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Abstract

Cancer is one of the major causes of human mortality. Extensive genetic, epigenetic and
physiological variations are observed within tumor cells, which complicates the diagnosis
and treatment of the disease. Despite the extensive heterogeneity within single tumors, re-
curring features of their evolutionary processes are observed by comparing multiple regions
or cells of a tumor. Recently, phylogenetic models have begun to see widespread use in
cancer research to reconstruct processes of evolution in tumor progression. Mutations that
drive development and progression of solid tumors typically include changes in the number
of copies of genes or genomic regions. One particularly useful source of data for studying
likely progression of individual tumors is fluorescence in situ hybridization (FISH), which
allows one to count copy numbers of several genes in hundreds of single cells per tumor and
thus especially well suited to characterizing intratumor heterogeneity. This thesis focuses
primarily on phylogenetic characterization of single tumors at the cellular level from FISH
data. We first develop phylogenetic methods using single gene duplication to infer likely
models of tumor progression at the cellular level from FISH copy number data and apply
these to a study of FISH data from two cancer types. We next extend our single gene models
to include copy number changes at the scale of entire chromosomes and the whole genome.
We develop new provably optimal methods for computing an edit distance between the copy
number states of two cells given evolution by copy number changes of single probes, all
probes on a chromosome, or all probes in the genome. Our two proposed models for in-
ferring phylogenies of single tumors by copy number evolution assume models of uniform
rates of genomic gain and loss across different genomic sites and scales, a substantial over-
simplification necessitated by a lack of algorithms and quantitative parameters for fitting to
more realistic tumor evolution models. We propose a framework for inferring models of
tumor progression including variable rates for different gain and loss events. Application of
the phylogenies inferred by our algorithms to real cervical and breast cancer data identifies
key genomic events in disease progression consistent with prior literature. Classification ex-
periments on cervical and tongue cancer datasets lead to improved prediction accuracy for
models that allow non-uniform rates over models that have uniform rates, for the metastasis
of primary cervical cancers and for tongue cancer survival.
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Chapter 1

Introduction

Cancer is one of the major causes of mortality in the world. Large research and clinical efforts

have been put into improving the treatment of cancer in the last few decades. As a result of

the huge efforts, our understanding of cancer biology has advanced by leaps and bounds and

the mortality rate has improved for some types of cancer [185]. Still, successful early detec-

tion and reliable treatment of the disease remain elusive [185]. The main challenge remains in

translating our understanding of the disease to successfully identify and control advanced disease

states [185].

Cancer develops as a result of dysregulation of the cell cycle in the metazoan body. Individual

cells in the metazoan body carry a full genome and are endowed with great autonomy [185].

Each cell grows and divides, and thus participates in the formation of tissues. This autonomy of

cells poses a threat to the life of an organism when corruption of the genome by any of various

mechanisms results in alteration of cellular growth programs or disruption of external controls

on growth. This may result in large populations of cells effectively acting autonomously and

no longer obeying the rules governing normal tissue organization. As a consequence of the

cells’ normal development going awry, cancer develops. Once the breakdown occurs, tumor

cells succumb to different evolutionary pressure: making more and more copies of themselves,

growing, invading, and metastasizing [185].

1



Figure 1.1: Clonal evolution model of tumor progression.

1.1 Cancer is an evolutionary process

Cancer is a multi-step process which is driven by genetic mutations and epigenetic alterations of

DNA [185]. The genetic and epigenetic alterations typically affect the genes controlling growth,

proliferation and survival of the cells [185]. It has long been recognized that cancer is an evo-

lutionary process [185] which is characterized by accumulation of mutations that drive tumor

initiation, progression and development of treatment resistance. This complex process requires

bypassing a series of barriers between normal and cancer cells and reflects the work of evolution.

An early theory combining evolutionary biology with tumor biology was presented by Now-

ell [126]. The proposed model, known as “Clonal evolution model”, proposes that tumors ini-

tially arise from a single mutated cell and, afterwards, biological and clinical progression ensue.

During the progression of the disease, tumor cells initially undergo a brief period of heterogene-

ity followed by expansion of one or multiple subpopulations of cells. These subpopulations are

known as subclones. Each of these expanding subclones undergoes Darwinian evolution and nat-

ural selection (Figure 1.1), meaning these clones undergo positive selection when advantageous

mutations arise and negative selection when deleterious mutations arise. The advantageously

positive mutations, known as “driver mutations”, are the main driving force behind the expan-

2



Figure 1.2: Example showing emergence and progression of cancer.

sion of the clones. Other types of mutations, known as “passenger mutations”, hitchhike on the

expanding clones but are assumed to be not under selective pressure.

A simpler pictorial view of initiation and progression of cancer is given in Figure 1.2. In a

healthy tissue, mutations may arise in certain genes in one of the cells which result in that cell’s

acquiring higher proliferative potential in comparison to the healthy cells. This cell (as shown

by D1 in Figure 1.2) grows, divides faster and quickly overpopulates the healthy cells in the

tissue. As tumor cells typically acquire damage to the DNA replication system, which makes

them prone to further mutations [105], other mutations may arise resulting in some other cell

population (as shown by D2 cell type in the picture) with high growth potential to appear. This

process of acquiring mutations, resulting in a faster growth rate for a subset of cells, goes on and

ultimately we have multiple subpopulations of genomically distinct cell types forming the tumor

mass. Afterwards, the tumor may become invasive, with cells migrating and colonizing to other

parts of the body and potentially becoming life threatening.

Instead of a linear model of evolution proposed by Fearon and Vogelstein for colorectal can-

cer [50], where it is assumed that sequentially ordered mutations in a set of driver genes results

in clonal sweeps of homogeneous tumor cell expansion, recent research suggests a branch-type

evolutionary mechanism. Branch-type evolution was evident in findings of Anderson et al. [7]

on fluorescence in situ hybridization (FISH) based analyses of acute leukemia single cells, where

they observed this type of evolution in different subclones of the same patient. In-depth genome

sequence analysis of 21 breast cancers also revealed branch-type evolution and subclonal vari-

ation [121]. Yachida et al. [190] showed that clonal tumor populations present in primary pan-

creatic cancers give rise to metastatic disease in a branched evolutionary pattern. From DNA
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sequencing of 13 pancreatic patients, Campbell et al. [31] showed that genomic instability oc-

curs early during cancer development.

One important insight into the evolutionary aspect of tumor progression has been appreciating

that a tumor is a heterogeneous system [163]. Although subtypes of normal cells in humans are

morphologically similar, striking dissimilarity exists within the cells in tumors. Early genomic

technologies identified high tumor heterogeneity of tumors from patient to patient. In spite of

this heterogeneity, some functionally organizing principles exist within the tumor cells. These

organizing principles are summarized in [74].

There are experimental evidences of both intratumor and intertumor heterogeneity. Whole

genome sequence studies have revealed distinct mutations in closely related tumors. Similarly,

studies profiling variations among single cells have revealed large heterogeneity within single

tumors. It has been shown that tumor heterogeneity temporally evolves during disease progres-

sion [163]. Through whole genome sequencing, Shah et al. [146] identified existence of 19 non-

synonymous mutations in metastases that were not present in a primary lobular carcinoma of the

breast diagnosed 9 years previously. Using DNA copy number analysis by CGH or single-cell

sequencing, Navin et al. [117, 118] demonstrated that a single breast cancer biopsy may contain

multiple intermixed karyotypic tumour populations that differ by major structural chromosomal

gene amplifications. Gerlinger et al. [62] showed that 63-69% of all non-synonymous somatic

mutations identified across multiple biopsies of two primary tumours and associated metastatic

sites were not detectable in a single biopsy, suggesting that a single biopsy may underestimate

the somatic mutational landscape of a tumor. Campbell et al. [31] demonstrated the presence

of genomic heterogeneity among metastasis initiating cells and that seeding metastasis driver

mutations may be beyond those required for primary tumors. Also, all of the 21 tumors in [121]

harbored a dominant clone that was distinct from other subclones by thousands of mutations.
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1.2 Clinical implications of intratumor heterogeneity

Cancer cells evolve by accumulating mutations and genomic rearrangements during cell division.

This accumulation of mutations may result in a high level of heterogeneity not only among can-

cer patients but also within the cells forming a particular tumor. The intertumor and intratumor

heterogeneity have been shown to have significant effect on both diagnosis and treatment of can-

cer [65, 163]. As cancer is a continuously evolving system, the success in treatment of patients

depends not only how the disease is in current state, but also what state it will be over the course

of the treatment. This “evolutionary” perspective of treatment can be expected to change signifi-

cantly how the disease is treated in the future. Both intrinsic and acquired mutations complicate

the treatment of chronic myeloid leukemia by the drug imatinib [60] which is a major concern in

clinical practice now.

The “evolutionary” aspect of cancer progression creates various problems in the diagnosis,

prognosis and treatment of the disease. The heterogeneity of tumor cells results in sampling

bias, complicating the process of extracting a representative cell population [163]. The sampling

bias may arise due to diversity in events in single biopsies. The dynamic nature of the subclone

architecture create challenges during disease diagnosis and prognosis as the subclone that defines

clinical outcome may not be detectable at diagnosis. At present, normally targeted treatment with

chemotherapy is done based on the primary lesion, which may have been collected months or

years in prior. Such a treatment strategy may cease to be therapeutically tractable as previously

dormant or sub-dominant subclones in the primary lesion become preeminent over the course of

the treatment resulting in development of therapeutic resistance and relapse of the disease.

The current procedures of biomarker discovery also get complicated with the dynamic “dom-

inance architecture” of the tumors. Currently, only 100 of the 150,000 known biomarkers are

used in clinical practice [137]. The biomarker discovery approaches that combine prediction of

gene function with the help of genetic or transcriptomic analyses of tumor tissue often depend

on tumor biopsies collected from the primary or metastatic site of the tumor to prioritize the
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identification of candidate biomarkers for validation [163]. The highly heterogeneous nature of

the tumors may result in tumor sampling bias that leads to confounding effects in the validation

of biomarkers due to spurious associations of heterogeneous tumor genetic events with clinical

outcome.

An important guiding principle of modern cancer research is that early detection of cancer

is crucial to treatment of the disease [152]. Research in recent times has focused on detection

of the disease before it becomes aggressive and invasive, although these efforts had much less

impact in reducing the mortality than had been expected [18]. This observation has led to the

conclusion that many earlier-detected cancers never posed a threat to the patient. Overtreatment

of cancers that would never have been a threat can have significant side-effects on the patients’

health. The overtreatment issue creates a dilemma because focusing solely on avoiding it may

conversely result in failing to treat the tumors aggressively that have the potential to become

dangerous [23].

Another aspect of disease treatment that is affected by heterogeneous characteristics of can-

cer is targeted therapeutics. It is assumed that initiation and progression of cancer is result of

disruption in a limited number of cellular functions and pathways caused by a handful “driver”

genes for any one type of cancer [73, 74]. It has been proposed that identification of the driver

genes will allow us to design drug or therapeutics targeting these genes in a patient specific man-

ner, allowing for personalized disease treatments. The goal is that this will allow us to kill more

specifically the cancer cells while avoiding the disastrous side-effects of traditional chemother-

apy [40, 131] which targets indiscriminately rapidly dividing normal and cancer cells. Targeted

therapeutics often focus on blocking proliferation of tumor cells, whereas the goal of chemother-

apy is to kill tumor cells. To date, more than 100 targeted therapeutics have been identified,

facilitated by huge investments in large-scale sequencing efforts nearly identifying most of all

driver genes. Targeted therapeutics has some notable successes in discovering effective drugs,

such as trastuzumab for HER-2 overexpressed breast and stomach cancer [163], vemurafenib for

treating patients with metastatic melanoma that contains altered BRAF protein [32], imatinib
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mesylate which targets the BCR-ABL fusion protein in leukemic cells [47]. Although targeted

therapeutics has had some great success stories, however, it has fallen short of its initial promise

because the normal outcome is only short-term recovery before the emergence of drug resistance

that leads to relapse and mortality [53]. The emergence of drug resistance is predictable from the

evolutionary point of view of cancer progression.

Drug resistance arises because application of the drugs changes cancer clone dynamics by

introducing a new source of artificial selection. But similar evolutionary principles still apply.

Introduction of the selective pressure for proliferation of variant cells promotes the development

of resistance of therapeutics by several mechanisms [60]. Also, the surviving cancer cells may

have incurred additional mutations, some of which can improve their malignant potential. Both

“acquired” and “de novo” resistance have been observed in targeted therapeutics. An exam-

ple of the “acquired” resistance is the emergence of a “gatekeeper” mutation in the BCR-ABL

oncoprotein in relapsing chronic myelogenous leukemia (CML) cells treated with the ABL in-

hibitor imatinib [60]. An example of “de novo” resistance is the progression of disease in 10%

of BRAF V 600E melanomas after treatment with RAF inhibitor vemurafenib [54].

1.3 Mutations in cancer cells

In normal human cells, the rate of point mutations is 10−10 per base per cell division [14]. Due

to the large number of mutations in cancer cells, it has been proposed that the spontaneous

mutation rate in normal cells is not enough to give rise to the enormous mutation load in cancer

cells [106]. The phenomenon of dramatic increase in mutation rates in cancer and ultimately

the resistance to treatment can be attributed to a phenomenon known as “hypermutability”, also

known as a “mutator phenotype” of the tumor [83]. This phenotype is the result of mutations in

genes that function in the maintenance of genomic stability and arise as a result of errors in DNA

synthesis and repair of DNA damage [105]. Errors in DNA synthesis occur when the number

of misincorporation of nucleotides by DNA polymerases exceeds the capacity of cells to excise
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and repair the lesions. DNA damage is produced by reactive molecules generated in cells as a

result of metabolic processes and also by environmental exposures. When the amount of DNA

damage exceeds the cells’ capacity for DNA repair, the residual nonrepaired lesions become a

dominant source of mutations during DNA replication. Another source of mutations in cancer

cells is the unequal partitioning of chromosomes during cell division, which results in a change

in chromosome number in the daughter cells, a phenomenon known as aneuploidy.

The best known example of hypermutability is mutation in the TP53 gene observed in a

majority of human solid tumors [66], which produces characteristic patterns of Chromosome

Instability (CIN) resulting in extensive gain, loss and rearrangement of whole or large fractions

of chromosomes during cell division. CIN produces an imbalance in the number of chromo-

some in cells and an increase in the rate of loss of heterozygosity [125]. The DNA Mismatch

Repair (MMR) system is used for recognizing and repairing faulty insertion, deletion and mis-

incorporation of bases during DNA replication, recombination. Defects in MMR can produce a

pattern of hyper-elevated microsatellite instability [68, 173]. Recent research of tumor mutation

burdens across many tumors has revealed at least four distinct somatic point mutation hyper-

mutability phenotypes: DNA mismatch repair defects [68, 173], two distinct signatures of DNA

polymerase defects [44] and AID/APOBEC cytidine deaminase dysregulation [76, 170]. This

wide array of observations supports a long standing hypothesis that hypermutability is the defin-

ing characteristic of aggressive cancers. This hypothesis also provides a simple explanation of

why targeted therapeutics exhibit low success rate in cancer therapy: it may not be particularly

important to future tumor progression which driver genes are active in a tumor at a particular

time; rather hypermutability and plasticity allow tumors to easily shift to a new driver set once

the set of current dominant drivers are targeted. The observation suggests that cancer treatment

should not focus on only on the current state of tumor. Rather, it should try to identify reliable

progression biomarkers to overcome therapeutic resistance and the overtreatment/undertreatment

issue. The time has come to recognize cancer as a process of ongoing evolution rather than treat-

ing it as a stationary system.
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Mutations in cancer genomes affect both a single nucleotide and large segments of genes,

phenomena termed Single Nucleotide Variation (SNV) and Copy Number Aberrations (CNA),

respectively. SNVs are variations within genomes at single base levels. CNAs result in larger

rearrangements in chromosome segments and are an effective force behind the larger genomic

and phynotypic heterogeneity observed in cancer. In cells, copy numbers of genes may change

as a result of Single Gene Duplication (SD), Chromosome Duplication (CD) or Whole Genome

Duplication (GD) events. SD events result in gain or loss of single gene copy numbers and

can occur as a consequence of non-allelic homologous recombination or single-strand annealing

events during DNA repair cycles [78]. Chromosome level events are gain and loss of whole

chromosomes due to incomplete segregation of chromosomes during mitosis. On the other hand,

genome level events result in duplication of the whole genomes due to failure to segregation of

chromosomes during mitosis. In addition, cancer genes may exhibit epigenetic aberrations, such

as change in DNA methylation [38].

Other types of complex patterns of aberrations are observed in cancer genomes too. Kataegis

refers to the phenomenon where certain single nucleotide polymorphisms (SNP) are found in

clusters in some parts of the genome. Such hypermutable regions have been observed in breast

cancers [121]. In a Breakage Fusion Bridge cycle, a telomere of a chromosome breaks off and

replication of that chromosome gives rise to two sister chromatides both lacking a telomere. This

ultimately results in two daughter cells receiving uneven chromatids, which ultimately leads to

DNA amplification [69]. Chromothripsis refers to the phenomenon of massive genomic rear-

rangements as a result of a single catastrophic effect during the cell’s lifetime [159]. Chromoth-

ripsis is considered to be provoked by radiation exposure at a critical time point during cell cycle

when chromosomes are condensed for mitosis. Such chromosome shattering events may rep-

resent the upper limit of genomic damage cells can tolerate and cells that survive these events

can have selective advantage as a result of increased tumor cell growth. Chromoplexy is another

source of complex genomic rearrangements where several strands of DNA are broken and then

ligated together to form a new configuration. There has been evidence of chromoplexy both at

9



clonal and subclonal level in prostate tumors [9]. The breakpoints in chromothripsis are clustered

in one chromosome, whereas chromoplexy involves multiple chromosomes.

1.4 Phylogenetic models

Phylogenetic models are widely used computational tools to study the evolutionary relationships

among a set of species. Phylogenies are typically tree based models, but in complicated cases,

they can take the structure of more general graphs too. Each node in a phylogenetic tree is

called a taxon. In traditional phylogenies, observed taxa are placed at the leaf level and inferred

internal nodes, known as “Steiner Nodes”, represent extinct or unobserved taxa. Phylogeny-

building algorithms can largely be divided into two categories: distance-based and character-

based [51]. Distance-based phylogenetic algorithms aim to infer the evolutionary relationships

among a set of taxa by using a measure of similarity or distance based on the genetic or physical

characteristics of the taxa. First, a distance between each pair of taxa is computed and then

a tree is built so that the phylogenetic distances between the taxa in the tree closely resemble

the computed distances. Distance-based methods can further be subdivided into objective-based

and non-objective-based methods. Unweighted Pair Group Method using Arithmetic Averages

(UPGMA) [51] and Neighbor Joining (NJ) [141] are two of the most well-known non-objective-

based methods, where trees are built in a bottom-up fashion by connecting the closest pair of

taxa and then updating the distance matrix at each step until all the taxa are connected into a

tree. In objective-based methods, such as minimum evolution [51], one aims to optimize an

objective function, such as minimizing the total weights of the tree edges connecting the taxa.

The objective-based methods are computationally expensive, but they have the advantage of

providing theoretical guarantees of identifying an optimal tree characterized by a well defined

objective function, often by searching through the space of all possible trees.

The second class of phylogeny building algorithms are character-based methods. Character-

based methods use aligned set of characters, such as DNA or protein sequences, and build a
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tree to infer the changes in characters that describe the generation of the observed characters

from a common ancestral sequence [51]. Character based algorithms can be divided into three

subgroups: Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian. The goal of

MP is to construct a tree so that the total number of mutations along the edges of the tree is as

small as possible [51]. MP follows a variant of Occam’s Razor, where the intuition is that the

most plausible evolutionary history uses as small a number of mutations as possible to introduce

variations. Thus, recurrent mutations can be assumed rare and optimizing for the number of

mutations is a reasonable assumption. ML is a probabilistic approach where the objective is to

choose a model consisting of a tree topology and other parameters from a set of all possible

models so that the probability of the observing the sequence under the inferred model is as high

as possible [51]. Under conditions for which the maximum parsimony assumption does not hold,

the ML approach can be expected to give a better model of evolutionary history, but the ML based

models can be computationally very expensive. Finally, the Bayesian approach [91] infers the

posterior distribution over the set of all possible models consisting of tree topology, sequences

and parameters.

Among the set of phylogenetic models, the character-based models are generally considered

to give a more detailed and accurate representation of the evolutionary history among the species

under consideration, but can be computationally very expensive. Normally, as the number of taxa

increases, the cost of building character based models goes up and quickly becomes intractable.

However, a wide variety of heuristic methods have been developed to make character based

phylogenies feasible in practice if the number of taxa and markers are not too large [51].

1.5 Phylogenetic models of tumor progression

Tumor cells accumulate mutations and undergo large genomic rearrangements during the cell

cycle to form distinct subpopulations of cells. Due to this evolutionary nature of the progression

of cancer, phylogenetic models have been used to infer models of tumor progression from ge-
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netic variation data [14]. One of the earliest use of phylogenetic models in cancer biology was

developed by Desper et al. [42]. The proposed tree-based model, termed “oncogenetic tree”,

uses a wild-type node as the tree root, with each other node representing a cell type which arises

as a result of a genomic change (could be a mutation or a copy number change) in the parent

node. A maximum weight branching-based [48] tree construction algorithm was proposed for

inferring the tumor phylogenies. Later Desper et al. [43] proposed a distance based tree con-

struction method to estimate dependencies among cancer driving events. Von Heydebreck et

al. [178] proposed a maximum likelihood based model for probabilistic Bayesian formulation of

the oncogenetic tree model. In [93], both oncogenetic tree and distance-based models were used

to analyze relationships among chromosomal abnormalities in clear cell renal cell carcinoma.

Szabo and Boucher [164] extended the oncogenetic tree models to account for false positive and

false negative observations. Beerenwinkel et al. [12] proposed a structural EM algorithm for

identifying mixtures of oncogenetic trees, which allows a more flexible tree-fitting approach in

the presence of multiple tumor subgroups. Tofigh et al. [174] proposed a generalization of the

mixture of oncogenetic tree models by proposing a different error model and a global structural

EM algorithm for learning mixtures of trees.

Advances in next generation sequencing have made it possible to infer SNVs in a population

of cancer cells. Due to the large number of SNVs in cancer cells, it is computationally difficult to

infer a complete model of tumor progression explaining the observed data. To infer phylogenies

from SNV frequencies, Nik-Zainal et al. [121] used an infinite site assumption (no mutations

occurs twice in the progression of cancer) and impossibility of back mutations (no mutation is

lost) assumption to solve the problem in practice. Strino et al. [160] proposed a linear algebra-

based parsimony approach to implement these two assumptions. Their proposed method works

for up to 25 abnormalities. A recent method was developed to generalize the approach proposed

in [191] for multiple samples per patients. Subclone identification is required for inferring phylo-

genies based on SNV frequencies data. Miller et al. [113] proposed a Variational Bayes mixture

model for identification of subclones and Fischer et al. [52] proposed a Hidden Markov Model
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making use of information present in CNAs and SNVs.

An alternative to sequencing distinct tumor cells or regions is to computationally reconstruct

intratumor heterogeneity via mixture modeling. For inference of tumor phylogeny from gene

expression data, Schwartz et al. [143] proposed an unmixing of tumor samples and then used the

inferred mixtures of individual tumor states to identify possible evolutionary relationships among

tumor cells. Application of the proposed method to a lung cancer dataset [143] showed that the

method suggests possible evolutionary relationships that show good correspondence with current

understanding of lung tumor development. One of the limitation of the proposed approach was

that it handled noisy and outlier data poorly. To overcome this issue, they proposed a more

robust unmixing method [175] that reduces the sensitivity to noise and outliers. Application

of the method to CGH data yielded fast and accurate separation of tumor states. In [161],

Subramanian et al. developed a pipeline for inferring tumor phylogenies from the deconvoluted

heterogeneous tumor samples. Later, in [162], they proposed a novel Hidden Markov Model

(HMM) for inferring phylogenetically significant high-resolution markers of progression through

joint segmentation and calling of multisample tumor data.

Other methods are designed to infer phylogenetic history of single tumors profiled at regional

level. Navin et al. [119] used a neighbor joining method on CGH breast cancer data to show

that the breast cancers they studied could be subdivided into one homogeneous group and one

genetically heterogeneous group. Letouze et al. [100] presented a method named TuMult, that

works on DNA breakpoints instead of full genomic profiles. They used a breakpoint distance

to compute the number of genomic events between any two copy number profiles and then used

this distance for tree reconstruction. Greenman et al. [67] proposed a graph theoretical approach

to identify the most likely assignment of gene copy number to either allele using external linkage

information, which ultimately finds the most likely clonal ordering over the whole set of genomes

of a tumor. Using a minimum evolution criterion, Schwarz et al. [145] proposed a method called

MEDICC to jointly solve the problems of phasing (process of finding the correct assignment

of major and minor copy-number to the two parental alleles) and tree reconstruction. MEDICC
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infers the shortest number of amplification and deletion events required to transform one genomic

profile into another using finite state transducers [144].

A number of methods have also been developed for inferring clonal progression of single tu-

mors by using cell to cell variation in single tumors [132, 133, 134]. Two types of data are used

for extracting genomic information at single cell level: (i) for a limited number of loci, fluores-

cence in situ hybridization (FISH) is used to identify copy number information of the targeted

genes across hundreds to thousands of cells, (ii) on the whole genome scale, recently single-

cell sequencing has been used effectively [148] as a source of data for single tumor phylogeny

inference. In the earliest work employing FISH data, Pennington et al. [132, 133, 134] devel-

oped a model inference framework using an Expectation Maximization (EM) [41] approach for

concurrently inferring mutation rates of gene copy number evolution and iteratively optimizing

the tree fit relative to the model and vice versa. Martins et al. [109] used FISH data from 55

BRCA1 breast cancers and developed computational methods to predict the termporal order of

somatic events of the genes BRCA1, PTEN, and p53. The other emerging type of single-cell data

is single-cell sequencing data at a genome scale. Navin et al. [118] used low-coverage single

nucleus sequencing to infer evolutionary histories of cancer lineages using the neighbor joining

algorithm, employing a Euclidean distance metric on the discretized integer copy number pro-

files for tree construction. Xu et al. [189] performed performed single-cell exome sequencing on

a clear cell renal cell carcinoma tumor and its adjacent kidney tissue and found small number of

mutant genes present in a large fraction of individual cells and a significantly greater number of

genes mutant present in only one or a few cells. Hou et al. [87] performed whole-exome single-

cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient and found

that this neoplasm represented a monoclonal evolution. Since myeloid tumors are hematopoietic

tumors and hence subject to fewer evolutionary pressures. Thus, the finding of monoclonality

in a myeloid tumor is not a direct contradiction to intratumor heterogeneity observed in solid

tumors.
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1.6 Our contributions

Although there have been widespread efforts put in to developing methods for inferring tumor

phylogenies, some characteristic features of tumor evolution have mostly been ignored in the

models that have previously been proposed. The evolution of cancer is different from evolution

of species in a number of important ways. Progression and evolution of cancer is characterized

by rapid mutations, widespread and frequent copy number and other structural rearrangements,

and complex selective pressures [78, 81, 99]. These characteristic features are problematic for

traditional phylogenetic models and algorithms that were developed for inferring ancestral rela-

tionship among species. The chromosome instability (CIN) phenomenon, which is a major driver

of cancer progression [125], results in abnormal patterns of gains and losses of genomic materi-

als at large scales and at a rapid pace, which is very different from the mutation patterns assumed

in standard models of species or population-level evolution. There is no standard algorithm that

takes into account our rich knowledge of these characteristic patterns of tumor evolution. It is im-

perative that tumor phylogeny building algorithms accurately model the rapidly evolving tumor

genomes through gain and loss of genes and chromosomes if they are to characterize accurately

the progression of the disease at a cellular level.

Another characteristic feature of tumor evolution that separates it from species evolution is

high genetic and epigenetic heterogeneity within the cell population. Both FISH and single-cell

sequencing study have shown that single tumors may contain hundreds of genetically distinct

clones, suggesting one may need to sample thousands of cells per tumor to capture intra-tumor

heterogeneity reliably [7, 146]. The phylogeny building algorithms needed to process these data

must be able to handle datasets with at least hundreds of cells per tumor to have hope of modeling

the role of rare cell populations in tumor progression. A farther implication of high inter-tumor

heterogeneity is that tumor phylogenetics must be performed on patient populations to identify

common characteristics of the progression mechanism predictive of tumor progression.

Previous methods for cell-level tumor phylogenetics could handle only a small number of
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copy number probes [132, 133, 134]. Other methods [109] used greatly simplified models of

CIN evolution. More advanced phylogenetic models have been developed for datasets of re-

gional tumor variations consisting of 10-20 biopsies per tumor [157] employing sophisticated

Bayesian algorithms [11], but such approaches scale poorly with large datasets. There is a need

for tumor phylogenetic algorithms that can capture the evolution of tumors by CIN and that

are also capable of handling hundreds to thousands of cells across tens of patients to infer more

realistic models of tumor progression adequate to capture observed levels of intratumor and inter-

tumor heterogeneity. Traditional phylogeny building algorithms, such as neighbor joining [141],

which have been used in analyzing single-cell sequencing [117, 189] are capable of handling

large datasets, but they are not designed to model copy number evolution.

The work in this thesis is intended to address the need for scalable algorithms for inferring

tumor phylogenies at the cellular scale by copy number variation. The first key contribution of

the thesis is the development of novel methods that can model copy number evolution on the

scales needed to capture intratumor and intertumor heterogeneity. The thesis describes a novel

algorithm for inferring tumor phylogenies from single-cell gene copy number data using a simple

model of tumor progression assuming that gene copy number change events happen by gain or

loss of single gene probe. The algorithm extends the theory for Rectilinear Steiner Tree Problem

(RSMT) [58] which provides a basis for inferring maximum parsimony models describing evo-

lution by single gene copy number changes in order to make it possible to apply them to large

data sets. Two approaches are developed, an optimal but exponential-time method and a fast

heuristic method based on the median joining algorithm [10]. Novel theory is also developed

to reduce the search space of the exponential-time algorithm to handle larger datasets. The pro-

posed algorithms are used to infer phylogenies on FISH dataset. FISH makes it possible to count

copies of small numbers of gene probes across hundreds to thousands of cells, which provides a

way to characterize relative frequencies of CIN at gene, chromosome or whole genome scale and

to characterize intratumor and intertumor heterogeneity. Although other technologies such as

single-cell sequencing allow one to gather whole-genome variation data, it is currently imprac-
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Figure 1.3: The algorithms in this thesis infers tumor progression models using single-cell gene
copy number data. The phylogeny models are used to extract meaningful quantitative measures
(features) of tree topologies that characterize the mutation process of a single tumor. These
features are then used for clinically relevant tasks: to predict future tumor progression and for
prediction of overall and disease free survival times.

tically expensive to sequence hundreds of cells across tens of patients, as is needed to identify

predictive common features of tumor phylogenies conserved across patient populations.

The next contribution of the thesis is development of novel algorithms for extension of the

single gene probe level evolutionary model to add chromosome-level events (gain or loss of

whole chromosomes) and genome-level events (duplication of the whole genome). All these

three types of events are common in tumor evolution [78] and failure to account for all three of

them would distort inferred tree topologies. Allowing all these three events makes the tree infer-

ence problem complex, as one cannot rely on the RSMT theory that first made these inferences

tractable for large datasets. A provable algorithm with theoretical guarantees is developed to

compute the maximum parsimonious single gene duplication/loss, chromosome duplication/loss

and genome duplication events required to transform one copy number profile into another. This

algorithm provides a major component of the phylogeny building algorithm: inference of evolu-

tionary distances among pairs of taxa. The novel algorithms result in a comprehensive model of

tumor progression considering all three types of gene copy number change events.

Another key contribution of the thesis is the development of algorithms for tree inference and

parameter estimation to learn unknown quantitative parameters of tumor evolution models. The
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comprehensive model of tumor evolution developed in the thesis initially assumes that gene level,

chromosome level and whole genome level duplication events happen with same frequency. But

specific gene probes and chromosomes are under distinct selective pressure in cancers and thus

their copy number change events are associated with own distinct frequencies. Accurate tumor

phylogeny inference depends on accurate models of the corresponding rate parameters. Such

models were unavailable in the prior literature and no methods were available either to learn these

parameters and to apply them in phylogeny inference. The thesis develops novel algorithms for

computing maximum weighted parsimony combinations of gene level, chromosome level and

genome level duplication events when each of these events occur with different frequencies. An

Expectation Maximization (EM) type algorithm is also developed for the joint inference of event

frequencies and tree topology.

The final key contribution of the thesis is the use of tumor phylogenies in developing compos-

ite biomarkers that are associated with traditional measures of tumor progression such as metas-

tasis or clinical stage. Tumor phylogenetics has largely been used for discovery in basic cancer

research, primarily as a way of distinguishing driver from passenger mutations [29], and to show

how similar types of tumors are phylogenetically related to each other [43]. There has been little

effort to show clinical significance of tumor phylogenies in guiding patient treatment, however.

Work in thesis develops the idea that one can identify characteristic features of inferred tumor

phylogenetic models that statistical and machine learning algorithms can employ to draw robust

inferences about the progression mechanism. The algorithms developed in this thesis make it

possible to build tumor phylogenies from hundreds to thousands of cells across tens of patients,

which makes it possible to produce phylogenies complex and numerous enough to mine them

for quantitative prediction. The work in this thesis demonstrates that the tree topologies capture

important characteristics of tumor progression mechanisms and that numerical features quantify-

ing the basic tree topologies can scale as crucial predictors of future progression. The numerical

features are applied to two prediction tasks: supervised prediction of future tumor progression,

and unsupervised prediction of overall and disease free survival time. These prediction tasks are
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validated with four tumor types — breast, prostate, cervical and tongue — that are each major

human health concerns. Figure 1.3 gives a summary of the key contributions of the thesis as well

as a snapshot of the overall pipeline of inferring the tumor phylogneny from single-cell gene

copy number data to prediction of tumor progression and patient survival time.

1.7 Datasets used in this thesis

In this thesis, we applied our algorithms to FISH datasets on four kinds of human cancers: cer-

vical cancer (CC), breast cancer (BC), oral (tongue) cancer (TC) and prostate cancer (PC). The

datasets used are as follows:

• A set of CC [183] FISH data consisting of 47 samples organized into 16 primary samples

of metastatic patients, 16 paired metastasis samples from the same patients, and 15 primary

samples from patients who did not progress to metastasis. Each sample consisted of 223−

250 cells profiled on four FISH probes: LAMP3 [95], PROX1 [187], PRKAA1 [89] and

CCND1 [56]. All of these four genes are oncogenes, which typically show copy number

gains in tumor cells. Each of the genes belongs to a distinct chromosome.

• A set of BC [83] FISH data consisting of 13 paired (from the same patient) ductal carci-

noma in situ (DCIS) and invasive ductal breast carcinoma (IDC) samples with 76 − 220

cells per sample profiled on eight FISH probes: COX-2 [88], MYC [188], CCND1 [56],

HER-2 [168], ZNF217 [122], DBC2 [72], CDH1 [17] and TP53 [179]. The first five genes

in this list are oncogenes and the last three genes are tumor suppressors. In tumor cells,

tumor suppressors are typically associated with loss in copy numbers.

• Dataset TC [Wangsa et al., submitted] consists of 65 single samples collected from tongue

cancer patients probed for four genes located on distinct chromosomes (TERC, EGFR,

CCND1, TP53), with tumor stages (ranging from 1 (least advanced) up to 4 (most ad-

vanced)) available on all patients and tobacco usage (a known risk factor), survival, and
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disease-free survival out to 73 months available on most patients.

• An additional cervical cancer dataset, CC2, which consists of following set of cervical

samples: (a) one early pre-cancerous lesion (denoted by CIN1), (b) ten late pre-cancerous

lesions (denoted by CIN3) and (c) ten cancerous lesions (denoted by CA). Each sample was

probed on eight genes: COX, ING5, FHIT, TERC, TERT, MYC, CHEK1, ZNF217. ING5,

FHIT, CHEK1 are tumor suppressors and all others are oncogenes. FHIT and TERC lie on

chromosome 3, while the others all reside on distinct chromosomes.

In cervical cancer, normally prognosis is good with early detection, but drops sharply with

lymph node metastasis [180]. The CC dataset is extensively used in this thesis for prediction of

separating samples from different stages of cancer based on features extracted from the phyloge-

nies. CC remains the gold standard for prediction of progression of cancer to metastasis in this

thesis. This problem is clinically very important, as it allows us to predict which primary tumors

are going to become aggressive and thus give proper treatment to the patients with early detected

cancer. Improved prediction will help address the undertreatment/overtreatment issue, which is

a major problem in cancer treatment.

Breast cancer is the most prevalent type of cancer in females and is one of the most well-

studied cancers. Breast cancer has been used extensively to study intratumor heterogeneity [83].

Breast cancer also has historical importance because it was the first model for the use of targeted

therapeutics (Herceptin) in treating cancer. BC dataset is used in this study to identify the subset

of phylogenetic features that helps improving the separation of DCIS samples from the IDC ones.

In addition, statistical tests are performed on this dataset to illustrate the differential selective

pressures working on DCIS and IDC stages of breast cancer.

Tongue cancer patients used in this study were followed up to 73 months from the time of

initial diagnosis, and overall and disease free survival times were reported for each patient. As

a result of the presence of this metadata, the TC dataset gives us an opportunity to use it as a

baseline for prediction of survival time, because no prediction biomarker has been validated to

20



have predictive power beyond that already available from cancer staging information. In this

thesis, the tongue cancer dataset is used to validate the survival time prediction performance of

the tumor phylogeny statistic based subgrouping of patients.

Prostate cancer has been a well-studied system to pursue questions related to overdiagnosis

and overtreatment. As prostate cancer is a slow-growing tumor of primarily elderly people, it is

now normally treated without the goal of eliminating the tumor. However, the untreated cancers

can ultimately prove to be dangerous to the patients. In this thesis, phylogenetic features are used

to predict the recurrence of prostate cancer, which can be useful in identifying which tumors need

aggressive early treatment.

1.8 Thesis organization

Chapter 2 gives a detailed description of an exact and a heuristic approach for inference of tumor

phylogenetic models using single-cell gene copy number data under single gene duplication/loss

model of tumor evolution. Machine learning algorithms are used for predicting future tumor

stage using numerical features characterizing tumor progression. Chapter 3 extends the single

gene duplication based model developed in Chapter 2 to add chromosome level duplication/loss

and whole genome duplication events for inference of tumor phylogenies. Simulation exper-

iments are performed to evaluate the reconstruction accuracy of the proposed comprehensive

algorithm for inferring progression trees with known topology. As an extension of the algo-

rithms in Chapter 3, Chapter 4 describes a framework for inferring the rates of different gene and

chromosome copy number change events and to infer the maximum parsimonious trees under the

new weighted-event model. Chapters 5 and 6 provide applications of tumor phylogenetic mod-

els in understanding tumor progression and predicting partient survival time across two different

types of cancers. Chapter 7 proposes a novel distance measure for computing difference between

phylogenetic trees built on arbitrary sets of taxa. Finally, Chapter 8 summarizes the findings of

the studies and their conclusions and outlines possible future directions on the topic of tumor
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phylogenetics.

22



Chapter 2

Phylogenetic Analysis of Multiprobe

Fluorescence in situ Hybridization Data

from Tumor Cell Populations1

Recent studies of genetic variation in solid tumors have revealed massive intratumor heterogene-

ity in the spectrum of genomic changes within single tumors [62, 83, 117, 118]. These observa-

tions suggest the importance of understanding cell-to-cell variability, but profiling large numbers

of single cells and building coherent models of their evolution remain challenging problems. Flu-

oresence in situ hybridization (FISH) is a technique that can be used to count the copy number

of DNA probes for specific genes or chromosomal regions that has proven useful in studying

cancer. Gene gains and losses are common in solid tumors and FISH provides a practical and

reliable method for monitoring such changes in large numbers of individual cells from single tu-

mors [84, 92]. FISH is even more useful when one uses multiple colors to monitor multiple genes

simultaneously [83, 109, 183]. In this chapter, we develop new methods to model and analyze

the progression of copy number changes, as measured by multicolor FISH. Our methods include

1This chapter was developed from material published in “Chowdhury et al., Phylogenetic analysis of multiprobe

fluorescence in situ hybridization data from tumor cell populations, Bioinformatics, 29.13 (2013): i189-i198” [34].
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analysis of multiple samples from the same patient, typically from different cancer stages.

We apply the new methods to published data on cervical cancer with four gene probes [183]

and breast cancer with eight gene probes [83]. The data for each sample are presented as a

matrix, where each column is one of the probes and each row is a “cell count pattern” of four

probe counts, such as 2,3,4,1 (or eight counts for breast cancer) and the number of cells matching

that pattern. A normal cell has the count pattern of all 2s. Both data sets include paired samples

from an earlier stage and a later stage in the same patient.

It is of interest to study cervical and breast cancer, as we do, because the number of cases

of cervical cancer and breast cancer diagnosed early has increased due to Pap smears and mam-

mograms respectively. Early diagnosis is important because lymph node metastasis is one of the

best predictors of poor outcome [28, 49]. Paradoxically, it has been shown statistically that early

diagnosis of breast cancer has not led to a substantial decrease in deaths because most of the can-

cers diagnosed early would not progress to be life-threatening if left untreated [18]. These are

large-scale studies that do not address the benefits of early detection in individual cases. There-

fore, a consistent explanation of these findings is that earlier detection could be of clinical value

if there were a better understanding of tumor evolution to help identify the early-stage cancers

likely to progress to dangerous forms.

The problem of modeling tumor progression has been studied by a variety of techniques and

using different kinds of tumor data [12, 33, 42, 63, 67, 109, 134, 150, 161, 177, 189]. Several of

these methods used techniques from the area of phylogenetics (reviewed by [8]) because of the

insight that tumor genomes evolve [29, 126]. Most prior studies have used either comparative

genome hybridization or sequencing of cell populations, which have the advantage that one can

do genome-wide analysis, but the disadvantage that the input data are explicitly or implicitly

averaged over many cells of the same tumor. Other data types can offer distinct advantages, such

as the microsatellite data used by Shlush et al. ([150]), which can allow some inference of useful

population genetic parameters generally difficult to assess with tumor data.

As discussed in Chapter 1, FISH is the only currently available reliable technique that allows
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measurements on enough individual cells to model the evolution of substantial intratumor het-

erogeneity. The disadvantage of FISH is that it uses only a small number of preselected markers.

Only two of the previous studies analyzed FISH data ([109, 134]). These studies were limited ei-

ther to two probes ([134]) or to three probes and coarsely distinguishing only loss (copy number

< 2), neutral (copy number 2), and gain (copy number > 2) ([109]).

We address a need for new methods capable of handling the larger numbers of cells and

probes in recent FISH data sets. More specifically, we aim to develop a theoretical foundation

for efficient handling of large copy number data sets. Towards this goal, we develop theory and

algorithms for a model of tumor progression driven by gains and losses associated with FISH

probes. Our methods handle in principle any number of probes and any range of copy numbers

0 through UB (default 9). The use of UB limits the combinatorial search and hence running

time of our methods on inputs where the measured copy numbers exceed this limit. The work

is intended to establish a framework capable of giving useful tree inferences on state-of-the-art

FISH data, which might be extended in future work to handle even harder problem instances and

more realistic models of tumor evolution.

Our contributions in this chapter include:

1. Reducing a model of the problem of modeling progression of FISH probe cell count pat-

terns to the Rectilinear Steiner Minimum Tree (RSMT) problem and thus bringing prior

theory on the RSMT problem to bear on the FISH phylogeny problem.

2. Design and implementation of an exponential-time exact method and a polynomial-time

heuristic method to construct trees modeling the progression of cell count patterns.

3. Mathematical proof and software implementation of a new inequality that speeds up the

RSMT-based computation.

4. Definition and evaluation of new test statistics based on the trees computed by our methods.

These test statistics give novel insight into the selective pressures in tumor progression,

compared to test statistics derived from the cell count patterns alone.
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5. Definition and evaluation of “features” based on the tree structures that can be used with

machine learning to classify the tumors. For example, we show improved effectiveness at

distinguishing the cervical tumors that metastasize from those that do not.

2.1 Methods

In this section, we describe a set of algorithms to identify a most parsimonious tree of copy

number changes consistent with a data set on cell-level tumor copy-number heterogeneity. We

first describe an exponential-time exact algorithm. We next propose a set of valid inequalities to

reduce the running time of the algorithm. We then propose a heuristic approach that returns an

approximate solution in polynomial time. Both the exact and heuristic methods are implemented

in the C++ software package FISHtrees (ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees).

Data sets

We give a description of the datasets used in this chapter for evaluating our tree inference method.

The datasets were described in section 1.7. For clarity, we reiterate here the sample composition

and the genes on which each dataset was profiled.

The cervical cancer (CC) dataset contains genomic copy numbers of the four oncogenes

LAMP3 [95], PROX1 [187], PRKAA1 [89] and CCND1 [56] on samples from 16 lymph node

positive and 15 lymph node negative patients [183]. For the lymph node positive patients, this

dataset contains a sample from the primary tumor and another from the metastasis, making the

total number of samples 47. The number of cells per sample ranges from 223 to 250, after

filtering to remove cells that likely had cut nuclei and those in the process of division, as described

previously [83]. The breast cancer (BC) dataset contains copy numbers of 5 oncogenes, typically

but not always gained COX-2 [88], MYC [188], CCND1 [56], HER-2 [168] and ZNF217 [122]-

and 3 tumor suppressor genes, typically lost DBC2 [72], CDH1 [17] and p53 [179] from 26
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paired samples, one from the ductal carcinoma in situ (DCIS) and one from an invasive ductal

carcinoma (IDC), from 13 patients. The number of interphase cells ranges from 76 to 220. The

FISH protocol filters out cells that are in the process of DNA replication using the fact that these

cells have recognizable FISH probe doublets [183].

2.1.1 Rectilinear Steiner Minimum Tree (RSMT) problem

For each patient sample, each cell assayed will have some non-negative integer number of copies

of each probe. If we consider measurements on d probes in c cell count patterns for a given

patient, then that patient’s information can be represented by a two-dimensional array D with c

rows and d + 1 columns where entry D(i, j), for j = 1, . . . , d, represents the copy number of

gene j in sample pattern i, and column d+ 1 has the number of cells with this count pattern. All

counts above UB are reduced to that value. Each row of D can be treated as a point in Rd. Our

goal is to explain the observed data via a phylogenetic tree of single gene duplication and loss

events. We use the L1, or rectilinear, distance metric for inferring the Steiner nodes in Rd. If we

are given a set S of points inRd, and we build a Steiner tree T spanning S, then for any particular

edge e, joining points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd), the rectilinear distance w(e)

is defined by w(e) = |x1−y1|+|x2−y2|+. . .+|xd−yd|. The problem of identifying a minimum

weight tree including all the observed points and, as needed, unobserved Steiner nodes with the

rectilinear metric is known as the Rectilinear Steiner Minimum Tree (RSMT) problem [75, 154].

The RSMT problem is NP-complete [58] and thus does not have an efficient exact algorithm.

One potential advantage of reducing to Steiner trees is that there are high-quality implementa-

tions of sophisticated branch-and-cut methods that solve large instances to optimality [96, 136].

To keep our implementation free and self-contained, we implemented a simpler domain-specific

method for our instances of RSMT. We developed an inefficient exact algorithm and a heuristic

algorithm based on the median-joining algorithm for maximum parsimony phylogenetics [10]

adapted for RSMT using theoretical results from Hanan [75] and Snyder [154].

27



2.1.2 Exact algorithm for the RSMT problem

An exact algorithm for the RSMT problem in two dimensions was first proposed by Hanan ([75]).

Hanan’s theorem implies that if we draw lines parallel to the two axes through each of the points

in S, then there exists an RSMT of S whose Steiner nodes will be located at the intersections of

those lines, a two-dimensional grid known as the Hanan grid that identifies a finite set of positions

where the Steiner nodes might be found. Snyder [154] generalized Hanan’s theorem to any

dimension d. To formally present Snyders theorem, assume S is a set of points in a d dimensional

space Rd and that x1, x2, . . . , xd are the coordinate axes of Rd. Let P = (p1, p2, . . . , pd) is a

point belonging to S. There are d hyperplanes orthogonal to the coordinate axes that contain P .

Suppose N(P, i) is one of those hyperplanes which is orthogonal to the axis xi. Hanans grid in d

dimensional space is formed by taking the union of allN(P, i) for all points P and all dimensions

i. Formally, the Hanan grid H(S) in d dimensions is defined as, H(S) = ∪N(P, i),∀P ∈ S and

1 ≤ i ≤ d. For each subset of the form N(P1, 1), N(P2, 2), , N(Pd, d), there is a point at which

the d hyperplanes intersect. If the set of all of these intersection points are denoted as IH(S),

then the generalized Hanan’s theorem, proposed and proved by Snyder is the following:

Theorem 1. [154] For a given set of points S ⊂ Rd, there exists an RSMT T of S, such that if Q

is a Steiner point of T , then Q ∈ IH(S).

Algorithm 1 Exact algorithm for generating RSMT
Require: A point set S
Ensure: Steiner tree including the set of inferred Steiner nodes and weight of the Steiner tree

1: Infer Steiner node set Q using generalized Hanan’s theorem
2: Identify MST on S and let min weight = weight(MST (S))
3: for k ← 1, |Q| do
4: Enumerate all size-k subsets T of Q
5: for each Tk ∈ T do
6: Identify MST on {S ∪ Tk} and let current mst weight = weight(MST (S ∪ Tk))
7: if current mst weight < min weight then
8: min weight = current mst weight, steiner tree = MST (S ∪ Tk)

return steiner tree and min weight

According to Theorem 1, the possible Steiner nodes are the intersection points of the Hanan
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grid H(S). For each possible number of Steiner nodes k, Algorithm 1 enumerates all subsets of

k potential Steiner nodes from those allowed by the generalized Hanan’s theorem. For each such

subset, the algorithm constructs a minimum spanning tree (MST) using the observed data points

and those k specific Steiner nodes. The minimum cost tree over all such subsets and all possible

values of k is returned as the optimal tree. This method is guaranteed to find an optimal solution

to the RSMT problem if k is large enough, but in practice we limit to k ≤ 3. More efficient

approaches, such as that proposed in [46], cannot be used in our case, since they assume that

all the terminal nodes must be leaf nodes in the Steiner tree, while in tumor progression trees, a

terminal node can be a parent node of other terminal nodes. Below, we show that the Algorithm 1

run time is at worst exponential in the number of potential Steiner nodes and the size of the probe

set.

Theorem 2. The time complexity of Algorithm 1 is exponential in the number of potential Steiner

nodes.

Proof. If UB + 1 = m, then, by Theorem 1, the total number of possible Steiner nodes to be

considered is s = md. To find the exact solution, we consider each possible subset of the inferred

Steiner nodes and build a minimum spanning tree on the set of terminals and subset of Steiner

nodes under consideration. The total number of subsets of a set with cardinality n is 2n. We

implemented Prim’s algorithm for MST and its complexity is O(nlogn). So, the total running

time of Algorithm 1 is O(2snlogn).

2.1.3 Pruning Steiner node subsets

Since the time complexity of Algorithm 1 depends on the number of calls made to the MST

routine, we can reduce its runtime by checking before hand if a call to that procedure cannot lead

to a solution of lower cost than current mst weight. We propose a lower bound on the weight

of the MST and we add checks in every for loop in Algorithm 1 to test if the lower bound is

higher than the minimum weight MST generated so far. If so, then we do not generate the MST.
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Theorem 3. Suppose we would like to build an MST on a graph that has n nodes, of which

nodes 1, . . . , r might have degree 1 in an MST and hence be eligible to be its root, while nodes

r + 1, . . . , n are required to have degree > 1 in the MST and hence are not eligible to be its

root. By construction, a Steiner node in the graph must have degree > 1 in the MST because

otherwise, its inclusion cannot reduce the weight of the MST.

Assume, the weight matrix of the graph is

w11, w12, w13, . . . , w1n

w21, w22, w23, . . . , w2n

...

wn1, wn2, wn3, . . . , wnn

Then,

W (MST (n)) ≥ (w1 + w2 + . . .+ wn)− sup(w1, w2, . . . , wr) (2.1)

where W (MST (n)) is the total weight of the MST with n nodes and

wi = inf(wi1, wi2, . . . , wi(i−1), wi(i+1), . . . , win)

.

Here, for a list L, sup(L) and inf(L) denote the lowest upper bound and greatest lower

bound of L, respectively.

Proof. We define the difference on the right hand side of the inequality (claim) asQ(n). For each

non-root node v, define p[v] to be the weight of the edge connecting v to its parent in the MST,

and define p[root] = 0. We can readily see that p[v] ≥ wv. p[v] cannot be smaller than wv as
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edges do not get split in the MST building process. For a graph with n nodes, W (MST (n)) =

p[1] + p[2] + . . . + p[n]. If we assume node 1 is the root node, then W (MST (n)) = p[2] +

p[3] + . . .+p[n]. We divide into two cases depending on the value of sup(w1, w2, w3, . . . , wr). If

sup(w1, w2, w3, . . . , wr) = w1, thenQ(n) = w1+w2+w3+ . . .+wn−w1 = w2+w3+ . . .+wn.

Since wv ≤ p[v] for any node v, we have, Q(n) = w2 + w3 + . . . + wn ≤ p[2] + p[3] +

. . . + p[n] = W (MST (n)). On the other hand, if w = sup(w1, w2, w3, . . . , wr) > w1, then,

w1 +w2 +w3 + . . .+wn−w < w2 +w3 + . . .+wn ≤ p[2] + p[3] + . . .+ p[n] = W (MST (n))

So, W (MST (n)) ≥ (w1 + w2 + . . .+ wn)− sup(w1, w2, . . . , wr).

Distinguishing between the potential Steiner nodes and the non-Steiner nodes in (2.1) makes

the claim more complicated, but leads to a direct simplification of the algorithm. Fewer calls

to the MST procedure are made because the lower bound exceeds the current best MST weight

more often.

2.1.4 Heuristic algorithm for the RSMT problem

We also propose a heuristic method that can find a potentially suboptimal solution in polynomial

time. Our proposed heuristic method uses the median joining principle of iteratively identifying

Steiner nodes (known as median nodes) that allow one to more parsimoniously link some triplet

of nodes, using the generalized Hanan theorem to enumerate possible medians. The method,

described in Algorithm 2, begins by constructing a minimum spanning network, corresponding

to the union of edges in all minimum spanning trees. It then enumerates triplets of nodes (u, v, w)

such that at least two nodes of each triplet are connected in the network, followed by enumerating

possible median nodes, consisting of combinations of coordinate values of u, v, and w. It then

tests whether introducing the given possible median as a Steiner node reduces the cost of the

minimum spanning tree. If so, then the median node is added. The process is continued until no

additional cost-saving median node can be added.

Theorem 4. The time complexity of Algorithm 2 is polynomial in the cardinality of the terminal
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Algorithm 2 Heuristic algorithm for generating RSMT
Require: A point set S
Ensure: Steiner tree including the set of inferred Steiner nodes and weight of the Steiner tree

1: Calculate Minimum Spanning Network (MSN ) on S using the approach described in [10]
2: Identify MST on S and let min weight = weight(MST (S))
3: Identify all 3 node subsets of MSN, T, where at least two nodes out of the 3 nodes are

connected
4: for each Ti ∈ T do
5: Identify candidate Steiner node set L by taking combination of the values of coordinate

axes of the points in Ti
6: for each Li ∈ L do
7: Identify MST on {S ∪Li} and let current mst weight = weight(MST (S ∪ Li))
8: if current mst weight < min weight then
9: min weight = current mst weight

10: S = S ∪ Li
11: steiner tree = MST (S)

return steiner tree and min weight

set.

Proof. The running time of the heuristic algorithm is dominated by the number of triples that

are considered during the Steiner node inference process. The maximum number of triples con-

sidered for inferring the Steiner node is
(
n
3

)
. If we are considering d probes, then the maxi-

mum num-ber of Steiner nodes is
(
n
3

)
3d. So, the total running time of the heuristic approach is

O(3dn4logn).

2.1.5 Experimental procedure

We began statistical analysis with a basic test of imbalance in tree topologies to determine

whether differential evolutionary pressures in primary/DCIS versus metastatic/IDC environments

might be reflected in the trees. To obtain sufficient counts and detect statistically significant

trends, we grouped cells into bins by subtrees based on the child of the root from which each cell

traces its ancestry. The root node represents a cell type with a copy number count of 2 for each

gene probe (i.e., a healthy diploid cell). Direct children of the root are those nodes distinguished

by an increase or decrease of one copy in a single probe. For example, for four gene probes in
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the CC case, the copy number profiles of the eight children of the root are (1,2,2,2), (2,1,2,2),

(2,2,1,2), (2,2,2,1), (3,2,2,2), (2,3,2,2), (2,2,3,2) and (2,2,2,3). We refer to all descendants of

one second level node as a “bin”. We counted the total number of cells in that bin for each of

the eight sub-trees separately for the 16 pairs of primary and metastasis samples. The resulting

eight-dimensional vectors for each primary-metastasis pair were compared by a chi-square test

to test the null hypothesis of independence between bin counts and primary vs. metastasis labels.

To illustrate the difference between the dynamic views of relationships among cell types

offered by the trees relative to the static snapshot offered by raw probe counts, we next examined

two different measures of the net mutational bias in the CC and BC trees: one based on imbalance

of copy numbers in cell counts and one on imbalance in tree edges. These statistics provide two

different views of the net evolutionary process of mutation and selection. For the cell count

data in CC/BC, we aggregated all 16/13 patients primary/DCIS and metastasis/IDC information

separately, computing average difference in copy number of individual cells relative to diploid,

excluding the contribution of all-diploid cells. For tree-based calculation of gene gain/loss, we

measured the net gain or loss of each gene by the number of tree edges showing gain minus those

showing loss over all trees generated by FISHtrees.

We also performed a series of experiments on the use of progression tree statistics for clas-

sification tasks related to tumor progression and prognosis. In each case, we examined the use

of tree statistics as features for prediction methods in comparison to prediction from features

derivable solely from raw cell counts. As feature sets, we used:

1. Fractions of cells in the 8/16 subtrees rooted at children of the diploid root: We defined

tree-based features consisting of 8/16 features corresponding to the fraction of cells in each

of the subtrees corresponding to immediate children of the diploid root.

2. Fractions of edges exhibiting gain or loss of each gene: We used 8/16 features correspond-

ing to the fraction of total tree edges showing gain or loss of each gene.

3. Fractions of cells at each level from one to ten in the trees: We used ten features corre-
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sponding to the fraction of cells at each level in the tree from one to ten. The root (the node

representing normal cells) of the tree is assumed to be located at level one.

Fractional rather than absolute counts are used for each measure, so that the sum of the values

is normalized to be 1 and the test statistics are not distorted by variability sample-to-sample in

the number of cells. These features were compared to four non-tree-based features:

1. Mean gain or loss in each gene individually.

2. Maximum copy number of each gene individually.

3. Shannon index [130], an information theoretic measure. For each gene G, each distinct

combination of gene copy numbers and cellular ploidy represents a species. If pi denotes

the frequency of species i among all tumors, then the Shannon index H for G is given by

H = −
∑
pilog2(pi).

4. Simpson index [130], D =
∑
p2i .

We further performed simulation tests to evaluate the correctness of the phylogenetic trees

inferred by our algorithm in terms of the underlying tumor progression mechanism. Trees were

simulated to approximate true FISH progression trees by expanding from an initial diploid root

node by selecting a Poisson number of children of each node (possibly with repetition) and

expanding each node selected recursively until the process terminates. To produce trees compa-

rable to the real data, we reject those with fewer than 50 or greater than 120 distinct cell types.

Individual cells are then chosen uniformly from the nodes in this topology until 250 cells are

sampled.

More specifically, we simulated progression trees by the following protocol, which takes a

random number r ∈ [0, 1], a number gene probes Np to be simulated and the number of cells K

to be sampled:

1. Fix the root node to be R = 2Np.

2. Initialize the tree T = R and depth of the tree d = 1.
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3. Extract all nodes N generated at depth d.

4. For each node n ∈ N , repeat the following:

(a) Generate a uniform random number U ∈ [0, 1].

(b) if U > r, then do the following:

i. Select a gene probe q from the copy number profile of n randomly.

ii. Select a direction gl of unit copy number change (gain or loss) from the copy

number profile of n randomly.

iii. Generate a child C of n with copy number profile based on q and gl.

iv. If the copy number profile of C has not been generated previously then put C

into T .

v. Go to step 4(a)

5. If no new child node is generated at this iteration then stop, otherwise increment d and go

to step (3)

6. For each k ∈ K, generate a uniform integer random number IR between 1 and |T | and

assign k to the copy number profile of the node indexed by IR.

Simulations were conducted for the present work with parameters r = 0.5, Np = 4 and

K = 250. In order to compare the similarity between the simulated tree TS and the inferred

tree TI , we used a weighted matching based metric [102]. We first identified the set of non-

trivial bipartitions in both simulated and inferred tree, represented by πTS and πTI respectively.

Then we defined a complete weighted bipartite graph G(A,B,E), where A and B consist of

πTS and πTI respectively. Since TS and TI can have non disjoint node sets, we calculated the

weight between two vertices of G by dividing the cardinality of shared nodes set between the

bipartitions represented by those two vertices with the total number of nodes in the simulated

tree. Then the distance between TS and TI is calculated by identifying the maximum weight

matching in G(A,B,E). After dividing the weight of the matching by the total number of nodes
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in TS , we calculated the fractional similarity in bipartitions between the two trees. We calculated

the matching accuracy by multiplying the fractional similarity with 100.

2.2 Results

In this section, we present the results of experiments to evaluate the utility of tumor phylogeny

inference for understanding the developmental processes of these tumor types. We also explore

the prognostic value of tumor phylogenies by using them to derive features for classification

experiments and comparing to features that do not rely on tree inference. For these experiments,

we built tumor progression trees of the CC and BC data using the ploidyless heuristic approach

to phylogenetic inference described in Methods.

Figure 2.1 shows representative examples of tumor progression trees from the CC data set.

Figure 2.1(A) shows a tree inferred from the primary tumor of patient 1 of the CC dataset.

Figure 2.1(B) shows the tree for the paired metastatic sample from patient 1. The primary stage

tree has more nodes and is more balanced and broader in shape compared to the metastatic stage

tree. The distinct topologies of the trees may indicate the fact that cells residing in primary and

metastatic sites of the tumor face different selective pressures.

2.2.1 Comparison of exact and heuristic algorithms

To evaluate the quality of the solution generated by the heuristic algorithm, we generated tumor

progression trees using both the exact and the heuristic algorithms. We report a comparative

study of the two algorithms in Figure 2.2. For each example run, we report the number of probes

considered, the total number of terminal nodes in the given dataset and a comparison of the

weights of the RSMTs generated by the exact and heuristic approach. The heuristic approach

returns an optimal solution about 80% of the time. For the cases where the heuristic solution is

not optimal, the excess weight is very small. From the runtime comparison of the two approaches,
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Figure 2.1: Phylogenetic trees showing progression of (A) primary and (B) metastasis stage
cervical cancer in patient 1. The trees are built from single cell-copy number data using the
ploidyless heuristic approach implemented in FISHtrees. Each node in the trees represents a
copy number profile of the four gene probes LAMP3, PROX1, PRKAA1 and CCND1 respectively.
Nodes with solid borders represent cells present in the collected sample, while nodes with dotted
borders represent inferred Steiner nodes. Green and red edges model gene gain and gene loss
respectively. The weight value on each edge connecting two nodes x and y is the rectilinear
distance between the states of x and y. The weight on each node describes the fraction of cells
in the sample with the particular copy number profile modeled by that node; Steiner nodes are
assigned weight 0.
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Figure 2.2: Example runs of the exact and heuristic approach showing the total number of probes
considered, total terminal nodes in the particular case, RSMT weight, total runtimes of the ex-
act and heuristics approach respectively and percentage of times the MST building routine in
Algorithm 1 is not executed resulting in reduced running time of the exact approach.

we see that the heuristic approach returns a solution within 1 second every time. The runtime of

the exact approach varies from 1 second to 1966 seconds. When the number of probes is higher
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than 5, the total running time of the exact approach becomes impractical. The heuristic algorithm

can return a solution in less than one minute even when using all eight probes in the BC data set

(data not shown).

In Figure 2.2, we also report the percentage of total calls to the MST generation routine in

Algorithm 1 that are avoided as a result of the inequality we proposed in Theorem 3. For 75%

of the examples, the lower bound in Inequality 2.1 exceeds the current best MST weight more

than 90% of the time. As most of the entries in Inequality 2.1 are computed just once and used

throughout, this results in a huge decrease in the runtime of the exact approach.

2.2.2 Statistical analyses of tumor phylogenies

Cervical Cancer Primary vs. Metastatic Samples

Figure 2.3: P-values from chi square tests comparing the number of descendants in the (A) eight
children of the root in the primary tumor tree vs. the metastasis tree in the same CC patient, (B)
sixteen children of the root in the DCIS tree vs. the IDC tree in the same BC patient. The total
number of (C) CC and (D) BC patients for which each bin for gain of oncogenes or loss of tumor
suppressor genes shows significance in individual 2× 2 chi square tests.

We first examined cervical cancers, looking at paired primary tumor and metastasis samples.
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Table 1 in Figure 2.3(A) reports p-values for chi square tests on all 16 pairs of patients. For

each patient, the chi square tests compare two 8-element vectors, one for the primary tumor and

one for the metastasis, in which element i is the number of descendants of the i-th child of the

root. All p-values in this and other tests are corrected for multiple testing. In Figure 2.3(A),

all 16 p-values are statistically significant. The same is true for an analogous chi square test

of DCIS vs. IDC in 13 BC patients in Figure 2.3(B). That these comparisons are significant

indicates significant imbalance between tree geometries of the two tumor stages. It may suggest

that distinct evolutionary pressures act on growth in the primary tumor versus the metastasis.

Figure 2.4: Number of cells in the subtrees rooted at the nodes (termed a “bin”) directly con-
nected to the root node in the cervical cancer dataset. Data is shown for (A) primary and (B)
metastatic stage tumor for bins representing gene gains, with the most populated bin highlighted
in each case.

There is, however, high variability from patient-to-patient in the nature of the imbalance.

Figure 2.4 shows cell counts for the bins associated with gain of the four genes, with the largest

bin of each tree highlighted. The bin accounting for Gain of LAMP3 is the most frequent dom-

inant bin in both primary and metastatic samples. This bin is also the only dominant bin across

multiple pairs of primary and metastatic samples. This finding is consistent with the ubiquitous

gain of LAMP3 in CC reported in [183]. We also performed chi square tests on individual bins

in each pair of primary and metastasis samples using 2 × 2 contingency tables. Table 3 in Fig-

ure 2.3(C) reports the total number of patients for which each bin representing gene gains or

losses shows significant association with tumor stage. The results suggest a net trend towards

LAMP3 and PRKAA1 gains, with again a significant difference between primary and metastasis.

We infer from these results that LAMP3 has a dominant role both in initiation and development
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of different stages of CC.

Figure 2.5: Increase and decrease in copy number count of LAMP3, PROX1, PRKAA1 and
CCND1 (A,B) across 16 CC patients and COX-2, DBC2, MYC, CCND1, CDH1, p53, HER-2
and ZNF217 (C,D) genes across 13 BC patients. Copy number count is calculated using (A,C)
average of cell count data and (B,D) net tree edge changes. The units on the x-axis differ in the
two adjacent subfigures due to the different types of data used.

Figure 2.5 shows the results of cell-count and tree-edge-based analysis of gene gain/loss

statistics. Cell counts (Figure 2.5(A)) and edge counts (Figure 2.5(B)) show similar trends in the

gain and loss of the marker genes except for two cases. In the first case, cell counts show no net

gain or loss of PROX1 in metastasis, while edge counts show a gain. The latter result is supported

by the literature [183] associating gain of PROX1 with metastasis. Likewise, the two measures

suggest opposite trends with respect to PRKAA1 in metastasis, with cell counts suggesting net

loss but edge counts net gain. Again, net gain has been previously associated with progression

to metastasis [183]. These results suggest that quantifying progression via evolutionary events,
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as enabled by the trees, provides a clearer view of the selective pressure than does quantification

by cell counts.

Analysis of Breast Cancer DCIS vs. IDC Samples

We performed a comparable statistical analysis on the paired BC DCIS and IDC samples to

understand how the evolutionary process varies between early stages and late stages of tumor

development. The BC dataset includes copy number counts for eight gene probes, yielding 16

potential children of the diploid root node representing single copy number gain and loss of

individual gene probes. We again treated the subtrees rooted at each of these sixteen children

as bins and counted the total number of cells in each bin for each DCIS and IDC tree. We then

performed a chi square test using the 16 × 2 contingency table defined by each DCIS/IDC pair.

The results of the chi square tests are presented in Table 2 in Figure 2.3(B). As with the CC

data, the table consistently shows significant p-values, which again may indicate differences in

the evolutionary processes at different stages of tumor development.

Figure 2.6: Number of cells in the subtrees rooted at the nodes (termed a “bin”) directly con-
nected to the root node in the 13 Breast cancer patients. Data is shown for (A) DCIS and (B) IDC
stage tumor for bins representing gain of oncogenes and loss of tumor suppressor genes, with the
most populated bin highlighted in each case.

We report bin counts for gain of oncogenes and loss of tumor suppressor genes in Figure 2.6.
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Examination of individual bin counts shows that the precise biases tend to differ from patient

to patient, with the most frequent dominant bins being loss of the two tumor suppressor genes

DBC2 and CDH1.

Table 4 in Figure 2.3(D) shows the number of times each of the bins representing gain of

oncogenes or loss of tumor suppressor genes shows statistical significance for individual chi

square tests on each pair of DCIS and IDC trees. This table again shows bias towards loss of the

two tumor suppressor genes DBC2 and CDH1. Loss of DBC2 and CDH1 is part of a dominant

imbalance clone reported in [83] where it is inferred that cells with this imbalance clone have a

growth advantage in DCIS and IDC. Our analysis supports this argument.

We next calculated gain/loss statistics based on raw cell count data and based on tree edges,

as we did with the CC data. We present the results in Figures 2.5(C) and 2.5(D) respectively.

The trends are qualitatively generally consistent between cell count and tree-based statistics.

With two exceptions, oncogenes are amplified and tumor suppressor genes lost in DCIS and IDC

by both measures. One exception is the tumor suppressor gene p53, which shows amplification

rather than the expected loss when analyzed by cell count statistics (Figure 2.5(C)) but not with

tree statistics (Figure 2.5(D)). The difference may reflect an occasional amplification of p53

concurrent with the rest of chromosome 17 due to aneuploidy. The other exception occurs with

respect to the oncogene ZNF217, which shows net gains by both statistics for DCIS, but loss

rather than gain in IDC for tree statistic. The discrepancy appears to be due to one case, in

which 90% of cells in IDC show ZNF217 deletion. This unusual case might be due to the loss of

chromosome 20 (on which ZNF217 resides) in the IDC stage of the tumor for that patient.

2.2.3 Use of tree statistics for classification

A key question in studying mathematical models of tumor progression is whether an understand-

ing of tumor evolutionary pathways will lead to improved prognostic or diagnostic capabilities.

We performed classification experiments on the CC dataset to understand how features derived
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from progression trees can help differentiate samples from different cancer stages. We used sup-

port vector machines (SVM), as implemented in MATLAB, with leave-one-out cross-validation

(LOOCV). The performance of each classifier was assessed by percentage of samples correctly

classified (Accuracy). We performed 500 rounds of bootstrapping and assessed mean Accuracy

as well as their standard deviations.

We performed experiments exploring the predictive power added by the three different types

of tree-derived features. The three classification experiments on the CC dataset are:

1. Distinguishing primary from metastatic samples using 16 paired primary and metastatic

samples,

2. Distinguishing primary from metastatic samples using 16 metastasizing and 15 non-metastasizing

primary tumor samples versus 16 metastatic samples, and

3. Distinguishing 16 primary samples that later metastasized from 15 primary samples that

did not metastasize.

Classification of Cervical Cancer Samples

Figure 2.7 reports performance of the two feature sets for the SVM classifier in terms of mean

accuracy, along with confidence interval of one standard deviation. Tree-based statistics lead

to improved classification accuracy in all experiments. The best accuracy on the three tasks is

achieved using the tree-based level-count features, at 81.91% accuracy for distinguishing pri-

mary tumors from their paired-metastasis samples, 82.26% for distinguishing all primary tu-

mors(metastasizing and non-metastasizing) from the metastasis samples, and 82.58% for distin-

guishing metastasizing versus non-metastasizing primary tumors. This result suggests that the

qualitative observation that primary trees appear broader and deeper than metastatic trees (Fig-

ure 2.1) captures a robust quantitative property of progression trees distinguishing primary from

metastatic samples. Among the non-tree based features, Simpson index shows the best classifica-

tion performance, yielding average accuracies of 76.94%, 78.12% and 61.08% on the same tasks.
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Figure 2.7: Accuracy of tree-based versus cell-based features in classification tasks using an
SVM classifier. Each chart shows accuracy of three tree-based and four cell-based feature set on
the three defined prediction tasks.

Average and maximum copy number counts show worse performance in all three classification

tasks.

To follow up on the observation that tree topology seems to be the most informative feature

type, we examined how this feature varies between primary and metastatic trees. Figure 2.8

shows the distribution of the aggregated cell counts across different levels of 31 primary stage

and 16 metastatic stage tumor progression trees. In the primary stage tumors, around 70% of the

cells are distributed in the first 6 tree levels and the cell count decreases gradually when level

of the tree is increased. In contrast, for the progression trees of metastatic stage tumors, the

total cell count shows an exponential decrease with more than half (53%) of the cells located

in the first two tree levels. This topological difference could reflect the fact that in the primary

stage tumors, the clones have more time to continue diversifying. An alternative hypothesis is

that the difference reflects stronger purifying selection for clones that must evolve to be able to

migrate to and survive outside their native microenvironment. The BC study was designed to
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Figure 2.8: Distribution of cells across different levels of tumor progression trees, counted for
primary and metastatic trees separately.

include only patients in whom the diagnosis of IDC and DCIS was concurrent [83], which has

the effect of making the time of evolution for each sample in a pair comparable, consistent with

the hypothesis of increased purifying selection in IDC. The data here, however, are insufficient

to reject either hypothesis.

Informative feature selection

Figure 2.9: (A) Classification performance for particular subsets of features that show best
prediction accuracy among all possible subsets on CC and BC datasets. (B) Sets of gene probes
that show best classification accuracy.
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We applied feature selection to identify the most informative features. We exhaustively enu-

merated subsets of features and tested the cross-validated predictive accuracy of each. Figure 2.9

shows, for each classification experiment and feature type, the optimal SVM prediction accu-

racy over all subsets. For the most challenging task, distinguishing metastasizing from non-

metastasizing samples based on the primary sample, accuracy peaks at 72% for Bin Counts,

87.1% for Edge Counts and 77.4% for Tree Level topological features. Interestingly, the best

performance over all tests at identifying metastasizing tumors (87.1% accuracy) comes from the

Edge Count features, despite poorer performance of Edge Count in most tasks. Among the Bin

Count features, LAMP3 was an informative feature in all three tasks reinforcing our statistical

result that LAMP3 is an important gene in CC progression.

In previous work on the same classification task, Wangsa et al. [183] reported sensitivity and

specificity of 0.75 and 0.87 respectively, with composite FISH markers using percentages of cells

with amplified signals for each individual marker, on the CC dataset, but this was done without

LOOCV [183]. The optimal feature set identified here improved substantially on the robustness

and sensitivity of that result while keeping equal specificity.

We performed similar classification experiments for informative feature selection on the BC

data to distinguish DCIS from IDC samples. When we used all the features for classifying

the DCIS samples from IDC, Bin Count and Edge Count measures showed 50% accuracy and

Tree Level topological features showed 57% accuracy. Figure 2.9(A) shows that feature selection

improved accuracy to 80.7% for both Bin Count and Tree Level feature subsets. The poor perfor-

mance while using all features might be due to the high intra- or inter-tumor heterogeneity [83].

When we selected the most informative subsets, the feature sets for BC DCIS versus IDC

samples classification (Figure 2.9(B)) differed depending on whether the Bin Count or the Edge

Count measure was considered, although both agreed on the selection of MYC. MYC was reported

in [83] to be a prognostic marker in the progression of DCIS to IDC. Deletion of CDH1 was also

reported in [83], and was selected here in the Edge Count case.
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2.2.4 Simulation Results

Figure 2.10: Comparison of simulated and inferred Steiner tree weights for fifty simulated trees.
For each tree, the total number of terminals, real tree weight and inferred Steiner tree weight are
shown.

Figure 2.11: Percentage accuracy of the set of bipartitions for each inferred Steiner tree with
respect to the bipartitions in the corresponding simulated tree.

Because we cannot know the ground truth for real data with certainty, we used simulated

trees to test accuracy of tree inferences. A comparison of the 50 trees is shown Figure 2.10. For

each case, Figure 2.10 shows the total number of terminals and the weights of the simulated and

inferred tree. We can see from the comparison that the weight of the inferred tree is generally
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close to that of the simulated tree but never exceeds it. This observation would suggest that the

heuristic is effective in finding parsimonious trees but that the parsimony model leads to a small

bias towards underestimating true tree cost.

We show the percentage matching accuracy for each of the 50 test in Figure 2.11. The

high accuracy for all the cases indicates that the simulated and inferred trees are topologically

similar. The mean and standard deviation of the percentage matching accuracies across all fifty

examples are 92% and 2.13% respectively. In order to statistically quantify the accuracies, for

each simulation case, we generated 100 random trees by randomly picking edges among the

nodes in the terminal set and repeated the analysis procedure above to calculate the percentage

matching accuracy. We then calculated the p values for the inferred tree matching accuracy by

scoring it on the distribution generated by the random trees. For 80% of the cases, the p value is

statistically significant. Some of the discrepancies might result from the fact that our algorithm

does not generate any Steiner node with degree 2, as these Steiner nodes do not decrease the

weights of the maximum parsimony progression trees.

2.3 Conclusions

We developed exact and heuristic algorithms for building tumor progression trees using copy

number information and applied our methods to two different types of cancer. To reduce the

complexity of the exact algorithm, we further developed an inequality that can prune up to 99%

of the solution space, resulting in substantial reduction in the runtime of the algorithm. The

heuristic approach returns potentially sub-optimal solutions in reasonable time for datasets with

large numbers of probes. These algorithms have been implemented in a publicly available C++

software package, FISHtrees. Copy number changes can evolve using additional basic operations

such as changing the entire ploidy by 1 or doubling and FISHtrees includes an implementation

of another method that allows these “operations” [134]. Analyses of statistics developed using

different features of the tumor progression trees identify some important recurring markers of
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tumor progression and highlight the different selective pressures at work on different stages of

the tumor. Use of tree statistics as features for classification further illustrates the importance

of models of the evolutionary process to predicting future progression, a problem of importance

to cancer treatment and diagnosis. Further improvements in tree algorithms, analysis of even

larger and more complex data sets, and investigation of the resulting trees can be expected to

yield further insight into both recurring features of tumor evolution and the ways in which these

features vary patient-by-patient.
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Chapter 3

Algorithms to Model Single Gene, Single

Chromosome, and Whole Genome Copy

Number Changes Jointly in Tumor

Phylogenetics1

In this chapter, we develop new methods to advance the theory of phylogenetic inference for

reconstructing evolutionary histories of cell populations in solid tumors. The work is specifically

designed for use in tracking tumor evolution by gain and loss of genomic regions as assessed

by multicolor fluorescence in situ hybridization (FISH), which measures the copy numbers of

targeted genes and chromosomes in potentially hundreds of individual cells of a tumor. This

technology was the basis of the earliest methods for phylogenetic reconstruction of single tu-

mors [132, 134]. FISH remains uniquely valuable for such studies because the large number

of cells that FISH can profile makes it possible to collect data on enough tumors in enough de-

1This chapter was developed from material published in “Chowdhury et al., Algorithms to model single gene,

single chromosome, and whole genome copy number changes jointly in tumor phylogenetics, PLoS Computational

Biology, 10.7 (2014): e1003740” [35].

51



tail to build cell-by-cell phylogenies for populations of tumors and begin to study the common

features of these phylogenies. In the present chapter, we specifically extend our previously de-

veloped inference algorithms in Chapter 2 to encompass a more complicated but realistic model

of evolution of FISH probe counts, accounting for gain and loss of genetic material at the level of

single gene probes, multiple probes on a single chromosome, or a probe set distributed across the

whole genome. We demonstrate the value of these algorithmic improvements to more accurate

phylogenetic inference and improved effectiveness of the resulting phylogenies in downstream

prediction tasks.

The present chapter adds to the growing list of phylogenetic methods in cancer modeling,

which were reviewed through 2008 in [8]. These include methods for analyzing comparative

genomic hybridization (CGH) or other genetic gain/loss data in a single tumor type [12, 13, 21,

22, 42, 43, 111, 164], for defining the cell type lineage of single tumors [55, 132, 134, 150], for

organizing a taxonomy of tumor types [103], for reconstructing a partial order of genetic changes

in multiple samples from one patient [100], and for reconstructing progression from cell types

inferred from bulk genomic assays [161]. Recent high-throughput sequencing studies have also

used ad hoc phylogenetic methods to infer putative tumor progression scenarios, e.g., [30, 87,

124, 169]. Like many of these methods, the present chapter is aimed at building tree models that

provide a proposed partial order on the observed cell states, a strategy motivated originally by

the work of Fearon and Vogelstein, proposing a linear order for four types of events in colorectal

cancer and associating each event with a tumor stage [50]. Other ordering methods have been

proposed, mostly for CGH or breakpoint data [16, 63, 70, 86, 100, 120, 127, 147] and, more

recently, sequencing data [67, 138].

The present chapter specifically advances the reconstruction of phylogenetic histories of sin-

gle tumors from intratumor cellular heterogeneity data. The use of phylogenetic methods to

reconstruct histories of single tumors was first developed in [132, 134] by taking advantage of

the ability of FISH to profile genetic changes in large numbers of single cells, allowing one to

survey hundreds of cells per tumor in populations of tens of tumors [92]. This early work showed
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that even small numbers of markers could reveal numerous genetically distinct cell populations

in single tumors, which could be resolved by phylogenetic inference to reveal multiple distinct

pathways of progression between tumors and even within single tumors. Numerous studies since

then, using multicolor FISH [83, 84, 92, 109, 134, 153, 165] and, more recently, single-cell

sequencing [62, 117, 169, 189] have greatly increased our ability to identify distinct cell popu-

lations and, in the process, revealed far more extensive intratumor heterogeneity than had been

suspected prior to 2010 (reviewed in [110]). The repeated observation of intratumor hetero-

geneity has necessitated a reconsideration of Nowell’s [126] theory that tumors evolve clonally,

showing that a tumor may contain many subpopulations relevant to the clinical prognosis of the

patient [45] and that rare subpopulations may be more relevant to prognosis than the most com-

mon ones [176]. Furthermore, a simulation study has suggested that methods based on average

copy number data perform poorly when there is substantial intratumor heterogeneity [158]. Such

findings suggest a need for improved methods for organizing the dozens or hundreds of observed

cell states in single tumors to infer the evolutionary processes that produced them.

Despite extensive work on tumor phylogenetics, however, the study of algorithms for recon-

structing tumor evolution from large numbers of single cells has lagged far behind advances in

data generation. The standard in practice for single-cell tumor phylogenetics remains the use

of simple generic phylogeny algorithms (e.g., neighbor-joining [141]) that are not designed to

model the patterns of copy number changes one would expect from evolution by chromosome

abnormalities that largely drive tumor evolution. Until recently, algorithms designed specifi-

cally for inferring phylogenies of single tumors from FISH data have been limited to just a few

probes per cell and lacked robust, publicly available software implementations [109, 132, 134].

In Chapter 2, we developed algorithms to find copy-number phylogenies for in principle arbitrary

numbers of probes and cells. That work, however, was itself limited to a simple model in which

tumor cells evolve by events of gain or loss of a single copy number of a single probe at each

mutation step. In real tumors, gene copy numbers can change due to a variety of mechanisms,

including:
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1. Single gene duplication/loss events (SD), in which one copy of a genetic region covered

by a single probe is gained or lost.

2. Chromosome duplication/loss events (CD), in which entire chromosomes are unequally

distributed among daughter cells during mitosis along with potentially several probes.

3. Whole genome duplication events (GD), in which a cell fails to divide during mitosis

leading to doubling of all genetic material and all probe counts.

These events are illustrated schematically in Figure 3.1. While more complex probabilistic

models of tumor evolution have been developed for inference of small phylogenies, with approx-

imately ten taxa per tumor corresponding to distinct biopsies (e.g., [157]), the class of inference

algorithms such models require would not be expected to scale to phylogenies of hundreds of

single cells per tumor such as those examined in the present work.

The work presented in this chapter seeks to fill this need for scalable phylogenetic algorithms

capable of fitting more realistic models of tumor-like evolution to data sets of hundreds of single

cells per tumor. We improve on our prior work for inferring tumor evolutionary models consid-

ering only SD events [34] to now include CD and GD events, which are also frequently observed

in tumor progression. We specifically focus on the problem of accurately inferring evolutionary

distances between distinct cells in terms of maximum parsimony combinations of SD, CD, and

GD events. The major contributions of this chapter are:

1. algorithms to compute minimum evolutionary distances D between pairs of cell states in

terms of SD and CD events and in terms of SD, CD, and GD events;

2. a heuristic Steiner tree method based on the median-joining method [10] and our prior

work on SD-only inference [34];

3. software implementation of the new methods to compute D and use of those methods to

construct tumor progression trees;

4. evaluation of the new methods on simulated data, which shows that they do better than the

SD-only approach at recovering simulated tree topologies;

54



Figure 3.1: Example showing the three mechanisms of copy number changes in a hypothetical
cell. A copy number profile of four genes is shown as an ordered set for homologous chro-
mosome pairs P1, P2 and P3, P4 respectively, where the gene located on the top position in the
chromosome precedes the gene located on the bottom position in the ordering. After the (A)
Single gene duplication event, the copy number of a gene located on P4 gets increased by 1.
After the (B) Single chromosome duplication event, the chromosome P4 gets duplicated and the
cell has one extra copy of that chromosome as chromosome P5. After the (C) Whole genome
duplication event, all the chromosomes are duplicated and the total number of chromosomes in
the daughter cell is twice the number of chromosomes in the mother cell.

5. application of the methods to published data on cervical cancer (CC, [183]) and breast

cancer (BC, [83]);

6. demonstration of improved ability to classify tumor types from phylogenetic features us-

ing a strategy in the spirit of the genomic progression scores (GPS) of Rahnenführer et

al. [139].
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The work addresses a critical need in modern cancer research for algorithms capable of in-

ferring evolutionary trajectories of hundreds of single cells per tumor under plausible models of

evolution including both gene-specific and chromosome abnormalities that are central drivers of

true tumor evolution.

3.1 Methods

Our main theoretical result is a method for inferring minimum distances between two states

within a copy number phylogeny when duplication/loss of single genes (SD), duplication/loss

of all genes on a common chromosome (CD), and duplication of all genes in the full genome

(GD) events are possible. We first establish some mathematical results and then develop an

algorithm for accurate distance computation. This algorithm then becomes a subroutine in a

heuristic Steiner tree algorithm for inferring copy number phylogenies in the presence of SD,

CD, and GD events.

We introduce some notation required for specifying and proving the theoretical results:

1. C(g1, g2, . . . , gd) : A set of copy numbers of one or more genes g1, g2 . . . , gd, which we call

a “configuration”. When g1, g2 . . . , gd are clear from the context, we use C as shorthand.

2. L1(C
i, Cj): L1 or rectilinear distance between two configurations Ci and Cj .

3. Ds,ch(Ci, Cj), Ds,g(Ci, Cj), Ds,ch,g(Ci, Cj): Distance between two configurations Ci and

Cj when considering SD+CD (s,ch), SD+GD (s,g), or SD+CD+GD (s,ch,g) events, re-

spectively.

4. Oc
g(C

i), Oc
l (C

i), Oc(Ci): Operations corresponding to single chromosome (CD) events

corresponding to either gain (g), loss (l), or either (no subscript) of all genes belonging to

the same chromosome c from starting configuration Ci, while keeping the copy numbers

of genes on other chromosomes unchanged.

5. Og(Ci), H(Ci): Operations corresponding to doubling (Og) or halving (H) counts of all

56



genes in configuration Ci. In the case of halving, it is assumed that all genes in Ci have

even counts.

6. even, odd configuration: A configuration (copy number profile) C(g1, g2, . . . , gd) is de-

noted an even configuration if ∀gi mod (gi, 2) = 0. Otherwise, it is denoted an odd

configuration.

7. GE(C(g1, g2, . . . , gd)): The set of “nearest even” values for each gi inC, i.e., ifC(g1, g2, . . . , gd) =

(x1, . . . , xd) then GE(C(g1, g2, . . . , gd)) = {(y1, . . . , yd)|((yi mod 2) = 0)∧ ((yi = xi)∨

(yi = xi±1)∨(yi = xi±2))}. For example,GE((7, 2)) = {(6, 2), (8, 2), (6, 0), (8, 0), (6, 4), (8, 4)}.

8. An operationF is valid on a configurationC(g1, g2, . . . , gd) if (x1, x2, . . . , xd) = F (C(g1, g2, . . . , gd))

satisfies LB ≤ xi ≤ UB for all i = 1, . . . , d given predefined lower-bound LB and upper-

bound UB. Otherwise, F is invalid on C. LB=0 and UB=9 is used in the software, but the

theory only requires that UB > LB.

9. A sequence of operations F1, . . . , Fk is boundary-sensitive on configurationC if (xj1, xj2, . . . , xjd) =

Fj(Fj−1(. . . F1(C(g1, g2, . . . , gd)))) satisfies LB ≤ xji ≤ UB for all i = 1, . . . , d and

j = 1, . . . , k. We use boundary-insensitive to refer to a sequence on which this condition

has not been checked.

3.1.1 Progression model considering SD and CD events

We develop the theory for inference of the Steiner (unsampled or extinct cell configurations)

nodes in the paths formed by the sequence of gene copy number gains and losses from an ini-

tial configuration Cs(g1, g2, . . . , gd) to a final configuration Ct(g1, g2, . . . , gd). We first extend

the prior theory to account for SD and CD events. Our model assumes that on division of a

tumor cell, the configuration can change either by gain or loss of one copy of a single gene (SD

event) or by gain or loss of one copy of each gene on a single chromosome (CD event). For

example, a configuration of four genes (2, 2, 2, 2) with the first two genes on the same chromo-

some might evolve in a single mutational event to (3, 2, 2, 2) by an SD event or to (3, 3, 2, 2)
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by a CD event. We propose Algorithm 3, to calculate the minimum number of steps required

to transform Cs(gi, gi+1, . . . , gj) into Ct(gi, gi+1, . . . , gj) considering SD and CD events, where,

without loss of generality, we assume that the genes on a common chromosome have consecutive

indices (gi, gi+1, . . . , gj) in C. Algorithm 3 also identifies a minimum-length sequence of events,

although this sequence is not necessarily unique. For example, if there are four genes on one

chromosome and we want to get from configuration (1, 1, 1, 1) to configuration (2, 4, 3, 2), then

a shortest sequence of SD and CD events would be CD to (2, 2, 2, 2), SD to (2, 3, 2, 2), SD to

(2, 4, 2, 2), and SD to (2, 4, 3, 2). Other orders of the same four events are also possible.

The above example focuses on a single chromosome because as explained below, the problem

of finding the shortest SD+CD path can be solved one chromosome at a time. We begin by

establishing the following lemmas:

Lemma 5. A minimum-length boundary-insensitive sequence of CD and SD events cannot have

both a gain of chromosome ci and a loss of the same chromosome ci.

Proof. By contradiction. Suppose S is a sequence of events that has both a gain and a loss of

the same chromosome. Then removing one gain and one loss produces a new sequence that is 2

shorter and has the same final state.

Lemma 6. For any gene gi, a minimum-length boundary-insensitive sequence of events cannot

have both a gain of gi and a loss of gi.

Proof. By contradiction. Suppose S is a sequence of events that has both a gain of G and a loss

of G. Then removing one gain and one loss produces a new sequence that is 2 shorter and has

the same final state.

Lemma 7. The following sequence of events describes a minimum-length boundary-insensitive

sequence of SD and CD events for transforming Cs(gi, gi+1, . . . , gj) into Ct(gi, gi+1, . . . , gj):

1. Perform CD events in arbitrary order starting from Cs so that each successive event de-

creases the L1 distance between the intermediate configurations Cint(gi, gi+1, . . . , gj) and

58



Ct(gi, gi+1, . . . , gj) until any further CD event will increase the L1 distance. We define the

final configuration reached after this step to be Cf (gi, gi+1, . . . , gj).

2. Perform SD events in abitrary order starting at Cf (gi, gi+1, . . . , gj) so that the L1 dis-

tance between Cint(gi, gi+1, . . . , gj) and Ct(gi, gi+1, . . . , gj) decreases on each step until

the distance becomes zero. The total number of events required will be L1(C
f , Ct).

Proof. Since the sequence of events is boundary-insensitive and addition is commutative, we

can change the order of events without changing the endpoints or the cost. Therefore, we assume

that all CD events precede all SD events. The construction of the above sequence of the events

ensures that it uses a maximum number of possible CD events. If we denote the number of genes

on the common chromosome by k and the number of CD events by c, then the total number of

events required is L1(C
s, Ct)− (k−1)c. If there exists a shorter sequence of events to transform

Cs to Ct, then that sequence must have a larger number c of CD events, which is contradicted by

the construction. Thus, the number of events is minimized.

The above lemmas show how to construct a minimum-length boundary-insensitive sequence

of events. We now establish that this sequence can be used to derive a minimum-length boundary-

sensitive sequence of events:

Lemma 8. For any boundary-insensitive minimum-length sequence of SD and CD events S

transforming Cs to Ct, there exists a boundary-sensitive sequence of SD and CD events S ′ such

that S and S ′ have equal length.

Proof. We analyze one chromosome at a time because in this section the events on different

chromosomes are independent. By Lemma 5, on any specific chromosome all the CD events are

gains or all the CD events are losses. We analyze in detail the case in which all CD events are

losses; the case of all gains is symmetric.

The proof is constructive. Specifically, we will show that the upper part of Algorithm 3 will

transform a boundary-insensitive S to a boundary-sensitive S ′ of equal cost solely by reordering

59



events. Without loss of generality, suppose the only CD events in S are chromosome losses.

There is a symmetric algorithm, shown as the lower part of Algorithm 3, for the case where all

the chromosome events are gains. We add the following definition:

A gene G is defined as unidirectional with respect to S if there are no gains of G in S. A

gene G is defined as bidirectional with respect to S if S includes gains of G. For unidirectional

genes, the order of chromosome losses and gene losses can never cause a boundary to be crossed

because the copy numbers are monotonically decreasing. The situations we need to avoid are:

1. A bidirectional gene G has copy number UB and the next operation affecting G is a gain

of G.

2. A bidirectional gene G has copy number LB and the next operation affecting G is a chro-

mosome loss.

Chromosome gains are excluded by Lemma 5 and our assumption without loss of generality that

all CD events are losses. Gene losses for bidirectional genes are exluded by Lemma 6.

To prove correctness of the algorithm, we note that S ′ can never cross LB for the unidi-

rectional genes because their net loss equals their total loss. S ′ can never cross LB for the

bidirectional genes, because when their copy number is at LB, a gene gain must still be pending

and the gene gains alternate in the first while loop until no chromosome losses or gene gains are

remaining. S ′ can never cross UB for the unidirectional genes because they have only losses. S ′

can never cross UB for the bidirectional genes because of the test N gi < UB (line 8) before any

gene gain is done. Further, all the chromosome losses will be used because one chromosome loss

happens on each pass through the first while loop, if any chromosome losses remain. All gene

gains in S will be used in the first while loop because the net change for any gene must keep its

copy number below UB. All the gene losses for the unidirectional genes are used in the second

while loop. The unordered set of events and total change in each gene is thus preserved between

S ′ and S, while S ′ guarantees that the sequence is boundary-sensitive.

We use the preceding result to derive the main theorem of this section, which estabishes a
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Algorithm 3 Converts a set of boundary-insensitive events to boundary-sensitive events; lines
3-17 are used for chromosomes on which all CD events are losses and lines 18-32 are used for
chromosomes on which all CD events are gains
Require: S ← Boundary-insensitive list of events treated here as a multi-set and processed one

chromosome at a time.
Ensure: S ′ ← Boundary-sensitive list of events that when viewed as a multi-set is identical to

S.
1: Gain(gi)← Single gene gain event on gene gi.
2: Loss(gi)← Single gene loss event on gene gi.
3: CL ← Number of chromosome loss events in S not yet done. . beginning of the part

assuming all CD events are losses
4: CLoss← Chromosome loss event.
5: N gi ← Copy number of gene gi.
6: ∀ bidirectional genes gi, Ggi ← Number of gene gains of gi in S not yet done.
7: while ((CL > 0)||(∃ bidirectional gene gi : Ggi > 0)) do
8: for (gi : Ggi > 0 & N gi < UB) do
9: S ′ ← S ′ ++Gain(gi) . ++ denotes the concatenation operator

10: Ggi ← Ggi − 1

11: if CL > 1 then
12: S ′ ← S ′ ++CLoss
13: CL ← CL − 1

14: ∀ unidirectional genes gi, Lgi ← Number of gene losses of gi remaining.
15: while (∃ unidirectional genes gi : Lgi > 0) do
16: S ′ ← S ′ ++Loss(gi)
17: Lgi ← Lgi − 1 . end of the part assuming all CD events are losses
18: CG ← Number of chromosome gain events in S not yet done. . beginning of the part

assuming all CD events are gains
19: CGain← Chromosome gain event.
20: N gi ← Copy number of gene gi.
21: ∀ bidirectional genes gi, Lgi ← Number of gene losses of gi in S not yet done.
22: while ((CG > 0)||(∃ bidirectional gene gi : Lgi > 0)) do
23: for (gi : Lgi > 0 & N gi > LB) do
24: S ′ ← S ′ ++Loss(gi)
25: Lgi ← Lgi − 1

26: if CG > 1 then
27: S ′ ← S ′ ++CGain
28: CG ← CG − 1

29: ∀ unidirectional genes gi, Ggi ← Number of gene gains of gi remaining.
30: while (∃ unidirectional genes gi : Ggi > 0) do
31: S ′ ← S ′ ++Gain(gi)
32: Ggi ← Ggi − 1 . end of the part assuming all CD events are gains
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method to find a minimum-length sequence of SD and CD events transforming Cs to Ct. As

in the proof of Lemma 8, we can consider each chromosome separately since each SD and CD

event affects only one chromosome.

Theorem 9. Assume we partition the gene list by chromosomes such that each chromosome

ci ∈ {c1, . . . , cq} corresponds to a consecutive subset of genes gi,1, . . . , gi,di . Further define

Cs(g1, g2, . . . , gd) = (s1, . . . , sd) and Ct(g1, g2, . . . , gd) = (t1, . . . , td). Then we can con-

struct a minimum-length boundary-sensitive sequence of events transforming Cs(g1, g2, . . . , gd)

to Ct(g1, g2, . . . , gd) by constructing a minimum-length boundary-sensitive sequence of events

Si transforming (s1, . . . , si,1, . . . , si,di , . . . , sd) to

(s1, . . . , ti,1, . . . , ti,di , . . . , sd) for each chromosome ci and interleaving each Si in arbitrary or-

der.

Proof. The distance function can be decomposed into individual parts for genes belonging to

distinct chromosomes as follows:

Ds,ch(Cs, Ct) =
∑q

i=1D
s,ch(Cs(si,1, . . . , si,di), C

t(si,1, . . . , si,di))

Because the distance cost can be decomposed in this way and each CD or SD event con-

tributes to only a single term of the outer sum, we can minimize the cost of events for each

chromosome independently and combine the events from distinct chromosomes in arbitrary or-

der without changing the value of the objective function. Likewise, since these each chromosome

affects a disjoint subset of genes, boundary-sensitive sequences for each chromosome will yield

a boundary-sensitive sequence across all genes.

3.1.2 Progression model combining SD, CD and GD events

We now extend the theory from the prior section to include SD, CD, and GD events. We assume

in the proofs and discussion below that Cs ≺ Ct, where ≺ denotes lexicographical ordering.

This assumption reduces the number of cases in several proofs. If instead, Ct ≺ Cs, the proofs
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are identical or symmetric except that GD events may be used in the wrong direction (halving

instead of doubling). The use of halving events is corrected heuristically by a procedure of

subtree pruning and regrafting at line 24 of the pseudocode of Algorithm 6, described below, and

in FISHtrees. We will produce the complete proof by deriving a series of lemmas for three cases

that together will cover all possible Cs and Ct:

Lemma 10. For an an even configuration Ct, if there exists an optimal sequence of copy number

change events from Cs to Ct composed of one or more SD and CD events and a single GD event,

then the following sequence of events is of minimum length:

1. SD and CD events to transform Cs intoH(Ct), constructed as described in the first named

subsection of Methods

2. A single GD event to transform H(Ct) into Ct.

Proof. We prove the statement by considering the three different ways that can be used to trans-

form Cs to Ct using single GD and multiple SD and CD events. The statement of the lemma

presents one case and the remaining two possibilities are as follows:

1. A single GD event to transform Cs into Og(Cs) and then multiple SD and CD events to

transform Og(Cs) into Ct.

2. Multiple SD and CD events to transform Cs to an intermediate configuration Ci, a single

GD event to transform Ci into Cj , and multiple SD and CD events to transform Cj into

Ct.

We show that for either of these alternative cases, we can produce a sequence satisfying the

conditions of the lemma with equal or smaller length. For the first case, we have to show that

Ds,ch(Cs, H(Ct)) < Ds,ch(Ct, Og(Cs))

It can be seen that

L1(C
s, H(Ct)) = 1

2
L1(C

t, Og(Cs))
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If all genes are located on distinct chromosomes, then,

Ds,ch(Cs, H(Ct)) = 1
2
Ds,ch(Ct, Og(Cs))

and the claim follows directly.

Now, assume the genes are partitioned into sets of chromosomes such that each chromosome

ci ∈ {c1, . . . , cq} corresponds to a consecutive subset of genes gi,1, . . . , gi,di . We focus on a

specific chromosome ci and consider the problem of updating just genes of that chromosome

from their values in Og(Cs) to their values in Ct. Either zero or a positive even number of CD

events must be performed to convert these genes from Og(Cs)) to Ct and along with zero or a

positive even number of SD operations on each gene. If an odd number of CD operations are

performed on Og(Cs)), then we get an odd configuration and at least one or an odd number of

SD operations must be performed on each gene of this odd configuration to convert it to the even

configuration Ct. But a combination of single SD operations acting on each of the individual

genes in gi,1, . . . , gi,di has the same effect as a single CD operation on chromosome ci and this

combination therefore cannot be minimal. Therefore, the number of CD operations is even. If a

total of m CD operations and n SD operations are needed to convert Ci to Cj , then a total of 1
2
m

CD operations and 1
2
n SD operations are needed to convert 1

2
Ci to 1

2
Cj . So,

Ds,ch(Cs, H(Ct)) < Ds,ch(Ct, Og(Cs))

For alternative 2, we can write the distance function as:

Ds,ch,g
1 (Cs, Ct) = Ds,ch(Cs, Ci) + 1 +Ds,ch(Og(Ci), Ct)

The distance function for our proposed optimal sequence can be written as:

Ds,ch,g
2 (Cs, Ct) = Ds,ch(Cs, Ci) +Ds,ch(Ci, H(Ct)) + 1

As shown for alternative 1, we can write:

Ds,ch(Og(Ci), Ct) > Ds,ch(Ci, H(Ct))

which implies Ds,ch,g
1 (Cs, Ct) > Ds,ch,g

2 (Cs, Ct).
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Lemma 11. For an odd configuration Ct, if the optimal sequence of copy number change events

from Cs to Ct is composed of one or more SD and CD events, followed by a single GD event,

followed by one or more SD and CD events, then the configuration from which the final set of SD

and CD events take place is a member of GE(Ct).

Proof. We denote the intermediate configuration following the GD event to be Cint. We will

show by contradiction that if there exists any optimal sequence of events for which Cint /∈

GE(Ct) then there must exist an alternative, shorter sequence of events. Define the full sequence

of events from Cs to Ct to be ~p, subdivided into the subsequences ~p1, {GD}, ~p2. First, we note

that if there is any duplicated event in ~p2 then we can construct a more parsimonious solution by

replacing the duplicate in ~p2 with a single copy of the event in ~p1. Therefore, no event appears

more than once in ~p2. There are exactly two SD and CD events that can increase the count of

any given probe (SD of that probe or CD of its chromosome) and similarly exactly two events

that can decrease the count of any probe. Thus, no probe’s value changes by more than ±2 in

the transition from Cint to Ct in ~p2. Finally, we note that since Cint immediately follows a GD

event, it must be an even configuration. Together, these assertions establish that Cint ∈ GE(Ct)

for any optimal path ~p.

Lemma 12. For an odd configuration Ct, if the optimal sequence of copy number change events

from Cs to Ct is composed of one or more SD and CD events and a single GD event, then the

optimum sequence of events follows the following path:

1. Generate Cint = GE(Ct).

2. SD and CD events to transform Cs into H(Cint).

3. A single GD event to transform H(Cint) into Cint.

4. SD and CD events to transform Cint into Ct.

The optimal sequence is an element of the set of sequences generated using this procedure.
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Proof. The proof follows from application of Lemma 10 and Lemma 11. As Ct is an odd con-

figuration, the final step cannot be a GD event. So, the last steps have to be a combination of

SD and/or CD events; in that case, Lemma 11 shows that the configuration reached as a result

of GD must be a member of GE(Ct), which we denote by Cint. Lemma 10 shows that to reach

any member of GE(Ct), which are even configurations, the optimal sequence of events is to

generate SD and CD events to transform Cs into H(Cint) first and then to perform a GD event

to transform H(Cint) into Cint. This sequence of events matches the sequence proposed in the

lemma.

The above lemmas allow us to derive Algorithm 4 to transform Cs to Ct using a minimum-

length combination of SD, CD and GD events. To illustrate the algorithm, suppose Cs = (3, 1)

and Ct = (7, 5), where we will assume we have two probes on a single chromosome. Since Ct is

an odd configuration, we first generate its nearest even neighborsGE(Ct) = ((6, 4), (6, 6), (8.4), (8, 6))

and calculate H(GE(Ct)) = ((3, 2), (3, 3), (4, 2), (4, 3)). The algorithm tests for two stopping

conditions by which a solution can be constructed (lines 22 and 24 in Algorithm 4), neither

of which applies to any of the solutions at this point. ((3, 2), (3, 3), (4, 2), (4, 3)) are therefore

considered for the next iteration. (3, 2), (3, 3), and (4, 3) are odd configurations, so we gen-

erate their neighbor sets GE((3, 2)) = {(2, 2), (4, 2), (2, 0), (4, 0), (2, 4), (4, 4)}, GE((3, 3)) =

{(2, 2), (4, 2), (2, 4), (4, 4)}, and GE((4, 3)) = {(2, 2), (2, 4), (4, 2), (4, 4), (6, 2), (6, 4)}. One

stopping condition is satisfied for each of the elements of these neighbor sets, so (3, 2),(3, 3),

and (4, 3) are each considered in turn as the next candidate neighbor. (4, 2) is an even configura-

tion, so we only need to consider one possible stopping condition (line 11), which it satisfies, so

it is also considered as a possible next candidate neighbor. Among the four possibilities, we will

conclude that using (3, 2) as the immediate neighbor will lead to the smallest possible number

of steps when accumulating SD+CD events from Cs to the candidate, a single GD event from

the candidate to its double, and SD+CD events from that double to Ct. Following some postpro-

cessing updates (procedure CHECKSRCNEIGHBOR), the algorithm computes a minimum-length
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solution of (3, 1) => (3, 2) => (6, 4) => (7, 5) and returns the corresponding length 3.

Algorithm 4 satisfies the following theorem, which constitutes the major result of this section:

Theorem 13. Algorithm 4 returns the minimum distance between two configurations Cs and Ct,

where Cs ≺ Ct.

Proof. We use induction on the minimum number of steps to get fromCs toCt, which we denote

by M(Cs, Ct).

Base Case: For the base case, we have M(Cs, Ct) = 1. We must consider two sub-cases:

(i) Ct = 2Cs and (ii) M(Cs, Ct) = 1. For case (i), Ct is an even configuration. The condi-

tion at line 11 in Algorithm 4 fails and 1
2
Ct = Cs is considered for the next iteration. In the

next iteration, if Cs is an even configuration then the condition at line 11 is now satisfied and

M(Cs, Ct) is assigned the value 1 in CHECKSRCNEIGHBOR procedure called at line 12 in the

main procedure. If Cs is an odd configuration, then the condition at line 22 is satisfied for each of

the even neighbors of Cs and M(Cs, Ct) is assigned the value 1 in the CHECKSRCNEIGHBOR

procedure called at line 23. For case (ii), one of the conditions at line 11 or line 22 is satisified in

the first iteration of the algorithm depending on whether Ct is an even or odd configuration and

M(Cs, Ct) is assigned the value Ds,ch(Cs;Ct) = 1 at line 12 or 23.

Induction Step: For the induction hypothesis, we assume that the the algorithm uses the

minimum number of steps for all cases where M(Cs, Ct) ≤ m. Then, suppose that an adversary

selects an example that has complexity M(Cs, Ct) = m+ 1. Let us assume that the penultimate

configuration in the optimal solution is Cint. If Ct is an even configuration, then it can be

reached from Cint by using (i) a GD event, (ii) an SD event, or (iii) a CD event. According to

the induction hypothesis, for each of these cases, Algorithm 4 uses the minimum number of m

steps to generate Cint from Cs. If there is at least one GD event in the optimal solution, then

Algorithm 4 first calculates Cint = 1
2
Ct. The induction hypothesis ensures that M(Cs, Ct) ≤ m

and thus, Algorithm 4 returns a solution with a maximum length of m + 1. If there is no GD

event in the optimal solution from Cs to Ct, then Algorithm 4 uses the procedure described in the
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Algorithm 4 Algorithm for finding the shortest directed distance between two configurations
using SD, CD, and GD events.

1: procedure MINIMUMDISTANCE(Cs, Ct) . Minimum distance between configurations Cs and Ct

Require: Cs, Ct

Ensure: Ds,ch,g(Cs, Ct), a minimum-distance sequence of events, is stored via the parent function
2: prev ← {Ct} . prev stores the configurations to be considered in the next iteration
3: dist(Cs)←∞ . dist(Ci) stores the optimal distance between Ci and Ct calculated so far
4: Ds,ch(Cs, Ct)← Length of the optimal path between Cs and Ct constructed using the procedure

defined by Theorem 9.
5: while true do
6: nextStates← ∅
7: for i← 1, |prev| do
8: prevConf ← prev(i)
9: if prevConf is an even configuration then

10: prevHalf ← 1
2(prevConf)

11: if Ds,ch(Cs, prevConf) ≤ (Ds,ch(Cs, prevHalf) + 1) then
12: CHECKSRCNEIGHBOR(Cs, prevConf, srcNeighbor, dist)
13: else
14: nextStates← nextStates ∪ prevHalf
15: dist(prevHalf)← dist(prevConf) + 1
16: parent(prevHalf)← prevConf

17: else
18: prevNeighborSet← GE(prevConf)
19: for j ← 1, |prevNeighborSet| do
20: prevNeighbor ← prevNeighborSet(j)
21: prevNeighborHalf ← 1

2(prevNeighbor)
22: if Ds,ch(Cs, prevConf) ≤ (Ds,ch(prevConf, prevNeighbor) +

Ds,ch(Cs, prevNeighborHalf) + 1) then
23: CHECKSRCNEIGHBOR(Cs, prevConf, srcNeighbor, dist)
24: else if Ds,ch(Cs, prevNeighbor) ≤ (Ds,ch(Cs, prevNeighborHalf) + 1) then
25: dist(prevNeighbor) ← dist(prevConf) +

Ds,ch(prevConf, prevNeighbor))
26: parent(prevNeighbor)← prevConf
27: CHECKSRCNEIGHBOR(Cs, prevNeighbor, srcNeighbor, dist)
28: else
29: nextStates← nextStates ∪ prevNeighbor
30: parent(prevNeighbor)← prevConf
31: dist(prevNeighbor) ← dist(prevConf) +

Ds,ch(prevNeighbor, prevConf)
32: nextStates← nextStates ∪ prevNeighborHalf
33: parent(prevNeighborHalf)← prevNeighbor
34: dist(prevNeighborHalf)← dist(prevNeighbor) + 1

35: if nextStates == ∅ then
36: break

37: prev ← nextStates

38: returnDs,ch,g(Cs, Ct)← dist(Cs)
39: end procedure
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Algorithm Algorithm for finding the shortest directed distance between two configurations us-
ing SD, CD, and GD events (continued)
40: procedure CHECKSRCNEIGHBOR(Cs, prevConf, srcNeighbor, dist) . Checks if

prevConf can become the new candidate neighbor of Cs

41: testDistance← dist(prevConf) +Ds,ch(Cs, prevConf)
42: if dist(Cs) > testDistance then
43: srcNeighbor ← prevConf
44: dist(Cs)← testDistance

45: end procedure

first named subsection of Methods to calculate the optimal path from Cint to Ct and combining

it with the optimal solution from Cs to Cint, it returns the optimal path between Cs and Ct. Now,

if Ct is an odd configuration, then going from the penultimate configuration Cint to Ct can only

be achieved using either an SD or a CD event. For odd Ct, Algorithm 4 first generates its even

neighbors CN which are steps ≥ 1 from Ct. If Cint ∈ CN , the proof follows directly from the

inductive hypothesis. If Cint 6∈ CN , then there is a Cn ∈ CN such that Cint is located on the

optimal path between Cn and Ct formed using SD and CD events only. If k is the total number of

genes with odd copy number values in Ct, then Ds,ch(Cn, Ct) = k and Ds,ch(Cn, Cint) = k− 1.

Using the induction hypothesis, we can write,

M(Cs, Cn) ≤ m− k + 1

As Algorithm 4 uses the procedure described in the first named subsection of Methods to

construct the optimal path betweenCn andCt, we can see that it returns a path withM(Cs, Ct) ≤

m+ 1.

3.1.3 Runtime analysis of Algorithm 4

We provide an upper bound on the runtime of Algorithm 4 as a function of the number of genes d

and their copy numbers. Considering all three events, where Cs ≺ Ct, the maximum number of

doublings required is
⌈
log2 (C

t(gi)
Cs(gi)

)
⌉

, where gi denotes the copy number of the first gene where

Cs(gi) < Ct(gi) and Cs(gi) > 0. At each stage of the algorithm, the maximum number of
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nodes generated as a result of a GE operation is 3d. d SD and CD events are used to create each

of those 3d nodes in the case of an odd configuration. So, the maximum number of required

L1 operations is
⌈
log2 (C

t(gi)
Cs(gi)

)
⌉
d3d. Therefore, the number of operations performed during the

execution of Algorithm 4 is O
(⌈

log2 (C
t(gi)

Cs(gi)
)
⌉
d3d
)

.

3.1.4 Generating tumor phylogenies

We implemented Algorithm 4 and integrated it with our approximate median-joining-based algo-

rithm from our prior SD-only FISHtrees [34] code. The key steps of this algorithm are summa-

rized in Algorithm 6, which we describe at a high level here. The phylogeny algorithm first relies

on Algorithm 4 to derive a matrix of pairwise distances between observed cell configurations,

which are treated as states on a truncated integer lattice of dimension d with a maximum value

(UB) set to 9 in the current code. It then repeatedly samples triplets of nodes, identifying as

potential Steiner nodes those that agree in each dimension with at least one of the triplet. Those

Steiner nodes that lead to reduced minimum spanning tree cost are added to the node set, with

the process is repeated until there is no further improvement. Finally a series of post-processing

steps are performed to prune Steiner nodes that are not needed for the final tree and to apply

subtree regrafting to correct for a potential source of suboptimality arising from the fact that the

core phylogeny algorithm assumes symmetric distances but GD operations are asymmetric.

3.1.5 Inferring tumor Phylogenies using Neighbor Joining (NJ) and Max-

imum Parsimony (MP) methods

Neighbor Joining (NJ) and Maximum Parsimony (MP) methods have been commonly used for

building single-tumor phylogenies [118, 161] and we therefore compared their accuracy to that

of our own methods in inferring copy number phylogenies. We applied these two traditional

phylogenetic tree building methods to build tumor progression trees using the individual copy

number profiles as taxa and compared them with the trees built using our algorithms. We used
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Algorithm 6 Main steps in the algorithm to generate tumor progression trees; gener-
ate distance matrix uses Algorithm 4 on each distinct pair of nodes in the set of nodes it is
passed. To compute Minimum Spanning Tree (mst), we implemented Prim’s algorithm.

1: observed nodes are parsed from the input
2: steiner nodes← ∅
3: matrix1 ← generate distance matrix(observed nodes)
4: min weight = mst(observed nodes,matrix1)
5: while (min weight is improved) do
6: initialize the median Steiner network msn on node set {observed nodes ∪
steiner nodes} to have all singleton nodes and no edges

7: for all possible edges e in increasing order of distance do
8: if adding e would connect two distinct components in msn then
9: Add e to msn

10: Update components of msn
11: for all triplets of nodes u, v, w in msn do
12: Find the truncated integer lattice spanned by vertices u, v, w in d-dimensional space
13: for all lattice points s in the hyper-rectangle do
14: if s is not an observed state then
15: matrix2 = generate distance matrix(observed nodes∪ steiner nodes∪
{s})

16: new weight = mst(observed nodes ∪ steiner nodes ∪ {s},matrix2)
17: if (new weight < min weight) then
18: min weight← new weight
19: Store the new tree as the current best tree
20: steiner nodes← steiner nodes ∪ {s}
21: Record that the min weight has improved
22: Prune unnecessary Steiner nodes (having degree ≤ 2 in the final tree)
23: Root the minimum spanning tree at (2, 2, . . . , 2)
24: Perform subtree pruning and regrafting step to remove edges along which GD events are

inferred from the tail node configuration to the head node configuration
25: Display the tree
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implementations of both approaches in MEGA version 6 [167]. For NJ, we used both Euclidean

and Rectilinear distances between cell copy number profiles to build the pairwise distance matrix.

For MP, we treated copy number profiles of the genes in individual cells as sequences of arbitrary

phylogenetic characters. We used the “Close-Neighbor-Interchange on Random Trees” search

method. For the parameters “Number of Initial Trees” and “MP search level”, we used values of

10 and 1 respectively.

3.2 Results

As in Chapter 2, we used data collected from cervical cancer (CC) [183] and breast cancer

(BC) [83] patients to evaluate our methods. Figure 3.2(A) shows a tumor progression tree in-

ferred from one of the cervical cancer samples. For comparison, Figure 3.2(B) shows a progres-

sion tree inferred on the same sample using our prior SD model [34]. Visual inspection shows

that large regions of the two trees are identical but that allowing CD and GD events leads to

some rearrangement and a reduction in tree depth and overall size. Next we evaluate the changes

induced by adding SD, CD and GD events, using simulated data to show effectiveness of the

methods in finding more parsimonious solutions to the broader model and using the real CC

and BC data to show the biological relevance of the improvements. We further show that our

algorithms infer trees with higher accuracy than the prevailing alternative algorithms for single-

tumor phylogenetic inference. Finally, we perform statistical experiments to evaluate the effects

of tumor sample size on the performance of our tree building algorithm.

3.2.1 Simulation experiments

To measure accuracy of the methods for FISH datasets with a known ground truth, we generated a

dataset of 100 trees with six probes, two of which were treated as being on the same chromosome.

Each tree was generated by starting from a diploid root node and executing a branching process
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Figure 3.2: Phylogenetic trees showing tumor progression in a cervical cancer patient. Trees are
built considering (A) all of SD, CD and GD and (B) only SD model of tumor evolution. Each
node represents a configuration of the four gene probes LAMP3, PROX1, PRKAA1 and CCND1.
Nodes with solid and dotted borders represent cells present in the collected sample and inferred
Steiner nodes respectively. Green and red edges model gene gain and gene loss, respectively.
The weight value on each edge connecting two nodes x and y is the distance between the states
of x and y, computed using the particular model of tumor progression under consideration. The
weight on each node describes the fraction of cells in the sample with the particular copy number
profile modeled by that node; Steiner nodes are assigned weight 0.

in which each node was recursively assigned a number of children drawn from a geometrically

distributed random variable with mean 0.50. Each child was distinguished from its parent by
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selecting an SD, CD, or GD event with probability 0.1167 for each of the six possible SD events,

0.18 of a CD event, and 0.12 of a GD event. This process terminated when all leaf nodes had been

assigned zero children by the sampling. We then generated simulated FISH data for each tree by

uniformly sampling 300 cells from the nodes in this topology. The simulated data corresponds

to counts of probes for each sampled cell in the tree. We applied Algorithm 6 (see Methods) to

find a minimum-cost tree for each of four event models: (i) SD only, (ii) SD and CD, (iii) SD

and GD, and (iv) SD, CD and GD.

We quantified the accuracy of tree inference by comparing each simulated true tree to its

corresponding inferred tree derived from the sampled cells. This assessment was performed at

the level of accuracy of tree edges by the following procedure:

1. We pruned the real tree so as to remove any subtree for which no cell in the tree was sam-

pled. This step was intended to avoid penalizing for “impossible” inferences of subtrees

unsupported by any data.

2. We computed a maximum matching of edges between the real subtree and the inferred

tree, with each pair of edges weighted by the maximum number of nodes in agreement

between the corresponding parts of the bipartitions that the two edges define [34, 102]. We

used the Hungarian algorithm [97] for computing the maximum matching (applying the

function“Hungarian” by Alexander Melin from the Matlab Central File exchange).

3. We calculated a reconstruction error R of the inferred tree using the following formula

which is discussed in more detail in Chapter 6:

R =
(

1− W
|T |×(|Pr|+|Pi|)−W

)
× 100

where W is the weight of the maximum matching, T is set of taxa in common between the

real and inferred trees, and Pr and Pi represent the sets of nontrivial bipartitions in the real

and inferred trees, respectively.

Intuitively, this formula measures the fractional agreement between bipartitions of the trees rel-

ative to the total number of bipartitions. We use a matching-based formula, rather than the more
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familiar Robinson-Foulds metric [140], both because of its greater sensitivity to small changes in

trees and because the Robinson-Foulds measure is not defined for trees with different node sets.

We also note that we use a different normalization factor than in our prior work [34], normalizing

essentially by the total number of edges between the two trees, to control properly for the fact

that different inference methods may infer different numbers of tree edges. The reconstruction

error R ranges in value from 0, if the real and inferred trees are isomorphic, to an upper bound

of 100 in the limit of complete disagreement.

Figure 3.3: Example simulated and inferred trees illustrating key terms in the formula for cal-
culating the reconstruction error. (A) A hypothetical simulated ground truth tree on the set
of taxa {1, 2, 3, 4, 5, 6, 7, 8, 9}. (B) Example inferred tree built on the sampled set of taxa
{1, 2, 3, 6, 7, 8, 9} on the dataset resulting from the ground truth tree.

To illustrate the meanings of the terms of the equation forR, we present a simple example us-

ing a hypothetical ground truth and an inferred tree presented in Figure 3.3(A) and Figure 3.3(B),

respectively. The set of nontrivial bipartitions in the ground truth are

{{{1, 3, 6, 7, 8, 9}, {2, 4, 5}}, {{3, 6, 7, 8, 9}, {1, 2, 4, 5}}, {{6, 8, 9}, {1, 2, 3, 4, 5}}}

and the nontrivial bipartitions in the inferred tree are

{{{1, 3, 6, 7}, {2, 8, 9}}, {{1, 2, 8, 9}, {3, 6, 7}}}.

If we apply the matching algorithm on these two sets of bipartitions, the first and second

bipartitions in the ground truth tree are matched with the first and second bipartitions in the
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inferred tree, respectively. The weight W of the matching is 10. The number of common taxa

between these two datasets is |T | = 7. The total number of nontrivial bipartitions in the real

and inferred trees are |Pr| = 3 and |Pi| = 2. Plugging these values into the equation for R, we

calculate R = 60%.

Figure 3.4: Accuracy of phylogenetic inference on simulated copy number data for varying algo-
rithms. Variants of our phylogenetic algorithms and two competing methods from the literature
were applied to simulated FISH datasets describing evolution by combinations of single-gene
(SD), chromosome (CD), and whole-genome (GD) duplication and loss events. Results are re-
ported for inference by our methods from 100 simulated trees, allowing for SD events alone,
SD+CD events, SD+GD events, and SD+CD+GD events. We compared these results to infer-
ence by neighbor-joining (NJ) and pure maximum parsimony (MP) as implemented in MEGA,
version 6. Accuracy is assessed by mean reconstruction error of bipartitions between true and
inferred trees. Error bars show plus or minus one standard deviation across the samples for each
method.

A comparison of the four models is presented in Figure 3.4. The SD model showed 17.43%

reconstruction error with standard deviation (s.d.) of 5.1% across the 100 trees. The SD+CD

model yielded 15.91% error with s.d. 4.59%. SD+GD yielded 12.01% error with s.d. 6.4%. The

full SD+CD+GD model yielded 10.84% error with s.d. 3.88%. Collectively, the results suggest

that one can reconstruct reasonably accurate trees even from the SD-only model, despite the fact

that the trees were generated from a model of all three event types, although accuracy improves
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with each event type added. Accounting for GD events made a larger difference in accuracy than

accounting for CD events, presumably because a missed GD event might require many SD or CD

events to explain it, while a missed CD event could be explained with just two SD events. The

reconstruction error for the full model is reduced by more than 1.7-fold relative to the SD-only

model considered in our prior work.

We further compared these results to those derived using generic phylogenetic methods that

have been used in much of the single tumor phylogenetics work to date [118, 161]. We tested

the accuracy of reconstruction of the 100 simulated trees described above using generic neigh-

bor joining (NJ) with Euclidean and Rectilinear distances, and pure maximum parsimony (MP)

treating copy numbers as arbitrary characters, approaches chosen because they have been the

primary alternatives to our specialized algorithms in the single-tumor phylogeny literature. We

omit here comparison to more complicated Bayesian phylogenetic models (e.g., [157]) because

such approaches are not scalable to the numbers of cells we examine. We then used the weighted

matching based similarity method, described above, to calculate the mean percentage recon-

struction errorR between the inferred and the ground truth trees. The mean reconstruction errors

for NJ with Euclidean and Rectilinear distance metrics were 43.23% (s.d. 4.24%) and 43.57%

(s.d. 4.00%), respectively. The reconstruction error for MP was 45.21% (s.d. 3.86%). When

compared to the error of 10.84% (s.d. 3.88%) for the SD+CD+GD algorithm proposed in this

chapter, the test demonstrates that when the underlying evolutionary process includes cancer-like

chromosome abnormalities, errors are substantially reduced by using an algorithm designed for

that model relative to standard off-the-shelf algorithms still widely used for single-tumor phylo-

genetics work.

We performed additional experiments to evaluate the effects of different evolutionary param-

eters on the accuracy of inference of tumor progression trees by FISHtrees. For this experiment,

we selected five different combinations of probabilities of SD, CD and GD events for gener-

ating the ground truth trees and then used SD, SD+CD, SD+GD and SD+CD+GD models to

infer the tumor phylogenies. These data sets again each used six probes with two of the six
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Table 3.1: Comparison of mean percentage reconstruction error (with standard deviation) of
different phylogeny models on simulated data for different combinations of SD, CD and GD
event probabilities.
Probabilities of (SD,CD,GD) Events SD SD+CD SD+GD SD+CD+GD

(0.125,0.05,0.2) 17.97(4.49) 16.89(4.32) 9.85(3.51) 9.25(4.18)
(0.1,0.2,0.2) 25.58(4.50) 21.82(3.98) 13.81(3.62) 10.96(3.99)

(0.15,0.07,0.03) 16.02(4.15) 14.96(4.16) 11.92(4.29) 11.71(4.77)
(0.1,0.3,0.1) 23.13(4.37) 20.02(4.50) 15.43(4.60) 13.42(4.64)

(0.1166,0.18,0.12) 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88)
Mean percentage reconstruction error on 100 simulated samples are shown for four
tree-building models considering (i) SD, (ii) SD+CD, (iii) SD+GD and (iv) SD+CD+GD across
five different combinations of SD, CD, and GD probabilities.

on a common chromosome. The selected five combinations of (SD,CD,GD) event probabilities

are: (0.125, 0.05, 0.2), (0.1, 0.2, 0.2), (0.15, 0.07, 0.03), (0.1, 0.3, 0.1) and (0.1166, 0.18, 0.12).

These combinations of event probabilities were chosen to yield trees of comparable complexity

to the real data while producing test sets enriched in distinct combinations of the three event

types. They thus allow us to consider how robust our algorithms are to contributions from each

of the three event types, singly or in combination. We report the reconstruction error for 100

trees for each of these combinations of event probabilities in Table 3.1. These results again show

that accuracy improves with each event type added. When the probability of SD events is high

(as in combination 3), the SD model results in highly accurate trees (mean reconstruction error

of 16.02% with s.d. 4.15%). Accounting for GD events in combination with SD events always

result in larger improvement in the reconstruction error in comparison to the SD+CD models,

even when the CD events are very frequent (as in combinations 2 and 4). Finally, accounting for

GD events in combination with SD and CD events results in the largest improvements when the

probability ratio of GD events to SD+CD events is highest, as can be seen from comparison of

parameter sets 1 and 2.

Next, we performed simulation tests to evaluate the effects of non-uniform distributions of

cells across different levels of the trees on the performance of our tree inference method. In our

initial simulation experiments described above, we assumed that observed cells were sampled
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Table 3.2: Comparison of mean percentage reconstruction error (with standard deviation) of
different phylogeny models on simulated data for different sampling distributions of the cells.

Distribution SD SD+CD SD+GD SD+CD+GD NJ MP
Uniform 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88) 43.23(4.24) 45.21(3.86)

Skewed (γ = 1.1) 22.74(4.49) 19.09(4.47) 14.75(4.64) 11.92(4.64) 47(3.76) 47.38(3.72)
Skewed (γ = 1.3) 29.93(7.37) 26.35(6.56) 18.89(7.24) 15.36(6.78) 50.63(5.89) 50.32(5.74)

Mean percentage reconstruction error on 100 simulated samples are shown for six tree-building
models considering (i) SD, (ii) SD+CD, (iii) SD+GD, (iv) SD+CD+GD (v) NJ and (vi) MP
when the sampling distribution of cells is varied.

uniformly across clones. In real tumors, the distribution of cells would not typically be uniform

due to differences in age and fitness of clones. In order to test robustness of our method to

non-uniformity of clone frequencies, we sampled the cells following a non-uniform model in

which the sampling frequency of a clone varies geometrically with its depth in the tree with a

parameter γ. We used values of 1.1 and 1.3 for γ in our experiments. When γ = 1.1, 25% of

the total cells are located in the first three levels of the trees, while for γ = 1.3, this fraction is

55%. We generated 100 trees in each case with probabilities of SD, CD and GD events fixed at

0.1167, 0.18 and 0.12. We again used SD, SD+CD, SD+GD and SD+CD+GD models to infer the

tumor progression trees. We present the results from this experiment in Table 3.2, where we also

show the results from the uniform sampling of the cells. Additionally, we report the results on the

trees inferred using NJ and MP for these three different cell distributions. From the table, we can

see that the reconstruction error increases with increasing γ for all methods. The SD+CD+GD

model, however, shows the best performance among all the models for all three values of γ and

the least loss of performance with increasing γ.

Table 3.3: Comparison of mean percentage reconstruction error (with standard deviation) of
different phylogeny models on simulated data for two different probe settings.
Number of Chromosomes with 2 Genes SD SD+CD SD+GD SD+CD+GD

1 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88)
2 19.01(5.61) 15.65(5.26) 11.49(4.18) 8.94(3.46)

Mean percentage reconstruction error on 100 simulated samples are shown for four
tree-building models considering (i) SD, (ii) SD+CD, (iii) SD+GD and (iv) SD+CD+GD for
two different cases when the number of chromosomes harboring two genes is 1 or 2.
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Finally, we performed simulation experiments to understand the effects of varying the num-

bers of chromosomes with multiple probes. We created a simulated dataset of 100 trees with

eight probes where two pairs of probes each reside on two different chromosomes and the re-

maining four probes reside on four separate chromosomes. The probabilities of each of the SD,

CD and GD events were fixed at 0.1167, 0.09, and 0.12, respectively. We report the results from

this experiment in Table 3.3, which compares the results from this experiment with our earlier

result using only a single chromosome with two probes and four other probes located on separate

chromosomes. The table shows that inclusion of the extra possible CD event results in higher

accuracy for all the models except for the SD only model. The performance drop in the SD

model is expected, as it would require more SD events to explain a greater number of missed

CD events. The highest gain in performance is observed for SD+CD+GD model. These results

show that our algorithm will tend to yield comparatively more advantage over the earlier work

with more complicated scenarios of sharing probes across chromosomes, suggesting its utility

will increase as improvements in technology allow for larger probe sets.

3.2.2 Application to real cervical and breast cancer data

We applied the algorithm to two sets of real data which were described in section 1.7. For clarity,

here we reiterate the sample composition and the genes on which each dataset was profiled:

• A set of CC [183] FISH data consisting of 47 samples organized into 16 primary samples

of metastatic patients, 16 paired metastasis samples from the same patients, and 15 pri-

mary samples from patients who did not progress to metastasis. Each sample consisted

of 223 − 250 cells profiled on four FISH probes: LAMP3 (Entrez Gene Id 27074) [95],

PROX1 (5629) [187], PRKAA1 (5562) [89] and CCND1 (595) [56]. All of these four

genes are oncogenes, which typically show copy number gains in tumor cells. Each of the

genes belongs to a distinct chromosome.

• A set of BC [83] FISH data consisting of 13 paired (from the same patient) ductal carci-
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noma in situ (DCIS) and invasive ductal breast carcinoma (IDC) samples with 76 − 220

cells per sample profiled on eight FISH probes: COX-2 (5743) [88], MYC (4609) [188],

CCND1 [56], HER-2 (2064) [168], ZNF217 (7764) [122], DBC2 (23221) [72], CDH1 (999) [17]

and TP53 (7157) [179]. The first five genes in this list are oncogenes and the last three

genes are tumor suppressors. In tumor cells, tumor suppressors are typically associated

with loss in copy numbers.

Among the eight genes in the BC dataset, DBC2 and MYC reside on chromosome 8 and HER-2

and TP53 reside on chromosome 17. The other four genes belong to distinct chromosomes. The

oncogene Cyclin D1 (CCND1), which plays a role in many solid tumor types, is in both the BC

and CC datasets. However, in some other tumor types, such as oral cancer, CCND1 is part of a

larger region with recurrent copy number gains on chromosome 11 and other nearby genes have

also been suggested to play a role in oncogenesis [90].

We evaluated the SD+CD+GD method by its effectiveness in reducing the parsimony score

(total number of mutation events) of the resulting trees relative to the prior SD-only model. With

the primary CC samples, the SD+CD+GD method found a lower-cost tree in 21 of 31 cases, a tree

of equal weight in 4 cases, and a higher-cost tree in 6 cases. In each case of increased weight, the

increase was by 1 and appears to result from the subtree regrafting heuristic used in handling GD

events (see Methods). These results suggest that the heuristic tree search may more often yield

a suboptimal result for the SD+CD+GD model than it does for the SD-only model. The benefit

of the more realistic model, however, outweighs the cost of this suboptimality in a large majority

of instances. For trees derived from metastatic samples, 12 of 16 trees had lower weight for the

full SD+CD+GD model and the remainder all had equal weight for the two models. Metastatic

data sets tend to have fewer distinct cell types than do primary trees and thus may represent an

easier optimization challenge. For the BC samples, 13 of 13 DCIS (samples 1-13) and 12 of 13

IDC (samples 14-26) had lower weight for the full model, with the remaining one sample having

equal weight. Parsimony scores by tree are provided in Figures 3.5 and 3.6.
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Figure 3.5: Parsimony score comparison on the CC samples. Comparison of (A) Primary and
(B) Metastatic CC tumor progression tree weights built considering only SD and combined SD,
CD and GD models. “Total Cell Type” refers to the total number of unique probe copy number
configurations in the dataset, providing a lower bound on the minimum possible parsimony score
for a given data set.
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Figure 3.6: Parsimony score comparison on the BC samples. Comparison of DCIS (id 1-13)
and IDC (id 14-26) BC tumor progression tree weights built considering only SD and combined
SD,CD and GD models. “Cell Types” refers to the total number of unique probe copy number
configurations in the dataset, providing a lower bound on the minimum possible parsimony score
for a given data set.

We next evaluated effects of the improved model on overall tree topology, based on results

of our prior work [34] that tree topology can significantly distinguish trees drawn from distinct

progression stages of a given tumor type, with possible implications for the varying balance of

diversification and selection acting on different stages of tumor progression. Figure 3.7 quan-

tifies the topology for each sample set based on fractions of cells inferred at each tree depth

from 1 to 12. The figure shows similar qualitative trends for both SD and SD+CD+GD meth-

ods, although with small quantitative differences. For example, both SD and SD+CD+GD trees

recapitulate a tendency for CC primary trees to show relatively broad topology (Figure 3.7(A))

while CC metastatic trees prune rapidly beyond the first few tree levels (Figure 3.7(B)). There

is, however, an overall shift to lower depth in the SD+CD+GD trees. For CC primary trees,

92.6% of cells are located in the first 12 tree levels for SD versus 97.09% for SD+CD+GD. For

CC metastatic, 99.2% of cells are located in the first 12 tree levels for SD versus 99.6% for

SD+CD+GD. For BC, the comparable numbers of cells in depths 1 − 12 are 86.5% for SD ver-

sus 93.9% for SD+CD+GD in DCIS and 82.67% for SD versus 92.6% for SD+CD+GD. These

results suggest that the overall tree topology is not greatly sensitive to the combination of event

types, although there is a noticeable shift towards lower depth in the full model.
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Figure 3.7: Distribution of cells across different levels of tumor phylogenies. Distribution of
cells across different levels are shown for (A) Primary and (B) Metastatic CC, and (C) DCIS and
(D) IDC BC tumor progression trees.
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An additional evaluation was possible for the BC trees, because for the BC data, a probabilis-

tic model and expert annotation based on two additional centromere probes made it possible to

estimate the cell ploidy [83], which we define as the mode among the number of copies of the

twenty-two autosomal chromosomes in a cell. Each cell in that dataset is thus annotated with an

expert-curated overall ploidy estimate. We used these ploidy estimates to validate our inference

of GD events based on whether edges assigned to GD events in our trees correspond to doubling

of annotated ploidy. The percentage agreement by edge between GD events and annotated dou-

bling in ploidy is 65% across DCIS trees and 64.44% across IDC trees. In 31.6% of all inferred

GD events, at least one endpoint of the corresponding edge is a Steiner node, and the uncertainty

among whether a GD event occurred prior to or after the emergence of the Steiner node may

explain why the per-edge agreement is not higher. Nonetheless, the data support the conclusion

that inferred GD events are correct in a majority of cases.

As a final step, we repeated an approach developed in our prior work [34] to both validate

the biological relevance of the trees and develop a practical application of them by treating the

trees as sources of features for classification tasks applied to the CC data. For this purpose, we

developed several sets of quantitative features based on inferred trees as well as comparative

features derived from raw FISH probe counts. We used the following set of tree-based features:

1. Edge count: 8 features corresponding to fraction of progression tree edges showing gains

and losses of each gene.

2. Tree level cell percentage: 10 features corresponding to the fraction of cells at each of the

first 10 levels for the progression trees.

We omitted a third feature set, bin count, used in our prior work because it is not easily compa-

rable between SD and SD+CD+GD trees. We compared these features to four features derived

directly from FISH probe counts without reference to the trees:

1. Mean gain and loss of individual genes.

2. Maximum copy number of individual genes.
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3. An information theoretic measure, Shannon index [130]. For each gene, each combination

of gene copy number and cellular ploidy represents a species. If we denote the frequency

of species i among all tumors by pi, then Shannon index is given by the formula H =

−
∑
pi log2(pi).

4. Simpson’s index [130], which is defined as
∑
p2i .

We used each feature set as input to the Matlab support vector machine (SVM) classifier with

a quadratic kernel using 500 rounds of bootstrap replicates per test with leave-one-out cross-

validation to compute mean and standard deviation of accuracy. We used Matlab functions

“svmtrain” and “svmclassify” for training and testing of the SVM classifier.

We then applied these methods for three classification tasks: (i) distinguishing primary sam-

ples that progressed to metastasis from their paired metastatic samples, (ii) distinguishing all

primary samples from all metastatic samples, and (iii) distinguishing primary samples that metas-

tasized from primary samples that did not metastasize. The first two tasks are relevant to iden-

tifying features that help us understand the differences in evolutionary mechanisms of primary

and metastatic samples. The third is intended to model an important practical problem in cancer

treatment: determining whether a given primary tumor will metastasize.

Figure 3.8 shows results on each task. For task (i), allowing SD+CD+GD events increased

accuracy relative to SD trees from 64.31% to 80.77% for edge counts and from 81.91% to 84.63%

for tree level cell count. The SD+CD+GD tree level cell count was the most effective of all

features, tree-based or not. For task (ii), we similarly saw a substantial improvement in prediction

accuracy for SD+CD+GD trees relative to SD trees. Classification accuracy improved from

68.87% to 84.06% for edge count features and from 82.26% to 87.79% for tree level features. In

this case, both SD+CD+GD tree feature sets outperformed all other features sets, tree-based or

otherwise. These results provide an indirect validation that using a more general tree model gets

closer to the biological ground truth. For task (iii), we saw no improvement, with identical results

for SD and SD+CD+GD trees for either feature set. All tree-based feature sets significantly
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Figure 3.8: Classification results on the CC dataset. Prediction accuracy on three different classi-
fication tasks of CC samples of an SVM classifier using tree-based and cell-based features. Each
of the two tree-based features, edge count and tree level cell percentage, is derived from phylo-
genetic trees built using two different models of tumor progression, namely SD and combination
of SD, CD and GD. Two cell-based features, average gain/loss and maximum copy number of
each gene, and two information theoretic measures of cell heterogeneity, Shannon entropy and
Simpson’s index, are used.

outperformed all non-tree-based feature sets for this task. We conclude that the more realistic

evolutionary models appear not to reveal any more information to the classifiers for predicting

which primary samples will go on to metastasize than the SD trees, which were already quite

effective for that task.

3.2.3 Dependence on data size

A key advantage of FISH for profiling tumor heterogeneity is that it makes it cost-effective to

profile much larger numbers of cells than alternatives such as single-cell sequencing. To assess

the practical importance of this advantage, we asked two related questions: (1) how many cells
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do we need per tumor to accurately reconstruct single-cell phylogenies and (2) how many tumors

do we need to examine to identify reproducible, statistically significant features across trees.

We first assessed the number of cells needed per tumor by using our first simulated dataset

of 100 trees described above with subsamples of varying numbers of cells per tumor, measuring

reconstruction error of our SD+CD+GD algorithm with the weighted matching algorithm. The

mean reconstruction errors calculated across 100 cases for subsamples of 20, 50, 100, 150 and

200 cells were 33.66% (s.d. 14.40%), 20.43% (7.97%), 15.28% (6.38%), 11.79% (4.03%), and

11.70% (4.4%) respectively. We can thus conclude that accuracy improves noticeably with in-

creasing numbers of cells to at least 100 cells per tumor before plateauing at approximately 10%

error.

We next assessed numbers of tumors needed to identify meaningful statistically significant

properties of tumor classes by analysis of the 32 CC paired and primary samples. We randomly

subsampled from among the 32 pairs and, for each subsample, calculated the following three tree

statistics on progression trees inferred from our SD+CD+GD algorithm:

1. Shannon index based on distribution of cells across different tree levels.

2. Weighted mean depth of the trees.

3. Sum of differences of fractional gain and loss of each gene across the tree edges.

We then compared distributions of each statistic on primary vs. metastatic trees by a Wilcoxon

signed rank test. As the samples were selected randomly, no ordering among the samples was

considered. Figure 3.9 shows the 1-sided p-values of the three statistical tests when the number

of randomly selected samples are increased from 5 to 32. The figure shows that ability to dis-

tinguish the two tumor subsets improves with increasing number of tumors. While the threshold

for significance varies by statistic, each reaches weak significance (p < 0.05) between 10 and

24 tumors. We can thus conclude that finding reproducible features distinguishing the tree types

requires on the order of tens of tumors, at least for the candidate probe sets examined here.

Taken together, these two results demonstrate that building accurate trees on a large enough

88



Figure 3.9: Wilcoxon signed rank test results for separating primary CC samples from the metas-
tases. Wilcoxon signed rank test 1-sided p-values for separating the primary CC samples from
the metastases across subsets of increasing numbers of randomly selected tumor samples. For
each set of i tumors, i samples were randomly selected from 32 paired CC primary and metastatic
tumors with atleast one of each type and then Wilcoxon signed rank test was used to calculate
the p-values for separating the primary from metastases based on three different statistics: (A)
Shannon index calculated using the distribution of cells across different tree levels, (B) weighted
mean depth of the trees and (C) sum of differences of fractional gain and loss of each gene across
the tree edges.

scale to distinguish meaningfully primary from metastatic trees requires data sets with roughly

the order of thousands of single cells (hundreds of cells per tumor for tens of tumors), a scale

of data that has so far been achieved only by FISH studies of tumor heterogeneity. We note,

however, that one would expect these numbers to vary depending on the degree of tumor hetero-

geneity, the classes of trees one wishes to distinguish, and the specific markers examined.

3.3 Discussion

This chapter has presented novel theory and algorithms for reconstructing evolutionary trajecto-

ries of gene copy numbers in solid tumors in terms of a model of tumor evolution incorporating
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changes at the scale of single gene probes, full chromosomes, or all probes in the genome. We

have derived algorithms to reconstruct maximum parsimony sequences of events, and thus esti-

mates of evolutionary distance, between pairs of cells assayed by FISH probes. We have further

incorporated these inferences into a method for building phylogenies of hundreds of cells in sin-

gle tumors. These methods have been added to FISHtrees [34], our software for inferring tumor

phylogenies from single-cell copy number data. Experimental results on simulated data confirm

the ability of the new methods to improve phylogenetic inference accuracy relative to simpler

models by adding CD and GD events that model chromosome-scale and whole-genome copy

number changes that are frequently observed in tumor evolution. Application to observed human

tumor data shows that these extended evolutionary models are able to yield more parsimonious

tree reconstructions and that the resulting trees lead to improved accuracy in prediction tasks

related to diagnosis and prognosis.

In future work, we hope to extend the theory developed here to handle even more realistic

models and more challenging data types. One important direction will be advancing the theory

developed here to improve upon the heuristic approximations used in the Steiner tree inference

to better approach the goal of finding globally optimal trees for the most computationally chal-

lenging FISH data sets. The evolutionary models, likewise, might be further extended to go

beyond the three mutational event types considered here to better approximate the numerous dis-

tinct mutational mechanisms by which copy number profiles of tumor cells might evolve. The

data sets studied here do not include geographical information about locations of individual cells

in the tumor, but other data sets for analyzing tumor heterogeneity do include such geographi-

cal information [4, 62]. We expect it would be interesting to construct phylogenies with distance

functions that combine spatial distance in three dimensions with combinatorial distance measures

between the cell count patterns, as we have studied here. Further, while FISH for the moment re-

tains a unique advantage in the large number of cells it can profile, one can reasonably anticipate

that single-cell sequencing will eventually become practical for comparable cross-tumor studies.

There would thus be value in extending the theory developed here to single-cell sequencing data,
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a goal that would pose substantial algorithmic challenges due to the much larger number and

variety of markers it can reveal as well as the more complicated error models it would entail.

Finally, we hope to make more use of these single-tumor phylogenetic models in clinically rele-

vant prediction tasks and further explore the biological insights one can gain from more accurate

tumor phylogenies.
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Chapter 4

Inferring Models of Multiscale Copy

Number Evolution for Single-Tumor

Phylogenetics1

Tumor development and progression are evolutionary processes [126] and it has become ever

more apparent that evolution is fundamental to public health problems in cancer treatment, such

as the failure of therapy due to drug resistance [53]. The evolutionary nature of cancers prompted

the observation that one might reconstruct cancer progression processes using methods from

phylogenetics, i.e., evolutionary tree-building [42]. Cancer phylogenetics was initially applied

at the level of populations of cancers by modeling individual tumors or tumor types as species

[14, 42]. Later, variants were developed to study evolution of single tumors at the regional [158]

or cellular [109, 134] levels. Phylogenetic models have proven valuable for distinguishing driver

genes from passengers in tumor genomic data, explaining intratumor heterogeneity [110], and

predicting future tumor progression [176]. See [14] for a recent review.

Although the idea of adapting methods for reconstructing species evolution to the study of

1This chapter was developed from material submitted in “Chowdhury et al., Inferring models of multiscale copy

number evolution for single-tumor phylogenetics, Submitted for Publication”.
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tumors has proven powerful, the analogy has limits because single cells in a tumor evolve differ-

ently from organisms within a population. For example, cancers typically exhibit hypermutabil-

ity, which can take the form of any of a number of known “mutator phenotypes”, each with

a distinct pattern of elevated mutation rates [104]. The most recognized of these is a pattern

of chromosome instability (CIN) arising from dysfunction of TP53 [66]. Other known sources

of hypermutability include microsatellite instability (MSI) resulting from defects in DNA mis-

match repair [173] and elevated point mutation rates resulting from DNA polymerase defects

[44] or AID/APOBEC1 cytidine deaminase dysregulation [76]. These mutator phenotypes result

in mechanisms of genomic diversification different from those generally assumed in species tree

inference. For example, CIN hypermutability results in evolution primarily via copy number

variations, requiring mathematical models and algorithms different from those generally used to

study species evolution.

Although much is known about the specialized molecular mechanisms behind tumor evo-

lution, work in tumor phylogenetics has largely relied on conventional phylogeny algorithms

designed for inferring species evolution [14]. In the previous chapters, we sought to address this

gap by developing phylogenetic algorithms specifically to infer evolution by cancer-like CIN

mechanisms of copy number variation. Even appropriate algorithms for tumor-like mechanisms

of evolution are not enough to generate reliable trees, though, because phylogenetics relies on

accurate estimates of relative frequencies of different evolutionary events to decide between dis-

tinct possible explanations of extant genomes. Given the heterogeneity of mutator phenotypes

and the many ways they might interact in single tumors, rates of different types of aberrations can

be expected to vary widely between tumor types, between individual tumors, or even between

clonal lineages of single tumors.

There has been limited work to date to estimate evolutionary parameters of tumors, none to

our knowledge scalable to single-cell data sets. Approaches using rate parameters for different

events have been applied to comparative genomic hybridization data outside the context of phy-

logenetic algorithms (e.g., [86, 120]) and several groups proposed estimating rates via maximum
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likelihood from bulk sequencing data from different sections of a tumor [67, 138], but not for

data on multiple single cells. Maley and colleagues [158] have inferred tumor evolution pa-

rameters at a regional level by using Bayesian phylogeny models, which are effective for small

numbers of regions but scale poorly with numbers of taxa. Even with very efficient approximate

Bayesian computation (ABC) algorithms [11], such approaches have been used only for small

numbers of sections (10-20) per tumor. Fluorescence in situ hybridization (FISH) allows one

to probe copy numbers of small numbers of genomic markers in thousands of single cells per

study, and such studies have shown that single tumors can have hundreds of genetically distinct

cell types [83, 153, 165]. Large-scale single-cell sequencing studies, which offer a much more

complete picture of the genome than FISH but for many fewer cells, have supported this view of

extensive intercellular heterogeneity at the cellular level [182], suggesting that tumor phylogeny

approaches and their underlying models will need to scale to hundreds or thousands of taxa per

tumor to produce reliable models of the evolution of cellular heterogeneity in single tumors. To

date, phylogenetic model inference with event rate estimation on comparable numbers of sin-

gle cells has, to our knowledge, been achieved only for specialized data sets involving just two

probes per cell [134].

In the present chapter, we address the need for algorithms for evolutionary model inference

for tumor phylogenetics capable of handling large single-cell data sets, with specific applica-

tion to FISH copy number data. We build on prior work in Chapters 2 and 3 on maximum

parsimony inference using a multiscale model of genomic copy number variation by replacing

an unweighted formulation of the problem to a weighted version for which we can then infer

rate parameters. Our major theoretical results include algorithms, substantially different from

prior methods [35], to construct weighted parsimonious sequences of single gene gains/losses,

whole chromosome gains/losses, and whole genome duplications to infer the distance between

configurations of gene copy numbers between any pair of cells. These new methods allow

us to infer trees from models of distinct evolutionary rates of gain or loss for different genes

and at different scales within a genome. We use these tree inferences with an expectation-
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maximization (EM)-like [41] model inference method to combine estimation of the gain/loss

rates jointly with inference of tumor progression models. We apply this collection of novel

algorithms to cervical, breast and tongue cancer data sets of hundreds of single cells per tu-

mor, although they can be expected to scale to orders of magnitude larger data sets as they

become available. We show that the resulting models lead to improved power to predict tu-

mor progression and patient survival relative to prior methods. Our new methods are imple-

mented in our software, FISHtrees, for which C++ source code and two data sets are available at

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees.

4.1 Methods

FISH data obtained from tumor cells consist of integer counts of a set of d copy-number probes

per cell gi for i = 1, . . . , d. Typically, each probe is used to count the copy number of a particular

gene, so we refer to gi as genes. We refer to a collection of copy-number counts observable

within a cell as a configuration. In the actual data, we restrict counts to be between LB = 0 and

UB = 9. Between any two configurations, there are one or more mutational paths. We assume

that mutations may result in gain/loss of single genes (SD), gain/loss of one copy of each gene

on a common chromosome (CD), and duplication of all genes in the full genome (GD).

SD gain/loss events for each gene, CD gain/loss events for each chromosome, and GD events

are each assigned a distinct nonnegative cost, or weight. The weight for a particular event is

derived from the probability p of observing that event by the rule w = − log p. Thus, forming

a minimum weight tree maximizes the log likelihood of the events in the tree. Forming a phy-

logenetic tree based on FISH data involves three tasks: estimating probabilities of each type of

event; using the estimated probabilities to efficiently estimate the minimum-weight (maximum

likelihood) path between pairs of configurations; and finding an approximate minimum-weight

phylogenetic tree, possibly containing Steiner nodes that represent unobserved or extinct config-

urations.
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Algorithm 7 Infers the rates of each of SD, CD and GD event iteratively using statistics from
tumor phylogenies. GENERATESTEINERTREE() uses Algorithm 10 to infer Steiner trees based
on the set of cell states and parameter values.

1: function ESTIMATEPARAMETERS(N0, p0, ε, max iter)
2: k ← 1
3: while true do
4: Tk ← GENERATESTEINERTREE(Nk−1, pk−1)
5: c← EDGETYPECOUNTS(Tk)
6: pik ← (1 + ci)/

∑
j(1 + cj) for i = 1, length(c)

7: if k = max iter or
∑

i |pik − pik−1| ≤ ε) then
8: return pk, Tk
9: Nk ← nodes(Tk)

10: k ← k + 1

11: end function

4.1.1 Algorithms

Estimating rate parameters

We apply an Expectation Maximization (EM)-like algorithm, presented as Algorithm 7, to iden-

tify the rate (probability) of each possible SD, CD and GD event. We initialize the method with

uniform probability estimates, effectively leading to unweighted parsimony. Then, at each itera-

tion of the algorithm, we infer a minimum-weight directed Steiner tree (applying Algorithm 10)

using the parameter values inferred at the previous iteration. We treat this as the E-step of the

algorithm. This step is simplified relative to strict EM in that it uses a single optimal model fit,

rather than an expectation over the solution space in the E-step as in our prior work [134], but

should yield comparable results to true EM in the limit of large numbers of tree edges. In the

M-step, we then update the parameter values for each event based on the fraction of times that

event is inferred across the tree edges, with the addition of a pseudocount of 1 (line 6) to account

for events with inferred counts of 0.
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Algorithm 8 CALCULATEMINCOST computes the minimum cost of converting a copy number
profile Cs(g1, . . . , gd) to another copy number profile Ct(g1, . . . , gd) using combinations of SD,
CD and GD events. Ds,ch

w provides the minimum cost of an SD+CD path, as computed by
Algorithm 9. B is a table providing duplication points of minimum-weight SD+GD paths, whose
construction is discussed in more detail in section 4.1.2.

1: function CALCULATEMINCOST(Cs, Ct, B)
2: return min {SINGLEPATHCOST (Cs, Ct, B, k) | k ← 0,m}
3: end function
4: function SINGLEPATHCOST(Cs, Ct, B, k)
5: cost← 0
6: for each set of genes (gq, . . . , gr) on the same chromosome do
7: path← DUPLICATIONPATH(B, k, Cs, Ct, gq, . . . , gr)
8: cost← cost + sum

{
Ds,ch
w (path(i, ·), path(i+ 1, ·)) | i← 1, k + 1

}
9: return cost

10: end function
11: function DUPLICATIONPATH(B, k, Cs, Ct, gq, . . . , gr)
12: for p← 1, r − q + 1 do
13: i← path(1, p)← Cs (gp+q−1)
14: j ← path(k + 2, p)← Ct (gp+q−1)
15: for `← k + 1 downto 2 do
16: j ← path(`, p)← B(i, j, `− 1)

17: end function

Cost estimation

We present here novel algorithms for estimating the cost of the minimum weight SD+CD+GD

path between two configurations. Proofs of correctness of all of the claims in this subsection are

provided in section 4.1.2 along with a special case for handling probes with zero copy number.

Our algorithms are motivated by the observation that for two configurations, and for a fixed

number k of genome duplication events, a shortest-length SD+GD path may be quickly gener-

ated. In short, the condition that the SD+GD path be of minimal length requires that GD events

be taken as late as possible to minimize the total number of SD+GD events. For a fixed k, only

a limited number of duplication points need to be considered. Moreover, because duplication

increases copy number exponentially, it suffices to consider paths with 0, 1, 2, . . . ,m duplication

events, where m = dlog2(UB)e. In our code, UB = 9, so m = 4.

Using an algorithm to compute a shortest length SD+GD path, and an algorithm for finding
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an optimal SD+CD path between any two configurations, one may obtain a minimum-weight

SD+CD+GD path. This process is presented as Algorithm 8, which works in three steps. In the

first step, we calculate the shortest-length SD+GD path between configurations Cs and Ct for

paths having k = 0, . . . ,m genome duplication events. Each of these paths defines a set of zero

or more genome duplication points, configurations at which a genome duplication occurred. In

the second step, we connect the endpoint of each genome duplication point with the start point

of the next, or with Ct for the last genome duplication, using minimum-weight SD+CD paths.

In the third and final step, we choose the lowest-weight of these five SD+CD+GD paths; ties are

irrelevant because we only need the path’s weight.

It remains to define an algorithm to identify a minimum-cost SD+CD path between two

configurations, which we denote s and t. Because SD and CD steps on separate chromosomes

may be reordered, it suffices to consider the case in which all genes are on one chromosome.

The algorithm for computing the SD+CD distance is centered around the concept of a zigzag

subpath, which is so named because its construction focuses on alternations between consecutive

gain and loss events. An optimal SD+CD path may start with a series of zigzag (subpath) steps to

an intermediate state r and end with an SD path from r to t. Because the weight of an SD path is

trivial to compute, we need only define a subroutine to determine the cost of an initial, possibly

zero-length zigzag path and its endpoint. The pseudocode is presented as Algorithm 9, which

defines an input variable σ (for sense) that takes the value −1 to indicate a zigzag loss (a zigzag

subpath having only CD losses) or 1 to indicate a zigzag gain. At most one of σ = 1 or σ = −1

may result in a beneficial series of zigzag steps and a nonzero cost (section 4.1.2). Therefore, the

two values for σ may be tried in successive uses of Algorithm 9.

Constructing a phylogenetic tree

In Algorithm 7, the E step involves generating phylogenetic trees, using Algorithm 8 as the key

subroutine of a heuristic median-joining-based algorithm for inference of Steiner nodes in the tu-
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Algorithm 9 Compute an optimal zigzag path of sense σ from s on the way to t.
Require: Start point s, end point t, sense σ ∈ {−1, 1}, the cost γ of a CD step of sense σ, a

vector a representing the weight of SD steps of sense σ, and a vector b representing the cost
of SD steps of the opposite sense.

Ensure: On exit, r is the endpoint of the zigzag path and ‘fullcost’ is the cost of the path.
1: r ← s
2: fullcost← 0
3: while true do
4: cost← γ
5: benefit← 0
6: for k ← 1, size(t) do
7: if rk 6= 0 and σ(rk − dk) ≥ 0 then
8: cost← cost + bk
9: else if rk 6= 0 then

10: benefit← benefit + ak
11: if cost ≥ benefit then return
12: for k ← 1, length(t) do
13: if rk 6= 0 and σ(rk − dk) < 0 then
14: rk ← rk + σ

15: fullcost← fullcost + cost

Algorithm 10 Main steps in the algorithm to generate tumor progression trees with particular
rates for each of the SD, CD and GD events.

1: function GENERATESTEINERTREE(N , p)
2: T ← DIRECTEDMINIMUMSPANNINGTREE(N , p)
3: for all (u, v, w)← TRIPLETS(T ) do
4: for all s← LATTICEPOINTS(u, v, w) do
5: if s 6∈ T then
6: if TREEWEIGHT(T , p) > TREEWEIGHT(MEDIANJOIN(T , s), p) then
7: T ← MEDIANJOIN(T , s)
8: return T
9: end function

mor phylogenies. The key steps of this tree-building algorithm are summarized in Algorithm 10.

The code builds a directed minimum spanning tree T based on the observed cell types. It then

iterates over each node triplet in T for which one node is the parent of the other two nodes. We

define the lattice points of a triplet to be the set of configurations that agree in each dimension

with at least one of the triplet. Each lattice point is considered in arbitrary order as a possible

Steiner node. If a lattice point is not already in T , a new tree, called the median tree, is created
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by adding that lattice point as a node and by connecting it via an edge to all three points in the

triplet. If the resulting weight, caculated as explained in the previous subsection, is less than the

weight of the previous best tree, the lattice point is added to the tree. The best tree found by this

procedure is returned.

4.1.2 Theoretical analyses

In this section, we provide proofs of correctness for the algorithms presented in the previous sec-

tion. Our main theoretical result is a method for inferring minimum distances between two states

within a copy number phylogeny when duplication/loss of single genes (SD), duplication/loss

of all genes on a common chromosome (CD), and duplication of all genes in the full genome

(GD) are possible and each event type is associated with a weight parameter. We first estab-

lish some mathematical results and then develop an algorithm for accurate distance computation.

This algorithm then becomes a subroutine in a heuristic Steiner tree algorithm for inferring copy

number phylogenies in the presence of weighted SD, CD, and GD events. Finally, we develop

an iterative algorithm to infer the rate of different event types from the observed data using the

weighted Steiner tree inference algorithm as a subroutine.

In what follows, we will consider sequences of SD, SD+CD, SD+GD and SD+CD+GD

events, which we call paths. A boundary-insensitive path is one in which the copy numbers

of intermediate configurations can take on any integer values and for which zero copy number

is not treated specially. Zero is special, however, because once the copy number of a gene is

reduced to zero, it is generally assumed that the gene cannot be gained back to get to copy num-

ber one. We also define boundary-sensitive paths for which intermediate copy-numbers must lie

between positive bounds, denoted by LB and UB. When we present pseudocode for computing

paths, we will discuss how zero copy number is handled.

We introduce some notation required for specifying and proving the theoretical results:

1. The observed data consists of copy-number counts of probes gi for i = 1, . . . , d. Typically,
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each probe allows one to count the copy number of a particular gene, so we refer to the gi

as genes.

2. We define a configuration C(g1, g2, . . . , gd) to be a vector of length d of integers represent-

ing the copy numbers of each gene. A configuration is the state that might be observed for

a single cell. When the collection g1, . . . , gd is clear from context, we will just write C as

a shorthand.

3. w{g,l}gi , w
{g,l}
ci , wd: Cost/weight of gain (wggi) or loss (wlgi) associated with individual gene

gi, individual chromosome ci (w{g,l}ci ) or cost/weight of whole genome duplication event

(wd). The weight for a particular event is derived from the probability p of observing that

event by the rule w = − log p.

4. We denote the length of the shortest-length boundary-insensitive SD path between con-

figurations Ci and Cj by L1(C
i, Cj). As we discuss below, the length is precisely the

rectilinear, or L1, distance between the configurations, justifying the notation.

5. The weight of the minimum-cost SD path between Ci and Cj is denoted Rw(Ci, Cj).

6. We letDs,ch
w (Ci, Cj) denote the weight of the minimum-cost boundary-insensitive SD+CD

path between Ci and Cj .

A feasible configuration is one in which all counts are between LB and UB. A feasible path

consists entirely of feasible configurations. An infeasible path has at least one infeasible config-

uration. Every infeasible path is boundary-insensitive, but a boundary-insensitive path may be

either feasible or infeasible.

SD and SD+CD events have the desirable property that the order of SD or SD+CD events

can be rearranged arbitrarily [35]; such a property does not hold for paths with GD events. In

our previous work, we established the following two lemmas for the unweighted SD and CD

cases [35]:

Lemma 14. A shortest unweighted boundary-insensitive sequence of CD and SD events cannot

have both a gain of chromosome ci and a loss of the same chromosome ci.
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Lemma 15. For any gene gi, a shortest unweighted boundary-insensitive sequence of events

cannot have both a gain of gi and a loss of gi.

We now prove that the natural generalizations of the two lemmas hold in the weighted case

too:

Lemma 16. A minimum-weight boundary-insensitive sequence of weighted CD and SD events

cannot have both a gain of chromosome ci and a loss of the same chromosome ci.

Proof. By contradiction. Suppose S is a sequence of events that has both a gain and a loss of the

same chromosome. Then removing one gain and one loss produces a new sequence that weighs

(wgci + wlci) less and has the same final state.

Lemma 17. For any gene gi, a minimum-weight boundary-insensitive sequence of weighted

events cannot have both a gain of gi and a loss of gi.

Proof. By contradiction. Suppose S is a sequence of events that has both a gain of gi and a loss

of gi. Then removing one gain and one loss produces a new sequence that weighs (wggi + wlgi)

less and has the same final state.

From these lemmas, it follows that the length of the shortest-length SD path between con-

figurations Ci and Cj is precisely the rectilinear distance, justifying our use of the notation

L1(C
i, Cj). In contrast, Rw(Ci, Cj) is not a distance because it is not symmetric, but it can be

expressed as a simple sum

Rw(Ci, Cj) =
∑

Ci(gk)<Cj(gk)

(Cj(gk)− Ci(gk))w
g
gk

+
∑

Ci(gk)>Cj(gk)

(Ci(gk)− Cj(gk))w
l
gk

For other types of path, the length of the shortest-length paths and the cost of the minimum-

weight path are not so easily expressed. Developing algorithms to compute weights of minimum-

weight paths is the topic of the rest of this section.
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Progression model considering SD and CD events

One of our main theoretical contributions consists of novel theory for inference of minimum-

weight paths of single-gene (GD) and single chromosome (CD) events from a starting configu-

ration Cs(g1, g2, . . . , gd) to a terminal configuration Ct(g1, g2, . . . , gd). Our model assumes that

on division of a tumor cell, the configuration can change either by gain or loss of one copy of

a single gene (SD event) or by gain or loss of one copy of each gene on a single chromosome

(CD event). For example, a configuration of four genes (2, 2, 2, 2) with the first two genes on the

same chromosome might evolve to (3, 2, 2, 2) by a single SD event or to (3, 3, 2, 2) by a single

CD event.

First, we establish the correctness of Algorithm 9, which calculates the minimum weight

sequence of SD and CD events to transform Cs(gi, gi+1, . . . , gj) into Ct(gi, gi+1, . . . , gj). We

focus on a single chromosome because, as explained below, the problem of finding the minimum-

weight SD+CD path can be solved one chromosome at a time. In the case in which there is only

data for single gene probe on a chromosome, one cannot distinguish CD events from SD events.

We treat such cases mathematically by setting the weight of the corresponding CD events to

infinity. In practice, one may simply calculate an SD path for those probes.

Thus far, we have discussed boundary-insensitive paths, which might contain problematic in-

termediate cases with zero copy-number or absurd cases with negative copy number. However, if

one finds an optimal boundary-insensitive path, one may construct an optimal boundary-sensitive

path of the same weight.

Theorem 18. If there is a minimal-weight boundary-insensitive sequence of SD and CD events

between two feasible configurations Cs and Ct, where the smallest feasible copy number is at

least one, then there is a boundary-sensitive sequence of SD and CD events with the same weight.

Proof. Assume without loss of generality that all genes are on the same chromosome. If the

boundary-insensitive path contains no CD event then it is an SD path and all gene counts change

monotonically, so the theorem holds.
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We will suppose that all the CD events are chromosome losses; the argument for CD gains

is symmetric. If placing a chromosome loss next on the path would result in an infeasible con-

figuration, then the copy number of some genes must be at LB. If these genes did not have any

SD gains in the path, then the ultimate configuration would be infeasible, which by assumption

is not. Therefore, we place a single SD gain for each of the genes with copy number at the LB

next on the path in arbitrary order. Adding these SD gains cannot produce an intermediate con-

figuration that is infeasible because the genes are at copy number LB, and these gains will just

increase the count for each gene by one.

Next, we place the chromosome loss on the path. The resulting configuration is feasible.

We repeat the process until there are no more chromosome losses. By construction, once the

final chromosome loss has been placed, we attain a feasible intermediate configuration via a

feasible path, and all further events are SD gains. Thus, thereafter, we only have monotonic gene

gain/losses between two feasible configurations. Thus, the entire path is feasible.

In the Results section of this chapter, we analyze data with minimum copy number (LB) zero

and maximum copy number (UB) nine, but in this subsection we assume positive copy number.

Zero copy number is handled as a special case in a later subsection.

Now, we prove the following results, which exclude the possibility of gains and losses of the

same chromosome or the same gene on the boundary-sensitive paths.

Corollary 19. In a feasible optimal path, where the smallest feasible copy number is at least

one, there cannot be both a gain and loss of the same chromosome or a gain and loss of the same

gene.

Proof. The proof is by contradiction. Take an optimal feasible path, which is by definition

comprised of a boundary-sensitive sequence of operations. It is also a valid boundary-insensitive

path. If it contains paired gain/losses, we can rearrange and cancel to produce a lower weight

path. By the previous Theorem, there is also a boundary-sensitive path with this lesser weight.

Hence, the original boundary-sensitive path could not have been optimal.
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Algorithm for computing the SD+CD distance

The algorithm for computing the SD+CD distance is centered around the concept of a zigzag

subpath from Cs to Ct, which is so named because its construction focuses on alternations be-

tween consecutive gain and loss events. For any zigzag path, we first choose a predominant

sense or direction as either gain or loss, where the sense of the zigzag path is the sense of the CD

events in that path. When the zigzag sense is loss, then we determine the set of genes that are on

the affected chromosome and for which the copy number at Cs is less than or equal to the copy

number at Ct. For each such gene, we insert an SD gain in the path in arbitrary order. Then we

insert a single CD loss. We define the path symmetrically when the sense of the zigzag path is

gain. We use the shorthand “zigzag gain” (respectively, “zigzag loss”) to refer to a zigzag path

of sense gain (loss).

Thus, a zigzag path is a series of zero or more SD changes followed by a single CD change

with opposite sense (gain/loss). The sense of a zigzag step is the sense of the final CD event.

Lemma 20. There is a CD step on an optimal SD+CD path from Cs to Ct if and only if there is

a (possibly different) optimal path from Cs on the way to Ct that starts with a zigzag subpath of

the same sense, affecting the same chromosome.

Proof. We consider a CD loss and argue symmetrically for a CD gain. If there is a CD loss on

the optimal path, then by Lemma 19, the only CD events on the optimal path are CD losses. We

choose one such CD loss and let that choice determine the affected chromosome.

If the copy number of a gene at Cs is less than or equal to the copy number of that gene at

Ct, then the path must contain at least one SD gain for that gene. Thus, one may rearrange the

optimal path to create an equal-weight path that starts with a zigzag loss.

The converse is true because a zigzag subpath contains a CD step, by definition.

Lemma 21. Consider a specific zigzag path. Let ` be a vector such that `k = 1, if the copy

number of gene gk changes after the zigzag path and zero otherwise. Let m be another vector for
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which mk = 1 if gene gk is on chromosome affected by the CD step, but the copy number of gene

gk does not change after the entire zigzag path. Then,

`k +mk =


1 if gene gk is on the chromosome lost or gained

0 otherwise.

Moreover, after a zigzag loss, the copy number of every gene is the same or lower, and after a

zigzag gain, the copy number of every gene is the same or higher.

Proof. This Lemma is a consequence of the definition of zigzag paths and their senses. If a gene

is on the chromosome affected by a the CD step, but is not matched by a corresponding SD step

of the opposite sense, the copy number of the gene must change. The sense of any change in

gene copy number is the same as the sense of the CD step.

Lemma 22. If Cint is an intermediate configuration created by taking a zigzag step of either

sense from Cs on the way to Ct,

L1(C
s, Ct) = L1(C

int, Ct) +
∑
k

`k,

where ` is defined as in Lemma 21.

Proof. We consider only zigzag losses; one can argue symmetrically for zigzag gains. By defi-

nition of a zigzag loss, exactly those genes with copy number greater at Cs than Ct have a copy

number change after the zigzag loss, and the copy number of each of these genes decreases by

one. But those genes are precisely the genes with indices k such that `k = 1.

Lemma 23. If Cint is an intermediate configuration reached by taking a zigzag path from Cs on

the way to Ct, then

Rw(Cs, Ct) = Rw(Cint, Ct) + aT `,
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where ` is defined as in Lemma 21, and a is a vector for which ak represents the cost of an SD

step for gene gk of the same sense as the zigzag path.

Proof. By definition of a zigzag loss, exactly those genes with copy number greater at Cs than

Ct have a copy number change after the zigzag loss, and the copy number of each of these genes

decreases by one. By Lemma 22, those genes are precisely the genes for which `k = 1. For a

zigzag loss, then ak represents the weight of the loss of gene gk. Thus, the weight of an optimal

SD subpath from Cint to Ct differs from the weight of an optimal SD subpath from Cs to Ct by

exactly aT `.

We can argue symmetrically for zigzag gains.

Next, we develop the rule indicating when a CD and a zigzag step is possible.

Theorem 24. When there is no SD+CD path between Cs and Ct of strictly lower weight than

an optimal SD path between Cs and Ct, a CD step from Cs will result in an intermediate config-

uration Cint for which

Rw(Cint, Ct) + wc ≥ Rw(Cs, Ct),

where wc is the cost of a CD step with the same sense as the zigzag path.

Proof. The weight of a CD event is precisely wc. One may then take an SD path from Cint to

Ct for total path weight Rw(Cint, Ct) + wc. If this is strictly less than the weight of an SD path

from Cs to Ct, then this constitutes an SD+CD path that has lower weight than the optimal SD

path.

A similar result holds for zigzag paths. By Lemma 20, if there is a CD step on the optimal

path, the path may be rearranged so that there is a zigzag path.

Lemma 25. When there is no SD+CD path between Cs and Ct of strictly lower weight than an

optimal SD path between Cs and Ct, a zigzag step of the same sense from Cs will result in an
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intermediate configuration Cint for which

Rw(Cint, Ct) + wc + bTm ≥ Rw(Cs, Ct), (4.1)

where b is a vector such that bk is the cost of an SD step affecting gene gk in the sense opposite

to the sense of the zigzag path. For instance, if the path is a zigzag loss, bk is the cost of an SD

gain of gene gk.

Proof. The sum of the weights of the SD steps and the CD step that make up the zigzag step

is precisely wc + bTm. One may then take an SD path from Cint to Ct for total path weight

Rw(Cint, Ct) + wc + bTm. If this is strictly less than the weight of an SD path from Cs to Ct,

then this constitutes an SD+CD path that has lower weight than the optimal SD path.

Theorem 26. When there is an SD+CD path between Cs and Ct that has lower weight than an

optimal SD path, then for any CD step on the SD+CD path, taking a zigzag step from Cs on

the way to Ct of the same sense and affecting the same chromosome results in an intermediate

configuration Cint for which

Rw(Cint, Ct) + wc + bTm < Rw(Cs, Ct), (4.2)

where m is defined as in Lemma 21 and b is defined as in Lemma 25.

Proof. The proof is by induction on L1(C
s, Ct). If L1(C

s, Ct) = 0, then Cs and Ct are the same

configuration and Rw(Cs, Ct) = 0. Any nonempty SD+CD path has nonnegative weight, and so

cannot have lower weight than the optimal SD path, and the claim holds.

Take as induction hypothesis that the claim holds whenever L1(C
s, Ct) < n. Now let

L1(C
s, Ct) = n. Let Cint be an intermediate point such that L1(C

int, Ct) < n, so that the

induction hypothesis applies to paths between Cint and Ct.

To simplify the exposition, assume without loss of generality that all genes are on the same
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chromosome. Furthermore, let us consider the case in which an SD+CD path between Cs and Ct

containing a CD loss has lower weight than an optimal SD path; the argument for paths contain

a CD gain is symmetric.

Let Cint be an intermediate configuration generated by a zigzag loss from Cs on the way to

Ct. Since we assume inequality (4.2), taking the zigzag path must result in a change in the copy

number of at least one gene. Thus, by Lemma 22, it must be that L1(C
int, Ct) < n. Thus, one

may apply the induction hypothesis on paths from Cint to Ct.

Suppose there is no SD+CD path from Cint to Ct that has lower weight than the optimal SD

path. In such a case, the SD path is itself optimal as an SD+CD path from Cint to Ct. Thus, any

path constrained to start with a zigzag path from Cs to Cint, and continuing on to Ct, has weight

at least Rw(Cint, Ct) + wc + bTm. But by the assumptions of the theorem, there is an SD+CD

path containing a CD loss and having weight less than the optimal SD path, and by Lemma 20

such a path may be constrained to start with a zigzag loss. Thus, inequality (4.2) holds.

Suppose, therefore, that there is an SD+CD path from Cint to Ct that has weight less than

that of the optimal SD path and that contains a CD loss. Then by Lemma 23,

Rw(Cs, Ct) = Rw(Cint, Ct) + aT ` (4.3)

Let Cu be another intermediate configuration, generated by taking another zigzag path from Cint

of the same sense. It holds that

Rw(Cint, Ct) = Rw(Cu, Ct) + aT ̂̀, (4.4)

where ̂̀ is a vector for which `k = 1 for each gene whose copy number decreases between Ct

and Cu. By the induction hypothesis

Rw(Cu, Ct) + wc + bT m̂ < Rw(Cint, Ct), (4.5)
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where m̂ is a vector representing the SD gains in the zigzag step.

It must be that

aT ̂̀≤ aT ` and bTm ≤ bT m̂, (4.6)

because the nonzero entries of ` denote the set of genes with copy number strictly greater at Cs

than Ct, and the nonzero entries of ̂̀denote the set of genes with copy number strictly greater

at Cint than Ct. But copy numbers can only decrease after a zigzag loss. Furthermore, by

Lemma 21, `k +mk = ̂̀
k + m̂k = 1, for all genes gk on the relevant chromosome.

Combining (4.3)–(4.6), we find

Rw(Cint, Ct) + wc + bTm = Rw(Cu, Ct) + wc + bTm+ aT ̂̀ by (4.4)

≤ Rw(Cu, Ct) + wc + bT m̂+ aT ` by (4.6)

< Rw(Cint, Ct) + aT ` by (4.5)

= Rw(Cs, Ct) by (4.3)

completing the induction step and the proof.

Now, we develop the rule to identify which direction of zigzag step, if any, needs to be applied

on the optimal boundary-sensitive path to convert Cs to Ct. We use the following shorthand

notation for four possible partial paths:

1. ZZL: the zigzag loss path.

2. ZZG: the zigzag gain path.

3. SDL: SD losses of those genes that have a lower copy number in Ct than in Cs.

4. SDG: SD gains of those genes that have a higher copy number in Ct than in Cs.

Lemma 27. Taking either ZZL or SDL leads to the same intermediate state. Taking either ZZG

or SDG leads to the same intermediate state.

Proof. The definition of ZZL is that it has one CD loss followed by SD gains of the genes for
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which the copy number at Cint is less than or equal Ct. Those genes have compensating losses

and gains. In ZZL, the remaining genes, which have a higher copy number in Cs than in Ct have

SD losses. That is the definition of SDL. The proof for ZZG and SDG is symmetric.

The weight of ZZL is the sum of the cost of a CD loss and the sum of costs of SD gains of

genes that have lower or equal copy number in Cs than in Ct. The weight of the SDL subpath

is the sum of costs of single SD loss events for those genes which have lower copy number in

Ct than in Cs. The weights of the ZZG and SDG partial paths are defined analogously. In the

following theorem, we propose two alternative tests to identify the sense of the zigzag partial

path to use, if any, as the value of the input paranter σ in Algorithm 9.

Theorem 28. At most one of the following tests can be successful:

1. If the cost of ZZL is lower that that of SDL, take ZZL by setting σ = −1.

2. If the cost of ZZG is lower that that of SDG, take ZZG by setting σ = 1.

Proof. The proof is by contradiction. Sort the costs of the four partial paths in increasing order,

breaking ties arbitrarily. If both tests 1 and 2 succeed, then the most costly of the four paths

must be SDL or SDG. Without loss of generality, assume the most expensive path is SDG, so

that both cost(ZZG) < cost(SDG) and cost(ZZL) < cost(SDG). The path SDG has a proper

subset of the single-step events in the path ZZL. Therefore, it is not possible that cost(ZZL) <

cost(SDG), a contradiction.

We use the proof of correctness of Algorithm 9 to derive the main theorem of this subsection,

which establishes a method to find a minimum-cost sequence of weighted SD and CD events for

transforming Cs to Ct. Again, we can consider each chromosome separately since each CD and

GD event affects only one chromosome.

Theorem 29. Assume we partition the gene list by chromosomes such that each chromosome

ci ∈ {c1, . . . , cq} corresponds to a consecutive subset of genes gi,1, . . . , gi,di . Further define

Cs(g1, g2, . . . , gd) = (s1, . . . , sd) and Ct(g1, g2, . . . , gd) = (t1, . . . , td). Then we can con-
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struct a minimum-cost boundary-sensitive sequence of events transforming Cs(g1, g2, . . . , gd)

to Ct(g1, g2, . . . , gd) by constructing a minimum-cost boundary-sensitive sequence of events Si

transforming (s1, . . . , si,1, . . . , si,di , . . . , sd) to (s1, . . . , ti,1, . . . , ti,di , . . . , sd) for each chromo-

some ci and interleaving each Si in arbitrary order.

Proof. The distance function can be decomposed into individual parts for genes belonging to

distinct chromosomes as follows:

Ds,ch
w (Cs, Ct) =

q∑
i=1

Ds,ch
w (Cs(si,1, . . . , si,di), C

t(si,1, . . . , si,di))

Because the distance can be decomposed in this way and each CD or SD event contributes to only

a single term of the outer sum, we can minimize the cost for each chromosome independently and

combine the events from distinct chromosomes in arbitrary order without changing the value of

the objective function. Likewise, since these each chromosome affects a disjoint subset of genes,

boundary-sensitive sequences for each chromosome will yield a boundary-sensitive sequence

across all genes.

Progression model considering SD, CD and GD events

In this subsection, we provide additional methodological details and a proof of correctness for a

method for finding minimum-cost SD+GD paths, which we call Algorithm 11. This algorithm is

called as a subroutine in the full SD+CD+GD method.

For any fixed number of genome duplication events, the shortest-length SD+GD path between

two configurations with the specified number of GD events may be computed one component at

a time. For each component, the shortest length path may be found by adding SD losses or gains

preceeding and following genome duplication events to choose the most favorable duplication

events given the starting and ending copy number. But for a single component, shortest-length

SD+GD paths have a well-defined structure.
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Theorem 30. For a fixed number g ≥ 1 of GD steps, the minimum-weight path between i ≥ 1

and j ≥ 1 must end with either a GD event, if j is even, or a GD event followed by a single SD

event, if j is odd. The result holds whether or not the SD events must have the same sense, or

may be mixed.

Proof. Consider the final GD event in the minimum-weight path and the SD events that follow

it, necessarily of all the same sense (otherwise one would cancel a gain and a loss to get a shorter

path). Suppose there are two or more SD events following the GD event. If the SD events after

the GD event are gains, or the SD events after the GD events are losses but the start point of

the GD event is greater than 1, then one could create a minimum-weight path by inserting an SD

event of the same sense before the GD event, using that new point as the start point of a GD event

and eliminating two of the SD events that follow it. Because we replaced two SD events with an

SD event of the same sense, it is irrelevant whether SD events are restricted to a single sense.

The remaining case is when the GD event is from 1 to 2, but is followed by more than one

SD loss. Since counts cannot go below zero, this scenario entails that j = 0, contrary to the

assumptions of this theorem. Therefore, a minimum-weight path must end with a GD event

followed by at most one SD event.

Since the endpoint of a GD event must be an even number, if j is an even number, it would

not be possible to arrive at j by following a GD event with a single SD event. Thus, if j is even,

it must be the endpoint of the GD event. Similarly, if j is odd, a single SD event must follow the

final GD event.

The preceding theorem suggests an algorithm for finding the duplication points in the shortest

SD+GD path between copy numbers i and j for a fixed number k genome duplications. One

need only start at j, consider the one or two possible duplication points for the last GD event

in a shortest-length SD+GD path terminating at j, and then choose the better of the duplication

points by finding the shortest-length SD+GD path of length k−1 between Cs and the duplication

point. An immediate corollary of the theorem is that for a maximum copy number of nine, which
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Algorithm 11 Fill tables representing a shortest length SD+GD path for a single gene.
Require: A number n representing the maximum copy number of a gene and m representing

the maximum number of GD events to be considered.
Ensure: On exit, B(i, j, k) contains the kth duplication point and L(i, j, k) the number of SD

gains and losses for the shortest length SD+GD path from i to j, with the constraint that k
duplications occur.

1: for k ← 0,m do
2: for i← 1, n do
3: for j ← 1, n do
4: if k = 0 then
5: L(i, j, 0)← max(i− j, j − i)
6: else if j is even then
7: B(i, j, k)← j/2
8: L(i, j, k)← L(i, j/2, k − 1)
9: else

10: lower← L(i, (j − 1)/2, k − 1) if j > 1 otherwise∞
11: upper← L(i, (j + 1)/2, k − 1) if j < n otherwise∞
12: if lower < upper or (lower = upper and i ≤ j) then
13: B(i, j, k)← (j − 1)/2
14: L(i, j, k)← L(i, (j − 1)/2, k − 1) + 1
15: else
16: B(i, j, k)← (j + 1)/2
17: L(i, j, k)← L(i, (j + 1)/2, k − 1) + 1

we use in our experiments, it suffices to consider at most four genome duplication events.

Corollary 31. If 1 ≤ j ≤ 2m, there can be at most m GD steps in a minimum-weight SD+GD

path between i ≥ 0 and j.

Proof. By induction on j. If j = 1 then there are no GD steps in a minimum-weight SD+GD

path from i to j and the result holds. Otherwise, if j is even, then a minimum-weight path from

i to j must end with a GD event starting at k = j/2. But then k < 2m−1 and the induction

hypothesis may be applied. Similarly, if j is odd, then the path must end with a GD step to j − 1

or j + 1, followed by an SD step. In either case, the GD step must start from k ≤ (j + 1)/2.

Thus k < 2m−1, and again the induction hypothesis applies.

Because we restrict copy numbers to be at most nine, four genome duplication events is

sufficient. For a fixed k > m, there is still a minimum length SD+GD path with k genome
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duplications, but such a path must have a cycle where a copy number of 1 is duplicated by a GD

event to become 2 which is followed by an SD loss to return to one. Though for a singe gene

probe, a path containing a cycle would not be optimal, when a shortest-length SD+GD path is

computed for several genes, some of the genes may exhibit such a cycle.

For k = 0, . . . ,m (for our code, UB = 9 so m = 4), Algorithm 11 creates a table of

duplication points for the shortest-length SD+GD path between copy numbers of an individual

probe for given a fixed number of genome duplication events.

In Algorithm 11, cases in which the copy number of some gene is zero in Cs and Ct are

special. When a copy number starts at zero, there is no simple biological mechanism for daughter

cells to regain that gene. Thus, we do not attempt to calculate paths for which a copy number

changes from zero to nonzero, but rather just assign all such paths an infinite weight. Cases in

which the copy number end at zero are also special. In such cases, the optimal SD+GD path

is to lose all copies of the gene and then cycle from 0 to 0 on all genome duplication events.

For brevity, we exclude such cases from the pseudocode, though code to handle these cases is

implemented in the FISHtrees software.

4.2 Results

We applied our parameter inference algorithms to FISH datasets on three kinds of human can-

cers: cervical cancer, breast cancer and oral (tongue) cancer. The datasets were described in

section 1.7. Here, we reiterate the sample composition and the genes on which each dataset was

profiled for clarity:

• Dataset CC [183] consists of paired primary and metastatic cervical cancer samples col-

lected from 16 patients and primary samples collected from 15 patients whose tumors

did not metastasize probed on four oncogenes residing on distinct chromosomes (LAMP3,

PROX1, PRKAA1 and CCND1).
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• Dataset TC [Wangsa et al., submitted] consists of 65 single samples collected from tongue

cancer patients probed for four genes located on distinct chromosomes (TERC, EGFR,

CCND1, TP53), with tumor stages (ranging from 1 (least advanced) up to 4 (most ad-

vanced)) available on all patients and tobacco usage (a known risk factor), survival, and

disease-free survival out to 73 months available on most patients.

• Dataset BC [83] consists of paired DCIS and IDC samples collected from 13 breast cancer

patients. Each sample was probed on eight genes, out of which, COX2, MYC, HER2,

CCND1 and ZNF217 are oncogenes and DBC2, CDH1 and P53 are tumor suppressors.

Out of the eight genes, DBC2 and MYC reside on chromosome 8 and HER2 and P53 reside

on chromosome 17. Other genes reside on distinct chromosomes.

• An additional cervical cancer dataset, CC2, which consists of following set of cervical

samples: (a) one early pre-cancerous lesion (denoted by CIN1), (b) ten late pre-cancerous

lesions (denoted by CIN3) and (c) ten cancerous lesions (denoted by CA). Each sample was

probed on eight genes: COX, ING5, FHIT, TERC, TERT, MYC, CHEK1, ZNF217. ING5,

FHIT, CHEK1 are tumor suppressors and all others are oncogenes. FHIT and TERC lie on

chromosome 3, while the others all reside on distinct chromosomes.

BC and CC2 datasets allow us to test in practice the utility of modeling chromosome gain/loss

(CD) events. In each case, the pair of collocated genes are one oncogene and one tumor suppres-

sor, so our weighted models need to balance between CD events in which both genes have the

copy number changing in the same direction and GD events, which would usually be gains for

the oncogenes and usually be losses for the tumor suppressors. Each of the four datasets has a

different study design from a clinical point of view. Yet, we can derive meaningful qualitative

inferences, suitable to the particular study design, from our tumor progression models for all four

data sets.
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Figure 4.1: Inferred parameter values for primary (A) and metastatic (B) cervical samples. WGD
refers to the rate of whole-genome duplications.

4.2.1 Identifying progression markers in cervical cancer (CC) data

We applied our algorithm on each of the samples in each of the datasets separately and inferred

probabilities of each SD and GD event. We show the boxplots for the inferred parameter values in

the CC dataset in Figure 4.1, across 31 primary (Figure 4.1(A)) and 16 metastatic (Figure 4.1(B))

samples. “Gain of LAMP3” is the most frequent event in both primary and metastatic samples,

similar to the findings reported in our past work [34].

Next, for each pair of 16 primary and 16 metastatic samples, we performed a statistical test

based on the “tree edge count” statistic, which quantifies, for each tumor phylogenetic tree, the

total number of edges across which gain and loss of each gene is inferred. For each pair of

samples and each gene, we built a 2 × 2 contingency table of computed gain events versus the

total number of remaining events in primary versus metastatic trees and performed a chi-square

test of independence on this table (or Fisher’s exact test if any of the entries of the table was

less than or equal to 10). We then calculated the total number of times each gene showed a

statistically significant (with P-value < 0.05) difference in proportions between the primary and

metastatic samples out of the 16 pairs. LAMP3 most often produced significant results (9 times),

followed by PROX1 (5) and PRKAA1 (2).

We examined whether the statistically significant results are consistently due to higher pro-

portion of gain in primary or in metastatic samples. Out of nine statistically significant compar-
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isons of LAMP3, seven were due to higher proportion of gain in metastasis and two were due

to higher proportion of gain in primary samples. For PROX1, four significant comparisons were

observed due to higher proportion of gain in primary samples and one was due to higher propor-

tion of gain in metastatic samples. This result suggests that “Gain of LAMP3” is associated with

the metastatic stage of cervical cancer, while “Gain of PROX1” is associated with the primary

tumor.

4.2.2 Identifying progression markers in BC and CC2 data

Figure 4.2: Inferred parameter values across ductal carcinoma in situ (DCIS) (A) and invasive
ductal carcinoma (IDC) (B) samples.

We applied our tree building and rate estimation algorithm on the BC dataset. Boxplots for

the estimated rates of each event are shown in Figure 4.2 for DCIS and IDC samples separately.

As a first statistic, we ranked the different events across all of the 13 DCIS and 13 IDC samples

separately based on their median parameter values. The most frequent events (with median

parameter values ≥ 0.05) for both of the DCIS and IDC cases were “Gain of COX2”, “Gain of

MYC” and “Gain of CCND1”. “Loss of DBC2” and “Gain of ZNF217” appeared as the most

frequent events in the IDC samples only.

Similarly to the CC dataset, whose analysis is shown in the main document, we next per-
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formed an edge count-based statistical test of separation of the DCIS and IDC samples based

on the gain/loss values of individual genes. “Gain of MYC” (total 5 out of 13 pairs of samples),

“Gain of COX2”(4) and “Gain of CCND1”(2) showed statistically significant separation of DCIS

and IDC samples more times than any other event. This is interesting because “Gain of MYC”

did not appear to have a significant effect in the progression dynamics of DCIS to IDC in our

previous analysis using an unweighted single gene duplication model (Chapter 2), but was shown

by other methods to have important effects during progression from DCIS to IDC [83]. Our cur-

rent analysis, based on the more realistic model of tumor progression developed in the present

work, supports the conclusion from [83].

Figure 4.3: Inferred parameter values across pre-cancerous (A) and cancerous (B) cervical tumor
samples.

We applied our algorithm on each of the 21 samples in the CC2 dataset. Boxplots for in-

ferred parameter values across the pre-cancerous and cancerous samples separately are shown in

Figure 4.3. Similarly to the BC dataset, we again ranked the events based on the median param-

eter values across all of the pre-cancerous and cancerous samples separately. The most frequent

events (with median parameter values ≥ 0.05) across both of the pre-cancerous and cancerous

samples were “Gain of COX” and “Gain of TERC”. “Loss of CHEK1” appeared more frequently

in the cancerous samples only.
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4.2.3 Classification of cervical samples

We performed classification experiments using tree-based features to separate samples from dif-

ferent stages of cervical cancer in CC. We used these experiments to validate our models and

demonstrate their value, based on our past observation that tree progression models allow one

to distinguish between trees drawn from distinct current or future progression states (Chapter

2, Chapter 3). We used the following set of tree-based features: (1) Edge count: eight features

corresponding to fraction of progression tree edges showing gains and losses of each gene; (2)

Tree level cell: Features corresponding to the fraction of cells at each depth in the progression

trees; (3) Parameter values: nine features corresponding to inferred gain and loss probability of

each gene (SD), and the probability of a whole genome duplication event (GD).

Similarly to our approaches in Chapter 2 and Chapter 3, we applied these methods for three

classification tasks: (i) distinguishing primary samples that progressed to metastasis from their

paired metastatic samples, (ii) distinguishing all primary samples from all metastatic samples,

and (iii) distinguishing primary samples that metastasized from primary samples that did not

metastasize. We compared the classification performance of the features from our current model

with the SD-only (pure rectilinear) model [34] and unweighted SD+GD [35] model of tumor

progression. Since each gene resides on a distinct chromosome in CC, CD events are irrelevant.

We performed 500 rounds of bootstrapping and computed mean accuracy and standard deviations

of accuracy.

The results are presented in Figure 4.4. The parameter value-based features (i.e., the inferred

phylogenetic rate models themselves) are the most accurate predictors for the first and second

tasks of separating primary samples from the metastatic ones. For the clinically important prob-

lem of determining whether a given primary tumor will metastasize, tree level features show

improved prediction accuracy by at least 3.5% over all other feature sets considered, including

comparable feature sets from the earlier unweighted models.
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Figure 4.4: Classification results on the CC dataset.

4.2.4 Survival analysis in the TC dataset

For the TC dataset, we focused our analyses of the tree-progression models on trying to identify

predictors of survival. Based on earlier work suggesting that the distribution of node depth

was a useful predictor of progression in CC [34], we investigated whether the tree level cell

distribution is also a predictor of overall and disease-free survival time in TC. Similarly to the

cervical cancer samples, we considered distribution of cells across all the levels of the tumor

phylogenetic trees inferred on the tongue cancer samples. Using the cell distribution vector as

features, we performed K-means clustering to partition the samples into two subgroups. We used

“Euclidean” as the distance measure for the clustering experiment and performed 10 replicates

of clustering using new initial cluster centroid position.

We performed Kaplan-Meier (KM) analysis (survdiff function in R) to compare either the

survival time or the disease-free survival time between the two groups obtained from the two

subgroups of samples (Figure 4.5). The subgrouping of patients yielded a significant difference

in overall (p-value = 0.0443) and disease-free (p-value = 0.0371) survival between the two pa-

tient groups. We repeated the same clustering procedure and KM analyses using trees derived

from our previous unweighted SD+GD algorithm [35] but did not observe statistically significant

differences in overall (p-value = 0.0784) or disease-free (p-value = 0.14) survival between the
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Figure 4.5: KM curves for the test of association between overall (A) and disease-free (B) sur-
vival time and tree level cell count statistics based subgrouping of patients.

Figure 4.6: COXPH analysis to test the correlation between tree level cell count statistic-based
subgrouping of patients and tumor stage with disease-free and overall survival time.

two patient groups with the older methods.

We then performed multivariate survival analysis using the Cox proportional hazards (COXPH)

model (survfit function in R) to test whether the new test statistics can predict survival or disease-

free survival independent of tumor stage. The results are presented in Figure 4.6. The combined

p-value is statistically significant, showing that the two covariates are independently associated

with overall (disease-free) survival time. The hazard ratio is higher to a significant degree for

tree statistic-based subgrouping compared to tumor stage, meaning there is a higher risk of death

(disease) if a patient is assigned to the higher risk category by the tree statistic subgrouping,

independent of tumor stage.

4.2.5 Distribution of cells across primary and metastatic CC trees:

We previously showed that the differential selective pressures working on different stages of

cancer is reflected in the distribution of cells located across different levels of the trees built on

samples collected from these sites of tumors. We tested how this cell distribution across tree

123



Figure 4.7: Distribution of cells across different tree levels of primary (A) and metastatic (B)
tumor phylogenies.

levels is changed in trees built using our new method. In Figure 4.7, we show the distribution of

cells across different phylogenetic tree levels of the primary and metastatic samples separately.

Comparison between the weighted and unweighted versions of the SD+GD tree cell distributions

reveals different dynamics of tumor progression under these two models. In both primary and

metastatic cases, the unweighted event trees have more cells located in the first few levels in

comparison to the weighted SD+GD trees, where we observe a bimodal distributions of cells

with one mode located at deeper levels in the trees. In the primary case, 72.88% of the total cells

are located in the first 6 levels of the unweighted SD+GD trees, while for the weighted SD+GD

trees, this value is 53.29%. Similar bias in cell distribution is observed for metastatic trees too,

where 87.96% and 79.65% of the total cells are located in the first 6 levels of the unweighted and

weighted SD+GD trees, respectively. Our newly proposed model leads to results more consistent

with the Nowell model of tumor progression, which predicts that initially tumor cells undergo a

brief period of heterogeneity followed by expansion of one or more clones [126].

4.3 Discussion

We have developed algorithms for the problem of inferring tumor-specific mutation parameters

and applying these to improve single-tumor phylogenetic tree inference at the cellular level, with
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specific application to inferring multiscale copy number evolution from single-cell FISH data.

This work involved developing efficient algorithms for a weighted parsimony model of copy

number evolution, which required substantially different methods than the unweighted model

in [35]. We then used an EM-like inference method to learn weight parameters jointly with

tree building, providing for the first time scalable algorithms capable of learning tree models for

hundreds to thousands of single cells isolated from individual tumors. This work addresses a key

need for learning tumor-specific evolutionary models capable of dealing with realistic levels of

cellular heterogeneity in single tumors. We showed that the resulting models provide insight into

tumor-specific variation and lead to improved prediction of future tumor progression in multiple

tumor types.

This work makes an important step towards scalable algorithms for inferring cancer-specific

evolution in single tumors, although much remains to be done to realize the full potential of

the approach. One important limitation is the focus on FISH data. FISH is currently the only

technology for which it is practical to profile genomic variation in hundreds of single cells per

patient for moderate-sized patient populations, an essential feature for tumor progression pre-

diction. The present work thus focused on models of copy number evolution specifically, as it

is both the most common form of hypermutability in tumor evolution [81] and the mechanism

most easily profiled by FISH. FISH, however, offers a far more limited portrait of variation of

each cell than does single-cell sequencing [117]. While single-cell sequencing is not yet practi-

cal for the numbers of cells needed to study variation in evolutionary mechanisms across patient

populations, one can reasonably anticipate that it will eventually overcome that limit, motivating

new algorithmic problems to deal simultaneously with hundreds to thousands of cells, potentially

millions of markers of variation, and with the more classes of genomic variation that sequencing

data can reveal.
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Chapter 5

Application of Tumor Phylogenetics in

Understanding Prostate Cancer

Progression Mechanism1

Tumor phylogenies are used to infer the evolutionary history of tumors. Despite the growing

recognition in the field of the evolutionary aspect of tumor progression, there has been limited

application of tumor phylogenies in the literature to questions of direct clinical value. The use of

tumor phylogenies has mostly been limited to distinguishing driver from passenger mutations [6,

29] as well as understanding how drivers interact in development of single tumors. Phylogenies

have also been used to show how similar subtypes of tumors are phylogenetically related to each

other and identifying which events occur early in tumor progression [43]. But no methods have

yet been introduced by which evolutionary history of a single patient’s tumor could help guide

treatment decisions for that patient.

One of the limiting factors in the use of tumor phylogenies for clinical decision making has

1This chapter was developed from material published in “Heselmeyer-Haddad et al., Single-cell genetic anal-

ysis reveals insights into clonal development of prostate cancers and indicates loss of PTEN as a marker of poor

prognosis, American Journal of Pathology, 184, 2671-2686 (2014)” [82].
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been scarcity of data. One has to sample large number of cells from a single tumor to build a

robust model of tumor progression. Furthermore, tumor data has to be collected from a large

cohort of patients to build statistically robust predictors of future tumor progression. Currently,

fluorescence in situ hybridization (FISH) is the only technology that can be used reliably to

collect genomic data across hundreds to thousands of cells from each site of tumors. As our

algorithms take advantage of FISH data in building tumor progression models, they allow us to

develop a framework for understanding the full potentials of tumor phylogenies in different clin-

ical decision making procedures. The algorithms proposed in this thesis make it possible to build

phylogenies from hundreds to thousands of cells across large number of patients, which makes

it feasible to identify robust and statistically sound predictors from properties of the resulting

tumor phylogenies.

In Chapters 2, 3 and 4, our main focus was on designing novel algorithms for inferring phylo-

genetic models of tumor progression from single cell gene copy number data. In these chapters,

we also developed statistical and machine learning framework for identifying characteristic fea-

tures of the tumor progression models, which were used to draw robust inferences about the

tumor progression mechanism. These features were also shown to be highly informative about

future tumor progression. Our proposed framework is the first instance of use of tumor phyloge-

netic models in clinically relevant tumor progression prediction task. In this chapter and the next

one, we make further advancement towards the goal of using tumor phylogenetics for clinical

decision making by building a mathematical model of cellular-level progression for each tumor

sample, and deriving test statistics and numerical features useful for distinguishing patients sub-

groups, and predicting future tumor progression. We have applied these methods particularly to

samples collected from prostate cancer (this chapter) and tongue cancer (next chapter). A central

aim of the work in this and the next chapter is to evaluate whether the tumor phylogeny-based

markers can be used to predict progression in prostate cancer and prognosis in oral cancer in-

dependent of tumor stage. A novel feature of our approach is the use of phylogenetic analysis

of tumor progression to infer models of cellular evolution that serve as the basis for dividing
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patients into groups with putatively differential prognoses.

In the prostate cancer study, we applied two layers of analysis to a panel of seven FISH

probes. First, we pursued the conventional strategy of profiling the probe set in subsets of tumor

samples from radical prostatectomy (RP) patients with different clinical outcomes (here, non-

progressors and progressors) to identify combinations of probes that distinguish patient groups.

Then, using the single-gene duplication based model developed in Chapter 2, we pursued a

novel, unconventional goal of building a mathematical model of cellular-level progression for

each tumor sample and derived test statistics that can collectively distinguish the two groups of

patients. The contribution of this thesis to that study is application of the single-gene duplication

based method on the prostate cancer dataset to understand the progression of the disease, which

we discuss in this chapter.

5.1 Analysis of tumor heterogeneity in prostate cancer

Prostate cancer is the most commonly diagnosed non-cutaneous neoplasm among American

males (238,590 estimated cases in 2013) and is the second leading cause of cancer-related death

(29,720 estimated deaths) [151]. Disease incidence exceeds mortality by a factor of eight; this

suggests that a large proportion of prostate cancers do not result in disease-associated death. This

observation is attributable to the fact that many prostate cancers do not progress to metastatic dis-

ease. Patients with more indolent tumors would benefit from an “Active Surveillance” approach.

Men with aggressive disease, however, need immediate and often adjuvant therapy after radical

prostatectomy (RP) to improve survival. While serum-level screening for prostate specific anti-

gen (PSA) has increased detection of prostate cancer at earlier stages [25], sensitive and specific

tests to distinguish men with indolent disease from men with aggressive prostate cancers are still

lacking, which creates a dilemma in how to adapt risk-associated treatments [107].

In this chapter, we explore intra-tumor heterogeneity of prostate tumors using a special break-

apart probe for the TMPRSS2-ERG fusion [135] and six single-gene probes selected based on a
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prior array CGH study [129]. In that study, Paris et al. [129] screened prostate cancers treated

with radical prostatectomy from patients with similar high recurrence risk, but different clinical

outcomes, for chromosomal aberrations with array CGH [129]. Comparison with an indepen-

dent set of metastases revealed approximately 40 candidate markers associated with metastatic

potential. For the current study, we chose six of these markers (listed here in chromosome order)

–TBL1XR1 (3q26.23), CTTNBP2 (7q31.2), MYC (8q24.21), PTEN (10q23.1), MEN1 (11q13),

and PDGFB (22q13.1)–to be tested for their potential use as indicators of progressive disease.

An ERG break-apart probe [135] was also chosen for determining whether the fusion status of

TMPRSS2-ERG could serve as an additional progression marker. The markers and two cen-

tromeric control probes (CEP8 and CEP10) were applied as FISH probes to single cell suspen-

sions prepared from archived formalin-fixed paraffin-embedded (FFPE) material for a subset of

cases from the original study [129], i.e., seven prostate cancers from patients with recurrence and

six tumors from patients without recurrence following RP. Our novel approach of multiplexing

FISH probes [83] allowed signal enumeration in the same cells.

5.2 Signal count based tumor progression analysis

We refer to the ordered list of count values for each probe as a “signal count pattern”. To explore

the possibility that tumors with progression are more or less heterogeneous than tumors without

progression, we compared three measures of diversity in the distribution of FISH signal count

patterns: (i) instability index, (ii) Shannon index, and (iii) Simpson index [130]. The indices were

computed for each sample and were then compared between the progressor and non-progressor

distributions either by comparing the mean or by a Wilcoxon signed-rank test. The instability

index is defined as 100 times the number of cell count patterns divided by the number of cells.

To define the other two indices, let pi be the probability of the i-th cell count pattern. Then, the

Shannon index, which is commonly used in information theory and also known as entropy, is

−
∑
pi log2(pi). The Simpson index, which is commonly used in population genetics, is

∑
p2i .
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5.3 Modeling tumor progression and analysis of node depth

For each of the 13 tumors, we modeled the progression of copy number changes using the

single-gene duplication method, as developed in Chapter 2 and implemented in our software

FISHtrees [34], which infers phylogenetic trees describing progression among the observed cell

types as distinguished by their probe copy numbers. A tree is inferred from the data for each

tumor so as to heuristically seek to minimize the total number of copy number changes across

the tree. In this analysis, we used the six gene probes and we used the break-apart probe to assess

the copy number of ERG. We did not use the fusion status or the centromere probes. For each

tumor, FISHtrees generated a tree model in which the normal state (2,2,2,2,2,2,2) is at the root

of the inferred tree and each edge moving away from the root to a new node corresponds to a

change in copy number of one gene. For each node, we also stored the number of cells observed

to match the 7-component signal count pattern for that node.

The number of steps away from the root is usually called the “depth” of a node. Our prior

work on cervical cancer progression trees [34] showed that the distribution of cells by depths

provides a measure of tree topology that is predictive of progression potential. To test whether

this characterization of tree topology is similarly predictive of prostate cancer progression, we

performed an analogous test. We computed the percentages of cells represented by nodes at

each depth in the tree, as described previously [34]. We used percentages of cells at each depth

rather than total cells to normalize for differing numbers of cells analyzed for different tumors.

We visualized the distribution of the depths of cells in progressors vs. non-progressors by a

bar graph. We then tested for significance of the difference between average depths for non-

progressors vs. progressors by a Wilcoxon signed-rank test. Since we hypothesized that the trees

derived from progressor samples would have greater average depth, the Wilcoxon P values were

one-sided.
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Figure 5.1: Distribution of cells across different levels of tumor progression trees for non-
progressor and progressor cases.

5.4 Tree models of tumor progression show a different pattern

of changes in non-progressors vs. progressors

The instability index of the prostate carcinomas with or without progression after radical prosta-

tectomy (RP) is very similar. Besides, wilcoxon tests of the instability index, Shannon index, and

Simpson index comparing non-progressers with progressers showed no statistically significant

differences in. But the frequency of genomic imbalances is substantially higher in the progressor

group, with 1.9 gains or losses per case versus 0.5 gains or losses in the non-progressors. To vi-

sualize the pattern of progression in each case, we constructed tree models of progression using

the software FISHtrees, which infers phylogenetic trees describing likely evolution of the set of

observed signal counts within each tumor from an initially diploid root cell so to heuristically

minimize total copy number changes across the tree. To evaluate whether there were statistically

significant differences between the inferred phylogenetic trees of non-progressors vs. progres-

sors, the cell distribution across tree levels was calculated (Figure 5.1). The analysis showed that
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Table 5.1: Significance of Wilcoxon signed-rank test of weighted average node depth in the trees
of non-progressors vs progressors.

Number of levels used 1-sided P value of test on weighted-average level
5 0.067
6 0.018
7 0.011
8 0.011
9 0.018
10 0.018
11 0.037
12 0.037

in the non-progressors, 70% of all cells were distributed within the first three tree levels, which

was true for only 44% of the cells of the lesions that progressed. This observation indicates that

cells of lesions that have a higher propensity to progress to advanced disease on average deviate

more from the normal diploid status compared to cells from non-progressing lesions. This ob-

servation can be formalized statistically by computing weighted average depth of the nodes up

to some level L for the 6 non-progressors and the 7 progressors. The weighted average depths

for L=5, . . . ,12 for the two sets (non-progressors vs. progressors) were compared by a Wilcoxon

signed-rank test, which shows that the weighted average depth in the progressors is statistically

significantly greater (Table 5.1). For example for L=10, the P value of the test is 0.018. The node

depth is the distance away from the normal signal count pattern (2,. . . , 2) expressed in terms

of the count of copy-number changes. Thus, the cells in the progressor samples have in gen-

eral a trend towards more total chromosomal changes. This trend is not captured by previously

proposed measures of diversity (Shannon index, Simpson index) [130].

5.5 Discussion

Men with slowly progressing prostate cancers could be treated with Active Surveillance ap-

proaches instead of immediate, more aggressive treatment, including surgery, which can have

considerable side effects. This subset of patients will become larger as populations age and
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more tumors are detected early by screening efforts. Distinguishing patients with aggressive

or indolent prostate carcinomas would help in designing risk-adapted neoadjuvant and adjuvant

treatments. In this chapter, we built evolutionary models of tumor progression for each pa-

tient using the gene probes for TBL1XR1, CTTNBP2, MYC, PTEN, MEN1, PDGFB and ERG in

prostate cancer. Using the tumor progression trees, we derived test statistics that are significantly

associated with tumor progression, and thus can help identifying patients in need of aggressive

treatment. Further investigation of the tree-based models may continue to throw light onto the

genetic basis of prostate cancer progression mechanisms.
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Chapter 6

Application of Phylogenetic Analysis to

Oral Tongue Squamous Cell Carcinoma1

Oral tongue squamous cell carcinoma (OTSCC) is associated with poor prognosis, with increas-

ing incidence seen among young adults [149]. Known environmental risk factors for OTSCC in-

clude tobacco usage, either via smoking [101] and chewing [20], and alcohol consumption [108].

Patients diagnosed at earlier stages (I or II) have a significantly better prognosis. Numerous stud-

ies using single-markers attempted to improve disease prognostication could not be validated [5].

In this chapter, we describe work using enumerated copy numbers of four genes and one cen-

tromere probe in 65 cases of OTSCC with detailed patient data and follow-up including disease-

free and overall survival. Our approach of enumerating all probes within the same cells allowed

us to analyze intratumor heterogeneity and co-occurrence of copy number changes. We analyzed

the oncogenes TERC on 3q, EGFR on 7p, CCND1 on 11q, and the tumor suppressor TP53 on

17p. These genes were selected because they have been frequently implicated in the progression

of oral cancer, specifically, the first three have been suggested to be among the primary targets of

1This chapter was developed from material submitted in “Wangsa et al., Phylogenetic analysis of multiple FISH

markers in oral tongue squamous cell carcinoma suggests that a diverse distribution of copy number changes is

associated with poor prognosis, In Revision”.
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copy number gains on chromosome 3q (TERC,[155]), 7p (EGFR,[59]), and 11q (CCND1,[59]),

respectively.

A central aim of this study was to evaluate whether the combination of multiple FISH markers

can be used to predict prognosis in OTSCC independent of tumor stage. A novel feature of our

approach, and the specific contribution of the work in this thesis, is the use of phylogenetic

analysis of tumor progression to infer models of cellular evolution. These models serve as the

basis for clustering patients into groups with putatively differential prognoses.

Our approach utilizes multiple probe single-cell FISH data to build tree models of tumor pro-

gression using the single-gene, single-chromosome and whole-genome duplication based method

developed in Chapter 3. We then derive summary statistics based on all four genes from the tree

models generated and we test for associations between those summary statistics and survival,

while taking into account tumor stage and smoking history. We show that this evolutionary ap-

proach has more predictive power than using the static gene copy number counts for survival

analysis.

6.1 Multivariate survival analyses

We used statistics calculated from FISH copy number data and either clustering or phylogenetic

trees inferred on these FISH samples to test for association with disease-free survival and overall

survival time using KM analysis. We then performed multivariate survival analysis using the Cox

proportional hazards (COXPH) model as implemented in R [166, 171]. The variables used in the

multivariate analysis include: tumor stage, smoking status, and various test statistics derived

from the phylogenetic analysis, as explained below. The objective of the multivariate analysis is

to test whether the new test statistics can predict survival or disease-free survival independent of

tumor stage and smoking status.

For cluster-based subgrouping, we followed convention and assigned the cluster associated

with longer (shorter) survival of patients as the lower (higher) risk group. For smoking behavior,
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we assigned smokers (non-smokers) to the higher (lower) risk category based on previous epi-

demiological results [26, 37, 101, 123]. Because of these assignments of categories, we expected

the hazard ratios (HRs) to be > 1. Nevertheless, P-values are two-sided.

6.2 Clustering of samples by gain/loss patterns

For each cell count pattern in each sample, we estimated whether each gene is amplified or lost

by comparing the copy number counts of the centromere probe with the copy number counts of

that gene to identify one of three possible gain/loss conditions for each gene: No Change (N),

Gain (G) and Loss (L) [183]. Considering all four genes yields 34 = 81 possible combined

gain/loss conditions, each of which we call a “comparator”, for each cell. Although losses of

EGFR and gains of TP53 have been found in some cases of oral cancer [79], we considered only

those comparators that include gain, no change for oncogenes and loss, no change for the tumor

suppressor for a total of 24 = 16 comparator strings for each cell. The comparators represent

the genes TERC, CCND1, EGFR, TP53 in this order from left to right. We calculated the total

number of cells that match each comparator for each sample. Because there is little variation in

the number of cells per sample, we counted total cells rather than fractions of cells. Each sample

is then represented by an ordered list of 16 integers that are considered “features” (a term of art

in machine learning meaning a quantitative measure by which one can distinguish meaningfully

different groups of objects). The transformed dataset becomes a 65×16 dimensional matrix with

integer-valued count entries.

We used K-means clustering (with K=2) as implemented in Matlab to partition the 65 samples

into two non-overlapping subgroups. We then performed KM analysis via the survfit function

in R [171] to compare either the survival time or the disease-free survival time between the two

groups obtained from the unsupervised clustering of samples and derive associated two-sided

P-values. We derived KM curves derived using (1) two simplified representations of the dataset

(“Binarization” and “Thresholding”) and (2) three different distance measures in the K-means

137



clustering algorithm (L1/Rectilinear, Euclidean, Cosine).

We now give an example of the thresholding and binarization procedure. Consider a smaller

example where we have a dataset consisting of five samples S1-S5 and two genes for each of

which we consider {gain,no change} events. The example dataset is shown in Figure 6.1(A).

Under the “thresholding” operation, all the entries in the dataset less than a particular threshold

are replaced with 0 leaving all the other entries unchanged. So, in this case, if we decide that the

threshold is 4, then the thresholded dataset looks like Figure 6.1(B). The “binarization” operation

replaces all the entries below a certain threshold with 0 and all the other entries greater than

or equal to that threshold with 1. In the above example, the binarized dataset would be as in

Figure 6.1(C).

Figure 6.1: Example showing (A) Unprocessed, (B) Thresholded and (C) Binarized data.
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6.3 Tumor phylogenetic tree-based statistics and subgrouping

of samples

We next investigated whether either of the two different types of statistics computed based on

tumor phylogenetic trees inferred from FISH copy number data are associated with disease-free

and overall survival time. We first built tumor progression trees for each of the 65 patients using

an evolution model incorporating single gene gain/loss (denoted SD) and whole genome dupli-

cation (denoted GD), as developed in Chapter 3 and implemented in the software FISHtrees [35].

The model also allows for gains/losses of entire chromosomes, but that capability is not relevant

here because each probe is on a distinct chromosome.

For each gene in each tree, we counted the total number of edges across which that gene’s

copy number is increased (SD gene gain or a GD event) and decreased (SD gene lost event)

and normalized counts by the total number of SD and GD events, collectively producing an

eight-dimensional array of event frequencies for each sample across the four genes. Next, we

calculated the Simpson Index (SI) and Shannon Entropy(MI) for each sample. SI and MI are

computed by taking sum of squared frequency values and sum of frequency-weighted negative

logarithms of frequencies, respectively. For example, if there were only two genes and the (gain,

loss) counts for gene 1 and gene 2 were (10,20) and (30,40), then SI of this patient would be:

(10/100)2+(20/100)2+(30/100)2+(40/100)2 = 0.3 and MI is: −0.1 log(0.1)−0.2 log(0.2)−

0.3 log(0.3)− 0.4 log(0.4) = 0.56. A lower SI or a higher MI indicates that the underlying gene

count distribution is more diverse (closer to uniform) across the four genes tested. The two

measures of diversity are standard in genetics (SI) or information theory (MI), and they have

been previously used to study the diversity of tumor cell populations [130]. We divided the

patients into two groups for each measure, with those above versus below the mean SI (mean

MI) assigned to different subgroups.

Alternative tree-based statistics and subgrouping procedures based on tree topology were also
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considered. For this second tree-based statistic, we extracted various types of features based on

the distributions of cells across the tree levels and performed KM analysis to evaluate whether

these features are associated with survival time and disease-free survival time. We used the

following combinations of features and patient subgrouping procedures:

1. We first calculated the weighted mean tree depth (average distance from the diploid root

of all cells in the tree) for each patient and then used the mean depth value across all the

patients for dividing them into two subgroups, one group above the mean and one group

below the mean. We calculated the weighted mean tree depth by computing the weighted

average of cell distribution across the tree levels.

2. We calculated the weighted mean tree depth for each patient and then used the K-means

clustering with Euclidean distance for dividing the patients into two subgroups.

3. Using the distribution of cells, we calculated MI (Shannon Entropy) for each patient and

then used mean MI across all the patients for dividing them into two subgroups.

4. Using the distribution of cells, we calculated SI (Simpson’s Index) for each patient and

then used mean SI across all the patients for dividing them into two subgroups.

5. Using the distribution of cells, we calculated SI for each patient and then used the K-means

clustering with euclidean distance for dividing the patients into two subgroups.

6. Using the distribution of cells, we calculated MI for each patient and then used the K-

means clustering with Euclidean distance for dividing the patients into two subgroups.

7. We used K-means clustering with euclidean distance on the vector of distribution of cells

across different tree levels data for subgrouping of patients.

8. We used K-means clustering with rectilinear distance on the vector of distribution of cells

across different tree levels data for subgrouping of patients.

9. We used K-means clustering with cosine distance on the vector of distribution of cells

across different tree levels data for subgrouping of patients.
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10. We calculated weighted cell distribution across the tree levels for each patient and then

used the mean weighed value across all the patients for subgrouping purpose. For calcu-

lating the weighted cell distribution, we computed the sum of linear combination of cell

distribution and tree levels.

11. We calculated weighted cell distribution across tree levels 1 to 3 for each patient and then

used the mean weighed value across all the patients for subgrouping purpose.

12. We calculated weighted cell distribution across tree levels 1 to 4 for each patient and then

used the mean weighed value across all the patients for subgrouping purpose.

13. We calculated weighted cell distribution across tree levels 1 to 5 for each patient and then

used the mean weighed value across all the patients for subgrouping purpose.

14. We calculated weighted cell distribution across tree levels 1 to 6 for each patient and then

used the mean weighed value across all the patients for subgrouping purpose.

6.4 Two-means clustering and survival analysis based on sample-

based statistics

We examined nine combinations of representations of probe count G(ain), N(ormal), L(oss) how

data are represented (raw, binarized, or thresholded) and similarity measure (L1/Rectilinear,

Euclidean, Cosine). Six of the nine combinations yielded significant (P<0.05) differences in

disease-free survival, with all yielding similar patient assignments to high-risk and low-risk clus-

ters (Figure 6.5). Binarizing the data (thresholded so that 60% of values are not 0) with rectilin-

ear distance yielded the most significant difference (P=0.0054) in overall survival between the

two patient clusters (Figure 6.2(A)) as well as a significant difference for disease-free survival

(P=0.0107). The KM curves for the five remaining cluster analyses showing significant survival

differences are provided in Figure 6.3. Multivariate survival analysis using both cluster assign-

ment and tumor stage showed that cluster assignment is not a significant predictor of survival
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Figure 6.2: (A) KM curve for test of association between overall survival time and subgrouping
of patients based on binarized data and L1 distance based K-means clustering. (B) KM curve for
the test of association between overall survival time and MI-based subgrouping of patients. (C)
KM curve for the test of association between disease-free survival time and MI-based subgroup-
ing of patients. All the P-values in (a), (b) and (c) are two-sided.

independent of tumor stage.

The survival analysis results for the six clustering choices that gave statistically significant

results are as follows:

1. Experiment 1: L1/Rectilinear distance. No binarization or thresholding is performed on

the dataset. P = 0.0436.

2. Experiment 2: L1/Rectilinear distance. Data are binarized. The threshold is fixed at a

value so that 60% of the total entries are 0. P = 0.0054.

3. Experiment 3: Cosine distance. Data are binarized. Threshold is fixed at a value so that
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Figure 6.3: KM curves for test of association between overall survival time and subgrouping
of patients for five different choices of original/ binarization/ thresholding of the sample-based
comparator frequencies and of three distance measures used in the K-means clustering: (A) no
binarization or thresholding of the dataset and L1/Rectilinear distance for K-means clustering,
(B) binarized data and Cosine distance for K-means clustering, (C) thresholded data and Eu-
clidean distance for K-means clustering, (D) binarized data and Euclidean distance for K-means
clustering, (E) thresholded data and L1/Rectilinear distance for K-means clustering.
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60% of the total entries are 0. P = 0.0226.

4. Experiment 4: Euclidean distance. Data are thresholded. The threshold is fixed at a value

so that 60% of the total entries are 0. P = 0.0246.

5. Experiment 5: Euclidean distance. Data are binarized. The threshold is fixed at a value so

that 60% of the total entries are 0. P = 0.0185.

6. Experiment 6: L1/Rectilinear distance. Data are thresholded. The threshold is fixed at a

value so that 60% of the total entries are 0. P = 0.0436.

Figure 6.4: Cluster centers for subgrouping of patients from two-means clustering using the
original FISH data (no binarization or thresholding) and rectilinear distance.

To better characterize features predictive of survival, we further clustered the raw G, N, L

data to identify short survival (subgroup A) and long survival (subgroup B) clusters. Figure 6.4

provides descriptive statistics about the cluster centers, i.e., the averages of the elements of each

cluster. The center of cluster B is heavily biased towards the “No change of any gene” string

while cluster A shows bias towards the “GGGN” and “GGGL” strings. In the same table, we

show the two representative samples closest to each cluster center. String “NNNN” is most

populated across the cluster B representatives and “GGGN” and “GGGL” are most populated in

the cluster A representatives. Cluster A thus appears to favor patients with many cells with gain

of all three oncogenes while cluster B tends to favor patients with many cells exhibiting no gain
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or loss of any of the genes.

Figure 6.5 reports the subgroup ID of each sample belonging to two different clusters for the

six choices of data representation and similarity measure listed above as Experiments 1-6. The

clustering is robust to the methodology, with 50 of the 65 patients assigned to the same clusters

for all six experiments, but because the P-values are close to 0.05 significance threshold, small

changes in the clustering assignments can affect whether the KM results are statistically signif-

icant. Cluster membership exhibits a clear association with tumor stage, which is unsurprising

since stage is known to be associated with survival. For example, in the experiment of Figure 6.4,

the long-survival cluster B is strongly associated with tumor stages 1 or 2 (P = 0.0045, Fishers

exact test). The cluster assignment largely predicts tumor stage and thus is not an independent

predictor of survival.

6.5 Two-means clustering and survival analysis, taking into

account smoking or tumor stage

We next split the samples based on smoker/non-smoker status and performed survival analysis

on these two sets of samples separately. 19 patients are non-smokers and 34 are smokers, with

the remaining 12 lacking smoking status information and thus not considered in this analysis.

Figure 6.6 reports the P-values from the survival analysis for clustering using the choices in

Experiments 1-6, and based on subgrouping of smokers/non-smokers. 2-means clustering is

associated with survival for the patients belonging to the smoker category, with five of the six

P-values<0.05 and for experiment 2, a P-value of 0.00342.

We then performed COXPH analysis to test the independent predictive power of cluster-based

subgrouping, smoking behavior, and tumor stage as explanatory variables. Figure 6.7 reports the

results of COXPH analysis using clustering and smoking behavior, showing no significant differ-

ence in disease-free (overall) survival for the two clusters after controlling for smoking behavior
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Figure 6.5: Clinical information and subgroup IDs of the patients. Subgroup IDs are shown for
six experimental cases that exhibited statistically significant association between overall survival
time and different subgrouping of patients due to choices of original/ binarization/ thresholding
of the sample-based comparator frequencies and of three distance measures used in the K-means
clustering.
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Figure 6.6: P-values from the analysis for six different subgrouping of patients based on sample-
based comparator frequencies and taking into account smoking history.

Figure 6.7: Results of COXPH survival analysis using six sample-based comparator frequencies-
dependent subgrouping of patients and smoking behavior as explanatory variable.

Figure 6.8: Results of COXPH survival analysis using six sample-based comparator frequencies-
dependent subgrouping of patients and tumor stage as explanatory variable.
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Figure 6.9: P-values showing association between overall, disease-free survival time and sub-
grouping of patients based on 14 tree level cell distribution based features.

and vice versa. None of the six experiments yields a P-value < 0.05 and the confidence intervals

include 1 (not significant) except for experiment 2. Figure 6.8 reports results of COXPH analysis

on clustering and tumor staging, showing that the cluster-based subgrouping is not significantly

associated with disease-free (overall) survival, independent of tumor stage. In every experiment,

the HRs using tumor stage exclude 1 in the confidence interval and are significant, while the HRs

using cluster subgrouping include 1 and are not significant.

6.6 KM survival analysis using tree-based statistics

Based on our previous work with other FISH data sets [82, 83], we reasoned that the weakness of

the above clustering analysis is that it fails to take into account likely evolutionary relationships

between cells with similar combinations of FISH probe counts. Therefore, we used the software

FISHtrees [34, 35] to construct evolutionary models of how each tumor progressed based on the

observed FISH patterns of the four genes (not using CEP4) and tabulated the Simpsons Index
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Figure 6.10: KM curves for test of association between (A) overall and (B) disease-free survival
time and SI-based subgrouping of patients.

(SI) and Shannon Entropy (MI) test statistics, as described in Methods.

After computing SI and MI from the tumor phylogenetic trees, we subdivided the patients

into two groups based on mean SI, mean MI and computed KM curves based on overall (disease-

free) survival time. For MI-based subgrouping, the P-values obtained from the KM analysis for

overall (disease-free) survival is 0.0144 (0.0111), and the KM curve is shown in Figure 6.2(B)

(Figure 6.2(C)). Patients with higher MI value, who have similar frequencies of gene gain and

loss counts across genes, have shorter overall and disease-free survival time compared to those

with preferential gain or loss of specific genes. SI-based subgrouping, shown as Figure 6.10,

yielded comparable results, with P-values from KM analysis of overall (disease-free) survival of

0.0168 (0.0117). Additional KM analysis based on tree topological features, shown in Figure 6.9,

failed to yield statistical significance in all but one of the fourteen combinations considered.

6.7 Multivariate COXPH survival analysis using tree-based

statistics, tumor stage, and smoking

Next, we performed COXPH tests of the relationship between overall (disease-free) survival

time and combinations of the SI/MI-based subgrouping, tumor stage, and smoking status as ex-
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Figure 6.11: Results of COXPH survival analysis using (A) Simpsons Index- (SI) and (B) Shan-
non Entropy (MI) based subgrouping of patients and tumor stage as explanatory variable.

Figure 6.12: Results of COXPH survival analysis using (A) SI and (B) MI based subgrouping of
patients and smoking behavior as explanatory variable.
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Figure 6.13: Subgroup IDs of the patients for SI and MI based subgrouping.
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Figure 6.14: Results of COXPH survival analysis using (A) SI and (B) MI based subgrouping of
patients, smoking behavior and tumor stage as explanatory variable.

planatory variables. Figure 6.11(A) and Figure 6.11(B) show results for SI-based or MI-based

subgrouping and tumor stage. For each subgrouping, the combined P-value is statistically sig-

nificant, showing that the two covariates are independently associated with overall (disease-free)

survival time. The HR is higher for either SI-based subgrouping or MI-based subgrouping than

tumor stage-based subgrouping, with statistically significant association for the SI-based and

MI-based subgroupings, meaning that there is a significant difference in overall (disease-free)

survival for the two subgroups after adjusting for tumor stage. MI-based subgrouping shows

a higher HR and lower P-values (0.0029, 0.0033) for both disease-free and overall survival in

comparison to SI-based subgrouping (0.0036,0.0045).

Figure 6.12 shows results from comparable experiments taking into account SI/MI-based sub-

grouping and patients smoking behavior. The P-values are statistically significant for both SI-

and MI-based subgrouping, after adjusting for smoking behavior. The global P-values are statis-

tically significant for the MI-based subgrouping experiment, and the HR confidence intervals are

greater than 1 for both SI- and MI-based subgrouping and less than 1 for smoking-pattern-based

subgrouping, except for prediction of disease-free survival when considered in combination with

MI subgrouping. Therefore, the tree-based statistics provide additional information regarding

the overall and disease-free patient survival beyond what can be achieved by looking at smoking

behavior alone.
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Figure 6.14 shows results of COXPH analysis between all three variables: SI/MI-based sub-

grouping, smoking behavior and tumor stage. SI- and MI-based subgroupings yield statistically

significant results for prediction of both disease-free and overall survival after adjusting for both

smoking behavior and tumor stage. The HRs are higher for SI and MI subgrouping compared to

the other two.

Figure 6.13 shows the subgroup assignment of the patients based on SI and MI. Low SI and

high MI patients are labeled as group “A”, and high SI and low MI patients as group “B”. The

two experiments had the same subgroup assignments for all patients except T27 and T38, who

were assigned to the short-surviving group by the MI subgrouping but the long-surviving group

in the SI subgrouping.

6.8 Discussion

In this chapter, we built evolutionary models of tumor progression for each patient using the

gene probes for TERC, EGFR, CCND1 and TP53 in tongue cancer. The concept that cancer is

an evolutionary process and can be modeled using phylogenetic algorithms has been repeatedly

demonstrated [8]. Using the tumor progression trees, we derived test statistics that are signifi-

cantly associated with disease-free and overall survival in multivariate analysis, even after taking

into account tumor stage and smoking.

We have developed a general analysis framework for FISH data sets using several gene

markers on hundreds (here 250-450 cells per tumor) of single cells from numerous samples.

In the previous chapter, the prostate cancer study compared non-paired progressing and non-

progressing tumors, and one analysis objective was to derive a test statistic that could distinguish

between these two categories. In this study, the patients were selected to have similar clinical

parameters (e.g., almost identical Gleason scores), so that when testing for associations with

prognosis, the clinical covariates would not be confounding factors.

In contrast, in the OTSCC study, we analyzed 65 oral tongue cancer samples with known
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tumor stage, tobacco usage, and survival. The tumor stages ranged from 1 to 4 and the study

included both smokers and non-smokers. Therefore, a principal objective of the data analysis

was to derive a test statistic T that would (i) partition the cases into two or more categories

and (ii) be associated with significantly different (disease-free) survival after taking into account

tumor stage and smoking status. Survival analysis using single gene markers or two gene mark-

ers simultaneously showed no significant association with prognosis, contrary to some previous

studies of the same genes, especially CCND1 [2, 15, 24, 57, 77, 94, 98, 112, 114, 115, 116] but

consistent with others [112, 128, 142, 181, 186]. One limitation of some of the previous studies

claiming associations between some of the four genes and poor prognosis is that tumor stage was

not considered as a covariate by these studies [2, 57, 61, 77, 94, 116].

Despite the different study designs, we have shown that the same phylogenetic analysis

framework is effective in both prostate and tongue studies. In Chapters 2, 3 and 4, we have

developed machine learning methods for identifying tree based features for predicting tumor

stages. The work in this chapter and in Chapter 5 develops new directions in analyzing tumor

phylogenetic data and finding associations between tumor progression characteristics and clini-

cal parameters. The work in this chapter demonstrates that the tree structures capture important

characteristics of tumor progression mechanisms and that characteristic features quantifying the

basic tree topologies can be important predictors of patient survival time.
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Chapter 7

Generalized Matching Distance and Its

Application to Tumor Phylogenetics

Phylogenetic trees are used to infer evolutionary relationships among taxa representing biologi-

cal species. Formal tree comparison measures are widely used to identify and to quantify com-

monalities and differences between trees. Such comparisons among phylogenies are also used

for a variety of tasks that are not obviously tree-construction problems, such as studying sym-

biosis between host and pathogens [36], identifying horizontal gene transfer [1], and predicting

protein-protein interactions [64].

A number of methods have been proposed to calculate distances between phylogenetic trees

built on a common set of taxa. The most popular approach is the Robinson-Foulds (RF) [140]

method, which measures the total number of bipartitons present in one tree but not in the other

and vice versa. RF, however, returns poorly distributed distance values that do not discriminate

well [27]. RF also lacks robustness in the face of small changes to the topology [102]. An al-

ternative approach is to calculate edit distances between trees, meaning the minimum number of

tree rearrangement operations needed to transform one tree into another [80, 184]. Three com-

mon tree operations are Nearest Neighbor Interchange (NNI), Subtree Pruning and Regrafting

(SPR), and Tree Bisection and Reconnection (TBR). Computing edit distance using all three op-
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erations is NP-hard [3, 39, 85], limiting their practical use. RF, by contrast, can be computed in

polynomial time.

Lin et al. [102] proposed the Matching Distance (MD), a breakthrough in phylogenetic tree

comparison because it is computable in polynomial time and is a metric, like RF, but is empiri-

cally well-distributed and robust to small changes like the intractable edit-distance methods. To

compute MD(T1, T2), one starts with a complete bipartite graph B(T1, T2) whose vertices are

the bipartitions of T1 and T2 induced by removing one internal edge of either tree. Each bipar-

tition bi can be represented by two complementary 0/1 vectors indicating whether each taxon is

present(1)/absent(0) in the first/second set of the bipartition. The weight of the edge (b1, b2) is

the minimum Hamming distance between one of the two vectors representing b1 and one of the

two vectors representing b2. Then, MD(T1, T2) is the weight of the minimum bipartite matching

on B(T1, T2). MD can be computed in polynomial time.

Another generalized version of the Robinson-Foulds (GRF) metric was proposed in [19]. The

RF metric is absolute in the sense that it adds 0 or 1 if a particular bipartition is present in one tree

or both trees. GRF relaxes this restriction by computing a matching between the bipartitions of

two trees, and by assigning a cost function that measures the dissimilarity between the matched

bipartitions based on the presence and absence of subsets of taxa. Computation of the GRF is

NP-hard and an Integer Linear Program was proposed [19].

All these approaches, however, are limited in the kinds of trees to which they apply. RF and

GRF assume that trees being compared are defined on identical sets of taxa and that no observed

taxon is a tree ancestor of another observed taxon. These restrictions are inherited by MD and

needed in the proof that MD is a metric [102]. Some of the edit distance methods are defined only

for binary trees and the MD metric proof relies on the trees being binary. These tree structure

assumptions break down in some important applications.

A motivation of the work in the present chapter is tumor phylogenetics, in which one builds

phylogenies on tumor cell populations to understand tumor progression, including metastasis [8,

34, 55, 100, 134, 156]. In evaluating phylogenetic models of tumor evolution, one paradigm is to
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start with a ground-truth tree T and an evolutionary model that is simulated on data related to T .

The modeled method generates a tree S on the simulated data, and one compares S to T (over

many replicates) to quantify the quality of the tumor progression model [71]. Many observed

tumor states can evolve from another observed tumor state and create nodes of arbitrarily high

degree due to intra-tumor heterogeneity, which is extensive in various real data sets [83, 153,

156]. Similar problems would be expected to arise in other applications of phylogenetics using

small marker sets or short time scales, such as phylogenetics of viral strains or intraspecies

phylogenetics arising in population genetic studies.

It would be desirable to generalize MD so that 1) the two taxa sets need not be identical,

2) a taxon can be at a non-leaf node and 3) the trees need not be binary, while retaining the

polynomial time property. In Chapter 2, we established a generalized version of MD to meet

the three criteria and applied it to compare tumor phylogenies inferred on single cell gene copy

number data. In this chapter, we refer to the distance measure proposed in Chapter 2 as F 1.

That generalization, though, resulted in a measure that was no longer a metric and could result

in poor ability to distinguish even very different topologies in some situations. In this chapter,

we address these problems by proposing a novel generalized matching distance function called

F 2, which differs from F 1 in accounting for unmatched bipartitions in the graph B ignored by

F 1 and MD. We show that F 2 improves upon the prior art by retaining the generality of F 1 over

MD and RF, and improving discrimination of different trees relative to F 1.

Our principal contributions in this chapter are as follows:

1. We propose a novel weighted matching based formulation, F 2(Ti, Tj), for measuring dis-

similarities between two phylogenetic trees Ti and Tj . Our proposed measure, F 2, allows

the trees to have different sets of taxa, allows trees to be non-binary, and allows taxa to be

at non-leaf nodes.

2. We propose a pre-processing step to remove the taxa not in common to the two trees and

show that this step helps avoid potential over-penalization of the F 2 distance measure.
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3. We demonstrate empirically, through extensive analyses using the tree reconstruction paradigm [71],

that F 2 better captures underlying dissimilarities between the trees in comparison to F 1 or

to a similar generalization of RF.

7.1 Methods

In this section, we first define our proposed distance measure between a pair of trees, F 2. We

then establish some key mathematical properties of F 2 in comparison to the earlier F 1 measure.

Finally, we summarize data and methods used to empirically compare the performance of F 1,

F 2, and RF.

7.1.1 Distance formulations

Removing an edge from a tree Ti creates two components, partitioning the taxa into two sets,

called a bipartition. Ti can be uniquely represented by the set of bipartitions Pi. Let Xi denotes

the set of taxa on which Ti is built; let the total number of nodes in Ti be ni. The bipartitions

derived by removing leaf edges have one singleton set and are called “trivial bipartitions” and

are usually ignored for tree comparison purposes [102]. From here onward, we use the single

word “bipartition” to mean “nontrivial bipartition,” i.e., a bipartition arising from removal of an

internal edge. The total number of bipartitions in Ti is denoted by ri. In a leaf-labeled binary

tree, ri = |Xi| − 2, but the present work allows for trees that are not binary. The shared set of

taxa between two trees Ti and Tj is Xij (Xij = Xi ∩Xj), and the cardinality of Xij is nij .

To illustrate the notation, we present an example using two hypothetical trees Ti and Tj in

Fig. 7.1(A) and Fig. 7.1(B), respectively. Here, Xi = {1, 2, 3, 4, 5, 6, 7, 8, 9}, ri = 3, ni = 9,

Xj = {1, 2, 3, 6, 7, 8, 9}, rj = 2, nj = 7, Xij = {1, 2, 3, 6, 7, 8, 9} and nij = 7. The set of

bipartitions Pi in Ti is

{{{1, 3, 6, 7, 8, 9}, {2, 4, 5}}, {{3, 6, 7, 8, 9}, {1, 2, 4, 5}}, {{6, 8, 9}, {1, 2, 3, 4, 5, 7}}}
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Figure 7.1: Trees (A) Ti and (B) Tj used to illustrate terminology used in the paper.

and the set of bipartitions Pj in Tj is {{{1, 3, 6, 7}, {2, 8, 9}}, {{1, 2, 8, 9}, {3, 6, 7}}}.

In Chapter 2, we proposed the distance measure F 1, a generalization of MD to arbitrary sets

of taxa, computed as follows. Given two trees Ti and Tj on any sets of taxa, the algorithm first

computes the set of bipartitions Pi and Pj . It then builds a complete weighted bipartite graph

B(Pi, Pj), where each node in B represents a bipartition. For a pair of bipartitions pi ∈ Pi and

pj ∈ Pj , the weight of the edge connecting pi and pj is max(|p1i∩p1j |+|p2i∩p2j |, |p1i∩p2j |+|p2i∩p1j |),

where p1i , p
2
i and p1j , p

2
j denote the sets of taxa in the bipartitions pi and pj respectively. Third,

it computes the maximum weighted matching Mij on B(Pi, Pj). In the MD formulation for

identical taxa sets, minimum-weight matching using the Hamming distance [102] and maximum-

weight matching using |Xi|− Hamming distance are equivalent. Here, we prefer the maximum-

weight matching version. The F 1 distance, expressed as a percent disagreement between Ti and

Tj using the weight of the maximum matching Wij , is:

F 1
ij = F 1(Ti, Tj) =

(
1− Wij

nij min(ri, rj)

)
× 100 = (1− S1

ij)× 100 (7.1)

If we apply the matching algorithm on Pi and Pj computed from the trees in Fig. 7.1, the first

and second bipartitions in Pi are matched with the first and second bipartitions in Pj , respectively.

The weight Wij of the matching is 10. Plugging these values in the equation for F 1, we get

F 1
ij = 28.57%.

F 1 can perform poorly on dissimilar trees because it considers only the bipartitions that
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are members of Mij and is oblivious to unmatched bipartitions. Trees built on arbitrary taxa

sets may be very different on the unmatched bipartitions and F 1 then underestimates the tree

dissimilarities. Unmatched bipartitions do not arise for MD because limiting to leaf-labeled

binary trees on identical taxa sets [102] implies that the numbers of bipartitions in the two trees

are equal.

To address this issue, we propose here a novel formula F 2 that considers all the bipartitions

while calculating the distance:

F 2
ij = F 2(Ti, Tj) =

(
1− Wij

nij(ri + rj)−Wij

)
× 100 = (1− S2

ij)× 100 (7.2)

For the example trees presented in Fig. 7.1, F 2
ij = 60%.

7.1.2 Theoretical properties of F 1 and F 2

Here, we describe some key theoretical properties of F 1 and F 2 that collectively show that F 2

better captures dissimilarity of trees with distinct taxa sets than F 1.

We first note that when taxa sets are dissimilar, it is possible to have arbitrarily different trees

that nonetheless have zero F 1 distance. This observation is formalized in the following lemma:

Lemma 32. For any integer q and tree Ti, there exists a tree Tj which differs from Ti in q edges,

but for which F 1
ij = 0.

Proof. We prove the lemma by construction, defining Tj to be any tree for which Ti is a subtree of

Tj and the remainder of Tj has q arbitrary additional edges. Then, Wij = nij min(ri, rj) = nijri

and so F 1
ij = 0, although Ti and Tj differ from each other on the q edges.

F 1 compares only the taxa in common and because of the term min(ri, rj) in the formulation

of F 1, one can add arbitrarily many taxa to the larger of the two trees without changing F 1. In

contrast F 2 uses the term (ri + rj), so adding taxa to either tree, except as leaf children of the

root, decreases F 2.
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There is a complementary problem for F 2. Two trees can have arbitrarily high F 2 distance

despite perfect agreement in all shared taxa. This assertion can be proven by construction and

formally stated as follows:

Lemma 33. For any 0 ≤ ε < 100, there exist trees Ti and Tj such that F 2
ij ≥ ε even though

min(ri, rj) number of bipartitions of Ti and Tj completely match each other on the common set

of nodes Xij = Xi ∩Xj .

Proof. Without loss of generality, suppose, ri = min(ri, rj). If ri bipartitions of Ti and Tj

completely match with each other on Xij , we have Wij = nijri. Now,

F 2
ij =

(
1− Wij

nij(ri + rj)−Wij

)
× 100 =

(
1− Wij

nijri + nijrj −Wij

)
× 100

=

(
1− nijri

nijrj

)
× 100 =

(
1− ri

rj

)
× 100

(7.3)

Now, if rj ≥ 100ri
100−ε , then from the above, we have,

F 2
ij ≥ 100

(
1− ri

100ri
100−ε

)
≥ 100

(
1− ri(100− ε)

100ri

)
≥ 100

(
100− 100 + ε

100

)
≥ ε (7.4)

Depending on the application, the potential for high dissimilarity established by Lemma 33

may or may not be desired. To reduce the imbalance between the trees, one can remove the

taxa not shared via a pruning procedure applied before computing the distance. We illustrate this

procedure in Fig. 7.2. Fig. 7.2(A) and Fig. 7.2(B) show two trees Ti and Tj where the shared set

of taxa is {1, 4, 5, 6, 7, 9}. In the pruning step, the nodes present in one tree but not in the other

are selected for removal. We denote this set of nodes Y , where Y = (Xi ∪Xj)\(Xi ∩Xj). For

each y ∈ Y , we remove y and associated edges and connect the children of y to the parent of
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Figure 7.2: Example of pruning. Two trees (A) Ti and (B) Tj before and after ((C) Ti and (D)
Tj) removal of the nodes not present in both of the trees.

y. The final pruned tree is the same for any order of node pruning. Fig. 7.2(C) and Fig. 7.2(D)

show the two resulting trees after the pruning step on the trees in Fig. 7.2(A) and Fig. 7.2(B),

respectively.

A theoretical disadvantage of F 1 is that it is not a metric. We can establish that F 1 is not

a metric by showing that it is possible to construct trees Ti, Tj , and Tk such that F 1(Ti, Tk) >

F 1(Ti, Tj) + F 1(Tj, Tk), leading to the following formal statement:

Lemma 34. There exist trees Ti, Tj , and Tk for which F 1 does not satisfy the triangle inequality,

and hence F 1 is not a metric.

Proof. We prove the lemma by construction. Suppose Tj is a subtree of both Ti and Tk. Then

Wij = nij min(ri, rj) = nijrj and Wjk = njk min(rj, rk) = njkrj . As a consequence, F 1
ij = 0

and F 1
jk = 0. Now, suppose on Xik, the set of taxa in common to Ti and Tk, each node has the

same parent except for one edge where the parent-child relationship is reversed in Tk, meaning

for a pair of node u and v, u is the parent of v in Ti, but v is the parent of u in Tk. Because of

this, Wik = nik min(ri, rk)− 2, resulting in F 1
ik > 0. So, we have F 1

ik > F 1
ij + F 1

jk and F 1 does

not satisfy the triangle inequality.
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7.1.3 Tree generation methods

To evaluate empirically the performance of our proposed distance measure, we used tumor phy-

logenetic trees built on single-cell gene copy number data collected using fluorescence in situ

hybridization (FISH), which allows one to count copy numbers of several genes in hundreds of

single cells. For inference of tumor phylogenies, we used the FISHtrees software [34] which

builds a maximum parsimony model of tumor progression using a combination of single gene

duplication (SD) (gain or loss of a single gene), single chromosome duplication (CD) (gain or

loss of all the genes residing on the same chromosome), or whole genome duplication (GD)

(doubling of all gene copy numbers) events. The input to FISHtrees is three-dimensional; the

first dimension is a set of files, one per sample. Each file is a two-dimensional matrix, where the

columns are FISH probes and rows represent cells. Entry (c, p) is the number of copies of probe

p in cell c. Cells with identical probe counts are combined into a “count pattern” and represented

by a single node in the tree.

Neighbor Joining (NJ) and Maximum Parsimony (MP) are two of the most widely used algo-

rithms for inferring single-tumor phylogenies [118, 161]. We performed experiments to compare

the performances of F 1, F 2 and RF on phylogenetic trees built using NJ, MP and FISHtrees. In

NJ, we treated the individual copy number profiles as taxa and used Euclidean distance. For MP,

we considered copy numbers as arbitrary characters. We used implementations of NJ and MP in

MEGA version 6 [167]. For MP, we used the “Close-Neighbor-Interchange on Random Trees”

search method, and for the parameters “Number of Initial Trees” and “MP search level”, we used

the default values of 10 and 1 respectively.

7.1.4 Implementation of F 1, F 2 and RF

We wrote Matlab programs to compute F 1, F 2 and RF. For computing maximum matchings, we

used the Hungarian algorithm [97] (function“Hungarian” by Alexander Melin from the Matlab

Central File exchange).
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We used the following procedure to calculate the distance between two particular trees Ti and

Tj using RF:

1. Set matched = 0.

2. For each of the ri bipartitions in Ti, if any of the rj bipartitions in Tj matches completely

with that bipartition, then increment matched by 1.

3. For each of the rj bipartitions in Tj , if any of the ri bipartitions in Ti matches completely

with that bipartition, then increment matched by 1.

4. Calculate RF distance as a percentage = (1− matched
ri+rj

)× 100.

7.2 Results

In this section, we present experimental results to evaluate our proposed formulation F 2 to mea-

sure the distance between phylogenetic trees in comparison to F 1 and the Robinson-Foulds (RF)

metric. We first present results on the simulated dataset, which also reveal the importance of

performing the pruning step before applying the F 2 formulation. Next, we present results on the

real tumor datasets to evaluate F 1, F 2 and RF.

7.2.1 Generating trees for comparisons

To evaluate the performances of F 1, F 2 and RF, we used both simulated and real tumor datasets.

We generated a simulated dataset of 100 trees with six probes, two of which were considered as

being on the same chromosome and the remaining four residing on separate chromosomes. Each

tree was generated by starting from a diploid (all probes have 2 copies) root node and executing

a branching process in which each node was recursively assigned a number of children drawn

from a geometrically distributed random variable with mean 0.50. Each child was generated from

its parent by selecting a single gene duplication (SD), single chromosome duplication (CD), or

whole genome duplication (GD) event with probability 11.67% for each of the six possible SD
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events, 18% of a CD event, and 12% of a GD event. These probabilities were selected manually to

approximately reflect apparent frequencies observed in real breast cancer data sets. This process

terminated when all leaf nodes were assigned zero children by the sampling. We then generated

simulated FISH input data derived from each tree by uniformly sampling 300 cells from the

nodes. The simulated data correspond to probe counts for each sampled cell in the tree. We

applied FISHtrees [34] to reconstruct a minimum-cost tree for the SD+CD+GD event model.

We also used single-cell copy number data collected from Cervical Cancer (CC) [183] and

Tongue Cancer (TC) patients. These datasets consist of the following samples:

1. The CC [183] FISH data consist of 47 samples organized into 16 primary samples of

metastatic patients, 16 paired metastasis samples from the same patients, and 15 primary

samples from patients who did not progress to metastasis. Each sample has 223-250 cells

profiled on four FISH probes: LAMP3, PROX1, PRKAA1 and CCND1. The number of

unique cell count patterns in a sample ranges between 46-213. All of the four genes are

oncogenes, which typically show copy number gains in tumor cells.

2. The TC FISH data were collected from 65 patients whose tumors were at one of four

clinical stages. Each sample consists of 241-250 cells and profiled on four FISH probes:

TERC,CCND1, EGFR and P53. The number of unique cell count patterns is 73-244.

TERC,CCND1 and EGFR are oncogenes, and P53 is a tumor suppressor.

7.2.2 Comparison of F 1, F 2, and RF using simulated data

We performed experiments to evaluate F 1, F 2, and RF as the number of sampled cells varied. We

sampled 20, 50, 100, 150, and 200 cells from each of the 100 simulated replicates and inferred

tumor phylogenies using FISHtrees [34]. Then, we used F 1, F 2 and RF to calculate the distance

between each pair of simulated and inferred trees according to the tree reconstruction paradigm.

Fig. 7.3 and Table 7.1 show F 1 and F 2 mean values and standard deviations as functions of

size of simulated subtrees. Table 7.1 shows the mean number of bipartitions in the simulated and
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Figure 7.3: Comparison of (A) F 1 and (B) F 2 distance values between simulated and inferred
trees without pruning taxa. Comparisons are made for subsample sizes of 20, 50, 100, 150 and
200.

inferred trees (mean rS and mean rI), mean cardinality of the common taxa set between each

pair of simulated and inferred trees (mean nSI), mean F 1, and mean F 2 values with standard

deviation (s.d.) for simulated tree comparisons without pruning. Since the simulated and inferred

trees have taxa not in common between them, RF is not defined on these data and is therefore

omitted from the figure and the table. We would expect that increasing sample sizes would lead

to more accurate inferences and thus to lower distances between simulated and inferred trees.

The figure shows that both mean F 1 and mean F 2 distances decrease with increasing sample

size, as expected. F 2 values decrease at a substantially higher rate than mean F 1 values, though,

and thus provide clearer discrimination between different levels of similarity.

Table 7.1: F 1 and F 2 distance values for trees inferred from simulated data on different subsam-
ples of the simulated dataset without pruning taxa.

# cells mean rS mean rI mean nSI mean F 1(s.d.) mean F 2(s.d.)
20 57.66 11.42 21.25 4.14 (2.23) 79.59 (6.27)
50 57.66 22.63 40.88 3.49 (1.79) 60.20 (9.57)

100 57.66 33.08 57.55 3.09 (1.58) 42.60 (10.87)
150 57.66 39.41 69.00 2.68 (1.21) 32.04 (10.34)
200 57.66 42.32 74.16 2.79 (1.69) 27.88 (8.80)
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Figure 7.4: Comparison of (A) F 1, (B) F 2, and (C) RF distance values between simulated and
inferred trees after pruning trees in each pairwise comparison to contain only their shared taxa.
Comparisons are made for subsample sizes of 20, 50, 100, 150 and 200.

One important contributing factor to the improved F 2 performance may be the high imbal-

ance in the mean number of bipartitions between the simulated and inferred trees, which is fac-

tored into F 2 but not F 1 scores. To test whether imbalance alone explains the better separation

by F 2 scores, we pruned the two trees in each comparison to a common set of taxa as described in

Methods and repeated the pairwise comparisons. This pruning also makes it possible to compute

RF scores and these were included in comparison with F 2 and F 1 scores. Fig. 7.4 and Table 7.2

shows the results. Pruning reduces the imbalance in the mean number of bipartitions between the

simulated and inferred trees. As a consequence, the mean F 2 values decrease in comparison to

no pruning, but still show substantially better ability to separate trees than F 1. RF is substantially

inferior to both methods, showing much higher variance at all sample sizes and essentially no

ability to identify the trend of increasing similarity with sample size.

Table 7.2: F 1 and F 2 distance values for trees inferred on simulated data after pruning is per-
formed on the trees.

# cells mean rS mean rI mean nSI mean F 1 (s.d.) mean F 2 (s.d.) mean RF (s.d.)
20 8.7 11.42 21.25 7.04 (3.57) 33.66 (14.33) 81.05 (23.66)
50 20.48 22.63 40.88 5.72 (2.6) 20.43 (7.93) 71.94 (25.32)

100 31.49 33.08 57.55 4.53 (2.04) 15.28 (6.35) 72.16 (26.46)
150 39.32 39.41 69.00 3.72 (1.57) 11.80 (4.01) 59.96 (25.16)
200 42.55 42.32 74.16 3.86 (1.98) 11.91 (4.34) 59.05 (25.21)

Fig. 7.5 provides a scatter plot of the F 1 vs. F 2 distance values for trees inferred on samples
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Figure 7.5: Scatter plot showing relationship of F 1 and F 2 distances between simulated and
inferred trees.

consisting of 200 cells. The figure shows that for most values of F 1, F 2 exhibits a wide range of

values and thus can discriminate the trees better that F 1. The correlation coefficient of F 1 and F 2

is 0.58. From this figure, it can also be seen that F 1 has a narrower distribution, concentrated in

a narrow region near 0 (with mean 3.72 and s.d. 1.83) compared to F 2. The larger spread of the

distribution of F 2 (s.d. of 11.98) again indicates that it provides better discrimination between

more or less similar pairs of trees.

7.2.3 Comparison of performances of F 1, F 2, and RF in assessing tree-

building algorithms

One motivation of the present work is to provide a sound basis for comparing qualities of in-

ferences of different tree-building algorithms on common data sets. Neighbor Joining (NJ) and

Maximum Parsimony (MP) are two of the most widely used algorithms for inferring single-

tumor phylogenies [118, 161]. We therefore performed experiments to compare F 1, F 2 and RF
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Figure 7.6: Mean F 1, F 2, and RF distance values illustrating the performances of NJ, MP, and
FISHtrees algorithms to infer trees on the simulated data.

in measuring the distances among phylogenetic trees built using NJ, MP and FISHtrees. We

applied the three algorithms to infer tumor phylogenies on the simulated data, deriving trees for

each method on 100 simulated replicates.

The mean distances are shown in Fig. 7.6. F 1 tends to infer low distance values for all

three methods, RF higher values, and F 2 values intermediate between the two. F 1 shows the

worst performance in distinguishing the methods, showing variations between the three methods

within the noise level of comparisons within methods. Both F 2 and RF show statistically indis-

tinguishable perfomance for NJ and MP but substantially better performance for FISHrees. We

quantified the degree of separation of the FISHtrees vs. NJ/MP trees by the “fold change” ratio

between mean NJ/MP distance values and mean FISHtrees distance values for each of the dis-

tance measures. F 2 produced fold changes of 4.02 and 4.2 for FISHtrees vs. NJ and FISHtrees

vs MP trees, respectively. RF produced fold changes of 2.18 and 2.08 for FISHtrees vs. NJ and

FISHtrees vs. MP trees. F 1 produced fold changes of 1.51 and 1.97 for FISHtrees vs. NJ and

FISHtrees vs. MP trees, respectively. F 2 is thus the most effective at bringing out differences in

accuracy between the three methods, with F 1 the least effective and RF intermediate.

7.2.4 Comparison of F 1, F 2, and RF using real cancer data

We next performed experiments to compare F 1, F 2, and RF in distinguishing trees from tumor

samples in the real CC and TC datasets in order to demonstrate the applicability of the proposed
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Figure 7.7: Comparison of different distance formulations based on trees inferred from real
tumor data derived from (A) CC and (B) TC samples.

method to real biological data.

For each of the 16 pairs of primary and metastatic samples in the CC dataset, we used

FISHtrees to infer the tumor phylogenetic trees and then measured the pairwise distances be-

tween the trees for each pair of primary samples and for each pair of metastatic samples. Fig. 7.7(A)

shows distributions of scores for each of the comparisons. We know of no reason to expect pri-

mary trees to be more similar to one another than metastatic trees are to one another or vice versa,

and indeed the two situations yield comparable distributions of scores for all three methods. F 2

appears to show the greatest range across sample pairs, however, with F 1 measures concentrated

at small values and RF at large values.

We next examined the ability of F 1 and F 2 to distinguish trees inferred on subsamples of the

same tumor versus different tumors. We created 30 random subsamples of 200 cells from each

of the 65 tongue cancer (TC) samples, inferred tumor phylogenetic trees using FISHtrees, and

calculated pairwise F 1 and F 2 distances between all pairs of trees inferred on different tumors

and all pairs inferred on different subsamples of the same tumors. The box plots in Fig. 7.7(B)

show a comparison of the distances for trees inferred from subsamples of the same tumor versus

subsamples from different tumors. F 2 better highlights the lower distances observed for trees

created from the same tumor versus those created from distinct tumors than does F 1. Further-
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more, F 2 exhibits a greater spread than F 1 within each class, again suggesting that F 2 is better

able to discriminate among subtle differences in levels of agreement.

7.3 Discussion

We introduced a formulation, F 2, that computes a distance between two phylogenetic trees built

on arbitrary sets of taxa, where the taxa can be non-leaf nodes. F 2 generalizes the Matching

Distance [102], which provided a more sensitive measure of tree distance than the prevailing

Robinson-Foulds measure by finding optimum matching in a weighted bipartite graph of tree

bipratitions. Like MD and RF, F 2 is computable in polynomial time and is therefore scalable to

large trees. We further proposed a pruning-based preprocessing step that removes the taxa not

shared between two trees in order to avoid potential over-penalization of unmatched bipartitions.

We tested F 2 by comparing the inferred and ground truth trees in a simulated dataset and have

shown that it exhibits better discrimination in comparison to RF and the earlier F 1 generalization

of MD. The proposed formulation also better distinguishes the phylogenetic trees built on real

FISH gene copy number data collected from tumors. Besides tumor phylogenetics, the proposed

formulation can be used to measure distance between phylogenies in other contexts where the

trees do not share taxa. One potential application is microbial metagenomics, where small sam-

pling from some environment (e.g., gastrointestinal tract) misses some taxa and repeated samples

are unlikely to have the exact same set of taxa. The method may also be useful in statistical ap-

plications of phylogenetics involving leave-one-out cross validation or bootstrapping over taxa.
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Chapter 8

Conclusions and Future Directions

Inference of tumor phylogenies reflecting the underlying mechanisms of tumor progression is an

important but challenging problem, for which, to the best of our knowledge, no general, reliable

algorithms have yet been developed. In this thesis, our goal was to develop novel theory and

algorithms specifically tuned to the underlying mechanisms of tumor evolution. An evolutionary

perspective has long been recognized as important for explaining the intratumor and intertumor

heterogeneity and understanding practical challenges to cancer treatment, such as the emergence

of disease resistance after treatment. In this thesis, we started with a simple single gene duplica-

tion model of tumor progression in Chapter 2 and developed an exact and an heuristic algorithm

for inference of tumor phylogenies. These algorithms allowed us, for the first time, to develop

a procedure that can build tumor progression models considering gene copy number data col-

lected across hundreds to thousands of cells, and thus amenable to capturing realistic levels of

intratumor heterogeneity. We also developed a framework for identification of characteristic fea-

tures of tumor progression allowing us to highlight the different selective pressures working on

different stages of cancer. Finally, we developed machine learning algorithms to identify tree-

based features that are informative about future tumor progression, providing a new strategy for

developing phylogenies for use in cancer diagnosis and treatment.

In Chapter 3, we extended our phylogeny inference model from Chapter 2 and derived novel
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theory and algorithms for building a model of tumor evolution incorporating changes at the scale

of full chromosomes and all probes in the genome, in addition to single gene probes. We derived

algorithms to reconstruct maximum parsimony sequences of single gene, single chromosome and

whole genome duplication events, and thus estimates of evolutionary distance, between pairs of

cells assayed by FISH probes. We incorporated these inferences into our method for building

phylogenies of hundreds of cells in single tumors. Simulation experiments showed that addition

of chromosome and genome level duplication events improve phylogeny inference accuracy by

the comprehensive model relative to the the simpler single gene duplication model. Applying the

new method on the real tumor data resulted in inference of more parsimonious models of tumor

progression and improvement of tumor diagnosis and prognosis.

The major limitation of the models developed in Chapters 2 and 3 was that all the gain/loss

events at gene, chromosome and genome level were assumed to occur at equal rates. In cancer

cells, however, these events occur at different rates, and thus it is necessary to take this into ac-

count for building a realistic model of tumor progression. In Chapter 4, we developed algorithms

for inferring tumor-specific mutation parameters and applied these to improve single-tumor phy-

logenetic tree inference at the cellular level. We proposed novel theory and algorithms to develop

a weighted parsimony model of copy number evolution. We also proposed an iterative EM algo-

rithm for joint inference of parameters and tree topologies. We showed that the resulting models

provide insight into tumor progression mechanisms and lead to improved prediction of future

tumor progression in multiple tumor types.

In Chapters 5 and 6, our goal was to demonstrate further utility of the trees in understanding

progression mechanisms and predicting patient outcomes across different types of tumors. In

Chapter 5, we derived test statistics that are significantly associated with prostate cancer pro-

gression. In Chapter 6, we performed extensive survival analyses on tongue cancer patients to

show that the tree based features improve prediction of overall and disease-free survival time,

even after taking into account tumor stage and smoking information. These results show that the

tumor phylogenetic models can help us better understand the genetic alterations in diverse types
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of cancers.

In Chapter 7, we proposed a novel distance measure to compute the dissimilarities between

two phylogenetic trees built on arbitrary sets of taxa, where the taxa can be non-leaf nodes.

There is no method in the literature that can compare phylogenies with these two characteristics.

To avoid potential over-penalization due to unmatched bipartitions, we also proposed a pruning

method to remove taxa not shared between two phylogenies. Experiments on simulated and

real tumor data showed that the proposed distance measure exhibits better discrimination of

phylogenetic trees in comparison to the widely used Robinson Foulds method and a simpler

extension of the matching distance proposed by Lin et al. [102].

8.1 Future directions

The work in this thesis makes an important step towards scalable algorithms for inferring cancer-

specific evolution in single tumors. The theory and algorithms presented here provide initial

developments in inferring large scale tumor phylogenies. However, further improvements of the

models are possible and likely to be needed to take full advantage of emerging new data on tumor

heterogeneity. One important direction is improving upon the theory of the heuristic approxima-

tions used in Steiner tree inference. In this thesis, we have not performed any theoretical analysis

to provide an upper bound on the performance guarantee of the heuristic algorithm. Also, the

algorithms developed in this thesis currently consider only three mechanisms of copy number

evolution. However, gene copy number change events can happen with other mechanisms too,

such as breakage fusion bridge cycle, chromothripsis, chromoplexy etc. The evolutionary model

might be further extended to consider these and other mutational mechanisms by which copy

number profiles of tumor cells may evolve beyond the three that have been discussed.

The work presented in this thesis focused on FISH data. Although FISH is currently the

only technology to reliably profile gene copy numbers across hundreds to thousands of cells per

patient in sizable patient populations, it has its own limitations. One limitation is that only a
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limited number of genetic markers can be profiled using FISH. Another limitation is that FISH

can capture only copy number variations. Other types of variations, such as single nucleotide

variations, which are also important in the evolution of tumors, cannot be captured using FISH.

Although single-cell sequencing technology is still far from becoming practical for the number

of cells needed for the questions we examine, one can reasonably anticipate that it will eventually

become the dominant technology to perform comparable cross-tumor studies. There would thus

be value in extending the theory developed here to single-cell sequencing data. However, there

are substantial algorithmic challenges as a result of the much larger number and variety of mark-

ers single-cell sequencing can identify and the novel sources of noise arising from single-cell

amplification.

In this thesis, we have taken some first steps towards using tumor phylogenetics as a source

of features to predict future tumor progression. While these results show the promise of these

directions, they also suggest many avenues for improvement. We have considered three different

feature types: i) Tree based features (e.g., distribution of cells across different tree levels), ii)

Raw cell count based features (e.g.,average copy number of each gene across all the cells) and

iii) Diversity based features (e.g., shannon entropy of gene copy number distribution). We have

used each feature types separately for prediction of tumor progression. To improve the prediction

power, we can consider aggregating these different classes of features. We can also consider

various machine learning methods, such as LASSO [172] to identify the set of most informative

features from these aggregated features. We have used limited feature selection in Chapter 2,

which resulted in improved classification performance. There we had smaller number of features

which allowed us enumeration of all subsets of features to identify the most informative feature

subset. But with the aggregate features, such exhaustive enumeration is not possible and we need

to use statistical measures, such as LASSO to identify the best feature set.

The survival analyses that we performed in this thesis focused on identification of tree fea-

tures for clustering patients into short and long survival groups. One prediction task that may

have important clinical significance is prediction of survival time as a quantitative measure, as
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opposed to clustering long versus short survival time as binary states. Using regression, we can

fit survival time for the patients with mortality during follow-up and can treat the remainder

as unknown variables that we can model as exponential random variables restricted to exceed

follow-up time.

Successful cancer treatment depends on genetic diversity of the patients and future evolu-

tionary trajectory of a cancer. The current state of cancer may not dictate how cancer should

be treated, rather the focus should be on how it is likely to evolve in future. The work in this

thesis makes advances in predicting future evolutionary trajectories of individual tumors using

a strategy based on computational inference of those tumors’ likely evolutionary trajectories to

date. The tumor phylogenies developed by our algorithms have been shown to be predictive of

multiple measures of progression across multiple tumor types, and to a greater degree than raw

measures of average tumor state or cruder measures of tumor heterogeneity. The phylogenies

capture important feature of the process how tumor is evolving and this process is the major

driver of future tumor progression. In summary, the work in this thesis represents a crucial step

forward in developing models of tumor progression as a new source of clinical guidance for

individualized patients.
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