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ABSTRACT	
Context-aware	computing	utilizes	 information	about	users	and/or	their	environments	 in	order	to	provide	relevant	
information	and	services.	To	date,	however,	most	context-aware	applications	only	take	advantage	of	contexts	that	
can	either	be	produced	on	the	device	they	are	running	on,	or	on	external	devices	that	are	known	beforehand.	While	
there	are	many	application	domains	where	sharing	context	is	useful	and/or	necessary,	creating	these	applications	is	
currently	difficult	because	there	is	no	easy	way	for	devices	to	share	information	without	1)	explicitly	directing	them	
to	 do	 so,	 or	 2)	 through	 some	 form	of	 advanced	 user	 coordination	 (e.g.,	 sharing	 credentials	 and/or	 IP	 addresses,	
installing	and	running	the	same	software).	This	makes	 these	techniques	useful	when	the	need	to	share	context	 is	
known	a	priori,	but	impractical	for	the	one	time,	opportunistic	encounters	which	make	up	the	majority	of	users’	lives.	

To	address	this	problem,	this	thesis	presents	the	Group	Context	Framework	(GCF),	a	software	framework	that	allows	
devices	 to	 form	groups	 and	 share	 context	with	minimal	 prior	 coordination.	GCF	 lets	 devices	 openly	 discover	 and	
request	context	from	each	other.	The	framework	then	lets	devices	intelligently	and	autonomously	forms	opportunistic	
groups	and	work	together	without	requiring	either	the	application	developer	or	the	user	to	know	of	these	devices	
beforehand.	 GCF	 supports	 use	 cases	 where	 devices	 only	 need	 to	 share	 information	 once	 or	 spontaneously.	
Additionally,	the	framework	provides	standardized	mechanisms	for	applications	to	collect,	store,	and	share	context.	
This	lets	devices	form	groups	and	work	together,	even	when	they	are	performing	logically	separate	tasks	(i.e.,	running	
different	applications).	

Through	the	development	of	GCF,	this	thesis	identifies	the	conceptual	and	software	abstractions	needed	to	support	
opportunistic	 groups	 in	 context-aware	 applications.	 As	 part	 of	 our	 design	 process,	we	 looked	 at	 current	 context-
sharing	applications,	systems,	and	frameworks,	and	developed	a	conceptual	model	that	identifies	the	most	common	
conditions	that	cause	users/devices	to	form	a	group.	We	then	created	a	framework	that	supports	grouping	across	this	
entire	model.	Through	the	creation	of	four	prototype	systems,	we	show	how	the	ability	to	form	opportunistic	groups	
of	devices	can	increase	users	and	devices’	access	to	timely	information	and	services.	Finally,	we	had	20	developers	
evaluate	GCF,	and	verified	that	the	framework	supports	a	wide	range	of	existing	and	novel	use	cases.	Collectively,	this	
thesis	 demonstrates	 the	 utility	 of	 opportunistic	 groups	 in	 context-aware	 computing,	 and	 highlights	 the	 critical	
challenges	that	need	to	be	addressed	to	make	opportunistic	context	sharing	both	practical	and	usable	in	real-world	
settings.	

The	contributions	of	this	thesis	are:	

1. A	conceptual	model,	based	on	an	analysis	of	prior	literature,	which	describes	the	conditions	under	which	
users	and/or	devices	form	and	work	in	groups.	

2. An	implementation	of	the	Group	Context	Framework,	which	highlights	the	software	abstractions	and	
architecture	needed	to	support	all	of	the	group	types	identified	in	our	conceptual	model.	

3. A	demonstration	of	the	value	of	opportunistic	groups	in	context	aware	computing,	through	the	creation	
of	four	major	systems	and	numerous	smaller	applications.	

4. A	validation	of	GCF’s	robustness,	through	an	examination	of	65	ideas	submitted	by	20	developers.	
5. An	 examination	 of	 the	 challenges	 associated	 with	 utilizing	 opportunistic	 groups	 in	 context-aware	

applications,	based	on	our	own	experiences	using	GCF,	as	well	as	from	issues	raised	by	developers	from	
academia	and	industry.	
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1. INTRODUCTION	AND	MOTIVATION	
When	Mark	Weiser	discussed	the	idea	of	context-aware	computing	in	“A	Computer	for	the	21st	Century",	he	described	
a	 future	 in	which	 computers	would	 be	 able	 to	 dynamically	modify	 their	 behavior	 in	 response	 to	 users	 and	 their	
environment	 [120].	 Since	 then,	we	 have	made	 considerable	 progress	 towards	 achieving	 this	 grand	 vision.	 Digital	
assistants	such	as	Google	Now	and	Siri	have	demonstrated	how	knowing	even	a	small	amount	of	information	about	a	
user	(e.g.,	her	location,	activity)	can	significantly	improve	a	system’s	ability	to	provide	them	with	the	right	information	
at	the	right	time.	Meanwhile,	the	rapid	proliferation	of	mobile/wearable	devices	and	cheap	sensor	platforms	(e.g.,	
GPS,	 accelerometers,	 heartbeat	 sensors)	 has	 dramatically	 increased	 both	 the	 quantity	 and	 types	 of	 contextual	
information	that	are	widely	available,	and	have	created	new	opportunities	for	applications	to	monitor	the	user’s	state	
and	respond	accordingly.		

Together,	 these	 factors	 have	 fundamentally	 redefined	our	 expectations	 as	 to	how	 computers	 should	behave	 and	
operate.	 In	 the	early	days	of	computing,	users	were	expected	to	manually	 input	all	of	 their	 information	 into	their	
applications	 in	 order	 to	 gain	 access	 to	 their	 services.	 Today,	 however,	 there	 are	many	 types	 of	 information	 that	
computers	 are	 expected	 to	 “just	 know”	 on	 their	 own.	 When	 we	 turn	 on	 a	 map	 application,	 we	 expect	 it	 to	
automatically	zoom	and	center	the	map	on	our	current	location.	Likewise,	when	we	travel	to	a	foreign	country,	we	
expect	our	smartphone	will	automatically	update	its	internal	clock	to	match	the	local	time.	While	these	examples	are	
simplistic,	 they	highlight	 the	subtle	but	 important	 role	 that	context	plays	 in	our	everyday	computing	experiences.	
When	viewed	in	this	light,	context-awareness	is	no	longer	a	“nice	to	have”	feature.	Instead,	it	is	a	fundamental	building	
block	for	modern	software	systems,	and	a	vital	technique	for	developers	to	leverage	when	creating	their	applications.	

Although	prior	 research	 has	 shown	 the	 value	 of	 context-awareness	 in	 a	wide	 range	 of	 application	 domains	 (e.g.,	
navigation	systems,	intelligent	tutors	[60],	health	care	[12],	Internet	of	Things	[54,91]),	our	ability	to	create	context-
aware	 systems	 is	 still	 largely	 constrained	 by	 current	 technology.	 To	 date,	most	 context-aware	 systems	 only	 take	
advantage	of	contexts	that	are	either	produced	on	the	device(s)	they	are	running	on,	or	from	external	sources	that	
are	known	a	priori	(e.g.,	sensors	in	an	environment	that	we	frequently	visit).	This	is	because	sharing	context	is	still	
nontrivial,	and	requires	some	form	of	explicit	coordination	(e.g.,	pairing	devices,	downloading	and	running	the	same	
application,	trading	credentials)	between	the	device(s)	that	are	producing	context	and	the	device(s)	that	consume	it.	
While	this	one-time	setup	is	practical	when	the	need	to	share	context	is	1)	known	well	in	advance,	and/or	2)	occurs	
repeatedly,	it	is	cumbersome	when	devices	only	need	to	share	context	once	or	spontaneously.	As	a	result,	researchers	
and	developers	oftentimes	avoid	creating	applications	that	rely	on	one-time	exchanges	of	contextual	information,	as	
the	effort	required	to	implement	this	functionality	currently	outweighs	its	benefits.	

Nevertheless,	 there	 are	 many	 situations	 in	 which	 being	 able	 to	 opportunistically	 share	 context	 would	 be	
advantageous.	For	example,	if	a	group	of	smartphones	are	physically	near	one	another	and	are	running	a	navigation	
application,	it	makes	sense	for	them	to	be	able	to	conserve	resources	by	taking	turns	running	their	GPS	and	sharing	
the	coordinates	with	each	other.	Similarly,	if	a	group	of	co-workers	just	happen	to	meet	in	a	break	area	and	want	to	
schedule	a	meeting,	it	makes	sense	for	their	devices	to	be	able	to	quickly	share	their	work	calendars	with	each	other	
so	that	they	can	determine	the	best	time	to	meet.	

At	 first	 glance,	 these	 examples	 seem	 too	 coincidental	 and	 spontaneous	 to	 warrant	 special	 consideration.	 It	 is	
important	 to	 realize,	 however,	 that	 opportunistic	 groupings	 such	 as	 these	 make	 up	 the	 vast	 majority	 of	 users’	
interactions	with	the	physical	world.	It	is	not	uncommon	for	people	to	engage	in	spur-of-the-moment	interactions,	
such	as	asking	a	stranger	 for	directions	or	 receiving	one-time	advice	 from	a	 friend	or	colleague,	without	explicitly	
planning	for	these	exchanges	in	advance.	Yet	while	people	have	an	innate	ability	to	take	advantage	of	opportunistic	
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encounters	to	share	information	and	collaborate	with	others,	our	devices	lack	the	ability	to	do	the	same.	As	long	as	
this	is	the	case,	there	will	always	be	a	logical	separation	between	the	way	we	interact	with	their	environments	and	
the	way	that	our	devices	do.	This	in	turn	limits	the	types	of	interactions	that	these	devices	can	naturally	and	seamlessly	
support.	

In	this	thesis,	we	aim	to	extend	the	reach	of	context-aware	computing	by	allowing	devices	to	easily	share	context	with	
each	other,	even	when	they	are	interacting	with	each	other	for	the	first	time.	To	accomplish	this,	we	have	developed	
the	Group	Context	Framework	(GCF),	a	novel	software	framework	that	allows	devices	to	opportunistically	detect	one	
another,	 form	 groups,	 and	 share	 context	 with	 minimal	 prior	 coordination.	 GCF	 consists	 of	 two	 main	 software	
abstractions.	 The	 first	 is	 an	 architecture	 that	 allows	devices	 to	 collect,	 store,	 and	 share	 context	 in	 an	 application	
independent	manner.	The	second	is	a	robust	communications	suite	that	allows	devices	to	openly	request	and	receive	
context	 without	 requiring	 a	 priori	 knowledge	 of	 one	 another.	 By	 packaging	 these	 capabilities	 into	 a	 standalone	
middleware,	GCF	makes	it	easier	for	developers	to	utilize	opportunistic	sources	of	context	in	their	applications.	This	
increases	the	number	and	types	of	context	that	can	be	easily	collected	and	shared,	and	expands	the	range	of	context-
aware	applications	that	can	be	practically	created	and	deployed.	

This	thesis	makes	contributions	to	the	fields	of	1)	mobile	and	ubiquitous	computing,	and	2)	context-aware	computing.	
Through	an	extensive	literature	review,	we	have	examined	a	wide	range	of	context-sharing	applications,	systems,	and	
frameworks,	and	developed	a	conceptual	model	that	describes	the	conditions	that	cause	users	and/or	devices	to	form	
and	operate	in	groups.	We	then	used	this	model	to	create	a	framework	that	can	intelligently	and	autonomously	form	
opportunistic	 groups	 under	 the	widest	 conceivable	 range	 of	 use	 cases.	 Through	 the	 creation	 of	 three	 functional	
prototypes,	we	evaluate	GCF’s	robustness,	and	conduct	a	series	of	focused	explorations	to	identify	1)	the	types	of	
context-aware	applications	that	can	be	easily	created	when	devices	can	share	context	at	will,	and	2)	the	capabilities	
needed	to	support	these	interactions	through	software.	We	then	conduct	a	postmortem	analysis	of	these	systems,	
and	collect	developer	feedback	to	identify	the	challenges	of	using	opportunistic	groups	from	a	developer,	user,	and	
system	 perspective.	 Collectively,	 this	 work	 demonstrates	 how	 opportunistic	 groups	 can	 be	 used	 to	 expand	 the	
application	space	for	context-aware	computing,	and	the	potential	dangers	of	doing	so.	Additionally,	this	work	provides	
developers	with	a	robust	and	flexible	architecture	to	allow	them	to	easily	incorporate	this	functionality	within	their	
own	applications.	

Having	motivated	the	 importance	of	supporting	opportunistic	groups	 in	context-aware	computing,	the	rest	of	this	
chapter	is	organized	as	follows.	In	the	next	section,	we	provide	operational	definitions	of	the	terms	context-aware	
computing	 and	opportunistic	group	 as	 they	pertain	 to	 this	 thesis.	Afterwards,	we	describe	 the	challenges	 in	using	
opportunistic	groups	in	context-aware	computing,	and	motivate	the	need	for	a	framework	that	can	support	grouping	
and	context	sharing	across	the	widest	conceivable	range	of	use	cases.	We	then	conclude	this	chapter	with	a	discussion	
of	our	research	questions	and	expected	contributions.	

1.1. WHAT	IS	CONTEXT-AWARE	COMPUTING?	
What	does	it	mean	for	computer	system	to	be	“context-aware?”	Surprisingly,	there	is	not	a	straightforward	answer	
to	this	question.	Although	context-aware	computing	has	been	studied	as	early	as	1992	with	the	Active	Badge	system	
[116],	the	term	itself	is	still	nebulous,	and	has	been	interpreted	and	redefined	a	number	of	time	over	the	years	[91].	
Thus	in	order	to	ground	this	our	work,	we	examine	past	efforts	at	defining	context	and	context-awareness,	and	select	
an	operational	definition	of	each.	

There	are	two	key	challenges	in	developing	a	meaningful	definition	of	context-awareness.	The	first	is	deciding	what	
qualifies	 as	 context.	 Although	 researchers	 oftentimes	 have	 a	 general	 intuition	 as	 to	what	 context	 is,	 attempts	 at	
defining	it	regularly	devolve	into	a	list	of	representative	examples.	Schilit	and	Theimer,	for	example,	define	context	as	
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location,	nearby	people/objects,	and	changes	to	those	objects	over	time	[104].	An	alternative	definition,	provided	by	
Brown	et	al.	and	Ryan	et	al.,	includes	many	of	these	dimensions,	but	also	takes	the	user/device’s	orientation	[13],	as	
well	as	their	identity	[99]	into	account.	In	Hull	et	al.,	context	is	defined	as	a	summation	of	the	user’s	situation,	such	as	
his/her	 personal	 health,	 identity,	 companions,	 and	 available	 computing	 resources	 [59].	 Finally,	 in	 Dey,	 context	 is	
viewed	as	a	summation	of	the	user’s	emotional	state,	focus	of	attention,	location/orientation,	date/time,	and	nearby	
objects/people	 [30].	 While	 this	 work	 provides	 concrete	 examples	 of	 contextual	 information,	 none	 are	 all	
encompassing.	Consequently,	as	noted	by	Dey,	these	definitions	show	us	what	context	has	been	in	the	past,	but	do	
not	provide	general	criteria	for	classifying	new	types	of	information.	

In	contrast	with	the	“definition	by	example”	approach,	other	work	has	attempted	to	define	context	using	broader	
generalizations.	 Franklin	 and	 Flachsbart,	 for	 instance,	 define	 context	 as	 being	 the	 situation	 of	 the	 user,	 without	
specifically	mentioning	what	types	of	information	that	entails	[42].	Meanwhile,	definitions	provided	by	Ward	et	al.	
and	Rodden	et	al.	describe	context	as	an	aspect	of	an	application’s	surroundings	and	setting,	respectively	[98,118].	In	
order	to	provide	a	more	structured	definition,	Abowd	and	Mynatt	describe	context	in	terms	of	the	“five	W’s”	(i.e.,	
who,	what,	where,	when,	why),	and	claim	that	context	is	any	piece	of	information	that	addresses	one	or	more	of	these	
questions	[2].	More	recently,	Anh	and	Kim	classified	context	as	a	set	of	interrelated	events	with	logical	and	timing	
relations	 [3].	 This	 definition	 expands	 upon	previous	work	 by	 looking	 at	 context	 as	 a	 combination	 of	 discrete	 and	
continuous	events.	Although	these	definitions	provide	a	wider	lens	for	looking	at	context,	they	suffer	from	being	too	
general.	In	other	words,	they	provide	a	high-level	understanding	what	context	is,	but	are	too	broad	to	be	useful	as	a	
classification	tool.	

In	 this	 thesis,	we	do	not	develop	our	own	definition	of	 context.	 Instead,	we	 rely	on	one	 that	has	become	widely	
accepted	and	referenced	by	the	academic	community.	According	to	Dey	[30]:	

“Context	is	any	information	that	can	be	used	to	characterize	the	situation	of	an	entity.	An	

entity	is	a	person,	place,	or	object	that	is	considered	relevant	to	the	interaction	between	

a	user	and	an	application,	including	the	user	and	application	themselves.”		

We	use	this	definition	of	context	because	it	is	both	specific	and	generalizable.	While	Dey	et	al.	specifically	mentions	
four	essential	categories	of	contextual	information	(identity,	location,	activity,	time)	that	are	useful	in	a	wide	range	of	
applications,	this	definition	acknowledges	that	these	categories	are	not	all	encompassing,	and	that	additional	types	
of	 information	may	 be	 considered	 context	 depending	 upon	 the	 particular	 application	 being	 built.	 Additionally,	 in	
contrast	with	other	definitions	that	try	to	describe	context	in	terms	of	the	user	[42]	or	application	[98,118],	Dey	et	
al.’s	definition	 takes	both	 types	of	entities	 into	 consider.	 Finally,	 this	definition	acknowledges	 that	 the	 sources	of	
context	are	diverse,	and	can	be	either	implicit	(i.e.,	detected	by	sensors	on	a	device	or	in	the	environment)	or	explicit	
(i.e.,	manually	input	by	the	user	through	an	appropriate	interface).	Since	one	of	the	primary	contributions	of	this	thesis	
is	to	support	opportunistic	context	sharing	at	the	middleware	level,	the	points	raised	by	Dey’s	definition	have	largely	
influenced	the	overall	design	of	our	Group	Context	Framework.	They	emphasize	the	need	for	systems	that	can	collect	
and	disseminate	a	wide	range	of	contextual	information,	regardless	as	to	what	that	information	is,	what	it	describes,	
or	how	it	is	obtained.		

The	second	challenge	in	defining	context-awareness	is	determining	what	action(s)	an	application	needs	to	perform	
for	 it	 to	 be	 considered	 aware.	 Over	 the	 years,	 researchers	 have	 attempted	 to	 address	 this	 issue	 by	 establishing	
taxonomies	 of	 context-aware	 features/capabilities.	 Schilit	 et	 al.	 defined	 four	 broad	 categories	 of	 contextual	
applications:	 1)	 applications	 that	 modify	 the	 appearance	 objects	 on	 a	 user	 interface	 based	 on	 their	 proximity	
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(proximate	selection);	2)	applications	that	add,	remove,	or	modify	UI	components	based	on	the	user’s	current	location	
(automatic	contextual	reconfiguration);	3)	applications	that	perform	different	actions,	or	produce	different	output,	
depending	upon	the	conditions	under	which	these	actions	are	invoked	(contextual	information	and	commands);	and	
4)	applications	that	perform	a	specific	set	of	actions	once	a	set	of	contextual	criteria	is	met	(context-triggered	actions)	
[103].	 Alternatively,	 Pascoe	 proposed	 his	 own	 taxonomy	 in	 which	 he	 describes	 the	 features	 of	 context-aware	
application.	In	his	taxonomy,	applications	are	context-aware	if	they	can	sense	the	environment,	react	based	on	their	
surroundings,	locate	and	interact	with	relevant	(external)	resources,	and	augment	the	user	experience	by	providing	
timely	and	pertinent	information	[89].	Lastly,	Chen	and	Kotz	provide	their	own	interpretation	of	context-awareness,	
in	 which	 they	 differentiate	 between	 applications	 that	 automatically	 adapt	 to	 discovered	 context	 (active	 context	
awareness)	and	applications	that	merely	present	context	for	users	to	view/interpret	later	(passive	context	awareness)	
[19].	

While	 these	taxonomies	do	a	good	 job	of	highlighting	examples	of	context-awareness,	 their	 focus	on	categorizing	
existing	(at	the	time)	systems	makes	them	difficult	to	apply	to	new	types	of	applications.	To	address	this	limitation,	
Dey	et	al.	distills	the	notion	of	context-awareness	into	a	simple	definition:	

“A	 system	 is	 context-aware	 if	 it	 uses	 context	 to	 provide	 relevant	 information	 and/or	

services	to	the	user,	where	relevancy	depends	on	the	user’s	task.”	

Similar	 to	 before,	 we	 use	 this	 definition	 because	 it	 provides	 an	 effective	 balance	 between	 simplicity	 and	
expressiveness.	 There	 are	 two	 aspects	 of	 Dey’s	 definition	 that	 are	 particularly	 relevant	 to	 this	 thesis.	 First	 and	
foremost,	this	definition	does	not	draw	a	distinction	between	context-aware	services	and	information,	but	instead	
acknowledges	that	there	are	occasions	where	either	can	be	useful.	Secondly,	whereas	Schilit	et	al.,	Pascoe,	and	Chen	
and	Kotz’s	definitions	focus	on	defining	context-awareness	with	respect	to	mobile	devices,	Dey’s	definition	takes	a	
more	holistic	approach,	and	talks	about	context-awareness	with	regards	to	systems.	From	a	framework	development	
perspective,	this	is	important,	as	it	shows	that	context-awareness	is	not	exclusive	to	a	single	platform,	but	a	technique	
that	is	applicable	to	(and	hence	must	be	supported	across)	a	broad	range	of	devices	and	form	factors.	

Through	this	discussion,	we	have	described	previous	efforts	to	understand	both	context	and	context-awareness,	and	
have	chosen	an	operational	definition	of	each.	These	definitions	provide	us	with	a	foundational	understanding	of	both	
the	types	of	contextual	information	that	are	relevant	to	an	application,	and	the	various	ways	in	which	this	information	
can	be	used	to	create	an	improved	user	experience.	This	 in	turn	has	allowed	us	to	make	more	informed	decisions	
about	what	use	cases	we	wanted	to	support	when	creating	the	Group	Context	Framework.	

1.2. WHAT	IS	AN	OPPORTUNISTIC	GROUP?	
Similar	 to	 context,	 the	 term	opportunistic	 group	 is	 frequently	mentioned	 in	 the	 academic	 community,	 but	 rarely	
defined.	Many	researchers	have	a	general	 sense	of	what	 it	means	 for	a	group	to	be	opportunistic,	but	 this	 rarely	
evolves	beyond	an	“I	know	it	when	I	see	it”	mentality.	Thus,	similar	to	the	previous	section,	an	operational	definition	
is	needed.	

Prior	work	in	opportunistic	groups	has	primarily	focused	on	increasing	social	interactions	between	users.	In	[60],	Ikeda	
and	Mizoguchi	 developed	 a	 conceptual	model	 to	 help	 computer-based	 tutor	 systems	 determine	when	 a	 student	
would	best	benefit	from	working	with	others.	Their	model	introduced	an	opportunistic	group	formation	function	that	
determined	 the	 best	 time	 for	 students	 to	 transition	 between	 individual	 and	 collaborative	 learning	 exercises.	 The	
function	then	assigned	each	student	to	a	group,	and	provided	them	with	personalized	learning	goals	and	social	roles	
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that	conformed	to	the	group’s	overall	learning	objectives.	In	[41],	Ferscha	et	al.	created	a	group	collaboration	tool	
that	 formed	dynamic	 groups	whenever	more	 than	 50%	 of	 the	members	 of	 a	 (predefined)	 group	 assembled	 in	 a	
designated	meeting	area.	Their	system	could	then	alert	the	remaining	members	that	a	meeting	was	underway.	In	the	
Social	 Serendipity	 project	 [34],	 Eagle	 and	Pentland	developed	 a	 social	 networking	platform	 that	 allowed	users	 to	
register	their	interests/hobbies,	as	well	as	their	smartphone’s	Bluetooth	ID,	with	a	centralized	database.	Users	could	
then	 run	a	dedicated	application	on	 their	 phone	 to	 scan	 for	nearby	Bluetooth	devices,	 thereby	 allowing	 them	 to	
discover	when	 they	were	 in	proximity	of	other	users	with	 similar	 interests.	More	 recently,	Marcu	et	al.	 looked	at	
groupings	of	educational	faculty	and/or	administrative	staff	in	order	to	support	opportunistic	sensemaking	of	students	
with	special	needs	 [77].	Their	system,	Lilypad,	 let	staff	members	track	student	behavior	and	seamlessly	share	this	
information	 with	 each	 other,	 thus	 helping	 them	 generate	 organizational	 knowledge	 and	 make	 more	 effective	
decisions.	

While	this	work	demonstrates	the	usefulness	of	opportunistic	groupings,	they	exclusively	focus	on	groups	of	users	
(e.g.,	students,	faculty).	We	believe,	however,	that	the	notion	of	an	opportunistic	group	applies	to	devices	as	well	as	
users.	 Although	work	 performed	 by	Wang	 et	 al.	 differentiates	 between	 user	 and	 device	 groups,	 it	 only	 looks	 at	
groupings	of	devices	that	directly	support	a	user	level	task	(e.g.,	linking	devices	because	their	respective	users	are	all	
participating	 in	 the	 same	 meeting)	 [114].	 In	 contrast,	 our	 interpretation	 of	 device	 groups	 is	 more	 broadly	
encompassing,	and	includes	groupings	that	directly	support	the	user,	as	well	as	groupings	that	occur	at	the	system	
level	 (e.g.,	 linking	 devices	 in	 order	 to	 share	 resources	 and	 conserve	 battery	 life).	 By	 minimizing	 the	 amount	 of	
coordination	and	effort	required	for	devices	to	form	groups,	we	aim	to	increase	the	types	of	interactions	that	they	
can	seamlessly	take	part	in.	This	allows	them	to	work	together	in	support	of	user	and/or	system	level	goals.	

In	order	to	illustrate	the	importance	and	relevance	of	opportunistic	groupings	of	devices	in	context-aware	computing,	
consider	the	following	inspirational	scenarios:	

Scenario	1:	Jack	is	riding	a	GPS-equipped	bus	and	tracking	his	location	on	his	smartphone.	

The	phone	detects	the	bus’	ability	to	track	its	own	location,	and	automatically	forms	a	

group	with	the	vehicle	so	that	it	can	access	the	bus’	GPS	data	and	conserve	its	own	battery	

life.	

Scenario	2:	Michelle,	Shannon,	and	Monique	cross	paths	in	a	common	area	and	engage	

in	a	lengthy	conversation.	Afterwards,	the	three	decide	that	they	would	like	to	meet	at	a	

later	 date,	 and	 open	 up	 their	 personal	 calendar	 applications	 on	 their	 respective	

smartphones.	The	phones,	sensing	the	common	goal	of	scheduling	a	meeting,	temporarily	

form	a	group,	and	present	the	users	with	a	list	of	times	when	they	are	all	available.	

These	scenarios	represent	the	types	of	serendipitous	interactions	we	want	to	enable	in	this	thesis.	In	each	scenario,	
the	devices	involved	have	little	to	no	prior	knowledge	of	one	another.	Yet	in	both	cases,	they	are	able	to	dynamically	
discover	each	other	and	determine	that	they	can	assist	one	another.	They	then	form	a	group	so	that	they	can	share	
information/services.		

There	are	two	important	characteristics	of	an	opportunistic	group	that	are	highlighted	through	our	example	scenarios.	
The	first	 is	that	the	decision	to	form	an	opportunistic	group	oftentimes	occurs	without	warning.	 In	scenario	1,	 for	
example,	Jack’s	smartphone	has	no	way	of	determining	that	it	can	utilize	the	bus’	GPS	capabilities	until	the	user	boards	
the	vehicle.	Similarly,	since	the	conversation	involving	Michelle,	Shannon,	and	Monique	in	scenario	2	was	unplanned,	
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their	smartphones	did	not	have	time	to	exchange	calendar	information	or	pair	beforehand.	As	a	result,	the	devices	
had	to	wait	until	their	respective	users	were	trying	to	schedule	a	joint	meeting	before	the	decision	to	form	a	group	
could	be	made.	

Secondly,	while	the	groupings	described	through	these	scenarios	are	obviously	useful,	they	are	also	highly	situational.	
For	example,	the	opportunistic	group	formed	between	Jack’s	phone	and	the	bus	is	only	meaningful	for	as	long	as	Jack	
remains	on	the	bus.	Likewise,	the	grouping	between	Michelle,	Shannon,	and	Monique’s	smartphones	should	only	last	
as	long	as	is	needed	to	identify	a	good	time	to	meet	again.	In	both	cases,	there	is	a	relatively	small	window	of	time	in	
which	 the	 group	 formed	 by	 these	 devices	 is	 both	 necessary	 and	 useful.	 Thus,	 in	 order	 to	 take	 advantage	 of	 an	
opportunistic	group,	the	mechanism	for	finding	and	recruiting	members	must	be	generalizable	and	streamlined	so	
that	the	cost	(e.g.,	time,	effort)	of	forming	the	group	does	not	outweigh	the	benefits.	

Given	these	characteristics,	we	have	developed	the	following	definition	of	an	opportunistic	group:	

Opportunistic	Group:	“A	spontaneous	assemblage	of	two	or	more	entities	(e.g.,	device(s),	

application(s),	 user(s))	 created	 for	 the	 purpose	 of	 exchanging	 information	 and/or	

services.”	

We	have	chosen	a	broad	definition	of	opportunistic	groups	in	order	to	highlight	their	unpredictable	and	ephemeral	
nature.	 There	 are	 three	 important	 aspects	 of	 this	 definition	 that	 are	worth	 noting.	 First,	 our	 definition	 does	 not	
consider	groupings	of	users,	devices,	and	applications	in	isolation,	but	instead	acknowledges	that	the	composition	of	
a	group	is	highly	flexible	and	can	vary	widely	depending	upon	the	situation.	Second,	as	the	motivational	scenarios	
above	 show,	 our	 definition	 of	device	 is	 broad,	 and	 includes	 both	 artifacts	 that	 users	 regularly	 interact	with	 (e.g.,	
smartphones),	as	well	as	those	that	are	embedded	in	the	environment,	and	may	not	be	directly	visible	(e.g.,	buses,	
sensors	 deployed	 throughout	 a	 building,	 software	 services).	 Finally,	 our	 definition	 does	 not	 require	 opportunistic	
groupings	to	be	user-initiated.	On	the	contrary,	while	there	are	many	situations	in	which	users	might	want	to	form	an	
opportunistic	group	(e.g.,	sharing	calendar	information),	there	are	also	occasions	where	devices	might	need	to	form	
groups	on	the	user’s	behalf	(e.g.,	borrowing	GPS	data	from	a	vehicle’s	on-board	sensor	in	order	to	extend	one	device’s	
battery	 life).	 This	 latter	 point	 contrasts	 with	 our	 user-centric	 notion	 of	 groups,	 and	 highlights	 the	 need	 for	
opportunistic	groups	to	be	given	special	consideration.	

1.3. WHY	ARE	OPPORTUNISTIC	GROUPS	DIFFICULT	TO	USE?	
The	example	 scenarios	described	above	 illustrate	 the	potential	benefits	of	allowing	devices	 to	 form	opportunistic	
groups	and	share	context	at	will.	To	date,	however,	developers	have	largely	avoided	taking	advantage	of	opportunistic	
groupings	when	creating	their	applications.	While	 there	are	some	systems	that	allow	devices	to	dynamically	work	
together,	 they	 focus	 on	 specific	 tasks,	 such	 as	 allowing	 devices	 to	 pass	 messages	 [11,68],	 conserve	 resources	
[58,64,71,110],	 or	 improving	users’	 situational	 awareness	 [33,49].	 This	 emphasis	 on	narrow	use	 cases	 limits	 their	
generalizability,	and	makes	them	poorly	suited	to	support	the	wide	variety	of	one-time,	spontaneous	interactions	that	
we	hope	to	enable	through	our	work.	

In	 order	 to	 better	 understand	 why	 opportunistic	 groups	 are	 rarely	 used	 in	 context-aware	 applications,	 we	 have	
reexamined	our	two	motivational	scenarios.	In	doing	so,	we	find	that	many	of	the	properties	that	make	opportunistic	
groups	unique	and	compelling	from	both	a	system	and	end-user	experience	standpoint	also	make	them	difficult	to	
support	 using	 existing	 technologies	 and	 techniques.	 Specifically,	 there	 are	 four	 core	 challenges	 to	 utilizing	
opportunistic	groups	in	context-aware	applications:		
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1. Grouping	Opportunities	are	Spontaneous	and	Unpredictable.	Opportunistic	groups,	by	their	very	nature,	can	
occur	at	any	place	and	time.	Yet	while	users	are	able	to	fluidly	react	to	their	environments	in	order	to	take	
advantage	of	these	serendipitous	exchanges,	applications	are	more	rigidly	defined,	and	must	be	explicitly	
told	how	they	will	act	in	response	to	each	set	of	conditions.	Since	there	is	no	simple	way	to	enumerate	all	of	
the	situations	that	a	device	might	benefit	from	by	forming	a	group,	many	developers	tend	to	only	focus	on	
groupings	that	they	know	are	either	1)	critical	for	the	application	to	work	as	intended,	or	2)	the	easiest	to	
predict	in	advance.	This	simplifies	the	process	of	adding	grouping	functionality	to	applications,	but	severely	
limits	their	ability	to	respond	to	new	or	unexpected	situations.	

2. High	Interaction	Cost.	Current	systems	that	allow	for	ad	hoc	device	groupings	are	cumbersome	from	a	user	
experience	standpoint.	For	example,	technologies	such	as	Bluetooth	and	Wi-Fi	direct	are	already	pervasive,	
and	 technically	 allow	devices	 to	 freely	 share	 information	with	one	another	without	 the	need	 for	a	priori	
coordination.	However,	 both	 require	 the	 user	 to	 undergo	 a	 lengthy	 pairing	 process	 (e.g.,	 sharing	 codes,	
passwords)	 before	 they	 can	 be	 used.	 Meanwhile,	 while	 some	 applications	 allow	 users	 to	 easily	 share	
information	with	one	another	without	having	to	explicitly	pair	(e.g.,	Bump	[148],	Android	Beam,	AirDrop),	
they	are	only	useful	if	every	user	has	the	same	application	installed	and	running.	In	both	cases,	there	is	an	
initial	cost	(in	terms	of	time	and	effort)	that	both	the	initiator	of	the	group	and	the	group	member	must	be	
willing	to	pay	before	they	can	take	advantage	of	a	grouping	situation.	Users	are	oftentimes	willing	to	take	
advantage	 of	 a	 grouping	 opportunity	 when	 they	 already	 have	 the	 tools	 to	 do	 so.	 If	 additional	 effort	 is	
required,	however,	users	will	view	the	cost-of-entry	as	being	too	high,	and	will	forgo	grouping	altogether.	

3. Grouping	Opportunities	are	Not	Always	Apparent/Visible	 to	 the	User.	Users	are	not	always	aware	of	 the	
grouping	opportunities	that	surround	them.	In	scenario	1,	for	example,	the	user	may	not	be	aware	that	the	
bus	he	is	riding	in	has	GPS	tracking	capabilities.	Yet	by	forming	an	opportunistic	group,	his	phone	is	able	to	
utilize	 this	 sensor	 instead	 of	 its	 own	 and	 conserve	 battery	 life.	 As	we	 continue	 to	 transition	 towards	 an	
Internet	of	Things,	serendipitous	groupings	of	devices	such	as	these	will	become	more	pervasive,	and	it	will	
become	increasingly	difficult	for	users	to	be	expected	to	manage	(or	be	aware	of)	these	opportunities	on	
their	own.	Consequently,	there	is	an	increasing	need	for	devices	to	be	able	exercise	some	level	of	autonomy	
when	deciding	which	groups	(if	any)	to	participate	in.	This	way,	the	user	can	benefit	from	these	groupings	
without	having	to	go	out	of	their	way	to	setup	and	maintain	them.	

4. Lack	 of	 Critical	 Mass.	 In	 order	 for	 opportunistic	 groupings	 to	 be	 viable,	 there	 needs	 to	 be	 a	 single,	
standardized	 way	 for	 devices	 to	 form	 and	 work	 in	 groups.	 This	 problem	 is	 difficult	 to	 address	 at	 the	
application	level,	however,	since	developers	have	traditionally	lacked	the	sheer	influence	needed	to	establish	
such	 a	 standard	 on	 their	 own.	 While	 developers	 and	 researchers	 have	 implemented	 a	 wide	 range	 of	
mechanisms	for	finding	and	forming	groups,	these	systems	all	assume	that	grouping	will	only	occur	between	
devices	that	are	running	the	exact	same	application	at	the	same	time.	Yet	most	applications	lack	the	critical	
mass	 needed	 for	 them	 to	 take	 advantage	 of	 opportunistic	 groupings	 except	 under	 carefully	 controlled	
conditions.	As	a	result,	developers	do	not	seriously	consider	adding	group	functionality	to	their	applications,	
as	the	cost	of	doing	so	seems	large	in	comparison	to	the	number	of	times	that	it	will	actually	be	used	in	real-
world	settings.	

Although	these	challenges	are	significant,	it	is	important	to	remember	that	the	majority	of	our	interactions	with	the	
world	are	unplanned.	While	we	oftentimes	have	a	general	sense	as	to	who	or	what	we	might	do	during	the	course	of	
any	 given	 day,	 we	 regularly	 modify	 these	 plans	 in	 order	 to	 accommodate	 new,	 or	 spontaneous	 situations.	
Consequently,	our	devices	need	to	do	the	same.	On	their	own,	a	single	opportunistic	encounter	between	two	or	more	
devices	may	seem	unimportant	and	impractical	to	support	via	software.	Collectively,	however,	these	serendipitous	
exchanges	represent	a	vast	range	of	interactions	that	has,	to	date,	been	relatively	unexplored.	By	giving	devices	the	
ability	to	detect	and	form	groups,	we	can	allow	them	to	take	advantage	of	fortuitous	encounters	with	other	devices.	



	 18	

This	allows	them	to	 leverage	these	encounters	 in	order	 to	gain	access	 to	 important	and	relevant	 information	and	
services,	without	requiring	the	user	to	manually	enable	these	interactions.	

The	 goal	 of	 this	 thesis	 is	 to	 create	 a	 general-purpose	 framework	 that	 lets	 devices	 autonomously	 form	 groups	 as	
needed.	To	achieve	this,	we	have	examined	a	wide	range	of	systems	that	have	been	created	to	allow	devices	to	share	
context,	and	have	developed	a	conceptual	model	that	describes	the	conditions	that	typically	lead	to	group	formation	
(see	CHAPTER	2	for	a	more	detailed	account	of	these	systems).	We	then	created	the	Group	Context	Framework	(GCF)	
to	support	the	full	range	of	group	interactions.	Using	GCF,	developers	can	choose	to	opportunistically	interact	with	a	
specific	device,	or	with	any	device(s)	that	satisfy	a	set	of	conditions.	Additionally,	developers	will	be	able	to	easily	
extend	our	 framework	to	define	their	own	group	selection	strategy/criteria.	Thus	our	system	can	support	a	wider	
range	of	use	cases	than	is	possible	using	other	systems.		

Our	work	with	GCF	will	address	the	above	challenges	in	the	following	ways:	

1. Supporting	 Spontaneous	 Groupings.	 Our	 framework	 will	 let	 devices	 continuously	 scan	 their	
environments	in	search	of	grouping	opportunities.	This	will	allow	it	to	form	groups	with	other	users	or	
devices	regardless	if	they	have	met	before.	

2. Making	One	Time	Groupings	Practical.	By	allowing	devices	to	automatically	form	groups	on	the	user’s	
behalf,	 our	 framework	 will	 make	 it	 feasible	 for	 them	 to	 collaborate	 for	 short	 periods	 of	 time.	 This	
removes	 a	 significant	 barrier	 to	 forming	 a	 group,	 as	 it	 allows	 users	 to	 take	 advantage	 of	 grouping	
opportunities	without	requiring	them	(in	many,	but	admittedly	not	all	cases)	to	explicitly	pair	the	devices.	

3. Making	Grouping	Transparent	to	the	User.	By	allowing	developers	to	define	the	(general)	conditions	for	
grouping,	GCF-enabled	applications	can	take	advantage	of	groupings	that	are	both	visible	and	hidden	to	
the	user.	This	increases	the	range	of	interactions	that	the	device	can	participate	in.		

4. Circumventing	the	Need	for	Critical	Mass.	In	contrast	with	current	context-sharing	systems,	which	are	
intended	to	facilitate	collaborations	on	a	per-application	basis,	GCF	is	specifically	designed	to	support	
groupings	 of	 devices	 across	 entities.	 By	 providing	 a	 general-purpose	 middleware,	 our	 framework	
establishes	a	standardized	means	for	representing	and	requesting	contextual	information.	This	allows	
GCF-enabled	devices	to	provide	context	to	each	other	when	performing	logically	separate	tasks,	thus	
allowing	 developers	 to	 take	 advantage	 of	 opportunistic	 groupings	 even	 when	 their	 respective	
applications	have	not	achieved	critical	mass	on	their	own.	

Developers	will	be	able	to	utilize	GCF	in	a	variety	of	different	ways.	Although	we	primarily	intend	for	GCF	to	support	
context	 sharing	 between	 different	 types	 of	 devices,	 the	 framework	 also	 provides	 developers	 with	 a	 simple	 and	
efficient	way	to	access	contextual	information	on	the	local	device.	Initially,	we	envision	that	developers	will	utilize	GCF	
to	access	a	single	device’s	context.	As	more	developers	adopt	the	framework,	however,	the	opportunities	for	groups	
of	devices	to	serendipitously	work	together	will	 increase.	Developers	will	 then	be	able	to	take	advantage	of	these	
groupings	without	having	to	rewrite	their	code.	

Furthermore,	by	making	it	easier	to	find,	form,	and	use	opportunistic	groups,	we	aim	to	significantly	increase	the	types	
of	context-aware	applications	that	can	easily	be	created.	Since	our	framework	handles	all	of	the	problems	associated	
with	detecting	devices	 and	 forming	groups,	developers	 are	 able	 to	 focus	more	of	 their	 attention	on	 the	 types	of	
interactions	they	would	like	to	enable	rather	than	on	the	low	level	mechanics.	This	simplifies	the	development	process,	
and	makes	it	easier	to	create	and	explore	the	unique	types	of	context-aware	applications	that	are	possible	through	
opportunistic	groupings.	
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1.4. RESEARCH	QUESTIONS	
This	thesis	addresses	the	following	research	questions:	

Research	Question	#1:	How	can	we	allow	devices	to	opportunistically	form	groups	and	share	context?	

Our	first	research	question	examines	the	technical	challenges	associated	with	allowing	devices	to	opportunistically	
form	groups	and	share	context.	As	mentioned	previously,	devices	do	not	currently	share	information	unless	they	are	
explicitly	direct	to	do	so.	Given	the	rapid	rate	at	which	technology	is	spreading,	however,	it	is	becoming	clear	that	this	
strategy	is	untenable,	and	that	there	needs	to	be	mechanisms	in	place	to	let	devices	intelligently	decide	if	and	when	
they	should	work	together.	This	would	allow	devices	to	easily	take	advantage	of	the	information	and	services	that	
surrounds	them,	without	requiring	developers	to	anticipate,	or	explicitly	program,	all	of	these	exchanges	in	advance.	

This	thesis	examines	this	problem	from	both	a	conceptual	and	engineering	standpoint.	Before	we	can	build	a	system	
that	allows	devices	to	automatically	form	groups,	we	first	need	to	know	how	and	why	device	form	groups	in	the	first	
place.	To	develop	this	intuition,	we	examined	twenty-nine	different	context-sharing	systems,	and	the	use	cases	they	
support.	We	then	developed	a	conceptual	model	that	describes	the	most	common	settings	that	cause	devices	to	have	
to	 form	 groups	 and	 share	 information.	 Through	 this	 model,	 we	 find	 that	 currently	 context-sharing	 systems	 are	
currently	focus	on	a	specific	task	or	group	type.	This	allows	these	systems	to	excel	for	their	intended	purpose,	but	
prevents	them	from	providing	a	general	purpose	solution.		

Using	 our	 conceptual	model	 as	 a	 guide,	we	 have	 identified	 three	 critical	 technical	 requirements	 that	 need	 to	 be	
satisfied	to	allow	devices	to	form	opportunistic	groups.	First,	there	needs	to	be	a	standardized	mechanism	for	both	
requesting	and	representing	contextual	information	that	works	across	devices	and	platforms,	regardless	if	devices	are	
performing	the	same	task	or	running	the	same	application.	Second,	devices	need	to	be	able	to	freely	communicate	
with	one	another,	even	when	they	are	not	connected	to	the	same	network	or	broadcast	domain.	Finally,	there	needs	
to	be	a	way	for	devices	to	decide	which	groupings	are	relevant	at	a	given	time,	and	be	able	to	take	action	without	
having	to	ask	the	user	for	permission.		

In	 this	 thesis,	we	are	 interested	 in	addressing	 these	 requirements	at	 the	middleware	 level.	By	creating	 the	Group	
Context	Framework,	we	will	provide	a	standardized	way	for	application	developers	to	represent	and	share	contextual	
information,	while	still	giving	users	control	over	what	information	they	are	willing	to	share.	Using	GCF,	developers	can	
specify	1)	the	context(s)	that	they	can	provide,	2)	the	context(s)	that	they	need,	and	3)	the	general	strategy	for	forming	
groups.	 The	 framework	 will	 then	 continuously	 and	 autonomously	 search	 for	 and	 form	 the	 appropriate	 group	
structures	in	order	to	satisfy	these	needs.	Through	these	combined	capabilities,	we	will	give	devices	the	ability	to	take	
advantage	of	grouping	opportunities	 that	are	 spontaneous	and	unpredictable.	 This	 reduces	 the	cost	of	 forming	a	
group,	and	allows	devices	to	take	advantage	of	a	wider	range	of	groups	without	requiring	every	device	to	have	the	
same	app	installed	and	running	at	all	times.	

Research	Question	#2:	How	does	the	ability	to	 form	opportunistic	groups	 increase	the	range	of	context-
aware	applications	that	can	be	practically	created?	

The	second	research	question	focuses	on	identifying	context-aware	applications	where	opportunistic	grouping	and	
context	sharing	is	both	useful	and/or	necessary.	In	the	past,	this	type	of	exploration	has	been	difficult	to	perform	since	
it	required	developers	to	create	their	own	technology	stack	to	allow	devices	to	exchange	information/services.	With	
GCF,	however,	this	functionality	is	now	provided	“for	free.”	Developers	may	initially	be	put	off	by	the	thought	of	not	
having	explicit	control	over	how	their	applications	interact	with	one	another.	Yet	through	our	work,	we	aim	to	show	
how	these	abstractions	actually	increase	the	range	of	context-aware	applications	that	can	be	easily	created.	
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To	investigate	this	research	question,	we	have	developed	four	systems	that	either	directly	use,	or	are	built	on	GCF’s	
core	technology:	

• In	Didja,	devices	share	multiple	streams	of	sensor	data	with	each	other,	and	compare	these	readings	in	order	
to	determine	if	they	are	likely	experiencing	the	same	contextual	state	(e.g.,	riding	the	same	bus,	hearing	the	
same	 conversation).	 This	 allows	 Didja	 to	 infer	 when	 devices	 are	 involved	 in	 the	 same	 activity,	 thereby	
allowing	them	to	take	advantage	of	precise	grouping	opportunities	that	are	too	nuanced	to	be	detected	via	
Bluetooth	alone.		

• In	Snap-To-It,	we	created	a	universal	 interaction	 tool	 that	 lets	users	 "select”	and	control	nearby	physical	
appliances	 (e.g.,	 printers,	 digital	 projectors)	 and/or	 objects	 by	 taking	 a	 photograph	 of	 them	 with	 their	
smartphone.	 It	demonstrates	how	the	ability	 to	 form	opportunistic	groups	on	command	 increases	users’	
abilities	and	willingness	to	interact	with	the	ubiquitously	distributed	devices	in	their	environments.	

• Our	 third	 system,	 Impromptu,	 is	 a	 “just	 in	 time”	 application	 delivery	 platform	 that	 provides	 users	 with	
contextually	relevant	applications/services	.	Here,	apps	(running	in	the	cloud)	request	context	from	users,	
and	offer	their	services	when	they	are	relevant.	Users	can	then	use	GCF	to	form	an	opportunistic	group	with	
the	app	and	receive	custom	interface(s)	without	having	to	install	any	additional	software.	

• Our	 fourth	 system,	 Bluewave,	 lets	 devices	 openly	 advertise	 and	 share	 context	 by	 programmatically	
manipulating	their	Bluetooth	name.	Bluewave	lets	users	and/or	devices	broadcast	small	amounts	of	context	
with	their	immediate	environment,	and	allows	GCF	to	detect	and	form	opportunistic	groups	in	a	wider	range	
of	real	world	environments.	

By	focusing	on	multi-purpose	systems	as	opposed	to	single-use	applications,	we	are	able	to	explore	a	wide	range	of	
applications	that	make	use	of	opportunistic	grouping	and	context	sharing	in	new	and	compelling	ways.	These	systems	
also	provided	us	with	real-world	experience	using	GCF,	and	allowed	us	to	add	functionality	as	needed.	For	example,	
our	work	with	Snap-To-It	demonstrated	that	GCF	needed	to	let	devices	share	arbitrary	messages	with	each	other	(in	
addition	to	context)	once	a	group	is	formed.	Similarly,	our	work	with	Bluewave	was	motivated	by	the	realization	that	
there	are	many	real-world	situations	where	devices	need	to	form	an	opportunistic	group,	but	are	not	connected	to	
the	same	network;	by	adding	Bluewave’s	functionality	to	GCF,	our	framework	now	lets	devices	broadcast	information	
using	their	device’s	Bluetooth	name,	eliminating	the	need	for	a	direct	connection	in	many	situations.	

Our	 goal	 in	 this	 thesis	 is	 not	 to	 enumerate	all	 of	 the	ways	 opportunistic	 groups	 can	be	utilized	 in	 context-aware	
computing,	but	rather	to	highlight	specific	use	cases	where	doing	so	is	valuable	from	both	an	end-user	and	system	
standpoint.	 Through	 this	 work,	 we	 will	 show	 how	 opportunistic	 groupings	 can	 improve	 users’	 access	 to	 timely	
information	and	services,	and	how	GCF	directly	supports	the	creation	of	these	applications.	This	will	demonstrate	how	
developers	can	use	our	framework,	and	provide	a	foundation	for	future	research.	

Research	Question	#3:	What	are	the	challenges	associated	with	utilizing	opportunistic	groups	in	context-
aware	computing?	

Our	 third	 research	question	examines	 the	challenges	associated	with	combining	opportunistic	device	groups	with	
context-aware	 computing.	 While	 our	 work	 with	 GCF	 identifies	 many	 application	 domains	 that	 benefit	 from	
opportunistic	context	sharing,	it	also	illustrates	the	potential	problems	that	can	arise	when	devices	are	able	to	form	
groups	and	share	information	at	their	own	discretion.	Consequently,	it	is	important	to	enumerate	these	challenges	so	
that	developers	can	take	them	into	account	when	creating	their	own	applications.		

Our	exploration	of	 this	question	will	occur	 in	 two	parts.	 First,	we	will	 conduct	a	post-mortem	examination	of	 the	
applications	developed	developed	or	proposed	in	thesis,	and	identify	the	specific	challenges	with	gathering	and	using	
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opportunistic	context	at	the	developer,	user,	and	technical	level.	Some	of	the	challenges	that	we	will	highlight	as	part	
of	this	analysis	include:	

• Developer	Challenges	
o Context	Availability.	What	types	of	context	need	to	be	widely	obtainable	via	GCF	in	order	to	support	

and	enable	a	diverse	set	of	opportunistic	context-aware	applications?	
o Developer	Tools.	What	types	of	tools	need	to	be	provided	in	order	to	make	it	easy	for	developers	

to	take	advantage	of	the	information	and	capabilities	offered	by	our	system?	
o Trust.	What	mechanisms	 need	 to	 be	 put	 into	 place	 in	 order	 to	 allow	 devices	 to	 trust	 that	 the	

information	provided	by	other	devices	is	accurate	and	truthful?		
• User	Challenges	

o Privacy.	What	information	are	users	comfortable	sharing	in	an	opportunistic	manner?		
o Security.	How	can	GCF	protect	users	against	malicious	applications/users?	

• Technical	Challenges	
o Impact	on	Battery	Life.	What	is	the	impact	of	opportunistic	grouping	on	a	mobile	device’s	battery	

life?	Are	there	ways	to	mitigate	this	impact?	
o Scalability.	How	well	does	our	system	scale	 in	an	environment	with	dozens,	or	even	hundreds	of	

devices?	
o Networking.		How	do	current	networking	and	communication	technologies	limit	the	types	of	groups	

that	can	be	practically	formed	using	the	framework?	

Additionally,	we	have	also	solicited	the	aid	of	20	context-aware	application	developers	from	both	the	academic	and	
commercial	sectors	to	examine	our	system,	and	brainstorm	the	types	of	context-aware	applications	that	they	would	
create	with	it.	In	all,	we	collected	65	application	ideas,	and	analyzed	them	to	see	1)	whether	or	not	our	system	can	
support	these	applications,	and	2)	if	there	are	any	additional	challenges	that	we	have	not	yet	encountered	through	
our	own	work.		

Through	 this	 process,	 we	 aim	 to	 provide	 a	 comprehensive	 understanding	 of	 the	 benefits	 and	 potential	 pitfalls	
associated	with	utilizing	opportunistic	groups	of	devices.	This	knowledge,	combined	with	our	efforts	at	exploring	the	
application	space	of	opportunistic	context-aware	systems,	will	help	to	identify	the	technical	and	social	boundaries	of	
opportunistic	 context	 sharing,	 and	will	 allow	developers	 and	 researchers	 to	be	better	 informed	when	developing	
future	generations	of	context-aware	applications.	

1.5. EXPECTED	CONTRIBUTIONS	
This	thesis	offers	the	following	contributions:	

1. A	conceptual	model,	based	on	an	analysis	of	prior	 literature,	which	describes	the	conditions	under	which	
users	and/or	devices	form	and	work	in	groups.	

2. An	 implementation	 of	 the	 Group	 Context	 Framework,	 which	 highlights	 the	 software	 abstractions	 and	
architecture	needed	to	support	all	of	the	group	types	identified	in	our	conceptual	model.	

3. A	demonstration	of	the	value	of	opportunistic	groups	in	context-aware	computing,	through	the	creation	of	
four	major	systems	and	numerous	smaller	applications.	

4. A	validation	of	GCF’s	robustness,	through	an	examination	of	65	ideas	submitted	by	20	developers.	
5. An	 examination	 of	 the	 challenges	 associated	 with	 utilizing	 opportunistic	 groups	 in	 context-aware	

applications,	based	on	our	own	experiences	using	GCF,	as	well	 as	 from	 issues	 raised	by	developers	 from	
academia	and	industry.	
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Our	first	contribution	is	 intellectual.	By	providing	a	conceptual	model	of	grouping,	this	thesis	provides	researchers	
with	a	more	holistic	understanding	of	the	types	of	groups	that	can	exist,	and	the	conditions	that	cause	them	to	form.	
This	gives	researchers	a	novel	lens	to	frame	their	work,	and	allows	them	to	decide	which	group	types	they	explicitly	
or	implicitly	want	to	support	through	their	applications.		

The	second	contribution	demonstrates	how	our	conceptual	model	translates	to	a	generalizable	software	architecture.	
Through	GCF,	we	provide	developers	with	a	robust	toolkit	that	supports	a	wide	range	of	group	types	and	use	cases.	
This	gives	researchers	a	starting	point	 from	which	to	create	their	own	context-aware	applications,	and	provides	a	
reference	design	for	future	generations	of	context-sharing	system.	

The	third	contribution	illustrates	the	importance	of	opportunistic	groups	in	context-aware	computing.	Through	our	
example	systems	(Didja,	Snap-To-It,	Impromptu,	and	Bluewave),	we	demonstrate	how	opportunistic	groups	can	be	
useful	in	a	wide	range	of	real-world	use	cases,	and	how	they	support	interactions	that	are	either	too	cumbersome,	or	
incapable	of	being	implemented	using	current	technologies.	In	addition	to	serving	as	motivational	examples,	this	work	
also	helps	us	better	understand	and	expand	the	design	space	of	context-aware	computing.	This	allows	us	to	identify	
potential	problems,	and	identify	areas	for	future	research.	

The	fourth	contribution	is	a	validation	of	our	architecture.	By	having	real-world	developers	from	both	academia	and	
industry	brainstorm	ways	 to	use	GCF,	we	show	that	 the	 framework	has	 the	right	abstractions	 to	support	 the	vast	
majority	of	use	cases.	Additionally,	we	also	use	these	examples	to	identify	the	(few)	use	cases	GCF	is	unable	to	easily	
support,	and	offer	possible	ideas	for	future	development.	

The	fifth	contribution	addresses	the	practical	challenges	of	using	opportunistic	groups	in	context-aware	computing.	
Although	our	work	primarily	 focuses	on	the	benefits	of	opportunistic	groups,	we	also	acknowledge	that	 there	are	
significant	challenges	that	can	prevent	our	vision	from	becoming	reality.	By	highlighting	these	challenges,	we	help	
developers	and	researchers	better	understand	the	implications	of	using	a	technology	like	GCF.	In	doing	so,	we	aim	to	
fuel	the	need	for	future	research,	and	help	developers	make	more	informed	choices	when	developing	and	deploying	
applications	that	make	use	of	opportunistic	groups.	

1.6. THESIS	OUTLINE	
The	research	described	in	this	thesis	explores	how	opportunistic	groupings	of	devices	can	be	used	to	create	a	new	
generation	of	context-aware	systems.	This	includes	applications	that	increase	users’	abilities	to	interact	with	new	or	
infrequently	encountered	devices,	as	well	as	applications	that	increase	users’	ability	and	likelihood	of	interacting	with	
each	other.	In	support	of	this	goal,	we	have	organized	this	document	as	follows:	

In	CHAPTER	2,	we	provide	an	overview	of	existing	context-sharing	applications	and/or	frameworks.	We	highlight	the	
capabilities	of	each	system,	evaluate	their	ability	to	support	opportunistic	groupings	of	users/devices,	and	present	a	
conceptual	model	that	shows	the	motivations	for	forming	and	working	as	a	group	at	a	systems	level.	Through	this	
analysis,	we	show	how	current	systems	are	insufficient	to	support	opportunistic	context	sharing	on	their	own,	and	
motivate	the	need	for	a	generalizable	framework	such	as	GCF.	

In	CHAPTER	3,	we	describe	our	first	implementation	of	the	Group	Context	Framework.	We	provide	an	initial	set	of	
requirements	for	the	framework	based	on	the	observations	made	in	CHAPTER	2,	and	describe	how	our	architecture	
satisfies	each	of	them.	We	then	present	two	sample	applications	that	show	how	our	framework	supports	all	of	the	
group	types	identified	by	our	conceptual	model.	

In	CHAPTER	4,	we	present	 four	systems	that	were	created	using	GCF.	 In	comparison	to	the	pedagogical	examples	
presented	in	the	previous	chapter,	these	systems	are	more	fully	featured,	and	demonstrate	how	opportunistic	groups	
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can	be	used	to	increase	users’	access	to	information	and	services.	For	each	system,	we	provide	a	brief	description,	
and	show	how	it	utilizes	the	framework.	We	then	describe	how	the	lessons	learned	from	creating	these	systems	have	
caused	us	to	modify	the	framework.	

In	CHAPTER	5,	we	describe	GCF’s	final	architecture,	based	on	the	lessons	learned	in	the	previous	chapter.	We	present	
a	generalizable	design	process	for	building	opportunistic	context-aware	applications,	and	conduct	three	case	studies	
to	show	how	it	can	be	used.		

In	CHAPTER	6,	we	validate	our	framework	through	a	multi-week	brainstorming	study	with	20	developers	from	both	
academia	and	 industry.	Our	results	show	that	our	 finalized	 framework	supports	a	wide	range	of	new	and	existing	
context-aware	 applications,	 and	 demonstrate	 how	 the	 ability	 to	 share	 context	 across	 applications	 creates	 new	
opportunities	for	devices	to	request	and	receive	the	information	they	need.	

In	CHAPTER	7,	we	leverage	our	own	experiences	using	GCF,	as	well	as	feedback	from	developers,	to	identify	the	unique	
challenges	 of	 utilizing	 opportunistic	 groups	 in	 context-aware	 applications.	 This	 exploration	 is	 three-pronged,	 and	
identifies	 specific	 challenges	 at	 the	 developer,	 user,	 and	 technical	 level.	We	 describe	 how	 GCF	 facilitated	 these	
explorations,	and	show	how	the	 lessons	 learned	 through	 this	exploration	can	be	applied	 to	 future	generations	of	
context-aware	systems.	

Finally,	in	CHAPTER	8,	we	conclude	by	summarizing	the	work	outlined	in	the	above	chapters,	and	identifying	possible	
areas	for	future	research.	
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2. BACKGROUND	AND	RELATED	WORK	
Developing	a	new	framework	to	support	opportunistic	grouping	and	context	sharing	requires	an	understanding	of	
relevant	prior	work.	In	this	chapter,	we	identify	29	applications,	systems,	and	toolkits	that	have	been	developed	over	
the	years	to	support	grouping	and	context	sharing	between	two	or	more	devices.	We	summarize	the	capabilities	of	
each	system,	and	assess	the	extent	to	which	they	support	opportunistic	groups	(if	at	all).	Using	these	systems	as	a	
guide,	 we	 then	 present	 a	 conceptual	 model	 that	 describes	 the	 various	 situations	 in	 which	 one	 might	 form	 an	
opportunistic	group,	and	show	how	current	context-sharing	systems	only	focus	on	some	of	these	situations	at	the	
expense	of	 others.	 Through	 this	 exploration,	we	highlight	 the	 limitations	 of	 current	 context-sharing	 systems,	 and	
motivate	the	need	for	a	comprehensive	framework	that	can	support	the	full	range	of	group	interactions.	

2.1. GROUPING	AND	CONTEXT-SHARING	SYSTEMS	
Over	the	years,	researchers	have	developed	a	wide	range	of	applications	and	middleware	solutions	to	allow	devices	
to	form	groups	and	share	context.	In	this	section,	we	examine	this	work	in	order	to	explore	both	the	types	of	use	cases	
these	systems	are	designed	to	support,	as	well	as	the	technologies/techniques	that	they	draw	upon	to	facilitate	these	
interactions.	Specifically,	we	have	identified	five	broad	categories	of	grouping	and	context-sharing	systems:		

1. Systems	that	use	groups	to	increase	users’	situational	awareness		
2. Systems	that	use	groups	to	improve	communication	and/or	collaboration	
3. Systems	that	use	groups	to	support	new	interaction	opportunities	
4. Systems	that	use	groups	to	extend	a	device’s	capabilities	
5. Systems	that	use	groups	to	share	or	conserve	resources	

Our	goal	in	this	section	is	not	to	provide	a	comprehensive	look	at	every	system	that	supports	grouping	and	context	
sharing	between	devices,	but	instead	to	identify	representative	use	cases	where	doing	so	makes	sense	from	both	a	
user	and	developer	standpoint.	This	provides	a	better	understanding	of	the	ways	in	which	groups	have	been	used	
thus	far,	and	highlights	the	limitations	of	current	approaches.	

2.1.1. USING	GROUPS	TO	INCREASE	SITUATIONAL	AWARENESS	
Some	of	the	earliest	context-sharing	systems	focused	on	improving	users’	situational	awareness.	In	these	examples,	
each	 user	 has	 a	 device	 (e.g.,	 a	 badge,	 PDA,	 and/or	 smartphone)	 that	 automatically	 tracks	 and	 transmits	 their	
contextual	state	(e.g.,	“Out	of	the	Office,”	“In	a	Meeting”)	to	a	centralized	server.	The	systems	then	distribute	this	
information	 to	other	users	 to	keep	each	other	 informed	of	 their	 respective	activities	and/or	availability.	Although	
these	systems	allow	users	to	easily	view	each	other’s	context	and	determine	if	and	when	they	should	interact	with	
one	another,	they	assume	that	all	potential	group	members	are	known	a	priori.	As	a	result,	these	systems	work	well	
for	user	bases	that	are	predictable,	well-defined,	and	long	lasting	(e.g.,	users	that	all	work	in	the	same	building,	project	
teams),	but	are	not	 intended	 for	use	 in	situations	where	the	total	 set	of	potential	group	members	 is	unknown	or	
constantly	fluctuating.	

2.1.1.1. Active	Badge	and	ActiveMap	
The	Active	Badge	system	[116],	and	its	follow	up,	ActiveMap	[81],	are	 location	tracking	systems	that	facilitate	and	
encourage	 informal,	opportunistic	 interactions	between	office	coworkers.	 In	 these	systems,	each	user	 is	provided	
with	 a	 uniquely	 identifying	 badge	 that	 can	 be	 tracked	 via	 a	 series	 of	 overhead	 infrared	 sensors.	 As	 users	 walk	
throughout	the	workplace,	their	location	is	constantly	monitored	and	logged	on	a	centralized	server.	Other	users	can	
then	 view	 their	 coworkers’	 locations	 by	 using	 a	 dedicated	 desktop	 application,	 or	 by	 looking	 at	 a	 number	 of	
preconfigured	 displays	 and/or	 maps	 strategically	 placed	 throughout	 the	 environment.	 By	 providing	 users	 with	 a	
persistent	way	to	track	each	other’s	movements,	Active	Badge	and	ActiveMap	increase	awareness	of	other	coworkers	
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beyond	 their	 immediate	 neighbors.	 This	 increases	 their	 ability	 to	 detect	 and	 engage	 in	 spontaneous	 or	 one-time	
conversations/collaborations.		

Active	Badge	and	ActiveMap	are	designed	to	support	serendipitous	interactions	at	the	user	level.	These	systems	do	
not	have	any	understanding	or	internal	representation	of	an	opportunistic	group,	but	rather	treats	all	users	as	if	they	
belong	to	a	global	“workplace”	group.	Additionally,	while	both	systems	can	support	a	large	number	of	users,	these	
users	must	be	identified	in	advance	so	that	they	can	be	issued	a	badge	and	registered	with	the	server.	Finally,	while	
both	systems	are	 intended	as	a	tool	to	detect	opportunities	for	 informal	 interactions,	they	 lack	the	 intelligence	to	
recognize	these	opportunities	on	its	own.	Instead,	users	must	analyze	the	incoming	location	data	and	determine	which	
groupings,	if	any,	are	relevant	to	them	at	any	given	moment.	This	increases	their	cognitive	load,	and	can	cause	them	
to	miss	out	on	useful	grouping	opportunities	if	they	are	not	paying	close	attention.	

2.1.1.2. Hubbub	
In	Hubbub,	Issacs	et	al.	developed	a	text-based	instant	messenger	application	that	helps	users	maintain	background	
awareness	of	their	friends	and/or	co-workers	[61].	Hubbub	expands	upon	the	idea	of	a	traditional	instant	messenger	
through	its	novel	use	of	audio	cues.	When	users	first	sign	into	the	system,	they	select	a	short	sound	clip	that	serves	
as	their	unique	ID.	In	addition,	the	system	also	assigns	sound	clips	to	common	activities	or	responses	(e.g.,	“Hello”,	
“I’m	Busy”).	By	playing	these	cues	in	succession,	Hubbub	is	able	to	quickly	convey	contextual	information	to	the	user,	
such	 as	when	 their	 friends	 have	 logged	 in	 and/or	 are	 able	 to	 respond	 to	messages.	 This	 allows	 users	 to	 be	 kept	
informed	of	their	friends’	status	and	availability	without	having	to	look	at	the	application.	

Hubbub	is	similar	to	Active	Badge/Map	in	that	it	facilitates	opportunistic	grouping	at	the	user	level.	By	notifying	users	
of	 when	 their	 friends	 become	 active,	 Hubbub	 allows	 them	 to	 determine	 the	 most	 opportune	 time	 to	 initiate	 a	
conversation	and	receive	a	timely	response.	Yet	while	their	overall	intent	is	similar,	Hubbub	differs	in	two	key	ways.	
First,	 the	 application	 does	 not	 rely	 on	 specialized	 hardware.	 Instead	 of	 relying	 on	 customized	 badges,	Hubbub	 is	
designed	to	share	context	that	can	be	easily	captured	on	a	desktop	or	handheld	(e.g.,	Palm	handhelds)	device.	This	
allows	the	system	to	operate	in	a	wider	range	of	environments,	thus	increasing	the	opportunities	for	users	to	take	
advantage	of	 its	 capabilities.	 Additionally,	 since	Hubbub	 is	 based	on	 traditional	 instant	messenger	 applications,	 it	
allows	the	user	to	specifically	define	the	users	from	which	he/she	will	send	and	receive	context.	The	system	is	still	
limited	 in	 that	 it	 cannot	present	 context	 from	users	 that	are	not	 identified	 in	advance,	and	does	not	 contain	any	
intelligence	to	detect	or	suggest	useful	grouping	opportunities	on	its	own.	Yet	by	allowing	users	to	define	their	own	
friends	 list,	Hubbub	allows	users	to	be	kept	apprised	of	their	 friends’	availability	while	 limiting	the	 impact	to	their	
overall	cognitive	load.		

2.1.1.3. ConChat	
ConChat	 is	 another	 instant	messenger	 based	 application	 that	 is	 designed	 to	 help	 increase	 situational	 awareness	
amongst	distributed	users	[94].	In	addition	to	providing	users	with	simple	information	concerning	their	availability	or	
status,	 ConChat	 is	 also	 capable	 of	 accessing	 the	 sensors	 in	 a	 pervasive	 environment	 to	 obtain	 more	 detailed	
information,	such	as	room	conditions	(e.g.,	light,	sound,	temperature),	the	identities	of	other	people	in	the	room,	and	
other	applications	and	devices	running	nearby.	This	information	can	then	be	processed	by	the	system’s	rule-based	
architecture	in	order	to	infer	higher	levels	of	context	(e.g.,	whether	or	not	the	recipient	is	participating	in	a	meeting	
or	talking	to	another	person),	and	provided	to	the	user	in	order	to	determine	whether	or	not	to	initiate	a	conversation.	

ConChat	is	notable	in	that	it	significantly	expands	the	types	of	context	that	can	be	shared	between	devices.	In	contrast	
to	 the	work	above,	which	only	 look	at	a	 limited	subset	of	 context	 (e.g.,	 location,	availability),	ConChat	provides	a	
standardized	model	for	specifying,	obtaining,	and	processing	a	wide	range	of	contextual	information	through	a	single	
architecture.	Similar	to	the	work	described	above,	ConChat	provides	the	means	for	devices	to	share	information,	but	
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has	no	notion	of	a	group	outside	of	a	shared	communications	channel	(i.e.,	a	server).	Thus,	while	it	drastically	increases	
both	the	quality	and	quantity	of	context	that	can	be	shared,	it	still	relies	heavily	on	the	user	to	be	able	to	manually	
parse	this	information	in	order	to	find	and	form	meaningful	groupings.	

2.1.1.4. Community	Bar	
In	the	Community	Bar	system,	Tee	et	al.	used	screen	sharing	to	keep	users	apprised	of	each	other’s	activities	[108].	
Here,	users	run	a	dedicated	application	that	captures	their	context	(i.e.,	a	screenshot	of	their	desktop)	at	predefined	
intervals.	These	images	are	then	published	to	a	dedicated	channel	and	shared	with	others.	By	periodically	glancing	at	
these	images,	users	are	able	to	see	what	documents/artifacts	their	teammates	are	working	on	at	any	given	time.	This	
allows	them	to	more	easily	coordinate	activities,	track	each	other’s	progress,	and	detect	opportunities	to	engage	in	
spur-of-the-moment	conversations.	

Community	Bar	is	primarily	geared	towards	well-defined	groups,	such	as	users	working	on	a	joint	project	or	enrolled	
in	the	same	class.	 In	order	to	share	screenshots	of	their	desktop,	the	user	must	 first	define	a	“place”	object	 from	
within	the	application	that	serves	as	a	common	communications	channel.	Other	users,	in	turn,	must	explicitly	join	the	
place	before	they	can	see	the	screenshots	or	post	their	own.	By	enforcing	this	level	of	coordination,	the	Community	
Bar	system	is	optimized	for	users	that	know	that	they	need	to	work	together	beforehand.	It	promotes	a	simple	and	
effective	way	of	allowing	users	to	post	and	share	context	(i.e.,	screenshots),	but	is	only	practical	for	groupings	that	
are	both	long	lasting	and	known	in	advance.	

2.1.2. USING	GROUPS	TO	IMPROVE	COMMUNICATION	AND	COLLABORATION	
The	systems	described	in	the	previous	section	are	based	on	a	simplistic	model	of	grouping.	They	facilitate	context	
sharing	amongst	a	broad	group	of	users	(e.g.,	all	of	the	workers	in	a	building)	in	order	to	help	them	identify	useful	
grouping	opportunities,	but	assume	that	specific	groupings	are	created	and	managed	by	users	themselves.	In	contrast,	
the	systems	described	in	this	section	provide	explicit	support	for	a	small	group	of	users	that	share	a	common	goal	or	
task.	In	addition	to	keeping	group	members	apprised	of	each	other’s	activities,	these	systems	also	provide	tools	that	
allow	group	members	to	easily	communicate	and	collaborate	with	one	another.	Although	these	systems	support	a	
wider	range	of	interactions	between	users,	they	still	heavily	rely	on	a	priori	information	in	order	to	determine	which	
users	are	members	of	the	group,	and	what	their	respective	roles	are.	Consequently,	like	the	previous	examples,	these	
systems	support	groups	that	are	well	defined	and	meet	regularly,	but	are	not	intended	for	for	one-time,	spontaneous	
interactions.	

2.1.2.1. TeamSpace	
In	the	TeamSpace	system,	Ferscha	used	virtual	environments	in	order	to	provide	geographically	separated	teams	with	
a	 common	work	 and	 collaboration	 space	 [40].	When	 users	 log	 into	 TeamSpace,	 they	 are	 provided	with	 a	 three-
dimensional	model	of	a	virtual	room.	They	can	then	interact	with	specific	objects	(e.g.,	tables,	cupboards,	projectors)	
in	order	to	create,	view,	or	manipulate	work	artifacts	(e.g.,	documents,	presentations).	When	multiple	team	members	
log	into	TeamSpace	at	the	same	time,	they	are	able	to	see	virtual	representations	of	each	other,	as	well	as	the	artifacts	
that	they	have	created.	Additionally,	users	can	use	TeamSpace	to	visually	observe	what	team	members	are	working	
on	without	having	to	ask	them.	This	allows	them	to	be	kept	apprised	of	other	team	members	activities	as	if	they	were	
all	in	the	same	physical	space.		

TeamSpace	utilizes	a	traditional	client-server	architecture.	In	order	to	use	the	system,	a	group	coordinator	(i.e.,	a	user	
or	administrator)	must	specify	which	users	are	associated	with	a	given	team.	The	system	then	uses	this	information	
to	redirect	team	members	to	the	same	virtual	room	when	they	log	in.	Although	this	setup	provides	an	easy	way	for	
the	system	to	identify	group	members,	it	also	assumes	that	team	membership	is	both	static	and	known	in	advance.	
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This	 makes	 the	 system	 useful	 for	 building	 team	 awareness,	 but	 prevents	 the	 system	 from	 easily	 supporting	
collaborations	between	users	that	are	not	aware	of	each	other	ahead	of	time.	

2.1.2.2. Group	Interaction	Support	System	
In	the	Group	Interaction	Support	System	(GISS),	Ferscha	et	al.	developed	a	prototype	chat	application	that	improves	
users’	abilities	to	communicate	and	 interact	with	one	another	[41].	 In	their	system,	users	create	chat	groups	on	a	
centralized	 server	 that	 correspond	 to	physical	 locations	 in	 an	environment	 (e.g.,	 a	building,	 a	 room),	or	 a	 central	
theme.	Other	users	can	then	log	 into	the	chat	server	on	their	mobile	device,	view	the	existing	groups,	and	decide	
which	one(s)	they	want	to	join.	As	users	join	groups,	their	context	(e.g.,	location,	activity,	system	time)	is	periodically	
uploaded	to	a	central	server	and	fused	with	all	other	group	members.	The	resulting	group	context	is	then	distributed	
to	give	group	members	a	collective	sense	of	where	they	are	and	what	they	are	doing.	

While	GISS	allows	users	to	directly	specify	which	groups	they	want	to	participate	in,	the	need	to	constantly	update	
their	group	membership	can	be	mentally	taxing.	To	address	this,	GISS	also	allows	devices	to	form	dynamic	groups.	
Whenever	the	system	detects	that	more	than	50%	of	the	members	of	a	(predefined)	group	are	located	in	the	same	
physical	space,	it	automatically	forms	a	new	subgroup	that	represents	a	meeting.	Users	can	then	chat	and	share	notes	
with	each	other	without	having	to	set	up	a	group	on	their	own.	Similarly,	the	system	also	allows	an	administrator	to	
designate	 certain	 locations	 (e.g.,	 common	areas)	 of	 an	 environment	 as	 public	meeting	 spaces.	User	 devices	 then	
automatically	join	the	group	whenever	their	devices	detect	that	they	are	collocated	in	these	areas.		

Although	GISS’	support	for	dynamic	grouping	increases	the	types	of	groups	that	users	can	participate	in,	the	system	
is	still	highly	reliant	upon	a	priori	knowledge	to	enable	these	interactions.	Before	GISS	can	set	up	a	dynamic	group,	for	
example,	it	must	be	provided	with	both	1)	a	list	of	potential	group	members,	as	well	as	2)	a	list	of	locations	where	a	
group	can	 form.	The	authors	explicitly	mention	 that	 this	 functionality	 is	 intentional,	and	 is	 intended	 to	only	allow	
grouping	to	occur	in	locations	“where	it	makes	sense	to	form	groups.”	Yet	by	restricting	dynamic	groups	to	a	handful	
of	preprogrammed	locations,	the	system’s	ability	to	support	dynamic	groupings	is	limited,	and	only	works	in	situations	
that	are	identified	or	planned	in	advance.		

2.1.2.3. Context	Aware	Ephemeral	Groups	
In	 the	Context	Aware	Ephemeral	Groups	 (CAEG)	work,	Wang	et	al.	developed	a	software	model	 to	support	 social	
groups	 in	a	ubiquitous	computing	environment	[114].	 In	CAEG,	each	group	 is	defined	by	a	user	group	profile	 that	
describes	 both	 1)	 the	 purpose	 of	 a	 group,	 as	 well	 as	 2)	 the	 user’s	 role	 within	 it	 (e.g.,	 moderator,	 note	 taker).	
Additionally,	 each	 user	 group	 contains	 one	 or	 more	 group	 session	 profiles	 that	 describe	 the	 exact	 contextual	
conditions	(e.g.,	start	time,	end	time,	location)	that	need	to	be	met	before	a	group	can	form.	To	create	a	group,	a	
coordinator	(i.e.,	a	user	or	administrator)	generates	both	profile	objects	and	distributes	them	to	all	potential	group	
members’	devices.	These	devices	then	continuously	monitor	their	context,	and	form	ad	hoc	groups	with	one	another	
when	the	corresponding	grouping	conditions	for	a	particular	session	are	satisfied.	

Similar	to	the	other	work	discussed	thus	far,	the	CAEG	model	relies	heavily	on	a	priori	coordination.	In	order	to	create	
a	 group,	 coordinators	 must	 generate	 the	 corresponding	 user	 group	 and	 session	 profiles,	 and	 distribute	 it	 to	 all	
potential	group	members.	This	level	of	coordination	is	cumbersome,	and	prevents	the	system	from	being	useful	in	
one-time	grouping	situations.	Furthermore,	while	CAEG	explicitly	looks	at	groupings	of	users	and	devices,	it	only	forms	
a	device	group	to	support	user	level	goals	(e.g.,	working	on	a	shared	document)	as	opposed	to	system	level	goals	(e.g.,	
sharing	sensor	data	or	resources).	Thus,	while	the	system	is	capable	of	forming	groups	when	it	encounters	the	right	
situations,	 its	 ability	 to	 take	 advantage	 of	 this	 functionality	 is	 limited	 to	 situations	 that	 the	 user	 (or	 another	
coordinator)	has	specified	in	advance.	
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2.1.2.4. Panoply	
Panoply	is	a	mobile	middleware	that	lets	users	quickly	collaborate	and	share	digital	content	[37].	In	Panoply,	group	
coordinators	 (i.e.,	users)	create	spheres	of	 influence	 (i.e.,	a	group)	 that	correspond	to	either	a	specific	geographic	
location,	or	a	general	topic.	The	coordinator	then	manually	invites	members	to	join	the	sphere	by	giving	them	(i.e.,	
emailing)	a	digital	voucher	that	specifies	1)	the	identity	of	the	group,	2)	the	IP	address	of	a	centralized	server	(which	
coordinates	communication	amongst	group	members),	and	3)	the	conditions	under	which	their	devices	should	join	
(e.g.,	“join	the	group	when	you	detect	the	following	Wi-Fi	hotspot”).	As	users	move	through	the	environment,	their	
devices	periodically	check	their	vouchers	to	see	if	the	conditions	for	joining	a	group	have	been	met.	If	so,	the	device	
connects	to	the	group’s	server,	and	begins	sending	and	receiving	information.	

Panoply	has	been	used	in	the	Smart	Party	system	[39]	to	allow	users	to	share	their	music	libraries	when	in	a	shared	
public	 space,	 and	 in	 the	 nan0sphere	 system	 [38]	 as	 a	way	 for	 users	 to	 construct	 interactive	 narratives	 based	 on	
locations	that	they	had	previously	visited.	Yet	while	the	system	does	allow	devices	to	autonomously	form	groups	and	
share	context	(e.g.,	music	files	and	location	data,	respectively),	it	requires	1)	group	coordinators	to	manually	identify	
all	possible	group	members	and	distribute	vouchers	ahead	of	time,	and	2)	users	to	download	and	run	a	dedicated	
application	for	each	group	that	they	want	to	participate	in	(e.g.,	an	application	to	share	music	libraries).	This	greatly	
limits	the	types	of	group	interactions	that	it	can	seamlessly	support.		

2.1.2.5. Context-Sharing	Architecture	for	First	Responders	
In	[73],	researchers	at	Carnegie	Mellon’s	Software	Engineering	Institute	developed	a	reference	architecture	to	let	first	
responders	and	soldiers	share	information	and	collaborate	during	missions.	In	their	system,	each	responder	runs	an	
application	 on	 their	 mobile	 device	 that	 continually	 monitors	 their	 context	 and	 transmits	 it	 over	 a	 common	
communication	channel	(e.g.,	a	local	area	network).	A	rules	engine	(running	on	each	client)	then	analyzes	incoming	
context	in	order	to	identify	important	events	(e.g.,	shots	fired,	assistance	required),	and	displays	this	information	to	
the	user.	A	key	feature	of	the	architecture	is	that	the	rules	engine	is	user	specific,	and	can	be	customized	so	that	users	
only	receive	updates	that	are	relevant	to	their	organizational	role.	This	lets	responders	at	all	levels	be	kept	apprised	
of	the	events	that	matter	most	to	them,	while	minimizing	the	risk	of	cognitive	overload.	

Lewis	et	al.’s	architecture	is	limited	by	its	reliance	on	a	priori	coordination.	Although	the	architecture’s	rules	engine	
provides	a	flexible	and	extensible	way	to	share	and	analyze	context,	it	assumes	that	all	users	belong	to	a	single	“first	
responder”	group,	and	that	the	events	that	they	need	to	know	of	are	identified	(and	programmed	into	the	engine)	in	
advance.	Since	the	architecture	is	intended	for	organizations	with	a	well-defined	command	and	control	hierarchy	(i.e.,	
military,	police,	fire),	this	limitation	is	largely	mitigated.	Nevertheless,	the	emphasis	on	predefined	groupings	limits	
the	types	of	use	cases	that	this	architecture	can	support,	and	prevents	the	architecture	from	working	when	multiple	
organizations	need	to	spontaneously	collaborate	(as	can	occur	during	a	crisis	scenario).	

2.1.3. USING	GROUPS	TO	TAKE	ADVANTAGE	OF	NEW	INTERACTION	OPPORTUNITIES	
In	this	section,	we	provide	examples	of	systems	that	automatically	form	groups	when	they	discover	new	or	relevant	
interaction	opportunities.	In	these	examples,	devices	openly	share	some	contextual	information	over	a	pre-negotiated	
communications	medium	(e.g.,	Bluetooth,	Wi-Fi).	They	then	analyze	this	shared	context	and	form	groups	whenever	
another	device’s	context	matches	or	complements	their	own.	Although	these	systems	let	devices	form	groups	without	
having	to	know	of	each	other	in	advance,	they	assume	that	1)	every	device	reports	its	contextual	state	in	the	exact	
same	manner,	and	that	2)	the	conditions	needed	to	form	a	group	are	known	beforehand.	As	a	result,	while	these	
systems	are	capable	of	forming	groups	with	devices	that	they	have	never	met,	they	tend	to	be	application-specific,	
and	only	work	when	users	are	all	using	the	same	system	at	the	same	time.	
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2.1.3.1. Smart-Its	Friends		
In	the	Smart-Its	Friends	system,	Holmquist	et	al.	developed	a	series	of	portable	sensor	motes	that	can	automatically	
form	groups	(i.e.	pair)	when	they	experience	the	same	environmental	conditions	[55].	In	their	system,	each	sensor	is	
equipped	with	an	accelerometer,	 and	continuously	broadcasts	 its	 context	using	a	 low-powered	 radio	 transmitter.	
Neighboring	sensors	can	then	listen	for	these	accelerometer	readings,	compare	them	with	their	own,	and	pair	when	
they	detect	that	they	are	being	shaken	at	the	same	time.	

Smart-Its	 Friends	 demonstrates	 how	 devices	 can	 form	 groups	without	 having	 to	 explicitly	 know	 of	 each	 other	 in	
advance.	By	defining	a	communications	protocol	for	sharing	accelerometer	data,	the	system	allows	devices	to	share	
context	and	group,	regardless	if	they	have	ever	met	before	or	will	meet	again.	Yet	while	the	Smart-Its	system	provides	
a	more	generalizable	way	to	form	groups,	the	current	implementation	is	hardware	specific,	and	is	only	meant	to	share	
a	single	type	of	context.	Consequently,	while	the	system	allows	devices	to	opportunistically	detect	and	pair	with	one	
another,	its	ability	to	support	other	use	cases	is	extremely	limited.	

2.1.3.2. Serendipity	
In	 the	Social	 Serendipity	project,	Eagle	and	Pentland	used	Bluetooth	 radio	 identifiers	 to	 identify	opportunities	 for	
social	interaction	between	users	in	a	collocated	space	[34].	In	this	system,	users	register	their	device’s	Bluetooth	ID,	
profile	(e.g.,	interests)	and	matchmaking	preferences	with	a	centralized	“dating”	service.	They	then	install	a	dedicated	
application	on	their	mobile	phone	that	continuously	scans	for	nearby	Bluetooth	devices	and	cross-references	their	
IDs	against	a	database	of	known	users.	As	users	come	in	range	with	one	another,	the	system	retrieves	their	profiles	
and	 calculates	 their	 similarity	 to	 one	 another	 based	 on	 their	 shared	 interests.	 If	 this	 similarity	 score	 exceeds	 a	
threshold,	the	users	receive	a	notification	on	their	mobile	device	alerting	them	of	each	other.	

Although	Serendipity	supports	opportunistic	grouping,	it	is	heavily	reliant	upon	its	centralized	database	in	order	to	
map	Bluetooth	names	to	an	individual	user.	As	a	result,	the	system	only	works	with	users	that	have	already	opted	into	
the	system,	and	have	uploaded	their	Bluetooth	ID	to	the	service.	Additionally,	since	user	devices	must	continuously	
scan	 for	 other	 devices,	 Serendipity’s	 Bluetooth	 based	 discovery	 system	 is	 power	 intensive.	 To	mitigate	 this,	 the	
researchers	have	scaled	back	the	system	so	that	 it	only	scans	 for	Bluetooth	devices	once	every	 five	minutes.	This	
extends	battery	life,	but	prevents	the	system	from	detecting	users	that	have	similar	interests	and	are	only	together	
for	a	brief	amount	of	time.	

2.1.3.3. Flocks	
Flocks	 is	a	mobile	middleware	that	supports	social	networking	applications	in	ad	hoc	environments	[11].	 In	Flocks,	
users’	context	(likes,	friends,	preferences)	and	grouping	preferences	(e.g.,	“form	a	group	with	other	people	who	like	
X”)	are	represented	as	a	set	of	ordered	tuples	and	characteristic	equations,	respectively.	These	values	are	then	stored	
on	the	user’s	mobile	device,	and	shared	with	other	devices	when	they	enter	communications	range.	When	users’	
tuples	satisfy	a	characteristic	equation,	the	system	automatically	forms	a	group	(i.e.,	a	“Flock”)	between	them.	The	
grouped	users	can	then	send	messages	to	each	other,	which	are	dynamically	routed	by	the	system	to	the	correct	
destinations.	

By	 allowing	 users	 to	 specify	 the	 general	 conditions	 for	 group	membership,	 Flocks	 provides	 a	 way	 for	 devices	 to	
automatically	form	user	groups.	This	allows	users	to	communicate	with	a	wider	range	of	people	without	requiring	
them	to	enumerate	or	maintain	a	list	of	all	possible	group	members	on	their	own.	Yet	while	Flocks’	ability	to	form	
groups	dynamically	reduces	users’	cognitive	load,	it	still	requires	users	to	input	their	context	(e.g.,	“Likes	Badminton”)	
and	specify	the	conditions	needed	for	another	user	to	join	their	flock.	As	a	result,	while	the	system	is	more	dynamic	
than	comparable	list-based	methods,	it	still	only	supports	groupings	that	the	user	defines	in	advance.	
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2.1.3.4. MobilisGroups	
In	 MobilisGroups,	 Lubke	 et	 al.	 developed	 a	 location-based	 service	 that	 supports	 pervasive	 social	 computing	
applications.	 In	their	system,	users	create	advertisements	for	upcoming	groups	by	specifying	their	date,	time,	and	
location	to	a	centralized	server.	Other	users	 then	run	a	custom	mobile	application	that	continually	monitors	 their	
position	and	cross-references	it	against	the	MobilisGroups	service.	As	users	move	throughout	an	environment,	the	
system	presents	information	about	nearby	grouping	opportunities	on	their	device’s	display.	Users	can	then	decide	
whether	or	not	they	would	like	to	join	the	group	and	send/receive	messages.	

MobilisGroups	 is	 similar	 to	 Flocks	 in	 that	 it	 allows	users	 to	 form	groups	without	 having	 to	manually	 specify	 each	
individual	member.	However,	whereas	Flocks	relies	on	user	preferences	to	automatically	form	groups,	MobilisGroups	
discovers	nearby	grouping	opportunities,	and	requires	users	to	manually	select	the	ones	they	would	like	to	join.	This	
gives	users	more	explicit	control,	but	forces	them	to	be	present	for	every	grouping	decision.	Furthermore,	while	Flocks	
utilizes	ad	hoc	networking	to	connect	nearby	devices,	MobilisGroups	relies	on	a	client/server	architecture	to	store	
information	about	every	possible	group.	This	extends	the	range	of	groups	that	users	can	see,	but	only	works	so	long	
as	every	potential	group	member	is	connected	to	the	same	server.	

2.1.4. FORMING	GROUPS	TO	EXTEND	A	DEVICE’S	CAPABILITIES	
The	fourth	type	of	context-sharing	systems	are	those	that	form	groups	in	order	to	gain	access	to	additional	services	
and/or	information.	Unlike	the	systems	described	in	the	previous	sections,	which	are	primarily	focused	on	groupings	
of	users,	the	systems	presented	here	are	more	device	oriented,	and	are	focused	on	helping	devices	gain	access	to	
services	and/or	 information	that	 they	would	not	have	access	to	otherwise.	Although	these	types	of	groupings	are	
potentially	more	plentiful,	they	are	also	harder	for	users	to	discover	and	form	on	their	own.	As	a	result,	systems	that	
fall	into	this	category	either	provide	mechanisms	for	devices	to	automatically	detect	and	form	groups,	or	provide	users	
with	additional	mechanisms	to	interact	with	their	environments.	

2.1.4.1. Personal	Server	
In	the	Personal	Server	system,	Want	et	al.	developed	a	portable	computing	device	that	allows	users	to	access	their	
files	in	a	wide	range	of	environments	[117].	The	Personal	Server	is	a	small,	“headless”	computer	that	contains	its	own	
processing,	storage,	and	networking	capabilities,	but	 lacks	any	dedicated	 input/output.	As	users	move	throughout	
their	environment,	devices	in	the	infrastructure	(e.g.,	desktops,	monitors)	automatically	detect	the	server	and	connect	
to	it	via	Bluetooth.	The	user	can	then	use	these	external	devices	to	access	their	server’s	files	and	services.	

The	Personal	Server	was	created	to	address	two	critical	limitations	of	mobile	devices,	namely	that	1)	mobile	devices	
lack	the	screen	real	estate	or	input	options	needed	for	them	to	be	easily	accessible,	and	2)	even	the	best	networking	
infrastructure	is	not	100%	reliable,	and	cannot	guarantee	users	continuous	access	to	their	files.	By	allowing	the	device	
to	 form	groups	with	nearby	computers	and	displays,	 the	Personal	Server	provides	users	with	 the	best	experience	
possible	given	the	available	hardware.	Since	all	grouping	in	the	Personal	Server	system	is	automated,	users	are	able	
to	quickly	access	 their	 files	without	having	 to	perform	any	manual	 configuration.	Yet	 this	automation	can	also	be	
problematic	in	environments	with	multiple	displays/computers,	as	the	user	may	not	intuitively	know	which	computer	
the	server	has	paired	with.	Furthermore,	allowing	nearby	 infrastructure	to	directly	connect	to	the	Personal	Server	
creates	 several	 user	 privacy	 concerns,	 and	 can	 allow	malicious	 users/systemsto	 access	 a	 user’s	 context	 (i.e,	 files)	
without	their	permission.	

2.1.4.2. Mobile	Gaia	
In	the	Mobile	Gaia	system,	Chetan	et	al.	developed	a	middleware	to	support	pervasive	computing	applications	in	ad	
hoc	environments	[20].	In	this	system,	devices	form	clusters	known	as	personal	spaces,	and	openly	share	resources	
(e.g.,	sensors,	context)	with	each	other.	To	use	Mobile	Gaia,	each	personal	space	must	be	identified	in	advance	and	
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given	a	unique	and	well-known	name.	Devices	are	then	designated	as	being	either	a	client	or	a	coordinator,	and	are	
provided	with	a	list	of	personal	spaces	that	they	are	authorized	to	join	or	organize,	respectively.	When	a	coordinator	
detects	that	a	potential	client	is	nearby	(via	Bluetooth),	it	transmits	a	the	name(s)	of	the	personal	space(s)	that	it	is	
responsible	for.	The	client	then	checks	its	own	access	list	to	determine	if	the	group’s	name	is	contained	within.	If	so,	
the	devices	trade	credentials	with	one	another,	and	form	a	group.	

Although	Mobile	Gaia	allows	devices	to	automatically	form	groups	and	share	context,	the	system	is	highly	reliant	upon	
a	priori	coordination	between	potential	group	members.	In	order	for	devices	to	form	a	personal	space,	every	device	
must	 already	 have	 the	 name	 of	 that	 space	 listed	 in	 their	 respective	 access	 list	 (as	 well	 as	 the	 corresponding	
authentication	credentials).	Furthermore,	since	client/coordinator	roles	are	fixed,	devices	can	only	form	a	group	when	
at	least	one	client	and	coordinator	are	present.	In	both	cases,	this	reliance	on	pre-coordinated	information	limits	the	
types	of	serendipitous	encounters	that	the	system	can	easily	support.	Mobile	Gaia	is	invaluable	in	situations	when	all	
potential	group	members	can	be	identified	and	configured	in	advance.	Yet	the	system	can	only	form	a	group	under	
very	specific	circumstances,	thus	limiting	its	overall	usefulness	in	new	or	unexpected	situations.	

2.1.4.3. Solar	
In	 Solar,	 Chen	 and	 Kotz	 created	 a	 middleware	 architecture	 to	 support	 context-aware	 applications	 in	 pervasive	
environments	[19].	In	their	system,	devices	in	the	environment	(referred	to	as	planets)	oversee	one	or	more	types	of	
contextual	information,	and	are	responsible	for	both	collecting	raw	data	from	sensors	and	publishing	context	to	an	
event	stream.	In	addition,	each	planet	periodically	broadcasts	its	presence	to	a	centralized	star	server,	which	serves	
as	a	centralized	registry.	When	applications	need	contextual	information,	they	transmit	a	request	message	to	the	star	
that	contains	the	type	of	information	they	would	like	to	obtain.	The	star	then	determines	which	planet(s)	can	provide	
the	requested	context,	and	provides	the	application	with	the	network	location	of	the	correct	event	stream(s).	

Solar	 provides	 a	 scalable	 architecture	 for	 requesting	 and	 processing	 contextual	 information	 in	 a	 pervasive	
environment.	While	each	planet	is	responsible	for	a	predetermined	set	of	sensors,	Solar’s	architecture	is	dynamic,	
and	allows	stars	to	reassign	context	collection	and	processing	tasks	so	that	no	single	device	is	overburdened.	Yet	while	
Solar	allows	devices	to	automatically	form	groups	in	order	to	share	context,	the	system	only	manages	contexts	that	
are	produced	by	the	environment	(i.e.,	sensors,	planets),	and	does	not	take	into	consideration	contexts	that	can	be	
produced	or	sensed	by	mobile	devices.	Thus,	while	the	system	can	intelligently	manage	requests	for	context	within	a	
pre-established	environment,	it	lacks	the	flexibility	to	support	use	cases	where	context	producers	are	continuously	
moving	in	and	out	of	range.	This	prevents	Solar	from	being	used	in	a	wide	range	of	mobile	environments.	

2.1.4.4. SenseWeb	
In	the	SenseWeb	system,	researchers	from	Microsoft	developed	a	useable	platform	for	opportunistic	sensing	tasks	
[63].	In	their	system,	contributors	(i.e.,	users)	deploy	sensors	throughout	an	environment,	and	register	them	to	the	
SenseWeb	service.	The	system	can	collect	data	from	these	sensors	as	needed	in	order	to	meet	other	applications’	
needs.	When	 an	 application	 needs	 context,	 it	 sends	 a	 query	message	 to	 SenseWeb	 that	 contains	 the	 type(s)	 of	
information	that	it	needs.	A	coordinator	agent	then	intelligently	scans	SenseWeb’s	list	of	sensors,	and	dynamically	
tasks	a	subset	of	them	to	satisfy	the	request.	

SenseWeb	is	similar	to	Solar	in	that	it	handles	many	of	the	tasks	associated	with	finding	the	right	sensors	for	a	given	
sensing	task.	The	architecture	provides	a	standardized	way	to	access	and	request	contextual	information,	and	allows	
applications	to	easily	form	groups	and	obtain	context	without	having	to	know	exactly	which	sensors	are	available	in	
advance.	Yet	while	the	platform	makes	it	easier	to	form	groups	with	sensors	from	around	the	world,	it	assumes	that	
1)	all	sensors	are	registered	in	advance,	and	2)	they	never	move.	Thus,	while	the	system	is	capable	of	forming	groups	
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over	 a	 larger	 geographic	 area	 than	 Solar,	 the	 system	 suffers	 from	 the	 same	 technical	 limitations,	 and	 is	 entirely	
dependent	upon	contributors	deploying	enough	sensors	for	the	service	to	be	viable.		

2.1.4.5. Virtual	Personal	Worlds	
In	the	Virtual	Personal	Worlds	(VPW)	project,	Hong	et	al.	created	a	new	model	that	allows	users	to	easily	discover	and	
take	advantage	of	services	in	a	ubiquitous	computing	environment	[56].	In	their	model,	users’	devices	continuously	
scan	 their	 environments	 in	 search	 of	 relevant	 services	 (e.g.,	 printers,	 scanners,	 price	 comparison	 tools).	 These	
services,	 which	 are	 referred	 to	 as	 virtual	 objects,	 are	 then	 stored	 on	 the	 device’s	 local	memory.	 As	 users	move	
throughout	their	environments,	they	accumulate	more	virtual	objects.	They	can	then	freely	access	these	objects	and	
either	make	use	of	their	services	directly,	or	combine	them	to	perform	highly	customized	tasks.	

The	 VPW	 model	 demonstrates	 how	 opportunistic	 groupings	 of	 devices	 can	 increase	 users’	 access	 to	 relevant	
information	and	services	 in	a	ubiquitous	computing	environment.	 Instead	of	having	 to	manually	search	 for	virtual	
objects,	the	VPW	model	calls	for	devices	to	automatically	scan	the	environment	and	add	services	as	they	are	found.	
Yet	while	the	VPW	increases	users’	access	to	services,	the	model	becomes	unwieldy	in	an	environment	with	hundreds,	
or	possibly	thousands	of	devices.	By	forming	a	group	with	every	virtual	object,	the	model	maximizes	the	user’s	ability	
to	interact	with	the	environment,	but	forces	them	to	search	through	a	lengthy	list	of	virtual	objects	in	order	to	find	
ones	that	are	relevant	at	a	given	time.	This	inability	to	filter	virtual	objects	based	on	the	user’s	current	context	makes	
the	VPW	approach	cumbersome,	and	prevents	the	system	from	providing	users	with	an	intuitive	experience.	

2.1.4.6. Participatory	Sensing	Platforms	
In	 addition	 to	 the	work	 described	 above,	 researchers	 have	 also	 deployed	 numerous	 systems	 that	 allow	 users	 to	
contribute	 their	 device’s	 sensors	 in	 support	 of	 large-scale	 sensing	 tasks	 (for	 a	more	 in-depth	 summary	 of	 these	
systems,	refer	to	[52]).	Work	in	this	area	has	been	especially	popular	in	the	fields	of	urban	planning	and	citizen	science,	
and	has	helped	developers	collect	information	about	bike	riding	habits	[36],	pollution	levels	[15],	highway	congestion	
[109],	endangered	species	populations	[87],	and	find	lost	objects	[106,124].	

In	each	of	these	examples,	the	ability	to	form	a	group	with	hundreds,	or	potentially	thousands	of	devices	provides	
systems	with	a	wealth	of	information	that	they	could	not	readily	obtain	on	their	own.	Yet	while	these	systems	are	
becoming	increasingly	more	popular,	they	still	require	users	to	manually	download	and	run	a	dedicated	application	
before	their	phone	can	join	the	group	and	share	context.	PRISM	[22]	and	AnonySense	[106]	attempt	to	mitigate	this	
problem	by	providing	researchers	with	a	single	platform	that	can	dynamically	push	sensing	tasks	to	users’	phones,	and	
share	data	with	multiple	applications.	Yet	even	in	these	systems,	the	user	still	has	to	manually	opt	into	the	system	by	
downloading	and	running	a	dedicated	app.	This	creates	a	barrier	to	entry,	and	prevents	these	systems	from	casting	
as	wide	a	net	as	possible.	

2.1.5. USING	GROUPS	TO	IMPROVE	EFFICIENCY	
The	final	set	of	systems	we	cover	in	this	chapter	utilizes	grouping	in	order	to	conserve	resources.	In	these	systems,	
devices	openly	scan	their	environment	in	search	of	other	devices	with	similar	capabilities	(e.g.,	sensors)	to	their	own.	
These	devices	then	autonomously	form	a	group	and	take	turns	collecting	and	sharing	contextual	information	in	order	
to	extend	their	overall	battery	 life.	Similar	to	the	previous	section,	the	groups	formed	by	these	systems	are	highly	
opportunistic,	and	are	oftentimes	formed	without	the	user’s	explicit	knowledge.	However,	since	these	systems	focus	
on	a	very	specific	use	case	(i.e.,	saving	energy),	they	tend	to	be	highly	selective	of	the	groups	they	choose	to	participate	
in.	This	causes	them	to	overlook	groupings	that	are	potentially	useful	to	the	end-user,	but	too	costly	from	an	energy	
consumption	standpoint.	
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2.1.5.1. Energy	Efficient	and	Accuracy	Aware	(E2A2)	
In	E2A2,	Huang	et	al.	developed	a	crowdsourcing-based	location	service	that	allows	nearby	devices	to	share	GPS	data	
[58].	In	their	system,	each	device	periodically	transmits	its	GPS	coordinates	and	activity	(e.g.,	walking,	riding	a	bus)	to	
a	 centralized	 server.	 The	 server	 then	 dynamically	 groups	 collocated	 devices,	 and	 provides	 devices	 with	 a	 single	
coordinate	that	represents	the	group’s	centroid	location.	By	allowing	devices	to	dynamically	join	and	leave	groups	as	
they	move	in	an	out	of	range,	E2A2	lets	devices	turn	off	their	GPS	or	sample	their	sensors	much	less	frequently	than	
they	would	if	left	on	their	own.	This	allows	individual	devices	to	reduce	battery	consumption	by	up	to	33%,	without	
violating	the	accuracy	constraints	imposed	by	typical	location-aware	applications.	

Although	E2A2	supports	opportunistic	grouping,	the	system	is	restricted	in	both	the	types	of	context	it	can	share	(e.g.,	
location)	and	the	use	cases	its	supports.	E2A2	only	works	when	devices	are	1)	connected	to	the	same	global	server,	
2)	only	need	to	know	the	user’s	current	(or	group)	location,	and	3)	are	frequently	in	close	contact	with	each	other	
(less	than	25	meters).	Thus,	while	the	system	prevents	nearby	devices	from	collecting	redundant	context,	it	lacks	the	
flexibility	to	support	a	wide	range	of	context-aware	applications.	

2.1.5.2. Remora	
In	the	Remora	system,	Keally	et	al.	showed	how	sensor	sharing	can	be	used	to	optimize	individual	activity	recognition	
tasks	 in	body	sensor	network	applications	 [64].	 In	 their	system,	each	user	has	a	number	of	wearable	sensors	that	
broadcast	 their	 readings	 to	a	centralized	computer	 (i.e.,	an	Android	smartphone).	The	phone	then	analyzes	 these	
readings	in	order	to	determine	what	activity	the	user	is	performing.	When	two	or	more	Remora	users	are	nearby,	
their	devices	are	able	to	“overhear”	each	other’s	radio	transmissions,	and	determine	if	they	are	likely	performing	the	
same	activity.	The	systems	can	then	take	turns	running	their	sensors	and	classifying	the	current	activity	for	the	entire	
group.	

Remora	is	similar	to	systems	like	E2A2	in	that	they	allow	devices	to	form	groups	and	share	context	(in	this	case,	activity	
classifications)	in	order	to	save	power.	However,	there	are	two	important	differences.	First,	Remora	does	not	rely	on	
a	centralized	server	to	aggregate	individual	sensor	readings	and	form	groups.	Instead,	the	system	can	automatically	
detect	nearby	users	by	their	sensors’	radio	transmissions,	eliminating	the	need	for	backend	infrastructure.	Secondly,	
Remora	can	also	combine	readings	from	multiple	users’	sensors	when	classifying	the	group’s	activity.	This	allows	the	
system	to	turn	off	higher	power	(and	potentially	more	accurate)	sensors,	without	affecting	the	system’s	accuracy.		

Yet	 despite	 these	 differences,	 Remora	 suffers	 from	 the	 same	 fundamental	 limitations	 as	 E2A2.	 The	 system	 only	
focuses	on	a	single	type	of	context	(i.e.,	activity),	and	only	forms	groups	when	doing	so	will	conserve	power.	Thus,	
while	 the	system	works	well	 for	 its	 intended	purpose,	 it	 is	not	 intended	 to	be	used	as	a	general	purpose	context	
sharing	platform.	

2.1.5.3. CoMon	
The	Cooperative	Ambience	Monitoring	(CoMon)	Platform	is	a	software	library	designed	to	support	applications	that	
must	 sense	 their	 environments	 for	 long	 periods	 of	 time	 [71].	 In	 CoMon,	 applications	 keep	 track	 of	 the	 types	 of	
contextual	information	that	they	use,	and	perform	Bluetooth	discovery	to	detect	nearby	devices	that	need	the	same	
information.	The	devices	then	form	an	opportunistic	group	and	take	turns	running	their	sensors	and	providing	context	
to	 each	 other.	 This	 allows	 them	 to	 collectively	 save	 power	 without	 decreasing	 the	 quality	 of	 information	 being	
provided	to	their	respective	applications.	

Unlike	 E2A2	 and	 Remora,	 which	 are	 application	 specific,	 CoMon	 is	 designed	 to	 support	 context	 sharing	 across	
applications.	By	packaging	its	functionality	into	a	generalizable	software	toolkit,	CoMon	allows	applications	to	work	
together	 as	 long	 as	 they	 both	 need	 the	 same	 context.	 This	 allows	 them	 to	 form	 groups	 under	 a	wider	 range	 of	
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circumstances,	 thereby	 increasing	 their	 opportunities	 to	 conserve	 battery	 life.	 Yet	 while	 CoMon	 supports	
opportunistic	 grouping,	 the	 system’s	 focus	 on	 improving	 battery	 life	 causes	 it	 to	 only	 consider	 groupings	with	 1)	
devices	that	it	encounters	regularly,	or	2)	devices	that	remain	in	range	for	extended	periods	of	time	(e.g.,	more	than	
5	minutes).	This	can	cause	the	system	to	waste	power	searching	for	long	lasting	groupings	in	environments	where	
users	are	continuously	moving	in	and	out	of	range,	thus	limiting	the	system’s	overall	usefulness.	

2.1.5.4. ErdOS	
In	contrast	with	CoMon,	which	works	at	the	application	layer,	ErdOS	is	an	operating	system	module	that	allows	devices	
to	form	opportunistic	groups	in	order	to	conserve	energy	[110].	Similar	to	other	systems,	ErdOS	uses	Bluetooth	to	
detect	nearby	devices	and	share	context.	The	system,	however,	also	uses	machine-learning	algorithms	in	order	to	
predict	 the	best	 times	 to	 form	a	group	based	on	 the	user’s	prior	activities,	application	usage	patterns,	and	social	
circles.	 This	 allows	 the	device	 to	only	 scan	 the	environment	when	 the	 chances	of	 forming	a	group	are	high,	 thus	
increasing	energy	savings.	Furthermore,	the	system	introduces	a	fairness	metric	that	allows	devices	to	determine	how	
often	they	have	assisted	others	in	the	past.	This	allows	devices	to	evenly	distribute	sensing	workloads,	and	prevents	
freeloaders	from	continually	borrowing	resources	without	contributing	anything	to	the	group	in	return.	Finally,	since	
ErdOS	can	access	requests	for	contextual	information	at	the	operating	system	level,	the	system	is	already	compatible	
with	 existing	 applications.	 Thus,	 unlike	 CoMon,	 developers	 do	 not	 need	 to	 modify	 their	 code	 in	 order	 to	 take	
advantage	of	ErdOS’	functionality.	

ErdOS	 addresses	 many	 of	 the	 challenges	 associated	 with	 enabling	 opportunistic	 resource	 sharing	 in	 a	 mobile	
environment,	such	as	detecting	nearby	devices,	efficiently	distributing	work	tasks,	and	providing	provisions	to	enforce	
fairness	and	user	privacy	[111].	Yet	while	ErdOS	is	intended	to	be	backwards	compatible	with	existing	context-aware	
applications,	the	system	only	works	with	contexts	that	can	be	reliably	sensed	by	another	device.	While	this	works	for	
some	contexts	(e.g.,	 location),	there	are	many	types	of	applications	(e.g.,	a	compass	app)	that	can	only	use	sensor	
data	from	the	local	device.	Since	ErdOS	does	not	know	how	context	is	being	used	by	an	application,	the	system	has	
no	way	to	determine	when	it	is	safe	to	get	context	from	another	device,	and	when	context	must	be	produced	on	its	
own.	 As	 a	 result,	 the	 current	 implementation	 only	 supports	 context	 sharing	 amongst	 a	 limited	 number	 of	 (safe)	
sensors.	This	mitigates	many	problems,	but	severely	limits	the	types	of	groups	that	the	system	can	take	advantage	of	
to	increase	battery	efficiency.		

2.2. A	CONCEPTUAL	MODEL	TO	GROUPING	
Through	 our	 exploration	 of	 related	 work,	 we	 have	 identified	 five	 high-level	 use	 case	 categories	 that	 show	 how	
grouping	and	context	sharing	has	been	used	to	facilitate	interactions	between	users	and/or	devices.	Yet	while	these	
categories	represent	the	current	state	of	the	art,	they	are	obviously	 incomplete.	Although	prior	work	can	show	us	
how	grouping	has	traditionally	been	used	in	context-aware	systems,	they	do	not	fully	describe	how	groups	can	or	
might	be	utilized	in	the	future.	This	makes	relying	on	these	use	cases	problematic	from	a	design	standpoint,	as	it	does	
not	guarantee	that	the	resulting	framework	will	cover	the	widest	possible	range	of	use	cases.	

To	address	this	problem,	we	have	developed	a	conceptual	model	that	describes	the	most	common	scenarios	that	lead	
to	group	formation	[43].	This	model	(Table	1)	is	inspired	by	our	examination	of	existing	context-sharing	systems,	and	
looks	at	the	motivation	to	form	a	group	in	terms	of	1)	the	task(s)	that	group	members	are	trying	to	perform,	and	2)	
the	data	(i.e.,	information/services)	they	need	to	do	so.	By	looking	at	combinations	of	these	two	factors,	our	model	
identifies	groupings	that	are	easily	recognizable	(and	are	extensively	supported	by	existing	systems),	as	well	those	
that	those	that	are	more	obscure.	This	allows	us	to	define	a	design	space	for	opportunistic	groups	in	context-aware	
applications,	and	determine	what	software	abstractions	are	needed	to	support	the	full	range	of	group	interactions.		

Our	conceptual	model	consists	of	four	quadrants,	each	of	which	represents	a	different	group	type:	
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• Collaborative	 groups	 (Quadrant	 I)	 are	 the	 most	 easily	 recognizable	 form	 of	 grouping	 from	 a	 user	
perspective,	 and	 form	 when	 members’	 tasks	 and	 information	 requirements	 directly	 align	 with	 one	
another.	 In	 these	 situations,	 group	members	 all	 need	 access	 to	 the	 same	 information	 for	 the	 same	
reason,	 and	work	 together	 so	 that	 they	 can	 access	 this	 information	 as	 quickly	 and/or	 efficiently	 as	
possible.		

• Cooperative	groups	(Quadrant	II)	occur	when	members	are	performing	the	same	task,	but	require	access	
to	 different	 sets	 of	 data.	 In	 these	 groups,	 individual	members	 lack	 all	 of	 the	 information	 needed	 to	
accomplish	 a	 task	 on	 their	 own.	 By	working	 together,	 however,	 each	member	 is	 able	 to	 contribute	
towards	the	group’s	collective	information	needs,	allowing	them	to	solve	problems	that	they	could	not	
accomplish	on	their	own.		

• Convenient	collaborations	 (Quadrant	 III)	occur	when	members	need	the	same	data,	but	for	different	
reasons.	For	example,	a	smartphone	that	needs	to	determine	the	user’s	current	time	zone	might	form	
a	convenient	collaboration	with	a	nearby	navigation	application	in	order	to	obtain	GPS	data.	Convenient	
collaborations	are	characterized	by	their	spontaneity,	and	can	be	difficult	to	detect	at	either	the	system	
or	user	 level.	Nevertheless,	 these	 types	of	groupings	offer	a	unique	opportunity	 for	devices	 to	work	
together,	and	allow	group	members	 to	accomplish	 their	 individual	 tasks	with	a	minimum	amount	of	
duplicate	effort.	

• In-Situ	 groups	 (Quadrant	 IV)	 are	 groups	 that	 form	 when	 there	 is	 a	 complete	 disconnect	 between	
members’	tasks	and	data	requirements.	Although	in-situ	grouping	opportunities	rarely	occur	at	the	user	
level,	 they	allow	devices	 to	 freely	share	 information/resources	 in	support	of	 their	 (logically	separate)	
tasks.	Given	that	the	majority	of	encounters	with	other	users/devices	occur	at	this	level,	in-situ	groupings	
offer	a	unique	opportunity	for	context-aware	systems	to	work	together,	even	when	they	are	not	running	
the	same	application.	

When	we	examine	the	various	systems	described	above,	we	see	that	they	can	all	be	easily	placed	within	our	model.	
TeamSpace,	for	example,	can	be	classified	as	a	collaborative	grouping	system,	as	it	allows	group	members	to	easily	
view	and	work	on	the	same	documents	at	the	same	time.	Other	systems,	such	as	ActiveMap	and	Serendipity,	support	
cooperative	grouping,	and	allow	devices	to	share	individual	context	with	each	other	(e.g.,	their	location	and	personal	
interests,	 respectively)	 so	 that	 they	 can	 identify	 useful	 interaction	 opportunities.	 SenseWeb	 and	 Solar	 support	
convenient	collaborations,	as	they	allow	multiple	applications	to	take	advantage	of	the	same	sensors	at	the	same	time	
for	different	purposes.	Finally,	systems	such	as	ErdOS	and	Mobile	Gaia	support	in-situ	groupings,	and	allow	different	
applications	to	freely	borrow	services	(i.e.,	sensors)	from	each	other	in	order	to	achieve	their	individual	goals.	

Although	 our	 model	 covers	 the	 most	 common	 scenarios	 that	 lead	 to	 grouping,	 it	 is	 important	 to	 realize	 that	
opportunistic	 groups	 are	 not	 limited	 to	 a	 single	 quadrant.	 On	 the	 contrary,	 supporting	 opportunistic	 groups	 is	
challenging	precisely	because	 they	 span	our	entire	model.	While	prior	work	has	 shown	 that	 it	 is	possible	 to	 form	
groups	of	devices	across	a	wide	range	of	scenarios,	there	is	no	single	solution	that	operates	across	our	entire	model	
(see	Table	2	for	a	complete	breakdown).	Instead,	most	group-based	systems	tend	to	focus	on	one	or	two	group	types	
while	ignoring	others	entirely.	This	makes	these	systems	easier	to	implement,	but	limits	their	ability	to	support	a	wide	
range	of	grouping	opportunities.	
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As	long	as	context-sharing	systems	are	designed	with	a	limited	set	of	group	types	in	mind,	there	will	always	be	a	subset	
of	use	cases	for	which	these	systems	are	ill-equipped	to	handle.	Thus,	in	order	to	support	opportunistic	groupings,	
there	is	a	need	for	a	general-purpose	framework	that	supports	grouping	and	context	sharing	in	all	of	its	forms.	Such	
a	system	not	only	needs	to	support	all	four	group	types,	but	do	so	in	a	manner	that	minimizes	the	need	for	human	
intervention	so	that	the	cost	of	forming	a	group	(in	terms	of	time	and	attention)	does	not	outweigh	its	benefits.	This	
vision	for	a	simple	but	extensible	way	for	devices	to	form	and	work	in	groups	serves	as	the	central	motivation	for	this	
thesis.	It	describes	the	types	of	interactions	that	we	aim	to	enable	through	the	Group	Context	Framework,	and	serves	
as	the	basis	for	all	of	our	design	choices.	

2.3. SUMMARY	
In	this	chapter,	we	have	presented	a	wide	range	of	systems	that	allow	users	and	devices	to	form	groups	and	share	
contextual	information.	Through	this	process,	we	have	identified	a	number	of	common	limitations.	Many	systems,	for	
example,	support	grouping	at	the	device	level,	but	assume	that	group	members	are	all	running	the	same	application	
at	the	same	time,	or	are	connected	to	a	centralized	(known	a	priori)	server.	Meanwhile,	other	systems	(e.g.,	Flocks,	
CoMon,	 Virtual	 Personal	 Worlds)	 allow	 devices	 to	 autonomously	 discover	 group	 members	 in	 real	 time,	 but	 are	
oftentimes	optimized	or	intended	for	specific	tasks	and/or	group	types,	and	as	such	are	not	generalizable	towards	
other	application	domains.	

In	order	to	summarize	the	limitations	of	current	context-sharing	systems,	we	have	evaluated	each	system	according	
to	the	following	properties:	

• Reusability.	 Specifies	 whether	 a	 system	 (and	 the	 context	 it	 uses/produces)	 is	 only	 intended	 for	 a	 single	
application	or	use	case,	or	if	it	is	designed	to	support	multiple	types	of	applications.		

• Group	Membership.	Describes	the	process	by	which	groups	are	formed.	In	a	static	group,	all	group	members	
are	known	in	advance	by	the	system	(e.g.,	“all	users	of	this	application	are	part	of	the	same	group”).	 In	a	
dynamic	group,	the	system	automatically	adds	and	removes	group	members	based	on	rules	(e.g.,	“group	
with	all	male	users	between	the	ages	of	20-25”).	Finally,	in	a	user-specified	group,	membership	is	controlled	
and	managed	by	the	user	(e.g.,	a	friend’s	list)	or	a	group	coordinator.	

Table	1.	A	conceptual	model	of	groups	
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• Group	Range.	Refers	to	the	geographic	distance	between	the	members	of	a	group.	In	a	short-range	group,	
members	are	typically	located	in	the	same	space	or	general	area	(e.g.,	in	the	same	room	or	building).	In	a	
long-range	group,	members	are	physically	separated	from	one	another	(e.g.,	 in	different	buildings,	across	
the	Internet).	

• Group	Longevity.	Describes	the	amount	of	times	that	a	group	will	be	used	over	the	course	of	its	lifetime.	A	
group	is	considered	to	be	repeatable	if	it	lasts	for	more	than	one	session.	A	group	is	considered	to	be	one-
time,	on	the	other	hand,	if	it	is	no	longer	applicable	after	a	single	session.	

Table	2.	Capabilities	of	current	context-sharing	systems.	

X	=	Fully	Supports,	O	=	Planned	or	Partial	Support	
*Multiple	systems	are	represented	by	this	row.		
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• Supported	 Contexts.	 Specifies	 the	 types	 of	 contextual	 information	 that	 the	 system	 is	 designed	 to	 share.	
Sensor	based	contexts	are	 those	 that	 can	be	detected	via	physical	hardware	 (e.g.,	accelerometers,	GPS).	
Software	based	contexts	are	those	that	can	be	detected	or	interpreted	by	an	algorithm	(e.g.,	walking,	idle).	
Lastly,	user	input	contexts	are	those	that	are	manually	provided	to	the	system	by	the	user	(e.g.,	the	user’s	
current	mood).	

• Communications.	Describes	 the	means	by	which	devices	 in	a	group	communicate	with	one	another.	 In	a	
static	system,	group	members	communicate	through	a	pre-coordinated	channel,	such	as	a	server	or	a	socket.	
In	an	ad	hoc	system,	group	members	create	a	temporary	communications	channel	between	each	other.	

• Supported	Group	Types.	Refers	to	the	system’s	ability	to	support	each	of	the	four	group	types	(collaborative,	
cooperative,	coincidental,	in-situ),	as	specified	by	our	conceptual	model.	

The	results	of	our	analysis	(Table	2)	reveal	five	limitations	with	current	context	sharing	systems:	

• Reusability:	 Inability	 to	share	context	across	different	applications.	Many	context-sharing	 frameworks	are	
intended	for	a	single	application	and/or	use	case,	and	are	not	designed	to	let	devices	share	context	across	
applications.	While	there	are	a	handful	of	frameworks	that	do	provide	this	capability	(e.g.,	SenseWeb),	they	
only	 share	 contexts	 that	 can	 be	 captured	 directly	 from	 sensors	 (e.g.,	 sensor	 data).	 This	 prevents	 these	
systems	 from	 sharing	 contexts	 that	 must	 be	 inferred	 across	 multiple	 sensors	 (e.g.,	 a	 user’s	 activity)	 or	
collected	through	software	(e.g.,	a	user’s	language	preferences	or	shopping	list).	

• Group	Discovery:	 Lack	 of	 support	 for	 dynamic	 groups.	 Current	 support	 for	 dynamic	 groups	 is	 extremely	
limited.	Many	of	the	systems	described	in	this	section	either	assume	that	all	users	are	either	part	of	the	same	
group	(e.g.,	ActiveMap),	or	require	the	user	to	explicitly	state	which	groups	he/she	would	like	to	participate	
in	(e.g.,	TeamSpace,	MobilisGroups).	Although	there	are	some	systems	that	allow	devices	to	form	groups	on	
their	own	(denoted	with	an	‘O’),	they	still	rely	on	a	user	or	external	server	to	provide	them	with	rules.	The	
CoMon	and	ErdOS	systems	are	the	closest	in	spirit	to	the	types	of	dynamic	groups	that	we	want	to	support	
in	 this	 thesis,	 as	 they	 allow	devices	 to	 form	 groups	 and	 share	 context	without	 external	 assistance.	 Both	
systems,	however,	are	focused	on	conserving	energy,	and,	as	such,	only	support	opportunistic	groups	with	
devices	that	can	increase	their	battery	life.	

• Communications:	 Over-reliance	 on	 a	 single,	 well-known	 communications	 channel.	 Most	 context-sharing	
systems	rely	on	a	centralized	server	or	broadcast	channel	in	order	to	allow	devices	to	communicate	and	share	
context.	This	is	problematic	from	an	opportunistic	grouping	standpoint,	as	it	assumes	that	every	potential	
group	member	knows	about	this	server/channel	a	priori,	and	is	already	connected.	While	systems	such	as	
Mobile	Gaia	and	the	Personal	Server	overcome	this	 limitation	by	utilizing	ad	hoc	networking	technologies	
(e.g.,	Bluetooth)	to	allow	devices	to	detect	each	other	and	form	groups,	these	systems	require	the	user	to	
manually	pair	their	devices	before	they	can	work	together.	This	limits	their	ability	to	form	groups	to	groupings	
that	the	user	is	explicitly	aware	of.	

• Group	Longevity:	Emphasis	on	 long	 lasting	groups.	Context-sharing	 systems/frameworks	are	not	 typically	
designed	for	groups	that	only	occur	once	or	sporadically.	While	systems	such	as	 the	Personal	Server	and	
MobilisGroups	allow	users	to	form	one	time	groups	with	nearby	devices	and	social	groups,	respectively,	they	
require	the	user	to	manually	 form/disband	these	groups	on	their	own.	Meanwhile,	systems	 like	GISS	and	
CAEG	 allow	 devices	 to	 form	 temporary	 groups,	 but	 only	 in	 locations	 and/or	 times	 specified	 by	 a	 group	
coordinator	 in	 advance.	 This	 prevents	 these	 systems	 from	 supporting	 the	 vast	 majority	 of	 one-time	
interactions.	

• Group	Types:	 Inability	to	support	the	full	 range	of	group	 interactions.	As	mentioned	previously,	 the	most	
significant	limitation	of	current	context-sharing	systems	is	their	inability	to	support	the	full	range	of	group	
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interactions.	While	many	systems	excel	at	one	or	two	group	types,	they	tend	to	completely	ignore	others.	
This	prevents	devices	from	being	able	to	form	groups	under	the	widest	possible	set	of	use	cases.	

Given	these	limitations,	it	is	clear	that	current	systems	that	support	grouping	and	context	sharing	are	insufficient	to	
support	opportunistic	groups	in	all	of	their	forms.	While	our	analysis	shows	that	at	 least	one	system	satisfies	each	
property,	 there	 is	 no	 one	 system	 that	 supports	 them	 all	 at	 the	 same	 time.	 Rather	 than	 require	 developers	 and	
researchers	to	combine	these	systems	using	their	own	custom	wrappers,	our	work	with	the	Group	Context	Framework	
provides	an	all-in-one	solution	that	supports	grouping	across	our	entire	conceptual	model.	In	the	following	chapter,	
we	present	our	architecture	for	the	Group	Context	Framework,	and	show	how	our	exploration	of	prior	work	has	been	
used	to	create	a	generalizable	framework	for	grouping	and	context	sharing.	We	then	perform	the	same	analysis	on	
our	framework,	and	show	how	it	addresses	or	overcomes	each	of	the	limitations	described	above.	
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3. DEVELOPING	 A	 FRAMEWORK	 TO	 SUPPORT	OPPORTUNISTIC	GROUPING	

AND	CONTEXT	SHARING	
In	CHAPTER	1,	we	described	the	importance	of	opportunistic	grouping	in	context-aware	applications,	and	the	need	
for	 a	 framework	 that	 allows	 devices	 to	 form	 groups	 and	 share	 information/services	 without	 having	 to	 explicitly	
coordinate	with	each	other.	We	then	examined	a	wide	 range	of	existing	grouping	and	context-sharing	systems	 in	
CHAPTER	2,	and	showed	how	their	focus	on	specific	use	cases	and/or	group	types	limits	their	ability	to	support	a	wide	
range	of	opportunistic	interactions.	

In	this	chapter,	we	present	our	implementation	of	the	Group	Context	Framework	(GCF)	[43],	which	supports	all	of	the	
opportunistic	group	types	identified	by	our	conceptual	model	(Table	1).	First,	we	describe	our	high	level	requirements,	
and	the	overarching	principles	which	guided	our	design.	Afterwards,	we	introduce	GCF’s	core	components,	and	show	
how	they	allow	devices	to	request	and	receive	context	with	minimal	prior	coordination.	Through	two	applications,	
GroupMap	and	GroupHike,	we	demonstrate	1)	how	GCF	can	be	used	by	application	developers	to	easily	request	and	
receive	context,	 and	2)	how	 it	allows	devices	 to	 form	groups	and	share	context	when	performing	different	 tasks.	
Finally,	 we	 evaluate	 GCF	 using	 the	 same	 criteria	 we	 established	 in	 CHAPTER	 2,	 and	 discuss	 how	 our	 framework	
addresses	each	of	the	limitations	identified	in	prior	work.	

The	work	 described	 in	 this	 chapter	 directly	 addresses	 our	 first	 research	 question	 (“How	 can	we	 allow	devices	 to	
opportunistically	form	groups	and	share	context?”).	Through	the	design	of	GCF’s	architecture,	we	are	able	to	identify	
the	high	level	requirements	and	software	abstractions	needed	to	make	opportunistic	grouping	and	context	sharing	
viable	in	a	large	number	of	real-world	situations.	Moreover,	by	creating	a	working	implementation	of	this	architecture,	
we	provide	researchers	and	developers	with	a	flexible	middleware	solution	that	makes	opportunistic	grouping	and	
context	 sharing	 viable	 in	 a	 large	 number	 of	 real-world	 situations.	 Our	 framework	 not	 only	 makes	 it	 easy	 for	
applications	 to	 request	 and	 share	 context,	 but	 it	 also	 allows	 devices	 to	 autonomously	 take	 advantage	 of	 these	
grouping	 opportunities	 without	 having	 to	 interrupt	 the	 user.	 This	 allows	 devices	 to	 take	 advantage	 of	 grouping	
opportunities	that	are	not	always	immediately	apparent,	thereby	increasing	the	range	of	opportunistic	interactions	
that	we	can	explore.	

3.1. HIGH	LEVEL	REQUIREMENTS	AND	DESIGN	PRINCIPLES	
In	 the	 previous	 chapter,	 we	 identified	 five	 issues	 with	 current	 context-sharing	 systems	 that	 prevent	 them	 from	
allowing	devices	to	opportunistically	form	groups	and	share	context	under	the	widest	possible	set	of	circumstances.	
As	a	reminder,	these	limitations	are:	

1. Inability	to	share	context	across	different	applications.		
2. Lack	of	support	for	dynamic	groups.		
3. Over-reliance	on	a	single,	well-known,	communications	channel.		
4. Emphasis	on	long	lasting	groups.		
5. Inability	to	support	the	full	range	of	group	interactions.	

In	this	section,	we	show	how	these	limitations	have	influenced	GCF’s	design.	Specifically,	we	have	identified	three	
high	 level	 requirements	 (and	seven	sub	requirements)	 that	our	 framework	needs	to	satisfy	 in	order	to	address	or	
mitigate	the	problems	in	current	context-sharing	systems:	

Requirement	#1:	Provide	Standardized	Mechanisms	for	Requesting	and	Sharing	Context.	One	of	the	main	reasons	why	
context	is	not	commonly	shared	between	applications	and/or	devices	(limitation	#1)	is	that	there	is	no	simple	way	for	
them	to	openly	request	and	receive	information	from	each	other.	Context-aware	applications	are	typically	created	in	
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a	vacuum,	with	each	developer	responsible	for	collecting	and	using	context	on	her	own.	As	a	result,	developers	are	
oftentimes	so	focused	on	making	their	own	applications	work	that	they	do	not	consider	how	the	context(s)	they	collect	
might	be	useful	to	others	(or	provide	functionality	that	will	enable	said	interoperability).		

GCF	will	satisfy	this	requirement	in	two	ways.	First,	our	framework	will	define	a	standardized	communications	protocol	
to	let	devices	request	context	from	themselves,	as	well	as	with	their	physical	and/or	logical	neighbors.	Other	devices	
will	then	be	able	to	analyze	these	requests,	reply	if	and/or	when	they	are	willing	to	assist,	and	transmit	packets	that	
contain	the	requested	data.	By	defining	a	common	language	for	requesting,	advertising,	and	delivering	context,	GCF	
will	make	it	possible	for	devices	communicate	and	share	information,	regardless	if	the	applications	were	created	by	
different	developers	or	running	on	heterogeneous	platforms.	This	will	increase	the	opportunities	for	devices	to	assist	
one	another,	without	forcing	or	depending	on	application	developers	to	implement	this	functionality	on	their	own.	

Secondly,	GCF	will	provide	software	abstractions	to	make	context	easier	to	package,	reuse,	and	share.	Our	framework	
will	allow	developers	to	create	modules	that	are	each	responsible	for	collecting	a	single	type	of	context	(e.g.,	location,	
temperature),	and	 formatting	 them	 in	an	application	agnostic	manner.	Other	applications	can	 then	either	 include	
these	modules	in	their	code,	and/or	request	context	from	them	without	having	to	worry	about	whether	it	is	formatted	
the	correct	way.	By	isolating	the	context	being	collected	and/or	inferred	from	an	application’s	internal	logic	(a	concept	
referred	to	by	Dey	as	“Separation	of	Concerns”	[31]),	GCF	will	let	developers	treat	context	as	a	reusable	and	widely	
available	resource	rather	than	an	application	specific	commodity.	This	will	allow	devices	to	collaborate	and	cooperate	
with	each	other,	regardless	if	they	are	performing	the	same	task	or	require	the	same	information	(addressing	limitation	
#5).	

Requirement	#2:	Support	Multiple	Communications	Technologies.	Our	second	high	level	requirement	is	the	need	to	
support	a	wide	range	of	communications	technologies.	As	we	saw	in	prior	work,	developers	have	utilized	numerous	
communication	architectures	and	network	topologies	in	order	to	allow	devices	to	share	context.	Some	systems,	like	
ActiveMap,	use	a	client	server	architecture	to	allow	users	to	upload	and	share	location	data.	Others,	such	as	Flocks,	
rely	on	peer-to-peer	 technologies	 to	 let	 them	find	nearby	users	with	similar	personal	 interests.	 In	both	cases,	 the	
selected	communications	technology	is	application	specific	and	known	a	priori.	This	works	when	an	application	only	
needs	to	communicate	with	other	instances	of	itself,	but	prevents	multiple	applications	from	doing	the	same	when	
they	spontaneously	meet.	

Rather	than	enforce	a	single	communications	standard	(which	will	undoubtedly	limit	the	types	of	applications	we	can	
support	 through	 our	 framework),	 GCF	 will	 come	 with	 prebuilt	 support	 for	 a	 wide	 range	 of	 communications	
technologies	and	protocols.	Using	our	 framework,	developers	will	be	able	 to	broadcast	 requests	 for	context	 to	all	
devices	on	a	local	area	network	using	UDP	multicasting,	share	context	with	a	predefined	relay	server	via	a	standard	
TCP/IP	socket,	or	implement	their	own	custom	communication	stack.	Additionally,	GCF	will	also	let	applications	use	
multiple	communication	technologies	simultaneously.	Our	framework	will	provide	abstractions	so	that	applications	
can	request	and	share	context	with	multiple	devices	without	having	to	know	how	they	are	connected	at	the	network	
layer.	This	will	increase	the	range	of	devices	that	GCF	can	communicate	with	at	runtime,	and	make	it	better	suited	for	
situations	when	devices	need	to	communicate	in	an	ad	hoc	manner	(addressing	limitation	#3).	

Requirement	#3:	Allow	Devices	to	Automatically	Form	and	Maintain	Groups.	The	third	high	level	requirement	we	have	
identified	is	the	need	to	let	devices	form	and	maintain	groups	on	their	own.	As	we	observed	in	the	previous	chapter,	
many	context-aware	systems	still	rely	heavily	on	users	to	specify	the	users	and/or	devices	they	would	like	to	interact	
with,	or	for	developers	to	specify	the	exact	conditions	(e.g.	location,	date,	time)	that	can	lead	to	a	group.	This	works	
for	groupings	that	either	the	user	is	directly	aware	of,	or	can	be	programmatically	specified	in	advance,	but	becomes	
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problem	when	the	members	or	conditions	that	lead	to	a	group	are	either	1)	highly	transient,	2)	not	known	a	priori,	3)	
not	immediately	apparent	to	the	user.	

GCF	will	 address	 this	problem	by	allowing	devices	 to	 form	groups	on	 the	user’s	behalf.	 In	our	 system,	application	
developers	will	only	need	to	specify	the	types	of	context	that	they	require	and	the	size	of	the	group	they	would	like	
to	form.	The	framework	will	then	automatically	discover	devices	that	can	provide	this	information,	and	form	a	group	
with	 them	 (addressing	 limitation	 #2).	 In	 addition	 to	 finding	 groups,	 GCF	 will	 also	 provide	 a	 way	 for	 devices	 to	
dynamically	update	group	membership	over	time.	Our	framework	will	automatically	detect	when	devices	move	in	and	
out	of	range,	or	when	better	sources	of	context	have	been	found,	and	adjust	its	group	accordingly.	This	will	allow	our	
framework	to	be	used	in	highly	fluid	situations,	and	makes	our	system	practical	for	groupings	that	only	are	viable	for	
a	short	amount	of	time	(addressing	limitation	#4).	

To	summarize,	GCF’s	high	level	requirements	are:	

1. Provide	standardized	mechanisms	for	requesting	and	receiving	context	
1.1 Define	a	standardized	communications	protocol	to	request	and	receive	context	
1.2 Provide	software	abstractions	to	make	context	easier	to	package,	reuse	and	share	
1.3 Allow	devices	 to	 collaborate	with	 each	other,	 regardless	 of	 if	 they	 are	 performing	 the	 same	 task	 or	

require	the	same	information	
2 Support	multiple	communication	technologies	

2.1 Support	a	wide	range	of	communication	technologies	
2.2 Let	devices	use	multiple	communication	technologies	simultaneously	

3 Allow	devices	to	automatically	form	and	maintain	groups	
3.1 Allow	devices	to	form	groups	on	the	user’s	behalf		
3.2 Allow	devices	to	dynamically	update	group	membership	over	time	

In	addition	to	these	requirements,	GCF’s	design	is	also	motivated	by	the	desire	to	make	it	as	developer	friendly	as	
possible.	With	this	goal	in	mind,	we	have	designed	the	framework	according	to	the	following	principles:	

• Ease	of	Use.	Developers	are	more	likely	to	use	a	toolkit	if	it	can	be	easily	used.	GCF	will	support	this	by	making	
its	 functionality	 as	 simple	 and	 transparent	 as	 possible.	Our	 system	will	 provide	 developers	with	 a	 single	
interface	for	requesting	and	receiving	context,	regardless	as	to	whether	the	context	 is	obtained	from	the	
application	itself,	or	from	another	device.	Additionally,	our	toolkit	will	also	come	with	a	number	of	standard	
modules	for	collecting	and	sharing	commonly	used	contexts,	such	as	location,	accelerometer,	and	activity.	
This	will	increase	GCF’s	usefulness	“out	of	the	box,”	and	let	developers	quickly	incorporate	its	functionality	
into	both	new	or	existing	applications.	

• Extensibility.	While	we	expect	GCF	 to	 support	 a	wide	 range	of	 use	 cases	 in	 its	 default	 configuration,	we	
acknowledge	 that	 there	 are	many	 aspects	 of	 grouping	 and	 context	 sharing	 that	 cannot	 be	 predicted	 in	
advance.	 To	 address	 this,	 our	 framework’s	 components	 will	 be	 designed	 so	 that	 developers	 can	 add	 in	
support	for	new	context	types,	grouping	strategies,	and	communication	technologies	as	needed.	This	will	
allow	our	framework	to	support	novel	use	cases	as	they	are	discovered.	

By	adhering	to	these	principles,	we	aim	to	make	GCF	accessible	to	both	developers	that	will	only	use	the	framework	
in	its	current	form	(referred	to	by	Hudson	as	library	programmers	[31]),	as	well	as	those	that	will	extend	it	to	support	
their	needs	(i.e.	toolkit	programmers).	This	will	increase	the	chances	of	developers	using	our	framework,	which	in	turn	
will	maximize	the	range	of	applications	and	use	cases	that	can	be	potentially	explored.	
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3.2. FRAMEWORK	COMPONENTS	

GCF’s	high	level	architecture	is	presented	in	Figure	1.	Our	framework	consists	of:	

• A	communications	manager	(purple)	that	facilitates	message	passing	between	devices	and	applications	(via	
one	or	more	active	network	connections).	

• A	 set	of	0..n	 context	providers	 (blue)	 that	 collect,	process,	 and	disseminate	a	 specific	 type	of	 contextual	
information.	(e.g.,	location,	temperature).		

• A	 group	 context	manager,	 which	 tracks	 an	 application’s	 requests	 for	 contextual	 information,	 and	 forms	
groups	as	needed.	

In	this	section,	we	describe	each	component’s	roles	and	responsibilities.	We	then	show	how	they	interact	with	each	
other	at	runtime	to	allow	devices	to	opportunistically	form	groups	and	share	context.	

3.2.1. COMMUNICATIONS	MANAGER	
The	 communications	 manager	 is	 responsible	 for	 passing	 messages	 between	 GCF-enabled	 devices.	 It	 allows	 the	
framework	to	broadcast	requests	for	context,	receive	advertisements,	and	subscribe/unsubscribe	to	other	devices’	
context	providers	without	requiring	developers	to	have	to	worry	about	how	individual	devices	are	connected	(e.g.,	
Bluetooth,	Wi-Fi,	through	a	centralized	server)	at	the	network	layer.		

GCF	defines	four	types	of	messages	that	are	used	across	our	framework	to	request	and	receive	context	(Table	3):	

	

Figure	1.	GCF	High	Level	Architecture	
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Context	 request	messages	 express	 a	 device	 and/or	 application’s	 desire	 for	 contextual	 information.	 Each	 context	
request	contains	(listed	in	the	order	that	they	appear	in	Table	3):	

• The	unique	device	 identifier	of	 the	device	making	the	request.	By	default,	GCF	will	automatically	assign	a	
device	a	ID	by	using	the	device’s	hardware	name	or	(in	the	case	of	Android)	operating	system	ID.	However,	
any	globally	unique	value	will	suffice.	

• The	type	of	context	(e.g.,	location,	accelerometer)	being	requested.	
• A	type	value	to	let	the	framework	know	what	type	of	group	being	formed.	For	single-source	type	requests,	

the	 framework	 will	 examine	 all	 devices	 and	 form	 a	 group	 with	 the	 “best”	 device	 that	 can	 provide	 the	
requested	context	(the	criteria	and	methodology	used	is	specified	in	the	following	sections).	For	multi-source	
request,	 the	framework	will	group	with	all	devices	that	are	willing	to	provide	the	 information.	Finally,	 for	
local	requests,	the	framework	will	only	generate	the	requested	context	using	local	resources.	

• A	refresh	rate,	in	milliseconds,	specifying	the	rate	at	which	context	is	to	be	delivered	to	the	requesting	device.	
• (Optional)	A	payload	field,	which	allows	the	requesting	device	to	insert	custom	requirements.	For	example,	

if	a	device	is	requesting	temperature	context,	this	field	might	contain	a	value	indicating	what	units	the	device	
would	like	the	data	reported	in	(e.g.,	Fahrenheit).	Similarly,	if	a	device	is	requesting	audio	amplitude	data,	

Table	3.	Communication	Message	Types	
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this	field	might	tell	the	context	producer	(i.e.,	the	device	listening	on	its	microphone)	to	only	report	values	
that	are	above	a	predefined	amplitude,	in	addition	to	once	every	time	period.	

Context	capability	messages	advertise	a	device’s	advertise	a	device’s	willingness	to	provide	contextual	information.	
These	messages	are	sent	in	response	to	a	context	request	message,	and	specify:	

• The	unique	identifier	of	the	device	that	is	willing	to	provide	the	context.	
• The	type	of	context	offered	by	this	device.	This	is	the	same	value	that	is	specified	in	the	request	message.	
• A	flag	value	indicating	whether	or	not	this	context	is	already	being	actively	collected	and/or	shared	with	other	

devices.	This	value	is	useful	in	situations	when	the	requesting	device	needs	context,	but	does	not	want	to	
wait	for	the	other	device’s	sensors	to	“spin	up.”	

• The	device’s	remaining	battery	life,	in	percent.	
• A	heartbeat	rate,	which	specifies	the	amount	of	time	(in	milliseconds)	before	the	requesting	device	must	

resend	its	request	in	order	to	keep	receiving	context.		
• A	fitness	value,	which	represents	the	quality	of	context	produced	by	this	device.	This	value	is	context-specific,	

with	higher	values	denoting	higher	quality.	For	more	information	on	how	this	value	is	calculated,	please	refer	
to	the	section	on	Context	Providers.	

• (Optional)	A	payload	field,	which	contains	additional	performance	metrics	that	might	be	useful	to	a	device	
when	deciding	what	device(s)	 to	group	with.	For	example,	a	 temperature	sensing	device	might	 include	a	
value	in	this	field	that	specifies	the	range	of	temperatures	that	it	can	reliably	sense.	

Context	subscription	messages	are	sent	by	a	device	in	order	to	establish	or	dissolve	a	group.	They	contain:	

• The	unique	identifier	of	the	device	that	is	requesting	the	context.	
• The	unique	identifier	of	the	device	that	is	providing	the	context.	
• The	type	of	context	being	requested.	
• A	flag	specifying	whether	the	purpose	of	this	message	is	to	subscribe	to	another	device’s	context	provider	

(i.e.,	forming	a	group)	or	to	unsubscribe	(i.e.,	disbanding	a	group).	
• The	desired	refresh	rate,	 in	milliseconds.	This	value	should	be	equal	 to	 the	value	specified	 in	 the	original	

context	request.	
• The	agreed	upon	heartbeat	rate,	 in	milliseconds.	This	value	should	be	equal	 to	the	value	specified	 in	the	

context	capability	message.	
• (Optional)	A	payload	field,	which	contains	the	same	values	as	in	the	original	request	message.	

Finally,	context	data	messages	contain	contextual	information.	These	messages	contain:	

• The	unique	identifier	of	the	device	that	is	producing	this	context	
• The	type	of	context	contained	within	this	message	
• The	intended	recipient	for	this	message.	This	field	allows	a	device	to	create	context	for	a	specific	device,	or	

(if	blank)	for	all	devices	that	are	currently	subscribed	to	it.	
• A	payload	field,	which	contains	the	actual	context	data.	

One	of	the	key	features	of	the	communications	manager	is	to	make	it	easy	for	devices	to	utilize	multiple	connections	
at	the	same	time.	To	achieve	this,	each	communications	manager	maintains	a	collection	of	communication	threads	
that	represents	its	currently	active	network	connections	(e.g.,	a	TCP	socket,	a	UDP	multicast).	When	an	application	
needs	to	communicate	with	a	device	(or	set	of	devices	across	a	broadcast	channel),	the	communications	manager	
spawns	a	new	thread	for	that	particular	IP	address,	port,	and	protocol.	Applications	can	then	send	messages	through	
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the	communications	manager,	which	are	either	forwarded	to	all	threads	at	once	(simulating	a	network	broadcast),	or	
to	a	specific	one.	By	1)	abstracting	multiple	network	connections	into	a	single	logical	channel,	and	2)	keeping	track	of	
which	 devices	 it	 has	 received	 messages	 from	 on	 each	 thread,	 the	 communications	 manager	 makes	 it	 easy	 for	
applications	 to	 communicate	 with	 a	 wide	 range	 of	 devices	 using	 heterogeneous	 communication	 technologies.	
Developers	only	have	to	direct	the	communications	manager	to	send	a	message,	and	the	framework	will	automatically	
find	the	most	efficient	path	(and	protocol)	to	get	it	to	its	destination.	

The	 communication	 manager	 is	 compatible	 with	 any	 broadcast	 network	 technology.	 GCF	 comes	 with	 prebuilt	
communication	threads	for	TCP	sockets	and	UDP	multicast,	as	these	technologies	are	widely	used,	support	a	large	
number	of	simultaneous	users,	and	allow	for	unrestricted	communications	across	a	subnet	(typically	limited	to	a	single	
building	or	 floor).	However,	we	also	allow	developers	 to	create	 their	own	communication	 threads	as	needed.	For	
example,	in	our	own	work	(see	CHAPTER	4)	we	have	created	communications	threads	that	can	communicate	with	a	
custom	socket	server	in	order	to	share	context	across	arbitrary	distances	and/or	mobile	network	providers.	We	have	
also	created	threads	that	can	send	and	receive	messages	to	MQTT	brokers	[125]	to	allow	GCF	to	communicate	with	
Internet-of-Things	appliances.	Through	this	approach,	we	allow	GCF	to	be	easily	extended	to	support	both	existing	
and	future	communication	technologies,	without	requiring	significant	changes	to	the	underlying	architecture.	

3.2.2. CONTEXT	PROVIDER	
Context	 providers	 are	 tasked	 with	 producing,	 storing,	 and	 distributing	 contextual	 information.	 Each	 provider	 is	
responsible	for	a	specific	type	of	context	(e.g.,	location,	time,	temperature),	and	a	GCF-enabled	device	can	have	zero	
or	more	context	providers	running	in	the	background	depending	upon	what	information	it	is	able	to	produce	and	what	
it	is	willing	to	share.	

Context	providers	perform	 two	 tasks.	 Their	primary	 responsibility	 is	 to	 convert	 raw	data	 into	usable	 context.	 The	
means	by	which	this	is	accomplished	varies	depending	upon	the	provider.	A	location	provider,	for	example,	may	need	
to	use	a	combination	of	GPS	and	Wi-Fi	sensors	in	order	to	determine	the	user’s	geographic	coordinates.	A	shopping	
list	provider,	on	the	other	hand,	may	not	need	to	use	any	sensors,	but	simply	store	a	list	of	items	provided	by	a	user	
through	a	shopping	list	application.	Finally,	an	activity	provider	may	need	to	use	a	combination	of	both	sensors	and	
software	in	order	to	infer	what	physical	activity	the	user	is	performing	(e.g.,	walking,	running,	standing	still),	and	what	
activity	she	is	performing	on	her	phone.		

The	second	responsibility	of	a	context	provider	is	to	keep	track	of	active	subscriptions.	Each	context	provider	maintains	
a	list	of	all	of	the	devices	that	have	requested	and	subscribed	to	its	services.	The	provider	then	periodically	transmits	
the	requested	context	to	each	device	at	the	specified	interval,	and	listens	for	periodic	heartbeat	messages	to	verify	
that	the	device	is	still	in	communications	range.	By	listening	for	heartbeats	and	canceling	subscriptions	after	a	period	
of	 inactivity,	 the	 context	 provider	 is	 able	 to	 autonomously	 determine	which	device(s)	 still	 need	 information.	 This	
allows	a	provider	to	turn	itself	off	when	devices	no	longer	need	its	services,	thereby	conserving	battery	life.	

As	of	this	writing,	GCF	already	includes	a	library	of	context	providers	for	commonly	used	contexts	(e.g.,	location,	light	
intensity,	compass,	temperature,	barometric	pressure,	Bluetooth	proximity,	accelerometer,	and	audio	magnitude).	
However,	we	also	expect	that	developers	will	want	to	create	custom	context	providers	for	their	particular	application,	
and	have	made	it	easy	to	do	so	through	our	framework.	As	shown	in	Figure	2,	creating	a	new	context	provider	involves	
inheriting	from	the	base	CONTEXTPROVIDER	class	(provided	by	GCF),	and	implementing	the	following	methods:	

1. In	the	constructor	(line	4),	developers	assign	their	provider	with	a	string	value	that	is	associated	with	
their	particular	context	(e.g.,	Location	=	“LOC”,	Bluetooth	=	“BT”).	This	value	needs	to	be	globally	unique,	
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as	it	 is	what	allows	our	framework	to	link	context	requests	to	individual	providers	across	applications	
and/or	devices.	

2. In	the	START()	method	(line	11),	developers	are	able	to	turn	on	or	initialize	the	sensors	that	it	needs	to	
begin	collecting	context.	This	method	 is	automatically	called	by	the	framework	when	the	first	device	
subscribes	(i.e.,	when	the	number	of	subscriptions	changes	from	0	to	1).	

3. In	the	STOP()	method	(line	17),	developers	are	given	the	opportunity	to	turn	off	sensors	and	perform	
cleanup	tasks.	This	method	is	automatically	called	by	the	framework	when	the	last	device	unsubscribes	
(i.e.,	when	the	number	of	subscriptions	changes	from	1	to	0).	

4. In	the	SENDCAPABILITY()	method	(line	23),	the	developer	is	able	to	examine	individual	requests	for	context	
(both	 internal	and	external),	and	decide	whether	or	not	 the	provider	should	respond	with	a	Context	
Advertisement	message.	By	default,	providers	will	always	respond	to	requests	from	the	local	device,	and	
will	 only	 stop	 responding	 to	 external	 requests	 once	 the	device’s	 battery	 goes	below	20%.	However,	
developers	can	override	this	method	to	handle	special	cases,	such	as	1)	when	the	device	cannot	produce	

1. public class ExampleContextProvider extends ContextProvider  
2. {  
3.   // Constructor  
4.   public ExampleContextProvider(GroupContextManager gcm)  
5.   {  
6.     // Registers the context provider's globally recognized name  
7.     super("EXAMPLE", gcm);  
8.   }  
9.     
10.  // Code to initialize the provider  
11.  public void start()   
12.  {  
13.    // Start Sensor(s)  
14.  }  
15.    
16.  // Code to halt the provider  
17.  public void stop()  
18.  {  
19.    // Stop Sensor(s)  
20.  }  
21.   
22.  // Return TRUE if the provider should respond to a request; FALSE otherwise   
23.  public boolean sendCapability(ContextRequest request)  
24.  {  
25.    return true;  
26.  }  
27.    
28.  // Calculates the "quality" of this provider  
29.  public double getFitness()  
30.  {  
31.    // Higher values denote higher quality  
32.  }  
33.    
34.  // Sends context to all subscribers  
35.  public void sendContext()  
36.  {  
37.    gcm.getCommManager.sendContext(new ContextData(...));  
38.  }  
39. }  

	Figure	2.	Sample	Java	implementation	of	a	context	provider	
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the	 requested	 context,	 or	 2)	when	 the	 request	 is	 unreasonable	 (delivering	 context	 every	 1ms).	 This	
method	returns	TRUE	if	the	provider	should	advertise	its	services,	and	FALSE	otherwise.	

5. In	the	GETFITNESS()	method	(line	29),	developers	report	the	quality	of	information	that	is	produced	by	this	
context	provider.	Since	the	notion	of	quality	is	context-specific,	we	require	each	provider	to	define	its	
own	quality	metric.	 For	 example,	 a	 location	 context	provider	might	use	 the	 accuracy	of	 coordinates	
returned,	measured	in	meters.	Likewise,	for	a	camera	sensor,	one	possible	metric	might	be	its	 image	
quality	in	megapixels.	GCF	assumes	that	higher	fitness	values	correspond	to	higher	quality,	and	that	this	
metric	is	standardized	across	all	providers	of	the	same	type.		

6. In	the	SENDCONTEXT()	method	(line	35),	developers	are	able	to	specify	how	the	context	provider	delivers	
information	 to	 other	 applications/devices.	 The	 framework	 automatically	 calls	 this	 method	 at	 the	
requested	interval,	and	allows	developers	to	transmit	the	same	context	to	all	devices,	or	to	deliver	a	
specific	context	value	to	each	one.	

Context	providers	are	the	primary	mechanism	by	which	devices	form	groups	and	collaborate	in	GCF.	They	provide	a	
standardized,	application	independent	interface	for	collecting	and	distributing	contextual	information.	Additionally,	
since	context	providers	are	designed	to	be	reusable,	they	can	be	openly	distributed	and	used	by	other	GCF-enabled	
devices.	 This	 allows	 functionally	 different	 applications	 to	 use	 the	 same	 providers,	 which	 in	 turn	 allows	 these	
applications	to	share	information	without	having	to	explicitly	know	of	each	other	a	priori.	

3.2.3. GROUP	CONTEXT	MANAGER	
The	group	context	manager	(GCM)	serves	as	the	controller	for	the	entire	framework.	It	is	created	at	startup,	and	is	
responsible	for	monitoring	an	application’s	requests	for	context,	searching	for	device	groupings	that	best	satisfy	these	
needs,	and	delivering	context	to	the	application	as	it	arrives.	

The	GCM	consists	of	 four	modules.	The	request	management	module	 is	 responsible	 for	 tracking	a	device’s	active	
requests	 for	 contextual	 information.	 It	 broadcasts	 context	 request	messages	 (via	 the	 communications	manager),	
periodically	contacts	providers	so	that	they	continue	to	provide	data,	and	disconnects	from	providers	in	the	event	
that	the	application	no	longer	needs	information	or	when	a	communications	timeout	occurs.	

The	provider	module	is	responsible	for	managing	an	application’s	context	providers.	When	created,	the	GCM	does	
not	contain	any	context	providers.	Instead,	providers	are	created	and	registered	to	the	GCM	so	that	developers	and/or	
end	users	can	explicitly	specify	which	contexts	they	are	willing	to	produce	and	share.	When	a	request	arrives,	the	
GCM	queries	the	provider	module	in	order	to	determine	if	a	provider	with	the	matching	context	type	is	both	registered	
and	willing	 to	 satisfy	 the	 request	 (i.e.,	 SENDCAPABILITY()	 returns	 TRUE).	 If	 both	 conditions	 are	 satisfied,	 a	 capability	
advertisement	message	is	then	created	and	sent	back	to	the	requester.	

The	 reliability	 monitor	 maintains	 a	 log	 of	 communication	 timeouts	 for	 all	 previously	 encountered	 devices.	 This	
information	is	then	used	to	discourage	the	framework	from	forming	grouping	with	devices	that	have	been	unreliable	
in	the	past.		

Finally,	the	group	management	module	is	responsible	for	evaluating	and	subscribing	to	devices	that	are	capable	of	
producing	the	desired	context.	It	accomplishes	this	through	a	series	of	arbiters	that	examines	each	context	capability	
message,	and	selects	the	best	one(s)	according	to	a	specified	grouping	strategy.	More	information	on	this	process	is	
provided	in	the	following	section.	
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3.2.3.1. Selecting	Group	Members	
A	 key	 feature	 of	 GCF	 is	 its	 ability	 to	 automatically	 discover	 and	 form	 groups.	 For	 example,	 in	 order	 to	 receive	
temperature	information	from	a	single	device	once	every	five	seconds,	a	developer	only	has	to	write	the	following	
line	of	code:	

	

As	shown	in	Figure	3,	a	typical	context	request	contains:	

• The	type	of	context	being	requested	(“TEMP”	=	Temperature).	
• The	desired	refresh	rate,	in	milliseconds.	
• The	type	of	group	being	formed.	In	the	above	example,	the	request	is	for	a	single	source	of	context.	
• (Optional)	A	set	of	weights	that	tell	GCF	how	to	evaluate	potential	group	members	(more	information	

concerning	how	these	weights	are	used	are	provided	below).		
• (Optional)	A	set	of	one	or	more	custom	requirements	for	this	request	(e.g.,	“report	temperature	in	degrees	

Celsius”).	This	value	is	inserted	in	the	context	request	message’s	payload	field.		

In	order	to	form	a	grouping	that	best	satisfies	this	request,	the	GCM	transmits	a	context	request	message	to	all	devices	
in	communications	range,	and	collects	the	context	capability	message(s)	sent	in	response.	An	arbiter	then	processes	
these	capabilities	to	determine	which	device(s)	to	group	with.	GCF	comes	with	three	prebuilt	arbiters:	a	single-source	
arbiter,	a	multi-source	arbiter,	and	a	 local	arbiter.	These	arbiter	match	to	a	corresponding	request	type,	and	form	
groups	according	to	a	predefined	strategy,	as	discussed	below.		

Single	Source	Arbitration	
A	 single	 source	 context	 request	 is	 useful	 in	 situations	when	 a	 device	 requires	 contextual	 information,	 but	 is	 not	
concerned	about	where	it	comes	from.	This	strategy	takes	advantage	of	the	fact	that	there	are	many	types	of	context	
(e.g.,	 location,	temperature)	that	are	not	device	specific,	and	can	be	reliably	reported	by	any	device	that	 is	within	
communications	range.	

In	single	source	arbitration,	the	arbiter	examines	the	context	capability	messages	provided	by	each	device	and	selects	
the	“best”	one.	To	calculate	the	best	device,	GCF	considers	the	following	criteria:	

• Battery	Life	(b):	To	maximize	the	lifespan	of	all	participating	devices,	the	arbiter	will	favor	devices	with	the	
largest	remaining	battery	life.	To	compensate	for	variances	in	battery	size	and	drain	rates	between	mobile	
devices,	each	device	reports	its	battery	life	in	estimated	minutes	remaining.	

	

Figure	3.	A	sample	call	to	the	group	context	manager’s	SENDREQUEST()	method,	requesting	temperature	(“TEMP”)	data	once	
every	5	seconds.	
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• Context	Quality	(q):	 It	 is	not	possible	to	have	a	universal	metric	to	measure	quality.	Instead,	as	previously	
discussed,	context	providers	must	define	their	own	quality	metric.	The	arbiter	then	compares	each	provider	
by	this	metric	and	favors	those	that	are	of	higher	quality.	

• Communication	Overhead	(c):	To	ensure	that	a	device	is	in	range,	GCF	allows	context	providers	to	specify	a	
heartbeat	interval.	Requesting	devices	must	then	send	a	message	at	least	once	per	interval	in	order	to	keep	
receiving	information.	The	single	source	arbiter	favors	context	providers	with	longer	heartbeat	intervals,	as	
this	minimizes	overhead	for	the	requesting	device.	

• Duplicate	Effort	(d):	To	increase	efficiency,	the	arbiter	will	try	to	group	with	devices	that	are	already	providing	
the	 requested	 context	 to	 other	 users.	 This	 metric	 takes	 advantage	 of	 GCF’s	 reliance	 on	 broadcast	
technologies,	 as	 it	 allows	 a	 device	 to	 provide	 context	 to	 multiple	 devices	 without	 increasing	 energy	
consumption.	

• Reliability	(r):	GCF	uses	a	reliability	value	in	order	to	estimate	a	device’s	ability	to	dependably	provide	context.	
When	GCF	first	encounters	a	device,	it	assumes	that	is	reliable	and	assigns	it	an	r	of	1.0.	Then,	after	each	
disconnect	or	timeout,	this	value	is	halved.	By	decreasing	the	value	of	r	and	incrementing	it	slowly	over	time,	
the	framework	is	able	to	favor	context	providers	that	have	been	reliable	in	the	past,	while	still	giving	providers	
the	chance	to	be	reconsidered	after	enough	time	has	passed.	

Each	of	the	above	factors	are	normalized	to	a	0.0	–	1.0	numeric	range.	A	composite	fitness	score	is	then	calculated	
for	each	responding	device	using	the	following	equation:	

Fitness	=	(𝑤# ∗ 𝑏) + (𝑤( ∗ 𝑞) + (𝑤* ∗ 𝑐) + (𝑤, ∗ 𝑑) +	(𝑤/ ∗ 𝑟)	

𝑤# + 𝑤(+	𝑤* + 𝑤, + 𝑤/ = 1.0	

where	w1	through	w5	are	weights	that	correspond	to	each	of	the	five	criteria	listed	above.		

By	setting	w1	through	w5,	developers	are	able	to	specify	which	criteria	matter	most	for	their	specific	application.	When	
using	the	standard	form	of	sendRequest,	GCF	uses	a	set	of	default	weights	that	we	have	found	to	yield	good	overall	
performance.	However,	if	developers	favor	some	criteria	over	others,	they	can	modify	these	values	as	they	see	fit.	For	
example,	if	sensor	quality	is	especially	important	for	a	particular	application,	developers	can	assign	a	higher	value	to	
w2,	as	shown	in	Figure	4.		

	

After	calculating	the	fitness	values,	the	device	with	the	highest	fitness	score	is	selected,	and	the	GCM	automatically	
transmits	a	context	subscription	message	to	it.	In	the	event	of	a	tie,	the	first	device	to	respond	is	selected.	

Multi-Source	Arbitration	
Multi-source	 arbitration	 is	 intended	 for	 situations	 when	 a	 device	 requires	 information	 from	 all	 of	 its	 neighbors	
simultaneously.	This	method	of	group	formation	is	useful	for	applications	where	each	device	provides	a	unique	and	
equally	valuable	context,	(e.g.,	a	map	application	displaying	everyone’s	positions	using	their	individual	GPS	receivers).	

Unlike	single-source	arbitration,	the	multi-source	arbiter	greedily	subscribes	to	all	devices	in	range,	up	to	a	pre-defined	
or	developer	defined	limit.	In	this	fashion,	the	arbiter	is	able	to	create	an	ad-hoc	sensor	network,	and	gather	context	
data	across	a	wide	geographic	area.	

gcm.sendRequest(“TEMP”, 5000, SINGLE_SOURCE, 0.0, 1.0, 0.0, 0.0, 0.0, new String[] {“unit=Celsius”}); 

Figure	4.	A	sample	GCF	request	for	temperature	data.	By	setting	w2	to	1.0	and	all	other	weights	to	0.0,	developers	can	
direct	GCF	to	only	consider	sensor	quality	when	evaluating	potential	group	members.		
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Local	Arbitration	
Local	arbitration	is	intended	for	situations	when	a	device	requires	information	that	can	only	be	produced	internally.	
An	example	of	this	is	a	compass	application,	as	information	from	both	the	accelerometer	and	magnetometer	must	
both	be	obtained	from	the	local	device	in	order	to	provide	the	user	with	an	accurate	heading.	The	local	arbiter	uses	a	
simplified	fitness	function	that	only	takes	a	context	provider’s	quality	(q)	into	account.	Other	factors	(i.e.,	battery	life,	
reliability,	etc.)	are	ignored	as	their	values	will	be	the	same.	

Custom	Arbiters	
The	Single	Source,	Multi-Source,	and	Local	arbiters	included	with	GCF	are	expected	to	support	a	wide	range	of	use	
cases.	However,	there	may	be	occasions	where	a	developer	needs	more	explicit	control	over	how	the	framework	finds	
and	forms	groups.	For	example,	if	a	developer	is	creating	an	application	that	tracks	the	location	of	first	responders,	
he/she	might	only	want	to	collect	context	from	a	small	subset	of	users	(i.e.,	devices	on	a	predefined	white	 list)	as	
opposed	to	everybody.	Similarly,	if	a	developer	is	creating	an	“icebreaker	app”	(e.g.,	an	app	that	tells	users	about	the	
interests	and	hobbies	of	nearby	people	in	order	to	encourage	friendly	conversation),	he/she	may	only	want	the	device	
to	group	with	devices	that	the	user	has	not	already	encountered	before.	

To	support	these	specialized	use	cases,	GCF	allows	developers	to	create	their	own	arbiters.	Our	framework	comes	
with	a	generic	ARBITER	class	that	defines	its	core	methods.	Developers	can	then	create	their	own	arbiter	by	inheriting	
from	this	base	class	(Figure	5),	and	performing	the	following	steps:	

1. Define	the	arbiter’s	unique	group	type.	In	the	constructor	(line	7),	developers	assign	their	arbiter	a	unique	
group	value	(i.e.,	an	integer).	The	value	does	not	have	to	be	globally	unique,	but	must	be	different	from	the	
values	that	GCF	uses	for	its	default	arbiters,	as	shown	below:	

a. SINGLE_SOURCE	=	0	
b. MULTI_SOURCE	=	1	
c. LOCAL_ONLY	=	2	

	

1. public class ExampleArbiter extends Arbiter  
2. {  
3.  // Constructor  
4.  public ExampleArbiter()   
5.  {  
6.   // This number represents the "group value." It must be unique.  
7.   super(100);  
8.  }  
9.   
10.  // Returns the Context Capabilities to Subscribe to Given the Arbiter's Policy  
11.  public ArrayList<ContextCapability> selectCapability(  
12.   ContextRequest request,   
13.   GroupContextManager gcm,   
14.   ArrayList<ContextCapability> subscribedCapabilities,   
15.   ArrayList<ContextCapability> receivedCapabilities)   
16.  {  
17.   // Determine which device(s) to group with here  
18.   ArrayList<ContextCapability> result = new ArrayList<ContextCapability>();  
19.     
20.   // GCF will group with all devices contained within this array 
21.   return result;  
22.  }  
23. }  

Figure	5.	Sample	implementation	of	a	new	arbiter.	
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2. Determine	which	device(s)	to	group	with.	In	the	SELECTCAPABILITY()	method	(line	11),	developers	implement	
their	custom	grouping	logic.	In	this	method,	developers	have	access	to:	

• The	context	request	that	was	broadcasted	via	the	group	context	manager.	
• The	group	context	manager.	
• A	list	of	context	capabilities	that	the	device	is	already	subscribed	to	for	this	context	type	(i.e.,	current	

group	members).	
• A	list	of	received	context	capabilities	(i.e.,	potential	new	group	members)	

The	method	returns	a	list	of	devices	that	GCF	will	group	with	(line	21).	The	framework	will	then	automatically	
use	 the	 results	 of	 SELECTCAPABILITY()	 to	 1)	 subscribe	 to	 devices	 that	 are	 in	 the	 list,	 but	 are	 not	 currently	
subscribed	to,	and	2)	unsubscribe	from	any	devices	that	are	currently	subscribed,	but	are	not	in	the	list.	

3. Register	the	arbiter	with	the	framework.	Once	the	arbiter	has	been	created,	the	developer	must	register	it	
with	the	framework	so	that	it	can	be	used.	This	is	done	by	calling	Group	Context	Manager’s	REGISTERARBITER()	
method,	as	shown	below:	
	

gcm.registerArbiter(new CustomArbiter()); 
	

4. Request	context	using	 the	arbiter.	To	use	 the	arbiter,	 the	developer	calls	 the	 SENDREQUEST()	method,	and	
provides	it	with	the	group	value	specified	in	Step	1.	For	example,	if	a	developer	wants	to	request	location	
context	every	five	seconds	using	a	custom	arbiter,	he/she	would	write	the	following	line	of	code:		
	

gcm.sendRequest(“LOC”, 5000, 100, new String[0]); 
	

The	 framework	will	 then	 associate	 the	 custom	arbiter	with	 this	 request,	 and	use	 it	 to	 process	 capability	
messages	for	this	context	type.	

Periodic	Refresh	
GCF	repeats	the	request	and	selection	process	after	a	specified	amount	of	time	has	elapsed,	or	when	the	current	
context	provider	stops	providing	context	information	or	moves	out	of	range.	This	allows	devices	to	continually	scan	
the	environment	and	automatically	switch	between	context	providers	in	order	to	offer	a	consistent	or	higher	quality	
of	 service.	When	 this	 process	 is	 repeated	 on	multiple	 devices,	 it	 allows	 devices	 to	 dynamically	 reassign	 context	
collection	tasks	in	order	to	efficiently	meet	the	group’s	needs.		

3.3. EXAMPLE	REQUEST	FOR	CONTEXT	
To	illustrate	how	GCF’s	components	operate	at	runtime,	this	section	describes	a	sample	interaction	between	four	GCF	
devices	(labeled	Devices	A-D).	For	this	example,	Device	A	is	running	a	GCF-enabled	application	that	needs	location	
data	 (i.e.,	GPS	coordinates)	once	every	60	 seconds.	Devices	B	and	C	have	a	 context	provider	 that	 can	 satisfy	 this	
request,	while	Device	D	does	not.	
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Phase	1:	Initial	Request.	Device	A	initiates	communication	by	directing	its	group	context	manager	to	send	a	Context	
Request	message	to	all	devices	in	communication	range	(Figure	6).	This	is	done	by	calling	the	Group	Context	Manager’s	
SENDREQUEST()	method	(using	a	version	of	the	method	that	uses	GCF’s	default	weights):	

gcm.sendRequest(“LOC”, 60000, SINGLE_SOURCE, new String[0]); 

The	GCM	creates	a	Context	Request	message	containing	the	specified	refresh	rate	and	grouping	strategy,	and	sends	
it	to	the	Communications	Manager	to	be	transmitted	on	a	broadcast	channel	(e.g.,	a	multicast	socket).	When	Devices	
B,	C,	and	D’s	group	context	managers	receive	the	message,	they	query	their	list	of	active	context	providers	to	see	if	
they	can	produce	this	information.	

	

Phase	2:	Initial	Response.	In	this	phase,	Devices	B	and	C	determine	that	they	have	a	context	provider	of	type	“LOC.”	
They	each	call	the	context	provider’s	SENDCAPABILITY()	method	to	verify	that	it	 is	able	to	produce	the	context	at	the	
specified	rate.	IF	the	method	returns	TRUE,	each	GCM	sends	a	Context	Capability	message	to	Device	A	to	inform	it	of	
their	willingness	to	assist	(Figure	7).	

	

Figure	6.	Device	A	requests	location	data	from	Devices	B,	C,	and	D.	

	

	

Figure	7.	Devices	B	and	C	send	an	advertisement	denoting	their	willingness	to	provide	context	to	Device	A.	
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Device	D,	having	determined	that	it	does	not	have	a	context	provider	of	type	“LOC,”	ignores	Device	A’s	request.	

	

	

Phase	3:	Capability	Evaluation.	After	waiting	a	set	amount	of	time	(e.g.,	one	second),	Device	A’s	GCM	forwards	the	
received	capability	messages	to	its	single	source	arbiter.	The	arbiter	uses	the	performance	metrics	contained	within	
each	context	capability	message	to	compute	a	weighted	fitness	score,	and	selects	the	device	with	the	highest	score	
(Figure	8).	For	the	purposes	of	this	example,	we	will	assume	that	Device	C	has	the	highest	fitness	value.	

	

	

Phase	4:	Context	Subscription	and	Delivery.	Device	A	sends	a	Context	Subscription	message	to	Device	C	(Figure	9).	
Upon	 receipt,	 Device	 C	 activates	 the	 corresponding	 context	 provider,	 which	 causes	 it	 to	 start	 collecting	 and	
transmitting	data	at	the	specified	rate.	

	

Figure	8.	Device	A’s	arbiter	evaluates	each	received	capability	message,	and	determines	the	“best”	device	to	group	with		

	

	

Figure	9.	Device	A	subscribes	to	Device	C’s	location	provider	and	begins	receiving	context		
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Phase	 5:	 Heartbeat.	 At	 predefined	 intervals	 (specified	 by	 Device	 C	 in	 its	 Context	 Capability	 message),	 Device	 A	
retransmits	its	request	for	location	context	(Figure	11).	This	message	serves	as	a	heartbeat	for	Device	C,	letting	it	know	
that	Device	A	is	still	in	communications	range	and	needs	data.	Furthermore,	it	gives	other	devices	the	chance	to	reply	
with	context	capability	messages,	which	allows	Device	A	to	switch	to	a	better	provider	in	the	event	that	one	becomes	
available.	

Phase	6:	Context	Unsubscribe:	When	Device	A	no	longer	needs	context,	it	sends	a	Context	Subscription	message	to	
Device	C	notifying	it	that	wants	to	unsubscribe	from	its	location	context	provider	(Figure	10).	Upon	receipt,	Device	C	
removes	Device	A	from	its	list	of	subscribers,	and	halts	the	context	provider.	

	

	

	

	

Figure	11.	Device	A	periodically	transmits	a	“heartbeat”	message	to	Device	C	to	keep	receiving	context.		

	

	

Figure	10.	Device	A	unsubscribes	from	Device	C’s	location	provider	when	it	no	longer	needs	context.	
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3.4. SOFTWARE	IMPLEMENTATION	

GCF	is	currently	implemented	as	an	application	library	for	the	Java	runtime	platform.	A	partial	UML	diagram,	showing	
the	framework’s	major	classes,	is	provided	in	Figure	12	(see	APPENDIX	A	for	the	complete	system	architecture):	

Not	surprisingly,	the	base	classes	in	this	diagram	(i.e.,	GROUPCONTEXTMANAGER,	COMMMANAGER)	match	the	components	
identified	 in	 our	 high	 level	 architecture.	 For	 cross-platform	 compatibility	 reasons,	 however,	 GCF’s	 functionality	 is	
divided	into	multiple	libraries.	The	core	library	(blue)	houses	the	framework’s	platform	agnostic	components	and	logic,	
and	provides	abstract	classes	to	let	developers	create	their	own	group	context	manager,	context	providers,	arbiters,	
and	 communication	managers/threads.	 The	platform	 libraries	 (purple,	 green),	 on	 the	 other	 hand,	 implement	 the	
abstract	 interfaces	 defined	 by	 the	 core	 library,	 and	 allow	us	 to	 tailor	GCF’s	 behaviors	 to	 take	 advantage	 of	 each	
platform’s	 unique	 sensing	 capabilities,	 features	 (e.g.,	 Android	 Intents,	 desktop	 event	 handlers),	 and	 common	
programming	practices.	All	supported	platforms	can	communicate	using	TCP	and	UDP	networking	protocols,	and	all	
messages	are	serialized	as	JavaScript	Object	Notation	(JSON)	objects	using	Google’s	Gson	library	[150].	

GCF	 is	 optimized	 for	both	 the	Android	 and	desktop	operating	 systems	 (e.g.,	Mac	OS	X,	Windows,	 Linux),	 as	both	
platforms	are	widely	used.	However,	since	the	framework	is	based	on	Java,	it	can	be	easily	ported	to	run	on	a	wide	
range	of	hardware.	We	have	already	deployed	GCF-enabled	applications	on	cheap,	low-powered	hardware	such	as	
the	 first	 generation	 Raspberry	 Pi	 [126],	 and	 have	 even	 gotten	 the	 framework	 to	 run	 on	 devices	 running	Android	
Gingerbread	(a	six-year-old	operating	system	as	of	this	writing).	Consequently,	while	GCF	will	eventually	need	to	be	
ported	 to	 other	 popular	 platforms	 (e.g.,	 iOS)	 in	 order	 to	 maximize	 the	 chances	 for	 devices	 to	 find	 and	 form	
opportunistic	groups,	the	current	version	is	already	sufficient	to	explore	a	wide	range	of	context-aware	applications.	

	

	

Figure	12.	GCF’s	partial	UML	class	diagram,	showing	our	system’s	core	components	(blue),	and	platform	specific	libraries	
(green,	purple).	
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3.5. EXAMPLE	GCF	APPLICATIONS	
In	order	to	showcase	GCF’s	support	for	multiple	group	types,	we	have	created	two	simple	mobile	phone	applications	
using	our	framework.	The	first	application,	GroupMap,	satisfies	quadrants	I	and	III	of	our	model	by	allowing	devices	
to	share	and	broadcast	information	about	their	 location,	respectively.	The	second	application,	GroupHike,	satisfies	
quadrants	I	and	II	by	allowing	devices	to	both	share	location	information,	and	combine	accelerometer	data	in	order	
to	gather	information	about	an	unknown	environment.	When	used	concurrently,	these	prototypes	also	demonstrate	
the	potential	of	in-situ	groupings	(Quadrant	IV)	by	showing	how	GCF-enabled	applications	can	serendipitously	work	
together.	

3.5.1. GROUPMAP	
GroupMap	is	a	mapping	tool	that	allows	users	to	track	their	location.	Figure	13	shows	a	screenshot	of	the	application	
and	 its	 two	modes	 of	 operation.	When	 users	 start	GroupMap,	 they	 are	 provided	with	 an	 adjustable	map	 that	 is	
centered	on	their	current	location.	Users	can	then	use	to	app	to	view	their	own	location	(Figure	13a-b),	or	the	location	
of	any	other	nearby	users	simultaneously	(Figure	13c).		

GroupMap	utilizes	a	location	provider	that	uses	either	the	phone’s	GPS	or	network	sensors	to	determine	the	user’s	
location.	When	the	application	starts,	it	immediately	broadcasts	a	single-source	request	for	location	information.	If	a	
compatible	device	is	nearby	(as	determined	by	Bluetooth)	and	is	willing	to	share,	the	application	subscribes	to	it	and	
begins	pulling	location	data	(Figure	3b);	else,	it	uses	its	own	location	provider.	

GroupMap	 is	 primarily	 a	 collaboration	 tool	 (Quadrant	 I),	 as	 it	 allows	 users	 to	 share	 information	 when	 they	 are	
performing	the	same	task	(i.e.,	navigation/exploration)	and	require	access	to	the	same	information	(i.e.,	location	data).	
However,	the	application	can	also	support	convenient	collaborations	(Quadrant	 III).	By	switching	to	tracking	mode	
(Figure	3c),	the	application	begins	subscribing	to	all	location	context	providers	in	broadcast	range.	This	supports	two	
distinct	groups	of	users	at	the	same	time:	those	who	only	want	to	know	their	own	location	and	those	who	want	to	
know	everyone’s	location.	

While	GroupMap	utilizes	grouping	for	different	purposes	depending	upon	the	currently	selected	mode,	GCF	abstracts	
the	 process	 by	 which	 these	 groups	 are	 formed.	 From	 a	 developer	 standpoint,	 switching	 between	 modes	 is	

	

Figure	13.	GroupMap	screenshots.	Through	the	application,	Devices	A	and	B	can	either	share	GPS	coordinates	in	Navigation	
Mode	(a	and	b),	or	see	all	users	in	range	in	Tracking	Mode	(c).	
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accomplished	by	changing	the	location	request	type	from	single	to	multiple	source.	The	framework	then	finds	the	best	
group	for	providing	context,	and	delivers	data	as	it	arrives.	

3.5.2. GROUPHIKE	
GroupHike	is	a	pedometer	application	designed	to	monitor	a	user’s	hiking	experience	(Figure	14).	The	application	has	
two	modes	of	operation.	In	pedometer	mode	(Figure	14a-b),	GroupHike	monitors	the	path	that	the	user	is	traveling	
along	and	creates	an	annotation	whenever	the	user	has	a	sudden	change	in	instantaneous	velocity	(as	the	result	of	
e.g.,	a	hole,	a	steep	step).	This	information	is	shared	with	other	users	and	used	to	gauge	the	“difficulty”	of	traveling	
along	a	stretch	of	terrain	(Figure	14c-d).	GroupHike	also	has	a	compass	mode	(Figure	5,	right	side)	where	it	uses	a	
combination	of	magnetometer	and	accelerometer	readings	to	provide	the	user	with	his	or	her	current	heading.		

GroupHike	uses	three	context	providers:	1)	a	location	provider,	identical	to	the	one	used	in	GroupMap,	2)	a	compass	
provider,	which	tracks	orientation	data,	and	3)	a	customized	annotations	provider	that	stores	locations	where	the	user	
experiences	a	sudden	change	in	acceleration.	When	operating	in	pedometer	mode,	the	application	sends	a	single-
source	 request	 for	 location	 data	 in	 order	 to	 estimate	 the	 user’s	 current	 position,	 and	 a	multi-source	 request	 for	
annotations	data	in	order	to	provide	the	user	with	real	time	terrain	information	from	other	users.	In	compass	mode,	
the	application	sends	a	local	request	for	compass	data	since	a	user’s	heading	is	device	specific,	and	cannot	be	derived	
from	other	nearby	devices.		

Similar	to	GroupMap,	GroupHike’s	pedometer	mode	allows	users	to	share	location	data	to	conserve	battery	(Quadrant	
I).	It	also	supports	cooperative	grouping	(Quadrant	II)	by	allowing	devices	to	share	their	own	annotation	data	in	order	
to	accomplish	the	same	task	(i.e.,	gauging	the	difficulty	of	a	particular	stretch	of	trail).	By	grouping	with	all	devices	in	
communications	range	and	obtaining	their	individualized	annotations,	GroupHike	builds	a	comprehensive	map	of	the	
environment	without	requiring	users	to	explore	it	on	their	own.		

3.5.3. SHARING	CONTEXT	ACROSS	APPLICATIONS	
Together,	GroupMap	and	GroupHike	demonstrate	how	GCF	supports	Quadrants	 I,	 II,	and	 III	of	our	model.	Yet	the	
most	interesting	feature	of	our	framework	is	its	ability	to	support	in-situ	interactions	between	devices	(Quadrant	IV).	

	

Figure	14.	GroupHike	screenshots.	Devices	A	and	B	collect	terrain	data	individually	(a	and	b),	and	share	it	with	each	other	when	
in	range	(c	and	d).	Icons	show	the	device’s	location	(blue)	and	terrain	difficulty	(green,	orange,	red).	
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In	the	real	world,	the	chance	of	encountering	another	device	that	has	the	same	exact	application	installed	and	running	
is	relatively	 low.	As	a	result,	many	developers	only	design	their	applications	to	work	with	other	devices	when	 it	 is	
absolutely	necessary.	GCF	addresses	this	problem	by	allowing	devices	to	group	and	share	context	across	applications.	
This	 eliminates	 a	 significant	 hurdle	 to	 grouping,	 and	 allows	 devices	 to	 assist	 each	 other,	 even	 when	 performing	
logically	separate	tasks.	

Figure	15	shows	an	example	of	in-situ	grouping.	In	this	demonstration,	Device	A	(left)	is	running	GroupMap	in	tracking	
mode,	while	Device	B	(right)	is	running	GroupHike	in	compass	mode.	In	their	current	configuration,	Device	A	is	utilizing	
its	 location	provider	while	Device	B	 is	only	utilizing	 its	compass	provider.	Yet	because	Device	B	also	has	a	 location	
provider,	it	is	able	to	respond	to	Device	A’s	multi-source	request	for	location	data.	This	allows	GroupMap	to	benefit	
from	the	information	provided	by	GroupHike,	despite	the	fact	that	the	two	devices	are	performing	two	distinct	tasks	
(i.e.,	monitoring	user	 locations	vs.	monitoring	a	user’s	direction),	and	using	different	sets	of	data	 (i.e.,	 location	vs.	
compass).	

Through	the	GroupMap	and	GroupHike	prototypes,	we	have	demonstrated	how	GCF	can	support	grouping	across	all	
four	quadrants	of	our	model.	Initially,	we	expect	developers	to	adopt	our	framework	because	it	simplifies	the	process	
of	requesting	and	receiving	contextual	information	on	a	single	device.	As	more	applications	use	GCF,	however,	the	
chances	of	opportunistic	groupings	increase,	and	developers	can	take	advantage	of	the	benefits	of	these	groupings	
without	having	to	alter	their	code	or	coordinate	with	others.	This	“value	added”	strategy	distinguishes	GCF	from	other	
systems,	and	provides	a	compelling	reason	to	adopt	our	framework.	

3.6. EXAMINING	THE	FRAMEWORK	
Now	that	a	functional	version	of	GCF	has	been	created,	it	is	important	to	see	how	well	the	framework	differentiates	
itself	from	existing	solutions.	In	this	section,	we	conduct	this	investigation	in	three	parts.	First,	we	examine	at	GCF	
from	an	architectural	standpoint	to	see	how	the	framework’s	components	address	the	five	limitations	described	in	
CHAPTER	2,	and	satisfy	our	high	level	system	requirements.	Next,	we	examine	GCF	from	a	usability	standpoint	to	see	
how	well	it	supports	the	high	level	design	principles	(i.e.,	ease-of-use,	extensibility)	we	identified	in	the	beginning	of	
this	chapter.	Finally,	we	evaluate	GCF	from	a	functionality	standpoint	to	see	how	our	framework	compares	to	existing	
context-sharing	systems,	and	to	identify	areas	for	further	improvement.	

	

Figure	15.	Demonstration	of	in-situ	grouping.	In	this	example,	Device	A’s	request	for	location	data	from	nearby	devices	(left)	is	
answered	by	Device	B’s	location	provider	(right).	By	using	GCF,	the	two	applications	can	share	context	with	each	other.	
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3.6.1. EXAMINING	GCF’S	ARCHITECTURE	
In	section	2.3,	we	 identified	 five	 limitations	of	current	context-sharing	systems	that	prevent	devices	 from	forming	
opportunistic	groups	and	share	information.	We	then	showed	in	section	3.1	how	these	limitations	led	to	the	creation	
of	our	high	level	requirements.	In	this	section,	we	examine	GCF’s	architecture	to	see	how	well	it	supports	both	sets	of	
constraints.	The	results	of	this	analysis	(which	are	summarized	in	Table	4)	show	that	our	framework	touches	upon	
each	of	the	limitations	and	requirements	that	we	have	identified	thus	far.	

From	an	architectural	standpoint,	GCF	differs	from	current	context-sharing	systems	in	the	following	ways:	

• To	allow	devices	to	share	context	between	applications	(limitation	#1),	GCF	introduces	the	communication	
message	and	context	provider	abstractions.	The	former	defines	a	common	language	to	let	devices	request	
and	receive	context	from	each	other	(satisfying	requirement	1.1).	The	latter	provides	a	standardized	module	
that	is	capable	of	collecting	and	sharing	context	in	a	way	that	is	independent	from	an	application’s	internal	
logic	(satisfying	requirement	1.2).	When	used	together,	these	components	let	devices	openly	request	and	
receive	context	with	each	other	without	requiring	application	developers	to	explicitly	coordinate	with	one	
another.	This	makes	context-sharing	more	ubiquitous,	and	provides	a	level	of	cross-compatibility	that	is	not	
currently	found	in	existing	context-sharing	systems.	

• To	support	dynamic	groups	(limitation	#2),	GCF	provides	the	arbiter	abstraction.	This	component	 lets	the	
framework	 automatically	 evaluate	 potential	 groups	 members	 according	 to	 a	 predefined	 (but	 highly	
customizable)	 policy,	 and	 select	 group	 members	 that	 best	 satisfy	 an	 application’s	 information	 and/or	
functional	requirements.	This	in	turn	allows	the	framework	to	form	groups	both	when	the	members	of	that	
group	are	known	a	priori	(as	is	commonly	assumed	or	required	by	current	context-sharing	systems),	as	well	
as	when	group	members	meet	spontaneously	(satisfying	requirement	3.1).	

• To	eliminate	the	need	for	a	single,	well-known	communications	channel	(limitation	#3),	GCF	provides	the	
communications	thread	and	communications	manager	abstractions.	The	communications	thread	hides	the	
low	level	details	of	a	particular	communications	technology	and/or	protocol	(e.g.,	TCP,	UDP)	by	providing	
applications	with	a	generic	interface	for	sending	and	receiving	messages	(satisfying	requirement	2.1).	The	
communications	 manager,	 on	 the	 other	 hand,	 oversees	 one	 or	 more	 communications	 threads	
simultaneously	 (satisfying	requirement	2.2),	and	determines	which	thread(s)	a	message	needs	to	be	sent	
over	 to	 ensure	 it	 arrives	 at	 its	 intended	 destination.	 Together,	 these	 components	 allow	 applications	 to	
communicate	with	other	devices	without	having	 to	worry	about	how	 they	are	actually	 connected	at	 the	
network	layer.		This	contrasts	with	current	context-sharing	systems	(which	require	devices	to	be	connected	
to	 the	 same	 local	 area	 network	 or	 server),	 and	 allows	 our	 framework	 to	work	 over	 any	 combination	 of	
dedicated	and	ad	hoc	channels.	

• To	 support	 one-time	 groupings	 (limitation	 #4),	 GCF	 provides	 the	 Group	 Context	Manager.	 This	 module	
continually	 searches	 for	 group	members	 and	 subscribes/unsubscribes	 from	 their	 context	 providers,	 and	
automatically	modifies	a	device’s	group	memberships	as	other	devices	come	in	and	out	of	communications	
range.	Whereas	other	context-sharing	systems	require	users	to	explicitly	pair	devices,	trade	credentials,	or	
download	 a	 dedicated	 app,	 the	 group	 context	 manager	 automates	 these	 processes.	 This	 reduces	 the	
overhead	required	to	form	or	join	a	group	in	many	situations,	and	lets	users	take	advantage	of	groupings	
that	are	only	useful	once	or	for	a	short	period	of	time	(satisfying	requirement	3.2).	

Through	the	combination	of	these	various	components,	GCF	is	able	to	support	grouping	across	all	four	quadrants	of	
our	conceptual	model	(limitation	#5).	Our	framework	allows	devices	to	communicate	their	information	requirements,	
and	automatically	identifies	opportunities	for	devices	to	share	and/or	conserve	resources.	This	maximizes	the	changes	
for	 devices	 to	work	 together,	 regardless	 if	 they	 are	 running	 the	 same	 application	 or	 need	 the	 same	 information	
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(satisfying	requirement	1.3),	and	provides	a	more	generalizable	solution	than	what	existing	context	sharing	systems	
can	offer.	

3.6.2. EXAMINING	GCF’S	USABILITY	
In	addition	to	providing	the	architectural	support	needed	to	address	our	high	level	requirements,	GCF	is	also	intended	
to	be	both	easy	to	use	and	extensible	from	a	developer	standpoint.	In	this	section,	we	examine	our	framework	along	
both	 dimensions.	 In	 doing	 so,	 we	 find	 that	 our	 framework	 includes	 many	 features	 that	 allow	 it	 to	 be	 easily	
incorporated	into	both	new	and	existing	context-aware	applications.	

• Ease	 of	 Use.	 GCF	 provides	 developers	 with	 a	 streamlined	 way	 to	 add	 opportunistic	 grouping	 to	 their	
applications.	To	use	the	framework,	developers	only	need	to	 import	the	associated	JAR	 libraries	 for	their	
platform	into	their	project,	and	create	an	instance	of	the	Group	Context	Manager.	They	can	then	request	
context	from	other	devices	by	issuing	commands	to	the	GCM	(as	shown	in	Figure	4),	and	receive	the	data	
through	an	Android	Intent	and/or	desktop	event	handler.	Since	the	process	of	requesting	context	is	the	same	
regardless	of	1)	what	information	is	being	requested,	and	2)	which	device(s)	that	information	comes	from,	
GCF	provides	a	simple	way	for	developers	to	access	a	wide	range	of	context,	and	offers	a	compelling	reason	
to	use	our	framework	even	when	they	only	need	information	from	the	local	device.	Moreover,	since	all	of	
GCF’s	 functionality	 is	accessible	via	 the	Group	Context	Manager,	developers	only	need	to	 interact	with	a	
single	object	to	access	our	framework’s	entire	feature	set.	This	minimizes	our	system’s	learning	curve,	and	
prevents	developers	from	having	to	directly	interact	with	our	framework’s	core	components	(or	know	how	
they	work)	in	many	situations.	

• Extensibility.	 GCF’s	 architecture	 is	 also	 designed	 to	 be	 highly	 extensible.	 As	 shown	 in	 Figure	 12,	 our	
framework	defines	abstract	classes	for	each	of	its	core	components.	Developers	can	then	inherit	from	these	
classes	or	extend	our	current	class	libraries	as	needed.	In	most	use	cases,	we	expect	that	developers	will	only	
need	to	create	their	own	custom	context	providers,	and	have	included	templates	in	the	source	code	to	make	
doing	so	as	streamlined	as	possible.	 If	necessary,	however,	developers	can	also	create	their	own	arbiters,	
communications	 threads/messages,	 communications	 managers,	 and	 group	 context	 manager.	 This	 lets	
developers	easily	build	upon	our	 framework,	and	even	gives	 them	the	option	 to	port	our	system	to	new	
platforms	and/or	operating	systems.	

Table	4.	An	analysis	of	GCF’s	architecture,	showing	how	our	framework’s	components	(right)	address	the	limitations	identified	in	
CHAPTER	2	(left),	and	satisfy	our	high-level	system	requirements	(middle).	
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3.6.3. EXAMINING	GCF’S	FUNCTIONALITY	
Finally,	we	evaluate	GCF	using	the	same	methodology	and	criteria	we	established	in	CHAPTER	2	(Table	2)	in	order	to	
evaluate	our	framework’s	capabilities	and	limitations.	The	results	of	this	analysis	are	presented	in	Table	5.	

As	 this	 table	 shows,	GCF	offers	 several	 improvements	over	 the	 state-of-the-art.	 In	 contrast	with	existing	 context-
sharing	systems,	which	only	support	one	or	two	group	types,	our	framework	simultaneously	supports	all	four	of	the	
group	types	identified	in	our	conceptual	model.	Additionally,	GCF	also	supports	both	hardware	and	software	sensed	
contexts,	and	provides	automated	grouping	mechanisms	that	make	one-time	or	spontaneous	groups	practical.	While	
previous	systems	provide	some	of	these	capabilities,	they	typically	do	so	at	the	expense	of	other	features.	CoMon	and	
ErdOS,	 for	 example,	 allow	nearby	devices	 to	 form	groups	 for	 the	purposes	 of	 conserving	battery	 life,	 but	 do	not	
consider	 use	 cases	 where	 devices	 need	 to	 share	 a	 wider	 range	 of	 information	 (e.g.,	 shopping	 lists)	 over	 larger	
distances.	Meanwhile,	systems	such	as	GISS	and	CAEG	are	designed	to	share	both	sensed	and	inferred	contexts;	they	
assume	that	the	devices	sharing	information	have	a	priori	knowledge	of	one	another,	and	thus	are	not	suited	for	one-
time	grouping	opportunities.	In	contrast,	GCF	provides	all	of	this	functionality	through	a	single	system.	This	makes	the	
framework	more	generalizable	than	existing	work,	and	allows	it	to	be	useful	in	a	wider	range	of	use	cases.	

Our	analysis,	however,	also	reveals	three	noticeable	gaps	in	GCF’s	functionality:		

1. GCF	 currently	 lacks	 the	 ability	 to	 automatically	 form	 groups	 based	 on	 distance.	While	 the	 framework	 allows	
devices	to	communicate	over	any	broadcast	channel,	it	has	no	way	of	inferring	where	these	devices	are	physically	
located.	 Consequently,	 the	 distance	 between	 group	 members	 is	 entirely	 dictated	 by	 the	 range	 of	 the	
communications	channel.	For	now,	developers	can	work	around	this	problem	by	requesting	location	context	from	
other	devices,	and	programmatically	filtering	them	based	on	their	proximity.	However,	this	process	is	inefficient,	
and	can	be	circumvented	in	many	situations	by	giving	the	framework	the	ability	to	“sense”	when	it	is	near	other	
GCF-enabled-devices.	

2. Secondly,	GCF	provides	limited	support	for	user-defined	groups.	Although	one	of	the	main	aims	of	GCF	is	to	allow	
devices	 to	 automatically	 form	 groups,	 there	are	 occasions	where	 the	 user	must	 have	 some	 say	 as	 to	which	
device(s)	to	group	with.	For	example,	if	a	device	needs	to	form	a	group	with	a	printer	in	order	to	print	a	document,	
it	makes	sense	to	give	the	user	a	choice	as	to	which	device	to	use	rather	if	multiple	viable	options	are	available.	
Yet	while	the	current	framework	does	not	explicitly	prevent	these	types	of	interactions,	it	currently	relies	on	the	
developer	 to	 enable	 this	 functionality	 from	 within	 their	 application.	 This	 introduces	 an	 additional	 layer	 of	
complexity,	and	makes	these	types	of	simple	interactions	more	cumbersome	than	they	need	to	be.	

3. The	 third,	 and	 most	 critical	 limitation	 of	 GCF	 is	 its	 overdependence	 on	 shared	 connectivity.	 Currently,	 our	
framework	requires	devices	 to	be	on	 the	same	communications	channel	 (e.g.,	a	TCP	socket	or	UDP	multicast	
address)	before	they	can	send	and	receive	messages.	This	assumption	is	reasonable	in	environments	with	a	local	

Table	5.	Analysis	of	GCF’s	functionality.		

	
X	=	Fully	Supports,	O	=	Partially	Supports	
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area	 network,	 such	 as	 buildings	 and	 school	 campuses.	 It	 is	 unreasonable,	 however,	 in	 outdoor	 or	 public	
environments	 such	 as	 parks	 or	 malls,	 as	 these	 areas	 either	 lack	 network	 connectivity	 altogether,	 or	 do	 not	
guarantee	that	devices	will	always	be	connected	to	the	same	subnet.	Consequently,	there	are	still	environments	
where	 GCF	 does	 not	 work	 as	 intended,	 and	 this	 prevents	 our	 framework	 from	 being	 able	 to	 find	 and	 form	
opportunistic	groups	in	the	widest	possible	set	of	conditions.	

The	severity	of	these	limitations	vary.	The	first	two	limitations	identify	specific	use	cases	where	GCF	does	not	offer	a	
completely	automated	solution.	Consequently,	our	framework	does	not	actively	prevent	developers	from	being	able	
to	 form	 groups	with	 nearby	 devices	 or	manually,	 respectively,	 but	 simply	 requires	 developers	 to	 build	 upon	 the	
existing	framework’s	functionality	(e.g.,	implement	a	custom	arbiter)	to	provide	this	functionality.	The	third	limitation	
(i.e.,	dependence	on	shared	connectivity)	 is	admittedly	more	problematic,	as	 it	 identifies	a	range	of	environments	
where	our	framework	is	currently	unable	to	operate.	However,	these	areas	are	becoming	increasingly	less	common	
as	 more	 environments	 become	 instrumented.	 Consequently,	 while	 future	 chapters	 will	 show	 how	 we	 have	
implemented	all	of	the	functionality	outlined	in	Table	5,	there	are	still	a	wide	range	of	environments	where	the	current	
version	of	our	framework	can	be	used	as	intended.	

By	examining	GCF	through	these	three	lenses,	we	are	able	to	show	that	our	work	provides	a	strong	foundation	for	
future	work.	At	the	architectural	level,	our	system	already	provides	the	abstractions	needed	to	support	our	high	level	
requirements,	and	address	the	limitations	found	in	prior	work.	From	a	usability	standpoint,	GCF	also	benefits	from	
being	easy	to	use,	and	can	be	extended	by	developers	to	support	additional	use	cases	as	they	are	discovered.	Finally,	
from	a	capability	standpoint,	GCF	already	allows	devices	 to	 form	groups	and	share	context	 in	many	situations.	As	
mentioned	above,	the	system	is	still	missing	some	features	that	either	make	it	more	difficult	to	use	than	we	would	
like,	or	prevent	it	from	working	in	some	environments.	It	is	important	to	note,	however,	that	our	system	represents	a	
work-in-progress	as	opposed	to	a	feature-complete	product.	In	the	following	chapters,	we	will	continue	to	use	GCF	to	
build	 a	 wide	 range	 of	 context-aware	 applications.	 In	 doing	 so,	 we	 will	 gain	 experience	 developing	 opportunistic	
applications	using	our	framework,	which	in	turn	will	help	us	identify	opportunities	for	further	improvement.	

3.7. SUMMARY	
In	 this	 chapter,	 we	 presented	 our	 implementation	 of	 the	 Group	 Context	 Framework.	 First,	 we	 introduced	 our	
framework’s	high	level	requirements	and	design	principles,	which	we	derived	from	an	analysis	of	the	capabilities	and	
limitations	of	prior	work.	We	then	described	our	framework’s	main	components,	and	showed	how	they	interact	with	
each	other	to	allow	devices	to	openly	request	and	share	context.	Through	the	creation	of	two	prototype	applications	
(GroupMap	and	GroupHike),	we	demonstrated	how	GCF	can	be	used	by	developers	to	support	grouping	and	context	
sharing	 across	 all	 four	 quadrants	 of	 our	 conceptual	model.	We	 then	 examined	 our	 toolkit	 from	 an	 architectural,	
usability,	and	functionality	standpoint,	and	showed	how	our	system	addresses	many,	but	admittedly	not	all,	of	the	
shortcomings	found	in	existing	context-sharing	systems.	

The	work	described	in	this	chapter	takes	a	first,	but	important	step	towards	creating	a	fully	featured	and	reusable	
framework	that	supports	opportunistic	grouping	and	context	sharing	in	all	of	its	forms.	However,	there	is	still	much	
room	for	further	refinement.	Although	GCF	already	contains	the	core	functionality	needed	to	support	a	wide	range	of	
context-aware	applications,	the	architecture	presented	in	this	chapter	is	meant	to	serve	as	a	foundation	rather	than	
a	feature	complete	solution.	GCF	was	created	with	hooks	to	allow	it	to	be	extended	as	needed,	and	in	subsequent	
chapters,	we	will	show	how	this	flexibility	allows	our	framework	to	be	used	as	a	research	platform	for	a	diverse	range	
of	novel	context-aware	applications.		
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4. EXPLORING	A	RANGE	OF	CONTEXT-AWARE	APPLICATIONS	THAT	CAN	BE	
BUILT	USING	OPPORTUNISTIC	GROUPS	

In	CHAPTER	3,	we	 focused	on	 the	design	 of	 the	Group	Context	 Framework,	 and	 the	 identification	of	 the	 specific	
features	(architectural	and	software)	our	framework	needs	to	provide	in	order	to	let	devices	easily	form	opportunistic	
groups	and	share	context.	Our	actual	usage	of	the	framework	so	far,	however,	has	been	limited.	Although	our	early	
work	with	the	GroupMap	and	GroupHike	prototypes	shows	that	GCF	is	functional	and	supports	grouping	across	all	
four	quadrants	of	our	conceptual	model,	these	applications	were	chosen	for	their	pedagogical	value	as	opposed	to	
their	novelty.	Consequently,	we	still	 lack	general	knowledge	of	1)	what	types	of	context-aware	applications	would	
stand	to	benefit	the	most	from	opportunistic	grouping,	and	2)	how	well	our	framework	supports	the	creation	of	these	
applications	once	they	are	identified.	

In	this	chapter,	we	fill	this	gap	by	presenting	four	context-aware	systems	that	were	created	using	GCF.	These	systems	
are	more	 fully	 featured	 than	 the	example	applications	presented	 in	CHAPTER	3,	and	allow	us	 to	 focus	on	specific	
application	domains	and	use	cases	where	the	ability	to	form	opportunistic	groups	is	either	necessary	and/or	valuable.		

The	specific	systems	that	we	will	cover	in	this	chapter	are:	

1. Didja:	a	context-comparison	toolkit	that	allows	devices	to	form	opportunistic	groups	with	other	users	and/or	
the	environment	when	they	are	likely	experiencing	the	same	contextual	state	(e.g.,	participating	in	the	same	
conversation,	riding	the	same	bus).	

2. Snap-To-It:	 a	 universal	 interaction	 tool	 that	 lets	 users	 opportunistically	 group	 with	 and	 control	 physical	
appliances	(e.g.,	printers,	digital	projectors)	and	objects	when	they	take	a	photograph	of	them	with	their	
smartphone.	

3. Impromptu:	a	“just	in	time”	software	delivery	platform	for	mobile	devices.	Here,	users	share	their	context	
(e.g.,	activity,	location)	with	applications	(not	installed	on	their	phone),	and	form	opportunistic	groups	with	
them	to	receive	contextually	relevant	information	and	services.	

4. Bluewave:	an	extension	to	GCF	that	 lets	devices	openly	advertise	and	share	context	by	programmatically	
manipulating	their	Bluetooth	name.	Bluewave	supports	use	cases	where	devices	only	need	to	interact	once	
or	 spontaneously,	 and	 allows	GCF	 to	 discover	 and	opportunistically	 form	groups	 in	 environments	where	
devices	are	physically	nearby,	but	not	connected	to	the	same	broadcast	domain	(e.g.,	a	local	area	network).		

Collectively,	this	work	addresses	our	second	research	question	(“How	does	the	ability	to	form	opportunistic	groups	
increase	 the	 range	of	context-aware	applications	 that	can	be	practically	 created?”).	By	 focusing	on	multi-purpose	
systems	instead	of	single-use	applications,	our	work	is	able	to	examine	a	wide	range	of	possible	use	cases,	and	show	
how	the	ability	to	form	opportunistic	groups	can	improve	users’	abilities	to	interact	with	each	other,	as	well	as	with	
other	devices	and/or	services.	Additionally,	these	systems	let	us	stress	test	GCF	and	determine	what	modifications	
need	 to	 be	 made	 to	 our	 framework	 in	 order	 to	 support	 the	 widest	 possible	 set	 of	 use	 cases.	 Obviously,	 this	
investigation	cannot	provably	show	all	of	the	ways	that	opportunistic	groups	can	be	used	in	context-aware	computing.	
It	should,	however,	provide	a	better	understanding	of	which	use	cases	are	worth	studying	in	further	detail,	which	in	
turn	provides	a	foundation	for	future	research.	

4.1. DIDJA:	USING	GCF	TO	FORM	OPPORTUNISTIC	GROUPS	WITH	USERS	AND/OR	THE	ENVIRONMENT	
Our	 first	 system,	 Didja,	 is	 a	 software	 toolkit	 that	 lets	 devices	 detect	 and	 form	 opportunistic	 groups	 in	 arbitrary	
environments	[44].	In	Didja,	devices	use	GCF	to	request	and	share	multiple	streams	of	context	with	each	other,	such	
as	their	audio	amplitude,	light	intensity,	and	temperature	readings.	Each	device	compares	these	streams	with	its	own	
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sensor	values	to	determine	which	device(s)	are	likely	sensing	the	same	thing.	Didja	then	forms	an	opportunistic	group	
with	these	devices	(Figure	16),	and	establishes	a	logical	communication	channel	so	that	they	can	transmit	information	
and/or	commands	to	each	other.	The	system	also	checks	to	make	sure	that	devices’	sensors	continue	to	sense	the	
same	context,	and	adds	and/or	removes	members	accordingly.	

Our	 motivation	 for	 creating	 Didja	 is	 based	 on	 the	 realization	 that	 opportunistic	 groups	 oftentimes	 form	 when	
users/devices	are	experiencing	the	same	contextual	state.	For	example,	when	users	are	participating	 in	a	meeting	
(planned	or	otherwise),	it	can	be	inferred	that	they	are	in	a	group	because	they	are	hearing	the	same	conversation.	
Similarly,	when	users	are	riding	in	the	same	bus,	they	can	be	considered	members	of	a	bus	group	because	they	are	
traveling	at	the	same	speed	and	direction,	and	are	experiencing	the	same	vibrations	(e.g.,	bumps	in	the	road)	at	the	
same	time.	In	both	examples,	the	group	being	formed	is	too	precise	to	be	detected	via	Bluetooth	proximity	alone,	but	
not	so	close	that	members	are	within	touching	distance	of	each	other.	As	a	result,	it	is	important	for	devices	to	have	a	
more	nuanced	way	of	forming	groups	that	does	not	solely	rely	on	users	having	to	explicitly	pair	their	devices	or	trade	
credentials.	Didja	 satisfies	 this	need	by	automating	 the	group	 formation	process,	using	 contexts	 that	are	 commonly	
available	on	a	smartphone.	This	allows	our	system	to	take	advantage	of	a	wider	range	of	subtle	and	explicit	groups,	
without	requiring	the	environment	to	be	instrumented	in	any	way.	

Didja	builds	on	a	long	line	of	research	that	has	used	context	comparison	as	a	means	of	forming	associations	between	
devices.	To	date,	 researchers	have	tried	 to	detect	groupings	of	users	and/or	devices	using	a	single	modality	 (e.g.,	
accelerometers	[55,72],	near-field	communications	[34],	vision	[26],	sound	[21])	in	order	to	conserve	computational	
resources	and	battery	life.	This	strategy,	however,	suffers	from	a	single	point	of	failure,	as	no	single	sensor	works	well	
in	all	situations.	In	contrast,	Didja	is	specifically	designed	to	examine	multiple	contexts	simultaneously.	This	overcomes	
any	one	context’s	limitations,	while	simultaneously	allowing	us	to	make	more	precise	and	reliable	determinations	of	
group	membership.	Furthermore,	while	prior	work	has	used	context	comparison	for	specific	use	cases	(e.g.,	pairing	
devices	[55],	exchanging	encryption	keys	[75,79]),	Didja	provides	a	generalizable	way	to	detect	opportunistic	groups.	
When	developers	use	Didja,	 they	can	customize	 it	by	specifying	1)	 the	types	of	contexts	 they	want	 the	system	to	
compare,	2)	the	degree	to	which	these	contexts	need	to	match,	and	3)	the	type	of	comparison	that	they	would	like	
the	system	to	perform.	The	gives	developers	the	flexibility	to	customize	the	toolkit,	while	still	providing	users	with	an	
automated	way	of	forming	groups.	

Didja	addresses	our	second	research	question	by	allowing	us	to	 investigate	how	opportunistic	groups	can	support	
seamless	 interactions	between	users	and/or	their	surroundings.	 In	the	following	section,	we	describe	how	Didja	 is	
implemented	using	GCF.	Afterwards,	we	present	two	real-world	applications	that	were	created	using	Didja,	and	show	

	

Figure	16.	Didja	uses	GCF	to	request	and	receive	multiple	streams	of	context	from	nearby	devices.	It	compares	this	context	
with	its	own	sensor	readings,	and	forms	groups	with	devices	that	match	along	multiple	dimensions.	(green;	center).		
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how	our	 system’s	 ability	 to	 detect	 groups	 is	 useful	 in	 a	 broad	 range	 of	 application	 domains.	 Through	 a	 series	 of	
experimental	trials	 involving	both	moving	and	stationary	devices,	we	evaluate	Didja’s	accuracy,	and	show	that	the	
system	 is	 able	 to	 identify	 the	 correct	 group	 over	 88%	 of	 the	 time.	 Lastly,	 we	 highlight	 the	 challenges	 that	 we	
encountered	while	building	Didja	with	GCF,	and	show	how	these	difficulties	influenced	our	framework’s	final	design.	

4.1.1. SYSTEM	DESIGN	
Didja	is	implemented	as	a	custom	arbiter	in	GCF.	As	mentioned	in	CHAPTER	3,	arbiters	are	specialized	modules	within	
GCF	 that	 analyze	 context	 capability	messages	 according	 to	 a	 predefined	 strategy,	 and	 tell	 the	 framework	 which	
device(s)	to	form	a	group	with.	Didja’s	arbiter	offers	the	same	core	functionality	as	GCF’s	default	arbiters	(e.g.,	single-
source,	multi-source,	local	only),	but	differs	from	them	in	two	important	ways:	

• First,	 our	 arbiter	 can	 request	 and	 receive	 context	 on	 its	 own.	 At	 startup,	 Didja	 calls	 the	 Group	 Context	
Manager’s	 SENDREQUEST()	 method,	 and	 transmits	 a	 multi-source	 request	 for	 context	 from	 all	 devices	 in	
communications	 range.	 This	 allows	 Didja	 to	 continually	 discover	 new	 devices	 and	 analyze	 their	 sensor	
streams	without	requiring	developers	to	obtain	and	deliver	this	information	on	its	behalf.	

• Second,	Didja’s	strategy	for	forming	groups	is	not	fixed,	but	instead	can	be	configured	on	a	per-application	
basis.	Our	system	lets	applications	specify	1)	the	type(s)	of	context	that	Didja	should	examine,	and	2)	the	
degree	to	which	sensor	streams	need	to	be	similar	in	order	for	them	to	be	considered	a	match.	When	context	
from	another	device	arrives,	it	evaluated	by	Didja’s	context	comparator	using	a	pre-specified	evaluation	metric	
(e.g.,	statistical	correlation,	proportional	analysis).	The	results	from	this	comparison	are	then	referenced	against	
the	current	rule	set	to	determine	whether	or	not	the	two	devices	are	experiencing	the	same	contextual	state.		

Figure	 17	 shows	 an	 overview	 of	 Didja’s	 group	 formation	 process.	When	 the	 Didja	 arbiter	 is	 first	 instantiated,	 it	
automatically	forms	a	group	with	every	device	in	communications	range	and	subscribes	to	its	context	providers.	This	
candidate	group	is	hidden	from	the	application,	and	represents	every	device	that	might	be	experiencing	the	same	
context	as	the	user.	As	context	from	each	of	these	devices	is	received	and	analyzed,	Didja	forms	an	application	group	
consisting	of	devices	whose	sensor	streams	satisfy	the	current	rule	set.	This	“group	within	a	group”	acts	as	a	whitelist.	
When	a	developer	needs	application	specific	context,	they	call	the	SENDREQUEST()	method,	and	tell	the	Group	Context	
Manager	to	use	the	Didja	arbiter.	The	arbiter	in	turn	will	ensure	that	the	application	only	receives	context	from	devices	
that	are	members	of	the	application	group,	and	will	automatically	subscribe	and	unsubscribe	as	devices	are	added	
and	removed	from	this	group,	respectively.	

	

Figure	17.	Didja	group	formation	process.	
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A	significant	challenge	in	finding	and	forming	opportunistic	groups	is	that	the	conditions	for	grouping	are	application	
specific	depending	upon	the	size	and	type	of	group	that	is	trying	to	be	detected.	For	this	reason,	our	work	with	Didja	
focuses	on	providing	a	systematic	and	automated	way	of	analyzing	context	that	is	both	easy	to	use,	while	still	being	
robust	across	a	wide	variety	of	use	cases.	We	now	examine	the	components	of	our	toolkit,	and	show	how	it	can	be	
customized	to	accommodate	a	range	of	applications.	

4.1.1.1. Rules	
Didja	uses	rules	to	define	the	criteria	for	group	membership.	For	each	application,	developers	provide	Didja	with	a	list	
of	context(s)	that	they	want	the	system	to	take	into	consideration	when	forming	a	group.	These	rules	are	then	used	
by	the	toolkit	to	request	context	from	other	devices	and	perform	comparisons.	

An	example	rule	is	provided	in	Figure	18.	Each	Didja	rule	consists	of	four	parameters:	context	type,	threshold	value,	
refresh	rate,	and	window	size.	The	context	type	is	the	GCF	identifier	that	is	used	to	represent	a	particular	sensor	or	
family	of	sensors.	It	allows	devices	to	talk	about	the	same	context	(e.g.,	“location”)	regardless	of	how	that	context	is	
actually	produced	(e.g.,	GPS,	cellular	triangulation).	

The	 threshold	 value	 represents	 how	 similar	 two	 context	 streams	 need	 to	 be	 before	 they	 are	 considered	 to	 be	
matching.	Each	time	a	context	is	received,	it	is	analyzed	using	a	predefined	metric.	The	result	of	this	comparison	is	a	
numeric	value	that	determines	how	similar	two	streams	are	to	one	another.	The	threshold	value	compensates	for	
individual	sensor	differences	by	allowing	applications	to	specify	when	two	context	values	are	considered	to	be	“close	
enough”	to	be	considered	a	match.		

The	refresh	rate	specifies	the	interval	between	sensor	readings.	This	value	varies	depending	on	the	particular	context	
being	used,	but	typically	ranges	between	500	and	5000	milliseconds.		

The	window	size	specifies	the	number	of	sensor	readings	that	are	to	be	used	during	the	comparison	process.	Since	
sensor	readings	can	significantly	vary	due	to	noise,	they	are	problematic	to	compare.	Instead,	Didja	records	the	last	n	
readings	 for	each	device,	and	uses	all	of	 these	values	during	comparison.	There	 is	a	noticeable	 tradeoff	between	
window	 size	 and	 accuracy.	 Larger	 windows	 are	 less	 influenced	 by	 erratic	 sensor	 readings	 and	 provide	 better	
estimations	 of	 group	membership,	 but	 require	more	 time	 to	 fill	 and	 take	 longer	 to	 forget	 problematic	 readings.	
Shorter	windows	consume	 less	memory	and	allow	 for	 faster	determinations	of	 group	membership,	but	are	more	
susceptible	 to	 sensor	noise.	From	experience,	we	 found	 that	a	window	of	10	works	well	 for	contexts	 that	do	not	
change	often	(e.g.,	light),	and	that	a	window	of	30	works	well	for	sensors	that	do	(e.g.,	audio).		

4.1.1.2. Context	Comparison	Techniques	
Comparing	two	contexts	to	one	another	is	a	nontrivial	task,	as	there	is	no	single	comparison	method	that	works	for	
all	contexts.	For	this	reason,	we	have	designed	Didja	to	compare	sensor	streams	using	three	techniques:	proportional	
comparison,	correlational	comparison,	and	exact	match.	

Proportional	comparison	is	used	to	compare	numeric	sensor	values	that	do	not	change	dramatically	over	time.	Many	
sensors	 report	 the	 same	 (or	 very	 similar)	 value	 (e.g.,	 those	 that	measure	 light	 intensity,	barometric	pressure	and	

	
Figure	18.	Sample	Didja	Group	Membership	Rule	
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temperature)	 if	run	repeatedly.	For	these	types	of	context,	a	reasonable	measure	of	similarity	can	be	obtained	by	
dividing	 the	average	value	of	each	device’s	 sensor	 readings.	To	account	 for	 individual	 sensor	differences,	we	also	
define	a	noise	range	for	each	sensor	type.	If	two	sensor	values	are	within	this	range,	we	return	a	similarity	of	1.0.	

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
min	(𝑎?@A, 𝑏?@A)
max	(𝑎?@A, 𝑏?@A)

, |𝑎?@A − 𝑏?@A| > 𝑛𝑜𝑖𝑠𝑒

1.0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

While	proportional	comparison	is	applicable	to	a	wide	range	of	sensor	types,	it	assumes	that	any	sudden	change	in	a	
sensor’s	reported	value	is	caused	by	noise.	As	a	result,	proportional	analysis	works	reliably	when	the	environment	is	
static,	but	takes	longer	to	detect	sudden,	intentional	changes	(e.g.,	turning	off	the	lights	in	a	room).	

The	second	type	of	comparison,	correlational	comparison,	 is	used	to	compare	contexts	that	significantly	vary	over	
time.	During	our	initial	trials,	we	found	that	audio	amplitude	readings	can	significantly	vary	over	the	course	of	a	few	
seconds,	especially	when	users	are	listening	to	music	or	participating	in	a	conversation.	For	these	types	of	sensors,	
similarity	can	be	measured	by	computing	the	correlation	coefficient	(e.g.,	Pearson’s	R)	between	the	host	device	and	
all	other	devices.		

The	last	type	of	comparison,	exact	match,	is	designed	for	contexts	that	are	represented	as	strings	or	nominal	values.	
Google’s	Activity	Recognition	Toolkit	[127],	for	example,	reports	the	user’s	activity	as	nominal	values	(i.e.,	“in_vehicle,”	
“on_foot”,	etc.).	Bluetooth	also	reports	the	discovery	of	nearby	devices	by	listing	their	IDs.	Exact	match	is	the	simplest	
form	of	comparison.	It	simply	performs	a	strict	string	comparison,	and	returns	a	value	of	1.0	if	the	values	match,	and	
0.0	otherwise.	

We	have	preconfigured	Didja	to	select	an	appropriate	context	comparison	method	for	a	wide	range	of	commonly	
used	 contexts.	However,	 developers	 can	 also	direct	 the	 toolkit	 to	 use	 a	 specific	 comparator,	 or	 define	 their	 own	
comparators	as	the	need	arises.	Through	these	alternatives,	Didja	is	infinitely	extensible,	and	can	be	used	on	a	wider	
range	of	contexts	than	what	is	directly	covered	in	this	thesis.	

4.1.1.3. Group	Formation	Strategies	
Didja’s	 rule-based	 architecture	 provides	 a	 straightforward	 and	 efficient	 way	 to	 define	 group	 membership	 criteria.	
However,	 precisely	 defining	 the	exact	 conditions	 that	will	 lead	 to	 a	 group	 is	 extremely	difficult	when	groupings	 are	
spontaneous	and/or	unpredictable.	Developers	may	have	a	general	sense	of	how	their	application	should	form	groups	
(e.g.,	“group	with	everyone	in	the	same	room”)	but	it	can	be	challenging	to	translate	these	vague	notions	into	a	robust	
rule	set.	Likewise,	users	may	want	to	define	their	own	custom	groups,	but	lack	either	the	capacity	or	patience	to	express	
these	groupings	as	a	set	of	structured	rules.	

To	mitigate	these	issues,	we	have	created	several	developer	and	user	level	settings	that	allow	Didja	to	specify	its	group	
formation	strategy.	While	our	toolkit	still	uses	rules	in	order	to	define	the	criteria	for	grouping,	it	can	interpret	or	modify	
these	rules	differently	depending	upon	the	currently	selected	policy.	Didja	supports	four	grouping	strategies:	

• Match	All	Rules.	 In	 this	mode,	Didja	only	 forms	a	group	with	devices	 that	satisfy	all	 rules.	This	mode	 is	 the	
strictest,	and	provides	the	tightest	control	over	the	exact	conditions	that	must	be	met	in	order	to	form	a	group.	

• Match	N.	Rather	than	require	devices	to	satisfy	all	rules,	Match	N	allows	Didja	to	form	a	group	as	long	as	at	least	
N	 rules	have	been	met.	While	a	higher	N	value	will	 reduce	 the	chance	of	 false	positive	matches,	we	allow	
programmers	to	specify	the	value	of	N	to	fit	their	particular	application.		

• Max	N.	There	are	many	situations	where	a	user	or	developer	wants	to	form	an	opportunistic	group,	but	cannot	
define	the	exact	conditions	that	will	result	in	a	grouping.	Max	N	attempts	to	address	this	problem	by	searching	
for	a	grouping	of	devices	that	satisfies	the	most	rules	at	once.	
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• Manual.	 Some	 opportunistic	 groupings	 are	 so	 personalized	 that	 they	 simply	 cannot	 be	 described	 by	 rules	
beforehand.	For	these	situations,	Didja	offers	users	the	ability	to	build	a	custom	rule	set	by	manually	selecting	
members,	and	using	their	sensor	readings	in	order	to	derive	reasonable	group	threshold	values	(Figure	19).	
Users	 can	 save	 these	 rules	 for	 later	 use,	 allowing	 them	 to	 create	 customized	 “grouping	 profiles”	 that	
complement	their	daily	routine.		
	

4.1.1.4. Scalability	
One	of	the	key	challenges	in	designing	Didja	is	finding	an	effective	balance	between	functionality	and	scalability.	While	
the	 current	 system	 is	 technically	 capable	of	 allowing	devices	 to	 share	 a	wide	 range	of	 contexts	 simultaneously,	 the	
overhead	to	process	the	results	can	be	significant	in	an	environment	with	dozens	of	potential	group	members.	

From	a	pure	processing	standpoint,	there	are	limits	to	the	number	of	simultaneous	sensor	feeds	that	can	be	analyzed	by	
a	single	device.	Didja	provides	two	mechanisms	to	mitigate	this	problem.	First,	our	system	conducts	periodic	Bluetooth	
scans	of	the	environment,	and	only	requests	context	from	devices	that	it	detects.	This	optimization	significantly	reduces	
overhead	traffic,	as	the	number	of	devices	in	the	same	space	is	small	compared	to	the	total	number	of	devices	in	a	TCP	
or	UDP	broadcast	domain.	Secondly,	Didja	can	be	configured	to	ask	for	context	in	stages	instead	of	all	at	once.	In	this	
mode,	the	toolkit	will	obtain	a	single	context	from	each	device	and	evaluate	it	for	similarity.	The	toolkit	then	only	asks	for	
additional	streams	from	those	devices	that	have	satisfied	the	previous	rule.	This	approach	assumes	that	developers	can	
rank	order	context	from	least	to	most	specific.	Assuming	that	they	can,	however,	this	approach	significantly	reduces	
sensor	data	from	devices	that	have	a	low	probability	of	being	part	of	the	group.		

4.1.2. EXAMPLE	APPLICATIONS	
In	this	section,	we	present	two	applications	that	take	advantage	of	Didja’s	ability	to	detect	precise	groupings.	Our	first	
application,	CalendarSync,	forms	an	opportunistic	group	with	users	that	are	participating	in	the	same	conversation,	
and	allows	them	to	seamlessly	share	their	schedules	so	that	they	identify	the	next	best	time	to	schedule	a	meeting.	
The	second	application,	Light	Reader,	uses	Didja	to	form	a	group	with	a	smart	environment,	and	allows	users	to	control	
the	lighting	by	reading	a	book.	Together,	these	applications	highlight	our	toolkit’s	versatility,	and	illustrate	the	breadth	
of	user	experiences	that	are	possible	once	devices	are	able	to	autonomously	group	with	each	other.	

	 	

	

Figure	19.	Manual	grouping	using	Didja.	In	this	example,	a	user	selects	a	device	that	is	known	to	be	part	of	his	or	her	current	
group	(left).	Didja	then	modifies	its	current	rule	set	to	include	other	devices	that	have	similar	characteristics	(right).	
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4.1.2.1. CalendarSync:	Forming	Opportunistic	Groups	with	Users	for	ad	hoc	Scheduling	
CalendarSync	is	a	scheduling	tool	that	allows	users	to	temporarily	share	calendar	information	with	one	another.	When	
users	first	turn	on	the	application,	they	only	see	their	own	schedule.	When	two	or	more	CalendarSync	users	are	near	
one	another,	however,	the	applications	form	an	opportunistic	group	and	automatically	share	calendar	information.	
The	application	then	presents	users	with	a	list	of	times	when	they	are	available	to	meet	again	(Figure	20).	

CalendarSync	demonstrates	how	opportunistic	grouping	can	improve	the	usability	of	existing	calendar	systems.	While	
there	are	numerous	tools	that	allow	users	to	share	their	schedules	with	one	another,	they	require	users	to	manually	
grant	permissions	to	others	before	they	can	see	it.	Furthermore,	these	systems	tend	to	share	an	entire	calendar	with	
users,	which	can	lead	to	privacy	issues.	Because	of	these	drawbacks,	traditional	calendar	sharing	is	only	used	in	cases	
where	 the	 need	 to	 share	 calendars	 is	 either	 so	 great	 and/or	 frequent	 that	 it	 outweighs	 the	 inconvenience.	
CalendarSync	eliminates	the	need	for	access	lists	in	many	cases	by	granting	users	access	to	each	other’s	calendars	on	
a	need-to-know	basis.	Users	only	see	each	other’s	calendars	when	they	are	grouped,	and	lose	access	when	they	are	
no	 longer	 grouped.	 Through	 this	 approach,	 CalendarSync	 provides	 a	 capability	 that	 is	 missing	 in	 comparable	
applications,	and	allows	users	to	easily	share	schedules,	even	if	they	are	meeting	for	the	first	time.		

Figure	 21	 provides	 an	 architectural	 diagram	 of	 the	 CalendarSync	 system.	 For	 this	 application,	 we	 created	 a	
CALENDARPROVIDER	(context	type	“CAL”)	that	can	examine	a	user’s	personal	calendar,	and	return	a	list	of	times	when	
she	is	available	for	a	meeting.	We	then	added	this	context	provider,	as	well	as	the	Didja	arbiter	to	the	CalendarSync	
app,	and	directed	the	application	to	request	Calendar	context	from	other	users	via	the	following	GCF	call:	

gcm.sendRequest(“CAL”, 60000, DIDJA, new String[] {“startTime=0700”, “endTime=1900”}); 

Each	time	the	CalendarSync	receives	a	context	capability	message	for	calendar	data,	Didja	checks	to	see	if	the	device	
that	sent	the	message	is	a	member	of	the	current	opportunistic	group.	If	so,	Didja	directs	the	GCM	to	subscribe	to	
that	device’s	calendar	context	provider.	The	application	 then	compares	 the	 incoming	calendar	 information	 to	 the	
user’s	schedule,	and	derives	a	list	of	available	times.	

CalendarSync	was	designed	to	facilitate	information	sharing	between	two	or	more	acquaintances	when	they	meet	in	
a	common	area	(e.g.,	a	water	cooler).	To	support	this	type	of	interaction,	we	configured	Didja	so	that	it	only	forms	a	

	

Figure	20.	CalendarSync	screenshots.	Smartphones	use	Didja	to	compare	sensor	readings	and	detect	potential	group	members	
(a).	The	resulting	group	can	then	trade	user	schedules,	and	display	a	left	of	the	next	best	time(s)	for	everyone	to	meet	(b).		
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group	with	devices	that	are	1)	in	close	proximity	(as	determined	by	Bluetooth),	2)	displaying	the	user’s	calendar,	and	
3)	 hearing	 the	 same	 audio	 (correlation	 >	 0.5).	 Given	 the	 limited	 numbers	 of	 users	 that	 currently	 have	 access	 to	
CalendarSync,	examining	 three	 types	of	 context	may	 seem	counterintuitive	when	Bluetooth	alone	can	 technically	
suffice.	However,	 this	 functionality	 is	 needed	when	multiple	CalendarSync	 instances	 are	 in	 Bluetooth	 range,	 as	 it	
reduces	our	system’s	likelihood	of	producing	false	positives.	

4.1.2.2. Light	 Reader:	 Forming	 Opportunistic	 Groups	 with	 Smart	 Environments	 for	 Interactive	
Entertainment	Experiences	

Whereas	CalendarSync	is	designed	to	form	groups	with	users,	the	Light	Reader	application	shows	how	Didja	can	be	
used	to	form	groups	with	an	instrumented	environment.	Inspired	by	the	authors’	own	experiences	reading	books	to	
their	children,	the	Light	Reader	system	consists	of	three	components	():	1)	a	set	of	Wi-Fi	controllable	light	bulbs,	2)	a	
series	of	sensors	(i.e.,	smartphones)	that	are	installed	in	each	room	and	control	a	different	set	of	light	bulbs,	and	3)	a	
mobile	application,	which	is	running	Didja.	When	a	user	turns	on	the	Light	Reader	app	(Figure	6b),	the	application	
compares	sensor	readings	from	each	room-based	computer	and	forms	an	opportunistic	group.	Then,	as	the	user	reads	
out	loud	(Figure	6d),	the	application	uses	a	speech-to-text	converter	to	cross-reference	what	the	user	is	saying	against	
a	database	of	known	titles.	When	a	match	is	found,	the	application	retrieves	the	light	configuration	settings	for	that	
particular	book/passage	and	transmits	them	to	the	room-based	computer,	altering	the	lights	accordingly	(Figure	6e).	

Light	Reader	is	similar	to	Disney’s	StoryLight	[128]	in	that	it	allows	users	to	dynamically	adjust	the	lighting	of	a	room	
based	on	 the	 contents	of	 a	 story.	However,	our	 system’s	ability	 to	 form	opportunistic	 groups	 improves	upon	 the	
former	from	a	usability	standpoint.	While	StoryLight	only	works	with	a	dedicated	light	bulb	in	one	room,	our	system’s	

	

Figure	21.	Architectural	diagram	of	the	CalendarSync	system.	

	

Figure	22.	Light	Reader	system.	We	created	a	custom	mobile	phone	application	(a)	that	interfaces	with	a	series	of	Wi-Fi	
connected	light	bulbs	and	mobile	sensors	deployed	throughout	a	house	(b).	When	the	user	reads	a	book	out	loud	(c),	the	app	
uses	Didja	to	form	an	opportunistic	group	with	the	devices	in	his	room.	The	app	then	modifies	the	color	and	intensity	of	the	

lights	to	match	the	contents	of	the	story	(d).	
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ability	to	form	opportunistic	groups	allows	it	to	control	lighting	of	whatever	room	the	user	is	location.	In	preliminary	
deployments,	this	feature	was	found	to	be	especially	valuable,	as	parents	do	not	want	to	go	to	a	specific	part	of	the	
house	in	order	to	read	a	book	to	their	children.	Additionally,	since	our	system	is	able	to	continuously	monitor	context	
and	adjust	group	membership	as	needed,	our	system	also	allows	parents	to	move	about	the	house	while	reading	a	
story.	This	allows	them	to	start	a	story	in	one	part	of	the	house,	and	seamlessly	carry	that	experience	to	another	room.	
In	order	to	take	advantage	of	these	features,	our	current	implementation	assumes	that	a	house	contains	sensors	and	
Wi-Fi	 controllable	 lights.	 However,	 such	 products	 are	 already	 commercially	 available,	 and	 should	 become	 more	
commonplace	with	time.		

Figure	23	shows	how	we	implemented	Light	Reader	using	GCF.	For	this	system,	we	installed	a	series	of	Phillips	Hue	
light	bulbs	[129]	and	computers	(i.e.,	smartphones)	in	each	room	of	our	test	house,	and	created	a	custom	context	
provider	(i.e.,	HUEPROVIDER;	context	type	“HUE”)	that	can	return	the	URL(s)	to	each	 light	bulb’s	REST	API.	We	then	
registered	this	context	provider	with	each	room-based	computer,	and	configured	each	one	so	that	they	only	return	
the	URL(s)	for	the	lights	in	that	particular	room.	For	example,	the	context	data	message	from	the	guest	bedroom’s	
HUEPROVIDER	looks	like	the	following:	

	

{ 
 "deviceID": "GuestBedroom", 
 "contextType": "HUE", 
 "destination": ["Device A"], 
 "payload":  
 [ 
 "http://192.168.1.20/api/home/lights/4/state", 
 "http://192.168.1.20/api/home/lights/5/state" 
 ], 
 "messageType":"D", 
 "version":1 
} 

Figure	24.	Context	data	message	from	a	HUEPROVIDER	deployed	in	our	test	home’s	guest	bedroom.	Each	provider	is	
configured	for	a	single	room	in	a	smart	environment,	and	provides	the	URLs	to	each	light	bulb’s	REST	API	(green;	

underlined).	The	Light	Reader	app	can	use	these	URLs	to	control	the	lights	for	that	particular	room. 

	

Figure	23.	Light	Reader	System	Architecture.	

	



	 73	

When	users	 start	 the	Light	Reader	app,	 the	software	 requests	context	 from	all	HUEPROVIDERS	 in	 the	house	via	 the	
following	GCF	call:	

gcm.sendRequest(“HUE”, 60000, DIDJA, new String[0]); 

Didja	ensures	that	the	application	only	subscribes	to	the	HUEPROVIDER	that	is	associated	with	the	room	that	they	are	
currently	in	(i.e.,	the	current	opportunistic	group).	The	application	then	receives	the	URL(s)	for	that	room’s	lights,	and	
can	issue	the	appropriate	HTTP	POST	operations	(in	accordance	with	the	Hue	API	[130])	to	control	their	color	and	
intensity.	

Since	Light	Reader	is	designed	to	complement	the	traditional	experience	of	reading	a	storybook,	we	have	configured	
Didja	so	that	it	forms	a	group	with	devices	that	1)	are	in	proximity	of	one	another,	2)	hear	the	same	audio	(correlation	
>	0.5),	and	3)	experience	the	same	lighting	conditions	(light	intensity	>	0.8).	As	was	the	case	with	CalendarSync,	the	
use	of	multiple	contexts	allows	for	higher	degrees	of	accuracy	when	determining	which	devices	are	part	of	the	group.	
From	 our	 experience,	 the	 rate	 of	 false	 positives	 using	 either	 audio	 or	 light	 readings	 alone	 can	 be	 quite	 high,	 as	
bedrooms	are	typically	grouped	together,	and	can	cause	audio	sensors	to	hear	the	same	thing	(especially	if	the	doors	
are	open),	and	the	use	of	similar	overhead	lighting	fixtures	(e.g.,	fans,	lamps)	can	confuse	light	sensors.	By	using	both,	
we	significantly	reduce	the	chance	of	error.	

4.1.3. ACCURACY	EVALUATION	
In	 addition	 to	 the	 above	 prototypes,	we	 conducted	 two	 experiments	 in	 our	 lab	 during	 normal	 business	 hours	 to	
evaluate	Didja’s	accuracy	in	identifying	opportunistic	groups.	While	it	may	seem	biased	to	use	our	work	area	as	the	
subject	of	these	experiments,	our	lab	has	several	features	that	make	it	reasonable	to	study:	

1. There	are	few	walls,	allowing	sound	to	easily	travel.	
2. Students	bring	in	their	own	lamps,	creating	unique	lighting	conditions	throughout	the	room.	
3. It	 contains	 two	 common	 meeting	 areas	 as	 well	 as	 a	 private	 office,	 allowing	 it	 to	 host	 multiple	

meetings/conversations	simultaneously.	

	

Figure	25.	Setup	used	for	our	experimental	evaluation,	showing	the	positioning	of	devices	in	our	test	environment	(left),	and	
the	rules	we	used	to	configure	Didja	(right).	
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Figure	25	(left)	shows	a	bird’s	eye	view	of	our	lab.	For	the	first	test,	two	devices	represented	an	opportunistic	group,	
and	were	placed	on	a	conference	table	(location	A).	A	third	device	was	placed	nearby	on	a	coffee	table	(location	B),	
and	 a	 fourth	was	placed	 in	 an	 empty	office	 (location	D).	We	 then	 instructed	 the	 toolkit	 to	 request	 and	 compare	
contexts	according	to	the	rules	in	Figure	25	(right),	which	we	derived	empirically.		

Although	our	focus	is	on	quick	and	spontaneous	groupings	of	devices,	we	allowed	Didja	to	analyze	sensor	data	for	one	
hour	in	order	to	see	how	well	the	toolkit	performs	under	extended	use.	During	this	first	experiment,	devices	were	not	
touched	or	moved,	and	remained	within	Bluetooth	range.		

Over	the	course	of	the	first	evaluation,	Didja	performed	12,000	sensor	comparisons.	Table	6	provides	a	summary	of	
Didja’s	grouping	performance	as	seen	from	the	perspective	of	device	1.	We	define	a	correct	group	as	one	that	only	
includes	device	2.	Additionally,	we	define	a	false	negative	as	a	group	that	does	not	include	device	2,	and	a	false	positive	
as	a	group	that	includes	either	device	3	or	device	4.	

Our	results	show	that	using	a	single	sensor	works	with	varying	degrees	of	success.	The	light	sensor	was	by	far	the	best	
in	terms	of	accuracy,	matching	with	device	2	over	99%	of	the	time,	and	with	devices	3	and	4	less	than	0.5%	of	the	
time.	Meanwhile,	thermometer	and	accelerometer	readings	were	the	least	discerning,	and	matched	with	all	three	
devices	regardless	of	their	location.	When	comparing	audio	data,	device	1	frequently	matched	with	device	2	(75.9%),	
and	occasionally	matched	with	devices	3	(52.2%)	and	4	(23.1%).	These	results	were	not	surprising,	however.	While	
we	were	recording,	we	observed	several	sidebar	conversations	that	occurred	either	at	the	back	of	the	room	(between	
devices	1,	2,	and	4)	or	at	the	opposite	corner	(between	devices	1,	2,	and	3).	Additionally,	there	were	several	periods	

Table	6.	Comparison	of	grouping	strategies	from	device	1’s	perspective	(all	devices	stationary).	

	
	

Table	7.	Comparison	of	grouping	strategies	from	device	1’s	perspective	(device	1	moves	every	5	minutes).	
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of	extended	silence,	which	can	trick	the	audio	sensor	 into	believing	that	 it	should	match	with	other	devices	when	
there	is	no	associated	group.	

After	each	sensor	comparison,	we	had	Didja	analyze	its	group	membership	using	the	Match	All	Rules,	Match	N	Rules,	
and	Max	N	strategies.	As	expected,	Match	All	Rules	proved	to	be	the	strictest,	and	allowed	device	1	to	only	group	with	
device	2.	However,	this	was	accomplished	at	the	cost	of	increased	false	negatives,	thus	making	this	strategy	useful	in	
situations	 where	 the	 penalty	 of	 forming	 an	 incorrect	 grouping	 is	 significant.	Match	 N	 Rules,	 on	 the	 other	 hand,	
minimizes	the	rate	of	false	negatives,	but	at	the	cost	of	dramatically	increasing	the	rate	of	false	positives.	This	makes	
this	strategy	useful	in	applications	where	precision	is	useful,	but	not	necessarily	required.	Interestingly,	Max	N	offered	
a	mix	of	accuracy	and	precision.	By	allowing	N	to	fluctuate	at	each	time	step,	device	1	is	able	to	consistently	group	
with	device	2	while	keeping	false	positives	and	false	negatives	low.		

At	first	glance,	these	results	appear	to	negate	the	need	for	Didja,	as	they	suggest	that	highly	accurate	groups	can	be	
formed	using	a	single	sensor.	Yet	while	the	light	sensor	proved	to	be	highly	discerning,	it	is	important	to	remember	
that	this	is	only	the	case	for	this	particular	arrangement	of	devices.	For	our	second	evaluation,	we	positioned	devices	
2,	3,	and	4	at	locations	A,	B,	and	C,	respectively.	We	then	moved	device	1	between	these	locations	every	five	minutes	
for	an	hour.	This	setup	allows	us	to	test	Didja’s	ability	to	form	opportunistic	groups,	as	device	1’s	group	constantly	
changes	as	it	moves	between	locations.		

The	results	from	our	second	experiment	are	provided	in	Table	7.	Since	device	1’s	group	is	constantly	changing,	we	
simply	report	the	amount	of	time	that	it	found	the	correct	group,	whether	that	is	with	device	2,	3,	or	4.	Similar	to	the	
previous	experiment,	we	 found	 that	Didja	 is	 able	 to	accurately	 and	 reliably	 form	precise	groupings.	Although	 the	
toolkit	does	perform	slightly	worse	than	in	our	first	trial,	most	of	the	inaccuracies	occurred	as	the	device	was	moving	
from	one	location	to	another	(i.e.,	when	it	was	technically	not	part	of	any	group).	More	importantly,	we	also	found	
that	using	a	single	sensor	to	form	groups	was	less	effective	in	this	scenario.	While	the	light	sensor	again	proves	to	be	
the	best	single	sensor,	its	accuracy	dips	to	84%	with	a	15%	false	positive	rate.	Max	N	outperforms	the	sensor	on	both	
metrics,	thus	showing	how	our	approach	provides	an	accurate	and	consistent	way	to	form	groups.		

4.1.4. LESSONS	LEARNED	
Didja	is	the	first	significant	context-aware	system	that	we	have	created	using	the	Group	Context	Framework.	As	such,	
the	system	has	provided	us	with	many	critical	insights	regarding	GCF’s	overall	functionality	and	ease	of	use.	In	this	
section,	 we	 highlight	 two	 issues	 that	 we	 encountered	 while	 creating	 Didja,	 and	 show	 how	 they	 influenced	 our	
framework’s	final	design.	

The	Need	for	Directed	Context	Requests.	One	of	Didja’s	key	features	 is	the	ability	to	ask	for	context	 in	stages.	For	
example,	 if	 there	 are	 numerous	 devices	 connected	 to	 a	 broadcast	 domain	 (i.e.,	 a	 subnet),	 Didja	will	 first	 issue	 a	
multiple-source	request	from	all	devices	for	a	single	type	of	context	(e.g.,	temperature).	The	system	will	then	identify	
the	specific	device(s)	who	are	most	likely	to	be	part	of	the	final	opportunistic	group,	and	only	request	the	next	type	
of	context	from	them.	By	repeating	this	process	for	each	context	type,	Didja	minimizes	the	amount	of	unnecessary	
context	that	is	received	and	processed,	without	reducing	the	system’s	overall	accuracy.	

Implementing	this	functionality	using	GCF	proved	to	be	difficult.	As	mentioned	throughout	this	thesis,	our	main	goal	
with	GCF	is	to	provide	devices	with	a	streamlined	and	automated	way	to	detect	form	groups	that	minimizes	the	need	
for	a	priori	information.	Consequently,	early	versions	of	the	framework	did	not	let	developers	explicitly	state	which	
devices	 they	would	 like	 to	 receive	context	 from,	even	when	 these	devices	were	 known	 (or	could	be	 identified)	 in	
advance.	As	an	initial	workaround,	we	created	a	custom	“whitelist	arbiter”	that	would	only	form	groups	with	devices	
whose	GCF	IDs	were	programmatically	specified	in	advance.	However,	this	solution	became	cumbersome	to	use,	as	it	
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required	us	to	register	and	manage	multiple	whitelists	(one	for	each	context	type)	 in	order	to	achieve	the	desired	
effect.	

Through	Didja,	we	 realized	 that	 there	are	 times	when	developers	and/or	applications	need	 to	be	able	 to	 request	
context	 from	a	 specific	 subset	of	devices	 in	an	environment.	 To	 support	 this,	we	modified	GCF’s	 context	 request	
message	to	include	a	destination	field.	We	then	modified	the	Group	Context	Manager’s	sendRequest()	method	so	that	
users	can	populate	this	field	when	making	their	request,	as	shown	in	Figure	26.	

When	a	device	receives	a	context	request	message	with	a	nonempty	destination	field,	GCF	examines	it	to	see	if	the	
device’s	 ID	 is	 included	 within.	 If	 so,	 the	 communications	 manager	 forwards	 the	 message	 to	 the	 Group	 Context	
Manager	 to	be	processed;	otherwise,	 the	message	 is	discarded.	Alternatively,	 if	 the	message’s	destination	 field	 is	
empty	 or	 null,	 the	 communications	manager	 assumes	 that	 the	message	 is	 intended	 for	 everyone.	 This	 lets	 GCF	
continue	to	broadcast	messages	to	all	devices	in	communications	range,	and	discover	group	members	“on	the	fly.”	

This	solution	has	two	benefits.	First,	it	lets	developers	specify	the	device(s)	they	want	to	group	with	on	a	per	context	
basis.	This	allows	GCF	to	support	applications	where	users	and/or	developers	already	know	which	device	(or	range	of	
devices)	they	want	to	exchange	information	with,	as	well	as	situations	where	these	devices	are	not	known	a	priori.	
Furthermore,	since	this	solution	only	affects	GCF’s	communication	layer,	developers	can	combine	it	with	GCF’s	default	
arbiters	to	form	more	specialized	groups	(e.g.,	“request	location	data	from	any	of	the	following	devices	that	I	own“).	
This	prevents	developers	from	having	to	create	their	own	arbiters	in	many	situations,	while	still	providing	them	with	
a	robust	interface	for	requesting	context.	

Using	Bluetooth	to	Improve	GCF’s	Situational	Awareness.	Another	problem	that	we	encountered	while	developing	
Didja	was	that	we	lacked	a	reliable	way	to	tell	which	devices	were	physically	nearby.	Early	versions	of	GCF	relied	solely	
on	network	broadcasts	in	order	to	determine	which	devices	are	in	communication	range.	However,	the	range	of	a	
broadcast	domain	can	largely	vary	depending	upon	the	environment	and	network	topology.	In	field	trials,	we	found	
that	this	could	cause	Didja	to	request,	receive,	and	analyze	context	from	devices	that	are	clearly	not	a	part	of	the	
user’s	current	group	(e.g.,	a	device	located	on	a	different	floor	of	the	same	building).	

As	mentioned	in	our	system	description,	we	overcame	this	problem	by	using	Bluetooth	to	determine	which	devices	
were	within	15-30	feet	of	the	user.	However,	we	still	needed	to	devise	a	way	to	convert	a	device’s	Bluetooth	name	
(e.g.,	“Adrian’s	Phone”)	to	its	GCF	ID	(e.g.,	“Device	A”)	so	that	we	could	request	context	from	it.	While	we	initially	
considered	 having	 devices	 pair	 over	 Bluetooth	 to	 exchange	 their	 IDs,	 we	 eventually	 decided	 to	 let	 Didja	
programmatically	 set	 the	 device’s	 Bluetooth	 name	 to	 contain	 its	 GCF	 ID.	 This	 eliminated	 the	 need	 for	 pairing	
altogether,	while	providing	our	system	with	the	information	that	it	needed	to	selectively	request	context.		

Initially,	this	“hack”	was	implemented	specifically	for	Didja,	and	was	not	intended	to	be	incorporated	into	GCF.	As	we	
continued	developing	context-aware	applications,	however,	we	discovered	that	the	ability	to	detect	nearby	devices	is	
oftentimes	needed	to	find	and	form	opportunistic	groups,	especially	in	environments	which	do	not	have	a	local	area	
network.	This	realization	would	eventually	inspire	us	to	create	a	dedicated	add-on	module	for	GCF	that	allows	devices	
to	easily	discover	and	share	information	using	their	Bluetooth	ID	(refer	to	section	4.4	for	more	details).		

	

Figure	26.	A	sample	request	for	context	using	a	modified	version	of	GCF’s	sendRequest()	method.	By	providing	a	list	of	device	
IDs	(blue),	developers	can	specify	which	devices	are	able	to	see	and	respond	to	any	particular	request.	
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4.2. SNAP-TO-IT:	USING	GCF	TO	FORM	OPPORTUNISTIC	GROUPS	WITH	APPLIANCES,	OBJECTS,	AND	
THE	INTERNET-OF-THINGS	

Our	second	system,	Snap-To-It,	is	a	novel	interaction	tool	that	lets	users	easily	select	and	interact	with	the	ubiquitously	
distributed	appliances	in	their	environments	[45].	In	this	system,	users	run	a	custom	smartphone	application	that	lets	
them	take	photographs	of	the	devices	(e.g.,	printers,	digital	projectors)	or	objects	that	they	would	like	to	interact	with.	
Our	application	then	broadcasts	this	image	(along	with	the	user’s	location	and	device	orientation)	across	a	local	area	
network	so	that	appliances	and/or	software	proxies	can	analyze	it.	When	an	appliance	receives	a	photograph,	it	1)	
determines	that	the	user	is	nearby	and	pointed	in	the	correct	direction,	and	2)	uses	image	recognition	algorithms	[76]	
to	analyze	it.	If	a	photo	matches	an	appliance	with	a	high	degree	of	confidence,	the	app	connects	to	it	and	renders	a	
custom	interface	(Figure	27).	Otherwise,	the	user	receives	a	list	of	the	most	likely	candidates	based	on	their	context,	
and	is	asked	to	select	from	them.	

	

Snap-To-It	contributes	to	our	second	research	question	by	showing	how	the	ability	to	form	opportunistic	groups	can	
facilitate	one	time	or	spontaneous	interactions	with	their	environments.	Currently,	interacting	with	new	or	unfamiliar	
appliances	is	a	well-known	challenge	in	the	Ubicomp	community	[6,54,78,83,96].	For	example,	if	users	want	to	use	a	
networked	printer	for	the	first	time,	they	have	to	know	its	IP	address	and	install	the	correct	drivers.	Similarly,	if	a	user	
wants	to	play	music	on	a	Bluetooth	speaker,	they	must	first	know	how	to	set	the	appliance	to	be	discover,	and	then	
find	and	pair	with	it	on	their	phone.	While	this	 level	of	effort	 is	acceptable	for	appliances	that	we	use	regularly,	 it	
makes	 one-time	 or	 spontaneous	 use	 impractical.	 This	 discourages	 users	 from	 interacting	with	 new	 or	 unfamiliar	
appliances,	 and	 can	even	 force	 them	 to	go	out	of	 their	way	 to	 seek	alternative	 solutions	 (e.g.,	asking	a	 friend	or	
stranger	who	is	already	paired	with	a	printer	to	print	a	document	on	their	behalf).		

To	 date,	 researchers	 have	 explored	 several	 solutions	 for	 users	 to	 control	 appliances	 from	 their	 mobile	 device	
[8,85,95,113,122].	Snap-To-It	builds	on	this	work	in	three	important	ways:	

1. First,	Snap-To-It	broadens	our	understanding	of	the	types	of	opportunistic	interactions	users	would	like	to	
perform	 using	 their	 mobile	 devices.	 Prior	 to	 developing	 Snap-To-It,	 we	 conducted	 a	 probe	 with	 28	
participants	to	see	how	users	would	like	to	interact	with	the	appliances	in	their	surroundings.	Through	this	
probe,	we	 identified	six	categories	of	general	use	cases.	Snap-To-It’s	design	 is	directly	 informed	by	 these	
findings,	providing	a	research	platform	that	shows	1)	what	types	of	interactions	are	possible	using	a	mobile	
device,	and	2)	what	types	of	interactions	are	actually	desired	by	end	users.	

	

Figure	27.	A	user	takes	a	photograph	of	the	appliance	that	they	want	to	control	(left).	Snap-To-It	shares	this	image	(along	
with	the	user’s	location	and	device	orientation)	with	nearby	appliances.	The	user’s	device	connects	to	the	appliance	that	best	

matches	the	image,	and	receives	a	custom	user	interface	(right).	
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2. Secondly,	Snap-To-It	offers	a	novel	architecture	that	supports	opportunistic	grouping	with	a	wide	range	of	
appliances.	Rather	than	require	the	user	to	download	a	list	of	nearby	appliances	[54]	or	connect	to	a	well-
known	server	[14],	our	system	uses	multicasting	to	identify	an	appliance	based	on	its	photo.	This	makes	it	
particularly	useful	when	users	are	visiting	a	location	for	the	first	time,	and	need	to	use	an	appliance	once	or	
spontaneously.	 Additionally,	 while	 prior	work	 has	 shown	 that	mobile	 devices	 can	 be	 used	 to	 select	 and	
interact	 with	 hardware	 [90,105]	 and	 software	 [18],	 they	 have	 typically	 focused	 on	 one	 or	 the	 other.	 In	
contrast,	Snap-To-It	compares	user-taken	photographs	against	stock	images	and	real-time	screenshots.	This	
lets	it	support	both	types	of	appliances	using	a	single	interaction	technique.	Finally,	since	Snap-To-It	works	
with	 any	 photograph,	 our	 system	 can	 be	 used	 to	 make	 non-computation	 objects	 (e.g.,	 signs,	 maps)	
selectable.	This	dramatically	increases	the	ranges	of	appliances,	applications,	and	information	that	users	can	
interact	with	without	requiring	each	one	to	have	an	embedded	computer.	

3. Third,	 Snap-To-It	provides	a	developer-friendly	way	 to	allow	appliances	 to	be	 selectable	via	 camera.	Our	
system’s	middleware	(which	uses	GCF)	automatically	processes	 incoming	photos,	establishes	connections	
with	user	devices,	and	delivers	arbitrary	HTML/JavaScript	based	user	interfaces.	This	allows	developers	to	
incorporate	 Snap-To-It’s	 functionality	 into	 appliances	 without	 having	 to	 implement	 their	 own	 photo	
recognition.	 Additionally,	 our	 middleware	 can	 act	 as	 a	 software	 wrapper	 for	 existing	 appliances	 and	
applications.	This	greatly	expands	the	range	of	appliances	that	can	utilize	our	system	without	forcing	users	
or	site	administrators	to	install	additional	hardware.	

In	the	following	sections,	we	describe	our	probe,	and	show	how	user	responses	have	helped	us	better	understand	the	
types	of	opportunistic	interactions	that	users	would	like	to	form	in	their	everyday	lives.	Afterwards,	we	describe	Snap-
To-It’s	architecture,	and	present	four	prototypes	that	highlight	its	capabilities.	Through	three	studies,	we	show	that	
Snap-To-It	 is	 sufficiently	 accurate	 to	 be	 deployed	 in	 real-world	 environments.	 Finally,	 we	 address	 issues	 such	 as	
usability,	 responsiveness,	 and	hardware	 requirements,	 and	discuss	 how	our	 experiences	 creating	 Snap-To-It	 have	
helped	us	refine	GCF’s	design.	

4.2.1. TECHNOLOGY	PROBE	AND	DERIVED	REQUIREMENTS	
With	Snap-To-It,	we	aim	to	let	users	quickly	select	and	interact	with	any	object	in	their	physical	environment.	Yet	while	
prior	work	has	shown	that	this	two-step	interaction	model	supports	many	use	cases,	they	focus	on	the	challenges	
associated	with	connecting	to	devices	and	receiving	and/or	rendering	custom	interfaces	[54,85].	Consequently,	we	
still	lack	knowledge	of	1)	the	types	of	devices	that	people	would	like	to	interact	with	in	an	opportunistic	fashion,	and	
2)	the	range	of	interactions	that	they	would	like	to	perform,	both	of	which	are	necessary	to	create	a	system	that	will	
actually	be	useful	and	usable	to	users.	

To	address	this	gap,	we	conducted	a	technology	probe	in	which	we	asked	users	to	provide	us	with	a	“wish	list”	of	
appliances	that	they	would	like	to	interact	with	using	their	mobile	device(s).	For	this	study,	participants	installed	a	
custom	Android	app	on	their	smartphone	that	allowed	them	to	take	photographs	of	devices	and	annotate	how	they	
would	like	to	use	them.	They	then	spent	a	week	taking	pictures	as	they	went	about	their	normal	routine.		

For	this	probe,	we	recruited	28	participants	(14	males,	14	females;	19	to	60	years	old;	consisting	of	a	mix	of	novice	
and	expert	users),	all	of	whom	use	a	smartphone	on	a	daily	basis.	Each	participant	was	paid	$20	regardless	of	how	
many	photographs	he/she	submitted.	In	addition,	we	encouraged	users	to	photograph	as	many	devices/objects	as	
they	wanted,	regardless	if	the	technology	or	infrastructure	needed	to	control	them	currently	exists.	

Through	 this	 process,	 we	 collected	 a	 total	 of	 195	 photographs.	 Each	 photo	was	 categorized	 according	 to	 1)	 the	
interaction	being	performed,	and	2)	the	technologies	needed	to	support	them.	This	 information	was	then	directly	
used	to	 identify	Snap-To-It’s	general	use	cases	and	derive	critical	technical	requirements.	Although	the	number	of	
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photos	submitted	by	participants	varied,	our	analysis	found	that	each	identified	roughly	the	same	number	of	general	
use	cases	(mean=2.1,	SD=1.1).	This	suggests	that	our	findings	were	not	overly	influenced	by	any	one	participant.	

4.2.1.1. Use	Case	Categories	
Participants	had	a	wide	range	of	ideas	as	to	how	they	wanted	to	interact	with	appliances	using	their	mobile	phone.	
Based	on	the	results	from	our	probe,	we	have	identified	six	general	use	case	categories.	

Nineteen	participants	(68%)	wanted	to	use	their	mobile	phones	to	quickly	interact	with	new	or	unfamiliar	appliances	
(Figure	28,	Row	1).	The	majority	took	photographs	of	office	appliances	such	as	printers,	projectors,	and	multimedia	
controls.	Others	 took	 photos	 of	 specialized	 equipment	 such	 as	 laser	 cutters	 and	 3D	 printers.	 In	 each	 case,	 users	
wanted	to	use	the	appliance	without	installing	software/drivers.	

Another	popular	use	case	was	to	control	appliances	from	afar	(Row	2).	Twenty	participants	(71%)	took	pictures	of	
household/office	appliances,	vehicles	and	industrial	equipment,	and	stated	that	they	wanted	to	be	able	to	control	
these	devices	from	anywhere.	In	some	cases,	it	was	purely	for	added	convenience	(e.g.,	“[I	want	to]	turn	off	the	lights	

	

Figure	28.	General	use	cases	for	Snap-To-It,	as	derived	from	user	responses	from	our	technology	probe.	
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when	I’m	in	bed”).	Others	viewed	their	phone	as	a	more	hygienic	way	to	interact	with	public	objects	(e.g.,	lights,	toilet	
handles)	 without	 having	 to	 physically	 touch	 them.	 Finally,	 several	 participants	 noted	 that	 being	 able	 to	 activate	
controls	from	a	distance	would	be	particularly	helpful	to	disabled	individuals.	We	found	this	to	be	an	unexpected,	but	
interesting	use	case	that	we	wanted	to	support.		

While	we	anticipated	that	participants	would	want	to	use	their	smartphones	as	a	remote	control,	participants	also	
identified	several	other	ways	to	interact	with	appliances.	Eight	participants	(29%)	wanted	to	use	their	mobile	device	
as	a	way	to	upload	and	download	content	(Row	3).	Several	users	took	pictures	of	public	displays	and	televisions,	and	
stated	that	they	wanted	to	be	able	to	send	or	receive	content	(e.g.,	push	a	PowerPoint	presentation,	pull	a	closed-
caption	 feed).	 Interestingly,	 the	 idea	 of	 pushing/pulling	 content	 was	 not	 limited	 to	 computer	 devices.	 Several	
participants	took	photos	of	disconnected	objects	such	as	campus	maps	and	public	museum	displays,	and	stated	that	
they	wanted	to	extract	the	information	represented	by	the	object	using	their	phone	(e.g.,	converting	a	picture	of	a	
map	 into	 a	 digital	 version).	 In	 these	 cases,	 participants	 viewed	 these	 objects	 as	 “physical	 hyperlinks”,	 and	 were	
interested	in	being	able	to	use	their	mobile	phone	as	a	way	to	access	an	object’s	digital	representation.		

Seven	participants	(25%)	wanted	to	use	their	phone	to	perform	secure	transactions	(Row	4).	Several	of	them	took	
pictures	of	locked	doors	and	computers,	and	noted	how	it	would	save	them	time	and	effort	if	they	could	authenticate	
to	these	devices	while	approaching	them.	Others	took	photographs	of	payment	systems	(e.g.,	vending	machines),	and	
noted	that	it	would	be	convenient	if	they	could	make	purchases	electronically.		

A	fifth	use	case	 identified	by	four	participants	(14%)	was	to	 learn	more	about	a	particular	appliance	(Row	5).	One	
participant	 photographed	 a	 light	 switch,	 and	wrote:	 “I	 am	not	 so	 sure	what	 these	 buttons	 control.”	Others	 took	
pictures	of	fire	alarms,	defibrillators,	and	household	appliances,	and	asked	for	1)	what	the	appliance	does,	and	2)	how	
to	use	it.		

Finally,	 two	 participants	 (7%)	 wanted	 to	 use	 camera-based	 selection	 to	 easily	 transfer	 settings	 and	 preferences	
between	appliances	(Row	6).	One	participant	took	a	photo	of	a	treadmill,	and	said	that	he	wanted	to	easily	carry	over	
his	exercise	preferences	(e.g.,	speed,	incline)	to	another	machine	during	his	next	workout	session.	The	other	took	a	
photograph	of	a	public	television,	and	stated	that	he	wanted	to	quickly	find	and	tune	to	his	favorite	channels	without	
having	to	search	for	them.	In	both	cases,	users	wanted	their	phone	to	remember	their	past	interactions.	This	would	
allow	them	to	seamlessly	transfer	these	preferences	to	new	appliances.	

Collectively,	these	responses	highlight	the	 importance	of	being	able	to	form	opportunistic	groups	with	appliances.	
While	only	18%	of	our	participants	stated	that	they	use	more	than	three	devices	daily,	our	probe	reveals	that	1)	all	of	
them	wanted	to	 interact	with	more	devices	than	they	currently	do,	and	2)	that	this	desire	extends	beyond	simple	
remote	controls.	This	emphasizes	the	need	for	a	more	versatile	way	of	interacting	with	appliances	than	is	currently	
available.	

4.2.1.2. Functional	Requirements	
Our	probe	shows	that	users	seek	a	simple	but	versatile	way	of	interacting	with	a	wide	range	of	objects/appliances.	
Based	on	their	responses,	we	have	identified	the	following	functional	requirements:	

• R1:	Support	Photo-Based	Selection.	One	of	our	main	goals	with	Snap-To-It	is	to	let	users	select	appliances	
using	a	simple,	well	known	interaction	technique.	Consequently,	while	other	methods	(e.g.,	QR	codes)	may	
be	necessary	at	times,	camera-based	selection	should	be	used	whenever	possible.		

• R2:	 Interact	 with	 Software	 and	 Hardware.	 As	 mentioned	 previously,	 current	 systems	 typically	 focus	 on	
interacting	with	hardware	or	software.	Our	technology	probe,	however,	shows	that	users	frequently	want	to	
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interact	with	both	types	of	appliances.	For	this	reason,	tools	like	Snap-To-It	need	to	support	both	hardware	
and	software	interactions	through	a	single	interface.		

• R3:	Interact	with	Appliances	from	Afar.	As	shown	in	Figure	28,	Row	2,	users	want	to	interact	with	appliances	
that	are	out	of	sight.	This	points	to	the	need	to	remember	previously	used	appliances	(i.e.,	a	“favorites	list”)	
so	that	remote	operation	is	possible.		

• R4:	Render	Complex	Interfaces.	Many	of	the	use	cases	identified	in	Figure	28	call	for	complex	user	interfaces	
(e.g.,	 interactive	maps,	 real-time	 closed-captioning	 feeds).	 These	 interfaces	 are	more	 dynamic	 than	 the	
button/slider	interfaces	supported	by	existing	remote	control	systems,	and	illustrate	the	need	to	be	able	to	
render	any	arbitrary	UI	at	runtime.	

• R5:	 Support	Expandability.	 The	 final	 insight	 gained	 from	our	probe	 is	 that	users	use	new	 technologies	 in	
unexpected	ways.	While	we	know	that	there	are	several	obvious	use	cases	that	our	system	needs	to	support	
(e.g.,	sending	commands	to	remote	appliances),	our	participants	have	also	identified	a	number	of	use	cases	
that	are	important	to	them,	such	as	the	ability	to	perform	remote	transactions	and	save/transfer	settings.	
These	findings	highlight	the	real	world	challenges	of	creating	a	universal	interaction	tool,	and	that	systems	
such	as	Snap-To-It	need	to	be	flexible	enough	to	accommodate	these	use	cases	as	they	are	discovered.	

In	the	following	section,	we	show	how	Snap-To-It’s	design	is	directly	influenced	by	our	technology	probe.	Our	system	
satisfies	all	of	the	requirements	described	above,	and	provides	a	middleware	that	makes	it	easy	to	add	our	system’s	
functionality	to	new	or	existing	appliances.	This	allows	it	to	support	all	six	use	case	categories	while	still	leaving	room	
for	future	expansion.	

4.2.2. SYSTEM	DESIGN	
The	Snap-To-It	system	consists	of	two	components	(Figure	29):	

1. A	mobile	application	(left),	which	runs	on	the	user’s	smartphone	or	tablet.	
2. A	series	of	remote	service	providers	(RSP;	right),	each	of	which	controls	one	or	more	appliances,	and	resides	

either	on	the	appliance	itself	or	a	designated	proxy	(i.e.,	a	server).		

	

	 	

Figure	29.	Snap-To-It	high	level	architecture,	and	communications	flow	(a-e).	Solid	boxed	components	(blue)	are	provided	
and/or	automatically	handled	by	our	middleware.	Dotted	components	(red)	are	appliance	specific,	and	are	provided	by	

developers	or	site	administrators.		
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Both	components	were	created	using	GCF.	The	RSP	 is	a	 context	provider	 (context	 type	=	 “RSP”)	 that	 can	analyze	
photos,	deliver	interfaces,	and	transmit	remote	commands	to	the	appliance(s)	they	control.	The	mobile	app	uses	GCF	
to	dynamically	request	and	receive	interfaces	from	these	RSPs.	When	a	user	takes	a	photograph	of	an	appliance,	our	
app	transmits	a	context	request	message	that	contains	1)	a	URL	to	the	photo,	2)	the	user’s	current	location,	and	3)	
the	smartphone’s	orientation	(Figure	29a).	RSPs	on	the	same	subnet	can	then	use	this	information	to	determine	if	the	
user	is	looking	at	them,	and	respond	with	a	context	capability	message	that	contains	the	number	of	photo	matches,	
and	a	brief	 text	description	 (Figure	29b).	When	the	user	or	mobile	app	selects	an	appliance,	GCF	sends	a	context	
subscription	message	to	the	RSP	(Figure	29c),	and	receives	one	or	more	context	data	messages	that	contains	the	user	
interface	(Figure	29d).	The	user	can	then	interact	with	the	interface	to	send	custom	instructions	to	the	RSP	(Figure	
29e),	which	are	converted	into	appliance	specific	commands	(e.g.,	turn	on/off,	change	channel).	

This	section	describes	Snap-To-It’s	important	technical	details.	First,	we	show	how	our	system	recognizes	appliances.	
Afterwards,	we	show	how	it	renders	interfaces,	shares	preferences,	authenticates	users,	and	supports	extensibility.	

4.2.2.1. Selecting	an	Appliance	via	the	Mobile	App	
Snap-To-It	offers	two	ways	to	select	an	appliance.	The	primary	way	is	by	using	the	mobile	device’s	camera	(R1).	Each	
time	a	user	takes	a	photo	of	an	appliance,	our	app	automatically	uploads	a	640	×	480	JPEG	version	of	it	to	a	cloud	
server	(which	simply	hosts	the	photo	for	RSPs	to	access),	and	records	the	phone’s	location	and	orientation	(azimuth,	
pitch,	roll).	It	then	transmits	a	context	request	message	(Figure	30,	left)	containing	the	photo	URL,	location,	and	device	
orientation,	and	waits	for	a	response.	If	an	RSP’s	context	capability	message	states	that	it	matches	a	photo	with	a	high	
degree	of	confidence	(i.e.,	sensorFitness	is	greater	than	50;	Figure	30,	right),	our	app	automatically	subscribes	to	it.	If	
no	high	confidence	match	is	found,	the	app	provides	users	with	the	five	highest	matching	appliances	based	on	their	
reported	context,	and	lets	them	choose	which	one	they	want	to	use.	Our	app	always	lets	users	return	to	the	list	of	top	
matches	for	the	most	recently	taken	photo.	This	lets	them	gracefully	recover	in	the	event	they	(or	the	system)	select	
the	wrong	appliance.		

In	support	of	R3,	our	mobile	app	also	allows	users	to	select	appliances	over	long	distances.	Our	system	maintains	a	
history	of	previously	connected	appliances,	and	lets	users	explicitly	add	appliances	to	a	favorites	 list.	The	user	can	
then	use	either	list	to	reconnect	to	an	appliance	without	having	to	be	nearby.	

	 	

	

Figure	30.	Example	Snap-To-It	context	request	(left)	and	context	capability	messages	(right).		
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4.2.2.2. Recognizing	an	Appliance	

	

Snap-To-It	matches	user	requests	to	specific	appliances	in	three	stages	(Figure	31).	In	the	first	stage,	each	RSP	extracts	
the	latitude/longitude	from	the	request	message	and	calculates	the	distance	between	itself	and	the	user.	The	RSP	
only	then	proceeds	to	the	next	stage	if	the	user	is	within	a	predefined	distance	(e.g.,	50	meters).	Since	indoor	location	
tracking	is	imprecise,	our	system	only	checks	to	see	if	the	user	is	in	the	general	vicinity	of	the	appliance	(i.e.,	the	same	
building).	This	lets	RSPs	disregard	requests	from	users	that	are	clearly	out	of	visual	range,	and	lets	our	system	work	in	
networks	where	a	subnet	covers	a	large	geographic	area.		

In	the	second	stage,	RSPs	check	to	see	if	the	user’s	camera	is	pointing	towards	the	appliance	they	represent.	Each	RSP	
knows	what	direction	a	user	needs	to	be	facing	in	order	to	take	a	picture	of	it	(specified	a	priori	or	obtained	by	using	
its	onboard	compass).	RSPs	can	then	check	to	see	if	the	user’s	device	is	pointing	towards	it.	Similar	to	before,	this	test	
cannot	definitively	tell	if	a	user	is	looking	at	it.	Instead,	it	only	prevents	appliances	from	comparing	photos	that	are	
obviously	taken	from	the	wrong	direction.	This	 improves	accuracy	when	appliances	 look	similar,	but	face	different	
directions.		

The	third	stage	examines	the	user’s	photograph.	Here,	each	of	the	remaining	RSPs	under	consideration	downloads	
the	user	photo	and	extracts	its	salient	features	using	the	Scale	Invariant	Feature	Transform	(SIFT)	algorithm	[76].	These	
features	are	then	compared	to	reference	photos	(i.e.,	photos	of	the	appliance	that	are	either	provided	in	advance,	or	
taken	programmatically),	and	the	results	(i.e.,	the	maximum	number	of	matches)	are	sent	back	to	the	mobile	app.	We	
use	SIFT	because	the	features	it	identifies	are	resilient	against	changes	in	the	orientation	of	the	camera	and	distance	
from	appliances.	This	lets	it	effectively	compare	two	images,	even	when	they	are	taken	from	slightly	different	angles	
and	distances.		

For	the	above	process	to	work,	each	RSP	needs	to	know	1)	what	it	looks	like,	2)	where	its	appliance	is	located,	and	3)	
what	 direction	 the	 user	 needs	 to	 face	 to	 photograph	 it.	 For	 appliances	 with	 a	 GPS,	 compass,	 and	 display,	 this	
information	can	be	automatically	obtained	by	directing	the	RSP	to	periodically	poll	its	sensors	and	take	screenshots	
of	its	display,	respectively.	Many	appliances	(e.g.,	printers),	however,	lack	this	capability.	To	support	them,	developers	
and/or	administrators	can	collect	this	information	via	our	mobile	app,	and	provide	the	photos	(and	their	associated	
metadata)	to	the	RSP.	While	cumbersome,	we	have	empirically	found	that	this	approach	yields	good	results	with	as	
few	as	3	reference	photos	(one	taken	from	the	front,	and	two	from	opposite	45	degree	angles).	This	makes	it	easy	for	
developers	to	create	RSPs	for	a	wide	range	of	hardware,	software,	and	non-computational	objects	(satisfying	R2).		

Additionally,	 our	 process	 requires	 that	 every	 reference	 photo	 contain	 some	 information	 about	 an	 appliance’s	
surroundings.	To	achieve	this,	our	app	provides	users	with	a	targeting	reticule	(i.e.,	a	box),	and	instructs	them	to	keep	
the	appliance	in	the	center	of	the	image	(Figure	27,	left).	The	resulting	photos	contain	enough	background	scenery	to	
give	the	RSP	a	sense	of	where	it	is	located	in	relation	to	the	environment,	as	well	as	what	appliances	are	near	it.	This	

	

Figure	31.	Snap-To-It’s	appliance	recognition	process.	
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lets	our	system	differentiate	between	similar	looking	appliances,	even	when	they	are	physically	near	each	other	(an	
examination	of	Snap-To-It’s	accuracy	is	provided	in	the	following	sections).	

4.2.2.3. Updating/Maintaining	Reference	Photos	
Snap-To-It’s	accuracy	largely	depends	on	the	quality	of	its	reference	photos.	When	these	photos	closely	match	the	
appliance’s	actual	appearance,	our	system	is	able	to	identify	appliances	with	a	high	degree	of	confidence.	However,	
reference	photos	become	stale	over	time	as	the	environment	changes.	Consequently,	there	needs	to	be	a	way	for	
RSPs	to	update	their	reference	images	with	minimal	assistance.		

Snap-To-It	overcomes	this	problem	by	utilizing	user	photographs.	When	users	connect	to	an	RSP,	the	photo	they	took	
is	compared	to	the	RSP’s	reference	images.	If	the	photo	was	taken	at	a	similar	angle	to	an	existing	photo	(e.g.,	within	
10	degrees	azimuth/pitch/roll)	and	has	a	low	number	of	SIFT	matches,	the	RSP	replaces	the	older	reference	image.	
Otherwise,	 the	 system	adds	 the	photo	 to	 its	 current	 library	 (up	 to	 a	 specified	 limit).	 By	 letting	RSPs	update	 their	
reference	images	when	the	SIFT	accuracy	drops	below	a	threshold,	our	system	is	able	to	learn	how	an	environment	is	
changing	over	time.	This	keeps	them	up	to	date,	while	simultaneously	allowing	them	to	recognize	appliances	from	a	
wider	range	of	angles.		

Although	this	provides	RSPs	with	new	photos,	it	also	opens	the	possibility	of	RSPs	receiving	blurry	or	inaccurate	images	
by	mistake	 (e.g.,	an	 image	of	another	appliance).	To	overcome	this,	RSPs	ask	users	 to	 judge	another	user’s	photo	
before	adding	 it	to	 its	 library.	By	 leveraging	user	responses,	RSPs	can	weed	out	 low	quality	photos	from	its	 library	
without	having	to	explicitly	judge	image	quality	on	its	own.	Moreover,	since	judging	is	only	needed	when	a	new	photo	
is	added,	the	impact	on	the	end	user	experience	is	kept	to	a	minimum.	

4.2.2.4. Defining	User	Interfaces	
From	our	technology	probe,	we	know	that	there	are	a	handful	of	common	operations	that	users	need	to	perform	in	
order	to	effectively	control	an	appliance,	such	as	the	ability	to	transmit	remote	commands.	As	a	result,	Snap-To-It	
provides	a	robust	JavaScript	API	that	supports	these	core	functions.	When	developers	specify	their	interface,	they	can	
insert	calls	to	our	API	at	key	events	(e.g.,	when	a	button	is	pressed).	These	calls	then	direct	the	app	to	perform	a	pre-
canned	or	customizable	action	(Figure	32).		

	

	

Figure	32.	Sample	controls	for	a	printer	RSP.	When	users	press	the	“Print	File”	button,	it	invokes	our	JavaScript	API	
(red/underlined)	to	select	and	upload	a	file	to	the	RSP	(bottom	right),	and	transmit	the	“PRINT”	command	to	the	RSP.	



	 85	

This	approach	lets	Snap-To-It	perform	operations	that	are	normally	inaccessible	(or	difficult	to	perform)	from	a	mobile	
web	 browser.	 Our	 system	 allows	 developers	 to	 customize	 these	 operations	 (e.g.,	 specify	 what	 command	 is	
transmitted),	 and	 “push”	 new	UIs	without	 requiring	 the	 user	 to	 refresh	 their	 display.	 This	 allows	 them	 to	 create	
responsive,	arbitrarily	complex	UIs	(supporting	R4),	and	makes	our	system	extensible	to	a	wide	range	of	appliances	
and	use	cases.	

4.2.2.5. Sharing	Preferences	
RSPs	can	also	store	preferences	(e.g.,	favorite	TV	channels,	exercise	settings)	on	the	user’s	device,	similar	to	the	way	
that	 websites	 store	 cookies	 on	 a	 client	 device.	 When	 an	 RSP	 needs	 to	 save	 a	 preference,	 it	 calls	 our	 API’s	
SETPREFERENCE()	method,	and	specifies	the	name	of	the	preference	and	its	value.	These	values	are	then	stored	in	the	
mobile	app,	and	are	provided	to	the	RSP	in	future	sessions.		

Moreover,	preferences	can	be	shared	across	appliances	 (supporting	R5).	Each	time	an	RSP	replies	 to	a	 request,	 it	
specifies	the	preference(s)	it	needs	(Figure	30,	right)	in	its	context	capability	message.	The	mobile	app	then	delivers	
these	preferences	(if	authorized	by	the	user)	to	the	RSP	when	it	connects.	Since	RSPs	can	ask	for	any	preference,	our	
system	lets	appliances	configure	themselves	(e.g.,	 transfer	exercise	settings)	based	on	the	user’s	 interactions	with	
similar	 and/or	 complementary	 appliances.	 In	 doing	 so,	 we	 reduce	 the	 need	 for	 manual	 configuration	 in	 many	
situations.	

4.2.2.6. Identifying	Users	
There	are	many	situations	where	an	RSP	needs	to	customize	the	services	it	offers	on	a	per-user	basis.	For	example,	
an	RSP	for	a	printer	on	a	college	campus	might	want	to	provide	students	and	faculty	members	with	an	interface	to	
print	in	color,	while	limiting	visitors	to	black	and	white.		

To	support	these	situations,	Snap-To-It	allows	appliances	to	distinguish	between	individual	users.	Each	time	a	mobile	
app	connects	to	the	RSP,	it	transmits	a	set	of	identifying	credentials	to	the	RSP.	The	RSP	can	then	use	these	values	to	
determine	what	level	of	service	to	provide.	For	now,	our	credentials	contain	the	device’s	Android	ID	and	a	hash	of	the	
user’s	email	address	(Figure	30,	left),	as	this	information	is	sufficient	to	identify	a	particular	user	(provided	the	email	
address	 or	 ID	 is	 known	 beforehand).	 In	 the	 future,	 however,	 a	 more	 robust	 authentication	 method	 (i.e.,	 digital	
signatures)	could	be	used	 in	 its	place.	This	would	provide	greater	security,	while	still	allowing	our	system	to	offer	
relevant	and	appropriate	services	(supporting	R5	as	well).	

4.2.2.7. Creating	a	New	RSP	
Snap-To-It	makes	it	easy	for	both	first	and	third	party	developers	to	create	their	own	RSPs.	Our	middleware	comes	
with	a	base	REMOTESERVICEPROVIDER	class	that	automatically	handles	all	 image	processing	and	communications.	This	
class	extends	GCF’s	CONTEXTPROVIDER	base	class,	and	implements	its	core	methods	in	the	following	ways:		

• In	the	constructor	(Figure	2,	line	4),	we	assign	the	RSP	a	context	type	of	“RSP”.	
• In	the	SENDCAPABILITY()	method	(Figure	2,	line	23),	we	extract	the	URL	and	device	orientation	from	the	context	

request	message’s	payload,	and	analyze	it	using	the	three	step	process	described	in	Figure	31.	If	the	request	
satisfies	all	three	conditions,	we	return	TRUE;	otherwise,	we	return	FALSE.	

• In	 the	 GETFITNESS()	 method	 (Figure	 2,	 line	 29),	 we	 compare	 the	 user’s	 photograph	 to	 the	 RSP’s	 current	
reference	photo	set.	We	return	the	number	of	SIFT	matches	from	the	best	matching	photograph.	

• In	the	SENDCONTEXT()	method	(Figure	2,	line	35),	we	deliver	the	appliance’s	user	interface	(specified	by	the	
developer,	as	described	below)	to	all	subscribed	devices.		
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To	create	a	new	RSP,	developers	create	their	own	RSP	class	that	inherits	from	REMOTESERVICEPROVIDER,	and	add	their	
own	functionality.	To	show	how	this	is	done,	we	provide	a	sample	implementation	of	a	printer	RSP	in	Figure	33.	This	
code	is	simplified	for	brevity,	but	highlights	the	three	steps	needed	to	create	an	RSP	from	scratch:		

1. Add	Reference	Photos.	In	the	first	step,	we	tell	the	RSP	what	its	appliance	looks	like.	For	this	example,	we	
only	provide	a	 single	 image	 (along	with	 its	 location,	azimuth,	pitch,	and	 roll).	However,	more	photos	will	
obviously	 improve	 its	 ability	 to	 recognize	 itself	 in	 a	 user-submitted	 image	 (at	 the	 cost	 of	 increased	
computation	time).		

2. Specify	the	UI.	The	second	step	is	to	return	the	user	interface	that	the	RSP	will	provide	when	SENDCONTEXT()	
is	called.	For	this	particular	example,	we	return	the	HTML	code	that	is	described	in	Figure	32.	Alternatively,	
developers	can	also	the	user	with	an	HTTP/S	link,	or	generate	a	custom	UI	for	each	subscribed	user.		

3. Process	Commands.	The	final	step	is	to	process	incoming	commands	from	the	mobile	app.	From	Figure	32,	
we	see	that	the	app	will	automatically	transmit	a	command	(e.g.,	“PRINT”)	to	the	RSP	each	time	the	user	
uploads	 a	 file.	 To	 detect	 this	 command,	 we	 check	 for	 this	 string	 in	 the	 ONCOMPUTEINSTRUCTIONRECEIVED()	
method.	We	then	use	the	URL	contained	within	the	command	to	download	and	print	the	file.		

4.2.3. VALIDATION	
We	validate	Snap-To-It	in	two	parts.	First,	we	present	four	example	applications	that	were	created	using	our	system.	
We	then	evaluate	Snap-To-It’s	accuracy,	both	under	controlled	conditions	and	after	a	two-month	deployment.	

4.2.3.1. Example	Applications	
We	have	created	four	example	applications	(Figure	34	-	Figure	37)	using	Snap-To-It.	Each	application	is	inspired	by	our	
general	use	cases,	and	demonstrates	the	range	of	opportunistic	interactions	(involving	both	hardware	and	software)	
our	middleware	supports.	

1. public class Printer_RSP extends RemoteServiceProvider   
2. {  
3.  public Printer_RSP () {  
4.  // Step 1: Add Reference Photo(s)  
5.  addPhoto(“Printer1.jpeg)”;   
6.  }  
7.   
8.  public String getInterface(User u) {  
9.  // Step 2: Create and Deliver a User Interface  
10.  return “<html>...</html>”; 
11.  }  
12.   
13.  public void onRemoteCommand(User u, Command c) {   
14.  // Step 3: Process Commands Sent by Mobile App  
15.  if (c.getCommand().equals(“PRINT_FILE”){   
16.   print(c.getURL());  
17.  }  
18.  }  
19. }  

Figure	33.	Sample	implementation	of	a	printer	remote	service	provider.	
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Application	#1:	Game	Controller	

Our	first	application	uses	Snap-To-It	to	quickly	control	a	video	game	(Figure	34).	For	this	application,	we	deployed	a	
laptop	running	both	a	commercial	game	and	a	video	game	RSP.	When	a	user	takes	a	photo	of	the	screen,	Snap-To-It	
sends	a	multicast	datagram	containing	a	link	to	the	image,	as	well	as	the	user’s	location	and	device	orientation.	Our	
RSP	then	verifies	that	the	user’s	phone	was	pointed	towards	the	laptop	and	looking	at	the	screen,	and	sends	back	a	
response	containing	the	number	of	visual	feature	matches	and	its	IP	address.	When	the	user	connects	to	the	RSP,	the	
mobile	app	receives	an	HTML	interface	for	a	gamepad	and	renders	it	on	the	screen.	As	the	user	presses	buttons	on	
the	UI,	the	interface	directs	the	mobile	app	to	send	commands	to	the	RSP	(e.g.,	“LEFT”).	These	commands	are	then	
translated	into	keyboard	presses	that	control	the	game.		

This	application	demonstrates	our	system’s	ability	to	select	appliances,	render	interfaces,	and	transmit	commands	
without	requiring	either	the	mobile	app	or	the	RSP	to	know	of	each	other	a	priori.	Additionally,	this	application	also	
shows	how	preferences	can	be	shared	through	our	system.	In	addition	to	the	default	controller	shown	in	Figure	34,	
the	application	also	lets	users	choose	between	multiple	controller	layouts.	This	preference	is	then	stored	on	the	user’s	
device,	and	can	recreate	their	control	settings	when	playing	on	a	different	computer.		

Note	that	we	did	not	use	a	special	API	to	control	the	game.	Instead,	our	RSP	merely	translates	the	user’s	controller	
commands	 into	keyboard	presses	to	give	the	user	the	 impression	that	they	are	controlling	the	game	directly.	The	
ability	to	wrap	Snap-To-It	around	existing	applications	is	inspired	by	prior	work	in	software	overloading	[33],	and	we	
believe	that	this	is	a	general	technique	that	can	be	used	to	instrument	a	wide	range	of	existing	hardware	and	software	
appliances.	

Application	#2:	Digital	Projector	
Our	second	application	shows	how	Snap-To-It	can	be	used	to	upload/download	content.	We	created	an	RSP	that	is	
linked	to	a	conference	room’s	multimedia	control	system.	When	users	take	a	photo	of	the	room’s	digital	projector,	
the	RSP	provides	them	with	an	interface	that	lets	them	upload	a	presentation.	The	RSP	then	downloads	and	projects	
the	presentation,	and	provides	the	user	with	slide	deck	controls	(Figure	35).		

	

Figure	34.	Video	game	application.	By	taking	a	photograph	of	a	laptop	screen	(left),	Snap-To-It	returns	a	game	controller	
interface	(right).	Users	can	then	tap	on	the	buttons	to	manipulate	the	on-screen	character.	
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This	application	also	shows	how	Snap-To-It	can	support	multiple	users	at	once.	Our	RSP	can	differentiate	between	the	
user	that	uploaded	the	presentation	(i.e.,	the	presenter)	and	users	that	connect	afterwards	(i.e.,	audience	members).	
The	RSP	can	then	provide	audience	members	with	a	separate	interface	to	1)	see	the	currently	visible	slide,	and	2)	
download	a	copy	of	the	presentation.	Although	simple	in	concept,	this	application	shows	how	Snap-To-It	can	support	
multiple	 user	 types	 through	 a	 single	 RSP.	 This	 allows	 our	 system	 to	 support	 a	 wide	 range	 of	 collaborative	 and	
cooperative	activities—a	capability	not	explicitly	supported	in	existing	remote	control	systems.	

Application	#3:	Paint	Application	

Our	third	application	uses	Snap-To-It	to	enhance	a	traditional	software	UI.	By	taking	a	photo	of	a	paint	application,	
users	are	provided	with	a	series	of	drawing	tools	on	their	mobile	display.	The	user	can	spread	these	controls	across	
multiple	devices	(Figure	36)	so	that	they	can	access	these	controls	without	taking	up	room	on	the	main	display.		

This	application	is	heavily	inspired	by	prior	research	in	cross	device	interactions	[53].	However,	our	system	builds	on	
this	work	by	allowing	devices	to	share	interfaces	without	having	to	install	the	same	software	or	pair	in	advance.	This	
lets	 users	 utilize	 any	 nearby	 device	 as	 an	 extended	 control	 surface,	 while	 simultaneously	making	 these	 types	 of	
interactions	easy	to	develop	and	deploy.	

	 	

	

Figure	35.	Digital	projector	application.	By	taking	a	photograph	of	a	physical	appliance	(left),	users	receive	a	custom	interface	to	
either	1)	upload	and	control	a	PowerPoint	presentation,	or	2)	download	the	currently	running	slideshow	(right).	

	

	

Figure	36.	Paint	application.	By	taking	a	photograph	of	a	paint	application	(e.g.,	GIMP,	left),	Snap-To-It	lets	users	display	toolbars	
on	their	tablets/phones.	This	frees	up	more	space	on	the	primary	display	for	the	image	being	edited.	
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Application	#4:	Campus	Map	

Our	final	application	uses	Snap-To-It	to	interact	with	a	non-computational	object	(i.e.,	a	campus	map).	When	users	
take	a	photograph	of	the	map,	the	RSP	provides	them	with	a	digital	version	(Figure	37).	They	can	then	search	for	
points	of	interest	without	having	to	remain	near	the	physical	object.		

A	key	point	of	this	example	is	that	the	sign	we	used	was	not	instrumented	in	any	way.	Instead,	we	simply	gave	the	RSP	
a	photo	of	the	sign,	and	linked	it	to	our	institution’s	online	map.	In	doing	so,	we	show	how	Snap-To-It	could	one	day	
be	used	to	help	users	extract	deep	knowledge	directly	from	their	environment.	

4.2.3.2. Experimental	Evaluation	
To	evaluate	Snap-To-It,	we	performed	three	small	studies.	The	first	compares	Snap-To-It	to	SIFT,	and	shows	how	our	
system’s	use	of	multiple	contexts	helps	it	identify	appliances	with	higher	accuracy.	The	second	compares	Snap-To-It	
to	QR	codes,	and	shows	how	our	system	supports	a	wider	range	of	angles	and	ranges.	The	third	was	conducted	after	
a	 two-month	 live	deployment,	and	shows	how	our	system	can	continue	 to	accurately	 identify	appliances	after	an	
extended	period	of	time.		

Snap-To-It	vs.	SIFT	Photo	Recognition	Accuracy		
For	 the	 first	 study,	 we	 took	 eleven	 pictures	 of	 every	 printer	 (13),	 copy	machine	 (3),	 and	 fax	machine	 (2)	 in	 our	
institution’s	building	(18	appliances	total).	The	first	five	photos	served	as	reference	images,	and	were	taken	from	the	
front	and	sides.	The	following	six	images	served	as	our	test	set,	and	were	taken	by	two	experimenters	on	different	
days.	The	test	images	were	taken	from	multiple	angles	from	separate	phones,	and	were	not	filtered	to	remove	blurry	
images.	For	our	evaluation,	we	created	18	RSPs	(1	for	each	appliance),	and	provided	each	with	1,	3,	or	5	reference	
photographs.	We	then	had	the	RSPs	evaluate	each	photo	using	both	our	system	and	pure	SIFT.		

As	expected,	Snap-To-It’s	ability	to	recognize	an	appliance	depends	on	the	quality	and	variety	of	its	reference	photos	
(Table	8).	When	we	only	provided	a	single	reference	image	(taken	from	the	front),	there	was	an	82%	chance	that	the	
correct	appliance	appeared	at	the	top	of	the	list	and	an	89%	chance	it	was	in	the	top	five.	With	three	and	five	reference	
photos,	however,	the	chance	of	the	correct	appliance	appearing	at	the	top	increased	to	87%	and	89%,	respectively.	
The	chance	of	the	device	appearing	in	the	top	five	then	exceeded	95%.		

There	are	two	important	takeaways	from	this	study.	First,	it	shows	that	our	system	does	not	need	a	large	number	of	
reference	images.	Table	8	shows	that	our	system’s	accuracy	starts	to	level	off	with	three	reference	images.	This	means	

	

Figure	37.	Campus	map	demonstration.	By	taking	a	photograph	of	a	physical,	non-computational	map	(left),	Snap-To-It	delivers	
a	digital	version	that	the	user	can	use	to	monitor	his/her	location.	
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that	on-site	administrators	and/or	developers	only	have	 to	provide	RSPs	with	a	handful	of	 images	 to	obtain	good	
performance.		

Second,	these	results	show	how	our	system	outperforms	standard	image	recognition	in	a	real-world	setting.	Of	the	
18	printers,	six	were	the	same	make/model	and	ten	were	either	located	next	to	each	other	(and	hence	appear	in	each	
others’	photographs)	or	placed	in	similar	 looking	office	rooms.	While	these	similarities	confused	SIFT	(especially	 in	
situations	 when	 the	 photo	 contains	 only	 a	 small	 amount	 of	 background	 scenery),	 Snap-To-It	 was	 able	 to	 more	
accurately	differentiate	between	appliances	that	looked	the	same	but	faced	different	directions.	Moreover,	while	SIFT	
came	closer	to	Snap-To-It’s	accuracy	with	more	reference	photos,	the	results	also	reveal	that	our	system	is	more	likely	
to	have	the	correct	appliance	at	 the	top	of	 the	 list.	This	makes	our	system	more	user-friendly	 in	an	opportunistic	
setting,	and	lets	users	be	more	confident	that	the	appliance	at	the	top	of	the	list	is	the	correct	one.		

Snap-To-It	vs.	QR-Code-Based	Device	Selection		
Our	second	study	compared	device	selection	using	Snap-To-It	and	QR	codes.	We	placed	3	and	8-inch	tall	QR	codes	on	
the	front	and	sides	of	a	printer	used	in	the	previous	study.	We	then	tried	to	scan	the	code	with	a	popular	mobile	app	
[131]	from	a	variety	of	angles,	starting	from	the	front	of	the	appliance	and	moving	around	at	20	degree	increments	
from	distances	of	three	and	six	feet.	At	each	location,	we	tried	three	times	to	see	if	the	app	could	recognize	any	of	
the	codes	visible	on	the	appliance	within	five	seconds	(the	amount	of	time	it	typically	takes	Snap-To-It	to	identify	the	
appliance).	We	then	used	Snap-To-It	three	times	from	the	same	location	to	see	how	it	would	perform	(using	three	
reference	photos).		

The	results	(Figure	38)	show	that	QR	codes	are	sensitive	to	both	angle	and	distance.	When	the	user	was	directly	in	
front	of	the	QR	code,	the	app	had	no	trouble	scanning	it.	However,	when	the	user	looked	at	the	code	from	an	angle	
(40-60	degrees),	the	app	was	often	unable	to	scan	it	reliably.	Even	after	placing	the	code	on	multiple	sides,	there	were	
some	angles	where	none	of	the	codes	could	be	successfully	scanned.	Additionally,	while	a	3-inch	code	was	sufficient	
when	the	user	was	one	meter	away,	an	8-inch	code	was	required	for	the	app	to	recognize	it	from	two	meters.	This	
may	be	acceptable	for	larger	appliances	such	as	the	printer	we	used,	but	it	is	likely	too	big	for	smaller	or	narrower	
devices	(e.g.,	projectors).	Snap-To-It	was	able	to	identify	the	printer	from	all	of	the	locations	at	both	distances.	While	
the	system’s	confidence	varied	depending	on	the	angle	(with	the	best	results	when	angle	and	distance	were	closest	
to	the	three	supplied	reference	images),	the	printer	was	always	the	top	match	from	the	18	possible	appliances.	Our	
system’s	ability	to	collect	and	process	reference	photos	from	additional	angles	lets	it	become	even	more	accurate,	
and	suggests	that	Snap-To-It	can	be	more	reliable	than	using	multiple	QR	codes.		

Long	Term	Feasibility		
While	our	first	two	studies	show	that	Snap-To-It	is	accurate,	we	were	also	interested	in	seeing	how	well	our	system	
performs	over	time.	To	evaluate	this,	we	deployed	24	RSPs	in	our	environment	for	common	appliances	such	as	printers	

Table	8.	Comparison	of	Snap-To-It	and	SIFT’s	photo	recognition	accuracy.	Percentages	show	the	number	of	times	the	correct	
appliance	(out	of	18)	appeared	in	a	list	of	the	top	1,	3	and	5	matches.	
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(18),	computer	displays	(2),	and	digital	projectors	(4).	We	then	published	the	Snap-To-It	app	in	the	Google	Play	store,	
and	placed	advertisements	throughout	our	building	letting	users	know	that	the	app	was	available.	During	that	time,	a	
total	of	nine	different	users	interacted	with	one	or	more	appliances,	and	provided	our	RSPs	with	25	new	photographs	
(using	the	updating	logic	described	earlier).		

After	running	Snap-To-It	for	59	days,	we	asked	16	new	participants	to	interact	with	an	appliance	using	our	system.	
Our	participants	consisted	of	first-year	Ph.D.	students	and	visitors,	as	both	groups	were	new	to	our	environment	and	
not	affiliated	with	our	work.	For	this	study,	we	emailed	them	a	document	or	a	PowerPoint	presentation,	and	asked	
them	to	use	Snap-To-It	to	either	print	or	project	them	on	an	appliance	that	they	have	never	used	before,	respectively.	
We	then	observed	them	as	they	performed	the	task	on	their	phones.	Even	though	nine	participants	interacted	with	
appliances	with	two-month	old	reference	photographs,	our	system	was	still	able	to	identify	the	correct	appliance	in	
all	16	cases	(Figure	39).	Additionally,	in	all	but	one	case,	the	correct	appliance	was	at	the	top	of	the	list;	in	the	other	
case,	 the	 correct	 appliance	was	 second.	While	additional	 studies	are	needed	 to	 verify	 that	 Snap-To-It	works	over	
longer	stretches	of	time,	these	results	show	that	it	works	despite	small	but	frequent	changes	to	an	environment	(e.g.,	
papers	placed	on	a	printer).	This	suggests	that	our	system	is	robust	enough	to	be	used	outside	of	the	lab.		

4.2.4. DISCUSSION		
In	 this	 section,	 we	 examine	 Snap-To-It	 from	 the	 following	 perspectives:	 usability,	 responsiveness,	 and	 hardware	
requirements.		

	

Figure	38.	QR	code	scanning	accuracy	for	a	single	appliance	from	multiple	angles	(codes	placed	on	the	front	and	sides)	using	
varying	sizes.	Snap-To-It	was	able	to	correctly	identify	the	appliance	from	each	angle.	

	

	

Figure	39.	Sample	photo	analysis	from	our	long	term	feasibility	study.	Despite	noticeable	differences	(circled),	Snap-To-It	still	
identified	the	correct	appliance	using	two-month	old	reference	photos	(SIFT	matches	shown	as	lines).	
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4.2.4.1. Usability		
There	are	two	factors	that	affect	Snap-To-It’s	usability:		

Which	Appliances	Are	Compatible	with	Our	System?	One	challenge	with	deploying	a	system	like	Snap-To-It	is	letting	
users	 know	 which	 appliances	 are	 selectable.	 This	 is	 a	 well-known	 problem	 for	 Ubicomp	 systems	 [9].	 Although	
icons/markers	can	help,	tagging	every	hardware/software	appliance	goes	against	the	simplicity	our	system	offers.	At	
the	 same	 time,	 however,	 we	 know	 that	 users	 will	 stop	 using	 a	 system	 if	 it	 does	 not	 work	 consistently	 [25].	
Consequently,	it	is	important	to	provide	some	guidance	so	that	users	never	feel	like	they	are	guessing.		

We	expect	that	users’	uncertainty	with	Snap-To-It	will	decrease	as	more	appliances	become	compatible.	To	expedite	
this	 process,	 however,	 we	 used	 multiple	 strategies.	 First,	 we	 posted	 a	 series	 of	 advertisements	 throughout	 our	
institution	 to	 let	 users	 know	when	 they	 are	 entering/leaving	 a	 Snap-To-It	 enabled	 area.	 In	 addition,	we	 are	 also	
experimenting	with	 letting	the	user	know	when	they	are	 in	Bluetooth	range	of	a	Snap-To-It	compatible	appliance,	
either	by	displaying	a	notification	on	the	user’s	mobile	device,	or	by	allowing	appliances	to	display	an	 icon	and/or	
beep.	No	approach	works	for	all	appliances.	Collectively,	however,	they	reduce	the	chances	of	users	taking	a	photo	
when	no	services	are	available.		

Security.	Although	Snap-To-It	provides	basic	mechanisms	for	user	authentication,	it	assumes	that	the	appliances	in	an	
environment	are	trustworthy.	This	creates	two	security	concerns.	If	a	malicious	RSP	states	that	it	strongly	matches	
every	user	photograph,	it	can	prevent	users	from	connecting	to	other	appliances.	Additionally,	since	Snap-To-It	uses	
JavaScript	for	its	interfaces,	rogue	developers	can	potentially	use	it	to	execute	malicious	code	on	a	user’s	device.	While	
concerning,	it	 is	 important	to	remember	that	establishing	trust	is	an	issue	in	every	networked	system.	One	way	to	
overcome	this	is	to	use	blacklists	to	block	rogue	RSPs.	A	more	robust	solution,	however	is	to	mandate	the	use	of	digital	
certificates.	The	infrastructure	to	support	this	already	exists,	and	would	allow	our	mobile	app	to	ignore	advertisements	
from	an	RSP	that	has	not	been	vetted	by	a	trusted	authority.		

4.2.4.2. Responsiveness		
On	average,	Snap-To-It	takes	4	seconds	to	find	an	appliance	from	a	photograph.	This	includes	the	time	needed	for	our	
app	to	upload	an	 image	(1360ms)	and	for	 the	RSP	(running	on	a	Macbook)	to	download	 it	 (1043ms),	calculate	 its	
features	(780ms),	and	compare	it	against	one	or	more	reference	images	(267ms	each).	Once	the	app	has	connected,	
an	additional	delay	is	required	to	download	the	interface.	This	delay	varies	depending	on	internet	connectivity	and	
complexity	of	the	UI,	but	ranged	between	1-3	seconds	in	our	tests.		

Although	5-7	seconds	may	seem	long,	the	participants	in	our	final	study	found	it	to	be	fast	compared	to	the	time	it	
takes	for	a	user	to	pair	with	an	appliance	or	install	a	driver/app.	This	time	could	be	reduced	even	further	by	including	
the	 photograph	 in	 the	 request	 message,	 as	 opposed	 to	 using	 URLs.	 Furthermore,	 we	 have	 also	 improved	 the	
responsiveness	of	our	mobile	app	so	that	it	displays	results	as	they	arrive,	rather	than	forcing	users	to	wait	for	all	RSPs	
to	respond.	This,	combined	with	our	system’s	sub-100ms	latency	for	sending/receiving	commands,	makes	Snap-To-It	
fast	enough	for	many	interactive	use	cases.		

4.2.4.3. Hardware	Requirements		
Snap-To-It’s	architecture	assumes	that	each	appliance	runs	its	own	RSP.	However,	many	appliances	currently	lack	the	
computational	power	to	analyze	photos	on	their	own.	This	is	especially	the	case	when	it	comes	to	calculating	SIFT	
features,	as	the	process	can	take	upwards	of	28	seconds	per	image	on	low-powered	hardware	(e.g.,	a	Raspberry	Pi).		

Fortunately,	Snap-To-It	can	take	advantage	of	existing	infrastructure	to	give	users	the	impression	that	they	are	directly	
interacting	with	an	appliance.	All	of	the	RSPs	described	thus	far	were	hosted	on	laptop/desktop	computers;	servers	
can	provide	similar	functionality.	Additionally,	our	approach	does	not	require	appliances	to	process	images	on	their	
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own.	As	an	additional	enhancement,	we	have	modified	the	mobile	app	so	that	it	calculates	the	SIFT	features	of	its	
photos	via	a	web	service	prior	to	sending	a	request.	This	approach	increases	the	time	needed	for	the	app	to	upload	a	
photo	(from	1360ms	to	3564ms),	making	it	slightly	slower	for	RSPs	that	can	already	calculate	SIFT	features	quickly.	
However,	this	strategy	only	requires	low-powered	RSPs	to	compare	SIFT	features	(which	takes	2.4s	per	image	on	a	
Raspberry	Pi),	thereby	making	our	goal	of	running	RSPs	on	appliances	technically	feasible.	

4.2.5. LESSONS	LEARNED	
In	contrast	with	Didja,	which	forms	groups	in	the	background,	Snap-To-It	is	the	first	GCF	application	that	lets	users	
specify	 which	 device(s)	 they	 want	 to	 form	 an	 opportunistic	 group	 with.	 Consequently,	 creating	 this	 system	 has	
furthered	our	understanding	of	how	GCF	can	be	used	to	facilitate	one-time,	user-initiated	interactions.	In	this	section,	
we	 discuss	 two	 challenges	 that	 we	 encountered	when	 using	 GCF	 to	 create	 Snap-To-It,	 and	 describe	 the	 specific	
modifications	we	made	to	the	framework	in	order	to	overcome	them.		

Providing	Explicit	Support	for	Manual	Grouping.	When	we	originally	conceived	of	Snap-To-It,	our	goal	was	to	let	GCF	
automatically	group	with	the	correct	RSP(s)	based	on	the	user’s	photograph.	During	initial	tests,	however,	we	found	
that	there	are	rare	occasions	when	the	system	is	unable	identify	a	specific	appliance	from	a	photo,	even	when	that	
image	is	supplemented	with	additional	user	context	(e.g.,	location,	device	orientation).	To	address	this,	we	decided	
to	give	users	a	list	of	the	top	matching	devices,	and	let	them	choose	which	one(s)	they	wanted	to	interact	with;	this	
would	 let	 Snap-To-It	 work	 in	 situations	 when	 no	 obvious	match	 is	 found.	While	 implementing	 this	 functionality,	
though,	we	quickly	discovered	 that	GCF’s	architecture	 is	 so	optimized	 for	 forming	groups	on	 its	own	 that	 it	 lacks	
mechanisms	to	let	users	(or	applications)	specify	which	devices	they	would	like	to	group	with.	This	makes	it	difficult	
to	use	the	framework	in	situations	where	user	choice	is	necessary.	

From	this	experience,	we	realized	that	GCF	needs	to	include	some	architectural	support	for	manual	grouping.	To	fill	
this	need,	we	have	created	a	new	manual	arbiter	for	GCF.	This	arbiter	does	not	form	groups	on	its	own,	but	instead	
keeps	track	of	all	of	the	context	capability	messages	that	it	has	received	for	each	context	request,	and	provides	these	
messages	 to	 an	 application	 when	 asked.	 The	 Snap-To-It	 mobile	 app	 uses	 the	 manual	 arbiter	 to	 collect	 context	
capability	messages	from	RSPs,	and	uses	this	information	to	generate	a	list	of	the	five	most	likely	matches.	When	the	
user	selects	an	RSP	from	the	list,	the	mobile	application	adds	the	RSP’s	device	ID	to	the	arbiter’s	whitelist.	The	arbiter	
will	then	direct	the	framework	to	form	a	group	with	that	device.	

By	including	this	arbiter	in	GCF’s	core	library,	our	framework	now	explicitly	supports	applications	that	require	manual	
grouping.	Our	solution	still	 requires	developers	to	provide	their	own	user	 interfaces	before	users	can	easily	select	
which	device(s)	they	want	to	group	with.	Through	this	approach,	however,	our	solution	gives	developers	the	flexibility	
to	incorporate	user	choice	in	their	applications,	without	mandating	what	that	choice	looks	like	at	the	UI	or	system	
level.	This	maximizes	developer’s	freedom,	while	still	providing	them	with	a	robust	mechanism	for	discovering	and	
grouping	with	devices	at	runtime.	

Enabling	 Remote	 Commands.	 To	 date,	 all	 of	 the	 applications	 that	 we	 have	 built	 using	 GCF	 have	 only	 required	
information	to	flow	from	the	context	provider	to	the	context	requester.	While	developing	Snap-To-It,	however,	we	
realized	 that	 there	 are	 times	 when	 two-way	 communications	 is	 required.	 For	 example,	 when	 the	 mobile	 app	
subscribes	to	a	printer	RSP,	it	is	not	enough	to	receive	an	interface.	Instead,	there	needs	to	be	a	way	for	the	mobile	
app	to	send	commands	to	the	RSP	so	that	it	can	tell	the	printer	what	file	to	print,	and	when.	

To	address	this,	we	have	created	a	new	compute	instruction	message	in	GCF.	This	message	type	allows	applications	
to	 issue	remote	commands	that	are	asynchronously	 transmitted	and	received	by	one	or	more	subscribed	context	
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providers.	 To	 send	 a	 compute	 instruction,	 developers	 call	 the	 group	 context	manager’s	 SENDCOMPUTEINSTRUCTION()	
method,	and	pass	it:		

• The	context	type	of	the	context	provider	that	this	message	is	intended	for	
• The	name	of	the	command	
• (Optional)	One	or	more	arguments	(e.g.,	the	URL	to	the	file	to	print)	

When	 a	 compute	 instruction	 is	 received,	 GCF	 routes	 the	 message	 to	 the	 corresponding	 context	 provider’s	
ONCOMPUTEINSTRUCTIONRECEIVED()	method.	The	context	provider	can	then	examine	the	message	contents	and	perform	
the	requested	action.	

Through	the	inclusion	of	the	compute	instruction	message	type,	GCF	can	be	used	to	create	a	wider	range	of	interactive	
applications.	Our	framework	now	provides	applications	with	a	simple	way	to	deliver	arbitrary	messages	to	each	other	
at	 runtime,	 creating	new	opportunities	 for	devices	 to	 share	 information	and	 collaborate	 in	near	 real	 time.	 In	 the	
following	 section,	 we	 introduce	 the	 Impromptu	 system,	 which	 extends	 Snap-To-It’s	 functionality	 to	 support	
opportunistic	interactions	with	applications	and	services	in	addition	to	appliances.	In	doing	so,	we	demonstrate	the	
usefulness	of	compute	instructions,	and	show	how	this	capability	can	be	applied	to	a	wide	range	of	use	cases.	

4.3. IMPROMPTU:	 USING	 GCF	 TO	 INCREASE	 USERS’	 ACCESS	 TO	 “JUST	 IN	 TIME”	 APPLICATIONS,	
INFORMATION,	AND	SERVICES	

Up	until	now,	our	exploration	of	opportunistic	groups	has	primarily	focused	on	groupings	of	tangible	entities.	Didja,	
for	example,	uses	GCF	to	identify	precise	groupings	of	users/devices	when	they	are	co-located	in	the	same	physical	
space.	Similarly,	Snap-To-It	forms	opportunistic	groups	with	the	appliances,	devices,	and	physical	objects	that	exist	in	
a	user’s	immediate	surroundings	(and	can	be	photographed).	

As	we	have	shown,	these	systems	already	allow	us	to	explore	a	wide	range	of	context-aware	applications.	In	this	thesis,	
however,	we	are	also	interested	in	seeing	how	GCF	can	help	users	form	opportunistic	groups	with	intangible	entities	
such	as	applications	and/or	services.	To	explore	 this	 idea,	we	have	created	 Impromptu,	a	context-aware	software	
platform	that	provides	users	with	just-in-time	access	to	relevant	apps.	In	our	system,	users	run	a	smartphone	app	that	
continuously	monitors	 their	 context	 (e.g.,	 identity,	 activity,	 location)	and	 shares	 it	over	a	 trusted	communications	

	

Figure	40.	Impromptu	lets	users	share	context	with	apps	(not	installed	on	their	phones).	Apps	then	appears	when	they	are	
relevant	(left),	provide	just	in	time	access	(center),	and	disappear	when	no	longer	needed	(right).	
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channel.	Apps	hosted	on	our	platform	can	then:	1)	analyze	this	context,	2)	appear	on	the	user’s	device	when	they	are	
contextually	relevant,	and	3)	remove	themselves	when	no	longer	needed	(Figure	40).	

Our	work	with	Impromptu	is	motivated	by	the	realization	that	there	are	many	types	of	applications	that	are	only	useful	
within	a	specific	context.	An	app	that	helps	tourists	use	a	city’s	public	bus	system,	for	example,	is	only	needed	when	
the	user	is	visiting	that	location.	Similarly,	an	app	that	helps	visitors	print	from	a	public	printer	is	only	needed	the	(one)	
time	they	need	to	use	the	appliance.	In	both	cases,	there	is	a	limited	window	of	time	in	which	the	apps	described	
above	are	relevant	and	useful.	Consequently,	there	needs	to	be	a	way	to	make	these	apps	instantly	accessible	so	that	
the	cost	of	obtaining	them	(i.e.,	time,	effort,	bandwidth)	does	not	outweigh	the	benefits.	

To	address	this	problem,	Impromptu	introduces	the	concept	of	“opportunistic”	apps—apps	that	can	autonomously	
determine	 if	and	when	 they	might	be	useful	 to	users,	and	make	 their	 services	available.	 In	 support	of	 this	vision,	
Impromptu	offers	three	contributions:	

First,	Impromptu	presents	a	novel	architecture	for	discovering	and	distributing	opportunistic	apps.	Our	system	uses	
GCF	to	let	users	share	any	arbitrary	amount	of	context	with	our	platform.	Individual	apps	(not	installed	on	the	user’s	
phone)	can	then	use	some	or	all	of	this	information	to	determine	if	they	are	contextually	relevant,	giving	them	precise	
control	over	when	they	should	appear	on	the	user’s	device.	While	prior	work	has	tried	to	address	this	problem	by	
recommending	useful	apps	[10,23,48,123,147],	these	systems	still	require	users	to	manually	install	and	manage	apps	
on	their	phones.	In	contrast,	Impromptu’s	architecture	supports	each	stage	in	an	app’s	“life	cycle.”	Our	system	not	
only	lets	users	discover	apps,	but	also	provides	a	way	for	them	to	be	delivered	to	the	user’s	device,	and	even	removed	
when	no	longer	needed.	This	lets	it	offer	a	wide	range	of	opportunistic	information	and	services	without	burdening	
the	user	with	an	ever	increasing	library	of	once	useful	apps.		

Second,	Impromptu	provides	a	technical	solution	to	deploy	apps	that	only	need	to	be	run	once	or	sparingly.	Building	
on	our	work	 from	Snap-To-It,	our	platform	 lets	developers	 render	any	HTML/JavaScript	 interface	 from	within	 the	
Impromptu	host	application.	In	addition	to	being	lightweight	compared	to	a	full-sized	app,	these	interfaces	can	be	
dynamically	generated	 in	near	 real-time,	 thereby	allowing	 them	to	be	 run	on	users’	devices	without	having	 to	be	
installed.	At	the	same	time,	Impromptu	can	also	deliver	traditional	Android	applications.	This	increases	the	range	of	
apps	that	can	be	delivered	via	Impromptu,	without	requiring	developers	to	recompile	them	or	redesign	them	from	
scratch.		

Third,	Impromptu	increases	the	range	of	possible	interactions	by	allowing	apps	to	dynamically	share	information	and	
services	with	 each	other.	Our	 platform	 lets	 apps	 advertise	what	 information	 and	 services	 they	 can	 consume	and	
provide.	Our	host	application	can	then	dynamically	detect	compatible	apps	at	runtime,	and	generate	UI	elements	to	
let	users	invoke	their	combined	services.	Although	prior	work	has	shown	how	recombining	information	services	can	
be	advantageous	on	the	desktop	and	web	platforms	[27,35,65,92],	they	have	not	dealt	with	the	engineering	issues	of	
supporting	this	for	modern	mobile	apps.	Meanwhile,	Google	Now	supports	limited	interactions	with	third	party	apps,	
but	 1)	 requires	 the	 apps	 to	 already	 be	 installed,	 and	 2)	 does	 not	 allow	 apps	 to	 communicate	 with	 each	 other.	
Impromptu	builds	on	this	work	and	investigates	how	the	ability	to	automatically	share	information	and	services	can	
increase	users’	abilities	to	take	advantage	of	functional	links	between	mobile	apps.	This	is	particularly	important	in	an	
opportunistic	setting,	as	users	may	be	so	focused	on	learning	how	to	use	an	app	for	the	first	time	that	they	may	not	
form	these	connections	on	their	own.		

Impromptu	 addresses	 our	 second	 research	 question	 by	 showing	 how	 opportunistic	 groups	 can	 help	 users	 take	
advantage	of	the	full	range	of	apps	and	services	available	through	their	mobile	devices.	In	the	following	sections,	we	
describe	 Impromptu’s	architecture,	and	show	how	the	system	uses	GCF	to	1)	obtain	and	analyze	user	context,	2)	
render	 interfaces,	 and	 3)	 advertise	 their	 services.	 We	 examine	 Impromptu’s	 ability	 to	 support	 opportunistic	
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applications	based	on	six	deployments—three	in	the	lab	and	three	in	the	field.	Finally,	we	identify	limitations	of	our	
current	prototype,	and	discuss	how	the	need	for	an	“always	on”	version	of	GCF	influenced	our	framework’s	design.	

4.3.1. SYSTEM	ARCHITECTURE	
Impromptu	provides	an	end-to-end	architecture	that	supports	the	discovery,	delivery,	and	removal	of	contextually	
relevant	applications.	The	platform	consists	of:	

1. A	series	of	app	providers	(created	by	developers),	which	each	represents	a	single	app.	App	providers	are	GCF	
context	providers	that	can	request,	receive	and	analyze	user	context.	They	then	advertise	their	services	to	
the	user	when	they	consider	themselves	contextually	relevant,	and	deliver	interfaces	to	the	host	application	
when	the	user	connects.	App	providers	can	also	be	used	as	a	wrapper	for	existing	(i.e.,	“legacy”)	Android	
apps.		

2. A	 host	 application	 (provided	 by	 Impromptu)	which	 runs	 on	 the	 user’s	 smartphone	 and/or	 tablet,	 and	 is	
responsible	for	1)	monitoring	the	user’s	context,	2)	sharing	it	with	app	providers,	and	3)	running	apps.		

3. An	application	directory	(provided	by	Impromptu),	which	relays	messages	between	the	host	application	and	
app	providers.	The	directory	delivers	user	context	to	all	connected	app	providers,	and	sends	their	responses	
back	to	the	host	application.	The	directory	also	collects	feedback	from	host	applications	to	learn	which	apps	
users	are	actively	ignoring.	This	lets	it	ignore	apps	that	are	recommending	themselves	at	inappropriate	times.		

4. (Optional)	A	series	of	app	beacons	(deployed	by	developers),	which	are	installed	throughout	an	environment.	
Beacons	contain	one	or	more	app	providers,	and	can	scan	for	nearby	devices,	analyze	context,	and	deliver	
apps	to	users	as	they	come	within	range.	

Figure	41	presents	an	overview	of	Impromptu’s	architecture.	In	our	system,	host	applications	request	apps	and/or	
services	 from	 the	 application	 directory	 by	 transmitting	 context	 request	messages	 that	 contain	 the	 user’s	 current	
context	in	its	payload	(Figure	41a).	At	the	same	time,	app	providers	request	user	context	from	the	application	directory	
by	 transmitting	 their	own	context	 request	message	 (Figure	41b).	When	an	app	provider	analyzes	a	user’s	context	
(Figure	41c)	and	determines	that	 it	 is	relevant,	 it	 transmits	a	compute	 instruction	 to	the	application	directory	that	
contains	all	of	the	information	needed	by	the	host	application	to	generate	an	icon	and	to	it	connect	at	a	later	time	
(e.g.,	IP	address,	port,	context	type;	Figure	41d).	This	information	is	then	sent	back	to	the	correct	host	application	via	
a	context	data	message	(Figure	41e),	where	it	is	used	to	generate	an	icon.	

In	the	following	sections,	we	provide	a	more	comprehensive	look	at	Impromptu’s	inner	workings.	First,	we	describe	
each	component	in	our	platform.	We	then	show	how	these	components	interact	with	each	other	to	provide	users	
with	contextually	relevant	apps.		

4.3.1.1. Host	Application		
The	host	application	 is	an	Android	app	 that	periodically	assesses	 the	user’s	context	and	openly	 shares	 it	with	 the	
application	directory.	It	then	collects	advertisements	from	relevant	app	providers,	and	uses	this	information	to	create	
an	up-to-date	 list	 of	 contextually	 relevant	 apps.	 The	host	 application	 runs	 continuously	 on	 the	user’s	 phone	 as	 a	
background	 service.	 This	 lets	 it	 share	 context	 and	 notify	 users	when	 relevant	 apps	 are	 available	 (using	Android’s	
notification	API),	regardless	of	whether	or	not	the	user	is	looking	at	his/her	screen.	In	this	section,	we	highlight	the	
main	functions	of	the	host	application.	First,	we	look	at	the	specific	types	of	context	that	it	collects	and	shares.	We	
then	show	how	it	can	run	apps	without	having	to	install	software	on	the	user’s	device,	as	well	as	provide	(limited)	
support	for	legacy	apps.	
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Collecting	User	Context	
The	host	application	 is	 responsible	 for	monitoring	the	user’s	context.	Our	app	considers	multiple	types	of	context	
along	four	categories:	 location,	 identity,	activity,	and	time.	These	categories	were	 identified	by	Dey	and	Abowd	as	
being	the	most	informative	types	of	context	[30],	and	provide	applications	with	a	wealth	of	information	to	determine	
if	and/or	when	they	are	relevant.	

We	use	a	combination	of	prebuilt	and	custom	context	providers	in	order	to	infer	each	context	category.	To	obtain	
location	data,	we	use	GCF’s	LOCATIONPROVIDER	(context	type	=	“LOC”)	which	uses	a	combination	of	GPS	sensors	and	
network	triangulation	(i.e.,	the	same	approach	used	by	services	like	Google	Now)	to	determine	the	user’s	geographic	
coordinates.	Similarly,	we	use	a	LOCALTIMEPROVIDER	(context	type	=	“TIME”)	to	query	the	system	clock	and	return	the	
user’s	 time	 zone.	 To	 represent	 the	 user’s	 identity,	we	 developed	 a	 custom	 EMAILADDRESSPROVIDER	 (context	 type	 =	
“EMAIL”)	that	provides	a	SHA1	hash	of	the	domain	name	(e.g.,	“gmail.com”)	and	entire	address.	This	lets	apps	that	
already	know	a	user’s	full	email	address	to	verify	their	identity.	Finally,	to	determine	the	user’s	activity,	we	use	GCF’s	
ACTIVITYPROVIDER	(context	type	=	“ACT”),	which	is	built	on	top	of	Google’s	Activity	Recognition	Toolkit	[132].	This	context	
provider	 fuses	 readings	 from	 multiple	 sensors	 in	 order	 to	 infer	 the	 user’s	 physical	 activity	 (e.g.,	 “ON_FOOT”,	

	

Figure	41.	A	high	level	view	of	Impromptu’s	architecture,	detailing	the	process	by	which	the	host	application	shares	context	
(top),	receives	advertisements	from	relevant	apps	(middle),	and	downloads	interfaces	(bottom).	
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“IN_VEHICLE”).	 For	 each	 context	 type,	 we	 issue	 a	 LOCAL_ONLY	 request	 using	 the	 group	 context	 manager’s	
SENDREQUEST()	method.	GCF	then	ensures	that	the	application	receives	an	update	each	time	each	context	type	changes.		

These	contexts	were	empirically	selected	to	strike	a	balance	between	allowing	an	app	to	determine	if	it	is	contextually	
relevant,	and	preserving	users’	privacy.	It	is	important	to	note,	however,	that	this	list	is	only	a	starting	point.	Our	app	
also	comes	with	context	providers	that	can	provide	information	about	the	user’s	contact	lists,	calendar	schedules,	and	
hardware	sensors.	For	now,	we	have	configured	the	app	to	only	provide	this	information	to	apps	when	they	request	
it	and	are	given	permission	by	the	user.	If	needed,	however,	we	can	easily	reconfigure	the	host	application	to	produce	
and	share	these	additional	types	of	context	by	default.	

Sharing	User	Context	
Impromptu	uses	 two	different	 techniques	 to	 share	 the	user’s	 context	 (Figure	41,	 top).	 The	 first	way	 is	 through	a	
traditional	network	connection.	Each	host	application	is	connected	to	the	application	directory	via	a	dedicated	MQTT	
channel.	At	predefined	intervals	(e.g.,	once	per	minute),	the	host	application	checks	to	see	if	the	user’s	context	has	
changed.	 If	 so,	 the	 host	 application	 transmits	 a	 context	 request	message	 containing	 the	 updated	 context	 to	 the	
application	directory.	This	context	is	then	delivered	to	all	subscribed	app	providers.		

The	second	way	of	sharing	context,	 is	via	short	range	radio	IDs.	Similar	to	work	done	by	[4,24],	we	have	devised	a	
technique	that	allows	 Impromptu	to	share	 information	by	altering	a	device’s	Bluetooth	name.	Each	time	the	host	
application	transmits	a	new	set	of	context	to	the	application	directory,	it	also	uploads	a	file	to	a	dedicated	web	server	
containing	the	same	information.	It	then	modifies	the	Bluetooth	name	of	the	device	to	contain	a	URL	to	this	file,	and	
sets	the	device	to	be	discoverable.	As	the	user	moves	throughout	an	environment,	app	beacons	are	able	to	detect	the	
user’s	 device	 via	 Bluetooth	discovery.	 These	beacons	 can	 extract	 the	URL	 from	 the	name	and	download	 the	 file,	
thereby	allowing	them	analyze	the	user’s	context	without	having	to	pair	with	the	device.		

These	two	techniques	cover	a	wide	range	of	use	cases.	Our	first	technique	works	well	for	apps	that	require	users	to	
be	outdoors	(and	thus,	have	access	to	GPS	positioning	data),	or	only	need	a	general	sense	of	where	the	user	is	located	
(e.g.,	in	a	department	store)	in	order	to	determine	if	they	are	contextually	relevant.	Our	Bluetooth-based	technique,	
on	the	other	hand,	is	better	suited	for	apps	that	require	fine-grained	indoor	location	(e.g.,	an	app	that	only	lets	users	
control	a	printer	when	they	are	near	it).	By	supporting	both	use	cases,	Impromptu	eliminates	the	need	to	instrument	
the	environment	in	many	situations,	while	still	letting	developers	do	so	when	it	is	necessary.	

Running	Apps	
The	host	 application	displays	 contextually	 relevant	 apps	 as	 a	 list	 of	 cards,	 sorted	by	 category	 (Figure	42,	 left).	 By	
selecting	a	card,	users	can	view	additional	 information	about	a	specific	app,	 such	as	 the	specific	 information	 (i.e.,	
sensors,	context)	it	needs	to	run.	The	user	can	then	run	the	app,	which	causes	the	host	application	to	connect	to	the	
corresponding	app	provider	and	download	the	specified	user	interface	(Figure	42,	right).		

One	of	our	primary	goals	with	Impromptu	is	to	let	apps	be	instantly	accessible	once	they	are	deemed	relevant.	To	
achieve	this,	our	interfaces	are	created	using	web-based	technologies	(similar	to	work	done	in	[1,56,96]).	When	the	
host	application	connects	to	an	app	provider,	it	receives	one	or	more	interface	messages	that	specifies	the	UI(s)	(i.e.,	
HTML/JavaScript)	that	it	needs	to	render.	By	leveraging	existing	web-application	Figure	3.	Impromptu	apps	appear	as	
cards,	sorted	by	category	(left).	Users	can	select	a	card	to	run	the	app	(right).	By	leveraging	modern	web	UI	toolkits	
(e.g.,	Enyo	[133],	Phaser	[134]),	Impromptu	is	able	to	display	a	wide	range	of	static	and	dynamic	interfaces.	This	gives	
users	the	experience	of	a	native	app	without	requiring	them	to	install	and	update	it.		

Although	the	host	application	is	optimized	to	run	apps	created	specifically	for	our	system,	it	can	also	run	traditional	
Android	apps.	By	specifying	an	application’s	package	name	(e.g.,	“com.example.myapp”)	instead	of	an	HTML	interface,	
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the	 system	 can	 look	 up	 and	 install	 the	 app	 directly	 from	 an	 existing	 app	 store	 (e.g.,	 Google	 Play).	 It	 can	 then	
automatically	run	the	app	and	uninstall	it	once	the	app	is	no	longer	relevant.	For	security	reasons	enforced	by	the	
Android	operating	 system,	our	app	must	explicitly	prompt	 the	user	before	 installing	and	uninstalling	 legacy	apps.	
Despite	 this,	 this	 capability	 increases	 the	 types	 of	 services	 that	 can	 be	 delivered	 through	 our	 platform,	 and	 give	
developers	a	new	way	to	distribute	their	apps	to	their	target	audience.	

4.3.1.2. App	Providers	
App	providers	are	context	providers	that	deliver	contextually	relevant	services	and	information	to	the	host	application.	
Each	app	provider	is	responsible	for	a	single	Impromptu	app,	and	can	be	run	on	either	an	Internet	connected	device	
(e.g.,	a	laptop	or	server),	or	on	a	Bluetooth	and	network	enabled	beacon	(e.g.,	a	smartphone).		

The	Impromptu	SDK	provides	a	base	APPPROVIDER	class	that	automatically	1)	connects	to	the	application	directory	to	
receive	user	context,	2)	sends	advertisements	to	specific	users	through	the	directory,	and	3)	delivers	interfaces	to	the	
host	application	when	it	connects.	Developers	can	then	create	their	own	Impromptu	app	by	performing	the	following	
steps:		

Step	1:	Decide	on	a	Context	Source.	The	first	step	 in	creating	an	app	provider	 is	 to	decide	how	 it	will	obtain	user	
context.	By	default,	 app	providers	automatically	 connect	 to	 the	application	directory,	and	 receive	 regular	 context	
updates.	Alternatively,	Impromptu	lets	developers	install	the	provider	on	an	app	beacon.	The	provider	will	then	only	
receive	context	from	users	in	Bluetooth	range.	

Step	2:	Analyze	 Incoming	User	Context.	Once	context	has	been	obtained,	 it	must	be	analyzed	 to	see	 if	 the	app	 is	
relevant	to	the	user.	How	this	is	done	depends	on	the	app.	An	app	that	displays	a	bus	schedule,	for	example,	may	
need	to	look	at	a	user’s	activity	and	location	in	order	to	determine	if	she	is	standing	near	a	bus	stop.	Alternatively,	an	
app	that	lets	college	students	use	an	on-campus	printer	may	only	need	to	know	that	the	user	is	in	proximity	of	the	
printer	and	is	a	registered	student.	To	accommodate	these	diverse	use	cases,	each	app	provider	has	an	abstract	Java	
method	(ISRELEVANT())	that	takes	the	user’s	context	as	input,	and	returns	a	Boolean	value	stating	if	the	app	is	relevant.	
The	app	provider	automatically	calls	this	method	whenever	 it	receives	context	from	a	user,	and	uses	the	result	to	
determine	if	it	should	advertise	its	services.		

	

Figure	42.	Impromptu	apps	appear	as	cards,	sorted	by	category	(left).	Users	can	select	a	card	to	run	an	app	and	receive	an	
interface	(right).	
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The	decision	to	have	app	providers	analyze	user	context	is	motivated	from	both	a	practical	and	research	standpoint.	
Our	 long	 term	goal	 is	 to	have	apps	 formally	 specify	 their	 relevance	 criteria	 (using	ordered	 tuples	or	 a	 formalized	
context	language,	as	suggested	in	[11])	so	that	we	can	offload	this	computation	to	our	application	directory.	We	have	
discovered,	however,	that	even	“simple”	applications	have	complex	relevance	criteria.	For	example,	an	app	that	 is	
intended	for	conference	attendees	has	to	compare	each	users’	identity	against	a	white	list	to	determine	if	it	is	relevant.	
Similarly,	an	app	that	notifies	users	of	when	a	friend	or	colleague	is	in	town	needs	to	know	1)	where	every	user	is	
located,	and	2)	which	users	are	friends.	In	both	examples,	the	information	required	to	determine	if	an	app	is	relevant	
is	both	dynamic	and	domain	specific.	As	a	result,	it	is	oftentimes	more	intuitive	for	developers	to	perform	the	check	
programmatically	than	it	is	to	specify	it	using	a	formalized	language.		

For	 now,	 we	 have	 chosen	 to	 deal	 with	 this	 problem	 by	 focusing	 on	 the	 most	 popular	 use	 cases.	 Since	 many	
opportunistic	apps	are	location	specific,	Impromptu	now	lets	app	providers	specify	a	geofenced	region	representing	
the	location(s)	where	it	is	relevant.	Our	application	directory	will	then	automatically	send	an	advertisement	on	behalf	
of	the	app	when	the	user	is	in	these	regions.	As	the	number	of	Impromptu	apps	increase,	we	expect	to	be	able	to	
identify	 popular	 context	 criteria	 and	 offer	 further	 optimizations.	 Yet	 by	 always	 giving	 apps	 the	 option	 to	 analyze	
context,	we	ensure	that	our	platform	supports	the	widest	conceivable	range	of	apps.	

Step	3:	Deliver	App	Content.	The	third	step	in	creating	an	app	provider	is	specifying	what	information/interface	to	
send	to	the	user’s	host	application.	This	step	occurs	in	two	parts.	When	developers	first	instantiate	an	app	provider,	
they	need	to	provide	the	following:		

• The	name	of	the	app	(and	the	URL	to	its	icon)		
• A	brief	text	description		
• A	“lease	time”	that	states	how	long	the	app’s	services	are	relevant	to	a	particular	user	(e.g.,	60	seconds).	As	

long	 as	 an	 app	 remains	 relevant	 (i.e.,	 ISRELEVANT()	 returns	 TRUE),	 the	 lease	 is	 automatically	 renewed.	
However,	once	the	user’s	context	changes	and	the	app	is	no	longer	relevant,	the	lease	expires,	and	the	app	
is	removed	from	the	host	application.		

• (Optional)	A	list	of	contexts	(beyond	that	shared	by	default)	that	the	app	needs	from	the	user	to	operate.	

Each	 time	 an	 app	 provider	 analyzes	 a	 user’s	 context	 and	 decides	 that	 it	 is	 contextually	 relevant,	 it	 returns	 an	
advertisement	message	containing	the	above	information,	as	well	as	the	IP	address	and	Port	where	the	provider	is	
listening	for	new	connections.	The	host	application	uses	this	information	to	create	and/or	update	the	card	for	this	
app,	and	saves	the	connection	details	for	when	the	user	decides	to	run	it.	Impromptu	advertisements	are	intentionally	
small	(i.e.,	 less	than	one	kilobyte	per	app).	This	lets	us	offer	users	a	wide	range	of	applications	without	consuming	
excessive	bandwidth.		

The	second	set	of	content	is	delivered	when	a	host	application	directly	connects	to	the	app	provider.	When	this	occurs,	
the	app	provider	transmits	an	interface	message	that	specifies	the	UI	to	be	rendered	on	the	host	application.	An	app	
provider	can	deliver	a	wide	range	of	interfaces	based	on:		

1. HTML/JavaScript		
2. A	package	name	(specifying	the	unique	name	of	an	application	on	the	Google	Play	Store)		
3. A	URL	to	an	existing	website		
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In	order	to	specify	which	technique	is	being	used,	each	app	provider	has	a	method	that	takes	the	user’s	context	as	
input,	and	outputs	a	string	value	representing	the	corresponding	UI	(e.g.,	“HTML=...”).	Similar	to	the	previous	section,	
this	method	must	be	implemented	for	each	app	provider.	Yet	by	supporting	these	options,	developers	can	create	a	
wide	range	of	interfaces,	and	maximize	opportunities	for	code	reuse.	

(Optional):	 Sharing	 Information	 and/or	 Services.	 The	 final	 step	 in	 creating	 an	 app	 provider	 is	 to	 decide	 what	
information	and/or	services	(if	any)	can	be	shared	between	apps.	Each	time	an	app	provider	sends	an	advertisement,	
it	includes	a	list	of	services	that	it	is	capable	of	providing	to	other	apps	on	the	same	phone.	These	services	are	specified	
by	the	developer,	and	are	represented	as	a	JSON	string	(Figure	43a)	that	describes	the	unique	name	of	the	service,	its	
description,	 and	 the	 type(s)	 of	 information	 it	 needs.	 Additionally,	 each	 time	 an	 app	 provider	 sends	 an	 interface	
message,	 it	 includes	a	 list	of	 information	that	 it	 is	willing	 to	share.	This	 information	 is	also	represented	5	as	 JSON	
(Figure	43b),	and	specifies	the	type	of	the	information	and	its	value.	When	the	host	application	receives	both	types	of	
messages,	it	checks	if	the	information	provided	by	one	app	can	be	consumed	by	another	app.	If	so,	the	host	application	
generates	a	custom	interface	to	let	users	remotely	invoke	the	service	(Figure	43c).		

By	allowing	apps	to	share	information	and	services,	we	allow	users	to	take	full	advantage	of	the	apps	on	their	device.	
This	feature	is	currently	optional.	To	encourage	use,	however,	any	files	or	messages	that	are	sent	or	received	by	the	
host	application	are	automatically	shared	with	the	other	apps	on	the	same	phone.	This	ensures	that	some	information	
will	be	available,	thereby	encouraging	developers	to	use	it.	

4.3.1.3. Application	Directory	
The	 application	 directory	 is	 responsible	 for	 mediating	 communications	 between	 the	 host	 application	 and	 app	
providers.	It	contains	two	context	providers:		

1. An	IMPROMPTUSERVICESPROVIDER	(context	type	=	“IMP”),	which	provides	contextually	relevant	services	to	each	
host	application.	

2. A	USERCONTEXTPROVIDER	(context	type	=	“USER”),	which	collects	user	context	and	provides	it	to	app	providers.	

To	 receive	 apps,	 each	 host	 application	 periodically	 transmits	 a	 context	 request	 message	 to	 the	
IMPROMPTUSERVICEPROVIDER,	and	passes	the	user’s	context	in	its	payload.	Meanwhile,	to	receive	user	context,	each	app	

	

Figure	43.	Impromptu	lets	apps	share	services	(a)	and	information	(b)	with	each	other.	The	host	application	can	generate	UI	
elements	to	invoke	these	services	(c)	so	that	the	user	can	utilize	these	features	from	the	currently	running	app.	
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provider	sends	a	context	request	message	to	the	USERCONTEXTPROVIDER	(Figure	41,	top).	When	the	host	application	
shares	a	user’s	context,	the	directory	automatically	forwards	it	to	all	connected	app	providers.	It	then	collects	their	
responses	and	forwards	them	to	the	user’s	device	as	a	single,	consolidated	response	(Figure	41,	middle).		

The	 application	 directory	 serves	 two	 purposes.	 First,	 it	 provides	 the	 host	 application	 with	 an	 additional	 layer	 of	
security.	By	having	all	app	advertisements	come	from	the	directory	(whom	we	assume	is	trusted),	we	prevent	devices	
from	having	to	open	up	a	dedicated	port.	This	prevents	rogue	or	malicious	app	providers	from	being	able	to	directly	
connect	to	the	user’s	device,	while	simultaneously	preventing	the	device	from	becoming	overwhelmed	if	too	many	
app	providers	try	to	communicate	with	it	simultaneously.		

Second,	the	application	directory	provides	a	centralized	way	to	detect	app	providers	that	recommend	themselves	at	
inappropriate	times.	In	addition	to	letting	users	view	and	run	apps,	our	host	application	also	lets	users	discard	an	app	
if	 it	 is	not	relevant	to	them.	Each	time	the	user	does	so,	a	message	(containing	the	app’s	unique	ID)	is	sent	to	the	
application	directory.	By	compiling	these	messages	across	multiple	users,	the	directory	can	learn	which	apps	are	most	
often	rejected,	and	block	their	advertisements	as	punishment	for	a	period	of	time.	This	demerit-based	system	is	still	
in	the	process	of	being	evaluated	with	actual	users.	Early	results,	however,	show	that	this	method	can	 incentivize	
developers	to	only	recommend	their	apps	when	they	are	actually	relevant.		

Currently,	 all	 users	 and	 app	 providers	 are	 connected	 to	 a	 single	 directory	 that	 is	 hosted	 at	 our	 institution.	 As	
Impromptu	gains	more	apps	and	users,	it	will	need	to	account	for	this	additional	load.	One	way	to	address	this	is	to	
have	a	hierarchy	of	application	directories,	with	each	directory	being	responsible	for	a	particular	geographic	region.	
This	capability	is	already	supported	by	our	system,	and	allows	Impromptu	to	scale	up	to	any	arbitrary	size.	

4.3.1.4. App	Beacons	
Applications	beacons	provide	an	alternative	way	to	deliver	apps	to	users.	In	contrast	with	Physical	Web	beacons	[135],	
which	share	the	same	service	(i.e.,	a	web	URL)	with	every	user,	app	beacons	selectively	deliver	apps	to	nearby	users	
based	on	their	context.	Each	beacon	performs	Bluetooth	scans	to	detect	nearby	users.	If	a	device	running	the	host	
application	(in	the	foreground	or	background)	is	detected,	the	beacon	automatically	parses	its	Bluetooth	name	and	
obtains	the	URL	to	the	file	containing	the	user’s	context.	This	file	is	then	downloaded	and	sent	to	its	app	provider(s)	
for	 analysis.	 If	 the	 app	 reports	 that	 it	 is	 relevant,	 the	 beacon	 automatically	 forms	 a	 connection	 with	 the	 user’s	
application	directory,	and	delivers	the	advertisement.		

App	beacons	let	developers	deploy	opportunistic	apps	that	are	only	accessible	from	a	specific	location	(e.g.,	an	app	
to	control	a	nearby	printer	or	digital	projector).	Our	middleware	includes	an	Android	app	that	continuously	performs	
Bluetooth	scans	and	forwards	context	to	designated	app	provider(s)	for	analysis.	This	allows	developers	to	turn	any	
Bluetooth-equipped	and	network-connected	device	(e.g.,	user	smartphones,	tablets	placed	in	an	environment)	into	
an	app	beacon.	Additionally,	since	beacons	can	be	connected	to	multiple	app	providers,	developers	can	repurpose	
the	same	beacons	to	host	multiple	apps.	This	lets	them	deploy	a	wide	range	of	apps	in	an	environment	without	the	
need	for	additional	hardware.	

4.3.2. EXAMPLE	APPLICATIONS	
Over	the	past	year,	we	have	developed	and	deployed	a	total	of	56	Impromptu	apps,	ranging	from	simple	 location	
based	apps,	 to	apps	that	are	only	 intended	for	a	specific	population	of	users	 (e.g.,	all	of	 the	attendees	at	a	music	
concert).	 In	 this	 section,	 we	 focus	 on	 six	 notable	 examples.	 The	 first	 three	 are	 lab	 prototypes,	 and	 highlight	
Impromptu’s	core	capabilities.	The	final	three	are	use	case-driven,	and	demonstrate	how	our	system	has	thus	far	been	
utilized	in	support	of	real-world	tasks.	Collectively,	these	examples	demonstrate	how	the	ability	to	opportunistically	
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discover,	 deliver,	 and	 remove	 apps	 is	 useful	 and	 increases	 the	 range	 and	 types	 of	 interactions	 that	 users	 can	
opportunistically	take	part	in.	

4.3.2.1. Lab	Demonstrations	
The	first	set	of	examples	were	created	to	test	Impromptu’s	functionality,	and	were	deployed	within	our	lab.	While	
being	proofs-of-concept,	 these	examples	 showcase	our	platform’s	core	capabilities,	 i.e.,	 the	ability	 to:	1)	 leverage	
multiple	types	of	context	in	order	to	determine	if	and	when	an	app	is	relevant,	2)	support	new	and	existing	apps,	and	
3)	share	information	and	services	across	applications.	

Bus	Stop	App	
Our	first	example	uses	Impromptu	to	keep	users	apprised	of	the	bus	schedule	for	their	specific	stop	(Figure	40).	We	
created	an	app	provider	 that	 is	 linked	 to	 the	Pittsburgh	Port	Authority	website.	This	provider	 is	connected	 to	 the	
Impromptu	application	directory,	and	is	relevant	to	users	that	are	1)	within	10	meters	of	a	bus	stop	(the	locations	of	
which	are	known	by	the	app	provider),	and	2)	standing	(activity	=	“STILL”).		

When	a	user	running	Impromptu	(either	in	the	foreground	or	as	a	background	process)	stands	near	a	bus	stop,	her	
phone	sends	her	context	to	the	application	directory,	which	in	turn	shares	 it	with	our	app	provider.	Once	the	app	
provider	has	analyzed	this	context	and	determined	that	it	is	contextually	relevant,	it	sends	an	advertisement	message	
(via	the	app	directory)	to	the	host	application,	which	causes	it	to	generate	a	card	and	generate	a	system	notification.	
When	the	user	selects	either	the	card	or	the	notification,	the	host	application	connects	to	the	app	provider,	and	starts	
receiving	the	real-time	bus	schedule.		

This	example	demonstrates	how	using	multiple	contexts	can	significantly	improve	an	app’s	ability	to	determine	if	and	
when	it	is	contextually	relevant.	Here,	location	and	activity	are	both	needed	to	allow	the	app	provider	to	distinguish	
between	users	that	are	actually	waiting	for	a	bus,	and	those	that	are	just	passing	by.	The	use	of	multiple	contexts	also	
allows	the	app	to	effectively	determine	when	it	is	no	longer	needed.	Once	the	user	boards	the	bus,	her	activity	will	
change	from	“STILL”	to	“ON_VEHICLE.”	The	app	provider	can	sense	this	change	and	stop	recommending	itself,	thereby	
allowing	the	app	to	disappear	from	the	phone	once	the	app’s	lease	expires.		

In	addition,	this	example	also	shows	how	Impromptu	maximizes	code	reuse.	Instead	of	creating	our	own	interfaces	
and	bus	tracking	infrastructure	from	scratch,	our	app	provider	determines	which	bus	stop	the	user	is	close	to,	and	
provides	her	with	a	URL	to	the	corresponding	Port	Authority	web	page	for	that	stop.	Through	this	approach,	we	show	
how	third	party	developers	can	use	Impromptu	as	a	wrapper	for	existing	services.	This	is	an	important	benefit	of	our	
approach,	and	significantly	increases	the	number	and	types	of	apps	that	can	be	deployed	on	our	platform	without	
requiring	first	party	“buy	in.”	
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Conference	App	

Our	second	example	is	an	app	that	is	relevant	to	attendees	at	an	academic	conference.	Here,	we	developed	an	app	
provider	that	can	compare	the	user’s	email	address	(using	the	hashed	email	addresses	shared	through	our	platform)	
against	a	list	of	known	attendee	addresses.	When	a	match	is	found,	the	app	provider	checks	the	date	to	see	if	the	
conference	is	in	progress,	and	provides	the	user	with	an	app	that	lets	him	add	sessions	to	his	schedule,	take	notes,	
and	vote	for	his	favorite	talk.		

In	addition	to	demonstrating	how	multiple	contexts	(in	this	case,	identity	and	time)	can	be	used	to	determine	if	and	
when	an	app	is	contextually	relevant,	this	example	also	shows	how	Impromptu	can	work	with	legacy	apps.	For	this	
demonstration,	our	app	provider	delivers	the	Android	app	used	for	the	CHI	2015	conference.	When	users	select	the	
app,	the	host	application	checks	 if	the	app	is	already	 installed,	and	if	not,	redirects	them	to	the	Google	Play	store	
(Figure	44).	Once	 the	 conference	has	ended,	 Impromptu	automatically	prompts	 the	user	 to	uninstall	 the	app.	By	
allowing	legacy	apps	to	expire,	Impromptu	is	able	to	help	users	remove	apps	that	are	no	longer	relevant.	This	prevents	
users’	phones	from	becoming	filled	with	apps	that	were	useful	at	one	point,	but	are	no	longer	needed.		

Combining	Services	at	Runtime		

	

Figure	44.	Conference	app	demo.	Impromptu	can	deliver	legacy	applications	(left),	and	either	run	them	(if	installed)	or	
redirect	users	to	an	app	store	to	download	it	(right).	

	

	 	

Figure	45.	Impromptu	lets	applications	share	services	and	information	across	application.	When	the	user	selects	a	digital	
projector	app	(a)	and	uploads	a	presentation	(b),	Impromptu	is	able	to	determine	that	the	same	data	can	be	used	by	the	printer	
application	to	print	handouts.	Impromptu	then	generates	a	custom	UI	element	within	the	projector	app	(c)	so	that	the	user	can	

invoke	the	service	without	having	to	switch	between	apps	(d).	
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Our	 third	example	 shows	how	 Impromptu	 supports	 sharing	 services	 and	 information	across	 applications.	 For	 this	
example,	we	created	two	app	providers	(hosted	on	an	app	beacon)	that	are	both	relevant	when	the	user	enters	a	
classroom	(Figure	45a).	The	first	controls	a	digital	projector,	and	 lets	users	upload	a	PowerPoint	presentation	and	
advance	 the	 slides	 (Figure	45b-c).	The	 second	app	provider	 is	 controls	a	printer	 (located	near	 the	projector),	 and	
provides	1)	an	interface	to	allow	users	to	upload	and	print	a	file,	and	2)	a	service	that	will	print	handouts	if	given	a	
PowerPoint	file.	When	the	user	runs	the	projector	app	and	uploads	a	presentation,	the	host	application	automatically	
determines	that	same	data	can	be	used	by	the	printer	app’s	service.	The	host	application	then	generates	and	inserts	
a	button	to	allow	the	user	to	invoke	the	printer	service	from	within	the	projector	app	(Figure	45c).	This	lets	the	user	
print	handouts	without	having	to	switch	between	apps	(Figure	45d).		

This	application	provides	a	simple	demonstration	of	how	Impromptu	increases	users’	access	to	relevant	services.	In	
this	example,	the	user	may	be	so	focused	on	setting	up	the	presentation	that	she	may	not	consider	using	other	apps	
to	assist	in	this	task.	By	letting	apps	share	data	and	services,	however,	Impromptu	can	form	functional	linkages	on	the	
user’s	behalf,	and	allow	her	to	make	use	of	them	with	minimal	added	effort.	

4.3.2.2. Field	Trials	
In	addition	to	the	prototypes	described	above,	we	have	also	provided	Impromptu	to	over	60	users	in	support	of	real-
world	tasks.	In	this	section,	we	describe	three	sets	of	applications,	and	show	how	our	system’s	ability	to	provide	just-
in-time	apps	is	useful	in	real-world	situations.	

Reporting	Public	Safety	Hazards	to	First	Responders	

Our	first	wide	scale	deployment	of	Impromptu	was	conducted	at	the	2015	CreationFest	Music	Festival.	For	this	event,	
we	created	an	Impromptu	app	that	appeared	on	festival	workers	(i.e.,	civilian	volunteers)	phones,	and	allowed	them	
to	take	photographs	of	potential	public	safety	hazards	(e.g.,	leaking	pipes,	blocked	emergency	lanes;	Figure	46a-b).	
These	photos	 (along	with	 the	user’s	 instantaneous	 location	and	contact	 information)	were	 then	 forwarded	to	 the	
festival’s	emergency	management	agency	(EMA).	A	second	app	provider	(Figure	46c)	monitored	first	responders	(i.e.,	
police,	medical	personnel,	whose	email	addresses	were	provided	to	us	by	the	EMA	staff)	locations,	and	alerted	them	
when	they	were	near	a	reported	problem.	The	responder	could	then	investigate	the	problem	and	mark	the	issue	as	
“resolved.”		

This	example	shows	how	Impromptu	can	support	one-time	events.	In	follow	up	interviews,	we	learned	that	the	EMA	
had	considered	making	a	public	safety	app,	but	did	not	believe	that	volunteers	or	first	responders	(many	of	which	

	

Figure	46.	App	provided	to	volunteers	at	the	2015	CreationFest	Music	Festival.	Users	report	public	safety	issues	(a-b),	which	
alerts	nearby	first	responders	(c).	
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belong	 to	 functionally	 separate	 agencies)	 would	 download	 an	 app	 that	 was	 only	 useful	 for	 four	 days.	 Through	
Impromptu,	however,	we	provided	a	simple	way	of	distributing	this	app	on	the	days	that	it	is	needed,	without	requiring	
users	to	find	and	install	it	on	their	own.	Over	the	course	of	the	festival,	a	total	of	28	volunteers	and	first	responders	
downloaded	 Impromptu.	Together,	 these	users	 reported	18	public	 safety	 issues,	 far	exceeding	 those	 reported	by	
telephone	or	social	networking	combined.	This	led	to	increased	interest	in	our	system	by	both	the	music	festival	staff	
and	law	enforcement	agencies:	“This	would	really	be	helpful	in	a	disaster	or	emergency”	(P2).		

This	example	also	demonstrates	how	Impromptu	can	be	used	to	quickly	deploy	new	apps.	On	the	second	day	of	the	
festival,	we	received	a	request	from	the	head	of	the	EMA	to	allow	supervisors	to	see	all	reported	problems	(active	
and	resolved)	on	their	smartphones.	In	the	past,	such	a	request	would	have	required	us	to	1)	create	and	deploy	a	new	
app	on	the	app	store	(and	ask	users	to	download	 it),	or	2)	update	an	existing	app	(and	ask	users	to	check	for	the	
update	 after	 a	 few	 hours).	 Using	 Impromptu,	 however,	we	were	 able	 to	 quickly	 create	 a	 new	 app	 provider	 that	
displayed	every	reported	problem	as	a	list,	and	configured	it	so	that	only	a	select	set	of	users	could	see	it	on	their	
phone.	We	then	ran	the	app	provider	on	our	platform	and	had	it	instantaneously	appear	on	the	correct	users’	phones.	
In	all,	 it	 took	us	 less	 than	an	hour	 from	the	original	 request	 to	create	and	deploy	a	new	app	on	 Impromptu.	This	
highlights	 our	 system’s	 flexibility,	 and	 shows	 how	 our	 vision	 of	 opportunistic	 apps	 can	 be	 useful	 in	 highly	 fluid	
situations. 

Asking	for	Personal	Favors	

Our	second	real-world	example	was	created	to	help	users	collaborate	and	ask	for	favors	from	each	other	(Figure	47).	
We	have	developed	an	app	that	allows	users	to	post	requests	for	simple	favors	(e.g.,	“Pick	up	a	gallon	of	milk	from	
the	supermarket	and	bring	it	to	my	house”).	When	a	user	approaches	a	location	where	a	favor	can	be	performed,	
Impromptu	presents	her	with	an	app	that	displays	the	request	with	instructions	on	how	to	complete	it.	She	can	then	
decide	if	she	would	like	to	perform	the	favor	on	the	requestor’s	behalf.	

The	 idea	of	 allowing	users	 to	exchange	 services	 is	 not	new,	 and	has	been	 leveraged	by	 a	number	of	 commercial	
services	[136,137,149].	However,	existing	services	require	users	to	explicitly	opt	into	a	community	before	they	can	
see	and	respond	to	requests.	In	contrast,	our	example	uses	Impromptu	to	support	opportunistic	collaborations.	A	user	
might	not	be	willing	to	exert	a	great	deal	of	effort	to	help	another	individual.	However,	through	Impromptu,	these	
users	are	able	to	see	requests	for	favors	as	they	go	about	their	normal	routine.	This	lets	users	reach	out	to	a	wider	
audience	base	than	they	could	otherwise,	and	increases	the	chance	of	a	request	being	fulfilled.		

	

Figure	47.	Impromptu	Favors	application.	Users	use	our	app	to	request	a	favor	(a).	Other	users	then	see	the	request	from	
Impromptu	when	they	are	near	the	location	where	it	can	be	performed	(b).	
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Over	a	30-day	trial,	a	total	of	19	favors	(across	26	users)	were	requested	through	our	system.	These	requests	ranged	
from	simple	requests	(e.g.,	“Can	someone	bring	a	pen	to	my	office?”)	to	specialized	tasks	(e.g.,	“Can	someone	give	
me	a	haircut”).	During	this	time,	we	observed	occasions	where	the	individual	performing	a	favor	only	did	so	because	
she	was	at	the	right	place	at	the	right	time.	This	shows	how	the	ability	to	deliver	opportunistically	information	can	
increase	users’	ability	to	serendipitously	work	together.	

Using	Impromptu	in	Everyday	Lives	
Our	third,	and	most	extensive	use	of	Impromptu	to	date	is	as	an	everyday	assistive	tool.	Over	the	past	three	months,	
we	have	released	Impromptu	to	over	25	users	in	the	Pittsburgh	area,	and	have	created	a	total	of	28	apps	to	provide	
them	with	useful	 information	and	services	as	they	go	about	their	normal	routine.	Some	of	the	apps	that	we	have	
deployed	include:		

• Shopping	apps	(12):	Provides	users	with	the	weekly	advertisement	for	the	(popular)	stores	that	they	visit.		
• Tourist	apps	(5):	Displays	information	about	a	location	(e.g.,	maps,	schedules)	when	users	visit	it	for	the	first	

time.		
• Remote	 control	 apps	 (5):	 Allows	 (authorized)	 users	 to	 control	 nearby	 appliances	 (e.g.,	 printers,	 digital	

projectors,	lighting	systems)	both	at	their	workplace	and	in	select	homes.		
• Navigation	apps	(3):	Provides	users	with	the	schedule	for	a	particular	bus	or	shuttle	stop,	or	maps	of	college	

campuses.		
• Restaurant	apps	(3):	Provide	users	with	the	correct	menu	for	the	restaurant	they	are	eating	at	(e.g.,	breakfast,	

dinner).		

After	a	ten-week	deployment,	we	deployed	a	survey	application	across	our	entire	platform,	and	received	responses	
from	 11	 users	 (42%).	 Our	 survey	 results	 (Table	 9)	 show	 that	 users	 generally	 liked	 the	 possibility	 of	 having	 apps	
opportunistically	delivered	to	them.	User	opinion	varied,	however,	about	the	specific	apps	currently	being	offered	
through	our	system.	While	some	users	were	pleasantly	surprised	when	Impromptu	provided	them	with	an	app	(e.g.,	
an	app	for	the	store	they	were	currently	visiting),	they	were	also	displeased	when	the	system	did	not	provide	an	app	
when	they	felt	it	should.	This	caused	several	of	them	to	specifically	ask	us	for	“more	apps.”		

Responses	such	as	 these	are	 to	be	expected.	Given	our	 limited	time	and	resources,	we	could	not	single-handedly	
produce	apps	for	every	situation.	The	fact	that	users	want	more	apps	delivered	this	way,	however,	demonstrates	the	
potential	of	our	system,	and	the	need	for	further	study	

4.3.3. DISCUSSION	
Our	work	 is	 inspired	 by	 the	 vision	 of	 a	 future	where	 users	 have	 opportunistic	 access	 to	mobile	 apps.	 Yet,	 while	
Impromptu	shows	how	such	a	future	might	be	possible,	it	also	reveals	the	technical	and	social	challenges	in	bringing	
it	to	fruition.	In	this	section,	we	highlight	these	challenges	and	their	implications.	

Table	9.	Survey	responses	obtained	from	11	participants	using	a	5-point	Likert	scale	(1=”Strongly	Disagree”,	5=”Strongly	Agree”)	
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4.3.3.1. Battery	and	Bandwidth	Consumption		
Impromptu	requires	devices	to	continually	monitor	and	share	their	context	so	that	apps	can	determine	if	and	when	
they	are	contextually	relevant.	Our	host	application	requires	devices	to	monitor	the	user’s	location	and	activity	via	
sensors,	keep	their	Bluetooth	ID	permanently	discoverable,	and	maintain	a	continuous	socket	connection	with	the	
application	directory	in	order	to	send	context	and	receive	apps.	Thus,	while	we	try	to	minimize	the	amount	of	data	
that	is	sent	and	received,	we	acknowledge	that	Impromptu’s	impact	on	battery	and	bandwidth	consumption	can	be	
problematic	if	not	kept	in	check.		

To	better	understand	these	costs,	we	ran	two	experiments.	For	the	first	experiment,	we	performed	a	series	of	battery	
drain	tests	using	a	Nexus	5	smartphone.	As	a	baseline,	we	first	ran	the	phone	for	8	hours	without	Impromptu.	We	
then	installed	the	app	on	the	phone,	and	let	it	collect	and	share	context	for	the	same	period	of	time.	Each	condition	
was	tested	5	times.		

For	our	second	experiment,	we	monitored	Impromptu’s	average	bandwidth	use	across	48	different	users.	Here,	we	
modified	our	application	directory	to	track	the	amount	of	data	that	is	transmitted	by	each	device	per	minute.	We	then	
used	this	information	to	extrapolate	the	amount	of	data	used	per	day.	This	value	is	not	a	true	measure	of	Impromptu’s	
total	bandwidth	usage,	as	it	does	not	take	into	account	the	data	consumed	when	users	run	apps.	Nevertheless,	it	does	
show	how	much	data	our	system	uses	when	left	on	its	own,	which	is	an	important	consideration	for	many	users	when	
they	install	a	new	app.		

The	 results	 from	 both	 experiments	 are	 presented	 in	 Table	 10	 and	 Table	 11,	 respectively.	 Our	 results	 show	 that	
Impromptu’s	 current	 resource	 requirements	 are	minimal.	 Impromptu	only	 consumes	20%	more	power	 than	 idle,	
meaning	that	it	can	run	all	day	without	significantly	depleting	the	battery.	Similarly,	our	system’s	low	bandwidth	usage	
(less	than	1.2MB	per	day)	means	that	our	system	can	run	on	both	unlimited	and	metered	data	plans,	regardless	of	
Wi-Fi	availability.	Together,	these	results	suggest	that	Impromptu	is	practical	to	deploy	as	is.	

4.3.3.2. User	Privacy	
A	second	concern	that	users	of	 Impromptu	might	have	 is	privacy.	When	designing	 Impromptu,	we	paid	particular	
attention	to	minimize	any	potential	privacy	issues.	For	example,	instead	of	directly	sharing	the	user’s	email	address,	
we	chose	to	obfuscate	it.	Similarly,	while	we	do	share	many	contexts	in	plaintext,	such	as	activity	and	location,	this	
information	is	usually	not	enough	to	identify	someone	from	a	crowd.	Through	this	approach,	we	strived	to	balance	

Table	10.	Results	of	battery	consumption	experiment.	Devices	were	allowed	to	run	uninterrupted	for	8	hours.	

	
	

Table	11.	Impromptu	idle	bandwidth	usage	(based	on	telemetry	from	48	users),	showing	the	amount	of	data	consumed	by	
Impromptu	per	minute,	and	per	day	when	not	running	any	apps.	
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precision	and	detail	of	context	so	that	it	is	not	leaking	personally	identifiable	information	yet	is	still	accurate	and	useful	
enough	for	apps	to	determine	which	 information	and	services	might	be	relevant	to	users.	While	we	have	tried	to	
preserve	user	privacy,	we	also	know	that	users	still	need	to	have	explicit	control	over	what	contextual	information	
they	would	like	to	share.	To	support	this,	Impromptu	allows	users	to	indicate	which	contexts	they	want	to	publicly	
share	with	apps	(e.g.,	identity,	location).	In	addition,	if	a	particular	app	needs	more	contextual	information	than	what	
the	user	agreed	to	share,	 it	prompts	the	user	to	obtain	access.	 It	 is	difficult	to	generally	say	how	much	contextual	
information	users	need	to	give	before	they	start	to	benefit	from	the	system.	Clearly,	there	is	a	tradeoff,	but	this	is	one	
for	users	to	make,	as	they	risk	getting	worse	or	fewer	suggestions	of	contextually	relevant	apps	if	they	refuse	to	share.	

4.3.3.3. Potential	Misuse	by	Developers	
The	idea	of	letting	apps	decide	when	they	are	relevant	has	clear	potential	for	misuse.	A	simple	example	would	be	an	
advertising	app	that	always	states	that	it	is	relevant	without	actually	considering	the	provided	context.	While	misuse	
could	be	intentional,	it	might	also	happen	accidentally.	For	example,	if	a	developer	makes	a	bus	app	available	to	any	
user	within	20	meters	of	a	bus	stop,	it	will	accidentally	appear	to	users	that	happen	to	work	or	live	within	that	distance.		

Allowing	users	to	reject	such	apps	and	using	a	demerit-based	system	to	block	them	in	the	future	is	a	first	measure	for	
protecting	users	from	potential	misuse	by	developers.	The	data	that	Impromptu	gathers	about	rejected	apps	and	the	
contexts	in	which	they	are	rejected	by	users	is	useful	both	for	the	system	and	also	developers.	Sharing	this	data	with	
developers	would	enable	them	to	address	accidental	misuse.	Additionally,	we	are	looking	at	developing	Impromptu-
specific	acceptance	tests	that	check	how	often	an	app	recommends	itself	in	response	to	user	contexts.	This	would	
help	identify	intentional	misuse	and	help	the	app	directory	decide	which	app	providers	to	blacklist.		

4.3.4. LESSONS	LEARNED	
Impromptu	is	the	first	GCF	application	that	is	designed	to	run	perpetually	on	users’	smartphones.	As	a	result,	building	
this	system	has	increased	our	understanding	of	how	GCF	can	be	used	in	an	“always	on”	capacity.	In	this	section,	we	
document	the	major	challenges	that	we	encountered	while	trying	to	use	GCF	to	create	Impromptu,	and	show	how	we	
have	adapted	our	framework	in	order	to	let	it	be	utilized	in	a	more	persistent	manner.	

Allowing	GCF	to	Run	as	a	Background	Service.	As	mentioned	at	the	beginning	of	this	thesis,	one	of	the	challenges	in	
forming	opportunistic	groups	is	that	 it	 is	difficult	to	predict	when	and	where	they	will	occur.	With	Impromptu,	we	
gained	firsthand	experience	with	this	problem.	Although	our	architecture	lets	users	share	their	context	and	receive	
contextually	 relevant	 applications	 and	 services,	 early	 versions	 of	 GCF	 only	 worked	 when	 the	 user	 kept	 the	 host	
application	 running	on	 their	mobile	device(s).	 In	early	 trials,	we	 found	 that	users	had	 to	know	a	priori	when	 they	
needed	to	turn	on	Impromptu	in	order	for	apps	to	detect	the	user	and	make	their	services	available.	This	defeats	the	
point	of	having	a	system	like	Impromptu,	and	prevents	it	from	being	helpful	in	truly	opportunistic	situations.	

To	overcome	this	 limitation,	we	realized	that	we	needed	a	way	to	let	GCF	continuously	send	requests	and	receive	
context	in	the	background,	regardless	if	the	user	has	started	the	app	or	is	actively	using	it.	To	address	this,	we	created	
a	GCFSERVICE	module	that	contains	a	group	context	manager,	and	is	configured	to	automatically	restart	itself	whenever	
1)	the	phone	is	powered	on,	or	2)	when	the	service	is	turned	off	by	the	user	or	operating	system.	To	use	the	service,	
Impromptu	calls	Android’s	STARTSERVICE()	method,	and	passes	it	the	name	of	our	class,	as	shown	below:	

1. // Creates Service for GCF  
2. Intent i = new Intent(applicationContext, GCFService.class); 
3. this.startService(i);  

Once	 the	 service	 is	 running,	 it	 broadcasts	 an	 intent	 (ACTION_GCF_STARTED).	 The	 application	 can	 then	 use	 the	
service’s	group	context	manager	to	begin	requesting	and	receiving	context.	
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By	allowing	GCF	to	be	run	as	a	background	service,	our	framework	provides	a	simple	way	to	create	mobile	applications	
that	are	always	on	and	ready	to	request	and	receive	context.	Yet	while	this	solution	increases	the	opportunities	to	
devices	to	find	and	form	opportunistic	groups,	it	is	not	meant	to	be	an	all	encompassing	solution.	Our	work	with	Didja	
and	Snap-To-It,	for	example,	shows	that	there	are	many	opportunistic	groups	that	only	need	to	be	formed	when	the	
user	is	running	an	app,	and	thus	only	need	GCF	to	run	for	a	short	period	of	time.	Meanwhile,	our	analysis	of	Impromptu	
also	shows	that	running	a	persistent	service	can	be	potentially	costly	from	both	an	energy	consumption	and	bandwidth	
standpoint.	It	is	up	to	application	developers	to	consider	if	their	application	needs	this	capability	when	designing	it.	
But	by	offering	this	capability	as	an	option,	we	increase	the	types	of	use	cases	that	we	can	practically	support.	

Using	 Bluetooth	 to	 Improve	 GCF’s	 Situational	 Awareness	 (Again).	 Another	 challenge	 that	 we	 encountered	 when	
developing	Impromptu	was	finding	a	way	to	provide	users	with	contextually	relevant	applications	when	they	are	in	a	
specific	location	(e.g.,	 inside	of	a	classroom).	As	mentioned	in	our	system	description,	our	solution	to	this	problem	
was	to	once	again	rely	on	Bluetooth	discovery.	However,	instead	of	simply	modifying	the	name	to	contain	the	GCF	ID	
(as	was	done	 in	Didja),	 Impromptu	programmatically	manipulates	 the	name	 to	 contain	 a	URL	 to	 a	 cloud	 file	 that	
contains	the	user’s	context.	This	lets	users	share	any	arbitrary	amount	of	information	with	nearby	devices	without	
requiring	 them	 to	 pair,	 and	 allows	 Impromptu’s	 beacons	 to	 only	 offer	 their	 services	 when	 the	 user	 is	 within	 a	
predefined	distance.	

As	we	have	seen	twice	now,	the	ability	to	use	Bluetooth	as	an	out-of-bands	communications	channel	provides	GCF	
with	the	(sorely	needed)	capability	to	identify	and	capitalize	on	nearby	groupings	of	devices.	In	the	following	section,	
we	introduce	the	Bluewave	system,	and	show	how	we	formally	incorporate	this	functionality	within	GCF.	Bluewave	
takes	the	lessons	learned	from	Didja	and	Impromptu,	and	provides	a	standardized	way	to	broadcast	and	listen	for	a	
broad	range	context	using	Bluetooth	radio	IDs.	This	provides	a	developer	friendly	way	to	share	context	over	a	short	
geographic	radius,	and	allows	GCF	to	work	in	environments	where	common	connectivity	is	not	guaranteed.	

4.4. BLUEWAVE:	USING	BLUETOOTH	NAMES	TO	FORM	OPPORTUNISTIC	GROUPS	IN	THE	REAL	WORLD	
In	 CHAPTER	 1,	 we	motivated	 the	 need	 for	 opportunistic	 groups	 of	 devices	 (and	 by	 extension	 GCF)	 through	 two	
motivational	scenarios.	In	the	first	scenario,	we	described	a	situation	in	which	a	smartphone	was	able	to	form	a	group	
with	a	bus’	GPS	sensor	when	its	user	(Jack)	stepped	on	board.	This	allowed	the	phone	to	track	the	user’s	 location	
without	 having	 to	 run	 its	 own	 sensor,	 thereby	 extending	 its	 battery	 life.	 In	 the	 second	 scenario,	we	 described	 a	
situation	in	which	three	smartphones	were	able	to	share	calendar	information	with	each	other	while	their	users	were	
engaged	 in	an	unplanned	office	conversation.	This	 let	the	users	temporarily	compare	schedules	without	having	to	
manually	grant	each	other	access	or	pair.	

The	work	described	in	this	thesis	takes	significant	strides	towards	supporting	these	diverse	use	cases.	In	our	discussion	
of	Didja,	for	example,	we	introduced	the	CalendarSync	application	(Figure	20),	and	showed	how	it	can	already	address	
the	scheduling	problem	described	in	our	second	scenario.	Supporting	scenario	one,	however,	is	more	problematic.	
Since	most	buses	do	not	have	a	local	area	network,	it	is	highly	unlikely	that	Jack’s	phone	will	be	on	the	same	broadcast	
domain	as	the	bus’	sensor.	This	prevents	GCF	from	forming	an	opportunistic	group,	as	there	is	no	direct	way	for	the	
phone’s	context	request	message	to	reach	the	bus.	

In	order	to	support	use	cases	like	the	one	described	above,	we	need	to	provide	GCF	with	an	alternative	way	to	detect	
nearby	devices	and	share	context—one	 that	works	 regardless	of	where	 the	devices	are,	or	 if	 they	have	access	 to	
common	network	connectivity.	 To	 satisfy	 this	 requirement,	we	developed	Bluewave	 [46],	 a	novel	 context	 sharing	
technique	that	uses	Bluetooth	radio	IDs	to	convey	information.	With	Bluewave,	devices	upload	context	to	a	trusted	
cloud	server,	and	update	their	Bluetooth	name	to	contain	both	a	URL	and	set	of	temporary	credentials.	Nearby	devices	
can	then	collect	this	information	via	Bluetooth	discovery,	and	use	it	to	request	and	receive	information	(Figure	48).	
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Our	work	with	Bluewave	is	directly	inspired	by	our	experiences	creating	Didja	and	Impromptu.	In	both	systems,	we	
discovered	that	programmatically	inserting	information	inside	a	device’s	Bluetooth	name	gave	devices	a	simple	but	
effective	 way	 to	 1)	 detect	 when	 they	 are	 in	 close	 proximity	 of	 one	 another,	 and	 2)	 share	 context	 over	 a	 small	
geographic	area,	 respectively.	Bluewave	builds	on	this	work	by	offering	a	generalizable	way	to	share	context	over	
short	distances.	This	gives	GCF	an	alternatively	way	of	detecting	and	forming	groups	that	supports	quick,	one-way	
exchanges	of	information,	while	still	providing	applications	with	the	option	to	form	longer	lasting	groups	(using	GCF’s	
subscribe/unsubscribe	mechanism)	when	real-time,	or	more	dynamic	information	is	needed.	

Through	Bluewave,	we	offer	the	following	contributions:	

1. First,	our	work	provides	a	truly	opportunistic	way	to	share	context	over	short	distances.	By	using	a	device’s	
Bluetooth	name	as	an	out-of-bounds	communications	medium,	Bluewave	is	able	to	reliably	advertise	and	
share	context	in	both	indoor	and	outdoor	environments,	regardless	of	whether	or	not	they	are	connected	to	
the	same	network.	Furthermore,	since	all	of	the	information	needed	to	retrieve	context	is	included	in	the	
device’s	 Bluetooth	 name,	no	 actual	 pairing	 is	 required.	 This	 lets	 Bluewave	work	 even	when	 the	 devices	
sharing	context	have	never	met,	making	it	useful	in	situations	where	devices	need	to	form	groups	and	share	
information	once	or	spontaneously.		

2. Secondly,	 Bluewave	 increases	 our	 understanding	 of	 how	 we	 can	 responsibly	 share	 user	 context	 in	 an	
opportunistic	manner.	As	part	of	our	design	process,	we	conducted	an	exploratory	study	with	15	participants,	
and	 learned	 that	users	were	willing	 to	 share	a	wide	 range	of	 information	with	nearby	devices	 (including	
personally	identifiable	information)	so	long	as	they	have	explicit	control	over	what	context	is	shared	and	with	
whom.	Informed	by	these	findings,	we	have	integrated	an	“opt-in”	permissions	model	into	Bluewave	that	
lets	users	share	context	openly	or	on	a	per-application	basis.	By	giving	users	the	ability	to	specify	when	and	
where	 context	 is	 shared,	 we	 increase	 the	 types	 of	 information	 that	 they	 are	 willing	 to	 share.	 This	

	

Figure	48.	In	Bluewave,	devices	upload	their	context	to	a	trusted	web	server	(top)	and	modify	their	Bluetooth	name	to	contain	a	
URL	and	temporary	credentials	(middle).	Other	devices	can	scan	for	this	information	and	download/use	the	context	(bottom).	
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differentiates	our	system	from	traditional	beacon	technologies	[135,138]	(which	share	the	same	information	
with	every	device),	and	increases	the	types	of	context-aware	applications	that	our	system	can	enable.	

3. Third,	Bluewave	helps	us	better	understand	how	to	make	opportunistic	context	sharing	accessible	from	a	
developer	 standpoint.	 Our	 system	 lets	 developers	 share	 any	 JSON-encoded	 context	 through	 their	
applications.	Additionally,	we	also	provide	tools	to	let	developers	see	1)	what	context	is	being	shared,	and	2)	
how	it	is	formatted.	This	lets	developers	take	advantage	of	commonly	shared	contexts	in	their	applications,	
and	lets	our	system	work	with	both	established	[50,93,115]	and	new	and	evolving	ontologies	[139].	

Bluewave	addresses	our	 second	 research	question	by	expanding	 the	 range	of	environments	and	 situations	under	
which	GCF	can	find	and	form	opportunistic	groups.	In	doing	so,	we	increase	the	types	of	context-aware	applications	
that	we	can	practically	create,	deploy,	and	explore.	In	the	following	sections,	we	present	Bluewave’s	architecture,	and	
show	how	our	system	uploads,	shares	and	retrieves	context.	Afterwards,	we	describe	our	user	probe,	and	show	how	
responses	 from	 participants	 caused	 us	 to	 integrate	 privacy	 controls	 within	 our	 system.	 Through	 nine	 prototype	
applications	split	across	two	domains	(public	displays	and	the	Internet	of	Things),	we	show	how	Bluewave	can	be	used	
by	developers	to	realize	both	established	and	novel	context-aware	applications.	Finally,	we	provide	experimental	data	
to	show	that	our	system	is	both	power-efficient	and	responsive,	and	discuss	how	our	experiences	creating	Bluewave	
have	influenced	GCF’s	final	design.	

4.4.1. SYSTEM	ARCHITECTURE	
Bluewave	was	designed	as	an	add-on	module	for	GCF	that	lets	devices	broadcast	and	receive	context	without	having	
to	directly	communicate	with	each	other	(Figure	49).	The	system	consists	of:	

• A	client	service	(Figure	49,	left),	which	runs	on	individual	devices,	and	is	responsible	for	uploading	context	to	
the	cloud,	discovering	nearby	devices,	and	requesting	and	receiving	context.	

• A	set	of	one	or	more	context	brokers	(Figure	49,	right)	which	are	hosted	on	dedicated	web	servers,	and	are	
responsible	for	storing	and	sharing	context	with	authorized	(i.e.,	nearby)	devices.	

When	applications	need	to	use	Bluewave	to	share	context,	they	access	the	client	service,	and	tell	it	what	information	
they	 want	 to	 share	 (e.g.,	 language	 settings,	 user’s	 first	 name).	 The	 service	 will	 then	 automatically	 upload	 this	
information	to	its	designated	context	broker,	and	modify	the	device’s	Bluetooth	name.	When	applications	need	to	
use	Bluewave	to	receive	context,	they	tell	the	service	what	information	they	are	interested	in.	The	client	service	will	
then	scan	for	nearby	devices,	parse	their	Bluetooth	names,	and	request	these	elements	from	their	respective	brokers.		

Although	conceptually	simple,	a	number	of	technical	challenges	had	to	be	overcome	to	make	Bluewave	efficient	and	
easy	to	use.	In	this	section,	we	describe	each	component	of	our	architecture.	Afterwards,	we	present	findings	from	
an	exploratory	user	study,	and	show	how	users’	concerns	about	openly	sharing	context	guided	us	in	incorporating	
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privacy	controls	into	our	system.	Finally,	we	describe	Bluewave’s	developer	tools,	and	show	how	developers	can	use	
our	system	to	opportunistically	request	and	receive	context.	

4.4.1.1. Client	Service		
The	client	service	is	a	background	process	that	runs	on	the	user’s	phone.	 It	 is	responsible	for	managing	the	user’s	
context,	advertising	context	to	nearby	devices	via	modifying	the	device’s	Bluetooth	name,	and	obtaining	context	from	
nearby	devices	(as	directed	to	by	the	application).	

We	now	discuss	each	of	these	tasks	in	detail:	

Task	1:	Upload	Context.	The	client	service’s	primary	responsibility	is	to	upload	context	to	the	context	broker.	Each	
client	 service	has	a	personal	 context	provider	 (context	 type	=	 “PCP”)	 that	 contains	all	 of	 the	 information	 that	 the	
application	is	willing	to	share	to	share.	When	an	application	wants	to	start/stop	sharing	information,	they	provide	this	
information	to	the	client	service	via	the	SETCONTEXT()	and	REMOVECONTEXT()	methods,	respectively.	The	context	provider	
then	encodes	 this	 context	as	 JSON,	and	publishes	 the	 latest	 version	 to	 the	cloud.	For	added	efficiency,	 the	client	
service	only	uploads	the	JSON	elements	that	have	actually	changed	to	the	broker.	This	reduces	upload	times,	and	
makes	sharing	large	amounts	of	context	practical.	

Task	2:	Advertise	Context.	The	client	service’s	second	responsibility	is	to	advertise	a	device’s	context	to	its	immediate	
neighbors.	Each	time	the	service	uploads	a	new	set	of	context,	it	modifies	the	device’s	Bluetooth	name	to	include	a	
URL	and	set	of	temporary	credentials.	Other	devices	can	then	obtain	this	information	via	Bluetooth	discovery,	and	
download	the	updated	context	using	standard	HTTP	(or	HTTPS)	requests.	A	sample	Bluewave	name	is	provided	below.	
It	contains	four	fields,	separated	by	colon	delimiters	(“::”):	

	

Figure	50.	A	sample	Bluewave	device	name,	containing	a	fixed	length	flag	(A),	the	device’s	unique	identifier	(B),	a	URL	to	the	
device’s	context	broker	(C),	and	a	temporary	access	key	(D).	

	

Figure	49.	Bluewave’s	high	level	architecture.		
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• Protocol	Flag.	All	Bluewave	device	names	start	with	a	standardized	string	(“GCF”).	This	is	used	to	determine	
if	a	newly	discovered	device	is	Bluewave	compatible.		

• Device	 ID.	 The	 second	 field	 contains	 a	 device	 specific	 identifier.	 By	 default,	 this	 field	 contains	 a	 device’s	
Android	ID.	However,	any	unique	value	(i.e.,	user	specified	names)	can	also	be	used.	3		

• Context	URL.	The	third	field	contains	a	URL	to	the	device’s	context	broker.	This	is	the	link	that	other	devices	
will	use	to	request	this	device’s	context.		

• Access	Key.	The	last	field	contains	a	12-character	alphanumeric	key.	When	other	devices	want	to	download	
context,	they	include	the	key	in	their	request.	The	broker	then	validates	the	key	before	returning	data.	The	
access	 key	 is	 regenerated	 after	 every	 context	 update.	 This	 temporary	 credential	 prevents	 devices	 from	
accessing	each	other’s	context	once	they	move	out	of	range.	

Task	3:	Obtaining	Context	from	Other	Devices.	The	final	responsibility	of	the	client	service	is	to	obtain	context	from	
other	devices.	When	directed	to	by	an	application,	the	client	service	performs	periodic	Bluetooth	scans.	As	Bluewave	
devices	are	found,	the	service	extracts	the	URL	and	access	key,	contacts	the	appropriate	context	broker,	and	forwards	
the	information	to	the	application	for	processing.		

There	are	two	technical	hurdles	to	collecting	context.	The	first	is	managing	repeat	discoveries.	Due	to	the	nature	of	
Bluetooth	discovery,	 client	devices	will	 repeatedly	detect	 the	 same	devices	 if	 they	perform	consecutive	 scans.	To	
prevent	devices	from	downloading	the	same	context	twice,	each	device	maintains	an	archive	of	devices	that	it	has	
encountered	in	the	past.	Whenever	a	Bluewave	ID	is	detected,	the	service	checks	the	access	key	to	see	if	it	has	been	
altered.	This	allows	the	service	to	only	download	context	when	a	new	version	is	posted.		

The	second	challenge	in	downloading	context	is	minimizing	the	amount	of	extraneous	data	that	is	downloaded.	Many	
context-aware	applications	only	need	a	small	amount	of	context	in	order	to	function	properly.	A	public	display,	for	
example,	may	need	to	know	the	user’s	 language	preferences	 in	order	to	make	sure	that	 its	contents	are	properly	
translated.	To	prevent	devices	from	downloading	a	device’s	entire	context,	Bluewave	requires	applications	to	specify	
the	JSON	elements	that	they	need	in	their	HTTP/S	request	(Figure	51c).	The	client	service	will	then	only	receive	these	
elements	from	the	broker.		

By	packaging	all	three	capabilities	into	a	single	module,	the	client	service	provides	a	simple	interface	to	request	and	
receive	context.	Since	the	client	service	is	always	running	as	a	background	process,	developers	can	use	it	to	share	
context,	regardless	of	whether	their	application	is	running.	More	importantly,	because	the	client	service’s	functions	
are	modularized,	developers	can	turn	on/off	features	as	needed.	For	example,	they	could	share	context,	but	not	scan	
for	it.	This	minimizes	our	system’s	overhead	(an	examination	of	Bluewave’s	battery	consumption	is	provided	in	our	
validation).	

4.4.1.2. Context	Broker	
Context	 brokers	 are	 cloud	 servers	 that	 are	 responsible	 for	 storing	 and	 retrieving	 context.	 They	 serve	 as	 trusted	
middlemen,	and	allow	devices	to	share	context	without	having	to	directly	connect	with	each	other.		

	

Figure	51.	A	sample	HTTP	request	for	context,	containing	the	URL	of	the	device's	context	broker	(A),	its	unique	ID	(B),	the	
context(s)	requested	(C),	the	access	key	(extracted	from	the	Bluetooth	name;	D),	and	the	unique	identified	of	the	app	

requesting	this	information	(E).	
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Context	 brokers	 have	 two	 main	 responsibilities.	 First,	 they	 provide	 a	 standardized	 interface	 for	 uploading	 and	
downloading	context.	Each	context	broker	contains	a	set	of	PHP	files	that	allow	client	services	to	invoke	its	services.	
To	upload	context,	for	example,	the	client	service	performs	an	HTTP	post	to	uploadContext.php.	Similarly,	to	download	
context,	 the	 client	 service	 performs	 an	 HTTP	 request	 to	 getContext.php	 (Figure	 51).	 By	 leveraging	 open	 web	
technologies,	our	design	allows	any	web	server	to	act	as	context	brokers.	This	lets	Bluewave	run	on	existing	hardware,	
and	allows	users	to	stand	up	their	own	context	brokers	if	they	want	explicit	control	over	where	their	data	is	stored.		

Secondly,	context	brokers	provide	authentication	services.	When	client	services	connect	to	the	broker	for	the	first	
time,	they	receive	a	set	of	authentication	credentials.	The	client	service	must	then	provide	these	credentials	back	to	
the	 broker	 each	 time	 it	 uploads	 new	 context.	 Combined	with	 secure	 transmission	 protocols	 such	 as	 HTTPS,	 this	
approach	prevents	devices	from	being	able	to	modify	each	other’s	context	at	will.	This	allows	devices	to	be	confident	
that	the	context	they	download	has	not	been	tampered	with.		

While	Bluewave	relies	on	context	brokers	to	share	context,	it	is	important	to	note	that	our	system	neither	assumes	
nor	 requires	 that	 devices	 use	 the	 same	 broker.	 Instead,	 by	 including	 a	 self-contained	URL	 to	 their	 broker	 in	 the	
Bluetooth	name,	Bluewave	supports	both	centralized	and	decentralized	configurations.	

4.4.1.3. Supporting	User	Privacy	
The	idea	of	using	beacons	to	share	context	has	significant	implications	from	a	user	privacy	standpoint.	While	our	work	
assumes	 that	users	would	be	willing	 to	 share	 some	context	 (e.g.,	 shopping	 lists,	 language	preferences)	with	 their	
environment,	prior	research	has	shown	that	preserving	user	privacy	is	an	important	consideration	when	designing	
Ubicomp	 systems	 [70].	 At	 the	 same	 time,	 however,	 prior	 work	 has	 also	 shown	 that	 users	 are	 willing	 to	 share	
information	with	nearby	users	and	devices,	especially	when	they	are	near	each	other	[121].	Consequently,	we	were	
interested	in	learning	1)	how	users	would	react	to	the	idea	of	broadcasting	context,	and	2)	what	types	of	safeguards	
needed	to	be	added	to	Bluewave	to	make	it	socially	acceptable	and	useful.		

To	answer	these	questions,	we	conducted	a	user	study	with	15	participants	(8	males,	7	females;	21-73	years	old).	For	
this	study,	we	created	three	probes	(described	below)	using	an	early	version	of	Bluewave	that	lacked	privacy	controls.	
We	then	had	participants	try	these	applications,	and	conducted	a	series	of	semi-structured	interviews	in	order	to	elicit	
feedback	and	rate	their	overall	comfort	levels.	

Preliminary	Comfort	with	Sharing	Context	
To	establish	a	baseline	before	the	probes	were	introduced,	participants	first	filled	out	a	survey	that	asked	them	to	
rate	how	comfortable	they	are	with	openly	sharing	various	types	of	context	through	their	mobile	device.	This	survey	
consisted	of	12	items,	8	of	which	are	widely	accepted	as	being	personally	identifiable	[80],	and	4	of	our	own	design.	
Each	 item	was	rated	using	a	5-point	Likert	 scale	 (1	=	“very	uncomfortable”;	5	=	“very	comfortable”).	Additionally,	
participants	were	instructed	to	consider	each	type	of	information	separately,	and	to	assume	that	sharing	is	limited	to	
users/devices	within	a	30-foot	radius.		

The	results	of	 this	survey	are	reported	 in	Figure	52.	Similar	 to	prior	work	 [121],	our	results	show	that	there	are	a	
number	of	contexts	that	users	are	unwilling	to	share	over	any	distance	(e.g.,	social	security	numbers,	home	addresses).	
Interestingly,	though,	our	results	also	show	that	there	are	many	types	of	information,	including	personally	identifiable	
information,	 that	users	were	willing	 to	 share	over	 a	 short	distance.	 For	 example,	many	participants	did	not	mind	
sharing	their	gender,	age	or	location,	because	they	reasoned	that	this	information	could	be	determined	just	by	looking	
at	them.	Other	types	of	information,	such	as	shopping	lists,	exercise	habits,	and	dietary	restrictions,	were	considered	
more	personal,	but	okay	to	share	since	they	could	not	be	used	to	identify	participants	in	a	crowd.	Finally,	information	
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such	as	email	addresses,	telephone	numbers,	and	navigation	destinations	were	more	ambiguous,	with	only	half	of	the	
participants	willing	to	share	them	openly.		

Overall,	 these	 results	 suggest	 that	 users	 would	 be	 willing	 to	 share	 context	 using	 a	 broadcast	 based	 system	 like	
Bluetooth.	While	participants	were	unwilling	to	broadcast	all	12	types	of	information,	all	of	them	were	open	to	the	
idea	of	sharing	a	subset	over	short	distances.	Admittedly,	the	results	from	this	survey	cannot	be	used	to	definitively	
say	what	contexts	can	and	cannot	be	shared	opportunistically.	However,	they	do	show	that	this	distinction	exists,	and	
that	there	is	a	wider	range	of	information	that	users	might	be	willing	to	share	than	what	one	might	assume.	

Probe	Applications	
After	the	survey,	we	introduced	participants	to	our	probes.	The	criteria	we	used	to	select	the	three	probes	were	they	
had	 to	 be	 typical	 applications	 from	 the	 literature,	 and	 that	 using	 standard	 development	 approaches,	 required	
significant	 a	 priori	 configuration	 in	 order	 to	 work.	 For	 probe	 1,	 we	 created	 a	 series	 of	 intelligent	 signs	 for	 our	
institution’s	library.	Using	a	custom	Android	application	(Figure	53,	top	left),	participants	could	search	through	the	
library	catalog	and	select	a	book	to	check	out.	The	title	and	call	number	of	the	book	was	then	shared	with	the	signs	
via	Bluewave,	allowing	them	to	either	guide	the	user	to	the	correct	row/column,	or	inform	the	user	that	the	book	is	
not	available	(Figure	53,	top	right).		

Probe	2	was	a	“virtual	concierge”	for	public	spaces.	For	this	example,	we	deployed	a	series	of	Bluewave-equipped	
sensors	 at	 the	entrances	of	our	 institution’s	University	Center.	By	having	users	 share	 their	 email	 address,	dietary	
restrictions	(e.g.,	lactose	intolerant),	and	exercise	habits	through	Bluewave,	our	system	could	determine	1)	if	the	user	
has	been	 to	 the	building	before,	2)	which	 restaurants	he/she	can	order	 food	 from,	and	3)	what	exercise	 facilities	
he/she	might	be	willing	to	use.	The	system	could	then	send	a	notification	to	users’	phones,	which	welcomed	them,	
and	provided	a	list	of	services	that	they	might	find	interesting	(Figure	53,	middle).		

Finally,	Probe	3	was	a	shopping	assistant	to	help	users	find	 items	 in	our	institution’s	bookstore.	Here,	participants	
used	a	custom	app	to	share	their	shopping	list	via	Bluewave.	As	participants	entered	the	bookstore,	specially	placed	
sensors	scanned	the	user’s	shopping	list	and	determined	which	items	were	available	for	purchase.	This	information	
was	then	presented	to	the	user	(Figure	53,	bottom).	Additionally,	our	shopping	assistant	also	uses	the	context	shared	
by	our	library	application	(Probe	1)	to	see	if	the	title	they	were	looking	for	is	offered	in	the	store.	This	provided	users	
with	an	alternative	way	to	acquire	a	book	of	interest—one	they	might	not	have	considered	when	they	first	entered	
the	store.	

Post	Study	Comfort	Levels	
After	using	our	probes,	we	let	participants	adjust	their	self-reported	comfort	levels	from	the	first	part	of	the	study	to	
see	if	our	probes	had	any	influence	on	their	willingness	to	share	context.	In	all	15	cases,	we	found	that	participants’	

	

Figure	52.	Participants’	average	comfort	levels	with	sharing	various	types	of	contextual	information.	Underlined	items	indicate	
personally	identifiable	information.	
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willingness	to	share	information	increased.	While	participants’	opinions	did	not	change	for	items	that	they	had	ranked	
high	or	low,	they	did	increase	their	scores	for	middle	ranked	items	(rating	2-4)	by	one	point,	with	the	most	popular	
being	shopping	lists	(9	out	of	15	participants),	exercise	habits	(6	out	of	15),	and	diet	(5	out	of	15).	

In	follow-up	interviews,	we	asked	participants	to	explain	the	rationale	behind	their	 increased	scores.	 In	each	case,	
participants	told	us	that	they	were	initially	hesitant	to	share	their	context:	“I	don’t	want	to	give	others	[my	information]	
and	get	nothing	 in	 return”	 (P9).	Yet	after	 seeing	our	prototypes,	many	stated	 that	 they	had	a	better	 idea	of	how	
sharing	context	might	benefit	them.	This	made	them	more	willing	to	have	this	information	be	openly	available.	

Designing	Privacy	Centric	Features	Based	on	Participant	Responses	
While	 our	 participants	 warmed	 up	 to	 the	 idea	 of	 sharing	 context,	 the	 issue	 of	 user	 privacy	 was	 brought	 up	 on	
numerous	occasions.	Many	participants	liked	the	services	provided	by	our	probes,	but	noted	that	they	did	not	want	
others	 to	 have	 easy	 access	 to	 their	 information.	 Furthermore,	 while	 participants	 admitted	 that	 most	 of	 the	
information	used	by	our	probes	was	innocuous	(e.g.,	“I	eat	junk	food-anybody	can	know	that”—P13),	they	also	noted	
that	they	would	would	be	more	willing	to	use	Bluewave	if	they	had	explicit	control	over	what	information	is	being	
shared:	“I	would	prefer	the	system	to	ask	me	before	taking	my	information”	(P6).		

In	 light	 of	 these	 findings,	 we	 have	 added	 several	 privacy	 features	 to	 Bluewave.	 Instead	 of	 sharing	 context	 with	
everyone,	Bluewave	now	requires	developers	to	register	their	applications	on	our	framework’s	website	and	receive	
an	app	ID.	This	ID	must	be	provided	to	context	brokers	when	requesting	context	(Figure	51e).	Similar	to	existing	app	
stores,	 this	 approach	 does	 not	 prevent	 rogue	 developers	 from	 registering	 a	 seemingly	 safe	 application.	 It	 does,	
however,	prevent	anonymous	access,	and	provides	a	simple	way	to	blacklist	malicious	apps	once	they	are	found.		

	

Figure	53.	Probing	applications	developed	for	our	user	study.		
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Additionally,	context	brokers	are	now	able	to	track	individual	applications	in	order	to	see	what	types	of	information	
they	ask	for.	Users	will	then	receive	a	notification	on	their	devices	(via	the	client	service)	when	applications	request	
their	context	for	the	first	time	(Figure	54a),	and	be	provided	with	an	interface	to	grant	or	deny	access	(Figure	54b).		

Finally,	in	light	of	our	discovery	that	there	are	some	contexts	that	users	are	comfortable	sharing	at	all	times,	we	also	
allow	users	to	specify	which	contexts	 (e.g.,	 location,	 first	name)	they	would	 like	to	share	openly	 (Figure	54c).	This	
prevents	users	from	having	to	approve	every	request	for	context,	while	still	allowing	them	to	be	notified	in	outstanding	
cases.		

One	downside	of	using	an	opt-in	model	is	that	users	must	now	grant	applications	permission	before	they	can	receive	
context-aware	services.	Our	probe	suggests,	however,	that	such	safeguards	are	needed	for	now	to	give	users	peace	
of	 mind.	 Thus,	 while	 we	 expect	 users	 to	 become	more	 comfortable	 with	 sharing	 context	 over	 time,	 our	 design	
recognizes	that	the	decision	to	share	is	highly	personal,	and	must	be	left	to	them.	

4.4.1.4. Supporting	Developers	
Bluewave	supports	developers	in	two	important	ways.	The	first	way	is	by	making	it	easy	for	developers	to	broadcast	
and	listen	for	context.	To	use	Bluewave,	developers	need	to	import	GCF	into	their	application,	and	create	a	group	
context	manager.	They	can	then	access	Bluewave’s	functionality	by	performing	the	following	steps:	

Step	1:	Specify	Context(s)	to	Upload.	To	share	context,	developers	call	the	group	context	manager’s	UPLOADCONTEXT()	
method.	They	then	pass	the	specific	JSON	object(s)	that	they	would	like	to	upload	to	the	context	broker,	as	shown	
below:	

When	the	developer	is	done	sharing	context,	they	call	the	PUBLISH()	method.	This	directs	the	client	service	to	upload	
the	information	to	the	broker.	

Step	2:	Specify	Context(s)	 to	Receive.	To	 receive	context,	developers	must	 first	 register	 their	application	with	our	
website.	 They	 can	 then	use	 the	 RECEIVECONTEXT()	method	 to	provide	Bluewave	 their	unique	app	 ID,	 as	well	 as	 the	
specific	JSON	elements	they	are	looking	for,	to	the	client	service.	The	service	will	then	automatically	scan	for	devices	
and	download	the	requested	information.		

	

Figure	54.	Bluewave’s	client	service	notifies	users	when	applications	request	context	for	the	first	time(a).	Users	can	then	use	
our	interface	to	share	context	with	individual	apps	(b)	or	openly	(c).	
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Step	3:	Process	Incoming	Context.	Each	time	the	client	service	downloads	a	new	or	updated	context	file,	it	broadcasts	
this	information	(along	with	standard	Bluetooth	discovery	data,	such	as	the	MAC	address	and	RSSI	value)	as	an	Android	
Intent	(“ACTION_OTHER_USER_CONTEXT_RECEIVED”).	Developers	can	then	listen	for	this	Intent	in	their	application,	
and	use	this	information.	

The	second	way	that	Bluewave	supports	developers	is	by	allowing	them	to	see	how	context	is	being	shared	across	our	
system.	Each	time	a	context	broker	receives	a	new	type	of	context	(i.e.,	a	JSON	element	with	a	novel	tag),	it	uploads	
a	sample	of	that	information	to	our	centralized	database.	This	information	is	then	used	to	create	a	web	dashboard	
that	documents	1)	which	contexts	are	available,	2)	how	they	are	defined,	and	3)	how	often	they	are	openly	shared	
(Figure	55).	Through	our	dashboard,	developers	can	see	which	contexts	are	most	commonly	used	across	the	entire	
Bluewave	platform.	This	allows	developers	to	utilize	the	same	contexts	in	their	application	without	having	to	explicitly	
coordinate.		

The	inclusion	of	“living	documentation”	gives	Bluewave	a	significant	advantage	over	other	context-sharing	systems.	
To	 date,	 other	 systems	 have	 assumed	 that	 developers	will	 share	 context	 using	 a	 standard	 ontology.	 In	 contrast,	
Bluewave	can	share	any	JSON	encoded	context,	making	it	compatible	with	a	wide	range	of	existing	[50,93,115],	as	
well	as	emerging	standards	[139,140].	In	the	following	sections,	we	present	nine	applications	built	with	Bluewave.	We	
use	them	to	validate	the	utility	of	our	tools,	and	show	how	our	system	offers	a	simple	but	effective	way	to	share	
context.	

4.4.2. VALIDATION	
We	validate	Bluewave	in	two	parts.	In	the	next	section,	we	show	how	the	ability	to	openly	broadcast	and	listen	for	
context	 is	 useful	 in	 a	 wide	 range	 of	 applications.	 Afterwards,	 we	 evaluate	 Bluewave’s	 battery	 consumption	 and	
latency,	and	show	that	our	system	is	practical	along	both	dimensions. 

4.4.2.1. Example	Applications	
As	 an	 initial	 proof	 of	 concept,	we	describe	 nine	prototype	 applications	 that	were	 created	using	Bluewave.	 These	
applications	are	split	across	two	domains,	public	displays	and	the	Internet	of	Things	(the	first	of	which	has	been	of	
long-standing	interest	in	research	and	the	second	of	which	has	recently	attracted	a	lot	of	attention	in	industry),	to	
demonstrate	the	types	of	opportunistic	applications	that	are	enabled	through	our	system.		

Additionally,	our	applications	also	showcase	Bluewave’s	ability	to	reuse	context.	Rather	than	create	all	nine	examples	
ourselves,	we	gave	Bluewave	(and	our	web	dashboard)	to	3	different	developers,	and	had	them	create	the	applications	

	

Figure	55.	Sample	context	description	from	Bluewave’s	web	dashboard.	This	page	is	curated	with	live	usage	data,	and	allows	
developers	to	see	which	contexts	are	being	shared,	and	how	they	are	formatted.	
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using	our	system.	In	doing	so,	we	not	only	show	that	Bluewave	is	easy	to	understand	and	use,	but	also	demonstrate	
how	our	system	lets	developers	use	the	same	context(s)	in	multiple	ways.	

Public	Displays	
A	key	challenge	in	creating	public	displays	is	scalability.	While	prior	research	has	shown	that	we	can	intelligently	modify	
the	contents	of	signs	based	on	users’	context,	the	resulting	systems	require	users	to	manually	connect	to	the	sign	
[5,84],	 or	 register	with	 a	 central	 service	 [17,49,57].	 This	works	when	 the	 number	 of	 public	 displays	 is	 small,	 but	
becomes	 impractical	 if	we	want	to	expand	this	functionality	beyond	a	single	environment	or	to	a	 large	number	of	
users.		

Bluewave	provides	a	simple	but	elegant	solution	to	this	problem.	Instead	of	requiring	users	to	explicitly	connect	to	
every	sign,	our	system	lets	signs	scan	and	collect	context	from	users.	The	signs	can	then	adjust	their	contents	based	
on	users’	collective	information	needs.	To	demonstrate	this,	one	of	our	developers	created	a	series	of	self-translating	
signs	using	our	system	(Figure	56).	For	this	demonstration,	users	share	their	operating	system	language	settings	via	
Bluewave.	 The	 signs	 then	 detect	 the	 language	 and	 translate	 their	 contents	 to	 accommodate	 the	most	 common	
language(s)	for	the	users	nearby.	In	later	work,	the	same	developer	augmented	the	signs	to	support	visually	impaired	
users.	By	having	users	share	their	disability	via	Bluewave	and	using	Bluetooth	RSSI	to	estimate	range,	the	signs	are	
able	to	detect	when	a	user	with	special	needs	is	nearby,	and	assist	them	by	speaking	out	loud	(Figure	57).		

Bluewave	was	also	used	to	create	navigation	aids.	We	created	a	simplified	version	of	Google	Maps	(Figure	58a)	that	
shares	users’	navigation	destination	(latitude/longitude	coordinates)	through	Bluewave.	A	developer	then	created	a	
smart	bus	stop	sign	that	can	listen	for	this	information,	and	tell	the	user	which	bus	routes	will	travel	near	this	location	

	

Figure	56.	Self-translating	sign	demonstration.	Users	share	their	device’s	operating	system	language	via	Bluewave	(a),	and	
signs	can	automatically	adjust	their	contents	based	on	the	number	of	nearby	users	that	speak	each	language	(b-c).	

	

	

Figure	57.	Smart	sign	demonstration.	Users	share	their	disability	using	Bluewave	(a),	and	smart	signs	can	modify	the	way	they	
output	their	contents	(b).	
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(either	by	drawing	a	red	box	around	the	route	name,	or	displaying	a	user-specified	icon;	Figure	58c).	Another	example,	
created	 by	 a	 different	 developer,	 uses	 the	 same	 context	 to	 control	 a	 house’s	 porch	 lights	 (Figure	 58d).	 Here,	 a	
Bluewave-equipped	 sensor	placed	at	 a	house	 searches	 for	users	 that	 are	navigating	 towards	 it.	When	 found,	 the	
sensors	alter	the	color	of	the	porch	lights	and	sends	the	user	a	message	(e.g.,	“Look	for	the	purple	lights”).		

We	also	used	Bluewave	to	recreate	classic	context-aware	signs,	such	as	the	In-Out	Board	[100].	Our	“sign”	is	a	modified	
tablet	 that	has	been	placed	at	 the	entrance	of	our	 lab	 (Figure	59).	To	use	our	system,	users	share	their	name	via	
Bluewave.	The	sign	can	then	display	this	name,	as	well	as	the	time	they	were	detected	so	that	other	users	can	know	
who	is	in	the	office.	Unlike	the	original	In-Out	Board,	which	requires	users	to	place	a	dedicated	hardware	device	(i.e.,	
an	“iButton”)	on	the	sign	to	check	 in/out,	our	system	uses	Bluewave	to	continually	determine	who	is	nearby.	This	
eliminates	 the	need	 for	users	 to	directly	 interact	with	our	sign,	and	allows	 it	 to	seamlessly	work	with	visitors	and	
changing	lab	membership—a	feature	that	the	original	system	was	not	designed	to	handle.		

In	each	case,	Bluewave	improves	upon	the	state	of	the	art	by	allowing	public	displays	to	provide	users	with	customized	
services	without	having	to	know	of	them	in	advance.	Clearly,	we	kept	these	prototypes	simple	to	illustrate	the	main	
benefits	of	using	Bluewave,	and	did	not	address	usability	issues	such	as	how	to	create	a	self-translating	sign	that	can	
handle	large	numbers	of	users.	Yet	even	in	their	current	form,	these	examples	show	how	sharing	a	small	amount	of	
information	via	Bluewave	substantially	increases	users’	access	to	timely	and	relevant	information.		

 

	

Figure	58.	Navigation	aide	demonstration.	By	inputting	their	destination	address	into	a	Bluewave	compatible	map	app	(a)	and	
sharing	it	(b),	bus	signs	can	tell	users	which	routes	to	take	(c),	and	the	destination	can	notify	users	when	they	are	nearby	(d)		

	

	

Figure	59.	In	Out	Board	demonstration.	Users	share	their	name	using	Bluewave	(a),	and	the	sign	uses	this	information	to	
generate	a	list	of	who	is	nearby	(b).		
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Internet	of	Things	
We	also	explored	how	Bluewave	can	be	used	to	support	the	Internet	of	Things	(IoT).	As	an	initial	demonstration,	we	
have	 created	 a	 series	 of	 remote	 sensors	 (i.e.,	 tablets/phones)	 that	 can	 monitor	 and	 share	 their	 readings	 using	
Bluewave.	Users	can	then	collect	and	view	this	information	from	their	mobile	phones	(using	a	scanning	app	created	
by	another	developer)	without	having	to	directly	connect	with	each	sensor	(Figure	60).	Since	Bluetooth	scans	can	take	
between	15-30	seconds,	our	early	prototypes	focused	on	sensors	whose	readings	do	not	quickly	change	(temperature,	
barometric	pressure,	humidity).	Since	then,	however,	we	have	created	sensors	that	can	share	TCP	connection	settings	
(e.g.,	IP	address/port)	in	addition	to	sensor	data.	This	lets	devices	connect	to	individual	sensor	streams,	and	shows	
how	Bluewave	can	support	occasions	where	real-time	context	(e.g.,	microphone	data)	is	needed.		

Another	use	for	Bluewave	in	IoT	is	to	transfer	user	preferences	between	smart	environments	(Figure	61).	Inspired	by	
systems	such	as	Aura	[107],	which	first	introduced	the	idea	of	cross-environment	syncing,	we	created	a	mobile	app	
that	allows	users	to	adjust	the	color	and	brightness	of	Wi-Fi	connected	light	bulbs	in	their	room.	These	settings	are	
then	shared	via	Bluewave,	and	used	to	configure	the	lights	when	the	user	enters	a	new	location	(e.g.,	an	office	and/or	
hotel).	While	this	prototype	focuses	on	light	settings,	we	are	also	looking	at	how	the	same	technique	can	be	used	to	
migrate	 other	 settings	 (e.g.,	 preferred	 temperature).	 This	 would	 allow	 environments	 to	 intelligently	 configure	
themselves	without	requiring	the	user	to	perform	manual	configuration.		

	

Figure	60.	IoT	sensor	demonstration.	Environmental	sensors	share	temperature	values	via	Bluewave,	and	nearby	devices	are	
able	to	download	and	view	this	information	without	having	to	directly	connect	to	the	sensor.	

	

	

Figure	61.	Migrating	preferences	demonstration.	Users	share	their	preferred	lighting	settings	via	Bluewave	(a),	and	these	
settings	follow	them	from	their	home	(b)	to	their	office	(c).	
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A	 third	 use	 for	 Bluewave	 in	 IoT	 is	 to	 support	ad	 hoc	 facial	 recognition	 (Figure	 62).	 For	 this	 example,	 one	 of	 our	
developers	created	an	app	that	lets	users	upload	photos	of	themselves	to	a	web	server.	The	URLs	to	these	photos,	
along	with	the	user’s	name	(using	the	same	format	as	our	In-Out	Board	example),	is	shared	via	Bluewave.	Camera-
equipped	devices	can	then	obtain	this	context,	and	use	it	to	identify	specific	users	in	the	environment.	This	allows	
devices	to	tell	if	a	user	is	looking	at	them	(rather	than	assume	that	this	is	the	case	when	they	are	in	Bluetooth	range)	
without	requiring	1)	developers	to	create	a	centralized	face	database,	or	2)	users	to	manually	register	their	face	with	
every	environment.		

Our	fourth,	and	most	ambitious	use	of	Bluewave	to	date	is	as	a	tool	to	create	portable	IoT	applications.	As	part	of	our	
ongoing	work,	we	have	deployed	a	series	of	smart	appliances	in	our	lab	that	can	share	their	generic	type	(e.g.,	lights,	
speakers),	capabilities	(e.g.,	turnOnLight(),	playSound()),	and	network	connection	details	(e.g.,	 IP	Address,	port)	via	
Bluewave	 (using	 smartphones	 as	 proxies,	 as	 suggested	 in	 [82]).	 We	 then	 created	 ThingKit,	 a	 custom	 Python	
environment	that	can	dynamically	discover	these	appliances	and	convert	them	into	in-code	objects.	When	developers	
use	ThingKit,	they	can	programmatically	control	a	single	appliance	(e.g.,	“light1.turnOnLights(true)”),	or	all	appliances	
of	the	same	type	(e.g.,	“lights.turnOnLights(true)”).	This	allows	the	user	to	run	a	single	application	(e.g.,	“turn	on	the	
nearest	light	when	I	get	an	email”)	that	works	in	multiple	locations	(Figure	63).		

Collectively,	these	examples	demonstrate	how	the	ability	to	openly	share	context	is	relevant	from	an	IoT	perspective.	
Currently,	research	in	IoT	has	largely	focused	on	the	technological	challenges	associated	with	instrumenting	a	single	

	

Figure	62.	Facial	recognition	demonstration.	Users	share	their	name	and	headshot	photos	via	Bluewave	(a).	This	lets	camera	
equipped	devices	identify	users	in	arbitrary	environments	(b).	

	

	

Figure	63.	ThingKit	demonstration.	Appliances	use	Bluewave	to	broadcast	their	capabilities	(right).	Developers	can	then	create	
generic	IoT	applications	to	control	these	appliances	when	they	are	opportunistically	discovered	(left,	center).	
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environment,	such	as	a	home	or	office.	Our	work	complements	this	growing	body	of	research	by	showing	how	our	
technology	supports	 services	 that	can	span	multiple	 smart	environments.	This	 increases	users’	access	 to	 services,	
while	simultaneously	minimizing	the	need	for	configuration	and	setup.		

4.4.2.2. Battery	Consumption	
In	order	for	Bluewave	to	be	useful	for	 long-term	context	sharing,	 it	needs	to	be	power	efficient.	To	verify	this,	we	
conducted	a	series	of	power	drain	tests	using	identically	configured	Samsung	Galaxy	S	IV	smartphones.	To	establish	a	
baseline,	we	first	measured	the	power	drain	on	the	devices	when	idle	(i.e.,	no	applications	or	Bluetooth	running).	We	
then	had	each	device	share	a	1KB	JSON	file	(the	collective	amount	of	context	shared	by	all	of	our	prototypes)	using	
Bluewave,	and	tested	two	configurations	for	eight	hours	each	(each	test	was	run	5	times):		

1. Configuration	 1:	 The	 device	 is	 only	 broadcasting	 context	 (i.e.,	 Bluetooth	 name	 is	 set	 to	 continuously	
discoverable).		

2. Configuration	2:	The	device	 is	both	 sharing	 context	and	 listening	 for	 context	 from	others	 (i.e.,	 Bluetooth	
discovery	is	restarted	every	30	seconds,	and	Bluetooth	name	is	set	to	be	continuously	discoverable).		

As	expected,	using	Bluewave	leads	to	reduced	battery	life	(Table	12).	However,	the	exact	amount	varies	depending	
on	which	configuration	is	used.	When	Bluewave	is	used	to	share	context	(Configuration	1),	our	system	only	consumed	
an	additional	 1.8%	of	battery	power	after	 eight	hours.	When	 the	device	 is	 both	 sharing	and	 listening	 for	 context	
(Configuration	2),	Bluewave’s	energy	usage	was	about	four	times	as	much	as	the	baseline	condition,	but	still	relatively	
low	at	12%.		

These	results	are	promising	for	two	reasons.	First,	they	show	that	it	is	feasible	to	use	Bluewave	for	extended	periods	
of	time.	While	we	do	not	expect	user	devices	to	have	to	constantly	scan	their	environments	and	share	context,	our	
results	show	that	their	devices	can	do	so	for	a	long	period	of	time	without	depleting	their	battery.	

Second,	our	results	also	show	that,	in	the	vast	majority	of	use	cases,	Bluewave’s	impact	on	battery	life	is	minimal.	Of	
the	12	prototypes	presented	in	this	section,	only	2	(Figure	60	and	Figure	63)	required	the	user’s	device	to	scan	the	
environment;	the	rest	had	users	share	their	context	for	the	environment	to	scan.	As	Bluewave	is	intended	to	allow	
users	 to	 share	 context	with	 the	environment,	we	expect	 that	 users	will	 only	need	 to	have	 their	 Bluetooth	 set	 to	

Table	12.	Results	from	our	battery	drain	tests,	showing	the	average	power	consumed	running	Bulewave	in	various	
configurations.	Each	test	was	run	for	eight	hours,	and	repeated	5	times.	

	
	

Table	13.	Results	from	our	latency	tests,	showing	the	average	time	needed	to	detect	and	download	10	devices’	context	(1KB	
each)	using	various	techniques.	Each	configuration	was	tested	30	times.	
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discoverable	to	benefit	from	our	system.	This	lets	Bluewave	run	in	its	low	power	configuration	for	most	use	cases,	
while	still	giving	users	the	option	to	scan	for	context	when	needed.	

4.4.2.3. Latency	
In	addition	 to	power	efficiency,	we	also	wanted	 to	see	how	Bluewave’s	 latency	compared	 to	other	beacon	based	
technologies	 (e.g.,	Google’s	Physical	Web).	To	 investigate	 this,	we	positioned	10	Bluewave	devices	 throughout	an	
office	area,	and	timed	how	long	it	took	for	an	11th	device	(a	Samsung	Galaxy	S	IV)	to	scan	and	download	each	one’s	
context	 (i.e.,	 the	 same	 1KB	 JSON	 file	 used	 in	 the	 previous	 test).	We	 then	 compared	 this	 to	 the	 time	 needed	 to	
download	the	same	information	by	1)	connecting	to	each	device	via	Bluetooth	(assuming	no	PIN	is	required),	and	2)	
using	Physical	Web	beacons	(i.e.,	using	Bluetooth	LE	(BLE)	to	discover	each	beacon,	extract	the	URL,	and	download	
the	file).	Each	method	was	tested	30	times.		

Our	 results	 (Table	13)	 show	 that	Bluewave’s	 latency	outperforms,	or	 is	 at	 least	 comparable	 to,	 industry	 standard	
techniques.	Our	system	discovers	and	obtains	context	nearly	five	times	faster	than	is	possible	using	direct	Bluetooth	
pairing.	This	is	because	Bluewave	is	able	to	discover	devices	and	download	context	in	parallel,	while	Bluetooth	must	
individually	 pair	with	 each	 device	 before	 downloading	 its	 context.	Our	 system	 is	 slower	 than	 using	 Physical	Web	
beacons	to	share	context	(Table	13,	row	3)	due	to	Bluetooth’s	longer	advertisement	interval.	Our	results,	however,	
show	 that	 the	 difference	 is,	 on	 average,	 2.3	 seconds.	 Practically	 speaking,	 this	means	 that	 applications	 that	 can	
tolerate	BLE’s	latency	should	also	work	with	Bluewave.		

These	results	show	that	Bluewave	offers	a	good	compromise	between	speed	and	flexibility.	While	our	system	is	not	
the	 fastest,	 it	 offers	 similar	 performance	 to	 state-of-the-art	 technologies.	 This,	 combined	 with	 Bluetooth’s	
pervasiveness	and	our	system’s	integrated	privacy	tools,	makes	Bluewave	a	compelling	alternative	to	current	context-
sharing	techniques.	

4.4.3. DISCUSSION		
Bluewave	demonstrates	how	the	ability	 to	manipulate	Bluetooth	names	significantly	 increases	devices’	abilities	 to	
opportunistically	 share	 context.	 At	 the	 same	 time,	 however,	 it	 also	 raises	 several	 interesting	 usability	 and	 design	
issues.	In	this	section,	we	discuss	how	manipulating	Bluetooth	names	and	making	devices	permanently	discoverable	
can	negatively	 impact	 the	 end-user	 experience,	 and	offer	mitigating	 solutions.	We	 then	examine	our	 prototypes’	
reliance	 on	 specialized	 applications	 to	 share	 context,	 and	 show	 how	 this	 dependency	 should	 decrease	 as	 our	
technique	becomes	more	widely	used.	Finally,	we	reexamine	our	decision	to	use	Bluetooth	as	opposed	to	Bluetooth	
Low	Energy,	and	show	how	our	technique	can	be	generalized	to	support	other	technologies.		

Tradeoffs	for	Increased	Usability		
Our	work	has	identified	two	key	challenges	with	using	Bluetooth	names	to	share	context:	

Less	User-Friendly	Bluetooth	Names.	Bluewave	programmatically	modifies	a	device’s	Bluetooth	name	to	encode	a	
flag,	device	 ID,	URL,	and	 temporary	key.	While	 the	 resulting	 strings	 (Figure	50)	are	easily	 read	by	a	machine,	our	
modifications	may	make	it	harder	for	users	to	find	the	device(s)	they	want	to	pair	with.		

However,	 our	 approach	 fully	 preserves	 the	 user	 friendly	 device	 name,	 and	 we	 added	 a	 helper	 method	 to	 our	
middleware	to	extract	the	Device	ID	from	a	Bluewave	name.	Applications	can	use	this	method	to	only	show	the	user	
friendly	name	(e.g.,	“Bob’s	Phone”)	as	opposed	to	 its	system	generated	name	(e.g.,	“GCF::Bob’s	Phone::...”)	when	
users	perform	a	Bluetooth	scan.	In	future	work,	we	are	also	looking	at	incorporating	this	preprocessing	step	at	the	OS	
level.	This	approach	is	more	difficult	to	implement,	but	would	completely	hide	Bluewave’s	naming	scheme	from	users.		
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Increased	Opportunities	to	Track	Users.	Bluewave	requires	devices	to	be	continuously	discoverable	so	that	they	can	
advertise	 updates	 to	 their	 context.	 This	 eliminates	 the	 need	 for	 a	 priori	 coordination,	 but	 also	 creates	 new	
opportunities	 for	applications	and/or	users	 to	 track	users	by	 their	 (static)	device	 IDs	as	 they	move	 throughout	an	
environment.		

However,	 this	 is	 a	 potential	 risk	 with	 all	 context-aware	 systems	 and	 not	 unique	 to	 Bluewave.	 Many	 popular	
technologies,	such	as	websites,	credit	cards,	and	personal	digital	assistants	(e.g.,	Google	Now)	already	monitor	users’	
locations	and/or	activities	to	offer	personalized	services,	and	can	be	used	to	track	users	without	their	knowledge	or	
express	permission.	Compared	to	these	technologies,	Bluewave’s	ability	 to	track	the	user	 is	highly	 localized.	Since	
Bluetooth’s	range	is	effectively	capped	at	15-30	feet,	developers	would	need	to	deploy	a	large	number	of	Bluetooth	
scanners	to	track	a	user	over	longer	distances.	Importantly,	since	our	system	only	works	when	Bluetooth	is	active,	
users	can	easily	turn	off	Bluetooth	discovery	if	they	do	not	want	to	be	tracked.	This	gives	users	absolute	control	over	
when	their	context	is	shared,	and	allows	them	to	use	our	system	only	if	and	when	they	feel	comfortable.	

The	Need	for	Dedicated	Context-Sharing	Applications		
Many	of	our	prototypes	rely	on	custom	apps	to	publish	and	share	user	information.	For	example,	before	users	can	
receive	 recommendations	 from	our	 intelligent	bus	displays,	 they	need	 to	 specify	 their	 destination	using	our	map	
application.	Similarly,	before	our	facial	recognition	system	can	identify	a	person,	the	user	must	first	use	our	app	to	
collect	and	share	her	photograph	and	name.		

The	need	for	dedicated	apps	imposes	a	requirement	on	our	opportunistic	context-sharing	technique.	In	the	absence	
of	better	context-sharing	apps,	our	own	apps	were	required	to	show	how	Bluewave	might	be	used	today.	However,	
it	 is	 conceivable	 that	 the	 contexts	used	by	our	examples	 could	be	 collected	and	 shared	directly	by	 the	operating	
system,	or	by	OS-standard	apps	(e.g.,	a	map	app).	This	would	reduce	the	need	for	specialized	apps	for	many	commonly	
used	contexts,	while	still	providing	systems	with	the	information	they	need.		

It	 is	 also	 important	 to	 note	 that	 the	 apps	 used	 in	 our	 examples	 are	 not	 system-specific.	 For	 instance,	 our	 map	
application	(Figure	58a)	does	not	 just	share	the	user’s	destination	with	bus	signs	(Figure	58c),	but	rather	with	any	
system	that	needs	this	information	and	is	given	permission	by	the	user	(such	as	the	porch	light	system	depicted	in	
Figure	 58d).	 Similarly,	 our	 facial	 recognition	 app	 (Figure	 62)	 does	 not	 just	 share	 user	 photographs	 with	 a	 single	
environment,	but	with	any	environment	that	requests	it,	if	approved	by	the	user.	This	lets	camera-equipped	devices	
recognize	nearby	users	when	they	meet	for	the	first	time.	This	makes	our	context-sharing	technique	more	general	
than	most	application-specific	solutions,	and	is	useful	for	sharing	contexts	between	apps.	The	ability	to	share	context	
between	apps	provides	opportunities	for	new	context-aware	systems	that	work	together	 in	symphony	and	enable	
richer	applications.		

4.4.3.1. Bluetooth	vs.	Bluetooth	Low	Energy		
Bluewave	currently	relies	on	“classic”	Bluetooth	technologies	in	order	to	share	context.	However,	Bluetooth	4.0	(i.e.,	
Bluetooth	Low	Energy)	has	been	ratified	since	2010,	and	is	available	on	commercial	hardware.	While	our	experimental	
results	show	that	it	is	feasible	for	devices	to	both	scan	for	devices	and	be	discoverable	using	Bluetooth	for	a	single	
day,	BLE	devices	are	known	to	be	even	more	efficient,	and	can	operate	for	years	on	a	single	charge	[62].		

Our	decision	to	base	Bluewave	on	Bluetooth	was	made	mostly	for	compatibility	reasons.	Bluetooth	is	an	established	
standard	and	adoption	of	new	technologies	such	as	BLE	is	much	slower	than	one	might	think.	To	date,	only	60%	of	
Android	devices	are	able	 to	scan	 for	BLE	devices	 [141].	Furthermore,	out	of	 the	4,600+	Android	models	currently	
available	to	consumers,	only	the	Nexus	6	and	9	(as	of	this	writing)	have	the	ability	to	serve	as	BLE	beacons	[142].	In	
contrast,	classic	Bluetooth	is	available	on	nearly	every	mobile	device,	and	allows	devices	to	both	scan	for	devices	and	
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be	discoverable	at	the	same	time.	We	have	successfully	used	Bluewave	on	devices	running	Android	Gingerbread	(a	6-
year-old	operating	system	as	of	this	writing).	Thus,	while	BLE	is	technically	more	efficient	and	may	one	day	replace	
Bluetooth,	Bluetooth’s	ability	to	run	on	almost	any	hardware,	combined	with	its	acceptable	energy	use	and	latency,	
makes	it	the	preferred	solution	for	now.		

Fortunately,	Bluewave	 is	not	 inherently	tied	to	a	single	technology.	The	technique	that	we	present,	as	well	as	the	
backend	architecture	used	for	storing	context	and	managing	user	privacy,	is	generalizable	to	any	technology	that	can	
broadcast	a	customizable	link.	Google’s	Physical	Web	project	[135],	for	example,	shows	that	it	is	already	possible	to	
share	URLs	via	BLE	beacons.	Consequently,	future	versions	of	Bluewave	can	easily	be	created	to	support	BLE	and	other	
emerging	technologies	as	they	become	more	widely	available.	

4.4.4. LESSONS	LEARNED	

In	 addition	 to	 augmenting	 GCF’s	 ability	 to	 detect	 nearby	 devices	 and	 form	 groups,	 Bluewave	 also	 increases	 our	
understanding	of	the	challenges	of	sharing	context	from	both	an	end-user	and	developer	standpoint.	In	this	section,	
we	highlight	three	important	lessons	that	we	learned	from	Bluewave’s	development,	and	show	how	they	have	been	
incorporated	into	GCF’s	design.	

The	Importance	of	End-User	Privacy	Controls.	A	key	takeaway	from	Bluewave	is	that	users	want	explicit	control	over	
when	and	how	their	context	is	being	shared.	During	our	pilot	study,	we	learned	that	our	participants	were	open	to	
the	general	idea	of	sharing	context	with	other	(i.e.,	new	or	unfamiliar)	devices	over	a	small	geographic	radius.	In	each	
case,	however,	we	found	that	participants	were	more	comfortable	doing	so	when	they	knew	1)	what	device(s)	and/or	
entities	 were	 requesting	 this	 information,	 2)	 what	 information	 and	 services	 they	 would	 provide	 to	 the	 user	 in	
exchange.	This	was	true	even	when	the	information	being	shared,	by	participants’	own	admission,	was	too	innocuous	
(“It’s	just	a	book”—P3)	to	be	used	to	personally	identify	or	harm	them.	

	

Figure	64.	GCF’s	updated	permission	screen	allows	users	to	control	what	information	is	shared	via	Bluewave	(a)	or	by	context	
providers	(b).	Applications	also	automatically	generate	notifications	whenever	they	share	context	with	other	devices	(c).	
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In	response	to	these	concerns,	we	added	a	number	of	privacy-centric	features	to	Bluewave.	As	mentioned	above,	our	
system	 now	 generates	 a	 system	 notification	 when	 a	 nearby	 device	 requests	 context	 from	 them	 (e.g.,	
“navigationDestination”)	for	the	first	time.	Users	can	then	see	which	application(s)	want	context,	and	grant	access	on	
a	case-by-case	basis.	Additionally,	Bluewave	provides	users	with	a	web-based	console	so	that	they	can	review	their	
sharing	preferences	across	all	applications.	This	tool	lets	users	modify	permissions	(e.g.,	revoke	access)	after	the	fact,	
and	gives	them	the	option	to	define	global	sharing	policies	so	that	they	do	not	need	to	grant	every	application	access.	

Although	we	had	originally	 intended	for	these	tools	to	be	used	with	Bluewave,	we	eventually	came	to	realize	that	
giving	users	control	over	their	context	would	be	useful	across	all	of	GCF.	Inspired	by	this,	we	have	added	standardized	
permissions	 controls	 to	our	 framework.	Our	 new	permissions	 screen	 (Figure	64)	 not	only	 lets	 users	 control	what	
information	 is	 currently	being	broadcasted	via	 Bluewave	 (Figure	64a),	 but	 also	allows	users	 to	 see	which	 context	
providers	are	currently	loaded	and	what	types	of	information	they	can	provide	(Figure	64b).	Users	can	then	specify	
which	context	provider(s)	are	allowed	to	respond	to	external	requests,	and	which	ones	can	only	provide	information	
to	locally	installed	applications.	Additionally,	our	system	also	lets	users	see	which	context	providers	are	currently	being	
used	at	any	given	time,	and	can	even	be	configured	to	provide	users	with	a	notification	when	a	context	provider	is	
being	 started	by	an	external	device	 (Figure	64c).	 This	 improves	users’	 awareness	over	how	 their	 context	 is	 being	
collected	and	shared	at	runtime,	which	in	turn	helps	them	customize	the	framework	to	match	their	personal	comfort	
levels.		

By	making	these	controls	standard	across	every	GCF	application,	our	framework	gives	users	a	simple	way	to	manage	
their	information	sharing	preferences.	To	maximize	the	chances	of	finding	and	forming	opportunistic	applications,	we	
would	obviously	prefer	that	every	GCF	application	openly	shared	context.	Our	experience	with	Bluewave,	however,	

	

Figure	65.	Screenshot	from	GCF’s	updated	dashboard.	This	page	is	automatically	updated	by	the	framework,	and	allows	
developers	to	see	what	information	is	available,	and	how	it	is	formatted.	
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has	shown	us	that	the	desire	to	share	is	still	highly	personalized.	Consequently,	our	controls	give	users	the	ability	to	
restrict	sharing	for	the	interim,	while	still	giving	them	the	option	to	openly	share	if	and	when	they	are	ready	to	do	so.	

The	Need	for	“Living	Documentation.”	Our	work	with	Bluewave	also	highlights	the	importance	of	providing	developers	
with	 accurate	 and	 up-to-the-minute	 documentation.	 As	mentioned	 in	 our	 validation,	we	 gave	 Bluewave	 to	 three	
external	developers,	 and	had	 them	create	applications	using	our	 system.	While	we	had	assumed	 that	developers	
would	be	able	to	easily	use	our	system	to	reuse	the	same	context	across	multiple	applications,	we	found	that	they	
had	difficulty	doing	so	because	they	did	not	know	what	context	was	available	through	our	system,	and	how	it	was	
formatted.	 To	overcome	 this,	we	 created	 a	 simple	web	dashboard	 that	 let	 developers	 see	what	 information	was	
available	through	our	system	(Figure	55).	This	information	was	automatically	generated	by	our	context	brokers,	and	
gave	developers	a	simple	way	to	see	what	context	they	could	use	 in	their	applications	without	having	to	explicitly	
coordinate	with	each	other.	

Through	this	experience,	we	realized	that	we	needed	to	give	developers	a	better	idea	of	what	information	they	can	
access	 through	 our	 framework.	 Based	 on	 this,	 we	 have	 modified	 Bluewave’s	 dashboard	 so	 that	 it	 provides	 this	
information	 for	 all	 of	 GCF.	 Using	 our	 tool	 Figure	 65	 developers	 can	 still	 search	 for	 contexts	 that	 are	 shared	 via	
Bluewave.	Additionally,	however,	they	can	also	see	which	context	providers	are	available	through	our	system.	Our	
modified	dashboard	keeps	track	of	the	number	of	applications	that	use	this	context	providers,	so	that	developers	can	
more	accurately	gauge	how	likely	it	is	that	they	will	be	able	to	take	advantage	of	this	type	of	information	in	real-world	
conditions.	 Most	 importantly,	 we	 have	 modified	 GCF	 so	 that	 this	 information	 is	 automatically	 uploaded	 to	 our	
dashboard.	This	ensures	that	the	information	on	our	website	is	always	up-to-date,	and	maximizes	the	likelihood	of	
developers	taking	advantage	of	opportunistic	groups	in	their	applications.	

Supporting	Opportunistic,	Dynamic	Context	Sharing.	Our	final	insight	from	Bluewave	was	learned	while	creating	our	
prototype	applications.	When	we	created	our	remote	sensor	demonstration	(Figure	60),	we	discovered	that	we	could	
use	Bluewave	to	let	devices	share	socket	connection	settings	instead	of	raw	sensor	readings.	This	let	devices	connect	
to	the	sensor	and	obtain	live	data,	even	when	they	are	not	connected	to	the	same	network.	

Through	 this	workaround,	we	 realized	 that	we	 could	 use	 Bluewave	 to	 overcome	GCF’s	most	 significant	 technical	
limitation	(i.e.,	the	inability	to	form	groups	and	share	real-time	context	in	environments	where	no	common	network	
connectivity	exists).	When	we	originally	created	this	application,	we	had	to	write	custom	code	to	1)	obtain	the	remote	
sensor’s	network	connection	details,	2)	connect	to	the	correct	socket,	and	3)	request	and	receive	using	GCF’s	context	
request	messages.	Since	then,	however,	we	have	made	several	additions	to	GCF	to	automate	this	process.	

First,	we	have	modified	GCF	so	that	it	can	advertise	its	capabilities	using	Bluewave.	Each	time	the	client	service	uploads	
context	to	the	broker,	our	framework	also	inserts	a	system	generated	JSON	element	which	contains	1)	the	context	
providers	are	currently	registered	on	the	device,	and	2)	the	communications	channel	that	it	is	listening	on.	A	sample	
JSON	element	is	provided	below:	

Additionally,	 we	 have	 modified	 the	 group	 context	 manager	 so	 that	 it	 automatically	 requests	 this	 JSON	 element	
whenever	the	device	performs	a	Bluewave	scan.	When	a	developer	calls	SENDREQUEST(),	the	group	context	manager	
uses	the	results	from	the	most	recent	Bluewave	scan	to	determine	which	devices	are	nearby	and	can	provide	the	
requested	context.	The	 framework	will	 then	connect	 to	 these	devices	and	request	context	 from	them.	As	devices	
move	out	of	Bluetooth	range,	GCF	automatically	determines	that	they	are	no	longer	nearby	and	unsubscribes	from	
their	context	providers.	This	allows	the	framework	to	seamlessly	and	dynamically	switch	context	providers	as	the	user	
moves	from	one	location	to	another,	without	requiring	developers	to	manually	keep	track	of	which	devices	are	nearby.	
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Through	this	approach,	we	strike	a	balance	between	functionality	and	efficiency.	By	giving	GCF	the	ability	to	share	
system	level	information	via	Bluewave,	we	provide	GCF	with	a	way	to	request	and	receive	both	static	and	real-time	
context	without	requiring	each	device	to	be	connected	to	the	same	communications	channel.	It	is	important	to	note,	
however,	that	our	approach	is	not	entirely	automatic.	In	order	to	use	this	capability,	developers	must	manually	direct	
GCF	 to	 perform	Bluewave	 scans,	 and	 specify	 the	desired	 scan	 interval.	 This	makes	 it	 easy	 for	 developers	 to	 take	
advantage	of	this	functionality,	while	still	giving	them	the	option	to	turn	it	off	when	not	needed.	

4.5. SUMMARY	
In	this	chapter,	we	described	four	systems	that	explore	how	opportunistic	groups	can	be	utilized	in	context-aware	
computing.	The	first	system,	Didja,	demonstrates	how	the	ability	to	share	and	compare	context	across	devices	allows	
them	to	form	more	precise	groups	than	what	is	possible	using	traditional	proximity	based	techniques.	The	second	
system,	Snap-To-It,	shows	how	the	ability	to	share	context	(i.e.,	a	photograph)	with	an	environment	allows	users	to	
quickly	and	seamlessly	interact	with	the	devices	in	their	immediate	surroundings.	The	third	system,	Impromptu,	shows	
how	the	ability	to	form	opportunistic	groups	can	be	extended	to	applications	and	services,	thereby	allowing	users	to	
access	these	programs	without	having	to	explicitly	install	them.	Finally,	the	fourth	system,	Bluewave,	shows	how	we	
can	leverage	Bluetooth	to	extend	GCF’s	ability	to	broadcast	context	to	nearby	devices.	This	 increases	the	range	of	
environments	in	which	GCF	can	detect	and	form	groups,	and	allows	our	system	to	work	under	a	wider	range	of	real	
world	conditions.	

The	work	described	in	this	section	has	allowed	us	to	make	progress	towards	answering	our	second	research	question.	
By	using	each	of	these	systems	as	probes,	we	have	been	able	to	create	a	number	of	representative	examples	that	
show	how	GCF	can	be	utilized	to	support	a	diverse	range	of	interactions	between	users,	devices,	and	any	combination	
of	 the	 two.	 As	 mentioned	 at	 the	 beginning	 of	 this	 chapter,	 the	 purpose	 of	 this	 exploration	 is	 not	 to	 provide	 a	
comprehensive	list	of	every	possible	way	that	opportunistic	groups	can	be	used	in	context-aware	computing.	Yet	by	
covering	many	common	cases,	we	not	only	provide	a	foundation	of	understanding	that	can	be	extended	and	built	
upon	 in	 the	 future,	 but	 demonstrate	 how	 our	 framework	 provides	 the	 abstractions	 needed	 to	 facilitate	 these	
explorations.	

We	have	learned	a	lot	from	creating	these	systems.	From	a	technological	standpoint,	developing	these	systems	has	
allowed	us	to	validate	GCF’s	design,	and	show	that	the	framework	works	as	intended.	Moreover,	these	systems	have	
given	us	firsthand	knowledge	of	GCF’s	limitations,	and	have	helped	us	refine	our	design	and	add	additional	features.	
In	 the	 following	 chapters,	 we	 summarize	 the	 modifications	 that	 were	 made	 to	 our	 framework,	 and	 show	 how	
developers	can	utilize	its	functionality	in	both	new	and	existing	applications.	We	then	conduct	a	study	to	show	that	
our	framework	works	in	a	wide	range	of	use	cases,	and	that	it	has	the	abstractions	needed	to	be	used	as	a	general	
purpose	development	and	research	platform.

“device”:{ 
 “deviceID”:”Nexus 5-A”, 
 “battery”:50, 
 “applications”:[ 
  {  
   “name”:”Impromptu”, 
   “contextproviders”:[“TEMP”,”LOC”,”CAL”] 
   “comm”:{“mode”=“MQTT”,“ipAddress”=“epiwork.hcii.cs.cmu.edu”,“port”=1883} 
  } 
 ] 
} 

 
 
Figure	66.	GCF	generated	context	for	a	specific	device.	By	using	Bluewave	to	share	information	about	1)	the	types	of	context	a	

device	can	provide,	and	2)	the	network	address	the	device	is	listening	on,	GCF	can	automatically	form	ad	hoc	network	connections.	
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5. REVISITING,	REFINING,	AND	USING	THE	FRAMEWORK	
In	 CHAPTER	 3,	 we	 presented	 an	 initial	 implementation	 of	 the	 Group	 Context	 Framework.	 We	 described	 the	
framework’s	 core	abstractions	and	architectural	 components,	and	showed	how	 it	 supported	all	 four	of	 the	group	
types	identified	in	our	conceptual	model.	We	then	used	GCF	in	CHAPTER	4	to	develop	four	context-aware	appliances	
and/or	 systems.	Collectively,	 these	 systems	 increased	our	understanding	of	how	 the	ability	 to	 form	opportunistic	
groups	supports	a	wide	range	of	serendipitous	interactions	with	users,	the	environment,	and	information/services.	
They	also	gave	us	the	opportunity	to	evaluate	GCF’s	functionality,	and	identify	areas	where	the	framework	is	either	in	
need	of	further	improvement,	or	lacking	altogether.	

In	this	chapter,	we	show	how	our	experience	building	these	systems	has	helped	us	refine	GCF.	First,	we	summarize	
the	changes	that	we	have	made	to	GCF	to	support	Didja,	Snap-To-It,	Impromptu,	and	Bluewave,	and	show	how	our	
updated	 architecture	 addresses	 all	 of	 the	 functional	 shortcomings	 we	 identified	 in	 CHAPTER	 3.	 Afterwards,	 we	
introduce	a	generalizable	design	process	 for	creating	opportunistic	context-aware	applications,	and	present	 three	
case	studies	to	show	how	this	process	can	help	guide	developers	when	using	our	framework.		

This	chapter	continues	our	exploration	of	RQ1	(“How	can	we	allow	devices	to	form	opportunistic	groups	and	share	
context”).	 Through	 our	 experiences	 in	 CHAPTER	 4,	 we	 have	 identified	 a	 number	 of	 additional	 features	 that	 the	
framework	needs	to	provide	to	allow	devices	to	form	opportunistic	groups.	In	this	chapter,	we	show	how	the	lessons	
learned	from	our	prior	work	have	been	incorporated	into	the	framework.	This	increases	our	understanding	of	how	
we	can	support	opportunistic	groups	at	the	technical	level,	and	provides	a	functional	implementation	that	addresses	
all	of	the	issues	we	have	identified	through	prior	work.	

5.1. OVERVIEW	OF	MAJOR	CHANGES	
Our	experiences	with	Didja,	Snap-to-It,	Impromptu,	and	Bluewave	have	led	us	to	make	several	modifications	to	GCF’s	
functional	requirements	(for	the	complete	listing,	refer	to	Appendix	B).	In	this	section,	we	summarize	these	changes,	
and	present	our	framework’s	updated	architecture.	Afterwards,	we	show	how	this	updated	framework	addresses	or	
mitigates	all	of	the	shortcomings	identified	in	CHAPTER	3.	

5.1.1. COMMUNICATION	PROTOCOL	CHANGES	
As	shown	in	Table	14,	we	have	made	two	modifications	to	GCF’s	communication	protocol	in	order	to	support	a	wider	
range	of	interactions	between	group	members:	

Supporting	Direct	Messaging.	Based	on	our	experience	with	Didja,	we	 learned	that	there	are	times	when	a	device	
needs	to	send	messages	to	a	specific	set	of	devices	rather	than	with	every	device	in	communications	range.	To	provide	
this	capability,	we	have	added	a	new	destination	field	to	GCF’s	COMMMESSAGE	base	class	(Table	14.	When	applications	
need	to	send	a	message	(e.g.,	a	context	request)	to	one	or	more	devices,	they	populate	this	field	with	the	ID(s)	of	the	
intended	recipients.	The	communications	manager	will	then	examine	the	destination	field	of	each	incoming	message,	
and	only	deliver	it	to	the	group	context	manager	if	1)	the	device’s	ID	is	included	in	this	list,	or	2)	the	list	is	empty.	By	
including	this	field	 in	every	GCF	message,	we	give	devices	the	ability	to	 ignore	messages	that	are	not	 intended	for	
them.	This	lets	the	framework	deliver	highly	specialized	information,	even	when	all	of	the	devices	are	communicating	
over	the	same	broadcast	channel.	
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Allowing	Devices	to	Send/Receive	Remote	Commands.	Our	work	with	Snap-To-It	has	revealed	that	there	are	times	
when	devices	need	to	be	able	to	send	remote	commands	once	they	have	formed	a	group.	To	support	these	use	cases,	
we	have	created	a	new	COMPUTEINSTRUCTION	message	 type	 (Table	14,	blue).	When	an	application	needs	 to	 send	a	
remote	command,	they	provide	GCF	with	1)	the	context	type	of	the	context	provider,	2)	the	name	of	the	custom	
command	(e.g.,	“PRINT”,	“PLAY_MUSIC”),	and	3)	zero	or	more	parameters.	The	message	in	then	transmitted	to	the	
destination	 device’s	 context	 provider,	 where	 it	 is	 used	 to	 perform	 a	 predefined	 action	 (e.g.,	 print	 a	 document,	
start/stop	 music	 playback).	 Compute	 instructions	 give	 developers	 a	 highly	 customizable	 way	 to	 send	 arbitrary	
messages	to	a	context	provider	without	having	to	issue	a	new	context	request.	This	gives	developers	a	simple	way	to	
create	interactive	applications	using	our	framework.	

Table	14.	GCF’s	revised	communication	message	types.	Changes	are	colored.	
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Figure	67	shows	how	these	additional	 features	affect	GCF’s	abilities	to	 find,	 form,	and	work	 in	groups	at	runtime.	
Rather	than	have	to	request	context	from	every	device,	Device	A	can	now	use	the	destination	field	to	send	a	request	
to	just	Devices	B	and	C	(Figure	67a).	These	devices	can	then	use	the	same	mechanism	to	transmit	an	advertisement	
that	only	Device	A	will	receive.	Additionally,	once	Device	A	forms	a	group,	 it	can	use	the	group	context	manager’s	
SENDCOMPUTEINSTRUCTION()	 method	 to	 transmit	 one	 or	 more	 remote	 commands	 to	 Device	 B	 (Figure	 67c).	 These	
messages	are	then	forwarded	to	the	context	providers	ONCOMPUTEINSTRUCTIONRECEIVED()	method,	where	they	can	be	
converted	into	any	number	of	pre-canned	actions.	

Thus,	 while	 the	 changes	 to	 GCF’s	 communications	 protocol	 seem	 simplistic,	 they	 augment	 the	 framework’s	
capabilities	in	subtle	but	important	ways.	Whereas	previous	versions	of	GCF	could	only	broadcast	context	requests	
and	data,	our	updated	framework	now	gives	applications	a	great	deal	of	flexibility	in	deciding	which	devices	they	want	
to	interact	with	and	when.	Moreover,	through	the	inclusion	of	the	Compute	Instruction	message	type,	our	framework	
can	 now	 be	 used	 to	 facilitate	 a	 wide	 range	 of	 real-time	 interactions.	 For	 backwards	 compatibility	 reasons,	 our	
framework	 can	 still	 be	 used	 to	 openly	 collect	 context	 over	 any	 network	 or	 subnet.	 By	 offering	 these	 additional	
capabilities,	however,	we	increase	the	range	of	use	cases	that	the	framework	can	easily	support.	

5.1.2. GROUP	CONTEXT	MANAGER	CHANGES	
We	have	also	made	a	number	of	modifications	to	GCF’s	group	context	manager	in	order	to	improve	the	framework’s	
ability	to	find	and	form	opportunistic	groups:	

	

Figure	67.	Sample	communications	between	multiple	GCF-enabled	devices,	showing	the	process	by	which	devices	request	and	
receive	context	(a,b,d),	and	send	asynchronous	commands	(c).	By	utilizing	the	destination	field,	Device	A	can	direct	messages	to	

specific	devices	for	additional	customization	options.	Note	that	time	is	flowing	down.	
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Supporting	User-Defined	Groups.	As	observed	 in	our	work	with	Snap-To-It	and	 Impromptu,	 there	are	 times	when	
users	need	to	be	able	to	explicitly	specify	which	device(s)	and/or	service(s)	they	would	like	to	form	an	opportunistic	
group	with.	In	response	to	this,	we	have	added	a	new	MANUALARBITER	class	to	GCF.	Instead	of	forming	groups	according	
to	a	predefined	policy	(as	is	the	case	with	GCF’s	Single	Source,	Multi-Source,	and	Local	Only	arbiters),	manual	arbiters	
collect	context	capability	messages	for	a	given	context	request.	Applications	can	then	use	this	information	to	present	
users	with	a	 list	of	options,	and	tell	 the	arbiter	which	device(s)	to	group	with.	Although	they	 lack	any	 intelligence,	
manual	arbiters	make	it	easy	for	developers	to	include	user-defined	grouping	in	their	applications.	This	addresses	an	
important	gap	in	GCF’s	functionality,	and	gives	developers	an	additional	way	to	use	our	framework.		

Running	GCF	in	the	Background.	Our	work	with	Impromptu	has	also	revealed	the	importance	of	being	able	to	run	GCF	
continuously.	To	address	this,	we	have	created	a	new	wrapper	class	that	allows	the	group	context	manager	to	run	as	
a	service	on	Android	devices.	To	take	advantage	of	this	capability,	developers	call	Android’s	STARTSERVICE()	method	in	
their	application,	and	tell	it	to	create	an	instance	of	the	GCFSERVICE	class.	The	service	can	then	be	used	request,	receive,	
and	provide	context	to	other	devices,	even	when	the	user	is	not	running	the	app	on	her	mobile	device,	or	looking	at	
her	screen.	Additionally,	the	service	can	also	restart	itself	when	it	detects	that	it	has	been	deactivated	by	the	user	or	
operating	system.	This	ensures	that	GCF	is	always	online	and	available.	

Bluewave	Integration.	Through	Bluewave,	we	discovered	that	the	ability	to	share	context	using	Bluetooth	names	is	
useful	in	a	wide	range	of	use	cases	and	real-world	environments.	As	a	result,	we	have	modified	GCF	so	that	each	group	
context	manager	has	its	own	Bluewave	client	service	and	context	broker.	When	developers	use	our	framework,	they	
can	choose	to	either	share	context	using	a	context	provider,	or	to	broadcast	it	via	Bluewave	to	all	nearby	devices.	
Similarly,	 to	 obtain	 context,	 applications	 can	 either	 transmit	 a	 context	 request	message	 across	 a	 network,	 or	 by	
conducting	a	Bluetooth	scan.	By	offering	multiple	ways	to	request	and	receive	context,	GCF	can	now	find	and	form	
groups	in	a	wider	range	of	environments.	This	allows	devices	to	share	information	without	requiring	devices	to	always	
be	connected	to	the	same	network	or	server.	

Enabling	Ad	 Hoc	 Communications.	 Another	 insight	 gained	 from	 our	 work	 with	 Bluewave	 is	 that	 we	 can	 use	 the	
technique	to	share	network	connection	details	(e.g.,	IP	Addresses,	ports,	communication	protocols).	This	lets	devices	
form	temporary	connections	and	share	real-time	context,	even	when	they	are	on	logically	separate	networks.	In	light	
of	this	discovery,	we	have	modified	the	group	context	manager	so	that	this	capability	is	now	provided	“for	free.”	Our	
updated	group	context	manager	now	uses	Bluewave	to	 let	devices	advertise	1)	what	context	providers	 they	have	
installed,	and	2)	what	channel	they	are	listening	on,	to	their	immediate	neighbors.	Whenever	a	GCF	application	calls	
SENDCONTEXTREQUEST(),	the	group	context	manager	uses	Bluewave	to	determine	if	there	are	any	nearby	devices	that	
can	provide	the	requested	information.	If	so,	the	group	context	manager	will	then	form	an	ad	hoc	connection	with	
the	device,	 and	 subscribe	 to	 its	 context	provider.	When	devices	move	out	of	Bluetooth	 range,	 the	group	context	
manager	 automatically	 detect	 that	 the	 devices	 are	 no	 longer	 nearby,	 and	 terminate	 the	 connection.	 By	 utilizing	
Bluewave	in	this	manner,	GCF	is	able	to	share	real-time	context	data	in	a	wider	range	of	environments.	This	increases	
the	types	of	applications	that	can	be	easily	built,	without	creating	additional	complexity	for	developers.	

5.1.3. MISCELLANEOUS	CHANGES	
Our	final	set	of	modifications	to	GCF	consist	of	“quality	of	life”	improvements.	These	modifications	do	not	alter	the	
framework’s	behavior,	but	rather	provide	additional	backend	support	so	that	both	users	and	developers	can	more	
easily	make	use	of	its	features.	

User	Permissions.	Inspired	by	our	work	with	Bluewave,	we	have	modified	GCF	to	provide	users	with	a	more	complete	
set	of	privacy	controls.	Our	updated	permissions	screen	provides	users	with	a	single,	consolidated	interface	to	see	
how	their	context	 is	being	collected	and	shared.	From	there,	users	can	see	which	context	providers	are	currently	
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running,	and	what	context	is	being	broadcasted	via	Bluewave.	They	can	then	decide	whether	to	share	this	information	
with	all	devices,	or	with	specific	applications.	In	addition	to	our	permissions	screen,	GCF	now	notifies	users	when	a	
new	application	is	requesting	context	from	them	for	the	first	time,	and	allows	them	to	get	more	information	about	
the	application	before	deciding	whether	or	not	to	share.	Furthermore,	the	system	also	displays	an	icon	on	their	phone	
whenever	 their	 device	 is	 providing	 context	 for	 another	 application.	 Collectively,	 these	 features	 help	 users	 better	
understand	when	and	how	their	context	is	being	shared.	This	improves	GCF’s	intelligibility,	and	lets	users	configure	
the	system	so	that	they	only	share	context	when	they	feel	comfortable	doing	so.	

Live	Dashboard.	Finally,	we	have	created	an	online	dashboard	to	help	developers	get	familiarized	with	our	framework.	
Building	 on	 our	work	 in	 Bluewave,	 this	 dashboard	 lets	 developers	 see	 1)	which	 context	 providers	 are	 commonly	
registered	by	applications,	and	2)	what	information	is	commonly	available.	Developers	can	then	use	this	information	
to	get	a	better	sense	of	which	contexts	are	available	“in	the	wild,”	which	in	turn	allows	them	to	decide	which	ones	
they	want	to	request	and	receive	in	their	applications.	One	of	the	key	features	of	this	dashboard	is	that	its	contents	
are	dynamically	populated	by	devices	running	our	framework.	This	ensures	that	developers	always	have	an	up-to-date	
snapshot	of	how	GCF	is	being	utilized,	which	in	turn	increases	their	ability	to	take	advantage	of	opportunistic	groups	
in	their	applications.	

5.2. REEVALUATING	THE	FRAMEWORK	
In	CHAPTER	3,	we	evaluated	GCF	to	see	how	the	framework’s	functionality	compared	to	other	context-sharing	systems	
and	toolkits.	Our	analysis	(summarized	in	Table	5)	showed	that	GCF	improved	upon	the	state	of	the	art	by	supporting	
all	four	group	types.	At	the	same	time,	our	analysis	also	identified	three	technical	limitations	that	prevented	GCF	from	
supporting	the	widest	possible	range	of	use	cases.	Specifically,	early	versions	of	our	framework	suffered	from:	

1. Inability	to	(easily)	form	groups	based	on	physical	distance	
2. Lack	of	support	for	user-defined	groups	
3. Inability	to	communicate	with	devices	unless	they	are	on	the	same	broadcast	channel.	

In	this	section,	we	reevaluate	our	updated	framework	(using	the	same	criteria	we	used	in	chapters	2	and	3)	to	illustrate	
how	our	modifications	have	improved	its	functionality.	The	results	of	this	analysis	are	presented	below:	

	

As	 illustrated	 in	 Table	 15,	 our	 revised	 framework	 (Figure	 68)	 addresses	 and/or	 mitigates	 each	 of	 the	 problems	
identified	in	CHAPTER	3:	

Table	15.	Analysis	of	GCF’s	functionality.	Differences	between	this	version	of	 
GCF	and	the	one	presented	in	Table	5	are	highlighted.	

	
X	=	Fully	Supports,	O	=	Partially	Supports	
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• To	 address	 limitation	 #1,	 GCF	 now	 comes	 with	 mechanisms	 to	 form	 groups	 over	 both	 short	 and	 long	
distances.	In	addition	to	being	able	to	broadcast	messages	across	local	area	networks,	GCF	can	also	utilize	
Bluewave	to	detect	nearby	GCF-enabled	devices	(Figure	68,	brown).	This	 lets	the	framework	form	groups	
with	 devices	 when	 they	 are	 within	 short	 range	 of	 each	 other.	 Meanwhile,	 by	 using	 a	 well-known	
communications	 broker	 (i.e.,	 a	 server),	 GCF	 can	 also	 allow	 devices	 to	 communicate	 over	 any	 arbitrary	
distance.	By	supporting	multiple	communications	technologies	(e.g.,	Bluetooth,	local	area	networks,	servers),	
GCF	allows	developers	to	decide	which	technologies	work	best	for	their	particular	application.	This	lets	them	
form	groups	across	a	wide	range	of	physical	distances.		

• To	address	limitation	#2,	GCF	now	provides	more	explicit	support	for	user-defined	groups.	As	shown	in	Figure	
68	(green),	we	have	added	a	new	MANUALARBITER	class	to	GCF	that	lets	applications	collect	context	capability	
messages	 from	other	devices,	and	programmatically	 specify	which	devices	 they	want	 to	group	with.	This	
solution	 still	 requires	 developers	 to	 provide	 their	 own	 selection	 interfaces.	 Nevertheless,	 it	 provides	
developers	with	a	highly	customizable	way	to	add	manual	grouping	to	their	applications.	

• To	address	 limitation	#3,	we	have	given	GCF	the	ability	 to	 form	ad	hoc	 communications	on	the	user’s	or	
application’s	 behalf.	 By	 sharing	 network	 connection	 details	 (e.g.,	 IP	 Addresses,	 ports)	 via	 Bluewave,	 our	
system	 is	 automatically	 able	 to	 detect	 nearby	 devices	 that	 can	 provide	 context,	 and	 form	 a	 temporary	
connection	 with	 them.	 This	 allows	 GCF	 to	 form	 groups	 with	 devices	 in	 almost	 any	 Internet	 connected	
environment.		

Our	analysis	shows	that	our	revised	framework	significantly	improves	upon	our	initial	release.	Clearly,	there	may	be	
additional	features	that	might	need	to	be	added	to	GCF	in	future	releases.	Nevertheless,	by	incorporating	the	lessons	
learned	from	the	previous	chapter	into	the	framework,	we	are	able	to	address	all	of	the	problems	we	have	identified	
in	other	systems	thus	far.	In	doing	so,	we	provide	a	better	answer	to	our	first	research	question.	

	

Figure	68.	GCF's	final	architecture,	which	incorporates	all	of	the	lessons	learned	in	CHAPTER	4.	
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5.3. 	A	DESIGN	PROCESS	FOR	DEVELOPING	APPLICATIONS	THAT	USE	OPPORTUNISTIC	GROUPS	
How	can	developers	effectively	utilize	GCF	in	their	applications?	Until	now,	our	work	has	focused	on	showing	how	
GCF	can	be	used	to	support	a	broad	range	of	applications.	Yet	while	one	of	our	main	goals	with	GCF	is	to	make	it	easy	
to	use,	we	have	yet	to	provide	developers	with	explicit	guidance	as	to	how	the	framework	should	be	incorporated	
into	new	or	existing	software	systems.	This	is	important,	as	developers	will	not	have	the	same	knowledge	of	GCF’s	
inner	workings	as	we	do,	and	thus	may	not	intuitively	know	how	to	best	make	use	of	its	features.	

One	way	to	help	developers	utilize	a	new	framework	is	to	provide	them	with	high	level	instructions	to	help	guide	their	
thinking.	In	[31],	Dey	identified	a	design	process	for	building	context-aware	applications,	and	showed	how	this	process	
could	guide	developers'	during	the	planning	and	implementation	stages.	His	process	consisted	of	the	following	steps:	

1. Specification:	Specify	the	problem	being	addressed	and	a	high-level	solution	
1.1. Specify	the	context-aware	behavior(s)	to	implement	
1.2. Determine	what	context	is	required	for	those	behavior	(with	a	knowledge	of	what	is	available	from	the	

environment)	and	request	it.	
2. Acquisition:	Determine	what	hardware	or	sensors	are	available	to	provide	that	context	and	install	them.	
3. Action:	Choose	and	perform	context-aware	behavior.	

In	this	section,	we	introduce	a	generalizable	design	process	for	developing	context-aware	applications	using	GCF.	Our	
process	is	inspired	by	[31],	and	includes	the	same	high	level	steps	(specification,	acquisition,	and	action).	However,	
our	experiences	from	CHAPTER	4	have	revealed	that	there	are	several	additional	considerations	that	developers	need	
to	take	into	account	when	utilizing	opportunistic	groups	via	our	framework.	As	a	result,	we	have	added	several	sub-
steps	to	this	process	to	bring	these	considerations	to	light.	

Our	modified	design	process	consists	of	the	following	steps	(modifications	to	Dey’s	process	are	underlined):	

1. Specification:	Specify	the	problem	being	addressed	and	a	high-level	solution	
1.1. Specify	the	context-aware	behavior(s)	to	implement	
1.2. Determine	what	context	is	required	for	those	behavior,	and	how	often	it	is	needed	

2. Acquisition:	Determine	which	device(s)	can	provide	the	needed	context	
2.1. Determine	how	each	context	should	be	collected	and	shared		
2.2. Define	group	membership	criteria	

2.2.1. Size	(i.e.,	“How	many	devices	does	the	application	need	to	obtain	context	from?”)	
2.2.2. Range	(i.e.,	“How	far	apart	can	devices	be	from	each	other	before	they	are	no	longer	considered	

members	of	the	same	group?”)	
2.3. Request	and/or	listen	for	context	

3. Action:	Choose	and	perform	context-aware	behavior.	

In	the	following	sections,	we	present	three	case	studies	that	show	how	our	design	process	can	be	put	into	practice.	
In	the	first	case	study,	we	create	an	enhanced	version	of	GroupMap	(Figure	13)	that	can	share	location	data	in	arbitrary	
environments	(as	opposed	to	just	environments	with	a	local	area	network).	In	the	second	case	study,	we	create	an	
opportunistic	sensing	platform	that	allows	us	to	task	users’	smartphones	to	perform	arbitrary	sensing	tasks	over	a	
large	geographic	area.	Finally,	in	the	third	case	study,	we	develop	a	peer-to-peer	collaboration	application	that	lets	
users	share	clipboard	data	(e.g.,	text,	links,	photographs/files)	with	both	personally	owned,	and	nearby	devices.	For	
each	case	study,	we	describe	the	application’s	desired	functionality.	We	then	step	through	each	phase	of	our	design	
process,	and	show	how	the	results	of	this	analysis	are	converted	into	working	code.	
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5.3.1. CASE	STUDY	#1:	GROUPMAP	2.0	
Our	 first	 case	 study	 revisits	 the	 GroupMap	 application	 that	 we	 introduced	 in	 CHAPTER	 3.	 As	mentioned	 earlier,	
GroupMap	 is	 a	 mobile	 app	 that	 lets	 users	 view	 their	 location	 on	 their	 phones.	 In	 contrast	 with	 existing	 map	
applications	that	only	use	a	single	GPS	sensor	(i.e.,	the	sensor	on	the	device	running	the	application),	GroupMap	is	
able	to	request	and	receive	location	data	from	other	GroupMap	devices	via	GCF.	This	not	only	lets	devices	take	turns	
running	their	GPS	(conserving	battery	life),	but	also	allows	users	to	track	each	other’s	locations	when	they	are	nearby.	

GroupMap	is	inspired	by	the	our	first	motivational	scenario	(CHAPTER	1),	in	which	we	described	a	situation	where	a	
mobile	phone	is	able	to	obtain	GPS	data	from	a	bus	in	order	to	track	the	user’s	current	location.	When	we	initially	
created	GroupMap	in	section	3.5.1,	we	used	an	early	version	of	GCF	that	could	only	communicate	with	devices	on	the	
same	 local	 area	 network.	 This	 prevented	 the	 application	 from	 forming	 opportunistic	 groups	 in	 non-networked	
environments.	In	this	section,	we	use	our	design	process	to	create	an	enhanced	version	of	GroupMap	that	can	detect	
nearby	devices	and	form	ad	hoc	network	connections	via	GCF.	This	lets	it	share	location	data	in	a	wider	range	of	real-
world	environments,	and	demonstrates	how	our	framework	addresses	our	inspirational	scenarios.	

5.3.1.1. Using	the	Design	Process	
In	this	section,	we	show	how	our	design	process	was	used	to	create	GroupMap.	We	highlight	the	major	considerations	
that	 were	 made	 at	 each	 step,	 and	 show	 how	 the	 insights	 obtained	 from	 this	 process	 informed	 our	 final	
implementation.	

Specification	
The	 first	 step	 in	 our	 design	 process	 is	 to	 determine	what	 context-aware	 behavior(s)	 we	want	 the	 application	 to	
implement	(step	1.1).	As	mentioned	above,	our	goal	with	GroupMap	is	to	let	devices	share	location	data	with	each	
other	so	that	they	can	either	conserve	battery	life,	or	let	users	see	who	is	nearby.	As	a	result,	the	behavior	we	want	
to	provide	is	a	map	that	either	shows	users	1)	their	current	location	(when	in	navigation	mode),	or	2)	the	locations	of	
all	nearby	users	(when	in	tracking	mode).	

Next,	we	need	to	determine	which	context(s)	are	needed	to	support	this	behavior,	and	how	often	they	need	to	be	
collected	(step	1.2).	The	first	half	of	this	task	is	straightforward,	as	the	only	context	that	needs	to	be	collect	and	shared	
is	 the	user’s	 location.	The	second	half,	however,	 is	more	subjective.	Since	GroupMap	 is	a	navigation	 tool,	we	can	
assume	that	the	application	will	need	to	receive	regular	location	updates	(e.g.,	once	per	second)	order	to	display	the	
correct	icon(s)	on	the	map.	Furthermore,	since	GroupMap’s	output	is	a	map,	we	can	also	assume	that	users	will	only	
need	 to	 collect	 context	when	 the	 app	 is	 in	 the	 foreground.	 This	means	 that	we	 can	 run	GCF	 directly	 within	 the	
application	rather	than	create	an	“always	on”	background	service.		

Acquisition	
In	the	acquisition	step,	we	determine	how	we	can	obtain	the	desired	context	using	GCF.	From	the	previous	step,	we	
know	that	GroupMap	needs	to	be	able	to	collect	location	from	other	devices	if	and	when	they	are	nearby.	At	the	same	
time,	the	application	should	also	be	able	to	default	to	the	local	device’s	GPS	sensor	in	the	event	that	no	other	devices	
are	available.	Given	these	requirements,	we	include	a	LocationProvider	in	GroupMap.	This	ensures	that	the	context	is	
accessible	 from	 both	 the	 user’s	 device,	 as	 well	 as	 from	 all	 other	 devices	 (step	 2.1).	 Additionally,	 it	 also	 allows	
GroupMap	 to	 obtain	 context	 from	 any	 device	 that	 has	 a	 LocationProvider,	 regardless	 if	 they	 have	 installed	 our	
GroupMap	application.	This	increases	GroupMap’s	chances	of	finding	a	suitable	source	of	context	when	used	in	a	real-
world	setting.	

The	next	step	is	to	determine	which	device(s)	GroupMap	should	form	a	group	with	(step	2.2).	The	answer	depends	
on	which	mode	the	user	has	selected.	In	navigation	mode,	for	example,	GroupMap	should	only	group	with	a	single	
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device	(i.e.	a	device	that	has	a	LocationProvider,	and	a	higher	remaining	battery	life).	Meanwhile,	when	the	application	
is	in	tracking	mode,	it	should	form	a	group	with	every	device	so	that	it	can	display	all	of	their	locations	on	the	user’s	
map.	 In	both	modes,	 the	application	should	only	 form	a	group	with	devices	 that	are	nearby.	This	means	 that	 the	
application	will	need	to	periodically	scan	its	surroundings	and	only	group	with	those	devices	that	it	detects.	

The	last	step	is	to	actually	request	and	receive	the	context	(step	2.3).	Using	the	above	discussion	as	a	guide,	we	create	
two	context	requests.	When	the	application	is	in	navigation	mode,	we	use	GCF	to	transmit	a	single	source	request	for	
location	data.	When	the	application	is	in	tracking	mode,	we	issue	a	multi-source	request	instead.	To	ensure	that	the	
application	will	only	form	a	group	with	nearby	devices,	we	direct	GCF	to	conduct	a	Bluewave	scan	every	60	seconds.	
The	 framework	will	 automatically	 identify	 nearby	devices	 that	 are	willing	 to	provide	 the	 context,	 form	an	ad	hoc	
network	connection,	and	request	and	receive	 information	 from	them.	 It	will	 then	deliver	 this	context	back	 to	 the	
application	through	an	Android	Intent	(ACTION_GCF_DATA_RECEIVED).	

Action	
The	 final	step	 in	 the	design	process	 is	 to	perform	the	context-aware	behavior	 (step	3).	When	GroupMap	receives	
location	data,	it	checks	to	see	what	mode	it	is	currently	in.	If	the	application	is	in	navigation	mode,	the	app	needs	to	
place	a	single	marker	on	the	map	to	indicate	the	user’s	approximate	location.	Otherwise,	the	app	will	display	multiple	
markers	on	the	map	(i.e.,	one	per	each	device),	and	will	color	code	each	marker	so	that	the	user	can	tell	where	he/she	
is	in	relation	to	the	other	devices.	

5.3.1.2. Implementation	
In	 Figure	 69,	we	 show	how	we	 implemented	GroupMap	 in	Android.	When	 the	 application	 is	 first	 started,	 it	 calls	
Android’s	 ONCREATE()	 method.	 When	 this	 occurs,	 we	 create	 the	 GroupContextManager	 (line	 12),	 register	 the	
LocationProvider	 (line	15),	and	 tell	Bluewave	 to	start	 scanning	 for	nearby	devices	every	60	seconds	 (line	18).	The	
application	then	waits	for	the	user	to	select	which	mode	he/she	wants	to	use	(by	pressing	a	button),	and	transmits	
either	a	single	source	or	multi-source	request	(lines	26	and	28,	respectively).	Each	time	GCF	receives	location	data,	it	
broadcasts	an	Android	Intent	that	is	captured	by	the	ONRECEIVE()	method.	This	method	forwards	the	context	to	the	
UPDATEMAP()	(line	45),	which	users	it	to	modify	the	map.		

Not	counting	the	code	required	to	create	or	update	the	user	interface,	adding	GCF	to	GroupMap	took	less	than	50	
lines	 of	 code.	 This	 demonstrates	 the	 simplicity	 of	 our	 framework,	 and	 shows	 how	 easy	 it	 is	 for	 developers	 to	
incorporate	it	into	their	applications.	
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5.3.2. CASE	STUDY	#2:	IMPROMPTU	SENSE	
For	 our	 second	 case	 study,	 we	 created	 Impromptu	 Sense,	 a	 mobile	 sensing	 platform	 that	 lets	 researchers	
opportunistically	task	users’	smartphones	to	perform	remote	sensing	tasks.	The	Impromptu	Sense	system	consists	of	
1)	a	mobile	app	that	runs	continuously	on	the	user’s	phone,	and	contains	context	providers	for	each	of	the	phone’s	
common	sensors	(e.g.,	audio	magnitude,	GPS,	Bluetooth),	and	2)	a	desktop	application	that	lets	other	users	specify	
the	specific	sensor	streams	that	they	want	to	request	and	receive.	When	a	user	requests	context	via	our	desktop	
application,	GCF	transmits	a	ContextRequest	message	to	all	users’	smartphones.	The	application	then	forms	a	group	

1. // This code runs when the application is first started  
2. public void onCreate() {  
3.  super.onCreate();  
4.         
5.  // Create Intent Filter and Receiver  
6.  this.intentReceiver = new ApplicationIntentReceiver();  
7.  this.filter = new IntentFilter();  
8.  this.filter.addAction(AndroidGroupContextManager.ACTION_GCF_DATA_RECEIVED);  
9.  this.registerReceiver(intentReceiver, filter);  
10.       
11.  // Creates the Group Context Manager  
12.  this.gcm = new AndroidGroupContextManager(this, "Device A", false);  
13.       
14.  // Initialize Context Providers  
15.  gcm.registerContextProvider(new LocationContextProvider(this, gcm));  
16.   
17.  // Tell Bluewave to Start Scanning  
18.  gcm.getBluewaveManager().startScan(60000);  
19. }  
20.   
21. // Requests Context Based on the Current Mode  
22. public void setMode(int mode) {  
23.  gcm.cancelRequest("LOC");  
24.   
25.  if (mode == NAVIGATION_MODE) {  
26.   gcm.sendRequest("LOC", ContextRequest.SINGLE_SOURCE, new String[0], 30000, new String[0]);  
27.  }  
28.  else if (mode == TRACKING_MODE) {  
29.   gcm.sendRequest("LOC", ContextRequest.MULTIPLE_SOURCE, new String[0], 30000, new String[0]); 
30.  }  
31. }  
32.   
33. // This intent receiver listens for context received by GCF  
34. public class ApplicationIntentReceiver extends BroadcastReceiver {     
35.  @Override  
36.  public void onReceive(Context context, Intent intent) {          
37.   if (intent.getAction().equals(AndroidGroupContextManager.ACTION_GCF_DATA_RECEIVED)) {  
38.    // Extracts the values from the intent  
39.    String  contextType = intent.getStringExtra(ContextData.CONTEXT_TYPE);  
40.    String  deviceID  = intent.getStringExtra(ContextData.DEVICE_ID);  
41.    String[] payload   = intent.getStringArrayExtra(ContextData.PAYLOAD);  
42.   
43.    // Updates the Map  
44.    ContextData data = new ContextData(contextType, deviceID, payload);  
45.    updateMap(data);  
46.   }  
47.  }  
48. }  

	
Figure	69.	Implementation	of	the	GroupMap	Application	
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with	the	smartphone(s)	that	are	willing	to	provide	the	context,	and	either	stores	the	data	(e.g.,	sensor	readings)	in	a	
file	for	future	analysis,	or	produces	a	visualization.	

Impromptu	 Sense	 has	 been	 deployed	 and	 used	 outside	 of	 the	 lab.	 In	 collaboration	 with	 the	 Huntington	 County	
Emergency	 Management	 Agency	 (EMA),	 we	 installed	 Impromptu	 Share	 on	 28	 police,	 firefighter,	 and	 medical	
personnel	smartphones	during	the	CreationFest	2015	Music	Festival.	We	then	conducted	a	series	of	 field	trials	 to	
demonstrate	 how	 the	 ability	 to	 opportunistically	 request	 and	 receive	 context	 could	 be	 used	 to	 improve	 first	
responders’	situational	awareness.	Some	of	the	sensing	tasks	that	we	performed	during	these	trials	included:	

1. Collecting	 location	data	 from	each	 first	 responder	 in	 order	 to	 help	 EMA	 leadership	 identify	 areas	 of	 the	
festival	grounds	that	are	infrequently	patrolled		

2. Directing	users’	phones	to	perform	periodic	Bluetooth	discovery	scans	in	order	to	estimate	crowd	density,	
and	search	for	specific	individuals	(e.g.,	a	lost	child)	

3. Analyzing	audio	amplitude	data	 from	smartphone	microphones	 in	order	 to	 identify	and	 triangulate	noisy	
events	(e.g.,	fireworks,	loud	music)	

In	the	following	section,	we	discuss	how	we	created	Impromptu	Share	using	GCF.	Our	framework	provides	all	of	the	
basic	components	needed	to	support	remote	sensing	tasks.	This	makes	it	easy	for	developers	to	collect	and	analyze	
large	amounts	of	context	without	having	to	generate	a	large	amount	of	custom	code.	

5.3.2.1. Using	the	Design	Process	
The	process	used	to	create	Impromptu	Share	is	identical	to	the	one	we	used	in	GroupMap.	Consequently,	rather	than	
describe	each	step	again,	we	instead	highlight	the	important	design	decisions	that	were	made	during	the	specification,	
acquisition,	and	action	phases.	

Specification	
Step	 1.1:	 Specify	 the	 context-aware	 behaviors	 to	 implement.	 The	 goal	 of	 Impromptu	 Share	 is	 to	 let	 researchers	
opportunistically	task	users’	mobile	phones	to	collect	and	deliver	context	through	our	desktop	application.	As	a	result,	
the	desired	behavior	is	to	save	all	incoming	context	so	that	it	can	be	analyzed	and/or	used	to	produce	a	visualization.	

Step	1.2:	Determine	what	context	is	required	for	those	behavior,	and	how	often	it	is	needed.	The	context	needed	can	
significantly	 vary	 depending	 upon	 the	 sensing	 task	 being	 performed.	 Some	 tasks,	 for	 example,	may	 only	 require	
devices	to	report	their	current	location,	while	others	may	need	to	know	the	user’s	location,	as	well	as	their	compass	
heading	and	activity.	For	now,	we	have	chosen	six	contexts	that	are	1)	commonly	used	in	context-aware	applications,	
and	2)	easily	collected	and/or	sensed	on	most	smartphones/tablets:		

• Location	
• Activity	
• Accelerometer	
• Compass	Heading	
• Audio	Magnitude	
• Bluetooth	

In	addition	to	knowing	which	contexts	are	required,	is	also	important	to	consider	when	this	information	is	needed.	
Since	the	desktop	application	can	request	context	at	any	time,	it	is	important	that	each	smartphone	is	always	listening	
for	a	ContextRequest	message,	even	if	the	user	is	not	running	the	Impromptu	Share	app.	This	means	that	the	mobile	
app	will	need	to	run	GCF	as	a	background	service.	
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Acquisition	
Step	2.1:	Determine	how	each	context	should	be	collected	and	shared.	The	contexts	described	 in	step	1.2	can	be	
obtained	via	the	following	GCF	context	providers:	

• LocationProvider	
• ActivityProvider	
• AccelerometerProvider	
• CompassProvider	
• AudioAmplitudeProvider	
• BluetoothProvider	

These	 context	 providers	 are	 not	 needed	 on	 every	 device.	 Since	 the	 desktop	 application	 is	 only	 responsible	 for	
requesting,	receiving,	and	storing	context,	it	does	not	need	any	context	providers	of	its	own.	The	mobile	app,	on	the	
other	hand,	is	responsible	for	producing	and	sharing	context.	Consequently,	all	of	the	context	providers	listed	above	
need	to	be	registered	with	the	mobile	app.	

Step	2.2:	Define	group	membership	criteria.	Since	the	purpose	of	Impromptu	Sense	is	to	opportunistically	collect	data,	
the	desktop	application	needs	to	be	able	to	form	a	group	with	any	device	that	 is	willing	to	provide	the	requested	
information.	Depending	upon	the	request,	the	resulting	group	may	only	consist	of	one	device,	or	with	every	device	
that	has	our	mobile	app.	

Additionally,	we	assume	that	the	smartphones	running	our	mobile	app	are	distributed	across	a	large	geographic	area,	
and	will	thus	not	always	be	on	the	same	local	area	network	or	detectable	via	Bluetooth.	This	means	that	we	need	to	
set	up	a	centralized	communications	channel	(e.g.,	an	MQTT	broker)	so	that	the	desktop	application	can	request	and	
receive	context	from	devices	regardless	of	where	they	are	located.	

Step	2.3:	Request	and/or	listen	for	context.	Each	time	a	user	requests	context,	our	desktop	app	will	transmit	a	multi-
source	request.	This	will	ensure	that	the	application	forms	as	large	a	group	as	possible.	

Action	
Step	3:	Choose	and	perform	context-aware	behavior.	As	Impromptu	Sense	is	a	data	collection	tool,	the	application	
only	needs	to	save	incoming	context	into	a	flat	file	for	future	analysis.	

5.3.2.2. Implementation	
Figure	 70	 shows	 how	we	 implemented	 Impromptu	 Sense’s	 desktop	 application	 in	 Java.	When	 the	 application	 is	
started,	it	creates	a	new	group	context	manager	(line	5)	and	connects	to	our	MQTT	message	broker	(lines	11-12).	The	
application	then	waits	for	the	user	to	specify	which	context(s)	he/she	would	like	to	collect,	and	uses	this	information	
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to	 transmit	one	or	more	multi-source	context	 requests	 (line	15).	As	GCF	begins	 receiving	data	 from	other	mobile	
devices,	 it	 is	automatically	forwards	the	ContextData	messages	to	the	desktop’s	onContextDataReceived()	method	
(line	18).	The	data	is	then	logged	in	a	file,	and/or	sent	to	the	application	to	generate	a	visualization.	

Meanwhile,	Figure	71	shows	how	we	implemented	our	Android	app.	When	the	app	is	started,	it	starts	the	GCF	service	
(line	14),	and	waits	until	Android	broadcasts	an	 Intent	stating	that	the	service	has	been	created.	When	this	event	
occurs,	the	app	registers	all	of	the	context	providers	with	the	service’s	group	context	manager	(lines	30-35).	It	then	
connects	to	the	same	MQTT	broker	as	the	desktop	application	(line	12),	and	waits	for	ContextRequest	messages.	

As	was	 the	case	with	GroupMap,	 the	amount	of	 custom	code	needed	 to	create	 Impromptu	Share	using	GCF	was	
minimal.	Not	counting	the	code	required	for	the	user	interfaces,	we	were	able	to	implement	both	the	Android	app	
and	desktop	application	in	less	than	60	lines	of	code,	combined.	This	provides	further	evidence	that	our	framework	
contains	the	abstractions	needed	to	form	groups	and	share	context	in	many	situations.	

	

1. public class ImpromptuShareDesktopApplication implements OnContextDataReceiver  
2. {  
3.  public ImpromptuShareDesktopApplication() {  
4.   // Creates the Group Context Manager  
5.   GroupContextManager gcm = new DesktopGroupContextManager("Desktop A", false);  
6.   
7.   // Registers this object to receive on context data events  
8.   gcm.registerEventReceiver(this);  
9.   
10.   // Connects to the Impromptu Share Channel  
11.   String connectionKey = gcm.connect(CommMode.MQTT, "epiwork.hcii.cs.cmu.edu", 1833); 
12.   gcm.subscribe(connectionKey, "IMPROMPTU_SHARE");  
13.   
14.   // Requests Context  
15.   gcm.sendRequest("LOC", MULTI_SOURCE, new String[0], 15000, new String[0]);  
16.  }  
17.   
18.  public void onContextData(ContextData data) {  
19.   doSomething(data);  
20.  }  
21. }  
22.   
23. public static void main(String[] args) {  
24.  new ImpromptuShareDesktopApplication();  
25. }  

	
Figure	70.	Implementation	of	Impromptu	Sense’s	Desktop	App	
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5.3.3. CASE	STUDY	#3:	IMPROMPTU	SHARE	
For	 our	 third	 case	 study,	 we	 created	 Impromptu	 Share,	 an	 opportunistic	 collaboration	 tool	 that	 lets	 users	
serendipitously	transfer	content	(e.g.,	text,	links,	photographs,	files)	from	one	device	to	another.	Impromptu	Share	
continually	 monitors	 the	 user’s	 clipboard,	 and	 detects	 when	 she	 has	 copied	 content	 to	 it	 (Figure	 72a-b).	 The	
application	 then	 1)	 automatically	 shares	 this	 content	 with	 the	 user’s	 own	 devices	 so	 that	 they	 can	 update	 their	
clipboards,	and	2)	generates	an	optional	interface	to	let	users	share	this	content	with	their	neighbors	(Figure	72c).	If	
the	user	decides	to	share,	Impromptu	Share	forms	an	opportunistic	group	with	the	recipients’	devices,	and	transmits	
a	message	containing	the	clipboard	data.	The	receiving	devices	(also	running	Impromptu	Share	in	the	background)	
can	then	either	update	their	clipboards,	or	present	the	information	to	the	user	via	a	system	notification	(Figure	72d-
e).	

From	a	software	implementation	standpoint,	Impromptu	Share	utilizes	GCF’s	full	range	of	capabilities.	Our	application	
manages	multiple	groups	at	runtime	in	order	to	let	users	easily	share	context	with	both	their	own	devices	(known	a	

1. // This code runs when the application is first started  
2. public void onCreate() {  
3.  super.onCreate();  
4.         
5.  // Create Intent Filter and Receiver  
6.  this.intentReceiver = new ApplicationIntentReceiver();  
7.  this.filter = new IntentFilter();  
8.  this.filter.addAction(GCFService.ACTION_GCF_STARTED);  
9.  this.registerReceiver(intentReceiver, filter);  
10.       
11.  // Creates Intent to Start the Service  
12.  Intent i = new Intent(this, GCFService.class);  
13.  this.bindService(i, gcfServiceConnection, BIND_AUTO_CREATE);  
14.  this.startService(i);  
15. }  
16.   
17. // This intent receiver listens for context received by GCF  
18. public class ApplicationIntentReceiver extends BroadcastReceiver {     
19.  @Override  
20.  public void onReceive(Context context, Intent intent) {          
21.   if (intent.getAction().equals(GCFService.ACTION_GCF_STARTED)) {  
22.    // Gets the Group Context Manager from the Service  
23.    GroupContextManager gcm = gcfService.getGroupContextManager();  
24.   
25.    // Connects to the Impromptu Share Channel  
26.    String connKey = gcm.connect(CommMode.MQTT, "epiwork.hcii.cs.cmu.edu", 1833); 
27.    gcm.subscribe(connKey, "IMPROMPTU_SHARE");  
28.      
29.    // Registers Context Providers  
30.    gcm.registerContextProvider(new LocationContextProvider(this, gcm));  
31.    gcm.registerContextProvider(new AccelerometerContextProvider(this, gcm));  
32.    gcm.registerContextProvider(new ActivityContextProvider(this, gcm));  
33.    gcm.registerContextProvider(new CompassContextProvider(this, gcm));  
34.    gcm.registerContextProvider(new AudioContextProvider(this, gcm));  
35.    gcm.registerContextProvider(new BluetoothContextProvider(this, gcm));  
36.   }  
37.  }  
38. }  

Figure	71.	Impromptu	Sense’s	Android	Implementation.	
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priori),	as	well	as	with	those	that	 just	happen	to	be	nearby.	Furthermore,	 Impromptu	Share	broadcasts	the	user’s	
identity	and	network	connection	settings	via	Bluewave,	and	 lets	devices	 from	the	same	owner	conduct	Bluetooth	
scans	on	each	other’s	behalf	so	that	they	can	collectively	know	who	is	nearby.	While	each	of	these	capabilities	has	
been	demonstrated	before,	Impromptu	Share	integrates	all	of	them	into	a	single	application.	In	doing	so,	we	show	
how	these	features	can	work	together	to	create	more	sophisticated	context-aware	applications.	

5.3.3.1. Using	the	Design	Process	
We	now	walk	through	each	step	of	our	design	process	to	show	how	we	created	Impromptu	Share.	

	

Figure	72.	An	overview	of	the	Impromptu	Share	application.	When	a	user	copies	content	to	the	clipboard	(a),	Impromptu	Share	
asks	him	if	he	wants	to	share	it	(b),	and	provides	an	interface	to	select	one	or	more	nearby	users	(c).	The	recipients	then	see	the	

shared	content	on	their	devices	(d-e).	



	 146	

Specification	
Step	1.1:	Specify	the	context-aware	behaviors	to	implement.	Impromptu	Share	lets	users	quickly	and	serendipitously	
share	clipboard	data	with	both	their	own	devices	as	well	as	with	their	neighbors.	 In	support	of	this	goal,	we	have	
identified	the	following	context-aware	behaviors:	

• Let	users	automatically	share	clipboard	content	with	their	own	devices.	Impromptu	Share	will	let	users	create	
a	shared	clipboard	with	their	own	devices.	This	will	let	users	copy	content	on	one	device	(e.g.,	a	laptop),	and	
immediately	paste	it	on	another	(e.g.,	a	phone).	

• Allow	users	to	easily	share	clipboard	content	with	one	or	more	nearby	users.	Impromptu	Share	also	needs	to	
let	users	opportunistically	push	clipboard	data	to	each	other.	Each	time	the	user	copies	data	to	the	clipboard,	
the	system	will	generate	a	list	of	nearby	users	(using	Bluetooth	proximity).	The	user	will	then	be	able	to	select	
the	 specific	user(s)	 she	would	 like	 to	 share	with,	 and	 the	application	will	 automatically	 group	with	 these	
devices	and	push	content	to	them.	

Step	1.2:	Determine	what	context	is	required	for	those	behavior,	and	how	often	it	is	needed.	There	are	four	types	of	
context	that	are	needed	to	support	the	above	behaviors.	The	first	is	the	contents	of	the	user’s	clipboard.	Each	time	
the	user	performs	a	copy	operation,	our	system	needs	to	transmit	the	current	contents	of	the	clipboard	(e.g.,	text,	
files,	images)	to	the	rest	of	the	user’s	devices.	These	devices	can	then	modify	their	own	clipboards	so	that	they	remain	
synchronized.	

The	second	type	of	context	that	needs	to	be	shared	 is	the	user’s	 identity.	Rather	than	 list	devices	by	their	system	
generated	name	(e.g.,	“f13phd1.hcii.cs.cmu.edu”),	our	system	lets	devices	share	their	owner’s	name	(e.g.,	“Adrian”).	
Impromptu	Share	uses	this	information	to	generate	a	list	of	nearby	people,	providing	users	with	a	more	natural	way	
to	specify	who	they	want	to	share	with.	

The	third	type	of	context	that	needs	to	be	openly	shared	is	the	communications	channel	where	Impromptu	Share	is	
listening	for	clipboard	data.	This	information	is	needed	so	that	users	can	push	clipboard	data	to	each	another	without	
having	to	rely	on	a	centralized	server.	

The	last	type	of	context	that	devices	need	to	share	is	the	context	collected	via	Bluewave.	Since	Impromptu	Share	is	
intended	to	run	on	both	mobile	devices	and	desktops,	there	needs	to	be	a	way	for	non-Bluetooth	equipped	devices	
to	detect	nearby	users.	To	address	this,	our	system	will	let	Bluetooth	equipped	devices	scan	for	nearby	devices	on	
their	behalf.	This	gives	older	devices	a	way	to	obtain	context	via	Bluewave,	and	allows	our	system	to	offer	the	same	
capabilities	across	different	platforms.	

The	above	list	contains	a	mix	of	static	and	dynamic	data.	For	example,	the	user’s	identity	and	communications	channel	
are	not	expected	to	change	during	the	lifetime	of	the	application.	However,	in	order	to	monitor	the	user’s	clipboard	
and	collect	Bluewave	context,	GCF	needs	to	be	running	continually.	As	a	result,	we	have	designed	Impromptu	Share	
to	run	as	a	background	service.	

Acquisition	
Step	2.1:	Determine	how	each	context	should	be	collected	and	shared.	In	order	to	collect	and	share	the	contexts	listed	
above,	we	use	the	following	techniques:	

• To	 collect	 and	 share	 the	 user’s	 clipboard	 contents,	 we	 need	 to	 create	 a	 custom	 context	 provider	
(CLIPBOARDPROVIDER,	context	type	=	“CLIP”)	that	continuously	monitors	a	device’s	clipboard,	and	transmits	a	
CONTEXTDATA	 message	 each	 time	 its	 contents	 change.	 This	 context	 provider	 can	 also	 process	
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COMPUTEINSTRUCTION	 messages	 containing	 clipboard	 data	 so	 that	 other	 users	 can	 push	 content	 to	 the	
clipboard.	

• To	share	the	user’s	identity	and	communications	channel,	we	use	Bluewave.	This	allows	nearby	device	to	1)	
know	who	is	nearby,	and	2)	what	channel	they	are	listening	on,	without	requiring	the	devices	to	be	connected	
to	the	same	network.	This	allows	Impromptu	Share	to	work	in	most	real-world	environments.	

• Finally,	 to	 let	user	owned-devices	share	Bluewave	context,	we	need	to	create	a	custom	context	provider	
(BLUEWAVEPROVIDER,	context	type	=	“BW”)	that	can	periodically	scan	for	nearby	devices,	request	their	context	
via	Bluewave,	and	deliver	the	information	to	all	subscribers.	

The	first	context	needs	to	be	collected	and	shared	on	both	the	mobile	and	desktop	versions	of	Impromptu	Share.	The	
latter	two,	on	the	other	hand,	require	Bluetooth,	and	as	such	are	only	collected	and	shared	by	our	mobile	app.	

Step	2.2:	Define	group	membership	criteria.	Impromptu	Share	forms	two	different	groups	at	runtime.	The	first	group	
consists	of	the	user’s	own	devices,	which	are	assumed	to	be	known	a	priori.	This	group	lasts	for	the	lifetime	of	the	
application,	and	is	used	to	share	both	clipboard	data,	as	well	as	context	obtained	through	Bluewave	(e.g.,	user	identity	
and	network	connection)	settings.	The	second	group	consists	of	the	devices	that	the	user	would	like	to	share	clipboard	
content	with.	These	groups	are	manually	formed	by	the	user	through	our	app,	and	only	last	for	as	long	as	it	takes	for	
the	sending	device	to	push	clipboard	data	to	the	intended	recipients.	

The	physical	 range	of	 these	groups	varies.	The	 first	group	should	be	able	 to	 transmit	clipboard	data	 regardless	of	
where	 they	 are	 physically	 located.	 This	means	 that	 this	 group	 should	 be	 able	 to	 communicate	 over	 a	 dedicated	
communications	channel	(e.g.,	the	same	channel	on	an	MQTT	broker).	The	second	group,	in	contrast,	only	needs	to	
share	clipboard	data	when	they	are	within	Bluetooth	range	of	each	other.	As	a	result,	 these	devices	only	need	to	
communicate	using	GCF’s	ad	hoc	communications	capability.	

Step	 2.3:	 Request	 and/or	 listen	 for	 context.	 In	 order	 to	 collect	 the	 contexts	 identified	 above,	 Impromptu	 Share	
performs	the	following	actions:	

• To	obtain	clipboard	data,	Impromptu	Share	transmits	a	multi-source	ContextRequest	message.	This	 lets	 it	
subscribe	to	the	ClipboardProviders	on	the	user’s	other	devices	and	receive	real-time	updates.	

• When	the	user	shares	clipboard	data	via	the	mobile	app,	the	application	begins	scanning	for	nearby	devices	
using	Bluewave.	This	lets	it	determine	which	users	are	nearby,	and	which	channel(s)	they	are	listening	for	
clipboard	data	on.	

• When	the	user	indicates	that	she	wants	to	share	content	with	other	users	via	the	desktop	application,	the	
application	transmits	a	multi-source	request	for	Bluewave.	This	allows	other	devices	(owned	by	the	user)	to	
collect	and	deliver	this	information	on	its	behalf.	

Action	
Step	3:	Choose	and	perform	context-aware	behavior.	There	are	four	context-aware	behaviors	that	Impromptu	Share	
performs	at	runtime:	

1. Transmit	 Updated	 Clipboard	 Contents.	 Each	 time	 the	 user	 copies	 content	 to	 the	 clipboard,	 the	
ClipboardProvider	transmits	a	new	ContextData	message	containing	the	updated	clipboard	contents	to	the	
user’s	other	devices.	The	application	then	asks	the	user	(via	a	notification)	if	she	would	like	to	share	this	data	
with	her	immediate	neighbors.	

2. Maintain	a	List	of	Nearby	Users.	Our	application	uses	 the	 information	collected	via	Bluewave	 in	order	 to	
determine	which	users	are	nearby.	This	information	is	used	to	create	a	custom	interface	so	that	users	can	
select	the	names	of	the	specific	individuals	they	would	like	to	share	with.	
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3. Share	Clipboard	Data.	When	the	user	chooses	to	share	clipboard	data,	Impromptu	Share	will	connect	to	the	
recipient(s)	communication	channel	and	transmit	a	ComputeInstruction	containing	the	clipboard	contents.	
Once	complete,	the	application	will	automatically	disconnect.	

4. Process	 Shared	 Clipboard	 Data.	 When	 the	 application	 receives	 a	 ContextData	 or	 ComputeInstruction	
message	 containing	 clipboard	data,	 it	 checks	 to	 see	what	 type	of	 information	 is	 contained	within.	 If	 the	
content	is	text,	the	application	automatically	updates	the	clipboard.	However,	if	the	content	is	a	URL	or	file,	
the	application	displays	a	notification	so	that	the	user	can	decide	whether	or	not	to	open	the	link	or	download	
the	file,	respectively.	

5.3.3.2. Implementation	
Impromptu	Share’s	architecture	is	presented	in	Figure	73.	Our	system	consists	of:	

• A	mobile	 application,	 which	 contains	 both	 a	 ClipboardProvider	 and	 a	 BluewaveProvider,	 and	 runs	 as	 an	
Android	service.		

• A	desktop	application,	which	only	contains	a	ClipboardProvider,	and	runs	as	a	background	thread.	

To	configure	our	system,	users	install	the	appropriate	version	of	Impromptu	Share	on	all	of	their	devices,	and	provide	
each	 one	 with	 the	 same	 name	 and	 password.	 The	 applications	 then	 use	 this	 information	 to	 connect	 to	 two	
communications	channels.	The	first	channel	is	intended	for	private	communications,	and	is	only	known	to	devices	that	
are	owned	by	the	same	user.	Our	apps	use	this	channel	to	transmit	multi-source	requests	for	clipboard	data,	thereby	
allowing	them	to	form	a	group	and	synchronize	their	clipboards	(Figure	73a).	Additionally,	the	desktop	version	of	our	
app	also	uses	this	channel	to	transmit	multi-source	requests	for	Bluewave	data.	This	lets	the	app	obtain	context	from	
the	user’s	Bluetooth-equipped	devices	so	that	it	can	determine	who	is	nearby	(Figure	73b).	

The	second	communications	channel	is	used	to	push	clipboard	data	to	a	specific	user.	Whereas	the	first	channel	is	
intentionally	kept	 secret	 from	other	users,	 the	second	channel’s	 connection	details	 (e.g.,	 IP	address,	 channel)	are	
publically	advertised	via	Bluewave.	When	a	user	wants	 to	share	clipboard	data,	her	mobile	app	uses	Bluewave	to	
determine	 which	 users	 are	 nearby	 and	 what	 channels	 their	 devices	 are	 listening	 on	 (Figure	 73c).	 The	 app	 then	
temporarily	 connects	 to	 the	 recipients’	 public	 MQTT	 channels,	 and	 transmits	 a	 COMPUTEINSTRUCTION	 message	

	

Figure	73.	Impromptu	Share	Architecture	



	 149	

containing	the	clipboard	contents	(Figure	73d).	The	message	is	forwarded	to	all	of	the	recipients’	devices,	where	they	
are	either	used	to	update	the	clipboard	or	generate	a	system	notification.	

In	comparison	to	the	previous	two	case	studies,	Impromptu	Share	required	significantly	more	work	to	implement.	To	
create	 this	 system,	 we	 had	 to	 create	 custom	 context	 providers	 that	 could	 collect	 and	 share	 clipboard	 data	 and	
Bluewave	scan	results,	respectively.	Furthermore,	to	prevent	users	from	being	able	to	“sniff”	each	others	clipboards	
with	permission,	we	had	to	direct	GCF	to	form	multiple	communications	channels,	and	insert	our	own	logic	in	order	
to	tell	the	group	context	manager	which	channels	to	use	when	sharing	and/or	pushing	clipboard	data.	Yet	even	with	
these	additional	requirements,	we	were	able	to	create	Impromptu	Share	in	less	than	300	lines	of	code.	This	shows	
how	 the	 framework	 can	 be	 customized	 for	 special	 use	 cases,	 while	 still	 making	 common	 grouping	 tasks	 (e.g.,	
requesting	and	receiving	context)	easier	to	implement.		

5.4. SUMMARY	
In	 this	 chapter,	 we	 looked	 at	 GCF	 through	 two	 different	 lenses.	 First,	 we	 examined	 GCF	 from	 an	 architectural	
standpoint,	and	highlighted	the	major	changes	that	we	have	made	to	the	framework	based	on	our	experiences	using	
it	in	CHAPTER	4.	We	showed	how	our	updated	framework	addresses	all	of	the	limitations	found	in	previous	context-
sharing	 systems,	 thereby	 providing	 us	 with	 a	 finalized	 architecture	 that	 supports	 the	 finding	 and	 forming	 of	
opportunistic	groups.	

Afterwards,	we	looked	at	GCF	from	a	developer	standpoint,	and	presented	a	generalizable	design	process	for	creating	
context-aware	applications	using	our	framework.	We	showed	how	this	process	builds	on	prior	work	by	highlighting	
the	important	considerations	that	developers	should	take	into	account	when	forming	and	using	opportunistic	groups	
in	the	specification,	acquisition,	and	action	phases.	We	then	presented	three	case	studies	to	show	how	this	design	
process	can	put	into	practice.	In	each	case,	we	found	that	the	process	helped	us	better	understand	which	features	of	
GCF	we	needed	to	utilize	for	a	particular	application.	For	example,	step	1.2	(“Determine	what	context	is	required	for	
those	behavior,	and	how	often	it	is	needed”)	revealed	whether	or	not	we	needed	to	run	GCF	as	a	background	service	
or	directly	within	the	application.	Step	2.1	(“Determine	how	each	context	should	be	collected	and	shared”)	was	useful	
in	helping	us	determine	which	contexts	needed	to	be	collected	using	context	providers,	and	which	contexts	could	be	
shared	via	Bluewave.	Finally,	step	2.2	(“Define	group	membership	criteria”)	helped	us	better	understand	1)	what	type	
of	context	request	we	should	transmit	(e.g.,	single	source,	multi-source),	and	2)	whether	or	not	we	needed	to	set	up	
a	centralized	communications	channel	to	let	devices	communicate	over	arbitrary	distances.		

Through	this	work,	we	have	taken	an	important	step	towards	showing	how	GCF	can	actually	be	used.	In	the	following	
chapter,	we	build	on	this	idea	by	having	developers	see	our	framework	and	brainstorm	ways	that	they	would	like	to	
use	it.	In	doing	so,	we	validate	the	framework’s	core	features,	and	show	that	it	already	supports	the	most	common	
use	cases.	
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6. DEVELOPER	VALIDATION	
In	this	thesis,	we	have	presented	numerous	examples	that	show	how	GCF	can	be	used	to	form	opportunistic	groups	
and	share	context.	Yet	while	our	work	in	CHAPTERS	3,	4,	and	5	shows	that	GCF	supports	all	of	the	use	cases	we	have	
come	up	with	thus	far,	it	is	still	unclear	how	well	these	applications	cover	the	total	design	space.	In	order	to	more	
thoroughly	 evaluate	 GCF’s	 robustness,	 we	 conducted	 an	 exploratory	 study	 in	 which	 we	 asked	 developers	 to	
brainstorm	 applications	 that	 require	 devices	 to	 form	 groups	 and	 share	 context.	We	 then	 analyzed	 each	 of	 these	
applications	 (using	 the	 design	 process	 presented	 in	 the	 previous	 section)	 to	 see	which	 ones	 our	 framework	 can	
support.	

The	purpose	of	this	study	is	twofold.	Our	first	goal	is	to	validate	GCF’s	functionality.	By	soliciting	app	ideas	directly	
from	the	developer	community,	we	are	able	to	evaluate	GCF	against	a	more	diverse	range	of	applications	than	we	can	
come	up	with	on	our	own.	This	gives	us	a	more	comprehensive	understanding	of	which	use	cases	GCF	can	and	cannot	
enable,	which	 in	turn	allows	us	to	better	assess	 if	 the	 framework	can	be	used	as	a	general	purpose	grouping	and	
context	sharing	tool.	

Additionally,	this	study	lets	us	illustrate	how	GCF	can	support	opportunistic	groups	outside	of	the	lab.	As	part	of	our	
study	protocol,	we	asked	each	participant	to	come	up	with	application	ideas	on	their	own.	By	doing	so,	we	are	able	to	
see	how	likely	it	is	that	applications	will	have	similar	or	complimentary	information	requirements,	and	demonstrate	
why	our	framework	is	both	necessary	and	useful.	

In	 the	 following	 sections,	 we	 provide	 an	 overview	 of	 our	 methodology	 and	 participants.	 We	 then	 analyze	 the	
responses	from	participants,	and	show	how	our	results	validate	our	framework’s	architecture.	

6.1. METHODOLOGY	
We	conducted	a	brainstorming	study	in	order	to	better	understand	the	types	of	applications	that	developers	would	
like	to	create	using	GCF.	For	the	first	phase	of	the	study,	participants	filled	out	a	short	survey	that	asked	them	about	
their	demographics	(e.g.,	age,	gender)	and	programming	experience	(e.g.,	number	of	years,	preferred	development	
platform(s)).	Afterwards,	they	participated	in	a	semi-structured	interview	(conducted	either	in	person	or	online)	in	
which	we	asked	them	about	the	types	of	context-aware	applications	they	have	created	and	deployed,	the	types	of	
context	 they	 have	 used,	 and	 whether	 or	 not	 they	 have	 ever	 created	 an	 application	 where	 context	 sharing	 was	
necessary	and/or	useful.	

When	the	interview	was	complete,	we	introduced	GCF,	and	described	its	main	features.	We	showed	them	how	the	
framework	lets	devices	1)	form	groups	and	share	context	without	having	to	know	about	each	other	in	advance,	2)	
collect	and	share	context	in	an	application-agnostic	way	via	context	providers,	and	3)	detect	and	broadcast	context	
to	nearby	devices	using	Bluewave.	We	then	gave	each	participant	10	days	to	brainstorm	as	many	applications	as	they	
could	that	require	devices	to	form	groups	and	share	context.	Participants	were	asked	to	think	of	novel	applications	
that	utilize	some	or	all	of	GCF’s	features,	as	well	as	ways	to	utilize	opportunistic	groups	in	their	current	and/or	past	
work.	Furthermore,	while	we	gave	participants	GCF’s	complete	documentation	and	working	code	examples,	we	did	
not	require	them	to	generate	working	prototypes	of	their	applications.	 Instead,	participants	were	asked	to	submit	
their	app	ideas	(via	our	web	form)	regardless	of	whether	they	thought	 it	could	be	implemented	using	GCF	or	not.	
Participants	were	directed	to	complete	this	phase	of	the	study	on	their	own,	and	were	compensated	up	to	$40	USD	
($15	for	filling	out	the	initial	survey	and	participating	in	the	interview;	$25	for	submitting	5	ideas).	

Through	this	process,	we	were	able	to	quickly	generate	a	diverse	population	of	app	ideas.	While	our	methodology	is	
not	guaranteed	to	provide	us	with	a	comprehensive	list	of	apps,	prior	work	has	shown	that	this	“proof	by	example”	
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approach	can	effectively	validate	a	system’s	robustness.	In	[16],	Carter	evaluated	the	Momento	system	by	showing	
how	other	scientists	had	used	it	to	create	Ubicomp	experiments.	In	[66],	Klemmer	showed	how	Paper	Mâché	could	
be	used	to	easily	create	Tangible	User	Interfaces	by	collecting	feedback	from	8	real-world	developers.	Finally,	in	[29],	
Dey	et	al.	analyzed	60	context-aware	applications	from	20	non-programmers	to	show	how	their	iCAP	system	could	
help	end-users	create	a	variety	of	trigger-based	context-aware	applications.	While	our	study	is	inspired	by	this	work,	
our	methodology	 is	 somewhat	different	 in	 that	we	are	not	 interested	 in	 seeing	how	developers	would	utilize	 the	
current	implementation	of	GCF.	Instead,	by	having	them	work	with	our	framework	at	a	conceptual	level,	our	study	is	
able	to	investigate	a	broader	range	of	applications,	and	validate	that	the	framework	is	architecturally	sound.	

6.2. PARTICIPANTS	
Our	participants	consisted	of	20	software	developers	from	both	academia	and	industry.	Most	of	our	participants	were	
male	(85%),	and	ranged	in	age	from	20-38	years	old	(mean	=	28.3	years).	Participants	consisted	of	a	mix	of	both	novice	
and	expert	software	developers	(mean	=	2.8	years,	SD	=	2.4	years).	All	of	our	participants	were	screened	to	verify	that	
they	have	developed	at	 least	one	context-aware	application	during	their	programming	career.	Additionally,	all	but	
one	 (95%)	 had	 experience	 creating	 context-aware	 applications	 on	 mobile	 operating	 systems	 (e.g.,	 Android,	 iOS,	
Windows	Phone),	and	nearly	half	of	them	(45%)	had	worked	on	both	mobile	and	desktop	operating	systems.	

Through	our	questionnaire	and	interview,	we	learned	how	participants	currently	obtain	context	for	their	applications.	
As	 expected,	 most	 participants	 (60%)	 only	 used	 contexts	 that	 they	 could	 reliably	 obtain	 from	 a	 single	 device.	
Surprisingly,	though,	40%	of	our	population	did	have	experience	creating	applications	that	required	devices	to	share	
context.	In	each	case,	though,	it	was	only	with	devices	that	were	known	a	priori.	When	we	asked	participants	what	
made	context	sharing	challenging,	all	of	them	mentioned	the	lack	of	reusable	tools	as	being	the	primary	issue:	“If	it	
was	easy	to	do	sharing,	I	would,	but	I	don’t	think	of	it	as	a	possibility”	(P12),	“I	spend	too	much	time	developing	my	
own	communications	because	it’s	not	out	of	the	box”	(P7).	85%	of	our	participants	relied	primarily	on	an	operating	
system’s	default	APIs	to	access	context	on	the	local	device,	and	thus	lacked	a	prebuilt	way	to	transfer	context	from	
one	device	to	another.	Meanwhile,	a	smaller	percentage	of	participants	(10%)	used	toolkits	such	as	AWARE	[143]	to	
make	it	easier	to	collect	context	from	multiple	devices.	However,	these	systems	are	optimized	to	share	context	with	
a	centralized	server,	and	 thus	 still	 required	developers	 to	provide	 their	own	custom	communications	 logic	 if	 they	
wanted	to	share	this	information	with	other	devices.		

Across	all	of	our	interviews,	we	found	that	participants	were	generally	interested	in	the	idea	of	sharing	context,	but	
felt	like	the	effort	needed	to	implement	context	sharing	from	scratch	(opportunistically	or	premeditated)	currently	
outweighs	the	benefits:	“I	once	spent	more	than	a	month	just	making	sure	the	communications	worked.	Then	I	had	
to	make	sure	the	system	was	up	and	running	all	of	the	time”	(P6).	As	a	result,	we	were	interested	in	seeing	what	types	
of	applications	they	would	want	to	build	if	this	capability	were	provided	to	them	for	free.	

6.3. STUDY	RESULTS	
Through	our	 study,	we	obtained	 a	 total	 of	 65	 application	 ideas	 from	participants	 (for	 a	 complete	 listing,	 refer	 to	
APPENDIX	C).	 In	 this	 section,	we	analyze	 these	applications	along	multiple	dimensions,	 and	 show	which	ones	our	
framework	is	able	to	support.	

6.3.1. WHAT	TYPES	OF	APPLICATIONS	DO	DEVELOPERS	WANT	TO	CREATE	USING	GCF?	
Developers	provided	us	with	a	wide	range	of	ideas	for	how	they	would	use	GCF	to	form	groups	and	share	context.	
Through	our	analysis,	we	have	identified	7	high	level	application	categories:	
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Awareness	Applications	
20	applications	(31%)	were	proposed	to	improve	users’	knowledge	of	their	immediate	physical	surroundings.	In	these	
applications,	 devices	 collect	 context	 from	 nearby	 users	 and/or	 devices,	 such	 as	 users’	 names,	 personal	 and/or	
professional	interests,	contact	information,	etc.	This	information	is	then	presented	to	users	so	that	they	can	better	
decide	which	entities	they	want	to	interact	with.	

Representative	Example:	“Imagine	a	bunch	of	people	just	walking	around	with	a	GCF	app	that	reveals	details	
of	people	you	may	stumble	upon	everyday	but	that	you	have	not	talked	to	simply	because	you	don't	know	
them.	What	if	through	the	shared	context	feature,	a	GCF	app	figures	out	common	interests	or	activities,	the	
sharing	of	certain	location	daily	and	brings	people	together	that	way.”—P9	

Personalized	Services	
14	applications	(22%)	were	designed	to	provide	users	with	personalized	information	and	services.	Here,	applications	
(installed	either	on	devices	placed	in	the	environment	or	on	the	user’s	phone)	are	able	to	scan	for	nearby	users	and	
obtain	context	from	them.	They	can	then	customize	their	behavior	based	on	users’	collective	interests	or	desired	end	
goals.	

Representative	Example:	“Currently	gate	information	(in	airport)	are	shown	on	a	large	screen	but	there	are	
so	many	of	them	and	cannot	easily	find	your	information	(especially	if	it's	[an]	international	hub	airport).	My	
app	works	 if	multiple	 travelers	 approach	 to	 a	 screen	 to	 find	 gate	 information	 for	 transfer	…	 suppose	 10	
travelers	are	standing	in	front	of	the	screen	and	if	7	of	them	are	heading	to	Pitt,	2	are	heading	to	D.C,	and	1	
is	to	New	York,	the	gate	information	for	Pitt	will	show	up	in	the	first	row	while	D.C	on	second	row	and	New	
York	on	third.	So,	the	screen	interactively	show[s]	the	information	depending	on	need	of	users.”—P7	

Request/Receive	Context	
14	applications	(22%)	allowed	users	to	request	and	receive	context	from	a	specific	set	of	devices	(e.g.,	all	of	the	devices	
at	a	specified	location).	This	information	can	then	be	used	by	the	application	to	answer	a	specific	question.	

Representative	Example:	“I'm	not	sure	what's	the	hours	of	a	place,	and	I	want	to	know	whether	there	are	
people	moving	in	the	area	(which	can	tell	me	whether	it's	open	or	not)”—P12	

Location	Specific	Services	
8	applications	 (12%)	proposed	by	developers	 are	designed	 to	provide	users	with	 location	 specific	 services.	 These	
applications	check	to	see	when	the	user	has	entered	a	specific	location	(e.g.,	buildings,	shopping	areas).	They	then	
use	their	real-time	knowledge	of	the	environment	to	tell	the	user	which	services	are	available.	

Representative	 Example:	 “Allows	 [users]	 to	 find	 an	 available	 room	 on	 campus	 to	 spontaneously	meet	 in	
groups,	e.g.,	for	project	meetings,	brainstormings,	etc.”—P2	

Spontaneous	Communications	Applications	
5	applications	 (8%)	were	proposed	to	support	one-time	communications	between	users.	These	applications	allow	
users	to	send	messages,	ask	questions,	or	share	content	(e.g.,	pictures)	without	having	to	trade	contact	information	
in	advance.	This	makes	them	especially	useful	in	situations	where	users	are	meeting	for	the	first	time	and	need	to	
exchange	information	once	or	without	warning.	

Representative	 Example:	 “The	 world	 [is]	 full	 with	 suffering.	 Give/receive	 nice,	 wonderful,	 encouraging	
messages	from/to	people	who	you	walk	pass	today.	Tell	the	user	how	many	messages	you	get.”—P15 

Recommendations	Based	on	Similar	Interests	
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In	2	applications	(3%),	developers	wanted	to	use	GCF	to	form	groups	of	users	with	similar	preferences	(e.g.,	favorite	
movies,	food,	books),	regardless	if	they	are	physically	nearby	or	have	met.	The	applications	can	then	use	these	groups	
to	provide	more	personalized	recommendations.	

Representative	Example:	“People	can	ask	about	a	place	to	eat	or	drink	or	go	to	and	based	upon	their	taste,	
the	reviews	of	the	people	having	similar	taste	will	be	sent	to	them	on	their	location.”—P1	

Reminder	Applications	
Finally,	2	applications	(3%)	wanted	to	use	GCF	to	remind	users	of	important	events.	These	applications	are	similar	to	
existing	 recommendation	 systems	 (e.g.,	 Google	 Now)	 in	 that	 they	 can	 be	 configured	 to	 deliver	 a	 reminder	 at	 a	
specified	date,	time,	and/or	location.	Additionally,	however,	the	proposed	systems	can	also	use	GCF	to	detect	nearby	
users	and/or	devices.	This	lets	them	deliver	reminders	under	a	wider	set	of	unpredictable	conditions	(e.g.,	“Remind	
me	the	next	time	I	am	near	Anind	to	ask	him	if	I	can	take	his	new	car	for	a	spin!”).	

Representative	Example:	“A	user	has	a	meeting	in	Anind's	office.	He	wants	to	take	a	note	or	make	a	reminder	
for	the	next	meeting	in	the	office.	So	he	executes	a	GCF-Enabled	memo	application,	then	enter	some	text.	He	
also	add[s]	a	reminder	condition	to	the	memo	as	a	"current	location".	At	that	time,	the	app	stores	the	entered	
text	and	its	contextual	data	(e.g.,	 indoor	 location).	Later,	when	he	visits	Anind's	office,	the	application	will	
notify	the	stored	memo.	Or	if	he	configured	the	trigger	condition	as	"meet	Anind",	the	application	will	notify	
the	memo	when	the	app	detects	Anind's	phone.”—P6	

Collectively,	these	applications	represent	a	good	mix	of	old	and	new	ideas.	While	some	of	these	applications	have	
been	 proposed	 before	 (e.g.,	 sharing	 business	 cards	 when	 at	 a	 conference	 [7,28,34]),	 others,	 to	 the	 best	 of	 our	
knowledge,	have	yet	to	be	explored	by	either	academia	or	 industry.	As	a	result,	we	believe	these	applications	will	
collectively	provide	us	with	a	good	test	set	to	evaluate	GCF’s	capabilities,	and	help	us	better	understand	how	our	work	
can	support	and	advance	the	state	of	the	art.	

6.3.2. WHAT	TYPES	OF	CONTEXT	DO	DEVELOPERS	WANT	TO	SHARE	USING	GCF?	
In	addition	 to	 identifying	 the	above	high	 level	 categories,	we	also	analyzed	each	application	 to	 see	what	 types	of	
context	they	require	at	runtime.	The	results	of	this	analysis	are	summarized	in	Table	16.		

Not	surprisingly,	participants	identified	a	wide	range	of	contexts	that	they	would	like	to	collect	and	share	using	GCF.	
On	average,	each	of	the	proposed	applications	require	two	different	contexts	(mean	=	2.0;	stdev	=	1;	min	=	1,	max	=	
5).	Additionally,	Table	16	also	shows	that	that	the	types	of	context	needed	by	each	application	can	largely	vary.	Some	
applications	 only	 need	 access	 to	 raw	 sensor	 data	 (e.g.,	GPS	 coordinates,	 audio	 amplitude	 readings)	 in	 order	 to	
function,	while	others	need	more	 specialized	contexts	 that	 can	only	be	collected	via	 software,	 such	as	 the	user’s	
identity,	 preferences	 (e.g.,	music,	 food,	 accessibility	 settings),	 and	 calendar	 schedule.	As	of	 this	writing,	GCF	only	
provides	prebuilt	context	providers	for	10	of	the	26	contexts	identified	in	Table	16.	Upon	closer	examination,	however,	
we	 found	 that	all	of	 the	 contexts	 specified	 by	 developers	 can	 already	 be	 obtained	 using	 existing	 sensors	 and/or	
software	 APIs.	 As	 a	 result,	 it	 is	 conceivable	 that	 future	 versions	 of	 the	 framework	 can	 provide	 prebuilt	 context	
providers	for	all	of	these	data	types.	

There	are	two	important	takeaways	from	this	analysis.	First,	our	results	show	the	importance	of	being	able	to	support	
a	wide	range	of	context	through	a	single	architecture.	Table	16	shows	that	developers	will	oftentimes	require	GCF	to	
be	able	to	share	contexts	produced	using	hardware,	software,	or	any	combination	of	the	two.	Many	of	these	contexts	
will	not	come	with	prebuilt	context	providers,	and	will	require	the	developer	to	collect	this	information	themselves.	
Through	the	context	provider	abstraction,	GCF	provides	a	simple	way	for	developers	to	collect	and	share	a	wide	range	
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of	context	through	a	single	software	interface.	This	lets	the	framework	work	with	any	foreseeable	context,	regardless	
of	what	it	is	or	how	it	is	obtained.	

Secondly,	our	results	also	show	how	GCF	can	take	advantage	common	information	requirements.	As	shown	in	Table	
16,	many	applications	use	the	same	three	contexts	(identity,	location,	and	(arguably)	preferences).	On	its	own,	this	is	
an	important	finding,	as	it	means	that	GCF	does	not	need	to	provide	a	large	number	of	context	providers	in	order	for	
it	to	be	useful	in	the	most	common	use	cases.	Additionally,	this	finding	also	means	that	there	is	a	good	chance	that	
applications	will	be	able	to	find	the	context	providers	they	need	on	other	devices	regardless	if	they	are	meeting	for	
the	first	time	or	have	the	same	app	installed.	This	is	a	key	part	of	our	strategy	for	forming	opportunistic	groups,	and	
in	 the	 following	 sections,	 we	 will	 show	 how	 GCF	 can	 take	 advantage	 of	 these	 commonalities	 without	 requiring	
developers	to	have	to	explicitly	coordinate	with	each	other.		

6.3.3. WHICH	APPLICATIONS	CAN	BE	CREATED	WITH	GCF?	
In	order	 to	determine	which	applications	can	and	cannot	be	created	using	GCF,	we	examined	each	one	using	the	
design	process	described	in	section	5.3.	In	doing	so,	we	found	that	we	can	implement	64	of	them	(98%)	using	5	general	

Table	16.	Contexts	used	by	participants’	application	ideas.	

	



	 155	

design	patterns.	 In	this	section,	we	describe	each	pattern,	and	highlight	the	conditions	under	which	they	are	best	
utilized.	

Pattern	1:	Local	Area	Request		

Our	 first	design	pattern	 is	based	on	GCF’s	 traditional	grouping	 functionality.	 In	 this	pattern,	 the	entity	 requesting	
context	 (e.g.,	 an	 application	 running	 on	 a	 smartphone)	 broadcasts	 a	 context	 request	 message	 to	 all	 devices	 in	
communications	 range.	 The	 entity	 can	 then	 receive	 and	 analyze	 context	 capability	messages	 from	other	 devices,	
subscribe	to	one	or	more	context	providers,	and	begin	receiving	information.		

The	local	area	request	pattern	is	useful	for	applications	where	the	devices	requesting	and	sharing	context	are:	

1. In	the	same	area	(e.g.,	a	building	or	store),	but	not	necessarily	in	Bluetooth	range,	and	
2. Able	to	connect	to	the	same	local	area	network		

While	conceptually	easy	to	understand,	local	area	request	is	oftentimes	impractical	to	use	in	the	real	world	as	there	
are	many	environments	that	do	not	have	a	local	area	network.	Our	participants	were	able	to	identify	a	small	set	of	
use	cases	where	users	could	reasonably	be	expected	to	be	on	the	same	LAN	(e.g.,	an	app	that	collects	phone	usage	
data	from	users	in	a	classroom,	concert,	or	sports	arena	to	see	who	is	mentally	engaged—P12).	Collectively,	however,	
we	found	that	the	need	for	a	local	area	network	is	a	critical	limitation,	and	that	only	six	of	the	applications	submitted	
by	participants	(9%)	could	actually	be	implemented	using	this	pattern.	

Pattern	2:	Ad	Hoc	Request	

Our	second	design	pattern	takes	advantage	of	GCF’s	ability	to	form	ad	hoc	connections.	In	this	pattern,	the	requesting	
entity	performs	periodic	Bluewave	scans	to	determine	1)	which	devices	are	nearby,	2)	what	contexts	they	can	provide,	

	

Figure	74.	The	local	area	request	design	pattern.	

	

	

Figure	75.	The	ad	hoc	request	design	pattern.	Devices	use	Bluewave	to	detect	nearby	devices,	and	establish	temporary	
connections	with	devices	that	can	provide	the	desired	information.		
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and	3)	what	IP	address	they	are	listening	on	(using	information	shared	by	GCF	by	default).	The	entity	can	then	use	
GCF	to	form	an	ad	hoc	network	connection	with	one	or	more	context	producers,	and	request/receive	information	
from	them.	

The	ad	hoc	request	pattern	is	useful	for	applications	where	devices	are:	

1. In	Bluetooth	range	when	they	need	to	request/share	context,	
2. Connected	to	the	Internet	(Wi-Fi	or	3G/4G),	and	
3. Expected	to	encounter	each	other	in	both	indoor	and	outdoor	locations	

Since	it	does	not	rely	on	a	local	area	network,	the	ad	hoc	request	pattern	is	better	suited	for	real-life	spontaneous	
encounters	(e.g.,	an	app	that	allows	devices	to	share	audio	readings	in	order	to	determine	if	two	users	are	hearing	
the	same	conversation—P13).	This	pattern	is	admittedly	 less	efficient	from	a	power	consumption	standpoint,	as	 it	
requires	 the	 requesting	 device	 to	 conduct	 Bluetooth	 scans	 in	 order	 to	 locate	 and	 group	 with	 nearby	 devices.	
Furthermore,	the	pattern	can	only	be	used	to	form	groups	within	a	short	distance.	Yet	despite	these	limitations,	we	
we	found	that	this	pattern	could	be	used	to	implement	twice	as	many	apps	(twelve;	19%)	as	the	local	area	request	
pattern.		

Pattern	3:	Bluewave	Only	

Our	third	design	pattern	utilizes	GCF’s	ability	to	broadcast	and	share	context	with	nearby	devices	via	Bluewave.	Here,	
the	requesting	entity	performs	a	Bluetooth	scan	to	determine	which	devices	are	physically	nearby.	The	application	
then	uses	GCF	to	automatically	1)	extract	each	devices’	context	broker	URL	and	credentials	from	its	Bluetooth	name,	
and	2)	request	and	receive	context.	

The	Bluewave	only	pattern	is	useful	for	applications	where:	

1. The	devices	requesting	and	sharing	context	are	equipped	with	a	Bluetooth	antenna,	
2. The	devices	requesting	and	sharing	context	have	their	own	Internet	connection	(Wi-Fi	or	3G/4G),	
3. Devices	only	need	to	share	context	once	or	infrequently,	
4. The	context	being	shared	is	not	continuously	changing,	and	

The	Bluewave	only	pattern	provides	a	convenient	way	to	share	a	small	amount	of	context	(e.g.,	the	user’s	name)	over	
a	short	distance.	Through	our	analysis,	we	found	that	this	pattern	could	be	used	to	implement	approximately	(30;	
46%)	of	the	applications	submitted	by	our	participants,	ranging	from	simple	 icebreaker	apps	(e.g.,	a	part	app	that	
helps	users	find	others	with	similar	personal	and	professional	interests—P3,	P15)	to	intelligent	displays	(e.g.,	a	smart	

		

Figure	76.	Bluewave	only	design	pattern.		
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sign	that	displays	everyone’s	exercise	habits	on	a	wall	so	that	users	can	compare	their	performance—P10).	This	makes	
it	the	most	commonly	used	pattern	we	have	discovered	thus	far,	and	demonstrates	why	the	ability	to	quickly	and	
easily	share	context	over	short	distances	is	an	important	capability	of	our	framework.	

Pattern	4:	Relay	

In	the	relay	pattern,	each	device	connects	to	a	centralized	server	that	is	known	to	all	devices	a	priori.	When	an	entity	
wants	to	request	context,	it	sends	a	context	request	message	to	the	server.	This	message	is	then	relayed	to	the	other	
devices	(which	may	or	may	not	be	in	the	same	location)	so	that	the	entity	can	form	groups	and	share	context	over	
arbitrary	distances.		

The	relay	pattern	is	useful	for	applications	where:	

1. Devices	need	to	form	groups	and	share	context	over	large	physical	distances,	
2. The	devices	requesting	and	sharing	context	have	their	own	Internet	connection	(Wi-Fi	or	3G/4G),	and	
3. It	is	reasonable	to	assume	that	devices	can	be	provided	with	the	server’s	IP	address	and	port	beforehand	

The	relay	pattern	was	utilized	a	total	of	16	times	(25%)	by	our	participants.	In	these	instances,	participants	wanted	to	
be	able	to	request	context	from	devices	at	another	location	(e.g.,	an	app	that	lets	users	determine	if	a	store	or	business	
is	open	by	seeing	if	there	are	users	moving	in	that	location—P14).	In	the	other	seven	applications,	participants	used	
a	slightly	modified	version	of	the	relay	pattern	(Figure	78)	to	upload	user	context	to	the	server.	This	let	the	system	
push	services	(e.g.,	an	app	that	helps	users	find	an	available	parking	spot	when	they	arrive	at	a	shopping	center—P1)	
when	the	user’s	context	satisfies	a	set	of	predefined	conditions.	

The	 relay	pattern’s	biggest	 limitation	 is	 that	 it	 requires	devices	 to	know	 the	address	of	 the	 relay	before	 they	can	
communicate	with	each	other.	However,	this	pattern	eliminates	the	need	for	devices	to	be	nearby	in	order	to	form	a	
group.	This	extends	GCF’s	reach,	which	in	turn	allows	our	framework	to	share	context	under	a	wider	set	of	conditions.	

	

Figure	77.	The	relay	design	pattern.	Devices	send	requests	for	context	to	a	server	or	centralized	communications	channel	
(known	a	priori).	These	messages	are	forwarded	to	the	other	devices,	and	allow	devices	to	form	groups	and	share	context	over	

arbitrary	distances.	

	

Figure	78.	A	variation	of	the	relay	design	pattern.	In	this	version,	users	share	their	context	with	a	server,	which	forwards	it	to	
one	or	more	service	providers.	These	service	providers	can	then	opportunistically	push	information	and/or	services	to	users.	
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Pattern	5:	Self	Share	

Our	final	design	pattern	takes	advantage	of	GCF’s	ability	to	let	devices	request	and	receive	context	from	themselves.	
In	this	pattern,	the	requesting	application	transmits	a	context	request	that	uses	the	Local	Only	arbiter.	The	framework	
then	subscribes	to	the	device’s	local	context	provider(s),	and	begins	receiving	information.		

The	self-share	pattern	is	useful	for	applications	that:	

1. Only	need	to	collect	context	from	themselves	

Across	all	of	the	application	ideas	we	received,	only	one	(2%)	needed	this	design	pattern	(e.g.,	an	app	that	monitors	
the	user’s	 location,	and	notifies	him	when	he	 is	near	certain	 locations—P5).	Nevertheless,	we	know	that	ability	to	
obtain	context	from	the	local	device	is	still	an	important	capability	in	context-aware	computing.	Consequently,	while	
this	pattern	does	not	make	full	use	of	GCF’s	capabilities,	 it	does	show	how	our	framework	can	support	traditional	
context	collection	tasks.	

It	is	important	to	note	that	the	five	design	patterns	described	above	have	actually	been	used	throughout	this	thesis.	
The	 local	area	 request	pattern,	 for	example,	was	used	by	Didja	and	Snap-To-It	 to	 let	devices	 request	and	 receive	
context	and	interfaces,	respectively.	Likewise,	the	ad	hoc	request	pattern	was	used	by	GroupMap	2.0	to	let	devices	
share	GPS	coordinates	in	outdoor	environments.	Through	our	work	with	Bluewave,	we	showed	how	we	can	use	the	
Bluewave	only	pattern	to	share	context	over	short	distances.	Finally,	Impromptu,	Impromptu	Share,	and	Impromptu	
Sense	all	demonstrate	how	we	can	use	the	relay	pattern	to	request,	receive,	and	push	information	to	devices	through	
a	centralized	application	directory.	The	only	pattern	that	we	have	not	exclusively	explored	 in	this	thesis	 is	the	self	
share	pattern,	as	our	work	focuses	on	sharing	context	with	multiple	devices.	Nevertheless,	we	have	used	this	pattern	
in	GroupHike	to	access	a	device’s	internal	compass	readings,	as	well	as	in	Impromptu	to	collect	user	context.		

Collectively,	this	work	demonstrates	that	all	of	our	design	patterns	can	be	implemented	using	the	framework.	This	
shows	that	GCF	can	technically	support	the	types	of	systems	that	developers	want	to	create.	

6.3.4. CAN	GCF	SUPPORT	LEGACY	CONTEXT-SHARING	SYSTEMS?	
In	addition	to	looking	at	participants’	ideas,	we	also	reevaluated	each	of	the	28	context-sharing	systems	described	in	
CHAPTER	2	(Table	2)	in	order	to	determine	if	we	could	recreate	them	using	GCF.	Through	this	analysis	(Table	17),	we	
confirmed	that	the	framework	can	be	used	to	replicate	all	of	the	functionality	we	have	mentioned	or	 identified	in	
prior	work.	Most	of	the	systems	proposed	in	CHAPTER	2	require	devices	to	share	context	over	large	physical	distances,	
and	as	such	can	be	implemented	using	GCF’s	relay	pattern.		However,	we	also	identified	a	smaller	set	of	applications	
which	required	devices	to	be	able	to	share	context	over	a	local	area	network,	form	ad	hoc	connections,	or	broadcast	
context	 to	 nearby	 devices	 using	 Bluewave.	 Similar	 to	 the	 previous	 section,	 we	 were	 unable	 to	 identify	 a	 single	
application	that	only	utilizes	the	self	share	pattern.	This	is	to	be	expected,	though,	as	these	systems	are	focused	on	
sharing	context	rather	than	collecting	and	using	it	internally.	

	

Figure	79.	The	self	share	design	pattern.	Devices	request	and	receive	context	from	themselves	(using	GCF’s	Local	Only	arbiter).	
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Across	both	sets	of	applications,	we	were	unable	to	find	a	single	application	that	could	not	be	created	using	one	of	
our	five	design	patterns.	This	provides	further	evidence	that	GCF	is	robust	enough	to	satisfy	the	vast	majority	of	use	
cases,	and	that	it	is	capable	of	being	applied	to	both	novel	and	existing	context-aware	systems.	

6.3.5. WHICH	APPLICATIONS	CAN	WE	NOT	CREATE	USING	GCF?	
Of	the	93	systems	we	examined	(65	participant	applications,	and	28	 legacy	systems),	we	only	 found	one	that	our	
framework	is	currently	unable	to	support:	

“This	app	could	allow	self-driving	cars	to	learn	about	other	cars	around	and	their	navigation	state.	This	for	
example	could	help	emergency	vehicles	navigate	faster	through	busy	intersections	without	causing	accidents.	

Local Area 
Reqest

Ad Hoc 
Request Bluewave Only Relay Self Share

System Name
Active Badge and 
ActiveMap

x

Hubbub x

ConChat x

Community Bar x

TeamSpace x

Group Interaction 
Support System (GISS)

x

Context Aware 
Ephermeral Groups 

x

Panoply x

First Responder 
Reference Architecture

x

Smart-Its Friends x

Social Serendipity x

Flocks x

MobilisGroups x

Personal Server x

Mobile Gaia x

Solar x

SenseWeb x

Virtual Personal Worlds x

Participatory Sensing 
Platforms*

x

E2A2 x

Remora x

ErdOS x

CoMon x

GCF Design Pattern

Table	17.	Analysis	of	the	design	patterns	needed	to	recreate	all	of	the	systems	mentioned	in	CHAPTER	2.	
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Similarly,	in	cases	where	navigation	sensors	like	cameras	or	LIDARS	may	be	failing	the	car	could	communicate	
this	failure	to	other	cars	and	prevent	an	accident.”—P11 

To	create	this	application,	we	need	a	way	 for	cars	 to	 form	opportunistic	groups	while	on	the	road.	Yet	while	GCF	
provides	this	capability	through	Bluewave,	the	current	framework	requires	5-10	seconds	to	discover	a	nearby	device	
using	Bluetooth.	When	devices	are	traveling	at	a	slow	speed	(e.g.,	walking),	this	latency	is	acceptable	as	there	is	an	
extended	period	of	time	when	the	devices	are	nearby.	In	a	driving	scenario,	however,	cars	may	only	be	in	range	for	a	
few	 seconds.	 Furthermore,	while	 Bluetooth’s	 effective	 range	 (15-30	 feet)	 is	 good	 enough	 for	most	 interpersonal	
encounters,	 it	 may	 not	 be	 sufficient	 to	 reliably	 detect	 devices	 over	 common	 driving	 environments	 (e.g.,	 cars	 at	
opposite	ends	of	an	intersection).	Thus,	while	GCF	could	occasionally	detect	nearby	devices	and	obtain	context	from	
them	using	Bluewave,	it	would	not	be	reliable	or	consistent	enough	to	be	practically	useful.	

Through	 this	 example,	 we	 see	 that	 GCF’s	 inability	 to	 quickly	 detect	 nearby	 devices	 can	 limit	 its	 ability	 to	 form	
opportunistic	groups.	One	possible	way	to	overcome	this	problem	is	to	utilize	additional	radio	technologies	besides	
Bluetooth.	RFID,	for	example,	is	commonly	used	on	roads	to	detect	cars	when	they	pass	through	an	intersection	or	
toll	route,	and	has	both	the	range	and	speed	needed	to	support	the	use	case	described	above.	Alternatively,	it	is	also	
conceivable	that	future	versions	of	Bluetooth	could	have	a	shorter	discovery	interval	so	that	it	can	discover	devices	in	
a	shorter	window.	For	now,	we	have	chosen	to	accept	GCF’s	current	 limitations	 in	order	to	allow	 it	 to	run	on	the	
widest	 possible	 range	 of	 hardware.	 Overall,	 however,	 our	 analysis	 shows	 that	 GCF’s	 biggest	 limitations	 are	
technological	rather	than	architectural.	This	suggests	that	the	framework,	with	the	right	combination	of	technologies,	
could	eventually	support	applications	like	the	one	described	by	P11.	

6.3.6. CAN	GCF	SUPPORT	OPPORTUNISTIC	GROUPING	IN	THE	WILD?	
For	our	final	analysis,	we	cataloged	each	application	according	to	the	conceptual	model	we	introduced	in	CHAPTER	2	
(Table	1).	Our	results,	which	are	summarized	in	Table	18,	show	that	the	majority	of	applications	(66%)	submitted	by	
our	participants	utilize	cooperative	grouping	 (i.e.,	Quadrant	 II).	This	 result,	however,	was	expected.	As	part	of	our	
study	protocol,	as	we	asked	participants	to	identify	applications	(i.e.,	specific	tasks)	where	forming	groups	and	sharing	
context	is	useful.	Consequently,	while	some	participants	identified	ways	to	use	GCF	in	a	more	general	manner	(e.g.,	
sharing	sensor	readings	to	conserve	power—P3;	sharing	the	user’s	current	goal/task	to	allow	multiple	appliances	in	a	
smart	home	to	customize	their	behavior—P8),	the	majority	focused	on	collecting	different	data	from	each	device	in	
support	of	a	single	use	case.	

Given	 that	 most	 developers	 were	 focused	 on	 sharing	 context	 for	 their	 own	 purposes,	 can	 GCF	 actually	 form	
opportunistic	groups	across	applications?	To	answer	this	question,	we	reexamined	participants’	application	ideas	from	
a	platform	standpoint	in	order	to	see	how	their	contexts	complement	each	other.	Consider,	for	example,	the	following	
applications,	which	were	proposed	by	three	different	participants:	

Air	Business	Card	(P15):	“Imagine,	you	are	in	a	conference	or	job	fair.	Would	it	be	cool	to	always	get	your	
contact	from	people	you	meet[?]	The	app	shows	information	in	business	cards	or	people	around	them.	Users	
can	decide	to	save	some	of	it	or	filter	only	the	one	they	want	(or	automatically	save	everything).” 

Student	Attendance	App	(P2):	“The	app	would	make	it	easy	for	lecturers	to	gather	information	on	who	(aka	
mobile	phone)	has	been	attending	a	 lecture	or	exercise	session.	This	can	be	helpful	 for	both	 lecturers	and	
students	for	classes	and	labs	where	attendance	is	required.” 

Simple	Photo	Sharing	(P13):	“Whenever	people	take	a	group	photo,	they	often	use	more	than	one	camera	
and	still	have	to	harass	the	people	whose	camera	was	used	to	share	the	photos.	This	app	would	just	register	
everyone	who	is	in	a	photo	and	send	a	copy	of	the	picture	to	them	automatically…”	
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In	each	of	these	examples,	users	need	to	share	their	 identity	(i.e.,	their	name,	contact	 information)	 in	order	to	 let	
them	see	who	they	have	met,	take	attendance,	and	share	photos,	respectively.	To	create	these	applications	using	
GCF,	we	 could	 create	 an	 Identity	 context	 provider	 that	 can	 collect	 this	 information	 from	 the	 user’s	 phone.	 Each	
developer	could	independently	use	this	context	provider	to	obtain	this	information	for	their	own	applications.	The	
applications	would	then	be	able	to	share	the	same	context	with	each	other,	thereby	allowing	users	with	the	Simple	
Photo	Sharing	app	to	email	pictures	to	users	with	the	Air	Business	Card	and	Student	Attendance	Apps.	

Although	this	example	seems	coincidental,	it	is	important	to	note	that	this	is	not	the	only	example	of	cross	application	
compatibility	that	we	observed.	Across	our	entire	dataset,	we	have	identified	102	separate	instances	where	apps	with	
similar	or	complimentary	contextual	information	requirements	are	able	to	provide	information	to	each	other.	Given	
that	our	participants	were	not	allowed	to	share	ideas	with	each	other,	our	dataset	closely	approximates	the	types	of	
context-aware	applications	 that	might	exist	 in	a	 realistic	deployment	of	our	 framework.	Thus,	our	 results	provide	
strong	evidence	that	GCF	will	be	able	to	find	and	form	opportunistic	groups	outside	of	a	laboratory	environment.		

6.4. SUMMARY	
In	this	chapter,	we	asked	developers	from	both	academia	and	industry	to	tell	us	how	they	would	like	to	use	GCF	to	
create	a	new	generation	of	context-aware	applications.	Through	this	process,	we	showed	that	our	framework	is	not	
only	able	to	technically	support	the	vast	majority	of	use	cases,	but	that	it	can	also	allow	devices	to	form	groups	and	
share	context	regardless	of	whether	or	not	they	are	performing	the	same	task.	

The	work	presented	in	this	chapter	concludes	our	discussion	of	our	first	two	research	questions.	Yet	while	our	work	
has	allowed	us	to	validate	GCF’s	architecture	(addressing	RQ1)	and	ensure	that	the	framework	supports	a	wide	range	
of	use	cases	(addressing	RQ2),	it	has	also	helped	us	better	understand	the	specific	challenges	with	allowing	devices	to	
opportunistically	 form	groups	and	share	context	 from	a	developer,	end-user,	and	system	perspective.	 In	 the	next	
chapter,	we	focus	on	this	topic	in	greater	detail,	and	identify	the	unique	challenges	associated	with	using	a	framework	
like	GCF	outside	of	a	laboratory	environment.	

	 	

Table	18.	Classification	of	participants’	application	ideas	using	our	conceptual	model.	
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7. IDENTIFYING	THE	CHALLENGES	WITH	UTILIZING	OPPORTUNISTIC	GROUPS	

IN	CONTEXT-AWARE	COMPUTING	
The	Group	Context	 Framework	provides	 a	 flexible	 research	platform	 to	explore	how	opportunistic	 groups	 can	be	
utilized	 in	 context-aware	applications.	 Yet	while	our	work	has	helped	us	 identify	 the	potential	benefits	 of	using	a	
framework	like	GCF,	it	has	also	helped	us	identify	the	unique	challenges	that	can	arise	when	devices	are	able	to	form	
groups	and	share	context	on	their	own.	In	this	chapter,	we	group	these	challenges	into	three	broad	categories.	First,	
we	 discuss	 the	 potential	 issues	 that	 can	 make	 it	 difficult	 for	 application	 developers	 to	 use	 GCF	 in	 their	 own	
applications.	 Afterwards,	 we	 describe	 the	 issues	 that	 can	 discourage	 users	 from	wanting	 to	 share	 context	 in	 an	
opportunistic	 fashion.	 Finally,	 we	 look	 at	 GCF	 at	 the	 technical	 level,	 and	 discuss	 how	 the	 hardware,	 power,	 and	
networking	requirements	of	our	framework	create	practical	limitations	on	the	types	of	use	cases	that	can	be	easily	
and	practically	supported.	

The	work	presented	in	this	chapter	directly	addresses	our	third	research	question	(“What	are	the	unique	challenges	
associated	with	utilizing	opportunistic	groups	in	context-aware	applications?”)	by	identifying	specific	conditions	where	
the	framework	either	breaks	down	or	becomes	difficult	to	use.	In	order	to	provide	as	complete	a	list	as	possible,	this	
chapter	examines	the	issues	that	we	encountered	in	our	own	work	(CHAPTER	3	and	CHAPTER	4),	as	well	as	 issues	
brought	 up	 by	 developers	 during	 our	 developer	 study	 (CHAPTER	 6).	 Additionally,	 we	 have	 also	 reexamined	 the	
application	ideas	submitted	by	developers	in	CHAPTER	6	to	better	understand	the	challenges	that	can	arise	when	GCF	
is	utilized	as	a	platform.	Through	this	exploration,	we	identify	the	most	important	issues	that	affect	GCF’s	usability.	
This,	in	turn,	will	provide	researchers	a	general	body	of	knowledge	to	help	inform	the	design	of	future	context-aware	
systems,	frameworks,	and	research.	

7.1. DEVELOPER	CHALLENGES	
In	this	section,	we	discuss	three	challenges	that	can	make	it	difficult	for	developers	to	use	GCF.	First,	we	discuss	the	
issue	of	platform	fragmentation,	and	present	several	ways	to	encourage	developers	to	utilize	a	standardized	set	of	
context	providers	rather	than	create	their	own.	Next,	we	look	at	the	challenges	associated	with	debugging	applications	
built	using	GCF,	and	describe	the	strategies	that	we	have	used	thus	far	to	test	our	applications	prior	to	deployment.	
Lastly,	we	discuss	 the	challenges	associated	with	 relying	on	context	produced	by	other	devices,	and	describe	 two	
techniques	that	devices	can	use	to	determine	if	they	are	trustworthy	when	they	meet	for	the	first	time.	

7.1.1. PLATFORM	FRAGMENTATION	
GCF’s	 context	 providers	 provide	 a	 simple	 and	 extensible	way	 to	 collect	 and	 share	 a	wide	 range	 of	 context	 in	 an	
application	agnostic	manner.	Yet	while	this	abstraction	allows	devices	to	form	groups	and	work	together	with	minimal	
coordination,	 it	can	also	 fragment	 the	platform	 if	used	 improperly.	For	example,	 if	 two	developers	create	context	
providers	 for	 the	 same	 type	 of	 information	 (e.g.,	a	 user’s	 shopping	 list),	 it	 can	 create	 competing	ontologies,	 and	
prevent	devices	from	being	able	to	easily	request	or	use	this	information.	Similarly,	 if	developers	modify	a	context	
provider’s	output	(e.g.,	changing	a	temperature	context	provider	so	that	it	outputs	values	in	degrees	Kelvin	instead	of	
Celsius)	without	keeping	other	developers	informed,	they	run	the	risk	of	breaking	every	application	that	relies	on	it	
for	information.		

Our	experience	with	these	types	of	problems	is	currently	limited	since	we	have	only	used	context	providers	that	we	
have	created	and	deployed	ourselves.	However,	as	GCF	becomes	more	widely	adopted,	the	risk	of	fragmentation	will	
increase.	We	already	have	empirical	evidence	that	suggests	this	will	happen.	In	our	developer	study	(CHAPTER	6,	Table	
16),	we	found	that	80%	of	the	application	ideas	submitted	by	developers	required	them	to	develop	at	least	one	custom	
context	provider.	Additionally,	we	observed	8	separate	instances	where	two	or	more	developers	needed	to	create	a	
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custom	context	provider	for	the	same	type	of	information	(e.g.,	user	preferences,	identity).	Thus,	while	developers	
may	not	intentionally	try	to	fragment	GCF,	our	results	suggest	that	they	will	do	so	if	left	on	their	own.	

From	this	discussion,	it	is	clear	that	future	generations	of	GCF	will	need	to	provide	more	direct	oversight	over	how	
context	is	collected	and	shared	across	the	framework.	This	oversight	can	take	several	different	forms.	One	possible	
way	to	reduce	fragmentation	 is	to	help	developers	better	understand	what	 information	 is	already	shared	through	
GCF.	 Our	 web	 dashboard	 (Figure	 65)	 partially	 addresses	 this	 need	 by	 allowing	 developers	 to	 see	 which	 context	
providers	have	already	been	deployed	on	 the	 framework.	This	 lets	 them	decide	when	they	need	 to	create	a	new	
context	provider.	Another	way	is	to	have	context	providers	report	their	version	number	so	that	applications	can	1)	
detect	when	 a	 context	 provider	 has	 been	 updated,	 and	 2)	 request	 context	 from	 specific	 versions.	 Finally,	 future	
versions	of	GCF	may	need	 to	 either	 come	with	 an	extensive	 library	of	 prebuilt	 context	 providers,	 and/or	provide	
mechanisms	for	developers	to	submit	and	share	their	context	providers	with	each	other	(e.g.,	using	an	online	code	
repository	like	GitHub).	Even	with	these	measures	in	place,	it	is	not	realistic	to	assume	that	platform	fragmentation	
can	be	completely	avoided.	Yet	by	encouraging	standardization	at	the	platform	level,	it	should	be	possible	to	allow	
devices	to	form	opportunistic	groups	under	many	common	situations.	

7.1.2. DEBUGGING		
Another	challenge	with	utilizing	opportunistic	groups	in	context-aware	computing	is	that	the	resulting	applications	
can	be	more	difficult	to	debug.	As	mentioned	in	CHAPTER	1,	one	of	the	main	characteristics	of	opportunistic	groups	
is	that	it	is	hard	to	predict	when	and	where	they	will	occur.	Yet	while	GCF	addresses	this	problem	by	allowing	devices	
to	detect	and	form	groups	on	their	own,	the	developers	from	our	study	noted	that	it	can	be	challenging	to	anticipate	
all	of	the	groups	that	can	be	formed	by	the	framework	at	runtime.	This	can	make	it	difficult	for	them	to	come	up	with	
a	set	of	test	cases	that	thoroughly	evaluates	their	applications,	or	precisely	recreate	the	conditions	(i.e.,	 the	exact	
combination	of	devices)	that	led	to	a	bug	or	software	defect.	

In	own	experience,	allowing	devices	to	form	opportunistic	groups	does	add	an	additional	layer	of	complexity	to	the	
software	development	process.	However,	we	have	also	found	that	there	are	still	practical	ways	to	debug	applications	
created	using	GCF.	 In	systems	such	as	Didja	and	Snap-To-It,	we	were	able	to	create	a	test	environment	 in	our	 lab	
which	contains	one	or	more	GCF-enabled	devices.	We	could	then	use	this	environment	throughout	the	development	
process	in	order	to	simulate	a	wide	range	of	real-world	encounters.	In	contrast,	when	we	developed	the	Impromptu	
Share	system,	we	realized	that	we	needed	to	be	able	to	simulate	large	numbers	of	devices	in	order	to	see	how	our	
system	could	request	and	receive	information	from	all	of	them	at	once.	To	achieve	this,	we	ran	multiple	instances	of	
GCF	on	a	laptop,	and	had	the	system	request	and	receive	context	from	them.	Using	this	approach,	we	could	simulate	
any	number	of	devices	without	the	need	for	actual	hardware.	Additionally,	since	our	simulated	devices	were	using	the	
same	context	providers,	we	were	able	to	swap	them	for	real	devices	without	having	to	alter	our	application’s	code.	

Collectively,	these	examples	show	that	debugging	GCF	applications	is	more	practical	than	it	might	seem	at	first.	One	
limitation	of	our	current	approach	is	that	it	still	requires	developers	to	manually	test	their	applications	(i.e.,	bring	two	
devices	into	range	so	that	they	can	detect	each	other	and	form	a	group).	This	means	that	there	is	a	good	possibility	
that	developers	will	be	unable	 to	 thoroughly	 test	 their	applications	against	every	possible	use	case.	Although	 it	 is	
beyond	the	scope	of	this	thesis,	it	is	conceivable	that	future	versions	of	the	framework	could	come	with	automated	
testing	 tools	 (e.g.,	a	dedicated	 simulator	environment—see	our	discussion	of	 related	work	 for	more	details).	 This	
would	conform	to	existing	software	engineering	best	practices,	and	give	developers	a	more	systematic	and	efficient	
way	to	verify	that	their	programs	work	as	intended.	
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7.1.3. TRUSTING	CONTEXT	FROM	NEWLY	ENCOUNTERED	DEVICES	
A	third	issue	that	developers	need	to	consider	when	using	a	framework	like	GCF	is	determining	how	to	trust	context	
from	newly	encountered	devices.	Throughout	this	thesis,	we	have	largely	assumed	that	the	devices	running	GCF	are	
not	malicious,	and	that	the	context	that	they	report	 is	both	accurate	and	truthful.	This	 is	not	a	problem	when	the	
framework	 is	only	being	used	to	help	users	share	e.g.,	potential	conversation	topics,	as	there	 is	 little	 incentive	for	
users	and/or	devices	to	lie.	As	seen	in	our	work	with	Snap-To-It	and	our	developer	study,	however,	there	is	interest	in	
using	GCF	in	order	to	perform	a	diverse	range	of	secure	transactions,	ranging	from	unlocking	computers	to	performing	
financial	 transactions.	 In	 these	 use	 cases,	 there	 is	more	 of	 an	 incentive	 for	 a	malicious	 device	 to	 pretend	 to	 be	
someone	else	(a	technique	commonly	referred	to	as	spoofing)	and/or	provide	inaccurate	information	(user	identity	
and	payment	information,	respectively).	Consequently,	it	is	necessary	for	devices	to	have	some	way	to	establish	trust	
when	they	meet	for	the	first	time	so	that	the	device	receiving	the	context	knows	that	the	information	comes	from	a	
reputable	source.	

As	noted	in	our	discussion	of	Snap-To-It	(CHAPTER	4),	establishing	trust	between	unfamiliar	devices	is	a	challenge	in	
every	networked	system.	Consequently,	 there	are	many	well-established	techniques	that	have	been	developed	to	
overcome	this	problem.	One	way	is	to	utilize	a	hierarchical	trust	model	in	which	devices	are	vetted	by	a	third	party	
(i.e.,	a	certificate	authority	or	OAuth	service	[144]),	and	receive	a	digital	certificate	(e.g.,	X.509	[145])	stating	that	they	
are	 trustworthy.	When	devices	meet	 for	 the	 first	 time,	 they	can	exchange	certificates	and	validate	 them	with	 the	
certificate	authority.	This	lets	them	know	that	the	devices	can	be	trusted	before	requesting	and	receiving	information	
from	them.	Another	popular	technique	is	to	use	a	web	of	trust	model	[51]	in	which	each	device	creates	its	own	digital	
certificate,	 and	 forms	 ad	 hoc	 trust	 relationships	 with	 specific	 devices.	 The	 devices	 can	 then	 form	 new	 trust	
relationships	with	newly	encountered	devices	via	the	transitive	property	(e.g.,	“If	A	trusts	B,	and	B	trusts	C,	then	A	
trusts	C”).	

Given	that	the	focus	of	this	thesis	is	on	identifying	use	cases	where	opportunistic	groups	are	needed,	we	did	not	design	
the	GCF	with	a	specific	trust	model	in	mind.	It	is	important	to	note,	however,	that	the	framework	can	be	used	with	
either	 the	 hierarchical	 or	 web	 of	 trust	 methods.	 GCF	 allows	 applications	 to	 insert	 their	 own	 information	 when	
transmitting	a	context	request	message,	and	thus	it	is	already	possible	for	applications	to	insert	a	digital	certificate	or	
other	form	of	authentication	as	one	of	these	parameters.	Additionally,	it	is	conceivable	that	future	versions	of	GCF	
could	come	with	a	built-in	trust	mechanism	so	that	the	framework	can	automatically	establish	trust	relationships	on	
its	own.	However,	it	is	unclear	if	the	latter	option	would	actually	prevent	developers	from	having	to	implement	their	
own	trust	mechanisms	 into	their	applications,	and	thus	 it	 is	an	open	question	as	to	whether	or	not	this	approach	
would	actually	be	welcomed	or	useful.	

7.2. END	USER	CHALLENGES	
In	this	section,	we	describe	three	challenges	that	can	discourage	users	from	wanting	to	use	applications	that	are	built	
with	 GCF.	 First,	 we	 examine	GCF	 from	 a	 user	 privacy	 standpoint,	 and	 discuss	 the	 difficulties	 in	 protecting	 users’	
information	from	being	openly	shared	without	repeatedly	asking	them	for	permission.	Afterwards,	we	discuss	the	
potential	 security	 implications	of	our	 framework,	 and	 consider	how	 it	 addresses	 (or	 can	be	extended	 to	address)	
important	 concepts	 such	 as	 confidentiality,	 integrity,	 and	 availability.	 Finally,	 we	 look	 at	 how	 the	 ability	 to	 form	
opportunistic	groups	can	overwhelm	users	with	extraneous	information	and	services,	and	offer	suggestions	as	to	how	
users	can	take	advantage	of	GCF’s	functionality	without	significantly	increasing	their	cognitive	load.	

7.2.1. PRIVACY	
GCF’s	design	is	based	on	the	philosophy	that	devices	should	be	able	to	form	groups	and	share	context	as	needed.	Yet	
while	our	work	shows	that	this	goal	is	both	technically	achievable	and	creates	new	interaction	opportunities,	the	idea	
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of	allowing	devices	to	automatically	share	personal	information	is	potentially	concerning	to	end	users.	Consequently,	
a	significant	challenge	in	using	GCF	is	convincing	users	that	the	technology	gives	them	control	over	their	information,	
and	that	they	actually	want	to	share	their	context	in	this	manner.	

We	have	explored	the	issue	of	privacy	on	numerous	occasions	in	this	thesis.	During	the	development	of	Impromptu,	
for	example,	we	realized	that	users	may	be	uncomfortable	with	the	idea	of	continually	sharing	their	identity,	activity,	
location,	 etc.	 with	 our	 system’s	 application	 directory.	 This	 led	 us	 to	 develop	 techniques	 to	 obfuscate	 sensitive	
information	(e.g.,	sharing	the	hash	of	an	email	address	rather	than	the	address	itself),	and	add	basic	privacy	controls	
so	that	users	could	specifically	identify	what	types	of	information	they	are	willing	to	broadcast.	Meanwhile,	during	the	
early	phases	of	our	work	with	Bluewave,	we	conducted	a	study	with	15	participants	in	order	to	determine	what	types	
of	information	users	would	likely	be	willing	to	share	in	an	opportunistic	manner	(section	4.4.1.3).	We	then	used	this	
feedback	to	develop	finer	grained	privacy	controls	so	that	users	can	see	what	information	applications	need,	and	grant	
permissions	on	an	individual	basis.	Finally,	as	part	of	our	exploration	of	Bluewave,	we	created	a	number	of	prototypes,	
ranging	 from	self-translating	 signs	 to	navigation	 aids,	 that	only	 required	a	 small	 amount	of	 context	 (e.g.,	a	user’s	
language	 preferences	 and	 navigation	 destination,	 respectively).	 In	 doing	 so,	we	 showed	how	GCF	 can	 be	 utilized	
without	revealing	personally	identifiable	information,	thereby	providing	an	alternative,	and	more	privacy	friendly	way	
to	utilize	opportunistic	groups	in	context-aware	computing.	

Through	this	work,	we	have	gained	two	important	insights	as	to	how	frameworks	like	GCF	can	alleviate	user’s	privacy	
concerns.	First,	our	work	emphasizes	that	users	want	direct	control	over	what	information	they	are	sharing	and	when.	
In	our	exploratory	work	with	Bluewave,	for	example,	we	have	found	that	users	were	not	opposed	to	the	idea	of	sharing	
context	so	long	as	the	decision	to	share	is	left	to	them.	Based	on	this,	we	created	a	standardized	set	of	privacy	controls	
to	let	users	1)	see	what	information	is	being	collected	by	GCF,	and	toggle	which	ones	they	would	like	to	share,	and	2)	
see	when	 the	 framework	 is	actually	providing	context	 to	other	users	and/or	devices.	Users	can	 then	modify	 their	
sharing	settings	to	more	closely	match	their	personal	comfort	levels.		

Secondly,	our	work	shows	that	users	are	more	willing	to	share	 information	when	they	know	what	services	and/or	
benefits	they	are	getting	in	exchange.	During	our	work	in	Bluewave,	we	learned	that	users	tended	to	frame	context	
sharing	in	terms	of	a	financial	transaction	(i.e.,	“If	I	give	a	device	context	A,	then	I	will	get	B	in	return”),	and	that	they	
were	more	willing	to	share	when	the	benefits	of	doing	so	outweighed	the	costs.	Consequently,	it	is	important	that	
applications	make	the	benefits	of	sharing	more	explicit.	To	support	this,	we	have	modified	GCF	so	that	applications	
can	tell	users	what	context	they	need	at	runtime,	and	what	information/services	they	provide	in	exchange.	Users	can	
then	view	this	information	and	decide	whether	or	not	they	want	the	group	to	be	formed.	

Although	these	insights	have	already	influenced	GCF’s	final	design,	our	current	implementation	only	provides	a	partial	
solution.	 It	 is	technically	possible,	for	 instance,	to	provide	users	with	additional	controls	so	that	they	can	precisely	
specify	if,	when,	and	with	whom	their	context	is	shared	(e.g.,	“Share	my	location	only	with	my	female	friends	between	
8am	 to	 5pm	 on	 weekdays”).	 Additionally,	 it	 is	 also	 feasible	 to	 mandate	 that	 every	 application	 provide	 detailed	
descriptions	of	their	functionality	and	information	requirements	so	that	users	can	better	decide	which	devices	they	
want	to	group	with.	Requiring	users	to	be	involved	in	every	grouping	decision,	however,	increases	their	cognitive	load,	
and	can	prevent	GCF	from	taking	advantage	of	opportunistic	groupings	as	they	naturally	and	spontaneously	occur.	
From	a	user	 experience	 standpoint,	 there	 is	 a	balance	 that	needs	 to	be	 struck	between	giving	users	 fine-grained	
control	when	they	want	to	share	information,	and	allowing	them	to	benefit	from	GCF’s	ability	to	autonomously	detect	
and	form	groups.	Giving	users	the	ability	to	openly	share	some	(but	not	all)	context	is	one	way	to	let	users	delegate	
responsibility	to	the	framework,	and	prevent	them	from	having	to	make	every	grouping	decision.	However,	it	is	still	
an	open	question	as	to	what	additional	controls	are	needed	to	help	users	find	a	balance	that	works	for	them.	



	 166	

7.2.2. SECURITY	
Another	challenge	with	getting	users	to	adopt	GCF	is	with	regards	to	security.	Our	framework	relies	on	broadcasting	
technologies	(e.g.,	UDP	multicast,	Bluetooth	radio	IDs)	and	plaintext	(e.g.,	JSON)	in	order	to	discover	devices	and	share	
context,	respectively.	Although	this	makes	it	easy	for	devices	to	work	together	when	they	meet	for	the	first	time,	it	
also	allows	malicious	entities	to	collect	and/or	modify	sensitive	information	about	users	(e.g.,	payment	information,	
user	credentials)	when	is	it	transmitted	through	the	framework.	This	risk	is	acceptable	in	a	laboratory	environment,	
but	effectively	prevents	GCF	from	being	able	to	support	use	cases	where	confidential	information	is	needed.	

While	we	did	not	focus	on	security	in	this	thesis,	we	recognize	that	it	is	important	to	consider	how	the	framework	can	
be	used	to	transmit	sensitive	information.	According	to	[88],	there	are	three	important	properties	that	a	system	needs	
to	address	for	it	to	be	considered	secure.	The	first	property,	confidentiality,	is	concerned	with	making	sure	that	the	
information	being	transmitted	is	only	available	to	its	intended	recipient(s).	To	date,	this	is	most	commonly	achieved	
through	the	use	of	encryption	algorithms.	Although	GCF	does	not	currently	use	encryption,	it	is	reasonable	to	assume	
that	future	versions	of	the	framework	could	allow	devices	to	encode	context	using	either	a	public	key	infrastructure	
(e.g.,	RSA	[97],	PGP	[146]),	or	through	a	symmetric	key	known	only	to	the	sender	and	receiver	(distributed	using	an	
algorithm	such	as	Diffie	Hellman	[32]).	This	would	allow	members	of	the	same	group	to	see	and	use	the	data,	while	
preventing	outsiders	from	doing	the	same.		

The	second	property,	integrity,	is	concerned	with	making	sure	that	data	has	not	been	altered	from	the	sender	to	the	
receiver.	Once	again,	GCF	does	not	currently	check	context	data	messages	to	see	if	they	have	been	altered	on	route	
to	their	destination.	However,	one	commonly	accepted	way	to	do	so	is	by	using	hashing	algorithms.	By	having	GCF’s	
communications	manager	compute	the	hash	a	communications	message	prior	to	transmission	(and	inserting	the	value	
in	 the	 message’s	 payload)	 and	 once	 it	 is	 received,	 the	 framework	 would	 automatically	 detect	 if	 tampering	 has	
occurred.	This	can	increase	the	application’s	ability	to	trust	context	from	other	devices,	and	reduce	the	chances	of	
successful	man-in-the-middle	attacks.	

The	 third	property,	availability,	 is	 concerned	with	making	sure	 that	 information	 is	accessible	when	needed.	GCF’s	
ability	to	be	run	as	a	background	service	addresses	this	property	to	some	extent,	as	it	ensures	that	the	framework	is	
always	ready	to	receive	and	respond	to	incoming	context	requests.	A	more	pressing	concern,	however,	is	how	the	
framework	will	respond	when	dozens,	or	even	hundreds	of	devices	are	simultaneously	requesting	context,	as	doing	
so	can	lead	to	a	denial	of	service	(DoS)	situation.	For	now,	GCF	has	been	configured	to	ignore	context	requests	from	
devices	 if	 they	 occur	 too	 frequently	 (more	 than	 once	 every	 10	 seconds),	 and	 can	 even	make	 use	 of	 channelized	
communications	protocols	(e.g.,	MQTT)	to	limit	a	malicious	device’s	ability	to	request	context	from	multiple	devices	
at	once.	Despite	these	precautions,	the	problem	with	maintaining	availability	of	services	is	well	documented	in	the	
literature	[47].	As	a	result,	it	is	still	largely	unknown	if	these	measures	will	be	sufficient	in	a	large-scale	deployment.	

From	this	discussion,	 it	 is	clear	that	there	 is	still	much	work	that	needs	to	be	done	before	GCF	can	be	considered	
secure.	Although	our	discussion	identified	a	number	of	areas	that	can	be	improved	upon,	it	should	be	noted	that	all	
of	the	enhancements	mentioned	above	make	use	of	existing	technologies	and/or	techniques.	Thus,	while	GCF	may	
not	be	provably	secure	today,	it	is	conceivable	that	future	versions	of	the	framework	can	prevent	malicious	users	from	
taking	advantage	of	the	framework’s	open	nature	to	access	and	use	information	without	permission.	This	in	turn	will	
make	GCF	more	practical	to	use.	

7.2.3. COGNITIVE	OVERLOAD	
Finally,	GCF’s	ability	to	form	opportunistic	groups	can	have	an	adverse	effect	on	a	user’s	cognitive	load.	As	our	work	
in	CHAPTERS	3-5	show,	it	is	technically	possible	to	develop	a	GCF	application	that	can	continually	collect	sensor	data	
from	nearby	smartphones,	or	form	an	opportunistic	group	with	every	appliance	in	Bluetooth	range.	Yet	while	these	
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systems	can	increase	users’	access	to	relevant	information	and	services,	they	become	cumbersome	if	they	have	to	
manually	analyze	multiple	streams	of	context	to	find	the	one	piece	of	information	they	need,	or	identify	a	specific	
appliance	from	a	list	containing	dozens,	or	even	potentially	hundreds	of	 items.	By	increasing	the	opportunities	for	
devices	to	obtain	context,	GCF	can	also	inundate	users	with	extraneous	data.	This	can	increase	users’	cognitive	load,	
and	draw	their	attention	away	from	important	tasks.	

Although	cognitive	load	is	a	problem,	it	is	important	to	note	that	it	is	not	unique	to	GCF.	On	the	contrary,	the	risks	of	
cognitive	 overload	 have	 been	 well	 studied	 by	 the	 context-aware	 community,	 and	 researchers	 have	 developed	
numerous	techniques	(utilizing	rule	or	role	based	architectures	[73],	machine	learning	[86],	novel	visualizations	[119])	
in	order	to	limit	the	amount	of	context	that	a	user	has	to	see	and	process.	In	our	own	work,	we	have	tried	to	reduce	
cognitive	load	by	carefully	designing	our	systems	to	minimize	the	amount	of	information	that	they	present	at	a	time.	
In	Snap-To-It,	for	example,	we	only	showed	users	a	list	of	the	top	five	appliance	matches	as	opposed	to	every	appliance	
in	range,	and	compared	multiple	types	context	(e.g.,	 location,	device	orientation,	photographs)	to	ensure	that	the	
appliances	at	the	top	of	the	list	had	the	best	chance	of	being	the	one	that	the	user	selected.	Meanwhile,	in	our	work	
with	 Impromptu,	we	 implemented	tools	to	 let	users	sort	opportunistic	apps	by	category,	and	generated	a	passive	
notification	when	a	new	app	was	found	to	be	contextually	relevant.	 	This	 let	users	be	aware	of	new	apps	without	
having	to	keep	our	app	in	the	foreground.	

In	fairness,	the	solutions	we	used	in	our	work	cannot	be	easily	generalized	to	every	GCF	application.	However,	every	
application	is	unique,	and	as	such,	designers	need	to	consider	how	much	information	should	be	presented	to	the	user	
at	any	given	time.	As	a	result,	while	it	would	be	interesting	to	see	what	safeguards	can	be	incorporated	into	GCF	to	
help	alleviate	cognitive	overload	in	users,	we	believe	that	these	issues	can	largely	be	resolved	at	the	design	level,	and	
as	such	should	be	left	to	developers.		

7.3. TECHNICAL	LEVEL	CHALLENGES	
In	this	section,	we	explore	the	challenges	associated	with	finding	and	forming	opportunistic	groups	at	the	technical	
level.	First,	we	look	at	GCF’s	battery	consumption	and	data	usage,	and	discuss	the	specific	tradeoffs	that	need	to	be	
made	when	using	our	framework.	Afterwards,	we	address	the	issue	of	scalability,	and	describe	our	experiences	trying	
to	form	large	groups	of	devices	using	the	framework.	

7.3.1. POWER	CONSUMPTION	
A	critical	challenge	with	leveraging	a	context	sharing	framework	like	GCF	is	finding	a	balance	between	the	increased	
functionality	our	framework	offers	and	battery	consumption.	During	our	work	with	Didja,	for	example,	we	showed	
how	using	GCF	to	collect	and	analyze	sensor	data	from	multiple	devices	could	provide	users	with	a	useful	service	(i.e.,	
finding	 relevant	groups	 in	arbitrary	environments).	To	do	so,	however,	 the	system	needed	 to	continually	 scan	 for	
nearby	devices	using	Bluetooth,	and	request,	receive,	and	process	context	from	other	devices.	This	resulted	in	the	
system	consuming	approximately	20%	of	each	device’s	battery	life	per	hour,	thereby	making	it	too	inefficient	to	be	
left	continually	running.	In	our	experience,	this	result	is	a	worst-case	assessment,	as	many	of	the	applications	we	have	
created	using	Didja	or	GCF	(as	well	as	those	proposed	by	developers	in	CHAPTER	6)	do	not	require	smartphones	to	
perpetually	request	and	receive	context.	Nevertheless,	this	work	serves	as	a	warning	that	the	energy	costs	of	forming	
groups	and	sharing	context	can	be	significant,	and	can	degrade	the	user	experience	if	left	unchecked.	

We	have	studied	GCF’s	power	consumption	on	numerous	occasions	in	order	to	better	understand	its	energy	costs.	As	
part	of	our	initial	work	(CHAPTER	3),	we	conducted	a	series	of	power	drain	experiments	to	analyze	the	impact	of	our	
framework	when	devices	are	able	to	share	sensor	data	with	each	other.	For	these	experiments,	we	had	two	identically	
configured	Galaxy	S	IV	smartphones	request	and	receive	various	combinations	of	context	(accelerometer,	location,	
and	light)	with	each	other	once	every	second	for	4	hours,	and	tested	scenarios	where	1)	both	devices	produce	and	
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share	context	with	each	other,	and	2)	one	device	produces	context	for	another.	Our	results,	shown	in	Figure	80,	not	
only	reveal	that	using	the	framework	consumes	little	power	on	its	own,	but	that	it	can	actually	result	in	power	savings	
so	long	as	devices	take	turns	producing	and	sharing	multiple	streams	of	context	over	an	extended	period	of	time.	Our	
results	do	 show	 that	devices	 can	consume	more	battery	 life	 if	 they	are	 continually	producing	 contexts	 for	others	
without	 receiving	 any	 services	 in	 return.	 On	 average,	 however,	 our	 results	 suggest	 that	 the	 costs	 of	 GCF	 are	
manageable,	and	that	the	opportunities	for	energy	savings	will	increase	as	the	size	of	the	group	increases.	

We	also	explored	the	issue	of	power	consumption	during	our	work	with	Impromptu.	As	discussed	in	section	4.3.3.1,	
we	ran	Impromptu	on	a	Nexus	5	smartphone	for	8	hours,	and	compared	its	battery	consumption	to	when	the	phone	
ran	 for	 the	 same	 period	 of	 time	 without	 our	 app	 installed.	 Our	 results	 (Table	 10)	 showed	 that	 the	 system	 only	
consumed	20%	more	battery	than	our	idle	condition.	It	is	difficult	to	directly	compare	these	results	with	the	previous	
experiment,	as	Impromptu	was	designed	to	share	context	at	a	much	lower	rate	(i.e.,	once	every	minute	as	opposed	
to	once	every	second).	Still,	our	results	show	that	GCF	can	be	practically	run	all	day	without	significantly	hampering	
the	end	user	experience.		

Finally,	in	section	4.4.2.2,	we	performed	experiments	in	order	to	see	how	much	power	was	consumed	when	devices	
used	Bluewave	to	broadcast	context	or	scan	for	nearby	devices.	Our	results	(Table	12)	showed	that	the	former	only	
consumes	an	additional	6%	battery	life	per	day,	making	it	practical	to	be	continually	enabled	on	users’	smartphones.	
Our	 results	 also	 showed	 that	 the	 latter	 configuration	 consumes	 significantly	more	 battery	 life	 (29%	 per	 day).	 In	
practice,	however,	we	have	found	that	most	applications	either	1)	only	required	users’	devices	to	scan	for	a	short	
period	of	time,	or	2)	required	devices	positioned	in	the	environment	to	scan	for	the	user.	This	means	that	the	system	
only	needs	to	run	in	its	low	power	configuration	to	support	the	majority	of	use	cases.	

	

Figure	81.	Results	from	our	power	drain	experiments	with	sharing	one,	two,	or	three	streams	of	context	simultaneously.	We	
deployed	GCF	on	two	smartphones,	and	measured	the	power	consumed	when	devices	are	not	sharing	context,	both	devices	
are	evenly	sharing	context,	and	when	only	one	device	is	sharing	context.	All	values	represent	battery	loss	in	percentage	points.	
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Collectively,	this	work	has	given	us	a	better	understanding	of	GCF’s	energy	costs	under	various	configurations.	Our	
work	shows	that	GCF	can	significantly	drain	the	battery	if	it	is	continually	producing	and	sharing	context	with	other	
devices,	and/or	scanning	for	other	devices.	At	the	same	time,	it	also	demonstrates	that	the	framework	can	run	all	day	
on	a	device	if	applications	collect	or	share	context	at	a	reduced	rate,	or	only	utilize	a	subset	of	its	features.	Based	on	
our	results	from	our	developer	study,	we	expect	that	the	majority	of	use	cases	for	GCF	will	only	need	to	share	context	
once	or	for	a	short	period	of	time,	thus	making	the	energy	costs	of	our	framework	negligible.	However,	it	will	be	up	
to	developers	to	find	a	balance	between	functionality	and	efficiency	that	works	best	for	their	applications.	

7.3.2. DATA	USAGE	
Another	challenge	with	using	a	framework	like	GCF	to	collect	context	is	managing	its	data	consumption.	Although	our	
framework	 only	 consumes	 a	 small	 amount	 of	 data	 when	 devices	 only	 need	 to	 share	 information	 (e.g.,	 a	 GPS	
coordinate)	 once	 or	 sparingly,	 its	 data	 usage	 significantly	 increases	 when	 applications	 need	 to	 receive	 continual	
updates	 from	multiple	 devices	 over	 an	 extended	period	of	 time.	 Furthermore,	 since	 all	 communication	 in	GCF	 is	
transmitted	over	broadcast	channels,	there	are	occasions	where	devices	will	receive	messages	that	are	not	intended	
for	them	(e.g.,	context	data	or	capability	messages).	As	long	as	GCF	is	only	used	over	a	Wi-Fi	network,	the	amount	of	
data	consumed	by	our	framework	is	negligible.	Many	users,	however,	have	a	limited	amount	of	data	that	they	can	
transfer	over	a	cellular	network	(e.g.,	3G/4G).	Consequently,	as	GCF	is	used	in	a	wider	range	of	indoor	and	outdoor	
environments,	 it	 is	 important	to	keep	the	framework’s	data	usage	 in	check	so	that	users	do	not	 incur	unexpected	
operational	costs.	

We	have	tried	to	address	the	problem	of	data	usage	on	two	fronts.	At	the	networking	layer,	we	have	tried	to	make	
GCF’s	communications	protocol	as	efficient	as	possible.	As	shown	in	Table	14,	a	standard	context	request	message	
takes	up	less	than	100	bytes,	while	a	typical	context	data	message	(e.g.,	a	message	containing	a	GPS	coordinate)	can	
be	encoded	in	less	than	150	bytes.	By	keeping	each	message	small,	we	are	able	to	minimize	GCF’s	data	footprint.	This	
reduces	the	cost	of	receiving	a	message	for	another	device,	and	makes	it	possible	for	devices	to	share	context	for	an	
extended	period	of	time	without	consuming	large	amounts	of	data.	

Additionally,	we	have	also	tried	to	minimize	GCF’s	data	usage	by	taking	advantage	of	more	efficient	communications	
technologies.	When	we	 created	 Impromptu,	 for	 instance,	we	 realized	 that	 it	would	 be	 impractical	 for	 devices	 to	
communicate	with	 the	application	directory	over	a	UDP	multicast	 channel,	as	doing	 so	would	also	cause	users	 to	
receive	each	other’s	context.	To	address	this,	we	created	a	new	communications	thread	that	can	send	messages	to	
specific	channels	on	an	MQTT	broker.	Our	host	application	can	then	transmit	the	user’s	context	to	the	application	
directory’s	channel,	and	listen	for	relevant	apps	on	a	device-specific	channel.	Although	this	solution	requires	additional	
hardware	(i.e.,	a	dedicated	communications	servers),	 it	prevents	GCF	from	having	to	receive	and	 ignore	messages	
intended	for	other	devices.	This	lets	the	framework	operate	in	environments	where	multiple	GCF-enabled	devices	are	
requesting	 and	 receiving	 information	 at	 the	 same,	 and	 allows	 applications	 to	 run	 perpetually	 in	 the	 background	
without	consuming	large	amounts	of	unnecessary	data.	

Although	this	work	takes	steps	towards	reducing	GCF’s	data	usage,	it	is	important	to	note	that	it	is	up	to	developers	
to	use	the	framework	responsibly.	It	is	still	possible,	for	example,	for	applications	to	insert	a	large	amount	of	data	into	
a	context	data	message,	or	request	context	at	an	unnecessarily	high	rate	(e.g.,	requesting	location	data	every	100ms	
when	the	user	is	most	likely	not	moving	that	quickly).	As	a	result,	while	GCF	provides	the	basic	safeguards	to	minimize	
data	usage,	it	is	still	up	to	developers	to	determine	how	to	most	efficiently	utilize	the	framework	in	their	applications.		

7.3.3. SCALABILITY	
The	third	challenge	we	have	identified	with	using	a	framework	like	GCF	to	form	groups	and	share	context	is	scalability.	
In	order	to	participate	in	a	group,	GCF	requires	each	device	to	1)	maintain	an	open	communications	channel,	2)	filter	
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incoming	messages,	3)	transmit	requests	for	context,	and	4)	produce	and	deliver	context	as	needed.	When	the	size	of	
the	 group	 is	 small,	 the	 cost	 of	 these	 operations	 is	 negligible.	 In	 our	 developer	 study,	 however,	 we	 found	 that	
developers	also	want	to	use	GCF	to	group	with	a	larger	number	of	devices	at	the	same	time	(e.g.,	all	of	the	devices	in	
a	room	or	conference).	In	these	use	cases,	devices	need	to	spend	a	larger	proportion	of	their	time	finding,	forming,	
and	communicating	with	group	members.	This	increases	GCF’s	overhead,	and	can	prevent	devices	from	having	the	
computing	resources	needed	to	reliably	perform	other	tasks.	

Although	 many	 of	 our	 example	 applications	 focus	 on	 small	 groups	 (e.g.,	 2-3	 devices),	 our	 work	 shows	 that	 the	
framework	can	applied	to	larger	sized	groups.	In	Didja,	for	example,	we	successfully	used	GCF	to	collect	and	analyze	
over	 twenty	 independent	 streams	 of	 context	without	 any	 noticeable	 lag.	Meanwhile,	 for	 the	 past	 year,	we	 have	
successfully	 deployed	 Impromptu	 to	 over	 60	 concurrent	 users,	 and	 have	 been	 able	 to	 analyze	 their	 context	 and	
recommend	useful	information	and	services	as	they	go	about	their	normal	routine.	Finally,	during	our	collaboration	
with	the	Huntington	County	Emergency	Management	Agency	(Section	4.3.2.2),	we	deployed	Impromptu	Sense	to	28	
volunteers’	smartphones	at	a	music	concert.	We	then	spent	the	next	three	days	requesting	and	receiving	context	
from	these	devices	over	a	highly	congested	cellular	network.	 In	each	of	these	examples,	the	maximum	size	of	the	
group	was	dictated	by	the	number	of	devices	we	could	install	our	software	on	rather	than	the	framework’s	upper	
bound	 performance.	 As	 a	 result,	 while	 our	 results	 show	 that	 GCF	 is	 scalable	 enough	 for	 many	 context-aware	
applications,	we	expect	these	systems	to	form	even	larger	groups	in	the	future.		

Through	 this	 work,	 we	 have	 found	 that	 GCF’s	 scalability	 depends	 in	 large	 part	 on:	 1)	 the	 reliability	 of	 the	
communications	channel,	and	2)	the	amount	of	time	needed	for	devices	to	process	context.	In	Didja,	for	example,	we	
were	able	to	share	context	with	devices	at	a	high	rate	(i.e.,	once	every	250	milliseconds)	because	the	devices	were	all	
connected	to	a	stable	Wi-Fi	network.	In	contrast,	when	we	tried	to	collect	context	in	Impromptu	Sense,	we	found	that	
the	cellular	network	was	unable	to	reliably	transmit	sensor	data	to	our	MQTT	server	at	the	same	rate;	to	overcome	
this,	we	had	devices	insert	multiple	sensor	readings	into	each	context	data	message,	and	transmit	them	at	a	lower	
rate	(e.g.,	once	per	second).	Meanwhile,	in	our	work	with	Impromptu,	we	discovered	that	the	application	directory	
took	 approximately	 10	 milliseconds	 to	 analyze	 a	 user’s	 context	 and	 recommend	 relevant	 apps.	 In	 order	 to	
accommodate	potentially	hundreds	of	concurrent	users,	however,	we	decided	to	only	have	host	applications	report	
their	context	once	per	minute.	This	prevented	the	system	from	becoming	inundated	with	data,	and	allows	Impromptu	
to	support	a	larger	user	base	than	what	we	have	been	able	to	directly	test.		

Thus,	while	GCF’s	architecture	does	not	place	any	restrictions	on	the	size	of	the	groups	that	can	be	formed,	our	work	
shows	that	there	will	always	be	practical	limitations	to	the	amount	of	context	that	devices	can	request,	receive,	and	
process	 given	 their	 hardware	 and	networking	 capabilities.	Our	work	 shows	 that	GCF	 can	potentially	 be	 scaled	 to	
accommodate	 larger	 sized	 groups.	However,	 it	 is	 up	 to	 developers	 to	 carefully	 consider	 how	much	 context	 their	
application	needs	so	that	they	can	choose	a	group	size	that	is	both	useful	and	realistic.	

7.4. SUMMARY	
In	 this	 chapter,	we	have	described	 the	 challenges	 associated	with	utilizing	opportunistic	 groups	 in	 context-aware	
computing.	 First,	 we	 looked	 at	 the	 developer	 level,	 and	 identified	 three	 challenges	 (platform	 fragmentation,	
debugging,	and	trusting	context	from	newly	encountered	devices)	that	can	make	it	difficult	for	developers	to	easily	
incorporate	GCF	into	new	and	existing	applications,	or	rely	on	the	information	it	provides.	Afterwards,	we	noted	how	
issues	like	privacy	and	security	can	prevent	users	from	wanting	to	use	the	framework,	and	looked	at	possible	ways	to	
augment	GCF	in	order	to	minimize	the	framework’s	impact	on	the	user’s	cognitive	load.	Finally,	at	the	technical	level,	
we	discussed	how	 the	 framework	 consumes	power,	 uses	data,	 and	 scales	under	 various	 configurations.	We	 then	
described	the	various	tradeoffs	that	need	to	be	made	in	each	of	these	areas	in	order	for	the	framework	to	be	usable.	
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Table	 19	 summarizes	 the	 challenges	 that	we	 identified	 in	 this	 chapter,	 and	 offers	 possible	 directions	 for	 further	
exploration.	Although	our	work	answers	our	 third	 research	question,	 it	 should	be	noted	 that	 the	 idea	of	allowing	
devices	 to	 form	 groups	 on	 their	 own	 is	 still	 a	 new	 concept,	 and	 that	we	 expect	more	 challenges	 to	 arise	 as	 the	
framework	becomes	more	widely	adopted	and	used.	By	using	GCF	as	a	research	test	bed,	however,	our	work	gives	
both	users	and	developers	an	improved	understanding	of	the	types	of	issues	that	they	are	most	likely	to	face	when	
they	utilize	our	framework	for	the	first	time.	It	 is	 important	to	stress	that	many	of	the	challenges	identified	in	this	
chapter	are	inherently	complex,	and	do	not	have	a	quick	or	simple	fix.	Yet	by	highlighting	GCF’s	current	benefits	and	

Table	19.	Summary	of	the	challenges	with	using	GCF	from	a	developer,	user,	and	technical	standpoint.	

	 Description	 Areas	for	Further	Exploration	

Developer Level Challenges  

1. Platform 
Fragmentation 

Developers can accidentally create multiple 
context providers for the same context (e.g., 
location), which can lead to competing 
standards. 

1. Identify the most commonly used 
contexts, and provide prebuilt context 
providers for them. 

2. Create integrated IDE tools to help 
developers understand what information is 
already shared using GCF. 

2. Debugging 

It is difficult for developers to anticipate and/or 
recreate the conditions under which an 
opportunistic group can form. This makes it 
hard to test applications or recreate bugs. 

1. Create a robust simulator environment 
to recreate or replicate common grouping 
conditions and/or device configurations. 

3. Trusting Context from 
New/Unfamiliar 
Devices 

GCF currently lacks any way to verify that the 
context provided by another device is valid 
and/or accurate.  

1. Integrate a top-down or bottom-up trust 
model to let devices know which group 
members can be trusted. 

User Level Challenges  

1. Privacy 
Users want explicit control over how their 
context is shared, but this can prevent devices 
from being able to form groups autonomously. 

1. Determine what level of controls users 
would like to have when managing their 
privacy settings. 

2. Create automated tools that can learn 
users’ privacy preferences over times. 

2. Security 
GCF currently lacks mechanisms to ensure the 
confidentiality, integrity, and availability of 
context. 

1. Add encryption to GCF so that devices 
can encrypt context, and verify that 
information has been tampered with. 

3. Cognitive Load 
The ability to form opportunistic groups can 
inundate users with unnecessary information 
and services. 

1. Identify design guidelines to minimize 
cognitive load in GCF apps. 

2. Identify features that can be added to 
GCF to reduce or mitigate the effects of 
cognitive overload. 

Technical Level Challenges  

1. Power Consumption 
GCF can significantly increase a device’s power 
consumption if devices are continually 
requesting, receiving, and sharing context. 

1. Monitor GCF’s power consumption on 
user devices to better understand its real-
world energy costs. 

2. Data Consumption 
GCF can significantly increase a device’s data 
consumption if devices are continually 
requesting, receiving, and sharing context. 

1. Monitor GCF’s data consumption on 
user devices to better understand its real-
world bandwidth costs. 

3. Scalability 
Devices are limited in the amount of context 
they can receive and process, which limits the 
size of the groups that they can form. 

1. Perform larger scale tests to determine 
GCF’s practical grouping limitations. 
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limitations,	 it	 is	 our	 hope	 that	 our	 work	 can	 motivate	 and	 inspire	 further	 generations	 of	 research	 to	 make	 the	
framework	even	more	usable	that	it	is	today.		
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8. CONCLUSIONS	AND	FUTURE	WORK	
This	thesis	has	presented	a	novel	framework	that	allows	devices	to	form	opportunistic	groups	and	share	context.	Our	
work	not	only	describes	the	technical	architecture	and	abstractions	needed	to	allow	devices	to	detect	each	other	and	
form	groups	with	minimal	prior	coordination,	but	also	investigates	1)	the	types	of	applications	that	benefit	from	this	
capability,	as	well	as	2)	the	challenges	with	utilizing	our	framework	from	a	developer,	user,	and	system	standpoint.	In	
this	chapter,	we	summarize	our	research,	and	recommend	areas	for	future	work.	

8.1. 	SUMMARY	OF	RESEARCH	
In	CHAPTER	1,	we	motivated	the	need	for	devices	to	be	able	to	form	opportunistic	groups	in	context-aware	computing.	
We	 provided	 an	 operational	 definition	 of	 the	 term	 opportunistic	 group,	 and	 presented	 a	 series	 of	 motivational	
examples	 that	 showed	how	 allowing	 devices	 to	 automatically	 detect	 each	 other	 and	 form	 groups	 increases	 their	
access	to	relevant	information	and/or	services.	Afterwards,	we	conducted	a	survey	of	existing	context-sharing	systems	
and/or	frameworks	in	CHAPTER	2	in	order	to	identify	both	the	high	level	use	cases	that	benefit	from	context-sharing,	
as	well	as	the	software	architectures	that	have	been	proposed	thus	far	to	support	them.	Through	this	process,	we	
developed	a	conceptual	model	that	identifies	the	most	common	conditions	that	cause	devices	to	form	groups.	We	
then	applied	this	model	to	the	literature,	and	found	that	current	context-sharing	systems	suffer	from	one	or	more	of	
the	following	limitations:		

1. An	inability	to	share	context	across	different	applications.		
2. Lack	of	support	for	dynamic	groups.		
3. Over-reliance	on	a	single,	well-known,	communications	channel.		
4. Emphasis	on	long	lasting	groups.		
5. Inability	to	support	the	full	range	of	group	interactions	(as	defined	by	our	conceptual	model).	

In	 CHAPTER	 3,	 we	 showed	 how	 the	 insights	 obtained	 from	 our	 literature	 review	 influenced	 GCF’s	 early	 design.	
Specifically,	we	showed	that	we	could	address	all	of	the	limitations	described	above	through	the	following	high	level	
requirements:	

1. Provide	standardized	mechanisms	for	requesting	and	receiving	context	
1.1. Define	a	standardized	communications	protocol	to	request	and	receive	context	
1.2. Provide	software	abstractions	to	make	context	easier	to	package,	reuse	and	share	
1.3. Allow	devices	 to	collaborate	with	each	other,	 regardless	of	 if	 they	are	performing	 the	same	 task	or	

require	the	same	information	
2. Support	multiple	communication	technologies	

2.1. Support	a	wide	range	of	communication	technologies	
2.2. Let	devices	use	multiple	communication	technologies	simultaneously	

3. Allow	devices	to	automatically	form	and	maintain	groups	
3.1. Allow	devices	to	form	groups	on	the	user’s	behalf		
3.2. Allow	devices	to	dynamically	update	group	membership	over	time	

We	then	presented	GCF’s	architecture,	and	showed	how	it	satisfies	each	of	the	above	requirements.	Afterwards,	we	
described	 two	 proof-of-concept	 applications	 (GroupMap	 and	 GroupHike)	 that	 were	 built	 using	 the	 framework.	
Individually,	these	applications	showed	how	GCF	lets	developers	easily	request	and	receive	context	and	receive	from	
other	devices.	When	used	together,	however,	 these	applications	also	demonstrated	how	the	 framework	supports	
grouping	across	all	 four	quadrants	of	our	conceptual	model,	and	 lets	devices	work	together	regardless	 if	 they	are	
performing	the	same	task	or	need	the	same	information.		
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In	CHAPTER	4,	we	described	how	we	used	GCF	to	create	a	variety	of	context-aware	systems.	We	showed	how	the	
framework	could	be	used	to	1)	detect	when	users	and/or	devices	are	experiencing	the	same	contextual	state	(Didja),	
2)	interact	with	specific	appliances	in	new	or	unfamiliar	environments	(Snap-To-It),	3)	push	relevant	applications	to	
users’	devices	at	the	exact	moment	they	are	needed	(Impromptu),	and	4)	allow	users	to	temporarily	share	information	
with	 their	 immediate	surroundings	 (Bluewave).	 In	addition	 to	showcasing	GCF’s	versatility,	 these	applications	also	
gave	us	the	opportunity	to	evaluate	GCF’s	ease	of	use	and	extensibility	under	realistic	conditions.	This	let	us	discover	
common	use	cases	that	our	framework	was	unable	to	support,	and	identify	areas	for	improvement.	

In	 CHAPTER	 5,	 we	 used	 our	 experiences	 building	 Didja,	 Snap-To-It,	 Impromptu,	 and	 Bluewave	 to	 refine	 GCF’s	
functional	 requirements	 (refer	 to	 Appendix	 B	 for	 a	 full	 listing).	 We	 summarized	 the	 modifications	 made	 to	 our	
framework	 in	order	to	address	the	 issues	we	encountered	 in	the	previous	chapter,	and	presented	a	generalizable	
design	process	that	highlights	the	important	design	considerations	developers	need	to	make	when	incorporating	GCF	
into	their	applications.	As	a	final	validation	of	GCF’s	robustness,	we	had	20	developers	from	academia	and	industry	
brainstorm	possible	applications	that	they	would	like	to	build	with	the	framework	in	CHAPTER	6.	We	then	showed	
how	GCF	could	support	all	but	one	of	them,	and	how	its	ability	to	share	context	across	applications	 increases	the	
chances	of	applications	getting	the	information	they	need	at	runtime.	

Finally,	in	CHAPTER	7,	we	identified	the	challenges	associated	with	using	a	framework	like	GCF	in	the	real	world.	First,	
we	focused	on	the	developer	level,	and	showed	how	the	risk	of	platform	fragmentation,	as	well	the	lack	of	dedicated	
debugging	tools	and	trust	mechanisms	can	prevent	developers	from	being	able	to	easily	use	GCF	in	their	applications.	
Next,	we	looked	at	the	user	level,	and	described	the	challenges	in	finding	ways	to	share	context	that	are	both	secure	
and	respectful	of	the	user’s	privacy	in	a	way	that	minimizes	the	impact	to	his/her	cognitive	load.	Lastly,	at	the	technical	
level,	we	looked	at	ways	to	balance	GCF’s	functionality	with	its	increased	power	and	data	consumption,	and	identified	
the	factors	that	need	to	be	taken	into	consideration	when	using	the	framework	to	form	large	groups.	

Through	this	body	of	work,	we	have	made	the	following	contributions:	

1. A	conceptual	model,	based	on	an	analysis	of	prior	literature,	which	describes	the	conditions	under	which	
users	and/or	devices	form	and	work	in	groups.	

2. An	implementation	of	the	Group	Context	Framework,	which	highlights	the	software	abstractions	and	
architecture	needed	to	support	all	of	the	group	types	identified	in	our	conceptual	model.	

3. A	demonstration	of	the	value	of	opportunistic	groups	in	context-aware	computing,	through	the	creation	
of	four	major	systems	and	numerous	smaller	applications.	

4. A	validation	of	GCF’s	robustness,	through	an	examination	of	65	ideas	submitted	by	20	developers.	
5. An	 examination	 of	 the	 challenges	 associated	 with	 utilizing	 opportunistic	 groups	 in	 context-aware	

applications,	based	on	our	own	experiences	using	GCF,	as	well	as	from	issues	raised	by	developers	from	
academia	and	industry.	

8.2. DIRECTIONS	FOR	FUTURE	WORK	
Although	our	research	provides	an	initial	understanding	of	how	opportunistic	groups	can	be	used	in	context-aware	
computing,	there	are	still	many	aspects	of	our	work	that	merit	further	study.	In	addition	to	the	high	level	challenges	
identified	 in	CHAPTER	7,	we	would	also	 like	 to	highlight	 five	additional	 areas	 for	 future	work	 that	we	believe	are	
especially	interesting	from	a	technical	and/or	research	perspective.	

8.2.1. ONE-TIME	AND	EVENT-BASED	CONTEXT	DELIVERY	
GCF’s	context	providers	are	currently	designed	to	collect	and	share	information	at	a	fixed	rate	(e.g.,	once	per	second).	
Yet	while	this	is	effective	for	sensor	data,	not	all	context	is	well-suited	to	this	type	of	delivery	strategy.	Contexts	such	
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as	the	user’s	identity	may	never	change,	and	thus	only	need	to	be	delivered	once.	Meanwhile,	contexts	such	as	the	
user’s	activity	may	change	several	times	per	minute,	or	stay	the	same	for	several	hours	at	a	time;	for	these	types	of	
context,	 it	 is	better	 if	 context	providers	 transmit	a	context	data	message	whenever	 the	user	changes	states	 (e.g.,	
transitioning	from	sitting,	to	standing,	to	walking)	rather	than	at	a	fixed	interval.		

Although	GCF	does	not	prevent	context	from	being	delivered	one-time	or	event-based	delivery,	it	currently	requires	
developers	to	implement	this	functionality	on	their	own,	or	to	come	up	with	creative	ways	to	use	the	framework	(e.g.,	
canceling	a	request	for	context	immediately	after	receiving	a	context	data	message).	As	a	result,	future	versions	of	
GCF	 should	 come	with	built-in	 support	 for	 a	wider	 range	of	 context	delivery	 strategies.	 It	 should	be	possible,	 for	
example,	for	applications	to	specify	that	they	only	need	to	receive	context	once	in	their	context	request	message.	The	
framework	could	then	automatically	unsubscribe	from	context	providers	once	this	information	was	received.	Similarly,	
it	should	be	possible	for	applications	to	include	additional	constraints,	such	as	a	range	of	values	or	threshold,	and	have	
the	framework	only	deliver	context	when	the	value	of	the	context	meets	and/or	exceeds	these	values.	By	supporting	
a	diverse	range	of	delivery	options,	GCF	will	make	it	easier	for	applications	to	request	and	receive	context	in	more	
natural	ways.	This	will	expedite	the	development	process,	and	allow	developers	to	explore	more	complex	use	cases.	

8.2.2. SHARING	THE	FRAMEWORK	BETWEEN	MULTIPLE	APPLICATIONS	
GCF	currently	requires	each	application	to	have	an	instance	of	the	framework	running	either	as	a	background	service	
or	within	the	application’s	lifecycle.	This	tight	coupling	is	practical	when	the	total	number	of	GCF-enabled	applications	
installed	on	a	phone	is	small,	but	becomes	inefficient	when	multiple	GCF	instances	are	requesting	context,	sharing	
information,	and	managing	their	own	network	connections	at	the	same	time.	To	address	this,	future	versions	of	the	
framework	should	allow	its	functionality	to	be	shared	with	multiple	applications.	This	can	be	as	simple	as	creating	a	
dedicated	GCF	app	that	all	users	have	to	have	installed	on	their	phone	(a	strategy	used	by	toolkits	such	as	AWARE	
[143]),	or	as	complex	as	creating	a	new	distribution	of	Android	that	has	the	framework	“baked	in”	(similar	to	work	
done	in	ErdOS	[110]).	

In	addition	to	the	increased	efficiency	that	this	offers,	sharing	GCF	between	multiple	applications	also	creates	several	
interesting	research	challenges.	For	example,	it	is	unclear	how	the	framework	should	handle	contradictory	requests	
for	the	same	context	(e.g.,	a	request	for	temperature	data	in	degrees	Celsius	once	every	minute,	immediately	followed	
by	another	request	for	temperature	data	reported	in	degrees	Fahrenheit	once	every	second).	Additionally,	it	is	not	
immediately	apparent	what	type	of	security	model	is	needed	to	let	applications	freely	upload	functional	code	(e.g.,	
context	 providers,	 arbiters)	 to	 a	 centralized	 GCF	 service	 or	 app.	 At	 an	 architectural	 level,	 GCF	 already	 allows	
applications	on	the	same	device	to	share	information.	Thus,	the	emphasis	of	this	work	should	not	be	simply	to	see	if	
GCF	 can	 be	 abstracted	 to	 a	 higher	 level,	 but	 rather	 to	 identify	 the	 specific	 problems	 that	 can	 occur	 when	 the	
framework	is	utilized	in	this	manner.	

8.2.3. EVALUATING	AND	EXTENDING	GCF’S	DEVELOPER	TOOLS	
GCF’s	 online	 dashboard	 is	 automatically	 updated	 by	 the	 framework,	 and	 provides	 developers	 with	 up-to-date	
information	 concerning	 1)	 what	 types	 of	 information	 are	 available	 through	 the	 framework,	 and	 2)	 how	 this	
information	is	structured.	This	tool	was	created	based	on	our	experiences	working	with	the	framework,	as	well	as	
from	informal	feedback	from	developers	during	our	validation	of	Bluewave	(section	4.4.1.3).	It	is	unclear,	however,	
just	how	helpful	the	information	provided	through	our	website	is	sufficient	or	usable	in	its	current	form.	One	possible	
extension	of	our	work	is	to	conduct	a	more	formal	evaluation	in	order	to	see	how	our	documentation	is	actually	used	
by	developers.	This	would	allow	us	to	 identify	major	 information	gaps,	and	 identify	ways	to	effectively	collect	this	
information	and	provide	it	to	them	in	the	future.	
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A	 more	 ambitious	 extension	 to	 our	 research,	 however,	 is	 to	 see	 what	 other	 types	 of	 tools	 would	 be	 useful	 to	
developers.	It	would	be	interesting,	for	instance,	to	create	auto-completion	tools	(similar	to	those	found	in	modern	
IDEs)	 that	 can	 actively	 suggest	 contexts	 to	 users,	 and	 automatically	 register	 context	 providers	 and/or	 arbiters	 to	
developers	 as	 they	 are	 needed.	 These	 tools	 could	 even	 be	 combined	 with	 live	 usage	 data	 in	 order	 to	 provide	
developers	with	further	in	situ	assistance.	For	example,	if	a	developer	types	“gcm.sendRequest(“	into	the	IDE,	the	auto-
completion	tool	could	automatically	recommend	context	types	and	provide	a	description	of	the	information	that	she	
can	expect	to	receive	(based	on	sample	messages	archived	on	our	website).	Likewise,	if	a	developer	is	trying	to	extract	
elements	from	a	context	data	message’s	payload,	the	tool	could	automatically	show	her	what	types	of	payload	values	
are	typically	contained	within	based	on	the	context	type.		

Another	tool	that	might	be	useful	to	developers	is	a	dedicated	simulator	environment.	In	this	environment,	developers	
would	be	able	to	instantiate	any	number	of	simulated	GCF	devices	(containing,	and	have	them	be	placed	in	a	virtual	
location	 (e.g.,	 a	 building	 or	 outdoor	 environment).	 Developers	 could	 then	 run	 their	 applications	 within	 this	
environment	and	see	how	it	behaves	under	various	conditions.	 In	addition	to	reducing	the	need	for	developers	to	
own	multiple	physical	devices,	this	tool	would	allow	developers	to	begin	generating	unit	tests	for	GCF.	This	would	
speed	up	the	development	process,	and	lets	developers	more	thoroughly	test	their	applications	without	having	to	
physically	set	up	or	manually	test	every	possible	situation	on	their	own.	

By	creating	these	types	of	tools	and	releasing	them	to	the	developer	community,	we	will	obtain	further	insights	as	to	
what	types	of	information	developers	really	need	in	order	to	use	GCF	effectively.	This	will	allow	us	better	understand	
developers’	needs,	and	make	it	easier	for	them	to	get	started	using	our	framework.	

8.2.4. ADAPTIVE	PRIVACY	CONTROLS	
A	fourth	area	that	we	believe	should	be	addressed	in	future	work	is	the	development	of	dynamic	privacy	controls.	
GCF’s	 current	 privacy	 controls	 were	 inspired	 by	 our	 work	 with	 Bluewave,	 and	 let	 users	 explicitly	 specify	 which	
applications	they	would	like	to	share	their	information	with	and	when.	Yet	while	these	features	were	specifically	asked	
for	by	users,	the	decision	to	bring	users	back	into	the	loop	reduces	the	opportunities	for	devices	to	form	groups,	as	it	
once	again	requires	users	to	1)	be	aware	of	the	specific	groups	that	they	(or	their	devices)	can	participate	in	at	any	
given	time,	and	2)	understand	what	information	and/or	services	they	need.	This	overdependence	on	the	user	prevents	
the	 framework	 from	being	 as	 opportunistic	 as	 it	 could	 be,	which	 in	 turn	 limits	 users’	 abilities	 to	 seamlessly	 take	
advantage	of	these	groupings	as	they	naturally	occur.		

For	now,	we	address	this	problem	by	allowing	users	to	identify	specific	contexts	that	they	would	like	their	devices	to	
share	at	all	times.	Yet	this	solution	still	requires	the	user	to	explicitly	know	what	information	she	wants	to	share	a	
priori.	A	more	interesting	approach	is	to	let	GCF	automatically	learn	the	user’s	privacy	preferences	and	make	future	
decisions	on	her	behalf.	One	way	to	achieve	this	is	to	define	privacy	generic	policies	that	define	how	the	framework	
should	 behave	 when	 in	 specific	 environments.	 This	 could	 be	 achieved	 by	 using	 the	 “information	 spaces”	model	
suggested	in	[69].	A	more	dynamic	approach	is	to	dynamically	 learn	the	user’s	sharing	preferences	based	on	their	
prior	privacy	choices.	For	example,	 if	a	user	has	a	tendency	to	share	his	name	but	not	his	 location	with	unfamiliar	
devices,	the	framework	could	learn	this	preference	and	apply	it	the	next	time	another	device	requests	context	from	
it.	Machine	learning	techniques	such	as	deep	learning	are	potentially	one	way	to	learn	these	complex	policies	over	
time.	Alternatively,	an	architecture	like	the	one	proposed	in	[102]	could	potentially	be	used	to	alter	the	amount	and	
type	of	information	delivered	to	devices	depending	on	the	user’s	current	situation.	

Clearly,	there	is	a	risk	to	this	approach,	as	there	will	be	times	when	the	system	will	make	the	wrong	decision	(i.e.,	
deciding	 to	sharing	context	when	 the	user	would	have	done	otherwise).	However,	prior	work	 in	 intelligibility	 [74]	
shows	that	users	are	far	more	likely	to	accept	mistakes	from	a	context-aware	system	so	long	as	they	can	tell	why	the	



	 177	

system	 behaved	 the	way	 they	 did.	 Thus,	 by	 balancing	 automation	with	 occasional	 user	 verification,	 it	 should	 be	
possible	to	create	privacy	controls	that	can	be	realistically	utilized	in	an	opportunistic	setting,	while	still	giving	users	
the	feeling	that	their	information	is	being	managed	in	a	responsible	way.	

8.2.5. GENERALIZING	GCF	BEYOND	CONTEXT-SHARING	
The	fifth	and	final	area	that	we	believe	should	be	addressed	in	future	work	is	in	exploring	GCF’s	usefulness	beyond	
context	sharing.	 	Although	this	 thesis	 focuses	on	sharing	 information,	 the	ability	 to	detect	and	form	opportunistic	
groups	is	applicable	to	a	wide	range	of	application	domains.	One	potentially	interesting	domain	that	might	benefit	
from	GCF’s	capabilities	is	cloudlet	computing	[101],	where	mobile	devices	temporarily	borrow	resources	from	nearby	
servers	in	order	to	perform	computationally	expensive	or	latency	sensitive	tasks	(e.g.,	analyzing	real-time	video	[112],	
providing	cached	search	results	 [67]).	Currently,	cloudlet	systems	assume	that	 the	computational	 resources	being	
accessed	are	connected	to	the	same	local	area	network	(i.e.,	a	Wi-Fi	hotspot).	However,	GCF’s	ability	to	discover	and	
form	groups	creates	new	opportunities	for	devices	to	“forage”	for	resources	at	runtime.	This	could	increase	the	range	
of	 environments	 where	 cloudlet	 computing	 can	 work,	 and	 improve	 users’	 access	 to	 high-power,	 low-latency	
computing.	

Our	work	with	Snap-To-It	and	Impromptu	takes	an	initial	step	along	this	research	path.	In	both	systems,	we	show	that	
it	is	possible	to	use	GCF	to	transmit	user	interfaces	and	send	asynchronous	remote	commands—both	of	which	are	
use	cases	that	we	did	not	intend	on	supporting	when	we	designed	the	framework.		In	the	future,	we	envision	that	
developers	 will	 be	 able	 to	 use	 context	 request	 messages	 to	 transmit	 remote	 code	 (similar	 to	 the	 way	 that	 we	
transmitted	photographs	 in	 Snap-To-It)	 and	 receive	 results	 in	 context	 data	messages	 (similar	 to	 the	way	 that	we	
shared	user	 interfaces	and	applications	 in	 Impromptu).	Obviously,	 this	 is	 just	one	possible	way	 that	GCF	could	be	
extended.	Nevertheless,	our	framework	already	provides	the	building	blocks	to	form	groups	under	a	wide	range	of	
situations,	and	it	would	be	interesting	to	investigate	how	this	capability	can	be	further	utilized.	

8.3. CLOSING	REMARKS	
This	thesis	has	presented	a	novel	framework	to	allow	devices	to	form	opportunistic	groups	and	share	context.	Our	
work	extends	the	reach	of	context-aware	computing	by	allowing	devices	to	form	groups	and	work	together	without	
requiring	them	to	know	of	each	other	or	pair	in	advance.	This	makes	it	practical	for	devices	to	participate	in	quick,	
one-time	exchanges	of	information	and/or	services,	and	allows	devices	to	more	naturally	support	users	through	the	
planned	and	unplanned	encounters	that	occur	throughout	their	lives.	

The	work	presented	in	this	thesis	brings	us	closer	to	achieving	Weiser’s	vision	of	calm	and	peaceful	computing.	For	
many,	the	idea	of	letting	our	devices	automatically	form	groups	and	share	context	is	unsettling,	as	it	suggests	a	future	
where	 users	 no	 longer	 have	 control	 over	 their	 information	 and	 how	 it	 is	 shared.	 As	 computing	 becomes	 more	
pervasive,	however,	it	is	becoming	increasingly	difficult	to	anticipate	or	be	aware	of	all	the	ways	that	devices	will	need	
to	 interact	 each	 other	 in	 order	 to	 provide	 users	with	 relevant	 information	 and/or	 services.	 GCF’s	 ability	 to	 form	
opportunistic	 groups	 represent	 one	 possible	 way	 for	 developers	 to	 support	 a	 wider	 range	 of	 context-aware	
interactions	without	increasing	the	user’s	cognitive	load.	We	are	not	so	presumptuous	as	to	assume	that	our	work	
alone	can	realize	Weiser’s	vision	of	making	computing	as	refreshing	as	taking	a	walk	 in	the	woods.	 It	 is	our	hope,	
however,	that	this	work	at	least	represents	a	sizable,	and	hopefully	calm	step	along	that	path.	
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APPENDIX	A:	GCF	DOCUMENTATION	
	

The	 Group	 Context	 Framework	 is	 available	 at:	 http://epiwork.hcii.cs.cmu.edu/~adrian/wordpress/.	 The	 website	
contains:	

• An	overview	of	GCF’s	high	level	architecture	and	features	
• Java	source	code	and	support	libraries	
• Tutorials	and	code	samples	
• A	list	of	relevant	publications	
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APPENDIX	B:	GCF	FUNCTIONAL	REQUIREMENTS	
	

The	following	table	describes	the	Group	Context	Framework’s	functional	requirements.	This	list	was	derived	from	our	
experiences	building,	using,	 and	 revising	 the	 framework	 in	CHAPTERS	3,	 4,	 and	5,	 respectively,	 and	describes	 the	
capabilities	needed	to	recreate	all	of	the	systems	and	applications	described	in	this	thesis.		

	

Requirement	 Supporting	GCF	
Component(s)	

Reference	

1. Provide standardized mechanisms for requesting and receiving context. 

1.1. Define a standardized communications protocol that lets devices: 
Communication 

Messages 
Table	14 

1.1.1. Request a specific type of context (e.g., location, age) Request Message 

3.2.1 

1.1.2. Advertise their willingness to provide context 
Context Capability 

Message 

1.1.3. Subscribe to another device’s context feed 
Context Subscription 

Message 

1.1.4. Deliver raw sensor data (e.g., accelerometer readings) and/or 

inferred context (e.g., shopping lists) 
Context Data Message 

1.1.5. Transmit asynchronous commands/instructions 
Compute Instruction 

Message 
5.1.1 

1.1.6. Specify the intended recipient(s) of a message (e.g., a single 

device, a set of devices, or all devices in range) 
Destination Field 5.1.1 

1.2. Offer software abstractions to make context easier to package, reuse, 

and share 

Context Providers 

3.2.2 
1.2.1. Provide application-agnostic modules (i.e., Java classes) that 

can each collect, store, and deliver a specific type of context 

1.2.2. Give developers the ability to create and deploy their own 

context collection modules 
Figure	2 

1.3. Allow devices to collaborate and cooperate with each other 

regardless of if they are performing the same task or require the same 

information 

Group Context 

Manager 
3.5.3 

1.3.1. Form groups and share context across different applications Context Provider 3.5.3 

1.3.2. Form groups and share context in the background 
GCF Background 

Service / Thread 
5.1.2 

2. Support multiple communication technologies 

2.1. Support two-way communications by allowing devices to transmit 

messages via: Communication 

Threads 
3.2.1 

2.1.1. Network broadcasting (e.g., UDP multicast) 
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Requirement	 Supporting	GCF	
Component(s)	

Reference	

2.1.2. Client server architectures (e.g., MQTT) 

2.1.3. Peer-to-peer connections (e.g., TCP sockets) 

2.2. Support one-way communications by allowing devices to broadcast 

context with each other (regardless if they are on the same local area 

network or paired) 

Bluewave 4.4 

2.2.1. Allow devices to share any application level context over short 

distances (i.e., Bluetooth range) 

Bluewave Client 

Service 

4.4.1.1 

2.2.2. Allow the framework to broadcast system level information with 

nearby devices, such as: 

Figure	66 2.2.2.1. The context(s) that the device can produce or provide 

2.2.2.2. The network address(es) and port(s) where the device is 

listening for context requests 

2.3. Allow devices to utilize multiple communications technologies 

simultaneously 

Communications 

Manager 
3.2.1 

2.4. Allow devices to form ad hoc connections 
Group Context 

Manager 
5.1.1 

2.5. Give developers the ability to support additional communication 

technologies as needed 

Communications 

Manager / Thread 
3.2.1 

3. Allow devices to intelligently form and maintain groups 

3.1. Allow devices to form groups on the user’s behalf Arbiters 

3.2.3.1 

3.1.1. Allow devices to only form a group with itself Local Only Arbiter 

3.1.2. Allow devices to form a group with the single “best” device 

that can provide the requested information 
Single Source Arbiter 

3.1.3. Allow devices to form a group with two or more devices Multi Source Arbiter 

3.1.4. Give users the ability to select which device(s) they would like to 

group with, when appropriate 
Manual Arbiter 

3.2. Allow devices to dynamically update group membership as members 

arrive and/or leave 
Arbiters 

3.3. Give developers the ability to define their own grouping policies  Arbiters Figure	5 

4. Give users explicit control over when and how their context is being shared 

4.1. Notify users when another device is requesting their context 

Group Context 

Manager 

Figure	54a 

4.2. Allow users to see why an application/device needs their context prior 

to sharing it  
Figure	54b 

4.3. Let users see what context(s) they are sharing at any given time Figure	64b-c 

4.4. Let users share context with a specific application/device, or with 

everyone 
Figure	64a 
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APPENDIX	C:	DEVELOPER	SUBMITTED	APPLICATIONS	
	

The	following	table	contains	all	of	the	application	ideas	submitted	by	developers	during	our	validation	study	(CHAPTER	
6).	These	responses	were	modified	slightly	in	order	to	correct	obvious	spelling	or	grammatical	errors.	

Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Airport Helper If your phone could tell the plane that you are 

going to board, then we can have the 
application guide you to the gate or list other 
places around your current location like a 
Cafe, Restroom, Currency Exchange Center, 
Baggage Weighing Area, etc. This would 
prove to be useful when going to really big 
airports and many people do not visit them 
frequently. 

2 Location, flight 
number 

Relay 

Parking Assist When going a place like the Waterfront 
where the shops are far apart and parking 
places are scattered, it would be great if an 
application could tell us the parking space 
nearest to our destination or one that is most 
convenient to our destination when we enter 
Waterfront. 

2 Location Relay 

Place Finder People can ask about a place to eat or drink 
or go to and based upon their taste, the 
reviews of the people having similar taste will 
be sent to them on their location. 

2 Location, 
preferences 

Relay 

Route Guidance When a user enters a new building or a place, 
he/she has the room number as a reference. 
So, the guidance to the room will be 
provided to the user using the room number 
by the system. 

2 Destination Bluewave Only 

Recommended books An application that offers book 
recommendations to users by letting them 
rate for books or authors periodically. It 
could also recommend books based on 
user's activity, interests or location. 

2 Activity 
(physical), 

preferences, 
location 

Relay 

Impromptu reminders A reminder app that not only takes 'time' as 
a factor, but also includes the factors like 
'location' 'activity'. It is an effective context 
aware app that reminds the users with some 
kind of signal. An example of it could be, in 
a traditional reminder app, a user could only 
set a reminder on 5pm to buy milk. But then 
if the user had to meet his/her boss suddenly 
at 5pm, there is no use in reminding about 
the milk at that time. Instead, when the user 
walks near a grocery the reminder should 
appear with a signal. So the factors like 
location and activity are taken into account 
to remind the users. 

N/A Time, location, 
activity 

Self Share 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Home Assistant The assistant is an agent that interacts with 

visitors at the home door and manages the 
house owner’s schedule. The assistant is 
activated when a visitor approaches, which is 
detected by two pressure sensitive mats 
placed on both side of the house door,and it 
will adapt its behavior to such contextual 
information as the identity of the visitor, the 
house owner’s schedule status and busy 
status, and the owner’s willingness to see the 
current visitor. The visitor's name and his 
schedule could be collected which could be 
used for automatic appointment setting. 

2 Schedule, 
Altitude, 
Identity, 

Preferences, 
Location 

Bluewave Only 

GroupScheduleR Allows to find an available room on campus 
to spontaneously meet in groups, e.g., for 
project meetings, brainstormings, etc. 

2 Location Local Area 
Request 

ICE Breaker If you meet a new person, it's important to 
start conversation with some ice breakers. It's 
useful if your phone can access to the context 
of the person you meet and find common 
interest. For example, the system can use 
stored previous context such as the location 
information (the places visited), web 
browsing logs (news articles), social 
networks, and near-by-persons. The app 
searches for the common things from the two 
persons' context logs and recommends both 
of you a list of "ice breakers" 

4 Location, web 
history, social 

networks, 
preferences 

Bluewave Only 

Escourt It'll help you to go home safely in the night. 
It can communicate with streetlights, nearby 
persons, caps, CCTV, payphone and so on, 
and actively manipulate your nearby 
environments to be safe. For example, it can 
increase the brightness around you and 
broadcasts contexts related to safety to 
nearby persons. 

1 Location Bluewave Only 

Personal Radar It's like a radar used in airplane to visualize 
your around objects. It visualizes nearby 
objects (persons, bulbs, computer, coffee 
machine and so on) and their contexts 
(condition, health, mood, working status, and 
so on). It helps you to find people, service, 
items around you and also can improve your 
experience in personal navigation service. 

4 Location, 
identity, system 

state 

Bluewave Only 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Letter in a Bottle Using this app, you can leave your message 

onto any objects. Like the letter in a bottle, 
it's not predictable who will get the message. 
When someone near the object with some 
messages, it will pop up them on his phone's 
screen. If necessary, you can set some 
context-based rules on the message to filter 
out the message receivers. For example, you 
can leave a message about the important 
message or your know-how, or cautions only 
you know, personal message, opportunistic 
message to the refrigerator or bulb or 
anything. 

2 Identity Ad Hoc Request 

Where is Michael now? The app would indicate to others whether 
I'm on campus or not, and if I am on campus, 
then it would show the last known location. 

1 Location, 
Identity 

Local Area 
Request 

SimpleSmartHomeApp I would like to have one app that I could use 
to remotely (even when I'm out of the house) 
control power (e.g. turn Christmas tree lights 
on/off), heating, lights, and blinds in my 
house. I'm sure there are some integrated 
smart home solutions out there, but I believe 
I could use GCF to build my own solution 
that is potentially cheaper but still 
integrated. Assuming that everything can be 
controlled via WiFi, I would use my old 
Google Nexus as a beacon at home and the 
receiver for remote commands sent from my 
current phone when I'm out and about. The 
SimpleSmartHomeApp running on the 
Nexus would be using GCF to connect to 
appliances in the house via WiFi. I would use 
my current mobile to send requests to the 
old phone when I'm not at home and could 
probably do this using GCF as well. 

2 Identity Relay 

Student Attendance App The app would make it easy for lecturers to 
gather information on who (aka mobile 
phone) has been attending a lecture or 
exercise session. This can be helpful for both 
lecturers and students for classes and labs 
where attendance is required. 

4 Identity Bluewave Only 

My Conference App The app would provide participants not only 
with a schedule of the papers and a map of 
rooms etc., but also help them keep track of 
what they have seen (papers, tutorials, 
demos, etc.) and who they have met at the 
conference. Another feature would be to 
plan joint lunches and dinners during the 
conference and even schedule a follow-up 
meeting after the conference. 

2 Identity, 
location, 
schedule 

Bluewave Only 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Health Display In a social public space like a student lounge, 

people come together, chat, share ideas and 
work on things together. The space is ideal 
for focussing on the health of people using 
the space. It is known that social 
encouragement is a powerful motivational 
factor. A public display can leverage this 
social motivation to encourage people to be 
more physically active. In the literature, 
Fish'n'steps showed the public displays can 
lead to users forming healthy routines. With 
much more contextual information, it might 
be possible to create even better interactive 
public displays. One idea would be to use 
nearby people's step count and calendar 
information to encourage people to be 
active together. So if users A and B are in the 
space and both haven't met their Physical 
Activity (PA) goal and both are not busy for 
the next couple of hours, the display will 
encourage them to go do an exercise class 
nearby. 

2 Identity, 
schedule, 

activity (physical) 

Bluewave Only 

Connected Shoes for 
behavior change 

In this idea, I imagine that the shoes people 
wear can talk to other nearby shoes. The 
shoes are able to communicate to each other 
their wearers physical activity. Other shoes 
can in turn encourage the user to be more 
physically active by reflecting their activity to 
them. The shoes can be equipped with LEDs 
or displays in order to visualize or 
communicate with people. 

2 Identity, activity 
(physical) 

Ad Hoc Request 

Smarthome Assistant There are many smart-home assistant 
devices available in the market today like 
Amazon Echo or Jibo. I imagine that these 
devices can be improved considerable if they 
are allowed to know user's contexts. For this 
idea, we take the case of knowing where they 
have been or where they plan to go. 
Knowing the location/activity history will 
allow the device to be more sympathetic and 
humane. For e.g. if the user came back from 
a long drive, the robot may ask how the user 
is feeling given how tiresome trip might have 
been. Knowing the location searches will 
allow the robot to give additional 
information to the user, like "don't forget the 
umbrella" if its raining or keep in mind there 
is a lot of traffic in the destination. 

3 Web history, 
location 

Local Area 
Request 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Air gate keeper Currently gate information (in airport) are 

shown on a large screen but there are so 
many of them and cannot easily find your 
information (especially if it's international 
hub airport). My app works if multiple 
travelers approach to a screen to find gate 
information for transfer. The 'air gate keeper' 
request traveler information to the device of 
travelers and once after they collect them, 
they provide gate information in a order of 
travelers' destination. I.E, suppose 10 
travelers are standing in front of the screen 
and if 7 of them are heading to Pitt, 2 are 
heading to D.C, and 1 is to New york, the 
gate information for Pitt will show up in the 
first row while D.C on second row and 
Newyork on third. So, the screen interactively 
show the information depending on need of 
users. 

2 Destination Bluewave Only 

Cafe music DJ Suppose you are running a cafe and need to 
select a background music but do not really 
know which music to play, we can try this 
system. When a bunch of people (if you are 
successful owner) are staying in your cafe, 
and if you could collect music information 
that they are listening to (or have in their 
phone), you can provide a background music 
that best fits (or covers best or in common) to 
the music lists that users have in their phone. 
As an extreme example, if your cafe is full of 
french people, your system can provide 
french music. 

2 Preferences Ad Hoc Request 

Smart Sync The application allows to collect timestamps 
from surrounding devices in order to 
properly synch data from each device. 

2 Identity, time Ad Hoc Request 

Shared ESM The application sends a request to all nearby 
users on nearby devices to answer a simple 
question. This can be used for group ESM 
studies. 

4 Location, user 
response 

Relay 

OpenOrNot (this question 
is actually the hardest..) 

I'm not sure what's the hours of a place, and 
I want to know whether there are people 
moving in the area (which can tell me 
whether it's open or not) 

4 Location, activity 
(physical) 

Relay 

TakePhotoForMe If my phone is dead, I can ask other people 
to take a photo for me and the app can 
recognize it's me and automatically send the 
photo to me. 

4 Identity, photos Ad Hoc Request 

EnvironmentTeller I can know in advance how crowded, how 
loud, how hot, etc a certain environment is 
before I go, e.g. a restaurant. 

4 Location, audio, 
temperature 

Relay 

EngagementChecker Based on the device using frequency, the 
app can figure out how engaged people are 
at a certain event, e.g. classroom, concert, 
sports game. 

4 Activity (phone), 
location 

Local Area 
Request 



	 195	

Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Ad Hoc Accessibility When people with impairments try to access 

an inaccessible digital device in the 
environment, the device can automatically 
share the functionalities to the user's phone 
so they can control the devices remotely. 

2 Identity, 
preferences 

Relay 

PopularitySourcing The app can tell the user what place of a park 
is worth spending more time at, and where 
of a scene to take the best photos based on 
the history of other people's behavior. 

4 Location, activity 
(physical), 

photos 

Relay 

Marketeer Walking in a mall, and it notifies you of 
discounts, mall help, etc. when you are in a 
particular section or looking at something for 
a certain duration of time 

2 Compass, 
location 

Relay 

StreetArt An art installation that changes depending 
on who is looking at it. 

4 Photos, location, 
identity, web 

history 

Bluewave Only 

Restaurant Service When you enter a restaurant, you get your 
reservations setup, your ID (if you are 21 or 
not) gets checked without the need to 
actually carry an ID. 

2 Identity, 
bluetooth 

Bluewave Only 

PayWell When you enter a public transport, it detects 
where you board from and where you leave 
from and it gets deducted from your virtual 
wallet. 

2 Identity, 
payment info 

Bluewave Only 

BodyMeasure Measuring your basic bodily things like 
temperature, weight, height, blood pressure 
(the things they do every time you go for a 
checkup). 

2 Identity, health 
vitals 

Local Area 
Request 

autonomous driving cars This app could allow self driving cars to learn 
about other cars around and their navigation 
state. This for example could help 
emergency vehicles navigate faster through 
busy intersections without causing accidents. 
Similarly, in cases where navigation sensors 
like cameras or lidars may be failing the car 
could communicate this failure to other cars 
and prevent an accident. 

2 Speed, 
destination, 

system state, 
identity 

Bluewave Only 

smart payments The user enters a restaurant, a bluetooth 
beacon located on the table tells the 
smartphone app that the user is not sitting 
on this table. GCF shares this contextual 
information with another GCF payment app 
that the waitress has access to. Now, before 
the waitress serves the user, it already could 
know dietary restrictions of the user, likes and 
dislikes, etc. This can all be displayed on a 
GCF app running on a tablet. The user gets 
a bill which is displayed through GCF, there 
the user can accept the charges and verify if 
there are any errors, also it can tip the 
waitress. At the end the GCF app on the user 
side tells the GCF on the waitress side that 
the bill has been accepted and proceeds to 
charge the users card. 

2 Identity, 
preferences, 
payment info 

Bluewave Only 



	 196	

Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
smart grocery shopping The user walks through a supermarket, as it 

walks different bluetooth beacons the 
smartphone GCF app then can infer the 
products proximity and crosscheck with the 
users shopping list and alert whenever the 
user does not stop at the respective shelves. 

2 Shopping list Bluewave Only 

smart sensors The GCF app leverages other people's or 
devices sensor to save battery and obtain 
more accurate or simply useful information. 
For example, a user is in the middle of the 
bus where the GPS signal is spotty, another 
user near the window with better GPS signal 
could share its GPS to other users. Similarly 
other sensors could use the same principle. 
This kind of social sensing could be 
leveraged by Building sensors. For example, 
imagine a building reporting the inside 
temperature, humidity, location of known 
people, etc. This could be useful for 
someone in a new place like in a hospital 
looking for the doctors office. GCF could 
check the calendar, find the doctors room 
and display a map with information of where 
the office is. 

1 Location Ad Hoc Request 

megaSocial Imagine a bunch of people just walking 
around with a GCF app that reveals details of 
people you may stumble upon everyday but 
that you have not talked to simply because 
you don't know them. What if through the 
shared context feature, a GCF app figures 
out common interests or activities, the 
sharing of certain location daily and brings 
people together that way. 

2 Identity, 
preferences 

Bluewave Only 

Space Sticky (Application Scenario) A user has a meeting 
in Anind's office. He wants to take a note or 
make a reminder for the next meeting in the 
office. So he executes a GCF-Enabled memo 
application, then enter some text. He also 
add a reminder condition to the memo as a 
"current location". At that time, the app 
stores the entered text and its contextual 
data (e.g., indoor location). Later, when he 
visits Anind's office, the application will notify 
the stored memo. Or if he configured the 
trigger condition as "meet Anind", the 
application will notify the memo when the 
app detects Anind's phone. 

4 Identity, location Bluewave Only 

Who are in the same 
room 

Determine whether there are another user of 
this service in the same room by comparing 
whether the microphone data have include 
common background sound. 

2 Audio Ad Hoc Request 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Find my meeting? Meetup, meeting face-2-face with people 

who you meet online is quite challenging. 
Well, use the app to tell you if they arrived 
and stand next to you. Or can be used at any 
social events, dating app, Meetup app, party 
app, and more. 

2 Location, 
identity 

Bluewave Only 

My Food Allergy Share list of my food allergy to restaurant, air 
plain, social event that provide food. 
Restaurant can provide ingredient from their 
menu that might match allergy list of 
customers. 

2 Identity, 
preferences 

Bluewave Only 

Love collecter The world that full with suffering. 
Give/revived nice, wonderful, encourage 
messages from/to people who you walk pass 
you today. Tell us how many messages you 
get. 

2 Messages Bluewave Only 

Who is the best walker Share/received steps from people who walk 
pass you. And compare your rank and theirs. 

2 Identity, activity 
(physical) 

Bluewave Only 

Let's talk It's difficult for social anxiety people to go 
and have conversation in a bar or party. The 
app shows who available and what topics 
they like to talk. Send emoji to each other to 
make conversion starting easier. 

2 Identity, 
preferences 

Bluewave Only 

Theft tools Capture every context possible. Using 
machine learning to identify pattern who is 
the best candidate for roping. 

4 Location, 
accelerometer, 

altitude, 
compass, audio 

Relay 

Auto Lock/Unlock 
Computer 

The app can unlock/lock your computer if 
you are going away or close to/from it. 
Maybe, it can be use with a lab door. 

2 Credentials Bluewave Only 

Quick book club Tell people what book are you reading. 
Which book that people around you read. 
Good way to start fun conversion and make 
new book lover friends. 

2 Identity, 
preferences 

Bluewave Only 

Where is my cat Cats love hiding. The app help you to detect 
your cat collar. It also contain basic 
information such as its name, owner address, 
and name of the owner. If your cat lost or 
found a cat, then you know she is whom. 

2 Identity Bluewave Only 

Social Poll One person can create a poll, and other can 
response to it. It can be used anywhere 
(coffee shop, sport events, class room) 
without the need of internet connection. And 
the poll can last the entire weeks. 

2 Identity, user 
response 

Relay 

Air Business card Imagine, you are in a conference or job fair. 
Would it be cool to always get your contact 
from people you meet. The app shows 
information in business cards or people 
around them. Users can decide to save some 
of it or filter only the one they want. (or 
automatically save everything) 

2 Identity Bluewave Only 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Coffee Shop Auto 

Connection 
Automatically connect to publicly available 
wifi w/o the need to go through settings 
and/or ask for passwords. 

2 Credentials Bluewave Only 

Simple Photo Sharing Whenever people take a group photo, they 
often use more than one camera and still 
have to harass the people whose camera was 
used to share the photos. This app would just 
register everyone who is in a photo and send 
a copy of the picture to them automatically. 
The push could be done simply to all the 
devices in bluetooth range (so the stranger 
taking the photo might get access to the 
picture) or use facial recognition/known 
context about the group to send the photos 
by another means (so someone who didn't 
have their phone on them would also get a 
copy of the picture in their email) 

2 Identity Ad Hoc Request 

Car Connection Sharing Within a car, there are often a limited number 
of connections to the car's speakers and 
power. If multiple people are in the car, 
music and navigation instructions are 
typically tied to whichever device is 
connected. If a phone call comes in on that 
phone, you have to plug in another phone to 
continue getting directions. It would be nice 
if, within the car, phone calls could be routed 
to other phones, gps tracking could be 
handled by the device that is plugged in (or 
has the most power), and music queues 
could be controlled by anyone in the car. 

2 Location, activity 
(phone) 

Local Area 
Request 

Which cafeteria is less 
crowded? 

Know which cafeteria is less crowded before 
you go. This app will ask some users near 
cafeteria near campus about whether they 
are crowded around dinner or lunch time. 
With those data in hands, the app can show 
the user how crowded it is for each cafeteria 
so that people can make a wise choice. 

2 Location, 
bluetooth, user 

response 

Relay 

Building energy optimizer Optimize the energy consumption of a 
building by knowing how many (people/app 
user) are there in different part of the 
building at a certain time. By deploying many 
different bluetooth broadcaster in different 
part of the building and query people in a 
certain area within the building's location 
about whether they can have those 
bluetooth broadcaster in range, we can tell 
which part of the building those user are 
currently located. With those people 
distribution data in mind, I assume building 
manager can have a better way to optimize 
power usage. 

4 Bluetooth Relay 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Cheap tracker Track your stuff location without the high 

energy consumption GPS. 
 
Stick a crappy phone at the stuff you want 
to track. The crappy phone can have its GPS 
turned off. The crappy phone turn itself on 
occasionally and ask nearby devices if they 
can share GPS information, and update their 
GPS information to the server. The user can 
then track the location of the phone by 
looking up on the server. 

3 Location Ad Hoc Request 

More accurate sensors 
data 

Many sensor reading should have similar 
result within a certain range. This idea is to 
use this knowledge improve the accuracy of 
those sensor data. When a sensor data that 
are similar within a certain range (e.g. 
location, environment temperature and 
volume) is needed, the phone publish its own 
reading and search if there are other phone 
sharing the similar data. It then uses the 
average of all those readings for a more 
accurate result. 

4 Location, audio, 
temperature, 

altitude 

Ad Hoc Request 

More power efficient 
sensors data 

Many sensor reading should have similar 
result within a certain range. This idea is to 
use this knowledge to reduce the times that 
the user uses their own sensors. When a 
sensor data that are similar within a certain 
range (e.g. location, environment 
temperature and volume) is needed, the 
phone first search if there are other phone 
sharing the similar data. if no data is found, 
the phone then uses power up its own sensor 
to get the data and share it, otherwise, it just 
use other data instead of wasting more 
power on similar things. 

4 Location, audio, 
temperature, 

altitude 

Ad Hoc Request 

CouponShare Know if someone in the vicinity has a coupon 
for the store I'm in or the item I'm interested 
in and allow people to share coupons. 

2 Coupons Bluewave Only 

Shared Activities/Interests Knowing who, close to me, shares similar 
interests and allow people to connect (similar 
to meetup groups, but much more localized 
and decentralized, increase chance of group 
forming since people already have point of 
commonality e.g., work for the same 
company), potentially even only for a tightly 
defined duration such as a lunch break 

2 Identity, 
preferences 

Bluewave Only 

Exercise History Each piece of equipment in a gym keeps a 
personalized record of the exercise, number 
of reps, and weight so that people can easily 
track their progress and adjust their routines. 

2 Identity, activity 
(physical) 

Ad Hoc Request 
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Application Name Quick Description Quadrant Contexts Used 
Implementation 

Pattern 
Bill Sharing Easy bill sharing, knowing who had food with 

me and allow us to easily share the check. 
Many applications allow people to share bills 
(Venmo, Paypal, etc.), but with larger groups 
this becomes an exercise of finding the right 
people who might not even be in my address 
book. If the application knows who I dined 
with it can pre-populate the list of attendees. 

4 Identity Bluewave Only 

Collaborative Semantic 
Indoor Localization 

Knowing where someone is within a building 
(office, mall, etc.) is a powerful tool, but also 
hard to realize. Retrieving semantic labels for 
locations is crucial, but provides challenges 
such as data privacy and coverage. Using the 
phones sensors (esp. WiFi) it is possible to 
localize someone. By storing the store WiFi 
fingerprints together with the label at an 
easily accessible beacon (near the entrance) 
it is possible to collaboratively label 
locations. This cuts out the need for an 
expensive and privacy intrusive server client 
architecture. 

4 Wi-Fi, user 
response 

Relay 

	


