3/8 versus the other 5/8, t(37)=0.41, 
p=0.68; for a median split, t(37)=0.15, p=0.88; for the top third versus the other two thirds, t(37)=0.16, p=0.87. 
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Figure 5-13. The Learning Gains Associated With Receiving  

Different Levels of Expressions of Anger From Scooter.     

 

Additionally, there is no evidence of a relationship between Scooter’s frequency of expressions of 
anger, and a reduction in gaming over time. Figure 5-13 shows the frequency in gaming over the 
3 days of the study among the top quartile of students (in terms of seeing an angry Scooter) in the 
scatterplot/experimental condition, compared to the other students in this condition. As Figure 
5-11 shows, neither group of students substantially changed their gaming over the course of the 
study. Among the students who saw an angry Scooter the most often, neither the apparent 
decrease in gaming from day 1 (7%) to day 2 (6%), nor the apparent increase in gaming from day 
2 (6%) to day 3 (13%), was statistically significant, χ2(1,N=79)= 0.04, p=0.84, χ2(1,N=50)= 0.83, 
p=0.36.  
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Figure 5-13. Gaming Over Time, in the Scatterplot/Experimental Condition 
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Why Did Gaming Reduce? 
 
As mentioned earlier in this chapter, there was a (marginally significant) overall reduction in 
gaming in the condition where Scooter is present. However, neither students who saw an angry 
Scooter more often nor students who received more supplementary exercises reduced their 
gaming over time.  
 
It is possible that simply knowing Scooter was present, and that he would look unhappy when 
students gamed, and that the teacher would see Scooter, was sufficient to explain the reduction in 
gaming from the control condition to the experimental condition. Students who were less 
committed to gaming might not want to game if they knew their teacher would know. Thus, 
although Scooter’s mood may not have directly affected the students who saw an angry Scooter, 
Scooter’s presence may have motivated students to avoid gaming during the entire lesson. 
 
Student Attitudes Towards Scooter 

At this point, we know that Scooter had positive effects towards reducing gaming, and appeared 
to improve some students’ learning through his supplementary exercises. These elements suggest 
that Scooter was a useful and positive addition to the classroom experience. However, it is also 
important to consider whether the students found working with Scooter a positive experience. In 
this section, I will examine data on students’ attitudes towards Scooter, in comparison to their 
attitudes to the regular tutor (before using Scooter). Since most students enjoy working with the 
tutor (Schofield 1995; Baker, Roll, Corbett, and Koedinger 2005), this should be a reasonably 
strong comparison. 

In doing so, I will consider three groups of students’ attitudes towards Scooter: students who 
received considerable numbers of supplemental exercises (the set of students who were identified 
as having received more supplemental exercises, earlier in this chapter), students who received 
considerable numbers of expressions of anger from Scooter, and students who were in neither of 
these groups (and therefore primarily saw a dancing, happy Scooter). 

It’s reasonable to expect that there will be pre-test differences between these groups (since, as 
discussed in Chapter Four, one of the factors that leads to gaming is disliking the tutor) – 
therefore, the goal of this section will not be to compare these three groups of students to each 
other (which is likely to lead to the unsurprising result that students who see a happy dancing 
puppy enjoy that more than seeing an angry, critical puppy), but to see how each of these three 
groups of students liked Scooter, in comparison to their regular tutor. 

All of the items that I will discuss in this section involve Likert scales, from 1 to 6. For the 
majority of items, 1 indicated “Strongly Disagree” and 6 indicated “Strongly Agree” – I will 
explicitly indicate cases where the scale is reversed. On all items, the middle possible average 
response is 3.5 – however, each student individually needed to indicate 3 or 4. 
 
Student Attitudes Towards Scooter –Students Who Received Many Supplementary Exercises 
The students who received a considerable number of supplementary exercises from Scooter were 
neutral to negative towards Scooter. These students had an average response of 2.9 to the 
question “I would like it if Scooter was a part of my regular tutor” (with a 95% confidence band of 
1.8-3.9, encompassing the middle possible value, 3.5).  
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However, across the five items that compared Scooter to the tutor, there was a significant trend 
towards students’ attitudes towards Scooter being lower than their pre-test attitudes towards the 
tutor, t(13) = 2.78, p=0.02, for a two-tailed paired t-test. The students’ average pre-test rating of 
the tutor was 3.9 and their average post-test rating of Scooter was 3.0.    

The students who received more supplementary exercises rated Scooter lower than their regular 
tutor on the items asking whether Scooter/the tutor treats people as individuals, t(13) =2.22, 
p=0.05, for a paired t-test, whether Scooter/the tutor is smart, t(13)=4.94, p<0.001, for a paired t-
test, and whether Scooter/the tutor is friendly, t(13)=2.39, p=0.03.  It is surprising that these 
students gave Scooter low ratings on being smart and treating students like individuals, since 
Scooter was using assessments of individual differences in order to offer what turned out to be 
highly effective adaptations to these very students – hence, one might say that Scooter actually 
was smart and was treating people as individuals. Nonetheless, these results suggest that even if 
Scooter succeeded in these goals, it was not apparent to the very students who benefited. It may 
be interesting to investigate, in a followup study, what these students attribute their learning to in 
this lesson. 

The other two items did not decrease significantly. The overall pattern of responses of the 
students who received the most supplementary exercises is shown in Table 5-2. 
 
Test Item 
 

Pre-Test Mean Post-Test Mean Statistical 
Significance (p) 

“The tutor/Scooter is smart” 4.9 3.1 <0.001 
“The tutor/Scooter treats people as individuals”  3.8 3 0.05 
“The tutor/Scooter ignores my feelings”  
(item goes in opposite direction to others) 

3.2 3.5 0.27 

“The tutor/Scooter is friendly”  3.9 2.9 0.03 
“I feel that the tutor/Scooter, in its/his own unique 
way, is genuinely concerned about my learning.” 

3.6 3.3 0.36 

 “Scooter is irritable.” n/a 3.9 n/a 

“I would like it if Scooter was part of my regular 
tutor.” 

n/a 2.9 n/a 

Table 5-2. Differences between pre-test attitudes towards the tutor, and post-test attitudes towards Scooter, 
among the students who received the most supplementary exercises (top 3/8) 

 
Student Attitudes Towards Scooter –Students Who Frequently Saw an Angry Scooter 
The students who saw an angry Scooter the most often (the top quartile in the scatterplot/ 
experimental condition) were also very displeased with some aspects of Scooter, but – 
interestingly – different aspects than the students who received the most supplementary exercises. 
These students had a mean response of 3.6 to the question “I would like it if Scooter was a part of 
my regular tutor” – exactly in the middle of the possible response range.  
 
However, there is evidence that these students had a generally low opinion of Scooter. These 
students tended to agree with the sentence “Scooter is irritable” (average response of 4.7, 95% 
confidence band=4.0-5.4, significantly different than chance). Additionally, across the five items 
that compared Scooter to the tutor, there was a significant trend towards students’ attitudes 
towards Scooter being lower than these students’ pre-test attitudes towards the tutor, t(6)=2.79, 
p=0.03, for a paired t-test. The students’ average pre-test rating of the tutor was 3.7 and their 
average post-test rating of Scooter was 2.3.    
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These students trended towards rating Scooter lower than the tutor on each of the five 
comparison items. The trend was statistically significant for their opinions of Scooter’s 
intelligence, t(7)=4.46, p<0.01, for a paired t-test, and whether Scooter ignored their feelings, 
t(7)= -3.86, p<0.01, for a paired t-test. The trend was marginally significant – or nearly so – for 
the other three items, t(6) = 1.80, p=0.12, t(7) = 1.69, p=0.14, t(7)=1.95, p=0.10. The overall 
pattern of responses of the students who received the most supplementary exercises is shown in 
Table 5-3.  
 
Test Item 
 

Pre-Test Mean Post-Test Mean Statistical 
Significance (p) 

“The tutor/Scooter is smart” 5.3 2.9 <0.01 
“The tutor/Scooter treats people as individuals”  4.6 3.4 0.12 
“The tutor/Scooter ignores my feelings”  
(item goes in opposite direction to others) 

3.3 4.1 <0.01 

“The tutor/Scooter is friendly”  4.5 3.4 0.14 
“I feel that the tutor/Scooter, in his/its own unique 
way, is genuinely concerned about my learning.” 

4.4 3 0.10 
 

 “Scooter is irritable.” n/a 4.7 n/a 

“I would like it if Scooter was part of my regular 
tutor.” 

n/a 3.6 n/a 

Table 5-3. Differences between pre-test attitudes towards the tutor, and post-test attitudes towards Scooter, 
among the students who saw an angry Scooter the most often (top quartile) 

 
Student Attitudes Towards Scooter – Other Students 
The students who neither saw an angry Scooter the most often nor received the most 
supplementary exercises were overwhelmingly neutral towards Scooter. These students had a 
mean response of 3.6 to the question “I would like it if Scooter was a part of my regular tutor” – 
exactly in the middle of the possible response range.  
 
These students tended to agree with the sentence “Scooter is irritable” (average response of 4.2, 
95% confidence band=3.6-4.8, significantly different than chance). However, across the five items 
that compared Scooter to the tutor, there was not a significant trend towards students’ attitudes 
towards Scooter being lower than these students’ pre-test attitudes towards the tutor, t(19)=1.29, 
p=0.21, for a paired t-test.  

These students rated Scooter lower than their regular tutor on the items asking whether 
Scooter/the tutor is smart, t(18) =2.05, p=0.06, for a paired t-test. The other four items did not 
decrease significantly. The overall pattern of responses of these students is shown in Table 5-4. 
 
 
 
 
 
 
 
 
 
 
 
 



  86 

Test Item 
 

Pre-Test Mean Post-Test Mean Statistical 
Significance (p) 

“The tutor/Scooter is smart” 4.8 4.1 0.06 
“The tutor/Scooter treats people as individuals”  4.4 4.0 0.29 
“The tutor/Scooter ignores my feelings”  
(item goes in opposite direction to others) 

3.4 3.5 0.73 

“The tutor/Scooter is friendly”  4.4 3.9 0.31 
“I feel that the tutor/Scooter, in his/its own unique 
way, is genuinely concerned about my learning.” 

3.9 4 0.99 
 

 “Scooter is irritable.” n/a 4.2 n/a 

“I would like it if Scooter was part of my regular 
tutor.” 

n/a 3.6 n/a 

Table 5-4. Differences between pre-test attitudes towards the tutor, and post-test attitudes towards Scooter, 
among the students who did not receive the most supplemental exercises, or see an angry Scooter the most often. 
 
Student Attitudes Towards Scooter – Summary 
Overall, then, the students whose experiences were most substantially affected by Scooter appear 
to have liked him least. The trend towards disliking Scooter was moderately more pronounced 
among those students who saw an angry Scooter the most often (by comparison to the students 
who saw the most supplementary exercises). Hence, although Scooter had positive effects towards 
reducing gaming, and appeared to improve some students’ learning through his supplementary 
exercises, there is considerable room for improvement in making working with Scooter a more 
enjoyable, positive experience. 
 
On the other hand, the students who did not see an angry Scooter very often or receive many 
supplementary exercises were more or less neutral towards Scooter. This finding suggests that, at 
minimum, this design fulfilled the second solution parameter identified at the beginning of this 
chapter -- change the tutor minimally for students who do not game.  
 
Thus, this design can be considered a reasonable success. The students who received many 
supplemental exercises appear to have had better learning, though they disliked several aspects of 
Scooter. The students who received few interventions (of either type) from Scooter were largely 
unaffected, in either learning or attitudes. Only the students who received many expressions of 
anger from Scooter appeared to have had their experience with the tutor changed for the worse – 
and even these students, while they did not enjoy working with Scooter, did not appear to have 
learned less than other students. This outcome does, however, suggest that perhaps future 
versions of Scooter should retain his supplemental exercises while finding a less irritating way to 
communicate to the student and their teacher that the student has been gaming. 
 

Contributions 
 
There are two contributions from this chapter of the thesis. The first contribution is obvious and 
direct. In this chapter, I have presented a re-designed tutor which reduces the number of students 
who game and enables gaming students who receive many supplementary exercises to catch up to 
the rest of the class. 
 
The re-designed lesson presented is not without flaws – most importantly, the students who most 
benefited from the system tended to like it less than their regular tutor. It will be important to 
investigate if Scooter can be made more likeable without reducing his educational effectiveness. 
 



  87 

It will also be worthwhile to explore Scooter’s design further. For example, the reduction in 
gaming did not appear to be associated with the learning gains some students saw. It may be 
more effective, in future design iterations, to try to not reduce gaming, so that we can better see 
which students would benefit from supplementary exercises (this approach treats gaming not as a 
problem in itself, but as a sign that the student needs help). It may also be possible to detect when 
non-gaming students could benefit from supplementary exercises (it might be of value, for 
instance to give supplemental exercises on any step where the student had had difficulty across 
several problems, regardless of whether the student gamed the system). 
 
This chapter makes a second contribution, having to do with process. In this chapter, I presented 
a system which was reasonably successful on its very first deployment, despite addressing an issue 
in student learning in interactive learning environments that had largely not been previously 
addressed. I believe that such rapid success can only be explained by good design process. Most of 
the original hypotheses (from our group, and other researchers) for what behaviors should be 
connected with poorer learning (Chapter Two) and for why students game (Chapter Four), were 
completely incorrect (at least within the learning environment studied), and therefore probably 
would have led to the design of useless or even counterproductive systems. The extensive research 
I conducted at the beginning of the design cycle (detailed in Chapters Two and Four) prevented 
such an error. Additionally, my early ideas for how to respond to gaming, even though informed 
by the research in those chapters, seem, in retrospect, substantially flawed in comparison to the 
design used in Study Three. In this chapter, I show how structured brainstorming (with a diverse 
and enthusiastic group of experts) and repeated prototype-and-critique cycles helped me to 
considerably improve the design of the system presented in Study Three. The exact contributions 
of good design process can be difficult to articulate – it’s not possible to run a controlled 
experiment where the same designer or designers either follow good process or fail to do so. 
Nonetheless, a design process can be judged by what it produces – and the system presented here, 
though far from perfect, appears to have been a reasonable success. 
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Chapter Six 
Conclusions and Future Work 

 
This thesis makes a number of contributions, across several fields. In this chapter, I will 
summarize these contributions, and discuss some future directions for the program of research 
presented in this dissertation. 
 
 

Human-Computer Interaction: 
How Do Student Decisions When Using Educational Systems Affect 
Their Learning? 
 
Findings 
 
It has been known for some time that students who use a variety of types of educational 
technology game the system, attempting to succeed in an educational environment by exploiting 
properties of the system rather than by learning the material and trying to use that knowledge to 
answer correctly.  
 
In this thesis I establish that only a minority of students game the system, but that the choice to 
game the system is associated with considerably poorer learning than other seemingly non-
productive behaviors, such as talking off-task. 
 
 I also establish, however, that not all types of gaming are associated with equally poor learning 
outcomes, showing that gaming behavior within the intelligent tutoring system studied divides 
into “harmful gaming” and “non-harmful gaming”, and that these two types of gaming are 
automatically distinguished by machine learning. 
 
Techniques 
 
To establish these findings, I used a pair of techniques which are likely to be useful for detecting 
and modeling other types of student behavior. The first technique is quantitative field 
observation. Quantitative field observation has a rich history in the behavioral psychology 
literature (Lahaderne 1968; Karweit and Slavin 1982; Lloyd and Loper 1986; Lee, Kelly, and 
Nyre 1999). The method I use in this dissertation adapts this technique to the study of behavior 
in interactive learning environments, changing the technique in a seemingly small but useful 
fashion: Within the method I use in this dissertation, the observer codes for multiple behaviors 
rather than just one. Although this may seem a small modification, this change makes this 
method useful for differentiating between the learning impact of multiple behaviors, rather than 
just identifying characteristics of a single behavior. The method for quantitative field observations 
used in this dissertation achieves good inter-rater reliability, and has now been used to study 
behavior in at least two other intelligent tutor projects (Nogry 2005; Neil Heffernan, personal 
communication). 
 
The data from quantitative observation becomes even more useful, I have found, when analyzed 
with a psychometrically-inspired machine learning framework – in this case, a Latent Response 
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Model. Learning Latent Response Models from the data enabled me to differentiate between two 
types of gaming which were indistinguishable to human observers. The model also made more 
precise predictions about how often each student gamed the system.  
 
 

Machine Learning: 
Developing Detectors of Student Behavior 
 
Findings 
 
In this dissertation, I present a gaming detector that verifiably works on a number of tutor 
lessons, and which can be used to detect gaming within new tutor lessons without large 
degradations in performance. This work establishes that is possible to develop a behavior detector 
that can transfer effectively between fairly different lessons within-curriculum. The results 
presented here also suggest that it is beneficial to train on multiple lessons, to obtain a detector 
which can be generalized to lessons beyond the original training lessons. 
 
Techniques 
 
In order to develop this detector, I adapted a psychometric framework, Latent Response Models, 
for use in machine-learned behavior detection. LRMs have a number of advantages for behavior 
detection, being able to naturally take advantage of multiple sources of data at different grain-
sizes. My work in adapting LRMs to this task involved developing a new type of three-level 
LRM, and inventing a new algorithm – based on forward selection, iterative gradient descent, 
and Fast Correlation-Based Filtering, to search the space of potential LRMs. The techniques I 
developed for learning LRMs have proved useful not just in developing a detector of gaming, but 
have also proven useful for mining information about other types of behavior in Cognitive Tutor 
log files. I believe that LRMs will be useful in a considerable range of behavior detection and data 
mining problems – essentially, whenever there is fine-grained data from log files that can be 
combined with aggregate, user-by-user data.  
 
 

Educational Psychology: 
What Distinguishes the Students who Choose to Game the 
System? 
 
Findings 
 
In this dissertation, I presented three studies which give data on what behaviors, attributes, 
motivations, and beliefs characterize the students who choose to game. I use this data to develop a 
profile of a prototypical gaming student, which I use in Study Three to develop an intervention 
which responds (reasonably) appropriately to gaming. This profile shows that gaming students 
have a consistent pattern of disliking virtually every aspect of their classroom environment, and 
are generally not self-driven, across educational contexts; however, these students do not have a 
goal of performing well in the tutor instead of learning (contrary to earlier predictions).  
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Human-Computer Interaction: 
Towards Responding Automatically and Appropriately to Gaming 
 
Findings 
 
In this dissertation, I have presented a re-designed tutor which reduces gaming, and enables 
gaming students who receive many supplementary exercises to catch up to the rest of the class.  
 
The re-designed lesson presented is not without flaws – most importantly, the students who most 
benefited from the system tended to like it less than their regular tutor. It will be important to 
investigate if Scooter can be made more likeable without reducing his educational effectiveness. 
 
Techniques 
 
This system, beyond making considerable progress towards improving the learning outcomes of 
some students who are poorly served by existing Cognitive Tutors, is an illustration of the benefit 
of good design process. This system was reasonably successful on its very first deployment, despite 
addressing an issue in student learning in interactive learning environments that had largely not 
been previously addressed. It appears, given some of the early hypotheses for what behaviors 
should be connected with poorer learning (Chapter Two) and for why students game (Chapter 
Four), that incorporating empirical research into the first stages of the design process was a big 
win; similarly, a comparison of early design ideas to the eventual design used in Study Three 
suggests that structured brainstorming (with a diverse and enthusiastic group of experts) and 
repeated cycles of prototyping-and-critique led to a substantially better design. It is my intention 
to investigate, after the completion of this dissertation, how design techniques can help make the 
next version of Scooter more effective and enjoyable than he was in Study Three. 
 
 

Future Directions 
 
Improving Scooter 
 
Though Scooter was effective at reducing gaming, and improving learning for the students who 
received substantial numbers of supplementary exercises, there is considerable room for improving 
Scooter. I intend to study whether Scooter can be improved by studying whether we can make 
him more enjoyable to use (without compromising his effectiveness), whether it is better to avoid 
reducing gaming and focus the system towards giving more supplementary exercises (treating 
gaming less as a problem in itself, and more as a sign the student needs help), and whether it is 
possible to detect when non-gaming students could benefit from supplementary exercises.  
 
Student Behavior and Learning Across Different Types of Interactive 
Learning Environments 
 
In this dissertation, I have applied new techniques for researching how student behavior in 
educational systems affects their learning, in order to study the links between behavior and 
learning in one type of educational system, focusing on one behavior associated with particularly 
poor learning.  
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In the coming years, I hope to research how behaviors such as gaming affect learning in other 
types of educational environments, towards developing a general framework for how students 
interact with educational environments, and what the educational consequences of these decisions 
are.  
 
One important part of this program of research will be the continued development of tools and 
techniques to facilitate this type of research. In particular, I hope to develop tools which can 
scaffold both the quantitative observation and detector-building process. Both of these processes, 
as applied in this dissertation, were effective but very time-consuming. It may be possible to 
scaffold the process of collecting human observations, combining existing technology which can 
play back a student’s actions as he/she uses a tutoring system (cf. deVicente and Pain 2002, 
Aleven et al 2005) with software that provides structure for conducting systematic observations. 
Once a researcher has collected observations of student behavior, these tools will enable that 
researcher to immediately use the data from their observations to develop a detector of the 
behaviors they observed, using psychometric modeling frameworks such as Latent Response 
Models or more standard machine learning frameworks, such as those found in the WEKA 
Machine Learning package. The detector developed could then be readily integrated, through an 
API, into existing interactive learning environments. 
 
Adaptation to Differences in Student Behavior, Across Different Types of 
Learning Environments 
 
As I work towards developing a framework for how students interact with educational 
environments, I plan also to study how educational systems can appropriately and effectively 
adapt to the wide variety of potential student behaviors. Towards this end, I plan to modify 
several types of interactive learning environments (from intelligent tutoring systems to 
educational games and exploratory learning environments), so that they adapt to educationally 
relevant differences in student behavior. A particularly interesting future area of research will be 
whether different types of interactive learning environments can respond to similar behaviors in 
similar ways, and what types of adaptation can be effectively combined within one system.
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Appendix A: 
Cognitive Tutor Lessons Used in this Dissertation 

 
The studies presented in this dissertation used four Cognitive Tutor lessons: lessons on 
Scatterplots, Percents, Probability, and 3D-Geometry. All four lessons were drawn from an 
existing Cognitive Tutor curriculum for middle-school mathematics. Each of the lessons had 
been designed in accordance with the principles in (Anderson et al, 1995). In each lesson, 
immediate feedback was given for student errors: an error would turn red, and if the student’s 
action indicated a known bug, then the tutor popped up a remedial explanation of why the 
behavior was incorrect (but did not give the student the correct answer). Each lesson also 
incorporated on-demand hints, which gave the student a set of hints to help them solve the 
current problem-step, culminating in a “bottom-out hint”, which gave the answer. Unlike in the 
Geometry Tutor (cf. Aleven and Koedinger 2000), there was not a Glossary of terms and 
concepts. 
 

Scatterplot Lesson 
 
The scatterplot lesson was originally designed by Ryan Baker (the author of this dissertation), in 
collaboration with Ken Koedinger, Albert Corbett, and Michael Schneider. Its design is discussed 
in detail in (Baker, Corbett, Koedinger, and Schneider, 2003; Baker, Corbett, and Koedinger 
2004). The scatterplot lesson was used in every study in this dissertation. 
  
The scatterplot lesson consisted of a set of problems. In each problem, the student was given a 
data set and needed to use this data set to generate a graph. The student then used this graph to 
answer a set of questions about the data set. 
 
The process of generating the scatterplot was as follows: First, the student used a Contrasting 
Cases Scaffold (see Figure A-1), designed to help the student decide which variables to use by 
helping them distinguish which variables were appropriate for a scatterplot. In this scaffold, each 
variable in the data set is listed, and for each variable the student must first identify whether it is a 
quantitative (“numerical”) variable or a categorical variable. After doing so, the student must 
identify whether that variable is appropriate or inappropriate for a scatterplot (quantitative 
variables are appropriate, categorical variables are not), and whether that variable is appropriate or 
inappropriate for a bar graph (a bar graph uses one variable of each type, so taken individually, a 
variable of either type is appropriate for use in a bar graph). By having the student decide whether 
each variable would be appropriate for a scatterplot and/or a bar graph, the scaffold assists the 
student in understanding the distinction between these two representations of data. Moreover, 
the student makes this distinction immediately after considering the feature (variable type) that 
distinguishes the cases, reinforcing the connection between the contrasting cases and the feature 
that contrasts them.  
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Figure A-1. The Contrasting Cases Scaffold, from the Scatterplot Lesson 

 
After completing the Contrasting Cases Scaffold, the student chose and labeled the variables on 
the X and Y axis, by typing a variable name into a blank along each axis (labeled 1 and 2 in Figure 
A-2). Next, the student chose each axis’s bounds and scale, using an interface designed to scaffold 
this process (Figure A-3). After this, the student labeled values along each axis (labeled 3 in 
Figure A-2), based on the bounds and scale he or she had already chosen. 
  

 

Figure A-2. The Graph Creation Interface, from the Scatterplot Lesson 
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Figure A-3. The Scale and Bounds Scaffold, from the Scatterplot Lesson 

 
Next, the student plotted points on the graph by clicking on the point tool and then clicking on 
the graph where they wished to place the point. (for example at label 4 in Figure A-2) A 
hashmark on each axis (labeled A-5 in Figure 2) indicated the mouse’s current location along the 
axis, to prevent the student from making errors due to not being able to visually translate the 
cursor’s location across the screen.  If a student plotted a point incorrectly, then the point would 
turn red, and could either be deleted with the delete tool or moved to another location via 
clicking-and-dragging.  
 
Finally, the student answered a set of interpretation questions (some examples are shown in 
Figure A-4). The interpretation questions required students to reason about the graph, including 
its trend, outliers, monotonicity, extrapolation, and in comparison to other graphs. 
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Figure A-4. Some Interpretation Questions, from the Scatterplot Lesson 

 

3D Geometry Lesson 
 
The 3D Geometry lesson was originally developed by Albert Corbett, K. Chris Scarpinatto, 
Natasha Kamneva, and Connie Deighan. Data from students using the 3D Geometry lesson was 
used to train the multi-lesson gaming detector. 
 
The 3D Geometry lesson consisted of a set of problems. In each problem, the student was given a 
diagram which showed a geometric object. The student needed to determine this object’s surface 
area. 
 
The process for determining the surface area was as follows. The student first identified each of 
the object’s faces, giving each congruent face a row in the worksheet in Figure A-5. After 
identifying the faces, the student worked from left to right in each row. First, the student 
identified the length of one of the face’s sides, and the length of a side perpendicular to that side. 
The student then identified the face’s shape (for instance, rectangle or triangle). The student used 
the information he/she had just identified to compute the face’s surface area. The student then 
determined the number of congruent sides, and multiplied to find the total surface area of the set 
of congruent faces. After following this procedure for all faces, the student added all of the surface 
areas together to find the total surface area for the object. 
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Figure A-5. The 3-D Geometry Lesson 

 
Probability Lesson 
 
The Probability lesson was originally developed by Albert Corbett and K. Chris Scarpinatto. 
Data from students using the Probability lesson was used to train the multi-lesson gaming 
detector. 
 
The Probability lesson consisted of a set of problems, covering concepts in probability and 
fractions. In each problem, the student was given a set of questions, each of which required the 
student to identify the probability of selecting one object out of a set of objects. In some 
problems, the frequency of each category of object was shown with pictorial objects, as in Figure 
A-6; in other problems, a bar graph was used to show each category’s frequency. 
 
The process of answering a question was as follows (going from left to right in the worksheet in 
Figure A-6): First, the student identified how many items were in the target set. Next, the 
student counted the total number of items. The student used these two values to find an 
unreduced fraction (termed, in this unit, an unreduced probability). The student then determined 
the greatest common factor of the fraction’s numerator and denominator. Finally, the student 
divided both numerator and denominator by the greatest common factor to derive a reduced 
fraction. 
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Figure A-6. The Probability Lesson 

  
Percents Lesson 
 
The percents lesson was originally developed by Albert Corbett and K. Chris Scarpinatto. The 
percents lesson was used in Study Three, and to train the multi-lesson gaming detector. 
 
The percents lesson consisted of a set of problems. In each problem, the student was given a 
diagram which showed a set of groups and each group’s size. The student needed to use the 
information in this diagram, to determine what percent, fraction, and decimal of the whole a 
groups (or combination of groups) represented.  
 
Each problem consisted of multiple questions. The process of answering a question was as follows 
(going from left to right in the worksheet in Figure A-7): First, the student identified how many 
items were in the target set. Next, the student counted the total number of items. The student 
used these two values to find an unreduced fraction. The student then converted this fraction to a 
fraction out of 100, and used this fraction to derive a percent. Then the student computed a 
decimal from the percent, and finally the student computed the reduced version of the fraction. 
By computing each of these different representations in quick succession, the student not only 
learned how to compute a percent, but how percents, decimals, and fractions relate to one 
another. 
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Figure A-7. The Percents Lesson 
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Appendix B: 
Pre-Test and Post-Test Learning Assessments 

 
For each of the lessons we studied in this dissertation, I developed two nearly isomorphic tests 
(referred to in each case as Form A and Form B). In some cases, these tests were based off earlier 
end-of-year or unit tests developed by Albert Corbett, Jay Raspat, and Katy Getman. In each 
case, half of the students received Form A as their pre-test and Form B as their post-test; the 
other half of the students received Form B as their pre-test and Form A as their post-test. Only 
the Scatterplot lesson was used across multiple studies, and for that lesson, the same tests were 
used in all 3 studies. 
 

Scatterplot Lesson 
 
For the Scatterplot lesson, each test consisted of a single multi-step exercise. In the exercises, 
students were given a data set with two quantitative variables to use, and two “distractor” variables 
(one quantitative, one nominal) which were not appropriate to use to answer the given question. 
The students were then asked to draw a scatterplot to show the relationship between the two 
quantitative variables. The tests were scored in terms of how many of the steps  of the problem-
solving process were correct; the items were designed so that it was often possible to get later 
steps in the problem correct even after making a mistake – for example, choosing the wrong 
variable did not always preclude selecting an appropriate scale for that variable. 
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Test Scatterplot-A 
 

The king of Babylon is considering building a number of tall towers across the land of 
Mesopotamia. His Grand Vizier recommends against it, suggesting that the number of injuries 
from falling may increase in cities with more towers. This data shows the number of towers and 
markets each town has, and the number of injuries each year.  
Please draw a scatterplot, to show if cities with more towers have more injuries.  
Show all work, on this sheet or on scratch paper. 
Hint: Scatterplots are made up of dots. 
 

 

                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           

                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           

 

City Injuries Markets Towers 

Babylon 
Uruk 
Ur 

Kish 
Nippur 
Lagash 
Eridu 

29 
13 
20 
37 
1 
16 
24 

19 
5 
16 
5 
7 
8 
12 

8 
3 
6 
7 
1 
4 
6 
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Test Scatterplot-B 
 

This data shows the height of several basketball players, the number of pieces of fan mail they 
receive each day, and how many points they score, on average, each game. 
 

 
 

 
 
 
 
 

 
 
Please draw a scatterplot, to show if taller basketball players get more fan mail. 
Show all work, on this sheet or on scratch paper. 
Hint: Scatterplots are made up of dots. 

 
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           

                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           
                           

  

Basketball Player Height  
(in inches) 

Number of Points 
(average) 

Pieces of fan mail 
 (thousands) 

Terrence 
Bill 

Derek 
Cedric 
John 

Gordon 
Shang 

79 
77 
80 
82 
81 
76 
80 

15 
12 
12 
14 
13 
16 
11 

10 
10 
6 
3 
5 
7 
11 
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3D Geometry Lesson 
 
For the 3D-Geometry lesson, each test consisted of a single multi-step exercise. In the exercises, 
students were given a problem where they had to determine the surface area of a complex solid, 
which had both triangular and rectangular shapes. The students were given credit in terms of how 
many of the component skills they exercised correctly (identifying the number of sides, correctly 
using the rectangle area formula, correctly using the triangle area formula, and correctly adding 
together each side’s area to find the total surface area).  
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Test 3D-Geometry-A 

 

James is building a new birdhouse, shown in the picture below (all numbers are in 
inches). He needs to buy wood to cut into pieces to make the walls, ceiling, and floor of 
the birdhouse. How many square inches of wood will he need?  

 

 
 
(Hint: you may want to figure out how many square inches of wood he will need for each 
wall of the birdhouse) 
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Test 3D-Geometry-B 

 

Rebecca is building a new birdhouse, shown in the picture below (all numbers are in 
inches). She needs to buy wood to cut into pieces to make the walls, ceiling, and floor of 
the birdhouse. How many square inches of wood will she need?  

 
 
 (Hint: you may want to figure out how many square inches of wood she will need for 
each wall of the birdhouse) 
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Probability Lesson 
 
For the Probability lesson, each test consisted of a set of exercises, testing the student’s ability to 
compute the probability of randomly selecting one category out of a set of categories. The first 
and second exercises give the size of each category in numerical form; the third exercise gives the 
size of each category using a bar graph. The tests were scored in terms of how many of the 
exercises were correct (with partial credit given in the event of an obvious arithmetical error).  
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Test Probability-A 

 

1) A bag contains 3 red marbles, 5 blue marbles, and 6 yellow marbles. If Lori 
chooses one of these marbles without looking, what is the probability that she will 
choose marble that is not blue?  

 
 
 
 

2) A bag contains 4 apples, 7 pears, 5 plums, and 4 oranges. If Justin randomly takes 
one fruit out of the bag without looking, what is the probability that Justin will 
pick an apple or orange?  

 
 
 

 

3) The graph below shows the hair colors of all the students in a class. 
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What is the probability that a student chosen at random from this class has black hair? 
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Test Probability-B 

 

1) A bag contains 4 red marbles, 2 blue marbles, and 7 yellow marbles. If Lara 
chooses one of these marbles without looking, what is the probability that she will 
choose a marble that is not  blue?  

 
 
 
 

2) A bag contains 3 apples, 4 pears, 10 plums, and 3 oranges. If Dustin randomly 
takes one fruit out of the bag without looking, what is the probability that Dustin 
will pick an apple or orange?  

 
 
 

 

3) The graph below shows the hair colors of all the students in a class. 
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What is the probability that a student chosen at random from this class has black hair? 
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Percents Lesson 
 
For the Percents lesson, each test consisted of a set of exercises, testing the different skills covered 
in the percents lesson. The first exercise asked students to write a fraction using given numbers of 
several different categories. The second exercise asked students to write a percent value of the 
occurrence of one type of object in a picture showing two sets of objects; this exercise was 
scaffolded by asking students to first write a fraction, and by the fact that there were 10 objects in 
total (10 is an easy number to convert to a percent). The third exercise asked students to write a 
percent value when they were given numbers for the size of the category and the total number of 
objects  – in this case, the total number was a factor of 100, but a harder one than 10. The fourth 
exercise asked students to convert fractions to percents – the fractions had denominators that 
were factors of 100, but a harder ones than 10. Finally, the fifth exercise asked students to convert 
percents to fractions. The tests were scored in terms of how many of the exercises were correct 
(with partial credit given when an exercise was partially correct).  
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Test Percents-A 
 
On the following problems, you may use a calculator, if you wish. 
 
 
1) Suppose you buy 100 cans of soda for your birthday party. If 60 cans are cola, 24 are   
    root beer, and 16 are lemon-lime, what percent of the cans are root beer? 
 
 
 
 
 
 
 
 
 
 
2) Bob’s pet store has a number of puppies and kittens for sale, shown below.  
 

  
 
 
What fraction of the animals are puppies? 
 
 
 
 
 
 
What percent of the animals are puppies? 
 
 
 
 
 
 
3)  There are 25 jellybeans in a deluxe assortment and 15 of them are strawberry.  
     What percent of the jellybeans are strawberry? 
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4) For each of the following fractions, write the equivalent percent 
 
  Fraction  Percent 
   
  7/10   _______ 
 
  1/4   _______ 
 
  8/50   _______ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5) For each of the following percents, write the equivalent reduced fraction 
 
  Fraction  Percent 
 
  _______  35% 
   
  _______  25% 
 
  _______  4% 
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Test Percents-B 
 

On the following problems, you may use a calculator, if you wish. 
 
 
1) At the Henderson Tree Farm, there are currently 100 trees. 40 of them are blue spruce, 
27 are Douglas Fir, and 33 of them are white pine. What percent of the trees are Douglas 
Firs? 
 
 
 
 
 
 
 
 
 
 
2) Bob’s pet store has a number of puppies and kittens for sale, shown below.  
 

  
 
 
What fraction of the animals are kittens? 
 
 
 
 
 
 
What percent of the animals are kittens? 
 
 
 
 
 
 
3)  At the new Pittsburgh Aquarium, there is a tank with 40 fish. 16 of the fish are Neons.  
     What percent of the fish are Neons? 
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4) For each of the following fractions, write the equivalent percent 
 
  Fraction  Percent 
   
  3/5   _______ 
 
  1/2   _______ 
 
  12/50   _______ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5) For each of the following percents, write the equivalent reduced fraction 
 
  Fraction  Percent 
 
  _______  45% 
   
  _______  90% 
 
  _______  6% 
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Appendix C: 
Gaming Detectors 

 
Original Detector (Scatterplot, Study One) “Model S1” 
 
The first detector of gaming was developed using only data from the Scatterplot lesson from 
Study One. 
 
This model had four features: 
 
Feature F

0
,“ERROR-NOW, MANY-ERRORS-EACH-PROBLEM”,  identifies a student as 

more likely to be gaming if the student has already made at least one error on this problem step 
within this problem, and has also made a large number of errors on this problem step in previous 
problems. It identifies a student as less likely to be gaming if the student has made a lot of errors 
on this problem step in the past, but now probably understands it (and has not yet gotten the step 
wrong in this problem). 
 
Feature F

1
,“QUICK-ACTIONS-AFTER-ERROR”, identifies a student as more likely to be 

gaming if he or she has already made at least one error on this problem step within this problem, 
and is now making extremely quick actions. It identifies a student as less likely to be gaming if he 
or she has made at least one error on this problem step within this problem, but works slowly 
during subsequent actions, or if a student answers quickly on his or her first opportunity (in a 
given problem step) to use a well-known skill.   
 
Feature F

2
,“MANY-ERRORS-EACH-PROBLEM-POPUP”,

 
indicates that making many 

errors across multiple problems is even more indicative of gaming if the problem-step involves a 
popup menu. In the tutor studied, popup menus are used for multiple choice questions where the 
responses are individually lengthy; but this enables a student to attempt each answer in quick 
succession.  
 
Feature F

3
,“SLIPS-ARE-NOT-GAMING”,

 
identifies that if a student has a high probability of 

knowing a skill, the student is less likely to be gaming, even if he or she has made many errors 
recently. Feature F

3
 counteracts the fact that features F

0
 and F

1
 do not distinguish well-known 

skills from poorly-known skills, if the student has already made an error on the current problem 
step within the current problem. 
 
These features are expressed formally in Table C-1. 
 

Name Coefficient Feature 
F0 :  “ERROR-NOW, 
MANY-ERRORS-EACH-
PROBLEM” 

-0.0375 pknow-direct * 
   number of errors the student has  made on this 
   problem step (across all problems) 

F1 :  “QUICK-
ACTIONS-AFTER-
ERROR” 

+ 0.094 pknow-direct *  
   time taken, in SD above (+) or below (-) the mean    
   time for all students, on this problem step (across all problems) 

F2: :  “MANY--
ERRORS-EACH-
PROBLEM-POPUP” 

+ 0.231 number wrong on this problem step (across all problems), 
  if the problem step uses a popup menu  
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F3 : “SLIPS-ARE-NOT-
GAMING”  

- 0.225 pknow * 
   how many errors the student made on last 5 actions 

Table C-1. The original detector of gaming, trained on the Study 1 Scatterplot data 

 

Detector Used in Study 3 (Scatterplot, Studies 1 and 2)  
“Model S1S2” 
 
The detector used in Study 3 was developed using data from Studies 1 and 2, in the Scatterplot 
lesson: 107 students, 30,900 actions in total.  
 
This model had six features. Interestingly, these features appear to mostly represent special cases, 
compared to the more general features in the original model. One plausible explanation is that 
this model has become over-fit to the Scatterplot lesson. 
 
Feature F

0
,“MANY-ERRORS-EACH-PROBLEM-ON-ASYMPTOTIC-SKILLS”,  

identifies a student as more likely to be gaming if the student makes many errors, across 
problems, on asymptotic skills (skills which students, in general, did not learn while using the 
tutor).  This feature likely represents a student who is gaming on precisely the most difficult 
steps. 
 
Feature F

1
,“HIGH-PERCENTAGE-OF-ERRORS-ON-MULTIPLE-CHOICE”, identifies 

a student as more likely to be gaming if he or she makes a high percentage of errors on the easily-
gameable popup menus. This feature is highly similar to Feature F

2
 from the original model. 

 
Feature F

2
,“DON’T-COUNT-STAYING-CONTINUALLY-ON-THE-SAME-STEP-AS -

GAMING”, appears to identify a student as less likely to be gaming if he or she makes an error 
or requests help, after having spent at least one of the last five actions on the current problem 
step. This step’s main effect is actually to count a sequence of errors on the same step as gaming 
only once (rather than 4 or 17 times) – when the student finally gets the action correct. As such, 
this feature moves the measure of gaming towards count-gaming-once-per-gaming-episode, 
probably a more accurate measure than count-gaming-in-each-gaming-action. 
 
Feature F

3
,“HIGH-PERCENTAGE-OF-HELP-REQUESTS-ON-EASILY-LEARNED-

SKILLS”, identifies a student as more likely to be gaming if he or she frequently requests help on 
the skills which students, in general, learn on their first couple opportunities to practice the skill. 
This feature suggests that gaming students are seeking help on skills, which if they attempted to 
learn, they would quickly learn. 
 
Feature F

4
,“SLOW-BUGS”, identifies a student as gaming if he or she takes more than 2 

seconds to answer with a misconception. While one can imagine that gaming students are more 
likely to have misconceptions, it’s unclear why slower responses would ever be associated with 
gaming. 
 
Feature F

5
,“AN-ERROR-PRONE-STEP-WHEN-THE-STUDENT-HAS-BEEN-

ANSWERING-SLOWLY”, is even more challenging to interpret. This feature indicates that a 
student is more likely to be gaming – or have gamed in the past – if he or she slowly answers on 
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three steps and then reaches a step where he or she has a history of errors. Feature F
4
 is also very 

weak, never reducing an action’s probability of gaming by more than 5-6%.  
 
These features are expressed formally in Table C-2. 
 

Name Coefficient Feature 
F0 :  “MANY-ERRORS-EACH-
PROBLEM-ON-ASYMPTOTIC-
SKILLS”  

+ 0.2 number of errors the student has  made on this 
problem step (across all problems), 
   on asymptotic skills 

F1: :  “HIGH-PERCENTAGE-OF-
ERRORS-ON-MULTIPLE-CHOICE” 

+ 0.11875 percentage of errors, 
   on multiple-choice popup menus 

F2:  “DON’T-COUNT-STAYING-
CONTINUALLY-ON-THE-SAME-
STEP-AS-GAMING” 

-1.01 number of recent actions that have been on this problem step, 
   when the student makes an error or requests help 

F3: :  “HIGH-PERCENTAGE-OF-
HELP-REQUESTS-ON-EASILY-
LEARNED-SKILLS” 

+ 0.9 percentage of help requests, 
   on skills most students learn quickly 

F4 : “SLOW-BUGS” + 0.2875 time taken, 
   when demonstrating a misconception 

F5 : “AN-ERROR-PRONE-STEP-
WHEN-THE-STUDENT-HAS-BEEN-
ANSWERING-SLOWLY” 

+ 0.0125 A high percentage of errors * 
   time taken, in SD above (+) or below (-) the mean    
   time for all students, on the last 3 problem steps 

Table C-2. The detector of gaming used in Study 3 (trained on Scatterplot data from Studies 1 and 2) 

 
Final Detector (Trained on All Available Data) “Model F” 
 
The final detector of gaming in this dissertation was developed using all of the data in this 
dissertation: 4 lessons, 473 students, 128,887 actions in total.  
 
This model had six features. One of the features is an exact duplicate of a feature in the original 
detector (F

0 
in both models). Interestingly, four of the six features appear to primarily represent 

behavior that is not gaming (as compared to one of four in the original detector). It is possible 
that the greater diversity of lessons trained on makes it more possible to identify special-case 
behaviors in a particular tutor lesson that might otherwise appear to be gaming. 
 
Feature F

0
,“ERROR-NOW, MANY-ERRORS-EACH-PROBLEM”,  identifies a student as 

more likely to be gaming if the student has already made at least one error on this problem step 
within this problem, and has also made a large number of errors on this problem step in previous 
problems. It identifies a student as less likely to be gaming if the student has made a lot of errors 
on this problem step in the past, but now probably understands it (and has not yet gotten the step 
wrong in this problem). This was also the first feature in the original model, though it is more 
emphasized in this model. 

 
Feature F

1
,“ASKING-FOR-HELP-ON-WELL-KNOWN-STEPS”, identifies a student as 

more likely to be gaming (or to have gamed in the past) if the student asks for help on skills that 
he or she has a high probability of knowing. In effect, this feature suggests that the student may 
have in the past obtained correct answers through lucky guesses, or through problem-specific 
strategies. 
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Feature F
2
,“POINT-PLOTTING-ERRORS-ARE-NOT-GAMING”,

 
identifies that students 

may make a large number of errors on point plotting (in the scatterplot tutor) without the 
intention of gaming.  

 
Feature F

3
,“PAST-ERRORS-ON-A-NOW-KNOWN-SKILL-ARE-NOT-GAMING”,

 

identifies that if a student has a history of making many errors on a skill, but also now has a high 
probability of knowing the skill (obtained through getting right answers on the first try), they 
have probably stopped gaming (if they had been gaming). Feature F

3
 is very weak, having a 

maximum possible effect of reducing an action’s probability of gaming by 5.6% 
 
Feature F

4
,“CLUSTERS-OF-HELP-REQUESTS-ARE-NOT-GAMING”,

 
identifies that a 

cluster of help requests on different problem steps is not gaming. This feature is non-intuitive, 
but serves to refine Feature F

1
, reducing the intensity of F

1
’s effects when a student who has done 

well on early problems finds some feature of a later problem enigmatic across several steps.  
 
Feature F

5
,“SLOW-CORRECT-ANSWERS-ARE-NOT-GAMING”,

 
identifies – 

unsurprisingly – that slow correct answers are not gaming.  

 
These features are expressed formally in Table C-3. 
 

Name Coefficient Feature 
F0 :  “ERROR-NOW, MANY-
ERRORS-EACH-PROBLEM” 

-0.4375 pknow-direct * 
   number of errors the student has  made on this 
   problem step (across all problems) 

F1 :  “ASKING-FOR-HELP-ON-
WELL-KNOWN-STEPS” 

+ 0.8625 pknow, 
   when the student is requesting help 

F2: :  “POINT-PLOTTING-ERRORS-
ARE-NOT-GAMING” 

- 0.8625 number of errors in the last 5 steps, 
   when the student is plotting a point 

F3 : “PAST-ERRORS-ON-A-NOW-
KNOWN-SKILL-NO-LONGER-
MATTER”  

- 0.05625 pknow * 
   percentage of the time the student has gotten the current skill     
   wrong, in the past 

F4 : “CLUSTERS-OF-HELP-
REQUESTS-ARE-NOT-GAMING” 

-0.1375 number of help requests in the last 8 steps, 
   when the student is requesting help 

F5 : “SLOW-CORRECT-ANSWERS-
ARE-NOT-GAMING” 

-0.13125 time taken on the current step, 
   for correct answers 

Table C-3. The final detector of gaming, trained on all students and lessons 

 
Detector Designed For More Exact Assessment of When Gaming 
Occurs “Model NPP” 
 
In order to analyze the tradeoff between detecting how much each student games and detecting 
when each student games, I trained a detector which does not use information from past 
problems when assessing whether an action is an instance of gaming. This detector was developed 
using all of the data in this dissertation: 4 lessons, 473 students, 128,887 actions in total.  
 
This model had seven features. As with the full model, several of the features appear to primarily 
represent behavior that is not gaming. 
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Feature F
0
,“ MANY-ERRORS-THIS-PROBLEM”, is strikingly similar to the first feature in 

several of the other models. This feature identifies a student as more likely to be gaming if the 
student has made a large number of errors on this problem step in the current problem – in other 
detectors, the corresponding feature also included data from past problems.  
 
Feature F

1
,“CLUSTER-OF-HELP-REQUESTS-WHILE-ENTERING-STRINGS”, 

identifies a student as more likely to be gaming if the student asks for help several times in a short 
period of time on skills that require entering a string.  
 
Feature F

2
,“SLOW-ACTION-AFTER-MANY-ERRORS-IS-NOT-GAMING”, suggests 

that if a student makes a slow action after making a number of errors, they are probably not 
gaming.  
 
Feature F

3
,“POINT-PLOTTING-ERRORS-ARE-NOT-GAMING”, suggests that a number 

of errors made during point plotting is unlikely to be gaming. This feature is analogous to Feature 
F

2
 in the full model. 

 
Feature F

4
,“CLUSTERS-OF-ACTIONS-ON-SKILLS-EVERYONE-LEARNS-ARE-

NOT-GAMING”, suggests that a cluster of actions (ie either errors or help requests) made on 
skills everyone learns are unlikely to be gaming. Curiously, in the model used in Study 3, help 
requests on such easily learned skills are associated with gaming – the closest any of our models 
comes to directly contradicting a different model.  
 
Feature F

5
,“ASKING-FOR-LOTS-OF-HELP-IS-NOT-GAMING”, suggests that a high 

proportion of help requests on a single skill within one problem is unlikely to be gaming. Feature 
F

5
 is very weak, having a maximum possible effect of reducing an action’s probability of gaming 

by 3.1% 
 
Feature F

6
,“MULTIPLE-TRIES-WHEN-ENTERING-NUMBERS-IS-NOT-GAMING”, 

suggests that a cluster of actions (ie either errors or help requests) on a single skill within one 
problem, when the skill involves entering a number, is unlikely to be gaming. Feature F

6
 is 

probably best seen as refining Feature F
0
. 

 
These features are expressed formally in Table C-4. 
 

Name Coefficient Feature 
F0 :  “MANY-ERRORS-THIS-
PROBLEM” 

+ 0.54375 number of errors the student has  made on this 
problem step (in the current problem) 

F1 :  “CLUSTER-OF-HELP-
REQUESTS-WHILE-ENTERING-
STRINGS” 

+ 0.5375 number of help requests in the last 8 steps, 
   when the student is entering a string  

F2: :  “SLOW-ACTION-AFTER-
MANY-ERRORS-IS-NOT-GAMING” 

- 0.04375 time taken on the current step * 
   number of errors the student has  made on this 
   problem step (in the current problem) 

F3 : “POINT-PLOTTING-ERRORS-
ARE-NOT-GAMING” 

- 0.525 number of errors the student has  made on this 
problem step (in the current problem), 
   when the student is plotting a point 

F4 : “CLUSTERS-OF-ACTIONS-ON-
SKILLS-EVERYONE-LEARNS-ARE-
NOT-GAMING”  

-0.875 number of the last 5 actions that have been on this problem step, 
   on skills most students learn quickly 

F5 : “ASKING-FOR-LOTS-OF-HELP-
IS-NOT-GAMING” 

-0.03125 percentage of help requests in this problem, squared 
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F6 : “MULTIPLE-TRIES-WHEN-
ENTERING-NUMBERS-IS-NOT-
GAMING”  

-0.14375 number of the last 5 actions that have been on this problem step, 
   when the student is entering a number 

Table C-4. The detector of gaming, trained on all students and lessons, using no data from past problems 
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