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Abstract

Recent developments in chromatin interaction mapping technologies have greatly advanced

the study of higher-order genome organization in the three-dimensional (3D) cell nucleus,

which is of vital importance to fundamental genome functions such as DNA replication

timing (RT) and gene transcription. However, the principles underlying the 3D genome

organization and function and the detailed patterns on how the 3D genome has changed in

mammalian evolution remain largely unclear. To directly address these questions, in this

Ph.D. dissertation, I developed new machine learning frameworks to advance the method-

ologies for the comparisons of 3D genome organization across multiple species and for

unveiling critical information encoded in the genome that may regulate large-scale chro-

mosome structure and function. First, I developed a new model named phylogenetic hid-

den Markov Gaussian processes (Phylo-HMGP) to simultaneously infer genome-wide het-

erogeneous evolutionary patterns of continuous-trait functional genomic features. Phylo-

HMGP models both temporal dependencies across species and spatial dependencies along

the genome. Real data application to a new RT dataset based on Repli-seq from five pri-

mate species demonstrated that Phylo-HMGP greatly refined our understanding of cross-

species RT patterns. Next, I developed a new probabilistic model named Phylo-HMRF,

a unique framework to compare multi-species 3D genome organizations based on Hi-C

data. The method incorporates 3D spatial constraints with continuous-trait evolutionary

models. Phylo-HMRF uncovered patterns of 3D genome evolution in primate species that

show novel connections to other genome structural and functional features. Finally, I de-

veloped a generic interpretable machine learning framework named CONCERT to predict

large-scale chromosome domain features with a focus on RT profile directly from genomic

sequences. CONCERT enables the identification of genome-wide sequence elements that

modulate the RT program by jointly performing predictive element estimation and long-

range spatial dependency learning. Application of CONCERT to multiple human and mouse

cell types demonstrated the effectiveness of the method. Taken together, the methods de-

veloped in this Ph.D. dissertation have established a series of new algorithmic formulations



for effective comparison and high-resolution characterization of evolutionary patterns of

3D genome organization, revealing genomic regions with conserved or species-specific

structural and functional roles. The methods have the potential to provide critical insights

into the regulatory principles of nuclear structures and the sequence determinants underly-

ing the strongly intertwined nature of genome structure and function.
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Chapter 1

Introduction

1.1 Background and related work

In human and other eukaryotes cells, chromosomes are folded and organized in the three-

dimensional (3D) space in the cell nucleus and different chromosomal loci interact with

each other [1–3]. Recent development in whole-genome mapping approaches for chro-

matin interactome such as Hi-C [1, 4], ChIA-PET [5], GAM [6], and SPRITE [7] has facil-

itated the identification of genome-wide chromatin organizations comprehensively, reveal-

ing important 3D genome features such as chromatin loops [4, 5], topologically associating

domains (TADs) [8], and A/B compartments [1].

3D genome organization, including 3D chromatin structures and positioning of the

chromosomes in the cell nucleus, is known to have important roles in gene regulation

and genome functions [2]. 3D genome organization is closely related to vital genome

functions such as DNA replication timing (RT) and transcription [9–11]. For example,

chromatin loops may enable long-range nhancer-promoter interactions that are important

for gene expression control [12]. Disruption of 3D genome organization may alter normal

gene regulation and cause diseases [13–28]. Understanding the regulatory mechanism of

3D genome organization is important for understanding both the coordination of normal

genome functions and the mechanisms of specific diseases that are related to the change

of chromatin structures. However, our knowledge of the principles underlying 3D genome

organization is surprisingly limited. A critical challenge is to fundamentally decode the
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instructions encoded in our genome that govern genome organization and function. How to

connect mutations in DNA sequences to the changes in genome organization and ultimately

changes in phenotype is a fundamental problem in understanding the regulatory principles

rooted in the DNA sequences and also a significantly under-explored area.

From another perspective, comparative genomics can provides key insights into the

study on 3D genome. Comparative genomics focuses on the comparison of genomic or

epigenomic features across different species, which provides us with a new temporal an-

gle to study the relationships between genome functions and genomic or epigenomic fea-

tures in the context of evolution. Algorithms in comparative genomics have been powerful

to reveal potential molecular signatures for phenotypic differences between human and

other species, and inform us about human genome functions [29–34]. With the availabil-

ity of Hi-C data, there is the new direction on comparing genome organizations across

different species. By identifying and analyzing conserved and non-conserved patterns of

genome organization across species, we may gain more understanding on the relationship

between genome organization and genome functions, and also how genome organization is

regulated. For example, conserved genome organization patterns across different species

may indicate the existence of important genome functions that have been preserved during

evolution. Species-specific genome organization patterns are potentially correlated with

species-specific gene regulatory functions, and may reveal clues on how underlying ge-

nomic sequence features are correlated with the specific patterns. Comparative study of 3D

genome organization across species presents a new possible sub-area of the current compar-

ative genomics studies, and may help us gain more advanced knowledge on human genome

functions and related regulation mechanisms beyond the existing knowledge from the prior

studies on the 1D genomic or epigenomic features. However, there have been very limited

studies on the comparison of genome organization across different species [8, 35, 36].

3D genome structures are also known to be closely correlated with genome func-

tions [2], including DNA replication timing. DNA replication, which duplicates the DNA

on chromosomes during cell division, is one of the most fundamental functions of eukary-
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otic cells. DNA replication timing represents the temporal order of DNA replication along

the genome, which is highly regulated and robust [10, 11, 37]. Using Repli-seq [38] tech-

nology we can obtain DNA RT measurements, which can be processed as one-dimensional

(1D) coninous genomic signals along the genome. Genome-wide RT maps have revealed

replication profile domains that correlate with chromatin structure [39, 40] and higher or-

der genome organization such as A/B compartments and TADs [9, 37, 41–43]. However,

we still have limited understanding of how the RT program has evolved in recent primate

species and its detailed connection to 3D genome evolution.

On the algorithmic side, comparative genomic algorithms for cross-species compar-

isons of 3D genome or the related functional genomic features have been under-explored.

Multi-species functional genomic data from various high-throughput epigenomic assays

(e.g., Hi-C, Repli-seq [38], ChIP-seq [44–46]) are continuous in nature. However, in prior

studies, such continuous signals are usually discretized by selected thresholds or trans-

formed into discrete values to identify distinctive feature patterns (e.g., presence or absence

of TADs, presence or absence of peaks or domains) for subsequent comparisons [8, 35, 36,

47], which potentially cause dramatic loss of information of more subtle differences from

the original data.

Also, there are new computational challenges in using the high-throughput sequencing

data of 3D genome for comparative pattern recognition across species. The Hi-C data are

usually 2D data presented by Hi-C contact maps (section 1.3.1, Figure 1.1B). The prior

methods on comparative analysis of genomic features are mostly developed for the 1D ge-

nomic data, not applicable to 2D data. Moreover, for Hi-C data, there were no existing

phylogenetic model-based methods available to analyze Hi-C data as continuous signals

across different species to uncover genome-wide evolutionary patterns of 3D genome orga-

nization. For 1D functional genomic data that are correlated with 3D genome organization

(e.g., Repli-seq data), there were also no phylogenetic model-based algorithms to com-

pare continuous-trait functional genomic data across multiple species in a genome-wide

manner. Furthermore, our knowledge on the DNA sequence-based regulatory principles of
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genome organization and related genome functions such as DNA replication timing is still

primitive [2, 3, 10].

This thesis is focused on method development to address the computational challenges

of two tasks: (i) comparative pattern recognition based on continuous-trait functional ge-

nomic data and 3D genome organization data from different species; (ii) identification of

DNA sequence elements that are potentially important for the regulation of genome orga-

nization and genome function patterns.

1.1.1 Continuous-trait functional genomic data comparison across multiple
species

Multi-species functional genomic data (e.g., ChIP-seq data of transcription factors or his-

tone marks, Repli-seq data) are highly informative for the comparative analysis of genome

function conservation and differences between human and other mammalian species [48–

51]. However, as we discussed, computational models are under-explored to fully model

the continuous-trait functional genomic data in the context of multi-species comparisons.

Continuous-trait models, which are key to the modeling of functional genomic signals, are

gaining increasing attention in genome-wide comparative genomic studies [52, 53].

Several types of continuous-trait evolutionary models have been developed for compar-

ison at individual loci. One basic model [54–56] assumes that continuous traits evolve by

Brownian motion. This model has been extended to more complicated Gaussian processes

such as the Ornstein-Uhlenbeck (OU) process [57–59]. However, the existing methods

that use continuous-trait evolutionary models in comparative genomics either apply a sin-

gle evolutionary model to signals of selected regions, or test different evolutionary model

assumptions with prior knowledge at selected regions [50, 52, 53, 60, 61]. In other words,

the continuous-trait evolutionary models have not been utilized to simultaneously estimate

heterogeneous phylogenetic trees across different loci along the entire genome based on

functional genomic data.

There are 1D functional genomic data (e.g., Repli-seq data and gene expression data)

and 2D data (e.g., Hi-C data) which measure chromatin interactions of genome organiza-
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tion. In this thesis we begin with comparative analysis of 1D functional genomic features

that are closely correlated with 3D genome organization. As we have introduced, one im-

portant type of genome function that is connected with genome organization is the DNA

RT program.

It is known that RT changes across half of the genome during cell differentiation and

is altered in certain diseases [9, 62–67]. In addition, studies have shown conservation of

RT between several eukaryotic species, including the conservation between human and

mouse [41, 42, 63, 68, 69]. Microscopy studies revealed that chromosome regions with

early and late RT have specific spatial localization preferences in the nucleus that are con-

served in evolution [70]. However, we have limited understanding of how the RT program

has evolved in mammals. Prior to our proposed work, to the best of our knowledge, there

were no existing algorithms available to simultaneously infer heterogeneous continuous-

trait evolutionary models along the entire genome, and there was no existing study to in-

vestigate the RT conservation and dynamics for more than two mammalian species beyond

the human-mouse comparison.

1.1.2 Genome organization comparison across multiple species

In the existing studies, a limited number of attempts have been made to compare the 3D

genome organization across different species. An earlier work using Hi-C showed that the

positions of TADs were largely conserved between human and mouse within syntenic ge-

nomic regions [8]. Another study demonstrated that evolutionary changes in TAD structure

correspond with the creation or elimination of CTCF binding sites using relatively low-

resolution Hi-C data from rhesus macaque, dog, rabbit, and mouse [35]. More recently,

TADs have been shown to have strong conservation in mammalian evolution with the TAD

boundaries under potential negative selections against genome rearrangements [36, 71].

These previous analyses pointed to the conservation and changes of 3D genome structure

across different species, although a more comprehensive characterization of the detailed

evolutionary patterns of 3D genome structure remains unclear. Importantly, as most of

the initial comparative analysis of 3D genomes focused primarily on distantly related or-
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ganisms, there is limited understanding of how 3D genome features may have evolved in

closely related mammalian species, especially in recent primate evolution which is of par-

ticular interest to understand human-specific and great ape-specific gene regulations.

The previous methods for genome organization comparison across species usually only

utilize the discrete features from Hi-C data (e.g., comparing the presence or positions of

TADs) [8, 36, 71, 72]. Although the strengths of chromatin interactions can be quantita-

tively analyzed from Hi-C data [1, 4], previous studies on comparing genome organization

across species did not explicitly consider the continuous nature of chromatin interaction

strength, and therefore are limited in the ability of fully utilizing the data of chromatin con-

formation capture to reveal detailed evolutionary patterns of genome organization. Also,

the previous methods did not consider the phylogeny of the compared species. Prior to

our work, to the best of our knowledge, there were no existing phylogenetic-model based

methods available to analyze Hi-C data as continuous signals to compare 3D genome orga-

nization across different species in a genome-wide manner.

1.1.3 Identification of sequence elements that modulate DNA replication
timing

3D genome organization is closely correlated with DNA replication timing. As we intro-

duced, the RT program has a highly regulated genome-wide temporal pattern [10, 11, 37].

High-throughput Repli-seq together with 3D genome organization features derived from

Hi-C have shown that active domains towards the nuclear interior generally have early RT

patterns, which are also evolutionary conserved [10, 42]. However, the regulators of DNA

RT in eukaryotic cells and the mechansims of its relationship with 3D genome organization

have long been unclear, remaining open questions.

Different hypotheses exist on the potential regulation mechanisms of DNA RT, in-

cluding both epigenetic regulation mechanisms and sequence-dependent regulation mecha-

sisms [10]. Studies have showns that certain types of histone modifications such as H3K4me1,

H3K4me2, H3K4me3, H3K20me1, H3K36me3, H3K9ac, and H3K27ac correlate with

early RT [63]. But correlations may not suggest casual effects [73]. An explanation for
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some of the correlations is that for histone modifications established quickly during chro-

matin maturation, their density detected by chromatin immunoprecipitation can be pro-

portional to the copy number of each locus and thus match the RT profile [10]. Histone

acetylation is found to be possibly involved in regulating early RT, but histone acetylation

alone is not sufficient for the RT regulation [74, 75]. [You need to add conclusion sentences

in your paragraphs when you write. It’s unclear what this paragraph is all about. I don’t

think the discussion on histone acetylation etc. is that relevant to make your major point.]

For the hypotheses on sequence-dependent regulation mechanisms, different technolo-

gies have been developed or applied to generate genome-wide maps of RT initiation sites

or active RT origins in mammalian cells with different types of sequence elements as se-

quencing targets [76–81]. The types of sequence features that are found to be associated

with RT regulation include G-quadruplexes [76, 79, 82] and high GC density or asymmetry

of nuecleotide distribution [83, 84]. However, it is observed that different features can be

found at different RT origins [85]. The RT origin-specific sequence was only discovered

in the budding yeast [86] and not identified in the other eukaryotes. Also, the relationship

between RT origins and the RT program in mammalian cells is not explicit [9, 76]. It is in-

ferred that any DNA sequence can be activated as RT origin in the proper context [87] and

the RT is possibly regulated at the domain level instead of the origin level in mammalian

cells. It was observed that factors bound nearby RT origins may also influence RT [64],

suggesting the potential importance of genomic context for RT regulation. Though existing

studies show evidence that sequence-dependent RT regulation mechanisms may exist, there

are still no clearly revealed rules on the functions of DNA sequences for RT regulation.

There have been very limited discoveries of sequence elements that may regulate the

RT program. Studies have shown evidence that specific types of long non-coding RNAs

(lncRNAs) may have critical coordination roles for chromosome-wide RT patterns. One

type is Xist, which is lncRNA expressed in only one X chromosome in female cells. Xist

was found to be necessary for late replication of the inactive X chromosome in mice, but

deletion of Xist in differentiated human cells resulted in even later replication [88, 89]. The
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other two types are ASAR6 and ASAR15, which are ASARs (asynchronous replication and

autosomal RNAs) that coat chromosome 6 and chromosome 15 in human, respectively. It

was discovered that ASAR6 and ASAR15 are essential for RT coordination and conden-

sation of the entire chromosome from which they are expressed, respectively [90, 91].

Deletion of ASAR6 and ASAR15 resulted in delay of replication on the corresponding

chromosomes [90–92]. However, the RT regulation mechanisms of Xist and the ASARs

remain to be elucidated.

Recently, Sima et al. [75] made a significant step forward in identifying specific cis-

acting elements regulating early RT in mouse embryonic stem cells (mESCs). Specifi-

cally, based on CRISPR-mediated experiments on a number of genomic loci, several early

replication control elements (ERCEs) that regulate early RT in the mESCs [75] have been

experimentally validated. The identified ERCEs are observed to be enriched with active

epigenetic marks that are representative of enhancers, and harbor binding sites of major

pluripotency transcription factors. It was also found that cooperative interactions of mul-

tiple ERCEs in 3D space are required for early RT at local domains. However, it remains

elusive whether there are sequence properties that are predictive of the entire RT program

genome-wide across different cell types.

On the other side, computational models have also been developed to predict DNA

RT using different types of features. For example, models have been developed to use

combination of histone modifications and chromatin binding protein data to predict DNA

RT in Drosophila [93]. Methods have also been developed to predict RT in human cells

based on chromatin accessibility [39]. However, the relationship between sequence features

and DNA RT modulation remains mostly unrevealed [10] and models that can accurately

predict detailed genome-wide RT signals from sequences are not available.

In the past few years, there have been a number of machine learning based mod-

els that use DNA sequences to predict genomic functional patterns. DeepBind [94] and

DeepSEA [95] are models that use convolution neural networks (CNNs) to generate fea-

tures from the sequences to predict transcription factor (TF) binding sites. DanQ [96]
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extends the model with LSTM (long-short term memory model) [97], to capture the spatial

dependencies between genomic bases within a sequence. These model architectures have

been extensively utilized in other recent methods. For example, studies have used sequence

features to predict enhancers, transcription initiation sites and gene expression [98–102].

The similar models were also used to predict enhancer-promoter interactions [103] and

protein contacts [104]. Most of the existing methods, however, generate feature repre-

sentations from a given genomic locus itself, or a locus with extensions, without utilizing

information of the neighboring loci in the larger-scale context, which is critical to the pre-

diction over large-scale genomic domains such as RT domains. Some methods incorporate

flanking regions [103] of a genomic sequence for feature extraction, using the extended se-

quence to generate features. However, a longer extended sequence increases computational

cost and the number of model parameters to learn.

Very recently, methods have been developed to use dilated convolutions to learn longer

range spatial dependencies in DNA sequences for the prediction of epigenetic profiles,

gene expressions, and 3D genome organization [105–107], utilizing the advantage that di-

lated convolutions use repeated weights for adjacent positions to expand the receptive field

width of convolution kernels without increasing model complexity. For long-range spa-

tial dependency, the receptive field width with dilated convolutions [108] is still limited in

size compared to the sequence length. Dilated convolutions use regularly spaced gaps to

capture spatial dependency, which may lose information on more complicated dependency

patterns. Also, the existing methods require extra evaluation steps for model interpreta-

tion after the model is trained, and were not designed for simultaneously identifying the

potential sequence determinants. Therefore, it remains an unsolved problem to capture de-

pendency between two arbitrary loci over a very large-scale domain, such as RT domains,

and achieve high model interpretability.

9



1.2 Thesis goals

This PhD thesis is focused on addressing the gaps in methodology development in compar-

ative genomics for higher order genome organization features to reveal new insights about

3D genome structure and function. The overarching goal is to develop new models and

frameworks for multi-species comparison of continuous genomic data with a focus on Hi-C

and Repli-seq data, and develop methods to identify sequence elements that may modulate

genome organization and related genome function, uncovering potential regulatory princi-

ples of 3D genome organization and function. Overview of the method development in this

thesis is illustrated in Figure 1.3. Specifically, the thesis goals are as follows.

• Develop algorithms to analyze continuous multi-species functional genomic data.

We develop a new continuous-trait probabilistic model based on the integration of

the Ornstein-Uhlenbeck (OU) processes and the hidden Markov model (HMM) for

more accurate evolutionary state estimation using continous-trait functional genomic

data from different species, exploiting both evolution affinities among species and

spatial dependencies along the genome.

• Develop algorithms to study the evolution of 3D genome organization.

We develop an evolutionary probabilistic model based on the OU process and hidden

Markov random field (HMRF) for modeling 3D genome organization across multi-

ple species, to identify higher order evolutionary patterns of the genome structure.

The developed method models both the temporal dependencies across the species in

the context of evolution and the spatial dependencies across genomic loci in the 3D

space.

• Develop algorithms to identify sequence features that modulate genome organi-

zation related genome function.

We develop an interpretable predictive model based method to simultaneously pre-

dict DNA RT profile from genomic sequence features and identify genome-wide se-
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quence elements that modulate the DNA RT program. The method integrates two co-

operative modules, the selector and the predictor, to perform importance estimation-

based predictive genomic loci selection and learn long-range spatial dependencies

across genomic loci for RT signal prediction jointly. The method is applicable to

study other types of genome organization related functional genomic data over large-

scale spatial domains.

1.3 Introduction to main relevant biological technologies

Here we will briefly introduce the main relevant biological technologies involved in this

thesis work. The data we focused on include Hi-C data and Repli-seq data. We will intro-

duce the Hi-C technology [1, 4, 109] and the Repli-seq technology [38]. The detailed data

information and data processing procedures are described in the corresponding chapters.

1.3.1 Hi-C technology

Hi-C [1, 4, 109] is the extension of the 3C (Chromatin Conformation Capture) technol-

ogy [110]. Hi-C can identify long-range chromatin interactions in an unbiased genome-

wide manner. In the procedures of Hi-C, cells are first fixed with formaldehyde. The

interacting chromatin loci are bound to each other by covalent DNA-protein cross-links.

Next, the DNA is fragmented with a restriction enzyme, with the bound chromatin loci

remain linked. The 5’ overhangs are filled in with nucleotides and a biotinylated residue

is incorporated. Next, blunt-end ligation is performed under dilute conditions which fa-

cilitates ligation events between cross-linked DNA fragments. A genome-wide library of

ligation products is produced, which correspond to pairs of fragments that were originally

in close spatial proximity to each other in the cell nucleus. For each ligation product, the

site of junction is marked with biotin. The library is purified and sheared. The junctions

are isolated with streptavidin beads and then analyzed using paired-end high-throughput

sequencing. A catalog of interacting fragments is identified, and further analysis can be

performed.
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The Hi-C data can be further processed and visualized as a two-dimensional (2D) con-

tact matrix (or Hi-C contact map), where each row and each column represents a genomic

locus, and each entry corresponds to the contact frequency between two genomic loci. The

contact frequency reflects the distance between two genomic loci in the 3D space in the cell

nucleus. Two genomic loci that are close to each other are more likely to have higher con-

tact frequency while two distant loci are more likely to have lower contact frequency. We

can also generate Hi-C data for different species. Comparing chromatin structures across

species can help us identify conserved and non-conserved genome organization patterns,

which may further reveal important genome functions that are correlated with or regulated

by the chromatin structures. The earlier studies were focused on chromatin structure com-

parison between human and mouse [8]. More recently, there were Hi-C data generated from

other mammalian species [35, 72]. The Hi-C data have been lacking for closely related pri-

mate species. In the previous works, important specific chromatin structure features (e.g.,

TADs or chromatin loops) were first extracted from the Hi-C data and then compared be-

tween the species [8, 35, 72].

1.3.2 Repli-seq technology

Repli-seq [38] is the extension of the Repli-chip technology [111] for DNA replication

timing measurement. The cell cycle in eukaryotes commonly consists of two main phases:

interphase and mitosis. The interphase can be further divided into three sub-phases: G1

phase, G2 phase, and S phase. DNA is replicated during the S phase. In the procedures

of E/L Repli-seq (Early/Late Repli-seq) [38], the cultured cells are first pulse-labeled with

antibody BrdU to label nascent DNA. Cells are next fixed and sorted by flow cytometry

based on their DNA context. DNA from the early S-phase and the late S-phase cells is

purified and fragmented. Next, library construction and BrdU IP are performed in parallel.

Adaptors are ligated to the purified DNA. The BrdU-labeled DNA is immunoprecipitated,

followed by indexing the immunoprecipitated DNA. The indexed and pooled libraries are

subsequently sequenced. The follow steps are performed to analyze the sequencing data:

quality control, mapping reads to the reference genome, and calculating the log base 2 ratio
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of normalized coverage from the early S fraction to the normalized coverage from the late

S fraction in each genomic bin (log2 ratio early/late). The datasets to be compared are

quantile-normalized and smoothed using the Loess smoothing method (locally weighted

regression) [112, 113]. The processed data are 1D continuous signals at each genomic

bin along the genome, of which higher value represents earlier replication and lower value

represents later replication.
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Figure 1.1: Overview of the Hi-C technology [1]. (A) The protocol of Hi-C procedures. First, chromatin segments in

cells are cross-linked with formaldehyde. Second, chromatin is digested with a restriction enzyme. The ends of the

cut chromatin segments are filled in with nucleotides and marked with biotin. Third, ligation is performed to create

chimeric molecules. Fourth, DNA fragments are purified and sheared. Biotinylated junctions are isolated. Fifth, paired-

end sequencing is performed to identify the junctions. (B) The intrachromosomal contact matrix produced by Hi-C on

chromosome 19 of the GM12878 cell line in human. Each row and each column of the matrix corresponds to a genomic

locus. The intensity value of the pixel represents the total number of reads sequenced over the junction of the two loci.

A high intensity value represents close spatial proximity of two loci.

1.4 Structure of the thesis

First, we will introduce the Phylo-HMGP model for comparing continuous-trait functional

genomic features across multiple species in Chapter 2. We will then introduce the Phylo-

HMRF model for multi-species genome organization comparison using Hi-C data in Chap-
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Figure 1.2: Overview of the Repli-seq technology [38]. (A) Procedures of the Repli-seq technology. The steps include

labeling and fixation of cultured cells, FACS sample preparation and cell sorting, DNA preparation from FACS-sorted

cells, DNA fragmentation, library construction, BrdU IP, indexing and amplification, DNA purification, quality control,

pooling and sequencing, and Repli-seq data analysis. (B) Processed Repli-seq data after calculating log base 2 ratio

of normalized read coverage of early versus late S-phase samples and performing data normalizations for compared

datasets. The Repli-seq data of two cell types are shown.

ter 3. Next, in Chapter 4, we will explain the proposed CONCERT model for genome-wide

DNA RT prediction from genomic sequences and identification of sequence elements that

modulate the RT program. We will discuss conclusions and future work directions in Chap-

ter 5.
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Figure 1.3: Overview of the method development. We use continuous-trait phylogenetic models to model the temporal

dependency across species in the context of evolution. The temporal dependency represents the evolutionary rela-

tionships across species that are presented by the phylogenetic tree. We use different types of graphical models to

model the spatial dependency across genomic loci along the 1D genome and in the 3D space, respectively. We embed

the continuous-trait phylogenetic model into the graphical model, to integrate evolutionary relationships across species

with the spatial distributions of genomic loci. The developed models perform evolutionary pattern identification across

species for 1D functional genomic data and 3D genome organization data, respectively. We also develop an interpretable

predictive model to simultaneously perform DNA RT signal prediction and identification of sequence elements that may

modulate the DNA RT program.
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Chapter 2

Continuous-trait probabilistic model to

compare multi-species functional

genomic data

2.1 Introduction

As we have introduced in Chapter 1, the computational methods for comparing continuous-

trait functional genomic features across multiple species have been limited in the capability,

lacking the development to address the computational challenges in comparing the contin-

uous genomic signals using evolutionary information. We develop a new continuous-trait

probabilistic model for more accurate evolutionary state estimation based on continuous-

trait functional genomic data from different species. We call our model phylogenetic hidden

Markov Gaussian processes (Phylo-HMGP). Our new method incorporates the evolution-

ary affinity among multiple species into the hidden Markov model (HMM) [114] for ex-

ploiting both temporal dependencies across species in the context of evolution and spatial

dependencies along the genome in a continuous-trait model. Our Phylo-HMGP is funda-

mentally different from the existing models that are restricted to discrete representation of

the studied traits [47, 115–119]. The proposed Phylo-HMGP model utilizes continuous-
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trait evolutionary models with spatial constraints to more effectively study the genome-

wide features across species. Our model is also flexible such that various continuous-trait

evolutionary models or assumptions can be incorporated according to the actual problems

to study.

Furthermore, we generated a new cross-species DNA replication timing (RT) dataset

from the same cell type in five primate species (human, chimpanzee, orangutan, gibbon,

and green monkey). We apply Phylo-HMGP to reveal genome-wide distributions of dis-

tinct evolutionary patterns of RT in the five primates. We found that constitutive early and

constitutive late RT regions, as defined from human embryonic stem (ES) cell differenti-

ation [9, 62], exhibit a strong correlation with the predicted conserved early RT and con-

served late RT patterns. We also found distinct gene functions associated with different RT

evolution patterns. In addition, the predicted RT patterns across species show correlations

with other genomic and epigenomic features, including higher order genome organization,

cis-regulatory elements, chromatin marks, and transposable elements. Our results from the

comparative RT analysis in five primate species demonstrate the potential of our Phylo-

HMGP model to help reveal regions with conserved or lineage-specific regulatory roles for

the entire genome.

2.2 Overview of the phylogenetic hidden Markov Gaussian pro-

cesses model

Here we first provide an overview of the proposed model (Figure 2.1). The details of the

model are described in section 2.3 and section 2.4. Our model aims to estimate differ-

ent evolutionary patterns from multi-species functional genomic signals. As illustrated in

Figure 2.1C, the input contains the observed continuous-trait signals from orthologous ge-

nomic regions from multiple species. The output is a genome-wide partition where neigh-

boring genomic segments have different predicted states of multi-species signals, reflecting

different evolution patterns of the signals being considered.
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We define a phylogenetic hidden Markov Gaussian processes (Phylo-HMGP) model

as h = (S, ψ,A, π), where S is the set of states, ψ is the set of phylogenetic models,

A is the state-transition probability matrix, and π represents the initial state probabili-

ties, respectively. Suppose there are M hidden states. We have S = {s1, · · · , sM},

ψ = {ψ1, · · · , ψM}, A = {aij}, 1 ≤ i, j ≤ M , and π = {π1, · · · , πM}. Figure 2.1A

shows the state space where different states are associated with varied phylogenetic tree

models. Each phylogenetic tree model is parameterized with the OU processes, an exam-

ple of which is shown in Figure 2.1B. In the thesis, we focus on the Ornstein-Uhlenbeck

(OU) process and apply it to analyze cross-species RT data. We also discuss and compare

with Brownian motion process within the framework (section 2.5), which is also used as the

Gaussian process for realizations of ψj to construct the emission probability distributions,

j = 1, · · · ,M . ψj differs under different evolutionary models. Other Gaussian processes

can also be embedded into the framework by alternative definitions of ψj . Gaussian pro-

cess is a stochastic process, of which every finite collection of the random variables in the

stochastic process has a multivariate Gaussian distribution. Specifically, every finite linear

combination of the random variables follows a Gaussian distribution. Both OU process and

Brownian motion are Gaussian processes.

Phylo-HMGP provides a generic framework to more effectively incorporate multi-

species functional genomic data into the HMM for analyzing both temporal dependen-

cies across species in the phylogeny and spatial dependencies along the entire genome in

a continuous-trait model. The framework is flexible and the Gaussian processes embed-

ded in the HMM can be specialized to different evolutionary models (e.g., in this work

we focus on OU processes to construct the phylogenetic tree model). The source code of

Phylo-HMGP can be accessed at: https://github.com/ma-compbio/Phylo-HMGP.
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Figure 2.1: Overview of the Phylo-HMGP model. (A) Example of the state space and state transition probabilities of

the Phylo-HMGP model associated with the continuous genomic data in (C). Si represents a hidden state. Each hidden

state is determined by a phylogenetic model ψi, which is parameterized by the selective strengths αi, Brownian motion

intensities σi, and the optimal values θi of ancestor species and observed species on the corresponding phylogenetic

tree. αi, σi, and θi are all vectors. (B) Illustration of the Ornstein-Uhlenbeck (OU) processes along the species tree

specified in (C). X(t) represents the continuous trait at time t. The trajectories of different colors along time correspond

to the evolution of the continuous trait in different lineages specified by the corresponding colors in (C), respectively. The

time points t1, t2, t3, and t4 represent the speciation time points, which correspond to the speciation events shown in (C).

The observations of the five species also represent an example of state S2 in (C). (C) Simplified representation of input

and output of the Phylo-HMGP model. The five tracks of continuous signals represent the observation from five species.

Si represents the underlying hidden states. Specifically, the example is the replication timing data, where ‘early’ and

‘late’ represent the early and late stages of replication timing, respectively. The species tree alongside the continuous

data tracks shows the evolutionary relationships among the five species that are involved in the RT data comparison

across species.
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2.3 Ornstein-Uhlenbeck process assumption in Phylo-HMGP

We model the continuous traits with the Ornstein-Uhlenbeck processes in Phylo-HMGP,

for which the Gaussian processes are specialized by the OU processes. The Phylo-HMGP

model with OU process assumption is named Phylo-HMGP-OU. The OU process is char-

acterized by the following stochastic differential equation [57, 58]:

dXi(t) = α[θi −Xi(t)]dt+ σdBi(t), (2.1)

where Xi(t) represents the observation of the i-th species at time point t, Bi(t) is the

Brownian motion, α, θ, and σ are parameters that represent the selection strength, the

optimal value, and the Brownian motion intensity, respectively. where X(t) represents the

observation of X at time point t, and B(t) represents the Wiener process. The Wiener

process is also called the standard Brownian motion [120]. α, θ and σ are parameters that

represent the selection strength, the optimal value and the fluctuation intensity of Brownian

motion, respectively. Here we assume that X(t) is a continuous variable. For example, Xi

could be the ChIP-seq signal of a certain histone mark from a specific cell type at a specific

locus in a species.

Under the assumption of the OU process, we can derive the expectation, the variance,

and the covariance of the observations of species given the phylogenetic model ψj . The

phylogenetic model is the combination of multiple OU processes that share parameters

along common branches. Suppose that Xpi is the trait value of the ancestor of the i-th

species, and Xaij is the trait value of the most recent common ancestor of the i-th and j-th

species. We will prove the following properties:

E(Xi) = E(Xpi)e
−αitipi + θi

(
1− e−αitipi

)
, (2.2)

Cov(Xi, Xj) = Var(Xaij) exp
(
−Σk∈lijαktk − Σk∈ljiαktk

)
, (2.3)

Var(Xi) =
σ2
i

2αi

(
1− e−2αitipi

)
+ Var(Xpi)e

−2αitipi , (2.4)

where tipi is the length of the branch from node pi to node i, and lij represents the set of

the ancestor nodes of i and i itself after its divergence with j. pi represents the parent node
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of i. Since each node except the root node of the phylogenetic tree has and only has one

parent node, without ambiguity, let ti = tipi for any node i that is not the root node.

Let X0 = X(0), and Bt = B(t). The solution to Equation 2.1 is

X(t) = X0e
−αt + θ(1− e−αt) + σ

∫ t

0

e−α(t−s)dBs. (2.5)

∫ t
0
e−α(t−s)dBs is Wiener integral. We have that∫ t

0

e−α(t−s)dBs ∼N (0,

∫ t

0

e−2α(t−s)ds). (2.6)

∫ t
0
e−2α(t−s)ds = 1

2α
(1− e−2αt). Then we have

σ

∫ t

0

e−α(t−s)dBs ∼N (0,
σ2

2α
(1− e−2αt)). (2.7)

Let Z(t) = σ
∫ t

0
e−α(t−s)dBs. We have

X(t) = X0e
−αt + θ(1− e−αt) + Z(t), (2.8)

where Z(t) ∼N (0, σ
2

2α
(1− e−2αt)). Z(t) is independent of X0. Therefore,

X(t)|X0 = x0 ∼N (x0e
−αt + θ(1− e−αt), σ

2

2α
(1− e−2αt)). (2.9)

We assume that the evolution of multiple species from a common ancestor follow the

OU processes. The evolutionary relationships among multiple species form a tree structure,

which is the evolutionary tree, or phylogenetic tree. We assume that each branch of the

phylogenetic tree, which represents the evolution of a species from its most recent ancestor,

is modeled by an OU process.

For the i-th branch, suppose the observation of the descendant species (child) is Xi

and the observation of the ancestor species (parent) is Xpi . Suppose the length of the i-the

branch is ti, which represents the evolution time from Xpi to Xi. Based on Equation 2.8,

with the variables X(t), X0, Z(t) replaced by Xi, Xpi , Zi, respectively, we have that

Xi = Xpie
−αiti + θi(1− e−αiti) + Zi, (2.10)
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where Zi ∼ N (0,
σ2
i

2αi
(1 − e−2αiti)) and Zi is independent of Xpi . αi and σi represent the

selection strength and the fluctuation intensity of Brownian motion along the i-th branch,

respectively. θi represent the optimal value of Xi in the OU process.

Then we have that

E(Xi) = E(Xpi)e
−αiti + θi(1− e−αiti) + E(Zi) (2.11)

= E(Xpi)e
−αiti + θi(1− e−αiti), (2.12)

Var(Xi) = Var(Xpie
−αiti) + Var(Zi) (2.13)

= Var(Xpi)e
−2αiti +

σ2
i

2αi
(1− e−2αiti). (2.14)

Let VT , VB denote the set of indices of all the tree nodes and the set of indices of all the

branches. The descendant node associated with the i-th branch is the i-th node. {Zj}j∈VB
are independent of each other, and Zj is independent of Xi for any j /∈ ancestor(i), where

ancestor(i) represents the set of all the ancestor nodes of node i.

For any i 6= j and i /∈ ancestor(j) and j /∈ ancestor(i), we have

Cov(Xi, Xj) = Cov
(
Xpie

−αiti + θi(1− e−αiti) + Zi, Xpje
−αjtj + θj(1− e−αjtj) + Zj

)
(2.15)

= Cov(Xpi , Xpj)e
−αiti−αjtj . (2.16)

Repeating the derivation above to calculate Cov(Xpi , Xpj), we have that

Cov(Xi, Xj) = Var(Xaij) exp

−∑
k∈lij

αktk −
∑
k′∈lji

αk′tk′

 , (2.17)

where Xaij represents the observation of the most recent common ancestor of species i and

j, and lij represents the set of the ancestor nodes of species i and i itself after the divergence

of species i with species j. For k ∈ lij , tk corresponds to length of the branch from the

parent of species k to species k.

If j ∈ ancestor(i), then i /∈ ancestor(j), because there is no circle, we have

Cov(Xi, Xj) = Cov
(
Xpie

−αiti + θi(1− e−αiti) + Zi, Xj

)
(2.18)

= Cov(Xpi , Xj)e
−αiti . (2.19)
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Repeating the derivation above to calculate Cov(Xpi , Xj), we have that

Cov(Xi, Xj) = Var(Xj) exp

−∑
k∈lij

αktk

 , (2.20)

where lij represent the set of nodes on the path from node j (included) to node i (in-

cluded). Equation 2.20 can also be written as Equation 2.17. The same rule applies to

i ∈ ancestor(j). Therefore, Equation 2.17 applies to any i 6= j.

Based on the assumptions of the OU process, the multi-species observations follow

multivariate Gaussian distribution. As we show above, the expectation, variance, and co-

variance of the observations of species can be computed given the phylogenetic tree topolgy

and the O-U process process parameters, which are consistent with the results given in [53].

Furthermore, we will show that the phylogenetic tree with OU process assumption for

the continuous variables is a Gaussian directed acyclic graphich model (Gaussian DAG).

Suppose G is a Directed Acyclic Graph (DAG) with vertices V = (X1, · · · , Xd).

Let V also denote the set of indices of X1, · · · , Xd. Here we introduce the definition

of Gaussian directed graphical models. Let Y be a continuous variable in a DAG with

parents X1, ..., Xk. Y has a linear Gaussian model of its parents if there are parameters

β0, β1, · · · , βk and σ2 such that

Y = β0 + β1X1 + · · ·+ βkXk + ε, ε ∼N (0, σ2). (2.21)

Here N (0, σ2) represents Gaussian distribution with mean value 0 and variance σ2. A

directed graphical model is a Gaussian directed graphical model if all the variables are

continuous, and every variable and its parents follow a linear Gaussian model [121].

For a phylogenetic tree, G is of tree topology, where each node except the root node is

attached to a branch as the child node of its parent node. In Equation 2.10, let

βi,1 = e−αiti , (2.22)

βi,0 = θi(1− e−αiti), (2.23)

η2
i =

σ2
i

2αi
(1− e−2αiti). (2.24)
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We have that

Xi = Xpiβi,1 + βi,0 + Zi, (2.25)

where Zi ∼ N (0, η2
i ). Suppose X0 is the observation of the root node. Assume X0 ∼

N (β0, η
2
0). Then X0 = β0 +Z0, where Z0 ∼N (0, η2

0). Therefore, in the phylogenetic tree

with OU process assumption where the variables are continuous variables, Xi has a linear

Gaussian model of its parent for any i ∈ V . Therefore, the phylogenetic tree with OU

process assumption for the continuous variables is a Gaussian DAG. Here the continuous

variable may refer to a type of continuous-trait genomic feature.

Let α̃i = αiti, σ̃2
i = σ2

i ti, i ∈ V . We have

α̃i = αiti = − log βi,1, (2.26)

θi =
βi,0

1− βi,1
, (2.27)

σ̃2
i = σ2

i ti =
η2
i (2αiti)

1− e−2αiti
=

2α̃iη
2
i

1− β2
i,1

= −2η2
i log βi,1

1− β2
i,1

, (2.28)

where βi,1 ∈ (0, 1). Therefore, the OU model parameters are functions of the Guassian

DAG model parameters for the phylogenetic tree with OU processes.

2.4 Ornstein-Uhlenbeck processes with spatial dependencies

2.4.1 Overall framework of Phylo-HMGP with OU processes

As defined in section 2.2, a Phylo-HMGP model is reprented as h = (S, ψ,A, π), where

S, ψ, A, and π denote the set of states, the set of phylogenetic models, the state-transition

probability matrix, and the initial state probabilities, respectively. In the Phylo-HMGP

model with OU process, ψj is defined as: ψj = (θj, αj, σj, τj, βj), j = 1, · · · ,M , where

θj , αj , σj denote the OU process parameters of the j-th state, respectively. τj , βj represent

the topology of the phylogenetic tree and the branch lengths, respectively. We allow varied

selection strength and Brownian motion intensity along each branch and varied optimal

values at interior nodes or leaf nodes. Suppose there are r branches. We have θj ∈ Rr+1,
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αj, σj ∈ Rr. Suppose x = (x1, · · · , xN) are observations of consecutive regions along

a sequence of length N , and y = (y1, · · · , yN) are the underlying hidden states, respec-

tively. Each observation xi is a multi-dimensional vector of the trait values of the compared

species with respect to a certain type of functional genomic feature for an orthologous ge-

nomic region. Suppose there are d species, which correspond to the d leaf nodes in the

phylogenetic tree. We have xi ∈ Rd, yi ∈ {1, · · · ,M}, i = 1, · · · , N . The hidden state

yi indicates a specific phylogenetic model ψj from which the observation xi is generated.

{ψj}Mj=1 represent different evolutionary patterns of the genomic features across the multi-

ple species. For example, one phylogenetic model ψi may represent conserved evolution of

the feature across species, while another model ψj may represent strong selection strength

along one lineage that results in a lineage-specific pattern. Given the input of multi-species

functional genomic signals over a range of regions, which can be processed into the ob-

servations x, we are trying to infer the underlying evolutionary patterns and predict the

evolutionary states y through model parameter estimation. Each yi represents an evolu-

tionary pattern, parameterized by the inferred phylogenetic model ψyi . The output includes

the estimated model parameters ĥ and predicted states ŷ. Note that our Phylo-HMGP-OU

is different from the HMMSDE methods that use a temporal HMM to simulate a single

OU process [122]. Phylo-HMGP-OU embeds phylogenetic models constructed by com-

plex of OU processes into a spatial HMM to utilize both temporal and spatial dependencies

between variables.

2.4.2 Parameter estimation

Let Θ be the model parameters. The joint probability of the observations x and states

y is p(x,y|Θ) = πy0
∏N

i=1 ayi−1,yip(xi|yi,Θ) [123]. We use Expectation-Maximization

(EM) algorithm [124] for parameter estimation. Suppose Θg is the current estimate of

model parameters. The EM algorithm computes the expectation of the complete-data log
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likelihood, which is defined as the Q function Q(Θ,Θg):

Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg] =
∑
y∈SN

p(x,y|Θg) log p(x,y|Θ), (2.29)

where SN is the set of all state sequences of length N . We have

log p(x,y|Θ)) = log(p(y|Θ)p(x|y,Θ)) (2.30)

= log p(y|Θ) + log p(x|y,Θ)) (2.31)

= log πy0 +
N∑
i=1

log ayi−1,yi +
N∑
i=1

log p(xi|yi). (2.32)

Then we have

Q(Θ,Θg) =
∑
y∈SN

p(x,y|Θg) log πy0 +
∑
y∈SN

p(x,y|Θg)
N∑
i=1

log ayi−1,yi (2.33)

+
∑
y∈SN

p(x,y|Θg)
N∑
i=1

log p(xi|yi). (2.34)

The model parameters π, A and ψ can be updated separately in the Maximization-step (M-

step), which correspond to the three parts of Q(Θ,Θg), respectively. The parameters of the

Ornstein-Uhlenbeck (OU) model are involved in p(xi|yi) of the third term of Q(Θ,Θg).

Define that q−i = (y1, · · · , yi−1, yi+1, · · · , yN). We represent the third part as:

∑
y∈SN

p(x,y|Θg)
N∑
i=1

log p(xi|yi)

=
N∑
i=1

∑
y∈SN

p(x,y|Θg) log p(xi|yi) (2.35)

=
N∑
i=1

M∑
l=1

∑
y−i∈SN−1

p(x, y1, · · · yi−1, yi = l, yi+1, · · · , yN |Θg) log p(xi|yi = l) (2.36)

=
M∑
l=1

N∑
i=1

p(x, yi = l|Θg) log p(xi|yi = l). (2.37)

Here p(x, yi = l|Θg) can be computed using forward-backward algorithm [123, 125]. As-

sume that continuous-trait variables follow multivariate Gaussian distributions. For a given
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state l, we have

log p(x|µ(l)
Θ ,Σ

(l)
Θ ) ∝ −1

2
log |Σ(l)

Θ | −
1

2
(x− µ(l)

Θ )T [Σ
(l)
Θ ]−1(x− µ(l)

Θ ) (2.38)

The underlying phylogenetic model ψl is embedded into Σ
(l)
Θ and µ(l)

Θ by Eq. (2.2)-(2.4).

Then the negative expected log likelihood of state l is:

L(Θ(l)) =
1

2
log |Σ(l)

Θ |
N∑
i=1

p (x, yi = l|Θg) (2.39)

+
1

2

N∑
i=1

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
p(x, yi = l|Θg). (2.40)

Therefore, multiplied by 2/N , the third part of the negative Q function with respect to a

given state l can be represented as:

L̃(Θ(l)) =
1

N
log |Σ(l)

Θ |
N∑
i=1

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
, (2.41)

where

w
(l)
i = p(x, yi = l|Θg) (2.42)

S̃
(l)
Θ =

1

N

N∑
i=1

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
. (2.43)

Here Θ(l) represents the phylogenetic model parameters associated with state l. We have

Θ(l) = {θl, αl, σl, τl, βl}, l = 1, · · · ,M .

We perform parameter estimation for each of the possible states. We assume τl is

given. βl can be combined in effect to αl and σl. In practice, if the real branch lengths

are unknown, we perform the transformation that

α̃v = αvβv, (2.44)

σ̃2
v = σ2

vβv, (2.45)

where βv represents the length of branch from the parent of node v to node v. Using this

approach the branch lengths are incorporated into {αl, σl}. Then Θ(l) = {θl, α̃l, σ̃l}. The
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objective function for parameter estimation for a given state l is

min
Θ(l)

1

N
log |Σ(l)

Θ |
N∑
i=1

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
. (2.46)

A challenge is that there are approximately two times more model parameters than the

feature dimension for each state. We apply `2-norm regularization to the parameters Θ(l).

In each M-step, the objective function of a given state l is defined as:

min
Θ(l)

1

N
log |Σ(l)

Θ |
N∑
i=1

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
+ λ‖Θ(l)‖2

2, (2.47)

where w(l)
i and S̃(l)

Θ are defined as above. We define λ = λ0/
√
N , and tune λ0 based on a

fixed simulation dataset. We estimated the range of λ0 that can improve the performance

of Phylo-HMGP-OU (see section 2.4.5 and Figure 2.2). Accordingly, we applied the same

λ0 to all the simulation datasets and the real data as a fixed coefficient, without tuning λ0

on each dataset specially, in order to avoid overfitting of λ0 on a particular dataset.

From the first two parts of Q(Θ,Θg) we can update the estimates of π and A accord-

ingly. Let A = {akl}, where akl = p(yi = l|yi−1 = k), k, l = 1, · · · ,M . We have:

πl =
p(x, y0 = l|Θg)

p(x|Θg)
, (2.48)

akl =

∑N
i=1 p(x, yi−1 = k, yi = l|Θg)∑N

i=1 p(x, yi−1 = k|Θg)
. (2.49)

Therefore, in each E-step, given the present estimated model parameters Θg, we compute

p(x, yi = l|Θg) and p(x, yi−1 = k, yi = l|Θg) using the forward-backward algorithm [123,

125](section 2.4.4), k, l = 1, · · · ,M . In each M-step, we solve the maximum expected

likelihood estimation problem to update the parameters π, A, and {ψj}Mj=1. Given the

estimated model parameters, we can predict a most likely sequence of hidden states ŷ

using the Viterbi algorithm [126].

Note that the existing discrete-trait Phylo-HMMs [115, 116] can also be represented as

h = (S, ψ,A, π), where the evolutionary model ψj is defined according to the substitu-

tion process with respect to an alphabet Σj of discrete characters, e.g., Σj = {A,C,G, T}
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for nucleotides. In the discrete-trait Phylo-HMMs, ψj is defined as ψj = {Qj, bj, τj, βj},

where Qj is the substitution rate matrix, bj is the vector of the background character fre-

quencies, τj is the tree topology, and βj represents the branch lengths. This realization of

ψj is limited to the discrete characters, where transition probabilities between two charac-

ters can be computed to model evolution of characters, e.g., the HKY85 model [127]. For

the continuous traits, we use continuous-trait evolutionary model assumptions to define ψj .

2.4.3 Initialization of the Expectation-Maximization algorithm in Phylo-HMGP

Phylo-HMGP uses the Expectation-Maximization (EM) algorithm for parameter estima-

tion. The EM algorithm seeks local minima and the results of EM algorithm are influenced

by initializations. We designed different ways for parameter initialization. The first ap-

proach is to estimate OU model parameters initially based on the primitive state estimation

results from K-means clustering. We perform model estimation for each cluster separately

as single-state estimation, and use the estimates as initial model parameter values for the

EM algorithm.

The second approach is to generate initial values randomly. There are three types of pa-

rameters in the OU model for a single state, which are optimal values θ, selection strength

α, and Brownian motion intensity σ. We sample random variables from uniform distribu-

tions for the initial values of θ, α, and σ, respectively.

The third approach is to use a linear combination of the initial parameter values obtained

from the first approach and the second approach. We estimate the initial parameter values

as Θ0 = w1Θ1 + (1 − w1)Θ2, where Θ1 and Θ2 are parameter estimates from the first

and second approaches. By changing the initial weight w1, we have different initialization

schemes. Based on the performance with respect to varied w1 in simulation study I, we

observed that Phylo-HMGP is not very sensitive to initialization on four datasets, while

on the other datasets the performance is improved as w1 increases within a range. Given

w1 ∈ [0.2, 1.0], the performance of Phylo-HMGP on each simulated dataset is comparable

to the best performance it can achieve on the corresponding dataset. For performance
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comparison with other methods in the simulation study, we fixed w1 = 0.8 for all the

datasets to prevent overfitting on a particular dataset. The initialization weight w1 is an

input parameter to the implemented program and can be adjusted within [0, 1] by the user’s

choice.

2.4.4 Forward-backward algorithm in the Expectation-step

For the objective function defined in 2.47, we compute w(l)
i = p(x, yi = l|Θg) in the E-step

of the EM algorithm using the forward-backward algorithm and current model parameter

estimates Θg. Let x = (x1, · · · , xT ) be the observation sequence. We define:

αl(t) = p(x1, x2, · · · , xt, yt = l|Θg), (2.50)

and

βl(t) = p(xt+1, xt+2, · · · , xT |yt = l,Θg). (2.51)

According to the forward-backward algorithm, we have:

p(x, yt = l|Θg) = αl(t)βl(t). (2.52)

Both αj(t) and βj(t) can be computed recursively. Let πl = p(y1 = l) be the initial state

distribution, l = 1, · · · ,M . The forward procedure to compute αl(t) is as follows.

αl(1) = πlp(x1|y1 = l), (2.53)

αl(t+ 1) = [
M∑
j=1

αj(t)alj]p(xt+1|yt+1 = l), (2.54)

p(x|Θ) =
M∑
l=1

αl(T ). (2.55)

The backward procedure to compute βl(t) is as follows:

βl(T ) = 1, (2.56)

βl(t) =
M∑
j=1

aljy(xt+1|yt+1 = j)βj(t+ 1), (2.57)

p(x|Θ) =
M∑
l=1

βl(1)πlp(x1|y1 = l). (2.58)
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We also update the transition probability between any two states. Define that εkl(t) =

p(yt = k, yt+1 = l|x,Θ). We have:

εkl(t) =
p(yt = k, yt+1 = l,x|Θ)

p(x|Θ)
=

αk(t)aklp(xt+1|yt+1 = l)βl(t+ 1)∑M
k=1

∑M
l=1 αk(t)aklp(xt+1|yt+1 = l)βl(t+ 1)

.

(2.59)

Equivalent to Eq. (2.49), the transition matrix can be updated as:

akl =

∑T−1
t=1 εkl(t)∑T−1

t=1 p(yt = k|x,Θ)
, k, l = 1, · · · ,M, k 6= l. (2.60)

With p(x, yi = l|Θg) and p(x, yi−1 = k, yi = l|Θg) computed in each E-step, k, l =

1, · · · ,M , we update the parameters π, A, and {ψj}Mj=1 in each M-step.

2.4.5 Estimation of the regularization coefficient in Phylo-HMGP

For the objective function defined in Formula (2.47), we define λ = λ0/
√
N , where N is

the sample size, and we observe how performance of Phylo-HMGP-OU changes with re-

spect to λ0 based on a fixed simulation dataset (simulation dataset I-1), in order to estimate

a range of λ0 in which the performance of Phylo-HMGP-OU can be improved with the

l2-norm regularization. We tuned λ0 from 0 to 5, with the step size of 0.5, and compared

the performance of the model with respect to the different choices of λ0. We found that the

model with λ0 ∈ [3.0, 5.0] reaches relatively higher F1 score than the other choices of λ0 on

this dataset (Figure 2.2). We selected λ0 = 4.0 and applied it to all the simulation datasets

and the RT data as a fixed coefficient, without tuning λ0 on each dataset specially, in order

to avoid overfitting of λ0 on a particular dataset. We also repeated the experiment on dataset

I-1 and observed how the performance of Phylo-HMGP-OU changes with λ0 on the other

datasets in simulation study I. We found that the performance of Phylo-HMGP-OU is not

sensitive to λ0 ranging in [3.0,5.0] on most of the simulation datasets (I-1,I-3,I-4,I-5,I-6).

Phylo-HMGP-OU still reaches comparable performance to the highest performance it can

achieve on dataset I-2. We only used the performance resulted from λ0 = 4.0 on all the

simulation datasets for performance evaluation and comparison.
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Figure 2.2: Performance evaluation on AMI, ARI, and F1 score in simulation study I with respect to varied l2-norm

regularization coefficient λ0.

2.5 Brownian motion in Phylo-HMGP

The proposed Phylo-HMGP framework is flexible. Any type of Gaussian process can be

used to realize the continuous-trait evolutionary model according to the assumption used.

For more comprehensive method evaluation of the proposed framework, we also devel-

oped the Phylo-HMGP-Brownian Motion (Phylo-HMGP-BM) method, where the embed-

ded continuous-trait model is the Brownian motion model. A standard Brownian motion is

a stochastic process X = {Xt : t ∈ [0,∞)} that has the following properties: (i) X0 = 0

with probability 1; (ii) The increment of Xt is independent of the past values; (iii) The

increment of Xt is normally distributed with mean 0 and the time interval of the increment

as variance; (iv) X has continuous paths.

Phylo-HMGP-BM is also built from h = (S, ψ,A, π). For Phylo-HMGP-BM, ψj is

defined as ψj = (µj, τj, βj, λj), j = 1, · · · ,M , where µj denotes the mean values of

leaf nodes, and τj , βj , λj denote the phylogenetic tree topology, the branch lengths, and

the evolution rates on branches, respectively. Under the Brownian motion assumption,

the covariance between observations of two species depends on the depth of their nearest

common ancestor in the phylogenetic tree. The covariance matrix based on the BM model

can therefore be presented as a linear combination of covariance matrices [128].

Suppose r is the number of branches of the phylogenetic tree, and d is the number of

leaf nodes (i.e., the number of observed species). We have λj ∈ Rr, βj ∈ Rr, and µj ∈ Rd,
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j = 1, · · · ,M . We number the branches with 1, · · · , r. For any vector f , let f(k) be the

k-th element of f . Let vj ∈ Rr, and vj(k) = λj(k) · βj(k), k = 1, · · · , r, which reflects

the combined effect of branch length and evolution rate along each branch. Without loss of

generality, suppose v ∈ Rr is the transformed evolution rate vector for an arbitrary state.

Then v(k) represents the transformed evolution rate on the k-th branch. Suppose Xi is the

observation of a species. Based on the model of Brownian motion, the mean value of Xi is

identical to that of the observation of its ancestor and the variance of Xi is proportional to

the evolution time from its ancestor. We have:

E[Xi] = E[Xp], (2.61)

Var(Xi) =
∑

k∈Sa(i)

v(k), (2.62)

Cov(Xi, Xj) =
∑

k∈Sa(i,j)

v(k), (2.63)

where ti represents the branch length from the nearest ancestor of species i to species i,

and Sa(i, j) represents the set of common of ancestors of species i and j. The covariance

matrix based on the Brownian motion model can therefore be presented as [128]:

Σv = G0 +
r∑

k=1

v(k)Gk, (2.64)

whereGk is a binary matrix representing contribution of a specific branch to the covariance

matrix. Suppose x = (x1, · · · , xN) are observations of consecutive genome regions along

a sequence of length N , and y = (y1, · · · , yN) are the corresponding hidden states. Simi-

lar to Phylo-HMGP-OU, we use EM algorithm for parameter estimation. We define the Q

function Q(Θ,Θg) in the same way as Eq. (2.33), which is the expectation of the complete-

data log likelihood function, but with different realization of p(x,y|Θg) according to the

assumption of the Brownian Motion model. Here Θ represents the model parameters and

Θg is the current estimate of the parameters. Based on the original Brownian motion model,

the expectation of observation of descendant species is always identical to that of its an-

cestor. We have E(Xi) = E(X0) under this assumption, where X0 corresponds to the most
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remote ancestor. However, we can observe shift of the mean value of the phenotype in

real world problems [129, 130]. Therefore we relax this constraint on the expectation of

the observations, using a weaker assumption that allows the expectation to be shifted on

branches. Then we considers the phenotype expectation of each species as model parame-

ters, allowing the expectation to vary between species.

We compute the third part of the negative Q function with respect to each state, i.e., the

negative expected log likelihood of each state (multiplied by 2/N ), which is denoted by

L̃(Θ(l)), l = 1, · · · ,M . Here Θ(l) represents the model parameters associated with state l.

We have Θ(l) = {vl, µl}. We minimize L̃(Θ(l)) to estimate Θ(l). Accordingly, the objective

function of a given state l is:

min
vl,µl

1

N
log |Σ(l)

v,µ|
N∑
i=1

w
(l)
i + tr

(
[Σ(l)

v,µ]−1S̃(l)
µ

)
, (2.65)

where w(l)
i = p(x, yi = l|Θg), and S̃(l)

µ = 1
N

N∑
i=1

w
(l)
i (xi − µl) (xi − µl)T , l = 1, · · · ,M .

Using EM algorithm, in each E-step, given the estimated parameters Θg, we compute

p(x, yi = l|Θg) using the forward-backward algorithm, l = 1, · · · ,M . In each M-step,

we solve the maximum expected likelihood estimation problem to update the parameters

associated with each state. Different optimization algorithms can be applied to solve the

optimization problem. Let vl,k = vl(k), k = 1, · · · , r. For the Phylo-HMGP-BM, the gra-

dient with respect to vl,k can be computed explicitly [128] and we implemented the gradient

descent method based on the derived gradient as an alternative optimization approach:

∂L̃(Θ(l))

∂vl,k
= ∇Gk

L̃(Θ(l)) = ΣN
i=1w

(l)
i tr(Gk[Σ

(l)
v,µ]−1)−Ntr(S̃(l)

µ [Σ(l)
v,µ]−1Gk[Σ

(l)
v,µ]−1).

(2.66)
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2.6 Initial estimation of the state number for comparing RT data

across species

To apply Phylo-HMGP to the replication timing data, we first estimated the possible num-

ber of states using K-means clustering. We performed K-means clustering to the datasets

with an increasing cluster number K, computed the Sum of Squared Error (SSE) of each

clustering result, and observed how SSE changed with respect to K. We estimated the state

number to be approximately 20-40 based on the K-means clustering results, as the decreas-

ing rate of SSE with respect to the increasing K slows down in this range (Figure 2.3).

Based on the observation the ‘elbow point’ of the SSE curve is around 30, and small fluc-

tuation of the state number around 30 dose not present significant change of the reduction

of the SSE decreasing rate compared to the state number of 30. We therefore set the state

number to be 30.
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Figure 2.3: The change of Sum of Squared Error (SSE) with respect to an increased cluster number in K-means

clustering on RT data. The state number was estimated to be between 20 and 40 based on the results from K-means

clustering.
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2.7 Data preparation and processing

2.7.1 Experimental model and subject details

The five primate species included in the RT data comparison are Homo Sapiens (Hu-

man), Pan troglodytes (Common Chimpanzee), Pongo pygmaeus (Bornean Orangutan),

Nomascus leucogenys (Northern White Cheeked Gibbon), and Cercopithecus aethiops

(Green Monkey). We used GM12878 cell line from human. The GM12878 cell line

is a lymphoblastoid cell line established from EBV (Epstein-Barr Virus)-transformed B-

lymphocytes from a female donor. The GM12878 cell line was obtained from the Coriell

Cell Repositories of Coriell Institute for Medical Research. We used lymphoblastoid cell

lines from the other four non-human primate species, each of which is from one biolog-

ical individual. The lymphoblastoid cell line of each of the species was derived from B-

lymphoctyes by EBV transformation. The cells of Common Chimpanzee (abbreviated as

Chimpanzee) are male. The cells of Bornean Orangutan (abbreviated as Orangutan) are

male. The cell lines of Chimpanzee and Orangutan have been used in [131]. The cells of

Northern White Cheeked Gibbon (abbreviated as Gibbon) are male. The cells of Green

Monkey are female and the cell line was obtained from the Coriell Cell Repositories. For

each species, we only used autosomes for data analysis and excluded data from the sex

chromosomes. The key resources used are shown in Table 2.1.

2.7.2 Repli-seq data processing

We generated Repli-seq data from the lymphoblastoid cell line of each of the five primate

species. We performed quality control of the Repli-seq reads using the software FastQC

(available from http://www.bioinformatics.babra-ham.ac.uk/projects/fastqc) and removed

adapter sequences using the FASTX-Toolkit (http://hannonlab.csh-l.edu/fastx toolkit) for

data preprocessing. To obtain RT signals in orthologous genome regions across the multi-

ple species, we collected the RT signal values for each 6kb bin of human genome and its

orthologous regions in each of the other species if RT measurements are available. Specif-
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ically, first, we mapped the preprocessed sequencing reads to the genome assemblies of

hg19 (Human), panTro4 (Chimpanzee), ponAbe2 (Orangutan), nomLeu3 (Gibbon), and

chlSab2 (Green Monkey), respectively, using Bowtie2 [132]. The genome assemblies were

downloaded from the UCSC genome browser [133–137]. Second, we used human genome

(hg19) as the reference and divided the reference genome into 6kb bins. We then aligned

each bin in human genome to each of the other species with reciprocal mapping using

liftOver [138] to obtain the orthologous regions. Third, for each species, we calculated

Repli-seq read count within a given genomic window (an orthologous region) in early and

late phases of RT, respectively, normalized by the total read count in early or late RT phase

on the whole genome accordingly. The RT signal in each orthologous region is defined as

the base 2 logarithm ratio of read count per million reads between the early and late phases

of RT within this region.

For each species, we identify each sequence of consecutive bins without RT signals

as a gap. The bin size (6kb in human) is much smaller than the scale of the RT signals

(the replication domain is typically at the scale of 400-800kb [42]). We assume that RT

does not change sharply at a small size gap if the gap is between both early RT signals

or both late RT signals. We then performed data imputation for gaps smaller than 48kb

using nearest neighbor imputation. In this way we can reduce missing data and have more

continuous segments where cross-species observations are available. More specifically,

if the RT signals on both sides of a gap smaller than 48kb are both early RT signals or

both late RT signals with difference smaller than 1/3, we assign to each bin in the gap the

RT signal of a signal-available bin that is nearest to this bin. We then used the software

HMMSeg [139] to perform wavelet smoothing [140] of the RT signals in each species,

using the window size of 24kb.

Next, we found the orthologous regions where the RT signals across five species are

all available. We then performed data normalization of the signals of each species in the

regions. We observed that the different species have varied RT scales around [-5,5]. We

performed feature scaling to scale non-negative RT signals (primarily early RT) in each
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species to [0,5] and scale non-positive RT signals (primarily late RT) in each species to [-

5,0]. We formed the normalized RT signals in orthologous regions across five species into

a five-dimensional feature vector and assigned it to the corresponding reference 6kb bin in

human genome as a sample. We excluded the orthologous regions on the sex chromosome

and only used autosomes of each species for data analysis. We obtained 419,754 samples

in the orthologous regions across species.

2.8 RT state prediction and RT state grouping

We applied Phylo-HMGP-OU to multi-species Repli-seq data (there are five primate species

in our study) to perform state estimation, with the state number set to be 30. We used

λ0 = 4.0 for l2-norm regularization and w1 = 0.2 for parameter initialization (see sec-

tion 2.4.3). We repeated the estimation 10 times with different initializations. We choose

the result with the highest objective function value for further analysis.

We classified the 30 RT states predicted by Phylo-HMM-OU into 5 RT groups, namely,

conserved early (noted as E), conserved late (L), weakly conserved early (WE), weakly

conserved late (WL), and non-conserved (NC). If the majority (>98%) of the regions in

a state share the pattern that all of the five species consistently have positive RT signals

(early in RT), we assign this state to the conserved early (E) group. If a state does not

satisfy this criteria, but instead satisfy that at least four species are consistently early in RT

in more than 90% regions of this state, we assign this state to the weakly conserved early

(WE) group. We assign states to the L and WL groups in a similar way accordingly. The

remaining states are assigned to the NC group.
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2.9 Approaches for the simulation studies

2.9.1 Data simulation for the simulation studies

We performed performance evaluation of the develop method in simulation studies. We

used two types of models for data simulation, corresponding to Simulation Study I (SS-I)

and Simulation Study II (SS-II). Each study consists of six synthetic datasets. In SS-I, for

each dataset, samples were generated from an HMM with 10 states and with multivariate

Gaussian distribution as the emission probability distribution. The Gaussian distribution of

each state follows a different OU model on the same phylogenetic tree topology. The OU

model parameters of each state were randomly generated with non-negative constraints of

selection strength {αj}Mj=1 and Brownian motion intensity {σj}Mj=1 (M is the state number).

Phylogenetic trees with four leaf nodes and with five leaf nodes were used as tree topologies

for parameter simulation, each used for three datasets. The transition probability matrix of

the HMM was randomly generated with the assumption that self-transition probability of a

state is the dominant probability as compared to probabilities of transitions to other states.

In SS-II, samples were generated from a Gaussian mixture model instead of an HMM.

For each dataset, samples were generated based on a mixture model with 10 states where

Gaussian distributions are the emission probability distributions. We defined a transition

probability matrix between the 10 states as we defined in SS-I, and computed the equilib-

rium probability distribution of the 10 states from the transition probability matrix. We then

divided the genome into continuous segments of varied lengths. Each segment represents

a series of samples that share the same state, e.g., adjacent fixed-size bins of the same state

on the genome. We randomly sampled the segment length from a truncated Normal distri-

bution by which the length is non-negative. The state of each segment was drawn randomly

and independently from the computed equilibrium probability distribution of the 10 states.

Parameters of the Gaussian distribution of each state were shared between two correspond-

ing datasets in SS-I and SS-II. For example, simulation dataset I-1 (dataset 1 in SS-I) and

simulation dataset II-1 (dataset 1 in SS-II) are assigned with the same set of Gaussian dis-
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tributions for 10 states. However, different assumptions (HMM and non-HMM models)

were used to simulate the two types of datasets.

In both simulation study I (SS-I) and II (SS-II), phylogenetic trees with four leaf nodes

and with five leaf nodes were used as tree topologies. Datasets with even-number (I-2,

I-4, I-6, II-2, II-4, and II-6) were based on the same topology of five leaf nodes, which is

identical to the topology of the species tree specified in Figure 2.1C and is also the topology

used in the RT data study. Datasets with odd-number (I-1, I-3, I-5, II-1, II-3, and II-5) were

based on the same topology of four leaf nodes, which is identical to the topology of the sub-

tree of the species tree specified in Figure 2.1C that contains the primate species human,

chimpanzee, orangutan, and gibbon. 50,000 samples were generated for each dataset.

The emission probability distribution of each state in each dataset is Gaussian distri-

bution, parameterized by a multivariate OU model ψj = (θj, αj, σj), where j is the index

of the state, and θj , αj , σj represent the optimal value vector, the selection strengths and

the Brownian motion intensities along the branches, respectively. The selection strength

αj,k and Brownian motion intensity σ2
j,k along each branch are each randomly and indepen-

dently sampled from the uniform distribution Unif [0, 2], k = 1, · · · , d (d is the number

of branches). The optimal value θj,l (l = 1, · · · , d + 1) of each node is randomly and

independently sampled from a Normal distribution N (0, 2). In the transition probabil-

ity matrix A of one dataset in SS-I, the self-transition probability of state j is defined as

ajj = a0 +(1−a0)×p, where p is randomly sampled from uniform distribution Unif [0, 1]

and a0 is set to be 0.7. The transition probabilities of state j to other states are first ran-

domly sampled from uniform distribution Unif [0, 1] and then normalized to be summed

to 1− ajj . In SS-II, the fragment length (the number of continuous bins of the same state)

is sampled from the a truncated Normal distribution N (50, 30) with the minimal fragment

length to be 5. We first sampled a transition probability matrix Ã in the same way as in SS-

I. Then we estimated the equilibrium probability distribution π̃ of the states from Ã based

on π̃ = π̃Ã. We sampled the state of each fragment from π̃ randomly and independently.

We calculated the Davies-Bouldin Index (DBI) [141] for each dataset in SS-I and SS-

41



II, to estimate the difficulty in state prediction in different datasets. DBI can be used to

measure how discriminative is each cluster (state) compared to the others. A high DBI rep-

resents that the states have large variances within themselves while the state-to-state dis-

tances are small, making it difficult to distinguish the states. The DBIs for the six datasets

in SS-I are 2.3127, 2.0770, 1.9706, 1.3127, 1.5045 and 1.4623, respectively. The DBIs for

datasets in SS-II are 2.2677, 2.0608, 1.9597, 1.3116, 1.4987, and 1.4864, respectively. We

found that datasets I-1, I-2, II-1, and II-2 have relatively higher DBIs.

2.9.2 Performance evaluation in the simulation studies

We used Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI), Ad-

justed Rand Index (ARI), Precision, Recall, and F1 score [142, 143] for performance evalu-

ation in the simulation studies. Suppose X = {x1, · · · , xN} is the set of samples. Suppose

Ω = {ω1, · · · , ωK} is the set of predicted states which represents a partition of S into K

states, and C = {c1, · · · , cM} is the ground truth set of states. Let I(Ω, C) be the mutual

information between Ω andC, andNMI(Ω, C) be the normalized mutual information. We

have

I(Ω;C) =
K∑
k=1

M∑
j=1

P (ωk, cj) log
P (ωk, cj)

P (ωk)P (cj)
, (2.67)

NMI(Ω;C) =
I(Ω;C)

[H(Ω) +H(C)]/2
, (2.68)

where H(Ω) and H(C) represent the entropies of Ω and C, respectively. The entropy is

defined as H(Ω) = −
∑K

k=1 P (ωk) logP (ωk). P (ωk), P (cj), and P (ωk, cj) represent the

probabilities that a sample is in state ωk, in state cj , and in both ωk and cj , respectively.

The maximum likelihood estimates of P (ωk), P (cj), and P (ωk, cj) are |ωk|/N , |cj|/N ,

and |ωk ∩ cj|/N , respectively, where |ωk| denotes the size of ωk and N is the number of

samples.

Adjusted Mutual Information (AMI) is an adjustment of the mutual information to cor-
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rect the effect of agreement between two partitions that is solely due to chance. We have

AMI(Ω;C) =
I(Ω;C)− E[I(Ω;C)]

max{H(Ω), H(C)} − E[I(Ω;C)]
, (2.69)

where E(I(Ω;C)) represents the expectation of I(Ω;C), which can be estimated using Ω

and C [143].

The Rand Index (RI) [142] is another metric to compare two partitions, which is defined

as

RI =
TP + TN

TP + FP + FN + TN
. (2.70)

TP (true positive) represents the number of pairs of samples inX that are in the same subset

in Ω and also in the same subset in C. FP (false positive) is the number of pairs of samples

in X that are in the same subset in Ω but in different subsets in C. FN (false negative) is the

number of pairs of samples in X that are in different subsets in Ω but in the same subset in

C. TN (true negative) is the number of pairs of samples in X that are in different subsets

in Ω and also in different subsets in C.

The Adjusted Rand Index (ARI) corrects the Rand Index for the effect of agreement

that is solely due to chance between partitions. ARI is defined as

ARI =
RI − E[RI]

max{RI} − E[RI]
, (2.71)

where E(RI) represents the expectation of RI .

Precision, Recall, and F1 score are defined as

Precision =
TP

TP + FP
, (2.72)

Recall =
TP

TP + FN
, (2.73)

F1 =
2Precision×Recall
Precision+Recall

. (2.74)

For the compared methods, we used the GaussianMixture function and the KMeans

function in the scikit-learn library [144] to implement the Gaussian Mixture Model (GMM)

method and the K-means clustering method, respectively. We used the hmmlearn library
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(https://github.com/hmmlearn/) to implement the Gaussian-HMM method. Each compared

method is repeated 10 times with different initializations and guaranteed convergence each

time. Specifically, the parameter initializations of the Gaussian-HMM method and the

GMM method were based on K-means clustering. In each experiment, the best result from

10 randomly-initialized K-means clustering results (based on the clustering evaluation cri-

teria used in hmmlearn or scikit-learn, respectively) was selected for estimating the initial

parameters of Gaussian-HMM or GMM, respectively. 10 random initializations were also

used for K-means clustering in each experiment, and the clustering with the best perfor-

mance was chosen as the result. 10 experiments were repeated for the compared methods as

well as Phylo-HMGP, and the average of the 10 runs was reported as the final performance

of the corresponding method.

2.10 Results

2.10.1 Simulation study demonstrates the robustness of Phylo-HMGP

To explore whether incorporating evolutionary temporal constraints into the HMM can im-

prove the accuracy of identifying different evolutionary patterns, we applied our method to

12 synthetic datasets in two types of simulation studies. We assessed the performance based

on Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI), Adjusted

Rand Index (ARI), Precision, Recall, and F1 score [142, 143] by comparing the predicated

states with the ground truth states (see section 2.9.2 We used HMM to generate the samples

in simulation study I (SS-I), while simulation study II (SS-II) did not use HMM and was

instead based on a Gaussian Mixture Model (GMM). Both SS-I and SS-II contained six

synthetic datasets (sample size = 50,000 each), respectively. Detailed descriptions of the

simulated datasets are in section 2.9.1.

We compared Phylo-HMGP-OU and Phylo-HMGP-BM with the Gaussian-HMM method,

the GMM method, and the K-means clustering method in both SS-I and SS-II. For each

dataset, we ran each method 10 times. Each method was started from different initializa-
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tions and given the state number as 10. We reported the average performance of the 10

runs as the final performance of the respective method. We applied the same regulariza-

tion parameter to Phylo-HMGP-OU on all of the 12 datasets, without tuning the parame-

ter specifically on each dataset. The results show that Phylo-HMGP-OU outperforms the

other methods on AMI, ARI, and F1 score on all of the six datasets in SS-I (Figure 2.4A

and Table. 2.3). In particular, Phylo-HMGP-OU shows significant advantage in reaching

higher ARI on average in different datasets, as compared to the other methods. In SS-II

(Figure 2.4B and Table. 4.4), the performance of Phylo-HMGP-OU decreases occasionally

(SS-II-1 and II-2) as compared to its performance in SS-I. However, Phylo-HMGP-OU

still outperforms the other methods in five of the six datasets. Phylo-HMGP-BM reaches

the highest performance on SS-I-1, while Phylo-HMGP-OU maintains comparable perfor-

mance to Phylo-HMGP-BM on this dataset. These simulation results strongly suggest that

Phylo-HMGP-OU can achieve robust performance even when the data are simulated from

a non-HMM model such as the Gaussian mixture model. Note that in the rest of the Results

section, we use “Phylo-HMGP” to refer to “Phylo-HMGP-OU”.

2.10.2 Phylo-HMGP reveals genome-wide RT patterns across primate species

Next, we applied the Phylo-HMGP method to study different evolutionary patterns of RT

in mammalian genomes. We generated genome-wide RT maps based on Repli-seq [38] in

lymphoblastoid cells from five primate species, including human, chimpanzee, orangutan,

gibbon, and green monkey. See Methods section for the details on how we processed

the data. We then applied Phylo-HMGP to this multi-species RT dataset. We set the state

number as 30 based on estimation from K-means clustering (see section 2.6 and Figure 2.3).

We identified both conserved and lineage-specific states with differences in RT patterns

across species. Here we classified the 30 states into five groups: conserved early (denoted

as E), conserved late (L), weakly conserved early (WE), weakly conserved late (WL), and

non-conserved (NC) (see section 2.8). In the E group, all five species have early RT. In the

WE group, four species have early RT. We assign states to the L group and the WL group
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Figure 2.4: Prediction performance evaluation using simulated datasets. (A) Evaluation of Gaussian-HMM, GMM, K-

means Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in Simulation Study I in terms of

AMI (Adjusted Mutual Information), ARI (Adjusted Rand Index), and F1 score. (B) Evaluation of Gaussian-HMM, GMM,

K-means Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in Simulation Study II in terms

of AMI, ARI, and F1 score. In both (A) and (B), the standard error of the results of 10 repeated runs for each method is

also shown as the error bar.

similarly. The remaining states are assigned to the NC group.

The representative RT signal patterns of the 30 predicted states are shown in Fig-

ure 2.5A, with examples of the states and groups shown in Figure 2.5B and Figure 2.5D.
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Distributions of RT signals of the five species in each of the 30 states are shown in Fig-

ure 2.6, including other lineage-specific patterns, conserved patterns, or divergent patterns.

States 1-8 are conserved early or conserved late states of RT, making up approximately

47.7% of the whole genome. States 9-18 display different lineage-specific RT patterns.

State 9 (Figure 2.5B) and 10 represent human-chimpanzee (hominini) specific patterns of

early RT and late RT, respectively. State 11 shows human-chimpanzee-orangutan (ho-

minid) specific early RT. States 12-18 reflect single-lineage specific patterns, where one

species differs from all the other species.

Phylo-HMGP estimated the transition probabilities between the 30 predicted states

(Figure 2.7). We noticed that overall the transition probabilities are higher within the E

group and L group. Phylo-HMGP also simultaneously estimated the model parameters

of selection strength, Brownian motion intensity, and optimal values of the phylogenetic

model associated with each state (Figures 2.8 and 2.9). We found that the estimated pa-

rameters correspond very well to the lineage-specific RT patterns. For example, for state

9 and 10, the human-chimpanzee specific states, the estimated strongest selection strength

happened on the branch leading to human and chimpanzee, and strong Brownian motion

intensity is also estimated for human and chimpanzee. We observed similar correlations

for other states. We also compared Phylo-HMGP with the other methods on an evalua-

tion dataset constructed from the RT data and found that Phylo-HMGP outperforms other

methods (see section 2.10.3 and Figure 2.10).

2.10.3 Evaluation of Phylo-HMGP in comparsion with other methods on RT

data

We also compared Phylo-HMGP-OU with Gaussian-HMM method, GMM method, K-

means clustering method, and Phylo-HMGP-BM on the Repli-seq dataset, based on the

average performance from 10 repeated runs of each method. We have applied each method

to the RT data for state prediction, with state number set to be 30, as estimated in sec-

tion 2.6. However, there is no available ground truth for the RT data. For evaluation
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purpose, we constructed an evaluation state set. Specifically, we discretized the signals of

each species into 5 levels, and identified 12 possible selected representative states (10 pos-

sible lineage-specific states and two conserved states) from all the combinations of the 5

levels in orthologous regions across the species. We fit a Gaussian-HMM with five hidden

states independently for each species, with each state representing a discretized level of the

RT signal values. High signal values (level 1 and 2) and low signal values (level 3 and 4)

correspond to early phase and late phase in RT, respectively. For example, human early

state represents early RT only in human and non-early RT in the other four species at the

orthologous regions. The 10 possible lineage-specific states identified from discrete lev-

els of RT signals are human early/late, chimpanzee early/late, orangutan early/late, gibbon

early/late, and green monkey early/late, respectively. The two identified conserved states

are conserved RT early and late, respectively. The 12 selected states cover around 60% of

all the orthologous regions with cross-species RT signals. We constrained the evaluation

of different methods to the regions where the 12 selected states are present. Within these

regions, we used the 12 selected states as a known partition, and evaluated the relevance of

the prediction of each method to this partition, using the evaluation metrics AMI, NMI, RI,

and F1 score (Figure 2.10).

As each method predicted 30 states, which is a finer partition than 12 states, the eval-

uation measures are generally lower than those in the simulation studies. For example,

regions in one state in the 12-state partition may be predicted to be in different states in

the 30-state partition, which affects the F1 score by reducing the Recall and also affects the

other metrics. Also, the selected states used for comparison were estimated using predic-

tions from Gaussian-HMM in each species, which would favor Gaussian-HMM and GMM.

The regions where 12 selected states are present are less continuous than the whole genome

regions and have weaker spatial dependencies between regions, which again would favor

GMM. However, Phylo-HMGP-OU still outperforms the other methods in each of the four

evaluation metrics. Phylo-HMGP-BM ranks second in performance. Even though the 12-

state partition is not exactly ground truth, it nevertheless demonstrates that Phylo-HMGP
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outperforms the other methods in the RT data application, which is consistent with the

results from the simulation studies.

2.10.4 RT evolution patterns correlate with A/B compartments and histone

marks

Analysis based on Hi-C data has shown that the genome can be divided into two compart-

ments called A/B compartments [1], with at least five subcompartments, namely A1, A2,

B1, B2 and B3, which have different genomic and epigenomic properties [4]. A1 and A2

subcompartments both show early RT, with the difference that replications in A2 regions

finish later than A1. B2 and B3 subcompartments show late RT, while replications in B1

happen in the middle of S-phase [4]. We used the subcompartment definitions in the hu-

man lymphoblastoid cell line GM12878 from [4] and calculated the enrichment of the five

subcompartments in the 30 predicted RT states. We observed that different predicted RT

evolution patterns show distinct enrichments of the subcompartments. For example, the

predicted RT states in the E group (state 1-4) show the strongest correlation with A1 or A2,

while the predicted RT states in the L group are enriched with B2 and B3. The majority of

the states in the NC group are most enriched with A2 or B1. States in the WE group and

WL group are enriched with A2/B1, and B2/B3, respectively.

We next compared the enrichments of different histone marks and CTCF binding site

within each RT state. Figure 2.5A panel 3 shows the enrichment distributions of histone

marks and CTCF binding site across the five predicted RT groups. These distributions are

consistent with the epigenomic feature patterns of the subcompartments that are enriched

in the corresponding states. We found that RT states in the E group show strong positive

correlation with active histone marks (e.g., H3K27ac, H3K36me3, and H3K4me1) and the

CTCF binding sites. On the contrary, RT states in the L/WL groups show distinct depletion

of these histone marks and the CTCF binding sites. The majority of predicted states in the

NC group instead exhibit variations in the enrichments of different types of histone marks.

Among the NC states, state 9 is identified as a human-chimpanzee specific early RT

49



state (Figure 2.5B). It displays a unique pattern of histone mark enrichment, showing

the strongest correlation with H2A.Z (p-values<1e-07) as compared to other predicted

states. Recent studies have reported that H2A.Z is progressively enriched towards early

RT loci [145]. Another state with interesting features is state 4, a conserved early state.

The RT is significantly early in human in state 4, similar to other states in the E group.

All of the other states in the E group (state 1-3) are strongly correlated with A1 subcom-

partment. State 4, however, is enriched with A2 subcompartment and is more positively

correlated with H3K9me3, which generally has stronger enrichment in A2 than A1 [4].

Therefore, state 4 represents a distinct state in the E group. These results demonstrate that

Phylo-HMGP has the sensitivity to distinguish within similar evolutionary patterns of RT.

2.10.5 Different RT evolution patterns reflect different functions

Previous studies have shown that different genomic regions have different levels of cell

type specificity for RT, including constitutively early, constitutively late, and more dynamic

across different cell types [9, 62]. We compared the states from Phylo-HMGP with the

constitutive and developmental RT patterns discovered during ES cell differentiation [9],

including constitutively early (CE), constitutively late (CL), developmentally regulated (D),

and undetermined. We found that overall the constitutively early or constitutively late

RT regions in the human genome have high consistency with the strongly conserved RT

evolution patterns (Figure 2.5C). The findings are consistent with previous observations in

human-mouse RT comparison [62].

Among the CE regions that are also covered in the cross-species RT comparisons by

Phylo-HMGP, 99.45% of the regions are assigned to the states of conserved early or weakly

conserved early (p-value<2.2e-16). Also, 86.94% of the CL regions in human are within

states of conserved late or weakly conserved late (p-value<2.2e-16). In contrast, the D

regions show more diverse patterns across the five RT groups predicted by Phylo-HMGP.

This also suggests that the RT regions in lymphoblastoid cells with similar RT profile across

different cell types are highly likely to be conserved in primates. However, a significant
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fraction of conserved RT regions in primates also shows cell-type specific RT patterns in

human. We performed Gene Ontology (GO) analysis for the conserved RT early regions

with respect to the constitutive/non-constitutive RT patterns using DAVID [146], and found

clear differences in gene functions (Table 2.4). We further performed GO analysis for the

lineage-specific RT states (see Figure 2.11A and Table 2.5). We found that genes associ-

ated with different states have different functions and biological processes. For example,

the hominini-specific early RT state (state 9) is enriched with genes having sensory func-

tions. These analyses suggest that genomic regions with different RT evolution patterns

may contain genes with distinct functions.

2.10.6 Boundaries of RT evolution patterns correlate with TAD boundaries

Earlier studies discovered that TADs defined from Hi-C data have high correspondence

with replication domains [9, 42]. We next asked whether the states found by Phylo-HMGP

correlate with the boundaries of TADs. We used the TADs called by two methods, Di-

rectionality Index (DI) [8] and Arrowhead [4]. We named the TADs as DI TADs and Ar-

rowhead TADs, the median lengths of which are 440kb and 185kb, respectively. For each

boundary of a TAD, we calculated the distance between the TAD boundary and the nearest

state boundary from Phylo-HMGP. Specifically, to filter the TADs that are far away from

any predicted states, we extended each boundary of a TAD with 30kb and used the states

that overlap with the extended TAD to calculate the boundary distance. We then calculated

the percentages of boundary distances that fall into four distance intervals respectively. The

first interval is [0,12kb]. The remaining three intervals are determined by the empirical dis-

tance distribution obtained from TAD shuffling, and equally cover the distances that are

larger than 12kb. We shuffled the TADs 1000 times by randomly relocating them along

the genome. We calculated and merged the boundary distances of each shuffle of TADs to

form the empirical boundary distance distribution. Furthermore, for each shuffle of TADs,

we computed the percentage of boundary distances that fall into each distance interval to

form empirical distributions for each interval.
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We found that the boundary distances between the DI TADs and the predicted RT states

are significantly more enriched in the interval [0,12kb] than expected (Figure 2.11B, em-

pirical p-value<1e-03). The percentage drops in the intervals that correspond to increased

boundary distances. The percentage is significantly lower than expected in the fourth inter-

val that covers the largest distances (empirical p-value<1e-03). The comparison based on

Arrowhead TADs show similar results. This analysis demonstrates the correlation between

the boundaries of RT evolution states and the TAD boundaries.

2.10.7 RT evolution patterns have enrichment of different transposable ele-

ments

It is known that RT correlates with certain transposable element (TE) families, e.g., the

early RT regions are typically enriched with SINE elements [37]. We next looked at the

connection between RT evolution patterns and the involvement of TEs based on Repeat-

Masker annotation. We obtained the RepeatMasker annotations for each of the five primate

species from the UCSC Genome Browser [147]. For the TE families shared among the

five primate species, we calculated the fold change of their enrichment in the orthologous

regions of each species in each state (Figure 2.11C). We found that there exist distinct pat-

terns of TE enrichment across different RT states and RT groups. Alu elements are strongly

involved in conserved early RT states and depleted in conserved late RT states across the

five species, with a clear changing correlation with RT across the five RT groups. On the

contrary, L1 and LTR elements ERVL and ERV1 correlate negatively with early RT but

positively with late RT. TEs in the LTR class and DNA class generally have more diversity

in their distributions over states in the WE, WL, and NC groups. We also found that the

repetitive sequence elements srpRNA, scRNA, and snRNA (based on RepeatMasker anno-

tations) have a strong positive correlation with conserved early RT and negative correlation

with conserved late RT (p-value<1e-04), having a similar enrichment pattern to Alu in the

E, WL, and L groups. Although some of these correlations (such as those with srpRNA,

scRNA, and snRNA) have not been reported before and further investigations are needed,
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this nevertheless demonstrates the potential of our method to provide new insights into the

impact of sequence evolution on DNA replication timing.

2.10.8 Lineage-specific early RT regions harbor unique TFBS

We then asked whether there are specific transcription factor binding sites (TFBS) that are

enriched in regions with specific types of RT evolution patterns. We used FIMO [148] to

perform motif scanning in the orthologous open chromatin regions of each species, using

635 position weight matrices (PWMs) of TF binding motifs from the JASPAR 2016 core

vertebrate motif database [149]. Specifically, we identified open chromatin regions in hu-

man genome as DNase-seq peak regions with +/-250bp extension, using DNase-seq data of

the GM12878 cells downloaded from the ENCODE annotation data in the UCSC genome

browser [150]. We used the liftOver tool [138] to project the identified open chromatin

regions in human genome to genomes of the other primate species, obtaining orthologous

open chromatin regions in the other species. In each orthologous region, we computed the

motif frequency for each of the PWMs within the open chromatin area for each species

(p-value<1e-04 required for each motif). We then normalized the frequency by the open

chromatin area size within this orthologous region.

To identify TF binding motifs that may be lineage-specifically enriched in predicted

lineage-specific RT states, we used two types of tests and selected motifs that can pass

both tests. First, within each lineage-specific RT state, we performed binomial tests to

find the motifs that are significantly more enriched in the RT-specific species than expected

(p-value<0.05). Second, for a motif that passes the binomial test in a lineage-specific RT

state, we calculated the fold change of its motif frequency within the RT-specific species

compared to the other species. To estimate the empirical p-value, we randomly sampled the

same number of regions as the lineage-specific RT state from the whole genome for 2000

times, and calculated the same type of fold change to form the empirical distribution. We

selected the motifs that have empirical p-values<0.05.

We identified sets of motifs that show lineage-specific enrichment in the lineage-specific
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early RT states (Figure 2.11D). We checked whether the TFs in the lineage-specific RT

states that involve human are expressed and found that the majority of them are expressed.

Specifically, we analyzed the expressions (in human) of those TFs with enriched motifs in

the lineage-specific states that involve human (i.e., state 9 and state 11). The gene expres-

sion data were obtained from the ENCODE Project [151] (ENCODE Data Coordination

Center accession: ENCSR000AEC; GEO accession: GSE78550). We found that 24 out of

the 28 TFs (86%) associated with state 9 and 11 have FPKM greater than 0.01 (10/13 for

state 9 and 14/15 for state 11). If we use the lower bound of the 95% credible interval for

the FPKM greater than 0.1 as the threshold, 20 out of the 28 TFs (71%) associated with

state 9 and 11 are expressed (10/13 for state 9 and 10/15 for state 11). For the TFs with

low or no expression, we further searched for the most similar binding motifs using TOM-

TOM [152]. We found that all the TFs for the matching motifs are expressed. Therefore, if

highly similar motifs are also considered, all the identified motifs correspond to expressed

TFs.

Also, we found that the identified lineage-specific enriched TF binding motifs vary in

different states. However, there are still a number of TF binding motifs (or motifs with

similar PWMs) shared between different states. For example, FOXC1 is significantly en-

riched in human and chimpanzee in the hominini-specific state (state 9), and also enriched

in green monkey in the green monkey-specific state (state 18). Interestingly, many of cor-

responding TFs associated with species-specific early RT are from the FOX family (e.g.,

FOXC1, FOXO3, and FOXD1), the ELF family (e.g., ELF1 and ELF3), and the ETV fam-

ily (e.g., ETV3 and ETV6). TFs of the FOX family are known regulators in B cells [153]

(lymphoblastoid cells are B cells) and FOXO3 was previously found to be crucial for reg-

ulating cell cycle progression through its binding partnership with DNA replication factor

Cdt1 [154]. Many of the other identified TFs are also known regulators in B cells, such as

EBF1, IRF8, RUNX2, and POU5F1 [153]. Although these findings need further studies to

evaluate the functional significance of the corresponding TFs in lineage-specific biology,

our analysis points to the direction that connects lineage-specific changes in cis-regulatory
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elements with lineage-specific changes in RT.

2.10.9 Evaluation based on cis-regulatory module evolution

In addition to the real data application on the Repli-seq data, we also applied the models to

predict different states of cis-regulatory module (CRM) evolution along the genome using

features only from DNA sequences. We focused on a recent dataset for promoters and

enhancers marked by H3K4me3 and H3K27ac in vertebrate liver cells [48]. We used four

species, including human (hg19), macaque (rheMac2), marmoset (calJac3), and mouse

(mm10). We used hg19 as the reference and divide it into 5 kb bins. For each of the

orthologous regions, we used the method Cluster-Buster [155] to compute a CRM score for

presence of homotypic motif clusters within this region of the respective species, using a

selected collection of 382 position weight matrices of TF binding motifs from the JASPAR

2016 core vertebrate motif database [149]. We only used expressed TFs in liver cell based

on gene expression data of human liver from GSE61260 [156]. We computed CRM sores

for the 286,287 orthologous regions across the four species. We applied Phylo-HMGP to

perform state prediction along the genome, with the state number set to be 16. Here we

assumed that the calculated CRM scores are associated with the activities of regulatory

elements (e.g., enhancers or promoters). The ChIP-seq data, which can be used to identify

and validate the existence of regulatory elements such as enhancers or promoters, were used

to prepare benchmarks to evaluate the performance of the proposed model Phylo-HMGP

in discovering different CRM patterns across species.

We used the peak regions called from ChIP-seq data of histone modification H3K27ac

and H3K4me3 [48] to evaluate the different states estimated by Phylo-HMGP. For enhancer-

evolution associated state prediction, we segmented the reference genome into different

benchmark states based on the species-specific distribution of H3K27ac peaks. We then

compared the states predicted by Phylo-HMGP-OU with the benchmark states, in compar-

ison with the results from Gaussian-HMM, K-means clustering, and Phylo-HMGP-BM.

We also performed state evaluation using the H3K4me3 dataset. The results are shown in
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Figure 2.12. Phylo-HMGP-OU achieved the highest RI and F1 score among the different

methods in the four experiments. Although the overall accuracy of using the CRM score

for predicting enhancer/promoter activities is not high and it remains an open problem to

more accurately predict regulatory region activities from genome sequence, our evaluation

again demonstrates the general utility and advantage of Phylo-HMGP.

2.11 Discussion

We developed Phylo-HMGP, which is a new continuous-trait probabilistic model for more

accurate genome-wide evolutionary state estimation based on features from different species

using functional genomic signals. The Phylo-HMGP model establishes a new integrated

framework to utilize the continuous-trait evolutionary model with spatial constraints to

more effectively study the heterogeneous evolutionary feature patterns encoded in the genome-

wide functional genomic datasets across multiple species. Both simulation studies and real

data application demonstrate the advantage of Phylo-HMGP as compared to other methods.

Importantly, we generated a new cross-species RT dataset from the same cell type in five

primate species (human, chimpanzee, orangutan, gibbon, and green monkey) to study RT

evolution patterns in primates for the first time using Phylo-HMGP. Our results from the

comparative RT analysis demonstrate the potential of the model to help reveal regions with

conserved or lineage-specific regulatory roles for the entire genome.

There are a number of areas that our model can be further improved. For Phylo-HMGP,

the number of model parameters increases linearly with the number of species. There can

be many local minima in parameter estimation for large scale evolutionary trees. Therefore,

both more effective parameter constraints in accordance with the tree structure and more

effective optimization methods need to be developed. Also, hierarchical state estimation

methods can be developed to to group similar predicted patterns for state prediction refine-

ment. In addition, the current Phylo-HMGP assumes that all the phylogenetic tree models

have the same tree topolopy. But in certain application domains this may not be accurate.
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Therefore, it would be useful to improve the model by incorporating inference of alternative

tree topologies [157]. Furthermore, we need to improve the interpretation of the estimated

model parameters of the evolutionary models associated with the predicted states, to gain

deeper understanding of the evolutionary mechanisms underlying the different functional

genomic feature patterns.

Genetic variation can contribute to differences in RT [158–160]. Our current study

has the limitation that it does not specifically consider the impact of intra-species varia-

tion on RT evolutionary patterns we identified. We did, however, compare the RT variant

loci (among different individuals) identified in human lymphoblastoid cells [158] with the

cross-species RT evolution states we found. We observed that the RT variations among

individuals are distributed sparsely on the genome, with a small percentage of the whole

genome and of each predicted RT evolution state. This suggests that the impact of the

intra-species variation on RT patterns across different species we found is likely to be very

minor. However, it would be an important methodological improvement to model both

the inter-species differences and intra-species variations when population level functional

genomic data are available for various cell types in different species.

We believe that Phylo-HMGP provides a generic framework to more precisely capture

the evolutionary history of functional genomic signals across different species. In addition

to the cross-species RT comparisons, we also applied Phylo-HMGP to predict the evolution

of cis-regulatory modules and demonstrated the advantage and the generic utility of our

new method (see section 2.10.9 and Figure 2.12). From the application to the RT data,

we found that different RT evolution patterns predicted by Phylo-HMGP correlate with

RT patterns across different cell types and various other genomic and epigenomic features,

including higher-order genome organization features, cis-regulatory elements, transposons,

and gene functions. Such insights from comparative functional genomic analysis may in

turn help interpret the impact of sequence evolution on genome organization and function.

One important future direction would be to develop more integrated models to holistically

consider sequence features (from mutations and small insertions/deletions to large-scale
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genome rearrangements) and functional genomic signals across multiple species.
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Figure 2.8: Estimated selection strength along each branch of the phylogenetic tree in the 30 states predicted by Phylo-

HMGP-OU. ‘GM’ stands for Green Monkey. Each column corresponds to the branch connecting the nearest ancestor

of the species specified by the species name to the species. Root stands for the branch connecting the remote root

node ancestor with the nearest common ancestor of green monkey and human. H-C-O-G, H-C-O, and H-C represent

the branches leading to the clade of human, chimpanzee, orangutan, and gibbon, the clade of human, chimpanzee, and

orangutan, and the clade of human and chimpanzee, respectively.
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Figure 2.9: Estimated Brownian motion intensity along each branch of the phylogenetic tree in the 30 states predicted

by Phylo-HMGP-OU. ‘GM’ stands for Green Monkey. Each column corresponds to the branch connecting the nearest

ancestor of the species specified by the species name to the species. Root stands for the branch connecting the remote

root node ancestor with the nearest common ancestor of green monkey and human. H-C-O-G, H-C-O, and H-C represent

the branches leading to the clade of human, chimpanzee, orangutan, and gibbon, the clade of human, chimpanzee, and

orangutan, and the clade of human and chimpanzee, respectively.
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Figure 2.10: Performance evaluation of different methods on RT data. Evaluation of Gaussian-HMM, GMM, K-means

Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on the RT dataset in terms of AMI, NMI, ARI and F1 score in the

genomic regions of 12 different states (including 10 lineage-specific states and two conserved states) identified from

comparison of discretized single-species observations. The standard error of the results of 10 repeated runs for each

method is shown as the error bar.
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Figure 2.11: Comparisons between the RT evolution patterns and other genomic features. (A) Example gene ontology

(GO) analysis results of state 9, state 11, and state 14. (B) Percentages of the distances between TAD boundaries and

boundaries of predicted states in different intervals. The expected distances are calculated based on randomly shuffled

TADs. Two types of TADs from different methods are used, namely TADs called by the Directionality Index method and

TADs called by Arrowhead. (C) Transposable element enrichment in different RT states. (D) Motif enrichment in different

lineage-specific RT states. State 9: human-chimpanzee specific early RT. State 11: human-chimpanzee-orangutan

specific early RT. State 14: orangutan specific early RT. State 18: green monkey specific early RT. The GO analysis

results of the other lineage-specific RT states are included in Table 2.5.
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Figure 2.12: Performance evaluation of different methods based on cis-regulatory module evolution. Evaluation of

Gaussian-HMM, K-means Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on H3K27ac and H3K4me3 ChIP-seq

datasets in terms of RI (Rand Index), and F1 score. Experiments (I) represent they are perforemd for the four mammal

species. Experiments (II) represent they are performed for the three primate species human, macaque, and marmoset.

The standard error of the results of 10 repeated runs for each method is shown as the error bar.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies
Anti-BrdU antibody BD biosciences Cat#555627; RRID:AB 395993
Anti-mouse IgG Sigma-Aldrich Cat#M7023; RRID:AB 260634
Deposited Data
Repli-seq data of This part of study GEO: GSE111733
five primate species
Experimental Models: Cell Lines
Human: lymphoblastoid GM12878 Coriell Cell Repositories Cat#GM12878;

RRID:CVCL 7526
Pan troglodytes E. Eichler and M. Ventura PTR
(Common Chimpanzee): (Johnson et al., 2006)
lymphoblastoid cell line
Pongo pygmaeus E. Eichler and M. Ventura PPY
lymphoblastoid cell line (Johnson et al., 2006)
(Bornean Orangutan):
Nomascus leucogenys L. Carbone NLE
(Northern White Cheeked Gibbon):
lymphoblastoid cell line
Cercopithecus aethiops Coriell Cell Repositories Cat#PR01205;
(Green Monkey): RRID:CVCL 2Y01
lymphoblastoid cell line
Software and Algorithms
Phylo-HMGP This part of study https://github.com/ma-compbio/

Phylo-HMGP
FastQC web portal http://www.bioinformatics.

babraham.ac.uk/projects/fastqc
FASTX-Toolkit web portal http://hannonlab.cshl.edu/

fastx toolkit
Bowtie2 Langmead and Salzberg, http://bowtie-bio.sourceforge.net/

2012 bowtie2/index.shtml
liftOver Hinrichs et al.,2006 https://genome.ucsc.edu/cgi-bin/

hgLiftOver
HMMSeg Day et al.,2007 https://noble.gs.washington.edu/

proj/hmmseg
Other
Heat-inactivated FBS Seradigm Premium Grade HI FBS 1500-500H

Lot #: 035B15
Repli-seq protocol Marchal et al., 2018 N/A

Table 2.1: Table of key resources used in the study of comparing continuous-trait functional genomic data across multiple

species using Phylo-HMGP.
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Simulation Method AMI NMI ARI Precision Recall F1

Dataset I-1 Gaussian-HMM 0.7863 0.8216 0.5941 0.8206 0.5569 0.6629
Dataset I-1 GMM 0.7562 0.7985 0.6340 0.8903 0.5679 0.6932
Dataset I-1 Clustering 0.6471 0.6926 0.4752 0.7539 0.4412 0.5558
Dataset I-1 Phylo-HMM-BM 0.8190 0.8494 0.7801 0.8496 0.8122 0.8226
Dataset I-1 Phylo-HMM-OU (λ0 = 0) 0.7966 0.8183 0.6088 0.7973 0.5918 0.6786
Dataset I-1 Phylo-HMM-OU (λ0 = 4.0) 0.8309 0.8733 0.8405 0.8568 0.8986 0.8728
Dataset I-2 Gaussian-HMM 0.5342 0.6901 0.2931 0.9666 0.2948 0.4519
Dataset I-2 GMM 0.3446 0.4508 0.1884 0.8114 0.2335 0.3625
Dataset I-2 Clustering 0.2692 0.3599 0.1157 0.7173 0.1768 0.2837
Dataset I-2 Phylo-HMM-BM 0.5208 0.6621 0.3150 0.9531 0.3218 0.4810
Dataset I-2 Phylo-HMM-OU (λ0 = 0) 0.5315 0.6782 0.3149 0.9602 0.3191 0.4790
Dataset I-2 Phylo-HMM-OU (λ0 = 4.0) 0.7691 0.8229 0.7638 0.9811 0.7718 0.8565
Dataset I-3 Gaussian-HMM 0.7323 0.7912 0.4919 0.8314 0.4476 0.5819
Dataset I-3 GMM 0.5536 0.6200 0.3354 0.7442 0.3057 0.4334
Dataset I-3 Clustering 0.4973 0.5561 0.2798 0.6580 0.2741 0.3870
Dataset I-3 Phylo-HMM-BM 0.6752 0.7277 0.4282 0.7646 0.4045 0.5283
Dataset I-3 Phylo-HMM-OU (λ0 = 0) 0.7146 0.7698 0.4741 0.8088 0.4372 0.5674
Dataset I-3 Phylo-HMM-OU (λ0 = 4.0) 0.8309 0.8733 0.8405 0.8568 0.8986 0.8728
Dataset I-4 Gaussian-HMM 0.6965 0.7967 0.4824 0.9585 0.4482 0.6095
Dataset I-4 GMM 0.7185 0.8106 0.5241 0.9737 0.4849 0.6457
Dataset I-4 Clustering 0.5812 0.6810 0.3535 0.8928 0.3395 0.4911
Dataset I-4 Phylo-HMM-BM 0.8151 0.8644 0.7342 0.9756 0.7112 0.8174
Dataset I-4 Phylo-HMM-OU (λ0 = 0) 0.7946 0.8544 0.6846 0.9736 0.6589 0.7776
Dataset I-4 Phylo-HMM-OU (λ0 = 4.0) 0.8396 0.8607 0.8146 0.9687 0.8071 0.8792
Dataset I-5 Gaussian-HMM 0.7688 0.8331 0.5644 0.9091 0.4908 0.6374
Dataset I-5 GMM 0.6398 0.6949 0.5065 0.8366 0.4552 0.5893
Dataset I-5 Clustering 0.5298 0.5906 0.3494 0.7227 0.3218 0.4453
Dataset I-5 Phylo-HMM-BM 0.7654 0.8243 0.5594 0.8908 0.4929 0.6346
Dataset I-5 Phylo-HMM-OU (λ0 = 0) 0.7738 0.8370 0.5809 0.9180 0.5057 0.6521
Dataset I-5 Phylo-HMM-OU (λ0 = 4.0) 0.8798 0.9187 0.9594 0.9524 0.9867 0.9692
Dataset I-6 Gaussian-HMM 0.8736 0.9141 0.7466 0.9642 0.6635 0.7861
Dataset I-6 GMM 0.7810 0.8157 0.6810 0.8884 0.6215 0.7312
Dataset I-6 Clustering 0.6409 0.6785 0.5101 0.7457 0.4791 0.5833
Dataset I-6 Phylo-HMM-BM 0.8554 0.8772 0.7534 0.9052 0.7133 0.7932
Dataset I-6 Phylo-HMM-OU (λ0 = 0) 0.8538 0.8891 0.7216 0.9325 0.6490 0.7652
Dataset I-6 Phylo-HMM-OU (λ0 = 4.0) 0.8906 0.8958 0.8390 0.9224 0.8200 0.8678

Table 2.2: Performance evaluation in simulation study I. Performance evaluation of Gaussian-HMM, GMM (Gaussian

Mixture Model), K-means Clustering, Phylo-HMGP-BM, Phylo-HMGP-OU (λ0 = 0), and Phylo-HMGP-OU (λ0 = 4.0)

on six simulated datasets in simulation study I with respect to AMI (Adjusted Mutual Information), NMI (Normalized

Mutual Information), ARI (Adjusted Rand Index), Precision, Recall, and F1 score. Each method is repeated 10 times

with different initializations on each simulation dataset. The average performance from the 10 repeated runs of each

method is presented. The best performance of the compared methods is in bold font.
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Simulation Method AMI NMI ARI Precision Recall F1

Dataset II-1 Gaussian-HMM 0.8314 0.8765 0.6693 0.9244 0.5965 0.7251
Dataset II-1 GMM 0.7399 0.7823 0.6138 0.8800 0.5511 0.6776
Dataset II-1 Clustering 0.6144 0.6623 0.4509 0.7579 0.4124 0.5341
Dataset II-1 Phylo-HMM-BM 0.8511 0.8796 0.7786 0.8785 0.7842 0.8205
Dataset II-1 Phylo-HMM-OU 0.8534 0.8706 0.7385 0.8319 0.7591 0.7906

Dataset II-2 Gaussian-HMM 0.5328 0.6863 0.2957 0.9550 0.3099 0.4680
Dataset II-2 GMM 0.3421 0.4477 0.1893 0.8206 0.2416 0.3733
Dataset II-2 Clustering 0.2590 0.3481 0.1119 0.7278 0.1780 0.2860
Dataset II-2 Phylo-HMM-BM 0.5343 0.6877 0.2944 0.9550 0.3085 0.4663
Dataset II-2 Phylo-HMM-OU 0.6901 0.7833 0.5883 0.9736 0.6033 0.7353
Dataset II-3 Gaussian-HMM 0.7754 0.8307 0.5236 0.8469 0.4700 0.6045
Dataset II-3 GMM 0.5641 0.6248 0.3463 0.7225 0.3176 0.4412
Dataset II-3 Clustering 0.5098 0.5606 0.2991 0.6385 0.2963 0.4048
Dataset II-3 Phylo-HMM-BM 0.7239 0.7727 0.4652 0.7793 0.4338 0.5561
Dataset II-3 Phylo-HMM-OU 0.8159 0.8952 0.8797 0.8469 0.9848 0.9105
Dataset II-4 Gaussian-HMM 0.6585 0.7623 0.4139 0.9318 0.3898 0.5497
Dataset II-4 GMM 0.7451 0.8262 0.5859 0.9778 0.5486 0.7027
Dataset II-4 Clustering 0.5411 0.6463 0.2933 0.8678 0.2868 0.4307
Dataset II-4 Phylo-HMM-BM 0.7857 0.8411 0.6904 0.9543 0.6812 0.7775
Dataset II-4 Phylo-HMM-OU 0.8092 0.8556 0.7135 0.9583 0.7045 0.7981
Dataset II-5 Gaussian-HMM 0.7932 0.8529 0.5842 0.9078 0.5125 0.6551
Dataset II-5 GMM 0.6640 0.7155 0.5399 0.8595 0.4827 0.6173
Dataset II-5 Clustering 0.5317 0.5894 0.3375 0.7028 0.3142 0.4343
Dataset II-5 Phylo-HMM-BM 0.7999 0.8595 0.5891 0.9223 0.5139 0.6573
Dataset II-5 Phylo-HMM-OU 0.9162 0.9454 0.9504 0.9555 0.9694 0.9622
Dataset II-6 Gaussian-HMM 0.8600 0.8969 0.7162 0.9411 0.6396 0.7613
Dataset II-6 GMM 0.7742 0.8118 0.6665 0.8887 0.6050 0.7197
Dataset II-6 Clustering 0.6319 0.6733 0.5036 0.7554 0.4689 0.5784
Dataset II-6 Phylo-HMM-BM 0.8371 0.8612 0.7241 0.8788 0.6944 0.7701
Dataset II-6 Phylo-HMM-OU 0.9117 0.9150 0.8632 0.9314 0.8506 0.8888

Table 2.3: Performance evaluation in simulation study II. Performance evaluation of Gaussian-HMM, GMM, K-means

Clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU (λ0 = 4.0) on six simulated datasets in simulation study II with

respect to AMI, NMI, ARI, Precision, Recall, and F1 score. Each method is repeated 10 times with different initializations

on each simulation dataset. The average performance from the 10 repeated runs of each method is presented. The best

performance of the compared methods is in bold font.
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Conserved GO term/Pathway Count Fold p-value
RT early enrichment

intracellular transport 431 1.2 6.4e-06
amide biosynthetic process 214 1.3 1.5e-05
posttranscriptional regulation of 149 1.4 2.0e-05
gene expression
cellular amide metabolic process 277 1.2 2.0e-05
peptide biosynthetic process 195 1.3 2.4e-05

Constitutive peptide metabolic process 231 1.3 2.5e-05
RT early mRNA metabolic process 193 1.2 5.8e-05

translation 187 1.3 5.9e-05
microtubule-based process 179 1.3 1.0e-04
clathrin-mediated endocytosis 22 2.1 3.0e-04
regulation of vascular permeability 18 2.3 3.9e-04
mitochondrion organization 183 1.2 7.2e-04
immune response 540 1.3 7.9e-013
regulation of immune response 327 1.3 2.7e-010
defense response 520 1.2 5.5e-08
symbiosis, encompassing mutualism 376 1.2 5.7e-08
through parasitism
interspecies interaction between organisms 376 1.2 5.7e-08

Non-constitutive viral process 362 1.2 1.2e-07
RT early multi-organism cellular process 364 1.2 1.7e-07

immune effector process 257 1.3 2.6e-07
immune response-activating signal transduction 176 1.4 7.9e-07
activation of immune response 192 1.3 1.1e-06
immune response-regulating signaling pathway 186 1.3 1.2e-06
regulation of immune system process 465 1.2 2.5e-06

Table 2.4: Gene ontology (GO) terms or pathways that show significant correlation with regions that are both constitutive

RT early and conserved RT early, and regions that are conserved RT early but not constitutive RT early. We used

DAVID [146] to perform the gene ontology analysis. The column Count represents the number of genes found to be

associated with the corresponding GO term/pathway in the queried regions. The conserved early RT regions are based

on state prediction by Phylo-HMGP. We observed that genes enriched in the regions that are both constitutive early and

conserved early are mainly involved in basic biological functions and processes that are shared between different cell

types. Genes associated with the regions that are not constitutive early but conserved early are involved in the cell type

specific functions of the lymphoblastoid cells, such as the immune response functions.
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Predicted state GO term/Pathway Count Fold p-value
enrichment

sensory perception of smell 16 8.5 1.9e-09
detection of chemical stimulus 17 6.6 6.3e-09

State 9 detection of stimulus involved in sensory perception 17 6.4 9.2e-09
olfactory transduction 16 6.0 4.1e-08
sensory perception 21 2.9 3.6e-05
neurological system process 23 2.2 8.2e-04
regulation of nucleic acid-templated 95 1.5 1.4e-05
transcription
regulation of RNA biosynthetic process 95 1.5 1.9e-05
regulation of nucleobase-containing 101 1.4 1.4e-04

State 10 compound metabolic process
aromatic compound biosynthetic process 107 1.4 1.5e-04
heterocycle biosynthetic process 106 1.4 2.1e-04
regulation of nitrogen compound metabolic process 104 1.3 5.8e-04
cellular macromolecule biosynthetic process 114 1.3 1.1e-03
G-protein coupled purinergic nucleotide 4 33.2 2.0e-04
receptor signaling pathway

State 11 cellular response to organic substance 32 1.8 1.6e-03
insulin secretion 6 5.0 6.7e-03
response to endogenous stimulus 23 1.8 9.6e-03
endocardial cushion morphogenesis 7 15.6 4.4e-06
cartilage development 13 4.9 1.4e-05
endocardial cushion development 7 11.6 2.7e-05
connective tissue development 14 4.1 4.1e-05

State 14 pattern specification process 18 2.8 2.1e-04
organ morphogenesis 29 2.0 5.1e-04
enzyme linked receptor protein signaling pathway 27 2.0 1.1e-03
circulatory system development 27 2.0 1.3e-03
cardiovascular system development 27 2.0 1.3e-03
cell adhesion 27 2.2 1.4e-04
regulation of nervous system development 15 2.6 1.5e-03

State 16 regulation of neurogenesis 13 2.6 4.3e-03
regulation of cellular component organization 29 1.7 4.5e-03
neuron projection morphogenesis 11 2.8 6.1e-03
neuron differentiation 18 2.0 8.3e-03
regulation of locomotion 32 2.6 1.4e-06
regulation of cell motility 31 2.7 1.6e-06
regulation of cell migration 29 2.7 3.5e-06

State 18 regulation of cell differentiation 45 1.9 4.0e-05
epithelium development 33 1.9 3.4e-04
cell proliferation 43 1.5 6.6e-03
regulation of anatomical structure morphogenesis 28 1.7 7.8e-03
movement of cell or subcellular component 42 1.5 8.3e-03

Table 2.5: Example gene ontology (GO) terms or pathways that show significant correlation with lineage-specific RT

states. State 9: human-chimpanzee specific early RT state; State 10: human-chimpanzee specific late RT state; State

11: human-chimpanzee-orangutan specific early RT state; State 14: orangutan specific late RT state; State 16: gibbon

specific late RT state; State 18: green monkey specific late RT state. We use DAVID [146] to perform the gene ontology

analysis.
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Chapter 3

Phylo-HMRF for multi-species genome

organization comparison

3.1 Introduction

3D genome organization, including 3D genome structure and spatial positioning of the

chromosomes within the cell nucleus, is closely correlated with important genome func-

tions and has critical roles in the modulation of genome functions [2]. As we introduced

in Chapter 1, the evolution of 3D genome organization across species, especially across

closely related mammalian species, has not been well explored, and the existing computa-

tional approaches for comparing genome organization across multiple species have limited

capability. The comparison of genome organization across multiple species utilizing the

high-throughput sequencing data such as Hi-C data presents new computational challenges.

As described in Chapter 2, we previously developed a method called phylogenetic hid-

den Markov Gaussian processes (Phylo-HMGP) [161] to estimate evolutionary patterns

given continuous functional genomic data (e.g., Repli-seq) along the genome from mul-

tiple species. Phylo-HMGP considers evolutionary affinities among species in a hidden

Markov model (HMM), utilizing evolutionary constraints and also spatial dependencies

along one-dimensional (1D) genome coordinates. However, the HMM, as used by Phylo-
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HMGP, is based on 1D Markov chains, which cannot be simply used to model generalized

spatial dependencies (such as those reflected in Hi-C data) to consider the interactions be-

tween nodes in an arbitrary graph. Therefore, HMM-based methods cannot be directly

applied to discovering patterns of higher-order chromatin interactions from Hi-C contact

matrices, which consist of continuous measurements of contact frequencies between each

pair of genomic loci.

Comprehensive characterization of the detailed evolutionary patterns of 3D genome

structure remains unclear. As described in Chapter 1, prior computational approaches for

comparing genome organization across species did not explicitly consider the continuous

nature of the chromatin interaction strengths, and are therefore limited in the ability of

fully utilizing the Hi-C data to reveal detailed evolutionary patterns of genome organiza-

tion. Here, we develop a new probabilistic model, phylogenetic hidden Markov random

field (Phylo-HMRF), which integrates the continuous-trait evolutionary constraints with

the hidden Markov random field (HMRF) model, to capture evolutionary patterns of con-

tinuous genomic features across species by utilizing generalized spatial constraints. We

demonstrated the advantage of Phylo-HMRF using simulation data. In addition, we applied

Phylo-HMRF to a new Hi-C dataset from the same cell type (lymphoblastoid cells) in four

primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF identified differ-

ent evolutionary patterns of Hi-C contacts across the four species, including both conserved

patterns and lineage-specific patterns. These patterns show strong correlations with other

features of genome structure and function, such as TADs, A/B compartments, histone mod-

ifications, DNA replication timing, as well as sequence properties. Phylo-HMRF offers an

effective model to potentially help reveal important evolutionary principles of 3D genome

organization. The source code of Phylo-HMRF can be accessed at: https://github.com/ma-

compbio/Phylo-HMRF.
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3.2 Overall framework of Phylo-HMRF for cross-species com-

parison of Hi-C data

The overview of the Phylo-HMRF method is shown in Figure 3.1. Our goal is to identify

different evolutionary patterns of chromatin conformation from multi-species Hi-C data.

The input contains the Hi-C contact frequency data from each species. We first align the

Hi-C sequencing reads of each species to the corresponding genome, and then map Hi-C

contacts in each species to the reference genome (human genome). We obtain a combined

multi-species Hi-C contact map based on the reference genome as shown in Figure 3.1A,

where each node in the map corresponds to multi-species contact frequencies between the

corresponding pair of genomic loci. We also assume that each node has a hidden state

that represents the evolutionary pattern of Hi-C contacts between the corresponding paired

genomic loci. An evolutionary pattern identified by Phylo-HMRF is associated with the

conservation or variation of the feature of interest across different species. For example,

we may observe conserved high Hi-C contacts in all four species between specific paired

genomic loci. We may also observe that strong Hi-C contacts only exist in some of the

species between specific paired genomic loci. These different types of feature distributions

across species are representative of the evolutionary patterns that we seek to identify as

states. Phylo-HMRF estimates the hidden state of each node by considering both spatial

dependencies among nodes encoded by an HMRF and the evolutionary dependencies be-

tween species in the phylogeny. The continuous-trait evolutionary models are embedded

into the HMRF. Therefore, each hidden state corresponds to an evolutionary model that is

represented by a parameterized phylogenetic tree. The output of Phylo-HMRF contains

the partition of the combined multi-species Hi-C contact map, where adjacent nodes with

the same hidden state are in the same partition. These partitions reflect the distribution

of different evolutionary patterns of Hi-C contact frequencies. As shown in Figure 3.1B,

Phylo-HMRF uses the Ornstein-Uhlenbeck (OU) process [57–59] as the continuous-trait

evolutionary model. Figure 3.1C is an illustration of the possible Hi-C evolutionary pat-

73



terns that Phylo-HMRF aims to uncover across four primate species in this work.

Furthermore, Phylo-HMRF provides a framework to utilize both general types of spatial

dependencies among genomic loci and evolutionary relationships among species to identify

evolutionary patterns from multi-species continuous-trait features. The general types of

spatial dependencies refer to any dependencies that can be represented by the edges in a

graph.

Hi-C Space
Time

Evolution Space Ornstein-Uhlenbeck process

Speciation Human

Human

Chimpanzee

Chimpanzee
Bonobo

Bonobo

GorillaGorilla

A B C

Figure 3.1: Overview of the Phylo-HMRF model. (A) Illustration of the possible evolutionary patterns of chromatin

interaction. The Hi-C space is a combined multi-species Hi-C contact map, which integrates aligned Hi-C contact maps of

each species. Each node represents the multi-species observations of Hi-C contact frequency between paired genomic

loci, with a hidden state assigned. Nodes with the same color have the same hidden state and are associated with the

same type of evolutionary pattern represented by a parameterized phylogenetic tree ψi. The parameters of ψi include

the selection strengths αi, Brownian motion intensities σi, and the optimal values θi based on the Ornstein-Uhlenback

(OU) process assumption. (B) Illustration of the OU process over a phylogenetic tree with four extant species. The X-axis

represents the evolutionary history in time. X(t) on the Y-axis represents the trait at time t. The trajectories reflect the

evolution of the continuous-trait features in different lineages, where the time points t1, t2, t3 represent the speciation

events. (C) A cartoon example of the possible evolutionary patterns (partitioned with different colors). Phylo-HMRF

aims to identify evolutionary Hi-C contact patterns among four primate species in this work. The four Hi-C contact maps

represent the observations from the four species, which are combined into one multi-species Hi-C map as the input to

Phylo-HMRF, as shown in (A). The phylogenetic tree of the four species involved in the Hi-C data comparison is on the

left. The partitions with green borders are conserved Hi-C contact patterns. The partitions with red or blue borders

represent lineage-specific Hi-C contact patterns.

We assume that a two-dimensional Hi-C contact map is given in each species, where

each entry of the map represents the contact frequency between the corresponding two

genomic loci. We use the human genome as the reference and align the contact pairs of

genomic loci of the other species to the human genome. As a consequence, Hi-C contact

maps of the other species are equivalently aligned to the human genome to be comparable.

We compare the multi-species Hi-C contact frequencies in the syntenic regions genome-
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wide (synteny blocks were identified based on inferCARs [162]), in order to focus on the

3D genome changes that are not resulted from large-scale genome rearrangements. We

then obtain a multi-species contact map I ∈ Rn×n×d, where n is the number of loci in

the studied region on the reference genome, and d is the number of the species. I can be

represented by a graph G = (V ,E), where V and E represent the set of nodes and the set

of edges, respectively. Each node corresponds to a position in I, i.e., the contact between a

pair of genomic loci. The number of nodes is N = n × n. We also denote V as the set of

indices of the nodes in G, i.e., V = {1, · · · , N}. The i-th node is associated with a random

variable Xi ∈ Rd representing the multi-species observations on this node, i ∈ V . The k-

th element of Xi (k = 1, · · · , d) is the aligned contact frequency measurement of the k-th

species between the corresponding two genomic loci. If two positions in the multi-species

contact map are adjacent, there is an edge between the corresponding nodes in G.

Using a hidden Markov random field (HMRF) model, we assume that each node in G is

also associated with a random variable Yi ∈ S = {1, · · · ,M}, representing the unknown

hidden state of this node, i ∈ V . S is the set of hidden states. We assume Y = {Yi}i∈V to

be an MRF. For each configuration of Y , Xi follows a conditional probability distribution

p(xi|yi), which is the emission probability distribution, andX = {Xi}i∈V is the observable

random field or emitted random field. The hidden state Yi reflects different evolutionary

patterns of chromatin contact frequency across species, e.g., some regions in I may exhibit

conserved high (or low) contact frequency across species, while some may have lineage-

specific high or low contact frequency. The spatial information is embedded in the MRF

with the constraints on the hidden states of neighboring nodes. The neighboring nodes are

expected to be more likely to have the same hidden states.

Phylo-HMRF estimates the evolutionary patterns by inferring the hidden states y =

{yi}i∈V from the observations x = {xi}i∈V , using the assumption that there are spatial

dependencies between adjacent nodes in the graph G. In Phylo-HMRF, each hidden state

Yi = l is associated with a phylogenetic model ψl. We therefore define the Phylo-HMRF

model as h = (S, ψ, β), where S is the set of states, ψ is the set of phylogenetic models
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associated with the states, and β contains the pairwise potential parameters, respectively.

SupposeX(l) = (X
(l)
1 , · · · , X(l)

d ) represent the values of leaf nodes of the phylogenetic tree

associated with the l-th phylogenetic model ψl, l = 1, · · · ,M . The emission probability of

each state is p(X|ψl), which is determined by the phylogenetic model underlying this state.

The joint probability of the graph G is:

p(y,x) = p(x|y)p(y) =
1

Z

∏
i∈V

p(xi|yi)
∏

(i,j)∈E

f(yi, yj;xi, xj), (3.1)

where Z is the normalization constant, p(xi|yi) is the emission probability function, which

measures the probability that the local observation is generated from a certain hidden state,

and f(·) is the compatibility function which measures the consistency of hidden states

between the neighboring nodes. The joint probability can be transformed into the energy

function by taking the negative logarithm of the joint probability. In this work, given the

observations across species, the energy function can be defined as:

E(y|x,Θ) =
∑
i∈V

U(xi, yi; Θ) +
∑

(i,j)∈E

V (yi, yj;xi, xj), (3.2)

where U(xi, yi) is the unary potential function encoding local compatibility between obser-

vations and hidden states with model parameters Θ, and V (yi, yj) is the pairwise potential

function encoding neighborhood information, respectively. We have that f(yi, yj;xi, xj) ∝

exp (−V (yi, yj;xi, xj)). If we take into consideration the effect of the difference between

features of neighboring nodes on the pairwise potential, V (yi, yj;xi, xj) and the compati-

bility function f(·) will depend not only on the labels of the neighboring nodes, but also

on their features or observations. We minimize the energy function to estimate the hidden

states y. By minimizing the energy function we maximize the joint probability of the graph

equivalently. As the model parameters Θ are unknown, we estimate y and Θ simultane-

ously. The objective function is:

{y∗,Θ∗} = arg min
y,Θ

E(y|x,Θ). (3.3)
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3.3 Ornstein-Uhlenbeck process assumption in Phylo-HMRF

In Phylo-HMRF, we model the continuous traits with the Ornstein-Uhlenbeck (OU) pro-

cess. The OU process is a Gaussian process [163] that extends the Brownian motion [54–

56] with the trend towards equilibrium around optimal values [57–59]. The OU process has

been recently used to model the evolution of genomic features [50, 52, 53, 61, 161]. In our

previous work [161], we found that the OU process has clear advantages in performance as

compared to the simpler Brownian motion model. Therefore, we utilize the OU processes

to realize the phylogenetic models in Phylo-HMRF.

For the observation of a lineage X̂i, the OU process can be represented as the follow-

ing [57, 58]:

d(X̂i(t)) = α[θi − X̂i(t)]dt+ σdBi(t), (3.4)

where X̂i(t) represents the observation of X̂i at time point t, Bi(t) represents the standard

Brownian motion [120], and α, θi and σ are parameters that represent the selection strength,

the optimal value and the fluctuation intensity of Brownian motion, respectively.

For multi-species observations, based on the model assumptions of the OU process, the

multi-species observations follow multivariate Gaussian distribution, and the expectation,

variance, and covariance of the observations of species can be computed given the phylo-

genetic tree. Let Xi, Xj denote the observed traits of the i-th species (species i) and the

j-th species (species j), respectively. Suppose that Xpi is the trait of the ancestor of species

i, and Xaij is the trait of the most recent common ancestor of species i and species j. As

shown in Chapter 2, we have [53, 58]:

E(Xi) = E(Xpi)e
−αitipi + θi

(
1− e−αitipi

)
, (3.5)

Cov(Xi, Xj) = Var(Xaij) exp
(
−Σk∈lijαktk − Σk∈ljiαktk

)
, (3.6)

Var(Xi) =
σ2
i

2αi

(
1− e−2αitipi

)
+ Var(Xpi)e

−2αitipi , (3.7)

where tipi , tk represent evolution time along the corresponding branches in the phylogenetic

tree, respectively. lij represents the set of the ancestor nodes of species i and i itself after the
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divergence of species i with species j. Specifically, tipi corresponds to length of the branch

from the parent of species i to species i. For any k ∈ lij , tk corresponds to length of the

branch from the parent of species k to species k. In the Phylo-HMRF model h = (S, ψ, β),

ψl is defined as ψl = (θl, αl, σl, τl, bl), l = 1, · · · ,M , where θl, αl, σl denote the optimal

values, the selection strengths, and the Brownian motion intensities of the corresponding

OU model, respectively, and τl, bl represent the topology of the phylogenetic tree, the

branch lengths, respectively. M is the number of states. We assume that the phylogenetic

tree topology is identical across different states. For the phylogenetic tree of a hidden

state, we allow varied selection strengths and Brownian motion intensities along different

branches and varied optimal values at the interior nodes or leaf nodes. Thus each branch is

assigned a selection strength and a Brownian motion intensity, and each node is assigned

an optimal value as parameters. Suppose there are r branches in the tree. We have θl ∈

Rr+1, αl, σl ∈ Rr
+, where values in αl and σl are non-negative. According to the actual

problem studied, ψl can be specialized to different evolutionary models. We focus on the

OU processes in this work.

3.4 Phylo-HMRF model with Ornstein-Uhlenbeck processes

In Phylo-HMRF, we embed the OU model into the emission probability function of the

HMRF model. We use the Expectation-Maximization (EM) algorithm [124, 164] for model

parameter estimation.

Let Θ be the model parameters. Suppose Θg is the current estimate of model parame-

ters. The EM algorithm aims to maximize the expectation of the complete-data log likeli-

hood, which is defined as the Q function:

Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg] =
∑
y∈SN

p(y|x,Θg) log p(x,y|Θ), (3.8)

where x are the observations, y are the hidden states, and SN is the set of all the possible
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state configurations of size N . N is the sample size. We have:

Q(Θ,Θg) =
∑
y∈SN

p(y|x,Θg)[log p(x|y,Θ) + log p(y|Θ)], (3.9)

where p(y|Θ) represents the probability of a hidden state configuration over the whole

graph G. Using pseudo-likelihood approximation [165], we can approximate p(y|Θ) with:

p(y|Θ) =
∏
i∈V

p(yi|yNi
,Θ). (3.10)

where Ni denote the set of neighboring nodes of the node i. Then we have:

Q(Θ,Θg) =
∑
y∈SN

p(y|x,Θg) [log p(x|y,Θ) + log p(y|Θ)] (3.11)

=
∑
y∈SN

p(y|x,Θg)

[∑
i∈V

log p(xi|yi,Θ) +
∑
i∈V

log p(yi|yNi
,Θ)

]
(3.12)

=
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(xi|yi,Θ) +
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(yi|yNi
)

(3.13)

=
∑
i∈V

M∑
l=1

∑
y−i∈SN−1

p(yi = l, y−i|x,Θg) log p(xi|yi = l,Θ)

+
∑
y∈SN

∑
i∈V

p(y|x,Θg) log p(yi|yNi
) (3.14)

=
M∑
l=1

∑
i∈V

p(yi = l|x,Θg) log p(xi|yi = l,Θ)

+
∑
i∈V

∑
y∈SN

p(y|x,Θg) log p(yi|yNi
). (3.15)

Let xNi
be the neighbors of xi, and yNi

be the state configuration of xNi
. To calculate∑

i∈V
∑

y∈SN
p(y|x,Θg) log p(yi|yNi

), we need to compute p(y|x,Θg) and log p(yi|yNi
)

over all the possible configurations y ∈ SN , which is computationally intractable. By

mean-field approximation [166, 167], we can use estimated hidden states ygNi
from the

previous iteration of the HMRF-EM algorithm to approximately estimate p(yi|yNi
), which
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can simplify the computation of the Q function. Using the mean-field approximation, we

have

∑
i∈V

∑
y∈SN

p(y|x,Θg) log p(yi|ygNi
) =

∑
i∈V

M∑
l=1

∑
y−i∈SN−1

p(yi = l, y−i|x,Θg) log p(yi = l|ygNi
)

(3.16)

=
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(yi = l|ygNi
,Θ).

(3.17)

Therefore, from Equations 3.15 and 3.17, we have the Q function in Equation 3.18.

Q(Θ,Θg) =
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(xi|yi = l,Θ)

+
M∑
l=1

∑
i∈V

p(yi = l|xi,Θg) log p(yi = l|ygNi
,Θ), (3.18)

where the two parts of the Q function encode the unary potential and the pairwise potential

of the HMRF of G, respectively. The parameters of the OU model are embedded in the

terms p(xi|yi = l,Θ) of Q(Θ,Θg), l ∈ {1, · · · ,M}. The second part of the Q function

encodes the pairwise potentials and does not include the OU model parameters.

Here p(yi = l|xi,Θg) is posterior probability of each sample assigned to a hidden state

given the current model parameter estimates. Using the Markov property of HMRF [164],

we have

p(yi = l|xi,Θg) =
p(xi|yi = l,Θg)p(yi = l|ygNi

)∑M
l=1 p(xi|yi = l,Θg)p(yi = l|ygNi

)
, (3.19)

where Ni denotes the set of nodes that are neighbors of node i in G. We calculate p(xi|yi,Θg)

based on the OU process assumption. Specifically, we assume the observations of observed

species (leaf nodes in the phylogenetic tree) follow multivariate Gaussian distribution pa-

rameterized by the OU model parameters. We have:
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p(xi|yi = l,Θ) = p(xi|Θ(l))

=
1

(2π)d/2|Σ(l)
Θ |1/2

exp

{
−1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)}
, (3.20)

log p(x|Θ(l)) ∝ −1

2
log |Σ(l)

Θ | −
1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
, (3.21)

where Θ(l) represent the OU model parameters associated with the l-th state and d is the

number of the observed species, l ∈ {1, · · · ,M}. The underlying phylogenetic model ψl

is embedded into the covariance matrix Σ
(l)
Θ and the mean vector µ(l)

Θ according to Equa-

tions 3.5, 3.6, and 3.7. We calculate p(xi|yi = l,Θg) in the same way as shown in Equa-

tion 3.20 by replacing Θ with Θg, where Θg denotes the current model parameter estimates.

Let

w
(l)
i = p(yi = l|xi,Θg). (3.22)

p(yi = l|xi,Θg) is calculated using Equation 3.19. We have

Q(Θ,Θg) =
M∑
l=1

∑
i∈V

w
(l)
i log p(xi|yi = l,Θ) +

M∑
l=1

∑
i∈V

w
(l)
i log p

(
yi = l|ygNi

)
(3.23)

=
M∑
l=1

∑
i∈V

w
(l)
i

[
−1

2
log |Σ(l)

Θ | −
1

2

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)]

+
M∑
l=1

∑
i∈V

w
(l)
i log p

(
yi = l|ygNi

)
+ C, (3.24)

where C is a constant.

We perform parameter estimation for each of the possible states.

Let L(Θ(l)) = −
∑

i∈V w
(l)
i log p(xi|yi = l,Θ). We have

L(Θ(l)) =
1

2
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i +

1

2

∑
i∈V

(
xi − µ(l)

Θ

)T
[Σ

(l)
Θ ]−1

(
xi − µ(l)

Θ

)
w

(l)
i . (3.25)

Therefore, the first part of the negative Q function with respect to a given state l can be

represented as

L̃(Θ(l)) =
1

N
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
, (3.26)

81



where

S̃
(l)
Θ =

1

N

∑
i∈V

w
(l)
i

(
xi − µ(l)

Θ

)(
xi − µ(l)

Θ

)T
, (3.27)

and Θ(l) represents the phylogenetic model parameters associated with state l. tr(A) repre-

sents the trace of a matrix A. Σ
(l)
Θ , µ(l)

Θ represent the covariance matrix and the mean vector

of the multivariate Gaussian distribution associated with the phylogenetic model of state l,

respectively.

As we allow varied selection strengths and Brownian motion intensities of the OU

model along each branch of the phylogenetic tree, and allow varied optimal values on each

tree node, there are many OU model parameters to estimate, which may result in overfitting

of the model if the sample size is not large enough. We apply `2-norm regularization to the

parameters Θ(l) to reduce model overfitting by adding the regularization term λ‖Θ(l)‖2
2.

Let L(Θ(l)) = −
∑

i∈V w
(l)
i log p(xi|yi = l,Θ), w(l)

i = p(yi = l|xi,Θg). In each

Maximization-step (M-step) of the EM algorithm, the objective function of a given state l

is derived as

min
Θ(l)

1

N
log |Σ(l)

Θ |
∑
i∈V

w
(l)
i + tr

(
[Σ

(l)
Θ ]−1S̃

(l)
Θ

)
+ λ‖Θ(l)‖2

2, (3.28)

where S̃(l)
Θ , w(l)

i , Θ(l) are defined as above, and λ is the regularization coefficient of the

l2-norm regularization [168].

We have that Θ(l) = {θl, αl, σl}, where θl, αl, σl represent the optimal values, the

selection strengths, and the Brownian motion intensities of the OU model associated with

hidden state l, respectively. As described previously, the OU model of state l is ψl =

(θl, αl, σl, τl, bl), 1 = 1, · · · ,M . We assume that τl is given. If the branch lengths bl are

unknown, we perform the transformation that α̃l,v = αl,vbl,v, σ̃2
l,v = σ2

l,vbl,v to present the

combined effect of the branch length and the selection or Brownian motion parameters

along this branch. Here bl,v represents the length of the branch from the parent of node

v to node v in the phylogenetic tree of state l. Then Θ(l) = {θl, α̃l, σ̃l}, where α̃l, σ̃l

are the transformed selection strengths and the transformed Brownian motion intensities,

respectively.
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For the regularization coefficient, We define λ = λ0/
√
N . λ0 can be predefined. We

choose λ0 = 4.0 in both the simulation study and real data study. The same regularization

coefficient was adopted in [161] and the value of λ0 = 4.0 was used. We found that the

performance of the model was not sensitive to the choice of λ0 within a range. We therefore

use the same choice of λ0 in Phylo-HMRF.

For the second part of the Q function as shown in Equation 3.18, let V (yi, yj) be the

pairwise potential on a pair of adjacent nodes (yi, yj), we have

p(yi = l|ygNi
) =

1

Z
exp

(
−
∑
j∈Ni

V (l, ygj )

)
, (3.29)

where Z is the normalization constant. We can adopt different definitions of the pairwise

potential V (yi, yj). We consider two definitions. The first definition is

V (yi, yj) = β0I(yi 6= yj), (3.30)

where β0 is a predefined adjustable regularization coefficient, which can also be considered

as pairwise potential parameter.

For the second definition, we use takes into consideration the difference between fea-

tures of the adjacent nodes in imposing the penalty on inconsistent states of the neighbors.

The second definition is

V (yi, yj) = β0I(yi 6= yj) exp

(
−β1
‖xi − xj‖2

2

‖xi‖2‖xj‖2

)
, (3.31)

where β0, β1 are predefined adjustable regularization coefficients. We primarily use the

second definition. Based on the definition of the pairwise potential, p(yi = l|ygNi
) does not

depend on the OU model parameters.

The results in the simulation evaluation and in the real data application were obtained

by Phylo-HMRF using the second definition. The pairwise potential coefficients β0 and β1

in Equation 3.31 can either be estimated as parameters or predefined. In many applications

the pairwise potential coefficients are often estimated through a number of trials and pre-

defined. The pairwise potential coefficients can be chosen such that the pairwise potential
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is at the same scale of the unary potential. We choose β0 ∈ [1, 3] and β1 ∈ [0.1, 0.5] in the

simulation evaluation and the real data application based on empirical observations from a

simulation dataset.

3.5 Model inference

3.5.1 Model parameter estimation and hidden state inference

We use the Expectation-Maximization (EM) algorithm [124, 164] for parameter estimation

in our model. Zhang et al. [164] developed the HMRF-EM algorithm where EM is adapted

to estimate an HMRF model with several justified assumptions and approximations, includ-

ing the pseudo-likelihood assumption [165] and mean-field approximation [166, 167]. The

original HMRF-EM algorithm uses the multivariate Gaussian distribution as the emission

probability function of a hidden state. The main difference is that in our method we use the

OU processes to model the emission probability in the HMRF. Also, we utilize the Graph

Cuts algorithm [169] for hidden state estimation given estimates of model parameters.

The EM algorithm aims to maximize the expectation of the complete-data log likeli-

hood, which is defined as theQ function in Equation 3.8: Q(Θ,Θg) = E[log p(x,y|Θ)|x,Θg],

where x, y represent the observations and the hidden states, respectively. Θ, Θg represent

the model parameters, and the current estimate of model parameters, respectively. Using

pseudo-likelihood approximation [165], mean-field approximation [166, 167], and l2-norm

regularization, the objective function for optimizing the OU model parameters of a given

state l in each Maximization-step (M-step) is shown in Formula 3.28. We perform param-

eter estimation for each of the possible states.

In Phylo-HMRF, the overall steps of the OU-model embedded HMRF-EM algorithm

are as follows.

1. Initialize the model parameter. We perform K-means clustering on the samples.

The clustering results are used to assign initial hidden states to the samples. For each

cluster, we estimate the OU model parameters using maximum likelihood estimation
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(MLE) (see section 3.5.3). The estimated model parameters are used as initialization

of the OU model parameters for each hidden state.

2. Estimate the hidden states given current parameter estimates. We seek an approxi-

mate solution to the optimization problem:

ŷ = arg min
y∈SN

{U(x|y) + U(y)}, (3.32)

where U(x|y) and U(y) are the total unary potential and total pairwise potential of

G, respectively.

3. Calculate posterior probability distribution. In each Expectation-step (E-step), given

the current estimated model parameters Θg and the estimated hidden state configura-

tion in the previous step, we compute p(yi = l|xi,Θg) using Equations 3.19,3.29.

4. Estimate model parameters by solving the optimization problem with OU models

embedded. In each M-step, we solve the optimization problem in Formula 3.28 to

update the parameters {ψl}Ml=1.

5. Repeat step 2-4 until convergence is reached or the maximum number of iterations is

reached.

In Phylo-HMRF, given the current estimated model parameters, we use the Graph Cuts

algorithm to estimate the hidden states in step 2. Graph Cuts algorithms seek approximate

solutions to an energy minimization problem by solving a max-flow/min-cut problem in a

graph [169, 170]. Graph Cuts algorithms have been effectively used in image segmentation

applications. Studies have shown that for binary image segmentation, finding a min-cut

is equivalent to finding the maximum of posterior p(y|x) [169]. For multiple labels, the

multi-labeling problem can be converted to a sequence of binary-labeling problems and α-

expansion or α-β swap algorithms can be used [169, 171]. The solution is an approximate

solution in the multi-labeling problem that has been shown to be strongly probably able to

reach a local minima [169].
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3.5.2 HMRF-EM algoirthm and Graph Cuts algorithm used in Phylo-HMRF

In Phylo-HMRF, given the current estimated model parameters, we use the Graph Cuts

algorithm [169, 170] to estimate the hidden states in step 2 of the HMRF-EM algorithm. In

step 2, we seek an approximate solution to the energy minimization problem as defined in

Equation 3.32. We have also shown that minimizing the energy is equivalent to maximizing

the joint probability.

We find the solution {y∗,Θ∗} = arg maxy,ΘE(y|x,Θ) approximately by alternatively

performing

y∗ = arg min
y
E(y|x,Θg), (3.33)

and

Θ∗ = arg max
Θ

E [log p(x,y|Θ)|x,Θg] , (3.34)

where Θg is the current estimates of the model parameters.

We use the Graph Cuts algorithm for the first stage (Equation 3.33) and use the EM

algorithm for the second stage (Equation 3.34). We use the solution y∗ from the first

stage to compute E[log p(x,y|Θ)|x,Θg] in the second stage with the mean-field approxi-

mation [166, 167]. The energy minimization problem for MRF (Equation 3.33) is known

to be NP-hard [171]. Graph Cuts algorithms can effectively seek approximate solutions to

the energy minimization problem. We define the unary cost and the pairwise cost of the

graph G of the HMRF to utilize the Graph Cuts algorithm. The unary cost corresponds to

the unary potential, which is:

U(xi|yi,Θg) ∝ − log(p(xi|yi,Θg). (3.35)

The pairwise cost corresponds to the pairwise potential. We calculate the edge weights in

G as

w̄ij = exp

(
−β1
‖xi − xj‖2

2

‖xi‖2‖xj‖2

)
, (3.36)

where β1 is an coefficient, and we use a pairwise state transition cost matrix V̄ ∈ RM×M ,

where M is the number of hidden states and V̄ij represents the penalty on yj 6= yi for
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a directed edge (i ← j). In our problem, G is an undirected graph, and we simplify V̄

as V̄ij = β0, i, j = 1, · · · ,M . However, in more complicated problem settings, we can

realize V̄ with varied elements V̄ij and estimate the elements as model parameters. The

calculation of the pairwise cost and edge weights is based on the second definition of the

pairwise potential (Equation 3.31). We use the GCO library to perform the Graph Cuts

algorithm [169, 170, 172].

3.5.3 Model initialization in Phylo-HMRF

In the OU-model embedded HMRF-EM algorithm, we need to initialize the model param-

eters. We follow the similar approaches in Yang et al. [161] for parameter initialization in

the EM algorithm. For the first approach, we perform K-means clustering on the samples.

We assign a hidden state to the samples in the same cluster. For each cluster, we estimate

the OU model parameters by maximum likelihood estimation (MLE). The objective func-

tion of the MLE problem is similar to that defined in Formula 3.28. The difference is that

we set w(l)
i = 1, and change i ∈ V to the constraint i ∈ Cl, where Cl represents the set

of the nodes that are assigned to state l by the K-means clustering result. The estimated

model parameters are used as initialization of the OU model parameters for each hidden

state. The second approach is to randomly sample the parameter values from predefined

uniform distributions.

For the third approach, we use a linear combination of parameters obtained from the

first and second approaches for parameter initialization. The initial parameter values are

chosen as Θ0 = w1Θ1 + (1−w1)Θ2, where w1 ∈ [0, 1], Θ1 and Θ2 are parameter estimates

from the first and second approaches, respectively. In practice, we used the third approach.

3.6 Initial estimation of the number of states for Phylo-HMRF

We estimated the possible number of hidden states using the K-means clustering before

applying Phylo-HMRF to the cross-species Hi-C data. We performed K-means clustering
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using the scikit-learn library [144] on the cross-species Hi-C data with the cluster number K

increased from 2 to 100. We computed the Sum of Squared Errors (SSE) of each clustering

result, and observed how SSE changed with respect to the different choices of K by plotting

the SSE-K curve (Figure 3.2). We found that the decreasing rate of SSE with respect to the

increasing K slows down in the range of 15-30. Small fluctuation of the number of states

around 30 does not result in significant reduction of SSE with respect to the increase of K.

We therefore set the number of hidden states to be 30.
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Figure 3.2: The change of Sum of Squared Errors (SSE) with respect to an increased number of clusters in K-means

clustering on the cross-species Hi-C data. Using the Elbow method, we estimate the Elbow point (the point where the

contribution of a larger K to a smaller SSE decreases evidently and tends to be small) to be in the range 15-30, and we

choose the number of state to be 30 accordingly.

3.7 Data preparation and processing

3.7.1 Experimental model and subject details

The four primate species included in the Hi-C data comparison are Homo Sapiens (Hu-

man), Pan troglodytes (Common Chimpanzee), Pan Paniscus (Bonobo), and Troglodytes

Gorilla (Gorilla). For human we used the GM12878 cell line, a lymphoblastoid cell line

which is established from EBV (Epstein-Barr Virus)-transformed B-lymphocytes from a
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female donor. For the three non-human primate species, we used lymphoblastoid cell lines

from the corresponding species. The lymphoblastoid cell lines of Common Chimpanzee

(abbreviated as Chimpanzee), Bonobo, and Gorilla were kindly provided by Dr. Ajit Varki

(University of California at San Diego, La Jolla, CA, USA) and have been used in [173].

Each of the cell lines is established from EBV-transformed B cells from one biological

individual of the corresponding species. The cells of Chimpanzee and Bonobo are from

male. The cells of Gorilla are from female. We only used autosomes for analysis for each

of the species. The key resources used are shown in Table 3.1.

3.7.2 Cross-species Hi-C data processing

We used the Hi-C data from the lymphoblastoid cells in human (GM12878) from Rao et al.

[4]) and generated Hi-C data in lymphoblastoid cells in chimpanzee, bonobo, and gorilla.

The genome assemblies used for the four species are hg38, panTro5, panPan2, and gor-

Gor4, respectively. The genome assemblies were downloaded from the UCSC genome

browser. We used Juicer [174] to process the Hi-C sequencing reads of each of the three

species to obtain the Hi-C contact pairs based on the corresponding genome assembly.

Each Hi-C contact pair is a pair of reads that are mapped to two genomic loci based on

the corresponding genome assembly, representing chromatin contact between these two

genomic loci. For the human GM12878 data, the Hi-C contacts file resulted from merging

and processing all replicates has much higher coverage than the data for the other primate

species, affecting the comparability of the Hi-C contact maps between human and the other

species. We therefore performed random sampling of merged and processed data of five

technical replicates of the same biological replicate in GM12878 cells to obtain approxi-

mately 2.9×108 Hi-C contact pairs in human, comparable to the other species. We obtained

approximately 2.9× 108, 2.7× 108, 2.4× 108, and 2.9× 108 Hi-C contact pairs for human,

chimpanzee, bonobo, and gorilla, respectively.

Next, we aligned the Hi-C contact pairs of the non-human species to the human genome.

We mapped the aligned loci of the two ends of a contact pair in the Hi-C data of the non-
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human species from the original genome assembly to the human genome with reciprocal

mapping using the tool liftOver [138]. With this conversion, the Hi-C contact maps of the

four species that are computed from the aligned Hi-C contacts are all based on the human

genome coordinates and therefore can be directly compared in the synteny blocks across

species. The synteny blocks are the genome regions where the order of genome loci is

preserved and there are no chromosome rearrangements greater than a certain resolution

(50 kb in the Hi-C data comparison across species).

We used Juicer Tools to extract the Hi-C contact maps of each species at the resolution

of 50Kb from the .hic files of the corresponding species, performing normalization by

Knight-Ruiz matrix balancing [4, 174]. For the Hi-C contact map of each species in each

synteny block, we perform two-step filtering to interpolate the missing values and smooth

the signals. In the first step we use the median filter for interpolation of possible missing

values. For each node without signal value in the Hi-C contact map, we use the median of

Hi-C contact frequencies of the 8-connected neighbors as the value assigned to the node.

Median filter has the characteristic to preserve edges in image. In the second step, we apply

an anisotropic diffusion filter [175], which is an edge-preserving filter, to the whole Hi-C

contact map in this synteny block to smooth the signals while maintaining the edge features,

which correspond to more rapid changes of Hi-C contact frequencies. After preprocessing

the Hi-C map of each species, we align the Hi-C contact maps of the four species in each

synteny block to obtain a combined multi-species Hi-C contact map. Each node in the

multi-species Hi-C contact map is associated with a feature vector, the entries of which

correspond to Hi-C contact frequencies between the corresponding pair of genome loci in

the four species. Hence each node is associated with a multi-dimensional feature vector

as the multi-species observation. As the scales of Hi-C contact frequencies in different

species are different, we normalize the Hi-C contact frequencies of each species to the same

scale over all the autosomes using feature scaling. We then perform the x̂ = log(1 + x)

transformation to the normalized Hi-C contact signals of each species.

We focus on the comparison of Hi-C data in synteny blocks across species. Therefore,
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we use the Hi-C contact signals within the synteny blocks as input to Phylo-HMRF, which

are the subgraphs of the combined multi-species Hi-C contact map of each chromosome.

The multi-species Hi-C contact map of each synteny block is symmetric. We therefore

only keep the upper triangular part of the Hi-C contact map, and consider each entry as a

sample.

Each sample is a multi-dimensional feature vector, where each dimension represents

the Hi-C contact frequency of the corresponding species between the corresponding paired

genomic loci specified by the coordinates of the entry in the Hi-C contact map. Hence,

there are N(N − 1)/2 samples for a synteny block of size N . We originally identified

90 synteny blocks in 50kb resolution on the autosomes based on inferCARs [162]. There

are two large size synteny blocks on chromosome 3 and chromosome 6, which exceeds

150Mb and 190Mb each. We then divide the two large synteny blocks into two parts each

according to the two chromosome arms, respectively. For each divided synteny block, we

still consider the interactions between the two subregions. Overall, we have 92 synteny

blocks (≥2.5Mb in size each) identified in the autosomes with 30,154,205 samples.

3.8 State estimation on the Hi-C data by Phylo-HMRF

The differences of Hi-C contact frequencies across species can be either resulted from

genome rearrangements or other types of genome evolution. In this work, we specifically

focus on changes within synteny blocks. For all the autosomes in the human genome, we

run Phylo-HMRF jointly on the multiple synteny blocks of the chromosomes and identified

possible different evolutionary patterns of the Hi-C contact frequencies across species in a

genome-wide manner. When applying Phylo-HMRF to the Hi-C data, we use the second

definition of the pairwise potential by considering the feature difference of adjacent nodes,

and use β0 = 3, β1 = 0.1.

We applied Phylo-HMRF to the multi-species Hi-C data to predict 30 hidden states.

We further categorize the 30 estimated hidden states into 13 groups, as described in the
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Results section. Based on the Hi-C contact frequency distributions in the four species in

each estimated state, we identify the states with distinctively higher or lower Hi-C contact

frequency values than other states in all the four species consistently as the C-high and

C-low states, respectively. Specifically, for the C-high or C-low states, the median of chi-

squared distances [176] between the Hi-C contact frequency signals of each pair of species

is significantly smaller than expected by chance (empirical p-value<5e-04) and smaller

than the non-conserved states. Also, in the C-high states, Hi-C signals of at least 95%

of the samples in each species are consistently larger than the 95% quantile of the Hi-C

signal values in the corresponding species. In the C-low states, Hi-C signals of at least

90% of the samples in each species are consistently smaller than the 25% quantile of the

Hi-C signal values in the corresponding species. For each species, we categorize the Hi-C

signals into n = 20 equally spaced intervals by calculating the 5%-95% quantiles. For a

given state, suppose u = (u1, · · · , un), v = (v1, · · · , vn) represent the percentages of sam-

ples in each interval for two compared species, respectively. We calculate the chi-squared

distance χ2
d(u, v) = 1

2

∑n
i=1

(ui−vi)2
ui+vi

, which is a measure of similarity between two distri-

butions. To estimate the empirical distribution, we calculate chi-squared distance between

two randomly sampled distributions û, v̂ each time and repeat the process to calculate 105

distances. For the other states, the states showing similar feature distributions of Hi-C

contact frequency in the four species are annotated as C-mid and WC. The rest states are

annotated as non-conserved (NC) states and we further identify the lineage-specific states

where one species shows divergence in feature distribution from the other species.

After applying Phylo-HMRF to the cross-species Hi-C data for hidden state estimation

results, we obtained segmentation of the cross-species Hi-C contact map in synteny blocks,

where each node is assigned a label that represents the estimated hidden state. Neighboring

nodes with the same hidden state form a local segment. The segmentation results in synteny

blocks can be visualized as color images. We then perform simple post-processing of the

segmentation results to obtain more smoothed segmentation that facilitates downstream

analysis.
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For the segmentation resulted from state estimation in each synteny block of a chro-

mosome, we consider it as an image and first find all the connected components in this

image. Each connected component can be considered as a segment of the cross-species

Hi-C contact map. Nodes in a connected component have the same estimated states. If

the size of the connected component (i.e., the number of nodes in the segment) is smaller

than a threshold, we query the states of all the external nodes in local neighborhood to any

node in the component and use the most frequent observed state of the external neighbors

to reassign states for this component. We set the threshold to be 10, and use window size

of 5 to define local neighborhood surrounding a node. We applied this post-processing step

once and obtained slightly smoothed segmentation results.

3.9 Approaches for the simulation studies

3.9.1 Approaches to generating the simulated datasets

We first evaluated the performance of the developed method in simulation studies. In

the simulation evaluation, we suppose that the samples in simulated dataset correspond

to nodes in a graph G. The graph G has 2D lattice structure of size n×n, where each node

is associated with a sample. Each node can be assigned 2D coordinates based on its posi-

tion in the graph. Let Ni denote the set of neighboring nodes of the node i, i.e., the nodes

that are connected to node i in G. We use 8-connected neighborhood system. Suppose the

node i has coordinates (ci1 , ci2). Then the nodes with coordinates (ci1 , ci2±1), (ci1±1, ci2),

(ci1 − 1, ci2 ± 1), and (ci1 + 1, ci2 ± 1) are the neighbors of node i.

In simulation study I, for each simulated dataset, we first generate a configuration of

the hidden states of the samples by simulating an MRF through Gibbs sampling [177].

We assume that the hidden state of each sample is associated with an emission probability

function and the hidden states are from an MRF. We use the Markov property:

p(yi|y−i) = p(yi|yNi
), (3.37)
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where y−i represents the hidden states of all the nodes other than the i-th node, i.e., y−i =

{yj, j ∈ V , j 6= i}. yNi
represents the hidden states of the neighbors of node i. We ran-

domly initialize the hidden state configuration of the N = n × n samples at time step

t = 0. The hidden state y(t)
i of sample i at time step (t + 1) is sampled from the proba-

bilistic distribution p(yi|y(t−1)
Ni

), yi ∈ S = {1, · · · ,M}. p(yi = l|y(t−1)
Ni

) is calculated using

Equation 3.29, l ∈ S. We use the first definition of pairwise potential and use β0 = 2

(Equation 3.30). We repeat this sampling process until the maximum of time steps to take

T is reached. We use y(T ) = {y(T )
i }i∈V as the hidden states of the samples. We then simu-

late observations of the samples based on the hidden states using the emission probability

functions p(xi|yi, θyi), where θyi represents parameters of the emission probability function

of hidden state yi. We assume that the emission probability function of each hidden state

is a multivariate Gaussian distribution. Suppose the observations are xi ∈ Rd, i ∈ V . Let

d be the number of species. xi then represents the multi-species observations. We assume

that each of the Gaussian distributions is associated with a different OU model. For each

hidden state, we randomly sample the OU model parameters selection strength and Brow-

nian motion intensity on each branch from uniform distribution Unif[0, 1], and sample the

optimal values from normal distribution N (0.5, 0.25). We then use OU model parameters

to calculate the Gaussian distribution parameters θl, l ∈ S, and simulate samples based

on the hidden states and the corresponding multivariate Gaussian distributions p(xi|yi, θyi).

We use n = 500, N = 250, 000, d = 4, M = 10, and use the same topology of the phy-

logenetic tree as we use in real data analysis for the OU models that are associated with

the Gaussian distributions. In simulation study II, we use the same eight sets of hidden

states simulated in simulation study I, but we simulate OU model parameters with differ-

ent parameter settings. We randomly sample the OU model parameters selection strength

and Brownian motion intensity on each branch from uniform distribution Unif[0, 1.5] and

sample the optimal values from normal distribution N (1, 0.5). We also use n = 500,

N = 250000, d = 4, M = 10.

We assume that the data simulation process is hidden from us. When we applied Phylo-
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HMRF to the simulated datasets, we used the second definition of the pairwise potential

by considering the feature difference of adjacent nodes (Equation 3.31), and used β0 = 1,

β1 = 0.1. Therefore, the parameter settings we used to implement HMRF-EM are different

from the simulation parameter settings, which can better evaluate whether the model has

robust capability. We also tried varied parameters β0 = 1.5, and β0 = 2 and tested the

performance of Phylo-HMRF. We found that Phylo-HMRF still maintains higher accuracy

than the other methods and the performance is improved by a moderate level, demonstrating

the robustness of Phylo-HMRF. We only report the results obtained with β0 = 1 in the

performance evaluation.

3.9.2 Performance evaluation in the simulation studies

We evaluated the accuracy of Phylo-HMRF in estimating hidden states by comparing the

predicted states with the ground truth states in the simulation evaluation, using evalua-

tion metrics Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI),

Adjusted Rand Index (ARI), Precision, Recall, and F1 score [142, 143]. These met-

rics compare two partitions of a set. The metrics were also defined and used in Chap-

ter 2. Suppose x = {x1, · · · , xN} are the samples. Suppose Ω = {ω1, · · · , ωK} and

C = {c1, · · · , cM} are the predicted partition of the samples and the ground truth par-

tition of the samples, respectively. The mutual information (MI) between Ω and C is

I(Ω;C) =
∑K

k=1

∑M
j=1 P (ωk, cj) log

P (ωk,cj)

P (ωk)P (cj)
. The NMI between Ω and C is:

NMI(Ω;C) =
I(Ω;C)

[H(Ω) +H(C)]/2
, (3.38)

where H(Ω) and H(C) are the entropies of Ω and C, respectively.

We have H(Ω) = −
∑K

k=1 P (ωk) logP (ωk), H(C) = −
∑M

j=1 P (cj) logP (cj). P (ωk)

represents the probability that a sample is in partition ωk. The maximum likelihood estimate

of P (ωk) is |ωk|/N , where |ωk| denotes the size of ωk and N is the sample size.

AMI is defined as:

AMI(Ω;C) =
I(Ω;C)− E[I(Ω;C)]

max{H(Ω), H(C)} − E[I(Ω;C)]
, (3.39)
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where E[I(Ω;C)] represents the expectation of I(Ω;C). E(I(Ω;C)) can be estimated

based on Ω and C [143].

The Rand Index (RI) [142] is defined as:

RI =
TP + TN

TP + FP + FN + TN
, (3.40)

where TP (true positive), FP (false positive), FN (false negative), and TN (true negative)

represent the number of sample pairs that are in the same subset in Ω and also in the same

subset in C, the number of sample pairs that are in the same subset in Ω but in different

subsets in C, the number of sample pairs that are in different subsets in Ω but in the same

subset in C, and the number of sample pairs that are in different subsets in Ω and also in

different subsets in C, respectively.

ARI is defined as:

ARI =
RI − E[RI]

max{RI} − E[RI]
, (3.41)

where E[RI] represents the expectation of RI .

Precision, Recall, and F1 score are defined as:

Precision =
TP

TP + FP
, (3.42)

Recall =
TP

TP + FN
, (3.43)

F1 =
2Precision×Recall
Precision+Recall

. (3.44)

3.9.3 Other methods compared in the simulation evaluation

In the simulation studies, for performance evaluation on state estimation, we compared

Phylo-HMRF with the Gaussian-HMRF method [164], the Gaussian Mixture Model (GMM),

the K-means clustering method, and two image segmentation methods SLIC [178] and

Quick Shift [179]. To utilize the image segmentation methods, we consider the combined

multi-species Hi-C contact map as an image, and consider the features of each species as

one color channel of the image. We normalize the features of each species to be in the range

[0,1] accordingly, which is the scale of a color channel, to prepare the input for SLIC and
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Quick Shift. For the segmentation results, we consider segments with the same label as the

same state. SLIC performs K-means clustering in the joint space of the color information

and the spatial coordinates over an image. Quick Shift is approximation of the Mean Shift

algorithm [180] with kernel methods utilized, performing mode seeking in segmenting an

image. We use the scikit-learn library [144] for implementation of the GMM method and

the K-means clustering algorithm. We use the scikit-image library [181] which includes

the implementation of the SLIC and Quick Shift algorithms. For the methods Gaussian-

HMRF, GMM, and K-means clustering, we set the number of states to be 10, respectively,

which is the number of ground truth states. For the two image segmentation methods im-

plemented in the scikit-image library, there are no input arguments to set the exact number

of output labels of the segments. We adjust the parameter configurations of each of the

two methods such that the number of output labels is approximately 10 and comparable to

the state estimation results of the other methods. For SLIC, we use an argument to set the

approximate number of labels and adjust the other parameters to have the number of output

labels approximating 10. For Quick Shift, there is no argument to set an exact or approx-

imate number of output labels. We then tune the input parameters to have the number of

output labels approximating 10.

3.10 Quantification and analysis methods

3.10.1 Alignment between boundaries of identified local-contact block pat-

terns and TADs

For segments of estimated Hi-C evolutionary patterns along the diagonal of the Hi-C con-

tact map of a synteny block, we use windows (squares) that can match the segments to

identify the local-contact block patterns. A segment is a continuous 2D region with the

same estimated state. Specifically, we use a sliding window with changeable size to find

possible matches to the segments on the diagonal. With a window of the lower bound size

located at a starting position along the diagonal, we first find the dominant estimated state
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within this window. If there is no dominant state, we move the window to the next position

by one bin. The dominant state is defined as the state with the percentage exceeding a

threshold and with the highest percentage within the window. If there is a dominant state,

we then increase the window size from the lower bound gradually until the percentage of

the dominant state within the window decreases or the dominant state changes or disap-

pears. If a window has the highest percentage of the dominant state and the percentage

reaches the threshold (we use 0.95), we identify it as a local-contact block. We then reset

the window to the lower bound size and move it to the next position by a stride that is half

of the previously identified block size. We repeat these steps until we scan all the estimated

states along the diagonal of the Hi-C contact map. Since the Hi-C contact frequency was

measured at a resolution of 50Kb, the boundaries of the diagonal blocks detected from the

estimated states are all at 50Kb resolution. The distance between a diagonal block boundary

and the nearest TAD boundary is calculated in increments of 50Kb (one bin) accordingly.

We compute the percentages of the distance in five distance intervals, which are 0-50Kb,

50-100Kb, 100-150Kb, 150-200Kb, and >200Kb, respectively.

In addition, we estimate the empirical distributions of the distance between boundaries

of a possible diagonal block and the nearest TAD by randomly shuffling the identified diag-

onal blocks. For each synteny block, we shuffle the identified local-contact block patterns

on the diagonal of the multi-species Hi-C contact map 1,000 times by randomly relocat-

ing them within this synteny block. For each boundary of each randomly relocated di-

agonal block in a shuffle, we calculate the distance between the block boundary and the

nearest TAD boundary of a specific type of TAD (i.e., Arrowhead TAD or DI TAD). For

each shuffle, we then compute the percentages of the distances between the diagonal block

boundaries and the corresponding nearest TAD boundaries in the five distance intervals.

We merge the percentages from each shuffle of diagonal block patterns as an empirical

distribution for each distance interval.
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3.10.2 Analysis of the connection between estimated Hi-C and RT evolu-

tionary patterns

To compare the conservation of Hi-C states with replication timing (RT) conservation, we

examined RT evolutionary states identified in our previous paper [161] using Repli-seq

datasets from analogous lymphoblastoid cells across primate species. In that paper, we

classified the evolutionary patterns of RT into five distinct categories reflecting the different

levels of conservation, i.e., conserved early in RT (E), weakly conserved early (WE), con-

served late (L), weakly conserved late (WL), and non-conserved (NC). With this data, we

are able to test whether the evolutionary patterns of Hi-C data are correlated with RT evo-

lutionary patterns. To do that, for each pair of genomic loci, we consider it has a matched

RT state if the pairwise genomic loci present similar RT evolutionary patterns (i.e., both

are E/WE or both are L/WL). The fraction of matched RT states thus indicates the concor-

dance between conservation of RT and conservation of interactions of pairwise genomic

loci. We remove the distance confounding factors by comparing the fraction of matched

RT states across different Hi-C states over a range of different distances (0-10Mb). To fur-

ther confirm our observation is not due to the randomness of RT evolutionary state calls,

we attempt to repeat this analysis by using randomly shuffled RT evolutionary states. In

each chromosome, we first merge adjacent RT evolutionary states (in a resolution of 6kb)

into longer segments. We then randomly shuffle the labels of the RT evolutionary states in

each chromosome so that the global distribution of RT evolutionary patterns remains the

same. Finally, we repeat plotting the distributions of pairwise genomic loci with matched

RT states over a range of different distances (0-10Mb) (Figure 3.11). We observed that the

matched-RT state curves in different Hi-C contact states based on the shuffled RT states

did not exhibit the trends, changing points, and diversities of the curves for different Hi-C

contact states based on the original predicted RT states.
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3.10.3 Detecting conserved long-range interacting TADs

In order to study the evolutionary patterns on TADs and related genomic and epigenomic

features, we classified the TADs into two groups based on the whether a TAD is involved

in conserved long-range TAD-TAD interactions. We showed examples of long-range TAD-

TAD interactions that are conserved across species in the synteny block 8 on chromosome

1 of human in Figure 3.8F. We identified the conserved long-range TAD-TAD interactions

in all the synteny blocks across 22 autosomes in human based on the Hi-C evolutionary

contact states estimated by Phylo-HMRF. We use the DI TAD annotations in GM12878

cell line. For each pair of DI TADs in the same synteny region on human genome that

are at least 3Mb apart, we calculate the percentages of different estimated Hi-C contact

states in the block of the 2D multi-species Hi-C contact map which corresponds to possible

interactions between the two TADs. The block is a 2D region in the Hi-C contact map,

where each node represents the Hi-C contact frequency between a genome loci in one TAD

and a genome loci in another TAD. For each pair of TADs that are at least 3Mb apart,

if the total of percentages of C-high states (S4, S12) and C-middle states with relatively

higher Hi-C contact frequencies (S15, S16) in the block exceeds 50%, and the state with

the highest percentage is one of the four states, we consider it as conserved long-range

TAD-TAD interaction. There are 3,541 TADs that are located in the synteny regions of

22 automosomes in human. We detected 3,365 pairs of TADs that are associated with

conserved long-range interactions. We observed that for 44.46%, 41.84%, and 13.70%

of the 3,365 TAD pairs with conserved long-range interactions, the distance between the

paired TADs are in the ranges 3-5Mb, 5-10Mb, and larger than 10Mb, respectively. To

define the long-range interacting TADs, we consider the conserved long-range TAD-TAD

interactions between TADs that are more than 10Mb apart in 1D genome distance. We label

a TAD as conserved long-range interacting TAD (hereafter abbreviated as conserved TAD

for simplicity in related discussions) if it is involved in conserved long-range interaction

with a TAD that is more than 10Mb away. Otherwise a TAD is labeled as non-conserved

long-range interacting TAD (hereafter abbreviated as non-conserved TAD).
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3.10.4 Estimating the background distribution of histone modification sim-

ilarity

To compare the histone modification composition for each pair of genomic loci with esti-

mated Hi-C states, we computed the percentage of paired genomic loci that have more sim-

ilar histone modification signal strength than expected in the C-high, C-mid, WC, C-low,

and NC states over a range of different distances (0-10Mb). In order to get the background

distributions of quantile changes between paired genome loci, we randomly select 1,000

pairwise bins on the genome and calculate the absolute value of quantile differences of the

histone modification signal strengths for each pair. We repeat this process for 20 times and

the combined dataset is considered as the background distribution. Finally, we compare

the observed difference of quantiles between pairwise bins with the background distribu-

tion. We consider that two genomic loci tend to have more similar histone modification

signals if the differences of quantiles are smaller than the median value calculated from the

background distribution.

3.11 Results

3.11.1 Performance evaluation of Phylo-HMRF in the simulation studies

We evaluated the performance of Phylo-HMRF using simulations to demonstrate improve-

ment in identifying 2D evolutionary feature patterns. We applied Phylo-HMRF to 16 simu-

lated datasets in two sets of simulations (simulation studies I and II), each of which contains

8 datasets. Suppose the samples in simulated datasets correspond to nodes in a graph G.

The samples thus represent features of node in G. Similar to a Hi-C contact map, G has

a 2D lattice structure of size n × n, where each node is associated with a sample. The

samples thus represent features of nodes in G. For example, a sample can represent the

interaction intensities between the i-th locus and the j-th locus out of n genomic loci in

multiple species (1 ≤ i, j ≤ n). We also assume that each sample has a class label or
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hidden state. Each hidden state is associated with an emission probability function and de-

termines the observed feature of the sample with this state. The hidden states of the samples

are assumed to be from a Markov random field (MRF). Thus, the hidden state of a sample

is spatially dependent on the hidden states of its neighbors in G. We simulated the multi-

species observations from multivariate Gaussian distributions with OU model parameters

embedded. The details of the data simulation approaches are described in section 3.9.1.

We compared Phylo-HMRF with several other methods on the simulated datasets, in-

cluding the Gaussian-HMRF method [164], the Gaussian mixture model (GMM), the K-

means clustering, and two image segmentation methods SLIC (Simple Linear Iterative

Clustering) [178] and Quick Shift [179] (section 3.9.3), to infer hidden states of the sam-

ples. Each method was run repeatedly for 10 times on each simulated dataset with different

random initializations, given the number of hidden states M = 10. The average perfor-

mance of the 10 results for each method was reported as the final performance with respect

to different types of evaluation metrics. We evaluated the performance of each method by

comparing the predicted states and ground truth hidden states, using metrics Normalized

Mutual Information (NMI), Adjusted Mutual Information (AMI), Adjusted Rand Index

(ARI), Precision, Recall, and F1 score [142, 143].

The evaluation results are shown in Figure 3.3 and Table 3.2. We found that Phylo-

HMRF outperforms all the other methods on different types of evaluation metrics in each

simulated dataset in simulation study I. Phylo-HMRF consistently outperforms Gaussian-

HMRF, demonstrating that encoding the evolution information can improve accuracy. Even

though all the multi-species observations are simulated from Gaussian distributions, using

Gaussian distributions alone in inference may not reveal the possible evolutionary depen-

dencies between the species. In addition, both Phylo-HMRF and Gaussian-HMRF show

advantages over GMM and K-means clustering, suggesting that encoding the spatial con-

straints is also crucial. Moreover, Phylo-HMRF outperforms the two image segmentation

methods SLIC and Quick Shift in different simulated datasets. The image segmentation

methods segment the image representation of the cross-species data based on feature sim-
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ilarity and spatial proximity. Regions that belong to the same evolutionary pattern (e.g.,

conserved high in Hi-C contacts across species) can be assigned different labels if they are

distant from each other in spatial location, which affects the accuracy and interpretability of

hidden state estimation. We further performed simulation study II to assess if the advantage

of Phylo-HMRF is consistent over varied simulation parameter settings. The eight sets of

simulated hidden states were shared between simulation studies I and II, while the observa-

tions were simulated with different parameter settings. We then applied Phylo-HMRF and

the other methods to the datasets in simulation study II and evaluated performance using

the same procedure as we used in simulation study I. The evaluation results are shown in

Figure 3.4. Again we found that Phylo-HMRF consistently outperforms the other meth-

ods across all the datasets. Taken together, our simulation evaluation demonstrated that

Phylo-HMRF is able to achieve improved accuracy consistently in estimating evolutionary

patterns of Hi-C contacts in multiple species.
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Figure 3.3: Performance evaluation of different methods in simulation study I. Performance evaluation of K-means

clustering, GMM, SLIC, Quick Shift, Gaussian-HMRF, and Phylo-HMRF on eight simulation datasets in simulation study

I with respect to NMI (Normalized Mutual Information), AMI (Adjusted Mutual Information), ARI (Adjusted Rand Index),

and F1 score. The standard error of the results from 10 runs of each method is shown as the error bar, respectively.
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Figure 3.4: Performance evaluation of different methods in simulation study II. Performance evaluation of K-means

Clustering, GMM, SLIC, Quickshift, Gaussian-HMRF, and Phylo-HMRF on eight simulation datasets in simulation study

II with respect to NMI, AMI, ARI, and F1 score. The standard error of the results from 10 runs of each method is shown

as the error bar, respectively.

3.11.2 Phylo-HMRF identifies different Hi-C contact patterns across multi-

ple primate species

We applied Phylo-HMRF to a Hi-C dataset from four primate species. We used the Hi-C

data in GM12878 in human from Rao et al. [4]. We generated Hi-C data from the lym-

phoblastoid cells of three other primate species, including chimpanzee, bonobo, and gorilla

(see section 3.7.2). There are 290M, 270M, 240M, and 290M mapped read pairs for the

four primate species, respectively. We ran Phylo-HMRF on all the syntenic regions on the

autosomes using the human genome as the reference. We first identified 92 synteny blocks

in 50kb resolution (i.e., ignoring rearrangements smaller than 50kb among the four species)

using the method inferCARs [162], covering 92.64% of the sequenced regions in the hu-

man genome (Figure 3.5, section 3.7.2). For example, we identified 9 major synteny blocks

on human chromosome 1 among the four species, covering 92.50% of human chromosome

1 (Figure 3.6B). We then applied Phylo-HMRF to elucidating genome-wide evolutionary

patterns over the multiple synteny blocks across different chromosomes jointly, with each
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synteny block represented as a subgraph of G. The number of states is set to be 30 based

on estimation from the results of K-means clustering using the Elbow method [182, 183]

(section 3.6, Figure 3.2). Specifically, we observed how the Sum of Squared Errors (SSE)

of each clustering result changed with respect to different choices of K, and chose the num-

ber of states in a range where the contribution of a larger K to a smaller SSE experienced

relatively sharp decrease and tended to be small.

Phylo-HMRF identified both conserved and lineage-specific evolutionary patterns of

Hi-C contact frequencies across the four primate species. For the convenience of presen-

tation of the analysis results, we further categorized the 30 estimated hidden states into

13 groups which show higher-level distinctiveness of heterogeneous evolutionary patterns

(section 3.8). Four of the groups represent conserved or weakly conserved cross-species

patterns in Hi-C contact frequency, which are conserved high in Hi-C contact frequency

(C-high), conserved middle-level (C-mid), conserved low (C-low), and weakly conserved

middle-level (WC). The four groups cover 51.14% of all the nodes in the cross-species

Hi-C maps of the synteny blocks. In the conserved states the four species have consis-

tently high or low or middle-level Hi-C contact frequency signals. Nine of the groups

correspond to non-conserved evolutionary patterns in Hi-C contacts, where eight exhibit

lineage-specific patterns. Specifically, the nine groups are human-specific high in Hi-

C contact frequency (NC-hom high), human-specific low (NC-hom low), chimpanzee-

specific high (NC-pan high), chimpanzee-specific low (NC-pan low), bonobo-specific high

(NC-pyg high), bonobo-specific low (NC-pyg low), gorilla-specific high (NC-gor high),

gorilla-specific low (NC-gor low), and non-conserved (NC). Representative estimated states

from each of the 13 groups are shown in Figure 3.6A. Hi-C contact frequency distributions

of each species in all the 30 estimated states are shown in Figure 3.7.

In Figure 3.6B-C, we show the estimated states in synteny block 8 on chromosome 1

and in synteny block 3 on chromosome 2 as examples, along with the input Hi-C contact

maps of the four species. The rotated upper triangular matrix as illustrated in the second

panel of Figure 3.6B-C represents the estimated hidden states of the graph G of the HMRF
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in Hi-C data comparison in the corresponding synteny block. Each node in G corresponds

to a pair of genomic loci in the Hi-C contact map. The hidden state configuration is vi-

sualized as an image, where different colors represent different estimated hidden states.

Adjacent nodes that are assigned to the same hidden state form a contiguous 2D segment

in the image. Therefore, based on the estimated states, G is partitioned, reflecting dif-

ferent cross-species Hi-C contact patterns. In Figure 3.6B, we found that there are two

gorilla-specific low Hi-C contact patterns near the diagonal area, which are colored in pur-

ple. These two regions correspond to the gorilla-specific low Hi-C states that appear in the

state-distance plots of synteny block 8 on chromosome 1 in Figure 3.9. In Figure 3.6C, we

observed that there is a bonobo-specific low Hi-C contact frequency pattern detected near

the diagonal area, which is colored in green. By comparing the estimated hidden states to

the corresponding Hi-C contact maps of the four species, we found that the estimated states

accurately reflect what can be observed in Hi-C contact maps in different species.

Next, we compared the distributions of evolutionary patterns of Hi-C contacts over

changing distance between a pair of genomic loci in each synteny block. We consider

that Hi-C contacts over short genomic loci distances are local Hi-C contacts (genomic loci

distance <3Mb), and Hi-C contacts over large distances represent longer-range contacts.

Short genomic loci distances correspond to areas near the diagonal of the Hi-C contact

map. The state-distance plots across the synteny blocks on all the autosomes are shown in

Figure 3.8A. We observed that C-high, C-mid, and WC states are the predominant states

for the short-range contacts (black arrow in Figure 3.8A). This suggests that the majority

of the local Hi-C contact patterns and the associated genome structures are likely to be

conserved across different species. At larger genomic loci distances, which correspond to

the off-diagonal areas in the Hi-C contact map, the C-low and non-conserved states have

much higher percentages as expected. We also found that the distribution over genomic

loci distance varies across different lineage-specific states. For single synteny blocks, the

state-distance plots of the major synteny blocks on chromosome 1 and chromosome 2 are

shown in Figure 3.9 and Figure 3.10 as examples, respectively. Overall, we found that there
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are similar enrichment patterns of states within a short distance range across the synteny

blocks, while different blocks also exhibit varied trends of how evolutionary patterns are

distributed at different genomic loci distances. We observed that the lineage-specific states

are distributed unevenly among the synteny blocks, showing occurrences either in local

Hi-C contacts or long-range Hi-C contacts.

Together, these results demonstrate the effectiveness of Phylo-HMRF to identify genome-

wide evolutionary patterns of Hi-C contacts across different species in a phylogeny.
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Figure 3.5: Distribution of the identified synteny blocks on the 22 autosomes of the human genome. For chromosome

3 and chromosome 6, we divide the large size synteny blocks into two parts each according to the chromosome arms.

The synteny blocks cover 92.64% of human chromosomes 1-22.

3.11.3 Hi-C evolutionary patterns correlate with replication timing and his-

tone modifications

We next compared the predicted states from Phylo-HMRF with other features of genome

structure and function. Earlier studies have shown that DNA replication timing (RT) is

closely correlated with genome organization [37, 42]. We previously reported evolutionary

patterns of DNA replication timing using Repli-seq data of multiple primate species [161].

We identified 5 groups of RT evolutionary states, which are conserved early in RT (E),
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weakly conserved early (WE), conserved late (L), weakly conserved late (WL), and non-

conserved (NC). For each pair of genomic loci with estimated Hi-C states, we examined

the RT evolutionary state composition of the corresponding two genomic loci. If the paired

genomic loci share similar conserved RT states, i.e., both are E/WE or both are L/WL, we

annotated this pair as conserved in RT (C). Otherwise, we annotated it as non-conserved

in RT. We then computed the percentage of contact loci that have the conserved RT states

in the C-high, C-mid, WC, C-low, and NC Hi-C states identified by Phylo-HMRF over a

range of different distances (0-10Mb). The results are shown in Figure 3.8B. It is observed

that C-high, C-mid, and WC Hi-C contact patterns have higher enrichment of genome con-

tacts with conserved RT patterns than the NC states over most of the distance range. The

percentage is particularly high in the C-high state for genomic loci that are less than 4Mb

apart. This suggests that the conserved high Hi-C contact states are strongly correlated

with those genomic loci pairs where both loci have consistent conserved RT patterns across

species. We further explored potential connections between the features and the curves

observed in Figure 3.8B with known chromatin structure patterns such as TADs. We con-

sidered the TADs in GM12878 in human called using the Arrowhead method [4] and the

Directionality Index (DI) method [8] (named Arrowhead TADs and DI TADs, respectively).

The average sizes of Arrowhead TADs and DI TADs are around 1Mb and 0.6Mb, respec-

tively. As shown in Figure 3.8B, there is a changing point around 1Mb on the distance axis

on the matched-RT state fraction curve for both the C-high state and C-mid state, which

approximately matches the average size of TADs. To further assess if the shapes and dif-

ferences of the curves occur by chance, we randomly shuffled the RT evolutionary states

along the genome and plot the matched-RT state fraction curves for different groups of

estimated Hi-C contact states based on the shuffled RT states using the same procedure as

described above (section 3.10.2). Specifically, the RT evolutionary states were estimated

at the resolution of 6Kb [161]. We merged adjacent genomic bins with the same RT evo-

lutionary states into segments and performed random shuffle of the segments. The curves

based on the shuffled RT states are shown in Figure 3.117. We found that the fractions of
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conserved-in-RT paired genomic loci in different Hi-C contact states based on the shuffled

RT states are similar to each other over most of the genomic loci distance range, not ex-

hibiting the characteristics and diversities of curves for different Hi-C contact states found

in Figure 3.8B. These observations suggest that the identified evolutionary patterns of local

high Hi-C contacts and the evolutionary patterns of RT states may be constrained by the

TAD structures.

Next, we examined the histone modification composition of paired genomic loci using

the ChIP-seq data for 11 histone modifications in GM12878 from the ENCODE project [151].

We hypothesize that paired genomic loci assigned to conserved Hi-C states inferred by

Phylo-HMRF may have more similar histone modification signals than those in non-conserved

Hi-C states. To test this, we computed the percentage of paired genomic loci that have more

similar histone modification signal strength than expected in the C-high, C-mid, WC, C-

low, and NC Hi-C states estimated by Phylo-HMRF over a range of different distances

(0-10Mb). Specifically, for each type of histone modification, we calculated the abso-

lute differences of quantiles derived from the signal strength (reads per million mapped

reads) at paired genomic loci from a specific estimated state. We then compared the ob-

served changes of quantiles in each state with respect to the background distribution cal-

culated based on paired genomic loci randomly chosen from the entire synteny blocks

(section 3.10.4). Interestingly, even in the same range of 1D genome distance, signals

from paired genomic loci for all the 11 histone modifications exhibit stronger similarities

if those paired loci are annotated as conserved states than non-conserved states as shown

in Figure 3.12 and Figure 3.8C. Additionally, the percentage of similar signals between

paired loci is particularly high in the C-high state for genomic loci that are less than 4Mb

apart, which is similar to the observations in the comparison between estimated Hi-C evo-

lutionary states and estimated evolutionary RT states. Overall, these results suggest that

the conserved high Hi-C contact states are strongly correlated with genomic loci pairs that

have similar histone modifications.
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3.11.4 Hi-C evolutionary patterns show correlation with A/B compartments

and TADs

From Hi-C data, it has been revealed that at megabase resolution chromatin is segregated

into two compartments, A and B [1]. Compartment A regions contain largely open and ac-

tive chromatin and compartment B regions are typically transcriptionally more repressed.

We compared the Hi-C evolutionary patterns in three different types of interactions be-

tween compartments: A-A interaction, B-B interaction, and A-B interaction. We calcu-

lated the percentage of conserved states in the interacting area of pairwise genomic bins in

the multi-species Hi-C contact map for each type of compartment interactions. We specif-

ically considered two cases: (i) a pair of 50kb genomic bins that are in the same TAD;

(ii) a pair of 50kb genomic bins that are in different TADs. We observed that for pairwise

bins in two different TADs, the interactions of genomic loci coming from the same type

of compartments have a higher percentage of conserved states than those from different

types of compartments over varied distance between paired genome loci. We observe that

pairwise bins both from B compartment (i.e., B-B interactions) have the highest fraction of

conserved states (Figure 3.8D, Figure 3.13). A recent study based on imaging has shown

that the contact frequencies of paired genomic loci in the B compartment are higher than

the A-B and A-A pairs [184]. Our results provide the evolutionary context to support this

observation for interacting loci within and across A/B compartments.

TADs are important higher-order genome organization features revealed by Hi-C [8].

We next focus on the diagonal of the Hi-C contact maps that reflect local Hi-C contact

patterns across species. For segments of estimated Hi-C states along the diagonal, we

used squares with varied sizes that match the segments to detect the block patterns (sec-

tion 3.10.1). We identified 2,793 block patterns on the diagonals of the Hi-C contact maps

of all the synteny blocks on all autosomes. We compared the boundaries of the diagonal

blocks detected from the states predicted by Phylo-HMRF with TADs boundaries called us-

ing Arrowhead and DI, respectively. For each boundary of every identified diagonal block,

we calculated the distance between the block boundary and the nearest TAD boundary, and
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calculated the percentages of the distances in five ranges (Figure 3.8E, section 3.10.1).

We observed that the distance between the boundaries of the identified diagonal blocks

and the nearest TADs are significantly more enriched in the distance intervals that represent

relatively small distance (e.g., [0,50Kb] and (50Kb,100Kb]) than expected (Figure 3.8E).

Specifically, 55.60% of the identified diagonal block boundaries are matched by an Arrow-

head TAD boundary with the distance less than 2 bins, which is significantly higher than the

expected percentage 36.08% observed from the empirical distance distribution (empirical

p-value<2e-03, section 3.10.1). Similarly, the percentages of the identified diagonal block

boundaries that are matched by a DI TAD boundary within 1 bin or 2 bins are significantly

higher than the expected percentages (empirical p-value<1e-03). In contrast, the percent-

age of the diagonal block boundaries with distance to a nearest TAD boundary larger than

4 bins are significantly smaller than expected (empirical p-value<1e-03).

For example, we identified 34 blocks along the diagonal of the Hi-C map of synteny

block 8 on human chromosome 1 from the Hi-C evolutionary states estimated by Phylo-

HMRF. We observed that the block boundaries show high consistency with the TAD bound-

aries (Figure 3.8F). Specifically, 70.77% of the block boundaries match an Arrowhead TAD

boundary or a DI TAD boundary within 2 bins. The capability of Phylo-HMRF in detecting

TAD boundaries without using a TAD calling algorithm implies that TADs are an impor-

tant type of units of genome organization evolution. The result also reflects the accuracy of

Phylo-HMRF in estimating Hi-C evolutionary patterns. In addition, we found C-mid and

WC states in off-diagonal area of the Hi-C contact map, which potentially correspond to

the long-range interactions between two TADs that are conserved across species. Examples

of the potentially conserved long-range TAD interactions are shown in Figure 3.8F, which

are highlighted with yellow borders.

Furthermore, we sought to explore whether there are connections between DNA se-

quence features and the Hi-C contact evolutionary patterns identified by Phylo-HMRF.

We analyzed the enrichment of different TE families in each estimated Hi-C contact state

across species (e.g., PIF-Harbinger, hAT-Tag1) (section 3.11.5, Figure 3.1510). We then
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specifically assessed the potential correlations between the evolutionary patterns on TADs

and sequence properties, in particular, transposable elements (TEs) and transcription fac-

tor binding sites (TFBSs), by characterizing TADs into two groups based on whether a

TAD is involved in conserved long-range TAD-TAD interactions (section 3.10.3). We de-

tected TE families and TF motifs that show distinct enrichment patterns in the different

groups of TADs (section 3.10.3, Figure 3.15). This analysis suggests that the evolution-

ary patterns identified by Phylo-HMRF have the potential to reveal patterns of sequence

properties in forming Hi-C contacts and long-range TAD interactions, although additional

work is needed to delineate the roles of such sequence features in specific loci and their

functional significance.

Taken together, our results suggest that A/B compartments and TADs are important 3D

genome organization features in genome evolution in primate species. In addition, the evo-

lutionary changes of intra-TAD interactions (i.e., local contacts) and inter-TAD interactions

(i.e., long-range contacts) can be uncovered effectively by Phylo-HMRF. Such evolutionary

patterns also pave the way for the next stage in identifying potential sequence determinants

for the formation of 3D genome structures.
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Figure 3.6: Evolutionary patterns of Hi-C contact frequency estimated by Phylo-HMRF. (A) Representative states from

the 13 groups of evolutionary patterns. One state from each group is presented. The box plots show the normalized

cross-species Hi-C contact frequency distributions of the four species in the corresponding states with outliers removed.

The violin plot outlines illustrate the kernel probability density of the data. (B) Cross-species Hi-C contact frequency

states identified in synteny block 8 on chromosome 1, in comparison with the Hi-C contact maps of the four primate

species. Top panel: Locations of the nine identified synteny blocks on chromosome 1. Middle panel (Phylo-HMRF

states): Cross-species Hi-C contact frequency states identified by Phylo-HMRF. The black arrows point to two examples

of identified gorilla-specific low Hi-C contact frequency state (NC-gor low, purple color) in the combined Hi-C contact

map. Bottom panel (Hi-C contact matrices): Hi-C contact maps of the four primate species in this synteny block, with

signal scale displayed at the bottom. Darker color in the Hi-C contact map represents lower contact frequency. The

white arrows point to the corresponding locations of the two examples of identified gorilla-specific low contact state. (C)

Cross-species Hi-C contact frequency states identified in synteny block 3 on chromosome 2. Top panel: Locations of the

four identified synteny blocks on chromosome 2. Middle panel: Cross-species Hi-C contact frequency states identified

by Phylo-HMRF. The black arrow points to one example of identified bonobo-specific low Hi-C contact state (NC-pyg low,

green color) in the combined Hi-C contact map. The white arrow points to the corresponding location of the example of

identified bonobo-specific low state in the Hi-C contact maps of the four species in the bottom panel.
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Figure 3.7: Hi-C evolutionary patterns identified by Phylo-HMRF in all the major synteny blocks on all autosomes across

four primate species. Each boxplot shows the normalized cross-species Hi-C contact frequency distributions in the

corresponding state. The color of the boxplot title shows the evolutionary group assignment of the corresponding state.
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Figure 3.8: Comparison between the evolutionary states of Hi-C contacts estimated by Phylo-HMRF and other features

of genome structure and function. (A) Global state-distance plots show the enrichment of different evolutionary patterns

at different distances between genomic loci across synteny blocks on all autosomes. The black arrow points to the

distance range around 2.5Mb where C-high and C-mid are the predominant states. (B) The percentage of pairwise

genomic loci that are conserved in RT in five estimated Hi-C contact evolutionary pattern groups. The top panel shows

the distributions of TAD sizes, aligned with the axis of the genomic loci distance. The first black arrow points to the

position of the first observed changing point on the Matched-RT state fraction curve for the C-high state and for the

C-mid state. The second black arrow points to the position of 2.5Mb, where the trend change is observed in the state-

distance plot as shown in (A). (C) The percentage of pairwise genomic loci that have similar signal strength of a given

type of histone modification in five estimated Hi-C evolutionary pattern groups. The histone modifications shown are

H3K4me3 and H3K9me3. (D) The percentage of conserved states in the interacting area of pairwise genomic loci in the

multi-species Hi-C contact map for each type of A/B compartment interactions. The first panel shows the percentage

of conserved states in the interacting area from different TADs. The second panel shows the percentage of conserved

states in the interacting area in the same TADs. (E) Distributions of distance between the boundaries of the identified

local conserved high Hi-C contact patterns and the nearest TAD boundaries for both Arrowhead TADs and DI TADs. The

red dots are the percentages of distance between the identified local conserved high Hi-C contact pattern boundaries

and the nearest Arrowhead or DI TAD boundaries in different distance ranges. The density plots correspond to the

empirical distributions of distance between boundaries of local contact patterns and the nearest TADs, with the identified

local contact patterns randomly shuffled. (F) Comparison between the boundaries of identified local conserved high Hi-C

contact patterns (blocks with white borders) and the TAD boundaries in synteny block 8 on chromosome 1. Examples of

long-range conserved TAD interaction patterns are shown with yellow solid lines as borders.
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Figure 3.9: Distributions of predicted Hi-C contact evolutionary states over changing distance between paired genomic

loci in each synteny block on human chromosome 1.
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Figure 3.10: Distributions of predicted Hi-C contact evolutionary states over changing distance between paired genomic

loci in each synteny block on human chromosome 2.
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Figure 3.11: Fractions of conserved-in-RT paired genomic loci in different estimated Hi-C contact evolutionary patterns

based on shuffled RT states in comparison with the fraction curves based on original predicted RT states. (A) Fractions

of conserved-in-RT paired genomic loci in different groups of estimated Hi-C contact states based on the RT states

identified by Phylo-HMGP (note that this is the same figure in Figure 3.8B for comparison with (B). (B) Fractions of

conserved-in-RT paired genomic loci in different groups of estimated Hi-C contact states based on shuffled RT states.

RT states were predicted at the resolution of 6Kb in Phylo-HMGP (each genomic bin is 6Kb in size). Adjacent genomic

bins with the same RT states were merged into segments and random shuffle was performed on the segments in each

chromosome individually to obtain the shuffled RT states.
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Figure 3.12: The percentage of paired genomic loci that have similar signal strength of a specific type of histone

modification in the five estimated Hi-C contact evolutionary pattern groups. Each subplot corresponds to a type of

histone modification. There are 11 types of histone modifications included in analysis. The histone modification types

are shown in the corresponding sub-plot titles.
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Figure 3.13: Distributions of predicted Hi-C contact evolutionary states over changing distance between paired genomic

loci from the A/B compartments.
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Figure 3.14: Fold change of TE enrichment in Hi-C contact evolutionary states identified by Phylo-HMRF. Each row in

the matrix corresponds to one TE family. The names of the TE families are shown on the left, grouped by TE classes.

Every four columns correspond to TE enrichment patterns of the four primate species in one state. The four columns are

in the order of gorilla, bonobo, chimpanzee, and human, respectively. We call the associated four columns a combined

column. The state names corresponding to the combined columns are shown below the matrix. The states are arranged

according to their group assignment. The color bar on top of the matrix shows the group assignment. Each element

of the matrix represents the enrichment fold change of the corresponding TE family in the corresponding species in the

corresponding state. The color bar on the right shows the scale of the fold change values. The matrix elements with

FDR>0.01 are masked with gray colors. The examples of human-specific TE enrichment patterns in human-specific

Hi-C contact states are shown with dashed-line borders in the matrix.
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Figure 3.15: TE enrichment and TF binding motif enrichment in conserved long-range interacting TADs. (A) Fold change

of the normalized TE enrichment in conserved long-range interacting TADs (abbreviated as conserved TADs). The x-axis

shows the fold change of conserved TADs versus the background. The y-axis shows the negative log10 of the p-value of

the significance that a TE is enriched in the conserved TADs (or not enriched), in comparison with the enrichment of this

TE in the background. The dashed line shows the threshold of p-value 0.01. Each dot represents a TE family. The red

dots are the TE families significantly enriched (or not enriched) in the conserved TADs. (B) The box plots of distributions

of single-TAD normalized TE enrichment in the two classes of TADs for four examples of TE families. (C) Fold change of

the normalized TF binding motif enrichment in conserved TADs. The x-axis shows the fold change of conserved TADs

versus the background. The y-axis shows the negative log10 of the p-value of the significance that a TF binding motif is

enriched (or not enriched) in the conserved TADs. Each dot refers to a motif. The red dots are examples of the motifs

that are significantly enriched (or not enriched) in the conserved TADs. (D) The box plots of distributions of single-TAD

normalized motif enrichment in the two classes of TADs for four examples of TF binding motifs.
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3.11.5 Analysis of sequence features in evolutionary patterns of TADs

We sought to explore the potential connections between transposable elements (TE) with

different Hi-C contact evolutionary states estimated by Phylo-HMRF. Transposable ele-

ments (TE) are known to be associated with genome organization [37, 161, 185]. We

first analyzed the enrichment of different TE families in each estimated Hi-C contact state

across species. We use the RepeatMasker annotations of each of the four species human,

chimpanzee, bonobo and gorilla retrieved from the UCSC Genome Browser [147] to com-

pute the TE enrichment in each species in each estimated state. The positions of TEs on the

genome of non-human species are mapped to the human genome using liftOver. For each

state, we calculate the coverage of a TE family in all the paired genomic loci of the state in

each species. We then normalize the TE family coverage by the total size of all the paired

genomic loci of this state for each species, which is denoted as normalized TE enrichment

of the corresponding species in this state. We also calculate the background TE enrichment

for each species by normalizing the total coverage of each TE family of each species in all

the paired genomic loci of all the states with the total size of all the paired genomic loci

of all the states. We compute the fold change of the normalized TE enrichment of each

species in each state with respect to the corresponding background enrichment. We use

chi-squared test to assess whether a TE enrichment is lineage-specific in a lineage-specific

state. We identified several TE families that show human-specific enrichment patterns in

the identified human-specific state (Figure 3.14), including PIF-Harbinger, hAT-Tag1, and

TcMAr. For example, the TE family PIF-Harbinger has significantly higher enrichment

in human while lower enrichment in the other species in the human-specific high state

S14 (NC-hom high) (FDR (False Discovery Rate)<0.01. FDR is calculated by adjusting

p-value from the chi-squared test using Benjamini-Hochberg procedure [186]).

Next, we examined the potential connections between TEs and evolutionary patterns in

TADs. As we described, we classify TADs into conserved long-range interacting TADs (ab-

breviated as conserved TADs) or non-conserved long-range interacting TADs (abbreviated

as non-conserved TADs) according to whether a TAD is involved in conserved long-range
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TAD-TAD interactions. For each TE family in human, we calculate their occurrence fre-

quencies in the two classes of TADs we have defined. For single TADs, the occurrence fre-

quency of a TE family in each TAD is normalized by the length of the TAD. For each TAD

class, the total occurrence frequency of a TE family in this class of TADs is normalized

by the total length of this class of TADs, which is denoted as normalized TE enrichment

for this TAD class. We calculate the fold change of the normalized TE enrichment in each

TAD class with respect to the background enrichment. The background enrichment is cal-

culated by normalizing the total occurrence frequency of a TE family in all the TADs with

the total length of the TADs. We then use chi-squared test to assess whether a TE family

is enriched in the conserved TADs. We found that multiple TE families show distinct en-

richment patterns in the conserved TADs compared to the background. 10 TE families are

significantly more enriched in the conserved TADs (p-value<0.01), and 6 TE families are

significantly less enriched in the conserved TADs (p-value<0.01), respectively, as shown

in Figure 3.15A-B. For example, MIR, hAT, and Helitron are among the more enriched

TE families, and ERV1, ERVK, and RTE-BovB are among the less enriched TE families.

Zhang et al. [185] revealed that HERV-H, which is a subfamily of ERV1, has important

roles in forming human-specific TADs specifically in human pluripotent stem cells, sug-

gesting that they are likely to be less enriched in conserved TADs.

Additionally, we sought to explore whether there are connections between TADs with

different evolutionary patterns and the transcription factor binding sites (TFBSs). We

identify open chromatin regions in human genome as GM12878 DNase-seq peak regions

(downloaded from the ENCODE project [151]) with +/-250bp extension. We used the

software FIMO [148] to scan motifs based on the 579 PWMs of TF binding motifs down-

loaded from the JASPAR TF binding profile database [187] (with p-value<1e-04 as the

cutoff) in the open chromatin regions on the human genome. We only retain the motif

scanning results for the 345 TFs that are expressed in GM12878 (with FPKM>0.1; the

RNA-seq datasets used for gene expression analysis are shown in Table 3.1). We compute

the frequency of each TF binding motif within the open chromatin area in each TAD. We
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then normalize the frequency by the open chromatin area size within this TAD, which is

denoted as normalized TF motif enrichment in this TAD. We also calculate the fold change

of the normalized motif enrichment in each TAD class with respect to the background

enrichment. The normalized motif enrichment in each TAD class is calculated by normal-

izing occurrence frequency of a motif in the open chromatin regions in this class of TADs

with the total length of open chromatin regions in this class of TADs. The background

enrichment is calculated by normalizing the total occurrence frequency of a motif in the

open chromatin regions in all the TADs with the total length of open chromatin regions

in all the TADs. We use chi-squared test to assess if a motif is enriched in the conserved

TADs. We identified a set of TF binding motifs that show distinct enrichment patterns in

the conserved TADs compared to the background (Figure 3.15C-D). We found multiple TF

binding motifs that are significantly more enriched in the conserved TADs (p-value<0.01).

For example, the motifs of ASCL1, NFATC2, FOXD2, and FOXO4 are among the more

enriched motifs. We also found TF binding motifs that are significantly less enriched in the

conserved TADs (p-value<0.01), such as motifs of FOSL1::JUND, MAFF, and CREB1.

These results show that there are differences in terms of TF binding motif enrichment in

the conserved and non-conserved TADs.

3.12 Discussion

We developed Phylo-HMRF, a continuous-trait probabilistic model that provides a new

framework to utilize spatial dependencies among genomic loci in 3D space to identify

evolutionary patterns of Hi-C contacts across different species in a phylogeny. We ap-

plied Phylo-HMRF to the analysis of Hi-C data from the lymphoblastoid cells in four

primate species (human, chimpanzee, bonobo, and gorilla). Phylo-HMRF is able to iden-

tify different genome-wide cross-species Hi-C contact patterns, including conserved and

lineage-specific patterns in both local interactions and long-range interactions. The identi-

fied evolutionary patterns of 3D genome structure have strong correlation with other types
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of features for genome structure and function, such as TADs, A/B compartments, DNA

replication timing, and histone modifications. We identified conserved long-range interact-

ing TADs based on the Hi-C contact evolutionary states estimated by Phylo-HMRF, and

discovered TEs and TF motif features that are correlated with the conserved long-range

interacting TADs. From a methodology standpoint, Phylo-HMRF is a flexible framework

that can be applied to other types of multi-species continuous-trait features where there are

2D or 3D spatial dependencies for the features among the genomic loci. Overall, through a

proof-of-principle application, we demonstrate that Phylo-HMRF is an effective method to

uncover detailed evolutionary patterns of 3D genome organization based on multi-species

Hi-C dataset.

There are several aspects where our method can be improved. First, model selection

methods such as the utilization of the AIC and BIC criteria [188, 189] may help select the

number of states more efficiently. Second, Phylo-HMRF has only been applied to synteny

blocks across species at the moment and does not explicitly model the chromatin confor-

mation differences due to large-scale genome rearrangements in evolution. It will be an

important next step to model genome rearrangements and genome organization evolution

in an integrative manner. Third, to study a larger number of more distantly related species,

we may face several challenges. As the number of model parameters and feature dimen-

sions increase linearly with the tree size, both the computation demand increases and the

model is exposed to a higher possibility of local minima and overfitting especially for a

smaller sample size of multi-species feature observations. There will also be more poten-

tial mis-alignments among genomes of distantly related species, resulting in fewer available

samples. It will be useful to incorporate more efficient parameter regularization which is

compatible with the evolutionary models in the optimization part of Phylo-HMRF, and to

develop imputation methods for the missing observations in multi-species genomic data,

especially in large-scale phylogenetic trees. Fourth, we assume that all the phylogenetic

trees associated with different hidden states share the same topology in our current Phylo-

HMRF model. Incorporating inference of varied tree topologies will make Phylo-HMRF
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even more general. We propose to employ the structural EM algorithm [157] for simulta-

neous polygenetic tree topology inference and parameter estimation. Finally, currently we

primarily depend on manual inspection to assign estimated states into different groups to

facilitate analysis. It will therefore be useful to develop a systematic approach to group the

estimated states automatically.

To fully understand 3D genome organization evolution, it will be crucial to explore

the underlying mechanisms of the different evolutionary patterns in 3D genome structure

across species, e.g., in concert with the evolution of particular types of DNA sequence

features that play key roles in the formation and maintenance of genome architecture and

function [75, 185, 190], which may in turn inform us about the principles of 3D genome

organization. For example, we previously showed that more conserved CTCF motifs in

mammalian evolution (considering motif turnover) are more likely to be involved in CTCF

mediated chromatin loops [191]. Based on the Hi-C contact evolutionary states identified

with Phylo-HMRF, we made the initial attempt to explore the global correlations between

sequence features and the evolutionary patterns of 3D genome organization features. How-

ever, our current analysis is still limited in its scope (only on transposable elements and

TF binding motifs) and the ability to establish mechanistic characterization. Nevertheless,

although future work is needed to develop integrative models to simultaneously consider

both higher-order genome organization evolution and sequence level changes, our Phylo-

HMRF model has the potential to serve as a generic analytic framework to reveal different

evolutionary patterns of chromatin interactions and their connections to the evolution of

genome sequence and function.
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REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins
RPMI 1640 Lonza BW12702F12
37% Formaldehyde Fisher F79500
Critical Commercial Assays
TruSeq DNA PCR-Free Low Throughput Library Prep kit Illumina 20015962
Deposited Data
Hi-C data of chimpanzee, bonobo, gorilla This part of study GEO: GSE128800
Hi-C data of GM12878 cell line Rao et al., 2014 GEO: GSE63525
Human genome hg38 International Human Genome http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips

Sequencing Consortium
Chimpanzee genome panTro5 The Chimpanzee Genome http://hgdownload.soe.ucsc.edu/goldenPath/panTro5/bigZips

Sequencing Consortium
Bonobo genome panPan2 Max-Planck Institute for http://hgdownload.soe.ucsc.edu/goldenPath/panPan2/bigZips

Evolutionary Anthropology
Gorilla genome gorGor4 Wellcome Trust Sanger Institute, http://hgdownload.soe.ucsc.edu/goldenPath/gorGor4/bigZips

European Bioinformatics Institute
ChIP-seq data of H2AFZ (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF762TRA
ChIP-seq data of H2AFZ (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF848PUT
ChIP-seq data of H3K27ac (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF804NCH
ChIP-seq data of H3K27ac (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF948GTC
ChIP-seq data of H3K27me3 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF231DJN
ChIP-seq data of H3K27me3 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF175YYN
ChIP-seq data of H3K36me3 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF958QVX
ChIP-seq data of H3K36me3 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF460TXJ
ChIP-seq data of H3K4me1 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF153KPG
ChIP-seq data of H3K4me1 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF815TLX
ChIP-seq data of H3K4me2 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF803ROB
ChIP-seq data of H3K4me2 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF128WUO
ChIP-seq data of H3K4me3 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF019VEK
ChIP-seq data of H3K4me3 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF278QPY
ChIP-seq data of H3K79me2 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF676NDU
ChIP-seq data of H3K79me2 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF231YZJ
ChIP-seq data of H3K9ac (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF737GSB
ChIP-seq data of H3K9ac (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF424IMO
ChIP-seq data of H3K9me3 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF663EWP
ChIP-seq data of H3K9me3 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF758GUH
ChIP-seq data of H3K9me3 (replicate 3) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF370XAS
ChIP-seq data of H4K20me1 (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF880XJW
ChIP-seq data of H4K20me1 (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF937PBY
RNA-seq data (replicate 1) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF212CQQ
RNA-seq data (replicate 2) in GM12878 ENCODE Project Consortium https://www.encodeproject.org/files/ENCFF350QZU
Experimental Models: Cell Lines
Human: Rao et al., 2014 Cat#GM12878; RRID:CVCL 7526
lymphoblastoid cell line GM12878
Pan troglodytes (Common Chimpanzee): Ajit Varki (Chou et al.,2002) N/A
lymphoblastoid cell line
Pan Paniscus (Bonobo): Ajit Varki (Chou et al.,2002) N/A
lymphoblastoid cell line
Troglodytes Gorilla (Gorilla): Ajit Varki (Chou et al.,2002) N/A
lymphoblastoid cell line
Software and Algorithms
Phylo-HMRF This part of study https://github.com/ma-compbio/Phylo-HMRF
Juicer Durand et al., 2016 https://github.com/aidenlab/juicer
liftOver Hinrichs et al., 2006 https://genome.ucsc.edu/cgi-bin/hgLiftOver
inferCars Ma et al., 2006 http://www.bx.psu.edu/miller lab/car
scikit-learn Pedregosa et al., 2011 http://scikit-learn.org/stable

Table 3.1: Table of key resources used in the study of multi-species genome organization comparison using Phylo-

HMRF.
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Simulation Method NMI AMI ARI Precision Recall F1

Dataset I-1 Clustering 0.1096 0.1001 0.0532 0.2445 0.1384 0.1767
Dataset I-1 GMM 0.1213 0.1115 0.0603 0.2502 0.1497 0.1873
Dataset I-1 SLIC 0.0602 0.0554 0.0272 0.2117 0.1280 0.1595
Dataset I-1 Quickshift 0.033 0.0281 0.0265 0.1972 0.3173 0.2433
Dataset I-1 Gaussian-HMRF 0.6214 0.6046 0.6981 0.8068 0.6985 0.7487
Dataset I-1 Phylo-HMRF 0.6957 0.6915 0.7786 0.8373 0.7989 0.8177

Dataset I-2 Clustering 0.1457 0.1074 0.0520 0.5626 0.1349 0.2176
Dataset I-2 GMM 0.1936 0.1434 0.0793 0.6118 0.155 0.2474
Dataset I-2 SLIC 0.0776 0.0573 0.0042 0.4604 0.1113 0.1793
Dataset I-2 Quickshift 0.0519 0.0412 0.0002 0.4519 0.1579 0.2341
Dataset I-2 Gaussian-HMRF 0.4279 0.3368 0.3150 0.8547 0.3470 0.4933
Dataset I-2 Phylo-HMRF 0.6346 0.6191 0.8293 0.9293 0.8807 0.9043

Dataset I-3 Clustering 0.2046 0.1900 0.1269 0.2938 0.1956 0.2348
Dataset I-3 GMM 0.2306 0.2183 0.1728 0.3237 0.2558 0.2857
Dataset I-3 SLIC 0.0724 0.0676 0.0318 0.1881 0.1329 0.1557
Dataset I-3 Quickshift 0.0595 0.0500 0.0198 0.1658 0.3791 0.2307
Dataset I-3 Gaussian-HMRF 0.6447 0.6304 0.6854 0.7534 0.7131 0.7327
Dataset I-3 Phylo-HMRF 0.7344 0.7327 0.8010 0.8288 0.8350 0.8319

Dataset I-4 Clustering 0.1003 0.0850 0.0332 0.3526 0.1207 0.1798
Dataset I-4 GMM 0.1191 0.1017 0.0455 0.3685 0.1355 0.1982
Dataset I-4 SLIC 0.0705 0.0602 0.0159 0.3224 0.1183 0.1731
Dataset I-4 Quickshift 0.044 0.0437 0.0054 0.3025 0.2095 0.2475
Dataset I-4 Gaussian-HMRF 0.3699 0.3179 0.1921 0.5872 0.2249 0.3252
Dataset I-4 Phylo-HMRF 0.5480 0.5275 0.6253 0.8297 0.6396 0.7223

Dataset I-5 Clustering 0.1429 0.1368 0.0657 0.2061 0.1594 0.1798
Dataset I-5 GMM 0.1561 0.1508 0.0737 0.2100 0.1782 0.1928
Dataset I-5 SLIC 0.0620 0.0593 0.0244 0.1644 0.1282 0.1441
Dataset I-5 Quickshift 0.0295 0.0264 0.0073 0.1451 0.2138 0.1729
Dataset I-5 Gaussian-HMRF 0.4990 0.4833 0.4776 0.5968 0.5004 0.5443
Dataset I-5 Phylo-HMRF 0.6129 0.6074 0.6442 0.7160 0.6706 0.6924

Dataset I-6 Clustering 0.1327 0.1137 0.0760 0.3647 0.1561 0.2186
Dataset I-6 GMM 0.1697 0.1479 0.1087 0.3944 0.1939 0.2600
Dataset I-6 SLIC 0.0574 0.0491 0.0093 0.2707 0.1148 0.1613
Dataset I-6 Quickshift 0.0502 0.0488 0.0233 0.2770 0.2318 0.2524
Dataset I-6 Gaussian-HMRF 0.4837 0.4572 0.6622 0.8029 0.6907 0.7426
Dataset I-6 Phylo-HMRF 0.6203 0.6067 0.7580 0.8582 0.7802 0.8173

Dataset I-7 Clustering 0.1547 0.1379 0.0926 0.3506 0.1732 0.2318
Dataset I-7 GMM 0.2250 0.2013 0.1874 0.4632 0.2397 0.3157
Dataset I-7 SLIC 0.1066 0.0946 0.0370 0.2809 0.1334 0.1809
Dataset I-7 Quickshift 0.0577 0.0502 0.0191 0.2451 0.2965 0.2684
Dataset I-7 Gaussian-HMRF 0.5072 0.4754 0.5452 0.7254 0.5694 0.6380
Dataset I-7 Phylo-HMRF 0.5506 0.5190 0.5819 0.7561 0.5975 0.6675

Dataset I-8 Clustering 0.1019 0.0828 0.0153 0.3396 0.1165 0.1735
Dataset I-8 GMM 0.1281 0.1052 0.0246 0.3514 0.1333 0.1933
Dataset I-8 SLIC 0.0873 0.0710 0.0255 0.3558 0.1236 0.1834
Dataset I-8 Quickshift 0.0557 0.0553 0.0457 0.3513 0.2835 0.3138
Dataset I-8 Gaussian-HMRF 0.3286 0.2746 0.1733 0.5354 0.2457 0.3368
Dataset I-8 Phylo-HMRF 0.5897 0.5618 0.6550 0.8405 0.6805 0.7520

Table 3.2: Performance evaluation in simulation study I. Performance evaluation of K-means Clustering, GMM, SLIC,

Quick Shift, Guassian-HMRF, and Phylo-HMRF on eight simulated datasets in simulation study I using evaluation mea-

surements NMI (Normalized Mutual Information), AMI (Adjusted Mutual Information), ARI (Adjusted Rand Index), Preci-

sion, Recall, and F1 score. Each method is repeated 10 times on each simulation dataset with different initializations if

applicable. The average performance from the 10 repeated runs of each method is presented. The highest performance

of the compared methods is in bold font.
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Chapter 4

Genome-wide prediction of DNA

replication timing from genomic

sequences

4.1 Introduction

In Chapter 2 and Chapter 3, we discussed the two proposed models Phylo-HMGP and

Phylo-HMRF, which aim at identifying evolutionary patterns across species from the 3D

genome organization and genome function data. Here, we turn to the exploration of sequence-

dependent regulation mechanism of 3D genome organization and function, identifying se-

quence elements that may modulate genome organization related genome function, with a

focus on studying DNA RT program. In Chapter 1, we have known that there are both epi-

genetic regulation mechanism and sequence-dependent regulation mechanism hypotheses

for the highly regulated temporal patterns of DNA RT. However, both regulation mecha-

nisms are not well understood, without known rules on the regulatory principles of DNA

RT in higher eukaryotic cells. In this thesis we focus on the sequence-dependent regulation

mechanism hypothesis. Specifically, we develop an interpretable context-of-sequences-

aware model for RT prediction, named CONCERT (CONtext-of-sequenCEs for Replication
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Timing), using DNA sequence features only. CONCERT unifies (i) modeling of long-range

spatial dependencies across different genomic loci and (ii) detection of a subset of genomic

loci that are predictive of the studied genomic signal over large-scale spatial domains. Ap-

plications of CONCERT to nine human cell lines and mESCs demonstrate that the model

reaches high RT prediction accuracy. Crucially, our method can identify sequences that

are potentially important for shaping RT program. Our results suggest that dependencies

between RT signals and DNA sequences may only exist for a limited number of genomic

regions in the whole genome, which is consistent with the finding from the experimen-

tally validated loci of ERCEs [75]. In addition, we generate the landscape of important

sequence loci for predicting RT patterns across multiple cell types. CONCERT provides a

general framework to predict sequence determinants for large-scale genomic signals. The

source code of CONCERT can be accessed at: https://github.com/ma-compbio/CONCERT.

4.2 CONCERT – Intepretable RT prediction using sequence fea-

tures with context

4.2.1 Overall framework of CONCERT

We develop an interpretable context-attentive model, CONCERT, to simultaneously iden-

tify predictive genomic loci that are potentially important for modulating DNA RT and

predict genome-wide RT profiles from DNA sequences features. Our CONCERT model is

structured with two functionally cooperative components: (1) Selector and (2) Predictor,

which are trained jointly within one framework in modeling long-range spatial dependen-

cies across genomic loci, detecting predictive genomic loci, and learning context-aware

feature presentations of genomic sequences. The selector is targeted at estimating which

genomic loci are of potential importance in modulating the RT profiles, approximately se-

lecting a set of predictive genomic loci by importance estimation-based subset sampling.

Leveraging sequence importance estimation from the selector, the predictor performs se-

lective learning of spatial dependencies across genomic loci, to make prediction of RT
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Figure 4.1: Overview of the CONCERT model. The detailed model architecture is shown in Figure 4.2. (A) The selector

module. The selector uses Gumbel-Softmax trick to perform importance estimation-based genomic loci sampling. The

input to the selector are sequence features of genomic loci in a given context window. The selector is connected to the

predictor. The output of the selector to the predictor are normalized estimatd importance scores of genomic loci within a

context window (with Gumbel-Softmax trick applied). The output of the selector to the users are estimated importance

scores of each genomic locus in the context window (without adding random variables from the Gumbel Distribution). We

further perform processing of the original estimated importance scores by filtering and local peak detection to identify

a set of predictive elements (section 4.8). (B) The predictor module. The predictor utilizes the sequence importance

estimation from the selector to perform selective learning of spatial dependencies across genomic loci with the BiLSTM

layer and the self-attention mechanism. The input to the predictor are the sequence features of genomic loci in a given

context window and the importance scores of each locus estimated by the selector. The output of the predictor are

predicted RT signals of genomic loci in the given context window. (C) The input layer, where input sequence features are

extracted from each genomic locus in a given context window. The input feature types include K-mer frequency-based

features with dimension reduction, GC profile-based features, and transcription factor (TF) binding motif frequency-based

features with dimension reduction. We combination of different types of features. The combination of K-mer frequency-

based features and GC-based features is named Feature I. The combination of the three feature types is named Feature

II. We primarily use the prediction results from Feature I in analysis.
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signals over large-scale spatial domains. The overview of the CONCERT model is shown

in Figure 4.1. The input to the model contains DNA sequences of the genomic loci within

each context window. The output includes both predicted genomic signals and locus-wise

estimated importance scores. The estimated scores can be further processed to delineate

predictive sequence elements that are important for the genomic signal prediction. Our

method embeds the interpretation mechanism into predictive model training, not requiring

extra steps for model explanation. The model is also capable of handling different sizes of

context without the increase of model parameters, making it scalable to the context size of

genomic loci.

For interpretable RT prediction, we aim to maximize the mutual information between

the selected input sequences and the corresponding RT signals, adopting the model in-

terpretation mechanism introduced in [192]. In [192] instance-wise model explanation is

performed as a separate step given a trained model. Two rounds of model training are

performed, as firstly a task-specific predictive model is trained and secondly an explainer

model is trained to interpret the predictive model. Training of the predictive model in the

first step did not involve the explainer. The CONCERT model integrates the selector mod-

ule with the predictor module, to simultaneously predict the genomic signals and estimates

the context-related importance of each genomic locus for the prediction. The two modules

share information between each other. Training is performed in one round, with the selector

and the predictor learned jointly.

Given the context window of sizeL centered at a genomic locus, letX = (X1, · · · , XL) ∈

RL×d, Y = (Y1, · · · , YL) ∈ RL×c denote the sequence features of genomic loci in the con-

text window and the corresponding RT signals, where Xk ∈ Rd, Yk ∈ R represent the

feature vector and the RT signal of the k-th genomic locus within the context window,

respectively. Here d, c denote the dimension of the feature vector for each locus and the

number of types of genomic signals, respectively. Let fθ : X ∈ RL×d → Y ∈ RL×c be the

function mapping features associated with a context window to the corresponding signals,

with θ as the parameters. We have c = 1 in our study. The proposed model is applicable to
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data of multiple genomic signal types with c > 1. Suppose we select a subset of loci as the

predictive loci from a context window. Let V (L) = {ν ∈ RL|νk ∈ {0, 1}, k = 1, · · · , L}.

Let S = (S1, · · · , SL) ∈ V (L) represent the selection of predictive genomic loci. S is a

L-dimensional binary value vector, with Sk = 1 if the k-th genomic locus is selected and

Sk = 0 otherwise.

Let XS be the representation of X with only the features of selected genomic loci

retained. Let � represent element-wise multiplication. Suppose each element corresponds

to a genomic locus. We have XS = X � S ∈ RL×d. Specifically, let (XS)k denote the

feature representation of the k-th locus in XS . If Sk = 0, we set (XS)k to be a zero-value

feature vector. We have (XS)k = 0 ∈ Rd if Sk = 0; (XS)k = Xk if Sk = 1.

Given XS , the mutual information between XS and Y is

I(XS, Y ) = E
[

log
p(XS, Y )

p(XS)p(Y )

]
(4.1)

= E
[

log
p(Y |XS)

p(Y )

]
(4.2)

= E
[

log p(Y |XS)
]

+ Constant (4.3)

Suppose φβ : X ∈ RL×d → S ∈ RL is the function of the selector, mapping X to S,

with β as the parameters. The objective function is

max
θ,β

E
[

log pθ(Y |XS)], (4.4)

S = φβ(X), (4.5)

which can be rewritten as

max
θ,β

E
[

log pθ(Y |X � φβ(X))]. (4.6)

Suppose the number of genomic loci along the genome is Ng and the number of context

windows is Nc. We assume that each genomic locus is the center of a context window. In

this case, we have Ng = Nc. Specifically, suppose there are N consecutive genomic loci

along the genome without gaps, which are sequentially indexed with 1, · · · , N in the order
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of their genomic coordinates. There are N context windows centered on each genomic

locus respectively, indexed with 1, · · · , N correspondingly. Suppose the flanking region

size on each side of a locus is l (with genomic locus as the unit). For the i-th locus, the

(i − l)-th - (i + l)-th loci are included in the corresponding i-th context window. We

have L = 2 × l + 1. For i < l or i > N − l, there are not enough genomic loci to fill

in the context window with the i-th locus as the center. There are blank positions in the

boundary region of the window. In this case, we use the first genomic locus (if i < l)

or the N -th locus (if i > N − l) to fill in the blank positions of the context window.

In real data, there may be missing values or regions not mapped by enough sequencing

reads. The genomic loci without measured genomic signals are gaps between the loci with

signals. We denote the loci with signals as the sample loci. We use a threshold of the gap

(denoted by thr gap) to divide the sample loci into sequence fragments. Two sample loci

with distance larger than thr gap along the 1D genome on each chromosome are assigned

to different sequence fragments. We then delineate the context windows for each locus in

each fragment as described above. Let IN = {1, · · · , N}. Let xi ∈ RL×d, yi ∈ RL×c be

the sequence features and signals of the i-th context window, respectively, i ∈ IL. Let x̃k,

ỹk be the feature vector and the signal of the k-th genomic locus, respectively, k ∈ IN .

We have xi = (x̃i−l, · · · , x̃i, · · · , x̃i+l), yi = (ỹi−l, · · · , ỹi, · · · , ỹi+l). Here xi represents

a context window consisting of the sequence features of L associated genomic loci, while

x̃k represents a single loucs. The context windows are overlapping. One genomic locus

is involved in at most L context windows, with the relative positions of the locus in the

associated context windows ranging from 1 to L. Accordingly, in general the i-th locus can

be in context with the (i− 2l)-th locus to the (i+ 2l)-th locus.

By using overlapping context windows, we involve the feature representation of a ge-

nomic locus in different contexts which are composed of varied combinations of genomic

loci, extending the context scope of a single locus from 2l loci to at most 4l loci and uti-

lizing more diverse context information to capture potential spatial dependencies across

different subsets of loci. The overlapping context window can be formed by applying a
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sliding window along the genome with stride d = 1. If we use 1 < d < L, we have

Nc < Ng. In this case, not every genomic locus is the center of a context window, but

every genomic locus is covered by at least one context window. Each context window is

overlapped with at least one another context window. The learned model can still gener-

ate importance score estimates and RT signal predictions for each locus. In the prediction

stage, we use the trained model to predict RT signals ŷi ∈ RL×c and estimate locus-wise

importance scores αi ∈ R ∈ RL for the loci in each context window. For each locus that

is involved in multiple context windows, we use the average of all the RT predictions for

this locus in the associated context windows as the predicted RT signal, and we choose the

importance score estimated in the context window where the locus is the center. In the case

that 1 < d < L and Nc < Ng, we use the importance score averaged from the estimated

scores for this locus in all the associated context windows.

4.2.2 The selector module in CONCERT

With the selector module we aim to select a subset of genomic loci that are predictive

of the RT signals from the context window. We begin with the assumption that we only

select one predictive genomic locus from the L loci in the context window. Suppose a

selected locus is represented by a discrete random variable ŝi ∈ V (L,1). We approximate

ŝi with category probabilities si = (si,1, si,2, · · · , si,L) ∈ RL. Each category represents

selecting the corresponding locus as the predictive locus. We use the Gumbel-Softmax

method [193] to approximate a categorical distribution with a Concrete distribution which

is differentiable.

First, we add randomness to the probability of selecting each locus using random vari-

ables Gk, k = 1, · · · , L. {Gk}Lk=1 are independently sampled from a Gumbel distribution.

Let

Gk = − log(− logUk), Uk ∼ Uniform(0, 1), (4.7)

where Uniform(0, 1) represents uniform distribution on [0, 1]. We haveGk ∼ Gumbel(0, 1).

The use of random perturbation facilitates learning robust selection that is less sensitive to
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noise.

Suppose α1, · · · , αL are unnormalized category probabilities, αk > 0, k = 1, · · · , L.

If we use the Gumbel-Max trick [193], we select the k̃-th genomic locus as the predictive

locus with the criterion

k̃ = arg max
k
{logαk +Gk}Lk=1. (4.8)

The objective function is not differentiable everywhere in its domain. We then employ

the Gumbel-Softmax trick which was developed for continuous relaxation of the arg max

function [193]. Using the Gumbel-Softmax trick, the probability of selecting locus k is

Zk =
exp((logαk +Gk)/τ)∑L
k=1 exp((logαk +Gk)/τ)

, (4.9)

where τ is a parameter. The softmax function approaches the arg max function as τ ap-

proaches zero, with the orders of {logαk + Gk} preserved [193]. We denote the distribu-

tion of Z = (Z1, · · · , ZL) ∈ RL as a Concrete distribution parameterized by (α, τ), where

α = (α1, · · · , αL). We have Z ∼ Concrete(α, τ).

To sample a subset of m predictive genomic loci from the L loci, we sample a vector z̃

from V (L,m). We adopt the strategy proposed in [192] to use continuous relaxation for the

approximation of sampling z̃. First, we sample m Concrete random vectors z(1), · · · , z(m)

independently from the distribution Concrete(α, τ). Second, for each genomic locus k,

we take the maximal value at the k-th dimension of the sampled random vectors as the

estimated probability of selecting locus k.

Let S̃ = (S̃1, · · · , S̃L), where S̃k represents the probability of selecting locus k. S̃

is a continuous approximation of the discrete vector z̃. As defined, X = (X1, · · · , XL)

represents the sequence features in a context window. We have

Z(j) ∼ Concrete(α, τ), j = 1, · · · ,m, (4.10)

α = φ̃β(X), (4.11)

S̃k = max{Z(1)
k , · · · , Z(m)

k }, k = 1, · · · , L, (4.12)
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where φ̃β(·) is the function mapping the sequence features to α = (α1, · · · , αL) in the

selector module, with parameters β. We interpret αk as the estimated importance score of

the k-th locus.

Let G denote the set of random variables {{G(j)
k }Lk=1}mj=1 sampled from the Gumbel

distribution. We have S̃ = φβ(X,G). Suppose the number of genomic loci is N . As

each locus is the center of a context window, the number of context windows is N . Using

regularization on model complexity to reduce model over-fitting, the objective function is

min
θ,β
− Eθ,β

(
log pθ(Y |X,φβ(X, ε))

)
+ λ1Ωθ + η1Ωβ, (4.13)

where ε = {ε(j) ∈ RL}mj=1 consists of random variables independently sampled for x ∈

RL×d. We have ε(j) = (ε
(j)
1 , · · · , ε(j)L ), where ε(j)k ∼ Gumbel(0, 1), k = 1, · · · , L, j =

1, · · · ,m. Ωθ, Ωβ represent model complexities of the predictor and the selector, respec-

tively, with λ1, η1 as corresponding regularization coefficients. Specifically, we use l2 norm

of model parameters as measurements of Ωθ and Ωβ . In the implementation, the selector

module consists of one dense layer for preliminary feature transformation, a convolution

layer for utilizing limited local context information, followed by two subsequent dense lay-

ers and an activation layer to generate estimates of α, and a Gumbel distribution based

random variable sampler (section 4.4, Figure 4.2).

4.2.3 The predictor module in CONCERT

The predictor module consists of four sequentially connected parts. The first part is a pre-

liminary feature transformation sub-module, with an interface from the selector. The sub-

module consists of one convolution layer and two dense layers, performing local transfor-

mations of the locus-wise input features from a context window to generate an intermediate

feature representation for each locus. The output of the sub-module is further weighted by

the importance scores si = φβ(xi, εi) = (si,1, · · · , si,L) ∈ RL estimated by the selector

for predictive genomic loci selection. The weighted feature is x̃i = f
(1)
θ (xi) � φβ(xi, εi),

where f (1)
θ (·) is the mapping function of the sub-module and � represents element-wise

multiplication.
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The second part is a BiLSTM (Bi-directional Long Short-Term Memory) layer [194],

which enables bi-directional context information sharing across genomic loci (section ??).

Recurrent neural networks (RNNs) have been widely used for modeling sequential data in

diverse applications [195–197]. LSTM [97] and GRU [198] are two representative variants

of RNNs, using cell memory and gate mechanisms to overcome the limitation that standard

RNNs cannot learn long-range dependencies (interactions between time points or positions

that are a number of steps apart) in practice. The standard LSTM is featured with the cell

state, the input gate, the forget gate, the output gate, and the hidden state:

c̃t = σc(Wxcxt +Whcht−1 + bc), (4.14)

ct = ft � ct−1 + it � c̃t, (4.15)

ht = ot � σh(ct), (4.16)

it = σi(xtWxi + ht−1Whi + bi), (4.17)

ft = σf (xtWxf + ht−1Whf + bf ), (4.18)

ot = σo(Wxoxt +Whoht−1 + bo), (4.19)

where it, ft, ot represent the input gate, the forget gate, and the output gate for the i-th

position, respectively. σi, σf , σo, σc, and σh denote nonlinear activation functions. xt,

ct, ht represent the input feature, the cell state, and the hidden state at the i-th position,

respectively. LSTM uses cell state ct as memory to pass information through the series of

data. The cell state ct is updated with a fraction of the previous cell state ct−1 and a fraction

of the candidate cell state c̃t, which is a nonlinear function of the input xt and the previous

hidden output state ht−1. The fractions are controlled by the forget gate and the input gate

it, respectively. {Whi, Whf , Who, Wxi, Wxf , Wxo} are weight parameters.

BiLSTM overcomes the limitation of the standard LSTM that information flow is only

allowed in one direction. BiLSTM splits the hidden states of a standard LSTM into forward

and backward states, forming two non-interfering parallel LSTM layers with bi-directional

information flow. The output of BiLSTM is concatenation of the forward and backward

states, producing a context-aware feature representation for each locus. We utilize BiLSTM
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to model the bi-directional spatial dependencies across a sequence of genomic loci.

The third part is the self-attention layer, which is employed to capture dependencies be-

tween two arbitrary loci within a context window [199]. With BiLSTM, information shar-

ing is constrained by the spatial order of the loci. The shared information vanishes as the

distance between loci increases, making it still challenging to model dependencies between

distant loci. For each specific genomic locus l (noted as a target locus, with feature repre-

sentation xl), the self-attention layer estimates an attention value of each locus l′ (including

the target locus) in the context window, measuring the importance of xl′ for predicting the

signal of xl. The attention value is calculated using the feature interaction between each

locus and the target locus. The features of all the loci in the context are weighted by their

target-specific attention values and averaged to generate an updated context-aware feature

vector of the target locus. Specifically, the self-attention mechanism used in the model is:

hl,l′ = σh(Wlxl +Wxxl′ + bl), (4.20)

el,l′ = σa(Wahl,l′ + ba), (4.21)

al,l′ =
el,l′∑
k∈Cl

ek,l′
, (4.22)

x̃l =
∑
l′∈Cl

al,l′xl′ . (4.23)

where C represents the index set of genomic loci in the context window. σh, σa denote

nonlinear activation functions. {Wl,Wx, bl,Wa, ba} are model parameters. For a context

window of size L, the estimated attention values can be represented by a matrix AL =

{al,l′}l,l′∈C ∈ RL×L, where al,l′ represents the attention value locus l′ receives from locus l.

The self-attention layer selectively aggregates the outputs from the BiLSTM layer to model

distance-insensitive spatial dependencies across genomic loci.

The fourth part is a fully-connected layer, mapping the features of each locus to a con-

tinuous value as the predicted RT signal. We use Keras/Tensorflow [200, 201] to implement

CONCERT. The architecture details and hyperparameters of the model used in the experi-

ments are described in section 4.4.
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4.3 Feature representation of genomic loci

4.3.1 Feature engineering with specific sequence patterns

With prior knowledge of the possible connections between DNA sequence and RT signals,

we extract different types of features from each genomic locus. We concatenate different

types of features to form a feature vector of the corresponding genomic bin, which is used

as the input layer of the model. The predefined features include the transformed K-mer

frequency features, the GC profile based features, the optional transcription factor (TF)

binding motif features, and the optional conservation score based features (section 4.3).

Let x(kmer)
i , x(gc)

i , x(motif)
i , and x(phyloP )

i be the corresponding four types of features of the

i-th genomic locus, respectively, i = 1, · · · , N . We primarily use the K-mer frequency

features and in our study.

Feature representation based on K-mer frequency

First, we extract K-mer frequency features from the DNA sequence of each genomic lo-

cus. A DNA subsequence of length K is denoted as K-mer. There are four types of

nucleotides: A, G, C, T . Therefore, there are 4K different types of K-mers for a specific

K. For a specific K, we count the occurrences of each type of K-mer in the sequence of

each locus, normalized by the sequence length. The normalized K-mer frequency feature

is 4K-dimensional. The feature dimensionality increases exponentially as K increases. Let

x̃
(kmer,K)
i be the original frequency-based feature vector for a specific K. For the balance

between prediction performance and computation cost, we choose K = 5 and K = 6 to

form concatenated feature vector x̃(kmer)
i = (x̃

(kmer,5)
i , x̃

(kmer,6)
i ) ∈ R5120. We extract K-

mer based features from the DNA sequence of each genomic locus. There are four types of

nucleotides: A,G,C, T . Therefore, there are 4K different types ofK-mers for a specificK.

For a given sequence of a locus and a specificK, the number of occurrences of each type of

K-mer in this sequence, normalized by the sequence length, forms a 4K-dimensional fea-

ture vector. Let x̃(kmer)
i be the K-mer based feature vector of the i-th locus, and x̃(kmer,K)

i

be the feature vector for a specific K. We choose K = 5 and K = 6, and concatenate
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x̃
(kmer,5)
i and x̃(kmer,6)

i for the i-th locus. We have x̃(kmer)
i = (x̃

(kmer,5)
i , x̃

(kmerr,6)
i ) ∈ R5120.

Since the K-mer frequency based feature vector is high-dimensional, we used different ap-

proaches to reduce the feature dimensionality, and evaluated the prediction performance on

validation data using the dimension-reduced features. The methods we tested for dimension

reduction include PCA (Principal Component Analysis) [202], Kernel PCA [203], Sparse

PCA [204], ICA (Independent Component Analysis) [205], Mini-Batch Dictionary Learn-

ing [206], Truncated SVD (singular value decomposition) [207], and Autoencoder [208].

We used the scikit-learn library [144] for implementation of the feature dimension reduc-

tion methods.

Specifically, we pooled the training samples and test samples, and performed feature

dimension reduction on the pooled data using each of the methods above, without using

the label information of the samples. We compared the RT prediction performance based

on features from different dimension reduction methods. We choose PCA as the dimension

reduction method for theK-mer frequency features and choose the reduced dimension to be

dkmer = 50 based on evaluation of the prediction performance and computation efficiency.

For the PCA method, we use the top dkmer components with the largest variances on the

transformed coordinates in the new feature space after dimension reduction as the feature

values for each sample.

Feature representation using GC profile

GC content is known to correlate with RT profiles [209]. Early replications were found

to be enriched in GC-rich regions. We extract two types of GC-based features from the

sequence of each genomic locus, which are GC content (denoted by f (gc)) and GC skew

(denoted by f (skew)), respectively. Let n(α) be the number of nucleotide α in a given DNA

sequence, α ∈ {A,G,C, T}. For a given genomic locus, we have

f
(gc)
i =

n(G) + n(C)

n(A) + n(G) + n(C) + n(T )
, (4.24)

f
(skew)
i =

n(G)− n(C)

n(G) + n(C)
. (4.25)

f (gc) ∈ [0, 1], f (skew) ∈ [−1, 1]. Let x(gc)
i , f (gc)

i , f
(skew)
i be the GC-based feature vector, the
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GC content feature, and GC skew feature of the i-th genomic locus, respectively. We have

x
(GC)
i = (f

(gc)
i , f

(skew)
i ).

Feature representation using transcription factor binding motifs

We use TF binding motif frequency as the fourth type of feature for each genomic locus.

Let x(motif)
i be the TF binding motif-based feature of the i-th locus. We used the software

FIMO [148] and 769 position weight matrices (PWMs) of TF binding motifs from the

HOCOMOCO v11 database [210] to perform motif scanning on human genome hg38. In

each bin, we computed the motif frequency for each PWM within the bin (p-value<1e-

05 required for each motif). We then normalized the frequency by the genomic bin size,

resulting in a 769-dimensional feature vector. We also performed dimension reduction

on the motif features. Since the normalized motif frequency features are sparse and the

Truncated SVD method [207, 211] is appropriate for transformation of sparse features, we

use the Truncated SVD method for dimension reduction of the motif features, with the new

feature dimension to be dmotif = 50.

Feature representation using phyloP scores

We download the phyloP (phylogenetic p-values) scores on human genome from the UCSC

Genome Browser [212]. The phyloP scores are conservation scores calculated by phy-

loP [213] from the PHAST package [214] based on multiple sequence alignments of 99

vertebrate genomes to the human genome hg38. We call the phyloP scores 100-way phy-

loP scores. A 100-way phyloP score is assigned per base pair in most regions of the human

genome. For each genomic bin, we extract a feature vector from the phyloP scores in this

bin by calculating different types of statistics of the scores. Suppose ci = {ci,1, · · · , ci,Ni
}

are the phyloP scores in the genomic bin of the i-th sample, where Ni is the number of

phyloP scores in this bin. First, we calculate the average, median, maximum and min-

imum of the scores in ci. Second, we calculate the distribution of the scores in dif-

ferent intervals. We observe that the phyloP scores range from -20 to 10. We divide

the range [-20,10] into 15 evenly spaced non-overlapping intervals with length 2 each.

The intervals are [−20,−18), [−18,−16) · · · , [6, 8), [8, 10]. We calculate the frequency
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of phyloP scores in each interval, normalized by the total number of phyloP scores in ci.

Let x(phyloP )
i,1 , x

(phyloP )
i,2 , x

(phyloP )
i,3 , x

(phyloP )
i,4 and x(phyloP )

i,5 , · · · , x(phyloP )
i,19 be the four statistics

from the first step and the 15 normalized frequencies from the second step, respectively.

Let x(phyloP )
i bet the feature vector based on phyloP scores for the i-th locus. We have

x
(phyloP )
i = (x

(phyloP )
i,1 , · · · , x(phyloP )

i,19 ).

4.3.2 Feature representation learning from local genomic sequences

We also develop a model variant which incorporates a local-level sub-model combining

convolution nerual networks (CNN) with BiLSTM to learn local-context aware feature

representations from locus-wise sequences (section 4.5), as an alternative to the CONCERT

model with pre-engineered feature representations. With the CNN-BiLSTM sub-model

integrated, the model is re-formulated into a framework with a two-level hierarchical struc-

ture, providing a local-global multi-resolution scheme. At the first level, the sub-model

aims to capture spatial dependencies within the sequence of each locus, functioning as

a local feature extraction component. At the second level, the model learns dependen-

cies across different genomic loci over a larger-scale domain. The CONCERT-hierarchical

structure shows similar RT prediction accuracy to the described basic CONCERT model in

human cell lines (Table 4.3). We focus on the basic CONCERT model in the result analysis.

Still, the hierarchical structure provides an option to enable the flexibility of learning long-

range spatial dependencies while remaining attentive to local sequence feature patterns.

4.4 Model architecture and hyperparameters

We implemented the model using Keras/Tensorflow. The architecture of the proposed

model as implemented by Keras/Tensorflow is shown in Figure 4.2.

For both the selector and the predictor modules, each of the dense layers and convolu-

tion layers is followed by a batch normalization layer [215] and an activation layer. The

dense layer is applied to the locus-wise feature representations. The convolution layer is
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applied to the series of feature representations of the loci associated with the given context

window. The main components of the selector module are as follows.

1. A dense layer for preliminary feature transformation, followed by batch normaliza-

tion and ReLU (rectified linear unit) activation. Number of hidden units: 50.

2. A 1D (one-dimensional) convolution layer to utilize local context information for

importance estimation of each locus, followed by batch normalization and ReLU

activation. Number of filters: 50. Kernel size:3. Stride: 1. Padding method: ’same’ (

the left and right sides of the input are padded with zero values evenly such that the

output has the same width dimension as the input).

3. Dense layer for feature transformation, followed by batch normalization and ReLU

activation. Number of hidden units: 25.

4. Dense layer for estimating importance scores, followed by batch normalization and

ReLU or sigmoid or linear activation. Different activation functions used correspond

to different model variants. Number of hidden units: 1.

5. A random variable sampler that samples random variables from Gumbel distribution

Gumbel(0,1). Sampling are repeated k times independently for each context window.

We choose k = 10. The temperature parameter τ = 0.1.

6. An element-wise Add layer to add the random variables from Gumbel(0,1) to the

estimated importance scores. For each locus, there are k values corresponding to the

k samplings. The maximal value of the k results are retained for the corresponding

locus. We choose k = 10 and the temperature parameter τ = 0.1.

7. Softmax layer following the element-wise Add layer to generate importance score

estimates.

The main components of the predictor module are as follows.

1. A dense layer for preliminary feature transformation, followed by batch normaliza-

tion and ReLU activation. Number of hidden units: 50.

2. A 1D convolution layer, followed by batch normalization and ReLU activation. Num-

ber of filters: 50. Kernel size:3. Stride: 1. Padding method: ’same’.
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3. Dense layer for feature transformation, followed by batch normalization and ReLU

activation. Number of hidden units: 50.

4. An element-wise multiplication layer to multiply the feature representations of each

locus with the importance scores estimated by the selector using the Gumbel-Softmax

method.

5. BiLSTM layer. Number of hidden units in each single LSTM layer: 32. Output

dimension: 64. Layer normalization applied. Activation function: tanh.

6. Self-attention layer. Number of hidden units: 50. Activation function: tanh.

7. Dense layer, followed by batch normalization and sigmoid or tanh activation to pre-

dict the genomic signals. Number of hidden units: 1.

We use two types of loss functions: mean squared error (MSE) or log hyperbolic cosine loss

(log-cosh loss). Log-cosh loss is the logarithm of the hyperbolic cosine of the difference

between the predicted and ground truth values. Let y ∈ Rd, ŷ ∈ Rd denote the ground truth

and predicted values, respectively. The log-cosh loss is

L(y, ŷ) =
d∑
i=1

log(cosh(yi − ŷi)) (4.26)

=
d∑
i=1

log(
1

2
(e(yi−ŷi) + e−(yi−ŷi))). (4.27)

For δi = yi − ŷi, log(cosh δi) approximates 1
2
δ2
i for small |δi| and approximates |δi| − log 2

for large |δi|. Therefore, the log-cosh loss is similar to MSE but it is not very sensitive to

the outliers in the data. RT prediction evaluations with the two types of loss functions show

that the prediction performance from the two functions is similar on the Repli-seq data in

our study. We use the Adam optimizer for model parameter estimation. The batch size

is 512. The learning rate is 0.0005. We choose the the l1 regularization coefficients (ap-

plied to both selector and predictor modules) to zero. We choose the the l2 regularization

coefficients (applied to both selector and predictor modules) to 1e-04 or 1e-05. The param-

eter configurations were selected based on searching through a range of combinations of

different parameters with evaluation on the validation data. We use early stopping where
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training is stopped if no performance gain is observed on the validation data for consecutive

7 epochs.
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Figure 4.2: The architecture of the CONCERT model. The two primary modules are the selector and the predictor.

The model is implemented using Keras/Tensorflow [200, 201]. The parameter configurations used for each layer or

component in practice are shown beside the corresponding layer or component.
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4.5 Hierarchical structure to learn feature representation from

genomic sequences

We also propose a hierarchical structure of CONCERT (denoted as CONCERT-Hierarchical)

as an alternative to the basic CONCERT model to learn feature representation from locus-

wise genomic sequences. The architecture of CONCERT-Hierarchical consists of two lev-

els. The first level is a CNN-BiLSTM sub-model applied to each locus in the context win-

dow, to perform local feature representation learning of locus-wise sequences, by learning

spatial dependencies across different positions of the sequence of each locus. The second

level is the same as the basic CONCERT model without the input layer for pre-engineered

feature representation, which consists of the selector module and the predictor module.

The input to the first level is one-hot encoded feature vectors of the sequences from each

locus in each context window. The output from the first level is used as input to the second

level, to replace the original pre-engineered input layer. Suppose there are L genomic loci

in each context window, with the genomic bin size of w. The input feature vector of each

locus is a binary-valued matrix of dimensions 4 × w, where each row corresponds to the

nucleotide type α ∈ {A,C,G, T} and each column represents a base in the sequence of

the corresponding locus. For each column, the row corresponding to the nucleotide at this

position is set to value 1, and the other rows are zeros. The input feature of each context

window is (4 × w × L) dimensional. The structure of the CNN-BiLSTM sub-model is as

follows:

1. Three sequentially connected convolution layers, each followed by a max pooling

layer, a batch normalization layer, and ReLU activation. The parameter configura-

tions of the three convolution layers and the max pooling layers are as follows:

Convolution layer 1: number of filters: 128, kernel size: 10, stride: 5, padding

method: ”valid” (input is not padded on each side);

Max pooling layer 1: pooling size: 10, stride for pooling: 10;

Convolution layer 2: number of filters: 32, kernel size: 7, stride: 1, padding: ”valid”;

147



Max pooling layer 2: pooling size: 5, stride: 5;

Convolution layer 3: number of filters: 32, kernel size: 5, stride: 1, padding: ”valid”;

Max pooling layer 3: pooling size: 2, stride: 2.

2. BiLSTM layer. Number of hidden units in each single LSTM layer: 32. Output

dimension: 64. Layer normalization applied. Activation function: tanh.

3. Dense layer, followed by batch normalization and ReLU activation. Number of hid-

den units: d = 50.

4. Max pooling layer or concatenation layer. If max pooling layer is used, max pooling

is applied to the outputs of the dense layer for the loci in the context window to form

a d-dimensional feature vector. If concatenation is used, the outputs of the dense

layer for each locus in the context window are concatenated to form a feature vector

of dimension w × d.

4.6 Data collection and processing

We collected genome-wide RT maps based on Repli-seq data [38] in 9 human cell lines

GM12878, H1-hESC, H9-hESC, HCT116, HEK293, K562, IMR90, RPE-hTERT, and

U2OS. We divided the genomes into consecutive non-overlapping 5Kb bins (genomic

loci). We followed the scripts on https://github.com/4dn-dcic/repli-seq-pipeline for Repli-

seq analysis. We performed quality control of the Repli-seq reads using FastQC [216] and

removed adapter sequences using Cutadapt [217]. We calculated the RT signal values for

each non-overlapping 5Kb bin of human genome. Specifically, first, we mapped the pro-

cessed sequencing reads to the human genome assemblies of hg38, using BWA [218]. The

genome assemblies were downloaded from the UCSC Genome Browser [133, 134]. We

divided the human genome into non-overlapping 5Kb bins. We then calculated Repli-seq

read count within a given genomic window (a genomic bin) in early and late phases of RT,

respectively, normalized by the total mapped read count in early or late RT phase on the

whole genome accordingly. The RT signal in each bin is defined as the base 2 logarithm
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ratio of read count per million reads between the early and late phases of RT within this re-

gion. Lastly, the log 2 ratio signal is quantile normalized and smoothed using loess-smooth

method.

The RT data in mouse we used are from the cas/129 hybrid mESCs [75], which are

derived from the cross between M. casteneus (CAST/Ei) and M. musculus (129/sv). SNP

calls for CAST/Ei and 129/sv genomes were downloaded from Sanger Institute (ftp://ftp-

mouse.sanger.ac.uk/REL-1505-SNPs Indels/). First we used bowtie2 to map reads to a

mouse genome (mm10) that all SNP positions are masked by the ambiguity base ‘N’. Then

we used SNPsplit [219] to parse the mapped reads to the corresponding allele. Reads

that do not overlap with SNPs were discarded. Reads overlapping with SNPs in the two

genomes were sorted and processed in each allele individually. We followed the same

scripts (https://github.com/4dn-dcic/repli-seq-pipeline) used in human RT analysis. The

mouse RT signals in each allele are calculated in 5Kb resolution.

4.7 RT prediction in mESCs and human cell lines

We performed cross-chromosome model training and prediction. We use two subsets of

chromosomes which are non-overlapping for training. We use the chromosomes in each

subset for training and make predictions with the trained model on the left-out chromo-

somes which are not included in the training subset. For each cell type in human, we

used chromosome 1 to chromosome 16 as alternating training and test data. We used chro-

mosome 17 to chromosome 22 as reserved test data. We only included autosomes in the

analysis. We choose the context of +/-50 bins (bin size: 5Kb) for each genomic locus to

form a context window centered at this locus. Therefore, the context size of each locus is

505Kb (101 bins included). Specifically, for each cell type, first, we used the odd-numbered

chromosomes of chromosome 1 to chromosome 15 (chromosome 1, chromosome 3, · · · ,

chromosome 15) for model training, and predicted RT signals on the left-out 14 autosomes

with the trained model. Next, we used the even-number chromosomes of chromosome 2
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to chromosome 16 (chromosome 2, chromosome 4, · · · , chromosome 16) for training, and

predicted RT signals on the left-out autosomes. We split the samples on the chromosomes

used for training into training data and validation data, with the ratio 9:1. Specifically, for

each chromosome in the training set, we select the first 90% of genomic bins for training

based on the genomic coordinates, and use the last 10% of genomic bins as validation data.

With the training and prediction scheme as described, we obtained RT signal predictions

on all the autosomes. For RT prediction in mESCs, for each of the two alleles (mutant

allele and WT allele), we first used the odd-numbered chromosomes of chromosome 1

to chromosome 15 as the training data. We used the trained model to predict RT signals

and estimate locus-wise importance scores on the left-out 11 autosomes, including chromo-

some 16 which differs in the presence of the three identified ERCEs (a,b,c) between the two

alleles, and chromosome 8, which differs in the presence of the two identified ERCEs (d,e)

between the two alleles. Next, we used the even-numbered chromosomes of chromosome 2

to chromosome 16 for model training, and performed RT prediction and importance score

estimation on the left-out autosomes. We combine the RT predictions and importance score

estimates on each chromosome for genome-wide performance evaluation and analysis.

4.8 Processing estimated importance scores for predictive el-

ement identification

We generated a set of annotations of the potentially predictive genomic loci based on the

locus-wise importance scores estimated by our method on the Repli-Seq data of each cell

type. We normalized the estimated importance scores on each chromosome to the scale of

[0,1], based on the rank of the score of each locus among all the loci on the correspond-

ing chromosome. The original score not below x% of all the scores is transformed to be

x ∈ [0, 1]. We then filtered the genomic loci to select a subset of loci as potentially predic-

tive genomic loci. First, we performed peak calling on the importance scores along each

chromosome using the peak finding function in the scikit-learn library [144], with con-
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straints on both the peak strength and the minimal distance between two adjacent peaks,

to suppress local non-maximal scores. Specifically , we require the normalized estimated

score of a peak to be above 0.90 and the distance between two peaks to be at least 5 bins

(25Kb). Let S1 denote the set of loci with identified local peaks of estimated scores. Sec-

ond, we select genomic loci with the normalized score above 0.975, denoted as set S2. The

union of S1 and S2 is the selected subset of predictive genomic loci. We merged selected

loci that are not more than 25Kb (5 bins) apart into one element. The remaining isolated

loci each represents an element. We divide the selected elements into early RT group (de-

noted by SE) and late RT group (denoted by SL) based on the early or late RT domains

they reside in, respectively. We focus on analyzing elements in SE .

4.9 Predicting RT signals using sequence features without con-

text

We use three methods as baseline methods to predict RT signals from DNA sequence

features without modeling the long-range spatial dependencies across genomic loci (sec-

tion 4.9). The second method is XGBboost regression (XGBR) [220]. XGBboost regres-

sion utilizes Gradient Tree Boosting [221] to fit regression models for continuous value

variables. The second method is random forest (RF), which performs predictive model

learning based on an ensemble of decision trees[cite]. The third method is linear regression

(noted as LR), which performs linear mapping from the sequence feature of each locus to

the RT signal. The fourth method is a locus-wise deep neural network model (noted as

DNN-local). DNN-Local is similar to the predictor of CONCERT, except that the convo-

lution layer is replaced by a dense layer, the BiLSTM layer is replaced by two connected

dense layers each with the same number of hidden units as the single LSTM layer of the

BiLSTM, and there is no self-attention layer. The structure of DNN-Local is as follows.

The main components of the predictor module are as follows.

1. Three sequentially connected dense layers, each followed by batch normalization and
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ReLU activation. Number of hidden units: 50.

2. Two dense layers, each followed by batch normalization and ReLU activation. Num-

ber of hidden units: 32.

3. Dense layer, followed by batch normalization and sigmoid or tanh activation to pre-

dict the genomic signals. Number of hidden units: 1.

The four methods use feature representation of each locus to predict the corresponding

genomic signal, without modeling spatial dependencies across a series of genomic loci in

the larger-scale genomic region.

4.10 Quantification and analysis methods

4.10.1 RT prediction performance evaluation

The evaluation metrics we use for comparing the predicted RT signals with the ground

truth RT signals are the Pearson correlation coefficient (PCC, or Pearson’s r) [222], the

Spearman’s rank correlation coefficient (Spearman’s ρ) [223], the explained variance [224],

and the coefficient of determination (R2 sore) [225].

Let Ŷ , Y denote the predicted RT signals and the ground truth RT signals, respectively.

For predictions on a sample of N genomic loci, let ŷ, y denote the predicted signals and

the ground truth signals, respectively. we have ŷ = {ŷ1, · · · , ŷN}, y = {y1, · · · , yN}.

The Pearson correlation coefficient is defined as

ρY,Ŷ =
E(Y Ŷ )− E(Y )E(Ŷ )√

Var(Y )
√

Var(Y )
, (4.28)

where Var represents the variance of a random variable.

The Spearman’s rank correlation coefficient (denoted as rs) is defined as the Pear-

son correlation coefficient between two rank variables. Let rgY , rgŶ be the rank vari-

ables converted from Y , Ŷ , respectively. For a sample y = {y1, · · · , yN}, we have

rgY = {rgy1 , · · · , rgyi}, where rgyi is an integer representing the rank of yi in the set

of {y1, · · · , yN} based on the predefined order of the values, i = 1, · · · , N . The same
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definition applies to rgŷi . The Spearman’s rank correlation coefficient is defined as

rs(Y, Ŷ ) = ρrgY ,rgŶ , (4.29)

where ρ represents the Pearson correlation coefficient between two random variables.

The Pearson correlation coefficient and the Spearman’s rank correlation coefficient are

both in the range of [-1,1], with the higher value represents the better prediction perfor-

mance in our study.

The explained variance is defined as

explained variance(Y, Ŷ ) = 1− Var(Y − Ŷ )

Var(Y )
, (4.30)

The R2 score is estimated as

R2(y, ŷ) = 1−
∑N

i (yi − ŷi)2∑N
i (yi − ȳ))

, (4.31)

where ȳ = 1
N

∑N
i yi. Both of the explained variance and the R2 score are in the range of

(−∞, 1], with the higher value representing the better prediction performance.

For RT prediction, genomic loci with original RT signal above the threshold zero is

labeled with 1 (early replication) and otherwise labeled with 0 (late replication). For eval-

uation of early/late RT classification performance, we use the metrics AUROC (area under

receiver operating characteristic curve) and AUPR (area under precision-recall curve). We

normalize the predicted RT signals to the scale of [0,1], with the higher value correspond-

ing to be earlier replicating. By setting varying thresholds to determine the predicted signal

to be early or late RT, we calculate AUROC and AUPR accordingly.

4.10.2 Estimated importance score comparison between ERCE and non-

ERCE regions

We compared the estimated importance scores between the ERCEs and the non-ERCE ge-

nomic regions in the mESC 129/CAST hybrid cells. We only included predicted ERCEs

on the autosomes in analysis. For each ERCE, we randomly sample 200 genomic regions
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of the same length as the ERCE and without overlapping with any ERCE from the genome.

An ERCE ranges from 50Kb to 200Kb in length, containing 10-40 genomic bins. For

each ERCE or each randomly sampled element, we calculate both the maximal value and

the mean value of the estimated importance scores of genomic bins in this ERCE or sam-

pled region. We merged the maximal values (or mean values) of estimated importance

scores associated with each ERCE. We then merged the maximal values (or mean values)

of estimated importance scores associated with each randomly sampled region, to form

the background importance score distribution. We compared the distribution of estimated

maximal-value (or mean-value) importance scores of ERCE in comparison with the back-

ground distribution. We observed that ERCEs have higher maximal-value (or mean-value)

per-region importance scores than the randomly sampled genomic regions. To map mESC

ERCEs to human genome, we use liftOver [138] with the minimal remapping ratio of 0.5

(mapping between mm10 and hg38) and require the regions mapped to the human genome

can be mapped back to the original ERCE, with the region re-mapped to the mouse genome

overlapping with the original ERCE.

4.10.3 Evaluating estimated importance scores of genomic loci with cis-

regulatory elements and TF binding sites

To evaluate estimated importance scores of genomic loci with cCREs in open chromatin

regions, we downloaded peak region annotations of DNase-seq data in each of the five

cell lines from the ENCODE Project database [151]. We extended each peak by +/-250bp.

Among all the genomic loci that are overlapping with the extended DNase-seq peak regions

(noted as open chromatin regions), we compared the distributions of estimated importance

scores between the loci that contains at least one cCRE and the loci that does not overlap

with a cCRE. We use the importance score distribution of the non-cCRE genomic loci as

the background distribution. To evaluate estimated imprudence scores in genomic loci with

binding sites of specific TFs or proteins (e.g., EP300,POLR2A), we used the peak regions

identified from the ChIP-seq data of the corresponding TFs/proteins as the binding site an-
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notations, which are sourced from the ENCODE project database [151]. For each specific

type of TF/protein, we identified the genomic loci with binding sites of the corresponding

TF/protein. We compared the distributions of estimated importance scores between the

genomic loci with the binding sites and the background genomic loci in the open chro-

matin regions without binding sites of the corresponding TF/protein. We performed both

Kolmogorov–Smirnov test [226] and Mann–Whitney U test [227] between the two distri-

butions of the estimated scores in the genomic loci with the features and the background

loci to identify TFs with enrichment in genomic loci of higher estimated importance scores.

4.11 Results

We applied CONCERT to predict RT signals and identify predictive sequence elements in

mouse embryonic stem cells (mESCs) and in 9 human cell lines GM12878, H1-hESC,

H9-hESC, HCT116, HEK293, K562, IMR90, RPE-hTERT, and U2OS. We only included

autosomal chromosomes in the analysis. We collected genome-wide RT maps based on

Repli-seq data [38] in each cell line (data processing procedures described in section 4.6).

Two-fraction tepli-seq data in human cell types are from 4DN data portal [228]. Repli-

seq data in mESCs are sourced from GEO:GSE114139 [75]. We used genome assembly

hg38 for human and genome assembly mm10 for mouse. We divided the genomes into

consecutive non-overlapping 5Kb bins (genomic loci). The processed RT signal at each

locus is a continuous value, with the higher value representing the earlier replication.

4.11.1 Predicting DNA RT profiles in multiple human cell types

We performed cross-chromosome RT prediction in the 9 human cell types by using two

non-overlapping sets of training chromosomes to perform two-fold modeling training and

prediction (section 4.7), obtaining genome-wide RT predictions and importance score esti-

mates. For performance evaluation, we calculated the Pearson correlation coefficient (PCC,

or Pearson’s r) [222], the Spearman’s rank correlation coefficient (Spearman’s ρ) [223], the
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explained variance [224], and the coefficient of determination (R2 sore) [225] between the

predicted and ground truth RT signals. We included four methods XGBoost Regression

(XGBR) [220], Random Forest (RF) [229], Linear Regression (LR) [230], and the local-

sequence focused DNN model (DNN-Local) (section 4.9) for performance comparison.

We observed that our method reaches high prediction accuracy in most of the cell types,

consistently outperforming the compared methods in each cell type with respect to different

evaluation metrics (Figure 4.3A, Figure 4.4, Table 4.1). With our method, the median

PCC and median Spearman’s ρ between predicted and real RT signals in 9 cell types are

0.81 and 0.80, respectively. Our method exhibits evident performance increases of 0.16-

0.18, 0.17-0.19, 0.16-0.30, 0.19-0.29 in PCC, Spearman’s ρ, explained variance and R2

score over the compared methods in different cell types. We found that the performance

of CONCERT varies across cell types, with relatively high prediction accuracy in HCT116

and HEK293 (above 0.85 in both PCC and Spearman’s ρ) while lower accuracy in IMR-90

and RPE-hTERT, suggesting that there may exist cell-type specific dependencies between

DNA sequences and RT patterns. The performance variation is similarly observed on the

compared methods, The examples of predicted RT signals in comparison with real signals

on chromosome 14 are visualized in Figure 4.3B. Notably, our method has the capability

of capturing not only the similar RT patterns shared by different cell types, but also cell

type-specific patterns.

Furthermore, we evaluated the performance of CONCERT using different choices of

context sizes (Figure 4.3C, Figure 4.6). For each cell type, we observed that the predic-

tion accuracy increases as the context size expands, indicating that long-range contexts are

informative for RT prediction. The performance increase slows down as the context size

exceeds +/-150Kb (30 bins). We also analyzed the performance from different input fea-

ture combinations (Table 4.4). We found that prediction performance with motif features

as additional input (Feature II) is similar to the performance without motif features as input

(Feature I) (Table 4.4). We observed that using GC content alone is not sufficient for RT

prediction (Table 4.4).
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Figure 4.3: Performance evaluation of RT prediction and sequence importance score estimation in human cell lines.

(A) Performance evaluation and comparison of RT prediction using different methods in cell lines GM12878, H1-hESC,

H9-hESC, and HCT116. The error bar shows the standard deviation of performance across 22 autosomes in each

cell line. Performance evaluation in the nine human cell lines are shown in Figure 4.4. Performance evaluation on

22 autosomes in H1-hESC cell line are shown in Table 4.2. (B) RT predictions on the long arm of chromosome 14

in cell lines GM12878, H1-hESC, H9-hESC, and HCT116. For each cell type, the first track shows the real Repli-seq

data, and the second track shows the predicted RT profile. Three example regions with RT signal variations across

cell types are marked with red color boxes (noted as e1, e2, and e3). The e2 region also contains the example region

shown in Figure 4.7I. (C) The change of RT prediction performance measured by Pearson correlation coefficient and

Spearman’s rank correlation coefficient with respect to the change of the context size surrounding each genomic locus

in the nine human cell lines. The change of RT prediction performance measured by explained variance and R2 score

with respect to the change of the context size in the nine human cell lines are shown in Figure 4.6. (D) RT classification

performance across chromosomes measured by AUROC and AUPR in cell lines GM12878, H1-hESC, H9-hESC, and

HCT116. Performance evaluation in the nine human cell lines are shown in Figure 4.5.

Additionally, we evaluated the propose method on the classification performance of pre-

dicting early or late replication. Each genomic bin is assigned a binary label corresponding
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to early or late replication based on the RT signal at this locus. Genomic bins with original

RT signals above the cutoff of 0 are labeled as early replication, and otherwise labeled as

late replication. We normalized the predicted RT signals to the scale of [0,1], with higher

value corresponding to earlier replication. We calculate the AUROC (area under receiver

operating characteristic curve) and AUPR (area under precision-recall curve) of the pre-

dictions in comparison with the ground truth early/late labels across 22 autosomes. Our

method reaches 0.81-0.95 in AUROC, 0.72-0.96 in AUPR in 9 human cell types, outper-

forming the compared methods (Figure 4.3D, Figure 4.5). In a recent study [231], the

method GEEK (Gene Expression Embedding Framework) provided feature embeddings of

biological objects from heterogeneous networks based on integration of multiple sources

of network information. The learned embeddings were demonstrated useful for modeling

gene expression levels, and were also applied to early/late RT classification in four human

cell lines GM12878, K562, HUVEC, and NHEK, achieving cross-chromosome median

AUROC of 0.8955 and below 0.85 in cell lines GM12878 and K562, respectively. The

accuracy GEEK achieved on RT classification through integrating a variety of informative

biological network data provides a reference to assess the RT prediction performance of our

method. Our method reached median AUROC of 0.9215 and 0.9253 across chromosomes

in GM12878 and K562, respectively, using only sequence features as input.

Together, these observations demonstrate the effectiveness of CONCERT in learning

spatial dependencies across genomic loci with long-range context information to predict

RT profiles from DNA sequences.

4.11.2 Predicting DNA RT profiles in mouse ESCs and evaluation with ERCEs

Next, we applied the developed method to RT signal prediction in the mouse embryonic

stem cells (mESCs), and evaluated the predicted RT-related importance of genomic loci us-

ing annotations from the recent discovery of early replication control elements (ERCEs) [75].

In the recent study [75], multiple cis-regulatory elements with crucial roles in control-

ling early replication, named early replication control elements, were identified in mESCs
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Figure 4.4: RT prediction performance of CONCERT in nine human cell lines. The evaluation metrics are Pearson corre-

lation coefficient (Pearson’s r, noted as Pearson r in the axis label), Spearman’s rank correlation coefficient (Spearman’s

ρ, noted as Spearman ρ in the axis label), explained variance, and R2 score. The error bar shows the standard deviation

of performance across 22 autosomes in each cell line.

through a series of CRISPR-mediated deletion or inversion experiments. Specifically,

CRISPR-mediated deletions of segments of varied lengths and combinations at a pluripotency-

associated replication domain, the murine Dppa2/4 domain (containing three active genes

Dppa4, Dppa2,and Morc1/Morc) on chromosome 16 in mESCs, led to the discovery of

three cooperative ERCEs within the domain. Targeted deletion of the three elements
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Figure 4.5: RT classification performance of CONCERT in nine human cell lines. The boxplots show the RT classification

performance measured by AUROC and AUPR across 22 autosomes in nine human cell lines.

caused a switch from early to late replication of the domain. The three ERCEs (de-

noted as sites a, b, c, Figure 4.7B) are featured with the enrichment of active epigenetic

marks that are typically representative of enhancers, including DNase1 hypersensitivity

(HS), P300, H3K27ac, H3K4me1, H3K4me3, binding sites of MED1, and binding sites of

major pluripotency transcription factors (TF) POU5F1 (also known as OCT4), SOX2, and

NANOG. One ERCE (site a) also corresponds to a super-enhancer in mESCs [232, 233].

Furthermore, 1835 ERCEs were predicted genome-wide based on the presence of spe-
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Figure 4.6: The change of RT prediction performance evaluated by explained variance and R2 score with respect to the

change of context size surrounding each genomic locus in nine human cell lines.

cific properties shared with the three experimentally identified ERCEs in the Dppa2/4 do-

main on chromosome 16 in mESCs [75]. The predicted ERCEs are located at the sites

which display significant CTCF-independent chromatin interactions, overlap with P300

and OSN (OCT4,SOX2,and NANOG) binding sites, and reside in inter-LAD (lamina-

associating domain) regions. CRISPR-mediated deletions performed at the Zfp42/Rex1

domain (containing three active genes Trim1, Trim2, and Zfp42/Rex1) on chromosome 8

further validated the existence of two ERCEs (denoted as sites d and e, shown in Fig-

ure 4.7B) predicted within the domain. Targeted deletions of both ERCEs caused a switch

from early to late replication of the domain.
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We sought to explore whether ERCEs can be identified by our method computationally

using sequence features only. We used the same mESC RT data in CAST/129 hybrid cells

from [75]. There are two alleles, named mutant allele, with targeted ERCE deletions, and

WT (wild type) allele, which share similar RT profiles except for the ERCE deleted regions.

The similar feature extraction and model training procedures applied to RT prediction in

human cell types were applied to mESCs (section 4.7). We observed that our method

reaches high RT prediction accuracy in mESCs, with PCCs 0.90, 0.91, Spearman’s ρ 0.90,

0.89, explained variances 0.80, 0.79, and R2 scores 0.80, 0.79 on the mutant and WT

alleles, respectively (Figure 4.7A), consistently outperforming other methods. Next, we

identified predictive elements based on the estimated importance scores. We normalized

the estimated scores to the scale [0,1], with the original score not below x% of all the scores

on the corresponding chromosome transformed to x/100. We then filtered the genomic

loci to select a subset of loci with distinguishable prominence by detecting local peaks of

scores (section 4.8). Selected loci within specific distance (≤5 bins apart) are merged into

one element. Each selected predictive genomic locus or merged element is considered as a

predictive element. Here we focus on analyzing the identified predictive elements in early

RT domains.

Our method identified 7 predictive elements on the Dppa2/4 domain on chromosome

16 in mESCs, of which 3 elements directly overlap with ERCEs a, b, c and 2 elements

overlap with b and c with +/-5Kb (1bin) extensions (Figure 4.8). Our method identified 3

predictive elements on the Zfp42/Rex1 domain on chromosome 8 (Figure 4.7B), of which

two elements directly overlap with ERCEs d and e. Each of the five ERCEs that were

experimentally validated by CRISPR-mediated deletions in [75] is matched by one or more

predictive elements detected by our method. CONCERT also predicted local switch from

early RT to relatively later RT with each of the two sets of ERCEs (a,b,c and d,e) deleted,

consistent with the experiment results in [75] (Figure 4.8, Figure 4.7B).

Furthermore, we investigated genome-wide matches between the identified predictive

elements and the predicted ERCEs. We only included predicted ERCEs on the autosomes in
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analysis. There are 1798 ERCEs predicted on autosomes (50Kb∼200Kb in length) by [75].

We found that 1419 of the 1798 predicted ERCEs with +/-2 bin extensions (78.92%, empir-

ical p-value<1e-02, Figure 4.7C) overlap with one or more predictive elements identified

by CONCERT. There are 1092 ERCEs directly matched by identified predictive elements

without extensions. The predictive elements identified by our method also have shorter

distance to the nearest ERCEs and higher overlapping percentage with the matched ERCEs

in comparison with the background distribution where the elements are randomly shuffled

(Figure 4.7D-E, p-value<2.2e-16 with Kolmogorov-Smirnov test, or K-S test [226]). We

also evaluated the estimated importance scores of ERCEs in comparison with randomly

sampled non-ERCE sequences. We calculate both the maximal and mean values of the

estimated importance scores of genomic bins in each ERCE or randomly sampled region.

We observed that ERCEs on average show much higher region-wise maximal scores and

mean scores, both in early RT domains and genome-wide (Figure 4.7F, p-value<2.2e-16

with K-S test). These observations confirm the effectiveness of our method in predicting

sequence elements that may have regulatory functions for RT.

Evaluating estimated importance scores with mESC ERCEs mapped to hu-

man genome

The ERCEs were only predicted in mESCs [75]. We mapped the predicted mouse ERCEs

to the human genome, and evaluated the importance scores estimated by our method of the

mapped ERCE regions in H1-hESC cell line. We used liftOver [138] to map each predicted

ERCE on mouse autosomes to human autosomes with reciprocal mapping (section 4.10.2),

obtaining 446 mapped ERCEs. We then compared the distribution of region-wise maximal

(or mean) estimated importance scores of the mapped ERCEs with the background distribu-

tion based on randomly sampled regions in H1-hESC cell line, using the same comparison

approach for mouse ERCEs as described above. We observed that the ERCEs mapped to

human genome exhibit higher estimated importance scores in distribution as compared with

the background regions in both early RT domains and genome-wide (p-values<1e-22, Fig-
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ure 4.7G). The mapped ERCEs with co-binding sites of two or more pluripotency TFs also

show higher importance scores in distribution than the background regions (p-value<1e-10

genome-wide, p-value<1e-05 in early RT domains, Figure 4.7H). Furthermore, we found

that 71.08% of mapped ERCEs with +/-2 bin extensions can be matched by predictive

elements identified by our method (empirical p-value<1e-02).

One example of ERCE mapped to the human genome that can be identified by our

method is shown in Figure. 4.7I. This mapped ERCE is located in a cell type-specific

early RT domain on chromosome 14 of human genome. The corresponding local domain

shows early RT in H1-hESC and H9-hESC, and late RT in the other cell types including

GM12878 and HCT116. The mapped ERCE contains a co-binding site of the pluripotency

TFs POU5F1, SOX2, and NANOG in H1-hESC. Our method identifies predictive elements

that overlap with this mapped ERCE in the corresponding region in H1-hESC and H9-

hESC. Specifically, the identified predictive elements are co-located with the pluripotency

TF co-binding site, and found to be cell type-specific, as they are not predicted in the other

cell types such as GM12878 and HCT116. Also, our method predicts early RT only in

H1-hESC and H9-hESC on the corresponding domain, and predicts later RT for the other

cell types.

We further observed that the OTX2 gene, which encodes the transcription factor OTX2,

is co-located with the pluripotency TF co-binding site and the predictive elements identified

at this location (Figure. 4.7I). Based on gene expression profiles of H1-hESC, GM12878,

and K562 cell lines that are downloaded from the ENCODE project database [151], we

observed that OTX2 gene is specifically expressed in H1-hESC with TPM>1 (TPM: tran-

scripts per million, which represents for every one million RNA molecules in the RNA-seq

sample, how many are from the specific gene/transcript), while it is not expressed or has

low expression in the other cell types GM12878 and K562 (TPM<0.01). The OTX2 gene

has leading critical roles in the early stages of embryonic development and ESC differen-

tiation, with the encoded protein involved in the development of brain and sensory organs

including the eyes [235–238]. Mutations of OTX2 may cause development delay, severe or-
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gan dysfunctions and structural abnormalities [239–241]. Furthermore, based on enhancer

annotations in different human cell lines that are downloaded from the EnhancerAtlas 2.0

database [242], we observed that there are cell type-specific enhancers at the location of the

OTX2 gene in H1-hESC and H9-hESC, while there are no enhancers identified in the same

region in GM12878 and HCT116. The enhancers near the promoter region of the OTX2

gene in H1-hESC and H9-hESC are co-located with the pluripotency TF co-binding site

and overlapped with the RT predictive loci identified by our method in the corresponding

two cell lines. The observations suggest the potential connections underlying the OTX2

gene, the co-bound pluripotency TFs, the regulatory elements, and the ESC-specific early

RT pattern. The original ERCE of this mapped ERCE is also overlapped with predictive

genomic loci identified by our method in the mESCs. We infer that the mapped ERCE at

this analyzed location is highly likely to be an ESC-specific functional ERCE in human.

These observations demonstrate the effectiveness of our method in identifying potential

predictive sequence elements for RT modulation in human cell lines.

4.11.3 Repetitive element enrichment in identified predictive genomic loci

Next, we explored potential connections between repetitive elements (REs) and genomic

loci of high estimated importance (Figure 4.9A, Figure 4.10). It is known that RT is cor-

related with certain types of transposable elements (TEs). For example, early RT regions

are typically enriched with SINEs [37]. TEs are one type of repetitive elements (REs).

However, it is still unclear how important TEs or other types of REs are in modulating

global RT program. We retrieved human genome RE annotations from the UCSC Genome

Browser [212]. The REs we used for analysis mainly consist of the TEs (including the

classes SINE, LINE, LTR, and DNA), the retroposons, and the small RNA molecule se-

quences. For each human cell type, we classified the genomic loci into K = 20 groups

based on importance score ranking. Each of the K = 20 groups represents an impor-

tance level, with the k-th group consists of genomic loci with importance scores ranking

between top 5(k − 1)% and top 5k% on the corresponding chromosome. We calculated
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the fold change of enrichment for each RE family in each group in comparison with the

average coverage across all groups (section 4.10.2). First, we restricted the comparison to

early RT domains. Only genomic loci with early RT are retained for comparison. We ob-

served that Alu elements of the SINE class are significantly more enriched in genomic loci

with high estimated importance (p-value<1e-07 for genomic loci with top 15% estimated

importance), which is consistently observed across different cell types (Figure 4.9A). For

each cell type, the enrichment of Alu across different groups of genomic loci shows strong

positive correlation with the corresponding estimated importance level, displaying a clear

trend where the enrichment increases as the importance level ascends. The observations

show that even within the early RT regions, the different enrichment patterns of Alu ele-

ments with respect to the correlation with RT can be distinguished by our method based on

estimating sequence importance for RT prediction. In contrast, L1 from the LINE class,

and ERVL, ERVK, LTR from the LTR class show negative correlations between enrich-

ment and estimated importance levels. Genome-wide comparison of RE enrichment across

estimated sequence importance levels show similar results (Figure 4.10). The observations

provide support that Alu elements may be engaged in modulating RT.

Moreover, we observed that scRNA, snRNA, srpRNA, and SVA elements also exhibit

strong positive correlations between enrichment and estimated importance of genomic loci

(p-value<1e-07). The enrichment patterns are similar to the patterns observed on Alu el-

ements and consistent across different cell types, including GM12878. Previous studies

on RT comparison in the lymphoblastoid cell type across multiple primate species showed

that scRNA, snRNA, and srpRNA have strong positive correlations with early RT profiles

that are conserved across species [161]. Here the observations that scRNA, snRNA, and

srpRNA also exhibit stronger enrichment in genomic regions with higher estimated im-

portance scores are consistent with the previous studies, indicating the potential roles of

scRNA, snRNA, and srpRNA in modulating RT. Overall, the analysis of RE enrichment

based on estimated sequence importance suggests the potential of CONCERT in prioritizing

experimental characterizations of possible sequence determinants of RT.
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4.11.4 Evaluating estimated importance scores with candidate cis-regulatory

elements and TFs

Next, we evaluated estimated importance scores of genomic loci containing candidate cis-

Regulatory Elements (cCREs) within the open chromatin regions in human cell types. The

cCRE annotations were retrieved from the SCREEN (Search Candidate cis-Regulatory El-

ements by ENCODE) database [243], which provides registry of cCREs derived from var-

ious types of data in the ENCODE Project [151]. There are mainly four groups of cCREs,

including active and poised enhancer-like elements (distal and proximal), active promoter-

like elements, likely poised elements with DNase and H3K4me3 marks, and CTCF-only

elements. The cCREs are labeled with dELS (distal enhancer-like signatures), pELS (prox-

imal ELS), PLS (promoter-like signatures), DNase-H3K4me3, and CTCF-only, respec-

tively. Within the open chromatin regions (identified using DNase-seq data, section 4.10.3),

for each type of cCREs, we compared the distributions of the estimated importance between

the genomic loci containing the specific type of cCREs and the loci depleted of any cCRE.

We observed that genomic loci with pELS, PLS, or DNase-H3K4me3 exhibit signifi-

cantly higher estimated importance scores on average than the background non-cCRE loci,

consistently observed in cell lines GM12878 and H1-hESC (Figure 4.9B-C, Figure 4.11, p-

value<1e-04). The observations suggest the potential connections between specific cCREs

(pELS, PLS, and DNase-H3K4me3) and RT regulation. In contrast, the estimated score

distribution with CTCF-only signatures does not significantly differ from the background

distribution, consistent with findings in [75] that CTCF proteins are dispensable for RT.

We also analyzed the estimated importance distribution of genomic loci with different

transcription factor (TF) binding motifs (section 4.10.3). We identified a number of TF

motifs enriched in loci of higher importance scores in H1-hESC, including TAF1, ATF3,

KLF4, EGR1, and BACH1. KLF4 is known to be important for transcription in the pluripo-

tent state, and TAF1 is involved in transcription initiation and enhancers [244]. We further

examined the estimated scores of loci with binding sites of these TFs and several other

proteins critical for the pluripotency. The TF/protein binding sites are identified from
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peaks based on the corresponding ChIP-seq data downloaded from the ENCODE project

database [151]. We observed enrichment of these proteins in estimated RT-predictive loci

(Figure 4.9D). The analysis suggests that BACH1 may be a potential RT-relevant TF, whose

role in cell-cycle control was revealed in [245, 246] but its RT-modulating function has yet

to be validated.

The observations suggest the potential functions of specific cis-regulatory elements and

transcription factors for RT modulation. Our method provides an approach to detect the

potential RT-related cis-regulatory elements and transcription factors through identification

of RT predictive sequence elements.

4.11.5 Identifying RT predictive genomic loci across different cell types

With the cooperation of the selector and predictor modules, the CONCERT model identifies

the genomic loci with potential importance in RT signal prediction in different cell lines.

To identify cell type-specific RT predictive loci, first, we identify predictive loci of

higher confidence based on predictions from multiple experiments using different model

variants. We employed 4 model variants, and generated 18 sets of genome-wide RT pre-

dictions and RT predictive loci predictions using the model variants in each of the nine

human cell lines. The mode variants mainly differ in the activation function used in the

selector module and the loss function in the predictor module (model architecture details

are described in section 4.4). Specifically, we use sigmoid, ReLU, or linear function as the

activation function applied to the output of the dense layer for importance score estimation

in the selector module. Additionally, we tested another activation function tanh. The model

variant with tanh as the activation function in the selector module has similar RT predic-

tion performance to the other model variants. The model variants include: model I, with

sigmoid activation in the selector module and MSE as loss function in the predictor mod-

ule;model II, with ReLU activation in the selector and MSE as loss function; model III, with

linear activation in the selector and logcosh as loss function; model IV, with tanh activation

in the selector and logcosh as loss function. The four model variants show comparable RT
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prediction performance based on cross-chromosome RT prediction performance evaluation

in each cell line. There are other model variants with alternative combinations of model

configurations, which also exhibit similar RT prediction accuracy. Here we use the four

variants to identify the predictive loci of higher reliability that can be detected with differ-

ent model configurations. We then generated 18 sets of predictions with the model variants.

The default input features of each genomic bin consist of the K-mer frequency features with

dimension reduction transformation and the GC-content based features. We classified the

predictions into 5 categories, which are as follows: (i) two sets of predictions by model

I in two repeated experiments, with the context window size of 505Kb (flanking region:

+/-50bin) and chromosome 1-16 used for two-fold training; (ii) two sets of predictions by

model II in two repeated experiments, with the context window size of 505Kb; (iii) two sets

of predictions by model III in two repeated experiments, with the context window size of

505Kb (flanking region: +/-50bin) and TF binding motif features as additional input; (iv)

six sets of predictions by model III, with the context window size increasing from 505Kb

to 1005Kb (flanking region: +/-50bin, +/-60bin, . . . , +/-100bin); (v) six sets of predictions

by model IV, with the context window size increasing from 505Kb to 1005Kb.

If a genomic locus can be identified as an RT predictive locus in at least 9 experiments

from at least three different categories, without flanking regions used as tolerance for posi-

tion offset in different sets of predictions, we select the locus to the set of higher-reliability

candidate predictive loci in the corresponding cell type. The resulted set of selected loci is

generally smaller in size compared to the set of predictive loci identified from a single ex-

periment, but it is more likely to preserve the loci with higher fidelity in RT predictiveness.

To select cell type-specific predictive genomic loci, we use flanking region of +/-1 bin

(5Kb) for each predicted predictive locus in each cell type. If two predictive loci that are

identified in two different cell types are not more than 1 bin apart, we consider the two loci

as probably identified in both cell types and not cell type specific. We then identified sets of

cell type-specific predictive loci, of which each locus is only predicted with high confidence

in the corresponding cell type and not selected in the other cell types. We also merged the
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predictions in H1-hESC and H9-hESC cell lines as the predictions in hESC cells. The

number of estimated cell type-specific predictive genomic loci in each cell type is shown

in Table 4.5. Next we identified predictive genomic loci that are shared by different cell

types. We identified 3228 genomic loci that are selected as predictive loci across different

predictions in at least five of the nine human cell types. The numbers of identified predictive

loci that are shared by a specific number of cell types are shown in Table 4.6. For each cell

type, the number of identified predictive loci in this cell type that are also identified in at

least another four cell types is shown in Table 4.7. The numbers of identified predictive

loci in H1-hESC or H9-hESC cell line that are also identified in different numbers of other

cell types are shown in Table 4.8.

One example of identified cell type-specific predictive genomic loci is shown in Fig-

ure 4.3I as described in section 4.11.2, where there are cell type-specific predictive loci

identified in a cell type-specific early RT region in H1-hESC and H9-hESC that overlap

with a predicted mESC ERCE mapped to the human genome. H1-hESC and H9-hESC

both exhibit early RT in the local region. The other cell lines including GM12878 and

HCT116 are of late RT in this region, and did not show predictive elements identified at

this location. The cross cell type comparison suggests that there exist both sequence ele-

ments with conserved and cell type-specific functional importance in modulating RT across

different cell lines.

Specifically, we identified 3566 ESC-specific predictive genomic loci in human that are

only predicted in H1-hESC or H9-hESC-hESC. We performed Gene Ontology (GO) anal-

ysis for the identified human ESC-specific RT predictive genomic loci using the software

GREAT [247] (Figure 4.12). We observed that the genes found to be significantly associ-

ated with the corresponding identified loci mostly have functions for biological processes

that are related to the development of tissues, organs and systems, which are important

processes in embryonic development. The observations suggest that the identified hESC-

specific predictive genomic loci for RT are potentially in close connections with specific

stages of embryonic development, which are related to the functions of the H1-hESC and
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H9-hESC cells. The observations also suggest that RT programs in specific cell types are

possibly regulated to be in accordance with the functions of the corresponding cell type.

Furthermore, we compared gene expression levels between identified predictive loci

and background loci in cell lines H1-hESC, GM12878, and K562, using the gene ex-

pression data downloaded from the ENCODE project database [151]. We identified cell

type-specific expressed genes in proximity to the predicted RT predictive genomic loci,

including cell type-specific predictive loci. For each of the compared cell types H1-hESC,

GM12878, and K562, if a gene has TPM>1 in this cell type and TPM<1 in the other cell

types, we consider it as a cell type-specific expressed gene. For the remaining genes with

TPM>1 in this cell type, if the gene expression level measured by TPM is at least 2 times

the gene expression level in each of the other cell types, we consider it as a gene with cell

type-specific increased expression.

We observed that both cell type-specific expressed genes and genes with cell type-

specific increased expression are more enriched in the identified RT predictive genomic loci

than the background loci in each cell type, and also show higher enrichment in the identified

cell type-specific predictive loci, both in early RT regions and genome-wide (Figure). We

performed GO analysis of the cell type-specific expressed genes or genes with increased

expression that are co-located with the identified cell type-specific RT predictive genomic

loci in H1-hESC using the software DAVID [146]. Many of the specific genes are found

to be associated with biological processes of system, organ, and tissue development, which

are partially consistent with the GO analysis we performed before for the RT predictive

loci using GREAT and related to the functions of hESCs. Examples of identified biological

processes are shown in Table 4.9. The observations suggest the close connections between

RT regulation and transcription and cell type-specific functions.
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4.12 Discussion

We developed a new method called CONCERT to predict DNA replication timing profiles

and identify sequence elements that may modulate the RT programs using DNA sequence

features only. The prediction results of applying the model to nine cell lines in human

demonstrate that CONCERT reaches high quality prediction performance in the majority of

the studied cell types, and outperforms the baseline methods which do not consider the spa-

tial dependencies across genomic loci. With two collaborating modules, the selector and the

predictor, CONCERT performs estimation of predictive sequence elements, selective learn-

ing of spatial dependencies across genome loci, and modeling the dependencies between

underlying DNA sequences and RT signals, utilizing long-range context information. The

results reveal that GC content alone is not sufficient to etimated the RT signals from the

sequences. There are more refined levels of information encoded in the DNA sequences

that are involved in the potential sequence-dependent regulation mechanism of DNA repli-

cation. The results additionally show variation in the potential dependencies between DNA

sequences and DNA RT signals in different cell types. Additionally, we found a number

of genomic loci that are potentially important for predicting RT profile and are shared by

different cell lines using the predictions from CONCERT. Our method also reaches high RT

prediction accuracy in mESCs. For predictive sequence element identification in mESCs,

each of the five early replication control elements (ERCEs) in mESCs that were experi-

mentally validated through CRISPR-mediated deletions in [75] can be identified by our

method. Our method provides a generic framework to predict large-scale genomic features

and discover the underlying predictive sequence elements that may modulate RT program

using solely DNA sequence features.

There are a number of possible improvements for CONCERT. First, the accuracy of the

estimated importance scores as measurement of the importance of a genomic locus in pre-

dicting RT signals need to be further evaluated. Second, we need further analysis into what

sequence features are underlying the identified potentially predictive genomic loci that are
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relevant to the regulation mechanism of DNA replication, and how the sequence features

function in the regulation mechanism. Third, we will study the possible cooperative func-

tions of identified predictive elements, as revealed in [75], where several ERCEs are found

to cooperate as a group to regulate early RT in the local domain. Such analysis would

also pave the way for future experimental validation through genome engineering. Further-

more, we can include other types of epigenetic features into the model to reflect cell-type

specific characteristics of DNA replication timing regulation, and improve performance

of the model in RT prediction and identification of possible RT regulators. Nevertheless,

CONCERT has already shown strong promise to help uncover important sequence level

properties that potentially modulate the DNA replication timing program.
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Figure 4.7: Performance evaluation of RT prediction and importance score estimation in mESCs. (A) (Left) Evaluation
of RT prediction on the mutant and WT alleles of mESC CAST/129 by comparing to different methods. (Right) Early/late
RT classification performance on the two alleles of mESC CAST/129 using different methods. (B) RT prediction with
respect to presence of ERCEs on Zfp42/Rex1 domain on chr8 in mESCs and identified genomic loci with high estimated
importance scores in the domain. Normalized estimated importance scores below 0.5 are filtered. (C) Percentage
of the predicted ERCEs that overlap with the identified predictive sequence elements, with varying extension sizes of
the original ERCEs. (D) Distribution of the distance between identified predictive elements and the nearest ERCEs, in
comparison with background distribution where the predicted sequence importance scores are shuffled. (E) Distribution
of overlapping ratio between the identified predictive sequence elements and the matched ERCEs. (F) Distribution of
the estimated importance scores of ERCE regions in comparison with background distribution in non-ERCE regions.
(G) Distribution of the estimated importance scores of ERCE regions mapped to human genome in comparison with
the background distribution in H1-hESC. (H) Importance score distribution of ERCE regions mapped to human genome
with co-binding sites of POU5F1, SOX2, and NANOG in H1-hESC. (I) Example of RT prediction and predictive element
identification on chr14:54,295,000-58,750,000. Our method identified cell type-specific predictive elements in cell lines
H1-hESC and H9-hESC, which overlap with a predicted mESC ERCE [75] mapped to the human genome. The predictive
elements overlap with a co-binding site of POU5F1, SOX2, and NANOG in cell line H1-hESC. Loci Est. represents
estimated predictive elements. H1-hESC RT initiation zone annotations are from [234].
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Figure 4.8: RT prediction on the Dppa2/4 domain on chromosome 16 in mESCs [75]. The first sub-figure shows the

predicted signals on WT allele (without deletions) and the mutant allele (with ERCE a,b,c deleted). The second sub-

figure shows the normalized estimated importance scores and identified genomic loci. Normalized estimated scores

below 0.50 are filtered. Identified predictive genomic loci are marked with red color. The yellow rectangles show the

positions of ERCE a,b,c.
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Figure 4.9: Comparisons with repetitive elements (REs) and transcription factor (TF) binding sites. (A) RE enrichment

in genomic loci at different sequence importance levels in GM12878, H1-hESC, and H9-hESC in early RT regions. (B)

Distribution of importance scores in genomic loci with candidate CREs in open chromatins in GM12878 and H1-hESC.

(C) Density distribution of importance scores in genomic loci with dELS, pELS, PLS, and DNase-H3K4me3 in the open

chromatin regions in H1-hESC, in comparison with non-CRE background distribution. (D) Examples of TFs or proteins

showing enrichment in genomic loci of higher importance scores in open chromatin regions in H1-hESC.
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Figure 4.10: RE enrichment fold change of genomic loci at different estimated sequence importance levels genome-wide

in cell lines GM12878, H1-hESC, and H9-hESC.
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Figure 4.11: Distribution of estimated importance scores in genomic loci with candidate CREs in the open chromatin

regions in cell lines GM12878 and H1-hESC with respect to different types of input features used for prediction. Feature

type I: input feature consists of K-mer frequency features and GC-based features. Feature type II: input feature consists

of K-mer frequency features, GC-based features, and TF binding motif frequency features.
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Figure 4.12: Gene ontology (GO) analysis result of the identified hESC-specific predictive genomic loci. GO analysis is

performed using the software GREAT [247] for the two hESC cell types H1-hESC and H9-hESC. The vertical axis shows

the list of biological processes that are found to be significantly associated with the identified hESC-specific predictive

genomic loci. The horizontal axis shows the log base 10 value of q-value which controls the false discovery rate (FDR)

of each identified associated biological process based on the binomial test performed by GREAT. The q-values of the

identified associated biological processes are smaller than 0.05.
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Figure 4.13: Gene expression level comparison between the identified predictive loci and the background loci in cell

lines H1-hESC, GM12878, and K562. (A) The percentage of genes with cell type-specific expression (abbreviated

as cell type-specific expr.) or cell type-specific increased expression (abbreviated as increased expr.) in the identified

predictive genomic loci, identified cell type-specific predictive loci, and background loci in H1-hESC, GM12878, and K562

in the early RT regions (upper panel) and genome-wide (lower panel), respectively. The background loci represent all the

genomic loci in the early RT regions or genome-wide, respectively. (B) The percentage of genes with cell type-specific

expression or cell type-specific increased expression in proximity to the identified predictive genomic loci, identified cell

type-specific predictive loci, and background loci in H1-hESC, GM12878, and K562 in the early RT regions (upper panel)

and genome-wide (lower panel), respectively. Each genomic locus is extended by flanking regions of +/-1 bin (5Kb). The

genes overlapping the genomic locus with flanking regions are considered to be in proximity to the corresponding locus.
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Cell type Method PCC Spearman’s ρ Explained variance R2 score
GM12878 XGBR 0.6556 0.6573 0.4298 0.4297

RF 0.6443 0.6455 0.4148 0.4148
LR 0.6311 0.6387 0.3983 0.3983
DNN-Local 0.6362 0.6404 0.4039 0.3629
CONCERT 0.8392 0.8412 0.6975 0.6919

H1-hESC XGBR 0.6422 0.6427 0.4123 0.4114
RF 0.6332 0.6329 0.4007 0.4000
LR 0.6211 0.6268 0.3856 0.3846
DNN-Local 0.5890 0.5863 0.3398 0.3382
CONCERT 0.8084 0.8109 0.6500 0.6486

H9-hESC XGBR 0.6418 0.6449 0.4119 0.4114
RF 0.6313 0.6337 0.3984 0.3981
LR 0.6046 0.6232 0.3651 0.3645
DNN-Local 0.6205 0.6246 0.3813 0.3662
CONCERT 0.8168 0.8123 0.6671 0.6611

HCT116 XGBR 0.7101 0.6699 0.5042 0.5040
RF 0.6979 0.6546 0.4869 0.4865
LR 0.6879 0.6515 0.4731 0.4728
DNN-Local 0.6984 0.6600 0.4875 0.4512
CONCERT 0.8951 0.8630 0.7977 0.7973

HEK293 XGBR 0.7011 0.7083 0.4912 0.4912
RF 0.6881 0.6952 0.4734 0.4734
LR 0.6667 0.6851 0.4433 0.4433
DNN-Local 0.6802 0.6890 0.4617 0.4601
CONCERT 0.8910 0.8935 0.7914 0.7901

K562 XGBR 0.6251 0.6137 0.3908 0.3903
RF 0.6154 0.6045 0.3786 0.3780
LR 0.5882 0.5928 0.3455 0.3448
DNN-Local 0.6095 0.5989 0.3685 0.3307
CONCERT 0.8148 0.7946 0.6630 0.6605

IMR90 XGBR 0.5102 0.4985 0.2600 0.2597
RF 0.4985 0.4877 0.2484 0.2482
LR 0.4847 0.4831 0.2343 0.2340
DNN-Local 0.4701 0.4703 0.2181 0.1873
CONCERT 0.6779 0.6547 0.4589 0.4589

RPE-hTERT XGBR 0.5704 0.5643 0.3251 0.3223
RF 0.5582 0.5512 0.3115 0.3088
LR 0.5525 0.5496 0.3049 0.3020
DNN-Local 0.5302 0.5247 0.2809 0.2802
CONCERT 0.7519 0.7501 0.5608 0.5530

U2OS XGBR 0.6892 0.6880 0.4751 0.4751
RF 0.6826 0.6811 0.4658 0.4658
LR 0.6682 0.6712 0.4464 0.4464
DNN-Local 0.6754 0.6740 0.4558 0.4545
CONCERT 0.8611 0.8611 0.7393 0.7378

Table 4.1: Performance evaluation of RT prediction using different methods in nine human cell lines. Performance

evaluation is based on Pearson correlation coefficient (PCC), Spearman’s rank correlation coefficient (Spearmans’ ρ),

explained variance and R2 score between predicted RT signals and real RT signals across 22 autosomes in nine human

cell types using different methods for prediction. The highest performance of the compared methods is in bold font.
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Chromosome PCC Spearman’s ρ Chromosome PCC Spearman’s ρ

chr1 0.8482 0.8534 chr12 0.8303 0.8322

chr2 0.7786 0.7801 chr13 0.7789 0.7771

chr3 0.8014 0.8041 chr14 0.8538 0.8523

chr4 0.7943 0.7844 chr15 0.8278 0.8303

chr5 0.7715 0.7761 chr16 0.8693 0.8782

chr6 0.8042 0.8038 chr17 0.8951 0.8641

chr7 0.6991 0.7076 chr18 0.8193 0.8142

chr8 0.7493 0.7349 chr19 0.7646 0.8126

chr9 0.8073 0.8128 chr20 0.8161 0.8312

chr10 0.7859 0.7883 chr21 0.8765 0.8717

chr11 0.8579 0.8638 chr22 0.8674 0.7845

Table 4.2: RT prediction performance of CONCERT on each autosomal chromosome in H1-hESC cell line. Performance

evaluation is based on Pearson correlation coefficients (PCC) and Spearman’s rank correlation coefficient (Spearman’s

ρ) between predicted RT signals and real RT signals on each autosome in H1-hESC cell line.

Model type PCC Spearman’s ρ Explained variance R2 score

CONCERT-basic 0.8084 0.8109 0.6500 0.6486

CONCERT-hierarchical 0.7850 0.7911 0.6220 0.6336

Table 4.3: Performance evaluation of RT prediction in H1-hESC cell line using different model structures of CON-

CERT. Performance evaluation is based on Pearson correlation coefficient (PCC), Spearman’s rank correlation coefficient

(Spearman’s ρ, explained variance andR2 score between predicted RT signals and real RT signals across 22 autosomes

in cell line H1-hESC using the basic CONCERT model with predefined feature representation Feature I (combination of

Kmer frequency features and GC-based features) and the CONCERT-hierarchical model.

Input feature type PCC Explained variance R2 score

Feature I 0.8084 0.6500 0.6486

Feature II 0.7827 0.5970 0.5652

GC-based feature 0.7285 0.5158 0.4700

Feature I+phyloP score 0.8259 0.6662 0.6570

Table 4.4: RT prediction performance evaluation of CONCERT in H1-hESC cell line using different types of features.

Performance evaluation is based on Pearson correlation coefficient (PCC), explained variance and R2 score between

predicted RT signals and real RT signals across 22 autosomes in H1-hESC cell line using different types of features

with the basic CONCERT model. Feature I: combination of Kmer frequency features, GC-based features, Feature II:

combination of Kmer frequency features, GC-based features, and TF binding motif features, Feature I+ phyloP score:

combination of Kmer frequency features, GC-based features, and phyloP score features.
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Cell type GM12878 H1-hESC H9-hESC H1/H9 HCT116

Number of identified predictive loci 3334 1547 860 3566 761

Cell type HEK293 K562 IMR-90 RPE-hTERT U2OS

Number of identified predictive loci 1768 4278 218 2002 3911

Table 4.5: The number of identified cell type-specific predictive loci. Each column shows the number of predictive loci

that are only identified in one of the nine human cell types with flanking region size of +/-1 bin (bin size: 5Kb). H1/H9

corresponds to the number of predictive genomic loci that are only identified in H1-hESC or H9-hESC cell line.

Cell type GM12878 H1-hESC H9-hESC H1/H9 HCT116

Number of identified predictive loci 1966 2731 3032 1826 2684

Cell type HEK293 K562 IMR-90 RPE-hTERT U2OS

Number of identified predictive loci 2963 1946 1118 1182 674

Table 4.6: The number of identified predictive loci in each cell type that are also identified in at least another four cell

types without including flanking regions.

Number of cell types 2 3 4 5 6 7 8 9

Number of commonly identified 9120 4373 2768 1788 893 398 129 20
predictive loci

Table 4.7: The number of identified RT predictive genomic loci shared by a specific number of cell types. Predicted

predictive loci in H1-hESC and H9-hESC cell lines are not merged.

Number of cell types 3 4 5 6 7 8 9

(including H1-hESC and H9-hESC)

Number of identified predictive loci 4055 3039 2162 1172 480 152 22

Table 4.8: The number of predictive genomic loci identified in H1-hESC or H9-hESC cell line that are also identified in

different numbers of other cell types. Predicted predictive loci in H1-hESC and H9-hESC cell lines are merged. The

column of number of cell types equal to k (k = 3, · · · , 9) corresponds to the number of predictive loci identified in

H1-hESC or H9-hESC cell line and in another (k − 2) cell lines.
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Cell type GO biological process p-value
H1-hESC positive regulation of synapse assembly 5.2e-05

neuron migration 1.4e-04
synapse assembly 4.9e-04
regulation of calcium ion-dependent exocytosis 5.2e-04
calcium ion-regulated exocytosis of neurotransmitter 7.8e-04
negative regulation of cell proliferation 1.2e-03
axon guidance 1.6e-03
regulation of metanephric nephron tubule epithelial cell differentiation 1.7e-03
heterophilic cell-cell adhesion via plasma membrane cell 2.0e-03
adhesion molecules
positive regulation of neuron projection development 2.0e-03
vesicle fusion 3.7e-03
brain development 4.4e-03
negative regulation of catenin import into nucleus 4.9e-03
homophilic cell adhesion via plasma membrane adhesion molecules 7.2e-03
positive regulation of canonical Wnt signaling pathway 9.5e-03
vocalization behavior 9.6e-03
calcium ion transport into cytosol 9.6e-03
positive regulation of neuron differentiation 9.8e-03
nervous system development 1.2e-02
positive regulation of dendrite extension 1.6e-02
negative regulation of cell migration 1.9e-02
determination of left/right symmetry 2.1e-02
regulation of cardiac conduction 2.2e-02
learning 2.3e-02
cell adhesion 2.6e-02
negative regulation of protein phosphorylation 2.8e-02
negative regulation of angiogenesis 2.9e-02
cell morphogenesis 2.9e-02
negative regulation of Ras protein signal transduction 2.9e-02
negative regulation of mitotic cell cycle 3.1e-02
regulation of exocytosis 3.1e-02
hippo signaling 3.4e-02
neuromuscular junction development 3.6e-02

Table 4.9: Example biological processes that show correlation with cell type-specific expressed genes in predicted cell

type-specific RT predictive genomic loci in H1-hESC cell line. We use DAVID [146] to perform the gene ontology (GO)

analysis.
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Chapter 5

Conclusions

In this thesis, we developed several methods for multi-species comparison of 3D genome

organization and function, and genome-wide prediction of sequence elements that modu-

late specific types of genome function. The developed methods are aimed at addressing

the computational challenges for comparing various types of functional genomic data from

multiple species and identifying underlying sequence elements that may have functions in

modulating genome organization and function. The applications of the proposed methods

to real data reveal evolutionary patterns of 3D genome organization and DNA replication

timing across multiple primate species, with identifications of genomic and epigenetic fea-

tures that are correlated with the predicted evolutionary patterns. The methods have the

potential to provide new insights that may advance our understanding of the regulation

mechanisms of the human genome organization and function, and how they have evolved.

There are multiple directions for the future work based on this thesis, which present the

possibility to extend the work to more advanced methodology development and broader

applications.

185



5.1 Summary of the methods developed in the thesis

5.1.1 Continuous-trait probabilistic model for multi-species functional ge-

nomic data comparison

A large amount of multi-species functional genomic data from high-throughput assays are

becoming available to help understand the molecular mechanisms for phenotypic diver-

sity across species. However, continuous-trait probabilistic models, which are key to such

comparative analysis, remain under-explored. There was major methodological deficiency

of computational methods in comparing genomic features across different species. Most

of the genomic data are originally continuous signal values. All prior studies typically

discretize the continuous signals into ordinal and discrete properties before performing

comparison [47, 115]. Such discretization causes information loss and potential bias in the

follow-up analysis. To compare continuous-trait functional genomic data across species,

we developed a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-

HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic

features in a genome-wide manner. Phylo-HMGP incorporates the Ornstein-Uhlenbeck

processes [58] into the hidden Markov model, to exploit both temporal dependencies across

species encoded in the evolutionary tree and the spatial dependencies across genomic loci.

Both simulation studies and real data applications demonstrate the effectiveness of Phylo-

HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA repli-

cation timing (RT) dataset from the same cell type in five primate species (human, chim-

panzee, orangutan, gibbon, and green monkey). We demonstrate that Phylo-HMGP en-

ables discovery of genomic regions with distinct evolutionary patterns of RT. Our method

provides the first generic framework for comparative analysis of multi-species continuous

functional genomic signals to help reveal regions with conserved or lineage-specific regu-

latory roles.
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5.1.2 Phylo-HMRF for multi-species comparison of genome organization

With the development of Hi-C technology and the availability of multi-species Hi-C data,

the comparison of multi-species 3D genome organization presents a new challenge in com-

parative genomics. We developed a phylogenetic hidden Markov random field model

(Phylo-HMRF) to identify evolutionary patterns of 3D genome based on multi-species Hi-

C data by jointly utilizing spatial constraints among genomic loci in the 3D space and

continuous-trait evolutionary models. We used Phylo-HMRF to uncover cross-species 3D

genome patterns based on Hi-C data from the same cell type in four primate species (hu-

man, chimpanzee, bonobo, and gorilla). The identified evolutionary patterns of 3D genome

correlate with features of genome structure and function. The developed method provides

the first computational framework to compare genome organization across multiple species

using Hi-C data as continuous signals. The method also provides a new framework to an-

alyze multi-species continuous genomic features with spatial constraints in the 3D space

and has the potential to help reveal the evolutionary principles of 3D genome organization.

5.1.3 Genome-wide prediction of sequence elements that modulate RT

DNA replication timing in eukaryotic cells is strongly correlated with 3D genome organiza-

tion. Proper RT control is of vital importance to maintain the composition of the epigenome

and gene transcription. However, our understanding of the genomic sequence determinants

regulating DNA replication timing remains limited. A major algorithmic challenge is to

delineate a series of potential sequence determinants in shaping the RT programs over

large-scale genomic domains. We develop a new method, named CONCERT, to simulta-

neously predict RT from sequence features and identify genomic sequence elements that

modulate RT in a genome-wide manner. CONCERT integrates two functionally coopera-

tive modules, a selector, which performs importance estimation-based subset sampling of

the genomic sequences to detect predictive elements, and a predictor, which incorporates

the bi-directional recurrent neural networks and the self-attention mechanism to perform

selective learning of long-range spatial dependencies across genomic loci. We applied
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CONCERT to predict RT and identify potential functional elements for RT modulation in

mouse embryonic stem cells and multiple human cell types. CONCERT provides a generic

interpretable machine learning framework for predicting large-scale functional genomic

profiles based on sequence features and provides new insights into the potential sequence

determinants of the RT program.

5.2 Future work

There are still a number of limitations of the developed methods in this thesis. New methods

or method extensions based on the current models can be developed to address the existing

unresolved challenges and the new challenges presented by more various types of genome

organization data and functional genomic data. We will discuss different directions of

potential future work, which include: (i) integrating different types of genome organization

and genome function features for comprehensive evolutionary pattern identification across

species (section 5.2.1 and section 5.2.2); (ii) increasing the scalabilty of the current methods

for applications to larger-scale datasets (section 5.2.3); (iii) modeling both inter-species

and intra-species variations to improve the accuracy in evolutionary pattern identification

(section 5.2.4); (iv) extending the developed regulatory sequence element identification

method towards specific applications (section 5.2.5 and section 5.2.6).

5.2.1 Integrating multiple feature types for comparative genomic pattern

identification

The developed methods Phylo-HMGP and Phylo-HMRF provide frameworks to identify

evolutionary patterns using a single type of continuous genomic feature. In our study, the

studied genomic data are Repli-seq data and Hi-C data, respectively. With increasing avail-

ability of high-throughput sequencing data of 3D genome organization and function, there

can be data of multiple feature types that are correlated with 3D genome organization for

the comparison across species, such as Repli-seq data, RNA-seq data, TSA-seq data [248],
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and DamID data [249]. For example, TSA-seq technology [248] estimates the cytological

distance of chromosome loci genome-wide relative to specific nuclear compartments, pro-

viding measurement of spatial positioning of chromosomes in the cell nucleolus. DamID

technology [249] provides genome-wide mapping of in vivo targets of chromatin proteins

in eukaryotic cells and therefore provides another type of measurement of 3D genome or-

ganization. It would be important to extend the framework of Phylo-HMGP to involve

multiple types of genomic features, to perform multi-variate feature comparison across dif-

ferent species along the genome. However, how to model multiple genomic features where

there are inter-dependencies among the different types of features, in accordance with the

evolutionary model and the spatial constraints of genomic loci, presents a new compu-

tational challenge. It will be useful to develop a multi-variate phylogenetic probabilistic

model with spatial dependencies to study the evolutionary patterns of multiple continuous

genomic features from related species. Specifically, we can incorporate the coupled hidden

Markov model [250] to model the interactions among different types of genomic features.

First, we have multiple Phylo-HMGP models corresponding to different types of genomic

features, with one Phylo-HMGP model associated with one type of feature, respectively.

Each individual Phylo-HMGP model has their own set of states. There are interactions

among the different Phylo-HMGP models. The state of one model at the i-th genomic

locus depends on the states of all the models at the (i − 1)-th genomic locus. With this

cross-model dependency, we can estimate the states for the different Phylo-HMGP models

jointly. Next, we will explore representative combinations of states across different ge-

nomic features. Therefore, there are both state estimation results for each individual type

of genomic feature, in the context that feature interactions are considered, and combinatory

states estimated for the multiple genomic features.

For further improvement of the present methods, it will also be useful to include chro-

mosome rearrangements as input features for genome organization comparison across species.

Through integration of multiple feature types, the developed methods can take advan-

tage of the increasing availability of different types of genome organization data and func-
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tional genomic data, to enable more comprehensive depiction of the evolutionary patterns

of genome organization and related genome function across different species.

5.2.2 Integrating 1D functional genomic features with Hi-C data for genome

organization comparison

It will also be useful to integrate 1D genomic features with Hi-C data for genome organi-

zation comparison cross species. The proposed methods Phylo-HMGP and Phylo-HMRF

are applicable to 1D functional genomic data (e.g., Repli-seq data), and Hi-C data, which

are presented as 2D contact matrices, respectively. How to integrate the two types of data

which have different dimensions into one framework for comparison presents an another

computational challenge. One approach is to transform the Hi-C data into 1D data by call-

ing A/B compartments to capture chromatin compartment patterns encoded in the Hi-C

data, and align the transformed 1D data with the other 1D functional genomic features

(e.g., Repli-seq data). The disadvantage of the approach is that it causes loss of informa-

tion from the original Hi-C data. The second approach is to transform the 1D functional

genomic data to 2D data. We can use Repli-seq data as the example. We will generate a

contact matrix corresponding to the Hi-C contact matrix, where each entry corresponds to

concatenation of RT signals at the interacting paired genomic loci. We then align this RT-

encoded contact matrix with the Hi-C contact matrix for multi-variate feature comparison

across species utilizing the 3D spatial constraints. Specifically, I propose to use coupled-

HMRF model [251]. The contact matrix with with RT concatenation features and the Hi-C

contact matrix are each modeled with a Phylo-HMRF, each with a set of hidden states.

Phylo-HMRF models are coupled. The state at each node (representing a pair of interact-

ing chromatin loci) in one Phylo-HMRF is not only dependent on the states of its neighbors

in the model of the same feature type, but also dependent on the states of its neighbors in

the coupled HMRF model. The hidden states of the two models are inferred jointly with

one objective function. We then use combinations of estimated hidden states from each

model for interpretation of evolutionary patterns.
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The developed method will enable utilizing Hi-C data and related 1D functional ge-

nomic data simultaneously to identify evolutionary patterns of genome organization that

are closely coupled with evolution of specific genome functions.

5.2.3 Application to large-scale phylogenetic trees

The Phylo-HMGP and Phylo-HMRF models have only been applied to genomic feature

comparison across a small number of closely related primate species. How to apply the

proposed methods to larger-scale phylogenetic trees to perform functional genomic feature

comparison across more distant species presents is another direction we can explore. There

are several challenges. First, there will be more missing alignments between genomes of

distantly related species, resulting in fewer available samples (each sample corresponds to

an orthologous genomic locus across species). Second, as the number of model parameters

increases linearly with the tree size, the model complexity increases if more species are

included for comparison. The computation cost increases and the model is more easily to

be over-fitted, especially if the sample size is small. To address the challenges, first, we will

use imputation methods to impute part of the missing values which occur in a small scale

that are due to mis-alignment of sequences between species. Second, we will explore effi-

cient parameter regularization methods which are compatible with the evolutionary models

to reduce model over-fitting. Furthermore, we can employ a hierarchical inference ap-

proach, where we divide the phylogenetic tree into clades, which are smaller-scale sub-

trees, and perform model inference on the sub-trees. We then aggregate the evolutionary

state estimation results from the sub-trees to estimate genome-wide evolutionary patterns.

Moreover, it will also be useful to extend the methods to simultaneously infer the phy-

logenetic tree topology and the evolutionary states, as we have discussed in section 2.11.

The improved methods will enable us to perform genomic feature comparison across

a larger number of species with the available data and gain broader-scope understanding

on the evolution of genome organization or related genome functions, which may help us

identify important regulatory mechanism of genome organization that are conserved across
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different species or species-specific regulatory mechanisms.

5.2.4 Modeling intra-species variations

Genetic variations can contribute to differences in DNA replication timing among individu-

als [158–160]. Studies have also revealed that there is heterogeneity and intrinsic variation

of genome organization across individual cells [184]. Phylo-HMGP and Phylo-HMRF

have the limitation that the methods do not specifically consider the impact of intra-species

variation on the evolutionary pattern identification. Since we only have one replicate from

each species for analysis in our study, we have not extended the methods to account for

intra-species variations, which may be caused by the genetic variations across different

individuals. It would be an important methodological improvement to model the intra-

species variations. Assume we have the specific type of functional genomic data or Hi-C

data of multiple individuals from the same species, we propose to model the observation

of an individual with a Gaussian distribution, with both the mean value and variance of

the individual-wise distribution accounting for the intra-species variations. The average of

observations from different individuals of the same species follows a Gaussian distribu-

tion, which can be parameterized by the OU process. In this way, the parameters of the

species-level distribution will be both functions of the OU parameters and functions of the

individual-level distribution parameters, which encode the intra-species variations. How-

ever, this assumption largely increases the number of parameters to learn. Alternatively,

we will assume the parameters of individual distributions are sampled from a distribution,

which is dependent on the species-level OU process.

The method will enable us to capture both inter-species differences and intra-species

variations for more accurate evolutionary pattern identification when population-level multi-

species genomic data are available.
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5.2.5 Predicting genome-wide sequence elements that modulate 3D genome

organization

The CONCERT model is now limited to predicting 1D functional genomic signals (e.g.,

Repli-seq data) and identifying sequence elements with potential modulation functions. It

would be useful to improve the CONCERT model to apply to prediction of genome-wide

sequence elements that modulate 3D genome organization, by extending the framework

to predict 2D Hi-C contact maps and identifying predictive elements from both ends of

chromatin interactions. For this purpose, the CONCERT model will be changed into the

combination of two selector modules and a modified predictor module. For each pair of

genomic loci in a chromatin interaction, each of the two selectors attend to one sequence

of the paired loci to perform importance score estimation for predictive element selection.

The input sequence features from the paired loci are each weighted by the corresponding

estimated importance scores and concatenated as input to the predictor for genomic sig-

nal prediction. In this way, we perform interaction-wise importance score estimation for

the sequence of each genomic locus, to consider possible feature interactions between a

pair of loci. To model the spatial dependencies across genomic loci in the 3D space, in-

stead of using BiLSTM which models the 1D spatial dependencies, we will use 2D CNNs

(convolution neural networks) in the predictor module.

The new method will facilitate effective identification of the sequence elements that

may modulate genome organization, for which we still have very limited knowledge.

5.2.6 Incorporating epigenetic features to study cell type-specific regula-

tion mechanism of genome organization and function

Furthermore, we can include epigenetic features into the CONCERT model to study cell-

type specific characteristics of DNA replication timing regulation and genome organization

regulation, and improve the prediction accuracy. For example, studies have revealed that

chromatin accessibility is critical for RT prediction [39]. Chromatin accessibility varies

across different cell types and may also change during the cell differentiation process. In-
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corporating chromatin accessibility measurements (e.g., DNase-seq data [252], ATAC-seq

data [253]) may facilitate more accurate prediction of specific genomic features such as

DNA RT, and may also reveal possible interactions between the sequence features and the

chromatin accessibility. We will also include other types of epgenetic features, for example,

histone modifications with experimental evidence in potential RT modulation [74, 75, 254]

and TF binding sites based on ChIP-seq data into the modeling and prediction.

Integrating DNA sequence features with epigenetic features for genomic signal predic-

tion and regulatory element identification may help us gain understanding on how sequence

elements and potential epigenetic regulators function cooperatively to regulate genome or-

ganization and genome functions in different cell types.

5.3 Summary

In this thesis, the method development is focused on two related aspects: (i) comparative

pattern recognition based on continuous-trait functional genomic data and 3D genome or-

ganization data from different species; (ii) identification of DNA sequence elements that

may be involved in the potential sequence-dependent regulation mechanisms of the genome

organization and genome function patterns. The methods developed for (i) are mainly fo-

cused on addressing two connected computational challenges: (1) modeling different types

of genomic features across species as continuous traits for comparison, without the need

of data discretization; (2) modeling both the evolutionary dependencies across species and

the spatial dependency of genomic loci along the 1D genome or on the 3D genome. The

method developed for (ii) is an attempt to connect the observed functional genomic fea-

ture patterns to the underlying DNA sequences, which is mainly aimed at addressing the

challenge of how to effectively identify a small set of sequence elements with potential

modulation functions from the large-scale spatial domains for a specific type of functional

genomic feature of which the regulatory principles are unclear.

The methods in this thesis build up a set of computational frameworks for compara-
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tive pattern recognition and the study on sequence-dependent regulation mechanisms of

genome functions. The different directions of the future work, as discussed in section 5.2,

suggest the possibilities to further improve the current computational frameworks with new

method development. The methods, with possible improvement from the future work, not

only provide us with efficient approaches to analyzing multi-species genome organization

and functional genomic data, but also have the potential to advance our understanding on

the regulatory principles of genome organization and related genome functions.

The methods developed in Chapter 2 (Phylo-HMGP) and in Chapter 3 (Phylo-HMRF)

with related real data applications were presented in [161] and [255], respectively.
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