
Fully Automatic Cross-Associations

Deepayan Chakrabarti Spiros Papadimitriou
Dharmendra S. Modha1 Christos Faloutsos2

August 2004
CMU-CALD-04-107

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1 Author’s affiliation: IBM Almaden Research Center, San Jose, CA, USA.
2 This material is based upon work supported by the National Science Foundation under Grants No. IIS-9817496, IIS-9988876, IIS-

0083148, IIS-0113089, IIS-0209107 IIS-0205224 INT-0318547 SENSOR-0329549 EF-0331657IIS-0326322 by the Pennsylvania Infras-
tructure Technology Alliance (PITA) Grant No. 22-901-0001, and by the Defense Advanced Research Projects Agency under Contract No.
N66001-00-1-8936. Additional funding was provided by donations from Intel, and by a gift from Northrop-Grumman Corporation. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation, or other funding parties.

Keywords: Information Theory, MDL, Cross-Association

Abstract

Large, sparse binary matrices arise in numerous data mining applications, such as the analysis of market baskets,
web graphs, social networks, co-citations, as well as information retrieval, collaborative filtering, sparse matrix
reordering, etc. Virtually all popular methods for the analysis of such matrices—e.g.,k-means clustering, METIS
graph partitioning, SVD/PCA and frequent itemset mining—require the user to specify various parameters, such
as the number of clusters, number of principal components, number of partitions, and “support.” Choosing suitable
values for such parameters is a challenging problem.
Cross-associationis a joint decomposition of a binary matrix into disjoint row and column groups such that the
rectangular intersections of groups are homogeneous. Starting from first principles, we furnish a clear, information-
theoretic criterion to choose a good cross-association as well as its parameters, namely, the number of row and
column groups. We provide scalable algorithms to approach the optimal. Our algorithm isparameter-free, and
requires no user intervention. In practice it scales linearly with the problem size, and is thus applicable to very
large matrices. Finally, we present experiments on multiple synthetic and real-life datasets, where our method
gives high-quality, intuitive results.

R
ow

 C
lu

st
er

s

Column Clusters

Original matrix

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 2

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 4

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 6

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

Search − Iteration 8

200 400 600 800

100

200

300

400

500

600

700

800

(a) Original matrix (b) Iteration pair 1 (c) Iteration pair 2 (d) Iteration pair 3 (e) Iteration pair 4

Figure 1:Searching for cross-associations: Starting with the original matrix (plot (a)), our algorithm successively
increases the number of groups. At each stage, starting with the current arrangement into groups, rows and columns
are rearranged to improve the code cost.

1 Introduction - Motivation

Large, sparse binary matrices arise in many applications, under several guises. Consequently, because of its impor-
tance and prevalence, the problem of discovering structure in binary matrices has been widely studied in several
domains:(1) Market basket analysis and frequent itemsets:The rows of the matrix represent customers (or trans-
actions) and the columns represent products. Entry(i, j) of the matrix is 1 if customeri purchased productj and 0
otherwise.(2) Information retrieval:Rows correspond to documents, columns to words and an entry in the matrix
represent whether a certain word is present in a document or not.(3) Graph partitioning and community detection:
Rows and columns correspond to source and target objects and matrix entries represent links from a source to a
destination.(4) Collaborative filtering, microarray analysis,and numerous other applications—in fact, any setting
that has amany-to-manyrelationship (in database terminology) in which we need to find patterns.

We ideally want a method that discovers structure in such datasets and has the following main properties:

(P1) It is fully automatic; in particular, we want a principled and intuitive problem formulation, such that the user
does not need to setanyparameters.

(P2) It simultaneously discovers both row and column groups.

(P3) It scales up for large matrices.

Cross-association and Our Contributions The fundamental question in mining large, sparse binary matrices is
whether there is any underlying structure. In these cases, the labels (or, equivalently, the ordering) of the rows and
columns is immaterial. The binary matrix contains information aboutassociationsbetween objects, irrespective of
their labeling. Intuitively, we seek row and column groupings (equivalently, labellings) that reveal the underlying
structure. We can group rows, based on some notion of “similarity” and we could do the same for columns. Better
yet, we would like tosimultaneouslyfind row and column groups, which divide the matrix into rectangular regions
as “similar” or “homogeneous” as possible. These intersections of row and column groups, orcross-associations,
succinctly summarize the underlying structure of object associations. The corresponding rectangular regions of
varying density can be used to quickly navigate through the structure of the matrix.

In short, we would like a method that will take as input a matrix like in Figure 1(a), and will quickly and
automatically (i) determine a good number of row groupsk and column groupsl and (ii) re-order the rows and
columns, to reveal the hidden structure of the matrix, like in Figure 1(e).

We propose a method that has precisely the above properties: it requires no “magic numbers,” discovers row and
column groups simultaneously (see Figure 1) and scales linearly with the problem size. We introduce a novel

1

approach and propose a general, intuitive model founded on compression and information-theoretic principles. In
particular, unlike existing methods, we employlosslesscompression and always operate at a zero-distortion level.
Thus, we can use the MDL principle to automatically select the number of row and column groups. We provide an
integrated framework toautomaticallyfind cross-associations. Also, our method is easily extensible to matrices
with categorical values.

In Section 2, we survey the related work. In Section 3, we formulate our data description model starting from
first principles. Based on this, in Section 4 we develop an efficient, parameter-free algorithm to discover cross-
associations. In Section 5 we evaluate cross-associations demonstrating good results on several real and synthetic
datasets. Finally, we conclude in Section 6.

2 Survey

In general, there are numerous settings where we want to find patterns, correlations and rules. There are several
time-tested tools for most of these tasks. Next, we discuss several of these approaches, dividing them broadly into
application domains. However, with few exceptions, all require tuning and human intervention, thus failing on
property (P1).

Clustering We discuss work in the “traditional” clustering setting first. By that we mean approaches for grouping
along the row dimension only: given a collection ofn points inm dimensions, find “groupings” of then points.
This setting makes sense in several domains (for example, if them dimensions have an inherent ordering), but it is
different from our problem setting.

Also, most of the algorithms assume a user-given parameter. For example, the most popular approach,k-
means clustering, requiresk from the user. The problem of findingk is a difficult one and has attracted attention
recently; for example X-means [1] uses BIC to determinek. Another more recent approach is G-means [2], which
assumes a mixture of Gaussians (often a reasonable assumption, but which may not hold for binary matrices).
Other interesting variants ofk-means that improve clustering quality isk-harmonic means [3] (which still requires
k) and sphericalk-means (e.g., see [4]), which applies to binary data but still focuses on clustering along one
dimension). Finally, there are many other recent clustering algorithms (CURE [5], BIRCH [6], Chameleon [7],
[8]; see also [9]).

Several of the clustering methods might suffer from the dimensionality curse (like the ones that require a
co-variance matrix); others may not scale up for large datasets.

Information Co-clustering (ITCC) [10] is a recent algorithm for simultaneously clustering rows and columns of a
normalized contingency table or a two-dimensional probability distribution. Cross-associations (CA) also simul-
taneously group rows and columns of a binary (or categorical) matrix and, at the surface, bear similarity to ITCC.
However, the two approaches are quite different:

(1) For each rectangular intersection of a row cluster with a column cluster, CA constructs alossless code,
whereas ITCC constructs alossy codethat can be thought of as a rank-one matrix approximation.

(2) ITCC generates a progressively finer approximation of the original matrix. More specifically, as the num-
ber of row and column clusters are increased, the Kullback-Leibler divergence (or, KL-divergence) between the
original matrix and its lossy approximation tends to zero. In contrast, regardless of the number of clusters, CA
always losslessy transmits the entire matrix. In other words, as the number of row and column clusters are in-
creased, ITCC tries to sweep an underlying rate-distortion curve, where therate depends upon the number of row
and column clusters anddistortion is the KL-divergence between the original matrix and its lossy approximation.
In comparison, CA always operates at zero distortion.

(3) While both ITCC and CA use alternating minimization techniques, ITCC minimizes the KL-divergence
between the original matrix and its lossy approximation, while CA minimizes the resulting codelength for the

2

original matrix.
(4) As our key contribution, in CA, we use the MDL principle to automatically select the number of row and

column clusters. While MDL is well known for lossless coding which is the domain of CA, no MDL-like principle
is yet known for lossy coding; for a very recent proposal towards this direction, see [11]. As a result, selecting the
number of row and column clusters in ITCC is still an art. Note that ITCC is similar in spirit to the Information
Bottleneck formulation [12].

Thus, to the best of our knowledge, our method is the first to study explicitly the problem of parameter-free,
joint clustering of large binary matrices.

Market-basket analysis / frequent itemsets Frequent itemset mining brought a revolution [13] with a lot of
follow-up work [9, 14]. However, they require the user to specify a “support.” The work on “interestingness” is
related [15], but still does not answer the question of “support.”

Information retrieval and LSI The pioneering method of LSI [16] uses SVD on the term-document matrix.
Again, the numberk of eigenvectors/concepts to keep is up to the user ([16] empirically suggest about 200 con-
cepts). Additional matrix decompositions include the Semi-Discrete Decomposition (SDD) [17], PLSA [18], the
clever use of random projections to accelerate SVD [19], and many more. However, they all fail on property (P1).

Graph partitioning The prevailing methods are METIS [20] and spectral partitioning [21]. These approaches
have attracted a lot of interest and attention; however, both need the user to specifyk, that is, the number of pieces
to break the graph into. Moreover, they typically also require a measure of imbalance between the two pieces of
each split.

Other domains Related to graphs in several settings is the work on conjunctive clustering [22]—which requires
density (i.e., “homogeneity”) and overlap parameters—as well as community detection [23], among many. Finally,
there are several approaches to cluster micro-array data (e.g., [24]).

In conclusion, the above methods miss one or more of our prerequisites, typically (P1). Next, we present our
method.

3 Cross-association and Compression

Our goal is to find patterns in a large, binary matrix, with no user intervention, as shown in Figure 1. How should we
decide the number of row and column groups (k and`, respectively) along with the assignments of rows/columns
to their “proper” groups?

We introduce a novel approach and propose a general, intuitive model founded on compression, and more
specifically, on theMDL (Minimum Description Language)principle [25]. The idea is the following: the binary
matrix representsassociationsbetween objects (corresponding to rows and columns). We want to somehow sum-
marize these incross-associations, i.e., homogeneous, rectangular regions of high and low densities. At the very
extreme, we can havem×n “rectangles,” each really being an element of the original matrix, and having “density”
of either 0 or 1. Then, each rectangle needs no further description. At the other extreme, we can haveonerectangle,
with a density in the range from 0 to 1. However, neither really is a summary of the data. So, the question is, how
many rectangles should we have? The idea is that we penalize the number of rectangles, i.e., the complexity of the
data description. We do this in a principled manner, based on a novel application of the MDL philosophy (where
the costs are based on the number of bits required to transmit both the “summary” of the structure, as well as each
rectangular region, given the structure).

3

Symbol Definition

D Binary data matrix
m,n Dimensions ofD (rows, columns)
k, ` Number of row and column groups
k∗, `∗ Optimal number of groups
(Φ,Ψ) Cross-association
Di,j Cross-associate (submatrix)
ai, bj Dimensions ofDi,j

n(Di,j) Number of elementsn(Di,j) := aibj

n0(Di,j), n1(Di,j) Number of 0, 1 elements inDi,j

PDi,j (0), PDi,j (1) Densities of 0, 1 inDi,j

H(p) Binary Shannon entropy function
C(Di,j) Code cost forDi,j

T (D; k, `, Ψ,Φ) Total cost forD

Table 1: Table of main symbols.

This is an intuitive and very general model of the data, that requiresno parameters. Our model allows us to
find good cross-associationsautomatically. Next, we describe the theoretical underpinnings in detail.

3.1 Cross-association

Let D = [di,j] denote am × n (m,n ≥ 1) binary data matrix. Let us index the rows as1, 2, . . . ,m and columns
as1, 2, . . . , n.

Let k denote the desired number of disjoint row groups and let` denote the desired number of disjoint column
groups. Let us index the row groups by1, 2, . . . , k and the column groups by1, 2, . . . , `. Let

Ψ : {1, 2, . . . ,m} → {1, 2, . . . , k}
Φ : {1, 2, . . . , n} → {1, 2, . . . , `}

denote the assignments of rows to row groups and columns to column groups, respectively. We refer to{Ψ,Φ}
as across-association. To gain further intuition about a given cross-association, given row groupsΨ and column
groupsΦ, let us rearrange the underlying data matrixD such that all rows corresponding to group1 are listed first,
followed by rows in group2, and so on. Similarly, let us rearrangeD such that all columns corresponding to group
1 are listed first, followed by columns in group2, and so on. Such a rearrangement, implicitly, sub-divides the
matrixD into smaller two-dimensional, rectangular blocks. We refer to each such sub-matrix as across-associate,
and denote them asDi,j , i = 1, . . . , k andj = 1, . . . , `. Let the dimensions ofDi,j be(ai, bj).

3.2 A Lossless Code for a Binary Matrix

With the intent of establishing a close connection between cross-association and compression, we first describe a
lossless code for a binary matrix. There are several possible models and algorithms for encoding a binary matrix.
With hindsight, we have simply chosen a code that allows us to build an efficient and analyzable cross-association
algorithm. Throughout this paper, all logarithms are base2 and all code lengths are in bits.

Let A denote ana× b binary matrix. Define

n1(A) := number of nonzero entries inA

4

n0(A) := number of zero entries inA

n(A) := n1(A) + n0(A) = a× b

PA(i) := ni(A)/n(A), i = 0, 1.

Intuitively, we model the matrixA such that its elements are drawn in an i.i.d. fashion according to the distri-
bution PA. Given the knowledge of the matrix dimensions(a, b) and the distributionPA, we can encodeA as
follows. ScanA in a fixed, predetermined ordering. Wheneveri, i = 0, 1 is encountered, it can be encoded us-
ing − log PA(i) bits, on average. The total number of bits sent (this can also be achieved in practice using, e.g.,
arithmetic coding [26, 27, 28]) will be

C(A) :=
1∑

i=0

ni(A) log
(

n(A)
ni(A)

)
= n(A)H

(
PA(0)

)
, (1)

whereH is the binary Shannon entropy function.
For example, consider the matrix

A =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

In this case,n1(A) = 4, n0(A) = 12, n(A) = 16, PA(1) = 1/4, PA(0) = 3/4. We can encode each0
element using roughlylog(4/3) bits and each1 element using roughlylog 4 bits. The total code length forA is:
4 ∗ log 4 + 12 ∗ log 4/3 = 16 ∗H(1/4).

3.3 Cross-association and Compression

We now make precise the link between cross-association and compression. Let us suppose that we are interested
in transmitting (or storing) the data matrixD of sizem × n (m,n ≥ 1), and would like to do so as efficiently as
possible. Let us also suppose that we are given a cross-association(Ψ,Φ) of D into k row groups and̀ column
groups, with none of them empty.

With these assumptions, we now describe a two-part code for the matrixD. The first part will be adescription
complexityinvolved in describing the cross-association(Ψ,Φ). The second part will be the actualcodefor the
matrix, given the cross-association.

3.3.1 Description Complexity

The description complexity in transmitting the cross-association shall consist of the following terms:

1. Send the matrix dimensionsm andn using, e.g.,log?(m)+ log?(n), wherelog? is the universal code length
for integers1. However, this term is independent of the cross-association. Hence, while useful for actual
transmission of the data, it will not figure in our framework.

2. Send the row and column permutations using, e.g.,mdlog me andndlog ne bits, respectively. This term is
also independent of any given cross-association.

3. Send the number of groups(k, `) usinglog? k + log? ` bits (or alternatively, usingdlog me+ dlog ne bits).

1It can be shown thatlog?(x) ≈ log2(x)+ log2 log2(x)+ . . ., where only the positive terms are retained and this is the optimal length,
if we do not know the range of values forx beforehand [29]

5

4. Send the number of rows in each row group and also the number of columns in each column group. Let us
suppose thata1 ≥ a2 ≥ . . . ≥ ak ≥ 1 andb1 ≥ b2 ≥ . . . ≥ b` ≥ 1. Compute

āi :=

(
k∑

t=i

at

)
− k + i, i = 1, . . . , k − 1

b̄j :=

∑̀
t=j

bt

− ` + j, j = 1, . . . , `− 1.

Now, the desired quantities can be sent using the following number of bits:

k−1∑
i=1

dlog āie+
`−1∑
j=1

dlog b̄je.

5. For each cross-associateDi,j , i = 1, . . . , k andj = 1, . . . , `, sendn1(Di,j), i.e., the number of ones in the
matrix, usingdlog(aibj + 1)e bits.

3.3.2 The Code for the Matrix

Let us now suppose that the entire preamble specified above has been sent. We now transmit the each of the actual
cross-associatesDi,j , i = 1, . . . , k andj = 1, . . . , `, usingC(Di,j) bits according to Eq. 1.

3.3.3 Putting It Together

We can now write the total code length for the matrixD, with respect to a given cross-association as:

T (D; k, `, Ψ,Φ) := log? k + log? ` +
k−1∑
i=1

dlog āie+
`−1∑
j=1

dlog b̄je

+
k∑

i=1

∑̀
j=1

dlog(aibj + 1)e+
k∑

i=1

∑̀
j=1

C(Di,j), (2)

where we ignore the costslog?(m) + log?(n) andmdlog me+ ndlog ne, since they do not depend upon the given
cross-association.

3.4 Problem Formulation

An optimal cross-associationcorresponds to the number of row groupsk?, the number of column groups̀?, and
a cross-association(Ψ?,Φ?) such that the total resulting code length, namely,T (D; k?, `?,Ψ?,Φ?) is minimized.
Typically, such problems are computationally hard. Hence, in this paper, we shall pursue feasible practical strate-
gies. To determine the optimal cross-association, we must determine both the number of row and columns groups
and also a corresponding cross-association. We break this joint problem into two related components: (i) finding
a good cross-association for a given number of row and column groups; and (ii) searching for the number of row
and column groups. In Section 4.1 we describe an alternating minimization algorithm to find an optimal cross-
association for a fixed number of row and column groups. In Section 4.2, we outline an effective heuristic strategy
that searches overk and` to minimize the total code lengthT . This heuristic is integrated with the minimization
algorithm.

6

R
ow

 C
lu

st
er

s

Column Clusters

Original matrix

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 1 (rows)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 2 (cols)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

R
ow

 C
lu

st
er

s

Column Clusters

Iteration 4 (cols)

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

(a) Original groups (b) Row shifts (Step 2) (c) Column shifts (Step 4) (d) Column shifts (Step 4)

Figure 2:Row and column shifting: Holding k and` fixed (here,k = ` = 3), we repeatedly apply Steps 2 and 4
of REGROUP until no improvements are possible (Step 6). Iteration 3 (Step 2) is omitted, since it performs no
swapping. To potentially decrease the cost further, we must increasek or ` or both, as in Figure 1.

4 Algorithms

In the previous section we established our goal: Among all possiblek and l values, and all possible row- and
column-groups, pick the arrangement with the smallest total compression cost, as MDL suggests (model plus
data). Although theoretically pleasing, Eq. 2 does not tell ushowto go about finding the best arrangement—it can
only pinpoint the best one, among several candidates. The question ishow to generate good candidates.

We answer this question in two steps:

1. REGROUP(inner loop): For a givenk and`, find a good arrangement (i.e., cross-association).

2. CROSSASSOCIATIONSEARCH (outer loop): Search for the bestk and ` (k, ` = 1, 2, . . .), re-using the
arrangement so far.

We present each in the following sections.

4.1 Alternating Minimization (R EGROUP)

Suppose we are given the number of row groupsk and the number of column groups` and are are interested in
finding a cross-association(Ψ?,Φ?) that minimizes

k∑
i=1

∑̀
j=1

C(Di,j), (3)

whereDi,j are the cross-associates ofD, given (Ψ?,Φ?). We now outline a simple and efficient alternating
minimization algorithm that yields a local minimum of Eq. 3. We should note that, in the regions we typically
perform the search, the code cost dominates the total cost by far (see also Figure 3 and Section 5.1), which justifies
this choice.

Algorithm REGROUP:

1. Let t denote the iteration index. Initially, sett = 0. Start with an arbitrary cross-association(Ψt,Φt) of
the matrixD into k row groups and̀ column groups. For this initial partition, compute the cross-associate
matricesDt

i,j , and corresponding distributionsPDt
i,j
≡ P t

i,j .

7

2. For this step, we will hold column assignments, i.e.,Φt, fixed. For every rowx, splice it into` parts, each
corresponding to one of the column groups. Denote them asx1, . . . , x`. For each of these parts, compute
nu(xj), u = 0, 1, andj = 1, . . . , `. Now, assign rowx to that row groupΨt+1 such that, for all1 ≤ i ≤ k:

∑̀
j=1

1∑
u=0

nu(xj) log
1

P t
Ψt+1(x),j

(u)
≤
∑̀
j=1

1∑
u=0

nu(xj) log
1

P t
i,j(u)

. (4)

3. With respect to cross-association(Ψt+1,Φt), recompute the matricesDt+1
i,j , and corresponding distributions

PDt+1
i,j

≡ P t+1
i,j .

4–5. Similar to steps 2–3, but swapping columns instead and producing a new cross-association(Ψt+1,Φt+2) and
corresponding cross-associatesDt+2

i,j with distributionsPDt+2
i,j

≡ P t+2
i,j .

6. If there is no decrease in total cost, stop; otherwise, sett = t + 2, go to step 2, and iterate.

Figure 2 shows the alternating minimization algorithm in action. The graph consists of three square sub-matrices
(“caves” [30]) with sizes 280, 180 and 90, plus 1% noise. We permute this matrix and try to recover its structure.
As expected, fork = ` = 3, the algorithm discovers the correct cross-associations. It is also clear that the algorithm
finds progressively better representations of the matrix.

Theorem 4.1. For t ≥ 1,

k∑
i=1

∑̀
j=1

C(Dt
i,j) ≥

k∑
i=1

∑̀
j=1

C(Dt+1
i,j) ≥

k∑
i=1

∑̀
j=1

C(Dt+2
i,j).

In words,REGROUPnever increases the objective function (Eq. 3).

Proof. We shall only prove the first inequality, the second inequality will follow by symmetry between rows and
columns.

k∑
i=1

∑̀
j=1

C(Dt
i,j)

=
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Dt
i,j) log

1
P t

i,j(u)

=
k∑

i=1

∑̀
j=1

1∑
u=0

 ∑
x:Ψt(x)=i

nu(xj)

 log
1

P t
i,j(u)

=
k∑

i=1

∑
x:Ψt(x)=i

∑̀
j=1

1∑
u=0

nu(xj) log
1

P t
i,j(u)

(a)

≥
k∑

i=1

∑
x:Ψt(x)=i

∑̀
j=1

1∑
u=0

nu(xj) log
1

P t
Ψt+1(x),j

(u)

(b)
=

k∑
i=1

∑
x:Ψt+1(x)=i

∑̀
j=1

1∑
u=0

nu(xj) log
1

P t
Ψt+1(x),j

(u)

8

0

20

40

60 0
10

20
30

40
50

60

0

1000

2000

3000

4000

l

Total cost vs. #cross−associates

k

co
st

 (t
ot

al
)

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

k

l

Total cost vs. #cross−associates

30
00

30
00

(5,3)

30
00

30
00

500

500 500

10
00

1000 10
00

1000

100010
00

1000

1500

15
00

1500 1500 1500

15
00

1500

1500

1500

2000

20
00

2000 2000 2000

2000

2000

2000

2500

25
00

2500 2500 2500

2500

2500

30
00

30
00

3000 3000

3000

3000
3000

•

kl = 1950

kl = 570

kl = 900

kl = 1400

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500
Total cost vs. #cross−associates

k (= l)

co
st

 (t
ot

al
)

(a) Total cost (surface) (b) Total cost (contour) (c) Total cost (diagonal)

0

20

40

60 0
10

20
30

40
50

60

0

1000

2000

3000

4000

l

Code cost vs. #cross−associates

k

co
st

 (c
od

e)

5 10 15 20 25 30 35 40 45 50 55

5

10

15

20

25

30

35

40

45

50

55

k

l

Code cost vs. #cross−associates

500

50
0

500

500 500 500
500500 500500 500

1000

10
00

1000

1000 1000 1000

1500

15
00

1500

1500 1500 1500

2000
2000

2000 2000 2000 2000

2500
2500

2500

2500 2500 2500
(5,3)•

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500
Code cost vs. #cross−associates

k (= l)

co
st

 (c
od

e)

(d) Code cost (surface) (e) Code cost (contour) (f) Code cost (diagonal)

Figure 3: General shape of the total cost (number of bits) versus number of cross-associates (synthetic cave graph
with three square caves of sizes 32, 16 and 8, with 1% noise). The “waterfall” shape (with the description and code
costs dominating the total cost in different regions) illustrates the intuition behind our model, as well as why our
minimization strategy is effective.

=
k∑

i=1

∑̀
j=1

1∑
u=0

 ∑
x:Ψt+1(x)=i

nu(xj)

 log
1

P t
i,j(u)

=
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Dt+1
i,j) log

1
P t

i,j(u)

(c)

≥
k∑

i=1

∑̀
j=1

1∑
u=0

nu(Dt+1
i,j) log

1
P t+1

i,j (u)

=
k∑

i=1

∑̀
j=1

C(Dt+1
i,j)

where (a) follows from Step 2 of REGROUP; (b) follows by re-writing the outer two sums–sincei is not used
anywhere inside the[· · ·] terms; and (c) follows from the non-negativity of the Kullback-Leibler distance.

Remarks Instead of batch updates, sequential updates are also possible. Also, rows and columns need not
alternate in the minimization. We have many locally good moves available (based on Theorem 4.1) which require
only linear time.

9

It is possible that REGROUPmay cause some groups to be empty, i.e.,ai = 0 or bj = 0 for some1 ≤ i ≤ m,
1 ≤ j ≤ n (to see that, consider e.g., a homogeneous matrix; then we always end up with one group). In other
words, we may findk and` less than those specified. Finally, we can easily avoid infinite quantities in Eq. 4 by
using, e.g.,(nu(A) + 1/2)/(n(A) + 1) for PA(u), u = 0, 1.

Initialization If we want to use REGROUP(inner loop) by itself, we have to initialize the mappings(Φ,Ψ). For
Φ, the simplest approach is to divide the rows evenly intok initial “groups,” taking them in their original order.
ForΨ we do the initialization in the same manner. This often works well in practice. A better approach is to divide
the “residual masses” (i.e., marginal sums of each column) evenly amongk groups, taking the rows in order of
increasing mass (and similarly forΨ). The initialization in Figure 2 is mass-based.

However, our CROSSASSOCIATIONSEARCH (outer loop) algorithm, described in the next section, is an even
better alternative. We start withk = ` = 1, increasek and ` and create new groups,taking into accountthe
cross-associations up to that point. This tightly integrated group creation scheme, that reuses current REGROUP

row and column group assignments, yields much better results.

Complexity The algorithm isO(n1(D) · (k + `) · I) whereI is the number of iterations. In step (2) of the
algorithm, we access each row and count their nonzero elements (of which there aren1(d) in total), then consider
k possible candidate row groups to place it into. Therefore, an iteration over rows isO(n1(D) · k). Similarly, an
iteration over columns (step 4) isO(n1(D) · `). There is a total ofI/2 row andI/2 column iterations. All this
adds up toO(n1(D) · (k + `) · I).

4.2 Search fork and ` (CROSSASSOCIATION SEARCH)

The last part of our approach is an algorithm to look for good values ofk and`. Based on our cost model (Eq. 2),
we have a way to attack this problem. As we discuss later, the cost function usually has a “waterfall” shape (see
Figure 3), with a sharp drop for smallk and`, and an ascent afterwards. Thus, it makes sense to start with small
values ofk, `, progressively increase them, and keep rearranging rows and columns based on fast, local moves in
the search space (REGROUP). We experimented with several search strategies, and obtained good results with the
following algorithm.

Algorithm CROSSASSOCIATIONSEARCH:

1. LetT denote the search iteration index. Start withT = 0 andk0 = `0 = 1.

2. [Outer loop] At iterationT , try to increase the number of row groups. SetkT+1 = kT + 1. Split the row
groupr with maximum entropy per row, i.e.,

r := arg max
1≤i≤k

∑
1≤j≤`

n(Di,j)H
(
PDi,j (0)

)
ai

.

Construct an initial label mapΨT+1
0 as follows: For every rowx in row groupr (i.e., for every1 ≤ x ≤ m

such thatΨT (x) = r), place it into the new groupkT+1 (i.e., setΨT+1
0 (x) = kT+1) if and only if it decreases

the per-row entropy of groupr, i.e., if and only if∑
1≤j≤`

n(D′
r,j)H

(
PD′

r,j
(0)
)

ar − 1
<
∑

1≤j≤`

n(Dr,j)H
(
PDr,j (0)

)
ar

, (5)

whereD′
r,j is Dr,j without rowx. Otherwise, we letΨT+1

0 (x) = r = ΨT (x). If we move the row to the
new group, we updateDr,j (for all 1 ≤ j ≤ `) by removing rowx (for subsequent estimations of Eq. 5).

10

Dataset Dim. (a× b) n1(A)
CAVE 810×900 162, 000
CAVE-Noisy 810×900 171, 741
CUSTPROD 295×30 5, 820
CUSTPROD-Noisy 295×30 5, 602
NOISE 100×100 952
CLASSIC 3,893×4,303 176, 347
GRANTS 13,297×5,298 805, 063
EPINIONS 75,888×75,888 508, 960
CLICKSTREAM 23,396×199,308 952, 580
OREGON 11,461×11,461 65, 460

Table 2: Dataset characteristics.

3. [Inner loop] Use REGROUPwith initial cross-associations(ΨT+1
0 ,ΦT) to find new ones(ΨT+1,ΦT+1) and

the corresponding total cost.

4. If there is no decrease in total cost, stop and return(k∗, `∗) = (kT , `T)—with corresponding cross-associa-
tions(ΨT ,ΦT). Otherwise, setT = T + 1 and continue.

5–7. Similar to steps 2–4, but trying to increase column groups instead.

Figure 1 shows the search algorithm in action. Starting from the initial matrix (CAVES), we successively increase
the number of column and row groups. For each such increase, the columns are shifted using REGROUP. The
algorithm successfully stops after iteration pair 4 (Figure 1(e)).

Lemma 4.1. If D = [D1D2], thenC(D1) + C(D2) ≤ C(D).

Proof. We have

C(D) = n(D)H
(
PD(0)

)
= n(D)H

(
n0(D)
n(D)

)
= n(D)H

(
PD1(0)n(D1) + PD2(0)n(D2)

n(D)

)
≥ n(D1)H

(
PD1(0)

)
+ n(D2)H

(
PD1(0)

)
= C(D1) + C(D2),

where the inequality follows from the concavity ofH(·) and the fact thatn(D1)+n(D2) = n(D) orn(D1)/n(D)+
n(D2)/n(D) = 1.

Note that the original code cost is zero only for a completely homogeneous matrix. Also, the code length for
(k, l) = (a, b) is, by definition, zero. Therefore, provided that the fraction of non-zeros is not the same for every
column (and sinceH(·) is strictly concave), the next observation follows immediately.

Corollary 4.1. For anyk1 ≥ k2 and`1 ≥ `2, there exists cross-associations such that(k1, `1) leads to a shorter
code (Eq. 3).

11

R
ow

 C
lu

st
er

s

Column Clusters

CAVE − Clustered matrix

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s
Column Clusters

CUSTPROD − Clustered matrix

5 10 15 20 25 30

50

100

150

200

250

R
ow

 C
lu

st
er

s

Column Clusters

CAVE−Noisy − Clustered matrix

200 400 600 800

100

200

300

400

500

600

700

800

R
ow

 C
lu

st
er

s

Column Clusters

CUSTPROD−Noisy − Clustered matrix

5 10 15 20 25 30

50

100

150

200

250

R
ow

 C
lu

st
er

s

Column Clusters

NOISE (5%) − Clustered matrix

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(a)CAVE (b) CUSTPROD (c) CAVE-Noisy (d) CUSTPROD-Noisy (e)NOISE (5%)

Figure 4:Cross-associations on synthetic datasets: Our method gives the intuitively correct cross-associations for
(a)CAVEand (b)CUSTPROD. In the noisy versions (c, d), few extra groups are found due to patterns that emerge,
such as the “almost-empty” and “more-dense” cross-associations for pureNOISE (e).

By Corollary 4.1, the outer loop in CROSSASSOCIATIONSEARCH decreases the objective cost function. By
Theorem 4.1 the same holds for the inner loop (REGROUP). Therefore, the entire algorithm CROSSASSOCIA-
TIONSEARCH also decreases the objective cost function (Eq. 3). However, the description complexity evidently
increases with(k, `). We have found that, in practice, this search strategy performs very well. Figure 3 (discussed
in Section 5.1) provides an indication why this is so.

Complexity Since at each step of the search we increase eitherk or `, the sumk + ` always increases by one.
Therefore, the overall complexity of the search isO(n1(D)(k∗ + `∗)2), if we ignore the number of REGROUP

iterationsI (in practice,I ≤ 20 is always sufficient).

5 Experiments

We did experiments to answer two key questions: (i) how good is the quality of the results (which involves both the
proposed criterion and the minimization strategy), and (ii) how well does the method scale up. To the best of our
knowledge, in the literature to date, no other method has been explicitly proposed and studied for parameter-free,
joint clustering of binary matrices.

We used several datasets (see Table 2), both real and synthetic. The synthetic ones were:(1)CAVE, representing
a social network of “cavemen” [30], that is, a block-diagonal matrix of variable-size blocks (or “caves”),(2)
CUSTPROD, representing groups of customers and their buying preferences2, (3) NOISE, with pure white noise.
We also created noisy versions ofCAVEandCUSTPROD(CAVE-Noisy andCUSTPROD-Noisy), by adding
noise (10% of the number of non-zeros).

The real datasets are:(1) CLASSIC, Usenet documents (Cornell’s SMART collection [10]),(2) GRANTS,
13,297 documents (NSF grant proposal abstracts) from several disciplines (physics, bio-informatics, etc.),(3)
EPINIONS, a who-trusts-whom social graph ofwww.epinions.com users [31],(4) CLICKSTREAM, with
users and URLs they clicked on [32], and(5) OREGON, with connections between Autonomous Systems (AS) in
the Internet.

Our implementation was done in MATLAB (version 6.5 on Linux) using sparse matrices. The experiments
were performed on an Intel Xeon 2.8GHz machine with 1GB RAM.

2We try to capture market segments with heavily overlapping product preferences, like, say, “single persons”, buying beer and chips,
“couples,” buying the above plus frozen dinners, “families,” buying all the above plus milk, etc.

12

500 1000 1500 2000 2500 3000 3500 4000

500

1000

1500

2000

2500

3000

3500

R
ow

 C
lu

st
er

s

Column Clusters

death, prognosis, intravenous
insipidus, alveolar, aortic,

cell, tissue, patient
blood, disease, clinical,

CRANFIELD

MEDLINE

CISI

shape, nasa, leading,
assumed, thin

paint, examination, fall,
raise, leave, basedabstract, notation, works

construct, bibliographies

providing, studying, records,
developments, students,
rules, community

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

2000

4000

6000

8000

10000

12000

R
ow

 C
lu

st
er

s

Column Clusters

encoding, characters,
bind, nucleus,
recombination plasma, separation, beam

coupling, deposition,

manifolds, operators,
harmonic, operator, topological

meetings, organizations,
session, participating

undergraduate, education,
national, projects

(a)CLASSIC cross-associates (k∗ = 15, `∗ = 19) (b) GRANTScross-associates (k∗ = 41, `∗ = 28)

Figure 5:Cross-associations forCLASSICandGRANTS: Due to the dataset sizes, we show the Cross-associations
via shading; darker shades correspond denser blocks (more ones). We also show the most frequently occurring
words for several of the word (column) groups.

5.1 Quality

Total code length criterion Figure 3 illustrates the intuition behind both our information-theoretic cost model,
as well as our minimization strategy. It shows the general shape of the total cost (in number of bits) versus the
number of cross-associates. For this graph, we used a “caveman” matrix with three caves of sizes 32, 16 and 8,
adding noise (1% of non-zeros). We used REGROUP, forcing it to never empty a group. The slight local jaggedness
in the plots is due to the presence of noise and occasional local minima hit by REGROUP.

However, the figure reveals nicely the overall, global shape of the cost function. It has a “waterfall” shape,
dropping very fast initially, then rising again as the number of cross-associates increases. For smallk, `, the code
cost dominates the description cost (in bits), while for largek, ` the description cost is the dominant one. The key
points, regarding the model as well as the search strategies, are:

• The optimal(k∗, `∗) is the “sweet spot” balancing these two. The trade-off between description complexity
and code length indeed has a desirable form, as expected.

• As expected, cost iso-surfaces roughly correspond tok · ` = const., i.e., to constant number of cross-
associates.

• Moreover, for relatively small(k, `), the code cost clearly dominates the total cost by far, which justifies our
choice of objective function (Eq. 3).

• The overall, well-behaved shape also demonstrates that the cost model is amenable to efficient search for a
minimum, based on the proposed linear-time, local moves.

• It also justifies why starting the search withk = ` = 1 and gradually increasing them is an effective
approach: we generally find the minimum after a few CROSSASSOCIATIONSEARCH (outer loop) iterations.

13

Clusters Document class
found CRANFIELD CISI MEDLINE Precision

1 0 1 390 0.997
2 2 676 9 0.984
3 0 0 610 1.000
4 1 317 6 0.978
5 188 0 0 1.000
6 207 0 0 1.000
7 3 452 16 0.960
8 131 0 0 1.000
9 209 0 0 1.000

10 107 2 0 0.982
11 152 3 2 0.968
12 74 0 0 1.000
13 139 9 0 0.939
14 163 0 0 1.000
15 24 0 0 1.000

Recall 0.996 0.990 0.968

Table 3: The clusters forCLASSIC (see Figure 5(a)) recover the known document classes. Furthermore, our
approach also capturesunknownstructure (such as the “technical” and “everyday” medical terms).

Results—synthetic data Figure 4 depicts the cross-associations found by our method on several synthetic
datasets. For the noise-free synthetic matricesCAVEandCUSTPROD, we get exactly the intuitively correct groups.
This serves as a sanity check for our whole approach (criterion plus heuristics). When noise is present, we find
some extra groups which, on closer examination, are picking up patterns in the noise. This is expected: it is well
known that spurious patterns emerge, even when we have pure noise. Figure 4(e) confirms it: even in theNOISE
matrix, our algorithm finds blocks of clearly lower or higher density.

Results—real data Figures 5 and 6 show the cross-associations found on several real-world datasets. They
demonstrate that our method gives intuitive results.

Figure 5(a) shows theCLASSIC dataset, where the rows correspond to documents from MEDLINE (medical
journals), CISI (information retrieval) and CRANFIELD (aerodynamics); and the columns correspond to words.

First, we observe that the cross-associates are in agreement with the known document classes (left axis annota-
tions). We also annotated some of the column groups with their most frequent words. Cross-associates belonging
to the same document (row) group clearly follow similar patterns with respect to the word (column) groups. For
example, the MEDLINE row groups are most strongly related to the first and second column groups, both of which
are related to medicine. (“insipidus,” “alveolar,” “prognosis” in the first column group; “blood,” “disease,” “cell,”
etc, in the second).

Besides being in agreement with the known document classes, the cross-associatesreveal further structure
(see Table 3). For example, the first word group consists of more “technical” medical terms, while second group
consists of “everyday” terms, or terms that are used in medicine often, but not exclusively3. Thus, the second word
group is more likely to show up in other document groups (and indeed it does, although not immediately apparent
in the figure), which is why our algorithm separates the two.

3This observation is also true for nearly all of the (approximately) 600 and 100 words belonging to each group, not only the most
frequent ones shown here.

14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

R
ow

 C
lu

st
er

s

Column Clusters
1 2 3 4 5 6 7

x 104

1

2

3

4

5

6

7

x 104

R
ow

 C
lu

st
er

s

Column Clusters

Small but dense cluster

(a)EPINIONS (k∗ = 18, `∗ = 16) (b) OREGON(k∗ = 9, `∗ = 8)

2 4 6 8 10 12 14 16 18

x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 104

R
ow

 C
lu

st
er

s

Column Clusters

Small but dense column cluster

1.315 1.316 1.317 1.318 1.319 1.32 1.321 1.322 1.323 1.324 1.325

x 105

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 104

R
ow

 C
lu

st
er

s

Column Clusters

(c) CLICKSTREAM(k∗ = 15, `∗ = 13) (d) Blow-up of section in (c)

Figure 6:Cross-associations forEPINIONS, OREGONandCLICKSTREAM: The matrices are organized success-
fully in homogeneous regions. (d) shows that our method captures dense clusters, irrespective of their size.

Figure 5(b) showsGRANTS, which consists of NSF grant proposal abstracts in several disciplines, such as
genetics, mathematics, physics, organizational studies. Again, the terms are meaningfully grouped: e.g., those
related to biology (“encoding,” “recombination,” etc.), to physics (“coupling,” “plasma,” etc.) and to material
sciences.

We also present experiments on matrices from other settings: social networks (EPINIONS), computer net-
works (OREGON) and web visit patterns (CLICKSTREAM). In all cases, our algorithm organizes the matrices in
homogeneous regions. Also, inEPINIONS, notice that there is a small but dense cluster, probably correspond-
ing to a dense clique of experts that they mainly trust each other. The large gray rectangle should correspond to
another, much larger, but less coherent, group of people.

Compression and density Figure 7 lists the compression ratios achieved by our cross-association algorithms
for each dataset. Figure 8 shows how our algorithm effectively divides theCLASSIC matrix in sparse and dense

15

Average cost per element
Dataset k = ` = 1 Optimalk∗, `∗

CAVE 0.766 0.00065 (1:1178)
CAVE-Noisy 0.788 0.1537 (1:5.1)
CUSTPROD 0.930 0.0320 (1:29)
CUSTPROD-Noisy 0.952 0.3814 (1:2.5)
NOISE 0.2846 0.2748 (1:1.03)
CLASSIC 0.0843 0.0688 (1:1.23)
GRANTS 0.0901 0.0751 (1:1.20)
EPINIONS 0.0013 0.00081 (1:1.60)
OREGON 0.0062 0.0037 (1:1.68)
CLICKSTREAM 0.0028 0.0019 (1:1.47) 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

C
om

pr
es

si
on

 ra
tio

Compression ratio (optimal k*,l*)

1:1

NOISE
CLASSIC

GRANTS
EPINIONS

OREGON

CLICKSTREAM

(a) All datasets (b) Real datasets

Figure 7: Compression ratios.

regions (i.e., cross-associates), thereby summarizing its structure.

5.2 Scalability

Figure 9 shows wall-clock times (in seconds) of our MATLAB implementation. In all plots, the datasets were cave-
graphs with three caves. For the noiseless case (b), times for both REGROUP and CROSSASSOCIATIONSEARCH

increase linearly with respect to number of non-zeros. We observe similar behavior for the noisy case (c). The
“sawtooth” patterns are explained by the fact that we used a new matrix for each case. Thus, it was possible for
some graphs to have different “regularity” (spuriously emerging patterns), and thus compress better and faster.
Indeed, when we approximately scale by the number of inner loop iterations in CROSSASSOCIATIONSEARCH, an
overall linear trend (with variance due to memory access overheads in MATLAB) appears.

Finally, Figure 10 shows the progression of total cost (in bits) for every iteration of CROSSASSOCIATION-
SEARCH (outer loop). We clearly see that our algorithm quickly finds better cross-associations. These plots are
from the same wall-clock time experiments.

6 Conclusions

We have proposed one of the few methods for clustering and graph partitioning, that needsno “magic numbers.”

• Besides being fully automatic, our approach satisfies all properties (P1)–(P3): it finds row and column groups
simultaneously and scales linearly with problem size.

• We introduce a novel approach and propose a general, intuitive model founded on compression and information-
theoretic principles.

• We provide an integrated, two-level framework to find cross-associations, consisting of REGROUP (inner
loop) and CROSSASSOCIATIONSEARCH (outer loop).

• We give an effective search strategy to minimize the total code length, taking advantage of the cost function
properties (“waterfall” shape).

Also, our method is easily extensible to matrices with categorical values. We evaluate our method on several real
and synthetic datasets, where it produces intuitive results.

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

120

140

160

180

Density

Number of cells

Original
density

Low−density
CrossAssociations

High−density
CrossAssociations

Figure 8: The algorithm splits the original CLASSIC matrix into homogeneous, high and low density Cross-
associations.

References

[1] D. Pelleg and A. Moore, “X-means: Extending K-means with efficient estimation of the number of clusters,”
in Proc. 17th ICML, pp. 727–734, 2000.

[2] G. Hamerly and C. Elkan, “Learning thek in k-means,” inProc. 17th NIPS, 2003.

[3] B. Zhang, M. Hsu, and U. Dayal, “K-harmonic means—a spatial clustering algorithm with boosting,” inProc.
1st TSDM, pp. 31–45, 2000.

[4] I. S. Dhillon and D. S. Modha, “Concept decom- positions for large sparse text data using clustering,”Mach.
Learning, vol. 42, pp. 143–175, 2001.

[5] S. Guha, R. Rastogi, and K. Shim, “CURE: an efficient clustering algorithm for large databases,” inProc.
SIGMOD, pp. 73–84, 1998.

2+2 3+3 4+4 5+5 6+6 7+7 8+8 9+9 10+1011+11
0

2

4

6

8

10

12
Time vs. k+l

k+l

Ti
m

e
(s

ec
)

3000 x 1800
2000 x 1200

0 1 2 3 4 5 6

x 106

0

5

10

15

20

25
Time vs. size (noiseless)

non−zeros

Ti
m

e
(s

ea
rc

h)

0 1 2 3 4 5 6

x 106

0

2

4

6

8

10

Ti
m

e
(k

,l=
3,

3)

0 1 2 3 4 5 6

x 106

0

200

400

600

800

1000

1200
Time vs. size (1% noise)

non−zeros

Ti
m

e
(s

ea
rc

h)

(4,4)(8,6)(7,7)(6,7)

(11,7)
(8,10)

(13,8)

(9,8)

(13,9)

(9,10)

0 1 2 3 4 5 6

x 106

0

2

4

6

8

10

12

Ti
m

e
(k

,l=
3,

3)

0 1 2 3 4 5 6

x 106

0

5
Time vs. size (1% noise)

non−zeros

Ti
m

e
(s

ea
rc

h)
 /

Σ i(k
i +

 l i)

(4,4)
(8,6)

(7,7)
(6,7)

(11,7)
(8,10)

(13,8)
(9,8)

(13,9) (9,10)

0 1 2 3 4 5 6

x 106

0

2

Ti
m

e
(k

,l=
3,

3)
 /

(3
 +

 3
)

(a) Time vs.k + ` (b) Noiseless (c) Noisy (1%) (d) Noisy, scaled

Figure 9: (a) Wall-clock time for one row and column swapping (step (2) and (4)) vs.k+ ` is linear (shown for two
different matrix sizes, withn1(D) = 0.37n(D)). (b,c) Wall-clock time vs. number of non-zeros, for CROSSASSO-
CIATIONSEARCH (dashed) and for REGROUPwith (k, l) = (3, 3) (solid). The stopping values(k∗, `∗) are shown
on plots (c,d), if different from(3, 3). (d) Wall-clock times of plot (c), scaled by∝ 1/(k∗ + `∗)2.

17

(1,2) (2,2) (2,3) (3,3) (3,4) (4,4)
4

6

8

10

12

14
x 104

C
os

t
m, n = 500, 300

(2,2) (3,3) (4,4) (5,5) (6,6) (8,6)

2

3

4

5

x 105 m, n = 1000, 600

(2,2) (3,3) (4,4) (5,5) (6,6) (7,7)

4

6

8

10

12
x 105

C
os

t

m, n = 1500, 900

(2,2) (3,3) (4,4) (5,5) (6,6)

1

1.5

2

x 106 m, n = 2000, 1200

(3,4) (6,6) (10,7)
1

2

3

x 106

C
os

t

m, n = 2500, 1500

(3,4) (6,6) (8,9)

2

3

4

5
x 106 m, n = 3000, 1800

(3,4) (6,6) (9,8)
2

3

4

5

6

x 106

C
os

t

m, n = 3500, 2100

(3,4) (6,6) (9,8)

4

6

8

x 106 m, n = 4000, 2400

(3,4) (6,6) (9,8) (13,9)

4

6

8

10

x 106

(k,l)

C
os

t

m, n = 4500, 2700

(3,4) (6,6) (8,9)
4

6

8

10

12

14
x 106

(k,l)

m, n = 5000, 3000

Total cost
Code cost

Figure 10: Progression of cost during search on synthetic cave graphs (for varying sizes); see also Figure 9(b).

18

[6] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data clustering method for very large
databases,” inProc. SIGMOD, pp. 103–114, 1996.

[7] G. Karypis, E.-H. Han, and V. Kumar, “Chameleon: Hierarchical clustering using dynamic modeling,”IEEE
Computer, vol. 32, no. 8, pp. 68–75, 1999.

[8] A. Hinneburg and D. A. Keim, “An efficient approach to clustering in large multimedia databases with noise,”
in Proc. 4th KDD, pp. 58–65, 1998.

[9] J. Han and M. Kamber,Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha, “Information-theoretic co-clustering,” inProc. 9th KDD, pp. 89–
98, 2003.

[11] M. M. Madiman, M. Harrison, and I. Kontoyiannis, “A minimum description length proposal for lossy data
compression,” inProc. IEEE ISIT, 2004.

[12] N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby, “Multivariate information bottleneck,” inProc. 17th
UAI, pp. 152–161, 2001.

[13] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules in large databases,” inProc. 20th
VLDB, pp. 487–499, 1994.

[14] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation: A frequent-pattern
tree approach,”Data Min. Knowl. Discov., vol. 8, no. 1, pp. 53–87, 2004.

[15] A. Tuzhilin and G. Adomavicius, “Handling very large numbers of association rules in the analysis of mi-
croarray data,” inProc. 8th KDD, 2002.

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent semantic
analysis,”JASI, vol. 41, pp. 391–407, 1990.

[17] T. G. Kolda and D. P. O’Leary, “A semidiscrete matrix decomposition for latent semantic indexing informa-
tion retrieval,”ACM Transactions on Information Systems, vol. 16, no. 4, pp. 322–346, 1998.

[18] T. Hofmann, “Probabilistic latent semantic indexing,” inProc. 22nd SIGIR, pp. 50–57, 1999.

[19] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, “Latent semantic indexing: A probabilistic
analysis,” inProc. 17th PODS, 1998.

[20] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint graph partitioning,” inProc. SC98,
pp. 1–13, 1998.

[21] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” inProc. NIPS,
pp. 849–856, 2001.

[22] N. Mishra, D. Ron, and R. Swaminathan, “On finding large conjunctive clusters,” inProc. 16th COLT, 2003.

[23] P. K. Reddy and M. Kitsuregawa, “An approach to relate the web communities through bipartite graphs,” in
Proc. 2nd WISE, pp. 302–310, 2001.

[24] C. Tang and A. Zhang, “Mining multiple phenotype structures underlying gene expression profiles,” inProc.
CIKM03, pp. 418–425, 2003.

19

[25] J. Rissanen, “Modeling by shortest data description,”Automatica, vol. 14, pp. 465–471, 1978.

[26] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,”IBM J. Res. Dev., vol. 20, no. 3, pp. 198–
203, 1976.

[27] J. Rissanen and G. G. Langdon Jr., “Arithmetic coding,”IBM J. Res. Dev., vol. 23, pp. 149–162, 1979.

[28] I. H. Witten, R. Neal, and J. G. Cleary, “Arithmetic coding for data compression,”Comm. ACM, vol. 30, no. 6,
pp. 520–540, 1987.

[29] J. Rissanen, “Universal prior for integers and estimation by minimum description length,”Annals of Statistics,
vol. 11, no. 2, pp. 416–431, 1983.

[30] D. J. Watts,Small Worlds: The Dynamics of Networks between Order and Randomness. Princeton Univ.
Press, 1999.

[31] M. Richardson, R. Agrawal, and P. Domingos, “Trust management for the semantic web,” inProc. 2nd ISWC,
pp. 351–368, 2003.

[32] A. L. Montgomery and C. Faloutsos, “Identifying web browsing trends and patterns,”IEEE Computer,
vol. 34, no. 7, pp. 94–95, 2001.

20

	Introduction - Motivation
	Survey
	Cross-association and Compression
	Cross-association
	A Lossless Code for a Binary Matrix
	Cross-association and Compression
	Description Complexity
	The Code for the Matrix
	Putting It Together

	Problem Formulation

	Algorithms
	Alternating Minimization (ReGroup)
	Search for k and (CrossAssociationSearch)

	Experiments
	Quality
	Scalability

	Conclusions

