Knowledge tracing:
Modeling the acquisition
of procedural knowledge

Albert T. Corbett John R. Anderson

15 March 1995
CMU-CS-95-129

School of Computer Science
Camegie Mellon University
Pittsburgh, PA 15213

To appear in the journal User Modeling and User-Adapted Interaction.
(Kluwer Academic Publishers)

Also appears as Human-Computer Interaction Institute Technical Report CMU-HCII-95-01

Abstract

This paper describes an effort to model students' changing knowledge state during skill acquisition. Students in this
rescarch are learning to write short programs with the ACT Programming Tutor (APT). APT is constructed around a
production rule cognitive model of programming knowledge, called the ideal student model. This model allows the
tutor to solve exercises along with the student and provide assistance as necessary. As the student works, the mtor
also maintains an estimate of the probability that the student has learned each of the rules in the ideal model, ina
process called knowledge tracing. The tutor presents an individualized sequence of exercises to the student based on
these probability estimates until the student has 'mastered’ each rule. The programming tutor, cognitive model and
leaming and performance assumptions are described. A series of studies is reviewed that examine the empirical
validity of knowledge tracing and have led to modifications in the process. Currently the model is quite successful in
predicting test performance. Further modifications in the modeling process are discussed that may improve
performance levels.

This research was supported by the Office of Naval Research under grant N0O0014-91-J-1597. The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of ONR or the U.S. Government.



Keywords: Student modeling, Learning, Empirical Validity, Procedural Knowledge, Intelligent Tutoring
Systems, Mastery Leaming, Individual differences



Corbett and Anderson 1 Knowledge Tracing

Thirty years ago three influential papers (Bloom, 1968; Carroll, 1963; Keller, 1968) outlined the promise of mastery
leaming. The core idea is that virtually all students can achieve expertise in a domain if two conditions are met: (§)]
the domain knowledge is appropriately analyzed into a hierarchy of component skills and (2) learning experiences are
structured to ensure that students master prerequisite skills before tackling higher level skills in the hierarchy. This
is a tantalizing idea that became entrenched in American education during the 70's, although it can be traced to far
carlier times. Review articles overwhelmingly confirm that mastery leaming leads to higher mean achievement
levels than conventional conditions (Block & Burns, 1976; Guskey & Pigott, 1988; Hyman & Cohen, 1979; Kulik,
Kulik & Bangert-Drowns, 1990; Kulik, Kulik & Cohen, 1979), but critics note that the effect sizes are appreciably
smaller than predicted (Resnick, 1977; Slavin, 1987) and the underlying assumptions concerning skill decomposition
are controversial (Resnick & Resnick, 1992; Shepard, 1991).

In this paper we attempt to bring a cognitive model of skill acquisition to bear on the goals of mastery learning.
We attempt to monitor students' changing knowledge state as they practice a complex cognitive skill, to
individualize the practice sequence o enable students to master the skill efficiently and to accurately predict students'
performance. Our interest in student modeling and individualized instruction has arisen in our work with intelligent
programming tutors over the past ten years (Anderson, Boyle, Corbett & Lewis, 1990; Anderson, Conrad & Corbett,
1989; Anderson, Corbett, Fincham, Hoffman & Pelletier, 1992; Anderson, Corbett, Koedinger & Pelletier, in
press). These tutors are practice environments in which students write short programs. Each tutor is constructed
around a cognitive model of the underlying skill that allows the tutor to solve the exercises along with the student
and provide feedback on student actions. These tutors have proven to be effective learning environments; students
can work through a fixed set of exercises in substantially less time than students working on their own and score as
well or better on posttests. The present research attempts to build on this success. By incorporating learning and
performance assumptions with a complete model of the cognitive skill in an environment that demonstrably speeds
leamning, we hope to enable all students to achieve mastery within a practical time frame.

In the following sections we describe the intelligent tutoring environment, the curriculum, the underlying
cognitive model and the learning and performance assumptions. Following that we review a succession of
empirically driven refinements in the modeling process. These refinements have brought us part way to our goal
and we discuss future directions.

1. The ACT Programming Tutor

The ACT Programming Tutor is a practice environment in which students write short programs in Lisp, Prolog or
Pascal. The Lisp and Prolog modules are presently employed in a self-paced introductory programming course at
Carnegie Mellon University and the Pascal module is used in an introductory programming course in a Pittsburgh
high school. Figure 1 depicts the tutor's screen display midway through a Lisp exercise. The student has previously
read through a multi-page section of text in the window at the bottom right and is now completing a corresponding
sequence of exercises. The exercise description appears in the window at the upper left and the student's solution
appears in the code window immediately below. The tutor interface is similar to a structure editor. The student
selects operator templates from the menu on the right and enters identifiers and constants through the type-in buffer
beneath the menu. In this example, the student has already selected the defun template for defining a new Lisp
operator. The tutor recognized this as a correct step and has expanded the template for this operator in the code
window, (defun <name> (<parameter>) <body>). The three angle-bracket symbols in this template are
editor nodes that the student replaces with Lisp code. In Figure 1 the student has already (1) expanded the first node,
<name>, by typing the name of the function last-item, (2) expanded the <parameters> node with a single
variable, is, and (3) expanded the body of the function <bedy> with the operator template (car <exprl>). As
this template indicates, car takes a single argument, represented by the node <exprl>. This node is selected
(highlighted) in the figure and the student can expand the node with Lisp code or select a different node to work on.

The Lisp tutor is constructed around a set of several hundred language-specific rules for writing programs called
the ideal student model. The ideal student model is a complete, executable model of procedural knowledge in the
domain. These rules represent programming knowledge at the grainsize of individual symbols and are used to
interpret student actions in a process called model tracing. At each step in writing a program the student's action is
compared to applicable rules in the ideal model and immediate feedback is conventionally provided. If the student
action matches an applicable rule, the tutor accepts the action and fires the rule to update the code window and
update the internal representation of the problem state. If the student action does not match the action of any
applicable rule in the ideal model, the action does not register in the code window and the tutor provides a brief



Corbett and Anderson 2 Knowledge Tracing

Problem Skilt Meter
Dafine a lisp funciton named last-item thot takes a lisi as an argument and Extract an embedded list
ratums the last slament ef the 11st. For exemple, Extract info from an embedded 1ist
w7 Extrect info from a list
(lest-item ‘(e b c d e 1)) returns 1 EEENEEERE Deleting an extre node from the paremeter 1ij
(last-ttem '(w x y 2) retums 2 s Coding a varieble

JemrrEwresmE  Declering o function persmeter
JEREEEELENR Coding e function name
Jurswemsresney  Coding DEFUN
YUNWETENENEE Remove N tems
JEEWEEECESTED Skip over tems
JENEEENEEEE Work From the Back of tha List
JaEmwwwerEwE Extract the Last Item
JarEErewrwmwm Extract the Nth Item

Lisp Exercise 1.87 Lest-item Jrewerwmewywn Coding LIST - embedded 11sts involved

(defun LAST-ITEM (LIS) Menu
(car
<PROCESS 1») 1: ::0 ::-.-_I 1
oo {reverse (= (evarp
< > (append 1= (¢4
e «
clist « [
towrt ce
Clistp
tdefun tand FA)
Clet {or {mmbarp
ar tnot Coddp
(eond {zerep
Clocp
(return - -. inda |
{smlg K
Type-in: I |

e ———

i

Defining Hew Functions (continued)

Definkion of sesend (dofen secand Qis)
(car jcor B)])

= mﬁuhdhmm{omdddﬂmmr
B4 |edrthe listand take the cer of the resuk. Thus, our function bodly starts out

Since we are typing a general definkion of sesend, we cannct lype Ina qncllc Bornt list

suchas (abs 4. Fwe did, then when we called the function § woLHdNT MAaer whak

we typed, the wouid aways retum b. Instead, in the defintion we use
o stand in for future arguments. When you are pianning the function you

anmlmInmdlwmomblwhuhl.q But when you wank io reference

is exampie, you Need i type the parameter. Thua, the body of our function definkion Is:

Recali that the parameter Be is & varisbie. Since fis i8 not quoted, the functisn does not
operabe on the [kera| atom lie, Dut rather on the listthat Se stands for.

5 - a3

You can code REVERSE to move the 1ast element to the front of a lisl

b4

Figure 1. The APT Lisp Tutor interface.

message in the hint window at the lower left. Thus, the student always remains on a recognized solution path. The
skill meter in the upper right displays the tutor's model of the student's knowledge state. This window represents the
focus of this paper. Each of the rules in the ideal model is represented by a bar graph and the shading represents the
probability that the student knows each rule. The probability for the top two rules in the window is around 0.75 and
around 0.35 for the third rule. The checkmarks at the bottom of the screen indicate that the student has 'mastered’ the
corresponding rules.

2. The Cognitive Model

The tutors reflect the ACT-R theory of skill knowledge (Anderson, 1993). This theory assumes a fundamental
distinction between declarative knowledge and procedural knowledge. Declarative knowledge is factual or
experiential. For example, the following sentence and example in the Lisp text would be encoded declaratively:

The Lisp function car takes one list as an argument and returns the first element.
(car '(a b ¢ d)) returns a

Procedural knowledge, in contrast, is goal-oriented and mediates problem -solving behavior. ACT-R assumes that
skill knowledge is encoded initially in declarative form through experiences such as reading. Early in practice the
student solves problems by applying general procedural rules to this domain-specific knowledge. As a consequence



Corbett and Anderson 3 Knowledge Tracing

of this early activity, domain-specific procedural knowledge is acquired. With subsequent practice, both declarative
and procedural knowledge are strengthened so that performance grows more rapid and reliable. Like many cognitive
theories (cf. Kieras & Bovair, 1986; Newell, 1990; Reed, Dempster & Ettinger, 1985) ACT-R assumes that
procedural knowledge can be represented as a set of independent production rules that associate problem states and
problem-solving goals with actions and consequent state changes. The following two goal-oriented productions can
be derived from the declarative examples above through practice in writing function calls and evaluating function
calls respectively:

IF the goal is to write an expression that returns the first element of a list,
THEN code the operator car and set a goal to code the list as an argument.

IF the goal is to evaluate an application of car 10 a list,
THEN write the first element in the list.

Each of the programming tutors contains many rules for writing programs that model problem solving at the
grainsize of individual symbols. For example, six productions are employed in writing the full solution to the
exercise displayed in Figure 1:

(defun last-item (lis) (car (reverse lis)))

Figure 2 displays the six production rules that govern the six symbols in this definition. The first production
matches the goal that is set up by the problem description. When it fires it sets up subgoals which are satisfied in
turn by successive rules. We call the set of programming rules built into the tutor the ideal student model, because
it embodies the knowledge that the student is trying to acquire. This ideal model plays two roles in the tutor. First,
as described above, it allows the tutor to solve exercises step-by-step along with the student in a process we call
model tracing. As the student enters each code symbol, the tutor attempts to match the action to an applicable rule
in the model. If a match is found, the tutor accepts the symbol and updates its internal representation of the
problem state. If not, the tutor requires the student to try another action. Second, in knowledge tracing, the student
is represented as an overlay of the ideal model (Goldstein, 1982). As the student works through the exercises, the
tutor maintains an estimate of the probability that the student has learned each rule in the ideal model.

2.1 Evaluating ACT-R Procedural Knowledge Assumptions

One of the primary goals in our tutoring research has been 1o evaluate the ACT-R assumption that procedural
knowledge maps onto independent production rules. Three types of results provide support for this assumption:

(1) A production rule model provides a regular analysis of leaming trends. Figure 3 displays the mean leaming
curve for the production rules that are introduced in the first lesson of the Lisp Tutor curriculum. In this
figure, error rate is plotted as a function of practice on the rules. The error rate averages about 0.42 across the
first opportunity to apply each rule, then drops monotonically across the successive opportunities to apply
the rules. Aggregating the data by other, more superficial units, e.g., over exercises, over problem
solving goals within exercises, or over opportunities to employ each surface Lisp construct independent of
problem solving context, does not yield systematic learning curves (Anderson, Conrad & Corbett, 1989).
Kieras & Bovair (1986) provide similar evidence that a production rule analysis yields systematic learning
data.

(2) Production rule analyses have proven successful in predicting transfer among programming languages
(Anderson, Conrad, Corbett, Fincham, Hoffman and Wu, 1993) and across text editors (Singley & Anderson,
1989).

(3) A variety of results support the assumption that procedural knowledge is goal-specific. For example,
consider the two production rules described earlier concerning the simple use of car:

IF the goal is to write an expression that returns the first element of a list,
THEN code the operator car and set a goal to code the list as an argument.



Corbett and Anderson 4 Knowledge Tracing

Production Rule Action
IF the goal is to define a new Lisp operator Code defun

THEN code defun, and
set a goal to code the operator name,
set a goal to declare any variables,
set a goal to code the function body.

IF the goal is to code the function name Type last-item
THEN type the function name.
IF the goal is to declare variables, Type lis

THEN type one variable for each argument that will be passed to the function.

IF the goal is to extract the last element of a list, Code car
THEN code car, and
set a goal to move the last element to the front of the list.

IF the goal is to move the last element to the front of a list, Code reverse
THEN code reverse, and
set a goal to code the list.

IF the goal is to code a list that is bound to a variable, Type lis
THEN type the variable.

Figure 2. Six rules that apply in writing the program last-item in Figure 1.

IF the goal is to evaluate an application of car to a list,
THEN write the first element in the list.

They are derived from the same declarative knowledge, but one is specific to writing a function call, while the
other is specific to evaluating function calls. Several studies have shown that practice in one of these two
programming skills provides no transfer (Kessler, 1988; Anderson, Conrad & Corbett, 1989; McKendree &
Anderson, 1987) or at best limited transfer (Pennington & Nicolich, 1991) to the other. Similar evidence of
use-specificity has been obtained in calculus (Singley, 1986).

3. Knowledge Tracing and Mastery Learning

The programming tutor has proven successful over the past ten years. Students work through practice exercises in as
little as one-third the time, while performing as well or better on tests (Anderson, Corbett, Koedinger & Pelletier, in
press; Anderson & Reiser, 1985). Despite this general success, we recognized early on that some students were
floundering. This led us to incorporate knowledge tracing into the tutors in an effort to implement mastery leaming.
Recall that in model tracing the cognitive model is used to interpret each student action and follow the student's step-
by-step path through the problem space. The primary goal in this process is to provide whatever guidance is needed
for the student to reach a successful conclusion to problem solving. By contrast, in knowledge tracing we attempt o
monitor the student's changing knowledge state during practice. The student model is an overlay of the ideal student
model in knowledge tracing. Each time the student has an opportunity to apply a rule in the model, the tutor
updates its estimate of whether the student knows the rule, based on the student's action.

As described earlier, the learning assumptions of ACT-R are complex. The student acquires both goal-
independent declarative knowledge and goal-oriented procedural rules. With practice, both declarative and procedural
knowledge is strengthened in memory and student performance grows more reliable and rapid (Anderson, 1993).



Corbett and Anderson 5 Knowledge Tracing

0.5

0.4 -

0.3 -

Emor Rate

0.2 1

0.1

o+
0 2 4 6 8 10 12 14

Opportunity to Apply Rule (Required Exercises)

Figure 3. The mean leaming curve for coding rules introduced in the first lesson of the Lisp Tutor curriculum.
Mean error rate is plotted for successive opportunities to apply the rules.

Modeling these relationships on-line as students practice is computationally expensive and not warranted by the
relatively sparse data the tutor provides. Instead, we have substituted a simpler set of learning and performance
assumptions in knowledge tracing in our tutors.

Knowledge tracing assumes a two-state learning model. Each coding rule is either in the learned state or in the
unlearned state. A rule can make the transition from the unlearned to the leamed state prior to practice, through
reading the text, or at each opportunity to apply the rule in practice. There is no forgetting; rules do not make the
transition in the other direction. Performance in applying a rule is governed by its leaming state, but only
probabilistically. If a rule is in the learned state, the student may nevertheless slip and make a mistake. If the rule
is in the unlearned state, there is some chance the student will guess correctly. As the student practices, the tutor
maintains an estimate of p(L) for each rule, the probability that the rule is in the learned state. At each opportunity
to apply a rule in problem solving, the estimate of p(L) for the rule is updated, contingent on whether the student's
action was correct or not. The Bayesian computational procedure is a variation on one described by Atkinson (1972),
This procedure employs two learning parameters and performance parameters as displayed in Figure 4. These
parameters are estimated empirically for each rule.

The following equation is used in knowledge tracing to update the estimate of the student's knowledge state:
Plln) = p(Ln-1levidence) + (1 - p(Lp-1levidence)) * p(T) 1]

The probability that a rule is in the learned state following the nth opportunity to apply the rule, p(Ly), is the sum
of two probabilities: (1) the posterior probability that the ideal rule was already in the learned state contingent on
the evidence (whether or not the nth action is correct) and (2) the probability that the rule will make the transition to
the learned state if it is not already there. We use a Bayesian inference scheme to estimate the posterior probability
P(Ln-1levidence). Following Atkinson (1972) the probability p(T) of a transition from the unlearned to the learned
state during procedural practice is independent of whether the student applies the rule correctly or incorrectly. Verbal
learning studies have shown that Bayesian remediation algorithms are successful, for example, in learning sets of



Corbett and Anderson 6 Knowledge Tracing

pLO) Initial Learning the probability a rule is in the learned state prior to the first opportunity to
apply the rule (i.e., from reading the text).

p(T) Acquisition the probability a rule will make the transition from the unlearned to the
learned state following an opportunity to apply the rule

p(G) Guess the probability a student will guess correctly if a rule is in the unlearned state

p(S) Slip the probability a student will slip (make a mistake) if a rule is in the learned
state

Figure 4. The learning and performance parameters in knowledge tracing.

independent word pairs (Atkinson, 1972; Atkinson & Paulson, 1972). Such algorithms lead to higher performance
levels than random selection of practice stimuli or student selection of practice stimuli.

Knowledge tracing is employed in the tutor to implement mastery learning. In each section of the tutor
curriculum the student reads an accompanying text that introduces a set of coding rules. The tutor follows with a set
of exercises that provide practice on the rules. The sequence of exercises is tailored to the student's needs and the
student continues practicing exercises in a section until reaching a criterion knowledge probability for each rule in
the set. That mastery criterion in the tutor is a knowledge probability of 0.95. This procedure is similar to
individualized student-paced mastery learning systems based on Keller's Personalized System of Instruction, which
have been shown to be effective in raising mean achievement scores (Block & Burns, 1977; Kulik, Kulik & Bangert-
Drowns, 1990; Kulik, Kulik & Cohen, 1979). In these systems, however, practice and assessment are usually
treated as distinct phases. Students work through study/test cycles until obtaining a criterion test performance level.
In knowledge tracing, by contrast, assessment is continuously integrated with practice; students simply continue
practicing until reaching an hypothetical knowledge state. Tests can be used to validate mastery decisions but do not
enter into the mastery decisions.

Note that student modeling is a relatively simple process when formulated this way. First, the learning and
memory assumptions of knowledge tracing are the simplest possible. Second, we attempt to avoid the complexities
in modeling students' misconceptions (Duncan, Bma & Morss, 1994; Self, 1988; VanLehn, 1990). Third, mastery
learning simplifies a potentially complex rule-attribution problem. Since students master prerequisite skills as they
move through the curriculum, we need only credit a single production in tracing each student action. In the research
described in the following section we are interested whether knowledge tracing can bring students to mastery of the
components of a knowledge-rich skill and in how accurately the model predicts students’ performance.

4. Empirical Evaluations of Knowledge Tracing

The goal in knowledge tracing is to estimate the student's knowledge and ensure with a high probability that each
rule is in the learned state. This process is only meaningful, however, if the model accurately predicts students’
programming behavior. In this section we describe a series of four studies that assess the psychological validity of
the student modeling process. The modeling assumptions allow us to predict the probability of a correct action at
each problem solving step and the first study examines how well the model predicts students’ performance in
completing tutor exercises. This study led us to substantially revise the initial cognitive rule set and to adjust the
learning and performance parameter estimates. The remaining three studies examined the external validity of the
model in predicting test performance. Knowledge tracing is ultimately useful only if it predicts students’
performance when they are working on their own. In these studies we focus on the students’ ability to write the
programs correctly without tutorial assistance, The first of these three studies revealed the need to incorporate
individual differences in leaming and performance parameters in the model. The final two studies assessed a
procedure for doing this.



Corbett and Anderson 7 Knowledge Tracing

4.1 General Experimental Procedure

Each of the four studies focuses on the first chapter in the Lisp Tutor curriculum. This chapter introduces two data
types, atoms (symbols) and lists (hierarchical groupings of symbols), function calls and function definitions. The
chapter introduces three unary functions, car, cdr, reverse, that extract information from or transform a list, three
constructor functions, append, cons and list, that build new lists, and the operator defun, that is used to define
new functions. The curriculum structure has evolved across studies, but in each study, the chapter is divided into
sections. In each section the student reads text and then completes a fixed set of required exercises. The tutor
monitors the student's growing knowledge of the applicable programming rules as the student completes these
required exercises. Then the tutor presents remedial exercises as needed for the student to master the rules introduced
in the section. Of course, the number and sequence of remedial exercises varies across students. Students also
complete one or more quizzes during a study. Each quiz requires the students to complete additional programming
exercises similar to the tutor exercises, but with no tutorial assistance. The primary goal of the first study is to
examine how well the model predicts goal-by-goal performance in the tutor environment and to adjust the model
accordingly. The ultimate goal is addressed in the remaining three studies: predicting students' performance when
working on their own outside the tutor environment.

4.2 Internal Validity: Predicting Tutor Performance

Students receive immediate feedback on each programming action while working with the tutor. Since the tutor does
not accept an incorrect programming action, the student is always on a recognizable solution path. Under these
circumstances, the model can predict the probability of a correct action at each successive goal (step) in writing
programs. For example, the model can predict the probability that a student will perform a correct action at each of
the six goals in coding the function last-item (see Figure 2). The model's prediction at each step depends on the
student's knowledge of the applicable programming rule at the goal and the performance parameters for that rule as
shown in the following formuia:

P(Cis) = p(Lys) * (1 - p(Sp)) + (1 - p(Lys)) * p(Gp) 2]

That is, p(Cjs), the probability that a student s will perform a correct action at goal i is the sum of two products:
(1) the probability that an appropriate rule r is in the learned state for student s times the probability of a correct
response if the rule is in the leamed state (p(Sy) is the slip parameter in Figure 4), and (2) the probability that an
appropriate rule r is not in the learned state for student s times the probability of a correct guess if the rule is not in
the learned state (p(Gy) is the guess parameter in Figure 4).

To assess the validity of the model in fitting the tutor data, we compute two measures at each coding goal in the
fixed set of required exercises: (1) the actual probability of a correct response averaged across students and (2) the
model's predicted probability of a correct response averaged across subjects. In computing these measures we trace
through the tutor protocol files that contain a complete record of each students' responses. At each coding goal in
the fixed set of required exercises we first apply equation [2] to predict the probability the student will correctly apply
an appropriate rule, then record whether or not the student did respond correctly on the first attempt and finally apply
equation [1] to update the probability estimate that the student knows the appropriate rule based on the response
evidence. Recall that each student has different remedial exercises interspersed among the sequence of required
exercises. These exercises are excluded from the measures of actual and expected accuracy, since only a subset of
students would contribute to each point. However, the remedial exercises are employed to update the individual
student's knowledge state.

We employ three statistics to assess the predictive validity of the model. First, we correlate the actual accuracy
and predicted accuracy estimates across goals. If the model accurately reflects both the initial difficulty of each
coding rule and the learmning rate for each rule across successive opportunities to apply it, these two measures should
be highly correlated. Second, we compute the mean error in prediction (expected accuracy minus actual accuracy)
across goals to check whether the model is systematically overestimating or underestimating accuracy levels.
Finally, we compute the mean absolute error in prediction (average absolute value of predicted accuracy minus
expected accuracy across goals) across goals to determine how well the mode! predicts the absolute differences in
accuracy levels among goals.



Corbett and Anderson 8 Knowledge Tracing

4.2.1 Experiment 1: Internal Validity

The goal of the initial evaluation study (Corbett & Anderson, 1993) was to examine the adequacy of the rule set and
parameter estimates. In this study the cognitive model consisted of twenty-one ideal coding rules for the dozen Lisp
constructs being introduced. The two leaming and two performance parameter estimates were held constant across
the twenty-one rules and the four values were estimated from an earlier group of students. Students completed 158
programming goals across twenty-five required exercises in this study. They completed an average of 14 remedial
exercises in this study, with a range from 1 to 38. As described above, we computed the average actual and expected
probabilities of a correct action at each of the 158 required programming goals and compared the two measures across
goals. The expected and actual probabilities were moderately correlated (r=0.47, p < 0.05), the mean error rate was
0.06 and the mean absolute error rate was 0.16. The absolute error rate is relatively high and visual inspection of the
data revealed that the predicted and actual values clearly deviated in systematic ways from the observed values. This
led us to revise the knowledge tracing model in two ways.

First, it was apparent that the data is not well fit when learning and performance parameters are held constant.
Not surprisingly, some rules are harder to learn than others. Perhaps less obviously, the probability of slips and
guesses also varies across rules. If we allow the learning and performance parameter estimates to vary across rules,
best fitting estimates provide a substantially better fit, r=0.85. The mean error in prediction, -0.01, and the absolute
error in prediction, 0.07, are both reduced in the revised fit.

Second, it became obvious that some of the rules in the ideal model were too general, at least for some students,
and were not well fit by the model. Figure 5 depicts the learning curve for the following rule in the ideal student
model:

In defining a Lisp function, declare one parameter variable in the parameter list for each argument (input
value) that will be passed when the function is called.

This rule is expected to fire each time a variable is declared in a function definition. As can be seen, error rate
decreases monotonically over the first four applications, but then jumps for the fifth and sixth applications. The
first four points are drawn from the first four exercises in which functions are defined. Just one variable is declared in
each of these four function definitions. The fifth and sixth points represent the fifth function definition, but the first
in which two parameter variables are declared. The seventh and eighth points represent two more function definitions
with a single parameter and the ninth and tenth points represent the next exercise that requires multiple parameters.
The 55% error rate at goal six in this figure suggests that just under half the students had encoded the ideal rule
initially and were able to apply it in the new situation. The other students initially encoded a non-ideal rule that was
sufficient to complete the first four exercises but failed to generalize. There are several possible non-ideal rules:

Always code one variable to stand for the whole list of arguments (too general).
Code one variable when there is one argument (too specific - no thought of more arguments).
Code one variable because that's what the example has (no functional understanding).

Similar patterns were observed for a variety of ideal rules in the model. For example, some students who can apply
the constructor functions append, cons and list in building simple lists have difficulty generalizing their
knowledge to embedded lists. Similar difficulties have been observed in other domains, such as algebra (Wenger,
1987) and obviously represent a serious threat to knowledge tracing. Students may get credit for having mastered an
"ideal" rule in simple contexts that, in fact, does not transfer to more complex contexts.

We revised the cognitive model in response to this problem. Ultimately the cognitive model for this curriculum
has grown to 55 rules. In the case of variable declarations, we represent the procedural knowledge as two rules:

In defining a Lisp function, declare one variable for the first argument that will be passed.
In defining a Lisp function, declare one additional variable for each additional argument that will be passed.

Figure 6 re-plots the data points for declaring variables. The points from the original learning curve in Figure 5 are
plotted as two separate learning curves for these rules. Under this analysis the sixth, tenth, twelfth, fifteenth,



Corbett and Anderson 9 Knowledge Tracing

1.0

0.9 ] —O— Declare Parameter
0.8

0.7 -

Error Rate

Opportunity to Apply Rule (Required Exercises)

Figure 5. The learning curve for a hypothetical rule that declares a variable in a function
definition. Error rate is plotted for successive opportunities to apply the rule.

seventeenth, nineteenth and twenty-third opportunities to declare a variable are really the first through seventh
opportunities to apply the second rule.

4.3 External Validity: Predicting Test Performance

The more important issue is whether the model predicts students’ performance in working on their own after
having achieved "mastery”. To assess this predictive validity we have students complete cumulative tests at several
points in the curriculum. In these tests students complete more of the same types of programming exercises and in
the same interface as the tutor, but without the tutor's assistance. These tests are not used to decide when to promote
students but exclusively to validate the model's performance predictions. Our external validity assessments differ
from the internal validity assessments in two ways. First, the unit of measurement is the complete programming
exercise rather than the individual programming goal. Predicting students' test performance at each programming
goal is more complex than predicting their goal-by-goal tutor performance, since students are not constrained to
remain on a successful solution path in testing. Assuming production rules are independent as ACT-R does, though,
we can derive a straightforward accuracy prediction for each test exercise as a whole. The probability of completing
an exercise with no mistakes is given by

the product of the probabilities that the student will respond correctly at each successive goal in solving the exercise.
Second, we are interested in how well the model predicts individual differences across students rather than across
programming tasks. To assess the model's external validity we compute two measures for each student across all the
exercises in a test: (1) the actual probability of completing an exercise correctly and (2) the predicted probability of
completing an exercise correctly, We again compute three statistics to compare these two measures: (1) the
correlation of actual and expected accuracy across students, (2) the mean error in prediction across students and (3) the
mean absolute error in prediction across students. To the extent that the model accurately captures individual



Corbett and Anderson 10 Knowledge Tracing

1.0

0.8 - —0O— Declare First Parameter

0.8 - —®— Declare Second Parameter

0.7
0.6 -

Error Rate

0.5
0.4 -
03
0.2+
0.1 -
0.0 . o=

A

0 10 20

Opportunity to Apply Rule (Required Exercises)

Figure 6. A partitioning of the single learning curve for variable declarations in Figure 5 into separate learning
curves for two distinct variable declaration rules.

differences, actual and predicted accuracy should be highly correlated across students and the mean prediction error and
mean absolute prediction error (absolute value of predicted vs. actual accuracy) across students should be low.

4.3.1 Experiment 2: External Validity

The goal of this study was to examine the predictive validity of the model for test performance. Twenty college
students participated in the first study of external validity (Corbett, Anderson & O'Brien, in press). They worked
through six curriculum sections in this study and completed cumulative tests following the first, fourth and sixth
sections. The curriculum was expanded to 64 required exercises (345 total programming goals) to provide coverage
of the revised rule set. Students worked to mastery in the first five curriculum sections, but not in the sixth and
final section. That is, in the first five sections students completed an individualized sequence of remedial exercises
govemed by the knowledge tracing process. In the final section, students completed a fixed set of exercises with no
remediation. This allows us to examine the model's validity after students had reached mastery in the first two tests,
and to examine the model's validity at intermediate leaming levels in the third test. On average students completed
18 remedial exercises in the first five sections, with a range across students of 3 to 63. The test exercises were
completed with the same interface as the tutor exercises, except that no tutorial support was provided and students
could freely edit their code.

The first step was to verify the intemnal validity of the revised cognitive model and parameter estimates. The
correlation of expected and actual mean error rates across the 345 goals in the required exercises was 0.75, p < .0001.
The mean error in prediction across the 345 goals was 0.01 and the absolute error in prediction was 0.07. In an
effort to maximize internal validity of the model, we generated best fitting parameter estimates for this group of
students and refit the tutor data. With these best fitting estimates, actual and expected accuracy values correlated
0.90, the mean error was 0.003 and the mean absolute error rate was 0.04. We employed these best fitting parameter
estimates to establish an upper bound on the validity of the model in predicting test performance in this study.

Recall that the probability of completing a test exercise correctly is the product of the probabilities of satisfying
each goal successfully. To assess test predictive validity, we computed (1) the proportion of exercises each student



Corbett and Anderson 11 Knowledge Tracing

completed correctly and (2) the average predicted probability of completing the exercises correctly. The results are
displayed in Table I.

Table I
Actual and expected proportion of exercises completed correctly across subjects in each of the three tests in
Experiment 2.

Mean Proportion Correct

Actual Expected MAE? rAEb TARS
Test 1 0.89 0.90 0.09 - -0.25
Test 2 0.89 0.84 0.11 - -0.64
Test 3 0.55 0.64 0.18 0.69 - 0.68

4 MAE = mean absolute error in accuracy prediction across students
b rAE = correlation of actual and expected accuracy across students
CrAR = correlation of error rate on required tutor exercises and test accuracy across students

The first column displays the mean actual accuracy level across students and the second column displays the
mean predicted accuracy of the model. As can be seen, the model is quite accurate in predicting overall test accuracy
for the twenty students. The third column displays the mean absolute error in these predictions across students. The
fourth column, rAE, displays the correlation across students of the actual probability and expected probability of
writing correct programs. This correlation could not be computed for the first two tests in this study because the
model was completely insensitive to individual differences among students in the first two posttests. These two
tests followed the first and fourth curriculum sections and, according to the model, students had mastered all the
rules. There was no variability in the knowledge estimates across students in these sections, and therefore no
variability in the model's predictions of test performance. The third test, however, included a large number of
exercises from the final tutor section in which students did not work to mastery. As a result, students’ absolute
performance level is substantially lower on the third test, and there is substantially more variability in the model's
estimate of the stdents' knowledge state. Under these conditions, the knowledge tracing model is quite sensitive to
individual differences in test performance. The correlation of actual and expected valued, r = 0.69 is reliable. (The
sample size is 19, since one student's test data were lost. A correlation of 0.46 or higher is reliable at the 0.05 level
in this study).

While the model performed well at predicting student performance at intermediate learning levels of the third test,
its predictions for the first two tests are suspect. The model suggests that all students are in the same learning state
for these two tests and any variation in the actual test scores reflects random noise. This seems implausible because
there were discernible differences among students upon entering the study, as reflected in the wide range in number of
remedial exercises completed by different students, from as few as 3 to as many as 63. While remediation should
atenuate these differences it is highly unlikely that it would completely eliminate them. To examine this issue
further, we computed a raw measure of student entry characteristics: the tutor number of errors each student made in
completing the fixed set of required exercises. We correlated this measure of raw error rate in the tutor with actual
test accuracy for each of the three tests. These correlations are presented in column 5 of Table I (TAR).

In each case, there is a negative correlation between raw error rate in the tutor and test accuracy. In general, the
more difficulty students had in completing the fixed set of tutor exercises, the worse they performed on the test,
despite the tutor’s efforts at remediation. The correlation for the first test, AR = -0.25, is not reliable, though, so
we cannot reject the model's contention that there are no genuine differences among students on this test. The



Corbett and Anderson 12 Knowledge Tracing

reliable correlation of tutor errors and test accuracy for the third test, rAR = -0.68, also poses no problem for the
model. Students did not master the full curriculum for test three, so test accuracy would be expected reflect tutor
difficulty and the model is quite sensitive to residual individual differences, rAg = 0.69. The correlation of tutor
errors and test accuracy for the second test, rAR = -0.64 is problematic, however. While the model indicates there are
no differences among students following remediation, tutor error rate is a strong and reliable predictor of test
performance. Students who struggled in completing the tutor exercises continued to struggle on the second test. As
described in the next section, this pattern of results can arise when individual differences among students in learning
and performance are not represented in the model.

4.4 Individual Differences in Learning and Performance

The learning and performance parameter estimates in the previous study varied across rules and thereby reflected
average differences in rule difficulty. They did not reflect individual differences among students in learning and
performance. As a result, the model mis-estimates the learning state of students to the extent they fall above or
below average in learning and performance. The model underestimates the true learning and performance parameters
for above-average students. As a result, these students who make few errors receive more remedial exercises than
necessary and perform better on the test than expected. In contrast, the model overestimates the true learning and
performance parameters for below-average students who make many errors. While these students receive more
remedial exercises than the above average students, they nevertheless receive less remedial practice than they need and
perform worse on the test than expected. This results in the observed negative correlation of tutor errors and posttest
accuracy.

To explore this issue, we incorporated differences among students into the model in the form of individual
difference weights. Four weights are estimated for each student, one weight for each of the four parameter types
(p(L0), p(D), p(G), p(S)). While the parameter estimates vary across rules, a single adjustment weight for each
parameter should be sufficient for each student, since an earlier study of individual differences in Lisp learning failed
to find any interaction of individual student differences and differences in rule difficulty (Anderson, Conrad & Corbett,
1989). In the revised model, each of the four probability estimates for each rule is converted to odds form (p/(1-p)),
multiplied by the corresponding subject-specific weight and the resulting odds form is converted back to a
probability. If we let i represent the parameter type, (p(LQ), p(T), p(G), p(S)), r represent the rule and s the subject,
then the individually weighted parameter for each rule and subject is given by the following equation:

pir * Wis
Pirs = [4]
pir * wig + (1 - pir)

where Pjr is a best fitting parameter estimate for the rule across all students and wijy is the corresponding individual
difference weight for the student.

We initially examined this model with the tutor and test data from Experiment 2. We assumed that each of the
four individual difference weighis is constant over time for a student and derived a best-fitting set of weights for each
student given the group parameter estimates and student's tutor performance data. We used these weights to
individualize the four parameter estimates for each rule for each student then we ran the knowledge tracing procedure
over the students' tutor data to derive revised test predictions. The resulting test predictions are displayed in Table II
Of course, actual test performance in the first column has not changed, and the mean accuracy predictions are quite
similar to the prior analysis. However, this individualized model is considerably more sensitive to individual
differences in the second test. The correlation of actual and expected accuracy for that test is now reliable, r=0.51.

4.4.1 Experiment 3: Dynamic Estimation of Individual Differences

The preliminary analysis of individual differences was promising, but the procedure employed does not lend itself
to dynamic decision making as the student works through the tutor, since best fitting weights were derived after the
students had completed work. However, the logarithms of the best-fitting weights for each student in this analysis
correlated reliably with the student's raw error rate in completing the required tutor exercises and this relationship can
be used to estimate individual differences dynamically as students works. As the student completes a minimal set of



Corbett and Anderson 13 A Knowledge Tracing

Table II

Individual differences: Actual and expected proportion of exercises completed correctly across subjects in each of the
three tests in Experiment 2, based on best fitting individualized parameter estimates.

Mean Proportion Correct

Actual Expected MAE2 rAEb rARC
Test 1 0.89 091 0.10 -0.02 -0.25
Test 2 0.89 0.86 0.10 0.51 -0.64
Test 3 0.55 0.68 0.16 0.72 - 0.68

4 MAE = mean absolute error in accuracy prediction across students
b rAE = correlation of actual and expected accuracy across students
C rAR = correlation of error rate on required tutor exercises and test accuracy across students

required exercises at the beginning of each curriculum section, the student's sequence of actions can be stored by the
wtor. The student’s error rate on these required exercises is then used to estimate a set of student-specific learning
and performance weights by means of regression equations and weighted parameter estimates are derived. The
students’ stored actions for the required exercises are then knowledge-traced to estimate the student's current
knowledge state. Remedial exercises are subsequently selected and knowledge tracing continues until the student has
mastered each of the rules introduced in the curriculum section.

We have examined this estimation procedure in two studies. The first is reported in Corbett, Anderson, Carver &
Brancolini, 1994). In this study, twenty students worked through the same curriculum as in the preceding study and
completed an average of 11 remedial exercises, with a range of 0 to 98. Thus, while the mean number of remedial
exercises is similar to the prior study, the range is wider, as would be expected when parameter estimates are
individualized. This model provided a good fit to the tutor data. The correlation of expected and actual mean error
rates across the 345 goals in the required exercises was 0.79, p < .0001. The mean error in prediction across the 345
goals was 0.001 and the absolute error in prediction was 0.06. Table III displays the test results of this study. As
can be seen, the model accurately predicts overall performance level on the first test, while overestimating
performance on the final two tests by about 10%. The final two columns report the correlation of actual quiz
performance with predicted performance and raw tutor error rate respectively. The results for the first and third tests
are comparable to those obtained with the earlier non-individualized knowledge tracing process. There is no evidence
of individual differences in the relatively easy first test, while the model is very sensitive to remaining individual
differences at the sub-mastery levels of performance in the third test, r = 0.81 (a correlation of 0.45 or greater is
reliable at the 0.05 level). The second test provides the crucial assessment of the revised individualized knowledge
tracing model. In the present study, there is again a strong correlation of Posttest 2 performance with raw error rate,

= -0.63, so genuine individual differences persist, although students have nominally worked to mastery. Unlike the
standard model, however, the individualized knowledge tracing model is moderately sensitive to these residual
differences, r = 0.31, p < 0.10.

The model's sensitivity to individual differences on this second test depends primarily on estimated differences
among students in performance, rather than knowledge state. Since all students have worked to mastery
in this test, the probability that a given student has learned each of the rules ranges from 0.95 to 1.00. The small
differences in these probabilities have little impact on accuracy predictions. Instead, accuracy predictions are strongly
related to differences in the slip parameter estimates across students, that is, to persistent differences among students



Corbett and Anderson 14 Knowledge Tracing

Table I

Dynamic estimation of individual differences Actual and expected proportion of exercises completed correctly across
subjects in each of the three tests in Experiment 3, based on dynamically estimated individualized parameter

estimates.
Mean Proportion Correct
Actual Expected MAE? TAED TARC
Test 1 0.92 0.91 a2 -0.02 0.05
Test 2 0.76 0.87 15 0.31 - 0.63
Test 3 0.66 0.75 15 0.81 -0.78

a MAE = mean absolute error in accuracy prediction across students
b rAE = correlation of actual and expected accuracy across students
CrAR = correlation of error rate on required tutor exercises and test accuracy across students

in the probability of making a mistake when an appropriate rule is in the leamed state. The nature of the slip
parameter is discussed more fully below.

4.4.2 Experiment 4: Current Assessment of Knowledge Tracing

We've recently completed a second evaluation of this individualized knowledge tracing process. The curriculum in
this study was extended to include a section of more complex constructor/extractor algorithms, while the total
number of required exercises was reduced from 64 to 38. A new test was also constructed to follow the new
curriculum section. Twenty-five students worked through this curriculum to mastery. Individualized parameters
were again estimated along the way (based on about half as much data as in the previous study) and students
completed an average of 29 remedial exercises. The model's predictions again fit the tutor data well. The correlation
of expected and actual mean error rates across the 214 goals in the required exercises was 0.71, p < .0001. The mean
error in prediction across the 345 goals was 0.001 and the absolute error in prediction was 0.06.

Test performance is displayed in Table IV. Note that students worked to mastery on the full curriculum for all
three tests in this table, and not just the first two tests as in the prior studies. Overall the pattern of results is
similar to the previous study. Average actual and predicted accuracy are again displayed in the first two columns of
the table and actual accuracy is 5% - 10% lower than predicted. The correlation of actual test accuracy with predicted
accuracy and with raw tutor error rate is displayed in the final two columns. No individual differences are apparent in
the first test, while the correlation of actual and expected accuracy across students is marginally reliable for the
second test (r = 0.36, p < 0.10) and reliable for the third test (r = 0.66, p < 0.01).

Figure 7 displays the correlation of expected and actual test accuracy for the twenty-five students on the third test.
In addition to the quality of the fit, we can ask how successful the model is in enabling students to master the
curriculum based on their actual test performance. If we adopt a strict operational definition of mastery as 90%
correct on the test, Figure 7 indicates that 56% of the students in this knowledge tracing condition reached the
mastery performance level. A second group of twenty-one students in this study who completed just the 38 required
exercises provides a contrast. Only 24% percent of these students reached this high level of test performance. This
difference in the probability of success between groups is reliable, z = 2.21, p < 0.05. Students in the knowledge
tracing condition average 29 remedial exercises, so they are completing about 76% more tutor exercises than the
comparison group. Since the tutor speeds practice by as much as a factor of three, though, total time to complete



Corbett and Anderson 15 ' Knowledge Tracing

Table IV

Current Assessment of Knowledge Tracing: Actuat and expectbd proportion of exercises completed correctly across
subjects in each of the three tests in Experiment 4, based on dynamically estimated individualized parameter

estimates.
Mean Proportion Correct
Actual Expected MAE? rAED TARC
Test 1 0.88 0.94 0.11 0.24 -0.28
Test 2 0.81 0.89 0.11 0.36 - 0.52
Test 3 0.81 0.86 0.10 0.66 -0.73

4 MAE = mean absolute error in accuracy prediction across students
b rAE = correlation of actual and expected accuracy across students
€ rAR = correlation of error rate on required tutor exercises and test accuracy across students

the exercises in the knowledge tracing tutor condition would compare very favorably with total time for students
working through just the fixed set of exercises on their own.

5. Future Directions

One interesting observation concerning Figure 7 is that while the model estimates that all students have essentially
learned the underlying programming rules, it predicts that some students will make almost 40% errors on the quiz
problems. As described earlier, the model's mastery judgments are based on inferences about the student's knowledge
state, but test performance predictions depend both on the student's knowledge of the rules and on the performance
parameters. When students have worked to mastery in the tutor, the variability in the model's predictions depend
primarily on one of these performance parameters, the slip parameter.

The importance of the slip parameter in test predictions can be seen if we try predicting performance just from
the student's knowledge state without considering performance, i.e., with the equation p(Cis) = p(Lys). According to
the model, the probability that a given student has learned each rule ranges from 0.95 to 1.00. If test predictions are
based solely on these knowledge probabilities without considering the performance parameters the model greatly
overestimates average accuracy. The predicted accuracy for the third test under this model is 0.99 compared to an
average actual accuracy of 0.86. Note that incorporating the guess performance parameter (the probability of a
correct response if an appropriate rule is unknown) in the predictions tends to raise the predicted accuracy level. In
reality, however, the guess parameter has almost no impact on the test predictions, since the estimated probability of
having learned each rule is so close to 1.0. Instead, the variability in the model's predictions of test performance
primarily reflect persisting differences among students in the slip parameter. This can be seen in the correlation of
In(slip weight) and test accuracy across students, r = - 0.72.

There are several interpretations of slips. One is that individual differences in the slip weight reflect a pure
performance effect, i.e., that there are persistent differences in the care with which students perform the task. This
interpretation suggests that there may be a limit on the extent to which 'operational’ mastery can be achieved, that is,
a limit on the proportion of students who will reach a strict test performance criterion. Certainly it suggests that
additional gains will be achieved by manipulating the student's incentive to perform carefully on the test rather than



Corbett and Anderson 16 Knowledge Tracing

1.1
1.0 - l(o)co)
1 00 ©
0.9 000 0®
> (o] (o]
§ 0.8 4
8 -
=< o
§  07-
3 (e Je) ®
o
2 06- ©
=
0.5 - o
0.4 4 o)
0.3 v T T T T T T T T T T T T T

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Test 3 Expected Accuracy

Figure 7. Actual accuracy on the third test of Experiment 4 plotted as a function of expected accuracy for twenty-five
students.

through additional leaming. Given the simplicity of the learning and performance assumptions in knowledge
tracing, though, it may be that individual differences in the slip parameter actually reflect learning-state differences.
One plausible interpretation is that the slip parameter reflects differences in the strength of underlying production
rules. The ACT-R model assumes that each rule has a strength property that varies as a function of practice and that
influences both the speed and reliability with which the rule fires. Strength is not directly represented in the learning
and performance assumptions of the simple knowledge tracing model, but would be reflected in the slip parameter.
Consider the pammeler-declaraxjon rule described earlier. Students who form an ideal rule early will have an
opportunity to apply the rule in every function definition exercise. Students who initially form a suboptimal rule
ulumately must form at least one more rule to replace or supplement the initial rule and the resulting rule(s) will
receive less practice. This interpretation suggests that providing more practice exercises even after the student has
reached the criterion learning state can improve test performance. Such a framework can be implemented by
allowing each student's slip weight to vary as a function of practice and continuing practice until it reaches a
sufficiently low value.

Alternatively, the slip parameter may reflect the content of the rules the student has formulated. That is, students
who form a rule or rule set that is highly correlated with the ideal rule will appear to know the ideal rule, but appear
to slip from time to time. Under this interpretation, there is no guarantee that additional practice exercises will have
a pronounced impact on test performance, once the knowledge probability estimate has reached the 0.95 mastery
criterion. This suggests that it is necessary to monitor the content of students’ rules more closely. Under this
interpretation it may prove more cost effective to directly assess and remediate students' knowledge of key declarative
concepts prior 1o practice, rather than trying to tease apart alternative rule formulations during practice.



Corbett and Anderson 17 Knowledge Tracing

6. Conclusion

We started this research effort with an executable cognitive model of Lisp programming skill. This model consisted
of a set of ideal production rules and formed the core of a successful intelligent programming tutor. The goal of the
research was to implement a simple student modeling process that would allow the tutor to monitor the student's
knowledge state and tailor the sequence of practice exercises to the student's needs. The resulting knowledge tracing
process models the student as an overlay of the production rules and the mastery-based curriculum structure allows us
to associate each programming action with a single production rule. A simple two-state learning model enables us
to estimate the student's knowledge state from performance and predict performance from that knowledge state.
Successive evaluations led us to (1) abandon an initial ideal student model and to model a sufficient set of rules, (2)
to model differences in rule difficulty and (2) to model individual differences among students in learning and
performance. The resulting model predicts student performance quite well and enables most students to reach a high
level of task performance. It may be possible to improve on this level of performance and enable more students to
reach mastery by manipulating incentive in testing, by providing additional procedural practice or by monitoring and
remediating students' knowledge of key declarative concepts.

Acknowledgements

This research was supported by the Office of Naval Research grant N00014-91-J-1597. We would like to thank
Valerie Carver, Scott Brancolini, Alison O'Brien, Chris Taylor and Holly Trask for assistance in data collection and

analysis.

References

Anderson, J. R.: 1993, Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R,, C. F. Boyle, A. T. Corbett, and M. W, Lewis: 1990, Cognitive modeling and intelligent
tutoring. Artificial Intelligence, 42, 7-49,

Anderson, J. R., F. G. Conrad, and A. T. Corbett: 1989, Skill acquisition and the LISP Tutor. Cognitive Science,
13, 467-505.

Anderson, J. R., F. G. Conrad, A. T. Corbett, J. M. Fincham, D. Hoffman, and Q. Wu: 1993, Computer
programming and transfer. In J. Anderson (ed). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, J. R., A. T. Corbett, J. M. Fincham, D. Hoffman, and R. Pelletier: 1992, General principles for an
intelligent tutoring architecture. In J.Regian & V. Shute (eds.) Cognitive approaches to automated instruction.
Hillsdale, NJ: Erlbaum.

Anderson, J. R., A. T. Corbett, K. R. Koedinger, and R. Pelletier: in press, Cognitive tutors: Lessons learned.
Journal of the Learning Sciences.

Anderson, J. R. and B. J. Reiser: 1985, The Lisp Tutor. Byie, 10, (4), 159-175.

Atkinson, R.C.: 1972, Optimizing the learning of a second-language vocabulary. Journal of Experimental
Psychology, 96, 124-129,

Atkinson, R, C. and J. A. Paulson: 1972, An approach to the psychology of instruction. Psychological Bulletin,
78, 49-61.

Block, J. H. and R. B. Bums: 1976, Mastery learning. In L. S. Shulman (ed.) Review of research in education,
Volume 4. Itasca, IL: F. E. Peacock (AERA).



Corbett and Anderson 18 Knowledge Tracing

Bloom, B. S.: 1968, Learning for mastery. In Evaluation Comment, I. Los Angeles: UCLA Center for the
Study of Evaluation of Instructional Programs.

Carroll, J. B.: 1963, A model of school learning. Teachers College Record, 64, 723-733.

Corbett, A. T. and J. R. Anderson: 1993, Student modeling in an intelligent programming tutor. In E. Lemut, B.
du Boulay & G. Dettori (eds.) Cognitive models and intelligent environments for learning programming. New
York: Springer-Verlag.

Corbett, A. T., J. R. Anderson, V. H. Carver, and S. A. Brancolini: 1994, Individual differences and predictive
validity in student modeling. In A. Ram & K. Eiselt (eds.) The Proceedings of the Sixteenth Annual
Conference of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum.

Corbett, A.T. and J. R. Anderson and A. T. O'Brien: in press, Student modeling in the ACT Programming Tutor.
In P. Nichols, S. Chipman and B. Brennan (eds.) Alternative Diagnostic Assessment.. Hillsdale, NJ: Erlbaum.

Duncan, D., P. Bma, and L. Morss: 1994, A Bayesian approach to diagnosing problems with prolog control flow.
In B. Goodman, A. Kobsa & D. Litman (eds.) User Modeling: Proceedings of the Fourth International
Conference. Bedford, MA: The MITRE Corporation.

Goldstein; I. P: 1982, The genetic graph: A representation for the evolution of procedural knowledge. In D.
Sleeman and J.S.Brown (eds.) Intelligent tutoring systems. New York: Academic.

Guskey, T. R. and T. D. Pigott: 1988, Research on group-based mastery leaming programs: A meta-analysis.
Journal of educational research, 81, 197-216.

Hyman, J. S. and A. Cohen: 1970, Learning for mastery: Ten conclusions after 15 years and 3,000 schools.
Educational Leadership, 37, 104-109.

Keller, F. S.: 1968, "Good-bye teacher...." Journal of applied behavioral analysis, 1, 79-89.

Kessler, K.: 1988, fer ming skills in novi rs. Unpublished doctoral dissertation,
Camegie Mellon University, Pittsburgh, PA.

Kieras, D. E. and S. Bovair: 1986, The acquisition of procedures from text: A production system analysis of
transfer of training. Journal of Memory and Language, 25, 507-524.

Kulik, C. C.,J. A. Kulik, and R. L. Bangert-Drowns: 1990, Effectiveness of mastery learning programs: A meta-
analysis. Review of Educational Research, 60, 265-299.

Kulik, J. A., C. C. Kulik, and P.A. Cohen: 1979, A meta-analysis of outcomes studies of Keller's Personalized
System of Instruction. American Psychologist, 34, 307-318.

McKendree, J. E. and J. R. Anderson: 1987, Effect of practice on knowledge and use of basic Lisp. In J.M.
Carroll, (ed.) Interfacing thought. Cambridge, MA: MIT Press.

Newell, A.: 1990, Unified theories of cognition. Cambridge, MA: Harvard University Press.

Pennington, N. and R. Nicolich: 1991, Transfer of training between programming subtasks: Is knowledge really
use specific? In J. Koenemann-Belliveau, T. Moher & S. Robertson (eds.) Empirical studies of programmers:
Fourth workshop. Norwood, NJ: Ablex.

Reed, S. K., A. Dempster, and M. Ettinger:1985, Usefulness of analogous solutions for solving algebra word
problems. Journal of Experimental Psychology: Learning, Memory and Cognition, 11, 106-125.

Resnick, L. B.: 1977, Assuming that everyone can learn everything, will some learn less? School Review, 85,
445452,



Corbett and Anderson 19 Knowledge Tracing

Resnick, L. B. and D. P. Resnick: 1992, Assessing the thinking curriculum: New tools for educational reform. In
B. Gifford & M. O'Connor (eds.) Changing assessments: Alternative views of aptitude, achievement and
instruction. ‘Boston: Kluwer.

Self, J. A.: 1988, Bypassing the intractable problem of student modeling. In C. Frasson (ed). Intelligent Tutoring
Systems: The proceedings of the of ITS-88. Montreal: The University of Montreal.

Shepard, L. A.: 1991, Psychometrician's beliefs about learning. Educational Researcher, 20, 2-16.

Singley, M. K.: 1986, Developing models of skill acquisition in the context of intelligent tutoring systems.
Unpublished doctoral dissertation, Camegie Mellon University, Pittsburgh, PA.

Singley, M. K. and J. R. Anderson: 1989, The transfer of cognitive skill. Cambridge, MA: Harvard University
Press.

Slavin, R. E.: 1987, Mastery learning reconsidered. Review of educational research, 57, 175-213.
VanLehn, K.: 1990, Mind bugs: The origins of procedural misconceptions. Cambridge, MA: The MIT Press.

Wenger, R. H.: 1987, Cognitive science and algebra learning. In A.Schoenfeld (ed.) Cognitive science and
mathematics education. Hillsdale, NJ: Lawrence Erlbaum. '






