
" ," _.z-To- 0,58
i

An integrated authoring environment
Bruce Arne Sherwood

Center for Design of Educational Computing
and Department of Physics
Carnegie- Mellon University

Pittsburgh PA 15213
(phone 412-578-8530)

1985 June 29

The great potential for educational use of powerful advanced-function
workstations is currently limited not only by cost, but also by the lack of a
congenial authoring environment for educators. For generality and
universality, the UnLx operating system has been chosen as the software
foundation for such workstations. However, the Unix environment and its
computer languages were designed for other purposes and do not give much
direct support for the major tasks of educational programming (display and
interaction). This makes it difficult for non-expert programmers to create
educational materials. The purpose of this working paper is to outline what
is needed in such an environment, to describe an initial implementation at
Carnegie-Mellon University, and to lay the groundwork tbr considering
what should be done next.

Background

Some universities, notably Brown, Carnegie-Mellon, and MIT, are
exploring the educational possibilities of advanced-function workstations.
These personal computers have been called "3M machines": a million bytes
of memory" (with _'irtual memory' support), a million pixels on the screen,
and a million machine instructions per second. In order to move toward
machine independence of educational applications, the use of these
advanced-function workstations has been based on the Unix operating
system because it is widely available on many different computers. On
university campuses Unix has been the software system preferred by
computer scientists, due to the rich set of computer science tools which
have been created by and for Unix users. Unix itself is v,witten in the
computer language C, so Unix tools tend to be oriented toward support of
C programs.

In the hands of skilled sFstem programmers, C is an excellent tool for
writing system software. It is natural to attempt to write educational
applications for workstations in C. However, C has significant
disadvantages for this purpose. Many university faculty members have
significant programming skills but are not expert professional programmers.
In my own C programming and in that of faculty colleagues I have seen a
lot of time lost on picky details. Compiling and linking t>2aical educational
programs written in C currently takes severa minutes, which seriously
impedes rapid development. A large part of educational programming
consists of displa>ing text and graphics in complex waFs. Like most
computer languages, C gives little or no direct support for such displays.
Display-oriented subroutine libraries can go a long way toward filling the
gap, but problems remain in native C. For example, C supports only
standard ASCII characters, and typically a standard C compiler will not



permit italic, bold, or foreign-language characters in a source program. If
such text is to be displayed, various inconvenient and indirect subterfuges
must be employed•

The Information Technology Center (ITC) at C-MU has built a powerful
addition to UnLx, called "Andrew". Andrew includes a graphics-oriented
window manager, a "base editor" library for sophisticated text
manipulations, a "layout manager _ for associating different procedures with
different parts of a window, and the "Grim" subroutine library for
manipulating databases. Andrew is, as I will discuss later, an extremely
useful set of tools. However, it is difficult for a non-expert programmer to
exploit directly the power Andrew offers.

What do we need?

There is a great need for an intem-ated authoring en_"ironmen_ on ad_-ansed-
function workstations to make it much easier to exploit the power of these
remarkable machines for educational applications. Many of us have
dreamed of an enxironment with at least the followi'ng properties:
incremental compilation to get speed of rexfsion without paying a
significant penalty in speed of execution: a good graphics editor which
would be tightly coupled to the program and which would automatically
take care of scaling in the modem variable-window environment; error
diagnostics that would take the author immediately not just to the line but
to the position within the line where the mistake occurred; and extensive
on-line documentation linked to the authoring en_fronment. The language
itseLf should avoid obscure syntnx and represent as directly as possible what
will appear on the screen (e.g., centered or italic text should be represented
by centered or italic text, not by program directives). The language should
be as dew'ice-independent as possible yet easy to extend as new hardware
possibilities become apparent.

A major benefit of such an en_Sronment is that those few unusual faculty
who would like to write their oxxm materials could do so, without having to
depend completely on programmers. If such a system could be used
unaided by indix_idual professors, it would also make programmers and
programming teams more productive.

Undoubtedly there are other needs not included in the minimal list above,
and I hope that others will suggest extensions to make the environment as
complete as possible. One such extension might be in the area of
debugging tools, about which I've done little thinking beyond the obvious
desire lbr some kind of step mode and breakpoint capability.

A trim implementation

We are now able to demonstrate an inith_l implementation of such an
environment, t It is not complete, but I have already used it to write some
little demonstrations and one nearly real program. It will be rather mature
by the end of this summer.

I thought it would be feasible to use the powerful UnLx and Andrew tools
to implement Microtutor, a machine-independent dialect of Tutor, the
language of the PLATO computer-based education system. From my
involvement with Microtutor in the PLATO project at" the University of



• ' ° ¢

-3-

Illinois, I knew that this language incorporates most of the important
constructs for interactive educational programming, including easy
production of graphics, support for diverse kinds of text, rich sequencing
facilities, input analysis routines of various kinds, and good calculational
capabilities. As will be discussed later in more detail, Microtutor need not
do the whole job, but it could serve at least as a much-needed tool for
building user interfaces to programs written in other languages such as C or
Lisp. Also. the mechanisms used to implement Micmtutor could be used
to create imegrmed programming en,dronrnents for other languages.

Earlier this spring I was delighted to find that it took only three days to
build an expression compiler using the UnLx tools Lex and Yacc. These
tools made it possible to do such work so much faster than had been
possible in my earlier PLATO work, that I rashly predicted that I could
have the beginnings of an authoring en'dronment by the end of the
summer. Mv estimate was wav off. Starting with only the expression

•compiler I had built earlier, in just ten da,,'s 1 was able to implement the
follo'_ing:

1) About a third of the Microtutor language, including all the
major text and graphics display facilities, floating-point
variables, and while and for loops.

2) A text output command which displaces all the special
forms (italics, bold, large, small, centering, etc.) that the
Andrew editor supports. The execution-time display is the
same as the source code (as modified by positioning and by
specification of margins). This is a major leap fonvaru, since
C and other languages are incapable of this directness (though
presumably some kind of preprocessor could in principle be
created which would overcome this).

3) Incremental compilation. There is no waiting between
making a change and seeing the effect, yet execution speed is
very fast.

4) Compilation error reporting to the nearest position within a
source line.

5) A graphics editor of a novel kind, so tightly integrated with
the source code that there is no separate command language
necessan, to use it.

6) A command new to Microtutor with four arguments to
specii}' whether you want x scaled to the window size,
whether you want y scaled, whether you want text size scaled,
and whether you want to constrain the scaling to maintain
aspect ratio (so that circles don't become ellipses). With one
line of code an absolute-coordinate program turns into one
which automatically scales and replots appropriately under
window changes. The graphics editor fully supports this
automatic scaling.

For floating point expressions I currently produce P-codes which on a Sun
workstation execute at 50°/, the speed of compiled C code. 1 estimate that



it would take a day with the help of someone knowledgeable to generate
native machine code, which would execute inside the workstation that one
happens to be using. I believe that only source code should be kept in
permanent storage, to eliminate the administrative burdens of trying to cope
with separate compilations for every brand of workstation.

I possess on-line the text for the book "The ,ututor Language" x_n-itten by
my wife and me. l believe it wiU be relatively easv using the Andrew
"Grits"databasesubroutinelibraryto make powerfulconnectionsbetween
programsand thistextbook.

There arca few crucialadditionsto IllinoisMicrotutorinordertoexploit
theworkstationcnx"ironment,so wc need a distinctivename forthedialect.
Andrew doesn'tyetsupporttheGreek lettermu which wc normallyusedin
the name, and the system is x_Titten in C, so we will call it C-MU Tutor.

This has been the most exciting experience of my professional life. I am in
a state of euphoric shock. What I was able to do by m'cset£ in a week in
the Andrew enxjronment would have taken my colleagues and mc at
Illinois many months to do. Unix and Andrew by themselves arc not
friendly en_'ironmcnts for rapid larae-scale production of educational
materials, but they pro,dale a fantastic cnxJronmcnt for building tools.

Thanks to being able to build on UNIX and Andrew, a few weeks will
suffice to build what I bctieve is a x_iable educational authors' pro_amming
language and cnx_ironment. The benefits of this initial implementation arc
in themselves great - authors will be able to be PJn to use this language
productively by late summer. More generally, this is an example of how
authoring facilities may be developed quickly and easily by building on
UNIX and on Andrew. I will illustrate the power of the current
enx"ironment (UNIX and Andrew) by describing how C-MU Tutor was
developed. Then I will surest other educationally useful applications that
might be developed in similar waFs.

How did it happen?

Much of the credit goes to ITC's base editor subroutine library. This is a
set of powerful routines for manipulating documents. In C-MU Tutor
source code, Andrew document markers keep track of which sections of the
program have changed and therefore need recompilation. Pointers and
routines make it trivially easy to take the author to the point within a
source line where a lexical or compilation error has been detected. The
same document data structure is just right for holding P-codes, because the
routines for insertion and deletion automatically do memory management.
The graphics editor depends on the ease with" which new source can be
inserted into the body of the program, and on the ability to identify a
mouse-selected region of text. The interrupt-driven interaction loop of the
Andrew "layout manager" makes it easy to have compilation take place in
the background, concurrent with text editing, even though only one process
is involved.

Another major support comes from the advanced-function work station,
with all its cycles, bsaes, and pixels. In pre_ious work I was often forced to
think much more about these resources than about the task. In the



-5-

PLATO project we were proud of what we did with few cycles and bytes
per user, but we paid a big development price. With a powerful personal
computer I could _Tite in C rather than assembler, and compilations and
links took only about five minutes. At Illinois almost all the work had to
be done in assembler (due to lack of target machine memory and speed),
which slowed down the development process a great deal. Also, the
shortest turnaround to try a new version of the system was about fifteen
minutes and often was much longer. Much of the work had to be done at
night in order not to interrupt users.

The number of pkxels matters because of the special things which become
possible when there is ample room on the screen. For the interactive
graphics editor it is essential to display both the C-MU Tutor source code
and its execution. While building the C-MU Tutor system, it was useful to
display several different program files simultaneously.

Here is a pm-dcularly striking example of what happened during those ten
dab's, and how the Andrew workstation environment made it possible. As I
woke up one morning, I suddenly realized that I could instantly have an
integrated graphics editor. I rushed to campus, and in an hour, with fifteen
lines of code, I had it. Hem's how it works:

In Microtutor display commands, a basic element is of course an x-y
coordinate pair. To add a coordinate pair to a source statement, I use the
mouse to position the editing caret at the desired spot in the source code.
Then I move the mouse to the execution display and click a position there.
I take this mouse x-y, generate alphanumeric source code of the form
"120,245", drive the base editor "insert String" routine to place this text into
the source code, and then drive the re-execution (and hence re-compilation)
of the modified source code. This re-compilation and re-execution is so
fast that I can roam quickly around the screen adding more and more x-y
pairs to a growing linc drawing.

A related powerful technique is to use the mouse to make a selection of text
-- put a box around an x-y pair as though one were going to copy it or cut
it out. Then click in the execution area. The new x-y coordinate generated
from the mouse position replaces the boxed source code, and the screen
replots with the change in effect. The selection box staFs in place, so one
can quickly move around the screen adjusting this one coordinate point of
the drawing, which may be the comer of a box, the center of a circle, or any
component of the display. The effect is extraordinary, but thanks to the
Andrew environment it took less typing to implement this graphics editor
than it does to describe it.

This machinery scales the mouse coordinates inversely to the Microtutor-
specified scaling, with the result that automatic screen scaling is handled
trixially but powerfully bv this editor. Note that I'm simply adding or
modi_ing source in standard Microtutor statements, so there is no separate
graphics editor command language. Eventually we may put up a menu so
that mouse choices can generate the command'names.

C-MU Tutor in a larger context

While Microtutor has many of the modem programming structures, its
current definition does not include structured data t3qges, although there is a



-6-

partial substitute in its rather powerful statement-function capability. I
expect that even with a complete implementation, with or without the
addition of structured data types, there will be many situations which call
for other languages (e.g., Lisp). C-MU Tutor might be the language of
choice for much of the user interface aspects of such programs. For
example, the C-MU project "Dr. Thevenin", an artificial tutor on circuit
theory., uses an eclectic combination of Lisp, Ops5, C, Lex, and Yacc. But
none of these offer decent support for putting the circuit diagram on the
screen. Since C-MU Tutor exploits essentially all the Andrew display
capabilities, butpackages them in an extremely easy-to-use form, it has
much to offer such projects. For these reasons I intend to make sure that
C-MU Tutor is callable and can call other languages.

Another use is in the context of C-MU's Glo (Graphical Layout
Organizer). An author uses Glo interactively to specify layouts within a
window. These rectangular areas are not mere geometrical shapes• but in
the Andrew layout manager regime have specific redraw, update, and mouse
hit procedures associated with them. It is possible to specify that one Glo
lavout be a scrollable base editor document, another be an animation
di'splay'er, and another be a UnLx shell typescript. A new Glo layout type is
C-MU Tutor, and one or more layouts can have C-MU Tutor source flies
associated with them. Because of this en_Sronment, it is not necessar3." that
C-MU Tutor itself do everything. It can coexist and collaborate with other
processes in a window.

In addition to these mixed uses, I anticipate that many educational
applications will be pure C-MU Tutor programs, because of the speed with
which such programs can be _witten and revised, and because it is possible
to provide a highly integrated authoring en_Sronment around the language.

What next?

I'm excited about C-MU Tutor because it eliminates compilation delaFs,
lets me write fancy text with italics etc. in the source code itself, and
because of its other excellent display-generation properties. But consider
this: What I have done so easily for C-MU Tutor might be done by others
for Basic and Pascal. With a bit of planning, by the end of this summer we
might be able to run Basic or Pascal microcomputer programs in a window,
for those educational applications for which we have source code. Many
people have been concerned about how we can bring along existing
applications into the advanced work_station world. Perhaps this is a way to
do it, with the eNstence proof that it has now been done for Micmtutor(

I'm fairly certain about Basic, because it is usually interpreted, and we can
interpret faster. 1 mentioned that at present I semi-compile C-MU Tutor to
machine-independent P-codes. The execution of these P-codes is a little
slower than the execution of true compiled code, but much faster than
interpreting raw source. Given Andrew speed, we can certainly convert
Basic source to P-codes on the fly and re-execute these P-codes taster than

a microcomputer interprets Basic source. This would give us execution
time to handle the highly' machine-specific "peeks" and 'pokes people are
forced to stick into their Basic programs. We could emulate the effects of
these machine-language peeks and pokes bv treating them as P-codes on
our machine (or by doing the rctevant screen'manipulations if the peeks and
pokes deal with display aspects). I'm less certain about applications



oriNnally written in Pascal for the Macintosh, in that a Pascal program
compiled on a Lisa and run on a Macintosh executes in native 68000 mode,
so we would not have the same speed advantage that exists for interpreted
Basic.

A more serious question is whether the Andrew _-indow manager or MIT's
X window manager has all the functionality necessary, to perform the
operations that a Macintosh pro_arn does through calling the Macintosh
library. My guess is that at the present time we could do most of it if not
all. "{Ve certainly could build a display, inside a window that looks like a
Macintosh window. When I get a bit farther along, it might be a useful
exercise to try to write a C-MU Tutor program to produce such a display,
as a test of the graphics capabilities of C-MU Tutor.

On the other hand, a colleague warns me that compiling the wide range of
syntactical structures in Basic, and handling correct.Iv the bizarre peek and
poke refcrznc_s to l.he hardware, may be a much larger task _.han tn:ating
Microtutor. He also su_ests that treating Pascal would also be a major
task, though I would have thought that Pascal with its regular structures
should be straight-forward. However. I don't know these languages nearly
as well as I know Micmtutor, so he may be right. -[his is an _ssue that
needs further study. The goal is attractive, however. Educational
institutions interested in the Andrew sl_tem would be much more
interested if they were assured that their own e,'dsting programs would run
in the new environment.

Steven Lerman, director of Project Athena at MIT, points out that it could
be useful to treat C itself in this way. For people who know C and arc
comfortable with it, this could be a helpful tool. In order to allow fancy
Andrew tcxt to appear in the C source code, it would probably not be
possiblc to compile this "almost-C" program with the normal C compiier.
But it would let C programmers write in a language very similar to C and
gct many of the benefits of C-NIU Tutor.

The incrcmcntal compiler and graphics editor would be somcwhat harder to
implement for any of these languages compared with C-MU Tutor, because

• of the latteffs very simple fixed tbrmat (including fixed rules for indenting
control blocks). Also, them is an important structural difference between
C-MU Tutor and thcse other languages. The Tutor "main-unit" construct
provides a natural restart point for re-execution when a window is reshaped,
in order to restore the screen display. There is no comparable notion in C
or Basic or Pascal. It can however be simulated in C with the "setjrnp"
routine, which saves the current registers and stack pointer. Even when
several levcls deep in calls. "longjmp" can be used to restore these registers,
effectively restarting the C program at the point where the scrimP routine
had becn invoked.




