
AN EFFICIENT CONTEXT-FREE PARSING ALGORITHM

Jay Ea_rIey

Computer Science Department

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Augqst, 1968

Submitted to Carnegie-Mellon University

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

This work was supported by the Advanced Research Projects Agency of the
Office of the Secretary of Defense (F44620-67-C-0058) and is monitored

by the Air Force Office of Scientific Research. This document has been
approved for public release and sale; its distribution is unlimited.

CARNEGIE-MELLON UNIVERS ITY

CARNEGIE INSTITUTE OF TECHNOLOGY

COLLEGE OF ENGINEERING AND SCIENCE

THESIS

SUBMITTEDIN PARTIALFULFILLMENTOFTHE REQUIREMENTS

FORTHE DEGREEOF...._Dg_c_to_r_of___l___ilos__o_p_h._...................

An Efficient Context-Free Parsing AlgorithmTITLE ..

Jay EarleyPRESENTED BY ..

Computer Sc ienceACCEPTED BY THE DEPARTMENT OF ..

,,1 l J _" f- "2 /

......t_-_+___z::......_____/____.(,,._...&_ ,"-,' ,_<.,-

i,

APPROVED BY THE COMMITTEE ON GRADUATE DEGREES

...................................
CHAIRMAN DATIr

Jay Earley
An efficient context-free parsing algorithm

ABSTRACT

This paper describes a parsing algorithm for context-free grammars,

which is of interest because of its efficiency. The algorithm runs in

time proportional to n3 (where n is the length of the input string) on

2
all context-free grammars. It runs in time proportional to n on

2
unambiguous grammars, and we actually show that it is n on a considerably

larger class of grammars than this, but not on all grammars. These two

results are not new, but they have been attained previously by two

different algorithms, both of which require the grammar to be put into a

special form before they are applicable.

The algorithm runs in linear time on a class of grammars which

includes LR(K) grammars and finite unions of them (and the LR(K) grammars

include those of essentially all published algorithms which run in time n),

and a large number of other grammars. These time n grammars in a practical

sense include almost all unambiguous grammars, many ambiguous ones, and

probably all programming language grammars.

We present a method for compiling a recognizer from a time n grammar

which runs much faster than our original algorithm would have, working

directly with the grammar as it is recognized. We show some undecidability

results about the class of grammars that are compilable by this method.

2
The space bound for the algorithm is n , and by using a garbage

collector which we describe, this can be cut down to n in a large number

of cases.

li

The algorithm can easily be converted into a parser, which has

the same bounds as the recognizer except that the space bound goes up

3
to n in order to store all the parses of very ambiguous grammars.

The time results we have obtained are only valid for a random

access model of a computer. The n3 result is the only one which

carries over to a Turing-machine-I ike model.

Our algorithm was clearly superior to the top-down and bottom-up

algorithms in a practical comparison with data from the Griffiths and

Petrick article.

iii

ACKNOW LEDGEMENTS

I am deeply indebted to Professor Robert Floyd who, as my thesis

advisor, guided my research. Professor Albert Meyer also showed interest

and provided guidance. I am also indebted to Rudolph Krutar for

discussions on the implementation of the algorithm and to Professor Alan

Perlis for suggestions on the final draft of the thesis.

iv

CONTENTS

Section Title Page

I. INTRODUCT ION I

II. TERM INOLOGY 3

III. PREVIOUS WORK 15

IV. INTUITIVE EXPLANATION 9

V. THE RECOGNIZER 16

vi. RECOGNITION TIME 26

VII. BOUNDED DIRECT AMBIGUITY 30

2
VIII. TIME n 33

IX. TIME n 44

X. THE COMPILED ALGORITHM (59

XI. AN EXAMPLE 89

Xll. SOME UNDECIDABILITY RESULTS 97

XIII. SPACE 103

XIV. THE PARSER 106

XV. TWO MODELS I12

XVI. EMPIRICAL RESULTS I15

XVII. THE PRACTICAL USE OF THE ALGORITHM 122

XVIII. FURTHER RESEARCH AND CONCLUSION 135

REFERENCES 137

I. . INTRODUCTION

Context-free grammars have been used extensively for describing

the syntax of programming languages and natural languages. They are

often called BNF grammars when used for programming languages [Na 63].

The analysis of the syntax (parsing) of programs or sentences is a

crucial part of the implementation of compilers and interpreters for

programming languages and of programs which "understand" or translate

natural languages. Therefore the development of automatic parsing

algorithms for context-free grammars has importance in these areas of

computer science.

We need some way of evaluating the numerous parsing schemes which

have been developed. In order that this evaluation be unbiased by a

particular computer, a particular method of implementation, or a

particular set of test grammars, we will formalize our evaluation

criteria and use mathematical rather than experimental methods for

comparison. We are interested in how fast the algorithm runs, how

much space it uses, and how widely applicable it is. To evaluate time

and space, we use a formal model of an idealized computer and count

the number of steps an algorithm takes and the number of registers it

uses (see Section XV). To evaluate the applicability, we use a formal

model of a grammar and consider what subclasses of grammars can be

handled correctly by the algorithm.

These formal techniques are some of those used by researchers in

complexity theory--the study of the intrinsic difficulty of computing

various functions. In fact the results in this paper can be thought of

as complexity results.

In particular, we are more concerned with time than space. This

is because the space requirements for context-free language processing

generally fall within the capabilities of most large computers, but

the time requirements often are not reasonable for the application. We

consider the length of the string being parsed as the most important

parameter in evaluating the time. It is more critical than the grammar

size because the way in which the time depends on the grammar size

seems to be pretty much the same over different algorithms and different

classes of grammars, but the dependence of the time on the string length

varies greatly.

We are concerned with upper bounds on the time required for various

algorithms on various subclasses of grammars. Specifically, if we speak

2
of an n algorithm for a subclass A of grammars, we mean that there is

some number C (which may depend on the size of the grammar, but not on

the length of the string), such that Cn2 is an upper bound on the number

of steps required in our model to parse any string of length n with

respect to any grammar which is in class A.

Those who are not interested in the formal properties of the

algorithm need read only Sections I through IV, the definition of the

algorithm and its implementation (pages 16-18 and 26-27), and Sections

X, Xl, XIII, XIV, XVI, and XVII.

II. TERM INO LOGY

A language is a set of strings over a finite set of symbols. We

call these terminal symbols and represent them by lower case letters.

a, b, c. Since most interesting languages are infinite sets, we use a

context-free grammar as a formal device for specifying which strings

are in the set. It uses another set of symbols, the non-terminals,

which we can think of as syntactic classes. We will use capitals for

non-terminals: A, B, C. There is a finite set of productions or

rewriting rules of the form A + a. The non-terminal which stands for

"sentence" is cal led the root R of the grammar. The productions with

a particular non-terminal D on their left sides are called the

alternatives of D. We will hereafter use grammar to mean context-free

grammar.

Strings of either terminals or non-terminals will be represented

k
by Greek letters: _, 6, y. The empty string i,sA. _ represents
k times

a* =AU{a X}. is the number of symbols in _.

We will work with this example grammar of simple arithmetic

expressions, grammar AE:

E.T

E + E+T

T+P

T _ T*P

P_a

The terminal symbols are {a, +, *}, the non-terminals are {E, T, P},

and the root is E.

Most of the rest of the definitions are understood to be with

respect to a particular grammar G. We write _ = B if 3 Y, 6, q,

A such that _ = yA_ and B = yn_ and A + q is a production. We write

= B (B is derived from _) if 3 strings s0, _l''''' _m(m _> O) such that

_ = _0= _I _ "'" _ _m : 5

is called a derivation (of B from _).
The sequence _O,...,_m

,

A sentential form is a string _ such that R = _. A sentence is a

sentential form consisting entirely of terminal symbols. The language

defined by a grammar L(G) is the set of its sentences. We may

represent any sentential form in at least one way as a derivation tree

(or parse tree) reflecting the steps made in deriving it (though not

the order of the steps). For example, in grammar AE, either derivation

E = E+T = T+T = T+P _ T*P+P

or

E =_ E+T = E+P = T+P =_ T*P+P

is represented by

E

/IX
E + T

I I
T P

jr-,,,
T * P

The degree of ambiguity of a sentence is the number of its distinct

derivation trees. A sentence is unambiguous if it has degree I of

5

ambiguity. A grammar is unambiguous if each of its sentences is

unambiguous.

The handle of a derivation tree is the set of terminal nodes which

emanate from the left-most, lowest non-terminal node (the lower left

_T*P t in the above tree). That is, if we think of parsing as pruning

branches from a derivation tree, it is the first prunable branch that

we come to, scanning from left to right.

A .recognizer is an algorithm which takes as input a string and

either accepts or r__ects it depending on whether or not the string

is a sentence of the grammar. A parser is a recognizer which als_

outputs the set of all legal derivation trees for the string.

We use // as an end-of-proof symbol.

III. PREVIOUS WORK

The previous work in developing efficient parsing algorithms can

be split into two independent developments.

Time n Algorithms. These algorithms are concerned mainly with

parsing in compilers; they all work in time proportional to n on

various subclasses of grammars. Perhaps the :est known of these is

Floyd's operator precedence algorithm [FI 63]. It works by comparing

the operators (terminals) immediately to the right and left of a point

in a sentential form to determine whether or not it is the boundary of

a handle. Wirth and Weber's precedence a!gorithm [WW 66] extends this

to non-terminals as well as terminals and hints at extending it to

strings as well.

Bounded context analysis [FI 64a] allows the algorithm to look at

a bounded number of symbols to the right and left of a possible handle

to determine whether or not it is a handle and what it is to be parsed

as. Knuth's LR(k) algorithm [Kn 65] extends this in that it is able to

consider the entire left part of the string (it scans from left to

right) plus a bounded context on the" right in order to determine the

handle.

There are at least a dozen more algorithms which fall into this

time n class, Many of these are referenced in Knuth's article. In

attempting to compare these algorithms using our criteria, we discover

that they all use time and space proportional to n, so the class of

grammars which they can handle is the only distinguishing factor.

(This is not to say that it is the only distinguishing factor from a

practical point of view.) By this standard, Knuth's algorithm is the

best, because the LR(k) grammars include as a subset the grammars which

the other three algorithms can handle and those of almost al I other

known time n algorithms. Recently there have been a couple of time n

algorithms developed which seem to handle some non-LR(k) grammars

[Ma 68] [Wi 68].

General Al_orithms. These algorithms are general in that they can

handle any context-free grammar. The oldest of these simply attempt to

construct a possible parse tree from the input string in a straight-

forward way. If the algorithm starts th_s construction from the root

and works toward the input string, it is called top down [FI 64b]. If

it starts from The input string and works toward the root it is called

bottom up [Ir 61]. The basic idea of either of these algorithms is to

make arbitrary choices about what the tree might look like and to back

up and try again if the choices later turn out to be incorrect. Although

some selectivity about these choices can be put into these algorithms,

the fact remains that because of the backtracking involved, grammars can

be constructed which cause even the selective versions to run in time

proportional to Cn for any C [FI 64b]. These backtracking algorithms

are summarized in [GP 65].

The predictive analyzer [KO 63] is a version of top down analysis

which works on grammars in standard form (the leftmost symbol on the

right side of any production is terminal). However, even with a path

elimination technique [Ku 65] to cut down on the time, it has been

shown that it can have exponential growth in some cases [Gr 66]. In

[Ka 66] is described an algorithm which is exponential only when the

number of parses o# the sentence grows exponential ly.

An algorithm without this exponential worst case was developed

independently by Cocke [Ha 62] and Younger _-Yo 67-J. It requires that

the grammar be put into a normal form such that every production is o#

the form A + a or A + BC; this can be done effectively for any

context-tree grammar. It then provides a recognition algorithm for

3
these grammars with an upper bound of n . Younger [Yo 66] and

Kasami [Ka 67] are also able to recognize strings with respect to

2
linear and meta-I inear grammars (see Section VIII) in time n . And

more recently Kasami EKT 68-I has developed an algorithm which

2
recognizes any unambiguous grammar in time n .

One disadvantage o# these two separate developments is that none

of the time n algorithms are also applicable to larger classes of

grammars, and none of the general algorithms seem to do particularly

well (time n) on interesting subclasses such as those treated by the

time n algorithms. The algorithm presented in this paper seems to

remedy this difficulty and unify the two developments.

IV. INTUITIVE EXPLANATION

The following is an informal description of the algorithm as a

recognizer: It scans an input string XI'''Xn from left to right looking

ahead some fixed number k of symbols. As each symbol X. is scanned, a
I

set of states S. is constructed which represents the condition of the
I

recognition process at that point in the scan. Each state in the set

represents (I) a production such that we are currently scanning an

instance of its right side, (2) a point in that production which shows

how much of the production we have scanned, (3) a pointer back to the

position in the input string at which we began to look for that instance

of the production, and (4) a k-symbol string which can legally occur

after that instance of the production. We will represent this quadruple

as a production, with a dot in it, followed by an integer and a string.

For example, if we are recognizing a*a with respect to grammar AE

and we have scanned the first a, we would be in the state set S I

consisting of the following states:

P . a. 0

T + P. 0

T+T.*P 0

E.T. 0

E + E.+T 0

each with various k-symbol strings. Each state represents a possible

parse for the beginning of the string, given that we have seen only

the a. All the states have 0 as a pointer, since all the productions

represented must have begun at the beginning of the string.

IO

There will be one such state set for each position in the string.

To aid in recognition, we place k+l right terminators '-I' (a symbol

which doesn't appear elsewhere in the grammar) at the right end of

the input string.

To begin the algorithm we put the single state

k
¢+ .R--t -.t 0

into state set SO, where R is the root of the grammar and where ¢ is

a new non-terminal.

In general, we operate on a state set S. as fol lows: we scan the
I

states in the set in order, performing one of three operations on each

one depending on the form of the state. These operations may add more

states to S._and may also put states in a new state set Si+ I. We will

describe these three operations by example:

In grammar AE, with k = I, SO starts as the single state

¢ + .E-I -t 0 (I)

The predictor operation is applicable to this state because there is a

non-terminal E to the right of the dot. It causes us to add one new

state to S. for each alternative of E. We put the dot at the beginningi

of the production in these new states since we haven't scanned any of

its symbols yet. The pointer is set to i, since the state was created

in S.. The k-symbol look-ahead string in this case is -I,since it is
I

after E in the Original state. Thus the predictor adds to S. all

productions which we might begin to look for at Xi+ I.

II

In our example, we add to SO

E + .E+T -4 0 (2)

E + .T d 0 (3)

We must now scan these two states. The predictor is also applicable to

them. Operating on (2), it produces

E + .E+T + 0 (4)

E + .T + 0 (5)

The difference is only in the look-ahead symbol. Operating on (3),

it produces

T + .T*P 4 0

T. .P 4 0

Now, the predictor, operating on (4) produces (4) and (5) again, but

they are already in SO, so we do nothing. From (5) it produces

T + .T*P + 0

T+ .P + 0

The rest of S is
0

T + .T*P * 0

T. .P * 0

P + .a .,4 0

12

P+ .a + 0

P. .a * 0

The predictor is not applicable to the last three states. Instead the

scanner_ is, because they have a terminal to the right of the dot. The

scanner compares that symbol with Xi+l, and if they match, it adds the

state to S with the dot moved over one _ the state to indicatei+l'

•that we have scanned that terminal symbol.

If X 1 = a, then S l is

P+a. -I 0

P . a. + 6 (6)

P+a. * 0

these states being added by the scanner.

If we finish processing S i and Si+ I remains empty, then an error

has occurred in the input string. Otherwise, we then start to process

S.
l+l"

The third operation, the completer, is applicable to these states

in SI because the dot is at the end of the production. It compares the

look-ahead string with Xi+l...Xi+ k. If they match, it goes back to the

state set indicated by the pointer, in this case SO, and adds all

states from SO which have P to the right of the dot. It moves the dot

over P in these states. Intuitively, SO is the state set we were in

when we went looking for that P. We have now found it, so we go back

13

to all the states in SO which caused us to look for a P, and we move

the dot over the P to show that we have successfully scanned it.

If X2 = +, then the completer is applicable to (6), and we add

to S
I

T-_P. -I 0

T-_P. + 0

T+P. * 0

Applying the completer to the second of these produces

E+T. -I 0

E+T. + 0

T+ T.*P "4 0

T-* T.*P + 0

T + T.*P * 0

and finally, from the second of these, we get

q_+ E. 4 4 0

E + E.+T 4 0

E + E.+T + 0

J4

The scanner then adds to S2

E + E+.T -! 0

E + E+.T + 0

If the algorithm ever ends up with Si+l consisting of the single

state

¢ + E-t. -1 0

then we have correctly scanned an E and the-t, so we are finished with

the string, and it is a sentence of the grammar.

A complete run of the algorithm on.grammar AE is on page 15. In this

example, we have written as one all the states in a state set which differ

only in their look-ahead string. (Thus "4+*" as a look-ahead string

stands for three states, with "-I" "+" "*", , and as their respective

look-ahead strings.)

The technique of using state sets and the look-ahead are derived

from Knuth's work on LR(k) grammars [Kn 65]. In fact our algorithm

approximately reduces to Knuth's algorithm on LR(k) grammars.

15

Grammar AE

root: E + T IE+T

T + PIT*P

P+a

input string = a+a*a

k= I

SO _ + .E-I -i 0 S3 P + a. 4+* 2

E . .E+T -I+ 0 T . P. 4+* 2

E + .T -I+ 0 E + E+T. 4+ 0

T . .T*P -I+* 0 T * T.*P 4+* 2

T . .P 4+* 0

S4 T -_T*.P -I+* 2
P . .a 4+* 0

P . .a -I+* 4

S P . I. -I_-* 0

I S5 P . a. -I+* 4
T+ P. 4+* 0

T + T*P. 4+* 2

E.T. -I+ 0
E + E+T. -I+ 0

T + T.*P -I+* 0
T + T.*P -I+* 2

_-*E. 4 -4 0
_ . E.-I 4 0

E + E.+T -I+ 0
E + E.+T 4+* 0

S2 E _ E+.T 4+ 0
S6 _ +E-I. -4 0

T . .T*P 4+* 2

T _ .P 4+* 2

P . .a 4+* 2

16

V. THE RECOGNIZER

The following is a precise description of the recognition algorithm:

Notation: Number the productions of grammar G arbitrarily l,...,d-l,

where each production is of the form

+C Cp (I < < d-I)Dp pl''" p -- p --

where p is the number of symbols on the right hand side of the pth

production. Add a Oth production

DO + R-t

where R is the root of G, -t is a new terminal symbol, and k is a

non-negative integer called the look-ahead parameter,

Definition, A state is a quadruple <p, j, f, _> where p, j, and f

are integers (0 < p < d-I) (0 < j < p) (0 < f < n+l) and _ is string

consisting of k terminal symbols, A state set is an ordered set of

states. A final state is one in which j = p. We add a state to a

state set by putting it last in the ordered set unless it is already

a member.

Definition. Hk(Y) = {_I_ is terminal, I_I = k, and 3 6 such that

Y =_B},

Hk(Y) is the set of all k-symbol terminal strings which begin

some string derived from y. This is used in forming the look-ahead

string for the states.

17

The Recognizer. This is a function of 3 arguments REC(G, XI...X ,k)

computed as follows:

Let Xn+ i = _ (I _< i <_ k+l).

Let S. be empty (0 < i < n+l).

Add <0,0,0,_ k> to SO .

Set i + 0 and go to A.

A: Process the states of S. in order, performing one of thel

following three operations on each state s = <p, j, f, _>.

(I) Predictor: If s is non-final and Cp(j+l) is non-terminal,

then for each q such that C = Dqp(j+l) , and for each

B e Hk(Cp(j+2)...Cp_ _) add <q, O, i, 13>to S i.

(2) Completer: If s is final and _ = Xi+l...Xi+k, then for

each <q, _, g, B> ¢ Sf (after all states have been added to Sf)

such that Cq(%+l) = Dp, add <q, _+I, g, 8> to S.I.

(3) Scanner: If s is non-final and Cp(j+l) is terminal, then

if Cp(j+l) = Xi+l, add <p, j+l, f, _> to Si+ I.

If Si+ I is empty, reject XI...X n.

If i = n and Si+ I = {<0, 2, 0,-_k>}, accept XI...X n.

Otherwise set i . i+l and _o to A.

This is not real ly a complete description of the algorithm until

we describe in detail how all these operations are implemented in our

18

model. However, we will defer that description until it is required to

obtain the time bounds.

We will now prove that this algorithm is indeed a recognizer.

First we introduce the idea of i-state, which is a way of stating,

in an algorithm-independent way, the properties of a state constructed

by the algorithm• We will use this concept in later proofs. Theorem I

establishes the relationship between i-states _nd states constructed by

the algorithm. Theorems 2, 3, and 4 then complete the reco_: :er proof.

Definition• The extensions of a string _ are the strings _IB for all B

Definition. The i-states of a derivation of a string X l...Xn (I _< i _< n)

Xn+ I =-I) are the triples (p, j, f), (0 <_ p <_d-l), (0 <_ j _< p),
(let

(I < f < i) such that 3 _ (i < _ < n+l) such that

(a) if p # O, R = XI...XfDpX_+ I...X n

(b) if j > O, Cpl .C =, X•. pj Xf+l •.. i

*
(c) if j < p C .C = X X_' p(j+l)'" pp i+l''"

in that derivation•

Definition. The i-states of a string X I...Xm (m >_ i) are the i-states

of the derivations of the extensions of X I...Xm.

are roughly those states constructed _The i-states of a string XI...Xm

by the algorithm on XI...X. which are consistent with Xi+ I .X beingI "" m

next in the input string.

19

Note: Unless otherwise specified, the algorithm is understood to be

REC(G, Xl...Xn,k) in our proofs.

Theorem I. If <p, j, f, _> _ S. andI

Xi+l...Xi+ k _ Hk(Cp(j+l)...Cp_ _)

then (p, j, f) is an i-state of XI...Xi+ k.

Proof: By induction on the number of states added to any state set

before <p, j, f, _> is added to S..I

Basis: <0, O, O, A> is the first state added to SO. If XI...X k e

Hk(R4k+l), then (0, O, O) is an i-state of XI...X k as follows:

(a) p = O, so not applicable

(b) j = O, so not applicable

* Xk B (R4k+l)(c) 3 B such that R = Xl... since XI...X k ¢ Hk

Induction Step:

(I) <q, O, i, B> is added to S. by the predictor from state
I

<p, j, f, _> and

(CqXi+ I...xi+ k ¢ Hk i...Cqq B) = Hk(Dq 6)

Then

Xi+l...Xi+k ¢ Hk(Cp(j+l)Cp(j+2)...Cp_ _)

since Dq = Cp(j+l) and 13¢ Hk(Cp(j+2)...Cp_ _). So by inductive

2O

hypothesis (p, j, f) is an i-state of XI...Xi+ k. Therefore 3 an

extension X I...Xn and an _ such that

,

R _ XI...XfDpX_+j...X n

C .C _ X
pl'" pj Xf+l"" i

and Cp(j+l)...Cp_ = Xi+l...X_

So there is an _' (i < A' < A) such that

C .. = X_ ...X_p(j+2) .Cp_ '+1

If 3 Y such that

Cql...Cq_ = Xi+ l...Xi+kY

(q, O, i) is an i-state of a derivation of Xi'''Xi+kYX_'+I'''Xn as

follows:

= .X DqX_ X so(a) Dp Xf+l.. i '+I''" %'

R = XI...XiDqXL,+I...X n

(b) j = O, so not applicable

(c) C Cq = X Xql''" q i+l''" i+kY

21

If 3 k' < k such that Cql...Cq_ = Xi+l...Xi+k,, then (q, O, i)

is an i-state of a derivation of XI'''Xi+k'X_'+I'''Xn (i+k' = 4')

as follows:

(a) and (b) are the same as above.

(c) C Cq = X Xql''" q i+l''" i+k'

(2) <q, j+l, g, 6> is added to S i by the completer from

<p, p, f, _> e Si and <q, j, g, B> ¢ Sf. Then _ = Xi+l...Xi+k, so

by inductive hypothesis, (p, p, f) is an i-state of XI...Xi+ k. So

C ...C = Xf . Xpl pp +I "" i

Also, since

Xi+l...Xi+ k ¢ Hk(Cq(j+2)...Cqq- B)

Xf+ l...XiXi+ l...Xi+ k ¢ Hi_f+ k (Cpl...Cp_ Cq(j+2)...Cqq- B)

which equals Hi_f+ k (Cq(j+I)...C - B) since D = Cq(. Soqq p j+l)

Xf+l...Xf+ k ¢ Hk(Cq(,+I)...Cj - B). So by inductive hypothesis (q, j, g)qq

is an f-state of XI...Xf+ k. Therefore 3 an extension XI...X n and an

such that

R = XI...XgDqX_+I...Xn

C ...C = X ...Xfql qj g+l

22

and
,

C ...C = Xf ...X_p(j+t) pp +1

If 3 y such that

Cp(j+2)...Cp_ = Xi+l...Xi+ k y

(q, j+l, g) is an i-state of a derivation of XI...X,+k y XA+I'''Xn as

follows:

(a) R _ XI...XgDqx_+ I...X n

,

(b) C ...C . C .. Cp = X ...XfX ...X soql qj pl " p g+l f+l i

C Cq = Xg+ .X since C = Dql''" (j+l) I'" i' q(j+l) p

(c) C Cp X yp(j+2)"" p = Xi+l"" i+k

If 9 k' < k such that Cp(j+2)...Cp_ = Xi+l...Xi+k, , then

(q, j+l, g) is an i-state of a derivation of XI...Xi+k,X_+I...X n

(i+k' = 4) as follows:

(a) and (b) are the same as above.

(c) Cp(j+2)...Cp_ = Xi+l...Xi+k,

(3) <p, j+l, f, B> is added to S. by the scanner from
I

<p, j, f, B> _ Si,_l..

Xi+ l...xi+k ¢ Hk(Cp(j+2)...Cp_ 13)

23

and Cp(j+l) = X i, so

Xi...Xi+ k e Hk+ l(Cp(j+l)...cp_ B)

SO

Xi...Xi+k_ I ¢ Hk(C .C - B)p(j+l)'" pp

Therefore, by inductive hypothesis, (p, j, T# is an (i-l)-state of

Xl...Xi+k_ I. Therefore 3 an extension X l...Xn and an % such that

,

R= XI...XfDpX_+I...X n

C .C = X
pl'" pj Xf+l''" i-I

and C ...C = X ...X_p(j+l) pp i

so (p, j+l, f) is an i-state of a derivation of XI...X n as follows:

,

(a) R = XI...XfDpX_+I...X n

(b) Cpl"'CpjCp(j+l) = Xf+l'"X'_-IX'I Since Cp(j+l) = X.j

,

(c) Cp(j+2)...Cp_ = XI+I X_. //

is accepted by the algorithm, then it is aTheorem 2. If XI...X n

sentence.

Proof: If XI'''Xn is accepted by the algorithm, then Sn+l =

{<0, 2, O, Mk>}. And by theorem I, since Mk ¢ Hk(4k), (0, 2,
O)

24

k+l

is an (n+l)-state of XI...X 4 . So by (b) in the definition ofn

i_state,

R-I = XI'''Xn "1

or R = Xl...xn, so it is a sentence. //

Theorem 3. If <p, j, f, _> e Si, Cp(j+l) = Xi+I...X%, and

... k(Cp .. - _), then <p, j+l f, _> ¢ S_.X%+ I X%+ k e H (j+2) .Cpp

Proof: By induction on m (see page 4) in the definition of = in

= X ...X_Cp(j+l) i+l "

Basis: If m = O, then % = i+l and C = X so <p j+l f _>
p(j+l) i+l' ' ' '

is added to S by the scanner.i+l

Induction Step: if m > O, 3 q such that Cp(j+l) = Dq + Cql...Cq

and 3 tO < t I <...< t- such that tO = i, t- = _ and_ _ _ q q

Cql = Xto+l"'Xtl"'" Cqn" = Xt(_q-l)+l'''Xt-q

Because of the predictor acting on <p, j, f, _> in Si,

<q, O, i, X%+ l...X_+k> will be added to S. sinceI

- _). And by inductive hypothesis
X_+ I'''X%+ k ¢ Hk/(Cp(j+2)...Cpp

we know that if <q, r, i, X_+I...X_+k > is in St , then <q, r+l, i,
r

X_+I...X%+k> will be in St(r+l) (0 <_ r <_ q-l) since

25

C = Xt +l"'Xt(q(r+l) r r+l)

and Xt)+l'''Xt +k ¢ Hk(Cq ...C .)(r+l (r+l) (r+2) q_ X_+I "'X%+k

m

So by induction on r, St_ = S_ contains <q, q, i, X%+ l...x%+k>.
q

And the completer, acting on this state, adds <p, j+l, f, _> to S_. //

Theorem 4. If X l...Xn is a sentence, then it is accepted by the algorithm.

,

Proof: SO contains <0, O, O,-Ik>, R = XI...X n, and-I k ¢ Hk(-Ik+l). So

by theorem 3, S contains <0, I, O,-Ik>. And since -I = C02, then

scanner adds <0, 2, O,-Ik> to Sn+ I. This is the only state that Sn+ I

can contain since -I appears nowhere else in the grammar. So X I...X n

is accepted. //

Theorems 2 and 4 together show that the algorithm is a recognizer

for all context-free grammars. Notice that our recognizer proofs

require no restrictions at all on the grammar. That is, unlike most

algorithms, ours handles correctly circular grammars, disconnected

grammars, grammars which generate strings with an infinite number of

parses, even grammars which generate the empty language.

