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Abstract 

 

The ultimate objective of any biological imaging method is to understand the 

underlying biology especially through observing, analyzing and understanding 

the structures. Biological imaging using conventional light microscopy is limited 

in resolution due to the diffraction barrier of light and hence obtaining the 

detailed structural information is difficult. Recently, there has been advancement 

in this field to break the resolution limit with several super resolutions 

microscopy methods based on localization of single molecules such as STORM, 

PALM, etc.  which are evolving into important tools for structural biology. A 

catalog of molecular positions provides insight into underlying structures 

potentially at molecular length scales and demands computational approaches 

that utilize the inherent positional information to extract meaningful structural 

biology–scale information about cellular structures. These methods still suffer 

from localization of single molecules in 3-d and we show that there are imaging 

methods which can improve the localization of multiple distinct molecules in a 

cell in 3-D. Moreover, there are limitations for dynamic imaging with these 

methods, since dynamic structures require information from fewer positions (i.e. 

shorter time window) to minimize underlying motion. Hence, the datasets are 

inherently incomplete. Our aim is to provide an information bridge between 

super-resolution microscopy and structural biology by using generative models 

to get a "molecular length-scale" picture of cellular structures. We hypothesize 

that generative models can accurately reconstruct biological structures using less 

data and with better resolution and infer useful biological information such as 

characteristic lengths, orientation of filamentous structure, molecular 

distributions for proteins inside a cell. 

 

 

 

 



 
 

v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 

ACKNOWLEDGEMENTS 
 

 

I would like to express my deepest gratitude to my advisor and mentor Dr. 

Marcel Bruchez, for his invaluable support, guidance and encouragement for the 

past four years. It has been a privilege and a wonderful experience pursuing my 

research projects under his supervision and this thesis would not have been 

possible without his support. I would also like to thank my thesis committee 

members Dr. Gustavo Rohde, Dr. Frederick Lanni and Dr. Daniel Zuckerman for 

their helpful comments and discussions on my thesis projects. 

I would like to sincerely thank my lab colleagues Qi Yan, Rowena Mittal, Yi 

Wang, Richa Verma, Anmol Grover, Saumya Saurabh, Christopher Pratt, 

Dmytro Yuschenko, Cheryl Telmer for creating such a vibrant environment in 

the research group and never let me feel as the odd one, in spite of me being the 

only non-experimental student in the lab. I can never thank them enough for 

being such great colleagues and friends and making the journey such a pleasant 

one. I will always cherish those fun moments and the wonderful time that I have 

spent with them in the lab. 

I would like to thank Dr. Gregory Fisher who was my office mate for majority of 

my graduate studies here at Carnegie Mellon for keeping my interest in 

mathematics continuing with wonderful discussions and for his encouragement 

and motivation. I would like to thank other members of the Molecular Biosensor 

and Imaging Center, Sue Andreko, Dr. Chris Szent-Gyorgyi, Dr. Byron Ballou, 

Dr. Lauren Ernst, Dr. Haibing Teng, Alison Dempsey, Mingrui Zhang, Nina 

Senutovitch, Elvira Highley, Michael Patrick, Siddhesh Angle, William 

Clafshenkel, Margaret Fuhrman and Sally Adler for their encouragement. 

Thanks to Donna Smith and Robert Bordnar for taking care of all my 

administrative and logistics needs at the Center.  

Thanks to all my colleagues and friends in the CPCB PhD program for making 

my stay in the program an enjoyable time. I would also like to thank Thom 



 
 

vii 
 

Gulish for helping me with all my administrative requirements in the PhD 

program.  

A very special thanks goes to my friends Sourav Chatterjee, Debaditya Dutta, 

Yujie Ying, Hitashyam Maka, Professor Sourav Bhattacharya, Mrs. Sudarshana 

Bhattacharya for their love and support during my stay in Pittsburgh. 

I will forever be indebted to my parents and my two sisters for their 

unconditional love and support in everything I have pursued in my life, without 

them I would not be here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

viii 
 

CONTENTS 

                      

1 Introduction to Single Molecule Super-Resolution Imaging                1 

1.1    Breaking the diffraction barrier of light    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        4   

1.2    Super-Resolution methods      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       7 

1.2.1   Optical methods for super-resolution     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        8 

1.2.2   Computation based super-resolution methods       .  .  .  .  .  .  .  .  .  .  .      12 

1.2.2.1        STORM/ (F) PALM       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     13 

1.2.2.2        SOFI         .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     15 

1.2.2.3        Multiple Fluorophore fitting      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     18 

1.2.2.4        DAOSTORM       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     19 

1.2.2.5        3B Localization Microscopy      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     19 

1.3    Spatial and temporal resolution information of super-resolution methods 22 

1.4    Modeling of Single Molecule Super-resolution Images of Biological 

Structures       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      23 

1.5    Thesis outline         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      25  

 

2 Dual Plane 3D Localization                  27 

2.1    3D Image model       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      28 

2.2    Global fitting using Dual-plane information    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      30 



 
 

ix 
 

2.3    Simulation results       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      31 

2.4    Discussion       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      37 

 

3    Generative Models for Super-Resolution Single Molecule Imaging         39 

3.1    Why do we want to use Generative model in Super-resolution Imaging?   41 

3.2    Structural Examples       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      42 

3.3    Inferring Biological Structures from Super-Resolution Single Molecule       

   Images using Generative Models: Simple Parametric Shapes     .  .  .  .  .      43 

3.4    Hough Transform (HT)       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      44 

3.5    Hough Transform as a Generative Model for Biological Structures Using              

   Single Molecule Data     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      45 

3.6    Simulated data analysis     .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .   .     51 

3.7    Parameter Information for Hough Transform reconstruction of real data    51 

3.8    Structural Similarity Index Measure (SSIM)     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      52 

3.9    Results     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       53 

3.9.1     Simulated data generation       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      53 

3.9.2     Noise sources             .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      56 

3.9.3     Reconstruction from simulated data           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      57 

3.9.4     Reconstruction from real data          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      62 

3.10 Discussion      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .   .      70 

 

 

4 Generative Probabilistic Graphical Model                 73 

4.1     Basics of Graphical Model         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    74 

4.2     Markov Random Field           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    74 

4.2.1     Pairwise Markov Random Field        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    75  



 
 

x 
 

4.3     Inference in Graphical Models        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    77 

4.4     Belief Propagation        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    78 

4.4.1     Example        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    80 

4.4.2     Nonparametric density Estimate       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    83 

4.4.3     Nonparametric Belief Propagation     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    84 

4.4.4     Particle Filter Message Passing     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    86 

4.5     Formulation of the probabilistic graphical model for super resolution     88 

4.5.1     Evidence, Proposal and Conditional distribution       .  .  .  .  .  .  .  .  .    89 

4.5.2     State Space          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    90 

4.5.3     Orientation Tensor Field       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    90 

4.5.4     Setting up the probabilistic graphical model for biological structures 92 

4.5.5     Illustrative example         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    98 

4.6     Iteratively Constrained and Enhanced STORM (ICE-STORM) Imaging   101 

4.6.1    ICE-STORM algorithm        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    101 

4.6.2    Steps to parallelize for large super-resolution dataset        .  .  .  .  .  .    102 

4.6.3     Nonparametric Belief Propagation with ICE      .  .  .  .  .  .  .  .  .  .  .  .    104 

4.6.4     Application to real super-resolution data    .  .  .  .  .  .  .  .  .  .  .  .  .  .    104 

4.7     Discussion       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    111 

 

5 Clustering and  Manifold Analysis             113       

5.1 Clustering            .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .          114 

5.1.1 Density based clustering           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .          114 

5.2 Graph based clustering    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        116 

5.2.1  Spectral clustering      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       116 

5.2.2 Similarity Graphs      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      116 

5.3    Computational Geometry    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      117 

5.3.1    K-d Tree       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      118 



 
 

xi 
 

5.3.2    Delaunay Triangulation    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      120 

5.3.3    Alpha Shaping     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      121 

5.4   Manifold Analysis         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      124 

5.4.1     Local Topology Preserving       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      125 

5.4.2     Graph Embedding         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      125 

5.4.2.1       Laplacian embedding          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      129 

5.4.2.2       Cauchy embedding              .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      130 

 

6 Monte Carlo Data Association for Single Molecule Image and Particle 

Tracking                                        133   

6.1    Probabilistic Data Association Framework         .  .  .  .  .  .  .  .  .  .  .  .      134 

6.2    Spatial ordering of points for data association        .  .  .  .  .  .  .  .  .  .  .  .      135 

6.3     Rao-Blackwellized Particle Filter         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      136 

6.3.1   Dynamic model for static single molecule structures       .  .  .  .  .  .  .      136 

6.3.2   Particle Filter         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      139 

6.4     Results           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    144 

6.4.1   Simulated data reconstruction        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    144 

6.4.2   Application to real data       .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    148 

6.5    Discussion        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    150 

 

 

7 Summary                   151 

7.1     Contributions        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    151 

7.2      Future directions       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    153 

 

 



 
 

xii 
 

Appendix                 157 

 

A    Searching for signatures of elongation rate encoded folding of protein   157           

A.1     Introduction      .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    157 

A.2    Methods     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    158 

A.3    Results        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    160 

A.3.1     Clustering Analysis        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    163 

A.4     Future work         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    165 

A.4     Conclusion     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    167 

 

Bibliography 

 

 



 
 

xiii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xiv 
 

List of Figures 

   

1.1    Diffraction limited resolution of conventional microscopy      .  .  .           5 

1.2    Resolution limit for overlapping fluorophores              .   .  .  .  .  .  .           5 

1.3    Working principle of  (A) STED  (B) (S)SSIM        .  .  .  .  .  .  .  .  .  .  .         9 

1.4    Resolution enhancement using STED           .  .  .  .  .  .  .  .  .  .  .  .  .  .        10 

1.5    STORM, (F)PALM imaging method for biological structures         .       13 

1.6 STORM, (F)PALM Imaging principle (A) Image acquisition (B) Single         

Molecule Localization (C) Localized position mapping             .  .  .        14 

1.7 Basic principle of SOFI analysis. (A) Emitter distribution (B) Time series 

fluctuation of the pixels (C) Second-order correlation function calculated 

from the fluctuations in (B). (D) SOFI intensity for the corresponding 

pixels         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        16 

1.8 Example of multi-fluorophore  fitting. Top left is 1 emitter fitting. Top 

right is 2 emitter fitting. Bottom left is 3 emitter fitting. Bottom right is 4 

emitter fitting          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        18 

1.9  State transition diagram for the fluorophores in 3B Method    .  .  .        20 

1.10  3B Approach for single molecule super-resolution imaging     .  .  .        21 

2  

2.1    Object representation       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       28 

2.2 3D Point spread Function with varying airy disk patterns at different 

axial     positions            .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       30 



 
 

xv 
 

2.3 Simulated single molecule data in a dual plane setup. (A) True Z-

position of  the object centroid is 400nm. Top row is focal plane 1 (out-of-

focus) and bottom row is focal plane 2 (in-focus). (B) True Z-position of 

the object centroid is 100nm. Top row is focal plane 1 (in-focus) and 

bottom row is focal plane 2 (out-of-focus)      .  .  .  .  .  .  .       32 

2.4 Global fitting of dual plane single molecule image. (A) true Z = 400 nm.  

(B) true Z = 100nm. The blue cross is the data and the red circle is the 

dual plane Airy model fit. The first column is Intensity-x plot and the 

second column is Intensity-y plot       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       34 

 

2.5 Localization for 10 frames shown in Fig. 3 . A) The Mean Z-localization 

accuracy when true Z0 = 400 nm is 17.27 and the standard deviation of 

the 10 Z-position estimates is 18.96. B) The Mean Z-localization accuracy 

when true Z0 = 100 nm is 16.22 and the standard deviation of the 10 Z-

position estimates is 16.94        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       36 

3  

3.1 (A) actual location based image. (B) Localization (MLE) based 

reconstruction       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       41 

3.2 Conventional fluorescence image (A) and STORM reconstruction (B,C) 

of   annular clathrin-coated pits and linear microtubules in a cell   .       42 

3.3 Illustration of working principle of the Hough Transform for lines (A) 

Parametric normal form line passing through a point (50, 50). (B) Hough 

matrix parameter space with sinusoidal line corresponding to (50, 50). 

(C) 2 additional points added to (A). (D) Sinusoidal curves intersect for 

the three collinear points, one peak in the Hough space corresponds to 

one line       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       48 

 



 
 

xvi 
 

3.4 Illustration of working principle of  the Hough Transform for Circles.    

(A) Hough accumulator space for a circle (a,b,r) when the radius r is 

unknown. The scanning circles in the parameter space are on the cone 

surface in the 3D space. (B) 5 points on a circle (100, 100, 50). (C) Circles 

in the Hough accumulator space corresponding to each of the input 

points in (B). (D) 20 points on a circle (100,  100, 50). (E) Circles in the 

Hough accumulator space corresponding to each of the input points in 

(D). The intersecting peak represents the center of the circle we are 

searching          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       49 

3.5 Example of Hough space for multiple lines and circles in the real data 

(Fig. 3.11). (A) Hough Matrix for the lines (microtubules) at 5% data 

density (B) Hough accumulator space for circles (CCPs) at 5% data 

density          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       50 

3.6 Structural mask for simulated data (A) Lines and Circles, cropped image 

in the yellow rectangle box is shown in Figure 3.8 (B) lines only (C) 

circles only       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       54 

3.7   Parallel line mask        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       55 

3.8 Representative linear and circular structure reconstruction. Column (A) 

Mask (B) outlier noise density 0 (C) outlier noise density 0.005 (D) outlier 

noise 0.02.  Position noise is 5 pixels with data density of 15% for all 

cases here         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       57 

3.9 Reconstruction measure using Structural Similarity Index CW-SSIM. A 

total of  100 random simulations were performed at each data density 

and at outlier noise densities of 0, 0.005 and 0.02. Top row is for lines 



 
 

xvii 
 

and bottom row is for circles. Column (A) Position noise of 0 pixel. (B) 

Position noise of 5 pixels. (C) Position noise of 10 pixels         .  .  .  .       59 

3.10 Parallel line reconstruction. Reconstruction measure using Structural 

Similarity Index CW-SSIM (top row) and resolution, calculated as the 

minimum inter line distance (bottom row) at indicated outlier noise 

densities. A total of 100 random simulations were performed at each 

data density. Column (A) Position noise of 0 pixel.  Column (B) Position 

noise of 2 pixels    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       61 

3.11 Single molecule localized data of clathrin (red) and tubulin (green) . Top 

row is the plotted positions from both channels. Scale bar is 500 nm. 

Second row is the representative reconstructed structures from both 

channels, overlaid on the data. (A) 10% data (B) 50% data. (C) 100% data. 

Third row is the histogram of orientation angle of the reconstructed line 

segments and the bottom row is the histogram of the diameters of the 

reconstructed circles     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       63 

3.12 Single molecule localized data of clathrin (red) and tubulin (green) with 

high density of the filaments in the region of interest. The figure on the 

left is the localized data and the figure on the right is the HT 

reconstruction at 45% of the total data density     .  .  .  .  .  .  .  .  .  .  .       65 

3.13 Laplacian of Gaussian (LoG) blob detection of circular features. Multi-

scale kernel size range is set to 1.0% - 10% of the image size (1400x1400) 

and radius search range of 1.6 – 19 pixels which corresponds to ~ 10 to 

120nm.It is a multiscale detection hence there are more than one circles 

with different radius for a detected blob. (A) Detection at 10% data 

density. (B) Same as (A), circles with radius less than 6 pixels (~38 nm) 



 
 

xviii 
 

are removed. (C) Close up view of the yellow region in (B). (D) 

Histogram of the detected blob radii in (B) (E) Detection at 50% data 

density. (F) Same as (E), circles with radius less than 6.5(~41nm) pixels 

are removed. (G) Close up view of the yellow region in (F). (H) 

Histogram of the detected blob radii in (F)      .  .  .  .  .  .  .  .  .  .  .  .  .       67 

3.14 CCP(left) and Tubulin(green) data showing cross-talk from the green 

and red channel. Scalebar is 500 nm        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       68 

4  

4.1 Simple example of an undirected graphical model (MRF). The nodes are 

in light gray and the circle in dark gray represents the observation for 

the corresponding nodes       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       76 

4.2 Belief propagation in a graphical model. (A) An illustration of 

messaging passing in pairwise MRF. (B) An illustration of message 

update and belief equation. It is a kind of distributed way of computing 

the marginal for the nodes    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       79 

4.3 Belief propagation in a graphical model without loop. An illustration of 

messaging passing in pairwise MRF without loop     .  .  .  .  .  .  .  .  .       80 

4.4 Nonparametric kernel density Estimate       .  .  .  .  .  .  .  .  .  .  .  .  .  .       84 

4.5 Nonparametric belief propagation marginal update schematic   .  .       88 

4.6 (A) Local observation potential at each node (B) Adjacency potential or 

conditional distribution between adjacent nodes       .  .  .  .  .  .  .  .  .       92 

4.7 Tubulin dimer.(A) Microtubule structure (B) Molecular distance 

constraints (C) Relative orientation from the local orientation constraint 

as described in Figure 4.8 and the illustrative example in section 4.5.5  94 



 
 

xix 
 

4.8 (a) A graphical model showing the node connections. (b)  Orientation  

estimation of the vector connecting two nodes (e.g.    and   )     .  .       

95 

4.9    Local Orientation Tensor Field        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       96 

4.10 Illustration of probabilistic graphical model.  (a) The local orientation for 

each of the points is -
 

 
 . The particle filter sampling for the estimated 

locations. (b) Blue circles are the evidence position and the black circles 

are the conditional positions. The red, green, cyan and magenta circles 

are the estimated positions.(c) The local orientation for each of the points 

is -
 

 
            .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      100 

4.11 Schematic of the ICE-STORM with Belief Propagation. The green dashed 

lines shows the final alignment of the ICE points with the ground truth            

.   .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      103                   

4.12 Example of a diffraction limited image of Tubulin (generated through 

Gaussian blurring of the actual super-resolution data)        .  .  .  .  .      105 

4.13 Application on real single molecule localization data. (a) Red points are 

starting positions and green points are after 3 ICE iterations with 2 belief 

propagation iterations each. (b) Zoomed in view of the displacement of 

the nodes           .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      106 

4.14 Local Orientation Estimation after 3 ICE iterations. (a) Starting 

orientation estimates for all the molecules. (b) Orientation estimates after 

3 ICE iterations with 2 belief propagation iterations each          .  .  .      107 



 
 

xx 
 

4.15 Local orientation field for the real data. (a) Green points are the final 

positions and dark red arrows are the local orientation for the points (b) 

Zoomed in view of a ROI        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      108 

4.16 Displacement of the molecules after 3 ICE iterations and 2 BP iterations 

each. (a) Starting pairwise intermolecular distance of neighboring 

molecules. (b) Expected localization accuracy of the molecules obtained 

from the individual photon counts. (c) The inter-molecular distance 

between the neighboring molecules after ICE iteration. (d) Displacement 

of the individual nodes after 3 ICE iterations with 2 belief propagation 

iterations each         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      109 

4.17 Displacement distributions of the molecules after 3 ICE iterations and 2 

BP iterations each. The histogram is fitted with single peak (left) and 

double peak Gaussian (right) for finding the population mean of the 

displacements         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      110 

5  

5.1 Density Based clustering using  DBSCAN showing 3 clusters     .  .      114 

5.2 (A) Kd-tree decomposition (B) Kd-tree clustering example with different 

type of search queries        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      119 

5.3 (A) Delaunay triangulation of the points shown in red circles (B) 

Voronoi Tessellation (bounded ) of the points shown in red dots  .      120 

5.4 Alpha shaping example. Yellow dots are the data points. Red curve is 

the outer edge and blue curve  is the inner edge. Gray circles searches 

for the boundary for the given set of points         .  .  .  .  .  .  .  .  .  .  .      121 



 
 

xxi 
 

5.5 (A) Alpha shape at 5% data. r =1 .    (B) Alpha shape at 2% data. r = 1. (C) 

Alpha shape at 1% data, r = 2. r is the search radius        .  .  .  .  .  .  .      122 

5.6 (A) Alpha shape at 5% data. r =1. (B) Alpha shape at 2% data. r = 1. (C) 

Alpha shape at 1% data, r = 2. r is the search radius        .  .  .  .  .  .  .      123 

5.7 The classic example of 3D Swiss roll embedding in 2D using (A) Swiss 

roll data (B) ISOMAP (C) LLE (D) Hessian LLE (E) PCA (F) Laplacian  

using the toolbox (Wittman, 2005)        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      127 

5.8 An example of 2D manifold embedding of the manifold shown in (A) 

using (B) ISOMAP (C) PCA (D) Laplacian (E) Hessian LLE  for a 2d 

embedding and same methods in (F)-(I) for a 1d embedding using the 

toolbox (Wittman, 2005)       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      128 

6  

6.1  2d Gaussian distribution with Monte Carlo (Gibbs) sampling positions  

represented by the black dots in (C).  (A) and (B) shows the exact (red) 

and approximate (histogram) 1d marginal distributions in the 2 

dimensions       .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       141 

6.2 Particle Filtering strategy        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      143 

6.3 (A) Position data is in red. Black curves are the true shapes. (B) 

Delaunay triangulation of the data shown in 6.3A       .  .  .  .  .  .  .  .      145 

6.4 (A) Laplacian Eigenmap Embedding in 1d of one of the top right circular 

structure (Figure 6.3A). (B) sorted points of the circle.(C) entire point 

cloud in 2D sorted based on the 1-d Embedding          .  .  .  .  .  .  .  .      146 



 
 

xxii 
 

6.5 (A) Particle filter estimation of the structures. The Estimated smoothed 

trajectories in bold dark green curves. The red circles indicate the 

starting point. (B) smoothed using Kalman filter       .  .  .  .  .  .  .  .  .      147 

6.6 Particle filters estimation of the real data shown with green circles. The 

estimated smoothed  structures are in bold green curves       .  .  .  .      148 

6.7 Particle filters estimation of the real data shown green circles. The 

estimated smoothed structures are in dark green curves. The straight 

lines without having any structural basis are errors in the particle filter 

estimates for data with high density filaments       .  .  .  .  .  .  .  .  .  .      149 

 

A.1   (a) Mouse phosphoglycerate kinase (PGK) color coded according to the 

tRNA abundance of the amino acids (b) Sliding window (10) average of 

the tRNA abundance for the full protein sequence, representing the 

translation rate. (c) Sliding window average of the codon usage for the 

full protein sequence          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       161 

 

A.2 (a) Bovine β-B2 crystallin (CRYBB2) color coded according to the tRNA 

abundance of the amino acids (b) Sliding window (10) average of the 

tRNA abundance for the full protein sequence, representing the 

translation rate. (c) sliding window average of the codon usage for the 

full protein sequence , representing the translation rate      .  .  .  .  .       162 

 

A.3  Clustering analysis (partial results shown) of the Translation rates for all 

the proteins starting from Alpha Helix and 50  sequence downstream (a) 



 
 

xxiii 
 

clustering using Euclidean distance as the metric .(b) clustering using  

correlation as the metric         .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       164 

 

A.4  Example schematics of single molecule imaging study of translation and 

folding of proteins          .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

xxiv 
 

List of Tables  

 

2.1   The details of model parameters and dual plane fitting for two simulated 

data samples shown in the Fig. 2.3        .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       36 

3  

3.1    HT extracted feature parameter values for the real data over 100 random 

sampling at 10 , 50 and 100 % data density.   
       

 and   
      

 are the 

mean and median values of the orientation angle of all the lines for a 

particular sampling.  
       

 and   
      

 are the mean and median 

values of the diameter of all the circles.   and   are respectively the mean 

and standard deviation over the 100 random sampling for the average and 

the median values of the distributions at each random sampling    .  .       69 

3.2    HT Parameter information for the HT reconstruction of the real dataset. 

[,] indicates fixed range values for all conditions and those in (-) are values 

that vary from 5–100% data density. The single values listed for the 

parameters     and   are the discretization steps. scale =25 and pixelsize 

=158 nm. A detailed list of parameter values for all data densities (5% 

steps) are provided in the Supporting Table S1 of (Maji and Bruchez, 2012)    

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       70 

 

 

 



 
 

xxv 
 

 



 
 

1 
 

CHAPTER   1 

 

INTRODUCTION TO SUPER–RESOLUTION SINGLE MOLECULE 

IMAGING 

 

Learning about most biological processes begins at the very basic level of the 

molecular structures of the components involved. In order to obtain the relevant 

information and be able to study them, there must be a way to visualize the 

structure. It will not be an exaggeration if we say that the development of the 

entire field of biology has been possible due to our capability to image the cells, 

which began with Antonie Van Leeuwenhoek’s prototype of modern day’s 

microscope more than 300 years ago when he discovered bacteria, protozoans, 

muscle cells, etc. Before, that Zacharias Jansen and his father Hans Jansen (1595) 

of Holland invented a compound light microscope and later Robert Hooke (1665) 

from England further refined it and actually coined the term ‘cell’ by looking at 

walls in cork tissue (plant). The major improvement in the microscope optics was 

achieved in 19th century due to the effort of Carl Zeiss and Ernst Abbe. It is only 

recently that we have seen methods such as X-ray diffraction, Nuclear Magnetic 

Resonance (NMR), Electron microscopy (EM), cryoEM and so on, besides light 

microscopy, which can capture the structural information at various scales and 

various components with amazing level of details. However, for learning about 

many biological processes and structures, often the most practical way is to 

image them using light microscopy methods due to the capability of staining and 

tagging individual cells and individual molecules of interest. Now to obtain a 
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detailed knowledge about the underlying biology, it is imperative that we should 

be able to observe the biological structures at the best possible resolution, which 

is defined as the ability of an optical system to resolve between closely spaced 

objects. We will discuss this concept in a later section. However, for many 

problems the resolution of the images obtained are not sufficient to reveal the 

intricate structural details due to the diffraction barrier of light, which was first 

introduced by Ernst Abbe in 1873.  Super-resolution (SR) imaging has led to 

various important studies in biology, which could not have been achieved with 

conventional microscopy. There are varieties of recent methods that achieve 

resolution far beyond the diffraction limit. These belong to two categories of 

methods, which works on the principle of optical switching of the fluorophores 

by manipulating the neighboring molecules in different states of activation so 

that it is easier for them to be optically resolved (Hell and Wichmann, 1994) . The 

first one is patterned illumination to spatially modulate the fluorescence of the 

molecules so that a subset of molecules are emitting at any given time and thus 

the effective point spread function of the molecules are reduced within the 

diffraction limited region causing an improvement of resolution.  This is an 

ensemble imaging method and some of the most popular methods are stimulated 

emission and depletion (STED) microscopy (Hell and Wichmann, 1994) , ground 

state depletion (GSD) (Folling et al., 2008; Kroug, 1995), saturated structured 

illumination microscopy (SSIM) (Gustafsson, 2000) and so on. The other category 

comprises of the methods where the idea is to stochastically activate individual 

molecules at different times. This makes it easier to determine the position of the 

molecules (localization) and then the structure can be reconstructed based on the 

measured position of the molecules. The methods that are based on this principle 

are called stochastic optical reconstruction microscopy (STORM) (Rust et al., 

2006),  
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photo-activated localization microscopy (PALM) (Betzig et al., 2006), 

fluorescence PALM (fPALM) (Hess et al., 2006).   These methods allow us to 

study the dynamics of complex heterogeneous systems such as living cells at the 

single molecule level. The ability to obtain information of individual molecules 

using single particle tracking (SPT) has opened up new avenues that were 

previously not possible using ensemble averaging techniques. However, 

meaningful biological studies using SPT and Super-Resolution imaging require 

an extremely precise localization of single molecules in three dimensions.   

 

There are various optical fluorescence imaging techniques available in literature, 

which are used in the studies of cellular structures and biological processes. In 

particular super-resolution imaging methods such as localization microscopy can 

achieve extremely good lateral localization accuracy, but the axial localization is 

not that good. There are several methods which allow some determination of z 

position from the localization data sets e.g. defocused (Juette et al., 2008; Speidel 

et al., 2003; Toprak et al., 2007; Zhang and Menq, 2008) and distortion 

(astigmatism) approaches (Holtzer et al., 2007; Huang et al., 2008; Kao and 

Verkman, 1994) , but compromises with photon efficiency and axial localization 

accuracy. These approaches work best for quantum dots and other bright probes, 

but are still limited with typical fluorescence probes in living cells.  In addition, 

to implement these with multiple colors as currently designed would require an 

exceptionally split (and inefficient) collection path, running multiple colors 

through multiple filters and distortion or focus-shifting optics. Also, 

conventional microscopes image only one focal plane at any time. Therefore, to 

study three-dimensional dynamics inside living cell one has to move the 

objective in sequential steps, which limits the localization and events of interest 
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due to slower acquisition speed with respect to the timescale of cellular events. 

Recently, a dual plane (Ram et al., 2008; Toprak et al., 2007; Watanabe et al., 2007) 

and dual objective (Ram et al., 2009a) imaging system that eliminates such 

imaging limitations has reported impressive 3-dimensional localization with 

around 10-20 nm axial localization accuracy. However, such imaging setup is not 

ideal for efficient multicolor localization. In addition, post-processing and 

analysis of localization data would still be computationally expensive. In order to 

perform super-resolution imaging on multiple colors, in 3-dimensions, we need 

to have a more efficient optical design, and novel and faster algorithms that 

allow determination of the object position from such a collection system, in spite 

of different optical transfer functions for each of the collected colors. 

 

 

1.1 Breaking the diffraction barrier of light 

Spatial resolution for observing fluorescence molecules under light microscopy is 

limited due to the diffraction barrier of light. In general, any point object in a 

microscope generates a diffraction pattern (Fraunhofer). The size of the 

diffraction-limited spot depends on the wavelength of the light and the angle of 

the objective. The separation between two objects then is limited by the 

interference pattern. If the first minima of one object either coincide with 

principle maxima of the second object then that provides the limit of the 

resolution.  Ernst Abbe first calculated the resolution limit and it is called as the 

Abbe Limit (Abbe, 1873) which is discussed a little later. 
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Figure 1.1 Diffraction limited resolution of conventional microscopy 

 

For a conventional microscope the focal spot of a point emitter is shown in 

Figure 1.1A . The width of the point emitter as imaged through the objective is 

the actual diffraction-limited resolution.  When these optical setup is used for 

imaging biological structures whose features are smaller than the diffraction 

limited spot size then we see the image shown in Figure 1.1B.  This forced 

scientists to think about ways to resolve this barrier of biological imaging. 

 

 

 

 

 

Figure 1.2 Resolution limit for overlapping fluorophores 
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Ernst Abbe provided a quantitative estimate of the resolution limit given by the 

following: 

      
 

    
                  

  

   
 

               (1.1) 

where the lateral resolution is given by       and the axial resolution is given by 

  .   is the wavelength of the light, n is the refractive index of the medium and 

   is the numerical aperture.  

Later Rayleigh provided a more appropriate limit for the diffraction limited 

resolution as shown in Figure 1.2. For noise free images the resolution limit 

according to Rayleigh criteria is given by: 

          
 

  
       

   

   
 

           (1.2) 

When two point emitters are farther than this resolution limit, they appear as 

two separate objects  as shown in part (a) of Figure 1.1B  and are easily resolvable 

, whereas if they are less than this limit, then they appear as a single object and 

unresolvable as shown in part (b) of Figure 1.1B. 

For typical microscope setups, the lateral resolution is around 200-250 nm and 

the axial resolution is around 500 nm. As we can see in Figure 1, that when 

objects are separated by a distance larger than the resolution limit they are seen 

as separate objects otherwise they will appear as a single unresolvable object. As 

a consequence, obtaining detailed knowledge and visualization of sub-cellular 

structures such as vesicles, microtubules, mitochondria, etc. which are sub-

resolution (< 10 - 100 nm) sizes, are not possible as they appear as blurred spots 
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when imaged under light microscopes (Abbe, 1873). To overcome this limitation, 

new optical imaging systems have been designed along with computational 

approaches that now enable us to observe those structures far beyond the 

diffraction limit and thus these methods are collectively called Super-resolution 

imaging. 

 

1.2 Super-Resolution methods  

Here we describe the various super-resolution methods currently used in 

literature in little more details.  The first categories of methods are based on non-

linear optical imaging with a deterministic activation of fluorophores and the 

second category is based on computational approach post image acquisition, 

mostly through the localization of single molecules, which are activated 

stochastically.   

 

1.2.1 Optical methods for super-resolution 

There are non-linear optical approaches such as Stimulated Emission and 

Depletion (STED), Ground State Depletion (GSD), Saturated Structured 

Illumination Microscopy (SSIM), Vertico Spatially Modulated Illumination 

(Vertico-SMI)  (Reymann et al., 2008) which effectively reduces the Point spread 

function (PSF) through optical manipulation technique. The idea is to use 

patterned illumination to spatially modulate the fluorescence behavior of a 

subset of molecules and thus achieve sub-diffraction resolution. These methods 

fall under the category of far-field microscopy with light waves showing the 

properties of Fraunhofer diffraction. The other class of optical methods uses the 

near-field properties of light where the phenomenon of diffraction of light is no 
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longer true. Some of the notable methods are near-field scanning optical 

microscopy (NSOM) (Betzig et al., 1986) which places a detector very near to the 

specimen surface, the distance being less than the wavelength of light and 

apertureless near-field scanning optical microscopy (ANSOM). Within this near 

field the evanescent waves is not diffraction limited and hence nanometer spatial 

resolution is possible. The limitation of these methods is that specimens have to 

be placed at immediate proximity to the optical probes and it can be used for 

only imaging the surface structures. The concept of achieving resolution far 

beyond the diffraction barrier was first introduced by Stefan Hell through a 

family of techniques collectively called as reversible saturable (switchable) 

optical fluorescence transitions or RESOLFT (Hell and Wichmann, 1994). The 

underlying principle of this concept is to reversibly and deterministically switch 

between two distinct states A and B or a fluorescent ‘on’ and dark ‘off’ state 

which is determined by the probability of molecules in each state. The most 

common examples are STED, GSD, and SSIM.   

              

A 
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              B 

 

 

 

 

   

 

 

 

   

Figure 1.3. Working principle of  (A) STED  (B) (S)SSIM 

 

The working principle of STED is shown in Figure 1.3A (Huang et al., 2010). At 

first, the fluorophores are excited to a higher energy state by a focused light 

beam shown in the green and followed up with depletion beam shown in red to 

bring the molecules back to the ground state through a process called stimulated 

emission.  The intensity profile of the depletion beam is usually doughnut 

shaped so that when the depletion happens it is usually on the outer sides of the 

focal spot leaving the molecules towards the central region to be still in the 

excited state. This produces a considerable decrease in the overall size of the 

fluorescent spot and thus effectively improves the image resolution to a sub-

diffraction level. Although the depletion intensity pattern is produced by the 
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diffraction-limited optics, since the molecules respond in a non-linear manner, it 

can achieve the enhancement.  

 

            

 

Figure 1.4. Resolution enhancement using STED (Fitzpatrick et al., 2009) 

 

The resolution ( ) of the microscope is inversely proportional to the root of the 

intensity of the depletion beam:    

  
 

√           

 

(1.3) 

where   is the diffraction-limited focal spot size measured as the full width at 

half maxima of the intensity, the        is the intensity of the depletion beam and 

     is the intensity of the saturated beam 

 

STED 
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In case of the structured illumination microscopy (SIM) and saturated SIM 

(SSIM) as shown in the Figure 1.3B, the illumination is sinusoidal producing the 

pattern shown in green. This in turn generates a similar pattern, shown in 

orange, when the molecules respond linearly to the excitation beam. When the 

excitation beam intensity strength is increased, the fluorescence pattern becomes 

saturated and then it generates the pattern shown in SSIM fluorescence emission 

with narrower unexcited regions, which effectively improves the resolution. 

 

So theoretically, these methods are limited by the amount of depletion light 

source, but there are some practical limitations such as optical aberrations, photo 

stability of the fluorophores, etc.  The optical resolution achieved by STED is 

about 20 nm for organic dyes and 50-70 nm for fluorescent proteins. The 

resolution obtained with SIM is 100 nm and 50 nm with SSIM in lateral 

dimension. These methods have also been used for 3-D imaging, for example, 

isoSTED with a z depletion pattern can achieve resolution of about 50nm in all 

three dimensions. In 3D SIM, three beams of patterned illumination are projected 

onto the samples and it creates an interference pattern known as moiré fringes in 

the lateral and the axial directions.  The resolution achieved by 3D SIM is ~100 

nm in lateral and ~300nm in the axial directions. A detailed review can be found 

in (Huang et al., 2010). 
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1.2.2 Computation based super-resolution methods 

Any biological structure can be thought of as a collection of individual 

components (molecules). Therefore, the resolution can also be improved through 

localization of the centroid of the single molecule, which are fluorescently 

activated over the biological structure in a stochastic manner. We are going to 

mainly focus on the far-field approaches with Fraunhofer diffraction. The notable 

amongst those methods are Photoactivated localization microscopy (PALM), 

Fluorescence PALM (FPALM), Stochastic Optical Reconstruction Microscopy 

(STORM), Fluorescence Imaging with One Nanometer Accuracy (FIONA) (Yildiz 

et al., 2003; Yildiz and Selvin, 2005), Super High Resolution Imaging with 

Photobleaching (SHRImP) (Gordon et al., 2004), Single molecule High REsolution 

Colocalization (SHREC) (Churchman et al., 2005) , point accumulation for 

imaging in nanoscale topography (PAINT) (Sharonov and Hochstrasser, 2006) 

and so on. One of most interesting non-localization based computational method 

is Super-resolution Optical Fluctuation Imaging (SOFI) (Dertinger et al., 2009). 

There is a recent method for modeling single molecule data called Bayesian 

analysis of blinking and bleaching (3B) (Cox et al., 2012) which provides a very 

powerful and interesting approach on studying biological problems with single 

molecule imaging .  Some of these notable techniques are described below. 
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 1.2.2.1   STORM / (F)PALM 

 

 

 

 

 

 

 

        

 

Figure 1.5. STORM , (F)PALM imaging method for biological structures 

 

Figure 1.5 shows how STORM and PALM imaging reconstructs the biological 

structure. Figure 1.5a shows the ground truth for the structure. Figure 1.5b and 

Figure 1.5c shows stochastic activation of the two different subsets of molecules 

at different time points. Figure 1.5d shows the reconstruction of the biological 

structure after localization of the single molecules from all such time points. 
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Figure 1.6. STORM , (F)PALM  Imaging principle (A) Image acquisition   (B) 

Single Molecule Localization (C) Localized position mapping 

 

STORM uses photo-switchable probes and is reversible whereas (F)PALM is an 

irreversible process since after a single step of photobleaching , the molecules  do 

not reappear. The basic imaging principle of STORM and PALM microscopy is 

shown in Figure 1.6. The images are acquired and then analyzed frame by frame. 

The diffraction limited spots are then segmented and fitted with a parameterized 

theoretical point spread function usually a Gaussian or an Airy function 

described in chapter 2. The estimation of the centroid of the Gaussian determines 

the position of the single molecules. This is performed for all the objects in all the 

frames and then all the positions are accumulated in a composite image with a 

higher-level pixel sampling.     

The structural resolution is dependent on the localization accuracy     of the 

single molecules and the density of the molecules that are detected. The 

localization accuracy (Thompson et al., 2002) is given by : 

    √
    

 

 
 

    ⁄

  
 

      
   

    
  

                  (1.4) 
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where      is the standard deviation of the point spread function, a is the pixel 

size, b is the background noise and N is the number of photons. 

If  ̅   is the mean localization accuracy for all the molecules in the image and  ̅   

is the mean of the pairwise nearest neighbor distance of the molecules , 

providing the sampling density information, then the structural resolution   is 

given by (Kaufmann et al., 2012): 

   √       ̅         ̅     

(1.5) 

Although, we see a substantial improvement in the spatial resolution with these 

imaging methods, this still lacks the capability of high-speed image acquisition, 

which is critical for studying dynamic imaging. Recent demonstrations using 

very high laser power improved the frame-capture timescale by an order-of-

magnitude by accelerating the localization and deactivation cycle time (Jones et 

al., 2011). While this approach achieved 0.5–2 second acquisition speeds, this still 

poses a challenging limit for many biological processes with timescales of 

milliseconds or even lower.  Other methods such as FIONA, SHRImP and 

SHREC are all based on the same principle with different conditions and 

applicability. 

 

1.2.2.2   SOFI 

This method uses the fluorescence blinking of fluorophores to improve the 

spatial resolution. The working principle of SOFI (Dertinger et al., 2009) is based 

on the assumption that blinking behavior of the neighboring fluorescent 

molecules is statistically independent, whereas the single molecule spatio-
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temporally correlates with itself. As a result the temporal correlation of each 

pixel through the time series can generate a higher resolution image due to the 

reduced effective point spread function size.  

 

 

 

 

Figure 1.7    Basic principle of SOFI analysis. (A) Emitter distribution (B) Time 

series fluctuation of the pixels (C) second-order correlation function calculated 

from the fluctuations in (B). (D) SOFI intensity for the corresponding pixels.  

  

The emitter fluorescence distribution is shown for two overlapping fluorophores 

in Figure 1.7A. The first step in SOFI is to collect the signal from the emitter 

fluorescence distribution and convolve the signals with the PSF of the optical 

system. Then the convolved values are recorded on sub-diffraction pixels so that 
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the information of the diffraction-limited spot is spread over multiple pixels. As 

a result, each pixel now contains the time series information, consisting of the 

sum of signals (Figure 1.7B) from the emitters whose PSFs are part of the pixel. 

The next step is to calculate the second-order correlation function from the 

fluctuations recorded in each pixel as shown in Figure 1.7C. Then the higher 

order statistical cumulant, given by the integral over the second-order correlation 

function is computed for each pixel. This results in the SOFI image as shown in 

Figure 1.7D.  The expected spatial resolution enhancement that can be achieved 

by SOFI imaging is a factor of   , since the emitter signal is processed by a 

second-order correlation function that is proportional to the squared PSF. If we 

take even higher order correlations then it can reduce the noise further. There is a 

variant of SOFI called variance imaging for super-resolution (VISION) 

(Watanabe et al., 2010) which has achieved 80 ms temporal resolution , although 

the spatial resolution enhancement is limited. 

There are some advantages of SOFI over localization-based methods.  Since the 

fluorophores are uncorrelated, it can automatically distinguish between 

overlapping fluorophores and it can remove the background automatically. It 

requires dark state lifetime of the fluorophores to be on the order of the frame 

rate and the acquisition is usually faster than localization microscopy. It can be 

used alongside with most wide-field microscopy. There are some limitations to 

this method such as, the assumption that the positions of emitters are unchanged 

during the image acquisition, though this problem is fixable. The short 

acquisition time can generate noise in the correlation values and the fluorophore 

on-off switching rate will limit the acquisition speed for the method. SOFI has no 

single molecule information and so can be used only for super-resolution image 

reconstruction and not for single molecule studies. 
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1.2.2.3   Multiple Fluorophore fitting 

In super-resolution microscopy, the usual approach is to localize the single 

molecules and perform the reconstruct the structures or do single particle 

tracking. However in many cases the density of single molecules high and for 

that reason the localization suffers due to overlapping fluorophores, since the 

model that is used to fit the single molecule intensity profiles is assuming there is 

only a single emitter in that space. Therefor a significant amount of data is either 

not properly localized or is discarded. In order to retain the valuable data 

approaches have been developed such as (Huang et al., 2011).This method uses a 

Bayesian maximum likelihood estimation method to localize multiple 

fluorophores in a given region of interest.  

 

 

 

 

 

 

 

 

 

Figure 1.8  Example of multi-fluorophore  fitting. Top left is 1 emitter fitting. Top 

right is 2 emitter fitting. Bottom left is 3 emitter fitting. Bottom right is 4 emitter 

fitting  
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Figure 1.8 shows an example of multiple fluorophore fitting where we see that 

with 4 emitter fitting , all the molecules are correctly localized compared to the 

lower order fittings. 

 

1.2.2.4   DAOSTORM 

This algorithm was originally developed as DAOPHOT (Stetson, 1987) for 

studying images of crowded stars in astronomy, has been adopted for resolving 

high-density super-resolution images. The basic idea is to find the fluorophores 

in the image on the first pass with single emitter fitting approach. Then subtract 

the fit from the original image and perform the fitting on the residual image in a 

iterative manner until no further emitters are left in the residual. Standard 

DAOSTORM (Holden et al., 2011) uses a fixed-shape model PSF although it has 

been extended to variable shape in the 3D-DAOSTORM (Babcock, 2012). The 3d 

version is significantly more efficient and faster than the 2d version. 

 

1.2.2.5    3B Localization Microscopy 

The Bayesian analysis of blinking and bleaching (3B) method models the 

blinking and bleaching mechanisms of multiple fluorophores using a Markov 

Chain Monte Carlo (MCMC) approach. The 3B method works by modeling over 

the full time series and it generates several possible models and a weighted 

average of all those models generates a probability map of the location of the 

fluorophores.  It factors the prior information on the blinking and bleaching 

behavior of the fluorophores, their numbers, location and the temporal 

dynamics. 
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The emitting fluorophores are modeled using a Gaussian profile with a state 

space (x, y, r, b),   where x, y is the position, r is the spot radius and b is the 

brightness of the emitter. The state transition for the Markov chain model is 

shown below: 

 

  

Figure 1.9  State transition diagram for the fluorophores in 3B Method 

 

The next step is to compute the different probability distributions, with the goal 

of finding the maximum a posteriori (MAP) location estimates. The marginal 

integrals are calculated using a hybrid of MCMC and forward Hidden Markov 

Model (HMM) algorithm. To build the final image from the MAP estimates of 

the locations , the positions are mapped to the pixel in the higher resolution pixel 

grid and the intensity values are calculated from the accumulated fluorophores 

weighted with the MAP intensity values. 

In principle, the 3B methodology is similar to just point estimates for sparse 

emitter locations. However, it’s actual effectiveness can be seen for high-density 

case where simple point estimates are not sufficient to provide enough 

information, since there will be a lot of ambiguous estimates, in which case a 
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multi fluorophore fitting approach, as discussed earlier, is required. Since the 3B 

method averages over several models, it automatically accounts for the 

ambiguous cases as well. The different situations is shown in Figure 1.10  below 

(Lidke, 2012) . 

 

Figure 1.10   3B Approach for single molecule super-resolution imaging  

 

The 3B method has can be used with most common fluorescence microscopy 

experiments. If we compare with SOFI, which also can deal with overlapping 

fluorophores, the 3B method has some advantages. For reconstructing the 

structures with similar details, SOFI requires more data than the 3B method, 

although the reconstruction is much faster for SOFI. In addition, the resolution 

enhancement with SOFI is limited whereas the 3B method can achieve resolution 
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up to 50 nm with relatively short acquisition time of few seconds. For 3B method, 

with more data the spatial resolution is expected to improve at the expense of 

temporal resolution and vice-versa. The computational time complexity varies 

linearly with the number of emitters times the number of pixels, for the 3B 

method. This actually is quite computationally intensive when there is a large 

model to analyze. In short, the 3B method is an exciting and powerful concept for 

analyzing and reconstructing dynamic images of biological structures using 

super-resolution microcopy. 

 

1.3   Spatial and Temporal resolution information of super-resolution methods 

The imaging methods used in fluorescence microscopy cover spatial resolution 

from 5 mm to ~ 10 nm (Fernandez-Suarez and Ting, 2008; Huang et al., 2010).  

Widefield and Total Internal Reflection Fluorescence (TIRF) microscopy 

generally covers the range ~ 5 mm to 400 nm and milliseconds temporal 

resolution. Confocal has a spatial range of 5 mm to 200 nm and a temporal 

resolution of milliseconds. GSD and SSIM has a spatial range of 5 mm to ~ 80 nm. 

STED has a spatial range of 5 mm to 10 nm and a temporal resolution of seconds. 

PALM and STORM has a spatial range from 5 mm to 10nm with a temporal 

resolution of seconds. NSOM has a spatial range from 5 mm to 10nm. EM and 

cryoEM has a spatial range from less than 100    to less than 1 nm. NMR has a 

spatial range of 100    to less than 1nm and temporal resolution of less than 

seconds. 
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1.4   Modeling of Single Molecule Super Resolution Images of Biological 

Structures 

So far we have seen all the different methods which can either image biological 

structures at sub-diffraction resolution using improved optical setups, 

fluorescent probes or performing post processing of the single molecule images 

acquired to provide the super-resolution images or the single molecule 

information the biological problem. Some methods are better than the other in 

respect of providing improved spatial resolution and some are superior to the 

other in providing better temporal resolution for imaging dynamic biological 

processes. All these methods may be extremely good at providing the raw 

structural image, but what none of these methods are able to provide is the 

capability of understanding the images automatically with minimal human 

supervision or interpretation.  We can take the super-resolution imaging concept 

one-step further with the novel idea of actually reconstructing the images using 

generative models for the biological structures. 

The 3B method describe earlier is extremely powerful in that sense of providing 

the spatial and temporal dynamics of the biological structures and other 

information about the actual physical process of blinking and bleaching behavior 

of the fluorescent emitters. What we are aiming is that we would tackle this 

problem from the view point of structural model rather than the actual physical 

process that generates the fluorescence over the structure to make it absolutely 

independent of any physical process of the probes.   

Various computational methods from the branch of statistical machine learning 

and computer vision (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; 

Stoitsis et al., 2008; Taylor et al., 2011; Thomann et al., 2003)  have been applied to 

study biological and biophysical structures and processes. These applications are 



 
 

24 
 

mostly on confocal or other conventional images of biological structures like 

actin filaments with parametric feature extraction techniques such as Hough 

Transform in (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; Stoitsis et 

al., 2008; Taylor et al., 2011; Thomann et al., 2003) , Radon Transform and 

Beamlet Transform in (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; 

Stoitsis et al., 2008; Taylor et al., 2011; Thomann et al., 2003). Some are 

applications to electron microscopy (EM) images such as in (Berlemont et al., 

2008; Li et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; 

Thomann et al., 2003) . Again some of the methods are for studying dynamic 

trafficking and tracking of single molecules such as in (Berlemont et al., 2008; Li 

et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; Thomann 

et al., 2003).  Methods such as active contour models from computer vision and 

method like particle filters with Monte Carlo Sampling methods from machine 

learning has been employed for studying actin filaments (Berlemont et al., 2008; 

Li et al., 2009a; Schaub et al., 2007; Stoitsis et al., 2008; Taylor et al., 2011; 

Thomann et al., 2003) from conventional microscopy images. Again, various 

generative models (Fudenberg and Paninski, 2009; Svoboda et al., 2009; Zhao and 

Murphy, 2007) have been used to model biological structures from conventional 

microscopy images. These models generally are parametric models based on 

several structural components, that is used to learn and build the generalized 

cellular and sub-cellular structures with several instances of the similar structure. 

The structure of localization-based SR imaging data is different from that of 

conventional microscopy and hence we need to develop methods from first 

principles or apply approaches already existing in the computational fields to 

address the needs of super-resolution and single molecule imaging field. 
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1.5    Thesis outline 

The essence of this thesis is about inferring biological structure from single 

molecule images and improving the localization image data, which already has a 

sub-diffraction resolution. The idea is to be able to reconstruct the structures at 

much lower spatial sampling which will enabling us to improve the temporal 

resolution for dynamic imaging. Since our primary focus is on localization 

microscopy, one of the objectives is to determine methods of improving the 

localization capability. With that idea, we start with a method for 3D localization 

of single molecule, using multi-focal plane imaging (first introduced in (Ram et 

al., 2008; Ram et al., 2009a), in chapter 2. The motivation of course is to point 

towards the fact that given an appropriate optical setup we can still push the 

boundary for localization microscopy, which would help in ultimately 

reconstructing the structures or track single molecules more accurately. Since our 

ultimate goal is to determine the biological structures, we take the concept of 

localization microscopy to a different level with completely different perspective 

of studying single molecule super-resolution data using generative models, 

starting in chapter 3. We present a proof of principle using a parametric feature 

extraction technique called Hough Transform for showing that we can establish 

the underlying biological structures with primitive shapes from sparse single 

molecule data and thereby potentially improving on the temporal resolution. 

This chapter is mostly adapted from the publication (Maji and Bruchez, 2012). In 

chapter 4 we present another approach of modeling arbitrary biological 

structures using single molecule super-resolution data with a generative 

probabilistic graphical model framework. The manuscript for this chapter is in 

preparation. The motivation of this work is to start with a subset of data and 

improve the model gradually in a iterative manner using the biologically 
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relevant model constraints for the structure of interest. In chapter 5 we discuss 

some clustering and manifold learning algorithms for 2d point data sets which 

could be useful for recovering some straightforward super-resolution structures 

and provide additional information. In chapter 6 we discuss a method on Monte 

Carlo based data association algorithm, which is usually used for tracking 

multiple objects. We wanted to test if a single framework can both perform single 

particle tracking and recover structures from static data. These methods pave the 

way for future development of sophisticated modeling of biological structures 

from super-resolution microscopy images. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

27 
 

CHAPTER   2 

 

 

DUAL PLANE THREE-DIMENSIONAL LOCALIZATION OF SINGLE 

MOLECULES 

 

 

Conventional microscopes use serially stepped single focal plane imaging 

to study biological process and that limits the capability to look at fast processes 

in 3-dimensions. Localization of single object with single plane intensity 

information often leads to a poor estimate of axial positions especially near the 

focus where   the change in point spread function (PSF) with Z displacement is 

minimal. One method to make this change of PSF with Z positions more 

pronounced for better estimation of the axial position is by distortion of PSF or 

astigmatism as in (Holtzer et al., 2007; Huang et al., 2008), but this technique is 

limited in its spatial range to about 1 µm or less and still shows minimal 

distortion near the true focal plane. In order to do single particle localization and 

tracking with better spatial and temporal precision; we can use a dual plane 

imaging setup (Ram et al., 2008). Dual plane information (in-focus and out-of-

focus) would allow us to estimate the 3D location more accurately than classical 

approaches, because the in-focus data would provide us with Z-information for 

object positions away from the focus better and out-of-focus data would provide 

better Z-information for object positions near focus. Together they would 

provide improved Z-displacement sensitivity for all the axial positions. The axial 

range for the dual plane approach is more than 2 µm, which is a significant 

advantage over astigmatism approach as far as biological processes are 
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concerned. The objective is also to track multiple objects for analyzing the 

interactions of different biological molecules. 

 

2.1   3D Image model  

 

 

 

 

 

 

 

 Figure 2.1. Object representation  

 

Here                is a point on the image plane,              is the actual object 

coordinate and 
f

z  is the focal distance. 

For three-dimensional localization, the object intensity profile could be fitted to a 

three-dimensional Gaussian PSF given by:  

                 [ 
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    (2.1) 
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Here (     ,    ) are the coordinates of the centroid and (  ,      ) are the 

standard deviation of the point spread function in x, y and z direction 

respectively,    is the peak intensity and    is the offset for the intensity profile. 

 

However, a more correct way to localize single molecules is to use a 3D Airy 

function as the point spread function (Aguet et al., 2005) based on (Born and 

Wolf, 1999) and described in (Gibson  and Lanni, 1989; Gibson  and Lanni, 1991) 

is given by: 

   (    | )  | ∫   ( 
  

  
  )

 

 

   [   (      | )]   |

 

     

               (2.2) 

where A is a constant complex amplitude,    is the zeroth order Bessel function 

of the first kind.   is the wavenumber,    √        (    )
 
 is the radial 

distance from the centroid of the object and    is the numerical aperture of the 

microscope,   (      | ) is the phase aberration term defined as   (      | )  

     ,   is the set of optical parameters and  OPD is the optical path difference 

between the object plane and the detector plane and is given by:  

        
    

   
     

(2.3) 
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Below is a model representation of the 3D point spread function 

 

 

 

 

 

 

 

 

Figure 2.2  3D Point spread Function with varying airy disk patterns at different 

axial positions 

 

A single focal plane is symmetric to the positive and negative Z displacement 

whereas dual plane is inherently asymmetric for the displacement and may 

contain more information about the 3d position of a molecule. 

 

2.2   Global fitting using Dual-plane information  

The z-position estimates for fluorescent objects close to focus is usually very 

difficult, so a good way to resolve this problem is to use information from more 

than one plane. Localization using multifocal plane data has been shown in (Ram 

et al., 2008; Ram et al., 2009a). Here we use a similar approach to address the 

problem to show the working principle of dual plane method. Suppose the 
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intensity distribution of an object in any two planes separated by a distance    

(as shown in Figure 2.2) is given by: 

  (    | )           (    | )  

  (      )           (             | )  

          

                        (2.4) 

where       and       are the background noise for plane 1 and plane 2. 

Then the actual object intensity profiles in two planes can be fitted 

simultaneously (global fitting) to their corresponding theoretical forms given in 

Equation 2.4  Global fitting can be achieved by minimizing the objective function 

for least square error: 

    |  (    | )    |
 
 |  (    | )    |
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    (2.5) 

where      and      are fluorescence image intensity profile for the object in plane 

1 and plane 2 respectively. The fitting results from the two focal planes should 

provide a better estimate of the actual centroid due to higher information content 

than if we had just one plane.  

 

2.3   Simulation results  

The simulated dual plane data is shown in Figure 2.3. The data is generated with 

the parameter values described in Table 2.1. The goal is to estimate the z position 
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,using the information from both the planes, of all the images given its true 

position by which the data was generated. The global fitting results for the two 

cases are shown in Figure 2.4.  

 

 

  

A 

 

 

B 

 

 

Figure 2.3. Simulated single molecule data in a dual plane setup. (A) True Z-

position of the object centroid is 400nm. Top row is focal plane 1 (out-of-focus) 

and bottom row is focal plane 2 (in-focus). (B) True Z-position of the object 

centroid is 100nm. Top row is focal plane 1 (in-focus) and bottom row is focal 

plane 2 (out-of-focus).  

    

The simulation details are provided in the Table 2.1.  In the first two columns of 

Figure 2.4A and B, the blue curves are the simulated data and the red curves are 

from the dual plane fitting model given by equation 2.4 and 2.5.  The third 

column shows the difference between the data and model fits. The fitting 

estimate of the Z positions are quite close to the theoretical position values for all 
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the positions. Figure 2.5 shows the variability of the estimates for the same Z 

positions for different instances of the z position data. The simulation shows very 

good improvement of the dual plane method over single plane localization, 

where the accuracy is generally around 40-50 nm (Ram et al., 2008) for a photon 

count of about 1000. The localization is even worse in single plane when objects 

are close to the focus. There are however limitations to the dula-plane method, 

mostly in the physical setup. 
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Figure 2.4  Global fitting of dual plane single molecule image. (A) true Z = 400 

nm.  (B) true Z = 100nm. The blue cross is the data and the red circle is the dual 

plane Airy model fit. The first column is Intensity vs x plot and the second 

column is Intensity vs y plot. 
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Table 2.1. The details of model parameters and dual plane fitting for two 

simulated data samples shown in the Fig. 2.3 
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    A 

 

 

 

 

 

 

   

      B 

 

  

 

 

 

 

 

Figure 2.5. Localization for 10 frames shown in Fig. 3 . A) The Mean Z-

localization accuracy when true Z0 = 400 nm is 17.27 and the standard deviation 

of the 10 Z-position estimates is 18.96. B) The Mean Z-localization accuracy when 

true Z0 = 100 nm is 16.22 and the standard deviation of the 10 Z-position 

estimates is 16.94. 
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2.4    Discussion  

For simulated dual plane single molecule data, the localization accuracy is less 

than 20 nm, which is comparable to astigmatism based axial localization (but 

dual plane has other advantages) and is a significant improvement over single 

plane localization accuracy that usually around 40 - 50 nm. Although, it would 

be more meaningful to test the performance on real data, we have demonstrated 

here the effectiveness of multi-focal plane imaging for improved localization of 

single molecules in 3d with simulated data. The dual plane localization approach 

may be further improved by using maximum likelihood estimation method by 

incorporating the dual plane information in the model. Although here we have 

discussed one approach of improving the 3d localization accuracy of single 

molecule, there are other approaches involving modified PSFs (Pavani et al., 

2009; Thompson et al., 2011) or the optical setups including astigmatism as 

already mentioned before or develop newer methods. The idea here is to either 

improve the localization as much as possible, so that ultimately it can help more 

accurate SPT studies by reducing the ambiguities in the trajectories or achieve 

better resolution structures from localization microscopy data. The field of super-

resolution microscopy is rapidly progressing with newer microscopy techniques 

and therefore it is an opportunity to introduce novel computational approaches 

for single molecule data analysis for biophysical studies. We have introduced 

one such concept in Chapter 3. 
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CHAPTER 3 
 

GENERATIVE MODELS FOR SUPER-RESOLUTION SINGLE 

MOLECULE IMAGING 

 

 

Super-resolution (SR) imaging has recently led to a number of important 

insights in biology that could not have been achieved with conventional 

microscopy due to optical resolution limitations (Abbe, 1873; Hell and 

Wichmann, 1994). A variety of approaches now achieve resolution far beyond 

the diffraction limit. Localization based approaches such as STORM (Rust et al., 

2006), PALM (Betzig et al., 2006) , FPALM (Hess et al., 2006) and related methods 

have been employed effectively for static and slowly-moving structures.  These 

approaches require sequential acquisition of positions of individually resolved 

fluorescent molecules, which are then assembled into a high-resolution image.  

The resolution in these images is related to the localization accuracy and the 

sampling density, with high-resolution images requiring comprehensive 

sampling of the molecular positions.  Because of these requirements, localization 

microscopies still struggle to provide high spatial and temporal resolution 

images, primarily due to the time-scale mismatch between acquisition and 

biological motion. Recent demonstrations using very high laser power improved 

the frame-capture timescale by an order-of-magnitude by accelerating the 

localization and deactivation cycle time (Jones et al., 2011). While this approach 

achieved 0.5–2 second acquisition speeds, this still poses a challenging limit for 

many biological processes.  
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Recently, computational methods from the branch of statistical machine learning 

and computer vision (Berlemont et al., 2008; Li et al., 2009a; Schaub et al., 2007; 

Stoitsis et al., 2008; Taylor et al., 2011; Thomann et al., 2003) have been applied to 

biological structures and biophysical processes. Various generative models 

(Fudenberg and Paninski, 2009; Svoboda et al., 2009; Zhao and Murphy, 2007) 

have been used to facilitate analysis of conventional microscopy images. The 

structure of localization-based SR imaging data is different than that of 

conventional microscopy. The catalog of molecular positions provided by this 

approach provides information about the underlying structures at molecular 

length scales. Such data requires computational approaches that utilize the 

inherent positional information to extract meaningful structural biology–scale 

information about those cellular structures. Because localization microscopy 

relies on sequential acquisition of molecular positions, a shorter acquisition 

window results in identification of fewer molecular positions from the 

underlying structure. Dynamic localization datasets are inherently incomplete; 

yet represent a statistical sampling of the complete underlying structure. Our 

aim is to provide an information bridge between super-resolution microscopy 

and structural biology by using generative models to build a top-down 

molecular scale picture of cellular structures.  

We hypothesized that generative models can accurately identify underlying 

biological structures at high resolution using significantly less data than the full 

localization based reconstruction at Nyquist sampling.  Such models can be used 

to extract useful biological information such as characteristic lengths and 

inclination angles of filamentous structures, organelle size and shape and other 

representative characteristics of the underlying structures. 
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3.1.   Why do we want to use Generative models in Super-resolution Imaging? 

Let us consider the toy example in Figure 3.1A. It is an image based on the exact 

location of the actual objects where we can clearly see the structural details. Now 

through localization microscopy we would most likely not be able to see this 

image, rather we would see a much blurrier image in the context of molecular 

proportions. Now Figure 3.1B is the single molecule localization based 

reconstruction of the same image. Although, we are able to see some details, 

others are obviously lost such as the “step” like portion of the structure. 

 

                               

 

 

 

 

    

              A                                       B 

Figure 3.1. (A) actual location based image. (B) Localization (MLE) based 

reconstruction 

However if we have a generative model for the same example we can reconstruct 

the original image without much of a problem and with full structural details. 

This is a very simple toy example, so it is easy for us to think of a generative 

model that could generate the straight lines or parametric curves easily, but as 
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real world biological examples are not that simple, we have to devise a modeling 

framework, which can accommodate such complexities.   

 

3.2.   Structural Examples  

Many Biological structures can be roughly characterized as simple geometric 

shapes like lines, circles, ellipse and so on.  

 

 

 

 

 

 

 

Figure 3.2. Conventional fluorescence image (A) and STORM reconstruction 

(B,C) of annular clathrin-coated pits and linear microtubules in a cell (adapted 

from (Bates et al., 2007)) 

 

We can clearly see that localization based methods enhances the structural 

details and resolution in comparison to conventional methods. We want take this 

one step further by using generative methods, which according to our hypothesis 

can improve the resolution and provide with more useful information about the 

biological structure. 



 
 

43 
 

3.3.   Inferring Biological Structures from Super-Resolution Single Molecule 

Images using Generative Models: Simple Parametric Shapes 

Here we apply a parametric feature extraction method known as the Hough 

Transform(Duda and Hart, 1972) to identify basic structures using sparse single 

molecule (SM) data in 2-d. As a proof of concept, we have chosen HT as our test 

method. We would like to emphasize here that we chose HT as our test method 

only due to its simplicity and popularity in robust detection of parametric 

curves. This approach is robust to noise sources common in localization datasets.  

In addition, it is robust to occlusion and the presence of features unrelated to the 

parameterized features of interest. As implemented here, the Hough Transform 

efficiently infers underlying structures in spite of substantially reduced 

molecular sampling density and recovers quantitatively useful information about 

the sample set based on the parametric definitions of the objects. This 

computational framework lays the groundwork for extension to more 

generalized parametric objects in 2-d and 3-d. 

 

The Hough Transform (HT) and its close relative Radon Transform has been 

previously used to study biological features from images (Maly and Borisy, 2001; 

Stoitsis et al., 2008; Verkhovsky et al., 2003; Zhou and Zheng, 2008). We extend 

the method to the analysis of localization based super resolution image datasets. 

Although we evaluate only the parametric case, the generalized Hough 

Transform (GHT) and variants can be extended to non-parametric cases. In case 

of the standard HT applied here, the parameter space for lines is 2-d and for 

circles is 3-d, both remaining computationally tractable for typical SR 

datasets(Duda and Hart, 1972). In contrast, GHT variants usually involve a 4-d 

parameter space with position, orientation and scale (Ballard, 1981), and are 
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substantially more computationally expensive. An efficient extension of GHT 

called displacement vector GHT (DV-GHT) is proposed in (Kassim et al., 1999). 

Some other improved and faster variants have been proposed for 2-d (Fung et al., 

1996; Galamhos et al., 1999; Illingworth and Kittler, 1987; Kimura and Watanabe, 

2000; Kimura and Watanabe, 2004; Olson, 1998; Suetake et al., 2006; Xu et al., 

1990) and 3-d (Khoshelham, 2007). HT and GHT are inherently parallelizable, so 

large-scale computation can be managed by performing hardware-based parallel 

processing using the latest GPUs (Gómez-Luna et al., 2011) or field 

programmable gating arrays (FPGA)(Geninatti et al., 2009), potentially making 

some of these generalized methods computationally approachable. 

 

 

3.4   Hough Transform  

The Hough Transform (HT) (Duda and Hart, 1972) is a standard computer vision 

tool for recognition of global patterns in an image space by recognition of local 

patterns such as points or peaks in a transformed parameter space. The basic idea 

of HT method is to identify parametrizable curves such as lines, polynomials, 

circles, ellipsoids, and others using a voting procedure on the parameter space 

based on features in the image. It is worth noting that HT is generally applicable 

to images with Gaussian noise and may not provide optimal solution for images 

with Poisson noise from the perspective of detection theory. However, here we 

have set of localized points from images with Poisson noise and the points are 

transformed into image pixel features. Each input feature contributes to a global 

consensus shape that most likely generated the image point. Localization 

datasets produce discrete features, namely the set of found molecular positions.  
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Since each point is treated independently, outlier noise pixels will add small 

peaks and occluded points will just alter the peak intensities in the parameter 

space without changing the actual structure. In addition, points from other 

shapes will not significantly contribute to the peaks for the consensus shape in 

the transformed parameter space. These traits make the HT robust to noise, 

partial occlusion and the presence of other shapes, common problems 

encountered with localization microscopy. HT does not require any prior 

information about the number of solution classes and can find multiple instances 

of the shape at once. We have applied the classical HT to extract linear and 

circular structures from SR biological datasets. HT implicitly generates the 

observable structural data from a probability density function through a 

Bayesian process (Toronto et al., 2007). Hence, HT is an implicit generative 

model of parameterized shapes.  

 

3.5   Hough Transform as a Generative Model for Biological Structures Using 

Single Molecule Data 

In classical machine learning a generative model is defined as a model that can 

randomly generate observable data with a parameter set defined by a full joint 

probability distribution with priors. The working principle of the Hough 

Transform (HT) is essentially a voting process. Investigated from a Bayesian 

perspective, if the votes follow a probability distribution, the joint probability 

distribution of all the input feature points is, in effect, the voting process. The 

mathematical proof has been shown elsewhere (Toronto et al., 2007) for 

conventional images and edge points found through edge detection. In the 

current application, the features are localized single molecules from labeled 
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biological structures that can be represented as parametric objects. The proof can 

be straight forwardly extended to this situation.  

Parameterization of a structure is based on a function that defines the structure 

in terms of a set of variables. The parametric normal form of a line is: 

                , with a 2-d parameter space                                              

    (3.1)                          

The parameter   is the distance of the line from the origin of the coordinate space 

and   is the angle formed by the line relative to the horizontal axis. 

The parametric equation for a circle is: 

                   with a 3-d Hough parameter space                     

    (3.2) 

The parameter (  , b) is the center of the circle and   is the radius of the circle. 

The working principle for a classical HT is explained below. 

Fig. 3.3A represents the parametric normal form line               , drawn 

in solid blue color, passing through a point (50, 50), with      and         

Here the origin is (1,1).  Fig. 6B shows a sinusoidal curve in the Hough parameter 

space      , corresponding to the point (50,50) in the real space. When we have 

three points (Fig. 3.3C), the Hough parameter space has three sinusoidal curves 

(Fig. 3.3D) corresponding to the three points in real space and they have an 

intersection point corresponding to a particular pair of       values indicating 

that the three points are collinear in the real space (Fig. 3.3C). The individual 

curves are accumulated in a matrix (the Hough matrix), and consensus lines are 

identifiable as peaks within this accumulation matrix (in this case, a single point 
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with a value of 3).  When there are multiple lines in the image space, there will be 

several intersections of the sinusoidal lines (peaks) for the group of points falling 

on the corresponding lines in the image space. Line end points are determined 

based on votes and a pre-defined maximum gap allowed between two points. If 

the distance between points exceeds a threshold, the line is terminated at the 

previous point generating an end point. 

 

The detection of circles works on the same voting principle as that of lines, only 

the Hough parameter space is 3-d        .For each input point on the original 

circle (Fig. 3.4B) there will be a range of circles (depending on the discretization 

of the parameter space) in the Hough accumulator space with the input point as 

the center. The intersection of those circles will define the center of the circle in 

the original image space. For the above example with 5 and 20 points, the 

intersection of the circles in Hough space (Fig. 3.4C) is around (100,100) as the 

original circle (Fig. 3.4B). This example also shows how more input points, 

produces more votes for a particular circle increasing the probability of locating 

the center of the circles.  The Hough space for multiple objects is shown in below 

in Figure 3.5. The accumulator slices are of the same size as the image space and 

the stack length is the total length of the radius range that has to be searched. So 

the accumulator array has a dimension of Image Width x Image Height x Length 

of Radius discretization. For objects with a known radius, the search space is 2-d 

and calculations are much faster. 
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Figure 3.3. Illustration of working principle of the Hough Transform for lines 

(A) Parametric normal form line passing through a point (50, 50). (B) Hough 

matrix parameter space with sinusoidal line corresponding to (50, 50). (C) 2 

additional points added to (A). (D) Sinusoidal curves intersect for the three 

collinear points, one peak in the Hough space corresponds to one line. 
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Figure 3.4. Illustration of working principle of  the Hough Transform for 

Circles.    (A) Hough accumulator space for a circle (a,b,r) when the radius r is 

unknown. The scanning circles in the parameter space are on the cone surface in 

the 3D space. (B) 5 points on a circle (100, 100, 50). (C) Circles in the Hough 

accumulator space corresponding to each of the input points in (B). (D) 20 points 

on a circle (100, 100, 50). (E) Circles in the Hough accumulator space 

corresponding to each of the input points in (D). The intersecting peak represents 

the center of the circle we are searching. 
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Figure 3.5.  Example of Hough space for multiple lines and circles in the real 

data (Fig. 3.11). (A) Hough Matrix for the lines (microtubules) at 5% data density 

(B) Hough accumulator space for circles (CCPs) at 5% data density 

 

Figure 3.5A shows a sinusoidal curve in the Hough parameter space       , 

corresponding to the each line passing through a point in the real space. When 

there are multiple lines in the real space, there will be several intersections of the 

sinusoidal lines for the group of points falling on the corresponding lines in the 

real space. Therefore using this method we can identify the line segments in the 

real space. For each input point on the original circle, there will be a range of 

circles (depending on the discretization of the parameter space) in the Hough 

accumulator space with the input point as the center. The intersection of those 

circles will define the center of the circle in the original image space.  
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3.6   Simulated data analysis 

The detection of lines and circles using HT was performed for 100 random 

samplings of the data points on the structures at each data density. To remove 

spurious feature peaks in the Hough parameter space, which could be a result of 

outlier points, we have used a 2-d median filter for lines and a discrete filter with 

a Laplacian of Gaussian kernel in order to smooth the 3-d Hough accumulator 

matrix for circles. To quantify the reconstruction, the structural similarity score 

was calculated for each random sample using a Complex Wavelet Structural 

Similarity Measure (Sampat et al., 2009) (CW-SSIM) and the mean of those scores 

was calculated for each data density. These calculations were performed for 

different position noise and at different outlier noise densities as described 

above.  

The details of the discretization of parameter space, feature range constraints for 

the real data and values for other parameters are provided in the section below. 

 

3.7   Parameter Information for Hough Transform reconstruction of real data 

For Hough line parameter space we set the orientation parameter   

 [           ] with steps of       and   was discretized with a resolution of 6 at 

the scale =25x from data space. A 2D median filtering was applied to Hough 

Matrix H with  l d    w  d w   [𝑙𝑒 𝑔𝑡ℎ   𝑜𝑤 ;  𝑙𝑒 𝑔𝑡ℎ  𝑐𝑜𝑙𝑢𝑚  ] 7 ⁄ . For 

finding the peaks in H, the maximum peak was set to 5000, the peak separation 

window = [15, 19] and the peak threshold was set to 0.2 – 0.3 of the maximum of 

H. For finding the actual lines from Hough peaks, the minimum line length was 

set to increase from 126 to 168 and Hough bin gap filling parameter value was set 

to decrease from 47.5 to 33.6 for 5% to 100% data density. 
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For circles, the radius range =𝑠𝑐 𝑙𝑒 × [      ] 𝑝  𝑒𝑙 𝑠  𝑒⁄  . The pixel size is 158 

nm, scale = 25x and the resolution of radii= 0.4. The minimum spatial separation 

between peaks was 55 pixels and the minimum separation in radius between 

peaks was 73-75 pixels from the centroid. A Laplacian of Gaussian filter (LoG) 

and unsharp mask filter with parameter value of 0.2 was applied to the 3D 

accumulation Hough matrix CH .The discrete Laplacian of Gaussian filter that 

we have used is given by: 

 

 𝐿𝑜𝐺  

[
 
 
 
 
 
 
 
 
            
                
                
                
                  
                
                
                
            ]

 
 
 
 
 
 
 
 

 

 

The threshold of peaks was chosen between 0.53 – 0.63 of the maximum of the 

CH for the data densities between 5% -100%. The maximum number of peaks 

was set to 200 for the region of interest.  

 

3.8   Structural Similarity Index Measure (SSIM) 

To measure the reconstructed structure with the original mask we have used an 

image similarity method called the Complex Wavelet Structural Similarity Index 

(CW-SSIM), which is an extension of spatial domain SSIM and inspired by the 

concept of the human visual system (HVS). It works on the principle that small 

geometric distortions produce a consistent phase shift in the local wavelet 

coefficients and that a consistent phase shift of the coefficients does not change 
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the structural information content of the images. The advantage of this method is 

that it does not require explicit correspondences between pixels being compared 

and is insensitive to small geometric distortions hence it is robust to structural 

distortions, this approach may overestimate the similarity index by a small factor 

even if there is slight dissimilarity between the images being compared. 

CW-SSIM Index is defined by: 

 ̃(𝑐  𝑐 )  
 |∑ 𝑐   𝑐   

   
   |   

∑ |𝑐   |
 
   

 
 ∑ |𝑐   |

 
   

 
  

                                 

where 𝑐   {𝑐    |           and 𝑐   𝑐                are two sets wavelet 

coefficients obtained at the same spatial location in the same wavelet sub bands 

of the two images being compared and K is a small positive scalar  constant 

which improves the robustness of CW-SSIM measure at low local signal to noise 

ratio. We have used this index for a simpler case since we compared binary 

images. We have tried to use other measures such as Multi-scale Structural SIM 

(MS-SIM), Information content Weighted SIM (IW-SSIM), and the standard 

SSIM, but on visual inspection they seem to underestimate the similarity score by 

a significant factor and we found CW-SSIM to be more appropriate. 

 

3.9    Results 

3.9.1    Simulated data generation 

The basic structural elements in biology are often simple geometric shapes such 

as lines, circles and ellipsoids (Blum, 1973). To mimic filamentous structures such 

as actin fibers or microtubules and circular shaped structures such as clathrin-

coated pits or endosomes we have generated artificial data consisting of binary 

lines and circles in distinct channels (Figure 3.6).  
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Figure 3.6. Structural mask for simulated data (A) Lines and Circles, cropped 

image in the yellow rectangle box is shown in Figure 3.8 (B) lines only (C) circles 

only 
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Figure 3.7. Parallel line mask 

 

The density of lines in the example mask corresponds to real biological structures 

such as lamellipodial actin networks (Resch et al., 2002) if the mask area 

represents a 640 nm x 640 nm region of a cell (a 1 pixel = 1 nm2 scale). Active 

pixel points from the mask structures are randomly selected to simulate 

stochastic activation of fluorescent molecules, analogous to PALM and STORM 

imaging. This reduces the selection bias of molecules from a certain region of the 

structures and retains the relative density of the molecules for all regions.   For 

all simulated and real datasets, the found or simulated molecular positions were 

the input to the HT calculations.  A number of papers have reviewed robust 

approaches for identifying molecular positions from localization datasets (Ram et 

al., 2009b; Smith et al., 2010).   
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3.9.2 Noise Sources 

The two basic noise sources in localization-based SR imaging are position noise 

(localization accuracy) and outlier noise (background signal)(Bates et al., 2007; 

Betzig et al., 2006). The position noise represents the limitations inherent in 

finding the true position of a molecular emitter, while the outlier noise represents 

spurious localizations and nonspecific fluorophore binding sites typical of real 

datasets.  Outlier noise was generated as ‘Salt and Pepper’ noise in MATLAB 

although any type of noise can be considered. The position noise of 0, 5 and 10 

pixels represent the FWHM of the Gaussian spread of position relative to the true 

active-pixel location in the mask. Outlier noise densities tested were 0, 0.002, 

0.005, 0.01, 0.02 and 0.05 expressed as the fraction off-mask pixels considered as a 

found molecular position. Outlier noise densities above 0.002 are extremely high 

for single molecule datasets and unrealistic, but were included to assess the 

robustness of the reconstruction method to high degrees of noise. Additional 

simulations were performed at other intermediate position noises.  While only 

three cases are shown here all are available.  

Simulations of the linear and circular masks at different outlier noise, position 

noise and sampling density demonstrated that the HT is able to reconstruct the 

linear and circular structures robustly and accurately at high outlier noise levels 

and position noise levels similar to those seen in real single molecule localization 

data (Betzig et al., 2006; Gordon et al., 2004; Rust et al., 2006). The reconstructed 

lines and circles are shown in Figure 3.8 and the reconstruction performance is 

quantified using a complex wavelet structural similarity index measure (CW-

SSIM) is shown in Figure  3.9 
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3.9.3   Reconstruction from simulated data 

Figure 3.8 shows a cropped section of the reconstructed lines (top row) and 

reconstructed circles (bottom row) overlaid on the point datasets for the mask 

shown in Fig. 3.6A at different outlier noise densities, a position noise of 5 pixels 

and a data density of 15% (fraction of total number of possible points that 

constitutes the structure). The full reconstruction for lines and circles at all the 

position noise and outlier densities has also been performed. 

 

 

Figure 3.8. Representative linear and circular structure reconstruction. Column 

(A) Mask (B) outlier noise density 0 (C) outlier noise density 0.005 (D) outlier 

noise 0.02.  Position noise is 5 pixels with data density of 15% for all cases here.  

 



 
 

58 
 

 

The plots shown in the top row of Fig. 3.9A, B, C for lines reveals that at lower 

position noise cases, the reconstruction measure is close for different outlier noise 

densities; although as expected, it is better at low outlier noise.  In general, the 

reconstruction gets better with increased sample density but beyond a data 

density of 10–15% (low position noise) and 15–20% (high position noise), more 

data does not provide more information about the structure and the CW-SSIM 

measure reaches a plateau. This indicates that collection of SM-SR data has an 

optimum value for dynamic experiments. It should be noted here that the 

reconstruction measure does not reaches 100% even with no position and outlier 

noise.  This is due to the complexity of the structural features, both density and 

configuration wise. With better estimators than HT, we should have better 

results. The plots shown in the bottom row Fig. 3.9A, B, C for circles reveal a 

similar trend at various position noise and outlier noise to that of line 

reconstruction. The reconstruction for circles is significantly better than the lines, 

an improvement expected due to the 3-d parametric space for circles.  
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Figure 3.9. Reconstruction measure using Structural Similarity Index CW-

SSIM. A total of 100 random simulations were performed at each data density 

and at outlier noise densities of 0, 0.005 and 0.02. Top row is for lines and bottom 

row is for circles. Column (A) Position noise of 0 pixel. (B) Position noise of 5 

pixels. (C) Position noise of 10 pixels. 

 

Reconstruction measure for all the noise densities are also performed and shown 

in the Supporting Figure S2 in (Maji and Bruchez, 2012) 
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The HT is more robust to outlier noise than to position noise in these simulations. 

This is likely a result of the Hough accumulator, which scores votes for objects 

that are coincident with a feature and does not account explicitly for localization 

uncertainties (objects that are near to a feature). Improvements to the algorithm 

could incorporate localization uncertainty directly. 

 

Overall, Fig. 3.9 demonstrates that most of the structural information can be 

recovered with only a fraction of the single molecule data for analysis of lines 

and circles. In this example mask, for lines, about 15% data identifies 80–85% or 

more of the input structures while for circles around 10% of the data identifies 

more than 90–95% of the input structures. Sampling beyond these levels only 

modestly increased the information recovery. For lines and circles, inclusion of 

additional data density beyond these levels only resulted in modest additional 

feature identification (< 10%). With an improved HT we would likely improve 

the performance in recovering the dense linear structures, for example using 

Monte Carlo optimization over parameter space or maximum likelihood shape 

reconstruction (Zelniker and Clarkson, 2006).  

We also performed similar analysis for parallel sets of lines to determine the 

resolution, calculated as the smallest pairwise distances between all the lines, at 

different data densities. The reconstruction result is shown in Figure 3.10 for the 

mask in Figure 3.7, and we found that the highest resolution is obtained at 10–

15% of the input data. This is a marked contrast to the spatial sampling 

requirements according to the Nyquist theorem, requiring a measured molecular 

density at half the length scale of the smallest feature size in the data.   
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Figure 3.10. Parallel line reconstruction. Reconstruction measure using 

Structural Similarity Index CW-SSIM (top row) and resolution, calculated as the 

minimum inter line distance (bottom row) at indicated outlier noise densities. A 

total of 100 random simulations were performed at each data density. Column 

(A) Position noise of 0 pixel.  Column (B) Position noise of 2 pixels.  
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3.9.4    Reconstruction from real data 

 

We obtained the molecular position table from the previously published two-

color STORM datasets (Bates et al., 2007) that labeled clathrin (red) and tubulin 

(green) in BS-C-1 cells. We applied the Hough Transform reconstruction for lines 

and circles independently on the two channels. The reconstruction is shown in 

Fig. 3.11 and the full reconstruction at more data densities has also been 

performed. It is not possible to determine the CW-SSIM without the actual 

structure, so the performance is gauged visually and with quantitative feature 

analysis. We have validated the robustness of the HT on the real data by 

performing the feature extraction and analysis with 100 random samplings at 

each of three data densities. The statistics from these analyses are shown in Table 

3.1. The parameter extraction and distribution properties from the 100 random 

samplings are very consistent, evidenced by the negligible standard deviations in 

the mean and median parameter values. It should be noted that at 100% density 

the data remains the same for each sampling and hence the feature extraction is 

exactly the same for all the sampling instances with standard deviation of 

practically zero for all the parameter values. This method is robust to cross-talk 

(Fig. 3.13) (as explained in the methods section) of the multicolor channels and so 

it was not necessary to perform density filtering (Bates et al., 2007) prior to 

analysis.  
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Figure 3.11. Single molecule localized data of clathrin (red) and tubulin (green) 

. Top row is the plotted positions from both channels. Scale bar is 500 nm. Second 

row is the representative reconstructed structures from both channels, overlaid 

on the data. (A) 10% data (B) 50% data. (C) 100% data. Third row is the histogram 

of orientation angle of the reconstructed line segments and the bottom row is the 

histogram of the diameters of the reconstructed circles.  



 
 

64 
 

 

The original data provided was in camera pixel coordinate space. We have 

performed the reconstruction at 25x scaling from the original coordinate space 

(~6 nm x 6 nm pixel-size).  This scale retains most close points without being 

binned into the same pixel when we discretize the coordinates for analysis. Most 

of the structural information is obtained at just 10% of the single molecule 

localization data (Fig. 3.11) and very little additional information is recovered at 

higher data densities. This holds true for both the image reconstruction and the 

extracted distributions of quantitative traits from the objects. The quantitative 

information extracted from the HT parameters for objects identified in the 

tubulin and clathrin localization data is shown in the histograms of Fig. 3.11 

(third row–tubulin, fourth row–clathrin). The histograms of tubulin orientation 

are practically identical with a mean and median of about 7   for the three data 

densities shown here. The distribution of clathrin vesicle diameters is also similar 

for the three data densities. The mean and median values of the distributions of 

clathrin diameters are slightly higher with increasing data density, increasing 

from 140 nm (10%) to 160 nm (100%), a likely consequence of the increased data 

density providing more votes from localizations at the periphery of the circular 

objects. As with any automated analysis, there are some missed structures and 

some spurious structures in the reconstruction.  These represent ~10% of the 

distinct features identified by manual inspection. The choice of parameters could 

be optimized iteratively to achieve the best possible solution.  
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Figure 3.12. Single molecule localized data of clathrin (red) and tubulin (green) 

with high density of the filaments in the region of interest. The figure on the 

left is the localized data and the figure on the right is the HT reconstruction at 

45% of the total data density. 
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We have compared this HT approach to an alternative feature extraction method 

called  Blob detection (Hinz, 2005) with the Laplacian of Gaussian (LoG) as the 

kernel, is an established method for object detection generally applied to 

intensity images.  We wanted to see if Blob detection can extract the circular 

features in a more efficient and informative way, since this method is also very 

popular in computer vision. 

 

We applied blob detection to datasets with 10% and 50% of the clathrin 

localizations included, and attempted to extract quantitative parameters from the 

blob analysis (Fig. 3.13). This approach generated multiple blob circles of 

different radii at multiple scales for the same feature, so we had to filter out the 

smaller circles with an aggressive size filter, eliminating some circles of a 

biologically relevant length scale. While this approach correctly locates the 

possible features, it tends to overestimate the circle size as can be seen from Fig. 

3.13C and G and the diameter histograms D and H. Moreover, since it does not 

discriminate between different feature types, it is not robust to cross talk from 

the other channel. For quantitative analysis of sparse localization data, the HT is 

significantly more robust than the blob detection. 
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Figure 3.13. Laplacian of Gaussian (LoG) blob detection of circular features. 

Multi-scale kernel size range is set to 1.0% - 10% of the image size (1400x1400) 

and radius search range of 1.6 – 19 pixels which corresponds to ~ 10 to 120nm.It 

is a multiscale detection hence there are more than one circles with different 

radius for a detected blob. (A) Detection at 10% data density. (B) Same as (A), 

circles with radius less than 6 pixels (~38 nm) are removed. (C) Close up view of 

the yellow region in (B). (D) Histogram of the detected blob radii in (B) (E) 

Detection at 50% data density. (F) Same as (E), circles with radius less than 

6.5(~41nm) pixels are removed. (G) Close up view of the yellow region in (F). (H) 

Histogram of the detected blob radii in (F)  

 

Hough Transform is robust to outlier noise, as we have seen from the 

reconstruction of lines and circles in the simulated data at various outlier noises 

as seen in Figure 3.9.  In practice, most of the multicolor fluorescent single 

molecule data will have cross-talk from the different channels making the data 

much noisier as can be seen in the Figure 3.14. This method is robust to cross-talk 
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of the multicolor channels and so it was not necessary to perform density 

filtering prior to analysis. 

 

 

 

 

 

 

 

 

Figure 3.14. CCP(left) and Tubulin(green) data showing cross-talk from the green 

and red channel. Scalebar is 500 nm 

 

This approach can be potentially used with dynamic SM-SR imaging of 

structural components in cells to improve the temporal resolution by a factor of 5 

to 10. Since the parameters of the method represent physical traits such as radius 

of circles or orientation angle of lines, we were able to extract meaningful 

distributions of object properties with this approach.  

 

The quantitative information for the real data is shown in the histograms of Fig. 

3.11. The histograms of tubulin orientation are practically identical with a mean 

and median of about 7   for the three data densities shown here. The 
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distribution of clathrin vesicle diameters is also similar for the three data 

densities; however, the actual mean and median values of the distributions are 

slightly higher for higher data density cases, increasing from 140 nm (10%) to 160 

nm (100%). 

 

Table 3.1. HT extracted feature parameter values for the real data over 100 

random sampling at 10 , 50 and 100 % data density.   
       

 and   
      

 are 

the mean and median values of the orientation angle of all the lines for a 

particular sampling.  
       

 and   
      

 are the mean and median values of the 

diameter of all the circles.   and   are respectively the mean and standard 

deviation over the 100 random sampling for the average and the median values 

of the distributions at each random sampling. 
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Parameter  Value, Range 

Lines 

  (degree) 0.5,  [-90, 89.5] 

ρ (pixels) 6 

maximum peaks  5000 

peak separation (2d) (pixels) [15,19] or [17,19] 

peak threshold (0.23-0.26) × max(H) 

minimum line length (pixels) (126-168) 

H bin gap filling (pixels) (47.5-33.6) 

Circles 

r (pixels) 0.4,   [10, 120] × scale/pixelsize 

maximum peaks 200 

minimum spatial separation between peaks (pixels) 55 

minimum radius separation between peaks (pixels)  (71-75) 

peak threshold (0.53-0.63) × max(cH) 

 

Table 3.2. HT Parameter information for the HT reconstruction of the real 

dataset. [,] indicates fixed range values for all conditions and those in (-) are 

values that vary from 5–100% data density. The single values listed for the 

parameters     and   are the discretization steps. scale =25 and pixelsize =158 nm. 

A detailed list of parameter values for all data densities (5% steps) are provided 

in the Supporting Table S1 of (Maji and Bruchez, 2012) . 
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3.10   Discussion 

Generative models allow efficient reconstruction of underlying parametric 

objects in both simulated and real localization microscopy datasets at data 

densities between 10 - 20%. These approaches substantially improve the 

efficiency of SM–SR imaging to generate quantitative biological and structural 

information. This approach can be potentially used with dynamic SM-SR 

imaging of structural components in cells to improve the temporal resolution by 

a factor of 5 to 10. Since the parameters of the method represent physical traits 

such as radius of circles or orientation angle of lines, we were able to extract 

meaningful distributions of object properties with this approach. Moreover, the 

method appears to be fairly robust in extracting the features from the real dataset 

as evident from Table 3.1. More careful quantification of the parameter space 

could be used to extract, for example, the underlying molecular density for a 

feature, since the classical HT method is based on implicit Bayesian voting of the 

localized points in the datasets. It is also possible to obtain the persistence length 

of the tubulin from the obtained coordinates of the lines with further analysis.  

The difference of estimated clathrin diameter histograms in Figure 3.11 could be 

due to the fact that at lower data density the edge points are most likely 

underrepresented in the vote counts relative to high data densities. To overcome 

this issue we can apply weighted voting for circle detection so that even a small 

number of points towards the outer edge of the circles can receive enough votes 

to be considered as a valid shape. We have tested this correction, but found that 

the full normalization appeared to overestimate the boundary. The correct level 

of voting normalization could be estimated through a statistical learning of 

several such objects at low data density. There is always systematic bias in 
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estimating the structure at consistent data densities typical of biological 

experiments.  In spite of this, quantitative comparisons across treatment 

conditions with similar data densities remain informative in assessing differences 

in biological datasets. 

As seen from the results section, the classical HT for line detection was limited to 

narrow filamentous structures since it has no accommodation for the uncertainty 

of the molecular position. Methods do exist for such purposes (Zhang and 

Couloigner, 2007). In this study, we have shown that given sparse molecular 

positions we can generate the corresponding biological structures with high 

efficiency using simple shape primitives. Variants of the HT and (Cootes et al., 

1998; Cootes et al., 1995; Davies et al., 2002; Mokhtarian and Mackworth, 1992; 

Simoncelli et al., 1992; Staib and Duncan, 1992) can detect arbitrary shaped 

structures. Here we have applied only the classical form of the HT for inferring 

basic parameterizable biological shapes; but the next step is to perform 

parameter optimization by estimation using Monte Carlo sampling and arbitrary 

shape extension using variants of the classical HT such as the Generalized HT 

(Ballard, 1981), which can be used for shapes without a parametric form, 

Randomized or Probabilistic HT (Fung et al., 1996), or the Progressive 

Probabilistic HT (Galamhos et al., 1999). The extension of generative models to 

single molecule super-resolution image analysis may be particularly useful for 

dynamic imaging of cellular components at high spatial and temporal resolution.  
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CHAPTER 4 

 

 

GENERATIVE PROBABILISTIC GRAPHICAL MODEL 

 

 

Modeling arbitrary shaped biological structures using super-resolution 

image data is a non-trivial task. The information that we directly have is the 

position of the molecules and the diffraction-limited image of the entire 

structure. However, we also have another set of information, which is the set of 

inter-molecular distances, and if the structure is already known then the 

molecular arrangement can be used. This arrangement can provide the local 

orientation of the molecules. Now since we are dealing with sub-diffraction 

structures with unknown molecular density, we have a problem with incomplete 

information and it will require estimation of missing components. This type of 

problem is well studied with generative probabilistic graphical models.  

In machine learning, generative probabilistic models are models which can tell 

us how the observed data was generated given some the hidden (latent) variable.  

This method works on the principle of how cause (variables) generates effect 

(observable data); hence, they are called generative models. Generative models 

attempts to estimate the joint probability distribution over all hidden and 

observed variables. Probabilistic graphical models (Bishop, 2006; Jordan, 2004; 

Murphy, 2010; Yedidia et al., 2003) are the class of machine learning algorithms, 

which deals with probabilistic inference on graphical networks and has been 

widely used for image analysis in computer vision and also in medical imaging. 
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When the graphical model is undirected it is called Markov Random Field (MRF) 

(Bishop, 2006). It can represent cyclic dependencies, whereas a directed graphical 

model is called Bayesian network, which can represent induced dependencies. 

The nodes (could be image pixels or single molecules) represent random 

variables and the edges represent the conditional independence assumptions. 

Thus, they can represent joint probability distributions in a compact manner. 

Another advantage in using graphical model is that it can be extended for 

structural data beyond two dimensions and also for temporal tracking, by using 

an even larger graphical framework and linking nodes in adjacent time steps 

(Isard, 2003). We are going to review the basic theory of graphical model and 

non-parametric belief propagation and then setup for the application to 

localization data sets of biological structures. 

  

4.1   Basics of Graphical Model 

A graph         consists of a finite set of nodes (or vertices)     connected 

by a set of edges       . Each node   is associated with a random variable    .  

The edges of the graph represent some meaningful relationships or physical 

constraints between the random variables through a joint probability distribution 

over the random variables. In MRFs, these distributions are characterized 

through a set of conditional independencies. 

 

4.2   Markov Random Field 

Markov Random Fields are undirected graphical models where are the random 

variables representing the nodes of the graph have Markov property. In simple 

notation, the Markov property can be represented as: 
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                                               . 

Then we can define various types of conditional dependencies on the nodes such 

as with pairwise, local or global Markov property. We are particularly interested 

in the pairwise Markov Random Field and we will discuss it in a little more 

detail. 

 

4.2.1   Pairwise Markov Random Fields 

Suppose we have some random variables    which are unobserved (hidden or 

latent) and    which are known (observables), then we can define a relationship 

between the two variables by              , or, since    is known, simply        , 

called as the evidence for the node     . For example if we have an image then 

each pixel i can be represented by a node variable    and the pixel intensity value 

(observable) can be represented by     .  The conditional distribution for nodes    

and     is given by     (      ). This is also known as the adjacency potential or 

conformational potential    (      ) and is defined such that the message passing 

is bi-directional but the potential itself is not symmetric. Therefore, we will have  

   (      )      (      )  

but    (      )      (      ) is not necessarily true 

 

 

The joint probability distribution over all the nodes is given by the following 

equation: 
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     ∏      

   

∏    (      )

       

 

                     (4.1) 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Simple example of an undirected graphical model (MRF). The nodes 

are in light gray and the circle in dark gray represents the observation for the 

corresponding nodes. 

 

 

For the model in Figure 4.1, the joint probability distribution is given by: 
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𝑝                   

 
 

 
                                                                 

×                                  

   (4.2) 

where Z is the normalization constant known as the partition function, which is 

in fact the limiting factor for the computational tractability of any graphical 

model approach.  For smaller graphical models the inference can be performed 

exactly but it becomes increasingly difficult and intractable, so approximate 

inference is usually performed using methods such as belief propagation, which 

works quite efficiently in most practical cases. 

 

4.3   Inference in Graphical Models 

In probabilistic graphical model, usually the objective is to compute the marginal 

probabilities and posterior distributions and also the maximum a posteriori 

(MAP) probabilities or the mean values of the hidden variables given some 

observation or evidence. For instance for finding the posterior mean value, we 

have to first find the marginal probability at each node. A specific example is 

shown later in example Figure 4.3, with the probability replaced with messages, 

as the inference method used here is belief propagation described in the next 

section. 
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4.4   Belief Propagation  

Belief propagation (BP) (Jordan, 2004; Sudderth et al., 2010; Weiss and Pearl, 

2010; Yedidia et al., 2003) is a widely used algorithm for performing inference on 

Bayesian networks through a message passing method. It can be applied to both 

directed and undirected graphical models. The inference for a very large 

graphical model becomes computationally intractable so approximate inference 

methods such as loopy belief propagation are used, although it is not guaranteed 

to converge or be accurate, but it does in most practical cases of computer vision 

and imaging. It can handle missing values so it can be useful in our modeling 

with single molecule imaging data.   

BP is a method used for inference in a graphical model for computing the 

marginal probability distribution of the hidden nodes conditional on the 

observed nodes. The basic principle of this method is passing and updating the 

‘messages’ about the ‘states’ between the adjacent hidden nodes of the graph in 

an iterative process until convergence. Then through a consensus, the marginal 

probabilities or ‘belief’ for each node is computed. For discrete random variables 

representing the nodes, the messages can be passed as matrices, and for the 

continuous case, the messages can be passed using a mean and covariance matrix 

of the multivariate Gaussian for the jointly distributed random variables.  

The way BP is performed is through passing a message 𝑚  (  ) from node i to 

node j. This message can be perceived as node i’s belief about node j being in 

certain states with various likelihoods. The messages from node i to j is updated 

with all the messages flowing into i (Figure 4.2 A).  
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           A 

 

 

 

 

 

             B 

 

 

 

 

 

 

Figure 4.2. Belief propagation in a graphical model. (A) An illustration of 

messaging passing in pairwise MRF. (B) An illustration of message update and 

belief equation. It is a kind of distributed way of computing the marginal for the 

nodes. 

The iterative message updating scheme can be written as: 

𝑚  (  )   ∑          (      ) ∏ 𝑚      

          

 

(4.3) 
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The approximate posterior marginal distributions, which are called as the node’s 

belief, is given by 

               ∏ 𝑚      

      

 

(4.4) 

where   is the normalization constant to ensure the beliefs sum to 1 and      is 

defined as the neighborhood set for the node i         is the neighbor of i other 

than j in equation 4.3.   𝑚  ’s the messages that the node i receives from its 

neighbors      .   

 

4.4.1   Example  

Let us first consider the example in Figure 4.3, which is similar to the example in 

Figure 4.2A, but with the connection between node 1 and node 2 removed, to 

make it a MRF without loop. Following the equations 4.3 and 4.4, let us try to 

compute the belief for node 6. 

 

 

 

 

 

 

Figure 4.3. Belief propagation in a graphical model without loop. An illustration 

of messaging passing in pairwise MRF without loop.  
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The belief for node 6 is computed as: 

                 𝑚       

 𝑚       ∑                  

  

 𝑚       

 𝑚       ∑                  

  

 𝑚       𝑚       

 𝑚       ∑                  

  

 𝑚       

 𝑚       ∑                  

  

 

 𝑚       ∑                  

  

 

Now, substituting we get, 

      

          ∑∑∑∑∑                  

          

                                    

×                                      

   ∑∑∑∑∑                          

          

                                    

×                                      

 ∑∑∑∑∑𝑝                   

          

 

 𝑝      
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Therefore, if the graph has no loops, then the message passing converges in finite 

steps and BP provides the exact marginal for each node. The time complexity for 

the algorithm is proportional to the number of edges in the graphical model. 

Now if we try to compute the belief        for node 6 in example 4.2A, which has 

a loop, we will have the same expressions for   𝑚       and  𝑚       as above 

and the following: 

 𝑚       ∑                  

  

 𝑚       

 𝑚       ∑                  

  

 𝑚       

 𝑚       ∑                  

  

 𝑚       

 

  d      . 

We can now see that the messages are not converging and rather bouncing from 

one node to its adjacent node and so on. So for undirected graph with loops the 

belief propagation is not guaranteed to converge and even if it does it may not be 

accurate. Therefor approximate estimates of marginal are computed for graphs 

with loops using what is called as loopy belief propagation (LBP) (Ihler et al., 

2005; Murphy et al., 1999; Yanover and Weiss, 2003). In practice, it has been 

observed that the beliefs converge to rather good approximations. Another 

approach for approximate inference is by using particle filtering. 
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4.4.2   Nonparametric Density Estimates 

When the likelihoods of density function are known then we can model the data 

directly. If the true distribution is unknown but at least their parametric form is 

known then we can model the data using parameter estimation by assuming a 

particular form of the density, for instance, say a Gaussian distribution. In this 

case, we need to estimate only the parameters such as mean and variance. 

However, when there is no information about the likelihoods or their parametric 

form, ,which is in fact the most common case in real data, then we have to resort 

to determine the density function directly from the data, without assuming a 

particular form for the underlying distribution. The usual way is to approximate 

a probability density function (PDF) by a set of smoothed data samples(Sudderth 

et al., 2010) .  

�̂�    
 

 
∑

 

 

 

   

 (
    

 
) 

where      are M independent samples from p(x) and       is the kernel and   is 

the bandwidth also called as the smoothing parameter.  

If we have a Gaussian kernel and set   𝑤     and the covariance    , then we 

have: 

�̂�    
 

 
∑𝑤   

 

   

              

    (4.5) 

Here the input messages are Gaussian kernel density estimates.  

The simplest form of nonparametric density estimate is the histogram. 
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Figure 4.4   Nonparametric kernel density Estimate. 

  

 

 

4.4.3   Nonparametric Belief Propagation  

Belief propagation can produce exact conditional marginal for discrete valued 

random variables, whereas for continuous valued random variables, the message 

update integral as defined in 4.5 becomes intractable. In order to make the 

method tractable the messages are represented as kernel density estimate (Ihler 

et al., 2005; Murphy et al., 1999; Yanover and Weiss, 2003) as defined above.  
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A reasonable assumption for the density is to be a normalized Gaussian          , 

then the message with  mixture can be approximated using the form of (4.5) 

 𝑚  (  )  ∑𝑤 
   

         
   

     

  

 

(4.6) 

The pairwise potential is formulated over the cliques using the rules form graph 

theory and this clique potential to be meaningful should be finitely integrable, 

which means the following conditions should hold: 

∫   (      )         ∫   (      )                               

∫                                                                                        

(4.7) 

One of the important features of the potentials here is that they are informative 

(Ihler et al., 2005; Murphy et al., 1999; Yanover and Weiss, 2003) , which means 

constraining the value for one variable has a restrictive effect on other variables 

too. This property can be useful, when we model actual structures, since the 

constraint state space may be interrelated. In graphical models, in order for the 

inference algorithms to be applicable, the above normalization constraints should 

hold which ensures the convergence of the algorithms, but in most practical 

cases, the variables are bounded within a finitely large range.  

We have developed our method upon the base implementation (Sigal et al., 2004)  

of the Non-parametric Belief propagation described in (Isard, 2003) called 

Particle Filter Message Passing (PAMPAS).   

 



 
 

86 
 

4.4.4   Particle Filter Message Passing  

Inference on graphical model using belief propagation has been proposed in 

various works such as Non-parametric Belief Propagation (NBP), Belief 

propagation Monte Carlo (BPMC), Particle Message Passing (PAMPAS), etc. 

(Isard, 2003; Wei-Kai and Cohen, 2006). For discrete random variables we have 

equations 4.3 and 4.4 and for continuous case we have: 

𝑚  (  )   ∫           (      ) ∏ 𝑚      

         

   
  

 

               (4.8) 

When the random variables are continuous, the potential functions    and     

can be considered as probability density functions and hence 𝑚   in equation 4.8 

is also a probability density function. When the marginal distribution at the 

nodes is Gaussian then the integration is exact otherwise, we have to perform 

numerical approximation usually through Monte Carlo.   

 

 

Now the above integral can be approximated to �̃�   using a Monte Carlo 

sampling (Wei-Kai and Cohen, 2006) as follows : 

�̃�  (  )  ∫     (      ) 𝑔       
  

 

      [   (      )] 

 
 

 
∑    (    𝑠  

 )

 

   

     𝑠  
  𝑔    
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where 𝑔           ∏ �̃�                 

               (4.9) 

Now the sampling method proposed in PAMPAS algorithm is that the messages 

or beliefs are accumulated from the neighboring nodes and then taking the 

product weighted by the local evidence of the node in consideration. The basic 

idea of particle filtering is also discussed in section 6.3.2 of chapter 6. In the case 

of graphical model, the probability beliefs are just propagated along after being 

compute by the particle filters. The message  𝑚    can be updated using a 

weighted particle set   𝑠  
  𝑤  

     
  sampling (importance sampling) as follows: 

𝑠  
   ∏ �̃�      

         

 

                                                                                                                           (4.10) 

The importance weights can be obtained using the current belief estimate: 

  𝑤  
    (𝑠  

 )                                                                                                         (4.11) 

 

Alternatively, the samples can be drawn from the observation or evidence model 

and weighted by the product of incoming messages from the neighboring nodes 

and the effective belief propagation will still remain the same. The samples can 

be generated from the joint distribution over the graphical model using a Gibbs 

sampler. The potentials     (      ) in many cases can be expressed as a mixture 

of Gaussians, which makes the message propagation more tractable. The basic 

principle of computing the updates for the marginal (Sudderth et al., 2010)  is 

shown in Figure 6.5  The detailed description of the algorithm can be found in 

(Isard, 2003).  
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Figure 4.5  Nonparametric belief propagation marginal update schematic 

(Sudderth et al., 2010).   

 

There is one more important feature about this graphical model approach in 

general, which is its inherent ability to estimate the state of unobserved nodes 

even when sufficient information is not present. This is very important for cases 

where the structural data is partially missing or has been corrupted due to noise 

or any other reason.   

 

4.5   Formulation of the probabilistic graphical model for super-resolution 

The overall idea is to start with diffraction limited image and an initial model of 

interest and try to learn a generative model from them with the help of partial 

single molecule data if necessary to constrain the model search space at the 
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beginning itself. We generate the set of possible models (based on molecular 

properties) that fit with the diffraction –limited prior by calculating the posterior 

distributions of the probabilities of the molecular locations based on rational 

biological rules (e.g. persistence length, molecular dimensions).  From there, we 

can then use more single molecule images to select the best of these possible 

models, and eventually collecting enough molecular positions that a unique 

model can be selected. This is similar modeling approach to determine an all- 

atom protein structure model from electron density maps (DiMaio et al., 2007). 

We are using nonparametric belief propagation (NBP) with informative 

constraints and constraining the data points in an iterative manner, so we name 

the method as Iteratively Constrained and Enhanced STORM (ICE-STORM). The 

key question is how to reconstruct biological structures in far more details 

(greater resolution) than we see in normal localization microscopy using far less 

imaging data. There is recent work using compressive sensing theory in single 

molecule image where sparse signal is encoded during acquisition and then the 

full signal is reconstructed using only a fraction of the data (Zhu et al., 2012). 

 

4.5.1   Evidence, Proposal and Conditional distribution  

Evidence and proposal distributions for the nodes in the graphical model for the 

structures should be formed from the given diffraction limited structures. The 

conditional distribution should be formulated based on the known biological 

information about the structures such as intermolecular distance, etc.  Following 

the schematic approach in (DiMaio et al., 2007) we can formulate the structure 

estimation problem as shown in Figure 4.6. 
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4.5.2   State space 

The state space governing the generative PGM is �⃗�  [      ] where (x, y) is the 

coordinate of the molecule,    is the local gradient field orientation of a molecule 

relative to the filament.  

     is the relative orientation of the neighboring molecules and       , here, is 

however only allowed to take values of 90o or 0o and 30o or 60o (it depends on how 

the configuration of the molecules in the tubulin structure is defined) relative to 

the local gradient since the molecules are arranged on the filament in a particular 

manner. In case of tubulins, the neighboring molecules are either on the same 

filament in a linear way or on the adjacent filament but with a shift of one 

position (alternating alpha and beta units).  On the other hand, the local gradient 

field orientation will vary according to the curvature of the filaments. Therefore 

the initial evidence for     will be derived from the gradient field of either the 

diffraction limited image or the initial set of molecular positions. 

 

 

4.5.3   Orientation Tensor Field  

Given any image or localization dataset for a biological structure, the local 

curvature of the structures can be computed from the gradient of the orientation 

tensor field (Hill, 2011b).  A tensor is a generalization of a vector or matrix. First, 

we will consider the localization datasets given by the 2d positions                  

. We can construct a tensor at any point say      , which provides information 

about the orientation for the cluster to which that point belongs and it is based on 

the distance and direction to the other points in the cluster. 
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Suppose we have a set of points                . Then for defining a tensor at a 

point       we take the point     and another point     in the neighborhood and 

define the vectors        
     

    =     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    , and apply a non-linear 

transformation so that the vectors     is mapped to  ̃    as follows: 

 ̃    ( ̃ 
    ̃ 

  )  𝑒 𝑝    (  
  )

 
 (  

  )
 
      

   
     

   

√   
        

    
 

                                              (4.12) 

where   is a scaling parameter and the mapping function is based on the distance 

and direction between      and     . The distance measure is given by the 

exponential term and the direction given by the unit vector 
   

     
   

√   
        

    
 in 

equation 4.12.  

  

Now the initial tensor at       is then represented as:  

       ∑( ̃ 
    ̃ 

  )
 

   

( ̃ 
    ̃ 

  ) 

  (4.13) 

These are a 2×2 tensor matrices constructed at the sparse molecular locations     . 

The field of tensor is calculated by kernel smoothing interpolation of the tensors 

      . Then if we estimate the orientation of the principle eigenvector of tensors 

at each point, then it will result into the field of orientations. The details of the 

entire method can be found in (Hill, 2011a; Su, 2008). 
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4.5.4   Setting up the probabilistic graphical model for biological structures 

 

 

 

 

 

 

 

 

 

Figure 4.6 (A) Local observation potential at each node (B) Adjacency potential 

or conditional distribution between adjacent nodes. 

 

Suppose,      �⃗�             defines the vector of state space where  

�⃗�   (       )                            

 ⃗⃗   is the position vector of node i and     is the parameter vector. 

 

Now if we define a probabilistic graphical model over this state space then we 

will have the following posterior distribution:  
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 ( | )  ∏         

 

∏   (�⃗�    �⃗�  )

  

 

                                                                                                        (4.14) 

where            is  the local observation potential for node   given a diffraction 

limited image S and    (�⃗�    �⃗�  )  is the adjacency potential or global 

conformational potential between node i and node j. In this example node i and 

node j are considered to be neighbors if they are within 50 nm of each other. This 

conditional distribution models the probability of a particular conformation of 

the molecules on the structure.  

The objective is to maximize the probability given in equation (4.14) for an 

optimal configuration set  
 
      

   , derived as  

  
 
    𝑔𝑚  

 
 ( | )                                                      

 

In general, for certain biological structures which have been studied in great 

detail with high-resolution imaging methods and electron microscopy, we 

potentially have some extra information for modeling purpose. For example, if 

we have structures such as tubulins, we can know the inter-molecular distance, 

which is essentially the alpha and beta protein spacing as the tubulins are labeled 

selectively. In addition, the structural composition of the alpha and beta tubulin 

dimer can provide some evidence for the relative orientation of the protein 

molecules along the tubulin (Figure 4.7). 
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Figure 4.7 Tubulin dimer. (A) Microtubule structure (B) Molecular distance 

constraints (C) Relative orientation from the local orientation constraint as 

described in Figure 4.8 and the illustrative example in section 4.5.5. 

 

Both of this information can be used to properly guide the graphical model in 

generating feasible configurations of the structure by incorporating the 

information in the conditional distribution    (�⃗�    �⃗�  ) which can thus be further 

factorized into two basic components (DiMaio et al., 2007), one for maintaining 

the proper inter-molecular distance (say 8 nm for the alpha and beta tubulin 
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distance) and the other with proper relative orientation. Therefore, the adjacency 

potential can be written as:  

   (�⃗�    �⃗�  )     ‖       ‖ ×    ‖�⃗�   �⃗�  ‖                                                            

(4.15)                    

   is the distance constraint function between the nodes, which will ensure the 

inter nodal distance follow a certain distribution and limits and    is the 

orientation constraint between the nodes, for two dimensional case this can be 

represented by orientation angles. This is similar to the case for filamentous 

molecule in cells, which are ordered, in a linear fashion  (Nogales et al., 1998). 

Considering the molecules as nodes of the graphical model, we can introduce 

constraining function described in equation 4.15 as probability distribution over 

inter-molecular spacing and persistence length of the filaments.  

 

 

 

 

 

 

 

 

Figure 4.8 (a) A graphical model showing the node connections. (b)  Orientation 

estimation of the vector connecting two nodes (e.g.    and   ). 
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The basic idea of the orientation estimation relative to the neighboring molecules 

is shown in Figure. 4.8b. The relative orientation is also dependent on local 

alignment vectors of the points on the filaments. Here   -   is the axis system 

corresponding to the local orientation field calculated as the gradient of the 

tensor field  ((Su, 2008). A tensor here is defined as a  ×   symmetric postive 

definite matrix and it is constructed for each point. The inertial tensor of 

transformations of the vectors    ⃗⃗  ⃗    ⃗⃗⃗⃗      as seen in equation 4.12  is given by : 

    ⃗⃗⃗⃗    
  ⃗⃗  ⃗    ⃗⃗⃗⃗ 

   ⃗⃗  ⃗    ⃗⃗⃗⃗  
      

 

   
   ⃗⃗  ⃗    ⃗⃗⃗⃗  

   

(4.16) 

 

 

 

 

 

 

 

 

Figure 4.9   Local Orientation Tensor Field.  

 

Then the orientation of eigenvector for largest eigenvalue is used. The orientation 

field is calculated using an interpolated tensor field for the sparse points based 

on a kernel smoothing method using weighted log-Euclidean metric. Close 
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neighbors will have similar orientations and based on that orientation the 

neighboring molecules will be positioned in a particular configuration (Figure 

4.9). 

 

Suppose         and        are the angles of the vector      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   realtive to the axis    

and the x-axis respectively. Let      be the local orientation of the points in the 

neighborhood. It can be considered as the average of the local orientation 

estimated for the two nodes in consideration. 

From Figure 4.8b we have the following relation 

               
 

 
     

                                                                                                           (4.17) 

A simple example for the PGM with all the constraints is illustrated in Figure 

4.10. The state space governing the generative PGM is �⃗�  [      ] where (x, y) 

is the coordinate of the molecule,    is the local gradient field orientation of a 

molecule relative to the filament.          is the relative orientation of the 

neighboring molecules and       , here, is however only allowed to take values of 

90o or 0o and 45o (30o if helical) relative to the local gradient since the molecules 

are arranged on the filament in a particular manner. In case of tubulins, the 

neighboring molecules are either on the same filament in a linear way or on the 

adjacent filament (alternating alpha and beta units). On the other hand, the local 

gradient field orientation will vary according to the curvature of the filaments. 

Therefore the initial evidence for     will be derived from either the gradient 

field of diffraction limited image or from the initial set of molecular positions. 
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4.5.5    Illustrative example 

Suppose we have 4 nodes and the initial evidence is given as follows:  

Evidence: 

                                               

Conditional:   

Case 1: Fig. 4.9a and 4.9b. The hypothetical local orientation for the 4 points is  

    
 

 
. 

   should be at a position, which is           
 

 
 (𝑤   𝑡    ) relative to    and  

   units from it. 

   should be at a position, which is          
 

 
 (𝑤   𝑡    ) relative to    and   √  

units from it. 

   should be at a position, which is          
 

 
 (𝑤   𝑡    ) relative to    and    

units from it. 

 

Case 2: Fig. 4.9c and 4.9d. The hypothetical local orientation for the 4 points is  

    
 

 
 

   should be at a position, which is           
 

 
 (𝑤   𝑡    ) relative to    and  

   units from it. 

   should be at a position, which is          
 

 
 (𝑤   𝑡    ) relative to    and   √  

units from it. 
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   should be at a position, which is          
 

 
 (𝑤   𝑡    ) relative to    and    

units from it. 

 

Then we calculate   

                
 

 
     

     𝑐𝑜𝑠(      ) 

     𝑠           

                      (4.18) 

      

For real data, we first calculate the angle for the pair of points   ⃗⃗  ⃗           and  

  ⃗⃗  ⃗        from their coordinates as:  

                 𝑡     
     

     
  

                        (4.19)  

Next, we calculate the        using equation 1  and then approximate this value to 

the closest theoretical value                  that the molecules can assume 

example  
 

 
  

 

 
 . Then we re-calculate                    again using equation 4.17 

with                           and                           and the conditional 

input is then calculated using equation 4.18.  
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Figure 4.10  Illustration of probabilistic graphical model.  (a) The local orientation 

for each of the points is -
 

 
 . The particle filter sampling for the estimated 

locations. (b) Blue circles are the evidence position and the black circles are the 

conditional positions. The red, green, cyan and magenta circles are the estimated 

positions. (c) The local orientation for each of the points is -
 

 
 . 

 

Therefore, we can see that when we have proper relative orientation, the four 

nodes retain their relative configurations even with different local orientation 

angles     . 
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4.6   Iteratively Constrained and Enhanced STORM (ICE-STORM) Imaging 

The non-parametric belief propagation (NBP) method provides a framework for 

estimating the state space values for all the nodes in the PGM of the entire 

structure. It can even estimate the values for nodes, which does not have prior 

information, due to missing structure or occlusion or due to noise. Now once 

since we have the starting information for a set of molecules, we can use the 

known structural constraints and then apply the NBP to reach a convergence of 

state space estimates to provide better estimate of the positions, which is our 

primary objective. Then we can use these refined molecules, include further 

points in the set, and perform NBP again in an iteratively increasing set of 

molecules until the model reaches a sufficient.  The basic idea for the algorithm is 

shown by the schematic in Figure 4.11. 

 

4.6.1    ICE-STORM Algorithm 

Step 1 

a) Start with a random subset of molecules from the original STORM data 

b) Calculate local tensor field    for those set of points 

 

Step 2 

a) Evidence      [                   
] 

b) Conditional       [         ] 

c) Inference using Nonparametric Belief Propagation with particle filters 
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Step 3  

a) Update the evidence and conditional values  

b) Impose an increasingly lower uncertainty of position for the points which are 

already refined from the previous iterations 

c) Re-calculate orientation field based on refined position estimates 

 

Step 4 

Repeat step 2 to step 3 and stop after n iterations 

 

 

4.6.2    Steps to parallelize for large super-resolution dataset 

a) After n iterations, suppose we have a set of N refined points whose 

uncertainty in position is assumed to be low ~zero, we mark those N 

molecules as enhanced set Nice  

b) Add another set N points from the original data set and refine them with 

respect to the Nice points.   

c) Perform the task (b) in parallel with a total of   ×     molecules, P being the 

number of parallel processes. 
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Figure 4.11 Schematic of the ICE-STORM with Belief Propagation. The green 

dashed line shows the final alignment of the ICE points with the ground truth.  

 

The black circles are improved from the previous iteration whereas the gray ones 

are from the starting configurations. It is however enough to just start with 

sufficient molecules in the starting and proceed with the belief propagation 

iterations.  

The starting molecular distance between neighboring points are discretized into 

multiples of 8nm or 4 nm since in the actual model the molecules are 8nm if 

aligned linearly or 4 nm apart for molecules in the neighboring filament. If the 

neighboring filament molecule arrangement in the model are assumed to be 

helical then there will be a factor multiplied to 4nm for the molecules in the 

neighboring filament. This neighboring distance discretization is assumed, since 

the actual density of the molecules is not known; hence, the distance constraint 

cannot be estimated at arbitrary density. 
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Here we are using non-parametric belief propagation approach since we are not 

aware of the probability distributions of our parameters describing the graphical 

model for the biological structure and hence can accommodate the unknown 

complexities or underlying patterns of the structures more appropriately.  

 

4.6.3   Nonparametric Belief Propagation with ICE  

The objective is to use the graphical model message passing method to update 

the location of the initial positions represented by red points in Figure 4.13  and 

the local tensor orientation for all the points using the evidence distribution 

potential function            .  We have used the adjacent position and orientation 

information for the red dots in the potential function    (�⃗�    �⃗�  ) representing the 

conditional distribution for the state space of the nodes. The starting criteria are 

that localized points should have stronger beliefs and they should have lower 

variance and higher weights as we progress through the belief propagation 

iteration and also the ICE iteration. This means with each ICE iteration we 

should find the set of points with greater beliefs. 

 

 

4.6.4     Application to real super resolution data 

The idea is to use the localized data for building the model, however if for some 

reason a significant amount of single molecule for a part or whole of the 

structure cannot be used or is not available , the we can also use as evidence from 

the diffracted limited image. This will be then the first level of approximation of 

the structure. 
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Figure 4.12 Example of a diffraction limited image of Tubulin (generated through 

Gaussian blurring of the actual super-resolution data) 

 

We can use a subset of the localized single molecule data and generate points 

that are randomly distributed over the entire structure based on the diffraction- 

limited image. The Markov random graphical model can be setup using both the 

data type. If the modeling is performed appropriately, then it will not matter 

what the data type as long as there are sufficient evidence from the actual 

localization data and the rest can be fitted using any data type with the correct 

model constraints. In this case, we have focused on using just the actual 

localization data. Figure 4.13 shows the position of the starting points in red and 

the green points, which have been estimated by the PGM. 
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Figure 4.13  Application on real single molecule localization data. (a) Red points 

are starting positions and green points are after 3 ICE iterations with 2 belief 

propagation iterations each. (b) Zoomed in view of the displacement of the 

nodes. 

 

The black lines connecting the red and the green points indicate the magnitude 

and direction of the displacement. Figure 4.13 shows the improved positions, 

which effectively increases the spatial density and as a result potentially 

improves the resolution of the structures. The improved structural features are 

non-distorted with reduced positional uncertainty and statistically consistent. 
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Figure 4.14.  Local Orientation Estimation after 3 ICE iterations. (a) Starting 

orientation estimates for all the molecules. (b) Orientation estimates after 3 ICE 

iterations with 2 belief propagation iterations each. 
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The orientation field for the structure does not change very significantly, which 

is expected since the molecular displacements are small.  

 

 

 

 

Figure 4.15. Local orientation field for the real data. (a) Green points are the final 

positions and dark red arrows are the local orientation for the points (b) Zoomed 

in view of a ROI. 

 

Figure 4.15 shows the orientation for the individual molecules after the ICE 

iterations. The orientation vectors for the points close to each other within 

filaments are consistent but for points which are sparse are not, since the local 

orientation requires at least some points to get a proper estimate. Although using 

a proper prior, this can be solved by using the orientation of the diffraction-

limited image, in case where the data points are sparse. Usually with close 

points, even if the state values (in this case the orientation) are not so consistent 
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initially, using belief propagation, they can be made more consistent, but since 

sparse points are far away, they may not be even neighbors and hence no 

message passing occurs between distant points. Probably separate criteria have 

to be developed for such points. 

Figure 4.16 Displacement of the molecules after 3 ICE iterations and 2 BP 

iterations each. (a) Starting pairwise intermolecular distance of neighboring 

molecules. (b) Expected localization accuracy of the molecules obtained from the 

individual photon counts. (c) The inter-molecular distance between the 

neighboring molecules after ICE iteration. (d) Displacement of the individual 

nodes after 3 ICE iterations with 2 belief propagation iterations each. 
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                       Molecular Distance (nm)                                   Molecular Distance (nm) 

 

Figure 4.17  Displacement distributions (same as in Figure 4.16 ) of the molecules 

after 3 ICE iterations and 2 BP iterations each. The histogram is fitted with single 

peak (left) and double peak Gaussian (right) for finding the population mean of 

the displacements. 

 

The sample mean localization uncertainty in Figure 4.16b is 6.6 nm for the used 

data points whereas the sample mean and median displacements of the nodes 

after 3 ice iterations as shown in Figure 4.16d is about 26 nm and 22 nm 

respectively, which is within the 4 standard deviations of the localization 

uncertainty. The population mean of the displacement is around 5 – 10 nm as 

calculated in Figure 4.17.  

There is an improvement of the molecular position with or without the 

enforcement of linearization constraint on the orientation. It is slightly more for if 

the linearization is enforced. The molecules are re-positioned based on the 

distance and orientation constraints. This improvement is presently judged just 

on the molecular displacement relative to its starting position and we assuming 
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the model constraints are being enforced appropriately, which we have verified 

with simple simulated examples in Figure 4.10. 

 

4.7   Discussion 

In this chapter, we have introduced a nonparametric framework to model 

biological structures using super-resolution localization dataset. We have used a 

graphical model approach with initial positions as evidence and informative 

biological constraints such as inter-molecular distance and local orientation as 

conditionals to generate an improved structure with statistically consistent way. 

The evidence potential function formulation can have either the prior evidence 

from the diffraction-limited image from a normal microscope or it can be totally 

from the super-resolution data depending on the situation and modeling needs. 

The rules that we want to introduce might be hard to implement due to the 

nature and quality of the diffraction-limited image and also they might be too 

simplistic in context of a biological structure to capture the realistic patterns. 

Again, if there is too much ambiguity in a certain region of the structure and if 

the single molecule data cannot provide sufficient information then it could be 

difficult for the generative model to make a correct estimate of the molecular 

positions in that region. Therefore, the generative model has to be sophisticated 

enough for it to be able to generate structural models with high degree of 

information.  

Here we have developed a generative probabilistic graphical model with state 

space consisting of molecular position and orientation (relative to the filament). 

So, the adjacency potential contains both distance and orientation constraints and 

we have applied it to real biological datasets. This results in unbiased, but 
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biologically informed tightening of the data points, which can enhance the 

efficiency of achieving Nyquist levels of labeling density. There are limitations of 

antibody labeling for achieving structural biology level labeling densities. The 

limitations are related to 3-d molecular distributions, which are easily rectified 

by extending into 3-d, labeling density and repeated sampling, issues that are 

being addressed experimentally (Lau et al., 2012). These problems and 

limitations in super-resolution imaging can be handled using a generative 

modeling approach such as the one we have discussed here. The advantage of 

using a nonparametric approach such as a PGM is that new information can be 

incorporated into the state-space without changing the overall modeling 

approach whereas if we use a parametric approach, we have to re-formulate the 

whole computational framework with new parametric information.  

The only issue right now is the number of molecules to incorporate in the model 

building, as the intermolecular distance and orientation estimate for neighboring 

molecules is more accurate if they are closer neighbors. With a sparse dataset 

with the uncertainty of positions close to or more than the distance between the 

immediate neighboring molecules, it is difficult to model it accurately.  Since, the 

ultimate goal is to use hundreds of thousands of localized points for modeling 

the structures; we can propose to parallelize the algorithm as described in the 

methods section 4.6. 
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CHAPTER 5 

 

CLUSTERING AND MANIFOLD ANALYSIS  

 

 

In exploratory data analysis of any type, especially dealing with pattern 

recognition and shape retrieval, it is perhaps incomplete without the discussion 

of clustering algorithms. Localization microscopy produces unordered spatial 

data such for reconstructing structures, but can produce ordered temporal data 

such as for single particle tracking.  There are many “pathfinding” analyses (Li et 

al., 2009b; Maskell et al., 2006; Oh et al., 2009; Rezaii and Tinati, 2011; Sarkka et 

al., 2007; Smal et al., 2008b; Yu and Medioni, 2009) which work with temporally 

ordered data very efficiently. These methods are applicable to localization 

datasets only if they have an order either spatially or temporally. For that, we 

have to devise strategies to order the localization data for structures and hence 

we are exploring methods for clustering and manifold learning.  Various 

clustering approaches can provide initial knowledge about the distribution of 

feature points. These methods can be applied as separate methods or can be used 

as a complementary method for the purpose of structure recovery. Here we are 

only discussing some of the clustering and manifold analysis methods, which 

have the property of providing a sense of a spatial ordering of the points along 

with the cluster. This may provide us a unified framework for tracking of single 

molecules and for shape retrieval from super-resolution data, further discussed 

in chapter 6.   
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5.1    Clustering 

Here we are going to mention some of the clustering approaches relevant to our 

purpose. 

 

5.1.1    Density Based Clustering 

Clustering of points in    and    provides a meaningful information of the 

distribution and pattern in the data, and thus can provide a sense of the 

underlying structures even if no further analysis is performed. There are various 

methods such DBSCAN (Density Based Spatial Clustering of Application to 

Noise)(Ester, 1996; Sander et al., 1998) and OPTICS (Ordering Points To Identify 

the Clustering Structure)(Ankerst, 1999) ,LSDBC(Locally Scaled Density Based 

Clustering) (Bicici and Yuret, 2007) and of course the very popular  k-NN (k-

nearest neighbor) and k-means , although kNN or k-means do not provide 

spatial ordering as such. 

 

 

 

 

 

 

 

Figure 5.1 Density Based clustering using  DBSCAN showing 3 clusters. 
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DBSCAN works on the principle of density reachability using a  -neighborhood 

and minimum points to form a cluster as the parameters. It finds the clusters 

from the estimated density distribution of the points of the arbitrary shaped 

clusters. OPTICS is a generalized version of DBSCAN and it works with a 

varying search radius and as such can be used to find clusters with variable 

density unlike DBSCAN. 

 

Some of these clustering methods such as DBSCAN and OPTICS, can obtain 

clusters from non-linearly separable  clusters which are not separable by simple 

methods such k-means or even sophisticated clustering such as EM clustering. 

All these methods have their own advantage and disadvantages, so the proper 

choice of a clustering method will depend on the type of data and the analysis 

requirements. As a side note, there are other methods such as graph clustering 

and support vector machines (SVM) with say radial basis function kernel, which 

can cluster non-linearly separable clusters. There are numerous other clustering 

methods from the branch of machine learning, which one can use, but we are 

discussing here only few of them, which have the property of spatially ordering 

the points along with finding the clusters. 
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5.2    Graph Based Clustering  

Here we will discuss some of the clustering approaches, which utilize the 

property of the graph structures of the clusters. 

 

5.2.1   Spectral Clustering 

This is a class of unsupervised clustering techniques (Shi and Malik, 2000) where 

the idea is to perform the spectral (eigenvalue) analysis of the graph. Based on 

the same principle there is a method for structure preservation and spatial 

ordering of points (graph embedding later in this chapter). 

 

5.2.2   Similarity Graphs  

Similarity graphs (Knappe et al., 2003) are based on local neighborhood 

relationships either pairwise similarities or pairwise distance between the data 

points         . 

 

1. The ε-neighborhood graph: We generate the neighborhood graph with points 

whose pairwise distances or dissimilarities are smaller than ε. These kind of 

graphs are undirected and unweighted. 

 

2. k-nearest neighbor graph: Here we generate the neighborhood graph by 

connecting vertex    with vertex    if    is among the k-nearest neighbors of 

  . This connection makes the graph asymmetric and hence directed but we 

can have an undirected graph by ignoring the directions, which is called as k-

nearest neighbor graph. Otherwise, we can connect vertex    with vertex  , if 
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   is among the k-nearest neighbors of    which the mutual k-nearest 

neighbor graph.  

 

3. The fully connected graph: Here we generate the neighborhood graph by 

connecting all points with pairwise positive similarity. 

The spectral theory and similarity graph concept is used later in this chapter on 

manifold learning in section 5.4.  

 

 

5.3    Computational Geometry 

In order to provide an order to the structure data to make it look like trajectories, 

we have employed some methods from computational geometry, computational 

topology and graph theory. We have applied a method called Alpha Shapes. It 

performs clustering on 2D point clouds, using Delaunay tessellation although it 

is applicable to 3D point clouds too. An alpha shape has been previously applied 

to protein structures (Albou et al., 2009; Edelsbrunner, 1995; Liang et al., 1998a; 

Liang et al., 1998b; Liang et al., 1996) This particular approach can provide us 

with a fairly informative approximation of the overall structure and can be useful 

on its own without any further analysis. It may also allow us to perform the 

ordering on individual patches since we have that information.  
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5.3.1   kd-tree 

This is a generalized version of binary tree data structure (Bentley, 1975). It can 

cluster the data points based on their distance in a hierarchical manner from the 

connectivity graph. Every node of a k-d tree is a k-dimensional point. Every node 

acts as a separation plane for the space and it can split the point sets alternatingly 

by x-coordinate and y-coordinate.  Figure 5.2A shows a k-d tree decomposition 

for the black dots that are spatially ordered by x and y coordinates. 

 

 

     A 

 

 

 

 

 

 

 

 

 

 

 



 
 

119 
 

    B 

 

 

 

 

 

 

 

 

 

   

Figure 5.2  (A) Kd-tree decomposition (B) Kd-tree clustering example with 

different type of search queries 

 

Figure 5.2B shows how all the initial blue points are ordered by k-d tree and then 

upon different search queries returns the results. K-d tree is also used in kernel 

density estimation, which we have discussed in chapter 4 in the context of belief 

propagation in probabilistic graphical model.   
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5.3.2    Delaunay Triangulation 

Given a set of N points P = {x1, x2,…, xN}     , where  d = 2 or 3 , if the 

triangulation DT is such that no point in P lies within the circumcircle for any 

triangle in DT, then DT is called a Delaunay triangulation.   The triangulation can 

be incrementally modified by addition or removal of points in P. In the case of 2-

D triangulations, we can apply constraints on the connecting edges of DT, say 

based on distances, we can perform topological and other geometric operations 

such as range queries, nearest neighbor search, Voronoi tessellation and convex 

hull.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.  (A) Delaunay triangulation of the points shown in red circles (B) 

Voronoi tessellation (bounded) of the points shown in red dots 
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5.3.3    Alpha Shaping 

 

Alpha shaping(Edelsbrunner et al., 1983; Edelsbrunner and Mucke, 1994) is a 

generalization of finding ‘hulls’ given a set of 2-D and 3-D point cloud, although 

not every alpha shape is a convex hull. It is a very useful method in 

computational geometry. Alpha shaping is based on the Delaunay triangulation 

and can find both convex and concave hull at the same time, so it can determine 

both the inner and outer edges of the structures.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4.  Alpha shaping example. Yellow dots are the data points. Red curve is 

the outer edge and blue curve is the inner edge. Gray circles searches for the 

boundary for the given set of points.  
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The alpha shapes are determined based on a parameter value   , which 

essentially determines how the gray circles in Figure 5.5 searches for the 

boundary for the given set of points. It controls the desired level of detail. For 

small     the alpha shape would degenerate to the original set of points and 

for large values, the alpha shape would just find the outer boundary since the 

gray circles cannot find space in between two given points. Hence for     the 

alpha shape is equivalent to finding the convex hull of the set of points. 

Below are some examples of the application of alpha shapes on a real single 

molecule data. We have used the MATLAB toolbox, publicly available at the 

Mathworks website for alpha shapes (ashape, 2005). 

   

 

 

 

 

 

 

 

 

         

Figure 5.5. (A) Alpha shape at 5% data. r =1 .    (B) Alpha shape at 2% data. r = 1. 

(C) Alpha shape at 1% data, r = 2. r is the search radius. 
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Figure 5.6. (A) Alpha shape at 5% data. r =1. (B) Alpha shape at 2% data. r = 1. (C) 

Alpha shape at 1% data, r = 2. r is the search radius. 
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Figure 5.5 and Figure 5.6 shows the alpha shapes for the point datasets in two 

different region of interests. The first case is region of low density of filaments 

and the second case is a region of high density of filaments. The alpha shaping 

works well in the former case even at very low data density, but for the second 

case due to such close association of points from different filaments the 

algorithm cannot correctly find the distinct structures and the alpha hull includes 

most of the structure into one complex. The efficiency of the method will depend 

on the data density and the search radius r of the circle. 

 

5.4    Manifold Analysis 

Manifold Learning (Saul and Roweis, 2004) is an elegant method for learning 

about the topology of any high dimensional dataset. It has been widely used in 

machine learning for dimensionality reduction and topology learning. The point 

dataset can be Non-Riemannian i.e. they need not be smoothly positioned in the 

manifold. We just have to find the connected clusters and perform the 

embedding on individual components for preserving the local topology, which 

will help us to find the local connectivity of the points in a cluster. It can be a 

very useful property by itself when we are looking at a structure, which 

comprises of points such as the localization microscopy datasets. 

 

 

 

 

 



 
 

125 
 

 

5.4.1    Local Topology Preserving 

Given a symmetric graph with edge weight matrix     𝑤   , the corresponding 

graph embedding      is said to preserve the local topology if the following 

condition holds: 

       
         

     if  𝑤     𝑤         𝑝   

               (5.1) 

Therefore, the more similar or closer two points in the original metric space are, 

the more the edge weights will be between them and the closer the points will be 

in the embedding lower dimensional space. 

 

5.4.2    Graph Embedding 

Manifold learning is usually used in machine learning for learning a higher 

dimensional data pattern by projecting onto a lower dimensional space. 

Therefore, it is a mapping from           where     . In our case the data 

point are positions in 2-dimensional Cartesian coordinates   (n= 2) and we want 

to map it onto 1-dimension (d = 1) and sort the points in order of their 

magnitudes in the 1-d. This will then provide a sequential order to the points in 

the 2d space. 

 Normally manifold learning on graphs are done only on the largest connected 

component otherwise it is meaningless for dimension reduction, however our 

objective is different and therefore we want to embed the whole data. Single 

structure, which can be clustered as one connected component, can be embedded 

directly otherwise for several connected components, the embedding should be 
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done separately. The objective of our graph embedding on the structures is to 

ensure the local connectivity of the point clouds and overall shape of the 

structures are preserved when we embed onto a lower dimensional space so that 

if we sort the points on the lower dimension we can traverse the structure in the 

original space in a sequential manner.  We have tried to test several embedding 

methods such as Locally Linear Embedding (LLE) (Roweis and Saul, 2000) 

,Neighborhood preserving embedding (NPE) (Xiaofei et al., 2005) , Hessian 

Locally Linear Embedding (HLLE) (Donoho and Grimes, 2003) , Laplacian 

Eigenmaps , etc from the toolbox (van der Maaten, 2012; Wittman, 2005) , some 

were better than others for different cases. A recent publication  (Luo et al., 2011) 

has proposed a new embedding approach, Cauchy graph embedding which 

performed significantly better than Laplacian embedding which is generally 

considered as a local shape preserving embedding. They showed that Laplacian 

embedding fails to preserve the local shape connectivity in many cases and 

Cauchy graph embedding should be the appropriate choice. In general, if we 

choose a proper objective function for mapping then it should be able to produce 

the local topology or neighborhood preserving feature.  

 

 Below are some examples of embedding with different methods showing their 

working principle using the manifold tutorial (Wittman, 2005) showing how the 

neighborhood information is preserved in various ways. 
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Figure 5.7. The classic example of 3D Swiss roll embedding in 2D using (A) Swiss 

roll data (B) ISOMAP (C) LLE (D) Hessian LLE (E) PCA (F) Laplacian  using the 

toolbox (Wittman, 2005) 
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Figure 5.8. An example of 2D manifold embedding of the manifold shown in (A) 

using (B) ISOMAP (C) PCA (D) Laplacian (E) Hessian LLE  for a 2d embedding 

and same methods in (F)-(I) for a 1d embedding using the toolbox (Wittman, 

2005) 
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The idea of showing these examples is that if are able to get the spatial and 

structural relationship in lower dimension of the neighboring points of the 

manifold in higher dimension , then we can learn about the structure more 

easily.  

We have mainly experimented with Laplacian and Cauchy embedding for 

learning the super-resolution 2d point cloud structure and the details of both 

methods is provided below. 

 

 

5.4.2.1    Laplacian Embedding 

Laplacian embedding is a widely used method for manifold analysis and has 

been generally used for topology preserving embedding. Although, Laplacian 

Eigenmaps may not be the best graph embedding method for neighborhood 

preservation, we have found reasonable results in many data sets by applying it. 

The way the Laplacian graph embedding (Belkin and Niyogi, 2003)  is performed 

on the individual components is as follows. 

1. Generate a neighborhood graph G  using pairwise L2 distance or k-nearest 

neighbor 

2. A weight matrix is computed usually given by 

    {
   ( 

‖     ‖
 

𝑡
)  𝑡                  𝑒 𝑐𝑜  𝑒𝑐𝑡𝑒  

    𝑜𝑡ℎ𝑒 𝑤 𝑠𝑒

      

                 (5.2) 
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3. Compute eigenvalues and eigenvectors for the generalized eigenvector 

problem 

𝐿                                                                                                                              (5.3) 

where   is the diagonal weight matrix with     ∑       and   𝐿       

is the Laplacian matrix. L is symmetric and positive semidefinite. 

4. Sort the eigenvectors in ascending order of their eigenvalues. If solution of 

(1) is given by           ) then the mapping of a point    in the lower 

dimensional space    is given by               ). 

 

Laplacian embedding is related to the popular spectral clustering. It can preserve 

the local topology and is robust to noise and outliers in the data, which results in 

inherent clustering of the data. Therefore, it can be applied to localization 

datasets consisting of points, resulting in spatial ordering and natural clusters  

 

 

5.4.2.2    Cauchy Embedding 

It has been shown in literature(Luo et al., 2011) that Laplacian Eigenmap are not 

so efficient in preserving the local topology when the structures are more 

intricate. The reason is due to the fact that in the case of Laplacian embedding the 

objective function is minimized while trying to emphasize more on the points 

which are further away compared to the points which are nearer. This is due to 

the nature of the objective function, even when a proper weight function such as 

Gaussian heat kernel is chosen. Therefore, the solution to this drawback is to 

choose such an objective function, which puts more emphasis on points, which 

are closer, and tries to minimize the objective function accordingly.  The authors 
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(Luo et al., 2011) suggest that the Cauchy embedding by itself requires a proper 

initialization and it has been observed that Laplacian embedding results as the 

initial solution for the gradient algorithm works fairly well. Other possibility is to 

randomly initialize and choose the best. 

 

 

Since we were interested in finding methods that can provide spatial ordering of 

point dataset, in this chapter, we have just introduced some of the methods for 

clustering and manifold learning with simple examples showing how this 

approaches can order and provide information about the structures. Manifold 

learning can be used as a method on its own to learn about biological structures 

and in general, any object recognition. We will see the application of some these 

methods on real single molecule super-resolution data and the subsequent 

application of data association methods in chapter 6 to reconstruct the 

underlying curves from point data sets.  
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CHAPTER 6 

 

MONTE CARLO DATA ASSOCIATION FOR SINGLE MOLECULE 

IMAGES AND PARTICLE TRACKING  

 

 

Previously we have discussed  that generative models can efficiently 

reconstruct simple biological structures with better spatial and temporal 

resolution and also provide quantitatively useful biological information using 

very little input data. Using an implicit Bayesian parametric feature extraction 

technique called the Hough Transform (HT), simple biological structures such as 

lines and circles were identified from both simulated and real localization data.  

Although, classical HT can be extended to generalized HT and probabilistic HT 

to reconstruct any parametric or non-parametric objects, I am trying to use a 

more general unified approach of curve finding. The ultimate goal is to find the 

generative model that can generate the entire set of molecules given partial 

single molecule positions and informative constraints (apparently much difficult 

formulation) using probabilistic generative model such as the probabilistic 

graphical model (PGM) approach, which we have described in chapter 4. We will 

however restrict ourselves to improving the molecular positions given localized 

data. 

From the generative model point of view, the data association would provide us 

a framework for single molecule tracking which has already been shown in 

(Smal et al., 2008a) There are methods such as (Hill, 2011b), which can possibly 

determine the structures without any other assumptions. We are trying to 

experiment if we can use the same framework for single particle tracking can be 
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applied to interpreting underlying structural features from a set of localized data 

points.   

 

6.1  Probabilistic Data Association Framework 

It has been already shown in literature (Smal et al., 2008b) that Rao Blackwellized 

Particle Filtering (RBPF) Based Bayesian tracking is more accurate and robust for 

tracking fluorescent molecules from confocal microscopy images than other 

probabilistic tracking.  Here we apply it to localized super resolution dataset, 

which are inherently better resolved datasets. Therefore, it should potentially 

provide significantly better estimates of the trajectories if we are using it for 

tracking or provide better structural resolution if we are using this concept of 

data association to trace the underlying structures in single molecule data. Data 

association problem is generally used for tracking trajectories of multiple targets. 

It is based on associating trajectory points to the corresponding targets in 

sequential time instances. Hence, this method is only applicable to super-

resolution data of structures, which resembles some kind of arbitrary trajectories. 

The idea here is to see if the single molecules on a structure can be thought as 

trajectories of thousands of target molecules. One continuous connected structure 

will define the trajectory of one target. Points defining the structure will be 

multiple estimates (points close to the point in consideration) for the same 

position (uncertainties) and over time (different position) to describe the 

trajectory.  Since the data association works for sequential information, the 

position information from a super-resolution data, which is generally arranged 

in a random order, needs to be ordered first as a pre-processing step. If we are 

using data association to actual single molecule tracking data then this can be 
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used directly (Sarkka et al., 2007). It would be desirable to utilize a unified 

approach for trajectory and feature analysis in localization datasets. 

 

6.2   Spatial ordering of points for data association  

One of the important steps in this analysis is the ordering of position data based 

on the inter point distances. Since data-association using particle filters works for 

dynamic sequential trajectory points and we are interested in using it on position 

information, which are randomly distributed over the structure, the position 

needs to be ordered in some manner so that RBPF can perform data association. 

Although, for linear structures, the data can be simply sorted according to x or y 

coordinated values, it becomes tricky for arbitrary curvilinear and closed loop 

structures. We have attempted several different techniques including k-nearest 

neighbor clustering, spectral graph clustering, k-d tree, Delaunay triangulation, 

alpha shapes and manifold learning and graph embedding and only found 

satisfactory results using a combination of alpha shape, Delaunay triangulation 

to find connected components and graph embedding. The details are described 

in chapter 5.  

 

We are going to first review the basic theory of applying the RBPF to data 

association problems. The method is called Rao-Blackwellized Monte Carlo Data 

Association (RBMCDA) as discussed in (Sarkka et al., 2007).  
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6.3    Rao-Blackwellized Particle Filter 

Data association problem are generally studied in the field of computer vision, 

machine learning and Robotics such as radar tracking, sensor networks, robot 

localization and mapping etc. The task is to determine the correct 

correspondence between sensor measurements and the trajectories. RBMCDA is 

a relatively new method of solving this problem (Oh et al., 2009; Sarkka et al., 

2007). The problem of data association can be formulated as described in (Sarkka 

et al., 2007) as below. 

The state space of the target is given by: 

               ̇      ̇ 
  

    (6.1) 

where          is the position and the velocity is (   ̇     ̇  . The state variable can 

be approximated as: 

     𝑝           

    (6.2) 

which is a stochastic dynamic model  and is described below. 

 

6.3.1    Dynamic model for static single molecule structures 

If we consider the problem of tracking multiple single particles then RBMCDA or 

any data association algorithm can be directly applied to the time series position 

data to determine the particle trajectories. Since, here we have position data on a 

certain structure; we are trying to transform the structure to some kind of a 

pseudo time series for unknown number of single particles moving along the 
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structures. Suppose               is the position  and    ̇      ̇    ) is the velocity for 

the jth particle and kth time instance , then the dynamic model can be 

implemented using a discretized Wiener velocity model (Sarkka et al., 2007). 

 (

    
    

 ̇   
 ̇   

)  ( 

 
 
 
 

    
    
      
    

  𝑡
 
 
 

  
   𝑡
 
 

)(

      

      

 ̇     

 ̇     

)                   

    (6.3) 

where the derivative is w.r.t discretization steps dt along the length of the 

trajectory (which is actually the structure with some sense of directionality) 

 ̇  
  

 𝑡
 

                                                                                                                                        (6.4) 

     is the process noise which can be thought of as the inherent noise in the 

model. Here the time t is just the step in the discretization or sampling period on 

a structure.  The measurement model tells us how the state space values are 

measured for a particular actual state space value and can be written as: 

             

              

    (6.5) 

Here               and the sampling period  𝑡 = 0.1, process noise q = 0.1 and 

the measurement noise or positional uncertainty          has been used as 

suggested in the RBMCDA toolbox (Sarkka et al., 2007). The maximum number 

of data associations per target structure is set to 1 to improve the performance of 

tracking in presence of outlier noise. 
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The outlier noise can be modeled using any probability density, which is 

independent of the target states                ̇     ̇ 
 .  

Then the objective is to recursively compute the current state, i.e. calculate the 

marginal posterior distribution:  𝑝          i.e. find the probability estimate of the 

state    given a measurement value    at time step k. The first step is to initialize 

with prior 𝑝    . Then one can proceed to compute the predictive distribution of 

the state    for the time instance k given all previous measurements        by 

summing the products of the probability distribution 𝑝           corresponding 

to the state transition  (k-1)-th to k-th step and the probability distribution of  

previous state  𝑝               :  

𝑝             ∫𝑝         𝑝                    

    (6.6) 

Now, once we get the measurement value    at time step k, the posterior 

distribution of the state    is proportional to the product of the measurement 

likelihood 𝑝        and predicted state (equation 6.6) can be calculated using 

Bayes rule as follows:  

𝑝        
 

  
𝑝        𝑝            

    (6.7) 

where    is a normalization constant given by 

   𝑝          ∫𝑝       𝑝                 

    (6.8) 
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Since we have the posterior with some uncertainties, we can apply a Bayesian 

smoothing as follows: 

𝑝             ∫𝑝         𝑝              

𝑝          ∫ [ 
𝑝         𝑝           

𝑝           
]       

where T > k.                                                        (6.9) 

The computation of the integrals described above is a time consuming step and it 

may have analytical solutions only in special cases. This can be approximated 

numerically using sequential Monte Carlo or particle filtering method described 

in the section 6.3.2. For certain situations, if it is possible to solve the integral over 

the state space, then it should be considered and use sampling for the data 

association part only. This approach is called as Rao-Blackwellization. 

 

6.3.2    Particle Filter  

In literature, sequential Monte Carlo sampling (Doucet et al., 2000) is also known 

as particle filtering. Given observations    and the state space sample     , the 

posterior distribution 𝑝        is represented using a weighted particle sets  

    
  𝑤 

     
  at time step k as: 

𝑝        ∑𝑤 
  

  
 

 

   

 

              (6.10) 

where    is the Dirac delta function, 𝑤 
  is the weight for the ith particle   

  at time 

k and N is the number of particles  and ∑  𝑤 
    

   . 
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Now using the particles   
   that was obtained from the previous time step 

distribution 𝑝       , the next set of samples and weights can be sampled as 

follows: 

      
  𝑤   

     
   𝑝            

             (6.11) 

Then the expectations for the samples are given by simple averaging: 

         
 

 
∑  

 

 

   

 

One of the advantages of using the particle filter approach is that it does not need 

to assume any shape or analytical form of the sample distribution, which makes 

it applicable to different kind of data. 

 

Below is an example of Monte Carlo sampling (Gibbs sampling) which samples 

(Figure 6.1A) from a 2d Gaussian distribution shown in Figure 6.1B and C. The 

Gibbs sampling works by drawing from the full conditionals 𝑝(  |      where 

    is all other variables except i. In general, the samples are drawn from a 

proposal distribution or importance function. 
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Figure 6.1. 2d Gaussian distribution with Monte Carlo (Gibbs) sampling 

positions represented by the black dots in (C).  (A) and (B) shows the exact (red) 

and approximate (histogram) 1d marginal distributions in the 2 dimensions. 
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Although there are several ways to perform particle filtering (Doucet, 2001) , the 

general algorithm with Sequential Importance Resampling (SIR) is as follows: 

 

1. Samples are drawn   

    
   𝑝(    |  

 )  (transition prior) 

 

or the importance function  

    
    (    |  

       )   if high likelihood states are missed by the prior  

 

2. Then they are resampled from 

    
    𝑢𝑙𝑡  𝑜𝑚  𝑙  {𝑤   

 }
   

 
   (Multinomial resampling) 

 

3. update the weights  

𝑤   
   

𝑝(    |    
 )

∑ 𝑝(    |    
 ) 

   

 

 

 𝑤   
   

𝑝(    |    
 )𝑝(    

 |  
 ) 

∑ 𝑝(    |    
 ) 

   

 

or 

 𝑤   
    

𝑝(    |    
 )𝑝(    

 |  
 ) 

 (    |    
 )

 

 

 

The sampling method is dependent on the quality of the importance distribution 

and the one, which minimizes the variances of the importance weights, is 
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generally preferred. For higher dimension state space, the more particles are 

needed for sampling. 

Since in certain cases the set of particles may get depleted which is known as due 

to low data points and needs to be replenished.   

Figure 6.2 shows a general scheme for particle filtering and resampling strategy 

as described in (R. van der Merwe, 2000). The particles with higher weights are 

retained and resampled while particle with very low weights are ignored. 

 

 

 

 

Figure 6.2  Particle Filtering strategy 
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We are going to revisit particle filtering in the context of non-parametric belief 

propagation in probabilistic graphical model in chapter 4.  

 

 

6.4   Results 

The data association is applied to the simulated example. First the points are 

clustered using either Delaunay triangulation or alpha shaping to find the 

connected components as clearly as possible. It should be noted that the usual 

graph algorithm for connected component analysis can also be used. We have 

used other methods for introducing them as other options. Then the points 

within each cluster or connected component are spatially ordered using another 

clustering approaches or manifold learning methods including graph 

embedding. 

 

6.4.1    Simulated data reconstruction 

Here we have a simulated structure consisting of points in 2d. The objective is to 

(1) first cluster the points and then (2) spatially order the points and then (3) 

apply RBMCDA method to the ordered points to recover the underlying true 

curves (black ) in Figure 6.2A  
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Figure 6.3. (A) Position data is in red. Black curves are the true shapes. (B) 

Delaunay triangulation of the data shown in 6.3A 
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Figure 6.3 shows the Delaunay triangulation of the data points shown in Figure 

6.2. Once we have the connected components, we proceed to apply the graph 

embedding on each of the components. The result of embedding is shown for the 

whole structure in Figure 6.4C. Next, we apply the RBMCDA algorithm on the 

ordered points and the result is shown in Figure 6.5. 

                                                                                                                                                                                                                                                                                                         

Figure 6.4. (A) Laplacian Eigenmap Embedding in 1d of one of the top right 

circular structure (Figure 6.3A). (B) sorted points of the circle.(C) entire point 

cloud in 2D sorted based on the 1-d Embedding. 
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The particle filtering method of RBMCDA is able to estimate the curves (dark 

green lines) for the structure quite efficiently, with very small error in data 

association. 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Figure 6.5. (A) Particle filter estimation of the structures. The Estimated 

smoothed trajectories in bold dark green curves. The red circles indicate the 

starting point. (B) smoothed using Kalman filter 
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6.4.2   Application to real data  

Reconstruction for real data is performed in the same way. First, find individual 

components using Delaunay triangulation or alpha shapes. Next, embed the 

components separately and then sort on the 1-d and then provide an order in 2d 

space. Next, use particle filter estimate to determine the underlying structure. 

The major challenge is to provide a proper sequential order when the structure 

has very densely spaced components.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Particle filters estimation of the real data shown with green circles. 

The estimated smoothed  structures are in bold green curves. 
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Figure 6.7. Particle filters estimation of the real data shown green circles. The 

estimated smoothed structures are in dark green curves. The straight lines 

without having any structural basis are errors in the particle filter estimates for 

data with high density filaments 

 

For the structure shown in Figure 6.6, RBMCDA was able to find the underlying 

curves for the most part, whereas for Figure 6.7, the curve finding was not that 

good. The reason being the sequential ordering of the points was not that good 

for the latter case due to close structures and ambiguous positions. There are 

many false data associations due to improper ordering of points. Therefore, the 

performance of RBMCDA is limited here because of the clustering and 

embedding method. 
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6.5    Discussion 

The computational complexity of alpha shaping is around O(n log n), whereas 

for the graph embedding that we are using is ~ O(n3) which actually limits the 

data preprocessing. The computational complexity of the RBMCDA method is 

approximately linear with respect to the number of targets hence for our case it 

will be proportional to the number of distinct structural segments. When we 

have more structural segments, the number of particles for particle filtering 

should be increased to properly sample all the segments, which again will 

increase the computational complexity proportional to the number of particles. 

Here we have used ordering of the points using simple Delaunay triangulation 

and alpha shaping along with graph embedding for reconstructing both the 

simulated and real data.  With increased structural density, the performance of 

sequential ordering the data is degraded and hence the performance of data 

association method suffers too. The ideal method would be the one where we do 

not require performing the ordering the data separately prior to reconstructing 

the underlying structures using a generative method. This data association 

method will work for open filament like structures and tube like structures with 

or without closed loops (forming ‘holes’). However for solid arbitrary shaped 

structures with no ‘holes’, it is often informative to just find the outer boundary, 

in that case we already have several other feature extraction methods available 

including alpha shapes. 
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CHAPTER 7 

 

SUMMARY 

 

 

Recent advancement in super-resolution imaging methods including 

single molecule analysis has opened up various opportunities to study important 

problems in biology such as dynamic subcellular processes. Without these 

methods, it would not have been possible to study the dynamics of complex 

heterogeneous systems such as living cells at the single molecule level. Even with 

all these excellent image acquisition capabilities, most of the super-resolution 

methods cannot reveal faster biological processes or the resolution of the 

dynamic structures will still be limited.   

 

7.1    Contributions  

My dissertation contributes to the field of optical structural biology using super-

resolution imaging by developing generative models for reconstruction of 

biological structures from sparse single molecule super-resolution data. 

Generating a high-resolution image using localization microscopy requires an 

extensive sampling of molecular positions, both spatial and temporal, to 

determine the underlying structure. We hypothesized and demonstrated that 

generative models could efficiently infer biological structures from single 

molecule super-resolution datasets, potentially improving dynamic localization 

imaging of structural components in cells. This initial work was focused on 
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simple parametric shapes. I have provided a simple demonstration and validated 

our hypothesis for sparse reconstruction from SR data using a parametric feature 

extraction method called Hough Transform. To develop a more general 

approach, I applied biologically relevant informative model constraints to 

understand the underlying biological structure (tubulin in this case) using a 

generative probabilistic graphical model. The idea of using such a modeling 

approach is to be able to incorporate information of different kind into a single 

framework and with more information. This approach can be related to the 

integrative approaches for structural biology studies such as integrated modeling 

platform (IMP) (Yang et al., 2011) and modeling of nuclear pore complex (Alber 

et al., 2007). The only thing that needs to be modified is the state space in the 

graphical model and the relevant informative constraints. We have used a non-

parametric belief propagation to perform inference on the graphical model.  The 

goal of this approach is to reduce the positional uncertainty and improve upon 

the structural density at sparse data situation. This can potentially enhance the 

resolution, which depends on the molecular density as described in chapter 1 

equation 1.4.  Although right now there is little quantitative information that can 

be directly extracted out of the PGM method, it can be modeled in a way with 

additional quantitative steps to obtain other relevant information extracted from 

the structures such as the features of interest with known shapes or discover 

newer structural features.  

Therefore, the thesis has served two purposes here; one is to provide a 

computational framework to improve the detailed modeling of biological 

structures. Secondly, it shows an alternative way to overcome the limitations 

dynamic imaging of subcellular processes and provide biologically relevant 
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quantitative information bridging the gap between super-resolution microscopy 

and structural biology. 

In the later chapters, we have also introduced some other methods such as 

Computational Topology, Computational Geometry such as Delaunay and 

Voronoi Triangulation, Alpha Shapes, Manifold Learning and some density 

based clustering approaches, to analyze certain problems in super resolution 

imaging. We have explored several different methodologies for understanding 

the underlying biological structures in super-resolution microscopy data and 

hope that it will help develop better computational methods in the rapidly 

progressing field of super-resolution imaging of biological structures and 

processes. 

 

7.1   Future directions 

The primary objective of the thesis is to lay a foundation of the application of 

different computational approaches for reconstruction and improvement of 

biological structures at sparse single molecule data density and obtain 

meaningful information in the process. The immediate goal would be to improve 

upon the methods presented and develop even better and efficient methods. 

Although, the particular parametric method that we have applied here was 

chosen as an experimental method, but it can be improved as well, for our 

purpose:   

 

1. Parameter Optimization 

The choice parameters for generating the parametric curves were chosen 

manually based on visual accuracy. Therefore, this has room for 
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improvement using an automatic parameter search using Monte Carlo 

optimization for the Hough Transform method, or if there is already a 

parametric curve reconstruction method, which has this ability, then it will be 

preferable. 

 

2. Computational Complexity 

The time complexity of the parametric methods such as Hough Transform is 

an issue for 3d parameter space, and also for generalized methods for 

arbitrary shapes. So, this methods needs to be modified for efficiency or, 

newer methods needs to be developed. 

 

 

3. Dynamic Imaging 

We have shown the reconstruction example on static biological structures 

here, so it would be a necessary next step to perform similar analysis on 

dynamic super-resolution image data.  The reconstruction approach would 

still be similar. 

 

For the probabilistic graphical model approach, there are certain things we can 

address: 

1. Incorporate the structure reconstruction (the curves) capability within the 

modeling framework, such as the method shown in (Hill, 2011b) 

 

2. The PGM framework or the data modeling part with PGM needs to be 

parallelized for handling very large data sets, since currently; we have used 

only a small set of molecules when we consider the amount of data that is 
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usually generated from a long time scale super-resolution imaging. We have 

discussed a way to parallelize, in chapter 4. 

 

3. The modeling framework can be extended to 3-d , with the state space having 

the 3-d position and 3-d orientation for the molecules, which of course will 

make the computation more intensive but will be more general and is 

necessary for keeping up with the challenges in field of structural biology. 

 

The methods that we have discussed in this thesis are mostly experimental and it 

lays the foundation for future improvements on the algorithms and development 

of novel computational methods to meet the challenges in the field of optical 

structural biology. 
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APPENDIX  

Here, we are going to discuss an additional project, which is different from the 

actual thesis project. We pursued this work on co-translational folding of 

proteins with a structural bioinformatics approach, since it is a very fundamental 

and important problem in biology. However, we were able to complete the 

analysis partially. I am including the work here, hoping that it may be 

considered for further study in future.   

CHAPTER A 

 

SEARCHING FOR SIGNATURES OF ELONGATION RATE ENCODED 

FOLDING OF PROTEINS  

 

A.1   Introduction 

Protein folding mechanism has been the central problem in biology for 

around half a century. Although it is a well-established fact that protein is 

synthesized sequentially, the concept of co-translational folding is still 

controversial (Buchan and Stansfield, 2007; Deane et al., 2007). Recent 

experimental studies on protein synthesis suggests that mRNA has an additional 

layer of information along with amino acid sequence, affecting the folding and 

function of proteins in vivo and could possibly assist in kinetic co-translational 

protein folding .We are trying to evaluate the hypothesis that “Timing program 

encoded by the codon usage has a specific impact on the form, folding and 

function of some newly synthesized proteins.”  

Elongation of the nascent peptide generally is fastest at codons with highly 

abundant cognate tRNA and slowest at codons with rare tRNAs. Translational 

pausing at rare codons might provide the time delay for sequential folding of 
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nascent proteins. Fast translation may force folding of certain structures (e.g. α 

helices) within the ribosome exit tunnel. 

It has been suggested that the codon usage and charged tRNA abundance affect 

the ribosomal translation rate, which in turn delays or prompts the emergence of 

newly synthesized proteins. This translational time variation might be necessary 

for sequential folding of multidomain nascent proteins, implying that mRNA has 

an additional layer of information encoded by codon usage that determines the 

translation dynamics and influences protein function. Structural features that 

require elongation rate control would show high conservation of the 

downstream codon selection within an organism. Evolutionarily, proteins that 

require translational coordination of folding would be expected to show strong 

correlation of codon selection based on the effective translation rate for a given 

codon in the respective organism. Clustering of the motifs according to 

downstream translation rates across proteins and across phyla would reveal 

conserved translational timing elements. These identified elements would serve 

as a rich test-bed for investigations of the importance of the translation rate code 

in directing nascent protein function.  

We are developing a single molecule methodology that will allow us to examine 

the translation of a single mRNA molecule by a fluorescently tagged ribosome, 

and to correlate these dynamics with the function of newly synthesized, still 

bound nascent proteins.  

 

A.2   Methods 

We want to test if translation rates relate to structural motifs or the correlation is 

at a domain level and not at a motif level.  Relative translational rate (TR) is 
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calculated from the tRNA abundance (AtRNA) or codon usage (Ucodon) of the protein 

sequence for each amino acid i as:  

       (
 

𝑤
∑

 

    

     

   

)

  

 

         𝑜           

𝑤  𝑠𝑙    𝑔 𝑤   𝑜𝑤 𝑠  𝑒 

              (A.1)  

tRNA and codon usage data were obtained from tRNA database at (UCSC) . 

We perform sliding window (w =10) average starting at a motif start and end and 

continuing till 50 aa downstream to cover the length of the ribosome exit tunnel. 

We perform the analysis for 32 proteins (unique chains only) across 3 species 

(mostly human and some mouse and bovine) which shows evidence of co-

translational folding (Komar, 2009; Parmley and Huynen, 2009).  There are total 

of 263 α-helices  and 316 β-sheets.  

A hierarchical clustering analysis over all such profiles from all proteins is 

performed to detect conserved patterns or signatures of co-translational folding.  

As structural motifs are usually 10-20 amino acids long and ribosomal exit 

tunnels are around 30 aa, to get the translation rate we have analyzed the 

sequence up to 50 amino acids downstream. We have assumed here that the 

number of tRNA genes is a true representation of the tRNA abundance within 

the cell.  
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A.3    Results 

Previous studies (Komar, 2009) have shown some evidence of correlation of 

codon usage of proteins to structural motifs. However, tRNA abundance and not 

codon usage is the more appropriate determinant of translation rate.   Here are 

few example proteins that show evidence of co-translational folding.    
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Figure A.1 (a) Mouse phosphoglycerate kinase (PGK) color coded according to 

the tRNA abundance of the amino acids (b) Sliding window (10) average of the 

tRNA abundance for the full protein sequence, representing the translation rate. 

(c) Sliding window average of the codon usage for the full protein sequence 
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Figure A.2. (a) Bovine β-B2 crystallin (CRYBB2) color coded according to the 

tRNA abundance of the amino acids (b) Sliding window (10) average of the tRNA 

abundance for the full protein sequence, representing the translation rate. (c) 

Sliding window average of the codon usage for the full protein sequence, 

representing the translation rate. 

 

A.3.1   Clustering Analysis 

In order to find any obvious conservation region in the protein sequences, the 

straightforward approach is to perform clustering of the motif translational rates 

across several proteins to search for a signature for co-translational folding. Since 

our starting hypothesis was that tRNA abundance and codon usage for the 

protein has a direct effect on the ribosomal translation, therefore if we compute 

the relative tRNA abundance or codon usage for the amino acids for the protein, 
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we can have a sense for regions of low or high abundance in a particular 

sequence. This would show up as possible clusters across the protein sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3. Clustering analysis (partial results shown) of the Translation rates for 

all the proteins starting from Alpha Helix and 50  sequence downstream (a) 

clustering using Euclidean distance as the metric .(b) clustering using  correlation 

as the metric. 
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The hierarchical clustering using ‘Euclidean distance’ and ‘correlation’ clustering 

return different clusters of the translational profile of the motifs. The analysis of 

clusters is inconclusive for the intra-species proteins as we did not find any 

meaningful clusters and the codon usage and tRNA abundance for the amino 

acids were not very significantly better than random chance at least from the 

preliminary evidence. We have to perform the same analysis for inter-species 

proteins to see if we can find an evolutionary conserved region in the proteins. 

 

A.4    Future work 

One of the objectives of the translation studies is to verify the functionality of the 

nascent proteins and test our hypothesis that proteins may acquire its functional 

form while still attached to the ribosomal subunits asserting the co-translational 

folding phenomenon. We may propose an experimental technique shown in 

Figure A6. The underlying idea is to spot the functional nascent proteins within 

the time scale of folding. 

 

 

 

 

 

 

Figure A.4. Example schematics of single molecule imaging study of translation 

and folding of proteins 



 
 

166 
 

 

The basic steps for the approach are summarized below: 

1. The immobilized transcript codes for FAP (fluorogen activating 

peptide) which binds and activates malachite green dye. The FAP-

dye combination can be used as a unique reporter for translation 

dynamics and nascent chain folding. When the FAP folds on the 

ribosome, it is able to bind to the dye and activate it signifying 

completion of translational process and proper folding. 

2. The distribution of translation-folding times for the FAP-dye 

reporter can then be used to measure the effect of codon 

degeneracy on folding and function of the reporter protein. 

Synonymous mutations will be made in the transcript to identify 

changes that alter the folding probability of the reporter.  

3. The emergence of GFP signal indicates docking of ribosome on the 

mRNA whereas malachite green signal indicates proper fold of the 

nascent chain. Hence, the time difference between appearance of 

GFP signal and appearance of MG signal establishes the time delay 

between initiations of translation to maturation of nascent protein. 

Variation in this time interval will be compared as a function of 

codon degeneracy, charged tRNA abundance, folding effectors 

(chaperones) and translation effectors (initiators).  

4. The translational rate model allows simulation of expected 

translation times through Monte Carlo and HMM analysis of the 

folding trajectories.  These predictions can be compared to Single 

Molecule Detection methods mentioned to determine whether 



 
 

167 
 

codon abundance or another factor controls the protein synthesis 

and folding rate. 

 

A.6    Conclusion 

In conclusion, we have developed an approach for investigating the correlation 

of local translation rate with structural motifs in the search for signatures across 

library of nearly 40 proteins. We are currently performing the clustering analysis 

using different methods. The intra-species protein sequence analysis did not 

reveal any obvious indication of conserved tRNA abundance or codon usage, 

although we have found evidence in certain individual proteins. To make the 

analysis complete we have to perform similar analysis on proteins across 

different species, the idea being that for intra-species proteins the conservation 

for characteristic features may be more obvious. In addition, if it is possible to 

develop a practical experimental platform based on single molecule fluorescence 

to understand translation dynamics and the impact of translation rate or other 

factors on protein folding.  
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