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Abstract

Distributed key-value systems have been widely used as elemental
components of many Internet-scale services at sites such as Amazon,
Facebook and Twitter. This thesis examines a system design approach
to scale existing key-value systems, both horizontally and vertically, by
carefully engineering and integrating techniques that are grounded in re-
cent theory but also informed by underlying architectures and expected
workloads in practice. As a case study, we re-design FAWN-KV—a dis-
tributed key-value cluster consisting of “wimpy” key-value nodes—to use
less memory but achieve higher throughput even in the worst case.

First, to improve the worst-case throughput of a FAWN-KV system,
we propose a randomized load balancing scheme that can fully utilize
all the nodes regardless of their query distribution. We analytically
prove and empirically demonstrate that deploying a very small but ex-
tremely fast load balancer at FAWN-KV can effectively prevent uneven
or dynamic workloads creating hotspots on individual nodes. Moreover,
our analysis provides service designers a mathematically tractable ap-
proach to estimate the worst-case throughput and also avoid drastic over-
provisioning in similar distributed key-value systems.

Second, to implement the high-speed load balancer and also to im-
prove the space efficiency of individual key-value nodes, we propose novel
data structures and algorithms, including the cuckoo filter, a Bloom fil-
ter replacement that is high-speed, highly compact and delete-supporting,
and optimistic cuckoo hashing, a fast and space-efficient hashing scheme
that scales on multiple CPUs. Both algorithms are built upon conven-
tional cuckoo hashing but are optimized for our target architectures and
workloads. Using them as building blocks, we design and implement
MemC3 to serve transient data from DRAM with high throughput and
low-latency retrievals, and SILT to provide cost-effective access to persis-
tent data on flash storage with extremely small memory footprint (e.g.,
0.7 bytes per entry).
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Chapter 1

Introduction

Data intensive computing keeps growing rapidly in importance and scale [24, 33, 36].
Today, storage clusters with thousands of nodes and beyond have become common-
place in many Internet companies. Familiar examples include Google’s BigTable
and GFS cells (1000 to 7000 nodes in one cluster [43]), Facebook’s photo storage
(20 petabytes of data [14]), Microsoft’s data mining cluster (1800 nodes [52]), and
Yahoo’s Hammer cluster (3800 nodes [76]). These cluster systems scale their perfor-
mance and ensure load balance across all nodes by using combinations of techniques
including:

e partitioning: spreading the entire data-set across a larger number of nodes,
where each node handles a different subset of the requirements. In particular,
consistent hashing schemes that map data items to nodes by hashing as used
in Chord [54, 87| are widely used due to their simplicity and ability to support
incremental growth. Many systems that implement consistent hashing also use
“virtual nodes” to improve the quality of load balancing, where each physical
server acts as several different nodes in the consistent hashing ring [30].

e replication: storing each piece of data multiple copies on different nodes. For
example, Google file system [45] and Hadoop file system [2| both replicate each
data chunk several times in the cluster, with the minimum being three to ensure
availability against disk failures or to meet high demand of accesses.

However as the service complexity continues growing, it becomes increasingly

challenging to ensure load balancing. For example, Facebook deployed a large pool
of Memcached servers to serve terabytes of user data from DRAM without reading
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disks [73]. But because the popularity of their queries is highly skewed, they have to
partition the data very carefully to prevent those popular data items from overloading
servers. As another example, Google reported that a single web search query usually
consults tens to hundreds of different backend servers, and as a result the total
response time of a query from the cluster is determined by the response time of the
slowest node [32]. Hence, when even a small fraction of servers are overloaded, their
slow response time could substantially degrade the service. Amazon’s Dynamo [36]
uses consistent hashing, virtual nodes, and replication. However, its authors report
that 10% of nodes have at least 15% higher load than the average load almost all of
the time. These techniques are usually good at balancing the static component of
load—the constant storage or memory capacity required on individual nodes, which
we typically refer to as the amount of data they store—while being not as good at
handling the dynamic load of handling queries as they arrive.

The first goal of this thesis is to allow several types of back-end cloud services to
meet service-level objectives (SLOs) without drastic over-provisioning, regardless of
the possibly changing query distribution. In this thesis, we define SLOs as particular
rates of queries a cluster system promises to complete to its customers, at a very high
probability (e.g., complete 10 million queries per second 99.99% of the service time).
It is important to ensure high SLOs because these storage clusters are often used as
building blocks for other systems and applications. Thus, higher SLOs greatly benefit
these systems and applications in simpler design and more reliable implementation.

Improving the load balance is one way to efficiently utilize the aggregated ca-
pacity of a storage cluster and scale out its performance; it is equally important to
improve the resource efficiency of each individual node. As the cluster size keeps
growing, cost concerns dictate the efforts to scale up the capacity of each node. For
example, in datacenters, memory space in particular is increasingly expensive and
scarce relative to external storage capacity such as hard disks or SSDs. For example,
the cost of Amazon EC2 instances is currently dominated by DRAM rather than
CPU capacity [7]. Intensifying this issue, the growth of DRAM capacity has been
much slower than the growth of disk or flash storage capacity [59], requiring storage
servers to index increasingly larger data sets by using more space-efficient in-memory
indexes (i.e., using fewer bits in DRAM for one data entry on disk/SSD). Recent
proposals have started examining memory-efficient indexing schemes for building
high-performance data stores [8, 10, 13, 34, 35, 72, 89|, but these solutions either
compromise performance [35, 72, 89] or still impose a significant amount of overhead
in space [8, 9, 13, 34]. As a result, there has been an increasing demand for more
memory-efficient index schemes to scale up the capacity of individual storage nodes.



Given the above observations, we therefore apply in this dissertation a system
design approach that carefully applies techniques that are both grounded in recent
theory (e.g., cuckoo hashing [81] and randomized load balancing) and informed by
the underlying hardware and expected workloads, to design more efficient key-value
systems. As a case study, we build a distributed key-value cluster based on FAWN-
KV [10]. The goal is to achieve higher throughput with lower memory overhead on
each node, and maintain high overall throughput under different or even adversarial
workloads. To this end, this thesis tackles this problem in two aspects:

e For certain types of many-node key-value systems, we present a load-balancing
and caching mechanism for fully utilizing the capacity of all nodes under arbi-
trary workloads, even adversarial ones.

This thesis analytically proves and empirically demonstrates that a combina-
tion of caching and randomized load balancing is an effective approach to pre-
vent uneven or dynamic workloads from creating hotspots on individual nodes.
Particularly, we present a mathematically tractable approach to analyze this
dynamic load balancing scheme and better estimate its achievable service-level
objectives in the worst case. Our result is useful for cloud service providers to
avoid drastic over-provisioning in capacity planning.

e [or each individual key-value node, we explore novel algorithms and data struc-
tures to improve the per-node efficiency.

In this thesis, we introduce the cuckoo filter, a Bloom filter replacement that is
fast, compact, and supports deletion; and optimistic cuckoo hashing, a space-
efficient concurrent hashing scheme. Using them as building blocks, we design
and implement two state-of-the-art key-value stores: MemC3 serves transient
data from DRAM with high throughput and low latency, while SILT provides
cost-effective access to persistent storage on flash devices with extremely small
memory footprint (e.g., 0.7 bytes per entry).

This dissertation makes the following contributions:

e The analysis of provable randomized load balancing in a distributed key-value
cluster, which allows cloud service providers to meet service-level objectives
(SLOs) for handling a particular rate of queries for the worst-case workloads,
without the need for drastic over-provisioning;

e The design and implementation of a fast, concurrent and space-efficient hash
table based on cuckoo hashing [81], where parallelizing cuckoo hashing was

3



considered an open problem [68] and to our knowledge, our scheme is the
first to support single-write /multi-reader access to cuckoo hash tables without
trading off space;

e The design of cuckoo filter, a novel data structure based on partial-key cuckoo
hashing, which replaces Bloom filters [19] for probabilistic set-membership tests
and achieves higher space efficiency and performance while still supporting
deletion;

e The integration of our proposed data structures into two practical key-value
stores for different workloads: one called MemC3 [41] targets serving transient
data from main memory with extremely high throughput and low latency;
and the other called SILT [59] is designed to impose extremely low memory
overhead to efficiently serve billions of key-value entries on flash from a single
node.

Here are the tips on the terminology for readers of this thesis. Caches are studied
in different contexts in this thesis. Unless mentioned specifically, we use the term
“cache” to refer to an application-level cache, and “CPU cache” to the built-in cache
inside CPUs. The term “hash function” is also frequently mentioned in different
parts of this thesis, but in each part different properties are required. In chapter 2,
cryptographic hash functions like SHA-1 [74] are assumed and used in evaluation to
ensure collision resistance; while in chapter 3 and chapter 4, we generally apply non-
cryptographic hash functions such as BobHash [20] (chapter 3) and CityHash [26]
(chapter 4), because they are effective to generate pseudo-random values which are
sufficient to build hash tables.



Chapter 2

Randomized Load Balancing in
Key-Value Systems

This chapter studies a simple scheme based on caching and randomized load balanc-
ing. We show that, for a class of cloud services that mainly read small data without
(multi-cell) transactions through front-ends (e.g., key-value queries), caching a very
small amount of query results at the frontend can effectively help meet the cluster-
wise service-level objectives (SLOs) in terms of handling a target rate of the input
queries, regardless of the distribution of these queries.

As data intensive computing grows in both popularity and in scale [24, 33, 36],
it becomes simultaneously more important and more challenging to load balance
thousands of nodes and beyond. System designers must be ever more careful to ensure
their performance does not become bottlenecked due to unevenly partitioned load
among cluster nodes. Consistent hashing schemes (e.g., that used in Chord [54, 87])
are therefore popular due to their simplicity and ability to spread data uniformly
among nodes. They help balance the static space utilization, but do not balance
the dynamic load due to unpredictable shifts in the query workload such as “flash
crowds” [11] or adversarial access patterns, either accidentally or as a denial-of-service
attack.

This load imbalance problem is particularly critical for architectures with compar-
atively resource-constrained backends, such as the FAWN-KYV system (“Fast Arrays
of Wimpy Nodes”) [9]. FAWN-KV achieves high energy- and cost-efficiency by using
wimpy nodes with slower CPUs, less memory, and solid state drives for storage; on
the other hand, these wimpy nodes are particularly susceptible to load imbalance,



even at small sizes, because they have less headroom for handling query bursts or
popularity shifts.

This chapter investigates the FAWN-KV system and shows that systems like
FAWN-KYV can effectively prevent their backend nodes from being saturated by using
a popularity-based small front-end cache, which directly serves a very small number of
popular items in front of primary servers (“back-end nodes”). This cache can be sur-
prisingly small and fit in the L3 cache of a fast CPU, enabling an efficient, high-speed
implementation compatible with front-end load balancers and packet processors. In-
tuitively, this small cache works because of the opposition between caching and load
balancing: A skew in popularity harms load balance but simultaneously increases the
effectiveness of caching. The cache therefore serves the most popular items without
querying the back-end nodes, ensuring that the load across the back-end nodes is
more uniform. Our result not only applies to FAWN-KV, but also generalizes to
an important class of cloud services (e.g., systems with an architecture as shown in
Figure 2.1).

The contribution of this work includes

e Derivation of an O(nlogn) lower-bound on the necessary cache size where n
is the total number of back-end nodes. The cache size does not depend on the
number of items stored in the system.

e Simulation and empirical results to validate our analysis running a key-value
storage system on an 85-node cluster.

This chapter focuses on demonstrating how caching helps avoid hotspots in a key-
value cluster and ensures high system throughput. The rest of this thesis investigates
how to use novel data structures (Chapter 3 and Chapter 4) to implement high-
performance (i.e., memory-speed) key-value caches in the frontend and memory-
efficient key-value stores in the backend (Chapter 5).

2.1 Target Services

This chapter targets a class of services that are popular building blocks for several
distributed systems, with three properties:

1. Randomized partitioning. The service is partitioned across cluster nodes
and the way the service is partitioned is opaque to clients. (e.g., a key is hashed
to select the back-end that serves it.)
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2. Cheap to cache results. The cache can easily store the result of a query or
request and serve future requests without costly recomputation or retrieval.

3. Costly to shift service. Moving service from one back-end node to another
is expensive in network bandwidth, I/O, and/or consistency and indexing up-
dates. In other words, the partitioning cannot be efficiently changed on the
timescale of a few requests.

Systems fitting this category include:

e Distributed key-value caches such as memcached [65];

e Distributed key-value storage systems such as Dynamo [36], Haystack [14], and
FAWN-KV [9];

e Distributed shared-nothing and non-relational data stores such as Redis [85]
and Aerospike (Citrusleaf) [6].

Services we do not consider are those in which:

e Queries can be handled by any node, such as a web server farm with a large
set of identical nodes, each of which is capable of handling any request. These
services do not require caching for effective load-balancing.

o Partitioning s predictable or correlated: For example, column stores such as
BigTable [24] and HBase [3| store lexicographically close keys on the same
server. Our results apply only when keys are partitioned independently—in
other words, for systems where a client cannot easily find a large set of keys
that would all be sent to the same back-end node.

2.2 System Model and Example

Table 2.1 summarizes the notation used in the system model for analysis.

Model Consider a key-value system such as that shown in Figure 2.1 that serves a
total of m distinct items partitioned across n back-end nodes 1,2, --- ,n where node
¢ can handle at most r; queries per second. The system caches the ¢ most popular
items (¢ < m) at a front-end. On a cache hit, the front-end can serve the client
request without querying the corresponding back-end server.



Symbol Meaning

n total # of back-end nodes

m total # of key-value pairs stored in the system

c total # of key-value pairs cached in the frontend
R sustainable query rate of the entire system

L; query rate going to node %

T max query rate supported by node ¢

D) fraction of queries for the jth key-value pair

Table 2.1: Notation used for the analysis.
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Backend

Figure 2.1: Small, fast cache at the front-end load balancer.



Assumptions This analysis makes assumptions about the system. As real systems
may not necessarily obey these assumptions, we examine the effect of the factors that
may affect load balancing in Section 2.4.

1. Randomized key mapping to nodes: each of m keys is assigned to one of
the n storage nodes, and this mapping is unknown to clients.

2. Cache is fast enough: the front-end is fast enough to handle queries and
never becomes the bottleneck of the system throughput.

3. Perfect Caching: queries for the ¢ most popular items always hit the cache,
while other items always miss the cache.

4. Uniform Cost: the cost to process a query at a back-end node is the same,
regardless of the queried key or the back-end node processing the query.

5. Workloads are read-most, or read-write mixed but the cache is write-
back: otherwise, repeatedly updating a single key with a write-through cache
can easily saturate its corresponding backend.

Goal: Guaranteed Throughput Our goal is to evaluate the throughput R the
system can sustain regardless of the query distribution. Load balancing is critical
to sustainable throughput, because once any node i becomes saturated (i.e., serving
at its full speed r;), the system cannot guarantee more throughput to clients, even
though other nodes still have spare capacity. In other words, we are interested in the
system throughput even with adversarial query patterns.

Challenge: Adversarial Workloads For clarity of the presentation, we assume
the cluster is serving an adversarial workload, whose goal 