CMU-ITC-88-093

User Interface Guidelines

for the Andrew System

Version 2.0
(Dratft)

10/12/88

Authors:

Maria G. Wadlow
Christina Haas
Dan Boyarski
Paul G. Crumley

Preface

We want principles,
not only developed, - the work of the closet, -
but applied; which is the work of life.

Horace Mann
Thoughts, 1867

For the past several years, exciting work in computer system development has been in progress
at Carnegie Melion University. The Information Technology Center, a joint endeavor between
Carnegie Mellon University and IBM Corporation, has been developing a computer system for use
on campuses and in businesses around the country. This system, named Andrew in honor of
Andrew Carnegie and Andrew Melion, is comprised of three primary pieces: the Andrew File
System, which provides remote access to files across the country; the Andrew Toolkit, which
provides tools for building multimedia applications within the system; and the Andrew Message
System, which enables mutimedia documents to be transferred via electronic mail.

The Andrew system is being developed to support a myriad of users. Professors and students,
secretaries and campus administrators, system developers and documentors all make use of the
system on a daily basis. For this reason, the user interface for the Andrew system is of
tremendous importance to its acceptance and success.

The Andrew system is a relatively young system, still being developed and refined. In addition to
ongoing development which is taking place at Carmnegie Meilon, the Andrew system was designed
to encourage modification and customization by its growing user community. Both of these
development efforts are crucial to the success of the Andrew system.

This document consists of four major sections. Each section of the document is addressed to a
specific audience with specitic needs. The sections can be read and used separately, although
they have been conceived as a whole.

Part 1: Requirements for Andrew Inset Development, presents specific requirements for
inset behavior in the Andrew system and will be useful for developers who wish to
understand inset behavior in the Andrew environment.

Part 2: Related Issues in Andrew Inset Development, represents the current thinking on
complex interface issues in the Andrew system and outlines the considerations
which should guide resolution of these issues.

Pant 3: Future Questions In Andrew Inset Development, outlines some of the crucial
interface issues which remain to be thoroughly analyzed and understood.
Readers who are interested in complex, state-of-the-art decisions about interface
design will find Parts 2 and 3 valuable.

Part 4: The Importance of the User Interface: Annotations on Requirements for Andrew
Inset Development, presents some of the philosophy and guiding concepts
behind the design of user interface guidelines, as well as specific discussion ot
the design decisions set forth in Part 1 of the document. This part would be
particularly interesting for human tactors researchers and those interested in the
complex decision-making which goes into the design of interface requirements.

Version 2.0 (10/12/88)

2 Preface

A glossary of selected terms and a short bibliography are also included.

This document presumes some amount of knowledge about the Andrew system. For the
interested reader, more information about Andrew can be obtained from the following sources:

Borenstein, N., Everhart, C., Rosenberg, J., Stoller, A., A Multi-media Message System
for Andrew, Proceedings of the USENIX Technical Conference, Winter 1988.

Howard, J.H., An Overview of the Andrew File System, Proceedings of the USENIX
Technical Conference, Winter 1988.

Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.H., and
Smith F.D., Andrew: A Distributed Personal Computing Environment,
Communications of the ACM, March 1986, Vol. 29, No. 3.

Palay, A.J., Hansen, W.J., Kazar, M.L.,Sherman, M., Wadlow, M.G., Neuendorffer, T.P.,
Stem, Z., Bader, M., Peters, T., The Andrew Toolkit: An Overview, Proceedings
of the USENIX Technical Conference, Winter 1988.

Subasic, K., Robertson, J., Langston, D., and Grantham, D., A Guide to Andrew,
Information Technology Center, 1988.

Information Technology Center
Carnegie Mellon University
Pittsburgh, PA 15213

Copyright(c) Carnegie Mellon University
September 1988

User Interface Guidelines

Part 1

Part 2

Part 3

Part 4

Table of Contents

Requirements for Andrew Inset Development

1.1 Objectives
1.2 What Are Insets and How Are They Used?
13 Requirements

Related Issues in Andrew Inset Development

2.1 Inset Behavior
2.2 Author/User Specifications and Customizing
23 Dialog and Response Devices

Future Questions in Andrew Inset Development

3.1 Inset Manipulation
3.2 Color
3.3 Printing

The Importance of the User Interface

4.1 The importance of the User Interface
4.2 Basic Philosophies
4.3 The Impact of Guidelines on System Development
4.4 Annotations to Requirements Presented in Part 1
Glossary
Bibliography

Version 1.0 (10/12/88)

N = -4

12
14

19
19
20
22

23
23
24
25
25

29

39

User Interface Guidelines

1 Requirements for Andrew Inset Development

number of interface experts and everyday experience by users of the system. These
requirements deal only with those issues for which there is sufficient information to justify firm
specifications for interface behavior, Issues which are still being investigated are discussed in
Parts 2 ang 3 of the larger document.

1.1 Objectives

Part 1 of this document is designed to furnish developers with access to information and answers
to design questions pertaining to insets. It has been kept brief to improve the usability and
accessibility of the information it presents. The requirements presented here deal primarily with

The goal of the requirements Presented in Par 1 is two-fold: application of these requirements
will lead to a user interface which is both consistent across insets and, easier to learn and use. In
addition, these requirements will aid inset developers by providing a consistent mode! which can
simplify the user interface design component of the inset development process.

1.2 What Are Insets and How Are They Used?

In many systems, users are able to Create textual, graphical, raster or other types of files and
documents. Relatively few systems enable the user to combine several types of objects within a
single document. However, through the use of insets, the Andrew environment can support
multimedia documents, documents which are not limited to one type of object.

Insets are software packages which have been designed for the display and modification of
certain types of information. More specifically, an inset is the relationship between two types of

rasters.

Insets can be divided into two distinct categories, based on certain properties of the inset:
sequential insets and spatial insets. This distinction applies to currently available insets but may
hold for future insets as well. Sequential insets are those in which the ordering of datais

important; for example, when reading, people process textin a primarily linear or sequential

and raster would be classified as spatial objects. Table has both spatial and sequential
properties: the table as a whole is spatial but the individual cells are sequential.

Version 2.0 (3/15/88)

2 Part 1

1.3 Requirements
1.3.1 Giving an Inset the Input Focus

In order to do any work with an inset beyond displaying it, that inset must have the input focus.
Just as the user must be reminded which is the current window, an inset must give some visual
indication that it is currently accepting input.

A single left click within an inset's boundaries gives that inset the input focus. Any visual indication
ot the current location of the input focus is removed from the inset which formerly contained the
input focus and is now displayed in the current inset.

The inset.which has the input focus is distinguished by: a border around the perimeter of the inset,
menus appropriate to that inset and, in some cases, a cursor change.

1.3.2 Creating an Inset

A new inset can be inserted by choosing the Add Inset menu item from the menu stack (or the

equivalent function from an exposed “palette” of tools) and selecting the inset type from a dialog
box. The default inset type should be text.

Upon creation of a new inset, that new inset must have the input focus; that is, it must be the
Current focus of attention for any mouse or keyboard input. Any visual indication of the current

location of the input focus is now displayed in the newly created inset. The default cursor for the
new inset must be used and the inset's menus must be made available.

Upon creation, an inset must be edittable and any tools necessary for editing the inset must be
displayed and available for use.

When an inset is created within a document, it must have the default shape {rectangular) and thé
default size. An inset's default desired size, the size that the inset would display itself given
sutficient space, and initial position are determined by their own and their parent's

spatial/sequential properties. Refer to the table in Figure 1.1 for details regarding default desired
size and initial position.

User Interface Guidelines

Requirements for Andrew inset Development 3

Parent
Spatial Sequential
W=1/3 parent’s shown width W=parent's shown width
Spatial L=1/3 parent’s shown length L=1/3 parent’'s shown length

Child P=centered in shown parent P=at caret

W=1/3 parent’s shown width W=parent’'s shown width
Sequential |L=1line L=1 character
P=centered in shown parent P=at caret

W - inset width
L - inset length
P - inset position

Figure 1.1

Aninset’s desired size is the size at which it was created. If the parent allocates more space than
requested, an inset should use the desired size by default. If the parent allocates less space than

requested, then the inset must resize and manipulate its data to fit within the given size. (See
Resizing an Inset.)

1.3.3 Selecting an Inset

In order to perform any operations on an inset as a whole, the inset’s parent must have the input
focus and the inset must be selected, just as one would select any other object to manipulate it.

A double left mouse click in an inset (two left mouse clicks at the same screen position and within
a prescribed timeframe) selects that inset for whole-inset operations such as cutting the inset out
of the document. For some insets, a child inset may also be selected by positioning the cursor in
the parent at some position before the inset and dragging to some position after the inset. For

sequential insets, this may result in some portion of the parent inset being selected in addition to
the inset.

A selected inset should be highlighted using the same mechanism to distinguish selected regions
that is used by that inset's parent (usually outlining or the addition of selection “handles” on the
borders), and the parent’'s menus should be displayed. Selecting an inset requires that any

previous selection become unselected. That is, before the new selection can be highlighted, the
highlighting of any former selections must be removed.

1.3.4 Resizing an Inset
Aninset’s desired size is used to allocate space for its display in the parent. Even if resized. insets

should retain some information about their desired size, that is, the size at which they were
originally drawn.

Jersion 2.0 (9/13/88)

4 | Part 1

Selecting an inset and repositioning its boundaries by dragging them with the mouse is probably
the easiest method of resizing an inset relative to the window in which it is being displayed.

Adding to the contents of an inset may also cause it to resize. Ininsets such as text or table, the

user may add another line of text or a new column to the table which would cause the inset’s
desired size to increase automatically.

If, for some reason, the parent does not allocate sufficient space, then the inset must manipulate
its representation of the data to fit within the space that has been allocated. All insets must be

able to redisplay their data in the event that they are given insufficient space in which to display
their contents.

Insets can be grouped into three categories, depending upon their default method of redisplaying
given insufficient space: cropping insets, wrapping insets and scaling insets. At the lowest level,
insets which are unable to display their contents within the given space may display only a portion
of the full contents, cropping any data which doesn't fit within the boundaries. All insets must be
able to crop. At the next level, insets may wrap their contents upon reaching a window boundary.
Typically, only those insets which are sequential in nature (e.g., text) will wrap their contents to fit
within the allocated space. Insets which wrap may crop their contents as well. At the highest
level, insets may scale their contents to fit within the given boundaries. Insets which scale may

also crop their contents and may be able to wrap them as well (although not necessarily
simultaneously).

Figure 1.2 classifies the six basic insets in the Andrew system according to their redisplay
capabilities.

Table Text Eq Raster Zip Fad
Scale (opt.) (opt.) Default Default Default
Wrap Default Default
Crop Defauit {opt.) (opt.) (opt.) (opt.) {opt.)

Default - default redisplay method
(opt.) - optional redisplay method

Figure 1.2

User intertace Gueines

Requirements for Andrew Inset Development

Using the table in Figure 1.2, a decision tree can be built whi

when given insutficient space. (See Figure 1.3.)

Is the allocated
space big enough?

yes

Display

1.3.5 Scrolling an Inset

When an inset has been cropped, two issues arise:
is more of the inset to view, and second, the user m
the inset. The first of these issues is addressed by
related issues are discussed at greater len
that more information is available, and, mo

information.

no

Is this inset
allowed to wrap?

yes

Wrap

Figure 1.3

no

ch determines how insets redisplay

Is this inset
allowed to scale?

yes

Scale

no

first, the user much be made aware that there
ust have a way to access the cropped part ot
the varying kinds of inset borders. Border-
gthin Part 2 of this document. Scrotlbars also signal

re impontantly, may provide access to cropped

Scrollbars are rectangular regions placed along the perimeter of an object. Scrollbars are used to
indicate which portion of the data is currently visible, where the caret is located and the existence
of a selected region. Scrolibars are also used to reposition the data that is displayed. The

scrolibar should provide varying rates of movement -- from fine movement (e.g., asingle line at a

version 2.0 (9/13.43)

6 Part 1

time) to large scale movement (e.g., jump to top/bottom of the file). Figure 1.4 shows an Andrew

scrollbar.

Figure 1.4

When used, horizontal scrollbars must appear across the bottom of the workspace, vertical
scrollbars should appear to the left of the workspace. Scrollbars are most useful for sequential
insets. Spatial insets may require some type of panning operation to allow simultaneous
horizontal and vertical movement. Panning is described in more detail in Part 2 of this document.

1.3.6 Moving an Inset

Insets may be repositioned using any mechanisms available within the parent; for example,
cutting and pasting or selecting the inset and dragging it with the mouse. Resizing or other

mechanisms available through the parent inset (e.g., centered, right flush, etc.) may be used to
fine tune an inset’s position.

User Interface Guidelines

2 Related Issues in Andrew Inset Development

This section of the document (Part 2 of the larger document, User Interface Guidelines for the
Andrew System) outlines current thinking about some of the complex issues of inset design and
behavior. While considerable thinking and debate has gone into this section of the document,
issues discussed here are still open to discussion and are not yet “requirements” for Andrew inset
development. It is intended that the issues discussed here will be resolved and tested and
eventually become part of the Requirements for Andrew Inset Development.

2.1 Inset Behavior
2.1.1 View Manipulation
2.1.1.1 Desired Slze

Aninset’s initial desired size should generaily be small enough that the inset can print without
being cropped. The inset’s initial desired size should also be large enough that any tools or
palettes associated with the inset have room to be adequately displayed.

When pasting an inset or inserting the contents of an existing document into the current
document, insets should be inserted at their desired size.

2.1.1.2 Inset Borders

A more detailed description of the type of border which outlines the inset which has the input focus
is currently being designed. This border should be sufficiently different from the one pixel wide
lines which are commonly used in screen layout. This border should also give the user some
visual indication that the inset contains more information than what is displayed within the border
and some cue that scrolling the inset in a particular direction is possible. This border should be
significantly distinct from the borders which surround dialog boxes, selected insets and insets
which have the input focus and whose entire contents have been selected.

Version 2.0 (10/12/88)

Part 2

Figure 2.1 shows different borders for insets which have the input focus. Border A shows the
detault borders. Border B shows that the inset has been cropped in one direction (to the left).
Border C shows that the inset has been cropped in two directions (to the left and to the bottom).

¥ wa ym trping ta dfnc 2 goaghucal
atans frovm separuing the mesxng

S AN

s oo addrrewnd smurenlilly tu
Dabire oaiik S fo Bvieo Lase new, This

Bordar Ar
Defaurt
with lnput focus

1t we eve rpng to dchne & gapincd
SXDs Hrom supaswing he vt

<

@//\
<
hm bo sdtyatecd wrwucceactnlly bty
M0 Ak for Jome drne sow. This

Barderd:
Croppedon istt
wWith inpul focus

Figure 2.1

¥ we axc [rying 1o dafing & gmpltieal

<

Figure 2.2 shows different borders for insets which do not have the input focus. Border D shows
the default borders (none). Border E shows that the inset has been cropped in one direction (to
the left). Border F shows that the inset has been cropped in two directions (to the left and to the

bottom).

¥ wa sm trpimg to dafinc. & graphocal
atenes frovn, separciing he ey

SN

s bovn addrevend smarrmlily
200000 caskory 104 Do taso new, This

Border D:
Datault
wihout npust focus

M we e tYpag 18 deine & gfapined
aipting raschaiem. the e Aisclty
ecmes frem Rpuwing he oveatm,

G
|
<
hm dox eddvaastd wucotachily bty
M0 makes for pom e dene aow, This

Border £:
Croppedon left
wrheut put focus

Figure 2.2

User Interface Guidelines

Border F:
Crepped on feft and botrom
WUNDRA int focus

Related Issues in Andrew Inset Development 9

2.1.1.3 Panning

Panning is a method of moving through data without using scrollbars. To pan an inset, the user
positions the cursor within the inset, presses a mouse button, and uses the mouse to drag the
data to the desired position. When the mouse button is released, the data is updated to appear in
its new position. Some insets may require the user to place them in a special mode in order to
pan. |n addition, panning may be used in conjunction with scrollbars, to allow simultaneous
horizontal and vertical movement as well as providing a constant indication of the position of the
data.

If panning is implemented as a special mode of the inset, some visual indication should be present
to alert the user that panning is available.

2.1.1.4 Iconification

Under some circumstances, users may wish to iconify some or all of the insets in a document.
Iconification might be used in previewing documents to obtain a sense of the structure of the
document; for example, as in using an outline editor. Typically, iconified insets would appear in
their expanded form when printed, although the user may wish to override this behavior.

2.1.2 Data Manipulation
2.1.2.1 Cutting/Copying the Contents of an Inset

When an inset has the input focus and the entire contents of the inset have been selected,
choosing Cut or Copy from the inset's menu stack wiil cut or copy the contents of the inset but
leave the inset itself intact. For example, after having cut all of the text out of a text inset, the inset
will be empty, but will stiil exist for further manipulation. In order to remove the inset, it must be
selected from its parent and cut using the parent menus (See Cutting/Copying an Insef).

2.1.2.2 Pasting/Replacing the Contents of an Inset

If the contents of an inset have been cut or copied, choosing Paste will cause a new inset to be
created and the contents of the cutbuffer will be pasted into it. If the parent is of the same type as
the inset whose contents were cut or copied, the contents of the cutbuffer will be pasted into it
directly (i.e. no additional inset will be created). For example, if the contents of a text inset are cut
from a document and then pasted into a text document, the result will be a simple text document
and not a text inset within a text document. If the inset types differ, a dialog box will be presented
to the user indicating that the data can not be inserted directly into the parent. The defauit
response will be to create a new inset and embed that inset in the parent.

The Replace operation may be made available by an inset to allow all or some portion of the

contents to be replaced. The user may replace the contents of an inset with the contents of
another inset of the same type, if that inset supports a Replace operation.

2.1.2.3 Inserting a File

The user should have the capability of inserting data from another file into the current document.
Information from another file can be inserted in full into the current document, in which case a
copy of the data is inserted. This operation is equivalent to editing the file to be inserted, copying

Version 2.0 (10/12/88)

10 Part2

the contents of the file, and then pasting the copied data into the current document.

2.1.2.4 Inserting a File Reference

The user should also have the option of inserting a reference o a file into a document. To the
casual viewer of the document, there would be no visual difference between data which has been
inserted into a document and data which has been referenced. However some means of
distinguishing between the two should exist. in addition, the user should have some method of
globally resolving all references to external files to allow the document to be transferred to another
system. The user should be warned before transfer that references to external files exist within
the document to be transferred. The user should then be given the opportunity to resolve those
references.

2.1.2.5 Reading/Writing an Inset

The user should be able to replace the contents of the current inset with data from another file.

This operation is similar to the Replace operation, except that the new data is imported from a file
rather than from the cutbuffer.

The user should have the capability of writing the contents of an inset to another file. For
example, when editing a table inset within a text document, the user should have the capability of
saving the table inset into a separate file. This new file would contain a table document, and the
saved table would be the top-level inset in the document.

2.1.2.6 Inheritance

The type of state information which would be of interest to insets varies widely from one type of
inset to the next. To account for this disparity, upon creation of a child inset, that child inset
should request state information from the parent inset regarding font family, size, face, etc. The
parent inset should be responsible for keeping track of which children have requested this
inheritance information and provide those children with updates as that information changes. See
Part 3 for more discussion regarding inheritance.

Browse mode, where the viewer can look at a document but not modify it, should be a viewer-
selectable option which affects the document as a whole.

Readonly mode, where the author chooses to disallow modification of the document, should be an

author-selectable option which may vary on an inset-by-inset basis, but which is inherited by child
insets.

2.1.3 Meta-Inset Operations

Meta-inset operations are those manipulations which are performed on the inset as a whole, such
as creating, selecting or cutting an inset. Meta-inset operations are not dependent upon the
particular type of inset being manipulated. Meta-inset operations are invoked from the parent, via
mouse clicks or keystrokes, or through the parent's menus.

User Interface Guidelines

Related Issues in Andrew Inset Development 11

2.1.3.1 Cutting/Copying an Inset

The Cut operation is used to remove an object or objects from the current document. Upon cutting
or copying, the object is placed in the cutbuffer and is available for pasting within the current or
any other document. The Copy operation is used to copy an object or objects to the cutbutfer
without removing them from the current document. When an inset has been selected, choosing
Cut or Copy from the parent’s menu stack will cut or copy the entire inset.

When the inset has been selected from the parent as described above, the entire inset, and any
children insets, will be cut or copied. For example, if a table inset has been selected from within a
text document and copied, when that inset is pasted into a zip document, the end result will be a
table inset within a zip document. The fact that the table was originally included in a text
document will not be evident unless some portion of the text had been copied as well.

2.1.3.2 Pasting/Replacing an Inset

The Paste operation is the logical inverse of the Cut or Copy operation. Care should be taken to
ensure that if a user chooses Cut from the menu and then immediately chooses Paste, the
resulting state should be identical to the state before Cut was chosen, aithough the cutbuffer
contents may differ. The Replace operation allows the user to simultaneously cut any object or
objects out of a document and paste another object into the document in the same position.

When any object or group of objects has been pasted or replaced in a document, those objects
should become selected upon pasting and should remain selected until the user takes some
action which removes that selection. This behavior should be the same regardless of whether the
objects are strings of text, rectangles or insets. In addition, any previous selections should now
become unselected. In sequential objects, such as text, the pasted objects should be inserted
after the previous selection.

The Replace operation should be made available as an expert option for insets.

2.1.4 Cursors

The shape of the cursor should indicate mode changes. The standard cursor may vary from inset
to inset, however they should be made as consistent as possible. In addition, the same wait
cursor should be used throughout the system and its threshold should be consistent from inset to
inset. Mode changes, for example when the user clicks on the rectangle icon in zip and enters
“rectangle-drawing mode”, should be reflected by a change in the cursor shape. See Figure 2.3
for examples of various cursors used in the Andrew system.

Version 2.0 (10/12/88)

12 Part 2

L| 1|

x4
K
N
A
v

]
i
-
—
|

C R A
| YB3 @4

Figure 2.3

2.2 Author/User Specifications and Customizing

When the user has changed the scale of the inset, scrolled the inset or adjusted the level of detail
(zoomed), the user should see some visual indication that the inset has been modified and should
have the ability to easily normalize the inset. '

The author of a document must have an easy way to ensure that future viewers of the document
see it exactly the way the author intended.

It must be possible for the author of a document to "lock down" or configure the document in such
a way that all of the author's preference, template, default value, etc. settings are contained in the
document. This allows the author to be confident that a viewer's setting of these attributes will not
aiter the appearance of the document. This capability would not be the default behavior, but it
must be an option. Figure 2.4 is an example of this capability for font selection. Figure 2.4 shows
the decision path for determining which font should be displayed. Any number of other decisions
might follow a similar path.

User Interface Guidelines

Did the author lock
down the font specification?

yes no
Display the font Does the viewer’s preferences
file specify a default font?
. Display the system’s
Display the font default font

Figure 2.4

User Interface Guidelines

Related Issues in Andrew Inset Development 13

Figure 2.4

The user must be able to interactively set attributes of the object which are normally set in
preferences or templates. This allows the author to easily see how a document will appear when
viewed by a user with different preference settings. The overridden values shouid be written to
the file in place of the normal settings. The user should be able to revert to using the default
values or preferences. There should be some distinction between the specification of a parameter

which happens to be the default value and the lack of a specification for a parameter (which would
result in the use of the default value).

The user should be able to set preferences for an object by executing a startup script of
commands. This capability greatly enhances the ability of an object to do useful work for a user
by allowing scripts as well as other types of templates to be used.

2.3 Dialog and Response Devices

Dialog and response devices provide methods for active communication between user and
computer. Dialog and response devices are of four types: 1) action devices, which immediately
initiate action and which typically do not require further information; 2) choice devices, which
present the user with information about the currently available and selected options and allow the
user to change the selected option; 3) input devices, which allow the user to enter names or

numbers from the keyboard; and 4) feedback devices, which give the user information and may
or may not require subsequent user action.

These different types of dialog and response devices provide a range of communication methods.
Different dialog and response devices are more suitable to different scenarios within the system,
depending upon the particular situation, the user's expertise and any preference options the user
may have invoked. For example, keybindings (discussed below) may be useful for experienced
users while menus of differing complexity may be suitable for users of differing levels of expertise.
2.3.1 Action Devices

2.3.1.1 Button

Definition: A small, visually distinct, area of the screen which responds to mouse clicks.

Advantages

Buttons have a stable position; they don’t move around the screen.
Buttons are easy to learn/use.
Buttons provide fast access to frequently used operations.

Disadvantages
Buttons are limited in their functionality.

Example
Messages "Punt” button.

2.3.1.2 Menu

Definition: A simulated three-dimensional arrangement of user selectable operations.

Version 2.0 (10/12/88)

14 Part 2

Advantages
Menus are of the pop-up variety, so they don't take up any screen space when
not in use.
Pop-up menus are readily available from anywhere in the window.
Menus can contain many options.

Menus take advantage of muscle memory by positioning options in the same
places in different menus.

Menus are easy to learn/use.

Using menus can reduce keystrokes.

Disadvantages
Menus are not displayed continuously and must be called up.
Menu items may be hard to find initially.
There is a danger of having too many menus items or menu cards.
Menus may be slower for frequent users.

Pop-up menus can be painful in slow window managers (menus require rapid
redisplay rate).

Example
WM menus.

2.3.1.3 Keybindings

Definition: A method by which users may bypass menu selections through the use of keyboard
operations.

Advantages
Keybindings are very fast.

Disadvantages
Keybindings may be difficult to remember, particularly for new users.

Example
Pressing ctl-g to abort an operation in the editor.

2.3.1.4 Mouse Operations

Definition: The building blocks upon which most dialog devices rely to receive user’s requests.

Advantages
Mouse operations are intuitive.
Using the mouse is very efficient.

Disadvantages

The user's:hands must be removed from the keyboard in order to make use of the
mouse.

Example

Clicking the left mouse button to select an object on the screen.

2.3.2 Choice Devices

User Interface Guidelines

Related Issues in Andrew Inset Development 15

2.3.2.1 Palette, Selector, Switch

Definition: A two-dimensional arrangement of user options.

Advantages

Palettes provide fast access to options.

Palettes serve as a constant reminder of the current possibilities since all of the
choices are visible.

Palettes are visual representations of things that are hard to describe verbally,
such as colors and fill patterns.

Disadvantages
Palettes can require significant amounts of screen space.

Examples
Draw/Paint palettes.
Mathematical symbols for equation editor.

2.3.2.2 Slider
Definition: A representation of a range of values.

Advantages
Sliders provide fast access to options.
There is no need to list all of options for a slider. Sliders are especially useful for
humeric ranges where all of the options would get tedious, (e.g., range
from 1 to 1000).

Disadvantages
Sliders require more screen space than a simple input box.
Making the unavailable options grey is not possible with a slider.

Example
Volume slider.

2.3.2.3 List
Definition: A collection of possible values.

Advantages

Lists allow an operation to be performed on muitiple objects at once.

Lists permit changeable values to be displayed as options.

Lists permit all options to be displayed simultaneously.

Lists serve as a reminder of the options when there are many choices (e.g.
filenames).

Scrollable lists allow a large number of varied choices to be displayed in a tixed
amount of screen space.

Disadvantages
Lists require more screen space than a simple input box.
Lists can be slow.

Version 2.0 (10/12/88)

16 Part 2

Example
Subscription list in messages.

2.3.2.4 Toggle Item
Definition: An item which toggles between two different (opposite) values.

Advantages
Toggle items on menus take advantage of muscle memory by locating options in
the same places on the menu card.
Toggle items conserve space.

Disadvantages
Toggle items on menus are inconsistent with menu model presented above
(violates consistent location and greying unavailable option rules).
Examples

Expand Menu/Shrink Menu toggle menu item in Console.
Checkboxes to turn attributes on or off.

2.3.3 Input Devices
2.3.3.1 Data Entry Fleld
Definition: An area of the screen that is used to accept strings of data.
Advantages
Data entry fields simplify input of data.
Data entry fields require very little training.

Disadvantages
Data entry fields require some amount of screen space.

Example
The area provided for inputting a file name after having selected "Save as..." in
ez.

2.3.4 Feedback Devices

2.3.4.1 Dialog Box

Definition: A method for querying the user about some aspect of the system or informing the user
of some important change in the system’s operation. Dialog boxes may incorporate other types of
dialog and response devices.

Advantage

Dialog boxes command attention from the user.
Dialog boxes allow more efficient display of information.
Dialog boxes are self-explanatory.

Disadvantages

User Interface Guidelines

Related Issues in Andrew Inset Development 17

Dialog boxes may be slow.
It overused, dialog boxes may lose primacy.

Example
"Purge deleted messages?” dialog box in messages program.
2.3.4.2 Message Line
Definition: An area of the screen in which feedback messages may be provided for the user.

Advantages
Message lines don't interfere with normal user work.

Disadvantages
Message lines don't command the user’s attention.

Example
Checkpointing messages.

Version 2.0 (10/12/88)

User Intertace Guidelines

19

3 Future Questions in Andrew Inset Development

This portion of the document (Part 3 of the larger document, User Interface Guidelines for the
Andrew Systemn) outlines questions which will be important to discuss and resolve as the Andrew
system evolves. Computer technology progresses and expands at an astonishing rate. In many
ways, a document which describes the guidelines for a user interface is out-of-date aimost as
soon as it is written. Consequently, many interesting issues vital to the design of the interface
have not been addressed in earlier sections of this document. This section (Part 3) outlines some
of these issues.

3.1 Inset Manipulation

3.1.1 The ‘Show Insets’ Option

Some mechanism should exist to indicate to the user the presence of insets in a document and

their types. This information should be continuously available and should be consistent between
inset types.

A function similar in purpose to the Macintosh’s "About” menu item would be a way to provide
some information about the inset. However, some types of information about the inset should be
available continuously, such as the fact that it is an inset, or that some action may be performed
onthe inset (e.g., Animate in a fad inset).

In addition, it would be helpful to have some way of displaying the structure of a document to the
user, noting the top-level inset and the hierarchy of children insets.

3.1.2 Redirecting an Inset to a Different Window

Some mechanism should exist for displaying an inset in its own window to make scrolling and
editting easier.

A menu option may be provided to allow an inset to be redirected to a subordinate window. Insets
which are redirected in this manner have the same behavior as insets which have not be
redirected, but are less constrained by screen space limitations. Palettes may be redirected to
subordinate windows so that they can be repositioned by the user.

Some method of indicating the relationship between the subsidiary window and its controiling
window should exist.

3.1.3 Default Size

An interesting problem can be derived from these using the default sizes for new insets as
discussed in Part 2. If a sequential inset, embedded within a sequential parent, is to be only a
single character wide as the defauit, what happens when the child inset is enlarged and must
wrap? For example, an in-line equation which extends beyond the right border of the window
would result in an inset which is not rectanguiar. Other scenarios can be imagined which would
have the same result. Possible solutions to this problem are being considered, but work on this
problem is still in progress.

Version 2.0 (10/12/88)

20 Part3

3.1.4 Inheritance

Some method should be available to allow information to be passed from parent to child (for
example, that the document is readonly or that the surrounding text is in a sans-serif font). It
should be possible for the user to identify all of the variables which affect a selected item
(including modes, preferences, templates, etc.).

If a document is displayed with an unexpected font, the user should have some easy way of
determining which preference or template is responsible for it so that, if necessary, it can be
changed.

3.1.5 Shared Data

There should be some method of informing the user that an inset’s data is being shared with other
insets.

There should be some method for displaying the structure of a document to show the boundaries
and nesting of the insets within the document. This ability will be needed to represent non-
sequential documents (i. . hyper-documents) in order to construct, browse and manipulate these
more complex document structures. When this capability is provided, it will be feasible to indicate
to the user that multiple views are sharing common data.

3.2 Color

The use of color can highlight, emphasize structure and organization, create emotional responses
and discriminate subtle distinctions. These capabilities can be very powerful when used to their
best advantage. However there are dangers. Saturated colors can be tiring to the eyes, too many
colors can be confusing and the use of color in the wrong place can be misleading.

The Andrew system uses color in the following ways:

- to enhance the dialog between the system and the user.
- to represent data in an effective manner.
- in an image, e.g. a color picture.

Each of these uses of color has benefits and problems compared with the use of two-level, or
black and white, images. The following sections will address some general requirements for using
color as well as specific requirements for the different uses of color.

3.2.1 Common Areas of Concern

Applications should be designed for monochrome first. All objects must be able to do something
with a simple, two-level imaging system. This does not imply that the object must display its
information in a manner that is simply a black and white version of the representation that would
be used on a color screen. As an example, a pseudo-color image may refuse to display itself on a
screen that does not have color capability. In this situation, the object should resort to the display
of a short message describing what would have been shown ("A weather map", for example) and
how to see the image ("To see this weather map, view this document on a color system.”). This
example is an extreme, but legitimate, example of how an object may handle the lack of color in
the display system. In practice, all objects should be able to intelligently handie two-level imaging
system since all objects should be able to print.

User Interface Guidelines

Future Questions in Andrew Inset Development 21

Color coding should be added only after displays have already been designed as effectively as
possible in monochrome. Color coding should not be used to compensate for poor design.

The use of color should be considered carefully, as many systems do not yet support color
screens. Even on color systems there are few standards that define how to display a particular
color (chrominance, saturation, and intensity) on a given screen. This can lead to a number of
colors being mapped to the same color or inaccurate color rendition.

Color should be used as a redundant indicator, in conjunction with symbology or some other
display feature. Color should not be used as the sole code. Color blindness of potential users
should be considered in the choice of color/intensity combinations for encoding critical information
(It is estimated that approximately one male in four have some degree of color blindness.).

Objects must understand the concept of transparent vs. opaque. This is important when views of
objects are stacked on top of each other. As an example, a graphics editor must understand that
it's background color could be set to be transparent rather than opaque. This would allow the
graphic object to be placed over a raster object, providing arrows or labels on the image.

3.2.2 Using Color to Enhance Communication

Brighter, more saturated colors should be used to draw attention to critical areas of the display.
Conventional color assignments should be used when choosing a color code (e.g. red = danger,
yellow = caution, green = normal, white or grey = neutral, etc).

3.2.3 Using Color to Represent Data

Each color should be used as a unique indicator, each color should represent only one category of
the data.

Tonal variations (different shades of the same color) should be used rather than spectral
variations (different colors) to represent relative differences in data and order the color
assignments so that the lightest and darkest shades correspond to the extreme values of the data.

When distinguishing between several discrete categories of data, distinct colors, colors which are
easily discriminable, should be used to code the different categories.

Color coding should be used very conservatively, using few colors and only to designate critical
categories of the displayed data.

Brightness may be used as a two-valued code to represent binary information, however

brightness should not be used to distinguish more than four different values, particularly on
screens with adjustable brightness.

3.2.4 Using Color in an Image

The use of color in an image is certainly the most intuitive of the methods listed. Still, there are a
number of potential problems that can arise in the use of color in a system. It is important to ailow
the users to exercise their creative capacities as much as possible. At the same time, authors
must be made aware of the situation where their work will not be displayed on a high-quality, color
imaging system.

Version 2.0 (10/12/88)

22 Part3

Users should be allowed to select colors from a palette rather than choosing colors by name,
number or numeric parameters such as RGB or CIS. The use of sliders to create colors using
RGB or CIS is a reasonable way to create new colors.

Authors should be provided with the ability to view how their work will be presented on imaging

systems that have fewer capabilities in resolution, color and quality so they can "tune" the images
to do well on lesser systems.

3.3 Printing

The user should be allowed to specify the parts of a document to be printed, it should not be
required that the entire document be printed.

There should be defined methods for resolving the differences between printed and displayed
versions of a document.

Insets should scale to fit within page boundaries. Insets which are unable to scale, such as the
table inset, should use cropping or wrapping to enable their contents to fit on a page.

The user may wish to indicate where an inset may be broken across multiple pages.

User Interface Guidelines

23

4 The Importance of the User Interface:

Annotations on
Requirements for Andrew Inset Development

This portion of the document (Part 4 of the larger document, User Interface Guidelines for the
Andrew System) presents a discussion of user interface philosophy and outlines some of the
principles of user interface design which have been important in both the development of Andrew
insets and the accompanying requirements for inset behavior. The section begins with a
discussion of the importance of the user interface and presents some of the guiding philosophies
behind the larger document. In addition, this section describes the effects that these guiding
principles should have on system design. The section concludes with specific discussion of some
of the design decisions presented in Part 1, Requirements for Andrew Inset Development.

4.1 The Importance of the User Interface

New computer technologies afford opportunities for users to become more productive and
creative. However, users can take advantage of these opportunities only if the technology is
presented in a way that is easy for users to understand, learn, and use. Therefore, the design of
the user interface for computer system is crucial, for to the user the interface is the system. The
user interface, ideally, should be simple and appealing, encouraging use and allowing the user to
transfer experiential knowledge between applications.

The ability of the user to adopt, with support from the software itself, a mental model of system
behavior is criticial to the success of the user interface. Carefully fostered mental models can
enhance the user’s perception and understanding of the system and how it works. Typically,
applications are developed with some type of model in mind. The developer usually has some
rather well-developed notion of how the application works which is consuited to determine
whether additional features will be consistent with the rest of the system.

Users of the system also develop a mental model of the system. The user's mental model is
modified and refined as the user becomes more familiar with the system. In fact, a well-
developed mental model may eventually allow users to predict system behavior and continue to
explore and learn about the system on their own.

Unfortunately, application interfaces do not always successfully convey the developer's model to
users of the application. A user whose mental model of the system is inconsistent with that of the
developer may find the application confusing and difficult to use. The user’s expectations, which
were based on his or her mental model of the system, may vary in important ways from the actual
functionality of the application. Further, the developer’s conceptual model may be too complex
and detailed, lacking the appeal necessary to be of assistance to users of the application. In most
instances there is no need for users to understand the application to the level of detail and
complexity that the developer must. Ideally, the user's mental model shouid be structured in such
as way that it will help users "bootstrap” themselves to greater understanding of the system.

It should be obvious that some knowledge of the user community is necessary to foster a coherent

Version 2.0 (10/12/88)

24 Part 4

and workable mental model. Developer's knowledge of the user community can be used to foster
a mental model which aids the user in both initial learning and later independent use of the
system. Knowledge of users can be acquired in a number of ways: research on the Andrew user
community included a usage survey, conducted by Sandra Bond and on-going interviews and
formal studies with students on the Carnegie Melion campus, conducted by Christina Haas. in
addition, since many departments on campus used Andrew for teaching or research, the
university community provided feedback, both formal and informal, through bug-reports, bulletin
boards, electronic mail, and other means.

4.2 Basic Philosophies

In developing these guidelines, the authors were guided by several user interface design
principles:

Consistency: Consistency has been a primary goal: consistency in the kinds of objects users
see, consistency in the kinds of operations that are possible within applications and in how those
operations are accomplished, as well as consistency in the methods used to pass information
from user to machine and back. This consistency is crucial in creating a system which appears to
its users as a consolidated, working whole and which enables users to transfer skills and concepts
between various insets and applications.

Predictability. Closely related to consistency is predictability: the ability of the user to corectly
anticipate responses from the system. System predictability is vital in establishing the sense of
trust needed for users to feel comfortable using the system. Surprising behavior might be
considered entertaining in a game but will be considered frustrating and annoying in a tool.

User Control: In making choices about interface options, priority has been given to features which
will put the locus of control on the user, rather than on the computer. The Andrew interface should
be a tool which users employ to reach their own goals, rather than a system which appears to
have goals of its own.

Appeal: The layout of the interface should be inviting, drawing the user in and creating a
comfortable working environment. Visual appeal is vital to good communication. Complicated,
awkward or cluttered interfaces are low on appeal and inhibit productivity. Well-articulated,
straightforward, clean designs are appealing because they convey information clearly. Appealing

systems encourage users to explore the system, creating an atmosphere which is conducive to
learning.

Direct Manipulatior. The users should have the sense that they are dealing directly with “real”
objects, objects which, though they are only two-dimensional on a computer screen, behave as
real world objects in the users' experience might. For instance, moving an object on a screen by

adjusting numbers of an axis is not direct; moving that object via selection and dragging with the
mouse is more direct.

Multiple Perspectives: This document has been compiled by a unique group of people. The
backgrounds of the authors include formal training in computer science, engineering, psychology,
graphic design and rhetoric. The authors also have a wide range of experiences with the Andrew
system, including design, development, evaluation, implementation, analysis and testing new
users, and using Andrew on a daily basis. Such a variety of individuals, with differing viewpoints,
complementary training and diverse experience, provide the opportunity for a more complete and
thorough treatment of the issues involved in interface design.

User Interface Guidelines

The Importance of the User Interface w25

4.3 The Impact of Guidelines on System Development

The goal in the development of the document, User Interface Guidelines for the Andrew System
has been to focus attention on critical design issues and establish specific design requirements.
Furthermore, it is hoped that these guidelines will encourage the further discussion of complex
user interface decisions and policies.

Consideration of such guidelines in the development process will help to assure consistency
across applications. When using guidelines to design an application, the designer should keep in
mind that, for a given task, using a computer should always be easier than not using a computer.
In addition, the use of guidelines must be supported by a thorough understanding of the user
population for which the application is being designed. Designers should keep in mind that
accurate samples of the user population rarely consist of application designers. For maximum
effectiveness, consideration of guidelines must take place early in the design process and
prototype testing should be done to ensure good design.

One of the most important and difficult aspects of designing the Andrew User Interface has been
to determine reasonable default behaviors for a user community that varies greatly in needs,
experience, and knowledge. Reasonable defaults are crucial: it is default behavior which users
first encounter in a system, defaults shape how users come to understand and to use a system,
and default behavior comprises the mental model which is so important for successful interaction
with a system. Simple and predictable default behaviors, then, should allow users to do what they
need to do to get their work done but not overwhelm them with complexity or unnecessary
information. In many ways, designing a system is designing its default behavior.

4.4 Annotations to Requirements Presented in Part 1

4.4.1 Creating an Inset

Note that the syntax involved in creating an inset is to specify the creation of the inset, then to
specify the type of inset to be created: Operator + Object. If this syntax applies consistently
across applications it can become quite automatic for users. The syntax holds whether the user is
creating an inset via a menu item, through a palette, or by other means.

If the user does not specify an inset type, text should be the default value of a newly created inset.
Presumably this will be the most widely used inset type.

Typically, users will create insets in order to do something with them. Consequently, when the

inset is created, the appropriate editing and manipulation tools should be available without further
user action.

To assure consistent initial behavior and appearance, default shape, size and placement of insets
are necessary. The default should be rectangular. For a spatial object imbedded in a spatial
object (for example, a raster imbedded in a line drawing) the default size should be approximately
one-third the parent’s size and placement should be centered. A spatial object imbedded within a
sequential object (for example, a drawing inside text) should be the parent's shown width, one
third the parent's shown length, and imbedded at the typing caret. Sequential insets increase in
size linearly as users create them; e.g., a text inset “grows” as the user types. Therefore the
default size for sequential insets doesn't follow the “1/3 rule.” Rather, sequential insets in
sequential parents are intially one character in size and located at the typing cursor; when
imbedded in a spatial object they are one line long, centered.

Version 2.0 (10/12/88)

26 Part 4

4.4.2 Resizing Insets

Users can resize insets by dragging boundaries (spatial insets) or by adding to the contents of the
inset (sequential insets).

An inset’s desired size is the size at which it was created and saved. The inset should retain
some information about this desired size and should display at the desired size whenever
possible. Of course, often there will be more, or less, space than necessary for display. Insets
should not “grow” to fill desired space, but should display at the desired size.

However, when there is insufficient space insets must have a means of adapting their contents in
a way that will still convey useful information to the user. The method used to adapt the display is
dependent upon the kind of data which is being viewed.

The distinction between cropping insets, wrapping insets and scaling insets is useful here. The
simplest way in which insets modify their contents is cropping. Cropping simply cuts off parts of
the inset so that it will fit into available space. All insets must be able to crop. With most types of
insets, however, cropping is less than ideal, for the user may have trouble understanding or
making sense of the cropped object.

At the next highest level, objects which are sequential may wrap their contents: this typicaily
happens when a text document is longer than the window in which it is displayed. Wrapping and
cropping tend to work best with sequential objects, those types of objects (like text) which are
perceived and processed in a primarily linear way. With both cropping and wrapping, users must
have some signal that more information is available, but not visible, as weli as a means of
accessing that hidden information.

The third method of redisplay, given insutficient space, does not have this restriction. Scaling,
while it may diminish the level of detail or even readability at some level, shows the entire object
but in a smaller scale. For spatial objects, scaling is usually the most sensible means of redisplay
since spatial objects are typically perceived as a whole.

4.4.3 Scrolling an Inset

With both cropping and wrapping, users must have some signal that more information is available
but not visible and a means to access that available but hidden information. Often, the incomplete
nature of wrapped (sequential) information will be a signal that more data is available, but hidden.
With cropped objects, the portion of the inset that is displayed may appear to be complete when it
is not. Scrollbars can signal that more information is available. However, they take up
considerable space and it may be inefficient to have them visible at all times. When visible,
scrollbars can aid the user in moving through the document.

User Interface Guidelines

The Importance of the User Interface 27

Figure 4.1

The “end zone” regions of the scrolibar allow users (via a mouse click) to move quickly to the
beginning or end of a document. To move through the document incrementally, users click with
the left button next to a line they wish to move to the top of the screeen. Clicking with right button
undoes this action; i.e., moves the line at the top of the screen back down to the cursor.

Typically, scrolibars are positioned to the left and/or across the bottom of the workspace. Clicking
in the grey area of a scrollbar causes the view within the work area to shift, the clicked position is
relocated to the extreme top or left of the workspace (e.g. "Move this (clicked) line to the top.” or
"Move this (clicked) column to the left.”). Positioning the scrolibars to the left and/or below the
workspace facilitates this repositioning.

Scrollbars also fumish users with information about the size of the document relative to the portion

currently being viewed, about the position of the cursor, and about the size and position of the
selection (if any).

4.4.4 Moving an Inset

Typically, users will use mechanisms that they are familiar with--ie, those available in the parent--
to move and position an inset.

Version 2.0 (10/12/88)

User Interface Guidelines

29

Glossary

"When | use a word,” Humpty Dumpty said, in rather a scornful tone, "it means
just what | choose it to mean - neither more nor less.”

Through the Looking Glass
Lewis Carroll

appeal: n., the quality of inviting and encouraging use.

Andrew: n., an environment where a variety of applications and insets can be used as a family
rather than as individual objects. This is accomplished by providing a rich set of primitives in the
forms of objects and services that programmers can use to create new applications and insets. If
the guidelines presented in this document are followed in the process of assembling these
primitives, the user of the Andrew system will benefit because experience gained with one
application or inset is transferrable to other applications and insets. This work is being done by
the Information Technology Center at Carnegie Mellon University with the financial support of the
IBM corporation.

application: n., a tool, or a family of tools, which allows a user to complete some task. An
application may be comprised of several objects such as rasters or Zip drawings. The term
application is relative. For instance, complications exist with this term in the case of insets which
can be used as both embedded objects and as applications. Table is such an inset: it can be
embedded in a document and it can also be used as an application to perform spreadsheet
operations. See also inset.

author: n., the creator of a document or object. This distinction between the author and viewer
is used to indicate the types of attributes each of these users can specify for a document or inset.
See also viewer.

browse mode: n., a mode of operation for an application where all the insets in that application
are made read-only. This mode is used for viewing documents and provides two advantages over
viewing a document in a the the same mode in which a document is created. First, this mode
allows the user to view a document without worrying about inadvertently modifying that document.
Second, for many insets, a mode that does not allow the modification of the data will be more
efficient for both the system and the user as the editing operations are not needed.

button: n., a small, visually distinct, area of the screen which responds to mouse clicks by
initiating an action or series of actions. See also mouse click.

CRT: n., See cathode ray tube.

caret: n., a marker on the screen which indicates the current position in a collection of data. The
shape of the caret can change from inset to inset or within an inset to indicate different modes.
See also mode and cursor.

Version 2.0 (10/12/88)

30 Glossary

cathode ray tube: n., a device that produces images by propelling a focused beam of electrons
against a phosphor coated, glass tube. Many televisions use cathode ray tubes.

child: n., a second order inset, an inset which is embedded within another inset. See also parent.
click: v., the act of performing a mouse click. See also mouse click.

clip: v., the act of discarding or altering extreme values in a set of data because the original data
cannot be represented, usually due to space constraints. See also crop.

common Inset operations: n., operations which are handled by each inset individually, but
which are commonly done across insets, such as scrolling or scaling; may be dependent of inset
type.

communication: n., the movement of information. In the Andrew system users communicate
with the system using dialog devices. See also dialog device.

conceptual model: n., the developer's understanding of the system and how it operates. See
also mental model.

consistency: n., the level of conformity among the various components of the system.

copy: 1., n., areplica of some object or piece of data.; 2., v., the act of placing a replication of
some selected portion of data in the cutbuffer. See also cut, cutbuffer, paste, replace and select.

crop: v., one of the actions available to an inset when too little space is provided to display the
entire contents of that inset. Cropping is done by simply discarding or clipping the information that
would not fit in the allocated area. See also scale and wrap.

current inset: n., the inset which contains the input focus.

current position: n., the position of interest in a collection of data. This is often the place where
new information will be added or aitered by the user.

current selection: See selected region.

cursor: 1., n., a marker on the screen which tracks the movement of the mouse. The shape of
the cursor may change to indicate the mode of operation.; 2. n., in some applications the term
cursor may be used when the term caret is meant. See also mouse, mode and caret.

cut: v, the act of removing a selected portion of data from its place in an inset and placing that
data in the cutbuffer. See also copy, cutbuffer, paste, replace and select.

cutbuffer: n., the area of the Andrew system where data that has been cut or copied is stored
until it is pasted or replaced. See also copy, cut, paste and replace.

data: n., plural of datum.

data object: n., the portion of an inset which describes what is to be displayed in that inset. See
also view.

datum: n., a piece of information.

User Interface Guidelines

Glossary 31

default value: n., a predetermined, frequently used, value for a data entry, intended to reduce
required user entry actions.

dialog box: n., a dialog device which may either come up in response to a user action (like
choosing a menu item) or may be system-initiated and which presents the user with a choice of
options to choose by clicking the mouse; typically, no other action may be taken by the user until
the dialog box has been “answered.” Example: a dialog box which asks users to answer “You
have unsaved changes. Do you want to save them?” in response to a command to quit.

dlalog device: n., a feature for giving commands or in other ways communicating with the

system; typically, dialog devices are visual and employ the mouse (menus, palettes, dialog boxes,
buttons) although keystrokes are also dialog devices.

discrete selection: n., a property which permits only one of a range of values to be operative at
any one time.

display: 1., n., animage presented to the user. This image is often the primary method of
output from an application or inset.; 2., v., the act of presenting an image to a user. See also
cathode ray tube, liquid crystal display, plasma display and output.

document: n., a collection of data. In the Andrew environment, a document contains both the
structural information about a document and the raw data and insets.

double click: 1., n., the operation of quickly pressing and releasing (clicking) a mouse button
twice with a small delay between each click. This is ditferentiated by the Andrew system from
clicking a mouse button, waiting some period of time, then clicking the mouse button again.
Double clicks are used to select extended regions of data in many applications.; 2., v., the action
of performing a double click. See also mouse click and mouse.

double mouse click: See double mouse click.

embed: embedded 1., adj., a property of a particular relationship between two object. This type
of relationship is created when one object is completely contained in the other object. This type of
relationship occurs often in the Andrew environment when insets are placed in documents.; 2. v.,,

the act of placing one object inside another. See also child, parent and inset.

end-zone: n., an area at the end of a scrollbar which is used to quickly move to the beginning or
end of aninset’s data. See also scrollbar and mouse.

eq: n., aninset for displaying and manipulating equations in the Andrew system.

event: n., an occurance of an operation. The use of dialog devices causes events to occur. For
example, the act of cutting some data is an event.

export: v., the act of moving information out of an object to another object.
export menu: n., a class of menus or menu items by which a user manipulates the

communication of an inset or application with the non-Andrew world. Example: a menu item
which allows users to import a statistics program from another system to analyze results.

fad: n., aninset for displaying and manipulating animations in the Andrew system.

Version 2.0 (10/12/88)

32 Glossary

feedback: n., system messages for the user which indicate problems or status of a task.
Feedback should not be confused with output.

file: 1., n., acollection of information. In computers, files are usually represented as a sequence
of bytes or characters. The documents that users create, browse, or modify are files.; 2., v., the
act of storing information or a collection of information in such an item.

guidelines: n., this document.

hierarchy: n., a method of organizing a collection of items such as a set of parent-child
relationships. A family tree is an example of a hierachy. See also child, parent and sibling.

hysteresis: n., the particular property of path dependence in the relationship between a stimulus
and response. This propenrty is that of an object to maintain its current state and require a
relatively large force to move to a new state. An example of an object with hysteresis is a light
switch. The light switch tends to remain in the on or off position even if smali forces are applied.
In order to move to the other state one must press hard enough to make the switch "click” into the
other state where it will remain.

image: n., apicture or graphical representation of information. See also disp/ay.

imbed: alternate spelling of embed. See embed.

import: v., the act of moving information into an object from another object.

information: n., data which has meaning. This term in oftern used in the field of communication
theory where it carries ver;y precise meaning. Inthe area of user interface design, the term
‘information’ is often interchangably with the term data. One subtle difference is that information
usually implies that the data has meaning or value for the user while any collection of facts or

figures devoid of perceived meaning can be data. See also data.

Iinherit: v., to receive relevant information or data from a parent or other application in a
hierarchy.

Input: 1., n, any information that the user directs at the system to create, manipulate or modify
objects inthe system.; 2., v., the process by which information is conveyed to the system.

input focus: n., the inset that is currently accepting input; indicated to the user by some visual
means.

inset: n., a software package which allows the display and possible modification of a certain type
of information within an area (usually rectangular) on the screen. Currently available insets include
text, table, zip, eq, fad and raster.

LCD: n., See liquid crystal display.

liquid crystal display: n., a device that produces images by selectively reflecting light in ditferent
regions of the device. Many digital watches that produce black on grey images use liquid crystal
displays.

User Interface Guidelines

Glossary 33

manipulation: n., general actions such as creating, moving, saving insets. See also meta-inset
operations.

mental model: n., the user's perception of the system and how it functions. See also conceptual
model.

menu: n., a dialog device, usually popped up via the mouse, which consists of cards arranged
systematically on which are menu items which, when chosen with the mouse, cause a command
to be given to the system.

menu card: n., a list of similar commands appearing as one plane in a menu stack; typically,
menu cards reflect functionally related sets of menu items.

menu card title: n., the name of a menu card appearing at the top of a menu card; titles should
reflect groupings within cards.

menu Item: n., specific commands within menu cards; typcially menu items are verbs and
connote action; they do not generally convey system information.

menu item name: n., the name given to specific menu items; the name should be brief and
descriptive.

Menu Repeat Button: n., a small "bull's-eye" button which appears on the first menu card after
an initial menu selection. Pointing at the Menu Repeat Button with the cursor is a quick method of
moving to the last selected menu item. The Menu Repeat Button has also been called a
"mousehole” or “wormhole”.

menu stack: n., a collection of menu cards.

message-line: n., many applications set aside a single line for text at the bottom of their window.
This line is used to present non-critical messages to the user. For examples of the use of the
message-line see the Chapter 3 on Dialog and Response.

meta-inset operations: n., manipulations which are performed on the inset as a whole, such as
creating, selecting or cutting an inset; usually independent of inset type.

mode: n., in some applications and insets there may be different ways to display and/or modify
information. These different ways of doing things are called modes.

mouse: 1., n., adevice used to input information to a computer. A mouse is capable of
transmitting information about changes in its position and the state of buttons located on the
mouse, to the computer system to which the mouse is connected. A mouse is useful for selecting
an option from a menu of choices and for drawing.; 2., v., slang, the act of using a mouse.

mouse-ahead: 1., n., mouse movements and button clicks that are made by the user while the
system is busy doing other work. These mouse operations are saved by the system and used
when the system requests mouse data.; 2., v., the act of storing up such data.

mouse click: 1., n., the operation of pressing and releasing a mouse button. The cursor is
placed over the desired area on the display and either the left, right, middle or some combination
of these buttons is pressed and released. Clicks are used to select items from palettes, press
buttons and perform similar operations in many applications and insets.; 2., v., the action of
performing this operation. See also click and mouse.

Version 2.0 (10/12/88)

34 Glossary

muitimedia document: n., a document which can contain more than one type of object, such as
text, graphics, images, voice, etc. Inthe Andrew system, insets are the basic objects contained in
documents and multimedia documents are ones which can contain multiple types of insets.

muscle memory: n., automaticity; the ability to make a motor movement without conscious
attention.

natural menus: n., the default set of menus which, will be used by the many Andrew users when
they have acquired a basic familiarity with the Andrew system..

novice menus: n., a special set of simplified menus created for new users; typically, after some
experience users will employ natural menus.

object: 1., n., inthe Andrew system, applications, insets, primitives and dialog devices are
objects which have well-defined properties and thus can be used to build other objects. Some of
these properties include the ability to be created and destroyed, to be stored or retrieved from a

file, and to support the manipulation of the contents of the object..; 2., n., the target of some
operation.

operation: v., an action that is performed on an object. This action often modifies the object or
the way the object is presented.

optlon: n., one of several choices.

output: n., any information that the system provides regarding the state of objects or the

progress of operations on those objects.; v., the process by which information is received from
the system.

palette: n., a dialog device which presents a range of choices for users to select; typically, a
palette stays on the screen for some amount of time; a palette may contain information for users
about their previous choices or the default choices. Example: a set of tools in a drawing editor.

pan: v, the act of moving an area of an object’s graphical representation so that various portions
of that area may be viewed in a limited amount of space.

parent: n., upon insertion of one inset within another, a parent-child relationship is established,
where the outer inset is considered the parent and the inner, or second order, inset is referred to
as the child. See also child, sibling and hierarchy.

paste: v, the act of inserting the contents of the cutbuffer at the position of the caret. See also
caret, copy, cut, cutbuffer and replace.

plasma display: n., a device that produces images by selectively ionizing gas in regions of a thin
glass chamber.

predictability: n., the ability to correctly anticipate behavior.

preference: n., a particular, user-selected, value of a parameter that alters the way an inset or
application interacts with the user. This is one way a user can tailor the system in order to use the
system more effectively.

User Interface Guidelines

Glossary 35

preferences: n., afile in which a user places preferences. Inthe Andrew environment this file is
called "preferences" and is placed in a user's home directory. See also preference.

primacy: n., the state of having importance, commanding attention or taking precedence.

program menus: n., the set of menus which appear when the editor is in its normal state.

raster: n., an inset for displaying and manipulating rasters in the Andrew system.

read-only: adj., the property of an object which prevents that object from being altered in any
way.

read-only mode: n., a mode of operation for an application or inset where there is no way to alter
the data of the inset(s). .
recommendation: n., a suggested method of handling problems which are subjective in nature,
are matters of individual preference or for which further study may be necessary.

reglon-sensitive menus: n.,

replace: v., the act of discarding some portion of selected data immediately followed by inserting
the contents of the cutbuffer in the position from which the discarded data was removed. These
two operations are carried out as as a single, uninterruptable action. See also copy, cut,
cutbuffer, paste and select.

requirement: n., a specification which must be met in order to meet the basic and minimal user
interface standards developed for the Andrew system.

scale: 1., n., anindication of the size of an object or the data an object represents.; 2. n., a
device used to provide such an indication.; 3., v., transforming the feature of an object in a well
defined manner resulting in a new representation of that object. One of the actions available to an
inset when too little space is provided to display the entire contents of that inset at the desired size
is to scale the visual representation to a smaller size. This scaling is usually performed by using a
linear transformation. See also crop and wrap.

screen: n., a device used to convey information to the user by the drawing of images. Usually a
screen is a common cathode ray tube (CRT) such as a television screen. See also cathode ray
tube and display.

scrollbar: n., a device for traversing a document or inset either vertically or horizontally.
Scrollbars provide information about the size of the current view relative to the whole document or
inset as well as identitiying the location and size of the caret.

scroll: v., to move to a new view of an object via the scrolibar.

select: v., the act of identifying the portion of the data at which future operations or manipulations
will be directed. The method of selecting this data varies between inset types.

selected Inset: n., an inset which has been selected for meta-inset operations.
selected region: n., a portion of data that is to be used as the object of an operation. These

regions are often specified by defining a starting and ending point of the region though it is

Version 2.0 (10/12/88)

36 Glossary

possible that regions could contain discrete portions of data.

selected-region menus: n., the menus which appear when an object or group of objects has
been selected.

selection: See selected region.

sequential insets: n., insets where the ordering of data is cruciai for understanding, for example
the text inset. Sequential insets tend to be processed in a primatrily linear fashion. See also
spatial insets.

sibling: n., child insets of the same parent.

single click: See mouse click.

single mouse click: See mouse click.

spatial insets: n., insets where the relative positioning of data is crucial, for example a drawing
inset. Spatial insets tend to be perceived and processed holistically. See also sequential insets.

subordinate window: n., a window whose existence is tied to a process in another window.

table: n., an inset for displaying and manipuiating tables in the Andrew system.

tailored menus: n., a set of menus, usually customized by the user and typically used by very
experienced users.

text: n., aninset for displaying and manipulating text in the Andrew system.

titlebar: n., in the Andrew system’s original window manager, wm, all windows had a bar across
the top of the window. This bar is used to indicate the application in window as well as other
information about the contents of the window. In this area, a special set of titlebar menus are
available. See also titlebar menus, window and window manager.

titlebar menus: n., when the mouse is placed in a window's titlebar a special set of menus is

available that allows the user to perform operations on the window rather than the contents of the
window. See also window and titlebar.

type-ahead: 1., n., keystrokes that are typed by the user while the system is busy doing other
work. These keystrokes are saved by the system and used when the system requests keyed
data.; 2., v., the act of storing up such data.

user: n., any person who uses an information system in performing their job.

user control: n., when ultimate control of the system and its behavior lies with the user.

user Interface: n., all aspects of information system design which affect a user’s participation in

data transactions. The user interface can be critical in task success and user satistaction.

view: n., the portion of an inset which describes how that inset’s data is to be displayed.; v., 1o
perceive and process data. See also data object.

User Interface Guidelines

Glossary 37

viewer: n., the group or individual that is reading or viewing a document. See also author.

window: n., the rectangular area of a display allocated to an application. It is possible for one
application to control many windows.

window manager: n., a special application that allows a user to manipulate the various window
on a display. The window manager can only perform operations on the whole window, not on the
contents of the window. Examples of operations that a window manager can perform include
moving and resizing windows, hiding windows, and controlling the characteristics of the input and
output devices, such as keyboards and mice.

window-manager menus: n., menus which are invoked by clicking the mouse in a window's
titlebar or in the grey space around windows; window manager menus contain menu items for
issuing commands to the window manager.

wrap: v., one of the actions available to an inset when too little space is provided to display the
entire contents of that inset. Wrapping is done by flowing the contents of the object from one line
to the next and cropping any information that that continues past the space provided. Wrapping is
usually only useful for objects that are sequential in nature such as text or equations. See also
crop and scale.

zip: n., aninset for displaying and manipulating drawings in the Andrew system.

zoom: v., the act of displaying more or fewer details of an object. The act of zooming ofter
requires more or less cropping of the visual representation to occur.

Version 2.0 (10/12/88)

User Interface Guidelines

39

Bibliography

Hansen, Wilfred J. & Haas, Christina (1988). Reading and writing with computers: A framework
for explaining differences in performance. Communications of the ACM, 31 ().

Mayhew, Deborah J. (1988). Basic Principles and Guidelines in User Interface Design, SIGCHI
Tutorial Notes. ACM Special Interest Group on Computer Human Interaction Annual
Meeting: May, Washington, D.C.

Microsoft Windows Software Development Kit: Application Style Guide. (1986). Version 1.03.

OPEN LOOK Graphical User Interface Functional Specification. (1988). Sun Microsystems, Inc.
(Prerelease Version).

Ramsey, Rudy. (1979). Human Factors in Computer Systems: A Review of the Literature,
Science Applications Incorporated.

Rose, Caroline. (1985). Inside Macintosh. Addison-Wesley Publishing.
Rubenstein, Richard & Hersh, Harry. (1984). The Human Factor. Digital Equipment Corporation.

Schneiderman, Ben. (1987). Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Reading, Massachusetts: Addison-Wesley.

Smith, Sidney L. & Mosier, Jane N. (1986). Guidelines for Designing User Interface Software,
Bedford, Massachusetts: Mitre Corporation (ESD-TR-86-278).

Thomas, Frank & Johnston, Ollie. (1984). Disney Animation: The lllusion of Life. Abbeville
Press.

Version 2.0 (10/12/88)

User Interface Guidelines

User Interface Guidelines

