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Abstract

This thesis develops computational methods for the investigation of self-assembly systems in
biology as well as methods for the simulation of reaction-diffusion chemistry. We discuss the
current state of the field with respect to modeling self-assembly and its importance to systems
biology generally. Our contributions come in the form of pipelines for model inference based on
comparisons of in silico experiments with physical experiments monitoring assembly progress. A
new black-box parameter optimization methodology suitable for noisy objective values, and using
multiple Gaussian processes, is presented. We also discuss the current landscape of course-grained
simulation methods for reaction-diffusion chemistry and their limitations. A novel algorithm
generalizing the stochastic simulation algorithm to continuous space is presented. We describe its
physical justification as well as its improvements over the state of the art in certain respects, e.g.
run time efficiency. At the end, we describe our applied work in collaboration with the Faeder
and Murphy Labs (University of Pittsburgh and CMU, respectively) on an immune cell signaling
project. While not directly related to self-assembly or the methods described previously, this
collaboration allowed us to design a kinetic model from scratch and develop an optimization
framework tailored to real experimental data.
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Chapter 1

Self-Assembly Systems

Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at

systems biology modeling are only beginning to appreciate the need for and challenges to accurate

quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every

important process in cell and molecular biology and handling them is thus a necessary step in

building comprehensive models of complex cellular systems. They present exceptional challenges,

however, to standard methods for simulating complex systems. While the general systems biology

world is just beginning to deal with these challenges, there is an extensive literature dealing with

them for more specialized self-assembly modeling. This chapter will examine the challenges of

self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling

community, and some of the solutions offered in prior work on self-assembly specifically. The

chapter concludes with some consideration of the likely role of self-assembly in the future of

complex biological system models more generally. 1

1.1 Introduction

Self-assembly reactions account for the overwhelming majority of the reaction events occurring

in the cell. Most eukaryotic proteins function normally in complexes and self-assembly of these

complexes is a key step in nearly all major cellular functions [11]. Examples of processes critically

dependent on self-assembly include genome replication [210, 274, 240, 28]; gene transcription and

1This chapter is based on work published here [265].
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transcript degradation [28, 161, 181]; protein synthesis and degredation [162, 81]; cell movement

and shape control [286, 73, 58, 116]; cell-to-cell communication including gap-junction assembly

and regulation [261]; formation of membrane complexes such as pore-forming toxins [19]; and

mechanotransduction [282, 288, 12]. Through these processes, the assembly and disassembly of

molecular complexes and machines plays a crucial role in essentially all regulatory processes in

cell biology. Given the centrality of self-assembly to cell biology, one cannot hope to develop

truly comprehensive quantitative models of systems biology without tackling self-assembly. Yet

self-assembly has until recently been largely absent from major efforts at developing general

systems biology modeling tools (e.g., [209, 117, 88, 98, 253, 254, 157, 227, 258]) or handled only

with one-off special cases for particular systems of importance (e.g.,[87, 283, 140]). Even the

most ambitious efforts at large-scale biochemical modeling largely focus on traditional enzymatic

chemistry or transcriptional dynamics and only implicitly model the self-assembly reactions

involved in those processes (e.g., recent comprehensive models of whole-cell or whole-organism

transcriptional and metabolomic modeling [262, 25]). This situation is beginning to change as

some major systems biology tools (e.g., [104, 103, 83]) and modeling efforts [140] have begun to

incorporate methods suitable to complex self-assembly, but major challenges remain.

These challenges of self-assembly modeling largely arise from the extremely large space of

possible pathways accessible to the intermediate species of a self-assembly reaction network. The

number of possible reaction trajectories by which a set of free monomers can assemble into a

complex grows in general exponentially in the complex size, leading to an enormous combinatorial

explosion in pathway space for even moderate-sized assemblies and astronomical numbers for large

complexes, such as virus capsids or cytoskeletal networks. This is problematic for experimental

study of assembly systems, as it is rarely possible to discriminate experimentally among these

pathways except at a coarse level, particularly for highly symmetric or repetitive structures.

It likewise creates problems for the most popular modeling methods. Mass action differential

equation (DE) models are generally unsuitable for non-trivial assemblies because they require

either extensive simplifications [105, 84, 179] or enormous numbers of equations and variables

to account for the many possible intermediates [128]. Brownian dynamics (BD) models, even

highly coarse-grained [234, 24, 79, 14], are likewise challenged by the large numbers of reactants

and long timescales typical of self-assembly systems, requiring themselves great simplifications

10



of reaction processes that generally make them unsuitable for accurate quantitative modeling

[86]. Methods based on Gillespie’s stochastic simulation algorithm (SSA) can provide an effective

balance between DE and BD, but face their own challenges because the underlying reaction

networks are too large to model explicitly [39, 87, 94]. For similar reasons, self-assembly networks

are extremely challenging for experimental characterization [42, 47, 132, 148, 203, 311, 312] and

model inference as well [152, 298]. For example, the high computational cost and large numbers

of intermediate species make it computationally infeasible to learn models via prevailing Bayesian

parameter inference schemes [101], which require large numbers of simulation trajectories.

Over the recent decades, however, a specialized literature on self assembly modeling has grown

for handling a number of challenging systems of independent importance. Cytoskeletal assembly

(i.e., actin and microtubule assembly) has been the subject of extensive modeling work, leading

to many seminal results in the basic biophysics of molecular assembly processes. Viral capsid

assembly [105] has a long history as one of the primary model systems for macromolecular self

assembly, both from an experimental and a computational perspective. Another key model system

is amyloid aggregation, the basis for many major public health threats, including Alzheimer’s

disease, Huntington’s disease, Parkinson’s disease, prion disease, and type II diabetes. Fig. 1-1

shows a few examples of important model systems for self-assembly and models through which

they have been studied. The practical importance of these and other systems has led them to

attract their own modeling communities to find solutions to the special challenges of molecular

self-assembly to computational modeling. In these fields, one can find studies both anticipating

the challenges beginning to face broader systems biology efforts and often offering at least partial

solutions to these challenges.

The remainder of this chapter will consider in more detail both the special difficulty of

self-assembly modeling and the literature addressing it. It will first discuss some of the important

roles of self-assembly in cellular biochemistry as well as the role of systems modeling methods

in understanding these systems. It will then discuss some of the successful approaches to self-

assembly modeling that have emerged through this literature, as well as continuing challenges. It

will conclude with consideration of how quantitative self-assembly modeling may shape future

efforts in modeling biological systems more generally.

Chapter 2 describes our work on viral capsid assembly systems. We develop a pipeline for
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Figure 1-1: Example model systems for self-assembly simulation. (A) Viral capsid assembly.
Top: Hepatitis virus [31], Bottom: Coarse-grained SSA simulation of HPV assembly [299]. (B)
Amyloid aggregation. Top: High magnification micrograph of cerebral amyloid angiopathy with
senile plaques in the cerebral cortex (amyloid beta, as seen in Alzheimer disease) [33], Bottom:
Coarse-grained Monte Carlo simulation of amyloid aggregation with two state monomer model
[18]. (C) Cytoskeletal assembly and disassembly. Top: Highly oriented actin fibers in shear stress
cultivated rat cells [2], Bottom: BD simulation of actin cytoskeleton composed mainly of actin
and actin crosslinking proteins [145]. (D) Genome organization. Top: Chromatin fibers during
Mitosis, Xenopus egg [32], Bottom: BD simulations of nucleosome structure and dynamics [15].
For more on nucleosome assembly, see [28].

simulation based data fitting, i.e., for comparing experiments that track assembly progress with

in silico experiments with constructed from assembly simulations in order to infer assembly

model parameters. The simulations are primarily carried out using the stochastic simulation

algorithm, though we also explore a differential equation model. In considering the limitations

of these and other simulation methodologies, we were led to explore whether an entirely novel

methodology could be more suitable to the requirements of self-assembly modeling. Chapter 3

describes the essential features of a new particle level spatial simulation algorithm which, with

further development, may posses sufficient resolution and efficiency. Chapter 4 describes some

tangentially related kinetic modeling and optimization work in the area of immune cell signalling.
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Chapter 5 provides a summary and explores directions for future work.

1.2 The role of self-assembly in general cell biology

Self-assembly is everywhere in biology, beginning with the most fundamental processes of molec-

ular biology, all of which depend on the self-assembly of specialized complexes, structures, or

molecular machines. Examples of self-assembled molecular machines fundamental to molecular

biology include DNA polymerases (replication), RNA polymerases (transcription), the spliceasome

(splicing), the ribosome (translation), and the proteasome (protein degradation). Each of these

processes is critical in different ways to the regulation of complex biological systems and thus has

been the focus of specialized modeling efforts. For example, the transcription complex is one of

the most well studied systems in molecular biology, with experimental work on the interaction of

classic 1D and 3D diffusion of transcription factors [109] inspiring kinetic models of the recruit-

ment process [139]. More specialized examples of self-assembly continue to be elucidated, with

prominent recent examples including the RISC complex involved in miRNA [235, 168, 198, 126]

and the Cas9-gRNA complex [56] implementing the CRISPR/Cas system [199, 259].

Within eukaryotic biology specifically, a more specialized set of self-assembly systems have

evolved critical roles. The cytoskeleton is an unusually large, dynamic, and complicated molecular

assembly, making it a crucial target of modeling efforts. The cytoskeleton itself is essential to

intracellular transport [213, 214], cell movement and shape control [9, 212], mechanotransduction

[287], and cell division [114], among many other functions. Furthermore, the dynamic process of

assembly and disassembly is central to each of these functions. Actin and microtubule assembly

and disassembly have been key model systems for self-assembly from the early days of molecular

biology [129, 195, 89, 77, 238, 178, 291, 29, 90] and have inspired numerous computational models

(e.g., [226, 190, 80, 251, 85, 228]). Transport processes in the eukaryotic cell frequently depend

on other kinds of specialized self-assemblies, in addition to the cytoskeleton. For example, much

eukaryotic transport involves the assembly of specialized machinery for construction and scission

of cargo-carrying vesicles, such as the clathrin and COP-I/COP-II coat systems [197, 78], which

have inspired their own modeling literature (e.g., [61, 171, 124]).

Beyond its role in general cell and molecular biology, self-assembly is crucial to a number of
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disease-specific processes. Amyloid diseases are perhaps the prime example of a disease specifically

of self-assembly, where aberrant assembly is the mechanism of illness. Numerous such diseases

are known, including many major public health threats. Perhaps best known are Alzheimers

(characterized by aggregates of the A𝛽 peptide and the Tau protein[176, 136]), Huntington’s

disease (characterized by aggregates of the Huntingtin protein [163]), Parkinson’s disease [236],

amytrophic lateral sclerosis [280], type II diabetes, and a variety of known prion diseases such

as Creutzfeldt-Jakob [194, 45]. Alzheimer’s and dementia, for example, are strongly associated

with aging and affected roughly 36 million people in 2010 [296, 297]. It is becoming increasingly

clear that the ability to form the amyloid state is a widespread, generic property of proteins [150]

making the process of amyloidogenesis an important topic of theoretical study. From a physical

perspective, the main question is what forces stabilize the aggregates into the oligomer (small

soluble disordered clusters) and fibrillar (long, many-chain highly structured 𝛽-sheet-containing

aggregates) states associated with neurotoxicity [232]. For a broader discussion of these forces, see

[159, 158, 200]. From a computational perspective, the focus is both on identifying the structure of

oligomeric intermediates and fibers but also elucidating the kinds of assembly pathways available.

This is an especially challenging computational problem due to the intrinsic disorder in the

system.

Viral illnesses form another broad class of self-assembly-driven illness, in which the assembly

of large complexes (i.e., the viruses themselves) is the mechanism of the disease process. Virus

assembly is of obvious medical importance, given the millions who die each year from viral illnesses,

e.g., 1.5 million from AIDS alone [62]. A fundamental understanding of this crucial aspect of the

viral life cycle and infectivity may offer avenues for therapeutics or vaccines [312]. Additionally,

there many factors making viruses appealing to the modeling community, including the deep

experimental literature on their assembly and a high degree of symmetry in the final structure

that allows for large complexes to be produced from small numbers of distinct subunit types.

Viral assembly modeling has thus become a subfield in itself. Virus assembly has been a crucial

platform for many basic advances in self-assembly modeling, including the use of DE [309], BD

[234, 206, 106, 185], and SSA [307, 113, 143] methods. It has likewise been a platform for developing

a variety of specialized versions of these modeling methods, such as rule-based approaches to

simulating extremely large reaction networks [127] and derivative-free optimization approaches to

14



model inference [152, 298]. Viral capsids have been a focus of intense theoretical study into the

basic biophysics of self-assembly [105, 106, 70, 260, 34] as well as for identifying potential new

avenues for assembly-mediated treatment [154, 53, 155, 260, 289, 304, 149, 71, 121, 239, 205].

1.3 The challenge of modeling of self-assembly reaction net-

works

At the root of much of the difficulty of modeling self-assembly is the extraordinarily large

number of intermediates and pathways potentially accessible to a self-assembly system. Large

number of reactants present problems in different ways to most conventional modeling and model

inference methods (see Section 1.3.1 below). They likewise present a challenge to experimental

characterization of such systems, as there is no practical way to monitor huge numbers of distinct

molecular species. While details vary by geometry, in general the number of possible intermediates

(partially built structures) one might encounter on the way to a complete assembly will blow up

exponentially in the assembly size. This problem has probably been most intensively studied in the

virus assembly literature, as it is particularly pronounced for large, highly symmetric structures,

of which viral capsids are a prime example. Even a coarse-grained model of an icosahedral virus

capsid, consisting of just twelve subunits, has 750 possible intermediate structures [174]. For

real viral structures, which typically have several hundred proteins, the numbers of potential

intermediates will be astronomical. Similar problems will arise to a lesser degree with large,

asymmetric assemblies (e.g., the ribosome [151, 180]) as well as with larger but less symmetric

assemblies such as the cytoskeleton. While the number of species possible for a linear filament is

small, once one allows for branching [305], numbers of possible branched filaments or networks

can blow up exponentially in the structure size as well. Note that this is not a unique challenge of

self-assembly, as similar issues arise in other combinatorially explosive systems, such as signaling

networks [23, 115].

A related concern for modeling, particularly with respect to self-assembly in cell biology,

is the issue of small copy numbers [91, 273] resulting in an inherently discrete and stochastic

reaction system. The issue occurs for many cellular systems involving reactants that occur in
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just a few copies per cell, but is especially an issue for self-assembly because the large number of

intermediates guarantees that most are present in zero or one copies at any given time [196]. The

issue is exacerbated by the fact that self-assembly reactions are frequently nucleation-limited,

meaning that they are characterized by slow and relatively rare nucleation events followed by

comparatively rapid polymerization. Nucleation-limited growth is well established for several of

the major model systems in self-assembly, such as virus capsids [203, 306], amyloids [156], and

actin and tubulin fibers [21]. A large body of theory suggests the nucleation-limited growth is

crucial to their robust operation [222, 204, 203, 72, 268, 201]. In nucleation-limited systems, nearly

every species is unpopulated at most times. Small copy numbers are problematic computationally

in part because they mean that discretization errors inherent to efficient continuum models

became substantial. In part, they are problematic because they mean that self-assembly must

be treated as a stochastic system, forcing the use of less efficient simulation methods than the

continuum approximations usable when all species are well populated [91, 273, 68] (see Section

1.3.3).

A second major challenge of self-assembly reactions is their long timescales (see Figure 1-

2), and in particular the large gap between timescales of the full assembly reaction and the

individual polymerization steps of assembly. Full assembly reactions of large complexes in

vitro may have timescales measured in minutes to days (although assembly in vivo may be

substantially faster [167, 60, 243]) while individual reaction steps are typically many orders of

magnitude faster [252, 311]. In part, this is a side effect of nucleation-limited growth mentioned

above: nucleation reactions are necessarily much slower than the subsequent elongation reactions

[234, 310]. Furthermore, the nucleation reactions themselves may in fact require extensive trial-

and-error involving much faster formation and breakdown of transient partial intermediates

[310, 306, 257]. Large timescales, and a large dynamic range of timescales, are challenges for

essentially all standard modeling methods, whether that manifests in a need for large numbers of

timesteps in a continuum method or large numbers of discrete events for a stochastic simulation.

A third class of challenge arises from the fact that self-assembly reactions are unusually

sensitive to the many ways in which the physical biology of the cell differs from that of in vitro

models. For example, physical confinement — by the cell membrane, subcellular compartments,

or other large structures such as the cytoskeleton or genome — is commonly neglected in modeling
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Figure 1-2: Timescales for protein dynamics and aggregation. The figure illustrates some of the
basic biological processes applicable to self-assembly and their relevant timescales. It is based on
material from [8, 30, 294, 293].
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reaction systems yet cannot be ignored when dealing with reactions that result in products

comparable in size to the spaces in which they form. A related issue is that self-assembly processes

are also well known to be unusually sensitive to macromolecular crowding [211, 173, 110], a

key distinguishing feature of the cellular environment. Numerous theoretical and experimental

studies have suggested both the need for and the challenge to correcting simulation methods to

account for the effects of crowding on assembly processes (e.g., [186, 233]). Examples include the

effects on several aspects of DNA replication such as helicase activity and the sensitivity of DNA

polymerase to salt [1], on protein-protein binding affinity and specificity [146], on the kinetics

and morphology of amyloid self-assembly [167], on the stochasticity of gene expression machinery

[111], and on viral capsid assembly [243, 60].

1.3.1 Modeling methodologies

Despite the difficulties they present to modelers, a variety of modeling methods have proven

valuablefor self-assembly. Table 1.1 describes a few of the primary methods that have emerged for

self-assembly modeling. While most are drawn from older techniques for more general reaction

chemistry modeling, in the self-assembly context they often present novel challenges or require

specialized adaptations. This section covers three of the most successful methodologies that

have been developed for self-assembly, some of the particular challenges they have faced in the

self-assembly context, and how they have been adapted to meet those challenges.
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Table 1.1: Common modeling methodologies for self-assembly. The table lists principal techniques
for self-assembly modeling, some systems biology software packages implementing them, and
some notable applications in self-assembly modeling.

Reaction Rep-
resentation

Description Software
Packages

Applications

Law of Mass
Action

(Deterministic)

Expresses any well-mixed
chemical system as a
collection of coupled
non-linear first order

differential equations which
typically must be

numerically integrated.
PDEs must be used when
space is explicitly included

BioNetGen [22],
COPASI [117],
VCell [209],
DBSolve [99]

Virus Assembly:
[179, 241, 42, 105],

Metabolomic
Networks[128]

SSA/Gillespie
Approaches

Provides a way to simulate
kinetically correct

trajectories consistent with
the Chemical Master

Equation

Moleculizer
[165],

BioNetGen [22],
VCell [209],

DESSA [307]

Virus assembly:
[257, 143]

Spatial
Stochastic

Usually combine Gillespie
or Stochastic Langevin with

diffusion or subunit
geometry

MCell [253],
StochSim [157],

VCell [209],
Smoldyn [6],
SRSim [104]

Geometric Constraints
with Diffusion: [103],
Amyloid-Beta: [269]

Rule-Based Primarly network-free
rule-based methods which

may incorporate
stochasticity and spatial

modeling

RuleMonkey
[55], BioNetGen,
ML-Space [20],

VCell [231],
SRSim [104]

Multivalent
ligand-receptor

interactions: [302],
Prion Aggregation

[219], Virus Assembly:
[234, 307]

Brownian
Dynamics

An explicitly spatial model
where brownian motion is

computed with the
Langevin equation

Smoldyn [6],
MCell [253]

Multiscale
Reaction-Diffusion

[86], Virus Assembly:
[234, 106, 185, 74, 75,

24],
Crowding/Amyloids:
[292], Clathrin Cage

Formation: [124]

Mass action differential equation (DE) models

Much modeling of reaction systems classically has arisen, at least initially, from DE models

based on the chemical Law of Mass Action. Such models represent any generic chemical reaction
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network

𝑎11𝑋1 + 𝑎12𝑋2 + . . . + 𝑎1𝑛𝑋𝑛

𝑘𝑓


𝑘𝑟

𝑏11𝑋1 + 𝑏12𝑋2 + . . . + 𝑏1𝑛𝑋𝑛

in terms of a system of differential equations of the form

𝑑𝑋𝑖

𝑑𝑡
= (𝑘𝑖+𝑏1𝑖 − 𝑘𝑖−𝑎1𝑖)𝑋

𝑎11
1 𝑋𝑎12

2 · · ·𝑋𝑎1𝑛
𝑛 + . . .

+(𝑘𝑖+𝑏𝑚𝑖 − 𝑘𝑖−𝑎𝑚𝑖)𝑋
𝑎𝑚1
1 𝑋𝑎𝑚2

2 · · ·𝑋𝑎𝑚𝑛
𝑛

Accumulating these contributions across a full set of reactions and reactant species defines a

system of differential equations modeling the time evolution of all reactants in the system. Such

DE models were the basis of many of the earliest cell simulation systems, such as E-cell [270],

ProMoT/Diva [98], Virtual Cell [229], GEPASI [172] and others. Later extensions of these

models allowed for consideration of spatial heterogeneity via partial differential equation (PDE)

reaction-diffusion models:

𝜕𝑋𝑖

𝜕𝑡
= 𝑑𝑖∇2𝑋𝑖 + (𝑘𝑖+𝑏1𝑖 − 𝑘𝑖−𝑎1𝑖)𝑋

𝑎11
1 𝑋𝑎12

2 · · ·𝑋𝑎1𝑛
𝑛 + . . .

+(𝑘𝑖+𝑏𝑚𝑖 − 𝑘𝑖−𝑎𝑚𝑖)𝑋
𝑎𝑚1
1 𝑋𝑎𝑚2

2 · · ·𝑋𝑎𝑚𝑛
𝑛

for reactant-specific diffusion coefficients 𝑑𝑖.

DE models provided a basis for some of the first approaches to modeling many self-assembly

systems. Classic results on molecular assembly of polymers derived from such models include

[192, 191] and they were integral to seminal models of microtubule polymerization [63]. They

likewise were used for early attempts at more complex systems, such as the first dynamic models

of viral self-assembly [312, 310], where they provided early insights into the parameter space

of self-assembly [310]. They continue to prove valuable in that context for such problems as

interpreting complex experimental data [105, 241, 42]

The most substantial challenge to DE models on self-assembly systems is computational

tractability, as such models need to keep explicit track of all species that might be present in a

given simulation. While that number grows only linearly in assembly size for linear polymers,

it blows up exponentially in size for more complex structures such as viruses. In practice, the
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solution to that problem has typically been to simplify: either manually via simplified versions

of structures or conflation of subsets of structures [309, 310] or through automated methods for

pruning low-usage pathways [76]. While there is good empirical evidence that such strategies can

yield quantitatively accurate models [312, 76], degrees of accuracy can be sensitive to structure

and pathways used [174]. DE models further provide no good solution for the problem of modeling

discretization of small copy number reactions.

1.3.2 Brownian dynamics (BD) models

The challenges self-assembly modeling presents to DEs led to an alternative approach based on

Brownian dynamics (BD) particle models. In a BD approach, we explicitly model a finite set

of assembly subunits in three dimensional space. These subunits diffuse through space under a

model of Brownian motion, implemented by a variant of damped Langevin dynamics [79]. Models

of binding dynamics can be implemented either by discrete reactions occuring upon particle

collisions or via short-range binding forces, leading to gradual agglomeration of particles over

the course of a simulation. BD models have the considerable advantage over DE models that

one need not devote computational resources to any species not present at a specific instant in

time. Run time thus depends on the number of particles modeled, not the number of species they

might in principle form.

Such models have perhaps been most pronounced in their use with viral capsid systems, perhaps

because their exceptionally large space of intermediates makes them especially challenging for DE

models. Through viral capsid work, they have been the basis of numerous important insights into

the basic biophysics of self-assembly. BD models were introduced to capsid studies nearly two

decades ago [234], have seen a series of important methodological advances since [206, 106, 185]

and continue to be the basis of new approaches and applications (e.g., [14, 79, 24]). They have

also seen important roles in modeling various other challenging assembly systems, such as clathrin

[124]. Insights arising from BD models include understanding the importance of nucleation limited

growth to ensuring robust assembly and preventing kinetic trapping [108], the sensitivity to

numerous parameter variations [74], and the potential sources of misassembly [74, 106]. In more

recent years, these models have been extended to issues difficult to model with other methods,

such as understanding the role of the genome in RNA virus assembly [75].
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The advantages of BD methods, however, come with some significant tradeoffs. First, the

large size and long timescale of assembly reactions generally requires substantial structural

simplifications. Second, such models typically can accommodate only modest numbers of particles,

ranging up to a few thousand per simulation for state-of-the-art methods [24, 107, 220]. For

relatively large structures, that may be too few to capture more than a small fraction of possible

assembly trajectories. Third, they generally cannot produce quantitatively correct assembly rates,

because of the large gap between diffusion rates and assembly rates. Effectively, systems need to

be shifted into domains of extremely rapid assembly, through unrealistically high binding rates or

concentrations, in order to yield computationally tractable simulations of the complete assembly

process. Some more advanced versions of this approach can somewhat mitigate these issues, for

example the use of Green’s function reaction dynamics (GFRD) to reduce the computational

time needed to compute trajectories of particles between collision events [278].

1.3.3 Stochastic simulation algorithm (SSA) methods

Just as BD models were introduced to self-assembly modeling to address the weaknesses of DE

models, so have models based on the stochastic simulation algorithm (SSA) [91] (also known as

“Gillespie models” after their inventor) been adopted to address the weaknesses of BD models. In

an SSA model, we represent a system at an instant in time by discrete counts of molecular species

(monomers or partial assemblies). Simulation progress proceeds via reaction events, which for a

self-assembly system will largely consist of single binding or dissociation reactions. Classically,

one assumes a uniform, well-mixed system, in which reaction times can be approximated with

exponential waiting time distributions [91]. The SSA approach can also accommodate spatial

heterogeneity through modeling as an array of well-mixed, discretized spatial compartments, a

variant known as spatial SSA, e.g. [255, 7].

SSA models offer considerable advantages but also involve important tradeoffs with the

previously considered methods. They can be implemented to have run times independent of the

number of potential species, unlike DE models, and can thus handle arbitrarily large reaction

networks [94]. However, their run time does depend on the number of discrete particles present,

limiting them to finite numbers of protein copies, as do BD models. They are, however, typically

much more efficient than comparable BD models since they do not need to model diffusion
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explicitly [94] and are practical over a much broader range of parameter domains [257]. In

addition, they provide an explicit quantitative model yielding kinetically correct samples from a

set of reactions and associated rate constants. However, because they do not explicitly model

space, they do not easily handle steric constraints that are important to such processes as aberrant

assembly [234], interaction of proteins with a flexible genome [75, 303], or any form of continuous

flexibility in proteins or complexes [217, 116].

SSA methods have needed some special adaptations to deal with the challenges of self-assembly.

Probably the most important advance is the use of rule-based modeling (e.g., [246]), a strategy

independently developed for the self-assembly field under the name local rule modeling [234] and

later introduced to SSA models under that name [307]. Rule-based models allow one to avoid

explicitly constructing the reaction network, an infeasible task for all but trivial self-assembly

systems, and rather represent only the current state of the system and its immediate neighbors

[82, 307]. This reduces run time from dependence on the size of the network to dependence only

on the number of species and reactions present at any instant in time. While steric constraints

are a challenge for rule-base models, that challenge has been overcome for some systems, e.g.,

in modeling multivalent ligand-receptor interactions [177]. Further improvements to queuing

methods for discrete event implementations of SSA [127, 64] made it possible to accelerate run time

by eliminating quadratic time/memory dependencies in the standard algorithms. Additionally, a

set of more specialized theory has been developed to deal with the problem of extreme divergence

between timescales of monomeric reactions versus the complete assembly process. Generic methods

for accelerating SSA can be helpful, e.g., [208, 38], as well as more specialized variants specifically

for self-assembly [175]. Other improvements include hybrid methods combining SSA with ideas

from agent-based modeling [3].

While SSA methods have not yet seen as wide use as BD in the self-assembly field, they

have proven to have important applications for which neither DE nor BD methods are suitable.

Because of their ability to handle complex geometries and long time scales, SSA models have

proven valuable for exploring parameter dependence of assembly systems by making it practical

to sample large numbers of trajectories over long time scales [299] and to sample trajectories

from particularly complex geometries or pathway sets [143]. They have also become a valuable

platform for fitting models to experimental data, where their ability to fit an explicit timescale,
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to function over wide parameter ranges, and to model complex geometries are all crucial features

[299, 298, 243, 244].

1.4 Self-assembly in broader systems biology modeling

In recent years, efforts at systems biology modeling have begun increasingly to recognize the

importance of self-assembly to comprehensive modeling of complex biochemical systems. For

example, a number of general systems biology simulation tools have begun to incorporate handling

of self-assembly in various ways. An early example was Moleculizer [165], which incorporated

basic models of assembly reactions via a rule-based SSA model with special purpose corrections

accounting for altered diffusion rates of growing species. Similar kinds of models have become

important more generally in modeling tools, such as RuleBender [301], which have made it possible

to integrate similar rule-based SSA models into other tools for systems biology modeling. The

Virtual Cell [230] has recently added handling of self-assembly reactions, using a special-purpose

extension based on a form of coarse-grained BD models of self-assembly [6, 59], as well as explicit

handling of rule-based modeling[231]. The most recent version of the E-Cell [270] simulation

environment (ECell4) has also been updated to include capabilities for modeling self-assembly

such as a network-free rule model [82] and a spatial SSA method [255]. While none of these

systems yet incorporates all of the specializations found in such methods in self-assembly specific

contexts, they represent important steps towards generic tools for modeling complex reaction

networks that include but are not specific to self-assembly.

This need for handling the kind of combinatorial explosive reaction network that characterizes

self-assembly is also beginning to be reflected in systems biology language design. For example,

the Systems Biology Markup Language (SBML) [120, 119], which has become the de facto

standard for specifying models in systems biology, has been updated in more recent versions to

accommodate the kind of network-free rule-based models needed for self-assembly work [118].

While it has long been possible to generate SBML from a rule specification through external tools,

such as BioNetGen [83], native support of the modeling language is necessary to achieve the

benefits of network-free modeling needed to make complicated self-assembly modeling tractable.

Handling of steric constraints that become imporant in formation of more complicated assemblies
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remains a hard problem for the field, however, and is so far handled only in more specialized

self-assembly simulation languages [307].

Recent years have also seen claims of the first true whole-cell simulations [140, 223], an effort

that necessarily involves modeling numerous processes that depend on self-assembly. In practice,

such efforts have not relied on a general-purpose simulation engine suitable to both self-assembly

and more conventional reaction chemistry, favoring instead general purpose methods ill-suited

to self-assembly coupled to special-purpose handling of particular kinds of self-assembly. The

landmark work of Karr et al. [140] establishing a comprehensive simulation of M. genitalium

biochemistry, relied on a series of special-purpose modules, several of which involved ad hoc

methods for specific examples of self-assembly, such as macromolecular complexation and ribosome

assembly. Nonetheless, even this kind of special-purpose handling remains the exception in similar

efforts at comprehensive modeling of whole-cell reaction networks (e.g., [262, 25]).

Self-assembly is a greatly important but long neglected issue in the quantitative modeling

of biological systems. While it is conventionally seen as a specialized form of chemistry, it is in

fact the dominant form of reaction in living systems. It poses distinctive challenges for modeling

methods, though, that prevailing methods in systems biology cannot handle. Self-assembly

modeling has, however, been studied intensively in many more specialized contexts, leading to an

appreciation of these challenges and a variety of ways they can be addressed. As more general

systems biology efforts are beginning to embrace the necessity of accommodating self-assembly,

this specialized literature can provide guidance and at least partial answers to some of the biggest

obstacles these efforts will encounter. This chapter was intended to provide a brief overview

of the particular challenges of self-assembly modeling, how they have been approached to date,

and how these methods have been used in the past and are beginning to be incorporated into

comprehensive models of systems biology. Our hope is that better awareness of obstacles and

solutions already identified by self-assembly modelers can assist the broader systems modeling

community in anticipating and navigating the same issues.

An appreciation for the past literature allows us to predict some of the future paths comprehen-

sive systems modeling efforts are likely to follow. For the most part, where general efforts systems

biology modeling has considered self-assembly, it has been as special cases with special-purpose

methods for specific systems (e.g., [24, 75, 299, 242, 224, 131, 146, 250, 220, 14, 308, 298]). Given
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the many examples of self-assembly in cell biology, it is safe to say this is not a sustainable

solution; rather general systems biology efforts will need to start to think of self-assembly as the

normal case that must be accommodated and integrated into simulation design via both model

specifications and simulation algorithms. Modeling methods that will work for both self-assembly

and for other kinds of chemistry exist [20, 283, 3, 209, 22, 165, 258, 55], but will need to become

the standard for modeling tools and languages. More foresighted efforts in a variety of systems

modeling contexts can help point the way (e.g., [165, 270, 6, 140, 59, 231]), although most remain

behind the state-of-the-art in modeling of self-assembly specifically.

At the same time, there are many challenges for which good solutions do not yet exist. For

example model inference [50] remains an extremely difficult problem for self-assembly systems

[312, 152, 299, 298], where the Bayesian methods usually favored by the field [101] are unusable in

practice, and it is likely advances in both biotechnology and inference algorithms will be needed

to address it. The field is beginning to tackle this challenge, e.g., with BioNetFit [263], and its

genetic algorithm to provide curve fitting capabilities compatible with ODE (BioNetGen) and

Network Free (NFSim) model specifications. Promising results were presented for steady-state

dose-response and time series oligomerization data, though it is not clear how the method copes

with more complicated assembly dynamics. There are also, as yet, no universally good methods

for modeling hard self-assembly systems. Each of the major approaches covered here — SSA

[94], BD [234], and DE [309] — has tradeoffs that make them unsuitable for some questions. It

remains to be seen whether more general solutions might arise from advances in one or more of

these methods, clever hybrid approaches, or some wholly new ideas. It is also worth noting that

self-assembly systems are challenging to characterize experimentally, for similar reasons to their

challenge to modelers. The solutions to that issue, as well, are likely to lie in pooled efforts by

experimentalists and computational researchers to advance experimental biotechnology and model-

fitting algorithms in complementary ways. Indeed, self-assembly may be a particularly valuable

test case for addressing the hard problems in building detailed and predictive quantitative models

of complex biological systems, where the field can begin to think of modelers and experimentalists

not as two communities but as two inseparable pieces of the future practice of biological discovery.
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1.5 Contributions of this Thesis

Chapter 2

Viral capsid assembly has a long history as a model system for investigating properties of self-

assembly systems. Since the 1950s there has been intense effort to understand capsid structure

(e.g., Watson & Crick’s 1958 The structure of small viruses, and Caspar & Klug’s 1962 Physical

principles in the construction of regular viruses) and much experimental work to elucidate details

assembly pathways. In the 1990s, Berger et al. [16] put forward a general computational theory

for assembly able to account for a wide range of experimental and theoretical findings. We adopt

this local rule theory and develop a pipeline for parameter inference using simulation based data

fitting. To briefly summarize, we simulate parameterized local-rule models of protein subunits

assembling into complete capsids. From these simulations, in silico experiments are generated

mathematically and compared to "real" experimental data. An optimization algorithm then

searches for the parameter set resulting in the closest match between the simulated and real

experiments. Our main contributions were: algorithms for generating small angle scattering data

from assembly, and a novel Bayesian optimization framework based on representing the objective

function with Gaussian processes.

Chapter 3

The second major project was initially motivated by the need for more spatial realism in our

self-assembly pipeline. Many of the existing spatial methods were not suitable for the long time

scales and large number of reactions required to simulate assembly. Our main contribution here is

a novel algorithm for the efficient simulation of reaction-diffusion systems - a generalization of the

stochastic simulation algorithm to continuous space. This is only a first stage towards a method

capable of handling the challenges of self-assembly reaction chemistry. However, initial results

show improved efficiency over more established methods in a benchmark reaction-diffusion test.
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Chapter 4

The last major project was a collaboration with James Faeder’s Lab at the University of

Pittsburgh and the Robert Murphy’s Lab at Carnegie Mellon University. Our contribution

was the development of a kinetic model capable of explaining the spatiotemporal patterns of

a number of proteins involved in immune cell signaling. This data, derived from fluorescence

intensities, came in the form of probabilities for finding a given protein in each of the roughly 7000

voxels in a standardized cellular volume. We also designed an optimization algorithm tailored to

this data set and to the differential equation system used in its simulation.
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Chapter 2

Optimization of a Rule-Based Assembly

Model

2.1 Background

Self-assembly chemistry is an essential part of nearly every important function of a living cell, yet

has long proven exceptionally challenging due to their large sizes, long time scales, and explosive

pathways spaces. Simulations can provide a way to examine details of assembly unavailable

to direct experimental observation, but are computationally demanding for complex assemblies

leading to a body of specialized simulation methods specifically for simulating molecular self-

assembly chemistry [309, 234, 206, 127, 307, 106, 113, 143, 185, 174]. Furthermore, learning

parameters needed by these simulations is itself a very difficult problem for assembly systems,

likewise requiring specialized methods 1.

We previously showed that it is possible to simulate realistic scales and parameter ranges of

complex self-assembly reactions, with specific focus on virus capsid assembly as a model system,

by using coarse-grained, rule-based models [234]. These rule-based models were originally imple-

mented via Brownian particle models [234, 206, 106, 185] and later via fast stochastic sampling

algorithms [307, 113, 143], approaches that have since seen widespread use in modeling capsids and

other complex reaction systems. Accurately parameterizing such models from experimental data,

though, remains challenging. Standard methods for model fitting in biochemistry, particularly the
1This chapter is based on work published here: [266]
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Bayesian model-inference methods that have become the favored approach in the field [295], are

unusable for non-trivial self-assembly systems due to their exceptionally high computational cost,

large pathway space, and inherent stochasticity [265]. In past work, we showed that it was possible

to learn detailed quantitative parameters of these models via simulation-based model fitting to

static light scattering (SLS) measurements of bulk assembly in vitro [299, 152], primarily by

bringing to bear specialized optimization techniques from the field of Derivative-Free Optimization

(DFO) [57]. Together, these contributions made it possible to infer the subunit-level pathway

space of real capsids assembling in vitro, which in turn can be applied to explore how pathway

usage might differ under more realistic models of the intracellular environment [243, 244]. The

reliability of such inferences is uncertain, however, due to limits of the data in precisely and

uniquely identifying a specific model and the difficulty of accounting for model uncertainty with

these classes of methods. The present work focuses on improving parameter fitting methods in

terms of potential experimental techniques to which one can fit models and parameter inference

algorithms that can be applied for the fitting.

Computationally, we seek to bring to self-assembly the advantages of Bayesian model inference

in exploring the space of possible solutions.

We approach the problem of quantifying uncertainty in parameter estimation by constructing

a probabilistic model of the objective function using Gaussian process (GP) models [207]. This

GP method is a variant of a technique called kriging [147] that has previously proven valuable in

other contexts for solving computationally demanding model inference problems under uncertainty.

GP models are defined by mean and covariance (kernel) functions, and specify a prior on the

space of possible functions. As simulations at successive parameter values are completed, the

prior is updated, forming the posterior which is used in prediction. New data points for sampling

are selected based on the current properties of the process and user defined trade-offs between

exploration and exploitation of the parameter space. This iterative non-parametric Bayesian

approach is better able to handle uncertainty in parameter assignments than our previously

used optimization techniques which were based on local surrogate functions. The GP formalism

also allows for predictions at test points using global information about the smoothness and

self-similarity of the objective.

We simultaneously seek to expand the repertoire of data sources to which these methods can
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be applied, with specific focus on moving from the static light scattering (SLS) of prior work

to small angle X-ray/neutron scattering (SAXS/SANS). SAXS has already proven valuable for

reconstructing kinetics of capsid assembly systems (e.g., SV40 VP1 pentamers encapsidating

short RNA molecules [148], and distinguishing closed shells from incomplete intermediates during

P22 assembly [272]) while SANS has been applied to similar reconstruction problems of other

protein assemblies, such as the Huntington amyloid [252]. Time resolved SAXS has also been

used to study the dynamics of conformational change in viruses [36, 160, 170].

Here, we develop and implement our GP optimization framework and demonstrate it using

synthetic SAXS data of known ground truth. We implement both stochastic (SSA [91]) and

deterministic (ordinary differential equation (ODE) [309]) models of virus-like assembly systems of

known parameters. We then demonstrate that we can accurately reconstruct the original models

from simulated SAXS data derived from these systems. While our stochastic and deterministic

models are applicable to virus like assembly systems, the parameter inference framework is quite

general and can be expected to be appropriate to any system for which model predictions are

costly to evaluate and noisy.

2.2 Overview and Objective

The overall goal of our method is to learn a set of model parameters, specifically kinetic rate

constants for distinct self-assembly reaction events, that define a quantitative model of assembly

which is maximally consistent with a set of experimental data. We assume the data here to be

SAXS or SANS waveform data, explained below, which we will canonically reference as SAXS

data. We particularly develop a class of methods designed to learn a stochastic process which

is utilized to obtain an optimal assembly model specification. The process probabilistically

models an objective function quantifying the difference between a ground truth SAXS experiment,

for which we have (synthetic) data, and a candidate experiment determined from a simulation

trajectory at a single hypothetical point in parameter space.

We define our objective function as the root mean square deviation (RMSD) between the

respective sets of intensity curves over designated time points. We generalize this objective for

use with two model types in common use in this field, SSA-based stochastic models and ODE
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continuum models, each of which can work with the same basic inference framework with some

specialized modifications. For the stochastic assembly framework, no two trajectories’ reactions

will occur at the same time points. We can get around this problem because assembly is a Markov

process in which the system state remains unchanged between any two successive reactions. Thus,

for each time point in the ground truth experiment, we select the closest later time point from the

candidate experiment when computing the RMSD. Within the continuous time ODE framework,

we can directly specify the time points to consider via interpolation relative to a finite difference

numerical integration. We note that we do not generalize to coarse-grained Brownian particle

models despite their widespread use, because they cannot be parameterized straightforwardly in

terms of reaction rate constants like SSA and ODE models.

Our central task in model inference is to approximately minimize this objective as efficiently

as possible. Note that our use of stochastic processes to represent the objective means we are

effectively specifying a probability density over possible rate parameters. This contrasts with our

prior work [300, 152, 299, 243] fitting the rate parameters directly or with conventional Bayesian

optimization that directly samples over the parameter space. While this may seem a complicated

approach, this complication is the key to kriging methods gaining the advantages of a Bayesian

model in estimating model uncertainty while simultaneously getting the high efficiency needed

by the application. Noise variance in the stochastic case is significant and no single assembly

trajectory, or resulting SAXS experiment, can be taken as representative for a given model

specification. We determine the representative by simulating multiple trajectories, translating

each into a SAXS experiment, and then taking their element-wise mean. The objective’s empirical

noise level is also approximated by computing the RMSD of each repeated simulation and

calculating their variance directly.

2.3 Data Sources

Scattering experiments consist of a wave source (x-rays/neutrons for SAXS/SANS, respectively)

directed towards a sample. After interacting with the sample medium, some fraction of the

incident waves scatter away while the remainder are absorbed. The intensity of scattered radiation

is measured at a detector as a function of the scattering vector, 𝑞. Small-angle scattering roughly
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corresponds to measured intensities at low 𝑞 values, allowing the investigation of microscopic

features with spatial resolution ranging from a few angstroms to a few microns. Mathematically,

the scattered intensity I(q) is the Fourier transform of the electron density correlation function,

therefore signal is observed only if the contrast in electron density is different from zero. However,

scattering experiments do not provide localized information about the sizes, shapes and pairwise

distances of the molecular constituents. Instead, the intensity is representative of the entire

sample, providing a spatial and temporal average over the duration of the measurement (temporal

resolution as low as 100ps [46]). Due to these limitations, scattering provides only bulk, indirect

evidence of assembly dynamics. See [100, 46] for a detailed treatment. There are also numerous

examples of small-angle scattering with other protein systems, e.g., [281, 225, 35, 130, 102, 141, 65].

In silico SAXS experiments are constructed from simulated assembly trajectories by extrap-

olating the solution scattering of a single protein subunit obtained from CRYSOL. CRYSOL

[256] is a program for evaluating the solution scattering from macromolecules with known atomic

structure and accepts as input PDB structure files. The present work focuses on fixed structures

for the dimer subunits of cowpea chlorotic mottle virus (CCMV) formed from the 𝐴 − 𝐵 and

𝐶−𝐶 chains (PDB 1za7, [249]), as well as a model of the pentamer subunits of generic dodecamer

assembly. [51] examines the energetic effects of allowing the subunits to come from a distribution

of possible configurations rather than a single PDB structure.

CRYSOL ouputs a vector of scattering intensities corresponding to 𝑞 values from 0 to 0.5 in

steps 0.01. As the higher 𝑞 values correspond to observations of smaller features of the system,

possibly beyond experimental reliability, there is a question as to the correct range to consider.

However, in the context of our purely computational experiments we will not consider the issue

and use the default range returned by CRYSOL.

The full SAXS intensity is determined as a function of the form factor, 𝐹 (𝑞), and the structure

factor, 𝑆(𝑞). Loosely speaking, the form factor is determined by the internal structure of the

elementary particles in the system (i.e., the protein subunits), and the structure factor provides

information on larger scale spatial correlations among the elementary particles.

𝐼𝑆𝐴𝑋𝑆(𝑞) = ∆𝜌2𝑉 2|𝐹 (𝑞)|2𝑆(𝑞) (2.1)
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In Eq.2.1, 𝑉 is the elementary particle volume, and ∆𝜌 the electron density contrast between

particle and solution. These two terms, together with the form factor, are returned by CRYSOL

as the single subunit scattering. Because our simulators do not directly model diffusion through

space, we do not have any information on the relative positions of the various intermediates

present at each reaction step. Our mathematical extrapolation of the subunit scattering to the

full system scattering therefore relies on a dilute assumption, allowing the scattering contributions

of each intermediate to be summed. Within the context of a single intermediate, we do have

access to relative subunit positions and so we calculate a structure factor for each.

𝑆(𝑞) =
1

𝑁
Σ𝑗,𝑘𝑒

−𝑖𝑞(𝑅𝑗−𝑅𝑘) (2.2)

In Eq.2.2, 𝑖 is the imaginary unit,
√
−1, and the summation is over every pair, (𝑗, 𝑘), of the

𝑁 subunits present in the intermediate, located at positions 𝑅𝑗, 𝑅𝑘.

The full waveform, 𝐼𝑆𝐴𝑋𝑆(𝑞), specified as a function of 𝑞 over a defined range and step size,

serves as the input to our model inference. One might in principle fit to multiple waveforms for

a given system, for example from monitoring assembly at distinct concentrations, although for

simplicity we assume here that we are fitting to a single SAXS experiment.

2.4 Stochastic Simulation Model

The simulation-based data fitting approach used here depends on fitting a model to a data set

through an intermediate simulation. That is, one assesses quality of fit of a parameter set based on

how well the true experimental data matches simulated experimental data, derived by simulating

assembly with the parameter set and then generating SAXS/SANS data from the output of that

assembly simulation. In the present work, the “true” data is also simulated, which is necessary to

have a data set with known ground truth. We implement two versions of the full pipeline here,

one for a stochastic simulation class and one for a deterministic one, in each case using the same

techniques for creating true data and for fitting to those data.

Stochastic simulations are run using DESSA [307] which implements a version of the Gillespie

algorithm [91] for coarse grained, complex self-assembly systems [127]. Reaction chemistry is
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represented as a continuous time Markov model of the possible reaction trajectories ( see [307]

for details) available to an initial collection of protein subunits that undergo association and

dissociation reactions according to a local rule model [16, 234]. The local rules describe interactions

between protein subunits in terms of the positions, affinities, and kinetics of their binding sites,

with the binding rate constants the only free parameters. This simulator does not explicitly model

diffusion in space, nor is it based on a lattice or compartment model. Instead, the intra-capsid

geometry is modeled through the local rules, with diffusion implicitly a function of the kinetic

rates under the assumption that the system is well mixed.

Because DESSA deals directly with expected wait time constants for reactions (𝑇 ) rather than

reaction rate constants (𝑘), conversion between the two is useful. The unimolecular case (e.g.,

dissociation of species 𝑆1 : 𝑆1 → 2𝑆1) is easy. The reaction rate 𝑘𝑢𝑛𝑖 has units 1
[𝑠]

, so the expected

wait time 𝑇𝑢𝑛𝑖 is simply the inverse of the rate constant. The bimolecular (e.g., association:

𝑆1 + 𝑆2 → 𝑆1 : 𝑆2) molar reaction rate constant is defined as 𝑘𝑚𝑜𝑙𝑎𝑟 = 𝑁𝐴*Ω
𝑇𝑏𝑖

, where Ω is the

system volume, 𝑁𝐴 is Avogadro’s number and 𝑇𝑏𝑖 is the expected reaction waiting time, again

allowing one to derive the rate constant from the inverse of the waiting time and vice versa.

Finally, because the search space can span multiple orders of magnitude along each dimension,

we work in log-scaled units. We specifically treat the ground truth (GT) parameter values

𝑇𝐺𝑇 as the origin of CCMV’s 10-dimensional parameter space (corresponding to the 10 subunit

binding sites), with the conversion between real space (T) and log-scaled space (x) given by T =

10.̂( 𝑙𝑜𝑔(T𝐺𝑇 )/𝑙𝑜𝑔(10) + x ). Search points are constructed by the algorithm as modifications of

the ground truth point which is located at x = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). In all results figures, the

x values of points are displayed, rather than their T values.

2.5 ODE Model

Simulating assembly using ODEs requires a distinct differential equation describing the time

evolution of the concentration of each potential intermediate, from monomeric subunit to complete

capsid. We began, like Endres & Zlotnick [76] and Misra & Schwartz [174], by considering a

model of 𝑇 = 1 assembly from pentameric capsid subunits, for which only monomer/monomer

and monomer/oligomer reactions are possible. We justify this restriction of the pathway space
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based on the observation that, except in cases of extremely high rates or concentrations [308], the

equilibrium concentration of monomers is much larger than that of the intermediates. With this

simplification, we were able to compute each species in the assembly tree (all of the structurally

unique partial assemblies of a given size), their forward/backward reaction degeneracies, and

their relative stabilities. Following [174], we represent the molar concentration of the 𝑘𝑡ℎ unique

species of size 𝑗 as [j,k], and represent the forward reaction degeneracy between (j,k) and (m,n)

after monomer addition as 𝑎𝑚,𝑛
𝑗,𝑘 . The corresponding backward reaction degeneracy is 𝑏𝑗,𝑘𝑚,𝑛. The

relative stability of (j,k) w.r.t. (m,n) is approximated as

𝑠𝑚,𝑛
𝑗,𝑘 = 𝑒𝑥𝑝(−∆𝐺 * (𝑐𝑚,𝑛 − 𝑐𝑗,𝑘)/𝑅𝑇 ) (2.3)

were 𝑐𝑗,𝑘 is the number of bonds formed within species (j,k).

The differential equation for the time evolution of [𝑗, 𝑘] is as follows.

𝑑[𝑗, 𝑘]

𝑑𝑡
= 𝑘𝑜𝑛Σ𝑚,𝑛(𝑏𝑗,𝑘𝑚,𝑛𝑠

𝑚,𝑛
𝑗,𝑘 [𝑚,𝑛]− 𝑎𝑚,𝑛

𝑗,𝑘 𝑂(𝑚− 𝑗)[𝑗, 𝑘][𝑚− 𝑗])

− 𝑘𝑜𝑛Σ𝑝,𝑞(𝑏
𝑝,𝑞
𝑗,𝑘𝑠

𝑝,𝑞
𝑗,𝑘 [𝑗, 𝑘]− 𝑎𝑗,𝑘𝑝,𝑞𝑂(𝑗 − 𝑝)[𝑗 − 𝑝][𝑝, 𝑞])

(2.4)

In Eq.2.4, 𝑂(𝑚− 𝑗) denotes the symmetry of the monomer subunits which satisfy 𝑚 = 𝑗 + 1

(or oligomer subunits if 𝑚− 𝑗 >= 1 were allowed). The full set of these equations for all defined

𝑗 and 𝑘 define an ODE model for time evolution of the complete reaction system.

For the equations to be correct, it is necessary to identify assemblies that are isomorphic to one

another, a special case of the graph isomorphism problem. While a general algorithm for detecting

isomorphism of subsets of icosahedral assemblies is provided in [174], we provide here an efficient

variant customized for this application. Our new algorithm for identifying all structurally unique

intermediate oligomers and computing the forward/backwards degeneracies for each relevant

pair is shown in Figure 2-1. It iteratively constructs the state space by adding a pentagonal

monomer to each free binding site of the current oligomer, and tests the resulting oligomer set for

isomorphism. Only the unique structures are saved, i.e., those which are not pairwise isomorphic

under some transformation in SO(3). For each isomorphic structure generated, the appropriate

𝑎𝑚,𝑛
𝑗,𝑘 is incremented. The isomorphism testing subroutine is outlined in Figure 2-2. It relies on
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the fact that without loss of generality, we can enforce that all species contain the same initial

monomer (which we call ’face 1’), and that the implicit dodecahedron - of which all oligomers

are a part - can be oriented relative to a fixed location in space. For convenience, the centroid

of face 1 is treated as the fixed location. There are 11 3D rotations leaving the dodecahedron

in an orientation equivalent to the original, but which successively place each face in the fixed

location. Further, for each of these orientations, due to the pentagonal symmetry of the subunits,

there are 4 2D rotations leaving the centroid of the face in the fixed location unchanged. When

determining if two oligomers are isomorphic, each of the 12*5 orientations of the first oligomer

are computed successively and the resulting coordinates are compared with the second oligomer

for identity. The isomorphism subroutine runs in time 𝑂(|𝐹 | * |𝐸/𝐹 |) where |𝐸/𝐹 | is the number

of edges per face. Finally, we note that many viruses possess icosahedral symmetry. Being dual

to the dodecahedron and sharing the same symmetry group, the same set of rotations apply to

the icosahedron.

Figure 2-1: Pseudocode for identifying distinct intermediates.

37



Figure 2-2: Pseudocode for determining if oligomers are isomorphic.

2.6 Modeling the Objective as a Gaussian Process

Gaussian processes have a long history of use in disparate fields for related tasks including

interpolation and prediction. For example, in geostatistics it has been known as kriging since the

early 1970s [207]. The modern interpretation is that a GP assigns a probability distribution to a

space of functions, the most important properties of which (e.g., smoothness) are determined by

the GP covariance function. Due to its non–parametric nature, overfitting is less of a concern

than it is with other regression models.

In analogy with the Gaussian distribution, the GP prior is completely defined by its mean function

and covariance function [207].

𝐹 (𝑥) ∼ 𝐺𝑃 (𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (2.5)

The covariance function, 𝑘(𝑥, 𝑥′), is of central importance. It defines a notion of similarity

between points in the input space in terms of their objective values, enabling prediction at test

points. It is technically a kernel function and must be symmetric. Further, when this kernel

function is evaluated at a set of points, the resulting matrix must also be positive semidefinite.

Combining the prior with new observations (i.e., training on pairs {x,𝐹 (x)}) leads to the posterior

distribution over functions, representing our updated beliefs about possible candidate functions.

Once the form of the mean and covariance functions are specified initially, training is synony-

mous with covariance hyperparameter optimization (note that the model is still nonparametric
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because the hyperparameters define a class of GPs rather than a particular instance). In other

words, the hyperparameters obtained are those that minimize the negative log marginal likelihood

of the data under the GP class specified by the covariance function. This optimization step

is usually very efficient and should not be confused with the larger optimization problem of

minimizing the objective function.

Gaussian Process Optimization

At a high level, the method will work iteratively by using the GP to identify candidate parameter

sets at which to run additional simulations, which in turn are used to refine the GP fit. After

training, the GP can be queried for the best new expensive point(s) to evaluate. This model

includes uncertainty at test points, as it not only provides an estimate of the mean value of the

objective, but also provides an estimate of the variance. Assuming the input space has not yet

been thoroughly explored, the algorithm will benefit from objective evaluations at additional

parameter points. In identifying candidate points to simulate, we need to balance exploration of

unexplored (high variance) areas with exploitation of regions known to have low objective values.

Several acquisition functions (AF) have been designed to handle this tradeoff at the expense

of yet another (usually inexpensive relative to 𝐹 (x)) optimization. We have chosen the lower

confidence bound (LCB) as the acquisition function to be minimized due to it’s simplicity of

evaluation.

𝑎𝐿𝐶𝐵(x) = 𝜇(x)− 𝜅𝜎(x) (2.6)

x𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑎𝐿𝐶𝐵(x) (2.7)

In Eq.2.6, 𝜇 denotes the mean prediction at each input and 𝜎 the corresponding standard

deviation. The user defined parameter 𝜅 balances the tradeoff (higher and lower for exploration

and exploitation, respectively). It has been shown that choice of statistical model is often far more

important than choice of acquisition function [237]. Other popular choices include probability of

improvement (PI), expected improvement (EI), entropy search, and Thompson sampling [247, 237].

AF minimization can be achieved using derivative free optimization packages such as DIRECT

[133, 27], SNOBFIT [123] and MCS [122], or methods such as sequential quadratic programming
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and quasi-Newton solvers. We, however, chose a simpler approach. We draw samples in relevant

areas of the search space, evaluate the AF, and directly select the minimizer. This randomized

procedure is repeated many times with the resulting set of minimizers coordinate-wise averaged.

Multi-GP Model Optimization

In many regression contexts, domain-specific knowledge can be applied to constrain the class of

statistical model used to fit the experimental data. For example, it may be known from physical

principles that observations should be distributed linearly with some corruption from random

measurement error, suggesting the use of a linear regression model. In our case, GP regression

allows a great deal more flexibility in principle but we lack prior knowledge about which, if any,

GP class accurately models the process generating a particular set of observations. With sufficient

training data, the kernel maximizing the likelihood of those data while also predicting the correct

noise level is often the best choice. However, our focus is optimization of the objective with

as few function evaluations as possible. A novelty of the proposed method is the assumption

that using multiple statistical models for experimental data generation at once, rather than in a

one-off fashion, may allow us to more efficiently discover structure, e.g., the locations of local

minima. Additionally, during early rounds of search, this strategy can provide an avenue for more

thoroughly exploring the input space since the acquisition functions corresponding to different

kernels may be minimized by different points.

1. Matern 3/2 (ARD): 𝜎2(1 +
√

3
√
𝑟) * 𝑒𝑥𝑝[−

√
3
√
𝑟]

2. Matern 5/2 (ARD): 𝜎2(1 +
√

5
√
𝑟 + (5𝑟)/3) * 𝑒𝑥𝑝[−

√
5
√
𝑟]

3. Rational Quadratic (ARD): 𝜎2(1 + 𝑟/(2𝛼))−𝛼

4. Rational Quadratic (ISO): 𝜎2(1 + 𝑠/(2𝛼))−𝛼

5. Gabor (ARD): ℎ(𝑥1 − 𝑥2);ℎ(𝑡) = 𝑒𝑥𝑝[−
∑︀

(𝑡2/𝑃 2)] * 𝑐𝑜𝑠[2𝜋
∑︀

(𝑡/𝑝)]

6. Neural Network: 𝜎2 arcsin [𝑥𝑇
1 𝑃𝑥2/

√︀
(1 + 𝑥𝑇

1 𝑃𝑥2) * (1 + 𝑥𝑇
1 𝑃𝑥2)]

7. Square Exponential (ARD): 𝜎2𝑒𝑥𝑝[−𝑟/2]
𝑟 = (𝑥1 − 𝑥2)

𝑇 * 𝑃−1 * (𝑥1 − 𝑥2); 𝑠 = (𝑥1 − 𝑥2)
𝑇 * (ℓ * 𝐼)−1 * (𝑥1 − 𝑥2)

𝑃 is the diagonal matrix of ARD lengthscale hyperparameters.
ℓ is a scalar lengthscale hyperparameter; 𝐼 is the unit matrix.
𝛼 is a shape hyperparameter for the rational quadratic kernel.
𝑝 is a vector of period hyperparameters.
In the Gabor kernel, operations are performed element-wise.

Table 2.1: Kernel Functions, 𝑘(𝑥1, 𝑥2)
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The kernel functions used in the present work are listed in Table 2.1. We sought to include a

range of traditional kernels as well as a few less common choices. All except the Neural Network

(NN) covariance are stationary in the sense of depending on the relative difference x− x’ rather

than on the absolute locations in parameter space. The Square Exponential (SE) covariance

leads to extremely smooth candidate functions (i.e., infinitely differentiable). This smoothness

may not be realistic for objective functions associated with physical processes, but it is the most

widely used in machine learning. The Matern class covariance with hyperparameter 𝜈 = 7/2 (not

used) leads to candidate functions very similar to the SE. As 𝜈 moves through 5/2 and 3/2, the

respective candidate functions become rougher. Values of 𝜈 below 3/2 are not recommended

for regression, and non half-integer values lead to very complicated forms for 𝑘(𝑥, 𝑥′). The

Rational Quadratic (RD) kernel can be viewed as a mixture of many SE kernels, each with a

distinct lengthscale hyperparameter, and is very general. The NN covariance allows us to perform

regression with the equivalent of an infinitely wide single layer network using the error function

as the hidden unit. The Gabor covariance enables the discovery patterns in the data which

incorporate some periodicity, and extrapolation based on the pattern. Our decision to include

these kernels and not others is somewhat arbitrary beyond the fact that they impose a diversity

of assumptions on data generation. Future work may consider more principled methods for the

number and types of kernel to be used.

Figure 2-3 (A) visualizes the main aspects of our global optimization method during a single

round of search and (B) illustrates how the optimization fits into the overall data set preparation

and parameter inference pipeline.

2.7 Results

Gaussian process model specification and hyper-parameter optimization was performed using

code released by Rasmussen, Nickisch, Williams and Duvenaud [40, 69].

Stochastic Simulation Model Results

We begin the model fitting by sampling a selection of points in parameter space uniformly at

random from a hypersphere, a contrast to our earlier methods that begin with a regular grid
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search [300] that is motivated by prior work showing random sampling to be more efficient when

the objective surface has low effective dimensionality compared to the parameter space [17]. For

the present experiments, the hypersphere is centered on the ground truth point. For each sampled

point, we run a set of simulation trajectories, project SAXS outputs, and compute the associated

RMSDs relative to the input data. The resulting data points are then used in initial GP kernel

hyperparameter training, updating the prior over objective functions to a posterior. In subsequent

rounds of search, the posterior density estimated by the GP from the previous round becomes

the new prior density from which we select further parameter points for evaluation to produce an

updated posterior.

To provide a comparison with a more traditional solver, we used SNOBFIT (Stable Noisy

Optimization by Branch and FIT) [123] a Matlab-based solver that combines a branching strategy

with localized quadratic response surface fitting for fast, continuous optimization of black box

functions satisfying a number of technical and design criteria. We favor SNOBFIT based on

prior work showing it to be effective on capsid assembly simulation [299]. Its major advantage

over competitor methods, including early stochastic process based methods such as DACE and

SPACE [221, 135] as well as more traditional iterative modeling methods such as DIRECT and

UOBYQA [134, 202], is its ability to handle all of the following cases: function values are expensive

to evaluate; function values may be available only at approximately the requested points; the

function values are noisy; the objective is non-convex; no gradients are available; there are hidden

constraints; there are soft constraints; parallel function evaluation is desired; function values may

be obtained extremely infrequently; and, the objective function or the search region may change

during optimization. In the present work, the comparison is in terms of the number of function

evaluations necessary to recover the ground truth parameter vector. Each time SNOBFIT is

called, it uses function evaluations from previous rounds as well as newly evaluated points to

return a user-specified number of function minimizers to be evaluated evaluated in the next round.

These minimizers belong to one of 5 classes: 1-3 being local estimates, and 4-5 global estimates.

Plots indicate the local/global classification of each returned point.

We first show results of a search of a small parameter space, corresponding to a hypersphere

of radius 3 logs around the ground truth. For this search, we used an initial sample of 100

points, with 300 trajectories per point sampled. Figure 2-4 shows RMSD as a measure of search
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progress for our method (top/middle) and for SNOBFIT (bottom). The 𝜅 parameter listed

for our method balances the degree to which the search favors exploration of uncertain regions

(higher 𝜅 values) versus exploitation of low variance regions. After one round of optimization, no

kernel is clearly superior in discovering the correct parameter set. After two rounds, in each case

one of the seven kernels shows a near optimal fit, although it is surprisingly a different kernel

for each choice of 𝜅. The three best scoring points are displayed in Figure 2-4 (middle) with

95% confidence intervals on each dimension. These intervals are kernel-dependent and so we

used the kernel responsible for recovering the point in their calculation. To estimate confidence

intervals in a particular dimension, we use the GP model to sample a series of RMSD values

from a sequence of points in the vicinity of the chosen optimum in that dimension, with the

spacing for the sequence determined in part by the applicable kernel lengthscale hyperparameter,

𝑙. Specifically, we scanned a region of 20𝑙 at a density of 0.001𝑙. The regression provided us with

predictions of 𝜇(𝑅𝑀𝑆𝐷) and 𝜎2(𝑅𝑀𝑆𝐷) at each point in the sequence from which we drew

10,000 random samples to estimate the fraction of times each point in the sequence would be

predicted to yield the optimum RMSD. We then chose the minimal symmetric window of points

around the optimum so as to account for 95% of the probability density of minimum RMSDs,

providing an estimated 95% confidence interval.

SNOBFIT with default settings was unable to recover low RMSD parameter sets from either

its locally weighted (classes 1 and 3) or global (class 4) optimizations after seven rounds. Figure

2-5 shows another measure of search progress, the distance between predicted parameter points

and the ground truth parameter set. Here we can see that the same points that approximately

minimized the RMSD are also in fact close to the ground truth.

We further sought to compare the results to a more conventional kriging search by evaluating

how well the method would perform using only a single kernel. Figure 2-6 are search results for

which only a single kernel is used across all rounds of optimization, with the same 100-point

training set as in Figs. 4 and 5. In the multi-GP search, it was the Matern 3/2 kernel that

discovered the lowest RMSD (1.6× 1010 ± 2.2× 1011) point after 121 total function evaluations.

In the single-GP searches, the Gabor-ARD kernel was able to obtain the slightly lower value of

0.7× 1010± 2.2× 1011 after only 106 total function evaluations. The remaining searches produced

minima in the range 5.2× 1010 – 2.4× 1011 with similar noise levels. We can conclude that while
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a single kernel may lead to slightly better performance when seeking the minimum of a particular

objective function, it is not obvious how to select this kernel beforehand, or to what extent the

choice depends on the particular training examples seen. The multi-kernel approach does nearly

as well as the best single-kernel approach without the need for advanced knowledge of how to

select an appropriate kernel for a particular system.

We next consider a search of a larger space, corresponding to a hypersphere of radius 9 logs

using 71 initial training points and 100 trajectories per point sampled. For this search, we allowed

the optimization to run for 20 rounds. The results show fairly high concordance among solutions,

although with high variability in estimates of parameters p7 and p10. The results suggest the

method is effective at finding low-RMSD solutions, although as might be expected, the solutions

are sensitive only to a subset of the parameters. Figure 2-7 summarizes search progress to this

point.

As the predictions for each kernel begin to repeat round after round (e.g., beginning shortly

after the 150th function evaluation in Figure 2-7), it may be useful to re-evaluate points the

algorithm deems good. As more simulated experiments are averaged at a point, the corresponding

objective becomes more accurate, potentially allowing better discrimination between similarly

good points and better generalization at nearby points. We have settled on a number of criteria

for the selection of the most useful set of points to re-evaluate with more simulations. First, the

set should be a subset of previously evaluated points. This allows the utilization of previously

run simulations. Second, no two points should be "close" (as defined by a kernel’s lengthscale

hyperparameter). Third, the set should prioritize higher scoring points.

These criteria suggest a selection subroutine analogous to agglomerative, hierarchical clustering,

with the highest scoring cluster representatives chosen for re-evaluation. The resulting set of

points was limited to 16 and is shown in Figure 2-8. See Figure 2-9 for pseudocode of the selection

subroutine. In this case, re-evaluation of each of the 16 points with 1000 additional simulated

experiments did not alter their relative ordering. It is interesting to note that for the smaller

search space, the lowest RMSD points tend to also be closest to the ground truth in Euclidean

distance. However, for the larger search space, the lowest RMSD are among the furthest from

ground truth. This is again an illustration of the fact that the objective function is not equally

sensitive to changes in each dimension. To obtain more precise estimates of the global minimum,

44



one strategy would be to begin new small (e.g., hyperspheres of radius 3 logs) searches at low

noise levels, and centered successively on each of the top 16 points.

ODE Model Results

We next examined the utility of the solver for deterministic optimization using an ODE model of

capsid assembly represented as a dodecamer, as in [76]. Here, we follow the assumption that each

step in the oligomerization reaction may have an independent rate, but equating all oligomers

of a given size. That is, we assume there is a single oligomer of size 𝑁 that has a defined rate

of transition to size 𝑁 + 1, but allow that the transition from 𝑁 to 𝑁 + 1 may have a different

rate than that from 𝑁 ′ to 𝑁 ′ + 1 for 𝑁 ≠ 𝑁 ′. We here examine two cases: a 6 parameter

model (grouping [1,2],...[11,12]) and the full 12 parameter model in which each oligomer has its

own on-rate. We arbitrarily define the ground truth for the differential equation model to be

a parameter vector in which each element (reaction rate) has the value 100 (in real space as

opposed to the log space used in the stochastic simulations) and we conduct the parameter search

in a hypersphere of radius 100 around this ground truth value.

Figures 2-10 and 2-11 show the results of the six and twelve parameter models. Each subfigure

shows RMSD as a function of the number of search rounds for each kernel. We note that the

ground truth in each case has an RMSD of exactly zero, yet moving a small distance away

necessitates a minimal RMSD in the realm of 107 due to the way SAXS experiments are evaluated.

The objective surface is roughly constant in a neighborhood surrounding ground truth, with a very

steep descent in its immediate vicinity. Thus, we should expect the accuracy of the approximate

global minimizer to depend on the size of this surrounding neighborhood. In each assembly model

(6 or 12 parameters), different kernel functions are able to identify this neighborhood with varying

amounts of training data.

To provide comparison to a competitive existing black box global minimizer, we use Multilevel

Coordinate Search (MCS) [122], a more appropriate choice than SNOBFIT when solving for a

deterministic objective. MCS is based on the DIRECT method and can be classified as branch

without bound in the sense that it sequentially partitions the search space. As an improvement on

DIRECT, the balance between global and local search is handled through a multilevel approach

(partitioning the space along a single coordinate only). The method is guaranteed to converge if
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the objective is continuous in the neighborhood of a global minimizer. Because MCS is designed

as a MATLAB caller, taking the black box function as an input, we were not able to easily asses

its performance in terms of the number of function evaluations. Rather, it runs until convergence

(or a stopping criteria is met) and outputs the minimizer, objective value, number of function

evaluations, number of function evaluations used in local search, and other algorithm parameters.

Figure 2-12 shows the results of MCS searches of increasing search space size. The ground truth

is again a 12D vector with each element 100. The plot shows that MCS performs well when we

have relatively tight bounds on the global minimum, in fact far better than our GP method,

but poorly when those bounds are relaxed. A good strategy for solving deterministic systems of

similar dimension may therefore be to narrow down the search region using the GP approach,

and then apply MCS for a more accurate solution.

2.8 Discussion

While our work provides a proof-of-concept demonstration of the multi-GP strategy, it offers

many avenues for improvement. For example, our current goal is efficient global optimization

with respect to the number of function evaluations, yet when considering the vast variation in

resources required for a given evaluation (in terms of simulation time as well as memory), it may

make sense to define efficiency with respect to total search time instead. To give some idea of the

time required for stochastic assembly, evaluation of the ground truth point with 300 trajectories

takes on the order of 30 min, while distant points in parameter space can span the range of hours

to a week. One way to accomplish this may be to separately model the expected evaluation time,

and take this into account during AF minimization. Another avenue for improvement concerns

the empirical noise variance in RMSD at evaluated points; information to which we have access

but do not directly utilize in GP regression. Modeling this variance itself as a GP may improve

the ability of the LCB, which is constructed with the standard deviation at test points, to explore

the space.

Furthermore, like all black box search methodologies, ours requires many design choices which

balance competing factors including run time, cluster architecture, available memory, and the
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details of simulating molecular assembly. We attempted to bias the search as little as possible,

defining the search bounds as a hypersphere surrounding the known ground truth and selecting

initial training points randomly within the region, and refraining from enforcing hyper-priors on

the kernel hyperparameters. In acquisition function minimization our sampling methods were

simple, again based around randomly selecting points from hyperspheres, and more sophisticated

sampling strategies might lead to more efficient optimization.

Finally, it also important to note that this method is limited to learning models of a system

under experimental conditions, typically in vitro, which may be quite far from conditions of the

functional system in vivo. Many extrinsic factors might perturb system behavior in vivo, such as

the presence of other molecules interacting with the system or generic effects, such as molecular

crowding. Prior work has explored the question of how to “correct” a rule-based system learned

in vitro for some effects one would expect in vivo (e.g., crowding [243]). Such approaches cannot

account for all possible differences, though, and addressing that issue is a hard problem that

would need to be solved on a system-specific basis.
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Figure 2-3: High-level overview of our multi-GP optimization strategy. (A) Visualization of
a single round of our multi-GP model optimization. (B) Overall parameter inference pipeline
incorporating the multi-GP optimization method of (A).
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Figure 2-4: Comparison of objective values for our multi-GP optimization (top/middle) and
SNOBFIT (bottom). Both methods use the same training set of 100 randomly sampled inputs,
and both return 21 points for evaluation in a subsequent round. In the second round (R2 region)
of search, our method recovers 3 low RMSD points, i.e., the blue square, pink asterisk and purple
diamond. These three points, displayed in the middle figures with 95% confidence intervals for
each dimension, minimize acquisition functions for distinct GPs and exploration/exploitation
trade-off parameters. Displayed for SNOBFIT are 7 rounds of search in which it fails to recover
equally low RMSD points. With default settings, SNOBFIT returned points of three types
(distinguished by color), two of which result from local searches, and the remaining from a global
search.
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Figure 2-5: Comparison of error in predicted parameters for our multi-GP optimization (top) and
SNOBFIT (bottom). Both methods use the same training set of 100 randomly sampled inputs,
and both return 21 points for evaluation in a subsequent round. In the second round (R2 region)
of search, our method recovers 3 points very close to the ground truth, i.e., the same blue square,
pink asterisk and purple diamond. Displayed for SNOBFIT are 7 rounds of search in which it
fails to recover equally close points.
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Figure 2-6: Results for single-GP parameter searches in which a single kernel function is used
during all rounds. Displayed for each search are the errors in objective value (RMSD - right
y-axis, dark blue) and error in predicted parameters (Distance - left y-axis, light blue) for each
round.
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Figure 2-7: Results from 20 rounds of optimization for a large (hypersphere of radius 9 logs)
search space. Individual rounds are not delineated due to variable numbers of points returned
from acquisition function minimization in different rounds. Shown are (top) the RMSD values,
and (bottom) the errors in predicted parameter sets as the search progresses. Note that the best
points found (very low RMSD) often correspond to comparatively distant parameter sets. This is
a result of the fact that the objective can be insensitive to large displacements in some of the
input dimensions but not others.
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Figure 2-8: 16 points returned by re-evaluation selection subroutine. The points were chosen
from among the 50 top scoring points over all rounds.
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Figure 2-9: Pseudocode for selecting previously evaluated low RMSD points for re-evaluation at
a lower noise level.
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Figure 2-10: Model-fitting results for a 6-parameter ODE model. The results reflect 100 rounds
of search with 893 points evaluated following initial training on 200 points randomly selected
from a radius 100 hypersphere. Each round results in a new predicted minimizer for each GP
model. The correspoinding RMSD is displayed. The lowest RMSD for each GP model over all
rounds is plotted as a large green filled circle. In the final subfigure, the inputs with the lowest
RMSD for each GP model are displayed.
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Figure 2-11: Model-fitting results for a full 12-parameter ODE model. The results reflect 100
rounds of search (893 points evaluated following initial training on 200 points randomly selected
from a radius 100 hypersphere). Each round results in a new predicted minimizer for each GP
model. The corresponding RMSD is displayed. The lowest RMSD for each GP model over all
rounds is plotted as a large green filled circle. In the final subfigure, the inputs with the lowest
RMSD for each GP model are displayed.
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Figure 2-12: Results for ODE model-fitting using three separate MCS searches with varying
search space sizes: 200 (1200 function calls, max allowed 7200), 1000 (878 function calls, max
allowed 7200), and 10,000 (1439 function calls, max allowed 7200). Each dimension is lower
bounded by 1 to enforce that all rate constants are positive. Only the smallest search space
resulted in the correct minimizer being found.
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Chapter 3

A Novel Algorithm for Particle-Level

Spatial Stochastic Simulations

3.1 Introduction

Simulation methods have become a valuable adjunct to experimental work, facilitating the

interpretation of experimental data and inferences about experimentally unobservable aspects of

biomolecular dynamics [142], yet accurate simulations remain challenging for many biochemical

processes crucial to living systems. The need for improvements in simulation technology is

particularly acute for macromolecular assembly systems, which are central to nearly all cellular

processes, yet frequently not directly observable experimentally due to their small scale and rapid

dynamics [265]. Intractability of experimental approaches is particularly acute for understanding

self-assembly in vivo, which may operate quite differently from purified in vitro models due to such

effects as spatial confinement [48, 166, 285], macromolecular crowding [137, 243], and influences

of extrinsic cellular factors [277]. The challenges of developing simulations that are both accurate

and efficient, especially for hard-to-model systems like self-assembly, has led to extensive work on

models and algorithms for biochemical simulation seeking to balance computational efficiency

with fidelity to the complexity of the underlying biology. 1

The Gillespie Stochastic Simulation Algorithm (SSA) [92, 95] was particularly influential in

establishing a computational framework for efficient sampling of chemical reaction trajectories,
1This chapter is based on work currently under reivew: [267]
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especially for small copy-number settings typical of biochemistry in the cell. The SSA has

proven a valuable tool for understanding the kinetics of reaction networks, i.e., tracking the

evolving populations of interacting reactant species, when older methods based on deterministic

differential equation systems are too inaccurate or computationally infeasible [96, 290, 182]. Many

improvements have been made to efficiency of the basic method either via approximations or for

particular spaces of model parameter [93, 208, 37, 127, 175, 5, 246, 67, 164]. Yet the SSA is not

explicitly spatial and instead treats the reactants as uniformly distributed at all times, aside from

transient fluctuations. To better capture spatial heterogeneity, extensions of the SSA have been

developed based on the reaction diffusion master equation (RDME), typically partitioning the

reaction volume into compartments or voxels for which the usual well-mixed assumption applies

in each compartment [13, 125]. In these spatial Gillespie models, reactants can react within

a compartment or diffuse to an adjacent compartment. However, there is an inherent conflict

between accuracy (smaller compartments imply higher spatial resolution) and the well-mixed

assumption (better satisfied with larger compartments and/or diffusion rates). In fact, even in the

limit of fast diffusion rates, RDME may not converge to the Chemical Master Equation (CME)

underlying the Gillespie algorithm [245].

Brownian dynamics (BD) methods provided an opposite extreme of efficiency/realism tradeoffs

for such modeling, allowing detailed, off-lattice spatial dynamics but at a cost of much greater

computational cost. Coarse-grained BD methods have been widely used in self-assembly modeling,

as they can deal well with systems with complicated spatial heterogeneity or geometrically intricate

structures [234, 26, 106, 144, 43, 44, 10, 66]. However, their need to explicitly model diffusion

trajectories of single particles creates high computational demands due to the large gap between

timescales of diffusive motion versus those of typical molecular assembly processes. Smoldyn

[6] is one such simulation package in which molecules diffuse with ideal Brownian motion and

react upon collision. It has been developed extensively since its initial release in 2003, e.g., the

inclusion of rule-based modeling, volume exclusion handling, on-surface diffusion, single particle

tracking, and integration with BioNetGen. However, Smoldyn’s diffusion accuracy is tied to the

length of its fixed time steps.

Green’s function reaction dynamics (GFRD [278, 279]) provided an alternative approach to

capture spatial heterogeneity in simulating reaction-diffusion systems while taking advantage of
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SSA-like efficient discrete event simulation without requiring spatial discretization. Instead of

generating sample trajectories from the CME or RDME through MCMC, or numerically solving

the many-body Smoluchowski equation as in Brownian Dynamics, GFRD analytically solves the

Smoluchowski equation for single molecules and molecular pairs in terms of Green’s functions.

These Green’s functions describe the probability of finding a molecule (pair) at a certain location

and time given a known position(s) at an earlier time. A maximum time step is chosen such

that, with high probability, at most two molecules come into contact, a requirement for analytical

tractability. This single/pairwise interaction assumption becomes more valid with smaller time

steps, introducing a trade-off between accuracy and efficiency. Reactions are incorporated through

the boundary conditions, and the method combines into a single step propagation through space

and reactions between particles. eGFRD [248] is a more recent exact algorithm which removes

the accuracy/efficiency trade-off by including the concept of "protective domains" first developed

by Oppelstrup et al. [193]. These domains are geometrically simple mathematical boundaries

enclosing single molecules or pairs, each of which requires a distinct Green’s function solution

yielding next event types (domain escape or reaction) and waiting times. Because the time

steps are now domain specific, eGFRD is an asynchronous algorithm allowing increased efficiency

in some circumstances, although the additional mathematical complexity comes at significant

computational expense.

The Small Voxel Tracking Algorithm (SVTA) developed by Gillespie et al. [97] is another

particle based simulation algorithm for reaction-diffusion systems. While SVTA is based on the

same underlying physics as eGFRD, its implementation is instead based on a discrete space.

Instead of protective domains, SVTA constructs one and two particle "corrals", within which single

molecules and molecule pairs hop between voxels and potentially interact. More specifically, it is

the center of each molecule that hops since the voxel size is typically smaller than the molecular

radius. These small voxel dimensions rule out the use of traditional bimolecular propensity

functions that rely on the well-mixed assumption. Because the system state evolves on the time

scale of diffusion hops, SVTA does not need to analytically sample locations on the protective

domains, an easy task only when the domain is a sphere or other simple shape. It can simply

keep track of when a diffusion hop places a molecule’s center in a voxel identified with the corral.

SVTA therefore bypasses the need for a suite of domain specific Green’s functions in favor of
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implementing individual diffusion steps on a lattice.

Similarly, the Microscopic Lattice Method (MLM) of Chew et al. [49] simulates lattice based

diffusion with reactions. However, MLM aims at optimizing efficiency by simulating molecules

of equal size, and requires that voxels dimensions are larger than molecular radii. Additionally,

without corrals or protective domains, MLM relies on periodic boundaries to control the simulation

volume and number of molecules. A direct comparison between Chew’s MLM and Gillespie’s

SVTA is unavailable, however, the trade off seems to be that the former is potentially more

efficient while the latter can simulate more complex biochemistry.

Despite these advances, the most challenging systems remain out of reach of molecular

simulation methods without substantial simplifications [265]. New advances in models and

algorithms for efficient but physically realistic simulation remain a pressing concern if the field is

to continue to move towards solving the grand challenge of truly comprehensive and predictive

models of whole-cell biochemistry.

We develop an alternative methodology intended to reduce the computational complexity of

eGFRD while maintaining discrete event based system updates. Our goal is not to present a fully

optimized algorithm, but rather to explore the use of time-dependent reaction propensities as a

basis for reaction-diffusion simulation in continuous space.

3.2 Theoretical Framework

In this section, we present some theoretical concepts that will be useful subsequently in explaining

our model and its relationship to prior work. Consider the bimolecular association reaction

system:

𝐴 + 𝐵 ⇒ 𝐶

governed by
𝑑[𝐴](𝑡)

𝑑𝑡
=

𝑑[𝐵](𝑡)

𝑑𝑡
= −𝑘(𝑡)[𝐴](𝑡)[𝐵](𝑡) (3.1)

where A and B are hard-sphere species with radii 𝑟𝐴 and 𝑟𝐵 and diffusion coefficients 𝐷𝐴 and 𝐷𝐵.

There are two traditional treatments of diffusion influenced reactions. The first was introduced by

Smoluchowski [284] and later extended by Collins and Kimball (CK) [54]. At time t=0, a single
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particle of species A is considered fixed at the origin and an initial surrounding concentration

gradient is set up for the mobile species B molecules. They showed that

𝑘(𝑡) = Φ(𝑡)/𝑐0 = (4𝜋𝑅2𝐷/𝑐0)(𝜕𝑐/𝜕𝑟)𝑟=𝑅 (3.2)

where Φ(𝑡) is the probability flux across a boundary sphere for the A particle at radius R, and 𝑐0

is the initial uniform concentration for species B. The simultaneous diffusion of both species is

incorporated by setting D as the sum of their respective diffusion coefficients. In this picture,

the concentration gradient for the mobile B species 𝑐(𝑟, 𝑡), defined as the concentration of the B

species at distance 𝑟 from the origin at time 𝑡 after the initial condition, is found by solving the

diffusion equation

𝜕𝑐/𝜕𝑡 = 𝐷∇2𝑐 (3.3)

subject to initial condition 𝑐(𝑟, 0) = 𝑐0 and the radiation boundary condition 𝐷(𝜕𝑐/𝜕𝑟)𝑟=𝑅 =

𝜅𝑐(𝑅, 𝑡) where 𝜅 is a specific reaction rate. The solution 𝑐(𝑟, 𝑡) is a complicated function and

obeys the relation

𝑘(𝑡)/𝑘𝑖 =
𝑐(𝑅, 𝑡)

𝑐0
(3.4)

where 𝑘𝑖 is the limiting value 𝑘(𝑡 ⇒ 0). Naqvi et al.[184] (sections III.-IV.) updates this by

replacing the diffusion equation with a discrete random walk model from which is obtained in the

limit of sufficiently long time and distance scales

𝑘(𝑡)/𝑘0 =
𝑐(𝑅 + ∆, 𝑡)

𝑐0
(3.5)

with ∆ equal to two thirds the scattering mean free path.

The second treatment is due primarily to Noyes [188] and considers an isolated pair of reactive

molecules separating from a nonreactive encounter. They showed that

𝑘(𝑡) = 𝑘0

[︁
1−

∫︁ 𝑡

0

ℎ(𝑡′)𝑑𝑡′
]︁

(3.6)

where 𝑘0 is defined as “the rate constant applicable for an equilibrium molecular distribution”[189]

and ℎ(𝑡)𝑑𝑡 is the “probability two molecules separating from a nonreactive encounter at time zero
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will react with each other between 𝑡 and 𝑡 + 𝑑𝑡” [188]. This can be recast into the form ([184]

Eq.47)

𝑘(𝑡)/𝑘0 = 𝑆(𝑡; 𝑟0 = 𝑅0, 𝑅) (3.7)

where 𝑅0 denotes the distance between two molecules separating from a nonreactive encounter at

time zero, and the survival probability 𝑆(𝑡; 𝑟0, 𝑅) is defined as

𝑆(𝑡; 𝑟0, 𝑅) = 1−
∫︁ 𝑡

0

𝑝(𝑡′; 𝑟0, 𝑅)𝑑𝑡′. (3.8)

These two major approaches, based on the diffusion equation and particle-pair standpoint

respectively, can be shown to be equivalent under certain assumptions and by a lengthy derivation

(see [184], sections IV and V). Our method is most easily identified with the theoretical framework

of Noyes, but with a different emphasis on instantiating the physical model so as to enable efficient

stochastic off-lattice particle simulations. We describe the novel features of our model in more

detail below.

The function ℎ(𝑡) appearing in Noyes’ fundamental relation can be inferred as the special case

ℎ(𝑡) = 𝑝(𝑡; 𝑟0 = 𝑅0, 𝑅) (3.9)

To be clear, 𝑟0 is the separation distance immediately after a nonreactive encounter. Naqvi

argues that 𝑟0 ̸= 𝑅, the reactive contact distance defined in the boundary condition, but instead

𝑟0 = 𝑅0 = 𝑅 + ∆. The exact expression for 𝑝(𝑡; 𝑟0, 𝑅) depends on various assumptions, e.g.,

that the discrete random walks taken by the particles are accurately described by a continuous

diffusion equation. In this case, one needs to make further assumptions about initial conditions

and boundary conditions.

In the CK picture, the reaction rate evolves only during the time window beginning with

the initial condition and ending with a reaction. The assumption here is that immediately

after a reaction, the system returns the concentration surrounding the product molecule to the

fixed initial value. As such, the formalism may not be suitable to an event-driven, explicitly

spatial simulation. Chew et al. [49] with their microscopic lattice method address this issue by

deriving their lattice parameters as analogues to the effective or steady state reaction rates in
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the continuum CK/Noyes theory. This ensures the model behaves similarly to the theory over

suitably long time scales.

While our treatment of diffusion influenced reactions is similar to the particle pair approach

in Noyes theory, there are notable differences. Instead of using probabilistic arguments to derive

reaction rate functions suitable for a differential equation model, we use them to derive reaction

propensities suitable for a discrete event SSA. Our conception is as follows: Given a collection of

molecules in an explicit and bounded 3d space, and assuming a maximum diffusion time before

which we observe their positions, reaction waiting times can be randomly sampled using pairwise

propensity functions. The probability density we focus on is not ℎ(𝑡) = 𝑝(𝑡; 𝑟0 = 𝑅0, 𝑅), but

rather 𝑝(𝑡; 𝑟, 𝑅) where 𝑟 is interpreted as the initial separation, and 𝑅 is the separation below

which a reaction can occur.

In the remainder of the chapter we describe the model and implementation, which we refer to

as the Diffusion-Based Embedding of the Stochastic Simulation Algorithm in Continuous Space

(DESSA-CS) method, in reference to an earlier space-free method [307] based on an accelerated

SSA algorithm [127], and demonstrate its effectiveness in comparison to prior alternatives through

application to a Michaelis-Menten model.

3.2.1 Background on Green’s Functions

Whereas thermodynamics is concerned with the evolving temperature in a region, reaction-

diffusion chemistry is concerned with the evolving position probability for a diffusing molecule.

Additionally, the evolving probability of a reaction between two molecules may be considered.

The equations for temperature and probability are formally interchangeable, but the terms will

have different interpretations. Any system requires three ingredients to obtain its solution: an

equation governing the time evolution (a diffusion/heat equation), an initial condition and one or

more boundary conditions.

The 1d problem is based on an instantaneous plane source, the 2d problem on an instantaneous

line source and the 3d problem on an instantaneous point source.

Our starting point in 3d is a solid material bounded by some surface. The Green’s function

(GF) is understood as the temperature at (x,y,z) at time t due to an instantaneous point source

of strength unity generated at the point P(x’,y’,z’) at time 𝜏 , the solid being initially at zero
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temperature, and the surface being kept at zero temperature (p353 [41]). Translating this into

diffusion language, we have a molecule (source) at point P(x’,y’,z’) at time 𝜏 , the probability

(temperature) of finding it anywhere else in the volume (solid) is zero initially. As a consequence

of diffusion, this probability - whose integral (strength) at every instant is unity - will spread

throughout the volume. The molecule is never found at (or beyond) the boundary surface since

the probability is kept at zero there.

In the literature on heat transfer, an additional heat source may be considered at the boundary

surface - one which depends on time and spatial position. In fact there are 4 typically encountered

types of boundary condition (See p18 [41]): (1) Prescribed surface temperature. (2) No flux

across the surface. I.e., 𝜕𝑇
𝜕𝑛

= 0, at all points of the surface where the differentiation is w.r.t. the

outward normal to the surface. (3) Prescribed flux across the surface. (4) Linear heat transfer at

the surface. This is also called ’radiation’ boundary condition. If the flux across the surface is

proportional to the temperature difference between the surface and the surrounding medium (i.e.,

temperature flux = 𝐻(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠)), then the boundary condition is

𝐾
𝜕𝑇

𝜕𝑛
+ 𝐻(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠) = 0.

H is the surface conductivity. K is the thermal conductivity of the solid. 𝜕
𝜕𝑛

denotes differentiation

in the direction of the outward normal to the surface.

"Radiation Boundary Condition": Describing the Boundaries of a Simulation Vol-

ume

When the heat source is within the solid, 𝐻/𝐾 > 0 is assumed as this corresponds to loss of heat

across the surface into the surrounding medium. 𝐻/𝐾 < 0 would correspond to a supply of heat

at the surface at a rate proportional to the temperature difference between the surface and the

surroundings. See footnote in [41] p19. However, reflecting simulation box walls for diffusing

molecules can be described with 𝐻/𝐾 < 0.
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"Radiation Boundary Condition": Describing Reactions

However, the boundary conditions do not have to correspond to physical boundaries, i.e., cell

membrane, reaction container, etc. They can instead be used to examine the evolution of the

probability within an imagined region (i.e., protective domains of eGFRD [248]), or to examine the

probability governing radial separation of two diffusing molecules where the boundary condition

is associated with the minimum separation due volume exclusion (i.e., MLM [49]), or to examine

the flow of probability into a reaction.

The GF used in the microscopic lattice method of Chew et al. [49] comes from Section 14.7 IV. of

Carslaw & Jaeger [41] and also Eq. 3.10 of Naqvi et al [183]. It is the solution for the following

problem. The region bounded internally by the sphere 𝑟 = 𝑎. Unit instantaneous spherical surface

source at 𝑟 = 𝑟′ at 𝑡 = 0. Boundary condition at 𝑟 = 𝑎: 𝑘 𝜕𝑇
𝜕𝑟
− ℎ𝑇 = 0 where 𝑘 ≥ 0, ℎ ≥ 0

(p368 [41]). In this case, because the region is bounded internally by a spherical surface, the

heat source is outside that sphere which accounts for the minus sign. [We understand this as

𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠 = 𝑇𝑟<𝑎 = 0, therefore ℎ(𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑇𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠)→ ℎ𝑇 ] It should be noted that this

is a 1d problem - that of a radial flow of heat. Such a 1 dimensional framing is appropriate

because the question Chew et al were interested in was the radial separation between two diffusing

molecules. Our new algorithm, DESSA-CS, also uses 1d GFs based on radial separation. This

framing has been used historically by Naqvi, Noyes, and Collins & Kimball. Framings requiring

GF solutions in 2 and 3 dimensions also exist, e.g., eGFRD.

Reaction-diffusion algorithms that use Green’s functions tend not to focus on ℎ explicitly, but it’s

helpful to consider it to better understand what’s going on. From a comparison of Appendix A

of [49] (variables 𝑘𝑎, 𝑅,𝐷) with the original variables used by Carslaw & Jaeger [41] (variables

ℎ, 𝑘), we arrive at ℎ = 𝑘𝑎 and 𝑘 = 4𝜋𝑅2𝐷 for the microscopic lattice method. A positive ℎ which

depends on the reaction parameter 𝑘𝑎 makes sense. At the boundary surface representing contact

between two molecules, we are loosing heat (probability) from the system. That lost probability

passes into the sphere at 𝑟 = 𝑎, and can be interpreted as going into the reaction channel.

Beijeren and colleagues have investigated ℎ from the perspective of Noyes’ theory of diffusion

based reaction kinetics and derived it in terms of fundamental quantities. See Equation 21 from
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[276] where they use the variable 𝜅 in place of ℎ.

ℎ = 𝜅 =
𝑃𝑟𝑒𝑎𝑐𝑡𝜈𝐴𝐵

𝑔(𝜎)𝜌𝐵

𝑃𝑟𝑒𝑎𝑐𝑡 is defined as the probability of a reaction in a collision between A and B molecules, 𝜈𝐴𝐵

is the collision frequency of A and B molecules, 𝑔(𝜎) = 𝑔(𝑟 = 𝜎) is particle pair correlation

function describing the relative motion of two molecules diffusing in a liquid medium. The radial

separation 𝜎 is that of the centers of mass at the collision distance. The last variable, 𝜌𝐵 is the

local density of B molecules surrounding an A molecule.

In the following sections where greens functions are used, the notational switch ℎ→ 𝑐 is made to

maintain consistency with our published simulation paper.

3.3 Methods

Algorithm 1 summarizes our general procedure for off-lattice spatial stochastic simulation. It

makes use of a discrete event structure similar to the stochastic simulation algorithm, with the

addition of routines for sampling reaction locations. This sampling is based on diffusion spheres

containing 𝑛𝑠𝑖𝑔𝑚𝑎 standard deviations of the Gaussian distributions describing each particle, similar

to GFRD. The resulting positions (due to reactions and position-only updates) are therefore

restricted to be within the diffusion spheres, no matter the choice of 𝑛𝑠𝑖𝑔𝑚𝑎 (typically 3-5).

In contrast with existing simulation methods in which the boundaries of the simulation volume

are either periodic or reflective, we utilize an alternate approach. The state of each molecule is

given by the mean and variance of its Gaussian probability distribution, therefore we do not have

access to precise positions or velocities. As such, the action of a periodic boundary condition is

not well defined. Our approach to wait time sampling is to allow the diffusion spheres of molecules

near the boundary to extend a small distance beyond the boundary, typically a small fraction

of the container length. When sampling reaction locations, we implement a reflective boundary

procedure designed to keep the molecules within the simulation volume while respecting the

physics of diffusion.
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Algorithm 1 DESSA-CS procedure
1: Initialize Event Queue: For each assembly, consider self events (unimolecular reaction, position-

only update) and pair events (bimolecular reaction) and add to the queue the earliest self

event and pair event for each assembly.

2: Main Loop:

3: repeat

4: Extract the next event on the queue.

5: if event is bimolecular and valid then

6: sample location for product given waiting time; update data structures; add next self

event(s) to the queue; add next potential bimolecular events to the queue.

7: else if event is unimolecular event and valid then

8: sample locations for both products; update data structures; add next self event(s) to

the queue; consider each product and add next potential bimolecular events to the queue.

9: else if event is position-only update and valid then

10: sample location; update data structures; add next position-only update to the queue;

add next potential bimolecular events to the queue.

11: (Apply boundary conditions to product(s) if necessary, before adding new events to the

queue.)

12: until max allowed simulation time or max allowed number of reactions is reached

3.4 Sampling Bimolecular Reaction Waiting Times

Consider a set of 𝐾 possible bimolecular reactions, i.e., distinct pairs of individual molecules

each represented as a point particle, and assume each molecule traverses an explicit 3d space by

diffusion. For each molecule pair, 𝑘, there exists a reaction propensity 𝑎𝑘(𝑡; 𝑠)𝑑𝑡 describing the

probability of an encounter and subsequent reaction of that pair, within some small time interval

[𝑡, 𝑡 + 𝑑𝑡) after the most recently executed event at time 𝑠. The waiting time, 𝑡𝑤𝑎𝑖𝑡, before the

next reaction of reactant pair 𝑘 can be sampled via the equation [4]

∫︁ 𝑡𝑤𝑎𝑖𝑡

0

𝑎𝑘(𝑡 | 𝑠)𝑑𝑡 = 𝑙𝑛(1/𝑟𝑘) (3.10)
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which determines the time at which the integrated propensity equals an exponentially distributed

random variable. 𝑟𝑘 is the random number sampled for molecular pair 𝑘 uniformly from the unit

interval for use in sampling an exponential waiting time by the transformation method. Because

each of our propensity functions are unique to their associated molecular pair, the reaction

channels defined in the original SSA and in Anderson’s modified next reaction method [4] at the

the species level are now defined at the molecule pair level.

3.4.1 Point Particles

At the moment a given molecule’s state is updated, the probability density describing its center

of mass is concentrated at a single point, i.e., a Dirac delta function centered on that point. As

time progresses, the probability density spreads as a Gaussian. This is the free diffusion Green’s

function solution of the diffusion equation [278]. The positions of two molecules A and B are

therefore described by two independent Gaussian random variables, 𝑥𝐴(𝑡) ∼ 𝑁 [𝜇𝐴,Σ𝐴(𝑡)] and

𝑥𝐵(𝑡) ∼ 𝑁 [𝜇𝐵,Σ𝐵(𝑡)]. In order to evaluate Pr(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 & 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 | 𝑡), the joint probability

of an encounter and a reaction during the interval [𝑡, 𝑡 + 𝑑𝑡), we factor the joint probability

as Pr(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 | 𝑡) * Pr(𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 | 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟). The latter factor is expressed using a time-

independent intrinsic reaction rate constant, 𝑐, such that 𝑐 𝑑𝑡 is the constant encounter conditioned

reaction probability over a small time interval. Note that 𝑐 is specific to this formalism and not

equivalent to the microscopic reaction rates used in Smoluchowski or Collins-Kimball theory.

In evaluating the former factor, Pr(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 | 𝑡), we assume the initial positions of A and B

are known and ask the following question: given a sampled position x𝐴 of molecule A taken after

time 𝑡, what is the probability a sampled position x𝐵 of molecule B after time 𝑡 will be close to

A? Here "close" means at a distance less than a threshold denoting contact or an encounter.

This question can be answered in the language of distributions of quadratic forms in random

variables. We define the quadratic form 𝑄(𝑡) as the squared Euclidean distance between Gaussian

random variates x𝐴 and x𝐵.

𝑋𝐵−𝐴(𝑡) ∼ 𝑁
(︀
𝜇𝐵 − 𝜇𝐴, [Σ𝐴(𝑡) + Σ𝐵(𝑡)]

)︀
𝑄(𝑡) = 𝑋𝐵−𝐴(𝑡)𝑇 𝑋𝐵−𝐴(𝑡) (3.11)
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Thus,

𝑃𝑟(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 | 𝑡) = 𝐶𝐷𝐹𝑄(𝑡)(𝑅
2
𝑒𝑛𝑐) (3.12)

= 𝑃𝑟
(︀
𝑄(𝑡) < 𝑅2

𝑒𝑛𝑐

)︀
(3.13)

where 𝑅2
𝑒𝑛𝑐 is the square of the encounter threshold distance. Theorem 4.2b.1 of Mathai &

Provost[169] provides a formula in terms of an infinite power series expansion which we use for

evaluation.

𝐶𝐷𝐹𝑄(𝑡)(𝑅
2
𝑒𝑛𝑐) =

∞∑︁
ℎ=0

(−1)ℎ𝑧ℎ(𝑡)
(𝑅2

𝑒𝑛𝑐)
(3/2)+ℎ

Γ
(︀
(3/2) + ℎ + 1

)︀ (3.14)

The coefficients 𝑧ℎ(𝑡) are defined recursively and depend on 𝜇𝐴𝐵 = 𝜇𝐵 − 𝜇𝐴, and Σ𝐴𝐵(𝑡) =

(Σ𝐴 + Σ𝐵). Convergence is defined by no change to 5 places after the decimal for 20 successively

higher order approximations. For very small 𝑡 and large initial separation, the approximation can

oscillate wildly about zero. In these parameter regions where numerical instability is detected, we

set the CDF to zero.

With isotropic diffusion, the reaction propensity given 𝑅2
𝑒𝑛𝑐 and 𝑑 = 𝑛𝑜𝑟𝑚(𝜇𝐴𝐵) after time 𝑡,

and with intrinsic rate 𝑐, can be reparameterized as a function of the variance 𝑣 of 𝑋𝐵−𝐴(𝑡) rather

than of time directly. This variance is simply the diagonal element of Σ𝐴𝐵(𝑡). The reparameterized

reaction propensity, denoted 𝑎𝑘(𝑡), is then given by:

𝑎𝑘(𝑡)𝑑𝑡 = 𝑎𝑘(𝑣 | 𝑑𝑘, 𝑅2
𝑒𝑛𝑐,𝑘, 𝑐)𝑑𝑣 (3.15)

The time to next reaction can now be determined by evaluating

𝑎𝑟𝑔𝑚𝑖𝑛𝑣

∫︁
𝑎𝑘(𝑣)𝑑𝑣 ≥ 𝑙𝑛(1/𝑟𝑘) (3.16)

and inferring 𝑡𝑤𝑎𝑖𝑡 from the variance value, should it exist. Figure 3-3 visualizes the wait time

sampling procedure. One added complication is that the DESSA-CS algorithm is event driven.

After each event, potential new reactions are considered for the product(s) of that most recently

executed event. This implies that the position of the product (e.g., reactant A) is known precisely,
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Figure 3-1: The figures on the left depict two molecules, A and B, described as Gaussians with
means separated by 𝑑 = 7.235𝜇𝑚. The point-particle reaction propensity grows as the variance
increases, reaching a peak just before 20𝜇𝑚2 and then decreases monotonically. The figures on
the right are more typically encountered in the algorithm. The most recent reaction for A was
just executed and wait times are being sampled for the 𝐴 + 𝐵 reaction. B has already been
diffusing for a time 𝑡𝑜𝑓𝑓𝑠𝑒𝑡, thus, propensity function integration begins not at zero variance, but
instead at variance equal to 20𝜇𝑚2.

while its potential partner (e.g., reactant B) has been diffusing for a time 𝑡𝑜𝑓𝑓𝑠𝑒𝑡 and thus has

its position represented by a Gaussian random variable. Any integrated propensity up through

𝑣(𝑡𝑜𝑓𝑓𝑠𝑒𝑡) must therefore be discounted when sampling the variance at which a reaction occurs.

See Figure 3-1 for an illustration. The sampling procedure is described in Algorithm 2. For finite

sized molecules, the procedure is similar, except the integrated propensities are expressed directly

in terms of times rather than variances. A Matlab implementation of the algorithm is available

on GitHub [264].

Our propensity function describing Pr(𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟 & 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 | 𝑡) is equivalent to 𝑝(𝑡; 𝑟, 𝑅)

from the Noyes theory under the assumption that the molecules are dimensionless point particles

for which there is no minimum separation distance. In this case, there is no need to go beyond

the free diffusion Green’s function solution to the diffusion equation as there are no boundary

conditions enforcing a minimum pairwise separation.
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3.4.2 Particles with Finite Size

Assume both particles are spherical and 𝑅 defines the center-to-center distance at contact. In

this context, the 𝑝(𝑡; 𝑟, 𝑅) described in the Theoretical Framwork section above is expressed as

𝑝(𝑡; 𝑟, 𝑅) = 𝑝(𝑟 = 𝑅, 𝑡; 𝑟0, 0) * 𝑐 𝑑𝑡 (3.17)

where 𝑐 now denotes the absorbing/radiation boundary condition parameter, and 𝑝(𝑟, 𝑡; 𝑟0, 0) is

the Green’s function solution to the following boundary value problem. Assume 𝑝(𝑟, 𝑡; 𝑟0, 0) obeys

a diffusion equation, and the initial separation between molecules is 𝑟0. This is expressed with

the initial condition

𝑝(𝑟, 0) =
𝛿(𝑟 − 𝑟0)

4𝜋𝑟2
. (3.18)

The two boundary conditions on 𝑝(𝑟, 𝑡; 𝑟0, 0) ensure that the molecular separation never reaches

infinity, and that at contact, the probability of a reaction is accounted for.

lim
𝑟→∞

𝑝(𝑟, 𝑡) = 0 (3.19)

4𝜋𝑅2𝐷
𝜕𝑝(𝑟, 𝑡; 𝑟0, 0)

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑅

= 𝑐 𝑝(𝑅, 𝑡; 𝑟0, 0) (3.20)

From Chew et al. [49], and Jaeger & Carslaw [41] p. 368), the Green’s function solution is

𝑝(𝑟, 𝑡; 𝑟0, 0) =
1

8𝜋𝑟𝑟0

1√
𝜋𝐷𝑡

(︁
𝑒𝑥𝑝[−(𝑟 − 𝑟0)

2/4𝐷𝑡]

+ 𝑒𝑥𝑝[−(𝑟 + 𝑟0 − 2𝑅)2/4𝐷𝑡]

− 2𝐵
√
𝜋𝐷𝑡 𝑒𝑥𝑝[𝐵2𝐷𝑡 + 𝐵(𝑟 + 𝑟0 − 2𝑅)]

* 𝑒𝑟𝑓𝑐((𝑟0 −𝑅)

2
√
𝐷𝑡

+ 𝐵
√
𝐷𝑡)

)︁
(3.21)

where 𝐵 = (1 + 𝑐
4𝜋𝑅𝐷

)/𝑅. Note that the Green’s function also depends on 𝑐 through 𝐵. The

propensity function is

𝑎(𝑡)𝑑𝑡 = 𝑝(𝑅, 𝑡; 𝑟0, 0) 𝑐 𝑑𝑡 (3.22)
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and the time to next reaction, 𝑡𝑤𝑎𝑖𝑡, can be determined from the integrated propensity by

evaluating

𝐵

4𝜋𝑅2𝑟0

[︃
𝑒𝑟𝑓𝑐

[︀𝐵(𝑟0 −𝑅)

2
√
𝜏

]︀
−

(︁
𝑒𝑥𝑝(𝐵𝑟0 −𝐵𝑅 + 𝜏) 𝑒𝑟𝑓𝑐

[︀𝐵𝑟0 −𝐵𝑅 + 2𝜏

2
√
𝜏

]︀)︁
− 1

]︃𝜏−𝑚𝑎𝑥

0

− 𝑙𝑛(1/𝑟𝑘) = 0 (3.23)

with 𝑟𝑘 ∼ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] and 𝜏 = 𝑡𝐷𝐵2. The waiting time is inferred as 𝑡𝑤𝑎𝑖𝑡 = 𝜏/𝐷𝐵2. As in the

point particle context, when molecule B of the molecular pair has been diffusing for a time 𝑡𝑜𝑓𝑓𝑠𝑒𝑡

when we are sampling reactions for molecule A, the integrated propensity up through 𝑡𝑜𝑓𝑓𝑠𝑒𝑡

must first be subtracted from the L.H.S. of Eq. 3.23. Alternately, Eq. 3.21 can be numerically

integrated.

Validation of the Wait Time Sampling Procedure

Noyes’ theory is formulated in terms of the probability two molecules will re-collide (and potentially

rebind) following a nonreactive encounter, therefore comparing the theoretical and simulated

rebinding time probability densities is a useful test of our Gillespie inspired wait time sampling

procedure based. Following Chew et al. ([49] Figure 2), we consider the activation limited and

diffusion influenced cases. These are distinguished by 𝑐/𝜈𝐴𝐵 < 1 and 𝑐/𝜈𝐴𝐵 ≥ 1, respectively.

The parameter 𝑐 is the boundary value parameter appearing in the finite particle propensity

function and is related to the collision frequency 𝜈𝐴𝐵 between A and B molecules in a hypothetical

nonreactive system as:

𝑐 =
𝑃 (𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 | 𝑒𝑛𝑐𝑜𝑢𝑛𝑡𝑒𝑟)𝜈𝐴𝐵

𝑔(𝑟 = 𝑅)𝜌𝐵
,

where 𝑔(𝑟) is the particle pair correlation function in a liquid phase and 𝜌𝐵 is the relative

density of B molecules. See Section III. and Eq.21 of [276]. Figure 3-2 shows, for three values of

𝑐/𝜈𝐴𝐵, the theoretical density and the results of our simulations. We computed the integrated

reaction propensity at 50,000,000 time points linearly spaced in the range [1e-8,1]. on the order of
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Figure 3-2: Rebind time probability density from Noyes’ theory. We compare the theoretical curves
in the finite particle representation with values computed from simulations at 𝑐/𝜈𝐴𝐵 = 0.1, 1,
and 100. Deviations from the theory at larger rebind times are due to the fact that more samples
are required to characterize the probability densities than were drawn in our analysis. Simulation
parameters: 𝐷𝐴 = 1𝜇𝑚2𝑠−1, 𝐷𝐴 = 0𝜇𝑚2𝑠−1, 𝑟0 = 0.01001𝜇𝑚.

∼ 100, 000, 000 wait time samples were drawn for each of the three ratios and then aggregated into

bins of width 𝑤𝑏𝑖𝑛 = 2𝑒− 7𝑠. Simulated probability densities for a subset of bins were computed

as

𝑝𝑑𝑓(𝑏𝑖𝑛) =
𝑁𝑏𝑖𝑛

𝑁𝑡𝑜𝑡𝑎𝑙 𝑤𝑏𝑖𝑛

,

where 𝑁𝑏𝑖𝑛 is the number of samples in the bin and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total number of samples. As the

total number of samples grows, the simulated values approach the theoretical density.
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Figure 3-3: Examples of successful and unsuccessful sampling of a biomolecular reaction waiting
time. In both subfigures, the solid curve is the integrated reaction propensity associated with two
reactants described by Gaussians with means separated by 8𝜇𝑚. The left subfigure shows the
successful sampling of a bimolecular reaction waiting time as there is a variance value (and thus,
a waiting time) at which the integrated reaction propensity equals the exponentially distributed
random number, 0.2. In the right subfigure, the exponentially distributed random number is 0.26,
and so there is not sufficient integrated propensity for a reaction to occur. The propensity curve
corresponds to an intrinsic rate constant 6 * 107𝑠−1, encounter radius squared 𝑅2

𝑒𝑛𝑐 = 0.012𝜇𝑚,
and diffusion coefficients 𝐷𝑎 = 𝐷𝑏 = 1.

Algorithm 2 Sampling Bimolecular Wait Times - Point Particle Representation
1: (Pre-simulation) Define vector of variance values, v = [0, 𝑉𝑚𝑎𝑥]

2: (Pre-simulation) Define the curve 𝐼𝑛𝑡𝐹 (v | 𝑑,𝑅2
𝑒𝑛𝑐, 𝑐) as the cumulative sum of reaction

propensity values along the points v. {𝐼𝑛𝑡𝐹 (v | 𝑑,𝑅2
𝑒𝑛𝑐, 𝑐)} is then the set of integrated

propensity curves at increasing d, computed once, before the simulation begins. If desired,

further sets of curves can be precomputed for alternate values of 𝑅𝑒𝑛𝑐 and intrinsic rate 𝑐.

3: (At run time) For reactant pair k = (A,B), select the appropriate curve, 𝐼𝑛𝑡𝐹 (v | 𝑑𝑘, 𝑅2
𝑒𝑛𝑐, 𝑐)

4: Evaluate 𝐼𝑛𝑡𝐹 (𝑣𝑡𝑜𝑓𝑓𝑠𝑒𝑡), the integrated propensity to be discounted, at the variance value

corresponding to 𝑡𝑜𝑓𝑓𝑠𝑒𝑡, i.e., 6𝐷𝑏𝑡𝑜𝑓𝑓𝑠𝑒𝑡.

5: Set 𝑣* ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑣 𝐼𝑛𝑡𝐹 (v) ≥ 𝑙𝑛(1/𝑟𝑘) + 𝐼𝑛𝑡𝐹 (𝑣𝑡𝑜𝑓𝑓𝑠𝑒𝑡)

6: If 𝑣* exists, 𝑡𝑤𝑎𝑖𝑡 is the solution to 𝑣* = 6𝐷𝑎𝑡𝑤𝑎𝑖𝑡 + 6𝐷𝑏(𝑡𝑤𝑎𝑖𝑡 + 𝑡𝑜𝑓𝑓𝑠𝑒𝑡)

7: Else, no reaction is sampled. Update particle positions.
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3.5 Sampling Bimolecular Reaction Locations

Again we make use of the labels A and B for the specific molecules undergoing the next association

reaction. At this time, the spatial region available for the reaction consists of the intersection of

the diffusion spheres bounding their independent Gaussian probability distributions. In order to

correctly sample from this region, henceforth called the overlap volume (OV), we first introduce

the concept of equiprobable rings.

3.5.1 Equiprobability Rings

The line AB connecting the initial known positions of A and B defines an axis of symmetry in

the sense that within the OV there exist rings centered on this axis, whose points are equidistant

from A and equidistant from B. The rings are therefore sets of equiprobability points from

which molecule positions might be sampled. Each ring is uniquely defined by two numbers: the

magnitude, 𝑟𝐴, of any vector from the initial position of A to a point on the ring, and the CCW

angle, 𝜃𝐴, between the vector and the line AB. After sampling (𝑟𝐴, 𝜃𝐴), we choose the reaction

location uniformly at random from on the ring.

The joint probability density describing (𝑟𝐴, 𝜃𝐴) can be factored as 𝑝(𝑟𝐴|𝑡) and the conditional

probability 𝑝(𝜃𝐴|𝑟𝐴, 𝑡), which suggests a sequential sampling procedure. First determine 𝑟𝐴 and

then use it to determine 𝜃𝐴.

3.5.2 Diffusion Sphere Overlap Volume

While the OV grows continuously due to diffusion, for the purpose of location sampling at a

given time we have found it useful to classify it into one of 5 distinct cases. These cases are not

inherently meaningful, they are simply convenient ways of describing the evolution of the OV as

well as the integration regions involved in sampling 𝑟𝐴 and 𝜃𝐴. For example, if the OV is identical

to the diffusion sphere of A (as in cases 3 and 5), 𝜃𝐴 may take on any value in [0, 2𝜋], however if

the OV has an irregular shape, certain angles may be prohibited. Figure 3-4 visualizes the two

trajectories possible for the OV. The first trajectory applies when 𝐷𝐵 > 4𝐷𝐴 and passes through

cases 1, 2, 3 and 5. The second trajectory applies when 𝐷𝐴 < 𝐷𝐵 < 4𝐷𝐴 and passes through

cases 1, 2, 4 and 5. Given the current system time 𝑡, the waiting time until the next reaction of
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Figure 3-4: Cases of potential overlap of diffusion spheres in the process of sampling waiting time
to a biomolecular reaction. Shown are the diffusion sphere intersections at increasing time points.
It is assumed here that 𝐷𝐵 > 𝐷𝐴. Case 1: The OV contains neither 𝜇𝐴 nor 𝜇𝐵. Case 2: The OV
contains 𝜇𝐴 only, and is not identical to either diffusion sphere. Case 3: The OV contains 𝜇𝐴

only, and is identical to the diffusion sphere of A. Case 4: The OV contains 𝜇𝐴 and 𝜇𝐵, but is
not identical to either diffusion sphere. Case 5: The OV contains 𝜇𝐴 and 𝜇𝐵, and is identical to
the diffusion sphere of A.

A and B, 𝑡𝑤𝑎𝑖𝑡, and the system time at which the state B was last updated, we can infer 𝑡𝐴−𝑒𝑙𝑎𝑝𝑠𝑒𝑑

and 𝑡𝐵−𝑒𝑙𝑎𝑝𝑠𝑒𝑑, the durations during which each had been diffusing before the reaction, which

includes the waiting time to the reaction. Using 𝑡𝐴−𝑒𝑙𝑎𝑝𝑠𝑒𝑑 and 𝑡𝐵−𝑒𝑙𝑎𝑝𝑠𝑒𝑑 to define the diffusion

spheres at the moment the molecules react, we can infer the OV case.

Case 2 begins when the radius of the faster diffusing particle (here, B) is equal to 𝑑, the distance

between the Gaussian means of A and B. This radius can be computed as 𝑅𝐵(𝑡) = 𝑛𝑠𝑖𝑔𝑚𝑎

√
6𝐷𝐵𝑡,

where 𝑛𝑠𝑖𝑔𝑚𝑎 is the number of standard deviations bounded by the sphere. See Fig. 3-5 for an

illustration of the integration variables in Case 2. The starting time is given by

𝑡𝑠𝑡𝑎𝑟𝑡−2 =
𝑑2

6𝐷𝐵𝑛2
𝑠𝑖𝑔𝑚𝑎

(3.24)

Starting times for cases 3-5 are calculated as follows:
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Figure 3-5: (Left) Visualizing the regions of integration for 𝑤(𝑟𝐴) in Case 2. (Right) Visualizing
𝜃𝐴, 𝑟𝐴, and 𝑟𝐵(𝜃𝐴) in Case 2. The equiprobability ring passes through point 𝐽 , perpendicular to
the plane of the page.

Path 1 Case 3 Start Case 5 Start

𝐷𝐵 > 4𝐷𝐴

𝑑 > 𝑅𝐴(𝑡) 𝑑 = 𝑅𝐴(𝑡)

𝑅𝐴(𝑡) + 𝑑 = 𝑅𝐵(𝑡) 𝑅𝐴(𝑡) + 𝑑 < 𝑅𝐵(𝑡)

𝑡𝑠𝑡𝑎𝑟𝑡−3 = 𝑡𝛾 𝑡𝑠𝑡𝑎𝑟𝑡−5 = 𝑡∼𝛾

Path 2 Case 4 Start Case 5 Start

𝐷𝐴 < 𝐷𝐵 < 4𝐷𝐴

𝑑 = 𝑅𝐴(𝑡) 𝑑 < 𝑅𝐴(𝑡)

𝑅𝐴(𝑡) + 𝑑 > 𝑅𝐵(𝑡) 𝑅𝐴(𝑡) + 𝑑 = 𝑅𝐵(𝑡)

𝑡𝑠𝑡𝑎𝑟𝑡−4 = 𝑡∼𝛾 𝑡𝑠𝑡𝑎𝑟𝑡−5 = 𝑡𝛾

where

𝑡𝛾 =
1

6𝑛2
𝑠𝑖𝑔𝑚𝑎(𝐷𝐴 −𝐷𝐵)2

(2𝐷2
𝐴𝑛

2
𝑠𝑖𝑔𝑚𝑎𝛾 + 2𝐷2

𝐵𝑛
2
𝑠𝑖𝑔𝑚𝑎𝛾

− 4𝐷𝐴𝐷𝐵𝑛
2
𝑠𝑖𝑔𝑚𝑎𝛾 + 𝐷𝐴𝑑

2 + 𝐷𝐵𝑑
2), (3.25)

𝑡∼𝛾 = 𝑑2

6𝐷𝐴𝑛2
𝑠𝑖𝑔𝑚𝑎

, and 𝛾 =
√︁

𝐷𝐴𝐷𝐵𝑑4

𝑛4
𝑠𝑖𝑔𝑚𝑎(𝐷𝐴−𝐷𝐵)4

.
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Case 1

Sampling 𝑟𝐴

In order to sample 𝑟𝐴 correctly, we re-weight the probability density in the OV, i.e., compute a

posterior probability. Define ℎ𝑟𝑖𝑛𝑔(𝜃𝐴) as the radius of the ring whose points are at distance 𝑟𝐴

and for which the top most point defines a line with A at angle 𝜃𝐴. The circumference of this ring

is 2𝜋ℎ𝑟𝑖𝑛𝑔(𝜃𝐴). Integrating this circumference over the available 𝜃𝐴 range allows us to determine

the size of the set of points at distance 𝑟𝐴.

𝑝𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑟𝐴, 𝑡) = 𝑤(𝑟𝐴) * 𝑝(𝑟𝐴, 𝑡) (3.26)

with

𝑤(𝑟𝐴) =
[𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑎𝑡− 𝑟𝐴]∫︀

𝑂𝑉
𝑑𝑟
(︁

[𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑎𝑡− 𝑟] * 𝑝(𝑟, 𝑡)
)︁ ,

∫︁
𝑝𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑(𝑟𝐴, 𝑡)𝑑𝑟𝐴 =

∫︁
𝑤(𝑟𝐴)𝑝(𝑟𝐴, 𝑡) = 1, (3.27)

and

𝑝(𝑟, 𝑡) =
1√

12𝜋𝐷𝐴𝑡
𝑒𝑥𝑝(−𝑟2/12𝐷𝐴𝑡) (3.28)

𝑤(𝑟𝐴) =

∫︀ 𝜃𝑚𝑎𝑥(𝑟𝐴)

0
𝑑𝜃𝐴2𝜋ℎ𝑟𝑖𝑛𝑔(𝜃𝐴)∫︀ 𝑟𝑢𝑏

𝑟𝑙𝑏
𝑑𝑟
[︁(︀ ∫︀ 𝜃𝑚𝑎𝑥(𝑟)

0
𝑑𝜃(𝑟)2𝜋𝑟 sin(𝜃)

)︀
𝑝(𝑟, 𝑡)

]︁
=

𝑟𝐴
(︀
𝑐𝑜𝑠(𝜃𝑚𝑎𝑥(𝑟𝐴))− 𝑐𝑜𝑠(0)

)︀∫︀ 𝑟𝑢𝑏
𝑟𝑙𝑏

𝑑𝑟
[︁
𝑟
(︀
𝑐𝑜𝑠(𝜃𝑚𝑎𝑥(𝑟))− 𝑐𝑜𝑠(0)

)︀
𝑝(𝑟, 𝑡)

]︁
=

𝑟𝐴

(︁
𝑟2𝐴+𝑑2−𝑅2

𝐵

2𝑟𝐴𝑑
− 1

)︁
[︁
𝑡𝑒𝑟𝑚1 + 𝑡𝑒𝑟𝑚2

]︁ (3.29)

𝑡𝑒𝑟𝑚1 =
1

4𝑑
(𝑑2 + 6𝐷𝐴𝑡 − 𝑅2

𝐵)
[︀
𝑒𝑟𝑓

(︀
𝑟𝑢𝑏/

√︀
12𝐷𝐴𝑡

)︀
− 𝑒𝑟𝑓

(︀
𝑟𝑙𝑏/

√︀
12𝐷𝐴𝑡

)︀]︀
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𝑡𝑒𝑟𝑚2 =
1√

12𝜋𝐷𝐴𝑡
6𝐷𝐴𝑡

[︀
(𝑟𝑙𝑏 − 2𝑑)𝑒𝑥𝑝(−𝑟2𝑙𝑏/12𝐷𝐴𝑡) − (𝑟𝑢𝑏 − 2𝑑)𝑒𝑥𝑝(−𝑟2𝑢𝑏/12𝐷𝐴𝑡)

]︀
The upper limit of integration, 𝜃𝐴−𝑚𝑎𝑥, is calculated by considering the triangle defined by

the three points: 𝐴, 𝐵, 𝐼. The base (AB) length is 𝑑. The side 𝐵𝐼 has length 𝑅𝐵 since 𝐼 is the

point at which (𝑟𝐴, 𝜃𝐴) intersects the OV, i.e., a point on the B diffusion sphere. The remaining

side length is 𝑟𝐴. From the law of cosines, 𝜃𝐴−𝑚𝑎𝑥 is calculated in terms of the side lengths.

𝜃𝐴−𝑚𝑎𝑥(𝑟) = 𝑐𝑜𝑠−1

(︂
𝑟2 + 𝑑2 −𝑅2

𝐵

2𝑟𝑑

)︂
(3.30)

The lower and upper bounds, 𝑟𝑙𝑏 and 𝑟𝑢𝑏, on 𝑟𝐴 defining the OV are [(𝑑−𝑅𝐵), 𝑅𝐴].

Sampling 𝜃𝐴|𝑟𝐴, 𝑡

The tuple (𝜃𝐴, 𝑟𝐴) uniquely defines a ring of equiprobability points within the OV from which a

single reaction location can be chosen uniformly at random. Thus, the probability with which a

given 𝜃𝐴 is sampled should be proportional to the size of the corresponding ring.

Consider the triangle defined by the points 𝐴, 𝐵, 𝐽 where 𝐽 is a point in the OV at (𝜃𝐴, 𝑟𝐴).

The length of side 𝐵𝐽 is 𝑟𝐵(𝜃𝐴) and can be computed with the Law of Cosines. The height of

this triangle, ℎ𝑟𝑖𝑛𝑔, is again the radius of the ring passing through point 𝐽 .

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) = 𝑝(𝑟𝐵(𝜃𝐴)|𝑡) *𝑅𝑖𝑛𝑔𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) =
1√

12𝜋𝐷𝐵𝑡
𝑒𝑥𝑝

(︂
−𝑟𝐵(𝜃𝐴)2

12𝐷𝐵𝑡

)︂
* 2𝜋ℎ𝑟𝑖𝑛𝑔 (3.31)

𝑟2𝐵(𝜃𝐴) = 𝑟2𝐴 + 𝑑2 − 2𝑟𝐴𝑑 𝑐𝑜𝑠(𝜃𝐴) (3.32)

ℎ𝑟𝑖𝑛𝑔 = 𝑟𝐴 𝑠𝑖𝑛(𝜃𝐴) (3.33)

𝜃𝐴 ∈ [0, 𝜃𝐴−𝑚𝑎𝑥]
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Case 2

Sampling 𝑟𝐴

𝑤(𝑟𝐴) =

∫︁ 𝜃𝐴−𝑚𝑎𝑥(𝑟𝐴)

0

𝑑𝜃𝐴2𝜋𝑟𝐴𝑠𝑖𝑛(𝜃𝐴) *(︁∫︁ 𝑅𝐵−𝑑

0

𝑑𝑟
[︀ ∫︁ 𝜃𝑚𝑎𝑥(𝑟)

0

𝑑𝜃(𝑟)2𝜋𝑟 sin(𝜃)
]︀
* 𝑝(𝑟, 𝑡)

+

∫︁ 𝑅𝐴

𝑅𝐵−𝑑

𝑑𝑟
[︀ ∫︁ 𝜃𝑚𝑎𝑥(𝑟)

0

𝑑𝜃(𝑟)2𝜋𝑟 sin(𝜃)
]︀
* 𝑝(𝑟, 𝑡)

)︁−1

(3.34)

𝜃𝐴−𝑚𝑎𝑥(𝑟) = 𝑐𝑜𝑠−1
(︁𝑚𝑎𝑥[𝑟2, (𝑅𝐵 − 𝑑)2] + 𝑑2 −𝑅2

𝐵

2𝑑 𝑚𝑎𝑥[𝑟, (𝑅𝐵 − 𝑑)]

)︁
(3.35)

Figure 3-5 provides a visual description of the relevant Case 2 variables. Variables for the

other cases are defined similarly. For any 𝑟𝐴 less than or equal to (𝑅𝐵 − 𝑑), the full angular

range of region 2 is available, i.e., 𝜃 ∈ (0, 𝜋). As 𝑟𝐴 increases from (𝑅𝐵 − 𝑑) to 𝑅𝐴, the available

positions within region 2 decrease to 0. We capture this dependence with the angle integration

limits, (0, 𝜃𝐴−𝑚𝑎𝑥), where 𝜃𝐴−𝑚𝑎𝑥 = 𝜋 for 𝑟𝐴 ≤ (𝑅𝐵 − 𝑑). The logic behind the form of 𝑤(𝑟𝐴) is

analogous to case 1, however.

Sampling 𝜃𝐴|𝑟𝐴, 𝑡

Sampling here is analogous to case 1, with updates to the available angle ranges for a given 𝑟𝐴.

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) =
1√

12𝜋𝐷𝐵𝑡
𝑒𝑥𝑝

(︂
−𝑟𝐵(𝜃𝐴)2

12𝐷𝐵𝑡

)︂
* 2𝜋ℎ𝑟𝑖𝑛𝑔 (3.36)

With 𝑟2𝐵(𝜃𝐴) = 𝑟2𝐴 + 𝑑2 − 2𝑟𝐴𝑑 𝑐𝑜𝑠(𝜃𝐴), ℎ𝑟𝑖𝑛𝑔 = 𝑟𝐴 𝑠𝑖𝑛(𝜃𝐴), and 𝜃𝐴 ∈ [0, 𝜃𝐴−𝑚𝑎𝑥].
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Case 3

Sampling 𝑟𝐴

In this case, the full range in 𝑟𝐴 (∈ [0, 𝑅𝐴]) is available. Therefore, no re-weighting of probabilities

is needed.

𝑝(𝑟𝐴|𝑡) =
1√

12𝜋𝐷𝐴𝑡
𝑒𝑥𝑝

(︂
− 𝑟2𝐴

12𝐷𝐴𝑡

)︂
(3.37)

Sampling 𝜃𝐴|𝑟𝐴, 𝑡

Sampling here is analogous to case 1, but with the full range of angles available.

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) =
1√

12𝜋𝐷𝐵𝑡
𝑒𝑥𝑝

(︂
−𝑟𝐵(𝜃𝐴)2

12𝐷𝐵𝑡

)︂
* 2𝜋ℎ𝑟𝑖𝑛𝑔 (3.38)

With 𝑟2𝐵(𝜃𝐴) = 𝑟2𝐴 + 𝑑2 − 2𝑟𝐴𝑑 𝑐𝑜𝑠(𝜃𝐴), ℎ𝑟𝑖𝑛𝑔 = 𝑟𝐴 𝑠𝑖𝑛(𝜃𝐴), and 𝜃𝐴 ∈ [0, 𝜋].

Case 4

Sampling 𝑟𝐴

Sampling here is analogous to case 2.

𝑤(𝑟𝐴) =

∫︁ 𝜃𝐴−𝑚𝑎𝑥(𝑟𝐴)

0

𝑑𝜃𝐴2𝜋𝑟𝐴𝑠𝑖𝑛(𝜃𝐴) *(︁∫︁ 𝑅𝐵−𝑑

0

𝑑𝑟
[︀ ∫︁ 𝜃𝑚𝑎𝑥(𝑟)

0

𝑑𝜃(𝑟)2𝜋𝑟 sin(𝜃)
]︀
* 𝑝(𝑟, 𝑡)

+

∫︁ 𝑅𝐴

𝑅𝐵−𝑑

𝑑𝑟
[︀ ∫︁ 𝜃𝑚𝑎𝑥(𝑟)

0

𝑑𝜃(𝑟)2𝜋𝑟 sin(𝜃)
]︀
* 𝑝(𝑟, 𝑡)

)︁−1

(3.39)

𝜃𝐴−𝑚𝑎𝑥(𝑟) = 𝑐𝑜𝑠−1
(︁𝑚𝑎𝑥[𝑟2, (𝑅𝐵 − 𝑑)2] + 𝑑2 −𝑅2

𝐵

2𝑑 𝑚𝑎𝑥[𝑟, (𝑅𝐵 − 𝑑)]

)︁
(3.40)

83



Sampling 𝜃𝐴|𝑟𝐴, 𝑡

Sampling here is also analgous to case 2.

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) =
1√

12𝜋𝐷𝐵𝑡
𝑒𝑥𝑝

(︂
−𝑟𝐵(𝜃𝐴)2

12𝐷𝐵𝑡

)︂
* 2𝜋ℎ𝑟𝑖𝑛𝑔 (3.41)

With 𝑟2𝐵(𝜃𝐴) = 𝑟2𝐴 + 𝑑2 − 2𝑟𝐴𝑑 𝑐𝑜𝑠(𝜃𝐴), ℎ𝑟𝑖𝑛𝑔 = 𝑟𝐴 𝑠𝑖𝑛(𝜃𝐴), and 𝜃𝐴 ∈ [0, 𝜃𝐴−𝑚𝑎𝑥].

Case 5

Sampling 𝑟𝐴

In this case, the full range in 𝑟𝐴 (∈ [0, 𝑅𝐴]) is available. Therefore, no re-weighting of probabilities

is needed.

𝑝(𝑟𝐴|𝑡) =
1√

12𝜋𝐷𝐴𝑡
𝑒𝑥𝑝(− 𝑟2𝐴

12𝐷𝐴𝑡
) (3.42)

Sampling 𝜃𝐴|𝑟𝐴, 𝑡

Sampling here is analogous to case 1, but with the full range of angles available.

𝑝(𝜃𝐴|𝑟𝐴, 𝑡) =
1√

12𝜋𝐷𝐵𝑡
𝑒𝑥𝑝

(︂
−𝑟𝐵(𝜃𝐴)2

12𝐷𝐵𝑡

)︂
* 2𝜋ℎ𝑟𝑖𝑛𝑔 (3.43)

With 𝑟2𝐵(𝜃𝐴) = 𝑟2𝐴 + 𝑑2 − 2𝑟𝐴𝑑 𝑐𝑜𝑠(𝜃𝐴), ℎ𝑟𝑖𝑛𝑔 = 𝑟𝐴 𝑠𝑖𝑛(𝜃𝐴), and 𝜃𝐴 ∈ [0, 𝜋].

3.5.3 Determining Bimolecular Reaction Locations by Rejection Sam-

pling

Because PDFs in each case may be complicated functions, we cannot always sample from them

directly. Instead, we first draw a sample of our variable x (i.e., 𝑟𝐴 or 𝜃𝐴) uniformly from its

feasible range. In order to determine whether this sample is accepted or rejected, we utilize an

envelope function, 𝑄(𝑥) whose probability density at all feasible points is at least as great as

that of the PDF from which we want an observation. The sample 𝑥 is accepted if 𝑞(𝑥) drawn

uniformly from [0, 𝑄(𝑥)] is less than 𝑝(𝑥).
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One potential issue is that volume exclusion should prevent sampled locations from leading

to particle overlap. We define two molecules to be overlapping if the distance between their

Gaussian means is less than 𝑅, the minimum allowed separation, and neither molecule has been

diffusing for longer than 𝑅2/6𝐷. In the event overlap is detected, a new location is sampled. This

procedure for handling volume exclusion in location sampling is not optimized for efficiency and

can significantly impact the run time as the particle density increases.

3.5.4 Simulation Boundaries

Figure 3-6 illustrates our method for ensuring all particles remain within the simulation volume.

We treat this volume as a cube bounded by planes about which a particle may be reflected if its

initially sampled position exceeds the plane. The algorithm samples an unconstrained reaction

location and the displacements for both particles are noted. Next, assume the reaction location

happens to be outside the simulation volume. Each molecule can be considered to have travelled

along a linear path from its initial location to the reaction location, with one piece of the path

within the simulation volume and one piece outside. Because the unconstrained spatial probability

densities describe radial displacements from either particle’s initially known location, application

of reflective boundary conditions need only guarantee both particles’ piecewise linear paths each

sum to the noted displacements, and terminate within the simulation volume.

This procedure is strictly correct only if the wait time sampling, i.e., computing the integrated

reaction propensities, is correct. The point (finite) particle reaction propensities described in

this paper do not take into account the boundaries of the simulation volume. Error is therefore

introduced in wait time sampling for molecules diffusing long enough to encounter a boundary.

However, given a wait time 𝑡, reaction location sampling depends only on the possible net

displacements of either particle after diffusing for 𝑡. We can therefore assume free diffusion to

sample the location and then use our reflecting procedure if necessary.
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Figure 3-6: (Left) Shown are applications of the reflective boundary condition after a position-
only-update event (e.g., E) or after a bimolecular reaction event (e.g., A&B, G&H). (Single
Reflection) In the bimolecular case, we reflect about an axis defined by the two intersection points
of the lines connecting the reactants with the product, and the boundary. This ensures that
the distances traveled by both particles remains the same. When these lines exit the simulation
box through the same face (e.g., A&B), the reflection axis is parallel to the face. When the
lines exit though different faces (e.g., G&H), the axis must be computed and the reflection
can be implemented with the Rodrigues rotation formula in the appropriate reference frame.
(Multiple Reflection) Depending on the location of the reactants and the distances they travel,
the post-reflection location may end up outside a different boundary, though to a lesser extent.
We simply need to update the reactant positions to be the boundary intersection point(s) and
reapply the reflection procedure. In principle, this procedure works for any simulation volume,
including those with curved boundaries. (Right) For a cubic simulation volume, we determine
through which face (and at what point) a reactant (A) first passed if it is found outside the
simulation volume. In this case, the pre-reflection location A’ exceeds the simulation volume
along more than 1 dimension which means it is necessary to compute 𝑑𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 for each 2d plane
exceeded by A’, and then compute the intersection point, I, for the face with minimum 𝑑𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡.
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Figure 3-7: Point particle representation. (Left) Time evolution of 1000 molecules in the Michaelis-
Menten model with DESSA-CS. Unimolecular rate constant 𝑘𝑢𝑛𝑖 = 0.1𝑠−1 (governing 𝐸𝑆 ⇒ 𝐸+𝑆
and 𝐸𝑆 ⇒ 𝐸 + 𝑃 ) and diffusion coefficient 𝐷 = 1𝜇𝑚2𝑠−1 are taken from Figure 5 of Chew et al.
[49]. In order to reproduce similar dynamics, we chose the intrinsic bimolecular rate constant
𝑘𝑏𝑖𝑚𝑜𝑙 = 2.5*107𝑠−1 (with 𝑅2

𝑒𝑛𝑐 = 0.012𝜇𝑚). (Right) The run time for the model increases roughly
linearly in log space with the number of molecules - [100,200,400,800,1600,3200,6400,12000,24000].

Figure 3-8: Finite particle representation. (Left) Time evolution of 1000 molecules in the
Michaelis-Menten model with DESSA-CS. Unimolecular rate constant 𝑘𝑢𝑛𝑖 = 0.1𝑠−1 (governing
𝐸𝑆 ⇒ 𝐸 + 𝑆 and 𝐸𝑆 ⇒ 𝐸 + 𝑃 ), diffusion coefficient 𝐷 = 1𝜇𝑚2𝑠−1, intrinsic bimolecular rate
constant 𝑘𝑏𝑖𝑚𝑜𝑙 = 5 * 10−1𝑠−1, and 𝑅𝑒𝑛𝑐 = 0.01𝜇𝑚 are taken from Figure 5 of Chew et al. [49].
(Right) The run time for the model increases roughly linearly in log space with the number of
molecules - [100,200,400,800,1600,3200,6400,12000].
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1000 Molecules, 100s Simulation Time

Local Workstation: Ubuntu 14.04 LTS, 128 GB memory, Intel Xeon E5-2630 2.40GHz

[49] Workstation: Ubuntu 16.04 LTS, 48 GB memory, Intel Xeon X5680 3.33GHz

Software Run Time Sim Parameters Space / Time Steps Workstation

DESSA-CS 100s 𝑟 = 0𝑛𝑚, 𝑙𝐵 = 0.1 off-lattice / sampled local

DESSA-CS 728s 𝑟 = 10𝑛𝑚, 𝑙𝐵 = 0.1 off-lattice / sampled local

eGFRD 10,561s 𝑟 = 10𝑛𝑚 off-lattice / variable local

eGFRD 2,412s 𝑟 = 1𝑛𝑚 off-lattice / variable [49]

eGFRD 3,246s 𝑟 = 10𝑛𝑚 off-lattice / variable [49]

Smoldyn 20s ∆𝑡 = 1𝑚𝑠 off-lattice / fixed [49]

Smoldyn 298s ∆𝑡 = 67𝜇𝑠 off-lattice / fixed [49]

Spaciocyte MLM 13s ∆𝑡 = 1𝑚𝑠, 𝑟 = 38.73𝑛𝑚 spatial lattice / fixed [49]

Spaciocyte MLM 276s ∆𝑡 = 67𝜇𝑠, 𝑟 = 10𝑛𝑚 spatial lattice / fixed [49]

Table 3.1: Method Comparison on Updated Benchmark from Chew et al. [49]. Diffusion
coefficients are 1𝜇𝑚2𝑠−1. The max allowed diffusion time was 40s. The local eGFRD simulation
was run using the open source simulation environment E-Cell version 4 [138].
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Figure 3-9: Time evolution of 1000 molecules in the Michaelis-Menten model with eGFRD in
the E-Cell v4 environment. Unimolecular rate constant 𝑘𝑢𝑛𝑖 = 0.1𝑠−1 (governing 𝐸𝑆 ⇒ 𝐸 + 𝑆
and 𝐸𝑆 ⇒ 𝐸 + 𝑃 ), diffusion coefficient 𝐷 = 1𝜇𝑚2𝑠−1, intrinsic bimolecular rate constant
𝑘𝑏𝑖𝑚𝑜𝑙 = 1 * 10−2𝑠−1, and particle radius 𝑟 = 0.01𝜇𝑚 are taken from Figure 5 of Chew et al. [49]

3.6 Results

3.6.1 Application: Michaelis-Menten

We applied DESSA-CS to the well known Michaelis-Menten enzymatic reaction system within a

90𝜇𝑚3 volume. The original benchmark was developed by Andrews [6] and updated by Chew

et al. [49] to account for the extreme run time demands of eGFRD. Figures 3-7 and 3-8 display

our results for the updated benchmark, displaying the population dynamics for molecular species

E, S, ES and P, which obey the binding rules 𝐸 + 𝑆 ⇔ 𝐸𝑆 ⇒ 𝑃. Figure 3-9 shows comparable

results for eGFRD. Simulation run times for the point particle and finite particle representations

respectively were 20 seconds and 90 seconds, roughly two orders of magnitude faster than eGFRD

(see Figure 5 of Chew et al. [49] and Table 3.1).

In the point particle simulations, the data set (computed before run time) consisted of 3000

linearly spaced distances from 𝑅𝑒𝑛𝑐 to 2*𝑑𝑚𝑎𝑥𝐷, where 𝑑𝑚𝑎𝑥𝐷 corresponds to the mean square

displacement due to diffusion at 𝑇𝑚𝑎𝑥𝐷, the max allowed diffusion time. At each distance, the

integrated propensity was computed at 50,000 time points (i.e., variances). There were 40,000
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linearly spaced time points from 1 * 10−6 to 1 * 10−2 where the curvature is often highest, and

10,000 linearly spaced time points from 1 * 10−2 to 𝑇𝑚𝑎𝑥𝐷. This 3000 by 50,000 data set was

computed in 14.5 minutes in the Go language (golang). The propensity function integration error

for a given distance value and time duration depends on the number of integration intervals -

here 50,000 for the full duration. We used the trapezoid method, whose error at each time point

can be upper bounded by 𝐸𝑟𝑟(∆𝑡) = Δ𝑡3

12𝑁2 *𝐾 * 𝑐, where K is the maximum magnitude of the

second derivative of the CDF, c is the intrinsic reaction rate, and N is the number of integration

intervals over the duration ∆𝑡. These are not likely to be tight upper bounds due to the presence

of inflection points in the CDF graph. Our golang integration code, including a method to print

error bounds and integrals to text files, can be found in the GitHub repository.

In the finite particle simulations, the data set consisted of 3000 integrated propensity curves

at the same distance values, each of which was evaluated at 5500 time points. Computation of the

integrated propensity data set required ∼ 1𝑚. Performing these numerical integrations is possible

in Matlab but requires symbolic computation to evaluate the integrands. The result was that the

same data set takes on the order of days to compute. In golang, the necessary numeric precision

was achieved using its big math package which implements arbitrary-precision arithmetic.

In general, both the finite and point particle representations run more efficiently when each

molecule is allowed to diffuse farther outside the boundaries before wait times are sampled. If we

refer to cubic simulation volume as having dimension (𝐿𝜇𝑚)3 and the fraction of the cube length

beyond which a particle may diffuse as 𝑙𝐵, then it is useful to analyze the behavior of simulations

as these vary. The Michaelis-Menten Benchmark requires that 90𝜇𝑚3 = 𝐿(1 + 𝑙𝐵). In Figure 3-10

we plot simulation trajectories at multiple values of 𝑙𝐵 (i.e., 𝑙𝐵 = 0.03, 𝑙𝐵 = 0.1, and 𝑙𝐵 = 0.3) for

the finite representation and it is apparent that while the kinetics do not change significantly,

the run time does. The respective run times are 2693s, 777s, and 157s. Figures 3-11 and 3-12

illustrate this more fully for both representations. As the relative distance allotted to the cube’s

length increases, so does the run time. This results from the fact that as 𝑙𝐵 decreases, so does

the maximum diffusion time of molecules near the boundary, leading to a much higher number of

position updates compared with the roughly unchanging number of reaction events. Even though

the kinetics do not change significantly, they do depend on 𝑙𝐵. The effective association rate is

inversely proportional to 𝑙𝐵. Of course, if the wait time sampling procedure – specifically the
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Figure 3-10: Varying the simulation volume’s boundary parameter, finite particle representation.
Time evolution of 1000 molecules in the Michaelis-Menten model with DESSA-CS. Unimolecular
rate constant 𝑘𝑢𝑛𝑖 = 0.1𝑠−1 (governing 𝐸𝑆 ⇒ 𝐸 + 𝑆 and 𝐸𝑆 ⇒ 𝐸 + 𝑃 ), diffusion coefficient
𝐷 = 1𝜇𝑚2𝑠−1, boundary condition parameter 𝑐 = 1.2 * 103𝑠−1, and 𝑅𝑒𝑛𝑐 = 0.01𝜇𝑚. From left to
right: 𝑙𝐵 = 0.03 (runtime = 2693s), 𝑙𝐵 = 0.1 (runtime = 777s), and 𝑙𝐵 = 0.3 (runtime = 157s).

calculation of integrated propensities – took into account the simulation walls, reaction locations

could be determined without incurring error by sampling locations as if no boundary wall existed

and then applying our reflection procedure to return out of box positions to the simulation volume.

Future work will consider methods for updating our free space reaction propensities in this way.
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Figure 3-11: Finite Particle Representation. Varying the boundary parameter 𝑙𝐵 in the Michaelis-
Menten Benchmark test. (A) 𝑙𝐵 = 0.01, run time 5382s. (B) 𝑙𝐵 = 0.1, run time 273s. (C) 𝑙𝐵 = 0.3,
run time 69.8s. (D) 𝑙𝐵 = 0.5, run time 47.3s. The kinetics depend weakly on 𝑙𝐵. Intrinsic reaction
rate 5e-1𝑠−1
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Figure 3-12: Point Particle Representation. Varying the boundary parameter 𝑙𝐵 in the Michaelis-
Menten Benchmark test. (A) 𝑙𝐵 = 0.01, run time 2380s. (B) 𝑙𝐵 = 0.1, run time 78.3s. (C)
𝑙𝐵 = 0.3, run time 34.3s. (D) 𝑙𝐵 = 0.5, run time 25.7s. The kinetics depend weakly on 𝑙𝐵.
Intrinsic reaction rate 2.5e7𝑠−1.
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Chapter 4

Immune Cell Signaling

4.1 Project Background

In previous work [215], Roybal and colleagues used fluorescence microscopy in conjunction with

a computational image analysis pipeline to investigate the mechanism by which costimulation

regulates actin dynamics in T cells. T cells are activated primarily by direct interaction with

antigen presneting cells (APCs) through recognition of specific peptides on the APC surface.

Essential to this recognition process is the parallel engagement of costimulatory receptors on the

T cell, e.g., costimulatory receptor 28 (CD28), with their associated ligands on the APC, e.g., the

B7 family ligands CD80 and CD86.

T cell activation stimulates a rapid and transient accumulation of actin in a region known

as the immunological synapse at the interface with the APC. The precise mechanisms by which

costimulation contributes to the regulation of T cell actin dynamics are unknown, however

these dynamics have been shown to be critical for many aspects of T cell functioning, including

spatiotemporal organization, APC coupling and transcription regulation [271, 187, 275, 153, 216].

Additionally, because actin regulation is a complex phenomenon dependent on the integrated

interactions of numerous key regulators, each of whose functions has been established individually

by genetic means, there is a need to focus on system function upon physiological perturbation

rather than on individual protein function per se. For this reason, Roybal et al. [215] carried out

flourescence experiments and computational analyses designed to monitor changes in the behavior

of eight core actin regulators under two conditions: full stimulus and a costimulation-blocked
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perturbation.

Building on this recent work, we investigate whether simple kinetic models can account for

the spatially dependent concentration trajectories of actin and its core regulators observed in T

cell-APC conjugates under each condition. The broader goal is to consider the role of spatial

organization in signaling networks and to learn relationships between proteins without assuming

a priori knowledge of the functions of the network derived from traditional experiments, e.g.,

genetic screens of single targets.

The kinetic model we utilize assumes actin and its regulators can each interact with T-cell

receptors (TCR), but not with each other. More complex models with higher order interactions

(e.g., proteins A and B must interact with TCR before protein C could) were tentatively explored,

however we concluded that they offered too much flexibility to be reliably fit. While the model

we describe is certainly biologically incomplete, conclusions drawn from it may still be valid and

relevant.

4.2 Methods

Data Preprocessing

The subcellular localization of actin and seven primary actin regulators was determined by in

vitro fluorescence imaging [215]. These are: Actin, ARP3, Cofilin, Coronin1A, CPalpha1, HS1,

WASP and WAVE2, and they are referred to as proteins 1-8. The experimental procedure,

including green fluorescent protein (GFP) tagged imaging, was performed sequentially for each

actin regulator. Voxel intensities were normalized to the fraction of total fluorescence for each

"sensor", i.e., for each GFP tagged protein type, and average concentrations of the sensors were

earlier determined in [215]. Thus, we have access to absolute concentrations within each voxel.

Following Ruan et al. [218], we began with voxel level concentration data (6628 voxels x 8 proteins

x 12 time points) which was subsequently k-means clustered into spatial regions showing similar

spatiotemporal patterns. Various numbers of clusters were originally tried with the result that

three gave the highest Calinski Harabasz criterion, a metric for evaluating cluster performance

when no ground truth is known. We therefore clustered all proteins and time points with 𝑘 = 3
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to establish the regions later identified with the immunological synapse (region 1), the cytosol

(region 2) and the nucleus (region 3). Fluorescence intensities were measured at twelve time

points relative to synapse formation: -40, -20, 0, 20, 40, 60, 80, 100, 120, 180, 300, and 420s. All

concentrations are expressed in 𝜇𝑀 .

ODE rule-based model

We implemented a BioNetGen [83] model based on the following reaction rules and rates.

𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 ←→ 𝑝𝑖𝑐𝑦𝑡𝑜𝑠𝑜𝑙 (𝑘𝑖
𝑆𝐶 , 𝑘𝑖

𝐶𝑆)

𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 ←→ 𝑝𝑖𝑛𝑢𝑐𝑙𝑒𝑢𝑠 (𝑘𝑖
𝑆𝑁 , 𝑘𝑖

𝑁𝑆)

𝑝𝑖𝑛𝑢𝑐𝑙𝑒𝑢𝑠 ←→ 𝑝𝑖𝑐𝑦𝑡𝑜𝑠𝑜𝑙 (𝑘𝑖
𝑁𝐶 , 𝑘𝑖

𝐶𝑁)

0 −→ 𝑇𝐶𝑅 (𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑡 < 0)

𝑇𝐶𝑅 −→ 0 (𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑡 > 0)

𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 + 𝑇𝐶𝑅←→ [𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒.𝑇𝐶𝑅] (𝑘𝑖
𝑜𝑛, 𝑘𝑖

𝑜𝑓𝑓 , 𝑡 < 0)

𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒 + 𝑇𝐶𝑅←→ [𝑝𝑖𝑠𝑦𝑛𝑎𝑝𝑠𝑒.𝑇𝐶𝑅] (𝑓𝑜𝑛 * 𝑘𝑖
𝑜𝑛, 𝑓𝑜𝑓𝑓 * 𝑘𝑖

𝑜𝑓𝑓 * 𝑒𝑥𝑝(−𝑡 * ℎ𝑖
𝑑𝑒𝑐𝑎𝑦), 𝑡 > 0)

These ODEs describe an independent binding model in which the concentration trajectory of

each protein does not depend on concentrations of the others. At the third time point (𝑡 = 0),

the TCR activation ceases and deactivation begins. When bound to the TCR, proteins remain

immobile and within the synapse region. Only after dissociation can a TCR molecule deactivate,

thereby preventing further binding reactions. It is important to note, however, that binding may

still occur in the synapse beyond 𝑡 = 0 as long as the population of TCR remains above zero.

Additionally, at the third time point the binding rates switch to their post synaptic formation

values with the off rate allowed to decrease over time by means of the exponential decay factor.

The decrease in the late time off-rate was usually minor or zero, but included to tune the rate of

return to equilibrium concentrations following the spike in the synapse region.
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Within RuleBender [112], a Matlab script and associated Cvode-mex implementation of the

BioNetGen model were generated, allowing us to integrate the ODE solutions within a larger

Matlab pipeline. Numerical integration was carried out by CVODE, a package within the Sundials

suite of equation solvers [52].

The Objective Function

Note: The objective function design and parameter optimization methodology were both developed

at an early stage of the work before we incorporated BioNetGen and Cvode to handle the numerical

integrations. At that time, simulation of the model entirely within Matlab was orders of magnitude

slower. The need to minimize the number of objective function evaluations led us to consider

modifications to a traditional RMSD objective function. Additionally, we initially tried SNOBFIT

as well as our novel optimization algorithm described in Chapter 2 without much success, leading

us to develop the parameter optimization methodology described in the next section.

We treat the data fitting problem as an objective function (error) minimization. While the

root mean square deviation (RMSD), evaluated element wise at each time point between model’s

output and the experimental data, is often the appropriate choice of error function, we found it

useful to alter it in several ways. First, both data sets were scaled such that all values subsequent

to the 𝑡 = −40 value of a given curve represent percentage change relative to the 𝑡 = −40 value.

This helped to make the optimization equally sensitive to concentrations in each region. Second,

we added a vector term to the error that relates concentrations at two time points as opposed to

the single time point used with RMSD. It was often the case that two models with differently

shaped curves produced roughly equal RMSDs. With the addition of the vector error, the curve

whose shape better matched the experimental data was assigned a lower overall objective value.

Summations are over all regions and time points simulated. The resulting objective function can

be summarized as:

𝐹 (x) = Σ 𝑅𝑀𝑆𝐷(x) + Σ||r− s(x)||

where

r = [𝑟𝑒𝑎𝑙𝐷𝑎𝑡𝑎(𝑡𝑛)− 𝑟𝑒𝑎𝑙𝐷𝑎𝑡𝑎(𝑡𝑛−1)]/[𝑡𝑛 − 𝑡𝑛−1]
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s = [𝑠𝑖𝑚𝐷𝑎𝑡𝑎(𝑡𝑛)− 𝑠𝑖𝑚𝐷𝑎𝑡𝑎(𝑡𝑛−1)]/[𝑡𝑛 − 𝑡𝑛−1]

Parameter Optimization Methodology

Our ODE model consists of 13 parameters: the region transfer rates (𝑘𝑖
𝑆𝐶 , 𝑘

𝑖
𝐶𝑆, 𝑘

𝑖
𝑆𝑁 , 𝑘

𝑖
𝑁𝑆, 𝑘

𝑖
𝑁𝐶 , 𝑘

𝑖
𝐶𝑁 ),

the TCR activation rates (𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒), the early time binding rates (𝑘𝑖
𝑜𝑛, 𝑘

𝑖
𝑜𝑓𝑓), the late

time factors (𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ) which when multiplied with the early rates give the late time binding rates,

and the late time off rate exponential decay parameter ℎ𝑖
𝑑𝑒𝑐𝑎𝑦. Due to the simplifying independent

binding assumption, we were able to optimize each sensor’s (i.e., each protein’s) parameters

separately. After manual trial and error, approximate ranges were determined for each parameter

and used to construct a large grid from which to start objective function minimization.

Our optimization strategy is a heuristic grid search. It begins by identifying promising regions

from a large initial grid and, based on these regions, constructs finer grids over more limited

parameter ranges. The initial grid is computed using Matlab’s ngrid function with a set of grid

vectors specifying the range of values for each parameter as input. In this way, all combinations

of parameter values are used. The initial grid’s objective values are sorted from lowest to highest

and then divided into a number of groups.

Six Region
Transfer
Rates

TCR
On Rate

TCR
Off Rate

On
Rate

Off
Rate

Late On
Factor

Late Off
Factor

Late Off
Decay

Grid Vector Min 0.001 0.0904 0.45 0.05 0.01 0.001 0.05 0

Grid Vector Max 0.2 0.6 0.45 2 1 1 1 0

Grid Vector Length 5 4 1 5 5 5 5 1

Table 4.1: Initial Grid of size [39,062,500,13]. Each of the 13 grid vectors is linearly spaced from
its minimim to maximum values. These parameter ranges were discovered from manual trial and
error.

The optimization algorithm begins by training a decision tree classifier using the grid points

as observations and their associated group rankings as class labels. In this way, we learn the

relationships between parameters that distinguish points with lower and higher objective values.
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For example, group 1 (containing points with the lowest objective values) may be described by a

number of paths in the decision tree, each leading to leaf nodes with class label 1. These paths

are logical conjunctions, e.g., 𝑝𝑎𝑟𝑎𝑚1 <= 𝑎 & 𝑝𝑎𝑟𝑎𝑚3 > 𝑏 & 𝑝𝑎𝑟𝑎𝑚6 >= 𝑐 & ... for numerical

constants 𝑎, 𝑏, 𝑐, 𝑒𝑡𝑐. The method we used to divide the sorted objective values into groups is

k-means clustering. Due to memory limitations in Matlab on our machine, only 20,000 points

are used: the top 10,000 points and 10,000 logarithmically scaled points from those remaining.

The number of clusters can be chosen manually. Our default was 𝑘 = 30 and the top 10 clusters

merged into a single cluster. The decision tree together with input points belonging to cluster

1 are then used to generate a "local grid" constructed from grid vectors for each parameter.

These grid vectors’ lower and upper bounds ("lb,ub") are first set to the minimum and maximum

parameter values seen in the cluster, respectively. Next, each is extended by an amount equal to

the standard deviation of the corresponding parameter evaluated over all points in the cluster:

𝑙𝑏𝑝𝑎𝑟𝑎𝑚 𝑗 = 𝑚𝑖𝑛𝐶𝑙𝑢𝑠𝑡𝑒𝑟1(𝑝𝑎𝑟𝑎𝑚 𝑗)− |𝑠𝑡𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟1(𝑝𝑎𝑟𝑎𝑚 𝑗)|

𝑢𝑏𝑝𝑎𝑟𝑎𝑚 𝑗 = 𝑚𝑎𝑥𝐶𝑙𝑢𝑠𝑡𝑒𝑟1(𝑝𝑎𝑟𝑎𝑚 𝑗) + |𝑠𝑡𝑑𝐶𝑙𝑢𝑠𝑡𝑒𝑟1(𝑝𝑎𝑟𝑎𝑚 𝑗)|

If a lower bound becomes negative, it is set to zero. For any parameter appearing in the DT

path’s logical conjunction, the appropriate bound is updated to that given in the path. In this

way, the algorithm retains information about what parameter ranges lead to low objective values.

The length of each grid vector determines the resolution of the grid. Generally, higher resolution is

desirable but must be balanced by memory and run time constraints as the total number of points

grows quickly. We would like higher resolution along parameters whose objective values vary

on shorter length scales and less resolution along parameters whose objectives vary more slowly.

We infer the relative differences in length scales by training a Gaussian process (GP) model of

the objective function on the top 10,000 points from the initial large grid. The kernel function

used is the rational quadratic with automatic relevance determination, i.e., a separate length

scale hyperparameter for each dimension j of the input. Each learned kernel hyperparameter,

𝑙𝑘(𝑗), is sensitive to the number of training points and so are not used directly as the grid vector

spacings. However, their rankings are fairly stable to changes in training set size, e.g., it may

always be the case that 𝑙𝑘(3) > 𝑙𝑘(4) suggesting the model is less sensitive to changes in 𝑝𝑎𝑟𝑎𝑚3
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than it is to changes in 𝑝𝑎𝑟𝑎𝑚4. The length of each region transfer rate’s grid vector (i.e.,

resolution 𝑓𝑗) is set according to the formula: 𝑓𝑗 = 𝑐𝑒𝑖𝑙[𝑚𝑎𝑥(lk)/𝑙𝑘(𝑗)]. These values are then

individually raised or lowered as needed. For example, if the resulting grid vector is too long

([
∏︀6

𝑗=1 𝑓𝑗 ] > 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), each 𝑓𝑗 is lowered by one starting with the highest value. Similarly,

if the resulting grid vector’s length is too low, it is raised to the lower threshold, e.g., 3. The grid

resolutions for early time binding rates are defined similarly: 𝑓𝑗 = 𝑐𝑒𝑖𝑙[𝑙𝑜𝑔(𝑚𝑎𝑥(lk)/𝑙𝑘(𝑗))] + 2; as

are the late time factors: 𝑓𝑗 = 𝑐𝑒𝑖𝑙[𝑙𝑜𝑔(𝑚𝑎𝑥(lk)/𝑙𝑘(𝑗))] + 2. Again, as with the six region transfer

rate resolutions, the four binding rate resolutions are individually raised to a lower threshold (e.g.,

2) or lowered by one in decreasing order if [
∏︀12

𝑗=9 𝑓𝑗] > 𝑈𝑝𝑝𝑒𝑟𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

In addition to the local grid, we also generate an "exploratory grid" constructed from grid

vectors based on all decision tree paths in the top N clusters. In our simulation experiments,

points from the local grid tend to improve on already good fits from the initial large grid. However,

for certain proteins (e.g., Actin, which requires larger TCR activation rates), only points from

the exploratory grid significantly improve on the best point from the initial large grid.
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4.3 Results

In all population trajectory figures, the simulation time on the x-axis starts at 0, with all subsequent

time points offset by 40s compared with the measured fluorescence intensities described in the

Data Processing section. The real data is shown in black and our simulations are shown in red.

The 13 parameters and objective function value are displayed directly above the corresponding

plots. We begin in Figures 4-1 - 4-8 with the results of optimizing a single model in which each

of the 13 parameters is shared across all proteins. The sum of errors across all proteins was

approximately minimized. If this simpler, less flexible model were capable of explaining the data

there might be little reason to expect a more flexible model to be necessary.

However, it is clear that while certain of the proteins’ simulated trajectories agree well with the

experimental data, many do not. While a truly exhaustive search was not possible, We conducted

simulations in larger search spaces and with finer grids with the no qualitative differences in the

outcome. That is, different parameter sets can be found allowing some other combination of

proteins (/regions) to be fit well, but with many other fit poorly.

We next moved to the independent binding model where the parameter sets are specific to each

protein. Figures 4-9 - 4-16 show the best fits for these parameter optimizations.
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Figure 4-1: Protein 1, Actin. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-2: Protein 2, ARP3. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-3: Protein 3, Cofilin. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-4: Protein 4, Coronin1A. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-5: Protein 5, CPalpha1. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-6: Protein 6, HS1. The parameter sets were shared among all proteins during op-
timization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-7: Protein 7, WASP. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-8: Protein 8, WAVE2. The parameter sets were shared among all proteins during
optimization. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-9: Protein 1, Actin. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Block-
ade conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-10: Protein 2, ARP3. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Block-
ade conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-11: Protein 3, Cofilin. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.

113



Figure 4-12: Protein 4, Coronin1A. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-13: Protein 5, CPalpha1. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-14: Protein 6, HS1. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Block-
ade conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-15: Protein 7, WASP. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Block-
ade conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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Figure 4-16: Protein 8, WAVE2. The parameter set was optimized independently from all
other proteins. The top and bottom rows correspond to the Full Stimulus and B7 Blockade
conditions, respectively. Concentrations are expressed in 𝜇𝑀 . The optimal parameter set,
(𝑘𝑆𝐶 , 𝑘𝐶𝑆, 𝑘𝑆𝑁 , 𝑘𝑁𝑆, 𝑘𝑁𝐶 , 𝑘𝐶𝑁 ,𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, 𝑘𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒,𝑘𝑜𝑛, 𝑘𝑜𝑓𝑓 ,𝑓𝑜𝑛, 𝑓𝑜𝑓𝑓 ,ℎ𝑑𝑒𝑐𝑎𝑦), and the optimal objec-
tive value are displayed for each condition.
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4.4 Discussion

Our kinetic model allows each protein’s parameters to vary independently. The basic strategy

was to start with "small" parameters and only increase them if necessary to fit the data. See

Table 4.1 for a description of the initial grid. The region transfer rates began in the range

[0.001,0.2] and the algorithm was able to fit all proteins without any exceeding 0.3. The TCR

activation rate (𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒, parameter 7 of 13) began in the range [0.0904, 0.6]. The models for

Actin (protein 1) and Coronin1A (protein 4) could not be fit without the TCR activation rate

reaching a certain minimuim threshold. Actin required roughly an order of magnitude larger

rate (0.9) and Coronin1A a somewhat smaller increase (0.26) over the default value for all other

proteins of 0.09. See Figure 4-17. Our hypothesis for Actin is that, because it can aggregate

(i.e. self-interactions which are not an explicit part of our model), TCR binding is acting as a

surrogate. A biological interpretation for Coronin1A is still being considered.

With caveats, the model is not sensitive to changes in transfer rate parameters if their ratios

remain constant. In Figure 4-18, we plot for protein 1 how the objective value changes as we vary

the transfer rates while maintaining a constant ratio among them. Each subfigure represents a set

of points in which all six transfer rates 𝑘𝑖 are first scaled by 1
𝑘1

(to ensure a constant ratio) and

then multiplied by a magnitude factor. This magnitude factor is displayed on the x-axis. The

original point on which each data set is based is displayed in green. Below a magnitude of roughly

10−2, the model becomes increasingly sensitive. Figure 4-19 displays a log scaling on the x-axis.
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Figure 4-17: Protein 4, Coronin1A. Concentrations are expressed in 𝜇𝑀 . (A) The lowest objective
point in the initial grid. (B) The best 10,000 objective values plus 10,000 logarithmically spaced
points from the remaining (sorted) 39,052,500 points in the grid. This plot shows the full range of
objective values seen in the initial grid. (C) The best point in the initial grid with a "low" TCR
activation rate of 0.0904. This low rate is compatible with good fits for most other proteins, but
not Coronin1A (either condition) nor Actin (either condition). (D) Zoomed in plot showing the
top ∼ 300 points from (B) and clusters 1 to 15. (E) The best point after a round of optimization.
(F) Low objective points from the "local grid" and the "exploratory grid", respectively.
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Figure 4-18: Sensitivity analysis for Protein 1, b7B condition. Best scoring point from optimization
(top left subplot) and 24 points sampled from within 0.2 logs surrounding the best point (remaining
subplots). For each subplot, shown in green is the objective value. The blue points show how the
objective value changes as the transfer rates change such that their magnitudes increase by a
common factor (given on the x-axis) but their ratios remain the same. Horizontal lines indicate
no change in the objective as the transfer rates change, so long as their ratios remain the same.
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Figure 4-19: Sensitivity analysis for Protein 1, b7B condition. X-axis is log scaled. This figure is
otherwise equivalent to 4-18. This figure indicates that when the transfer rates are very small,
the statement that only transfer rate ratios matter is false. The actual magnitudes are important
as these rates approach zero.
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Sensitivity Analysis

Our parameter optimization assumes the experimental data, and therefore objective function

evaluations, are noise free. Our sensitivity analysis therefore begins with the objective function

itself. In future work, we will focus on other model observables, e.g., the widths of the synapse

spikes and associated cytosol/nucleus inverse spikes. Because the objective function is nonconvex,

we expect linear methods to have highest applicability in relatively small neighborhoods of the

parameter space. The primary goal is to summarize how the ability of the differential equation

model to explain the experimental data changes as the parameters change. Our general procedure

is as follows. First, we construct a latin hypercube grid in log space surrounding the best point

found using the optimization pipeline. The number of samples, 𝑁𝑠 depends on search space size

(𝑛𝑙𝑜𝑔𝑠). 𝑁𝑠 = 500 * (103+𝑛𝑙𝑜𝑔𝑠). Thus for 𝑛𝑙𝑜𝑔𝑠 from 10−3 to 3, we have 𝑁𝑠 from 5e5 to 5e8. Each

of these points is then translated to linear space and their objective functions evaluated. For

each data set, i.e., for increasing search space size, we determine the correlation between the true

objective function and a reconstruction generated as a linear combination of the linear regression

gradient with the input points: 𝐹 (x) = 𝑎*𝑥1 + 𝑏*𝑥2 + ...+𝑚*𝑥13 where [𝑎, 𝑏, ...,𝑚]𝑇 = 𝐺𝑟𝑎𝑑(𝐹 ).

In this way we illustrate the extent to which the objective function varies linearly around the

optimal point. See Figures 4-20 and 4-21 for the Full Stimulus and b7 Blockade conditions,

respectively. In each figure, we plot the search space size first on a linear scale and then on

a logarithmic scale. It is interesting to note the splitting behavior for certain proteins below

roughly ∼ 10−2 logs search space size. One possible explanation is that, instead of a single 12d

hyperplane capturing variation in the data in the neighborhood of the optimal point, there is a

lower dimensional manifold capturing variation and many other directions characterized by high

noise. Focusing on the upper points in the split, the explanation seems to be that the objective

surface is locally linear nearby the optimal point. As we leave the neighborhood of the optimal

point (roughly ∼ 10−1) and large scale trends emerge, we see the correlation slowly rise.

We also investigated the correlation of the objective function with its projection onto each PCA

axis. No clear inference is drawn from this analyis but we show the result for protein 1 (Actin,

Figure 4-22).
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Figure 4-20: Sensitivity analysis for all proteins in the Full Stimulus condition. (y-axis) A measure
of linearity of the objective function space vs (x-axis) the size of the search space in terms of the
number of logs above and below each parameter in the best point found after optimization.

Figure 4-21: Sensitivity analysis for all proteins in the b7B Condition.
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Figure 4-22: Sensitivity analysis for Protein 1, b7B condition. For increasing search space size,
i.e., maximum distance along each dimension in log space from the best scoring parameter vector,
the correlation is plotted between the true objective value and a number of reconstructions. Each
reconstruction is generated as a linear combination of parameter vectors and a corresponding
vector (e.g., linear regression gradient or PCA component). PCA was performed without first
centering the data. The plot shows that the objective space is well approximated by a linear
model only very close to the optimal point. The increasing correlation beginning around 0.25 logs
on the x-axis is due to the increasing objective value outside the neighborhood of the optimal
point.
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Chapter 5

Conclusions

In this thesis we have worked to develop computational methods for better understanding aspects

of molecular self-assembly, general reaction-diffusion chemistry and immune cell signaling.

We have developed a novel method for efficient Bayesian parameter inference from rule-based

models of molecular self-assembly and demonstrated it for fitting stochastic and deterministic

models of viral self-assembly to simulated SAXS or SANS data. Our results show that for

stochastic systems of low to moderate dimension, treating the objective function as being

separately generated by multiple Gaussian processes can be an effective way to discover its

structure. When placed within a Bayesian optimization framework, this translates to efficiently

discovering locally optimal regions of the parameter space.

We next presented a novel event-based method for simulating reaction diffusion systems in

continuous space and in the presence of planar or curved boundaries. As in the Gillespie algorithm

and related methods, we sample bimolecular reaction waiting times by utilizing propensity

functions. However, with the introduction of 3d space, the reaction propensities now depend

explicitly on the time reactants diffuse, allowing them to encounter one another. The result is

that we integrate the propensity function of each reactant pair in order to determine whether

(and when) a reaction is possible in a given duration. While the method is inspired by ideas from

GFRD and eGFRD, our method for sampling reaction locations given the waiting time is, to our

knowledge, novel relative to other spatial simulation methods. For point particles, we rely on

two assumptions: (1) that reactions must happen in the region both reactants’ diffusion spheres

overlap and (2) that the probability distributions characterizing the possible distances either
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reactant has traveled are Gaussian and independent. This implies there are rings of equiprobable

points at constant distance from the Gaussian means of the reactants and suggests a method to

sample such a ring: first, sample a distance, 𝑟𝐴 from one reactant, and then sample the angle

with respect to the axis connecting the means given 𝑟𝐴. Each ring is uniquely determined by

this distance and angle, and the reaction location can then be selected uniformly at random

from on the ring. In the case of molecules with finite size, Green’s functions governing radial

separation must be used for wait time sampling, however the same ring sampling procedure

applies to reaction locations.

We compared our method with its most relevant competitor, eGFRD, on the modified

Michaelis-Menten benchmark model described in Chew et al.[49]. The dynamics displayed by

eGFRD, Spatiocyte (implementing a microscopic lattice method), and Smoldyn are quantitatively

similar. DESSA-CS shows a substantial improvement over the run time of eGFRD, achieving run

times generally comparable to the discrete-time alternatives Smoldyn and Spaciocyte MLM.

In general, both the finite and point particle representations run more efficiently when each

molecule is allowed to diffuse farther outside the boundaries before wait times are sampled. In

the case of a cubic volume in which the sum of the cube length and maximal distance a particle

may diffuse beyond the boundary remains constant, the overall reaction rate changes slowly as

the diffusion distance increases. In future work we will precisely characterize the error introduced

with changing these lengths.

Finally, we investigated T-cell-Actin dynamics in the presence of antigen presenting cells

through the lens of a simple kinetic binding model. We were able to fit the model and learned that

Actin and the regulator Coronin1A show qualitatively different dynamics than the remaining six

proteins. This project is an on-going collaboration and will continue to develop more biologically

realistic kinetic models, perhaps incorporating a priori knowledge gained from genetic assays,

and possibly using simulations with more spatial resolution. One important future direction will

involve taking into account the sources of error noise present in spatiotemporal concentration data,

both at the voxel level and at the level of the inferred cell regions (synapse, cytosol and nucleus).

Currently, we treat these regions as noise free averages over subsets of voxels and therefore the

objective function evaluations are also noise free.
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5.1 Future Directions and Some Speculation

Future work for the self-assembly inference pipeline in the short term should prioritize obtaining

real world time resolved data. On the computational side, assuming spatial simulations are

available, progress would require revisiting the assumptions made when translating assembly

simulations into in silico experimental data. Currently we extrapolate the single subunit scattering,

obtained from the program CRYSOL, to the total system scattering by making a dilute solute

assumption. That extrapolation depends on properly computing structure factors which depend

on the spatial distributions of the subunits. In the long term, progress will involve the development

of more flexible computational models capable of representing more than the simple binding

kinetics of rigid structures. Capsid oligomers likely undergo deformations and there are important

interactions with scaffolding proteins and genetic material.

DESSA-CS as presented leaves several avenues for extension and improvement in future work.

It is able to achieve its comparatively high run time efficiency by exploiting the fact that, under

certain assumptions, wait time sampling can be described by a deterministic part applicable

in many circumstances, and a stochastic part specific to each reactant pair. We can therefore

perform much of the expensive deterministic computations once, independently of each simulation

run. Those assumptions include isotropic diffusion as the primary method of transport, and

that reactions between distinct pairs of molecules are described by time-inhomogenous Poisson

processes with mean parameter equal to the integrated propensity (this implies exponentially

distributed waiting times). These are reasonable assumptions, yet both may be relaxed in future

work. Numerically integrating these reaction propensities when considering new reactions at every

step of the simulation can lead to the same computations being performed thousands or millions

of times. Only the sampling of the exponentially distributed random numbers must be performed

for all potential bimolecular reactions. The overall accuracy of the method is dependent on the

resolution of the pre-computed integrated propensity curves.

In the longer term, simulation based exploration of self-assembly in more realistic in vivo

conditions will require methods able to efficiently handle more complex dynamics including

rotational diffusion, molecular crowding and anomylous diffusion, as well as flexible intermediate

structures capable of structural changes post-aggregation (e.g., relaxation into lower energy
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conformations). Maintaining efficiency will be a priority because important reaction pathway

features of self-assembly typically span many time scales.

Another long term goal must be to invent methods that can benefit from the recent progress in

machine learning, and deep learning in particular. As far as we are aware, no simulation methods

make use of artificial intelligence in any significant respect, instead they are based purely on

mechanistic physical models. The field may be approaching the limit of potential improvements

in this kind of method design. The current paradigm is based on a strategy of starting with

idealized assumptions and slowly adding particular kinds of complexity. For example, the Gillespie

algorithm assumes molecules diffuse like particles in an ideal gas. The system is dilute and well

mixed allowing the algorithm to ignore spatial effects and focus on the evolution of species level

populations. eGFRD (and all spatial methods excepting molecular dynamics) assumes molecules

obey a diffusion equation, an assumption only valid for sufficiently large time durations, yet its

sampling is based on solving the diffusion equation within protective domains possibly not much

larger than a molecular radius. The microscopic lattice method [49] assumes space is discrete

and derives reaction probabilities for molecules occupying the same voxel from the same diffuse

equation framework. Our work on DESSA-CS was yet another attempt to reframe this problem

and while it shows promise in terms of efficiency, it is not an exact method according to those

same assumptions. It may be that in order to make significant gains over the current methods in

terms of the complexity of the dynamics that can be simulated accurately and efficiently, the

starting point must be statistical observations rather than simplifying assumptions. Maybe one

could train an algorithm to predict integrated reaction propensities as a function of molecular

features and the local environment. Maybe one could learn local rules applicable not only to

subunits, but to larger intermediate structures and use them for prediction in real time during

simulation. Maybe one could maintain the assumptions used to construct the Gillespie algorithm,

which samples trajectories from the Chemical Master Equation, but instead use ML methods to

directly evolve the probabilities obeying this equation.
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