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Abstract

As networked systems grow and traffic patterns evolve, mamagt ap-
plications are increasing in complexity and functionalify address the re-
quirements of these management applications, equipmaedbve and admin-
istrators today depend on incremental solutions that aser¢éhe complexity of
network elements and deployment costs for operators. Retps increased
complexity and cost, the incremental nature of these swiatstill leaves a
significant gap between the policy objectives of system adimnators and to-
day’s mechanisms. These challenges arise in several appliccontexts in
different networking domains: ISPs, enterprise settiags, data centers.

Much of this disconnect arises from the narrow device-ceniew of
current solutions. Such piecemeal solutions are inefficiegtwork elements
duplicate tasks and some locations become overloaded.eWolls adminis-
trators struggle to retrofit their high-level goals withievite-centric config-
urations. This dissertation argues for a clean-slate systgle approach for
resource management in large-scale networked systemd baghree high-
level principles: (1) systematic selection and placeméudewice-level prim-
itives, (2) lightweight coordination mechanisms that deatifferent network
elements to effectively complement one another, and (tiged optimiza-
tion models that capture operating constraints and polipgatives.

This dissertation demonstrates the benefits of this systelm-approach
in three application contexts: (1) meeting fine-grainedecage and accuracy
requirements in traffic monitoring, (2) implementing a redancy elimina-
tion service to improve network performance, and (3) mamagjie deploy-
ment of intrusion detection and prevention systems.
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Chapter 1

Introduction

Network management challenges arise in domains such asd8esprise networks, and
data centers. Each domain involves several managemerst $ask as traffic monitor-

ing, security, and performance optimization. These mamage applications have natural
high-level policy goals. For example, network operatory mvant: (1) good monitoring

coverage in order to understand end-to-end traffic pattiemdetecting anomalous pat-
terns, (2) effective configurations for application accatien services in order to provide
good end-to-end performance for their customers, and {8¢tefe deployment of intru-

sion detection and prevention systems to detect and drapima traffic as efficiently as

possible.

However, as networks and traffic patteeslve the set of management applications
and the requirements of existing applications change ak Whls implies the need for
new functions, more fine-grained capabilities, and moréabt&a solutions to understand
and adapt to these changes. To put the work presented iésiis in perspective, we dis-
cuss some possible approaches available to network opetattay to meet the growing
demands of network management applications.

1.1 Current practice

To provide some context, we group the current approachedont broad classes. As a
first-order approximation, the functionality increasesvasmove along the spectrum from
left to right in Figure 1.1. However, the cost of deploying #olutions also increases.



Configuration & Analysis Middleboxes New router primitives Programmable elements

From Left to Right: Increased functionality but higher deployment and development cost

Figure 1.1: Qualitative comparison of four proposed classesolutions to address the
growing demands of network management applications.

Configuration and analysis:

The most common and easiest solution is for network opesédateploy techniques to
work with existing router primitives. Router vendors (e@isco, Juniper) have provided
in-built support in terms of configuration tools and routemenands to support specific
tasks like routing and access control. ISPs and enterpeseonks also develop a suite
of in-house analysis and configuration tools to simplifytsfenctions. These include
techniques that provide support for better traffic engimgeand routing configurations
(e.q., [66, 184, 43, 148, 68, 149]), techniques for infernpatterns of interesting traffic
activity from existing measurement feeds (e.g., [99, 1@, 20, 49]), and accounting
for potential biases in measurements (e.g., [58, 56, 57, 93¢cause such techniques
do not require additional support from network elementsythre easy to develop and
inexpensive to deploy. However, it might not always be gdassio develop such tools
(see [118, 40]).

Deploying middleboxes:

Often, management applications need new capabilitieaigtit not be available on
existing network elements. In such cases, network operator deploy middleboxes de-
veloped by third party vendors. For example, these are camynused for providing new
security features (e.g., [1, 34, 12]) and for performanaekration (e.g., [3, 8, 20, 19,
18, 7, 13]). Unfortunately, such solutions have a narronpscand each new applica-
tion context requires additional middleboxes. Furthecdose these are often proprietary
solutions, they run the risk of becoming “black-boxes” ttwark operators.

New router primitives:

Further down the cost/development cycle is for router vesido integrate the requi-
site functionality directly. There are several proposalsldetter monitoring algorithms
(e.g., [97, 75, 168, 90]), in-depth forensic capabilitiegy(, [153, 119]), new diagnostic
primitives (e.g., [54, 84]), more efficient data structufes., [94, 111]), etc. While these
avoid the problems of having too many middleboxes insid@#teork, they require router

2



vendors and network managers to commit to a fixed set of capeswithout knowing if
these will meet future application requirements.

Programmable network elements:

One possible solution to alleviate the concern of vendotk reetwork operators to
commit a priori to specific capabilities is an emerging claésolutions that use pro-
grammable network elements (e.qg., [41, 116, 9, 46, 125,830, However, there are still
open issues with respect performance (can they operatglatraiffic rates?) and ease of
use (does it increase the configuration workload for opes@jahat make the adoption of
such solutions questionable.

1.2 Thesis Approach and Contributions

As the previous discussion shows, to meet the growing angiagaequirements of man-
agement applications, equipment vendors and administraiday depend on incremental
solutions. This increases the complexity of network eleimamd deployment costs for
operators. However, in spite this increased complexityau, there is still a significant
gap between the policy objectives of system administrandsthe capabilities provided
by today’s mechanisms. In particular, administrators Haigh-level network-wideob-
jectives are often difficult to translate into router/devimonfigurations that will meet the
goals.

Our hypothesis, in the spirit of the recent proposals fotredized network manage-
ment (e.g. [73, 43, 37, 69, 160, 60, 126, 125]), is that mudhedisconnect between the
goals of network operators and the tools available to thesesfrom the narrowlevice-
centricview of current solutions. Such piecemeal solutions aréigient: network ele-
ments duplicate tasks and some locations become overlosd@de still, administrators
struggle to implement their high-level goals within devaantric configurations.

A key concern in achieving these high-level objectives &t the network elements
(e.g., routers, middleboxes) that enable such managemsd have constraints on pro-
cessing, memory, and storage capabilities. Even thoughonietdevices are becoming
more powerful with advances in technology, the traffic wodds and usage patterns are
scaling nearly as fast (if not faster) than these technoémyyances. Thus, these resource
constraints are fundamental. As a result, these networlageanent tasks can be broadly
viewed as resource management problems in large netwoykéehss.

Having cast the management tasks as resource managemielenmspwe argue that
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the policy goals can be best achieved usimgvork-wide approachather than a device-
centric approach. The network-wide approach we advocatesirhesis is based on three

guiding principles:

1. Systematic selection and placement of device-levelipvies.

2. Lightweight coordination mechanisms that enable diffitnetwork elements to ef-
fectively complement each other.

3. Practical optimization models that capture operatingstraints and policy objec-
tives, and produce close to optimal ways to configure theceelvel primitives
within their technological constraints.

At a high-level, we can think of this approach as being a nadgbund between the
configuration and analysiand thenew middleboxes and router primitivapproaches.
That is, we need (1) practical, efficient primitives that di significantly increase the
complexity and resource requirements of network elememts(2) frameworks to rea-
son about how to configure/analyze these primitives to nieehigh-level objectives of
network operators.

In this dissertation, we demonstrate the benefits of thiscgmh in three contexts:
e Flow-level traffic monitoring (Chapters 2-4).
e Performance acceleration using redundancy eliminatiom§&n 5).

e Deploying intrusion detection and prevention systems (@Gheg).

Next, we outline the key contributions in this dissertationeach application context.

1.2.1 Building a Robust Flow Monitoring Infrastructure

Networks use flow-levélmeasurements for traffic engineering, analyzing user e@pli

tions, detecting attacks, and forensic analysis. Becausesoirce constraints, routers
sample some of the traffic that pass through them to genérede tneasurements. Several
studies have shown the limitations of current packet samgdiased solutions (e.g., Cisco

1The specific techniques we outline are amenable to both efidetland in-router deployments.
2A flow is a sequence of packets that have the same sourcedatésti IP addresses, source/destination
ports, and protocol that occur within a short span of time.
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NetFlow) in providing the coverage and accuracy for manyndasks. This dissertation
addresses two key challenges:

(1) How can we increase coverage (monitor many flows) andstifipe-grained network-
wide measurement objectives?

(2) How can a monitoring infrastructure be designed to sumpwide spectrum of current
and future management applications?

Improved Coverage using Coordinated Sampling:

To address the first challenge, we present a system calledcBa17] in Chapter 2.
cSamp combines three ideas: (1) flow sampling to increasedtmerage by avoiding
the biases of existing monitoring primitives such as padesnpling, (2) coordination
via hash-based packet selection to avoid redundant momgtand (3) network-wide op-
timization. These ideas have been proposed independentther contexts. The key
contribution in this dissertation is in their synergistantbination for flow monitoring.

Chapter 2 presents efficient algorithms for generating thiena sampling strategies
for very large ISPs. The chapter also outlines developedtiped solutions to handle
changes in traffic patterns and estimation errors in inputsross several topologies,
cSamp achieves more than 2he total coverage and8the performance for fine-grained
objectives compared to existing monitoring solutions.

Coordination With Partial Information:

A natural unit of coordination in cSamp is an Origin-Destioa pair (traffic with the
same ingress and egress routers). Each router determen@upair for each packet and
decide whether or not to process it based on the monitorsgpresibilities assigned to it
for this OD-pair. However, determining the OD-pair may b#iclilt; e.g., due to routing
table aggregation or multi-exit peers that advertise theed® addresses at multiple points.

A practical challenge is to provide the benefits of a cSarkg@-dlystem when routers
only work with local information [146]. In this case, maximmg the total flow coverage or
fine-grained network-wide flow coverage goals become NE:-Haonsequently, a central
algorithmic challenge is to design mechanisms that opgérthese measures. We address
this challenge in Chapter 3.

For the total coverage, we extend results from the theoryptifrozing submodular
functions [71] to achieve near-optimal performance. Fheoi{non-submodular) objec-
tives, we design practical heuristics for resource augatiemt and partial deployment. In
practice, only a few such upgrades are necessary to acleeveoptimal performance.



A Case for a Minimalist Flow Monitoring Architecture:

The inadequacy of current solutions for flow-level monigrihas led to the devel-
opment of several application-specific algorithms spedl for monitoring tasks such
as detecting “heavy-hitters” or large changes in trafficgras [96, 102, 168, 176, 94].
However, these increase router complexity and require amsnaind operators to commit
to hardware capabilities without knowing if they are neeeg®r sufficient for future re-
quirements. In this context, Chapter 4 revisits the case fomamalist approach where
each router implements a few generic primitives insteadegémal application-specific
ones.

The case for a minimalist approach is motivated both by rotgehnology trends
and the structure of monitoring applications. First, thanm@ottleneck for monitoring
is keeping counters in fast memory. By aggregating the merased individually by
several application-specific primitives, generic prir@s can run with high enough sam-
pling rates to support a wide spectrum of applications. Becononitoring tasks fall
into two broad classes that analyze either volume struceite, traffic engineering) or
communication structure (e.g., network security). Basethese insights, we present a
candidate for a minimalist approach that combines flow sargto capture communica-
tion structure) [79] and sample-and-hold (for volume dine) [62], and use cSamp for
network-wide management. We show using trace-driven atialus that this combination
performs as well or even better than several applicati@tifip approaches. These results
have both immediate benefits and long-term implication®&ih equipment vendors and
network operators.

1.2.2 Improving Network Performance via Coordinated Redundancy
Elimination

Redundancy Elimination (RE) to avoid duplicate delivery aftemt that is common across
different network transfers can improve network perforoeand reduce bandwidth costs.
Today, this is widely used on enterprise access links (6.9]). This success has sparked
interest in a network-wide RE service that would improve tfiective capacity of ISPs
and socializes the performance benefits to all end-to-exfiictf30]. However, extending
single-vantage solutions to a network-wide service islehging because RE involves
expensive operations for indexing and caching content amgbeessing and reconstructing
packets.



In Chapter 5, we present the design and implementation of tRBalan architec-
ture that makes network-wide RE practical [31]. Unlike s@agbint solutions that tightly
couple compression and reconstruction per link, SmartREadlyadecouples encoding
and decoding operations to magnify the benefits of each saiclopoperations. It uses
hash-based coordination to divide caching tasks withoatiimg complex cache consis-
tency protocols. SmartRE’s optimization framework modedgice constraints and traf-
fic/redundancy patterns and optimizes the network’s trafigineering goals (e.g., reduc-
ing the overall traffic footprint). A prototype implementat shows that SmartRE is 45
better than current solutions and achieves close to 90%eopénformance of an ideal
unconstrained system.

1.2.3 Deploying Network Intrusion Detection and Prevention Systems

Network intrusion detection (NIDS) and prevention systéMi$S) serve a critical role in
detecting and dropping malicious traffic. The tradition@ww has treated these as single-
vantage-point systems at the boundary between the inteetalork and the Internet.
However, the limitations of traditional approaches forlscasuch single-vantage-point
solutions is increasingly evident in the context of: (1)gkmenterprise networks and in
new domains such as data centers and (2) ISPs deployingétwerk” defenses to pro-
vide security services to their customers. These trendsreqs to look beyond the tra-
ditional view of perimeter defense and provide networkewasibility in deploying these
systems [112].

In Chapter 6 we design a framework for partitioning NIDS fume$ across a net-
work to ensure that no node is overloaded. This takes intouaddhe resource footprints
of each NIDS component, the capabilities of different no@esl placement constraints
specifying where each function is most effective (e.g.resg nodes are best suited for
scan detection). For NIPS, we show how to maximally redueeamted traffic without af-
fecting the performance of benign traffic using specialiaed power-intensive hardware
with limited capacity (e.g., content addressable mempriéée also present preliminary
results extending techniques from online learning to cdretrategic adversaries who try
to evade these defenses.



1.3 Outline
The rest of this dissertation is organized as follows:

e Chapter 2 describes the design and implementation of cSamp.

e Chapter 3 shows how we can achieve the performance benefaofreven when
each router only has access to local routing informatiors(i@OD-pair information
for each packet).

e Chapter 4 presents the quantitative comparison betweeniounatist architecture
for monitoring and an architecture using application-#jpealgorithms on routers.

e Chapter 5 describes the design and implementation of SmariBEaluates it on
real/synthetic packet traces.

e Chapter 6 shows how a system-wide approach can be used to enamegwork-
wide deployment of intrusion detection and preventioneyst

¢ We summarize the key contributions and the implicationseftork presented here
before highlighting some potential avenues for future warkhapter 7.



Chapter 2

cSamp: A System for Network-Wide
Flow Monitoring

Network operators routinely collect flow-level measuretseio guide several network
management applications. Traditionally, these measurenwveere used for customer ac-
counting [55] and traffic engineering [66], which largelyyren aggregate traffic volume

statistics. Today, however, flow monitoring assists séwher critical network manage-

ment tasks such as anomaly detection [99], identificationrvianted application traf-

fic [49], and even forensic analysis [173], which need to idgrand analyze as many
distinct flows as possible. The main consequence of thigltigithe increased need to
obtain fine-grained flow measurements.

Yet, because of technological and resource constraintdemarouters cannot each
record all packets or flows that pass through them. Instéag,rely on a variety ofam-
pling techniques to selectively record as many packets as theird@Bthemory resources
allow. For example, most router vendors today implemerfoam packet sampling (e.g.,
Netflow [48], sFlow [130]); each router independently stdext packet with a sampling
probability (typically betweer®).001 and0.01) and aggregates the selected packets into
flow records [124]. While sampling makes passive measureteehhologically feasible
(i.e., operate within the router constraints), the ovdiddlity of flow-level measurements
is reduced.

There is a disconnect between the increasing requiremém@aonetwork manage-
ment applications and what current sampling techniquespeavide. While router re-
sources do scale with technological advances, it is uplittelt this disconnect will disap-
pear entirely, as networks continue to scale as well. Wergbgkat part of this disconnect
stems from a router-centric view of current measurementtisols. In today’s networks,

9



routers record flow measurements completetiependentlpf each other, thus leading to
redundant flow measurements and inefficient use of routeuress.

We argue that a centralized system that coordinates morgtogsponsibilities across
different routers can enhance the flow monitoring capasliof a network. Moreover,
such a centralized system simplifies the process of spagifgmd realizing network-wide
flow measurement objectives. We describe Coordinated Sagnf@Samp), a system for
flow monitoring within a single Autonomous System (AS). c®atreats a network of
routersas a system to be managed in a coordinated fastoachieve specific measure-
ment objectives. Our system consists of three design pvisit

e Flow sampling cSamp uses flow sampling [79] instead of traditional paskeipling
to avoid the sampling biases against small flows—a featugadicular importance to
the new spectrum of security applications. At the same tftae, sampling preserves the
fidelity of traffic volume estimation and thus the accuracyradlitional traffic engineering
applications.

e Hash-based coordinationcSamp uses a hash-based selection primitive to eliminate
duplicate measurements in the network. This allows differeuters to monitor disjoint
sets of flows without requiring explicit communication beem routers, thus eliminating
redundant and possibly ambiguous measurements acrosstiark.

e Network-wide optimizatianFinally, cSamp uses an optimization framework to spec-
ify and satisfy network-wide monitoring objectives whilespecting router resource con-
straints. The output of this optimization is then tranglateéo per-routesampling mani-
feststhat specify the set of flows that each router is required¢ong

This chapter addresses several practical aspects in tighdesd implementation of
cSamp. We present efficient algorithms for computing samgpthanifests that scale to
large tier-1 backbone networks with hundreds of routers.pVdeide practical solutions
for handling multi-path routing and realistic changes &@iftc patterns. We also implement
a prototype using an off-the-shelf flow collection tool.

We demonstrate that cSamp is fast enough to respond in meakdi realistic network
dynamics. Using network-wide evaluations on the Emulakbess we also show that
cSamp naturally balances the monitoring load across theonketthereby avoiding report-
ing hotspots. We evaluate the benefits of cSamp over a widg raimnetwork topologies.
cSamp observes more than twice as many flows compared wditidreal uniform packet
sampling, and is even more effective at achieving systedewmonitoring goals. For
example, in the case of the minimum fractional flow coveragess all pairs of ingress-
egress pairs, it provides significant improvement over rofltosv monitoring solutions.
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ISPs can derive operational benefits from cSamp, as it redheebandwidth and the data
management overheads caused by duplicated flow reports.Isd/sl@ow that cSamp is
robust with respect to errors in input data and realistifitrdynamics.

2.1 Related Work

The design of cSamp as a centrally managed network-widetororg system is inspired

by recent trends in network management. In particular,nmee®rk has demonstrated
the benefits of a network-wide approach for traffic engimepf66, 184] and network

diagnosis [99, 101, 108, 183]. Other recent proposals sigat a centralized approach
can significantly reduce management complexity and opeyatsts [37, 43, 73].

Despite the importance of network-wide flow monitoring réheave been few attempts
in the past to design such systems. Most of the related warksts on the single-router
case and on providing incremental solutions to work arodnedlimitations of uniform
packet sampling. This includes work on adapting the packetpding rate to changing
traffic conditions [61, 89], tracking heavy-hitters [62,6]80btaining better traffic esti-
mates from sampled measurements [55, 79], reducing thalbaerount of measurement
traffic [57], and data streaming algorithms for specific aaions [96, 102, 151].

Early work on network-wide monitoring has focused on thecefaent of monitors
at appropriate locations to cover all routing paths usinfgasmonitors as possible [47,
159, 128]. The authors show that such a formulation is Nshand propose greedy
approximation algorithms. In contrast, cSamp assumessa@igt of monitoring locations
along with their resource constraints and, therefore,nisgementary to these approaches.

There are extensions to the monitor-placement problemdorporate packet sam-
pling [159]. Cantieni et al. also consider a similar problets][ While the optimization
formulations in these share some structural similarity o @pproach in Section 2.2.2,
the specific contexts in which these formulations are agmie different. First, cSamp
focuses on flow sampling as opposed to packet sampling. By fisiw sampling, cSamp
provides a generic flow measurement primitive that subsuhgespecific traffic engineer-
ing applications that packet sampling (and the framewdnks tely on it) can support.
Second, while it is reasonable to assume that the probabfla single packet being sam-
pled multiple times across routers is negligible, this agsion is not valid in the context
of flow-level monitoring. The probability of two routers splimg the same flow is high as
flow sizes follow heavy-tailed distributions [53, 181]. HencSamp uses mechanisms to
coordinate routers to avoid duplicate flow reporting.
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To reduce duplicate measurements, Sharma and Byers [15§@siibhe use of Bloom
filters. While minimizing redundant measurements is a comhigin-level theme between
cSamp and their approach, our work differs on two signifi¢eorits. First, cSamp allows
network operators to directly specify and satisfy netweaile objectives, explicitly taking
into account (possibly heterogeneous) resource conti@routers, while their approach
does not. Second, cSamp uses hash-based packet selecitoplément coordination
withoutexplicit communication, while their approach requiresrgveuter to inform every
other router about the set of flows it is monitoring.

Hash-based packet selection as a router-level primitive susgested in Trajectory
Sampling [54, 106]. Trajectory Sampling assigns all raaiierthe network acommon
hash range. Each router in the network records the passagdl feackets that fall in
this common hash range. The recorded trajectories of tleeteel packets are then used
for applications such as fault diagnosis and for detectmging anomalies. In contrast,
cSamp uses hash-based selection to achieve the oppositehatity: it assignslisjoint
hash ranges across multiple routers so that different r®utenitor different flows.

2.2 Design

In this section, we present the design of the hash-based #owpléng primitive and the
optimization engine used in cSamp. In the following discusswe assume the common
5-tuple 6rclP, dstlP, srcport, dstport, protogatiefinition of an IP flow.

2.2.1 Router Primitives

Hash-based flow sampling: Each router has sampling manifest a table of hash ranges
indexed using a key. Upon receiving a packet, the routerdagkthe hash range using
a key derived from the packet's header fields. It computeshdsh of the packet’s 5-
tuple and samples the packet if the hash falls within theearmained from the sampling
manifest. In this case, the hash is used as an index into @ ¢&filows that the router is
currently monitoring. If the flow already exists in the tghitaupdates the byte and packet
counters (and other statistics) for the flow. Otherwiseeates a new entry in the table.

The above approach implements flow sampling [79], since tbge flows whose
hash lies within the hash range are monitored. Essentialtycan treat the hash as a
function that maps the input 5-tuple into a random value @ittterval|0, 1]. Thus, the
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size of each hash range determines the flow sampling rate abttier for each category
of flows in the sampling manifest.

Flow sampling requires flow table lookups for each packed;flbw table, therefore,
needs to be implemented in fast SRAM. Prior work has shownnif@attaining counters
in SRAM is feasible in many situations [62]. Even if flow coursten SRAM are not
feasible, it is easy to add a packet sampling stage prior voskmpling to make DRAM
implementations possible [89]. For simplicity, howeveg assume that the counters can
fitin SRAM for the rest of the chapter.

Coordination: If each router operates in isolation, i.e., independergim@ing a subset
of flows it observes, the resulting measurements from @ifferouters are likely to contain
duplicates. These duplicate measurements represent a wfastemory and reporting
bandwidth on routers. In addition, processing duplicated fleports incurs additional
data management overheads.

Hash-based sampling enables a simple but powerful codiolinatrategy to avoid
these duplicate measurements. Routers are configured tbheisarme hash function, but
are assigned disjoint hash ranges so that the hash of any filbwnatch at most one
router’s hash range. The sets of flows sampled by differemters will therefore not
overlap. Importantly, assigning non-overlapping haslyesrachieves coordinatiawith-
outexplicit communication. Routers can thus achieve coordoh&sks without complex
distributed protocols.

2.2.2 Network-wide Optimization

ISPs typically specify their network-wide goals in term&ufgin-Destination (OD) pairs
specified by the ingress and egress routers. To achieve flowtaniog goals specified in
terms of OD-pairs, cSamp’s optimization engine needs tfidrmatrix (the number of
flows per OD-pair) and routing information (the router-liepath(s) per OD-pair), both of
which are readily available to network operators [66, 184].

Assumptions and notation: We make two assumptions to simplify the discussion. First,
we assume that the traffic matrix (number of IP flows per ODj@end routing information
for the network are given and that these change infrequeddgond, we assume that each
OD-pair has a single router-level path. We relax these assans in Section 2.2.4 and
Section 2.2.5.

Each OD-pairOD; (i = 1,..., M) is characterized by its router-level pafthand the
numberT; of IP flows in a measurement interval (e.g., five minutes).
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Each routerR?; (j = 1,...,N) is constrained by two resources: memory (per-flow
counters in SRAM) and bandwidth (for reporting flow record¢Because we assume
that the flow counters are stored in SRAM, we do not model papkatessing con-
straints [62].) We abstract these into a single resourcstcaint ;, the number of flows
router R; can record and report in a given measurement interval.

Letd;; denote the fraction of the IP flows 6fD; that routerRz; samples. If?; does not
lie on pathP;, then the variablé,; will not appear in the formulation. Far=1,..., M,
let C; denote the fraction of flows 0@D; that is monitored.

Objective: We present a general framework that is flexible enough to atmeveral
possible flow monitoring objectives specified as (weightamhbinations of the different
C; values. As a concrete objective, we consider a hybrid measemt objective that
maximizes the total flow-coverage across all OD-pa¥s (; x C; ) subject to ensuring
the optimal minimum fractional coverage per OD-pairify;{ C; }).

Problem maaxtotgivenfrac(0):

MaximizeZ(Ti x (), subject to

Vi, ) (dyx T) <L (2.1)
i:R;EP;
Vi, Ci= > dy (2.2)
J:R;€EP;
Vi, Vi, di; >0 (2.3)
Vi, G <1 (2.4)
Vi, C;>0 (2.5)

We define a linear programming (LP) formulation that takes gsmrametef), the
desired minimum fractional coverage per OD-pair. Givethe LP maximizes the total
flow coverage subject to ensuring that each OD-pair ache¥extional coverage at least
0, and that each router operates within its load constraint.

We briefly explain each of the constraints. Eq (2.1) ensurasthe number of flows
that R; is required to monitor does not exceed its resource constfai As we only
consider sampling manifests in which the routersm@rfor OD; will monitor distinct
flows, Eq (2.2) says that the fraction of traffic 6fD; that has been covered is simply
the sum of the fractional coveragés of the different routers oP’;. Because eact;
represents a fractional quantity we have the natural uppandC; < 1 in Eq (2.4).
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Since we want to guarantee that the fractional coverage om @®-pair is greater than
the desired minimum fractional coverage, we have the loweand in Eq (2.5). Since the
d;; define fractional coverages, they are constrained to beeinaihge0, 1]; however, the
constraints in Eq (2.4) subsume the upper bound on éaend we impose the non-zero
constraints in Eq (2.3).

To maximize the total coverage subject to achieving the ésglpossible minimum
fractional coverage, we use a two-step approach. First,imarothe optimal minimum
fractional coverage by considering the problem of maximganin;{ C;} subject to con-
straints Egs (2.1)—(2.4). Next, the val@®tMinFrac obtained from this optimization is
used as the inputto the problemmaztotgivenfrac.

St L) >

pling strategy that maximizes the total flow coverage suhbjeachieving the optimal
minimum fractional coverage per OD-pair.

2.2.3 Sampling Manifests

The next step is to map the optimal solution intsaanpling manifedior each router that
specifies its monitoring responsibilities (Figure 2.1).eTdlgorithm iterates over th&/
OD-pairs. For eaclvD;, the variableRange is advanced in each iteration (i.e., per router)
by the fractional coveragé’; provided by the current router (lines 4 and 5 in Figure 2.1).
This ensures that routers on the pa@thfor OD; are assigned disjoint ranges. Thus, no
flows are monitored redundantly.

Once a router has received its sampling manifest, it imphesnthe algorithm shown
in Figure 2.2. For each packet it observes, the router fiesttitles the OD-pair. Next, it
computes a hash of the flow header (the IP 5-tuple) and chétks hash value lies in
the hash range assigned for this OD-pair. (The functias#returns a value in the range
[0, 1]). That s, the key used for looking up the hash range (c.tti@e2.2.1) is the flow’s
OD-pair. Each router maintainsfowtable of the set of flows it is currently monitoring.
If the packet has been selected, then the router eitheresraatew entry (if none exists)
or updates the counters for the corresponding entry irFthetable.

2.2.4 Handling Inaccurate Traffic Matrices
The discussion so far assumed that the traffic matrices anerkand fixed. Traffic ma-

trices are typically obtained using estimation technigigeg., [184, 185]) that may have
estimation errors.
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GENERATESAMPLINGMANIFEST(d* = (d};))

L)
// i ranges over all OD-pairs

1 fori=1,...,Mdo
2 Range «— 0

// j ranges over routers
3 forj=1,...,Ndo
4 HashRange(i, j) < [Range, Range + d;;)
5 Range < Range + d;
6 Vj, Manifest(j) < {(i, HashRange(i, j))|d;; > 0}

Figure 2.1: Translating the optimal solution into a samgplmanifest for each router

If the estimation errors are bounded, we scale the samplrategy appropriately to
ensure that the new scaled solution will operate within theer resource constraints and
be near-optimal in comparison to an optimal solution for titue (but unknown) traffic
matrix.

Suppose the estimation errors in the traffic matrix are bednide., if 7; and 7; denote
the estimated and actual traffic forD; respectively, thewi, T; € [Ti(l —€), Ti(l +

¢)]. Here,e quantifies how much the estimated traffic matrix (i.e., opuindata) differs
with respect to the true traffic matrix. Suppose the optlrmhpllng strategy forl’ =

<T>1§st is d* <dz]>1§1_§;/[71§;§;\7

A sampling strategyl is T-feasible if it satisfies conditions Egs (2.1)—(2.4) fr For
a T-feasible strategy, let 3(d, T') = min;{ C;} denote the minimum fractional coverage,
andlety(d, T') = 3=, Ti x G; = >, T; x (3_, di;) denote the total flow coverage. Setting

di; = d;;(1 — ), we can show that’ is T-feasible, and

(i) s

A 1—62 A a
d, T d,T).
1) = (155) 2

B(d, T)

v

v

For example, with = 1%, usingd’ yields a worst case performance reduction of 2% in
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COORDSAMPROUTER(pkt, Manifest)
/] Manifest = (i, HashRange(i, j))
1 OD <« GETODPuIRID (pkt)
// HASH returns a value if0, 1]
2 hyr — HASH(FLOWHEADER(pkt))
3 if hyw € Hashrange(OD, j) then
4 Create an entry ilowtable if none exists
5 Update byte and packet counters for the entry

Figure 2.2: Algorithm to implement coordinated samplingounter R,

the minimum fractional coverage and 4% in the total covermife respect to the optimal
Strategyd.

Proof sketch:

For clarity, we start by focusing on the minimum fractionaverage objective. First,
let us considet. The constraints this satisfies are

Vi, di T < I

Since;- < T;, we also have the inequality,

. - TG
v]azdij1+€ <L,

Now considerd” = (1;16) By the above equation we note th#tis feasible forT'.

Sinced” is feasible forT’, the optimal value ofi* on 7 is related to3(d, ?) in the follow-
ing manner:

B(d, T)
(1+¢)
Now let us consided*. The constraints this satisfies are:

Vi, dy T < I

B(d*, T) > B(d", T) = B(d", T) =

1Becauses is only a function of thel values,3(d”, T) = 3(d", T).
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Sinceﬁ(l —¢) < T;, we have the relationship

V],Zd 1—6 <L,

Now consider!’ = d*(1 —¢). We observe that (a) is feasible forT, and (b) the value
of the objective function of on T"is 3(d', T') = p(d*, T')(1 — ¢).

So now we haved(d’, T) = B(d', T) = (1 — €)3(d*, T) > =£3(d, T)

Similarly, we can prove thaf(d’, ?) > 8: 27(a? ?) as follows. We want to find
the relationship between(d’, T') and~(d, T'). First, as before let us considét = 1+€

which is a feasible solution fof’, and we can show thatd, 7') > 1—+E (d, T). Now by
constructiony(d', T') = (1 — e)y(d*, T').

~

Let us considety(d’, T'). We have

V@, T) = Y T.C

_ (d,T)
1+e
B 1—c¢ (d* T)
- 1 67 )
(1—¢? - ~
Z (1+€)2 (d7 T)

2.2.5 Handling Multiple Paths per OD-pair

Next, we discuss a practical extension to incorporate plalpaths per OD-pair, for ex-
ample using equal cost multi-path routing (ECMP) [51].

Given the routing and topology information, we can obtam ftultiple routing paths
for each OD-pair and can compute the number of flows routemsa@ach of the multiple
paths. Then, we treat each of the different paths as a distigical OD-pair with different

2ECMP-enabled routers make forwarding decisions on a péieWPrather than on a per-packet basis.
Thus, we need not be concerned with multiple packets fronmglesiflow traversing different router-level
paths.

18



individual traffic demands. As an example, supp6s®; has two paths®! and P?. We
treat P} and P? as independent OD-pairs with traffic valu&s and 7. This means that
we introduce additionad;; variables in the formulation. In this example, in Eq (2.1) we
expand the termd,; x T; for router R; to bed;; x T} +d;; x T} if R; lies on bothP! and
P2,

However, when we specify the objective function and the demgpmnanifests, we
merge these logical OD-pairs. In the above example, we wepedify the network-wide
objectives in terms of the total coverage for th®;, C; = C! + C?. This merging pro-
cedure also applies to the sampling manifests. For exasypposek; occurs on the two
paths in the above example, and the optimal solution hasasrd}]uandd?j corresponding
to P! and P?. The sampling manifest simply specifies ttigtis responsible for a total
fractiond;; = dj; + d;; of the flows inOD;.

2.3 System Architecture

Figure 2.3 depicts the overall architecture of cSamp. Therakoptimization engine
computes and disseminates sampling manifests based oraffie thatrix and routing
information continuously measured in the network. Thisieaglso assigns an identifier
to every OD-pair and propagates this information to thegsgrouters. The ingress routers
determine the OD-pair and mark packets with the identifiesictErouter uses the OD-
pair identifier and its sampling manifest to decide if it slibbrecord a specific flow. In
order to handle traffic dynamics, the optimization enginmaleulates the traffic matrix
periodically based on the observed flow reports to generatedestribute new sampling
manifests. Such a centralized approach is consistent hatloperating model of modern
ISPs, where operators push out router configuration filgs, (@uting tables, ACLs) and
collect information from the routers.

To complete the description of the cSamp system, we destiréoéollowing mecha-
nisms: 1) obtaining OD-pair information for packets; 2)pesding to long- and short-
term traffic dynamics; 3) managing memory resources on reudg computing the sam-
pling manifests efficiently; and 5) reacting to routing dymes.

2.3.1 OD-pair Identification

Each router, on observing a packet, must identify the OD+{pavhich the packet belongs.
There are prior approaches to infer the OD-pair for a giverkgebased on the source and
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Figure 2.3: An overall view of the architecture of the cSaiygtem. The optimization en-
gine uses up-to-date traffic and routing information to cotefand disseminate sampling
manifests to routers.

destination IP addresses and routing information [66]. El@w, such information may

not be immediately discernible to interior routers fromitheuting tables due to prefix

aggregation. Ingress routers are in a better position tttifyehe appropriate egress when
a packet enters the network using such techniques. Thusdginess routers mark each
packet header with the OD-pair identifier. Interior routeas subsequently extract this
information. In practice, the OD-pair identifier can eithweradded to the IP-header or to
the MPLS label stack. Note that the multi-path extensiorc{{§e 2.2.5) does not impose
additional work on the ingress routers for OD-pair idendifion. In both the single-path

and multi-path cases, an ingress router only needs to diekeithne egress router and the
identifier for the ingress-egress pair, and need not digigigbetween the different paths
for each ingress-egress pair.

The identifier can be added to the IP-id field in a manner smbdaother proposals
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that rely on packet marking (e.g., [107, 143, 177]). Thishit6feld allows assigning a
unique identifier to each OD-pair in a network with up to 256d&w routers (and 65,536
OD-pairs), which suffices for medium-sized networks. Fogéa ISPs, we use an addi-
tional encoding step to assign identifiers to OD-pairs softtiere are no conflicts in the
assignments. For exampl®,D; and OD; can be assigned the same identifiePjfand
P, do not traverse a common router (and the same interfacesbrotlter) or, if they do,
the common router is not assigned logging responsibilityofee of them. We formulate
this notion of non-conflicting OD-pairs as a graph colorimglgem, and run a greedy col-
oring algorithm on the resulting conflict graph. Using thxsemsion, the approach scales
to larger ISPs (e.g., needing fewer than 10 bits to encodelpairs for a network with
300 border routers).

While the above approach to retrofit OD-pair identifiers witthie IP header requires
some work, it is easier to add the OD-pair identifier as acstabel in the MPLS label
stack. In this case, the space required to specify OD-paittifilers is not a serious con-
cern. In the next chapter, we relax this assumption and itbesan alternative approach
that does not require OD-pair identifiers.

2.3.2 Dealing with Traffic Dynamics

To ensure that the flow monitoring goals are achieved cartligtover time, the optimiza-

tion engine must be able to predict the traffic matrix to cotaghe sampling manifests.
This prediction must take into account long-term variagiontraffic matrices (e.g., diur-

nal trends), and also be able to respond to short-term dysaiig., on the scale of a few
minutes).

Long-term variations in traffic matrices typically aris@rn predictable time-of-day
and day-of-week effects [140]. To handle these, we usergatdraffic matrices as inputs
to the optimization engine to compute the sampling strategyexample, to compute the
manifests for this week’s Fri. 9am-10am period, we use @ficrmatrix observed during
the previous week’s Fri. 9am-10am period.

The optimization engine also has to respond to less prddigcthort-term traffic vari-
ations. Using historical traffic matrices averaged oveglperiods (e.g., one week) runs
the risk ofunderfitting important structure present over shorter time scalessisdoe to
averaging. On the other hand, using historical traffic masriover short periods (e.g., 5-
minute intervals) may result iaverfitting unnecessarily incorporating details specific to
the particular historical period in question.

To handle the long and short-term traffic dynamics, we takefdfiowing heuristic
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approach. Suppose we are interested in computing sampangests for every 5-minute
interval for the Fri. 9am-10am period of the current weekavoid overfitting, we do not
use the traffic matrices observed during the correspondingnbite intervals that make
up the previous week’s Fri. 9am-10am period. Instead, we tiag (hourly) traffic matrix
for the previous week’s Fri. 9am-10am period, divide it by (i number of 5-minute
segments per hour), and use the resulting traffic mafri¥ as input data for computing
the manifests for the first 5-minute period. At the end of gesiod, we collect flow data
from each router and obtain the traffic matfix®s from the collected flow reports. (If the
fractional coverage fo©D; with the current sampling strategy @$ andz; sampled flows
are reported, thef?® = %, i.e., normalizing the number of sampled flows by the total
flow sampling rate.) '

Given the observed traffic matrix for the current measureérmperniod 7°* and the
historical traffic matrix7°!¢, a new traffic matrix is computed usinganservative update
policy. The resulting traffic matrix'** is used as the input for obtaining the manifests
for the next 5-minute period.

The conservative update policy works as follows. First, iweak if there are significant
differences between the observed traffic maffi¥* and the historical input datd*".

Let); = ‘TbT;MT”‘ denote the estimation error farD,. If §; exceeds a threshold, then

compute a new traffic matrix entryj"**, otherwise us&’?!?. If T°% is greater thar?’*¢,
then setT" = Teb. If T2 is smaller thanT*, we check the resource utilization of
the routers currently responsible for monitorioD;. If all these routers have residual
resources available, séf** = T°%; otherwise sefl** = T,

The rationale behind this conservative update heuristibas if a router runs out of
resources, it may result in underestimating the new trafficO®-pairs for which it is
responsible (i.e.7°% is an under-estimate of the actual traffic matrix). Updatifits”
with 7% for such OD-pairs is likely to cause a recurrence of the saradlow condition
in the next 5-minute period. Instead, we err on the side ofestenating the traffic for
each OD-pair. This ensures that the information obtainedhe next period is reliable
and can help make a better decision when computing manftestsbsequent intervals.

The only caveat is that this policy may provide lower flow aage since it overes-
timates the total traffic volume. Our evaluations with realffic traces (Section 2.4.3)
show that this performance penalty is low and the heuristwides near-optimal traffic
coverage.
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2.3.3 Flow Records in SRAM

We assume that the flow table is maintained in (more expenSRAM. Thus, we need a
compact representation of the flow record in memory, unlikéliw [48] which maintains
a 64-byte flow record in DRAM. We observe that the entire flovordd¢the IP 5-tuple, the
OD-pair identifier, and counters) need not actually be naaned in SRAM; only the flow
counters (for byte and packet counts) need to be in SRAM. Thesan offload most of
the flow fields to DRAM and retain only those relevant to the maicomputation: a four
byte flow-hash (for flowtable lookups) and 32-bit countergiackets and bytes, requiring
only 12 bytes of SRAM per flow record. To further reduce the SRAquired, we can
use techniques for maintaining counters using a combimafi®RAM and DRAM [187].
We defer a discussion of handling router memory exhausti@ettion 2.5.

2.3.4 Computing the Optimal Solution

In order to respond in near-real time to network dynamicsymating and disseminating
the sampling manifests should require at most a few secobl$ortunately, the sim-
ple two-step approach in Section 2.2.2 requires a few hulsdoé seconds on large ISP
topologies and thus does not scale, even with state of tHePasblvers likeCPLEX We
discovered that the main bottleneck is the first step of sglthe modified LP to find
OptMinFrac.

To reduce the computation time we implement two optimizetio First, we use a
binary search procedure to determifgtMinFrac. This was based on experimental ev-
idence that solving the LP specified byaxtotgivenfrac(0) for a givend is faster than
solving the LP to findOptMinFrac. Second, we use the insight thatiztotgivenfrac(6)
can be formulated as a special instance of a&x¥Low problem [63]. These optimiza-
tions reduce the time needed to compute the optimal samsliategy to at most eleven
seconds even on large tier-1 ISPs with more than 300 routers.

Binary search: The main idea is to use binary search over the valué of the LP
formulation maztotgivenfrac(0). The procedure (Figure 2.4) takes as input an error pa-
rametere and returns a feasible solution with a minimum fractionalezaget* with
OptMinFrac — 0* < e. The search keeps track&f,,.,, the smallest feasible value known
(initially set to zero), and,,,.., the highest possible value (initially set%%). In each
iteration, the lower and upper bounds are updated dependimdether the current value

0 is feasible or not and the current valties updated td’% The search starts from

0 = Oypper, and stops it er — Oiouwer < €, and returng* = 6,,,,., at this stopping point.
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BINARY SEARCH(¢e, SOLVE)

// €is the additive approximation error
// SOLVE solves themaxtotgivenfrac problem for a giverd
elower —0

// The best possible solution is simply the ratio

// of total resource available to total traffic
9 - Zj Lj

upper Zz T;
currentgap < Qupper — Qiower

chrrent — Hupper

while ( currentgap > €)

do
(status, Solution) «— SOLVE(Oypper)
if (status = feasible)
then

— 0

Qlower current

else

— ecurrent

eupper"!‘elowcr
ecurrent — 2

currentgap < Qupper — Qiower
Return(f,,pe, Solution)

gupper

Figure 2.4: Using the binary search optimization to find theral sampling strategy

Reformulation using MAXFLOW :

than general LPs.

We construct the following (directed) gragh= (V, E'). The set of vertices it is

V = {SOUT’C@, smk} U {Odi}lgiSM U {Tj}lﬁjSN

Eachod; in the above graph corresponds to OD-p@ip; in the network and each

in the graph corresponds to routey in the network.

24

We formulate the LPmaxtotgivenfrac(f) as an

equivalent Max FLow problem. Specifically, we construct a variant of traditiiovaax FLow
problems that has additional lower-bound constraints @ge edpacities. The intuition be-
hind this optimization is that Mx FLow problems are typically more efficient to solve



The set of edges iB = F;, U F;, U E3, where

Ey = {(source, od;) }r<i<m
Ey = {(rj, sink)}1<j<n
Ey = {(Odi7 rj)}i,jZRjGPi
Let f(x,y) denote the flow on the edde,y) € E, and letUB(z, y) and LB(x, y)

denote the upper-bound and lower-bound on edge capaciti@s iOur objective is to
maximize the flowF” from source to sink subject to the following constraints.

F T = source

YV, (Z f(z,y) — Zf(y,x)) =< —F x=sink

0 otherwise

We specify lower and upper bounds on the flow on each edge as:

Va,Vy, LB(x,y) < f(x,y) < UB(z,y)

The upper-bounds on the edge capacities are: (i) the edgashiesource to od; have
a maximum capacity equal 6, (the traffic for OD-pairOD;), and (ii) the edges from each
r; to thesink have a maximum capacity equalle (resource available on each roufey).

T; x = source,y = od;
UB((xz,y)) =< L; x=rjy=sink
oo otherwise

We introduce lower bounds only on the edges fromdtwerce to eachod;, indicating
that eachOD; should have a fractional flow coverage at least

0 x T; x = source,y = od,;

LB((z,y)) = { 0 otherwise

We use the binary search procedure discussed earlier, dahissMax FLow formu-
lation to solve each iteration of the binary search instdabdeLP formulation.

2.3.5 Handling Routing Changes

The cSamp system can receive real-time routing updatesdnoassive routing and topol-
ogy monitor such as OSPF monitor [149]. Ideally, the optatian engine would recom-

pute the sampling manifests for each routing update. Homvexeomputing and dissem-
inating sampling manifests to all routers for each routipgate is expensive. Instead,
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the optimization engine uses a snapshot of the routing graldgy information at the be-
ginning of every measurement interval to compute and dissmmanifests for the next
interval. This ensures that all topology changes are hdnalithin at most two measure-
ment intervals.

To respond more quickly to routing changes, the optimizredéingine camprecompute
sampling manifests for different failure scenarios in agivneasurement cycle. Thus, if a
routing change occurs, an appropriate sampling manifestgigonding to this scenario is
already available. This precomputation reduces the Istehadapting to a given routing
change to less than one measurement interval. Since it tegs few seconds (e.g., 7
seconds for 300 routers and 60,000 OD-pairs) to compute #&eston one CPU (Sec-
tion 2.4.1), we can precompute manifests for all singleedlihk failure scenarios with a
moderate (4-%) level of parallelism. While precomputing manifests for tiplé failure
scenarios is difficult, such scenarios are also relativalg.r

2.3.6 Prototype implementation

Optimization engine: Our implementation of the algorithms for computing samgplin
manifests (Section 2.3.4) consists of 1500 lines of C/C++ emileg theCPLEXcallable
library. The implementation is optimized for repeated catagons with small changes to
the input parameters, in that it carries state from one wwolaver to the next. Solvers like
CPLEXtypically reach a solution more quickly when starting “@bs$o a solution than
when starting from scratch. Moreover, the solutions thsulteend to have fewer changes
to the preceding solutions than would solutions computethfscratch, which enables
reconfigured manifests to be deployed with fewer or smallessages. We implement
this optimization for both our binary search algorithm anidew recomputing sampling
manifests in response to traffic and routing dynamics.

Flow collection: We implemented a cSamp extension toY#d-flow collection tool [21].
Our choice was motivated by our familiarity with YAF, its gpticity of implementation,
and because it is a reference implementation for the IETIEXRrking group [10]. The
extensions to YAF required 200 lines of additional code. 3imall code modification sug-
gests that many current flow monitoring tools can be eastigraded to realize the benefits
of cSamp. In our implementation, we use the Bob hash funcd¢mgcommended by
Molina et al [121].
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2.4 Evaluation

We divide our evaluation into three parts. First, we demmastthat the centralized op-
timization engine and the individual flow collection proses in cSamp are scalable in
Section 2.4.1. Second, we show the practical benefits thatone operators can derive
from cSamp in Section 2.4.2. Finally, in Section 2.4.3, wevsthat the system can effec-
tively handle realistic traffic dynamics.

In our experiments, we compare the performance of diffesantpling algorithms at a
PoP-level granularity, i.e., treating each PoP as a “réinethe network model. We use
PoP-level network topologies from educational backbometerhet2 and GANT) and
tier-1 ISP backbone topologies inferred by Rocketfuel [18K construct OD-pairs by
considering all possible pairs of PoPs and use shortelktrpating to compute the PoP-
level path per OD-pair. To obtain the shortest paths, we ubkqty available static I1S-IS
weights for Internet2 and BANT and inferred link weights [117] for Rocketfuel-based
topologies.

Topology (AS#) | PoPs| OD-pairs | Flows | Packets
x10° x10°

NTT (2914) 70 4900 51 204
Level3 (3356) | 63 3969 46 196
Sprint (1239) 52 2704 37 148

Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GEANT 22 484 16 64
Internet2 11 121 8 32

Table 2.1: Parameters for the experiments

Due to the lack of publicly available traffic matrices and i@ggte traffic estimates
for commercial ISPs, we take the following approach. We ubasgline traffic volume
of 8 million IP flows for Internet2 (per 5-minute interval).For other topologies, we
scale the total traffic by the number of PoPs in the topologg.(@iven that Internet2
has 11 PoPs, for Sprint with 52 PoPs the traffié—?ﬂsx 8 = 37 million flows). These
values match reasonably well with traffic estimates reploite tier-1 ISPs. To model the

3The weekly aggregate traffic on Internet2 is roughly 175TBoking time-of-day effects, this translates

into 0.08TB per 5-minute interval. Assuming an average flme sf 10KB, this translates into roughly 8
million flows.
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structure of the traffic matrix, we first annotate Plo®ith the populatiorp, of the city

to which it is mapped. We then use a gravity model to obtairtridiic volume for each
OD-pair [150, 139]. In particular, we assume that the tataffic between PoPs and

k' is proportional top, x pr. We assume that flow size (number of packets) is Pareto-
distributed, i.e.Pr(Flowsize > x packets) = (£)7,z > cwith v = 1.8 andc = 4 [170].

(We use these as representative values; our results alarsanioss a range of flow size
parameters.) Table 2.1 summarizes our evaluation setup.

2.4.1 Microbenchmarks

In this section, we measure the performance of cSamp alomglitwensions — the cost of
computing sampling manifests and the router overhead.

AS PoP-level (secs) Router-level (secs)
Bin-LP | Bin-MaxFlow | Bin-LP | Bin-MaxFlow
NTT 0.53 0.16 445 10.9
Level3 0.27 0.10 24.6 7.1
Sprint 0.01 0.08 17.9 4.8
Telstra 0.09 0.03 9.6 2.2
Tiscali 0.11 0.03 9.4 2.2
GEANT 0.03 0.01 2.3 0.3
Internet2| 0.01 0.005 0.20 0.14

Table 2.2: Time (in seconds) to compute the optimal samptiagifest for both PoP- and
router-level topologies. Bin-LP refers to the binary seamatedure without the MaxFlow
optimization.

Computing sampling manifests: Table 2.2 shows the time taken to compute the sam-
pling manifests on an Intel Xeon 2.80 GHz CPU machine for ckffé topologies. For
every PoP-level topology we considered, our optimizatramiework generates sampling
manifests within one second, even with the basic LP formanatUsing the MaxFlow
formulation reduces this further. On the largest PoP-leygblogy, NTT, with 70 PoPs, it
takes only 160 ms to compute the sampling manifests withogbiisnization.

We also consider augmented router-level topologies coctstrl from PoP-level topolo-
gies by assuming that each PoP has four edge routers andrer®@uter, with router-level
OD-pairs between every pair of edge routers. To obtain theerdevel traffic matrix, we
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split the inter-PoP traffic uniformly across the routerde®D-pairs constituting each PoP-
level OD-pair.

Even with 5< as many routers and ¥6as many OD-pairs as the PoP-level topologies,
the worst case computation time is less than 11 seconds hatMaxFlow optimization.
These results show that cSamp can respond to network dysamiear real-time, and
that the optimization step is not a bottleneck.

Worst-case processing overheadcSamp imposes extra processing overhead per router
to look up the OD-pair identifier in a sampling manifest and@¢oonpute a hash over the
packet header. To quantify this overhead, we compare tbeghput (on multiple offline
packet traces) of running YAF in full flow capture mode, andmag YAF with cSamp
configured to log every flow. Note that this configuration desitates the worst-case
overhead because, in real deployments, a cSamp instandé merd to compute hashes
only for packets belonging to OD-pairs that have been assida it, and update flow
counters only for the packets it has selected. Even withwibist-case configuration the
overhead of cSamp is only 5% (not shown).

Network-wide evaluation using Emulab: We use Emulab [169] for a realistic network-
wide evaluation of our prototype implementation. The teatfework consists of sup-
port code that (a) sets up network topologies; (b) configaregsruns YAF instances per
“router”; (c) generates offline packet traces for a giveffiranatrix; and (d) runs real-
time tests using thBitTwist ~ # packet replay engine with minor modifications. The only
difference between the design in Section 2.2 and our Emeitalp $s with respect to node
configurations. In Section 2.2, sampling manifests are edetpon a per-router basis, but
YAF processes are instantiated on a per-interface basisn&jerouter-level manifests to
interface-level manifests by assigning each router’saoesibilities across its ingress inter-
faces. For example, i®; is assigned the responsibility to l@gD;, then this responsibility
is assigned to the YAF process instantiated on the ingrésdace forP; on R;.

We configure cSamp in full-coverage mode, i.e., configurezhfmure all flows in the
network. (In our formulation this means setting the rousiources such thatptMinFrac =
1). We also consider the alternative full coverage solutidrerg each ingress router is
configured to capture all traffic on incoming interfaces. ietric we compare is the nor-
malized throughput of each YAF instance running in the etedl@etwork. Let the total
number of packets sent through the interface (in a fixedvatef 300 seconds) on which
the YAF process is instantiated péts ,.,..,- Suppose the YAF instance was able to pro-
cess onlypkts packets in the same time interval. Then the normalized tirput

processed

“http://bittwist.sourceforge.net
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is defined ag st By definition, the normalized throughput can be at most 1.
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Figure 2.5: Comparing the CDF of normalized throughput pesriace across the entire
network

Our test setup is unfair to cSamp for two reasons. First, witPoP-level topology,
every ingress router is also a core router. Thus, there anet@gor routers on which the
monitoring load can be distributed. Second, to emulate gerquocessing packets on
each interface, we instantiate multiple YAF processes anglesCPU Emulalpc3000
node. In contrast, ingress flow capture needs exactly oneepsoper Emulab node. In
reality, this processing would be either parallelized indwaare (offloaded to individual
linecards), or on multiple CPUs per YAF process even in saftwaplementations, or
across multiple routers in router-level topologies.

Figure 2.5 shows the distribution of the normalized thrquglvalues of each YAF in-
stance in the emulated network. Despite the disadvantage=iup, the normalized packet
processing throughput of cSamp is higher. Given the 5% @astldue to hash compu-
tations mentioned before, this result might appear sungrisThe better throughput of
cSamp is due to two reasons. First, each per-interface YAtamece incurs per-packet
flow processing overheads (look up flowtable, update cosngée.) only for the subset of
flows assigned to it. Second, we implement an optimizatian finrst checks whether the
OD-pair (identified from IP-id field) for the packet is presenits sampling manifest, and
computes a hash only if there is an entry for this OD-pair. Ve eepeated the experi-
ment by doubling the total traffic volume, i.e., using 16 roill flows instead of 8 million
flows. The difference between the normalized throughpusgmdar in this case as well.

30



For example, the minimum throughput with ingress flow cagtsionly 85%, whereas for

cSamp the minimum normalized throug

hput is 93% (not showhgse results show that

by distributing responsibilities across the network, cSdmlances the monitoring load

effectively.

2.4.2 Benefits of cSamp

(a) Total flow coverage

(b) Min. fractional flow coverage per OD-pair
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Figure 2.6: Comparing cSamp with packet sampling and hypioti¢low sampling ap-

proaches

It is difficult to scale our evaluations to larger topologiesng Emulab. Therefore,

we implemented a custom packet-level

network simulatonghdy 2500 lines of C++)
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to evaluate the performance of different sampling apprescFkor all the sampling algo-
rithms, the simulator uses the same network topology, Offidmraatrix, and IP flow-size
distribution for consistent comparisons.

We consider two packet sampling alternatives: (i) uniforacket sampling with a
sampling rate of 1-in-100 packets at all routers in the neétyand (ii) uniform packet
sampling at edge routers (this may reflect a feasible altieenfor some ISPs [66]) with a
packet sampling rate of 1-in-50 packets. We also consideflow sampling variants: (iii)
constant-rate flow sampling at all routers with a samplirig cd 1-in-100 flows, and (iv)
maximal flow sampling in which the flow sampling rates are emosuch that each node
maximally utilizes its available memory. In maximal flow saling, the flow sampling
rate for a router isnin(1,1), wherel is the number of flow records it is provisioned to
hold andt is the total number of flows it observes. Both constant-rateraaximal flow
sampling alternatives are hypothetical; there are no implgations of either available
in routers today. We consider them along with cSamp to etaldidferent intermediate
solutions in the overall design space, with current packeting approaches at one end
of the spectrum and cSamp at the other.

cSamp and the two flow sampling alternatives are constrdip¢ide amount of SRAM
on each router. We assume that each PoP in the network issgmoed to hold up to
400,000 flow records. Assuming roughly 5 routers per PoPntdfaces per router, and
12 bytes per flow record, this requirement translates ##8>>'2 = 96 KB SRAM per
linecard, which is well within the 8 MB technology limit (inOR4) suggested by Vargh-
ese [167]. (The total SRAM per linecard is shared across pheltbuter functions, but it
is reasonable to allocate 1% of the SRAM for flow monitoringipc® packet sampling
alternatives primarily operate in DRAM, we use the methogplsuggested by Estan and
Varghese [62] and impose no memory restrictions on the reuBy assuming that packet
sampling operates under no memory constraints, we prowtte best possible flow cov-
erage (i.e., we underestimate the benefits of cSamp).

Coverage benefits: Figure 2.6(a) compares the total flow coverage obtained elfth
ferent sampling schemes for the various PoP-level topetoiiable 2.1). The total flow
coverage of cSamp is8-3.3x that of the uniform packet sampling approaches for all the
topologies considered. Doubling the sampling rate for datgged uniform packet sam-
pling only marginally improves flow coverage over all-rautsmiform packet sampling.
Among the two flow sampling alternatives, constant rate flamgling uses the available
memory resources inefficiently, and the flow coverage-i1$ x less than cSamp. Maxi-
mal flow sampling saturates the memory resources and isdkestlin performance. Even
in this case, cSamp provides 14-32% better flow coverage. /s represents only a
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modest gain over maximal flow sampling, Figures 2.6(b) al®dc?.show that maximal
flow sampling suffers from poor minimum fractional coveragel increases the amount
of redundancy in flow reporting.

Figure 2.6(b) compares the minimum fractional coverageQigspair. cSamp signif-
icantly outperforms all alternatives, including maximawmil sampling. This result shows
a key strength of cSamp to achieve network-wide flow coverdgectives, which other
alternatives fail to provide. In addition, the differenptdogies vary significantly in the
minimum fractional coverage, in comparison to the totalerage. For example, the mini-
mum fractional coverage for Internet2 an&GNT is significantly higher than other ASes
even though the traffic volumes in our simulations are sclhedrly with the number of
PoPs. We attribute this to the unusually large diagonal aai-diagonal elements in a
traffic matrix. For example, in the case of Telstra, the bmathe population distribution
across PoPs is such that the top few densely populated Ppésefs Melbourne, and Los
Angeles) account for more than 60% of the total traffic in thevdy-model based traffic
matrix.

Reporting benefits: In Figure 2.6(c), we show the ratio of the numberduiplicate
flow recordsreported to the total number of distinct flow reports repabrt&he absence
of cSamp in Figure 2.6(c) is because of the assignment obwerapping hash-ranges to
avoid duplicate monitoring. Constant rate flow sampling litde duplication, but it pro-
vides very low flow coverage. Uniform packet sampling camlitaa up to 14% duplicate
reports. Edge-based packet sampling can alleviate thiei@some extent by avoiding
redundant reporting from transit routers. Maximal flow séngpincurs the largest amount
of duplicate flow reports (as high as 33%).

Figure 2.6(d) shows thmaximum reporting bandwidtcross all PoPs. We normalize
the reporting bandwidth by the bandwidth required for cSaifipe reporting bandwidth
for cSamp and flow sampling is bounded by the amount of meni@tthe routers are
provisioned with; memory relates directly to the number ofvfirecords that a router
needs to export. The normalized load for uniform packet s@gnean be as high as four.
Thus cSamp has the added benefit of avoiding reporting histsiptike traditional packet
sampling approaches.

Summary of benefits: cSamp outperforms traditional packet sampling approachedi
four metrics. Compared to constant rate flow sampling, cSampoire efficient at using
the available resources. While maximal flow sampling canigeveasonable total flow
coverage, it has poor performance with respect to the mimirfractional flow coverage
and duplicated flow reports. Also, as network operatorsipian routers to obtain greater
flow coverage, this bandwidth overhead due to duplicate feports will increase.
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2.4.3 Robustness Properties

To evaluate the robustness of our approach to realistiictidfanges, we consider a two-
week snapshot (Dec 1-14, 2006) of (packet sampled) flow daa linternet2. We map
each flow entry to the corresponding network ingress andgsgr@ints using the technique
outlined by Feldmann et al. [66].We assume that there are no routing changes in the
network, and that the sampled flow records represent thalaicaific in the network.
(Since cSamp does not suffer from flow size biases there iserd to renormalize the
flow sizes by the packet sampling rate.) For this evaluatiemscale down the per-PoP
memory to 50,000 flow records. (Due to packet sampling, thasga contains fewer
unique flows than the estimate in Table 2.1.)
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Figure 2.7: Comparing total traffic coverage with the conastwve update heuristic vs. the
optimal solution

Figure 2.7 compares the total flow coverage using our appr@chandling traffic
dynamics (Section 2.3.2) with the optimal total flow coverdge., if we use the actual
traffic matrix instead of the estimated traffic matrix to cartgomanifests). As expected,

5Since IP-addresses are anonymized by zero-ing out thelasits, there is some ambiguity in egress
resolution. However, this does not introduce a significda bs less than 3% of the flows are affected.
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the optimal flow coverage exhibits time-of-day and day-eeW effects. For example,
during the weekend, the coverage is around 70% while on tlekdass the coverage is
typically in the 20-50% range. The result confirms that r&gyon traffic matrices that are
based on hourly averages from the previous week gives rptanal total flow coverage
and represents a time scale of practical interest that sNomith overfitting and underfitting
(Section 2.3.2). Using more coarse-grained historicairmftion (e.g., daily or weekly
averages) gives sub-optimal coverage (not shown). Figlral2o shows that even though
the conservative update heuristic (Section 2.3.2) ovenagts the traffic matrix, the per-
formance penalty arising from this overestimation is rgggle.
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Figure 2.8: Comparing the minimum fractional coverage with tonservative update
heuristic vs. the optimal solution

Figure 2.8 shows that using the per-hour historical esesatone performs poorly
compared to the optimal minimum fractional coverage. Thimarily because of short-
term variations that the historical traffic matrices canactount for. The conservative
update heuristic significantly improves the performancghia case and achieves near-
optimal performance. These results demonstrate that quoaph of using per-hour his-
torical traffic matrices combined with a conservative updaturistic is robust to realistic
traffic dynamics.
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2.5 Discussion

Router memory exhaustion: Despite factoring in the router memory constraints into
the optimization framework, a router’s flow memory might bén@usted due to traffic
dynamics. In our current prototype, we choose not to eviat flecords already in the flow
memory, but instead stop creating new flow records until titkad the measurement cycle.
The conservative update heuristic (Section 2.3.2) wilueashat the traffic demands for
the particular OD-pairs that caused the discrepancy aratagdppropriately in the next
measurement cycle.

In general, however, more sophisticated eviction strategiight be required to prevent
unfairness within a given measurement cycle under advatgeaffic conditions. For
example, one such strategy could be to allocate the avaifltol memory across all OD-
pairs in proportion to their hash ranges and evict flows ordynf those OD-pairs that
exceed their allotted share. While this approach appeausipla at first glance, it has
the side effect that traffic matrices will not be updated prbpto reflect traffic dynamics.
Thus, itis important to jointly devise the eviction and treffic matrix update strategies to
prevent short-term unfairness, handle potential adviaitgeaffic conditions, and minimize
the error in estimating traffic matrices. We intend to pursueh strategies as part of future
work.

Transient conditions inducing loss of flow coverage or duptation: A loss in flow
coverage can occur if a router that has been assigned a magghfaa an OD-pair no longer
sees any traffic for that OD-pair due to a routing change. Rguthanges will not cause
any duplication if the OD-pair identifiers are globally uney However, if we encode OD-
pair identifiers without unique assignments (see Secti®i p.then routing changes could
result in duplication due to OD-pair identifier aliasing.sA| due to differences in the time
for new configurations to be disseminated to different naytéhere is a small amount
of time during which routers may be in inconsistent samptogfigurations resulting in
some duplication or loss.

Applications of cSamp: cSamp provides an efficient flow monitoring infrastructuratt

can aid and enable many new traffic monitoring applicatiens.([49, 86, 99, 145, 173]).
As an example application that can benefit from better flovecaye, we explored the pos-
sibility of uncovering botnet-like communication strustun the network [135]. We use
flow-level data from Internet2 and inject 1,000 syntheticalafted single-packet flows
into the original trace, simulating botnet command-andtad traffic. cSamp uncovers
12x (on average) more botnet flows compared to uniform packepkagn We also con-
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firmed that cSamp provides similar or better fidelity compaceuniform packet sampling
for traditional traffic engineering applications such adfic matrix estimation.

Network Provisioning: An alternative version of the network-wide formulation ¢Se
tion 2.2.2) can be posed as a capacity provisioning probiemm;how should a network
operator invest resources at routers (e.g., memory) teeeeta given target traffic cov-
erage? To discuss such a “what-if” scenario, we use theiantahd formulation from
Section 2.2.2 and let; denote the targeted fraction of traffic on OD-pato be moni-
tored; that is,

Vi, Coverage; > 0,

The monitoring load.; on router; is given by

and translates directly into the memory and reporting baditwthat need to be provi-
sioned on the router. It also reflects the cost incurred byoperators (e.g., memory
upgrades on router hardware). We consider the followingdailye: minimizing the max-
imum load on any single router in the network.
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Figure 2.9: Distribution of memory requirement across PoPs

Across the different PoP-level topologies we find that evéh a/itarget flow coverage
of 90%, the maximum memory required per PoP is of the order bf3amillion traffic
records. Assuming a 32-byte flow record, this translatesamhaximum memory require-
ment of 90MB per-PoP, which is larger than the memory caj@sciin routers today, but
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not technologically inconceivable. This is promising irwiof certain applications for
which near-complete traffic coverage is desirable (e.genfsic applications [173]). Fig-
ure 2.9 shows the distribution of the per-PoP memory remerg (in terms of number of
flow records). We observe that the number of nodes that negdhigh provisioning is
small. This is consistent with the observations in SectignZregarding the structure of
the underlying traffic matrix — dominant PoPs that carry aiicant fraction of the traffic
naturally demand better provisioning than smaller PoPs.

Minimizing Reconfigurations: An aspect of robustness that has not been addressed in
this chapter concerns the number of reconfigurations umd#éictdynamics. To reduce
management complexity, network operators may prefer sSagipianifests that are stable
over time or require only a handful of reconfigurations inpeasse to some of the typ-
ical events they expect. Here, a reconfiguration refersttee(i) a non-zerai,; value
becoming zero in the new sampling strategy recomputed thigetraffic change, or (ii) a
d;; entry that was previously zero becoming non-zero in the reewpding strategy. As a
preliminary exploration, we augmented the objective figrctvith a reconfiguration cost
term. The reconfiguration cost penalizes feasible samgliregegies that, while optimal
otherwise, require a large number of reconfigurations wrempared to the sampling
strategy currently in use. Figure 2.10 shows the resulthisfrreliminary exploration
using data from Internet2. (We only show the results for daggh week2; results for
other days were similar). We see that the new sampling neinifere relatively stable
throughout the 24-hour period and require only a small nurobeeconfigurations (less
than 5% of the entries on average). Moreover, this addedstobss feature is achieved
with negligible loss in total flow coverage and minimum frantl coverage (0.5% and
3% respectively). These preliminary results are similgsrior work on configuring link
weights in the context of intra-domain routing [32, 69]. Gfieection of future work is
exploring this connection and developing strategies treeaplicitly designed to have as
few reconfigurations as possible.

2.6 Chapter Summary

Flow-level monitoring is an integral part of the suite ofwetk management applications
used by network operators today. EXxisting solutions, hewnefocus on incrementally
improving single-router sampling algorithms and fail toehthe increasing demands for
fine-grained flow-level measurements. To meet these grod@ntands, we argue the need
for a system-wide rather than router-centric approach éwv fhonitoring.

We presented cSamp, a system that takes a network-wide agbpto flow moni-
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Figure 2.10: Effect of introducing reconfiguration costhe formulation

toring. Compared to current solutions, cSamp provides hifjbes coverage, achieves
fine-grained network-wide flow coverage goals, efficierglyerages available monitoring
capacity and minimizes redundant measurements, and atio@d balances responsi-
bilities to avoid hotspots. We also demonstrated that ostesy is practical: it scales to
large tier-1 backbone networks, it is robust to realistimoek dynamics, and it provides
a flexible framework to accommodate complex policies anéaibjes.
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Chapter 3

Coordinated Sampling sans
Origin-Destination ldentifiers

In order to simplify the underlying algorithmic formulatis, cSamp assumes that each
router on receiving a packet can immediately ascertain thgir©Destination (OD) pair

for the packet, specified by the ingress and egress routersev¢r, due to prefix-aggregation
and multi-exit peers, interior routers in the network carndentify the OD-pair given just
the source and destination IP addresses. Thus, cSamp isfpaseequirements: (i) mod-
ifications to packet headers to carry OD-pair identifiersl, @hupgrades to border routers
to compute the OD-pair identifiers [66] for each packet. Botifications present signif-
icant deployment barriers for many ISPs. Thus, while cSanajp ielegant architecture that
has the potential to improve flow monitoring, it does not hamemmediate deployment
path for ISPs today.

To address this impediment, in this chapter, we reformufetgroblem of implement-
ing a cSamp-like architecture when OD-pair identifiers areavailable. The goal of such
an architecture, to which we refer as cSampig to realize the benefits of cSamp and at
the same time be immediately deployable. An immediate apresece of this reformu-
lation is that the known algorithms [147] for efficiently mamzing either the total flow
coverage or minimum fractional coverage across all ODspaio longer apply. In fact,
we show that these problems are NP-hard. Consequently, mlceimillenge is to develop
algorithms for efficiently computing sampling strategiesas to optimize these measures,
either exactly or approximately.

In this chapter, we present substantial progress towardimgethis challenge. For the
lcSamp-T denotes cSamp minus Tags for OD-pairs
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measure of total flow coverage (total number of unique flowgéal), we notice that the
objective function isubmodular This is important because even though it is hard to find
an exact optimal solution, we can implement efficient grealdyrithms with good ap-
proximation guarantees that leverage this submodulargpeaty. We borrow and extend
results from a rich theory of optimizing submodular funo8subject to budget constraints
(e.0., [71, 114, 91, 93]) to this specific application. Wewltbat on realistic topologies,
this approach yields near optimal total flow coverage.

The minimum fractional coverage objective (i.e., the mimmmacross all OD-pairs
of the fraction of flows logged per OD-pair) is not submoduleawever, and so does not
inherit these approximation guarantees with a greedy aghr[®3]. Moreover, on realistic
topologies the greedy approach performs poorly. So, indhge we turn to examining
the additional resources needed in order to obtain goodymeaince. We consider two
practical scenarios for ISPs to alleviate this concerna(@menting targeted routers with
more memory resources and (b) incremental deployment ahp3gy upgrading a small
subset of border routers with the functionality to compufe-gair identifiers and add
them into packet headers. Our results in this direction evesing: we show that a few
such router upgrades can significantly boost the minimuugtibal coverage obtained in
realistic topologies.

cSamp-T thus makes cSamp-like solutions more immediatghogable by relaxing
the dependence on the OD-pair identifiers. Further, it plesvian incremental deploy-
ment path for ISPs to transition their flow monitoring intrastures to cSamp, while in
the interim partial deployment phase it provides perforogacomparable to cSamp. We
also believe that many of the specific algorithmic technsoaied heuristic extensions we
develop here (e.g., applying results from the theory of sadutar set maximization, in-
telligent resource provisioning, hybrid cSamp/cSamp-lagment) can be more broadly
applied to other aspects of network management and measatem

3.1 Background and Motivation

Assumptions in cSamp: There are three main assumptions: (i) a centralized module f
assigning router responsibilities that has access tomguatind traffic matrices, (ii) routers
implement hash-based flow sampling, and (iii) routers ob@iD-pair information from
packet headers.

The first two assumptions are feasible within current tetdgioal and operational
realities. First, centralization is viable if the routemfigurations are generated in a rea-
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sonable amount of time (say at most 1-2 minutes). Furtheentetrends show that ISPs
increasingly favor centralization of the network managetienctions [37, 73] and that
routing and traffic matrices are typically already avaial@6, 184]. The second assump-
tion that routers support hash-based flow sampling is atsilie within capabilities avail-
able today. The requirements on such hash functions are sjuiiple [153, 54] (e.g., no
strong cryptographic guarantees) and thus they are aneetafast hardware implemen-
tations [136]. Further, routers already implement haréwesh functions for other tasks.
Flow sampling requires flow table lookups for each packetflibw table, therefore, needs
to be implemented in fast SRAM. Prior work has shown that na@mintg such counters is
feasible [62, 89]. For simplicity, cSamp assumes that the flounters are maintained in
SRAM and the amount of SRAM is the resource constraint thatuhates the number of
flows a router can log.

The assumption that routers can obtain OD-pair identifienplfies cSamp’s design
and makes the optimization problem theoretically traeaBlpecifically, Eq (2.2) implic-
itly assumes that the hash-ranges assigned to differetgrsofor the same OD-pair are
non-overlapping. Thus, the coverage of each OD-pair is lgitlyg sum of the fractional
coverages of the routers on the path. If OD-pair identifieeseanot available, this would
no longer hold. As we argue next, for many ISPs this assumjiaot practical.

Challenges in OD-pair identification:

Given no additional information, a router needs to deteeniire ingress and egress
routers (the OD-pair) for a given packet using only the p#sksurce and destination
IP addresses and its local routing table. The feasibilitgang this depends on whether
the ISP uses IP-based or MPLS-based forwarding. While IP&uating is destination-
based, MPLS can also take into account source informaticoweMer, we are unaware
of deployments configured in this way, and we have confirmatidharge tier-one ISP’s
deployment of MPLS, for example, does not [29]. As such, legerestrict our atten-
tion to destination-based MPLS forwarding, which we bedity be the norm. Table 3.1
summarizes the feasibility of resolving the ingress aneésgin these two scenarios.

Information to Routing/Forwarding
Resolve IP (dest-based) | MPLS (dest-based)
Ingress Difficult Difficult
Egress With some ambiguitJ Possible

Table 3.1: Feasibility of resolving ingress and egressrmédion using packet headers
and local routing tables.
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In both cases, resolving the ingress is nearly impossibde.ekample, in the case of
traffic entering from a multi-exit peer (i.e., a neighborid§ with which an ISP peers at
multiple peering points), source IP address and routinig iabormation cannot determine
the ingress from which the packet arrived. With MPLS, theesgican be resolved exactly;
with IP the egress can be resolved within some ambiguity.théarin IP forwarding,
ingress/egress resolution may be additionally difficult ttuprefix aggregation.

Due to the above challenges, cSamp assumes that ingresssreyplicitly add OD-
pair identifiers to packet headers. However, this leads t@etioal deployment hurdle—it
imposes additional processing on ingress routers to re&ad the egress information and
requires modifications to packet headers to carry OD-pairtiflers.

3.2 cSamp-T: Problem Statement

The above challenges in OD-pair identification bring us tortiotivating question for our
work: Can we implement a cSamp-like approach without rengi®D-pair identifiers?
Intuitively, we want to specify each router's sampling niasi at acoarser granularity
relying only onlocal informationrather than the global OD-pair identifiers, while still
achieving the coverage guarantees of cSamp. We call thigppvoach cSamp-T.

cSamp-T eliminates the need for ISPs to (a) upgrade bordgenowith additional
intelligence for OD-pair identification, (b) modify packe¢aders to accommodate these
identifiers, and (c) overhaul their routing infrastructir&hus, cSamp-T makes the bene-
fits of cSamp-like solutions available to network operateithout incurring the overhead
for OD-pair identification that cSamp imposes.

High-level approach: The key requirement in the cSamp-T approach is to onlyacsd
information at each router to specify the router's sampiegponsibilities. The coverage
of each OD-pair is obtained by “stitching” together the aagges provided by each router
on the path.

Consider the example shown in Figure 3.1 with 2 ingresses,easgs, and 4 OD-pairs
P1-P4. The top-half shows a cSamp configuration; OD-paittifilers are available and
each router’s responsibilities are in terms of hash-rapge®D-pair and for each OD-pair
the ranges on the routers on its path are non-overlapping.

The bottom-half of Figure 3.1 shows a scenario where roggamaot obtain OD-pairs.
The sampling manifests are specified based on just localnnaftion; each router is as-
signed ahash-range per router 3-tupleonsisting of the previous hop, current router, and
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Four OD-pairs: P1: I1-E1, P2: 11-E2, P3: 12-E1, P4: 12-E2
With OD-pair identifiers

Coverage:
P1:02+0.3=0.5

@ P2:0.3+0.3=0.6
P1,0,0.2] P1,[0.2,0.5] P3,[0.1,0.5 ll:Z 8; +04=05
P2, [0,0.3] P2,[0.3,0.6] P4,[0,0.5] T
P3,[0,0.1]

Without OD-pair identifiers; Use only local information

Coverage:

<R1,RZ,R3>, [0.1,0.2] PI: [0,0.2]U[0.1,0.2]U[0.1,0.3] = 0.3

@ P2: [0,0.2]U[0.1,0.2]U70.1,0.2] = 0.2

P3: [0,0.1]U[0.1,0.2]U[0.1,0.3] = 0.3

J1.R1R2>, [0.02] <R2,R3,E1>, [0,1,0 3]~_P4: [0,0.1]U[0.1,0.2]U[0.1,0.2] = 0.2
<I2,R1,R2>, [0,0.1] <R2,R3,E2>,[0.1,0.2]

Figure 3.1: Example topology showing the intuition behihd tSamp-T approach

the next hop. Note that for each packet, a router can asceh@iprevious hop and next
hop just based on local information (e.g., the interfacepieket arrives on and the next
hop router determined by the routing table). The coveragedoch OD-pair will then be
theunionof the ranges assigned to its constituent path-segmet8tiples on each path
in this example).

This example demonstrates two key differences between pg%aich cSamp-T. First,
the sampling responsibilities are specified using localbilable information rather than
global OD-pair identifiers. Second, the coverage for eachpaiDis no longer simply the
sum of the coverage of each router on the path; it is the urfidtmeaanges assigned to the
routers on the path.

Now, how do we assign sampling responsibilities in cSamp-maximize specific
flow coverage objectives while operating within each roate¥source constraints? The
following sections present a formal framework to address th

Problem Formulation for cSamp-T: We borrow two assumptions from cSamp: (a) sam-
pling responsibilities are generated at a centralized neodith access to routing and
traffic matrices and (b) routers implement hash-based flompsag using SRAM coun-
ters and the amount of SRAM is the main constraint on the numibigows a router can
log. As discussed earlier, both are reasonable assumptiders, we discuss how the a
centralized module can assign sampling responsibilitifsont OD-pair identifiers.
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We first define the notion of 8amplingSpeto capture the granularity at which each
router’'s sampling decisions are made. For the current gsson, the SamplingSpecs are
three-tuples of router identifiefs?;,, R,,, R;,) that appear contiguously on some path in
the network, and so in particuldl;, andR;, are neighbors of;,. Let ¢, denote a generic
SamplingSpec in our system.

The notationa, € P; captures the idea of a SamplingSpec being on the patbr
OD;.2 For example, if the patl®; uses routers- - R, Ry, R in that order, then

J2 73
the SamplingSpee = (R;,, R;,, R;,) € P;. This is a natural extension similar to the
notion of a routerk; being on path”;. We uset, = > ., .p T; to denote the total
traffic that traverses,.. Our framework maps SamplingSpecs to routers in a manyo-o
fashion; we denote the set of SamplingSpecs assignég by R;.specs. In this way,R;
is assigned sampling responsibilities correspondinglta,aE R;.specs. In this chapter,

if a = <Rj1, Rj2, Rj3>, thena, € Rj2.specs.

From the above discussion, it is clear thaRifspecs > a;, thenR; is in a position to
log (some or all) of the traffic on pathd > a,. But which fraction should it log? To this
end, if the entire traffic corresponding &g is mapped to points in the unit intervil, 1]
(say, by hashing) then the router will be responsible foressabset of0, 1]. In particular,
we discretiz€0, 1] into ; equal-sized intervals of lengthi, = [(I — 1)4, 16], and assign to
a;, Some of theseé-intervals.

We formalize this by creating a set 8amplingAtors. A SamplingAtom is a pair
(ax, h), whereq is a SamplingSpec andC [0, 1] is a “hash-range”—a subset of the unit
interval of lengthd. For any SamplingAtomg,; = (ax, ), if a4, € R;.specs, then router
R; will log the flows that traverse;, such that the hash of the flow falls ip. We use
h(gr) as a shortcut for the hash-range associated yyjth

Example: Figure 3.2 illustrates the above definitions with an exam@e& has three
SamplingSpecs in the forward direction (and three simiEm@lingSpecs in the reverse
direction): (R1,R3, Rj), (R1,R3, R2) and(R2, R3, R4). R3 is assigned three Sam-
plingAtoms, two for(R1, R3, Rj), one for(R2, R3, Rj), and none folR1, R3, R2).
Sayé = 0.25. Consider paths of the forfv., R1, R3, R4, ..} (there may be many such
paths).R3 will log all flows along these paths whose hashes fall eithéné range0, 0.25]

or [0.75,1], and flows along paths of the forfn., R2, R3, R/, ..} such that the hash of
the flow falls in the rang@, 0.25].

2Since this notion of “on-path”-ness is quite general, owprapch works for multi-path routing as well.
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Figure 3.2: Example to illustrate the definitions showing BamplingSpecs and assigned

1 <R1,R3,R2><R4,R3,R1> _ {3}
i_<R4,R3,R2> <R2,R3,R1>

SamplingSpecs SamplingAtoms
<R1,R3,R4>, [0,0.25]:
<R1R3R4> —7 SRIRIRI> [0_75'1 |
<R2,R3,R4> - <R2,R3,R4>,[0,0.25]:

/

SamplingAtoms at router R3.

Notation Explanation
M Number of OD-pairs
N Number of routers
OD; OD-pairi
C; Fraction of flows on OD-paii covered
R; Router;
L; Available resources oR;
Load,; Total monitoring load ok,
ay, SamplingSpeé
R;.specs set of SamplingSpecs ),
b Total traffic traversing SamplingSpeg
Okl SamplingAtom/ on a
Trl an assigned or selected SamplingAtom
h(gw) | hash-rang& [0, 1] in SamplingAtomygy,

Table 3.2: Notation in the problem statement
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Measures of Goodness: Given a set of assigned SamplingAtorg,; }, the fractional
coveragdor OD; is as follows. The coverage due to one particular Sampliaggpe P;
isU; h(gr) € [0, 1], and hence the total coverage is

coverageC; = |U, ep, U, P(Gx1)| (3.1)

Here, given an interva§ C [0, 1], we us€S| to denote the fraction of the unit interval
covered by this subset. Note that the coverage for a patle igilon of the assigned hash-
ranges across all the constituent SamplingSpecs — i$dnechash-range is assigned to
several SamplingSpecs along a path, then the same set ofg&iwsampled and we do
not get any extra coverage.

The monitoring loadon a router is given by summing, over all SamplingSpecs
R;.specs, the portion of the traffic throughy, that R; logs:

Loadj = ZakeRj.specs tk X ‘Ul h(@” (32)

Given the(;s for the various OD-pairs, the specific functions we conrsagle thetotal
traffic coveragef,,, = >, 7;C;, and theminimum fractional coveragg,,;,, = min; C;.
Formally, the goal of our algorithms is to obtain the set cgigised SamplingAtom&g,; }
such that we maximize eithg,; or f,..., while operating within the router resource con-
straints (i.e.,.Load; < L; for all j). We choose these specific objective functions because
of their use in cSamp [147]; our framework can accommodatélarwange of objective
functions specified as convex combinations of thealues.

The maximization problem: We can rewrite the above maximization problems as fol-
lows. Consider a “ground se® which contains as its elements all possible Samplin-
gAtoms: i.e.,V = {(a, hy) for all possible SamplingSpees and all ; hash-rangesy }.
Suppose a subsét C V of these SamplingAtoms are chosen and assigned to their cor-
responding routers. These give us the fractional coveragised by Eq (3.1) and router
loads given by Eq (3.2). Now;;; or f,... can be viewed as functions from subsetd/of

to the reals. The problem is to select ygtimal S* C V, satisfyingLoad; < L;, that
maximizesfio; Or foin-

Exact Solutions are Hard: Finding the optimalS* to maximizef,,; or f,.., subject to
the load constraints on routers is NP-hard. The next sedéomonstrates the hardness via
a reduction from the 3-SAT problem. Moreover, it is infedesitor practical system sizes.
Specifically, we cast the problem into an integer linear paogning (ILP) formulation
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by assigning 0-1 indicator variables for eaghto denote whether it is “assigned” or not.
Even on the Internet2 topology with just 11 routers, the camual solverCPLEXdid
not converge to a solution after a day. Because of this irgbaldy of solving the problem
exactly, we resort to greedy approximations. However, awilVsee, our algorithms yield
results that compare favorably to the original cSamp peréorce.

3.3 NP-hardness

First, we show that the decision version of thig cSamp-T problem witlh = 1 is NP-
hard via a reduction from 3-SAT. Then, we extend the resutsdrow the) < 1 case is at
least as hard as the= 1 case.

Hardness foré = 1. Let the variables in the 3-SAT problem be denotedchy. . ., zy
and the clauses denoted by, ..., C),. Given an instance of a 3-SAT problem, we con-
struct a cSamp-T problem as follows.

The set of “routers” in cSamp-T iX UT U F U D, whereX = {Xi,..., Xy},
T={T,...., Ty}, F ={F,...,Fy},andD = {D;, ..., Dy}. Edges in the graph are
{(T5, X5) Y ULCE, X503 UG, Dy y UL(D;, Ty 5" > 5y U{(Dy, Fy di' > g}

Each SamplingSpeg, can be one of the following(T;, X;, D;), (F}, X;, D;), (X;, D;, T}/),
and (X;, D;, F;). There is exactly one SamplingAtog, for eache, and is equal to
(ax, [0, 1]). The budget constraints fd», F', andT" nodes is zero. The only non-zero bud-
gets are on th&’ nodes andudget (X ;) is equal tanax(#clauses with;, #clauses witlr;).

For each clause, we construct a OD-pair/p@tlas follows. Without loss of generality,
let us assume that the clauses appear in sorted order ofilableandices. If the literal
x; appears in the clause, there is a sequence of vertices afine ¥, X;, D; in the path.
If the literal z; appears in the clause, there is a sequence of vertices aftthef, X;, D;
in the path.P; has edges from; to the adjacent (in sorted order of indices) variablg’s
or F;; depending on whether; appears in positive or negative form in the clause. Each
path has unit traffic, i.evi, T; = 1.

Example: If C; = (z; V 7% V ), we create a patl;, = (1}, X;, D;, F., Dy, 1}, X)) as
shown in Fig. 3.3.

Claim: The decision problem of checkingfif; = M on the above cSamp-T problem is
equivalent to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms arefwd form((7};, X;, D,), [0, 1])
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Figure 3.3: Example showing the path corresponding to thesel”; = (z; V Tx V ;)

or ((F;, X;, D;),[0,1]). Note that they specify all-or-nothing responsibiliti€ue to the
way the budgets are defined, for eachexactly one of 7}, X;, D;, [0, 1]) or (F;, X;, D;, [0, 1])
is “active”—in effect this corresponds to setting the vhahear; to be true or false. Hence,
P; has unit coverage in the solution of the cSamp-T instancedfaly if there is at least
one satisfied literal in clausg;. Thus, checking if there is a satisfying assignment or not
for the 3-SAT formula is equivalent to checking if the covged;,; = M or f,,;, < M. (In
fact, it is also equivalent to checking ff,;, = 1 or f,.;, = 0.) This proves the hardness
for both cSamp-T problems of maximizinfg,; and f,,;, with § = 1.

Hardness with finer discretization: Given integerd > 1, the hardness for thé =

1/d < 1 case follows from a reduction from tlde= 1 problem. Indeed, given an instance
of the cSamp-T decision problem of decidingfif; = M with § = 1, we construct the
following instance withy = 1/d: we created — 1 “dummy” verticesV;, ..., V;_ 4, and
prepend these vertices to all patAhs We set the budgets on the dummy vertices to be
(1/d) x M. For every non-dummy vertex in tlie= 1 problem, we scale the budgets by a
factor1/d. By construction,f,,; = M on thed = 1/d problem if and only iff;,; = M on
thed = 1 problem; an analogous result holds §6y;,. Thus, the = 1/d problems are at
least as hard as the= 1 problems.

3.4 Submodularity and Algorithms

Overview and Intuition: In the previous section, we saw that obtaining exact saistio
for maximizing the total coverage or the minimum fractionalerage in the cSamp-T
framework is hard. Fortunately, as we will see in the nextisas, there are efficient prac-
tical algorithms to obtain the sampling strategies in cSadmphe key insight is that the
coverage functions have a natural “submodularity” propé&tefined next) which allows
us to apply powerful results from the theory of maximizindpswdular set functions to
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our context. This is particularly promising, since submadty implies that the greedy
algorithm yields a constant-factor approximation [71].

More specifically, the coverage functions are “submodubamti the memory con-
straints at each router are “knapsack” constraints; ouplpro is then equivalent to the
problem of maximizing submodular functions subject to lsagk constraints. We give
theoretical bounds (Section 3.5) and also show that thedgralgorithms work very well
in practice. We also give results for maximizirig,, using algorithms for max-min sub-
modular maximization [93].

3.4.1 Submodularity

Definition: A function ' : 2¥ — % mapping subsets of a ground 3eto the reals is
submodulaif for all setsS C S” C V, all elements; € V,

F(SU{s}) = F(S) = F(S"U{s}) — F(5)

i.e., the marginal benefit obtained from addisgto a larger set is smallef71]. This
captures the intuitive property of diminishing returns.efanction ' is monotone (non-
decreasing)f VS C §', F(S) < F(5).

Submodular set maximization: The goal is to pick a subsét C V maximizing F'(.S);
what makes this problem hard is that we also have a “budgestcaint of the fornz(.S) <

B; i.e., given “costs’c(s) for all s € V, the total cost(S) := > s c(s) of elements
picked in setS cannot exceed the “budgeB. This submodular maximization problem is
NP-hard [71], but good approximation guarantees are kndaparticular, the algorithm
specified in Figure 3.4 either greedily picks elements that tihe greatest marginal benefit
and do not violate the budget constraints, or greedily ptbleselements that give the
maximum marginal benefgier unit element-cogdepending on whethetfiag is true or
false), as long as the budget is not violated. It is well-kndtat the better of these two
algorithms is a constant factor approximation algorithmZ[JL

3.4.2 Application to cSamp-T

It is easy to check the coverag€sviewed as a functions frod = Sampling Atoms —
i are monotone submodular functions, and hence so is theyhtezl suny,,, = > T; C;.

Budget constraints in cSamp-T: The budget constraints in cSamp-T come from the
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SUBMODULARGREEDY(F, V, cbflag, B)

// F :2Y — R submodularp is total budget
// if cbflag istrue use benefit/cost instead of benefit
S0
while (3s € V\ S : ¢(SU{s}) < B) do
forseV\ Sdo
norm « ((cbflag = true) 7 c(s) : 1)
5, O
§* «— argmaxgn g0s
S — SuU{s*}
return(s, F(S))

O~NOOT ~hWN P

Figure 3.4: Basic greedy algorithm for maximizing a submadéunction

bounds on router load. To model router load, we need a knkgsastraintLoad; < L;

for each router?;. A naive approach is to consider the cSamp-T problem as a®itm
ular set maximization problem with multiple knapsack cosmists. This naive approach
yields aO(N) approximation, whereV is the number of routers. This is clearly undesir-
able, especially for large networks. Specifically, sinceheBamplingAtom contributes
to the load on exactly one router, this results in a collectibnon-overlappingknapsack
constraints. We call the resulting problesabmodular function maximization subject to
partition-knapsack constraintg§Each “partition” corresponds to a different router, aimel t
“knapsack” comes from the load constraint for that router)Section 3.5 we show that a
modified greedy algorithm—an extension of one from Figu#e-3gives a constant-factor
approximation.

Maximizing f;,;: To match the theoretical guarantees [172] from Section\8ebrun
two separate invocations of the greedy algorithm—with attiout the benefit-cost flag
set to true, and return the solution with better performait@ractice, both have similar
performance (Section 3.7.1).

Maximizing f,...: To maximize f,..,, we need to go from one submodular function
F to many submodular functiong,, F, ..., Fy)y—in our case, these are the fractional
coveraged’y, ..., Cy. The problem is now to picls C V to (approximately) maximize

F™in(S) = min; F(S), the minimumvalue across these different functions. This new
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GREEDYMAXMIN(FY,..., Fy,€e,V, B,7)
// Maximizemin;{ F; }

// Vi, F;:2Y — [0,1] is submodular
Tlower < 01 Tupper < 1

while (Tupper — Tiower > €) dO

Tupper +Tlower
3 Teurrent < 2

// Define the modified objective function
4 Vi, =min(F, Toen); F =3, 5
// Run greedy without budget constraints
5 By «— SUBMODULARGREEDY(E, V, true, co)
// Compare resource usage
6 if MAXUSAGE(B 4, B) > ~ then
// Tewrrent 1S infeasible, reduce upper bound

N -

7 Tupper — Tcurrent
8 else

// Tewrrent 1S feasible, increase lower bound
9 Tlower < Tcurrent

10 Returnm,yer

Figure 3.5: Maximizing the minimum of a set of submodulardions with resource
augmentation
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CSAMP-T_ROUTER(pkt, Manifest)
/] Manifest = {g = (a,h)}
1 a <« GETSAMPLING SPEQ(pkt)
// Ranges is a set of hash-range blocks
2 Ranges «— GETRANGES(a)
// HASH returns a value iff0, 1]
3 hpi — HASH(FLOWHEADER(pkt))
// Log if the hash value falls in one of the ranges
if hyie € Ranges then
Create an entry irlowtable if none exists
Update byte and packet counters for the entry

o 01 b~

Figure 3.6: Implementing cSamp-T on roufey

function F™* is no longer submodular; indeed, obtaining any non-trigighroximation
guarantee for this max-min optimization problem is NP-Ha8&]. However, we can give

an algorithm to maximizé™® when we are allowed to exceed the budget constraint by
some factor. Formally, i6* is an optimal set satisfying budget constraints, the algori

in Figure 3.5 finds a set with F™»(S) > F™in(S*) — ¢ but which exceeds the budget
constraints by a factor of, wherey = O(log(L Y, .y, Fi(v))) [93].

The key idea is this: the modified objective functiBn= """ min(F}, 7) is submod-
ular. For anyr, £ has the property that its maximum valuelisx 7 and at this maximum
valueVi, F; > 7. Running the greedy algorithm assuming no resource contgraiways
gives a set such that the actual resource usage at rBuisrat mosty x Load;. Notice
that this holds for all, and in particular, for the optimal valug = F™in(S*). Since the
optimal 7 is not known, the algorithm in Figure 3.5 uses binary seav& o.

Router algorithm: Given a solution to the problem of maximizirfg, or f,..., Figure 3.6
shows each router’s sampling algorithm. Note that the rautdonger requires the OD-
pair information for a packet; it only requires the coarsamplingSpec information which
can be immediately discerned using only the packet headersther local information
(e.g., what interface the packet arrives/leaves on). Wawalbr the Ranges for each
SamplingSpec to be a set of non-contiguous hash ranges; ttireisouter samples the
packet if the hash value falls anyof the ranges.
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SUBMODULARGREEDYLAZY (F,V, cbflag, B)

O©CoOoO~NOOLhd,WNPE

10
11
12
13

// F :2Y — R submodularp is total budget
// it cbflag is true use benefit-cost instead of benefit
S« 0,6, «—ocforallseV
while (Is e V\ S: ¢(SU{s}) < B) do
Vs € V\ S, active, < false
flag < true
while flag do
§* < argmax ey g0s
if activey then
S — SuU{s*}
flag < false
else
norm < ((cbflag = true) 7 c(s) : 1)
P F(SU{S;}T)H—F(S)
activeg «— true

Return(S, F'(S))

Figure 3.7: Greedy algorithm with lazy execution to reducsputation time
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3.4.3 Practical Issues

Reducing computation time: The computation time of the algorithm of Figure 3.4 can
be reduced by using the insight that for each element’, the marginal benefit obtained
by picking s decreases monotonically across iterations of the greepyitim [114, 72].
Thus, we can use lazy evaluatioralgorithm [114, 72]. The main intuition behind lazy
evaluation (Figure 3.7) is that not &ll values need to be recomputed in Figure 3.4; only
a smaller subset of that are likely to affect the choice*afieed to be computed. We omit
further details of this algorithm for brevity and refer tieader to the references [114, 72].
We can replace all instances of the procedure caBNsODULAR GREEDY with the lazy
evaluation version in Figure 3.7. Section 3.7.2 shows thigtreduces the computation
time by more than an order of magnitude.

For very large topologies{200 nodes), we use two additional optimizations: (1) In
each greedy iteration, we evaluate the nextest choices ipparallel using the OpenMP
library [15]; (2) We use the cSamp solution for the minimuractional coverage as the
starting upper bound and avoid unnecessary iterationfi¢éobihary search in Figure 3.5.

Generalizing SamplingSpecs: We assumed that the SamplingSpecs are defined at the
granularity of router three-tuples. Note, however, thatdgheedy algorithms and the per-
router sampling algorithm are generic as they do not depen8amplingSpecs being
router three-tuples. Thus, we can generalize the algositlamd results to different notions

of a SamplingSpec. For example, the SamplingSpecs can ber idantifiers (in which
case the router applies the same sampling decisions to paénypassing through it), or
router two-tuples (previous hop and current router), oorporate IP-prefix information

as well.

Practical issues in discretization: Section 3.2 defined discretization intervalsuch
that gy, = (ax, [(I — 1)6,18]), for valuesl € {1,...,5}. There are two practical issues
to note here. First, we can make the widthrbitrarily small; there is a tradeoff between
(potentially) better coverage vs. the time to compute thetim. In our evaluations, we
fix § = 0.02 since we find that it works well in practice. Secondly, inste&considering

< disjoint intervals, we can also consider tﬁehash-ranges of the forfmJd, (m +n)d] to
make assignments as contiguous as possible. This incitbasasmputation time quadrat-
ically without providing any additional coverage benefilis.practice, we avoid this and
instead run a simple merge procedure (Section 3.7.3) to m@saphe sampling manifests.
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3.5 Algorithmic Guarantees

Suppose we are given a monotone submodular fundiionU — R with a partition
U=U0UyW... " U, The goal is to pick a sef C U such thatS N U;| < 1 and the
value F'(S) is maximized. (In other words, we have a partition matroid’oand want to
maximizeF’ subject toS being independent in this matroid.) If we greedily pick eéss
e; € U; such thak; is an element thai-approximately maximizesy < 1) the marginal
benefitF'({e1, ea, ..., ei-1,6;}) — F({e1,e2,...,€,1}), then the benefit'({ey, ..., exr})
is at least; of the optimal benefit possible [44].

A different setting is wher¥' : U — R is monotone submodular, we have a “budget”
B, and eacle € U has “size’c.: the goal is to pickS C U with ¢(S) := > _sc. < B.
Consider two greedy algorithms: (a) the “cost/benefit” atpon greedily keeps picking
an element which maxmmesw and does not violate the budget, and (b) the
“benefit” algorithm greedily keeps plcklng elemenivhich maximizes the increase i
and does not violate the budget. One can show that the béttezse two algorithms gets
benefit at leasd.35 times the best possible [172]. In fact, an algorithm basegantial
enumeration [161] gets an optim@dl — e~!)-approximation.

We can combine these ideas to solve the problem of “submiochda&imization sub-
ject to partition-knapsack constraints”. Formally, we gien a monotone submodular
function F' : V — R, where there is a partitioll = V; WV, W ... W )V,. Each element
e € V has asize,., and each pai; has a budgeB;: we want to pick a set C V such that
if S; =S NV, then the knapsack constra@ee& c. < B is satisfied. For this problem,
we can combine the two ideas above: imagine each valid knkpgahe elements iv;
to be a distinct element of the abstract8gtandU = WU,. Then considering the parts
one-by-one, and running the better of the benefit or cos¢fiteadgorithms on each part,
results in the following result:

Theorem 1 The simple greedy algorithm described aboveﬁ%— > (.148-approximation
for the problem of submodular maximization subject to piarirknapsack constraints.
Using a knapsack algorithm based on partial enumeration, areget a£— ~ 0.406-
approximation.

As always, note that the results averst-case guaranteesften these greedy algorithms
for submodular maximization perform much better in praetic

The idea can be extended to the max-min problem. The algorith the max-min
problem (subject to a cardinality constraint) from Krausale[93] uses arfl — ¢ !) ~
0.632-approximation algorithm for submodular maximizationym a black-box fash-
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ion. Hence we can replace that algorithm by the above algarfor submodular max-
imization subject to partition-knapsack constraints to @dicriteria algorithm for the
max-min problem that achieves optimal benefit, but exceed$ dudget by a factor
O(log(>>,cy Fi(v)))—the fact that we are using an approximation guarante@ laf8
instead 01).632 only changes the constants in the big-oh.

3.6 Heuristic Extensions

While the theoretical guarantees ffy;; are encouraging, achieving good performance for
fmin IS less promising. The theoretical results suggests tleatebource augmentation
required to obtain any non-trivial guarantee is quite high.

In this section, we consider three practical extensionsyjrove the performance for
fmin- The first extension uses a targeted provisioning heutisticse fewer resources in
aggregate. The second extension evaluates an incremeptalythent scenario where a
small subset of ingress routers can be upgraded to add QDdeatifiers. We present
these in the specific context of thg,;,, objective. However, these two techniques we de-
velop for targeted provisioning and partial marking can lmeergenerally applied to other
network-wide objectives where the greedy algorithm penopoorly. We also consider
an alternative submodular objective function for gettiegtéx performance fof,.;,,.

3.6.1 Intelligent Provisioning

Maximizemin; C;, subjectto

V5, 2 ksane Ry specs e X e < L (3.3)
>_; Lj < Budget (3.4)

Vj,LB; < L; < UB, (3.5)

Vi, G = Y uapep, U (3.6)

VEk, u > 0 (3.7)

Vi, C; <1 (3.8)

The theoretical bounds from the previous section assunteetttd router in the net-
work is uniformly giveny times more resources. In practice, this may be quite exaessi
since it might be very expensive to agddimes more SRAM capacity to each router. An
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interesting question is whether it is possible get bettefopmance if we can add more
memory on routers intelligently — instead of upgrading allters, we seek to augment
a smaller subset of routers and still get similar perfornreanthe rationale behind the
approach is that it may suffice to upgrade a small number ofilydaaded routers.

Problem provisioning: To address this question, we consider the above provigionin
problem. The network operator specifies a total budget of ongmesources to be dis-
tributed across different routers (e.g., defined by a totahetary budget and the cost of
SRAM). Each router?; has a lower bound(B;) for the default memory configuration
and a technology upper bounti#;) on the maximum amount of memory that can be pro-
visioned. (There are natural technological limits on theant of fast SRAM that can be
added to linecards [167].) The inputs to the problem aredted inemory budgeBudget,
LB;, and UB;. The output is the specific allocation of resources to reuteroptimize
fmin-

However, it is difficult to model the coveragé of each OD-pair provided by the
greedy algorithm under a given set of resources. Thus, we maknplifying assumption
that the hash ranges (represented by the variahledlocated across the different Sam-
plingSpecs on a given path are mutually non-overlappings &thows us to model; as
simply the sum of the rangesg in (3.6). Under this assumption, the resource provision-
ing problem can be solved as a linear prograrvwisioning. While this is not optimal
compared to faithfully modeling thé; as the union of the ranges, this is a reasonable
assumption since our goal is to obtain general guidelineseBource provisioning. As we
will see in Section 3.7.4, this heuristic works well in piaet

There are two steps to the intelligent provisioning heiaisthe first step solves the
LP provisioning. Next, given the resource allocation outputfayvisioning, we run the
greedy algorithm in Figure 3.5 with = 1 to ensure that we are strictly within the resource
constraints.

Adding a variance term to the objective: In practice, we find that it is useful to add a
variance term to the objective function. We modify the abobgective functionmin; C;

to be {min, C;} — g({L3}), whereg is a function of the second-moments of thealues.
The negative term denotes that our intent isrimimizethe variance across thevalues
(with appropriate normalization to ensure that the vamaiecm and the coverage term do
not have wildly different magnitudes). Among the differennfigurations that maximize
min; C;, the goal is to pick the configuration that distributes treoteces most uniformly
across the routers. This offsets two potential undesiratiéets. First, the LP solver may
not necessarily use all the available resources to achievegdtimal minimum fractional
coverage. Second, the LP solution may result in a skewediresallocation which may
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be undesirable for the greedy algorithm and less robust angds in traffic or routing
inputs. The variance term forces the optimization solvew(a quadratic program instead
of a LP) to use up the available resources efficiently andraidoces the skew. While this
works well for most common cases, it may not prevent skewledations wherg >> .

3.6.2 Partial OD-pair identification

Next, we consider a scenario in which a network operator teoge to upgrade some
border routers. For example, this can be achieved usingwaas@f update to the router or
by adding a simple two-port middlebox (using a software slwitunning on commaodity
hardware [122] or using FPGA [82]) that processes each paciwlifies the header, and
forwards them to the router. These few upgraded nodes (sateouter plus middlebox)
then have the capabilities to identify the OD-pairs and &dddentifiers to packet headers.
We assume that all routers run both cSamp and cSamp-T s@rgiforithms — i.e., a
router logs a flow if the hash of the flow falls in a hash-rangeespondingeitherto the
OD-pair or the SamplingSpec for the packet.

Problem enabledODs(6, P..):

Minimize » " L;, subject to
j

V), 2iep.riep, (dig X Ti) < L (3.9)
Vi€ PoCi= Y0 e, di (3.10)
Vi € Pe, VJ, dij >0 (311)
VieP,0<C <1 (3.12)

Let P. denote the set of “enabled” OD-pairs whose packets carryp@bidentifiers
and letP denote the set of all OD-pairs. We compute the maximum mimnactional
coverage using a binary search oveiThe key difference between the new algorithm and
Figure 3.5 is that each iteration of the binary search haddgical steps. In the first step,
we solve a cSamp-style linear program over the enabled Oi3:pa the second step, we
define the capped functiom%(T) = min;(C;, 7) for the non-enabled OD-pairs and use
the greedy algorithm to maximizé = 3, C;.

In each iteration, for the current valug,,....;, the first step involves solving the LP
enabledODs. The input to the LP is the set of enabled OD-p@trsand the target fractional
coverag® = T..n:- 1he objective of the LP is to minimize the total amount obases
used across the different routers to ensure that €ath € P, gets coverage at least
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0 = Tewrent- Solving the LP returns the resources allotted to each rarteeturns an
infeasible status if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the négtation of the binary
search. If the LP is feasible, then we obtain the new budgetqueter by subtracting the
resources used in the LP stage from the original budget pggmd\ext, we run the greedy
algorithm with the reduced budget and modified objectivesigel over the non-enabled
OD-pairs. By construction, the maximum valfiecan take iSM — |P.|) X Teurrens Where
M is the total number of OD-pairs an®.| is the number of enabled OD-pairs. This
maximum value is achieved if and only if each of the non-ee@kD-pairs (i.e., in the set
P\ P.) achieves a fractional coverage equatig..... If the greedy algorithm achieves
this objective value, then.,.....; is feasible and we try a higher value in the next iteration;
else we try a lower value in the next iteration.

3.6.3 Using then-fairness function

The idea ofa-fairness has been used in the congestion control litexrdrig., [120]) to
generalize the notion of max-min fair allocation. Givermtez;, and a total resource
C we want to allocate the total resource to the items in a “faidnner. Thev-fairness
function is defined a3, U(x;), whereU(z) = ﬁ:j The parameter can take values in
[0,00), and the values = 0, o = 1,2 anda — oo correspond to achieving maximum
throughput, proportional fairness, and max-min fairnespectively.

In our problem setting, each corresponds to the submodular functibn= C;. It
is easy to check that_, U((;) is submodular; thus, we can useEMODULARGREEDY
with « set to some large value. To avoid numerical instabilities,usea = 100 and
also add a small additive constant to ed¢hat the beginning since the functién(z) is
undefined when: = 0. Note that unlike the above heuristics, using déh@ir function is
tightly coupled to maximizing the minimum fractional coage.

3.7 Evaluation

Evaluation Setup: We compare the performance of cSamp and cSamp-T at a PdP-leve
granularity, i.e., treating each PoP as a “router” in thevoek model. Our evaluation setup
(Table 2.1) consists of several PoP-level network tope®diom educational backbones

3At a = 1, the function is defined a8 (x) = log(z).
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and tier-1 ISP backbones inferred by Rocketfuel [157]. Wesls®test-path routing to
construct paths between every OD-pair. The traffic matrim&eled using a gravity
model based on city populations [150]. We assume that eaehsRarovisioned to log up

to L = 400, 000 flow records® For cSamp-T, we discretize the hash-range in increments
of § = 0.02.

3.7.1 Coverage and Overlap

Total flow coverage: We are interested in two aspects: (a) the granularity of Sam-
plingSpecs and (b) is there a significant difference in perémce between the benefit or
benefit-cost tradeoff versions of the greedy algorithm.

We consider three granularities of SamplingSpecs: roueter 3-tuple, and router
3-tuple augmented with egress information. Note that tte fwo SamplingSpecs can
always be inferred from just local information but there nfiysome residual ambiguity
in resolving the egress (Table 3.1). We use the tuple+eg®ss hypothetical solution
to see the gap between it and other solutions. We also contipase to cSamp and a
maximal uncoordinated flow sampling solution. Recall thamaximal flow sampling,
the flow sampling rate for a router isin(1, 1), wherel is the number of flow records it
is provisioned to hold andis the total number of flows it observes; each node maximally
utilizes the available resources.

Figure 3.8 shows that using 3-tuple SamplingSpecs prowgsficant improvement
(25-30%) over the router-level case. cSamp-T (3-tupleasg)ris closest to cSamp, but
the gap between the 3-tuple and egress-added cases is si8alip-T with the tuple
formulation is closest to cSamp.

The theoretical guarantee for total flow coverage dependsimmng the two greedy
algorithms: with and without the cost-benefit flag. We wanutalerstand if there is a
clear difference in performance between the two configomati Figure 3.9 shows that
both configurations have very similar performance and thatalgorithm with the cost-
benefit flagebflag = false is slightly better.

Minimum fractional coverage: We saw in Section 3.4 that it is impossible to maximize
fmin using a greedy algorithm without resource augmentationusTive evaluate the
performance as a function of the resource augmentatioorfactvhere each router can
log v x 400, 000 flow records. Here, we only consider the router and tuple eaities.

4Assuming 12 bytes per flow record [147], this translates i@ 000 x 12 = 4.8 MB of SRAM per
PoP, which is well within the 8 MB technology limit per linedasuggested by Varghese [167].
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Figure 3.9: Benefit vs. benefit-cost versions

The tuple+egress was almost identical to the tuple casepwetshow this for brevity. In
Figure 3.10, we normalize the minimum fractional coverag#hle optimal value achieved
by cSamp at the baseline provisioning (i.e., cSamp at1). For example, if the greedy
algorithm returned a value ®¥2 at~y = 3 and the solution for cSamp has valiid at
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~v = 1, the normalized y-axis value correspondingyte- 3 is % = 0.5.

With v > 4, cSamp-T has performance comparabte50%) to cSamp for all topolo-
gies. Also, the difference between the router and tuple fidaitrons becomes even more
pronounced with the minimum fractional coverage resulterdhs a significant advantage
to be gained in using more fine-grained SamplingSpecs. \Witter-level SamplingSpecs,
even aty = 5, four out of the seven topologies only reach 40% of cSamp®paance.
For the same/ = 5, with tuple-level SamplingSpecs, five out seven topologeseve at
least 90% of cSamp’s performance.

Figure 3.11 shows the corresponding result when we use-fheness objective func-
tion with the tuple formulation. We see that this functiowas slightly better performance
compared to the capped-minfrac technique used above.

The~ at which cSamp has good performance is much better thangbestiical bound
in Section 3.4. In Section 3.7.4, we show that targeted prowing reduces this even
further.
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Figure 3.10: Normalized minimum fractional coverage aekicby cSamp-T as a function
of the resource augmentation factor

These results show that 3-tuple SamplingSpecs perform meitér than router Sam-
plingSpecs, and are very close to the tuple+egress cass, Whdocus on 3-tuples for the
rest of the evaluation.

Performance gap between cSamp and cSamp-TThe approximation guarantees com-
pare the performance of the greedy algorithms with the agtsalution for the cSamp-T
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problem. A related question is the gap between the optinlatisns for cSamp-T and
cSamp. It is hard to reason about the optimal cSamp-T solulistead, we compare the
theoretical upper bound for the cSamp-T problem by considea relaxed LP-version
of the problem (similar to therovisioning problem in Section 3.6). Figures 3.12(a)
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and 3.12(b) show that this performance gap for the total floverage and the minimum
coverage respectively using a router 3-tuple granulaatycSamp-T. The figure shows
that the upper bound on cSamp-T performance can be up to 308t tban cSamp. Com-
paring this with Figure 3.8, we also see that the greedy dlgoris very close to the

theoretical upper bound for cSamp-T in case of the total flovecage.

Duplicated flow reports: A secondary objective of cSamp is to minimize the total
amount of duplicated flow reports. This reduces the data genant overhead in pro-
cessing and eliminating duplicated flow measurements.r&igii3 shows the ratio of du-
plicated flow reports to the number of unique flow reports carmg cSamp-T (at the tuple
granularity) and maximal flow sampling. Compared to maxinm@ai/fsampling, cSamp-T
has 2-3« fewer duplicated flow reports. Compared to cSamp (zero dafglitreports) this
is not ideal; however, this performance penalty is unavaeaince cSamp-T operates at
a much coarser granularity.
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Figure 3.13: Ratio of duplicated flow reports to the numberrofue flow reports

3.7.2 Algorithm Running Time

In order for cSamp-T to be reasonably responsive to netwypmkihics, we want the time
to compute sampling manifests to be within few tens of seso(l typical measurement
epoch spans a few minutes; we expect that manifests are patedthacross epochs, not
within epochs.) Table 3.3 shows the computation times uki@gvanilla’ greedy and lazy
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evaluation algorithms. Lazy evaluation provides more thamrder of magnitude reduc-
tion in the total computation time. The reduction is even@msgnificant for the minimum
fractional coverage since it involves multiple invocasaf the greedy subroutine during
the binary search. With this reduction, cSamp-T scalesrgetaopologies.

Topology | Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy
NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6

Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7
GEANT | 3.06 0.28 542 7.6
Internet2 | 0.22 0.05 38.4 1.9

Table 3.3: Time to compute sampling strategy comparing drella greedy algorithm
with the lazy evaluation optimization

Next, we evaluate how the algorithms scale to very largeerdet/el topologies. We
generate router-level topologies by treating each PoP asr@™ router and add 4 edge
routers to each of these core routers. As described eavkause two extra optimizations:
parallel execution within each greedy iteration and tighteper bounds for the binary
search. Table 3.4 show that even for these very large togsothe compute times are
within reasonable bounds and can be further reduced byasicrg the degree of paral-
lelization.

Topology | # Routers | Total Cov. (sec)| Min. Frac. (sec)
NTT 350 345.9 994.7
Level3 315 224.1 540.2
Sprint 260 174.0 554.6
Telstra 220 180.7 267.6
Tiscali 205 77.0 327.4

Table 3.4: Compute times for large router-level topologiéb W threads in parallel

3.7.3 Size of Sampling Manifests
Compared to cSamp, cSamp-T increases the size of the sammdinidests. This is be-

cause, unlike cSamp, the hash-ranges assigned for eachiigg®pec are no longer con-
tiguous blocks. To reduce the size of the manifests, we imeig a simple compression
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heuristic to merge hash-ranges after the greedy algorithmpates the manifests. This
looks for maximally contiguous hash ranges in the origimaahpling manifest and merges
them into a single hash range.

We evaluate the overhead of disseminating manifests ineTala. First, the merge
algorithm reduces the manifest sizes roughlk1@econd, we notice that the total band-
width overhead of disseminating the manifests is not largBkB in the worst case after
the merge routine. Finally, on a per-router basis, the woaise size of the manifest is
around 3KB which is quite low.

Topology Total (KB) Max. per PoP (KB)
Naive | Merged | Naive | Merged
NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6
GEANT | 455 6.5 5.6 0.6
Internet2 | 14.5 5.0 4.5 0.7

Table 3.5: Size of the sampling manifests (in kilobytes at tonfiguration files) with
cSamp-T

3.7.4 Intelligent Resource Provisioning

As a specific scenario, we sé3; = L = 400, 000 for all j. We model the total budget
as Budget = v x N x L (N is the number of PoPs) and the technology limitsas L.

We vary~ andf and for each pair of values. Figures 3.14(a) and 3.14(b) shewesult

for two of the topologies, Level3 (AS3356) and Telstra (A31Prespectively. We chose
these topologies because the greedy algorithm performadypaith respect to cSamp in
Figure 3.10. An interesting result is that the curve levéiss a function ofy; i.e., there

is not much to be gained with increasing the total budget. &l@n there is significant
improvement by increasing, the technology upper bound. In fact, even with a moderate
increasey = 1.2, we see that the performance gets within 80% of the cSampnpeahce.

Since( is more crucial to the overall performance thgrior the remaining topologies
we fix v = 1.5 and analyze the normalized minimum fractional coveragefaaction of
0 in Figures 3.15 and 3.16. With = 5, all the topologies achieve at least 60% of the
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ideal cSamp performance. Similar to the previous resuiesytfair shows slightly better

performance. Contrasting this result with Figures 3.10 aidd,3he main difference is
that we do not require all PoPs to be augmented with five tirserany resources — the
total resource budget is less thah x.
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3.7.5 Partial OD-pair Identification

We try three strategies for selecting the enabled OD-firsupgrading the top-k PoPs
that (a) observe the maximum amount of traffic, (b) lie on nmoshber of routing paths, or
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AS Greedy-Minfrac Greedy-Total
NoHybrid | Hybrid
NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63
GEANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

Table 3.6: Comparing the performance of the hybrid maxinonab the greedy algorithm
for maximizing the total flow coverage alone

(c) originate the most traffic. Here, upgrading implies tivatenable OD-pair identifiers
on all OD-pairs having one of these top-k PoPs as originse&onk, we run the two-step
procedure from Section 3.6.2 for all valueslin . ., & and pick the configuration with the
highestf ;...

Figures 3.17(a) and 3.17(b) show the normalized minimuetifyaal coverage for the
Level3 and Telstra topologies as a functiorkqghumber of top-k PoPs). First, we observe
that enabling even on a small number (around 8%) signifigamtbroves the performance.
Second, enabling identifiers on routers that observe the tradic performs much better
than the other two strategies.

3.7.6 Hybrid Coverage Objective

cSamp maximizes the total flow coverage subject to achiaviadnighest possible min-
imum fractional coverage across OD pairs. So far, in cSamyeTonsidered these two
objectives separately. A natural question is if there isféactve algorithm for maximiz-
ing the hybrid objective, i.e., maximize total coveragejsabto achieving the maximum
minimum fractional coverage. It is relatively simple toextl the algorithm in Figure 3.5
to achieve this — first run the greedy algorithm to optimize tapped minimum frac-
tional objective £) and then modify the objective function to optimize the koverage
if T.urent 1S fEASIDIE.

To evaluate this hybrid approach, we consider the resounciguiration obtained us-
ing the targeted provisioning approach with= 1.5 andj = 5. Table 3.6 compares the to-
tal coverage obtained with three strategies: maximiziegtimimum fractional coverage,
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maximizing the total flow coverage, and the above two-stepisigc. Not surprisingly, we
find that maximizing the minimum fractional coverage alowesinot work well for the
total coverage. This is because the greedy algorithm teesnwhen it has achieved the
targeted coverage for all OD-pairs even if it has additioraburces that can be used to
boost the total coverage. The table also shows that tot@rage obtained by the hybrid
approach is very close to that of the greedy algorithm forimaing the total coverage
alone. While itis hard to provide theoretical guaranteestferhybrid objective, Table 3.6
shows that our approach works very well in practice.

3.8 Discussion

More fine-grained local information: Our current choice of SamplingSpecs is topology-
driven; we model the granularity of sampling manifests i of path-segments (e.qg.,
router or router 3-tuple). One direction of future work iseipand the scope to include
prefix and routing table information. For example, it migktgmossible to approximately
estimate the OD-pair information given the source and dastin address of a packet
and the available routing table information or alterndyiy@oviding additional informa-
tion (e.g., distributing IP-prefix to ingress-egress mapsouters [35]). This creates the
possibility of a cSamp-T formulation with more fine-grainatbrmation to bring the per-
formance closer to cSamp.

Sensitivity of router upgrades: Section 3.6 suggests two heuristics for upgrading
routers either with additional memory or the ability to ing@D-pair identifiers in packet
headers. The provisioning and partial marking formulagjcas presented, assume static
routing and a static traffic matrix. Real-world routing analffic matrices typically have
some dominant structural patterns that are invariant talioed dynamics. Thus, we can
apply these formulations and perform upgrades after etigathese dominant patterns.
Evaluating the sensitivity of the performance improverseattraffic or routing dynamics
and designing upgrade strategies robust to dynamics astoffuture work.

3.9 Related Work

Theory of submodularity: Submodular set-functions have long been studied as déscret
analogs of convex functions: in particular, maximizing @modular function subject to
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side constraints has a rich history; see, e.qg., [44, 173, d&d the references therein.

Greedy algorithms for monitor placement: Prior work has applied greedy algo-
rithms for monitor placement to cover all routing paths gsas few monitors as possi-
ble [47, 159]. The authors show that such a formulation isHdR} and propose greedy
approximation algorithms. There are also extensions teethoblems to incorporate
packet sampling [159, 45]. However, these do not satisfy flowerage objectives, and
in fact by relying on packet sampling, they can result in gegaaimount of redundant flow
measurements. cSamp-T provides more fine-grained flow ageeibjectives and reduces
duplicated flow reports.

Sensor network monitoring: There has been recent work applying the theory of maxi-
mizing submodular set cover functions in the context of mmazing information obtained
from multiple sensors [74, 92]. The objective of selectimg@rvations against a set of
adversarial objectives [93] is similar to the notion of mmaikiing the minimum fractional
coverage objective. Krause and Guestrin [91] provide a gowdey of known results and
applications of these ideas.

3.10 Chapter Summary

cSamp is a promising architecture to meet the demand forgfiaeed flow monitoring
capabilities in ISPs. However, ISPs cannot realize the fiisraf cSamp in practice be-
cause of its reliance on OD-pair identifiers; it requiresnges to packet headers, imposes
additional overhead at ingress routers, and may require i&Bverhaul their routing in-
frastructure.

This chapter described cSamp-T, a framework that proviéeefits comparable to
cSamp, in which the sampling decisions at routers are baskdoo local information,
and do not rely on global OD-pair identifiers. Obtaining edxsalutions to maximize the
total flow coveragef;,;) and minimum fractional coveragé,(;,) is NP-hard. We achieve
near-optimal performance fgi,; by leveraging its submodularity. Fdgr,;., getting good
performance without resource augmentation is provablg.h&towever, targeted provi-
sioning achieves near-ideal performance with low overhe@lternatively, upgrading a
small number of border routers to provide OD-pair inforroatalso yields good results.

cSamp-T thus makes the benefits of coordinated network-mioleitoring solutions
like cSamp more immediately available to ISPs and also gesvan incremental deploy-
ment path for ISPs to transition to cSamp.
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Chapter 4

Revisiting the Case for A Minimalist
Flow Monitoring Architecture

Flow monitoring supports critical network management sasiich as traffic engineer-
ing [66], anomaly detection [99, 100], accounting [55, 6@ntifying and analyzing
end-user applications [49, 86], understanding trafficcstme [174], detecting worms,
scans, and botnet activities [176, 168, 134], and forensatyais [173]. These require
high-fidelity estimates of traffic metrics relevant to eapplaation.

High traffic rates exceed the monitoring capabilities oftesst and since traffic is
scaling at least as fast as routers’ capabilities, some fdreampling or data reduction
is necessary in commaodity solutions. (There are high-ehatieans for full packet cap-
ture [12]. These are expensive and require specializedumsintation.) The de-facto
standard is NetFlow [48, 11] which uses packet sampling.hfpacket is sampled with
some probability and the selected packets are aggregatefiows’. NetFlow-style mon-
itoring is sufficient for coarse applications such as trafitume estimation, but several
studies have shown the inadequacy of packet sampling foy wfahe fine-grained mon-
itoring applications mentioned earlier (e.g., see [118589 96, 40, 134, 62)).

Consequently, several research efforts have focused oicajh-specific monitoring
techniques. This is exemplified by the proliferation of dgtteaaming algorithms for com-
puting the flow size distribution [96], entropy [102], supgreader detection [168], degree
histogram estimation [176], change detection [94], andrso 0

LOur arguments apply to non-router monitors as well. For §aityy we use the term router as it repre-
sents operational realities.
2A flow is a sequence of packets with the same IP 5-t¢sieip, dstip, srcport, dstport, protocol
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While this body of work has made valuable algorithmic conttitns, this shift to
application-specific approaches is undesirable for tweaes:

e First, this increases the implementation complexity arsbuece requirements of
routers.

e Second, the set of applications is a moving target as nornthhaomalous traffic
patterns change. This requires router vendors and netwarlagers to commit to
a fixed set of application-level metrics without knowing liese will meet future
requirements.

We reflect on these trends and ask a fundamental questiois ichtapter:
Is such complexity and early commitment necessary?
Are there simpler alternatives that can provide the reqaifidelity and generality?

Approach and Intuition: We revisit the case for minimalist approach that retains the
simplicity of NetFlow, where routers only need to suppdig\@monitoring primitives, but
still provide coverage over a wide spectrum of applications

To understand how we can achieve this, we can think of eaclitonimg application as
being composed of two logical phases: (IQadlectionphase that needs to operate at line
rates and (2) aestimationphase to compute different traffic metrics that need nattitri
work at line rates. Application-specific alternatives tlgltouple these two components,
only retaining counters and statistics relevant to a speajifplication context (Figure 4.1).
In contrast, we can envision a minimalist approach tleatoupleghe collection and esti-
mation phases as much as possible.

A key question is whether such an approach can provide eshimaccuracy compa-
rable to application-specific alternatives. One rationalsuggest that it can, is that the
primary bottleneck for monitoring is keeping counters istfimemory (SRAM). Instead of
splitting the available memory across different applmasi, we can aggregate it, and run
a few simple primitives with high-enough sampling rates lbbatn accurate estimates of
traffic metrics for a wide spectrum of applications. In otiverds, when we look at each
application in isolation, application-specific strategae appealing. However, when we
consider a portfolio of applications in aggregate, a mitishapproach might be a better
alternative.

Contributions and Implications: Our goal is not to design an optimal minimalist ap-
proach. Rather, our objective is to establidleasibleinstance.

We present a practical minimalist approach in Section 4a8d¢bmbines sample-and-
hold [62], flow sampling [79], and cSamp [147]. Our choice ledde specific primitives
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Figure 4.1: A minimalist approach runs a few collection aidpons. Applications can
use the collected data later (possibly offline). NetFlowked sampling is a minimalist
approach, but it is not well-suited for many applications. &oplication-specific architec-
ture implements many focused algorithms. These work wellife specific applications,
but increase complexity and are not robust to changing ddmaffe demonstrate a mini-
malist alternative that performs favorably w.r.t applicatspecific approaches over a wide
spectrum of applications.

is guided by the understanding that monitoring applicatitall into two broad classes
that analyze (1yolume structurée.g., traffic engineering) or (Zommunication structure
(e.g., security applications). Flow sampling is ideallyted for the latter class [79, 118,
115] and sample-and-hold for the former [62]. cSamp pravaléamework to efficiently
leverage router resources to meet network-wide monitayoags.

We use trace-driven analysis to evaluate this design agsgasral application-specific
approaches (Section 4.5): detecting heavy hitters [6Z3jespreaders [168], and large
traffic changes [94]; computing entropy [102] and the outdechistogram [176]; and
estimating the flow size distribution [96]. When our appro&els the same total mem-
ory resources as that used by the different applicatiociBp@lgorithms in aggregate, it
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provides comparable or better estimation accuracy achessritire spectrum of applica-
tions. Moreover, by delaying the binding to specific apglmas, it enables computation
of not-yet-conceived measures that will be interestindgvenftuture.

This chapter shows the promise of a minimalist approach exgma simple combi-
nation of existing techniques. We believe that this hasisogmt implications for router
vendors, network operators, and measurement resear€lmstsit can reduce router com-
plexity without compromising a vendor’s ability to satisfg customers’ demands. Sec-
ond, it helps insulate network deployments efforts fromahanging needs of monitoring
applications. Finally, we hope that our work encouragasréutesearch in developing bet-
ter minimalist primitives and estimation algorithms, andinderstanding their fidelity for
different applications.

4.1 Background and Related Work

Packet sampling: Router vendors today use uniform packet sampling [48]: aeross-
lects a subset of packets, and aggregates the sampledaxtkdtow reports. However,
packet sampling has inherent limitations. There are knoasds toward sampling larger
flows (e.g., [79, 96, 118]) and several studies have quesdidts fidelity for many man-
agement applications (e.g., see [118, 79, 56, 96, 40, 134, 62

Application-specific approaches: The limitations of packet sampling have motivated
many application-specific data streaming algorithms [28]1The high-level approach is
to use a small number of SRAM counters pertinent to each aiitand then estimate
the relevant traffic statistics from these counters. Theskeide algorithms for estimating
the flow size distribution [96, 138], identifying heavy kits [62, 90], entropy estima-
tion [102, 75, 24], superspreader detection [168], degigedram estimation [176], and
change detection [94, 144]. However, these approachegyathy tcoupled to the specific
applications and report summary statistics pertinent th egplication. Thus, it is diffi-
cult to estimate or extrapolate other measures of interest these reports. Therefore,
these lack the generality to serve as minimalist primitives

Some data structures (e.g., count-min sketches [50]) geonwiore generality. How-
ever, these have two limitations. First, they are desigmadaily for coarsevolume
gueriesand thus less suited for more fine-grained tasks like entesfiynation and super-
spreader detection. Second, sketches operate with a sp@oifikey” defined over one
or more fields of the IP 5-tuple (srcip, dstip, srcport, dgtporotocol). Each flowkey of
interest requires a separate instance of the data struddawever, it is often necessary
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to analyze combinations of two or more fields for diagnostigpses (e.g., investigating
anomalies). A separate instance for each required conrymiacurs high overhead. Fur-
thermore, this needs advance knowledge of which flowkeyideiuseful, which may not
be known until after the operator begins to investigate ifjpegvents.

Selective sampling:Some approaches assign different sampling rates for éiftelasses

of packets [98, 134]. Others only log flows with pre-specifgatterns (e.g., [180, 9,

14, 116, 41]). While these approaches provide some flexiptlitey need to know the

specific classes and sampling rates to meet the applicateangrements. In contrast, we
envision a minimalist approach that is agnostic to the $joetyipes of analyses that may
be performed.

Network-wide measurements:Many studies have stressed the importance of network-
wide measurements to meet operational requirements asappis and attacks become
massively distributed [66, 99, 100]. For example, undexditag peer-to-peer traffic [49],
detecting botnets [134] and hit-list worms [115], undeamgiag DDoS attacks [145], and
network forensics [173] inherently require a network-wwiksw aggregated from multiple
vantage points. In this respect, recent proposals show ehefits of moving beyond
router-centric solutions to network-wide monitoring gaas [45, 147].

4.2 Design Considerations

Given this background, we synthesize key requirementsfloimamonitoring architecture
and derive guiding principles for a minimalist approactang the charter of the IETF
PSAMP working group [16].

4.2.1 Requirements

Low router complexity: Given the hardware and development costs involved in modern
router design, we want to keep router implementations aplsias possible.

Generality across applications:The monitoring infrastructure should cover a wide spec-
trum of applications and ideally be robust to future appia@aneeds.

Enable diagnostics:The monitoring architecture should support diagnostidl*down”
tasks; e.g., by providing the capability to give differerdws into traffic structure.
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Provide network-wide views: The monitoring architecture should provide network-wide
capabilities as these are increasingly crucial for sevaspects of network management
and traffic analysis as discussed earlier.

4.2.2 Design Principles

A few, simple, and generic primitives: A natural way to reduce router complexity is to
have a few primitives that are easy to implement but powesfidugh to support many
management tasks.

Decouple collection and computationNow, how can we provide generality and support
diagnostics with a few monitoring primitives? We believattthis best achieved hye-
couplingthe collection and computation involved in monitoring taskote that this is
already implicit in network operations today: routers expdetFlow reports to a (logi-
cally) central collector and operators analyze this date.r&¥ain this operational model,
routers run some collection algorithms and export the ctdléflow reports. Once we have
the flow-level reports, we can compute any traffic metric oéiest and provide different
views required for further diagnosis.

Network-wide resource managementTo provide network-wide capabilities, we need a
framework that assigns monitoring responsibilities agrositers to satisfy network-wide
monitoring goals. At the same time, this framework shoulddseurce-awarg.e., respect
the resource constraints (e.g., memory) of routers.

4.2.3 Challenges

Given the above considerations, two questions remain:

1. Concrete Design:What primitives should be implemented on routers to support a
range of applications? How should monitoring respongiedibe assigned to meet
network-wide measurement goals?

2. Performance: Does the intuitive appeal of a minimalist approach traeslato
guantitative benefits for a wide spectrum of applications?

In addressing these challenges, our goal is not to look fdtoatimal” minimalist
approach. (In fact, it is not clear if we can formally reasdiowat optimality without
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committing to a fixed set of applications.) Rather, we wanotklfor afeasibleinstance
that covers a broad spectrum of applications. We presensocie proposal in the next
section.

4.3 Architecture: Components and Combination

The first challenge is to choose a small set of generic cadlegirimitives that runs on

each router and to design a framework to manage them irgrtliyg across a network
of routers. Our specific proposal combines three ideas: feowpéing [79] and sample-
and-hold [62] for single router sampling algorithms, and@® [147] for network-wide

management. Keys et al. designed a system for providinicteafmmaries and detecting
“resource hogs” [88] using a combination of flow sampling aadthple-and-hold, similar
to our approach. We extend their work in two significant wdisst, we show how to com-

bine these primitives with the network-wide capabilitié€8amp [147] in contrast to the
single-vantage-point view in their work. Second, we lookdre simple traffic summaries
and demonstrate that this combination can support a muckrwaage of applications.

4.3.1 Router Primitives

Choice of primitives: Flow monitoring applications can be divided into two bro&abses:
(1) those that require an understandinga@iume structurge.g., heavy-hitter detection and
traffic engineering that require an understanding of thelmemof packets/bytes per-port
or per-src and (2) those that depend on¢bhenmunication structuree.g., security appli-
cations and anomaly detection application that requirenalerstanding of “who-talks-to-
whom?”. Our choice of primitives is guided by these two bro&asses. Flow sampling is
well suited for security and anomaly detection applicaitimat analyze communication
structure [79, 118, 115]. Similarly, sample-and-hold idlwaited for traffic engineering
and accounting applications that analyze volume stru¢@2je Thus, these two primitives
effectively complement each other in their capabilities.

For the following discussion, a flow refers to the IP 5-tuplé/e use flow sampling
and sample-and-hold at this 5-tuple granularity. The ratie is to collect flows at the
most general definition possible. The collected flows caribedsand-diced after the fact
by projecting from this general definition to more specifiinidons (e.g., per destination
port, per source address).

3(srcaddr, dstaddr, srcport, dstport, protocol)
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Sample-and-Hold (SH): Sample-and-hold (SH) [62] keeps near-exact counts of ‘heav
hitters”—flows with high packet counts. SH works as followsr each packet, the router
checks if it is tracking this packetBowkey defined over one or more fields of the IP
5-tuple. If yes, the router updates that counter. If not, ftbevkey for this packet is
selected with probability, and the router keeps an exact count for this selected flowkey
subsequently. Since this requires per-packet countertepdthe counters are kept in
SRAM [62].

To configure SH, we specify the flowkey(s) (e.g., srcportadde, or 5-tuple), the
anticipated total number of packets for a specific time wakfrumpkts), and the number
of flows that can be logged J depending on the SRAM constraint. The probabifitis
set to—~=_.% In our design, we use one instance of SH and configure it toatgat the

numpkts

5-tuple granularity.

Hash-based flow sampling (FS)Flow sampling (FS) picks flows rather than packets
at random [79]. One way to implement FS is as follows. Eachemhas asampling
manifest— a table of one or more hash ranges indexed using a key ddrwedeach
packet header. On receiving a packet, the router compugdsatsh of the packet's 5-tuple
(i.e., the flowkey). Next, it selects the appropriate hasigegrom the manifest and selects
the flow if the hash falls within this range. The hash is useshasdex into a table of flows
and it updates the byte and packet counters for the flow. Téle faaction maps the input
5-tuple uniformly into the intervdD, 1]. Thus, the size of each hash range determines the
flow sampling rate for each category of flows in the manifest.

Similar to SH, FS requires per-packet table lookups; the thdvle must therefore be
implemented in SRAM. It is possible to add a packet sampliagesto make DRAM
implementations possible [89]. For simplicity, we assuireg the counters are stored in
SRAM.

4.3.2 Resource Management

Having chosen FS and SH as our minimalist primitives, we esklthe following question.
Given a fixed amount of SRAM available for monitoring on eactiteo, how should we
divide it between these primitives?

Combining FS-SH on a single router: Consider a single router with a fixed amount of

4To track heavy hitters who contribute more than a fractioto the total volumep is set to nu?wxpits,

whereO is an oversampling factor [62]. Our configuration can be @éws determining and O from the
memory budgef..
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SRAM that can hold. flow counters. A simple way to split is to give a fractiory to FS
and the remaining — f to SH. We show in Section 4.5 thAt~ 0.8 is a good choice.

Network-wide case: The above split works for the single router case. Next, wehese
we can manage the monitoring resources across a networkitefso Network-wide man-
agement tasks are typically specified in terms of OrigintiDaion pairs, specified by an
ingress and egress router (or PoP). OD-pairs are conveatisttactions that naturally fit
many of the objectives (e.g., traffic engineering) and qandis (e.g., routing paths, traffic
matrix) in network management. A natural extension of tinglgi router hybrid primitive
to the network-wide case is to consider the resource spliO@epair [45, 147].

Here, we observe a key difference between FS and SH. It ishd@<e coordinate
FS instances by assigning non-overlapping responsdsldcross routers on a path [147].
However, because SH logs heavy hitters, the same set of Ingdexs will be reported
across routers on a path. Thus, replicating SH across soorest path duplicates measure-
ments and wastes router resources.

To address this issue, we make a distinction between ingresson-ingress routers.
Ingresses implement both FS and SH, sharing the aggregatenyas in the single router
case. At each such ingress router, the SH resources ardasplieen the OD-pairs orig-
inating at the ingress, in proportion to the anticipated benmof packets per OD-pair.
Non-ingress routers only implement FS. In order to distelS responsibilities across
the network, we use cSamp from Chapter 2.

Example configuration: Figure 4.2 shows how the different components are combined
in the network-wide case. There are three OD-pairs P1, RRP8roriginating at the left-
most router. We envision a configuration module at the nétwperations center which
disseminates configurations to the routers. This modulestako account the prevailing
network conditions, policies, router constraints, andfine monitoring objectives to gen-
erate the FS and SH configurations for each router. In the pbeartihe ingress router is
assigned SH responsibilities for P1, P2, and P3. The namsisgouters are not assigned
any SH responsibilities for these OD-pairs. (The other edgeers could be assigned SH
responsibilities for OD-pairs for which they are the origit these are not shown.) The
FS responsibilities are generated using cSamp. Each rigutaety assigned FS responsi-
bilities for the paths of OD-pairs it lies on and these arecsjgel as non-overlapping hash
ranges per OD-pair.
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Ingress is assigned

SH/FS responsibilities

Network-wide Configuration

for OD-pairs P1, P2, P3

P1: SH :
p2: SH [P2: FS .
P3: SH [P3: F5 _ : p1 L
Sy T wmm—
\ po v .\_ 3 Non-ingress routers are
‘ P1. FS p1:Fs| & only assigned FS
P2: FS P3:FS| & responsibilies
- [ (using cSamp)
Legend:
OD-Pair P1: = Flow Sample
OD-Pair P2: === sampling|  |and hold
OD-Pair P3: =======: config config

Figure 4.2: Overview of our network-wide approach

4.4

Evaluation Methodology

Our goal is to compare the minimalist design from the pressection against an application-
specific architecture when both approaches are given the satal resource budget. In
order to do so, we need to specify the different applicatmhisiterest, the correspond-
ing application-specific algorithms, and the configuratiéor determining the resources

provisioned for each algorithm.

First, we describe the different applications, the coresiing data streaming algo-
rithms, and accuracy metrics in Section 4.4.1. Then, ini@eet.4.2, we describe how
we normalize the resource usage of the minimalist and agipit-specific algorithms.
We explain our assumptions and justify why these are coateevin that we underes-
timate the performance of an equivalently provisioned malist approach. Finally, in
Section 4.4.3, we describe the configuration parameterthéodifferent algorithms and
the estimation phase for the minimalist approach in Sectidr.
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4.4.1 Applications and Accuracy Metrics

We pick a set of diverse monitoring applications that spangpectrum of traffic engi-

neering, security, and anomaly detection tasks of inteoasetwork operators. Table 4.1
summarizes the applications and the corresponding atipleapecific algorithms, accu-
racy metrics, and configuration parameters. The table dleovsthe default parameters
we use in each case.

Flow size distribution (FSD) estimation: Let F' denote the total number of flows in a
traffic stream and; be the number of flows of sizé (pkts per flow). The FSD esti-
mation problem is to determinél = 1...z,¢;, = % where is the largest flow size.
Understanding the FSD is useful for many management tasits &gl estimating gains
from caches, configuring flow-switched networks, attacledibdn, and traffic matrix es-
timation [56, 96]. We use the data streaming and expectatiaximization algorithm
proposed by Kumar et al. [96].

The accuracy metric for FSD estimation is the weighted melative difference\WMRD)

between the true FSI, and the estimated FSB, [96]. The WMRD is defined as
SF—Fi|

)3 F1+F1 ’

Heavy-hitter detection: The goal here is to identify the topitems (e.g., srcaddr, src-
port) with the most traffic volume. These are used by opesdtounderstand application
patterns and resource hogs, as well as for traffic engingand accounting.

We use the SH algorithm [62] described earlier. We configute run with six in-
stances, one each for the following flowkeys: source postjiigtion port, source address,
destination address, 5-tuple, and source-destinatioreaslghairs. The accuracy metric is
thetop-k detection rate- the set intersection between the exacttagd estimated top-
heavy hitters. Our minimalist approach also uses SH; the wifflerence is that we use
only one instance of SH that runs at the 5-tuple granulanty ase offline projections to
the other flowkeys.

Entropy estimation: The entropy of traffic distributions (e.g., distributionpKts per dst-
port) is useful for anomaly detection [100] and traffic clsation [174]. In particular,
entropy-based analysis captures fine-grained propehannot be obtained with just
volume-based analysis. The entropy of a random varighkeH (X ) = — Zfil Pr(z;)log, (Pr(z;)),
wherex, ..., zy is the range of values foX, and Pr(x;) is the probability thatX takes
the valuex It is useful to normalize the entropy between zero and ong,gs,(X) =

HX) \where N, is the number of distinct; values observed in a given measurement

2(No)*
ef)och [100].
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Application Accuracy/Error| Algorithm | Parameters
Metric (defaults)

FSD WMRD [96] fsd (0.7)

estimation

(5-tuple)

Heavy hitter Top-k detection [62] hh, k (0.3, 50)

detection rate

(5-tuple,sip,dip,

sport,dport

sip-dip)

Entropy Relative Error [102] €,0 (0.5,0.5)

estimation

(5-tuple,sip,

dip,sport,dport)

Superspreader Detection [168] K,b,6

detection accuracy (100, 4,0.5)

Change falsepos + [94] h,k,0

detection falseneg (10,1024, 0.05)

(sip,dip)

Deg. histogram| JS-divergence| [176] -

estimation

Table 4.1: Summary of applications, accuracy metrics,rélgos, and default parameters.
The parentheses in the first column specify the flowkey(sjHerapplication (e.g., FSD
uses 5-tuple; heavy-hitter has six flowkeyg}yd and hh are expressed as a fraction of
the number of distinct IP flows per epoch.f denote error toleranced(, b means that
any IP contacting> K distinct IPs is a superspreader and any IP contas_tir{g distinct
destinations is a false positivé. is the number of hash functions akds the number
of counters per hash function in the sketch data structudefda the change detection
threshold.
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We use the data streaming algorithm proposed by Lall et @R][1We consider five
distributions: 5-tuple, src port, dst port, src address, dst address. The accuracy metric
is relative error— if the actual value i$1,,,,,, and the estimated value 1s,,,.,,, the relative
error is |H7LO7"7VL_HTLOT‘TVL‘ .

HTLOT‘TVL

Superspreader detection: Security applications like scan, worm, and botnet detactio
need to detect “superspreaders” — source IPs that contagg@mumber of distinct desti-
nation IPs. Note that this is different from heavy-hittetadtion; we want to find sources
talking to manyuniquedestinations rather than sources generating a large vobdiinaf-
fic.

We use the one-level superspreader detection algorithpopeal by Venkataraman
et al. [168]. The algorithm has three paramet&rsb, andJ; the goal is to detect all
hosts that contact K distinct destinations with probability 1 — §, and guarantee that
a source that contacts % distinct destinations is reported with probabildy 6. The
accuracy metric is theetection accuracythe number of true superspreaders detected.
(For brevity, we do not report the false positive rate siriogds zero for the minimalist
and application-specific approach in almost all cases.)

Change detection: Change detection is used to detect DDoS attacks, flash cramds,
worms [94]. At a high-level, the goal is to detect IP addresseports whose behavior de-
viates significantly from some expected behavior based estari-based forecast model.
The problem can be formally described as follows.

Suppose we bin a traffic stream into measurement epacks (,2,...). Let [, =
a1, ae, ... be the input traffic stream for epoah Each packety; is associated with a
flowkey «; and a count; (e.g., #bytes or just 1 if we are counting packet&hs, () =
> i.a—a Ci dENOtES the aggregate count for flowkey epocht. Let Feast,(t) denote the
forecast value (e.g., using exponentially weighted moawngrage, EWMA) for itenu in
epocht. The forecast error fou then isErr,(t) = Obs,(t) — Fcast,(t). F2Err, =
>, Erra(t)? is the second moment of the forecast errors. The goal is &ctetl as
with Err,(t) > 0 x /F2Err,, wheref is a user-defined threshold. We define thange
detection accuracgs the sum of the false positive (flowkeys whose volume di¢hahge
significantly but were incorrectly reported) and false niegaates (flowkeys that changed
but were not reported).

We use the sketch-based change detection algorithm prdpgs&ishnamurthy et al. [94]
as sketches have a natural “linearity” property that makesitwell-suited for change de-
tection. We use an EWMA moddlcast(t) = aObs(t) + (1 — a)Fcast(t — 1), with
a = 0.9. Note that since we are only interested in the relative perémce of the min-
imalist vs. sketch-based approaches, the specific foretadel we use is not important.
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We consider two instances to identify changes in (1) the rermolb packets per source
address and (2) the number of packets per destination addres

Degree histogram estimation:The outdegreéd of a source IP is the number of distinct
IPs it contacts in a measurement epoch. We construct theelagstogram as follows. For
bucketi, let m; denote the number of sources with outdegisach thap’ < d < 2it! 1.
The goal is to estimate thege values. A specific application is to detect botnets involved
in coordinated scans [176] by detecting changes in the gteéenistogram. The outdegree
distribution is independently useful for understandirgjfic structure. We use the sam-
pling algorithm proposed by Gao et al. [176]. Given the extstribution{m;, my, ...}
and an estimated distributiofti,, 7, . . .}, we use thelensen-Shannon (JS) divergence
between the two distributions as the accuracy métric.

4.4.2 Assumptions and Justification

In order to compare the minimalist and application-speefiproaches, we need to nor-
malize their total resource footprints. We discuss ouraggions along three dimensions:
hardware implementation, processing requirements, amaamneuse. We justify why our
specific assumptions amonservativan that they underestimate the performance of our
minimalist approach.

Hardware feasibility: We assume that both the application-specific algorithmsthed
minimalist primitives have feasible implementations tbah operate at line rates. Some
application-specific algorithms require a simple array airders (e.g., [94, 176]), while
others (e.g., [62, 102, 168]) and the minimalist primiti¥&s, SH [79, 62] involve key-
value data structures. Previous work has demonstratedttisapossible to efficiently
implement such key-value data structures in routers [78, 141]. Also, discussions with
a popular router vendor suggested that supporting FS, StHc&amp like primitives is
within the capabilities of today'’s routers.

Processing requirements:There are two processing components: online collection and
offline computation. By construction, the online collectioverhead of the minimalist
approach is lower. In the application-specific architest@ach packet requires as many
counter updates as the number of application instancesth@fueach different flowkey

5Gao et al. [176] use the Kullback-Leibler (KL) divergenceavirever, it is not always well-defined. The
JS divergence is based on KL divergence, but is always vediihed.
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for the heavy-hitter, entropy, and change detection reguseparate updates.) With the
minimalist approach, each packet requires only two updatesfor FS and one for SH.

We currently run estimation algorithms on the collected fttata without further sam-
pling. Thus, the offline processing overhead of the ministapproach could be higher
because the application-specific schemes only need to gg@mempact summaries. We
believe that offline processing costs are not a serious,igduen the costs/capabilities of
commodity hardware today. We do note that our estimatioogafore can be augmented
with additional directed sampling, if necessary, to rediheeoffline overhead.

Memory consumption: Note that for FS and SH, the flow record (the IP 5-tuple androthe
meta-data) need not be maintained in SRAM (these can be ddfic@dDRAM); only the
counters (byte/packet counts) need to be in SRAM [111].

We assume ax overhead for maintaining flow counters as key-value paiSRAM
for the minimalist approach as compared to a correspondingter used by the application-
specific approaches. We justify why this 4actor isconservative

1. Some application-specific algorithms we consider algaire key-value counters;
we conservatively assume that these incur no overhead cethpa an array of
counters. That is, if each entry in a counter array is 2 bytesassume that it takes
8 bytes to store one key-value pair for the minimalist prives but only 2 bytes to
store one key-value pair for the application-specific atpars.

2. Suppose each counter for the application-specific dlguos is 2 bytes [187]. We
ran experiments with a sparse hash data structure and foanhid ¢an store 0® flow
counters in 8 MB, i.e., 8 bytes per counter. In other wordspmmodity, software
onlyimplementation has just = 4x overhead.

3. With smarter hardware for storing flow counters such asasibraids [111], the
overhead will be even lower. For example, maintaining 1ionllflow counters
using counter braids only requirést MB of memory, i.e., an effective overhead
1.4
= << A4X,

2

Summarizing the above discussion, we see that

1. The hardware requirements of our primitives are simdaihe application-specific
algorithms.

50ne caveat is that FS, SH, and the different applicatiowifip@pproaches require per-packet process-
ing unlike packet sampling. Again, our discussions withrth&er vendor suggested that this is feasible.
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2. The online processing overhead of the minimalist apgraastrictly lower.

3. The minimalist primitives have at most a 4nemory overhead.

Thus, for the rest of the chapter, we only consider the coasge 4<x memory over-
head to generate a equivalent resource configuration fonihienalist approach.

4.4.3 Configuring the Different Algorithms

Application-specific case:To configure the different algorithms, we follow the guidels
and recommended parameters from the literature:

1. The FSD estimation algorithm uses an arraysaf x F' counters, wheré’ is the
number of distinct flows in a measurement interval. Follayihe guidelines of
Kumar et al. [96], we sefsd = 0.7.

2. We configure the heavy-hitter detection algorithm withx £’ counters withhh =
0.3, divide these equally among the six instances, and focusetop-50 detection
rate.

3. The entropy estimation algorithm is &n6) approximation, i.e., the relative error is
at moste with probability at least — §. The number of counters it uses increases as
we require tighter guarantees (loweandd). However, Lall et al. [102] show that
in practice it works well even with loose bounds. Thus, wessetd = 0.5.

4. For superspreader detection, we et 100 andb = 4. Again, since loose bounds
work well in practice, we sef = 0.5.

5. The sketch data structure has three parameterthe number of hash functions;
k, the size of the counter array per hash function; and thectietethreshold.
Following Krishnamurthy et al. [94], we sét= 10, £ = 1024, andd = 0.05.

6. For degree histogram estimation, we use the same cortigues Gao et al [176].

Minimalist case: The minimalist approach has two configuration parametbesntmber
of flow records it can collect/{) and, for ingress routers, the FS-SH spfit (To determine
L, we measure the aggregate number of counters used by taeedifapplication-specific
algorithms and scale downby a factor of4 as discussed earlier. We get= 0.8, giving
80% of the resources to FS on each ingress router.
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4.4.4 Estimation Phase in minimalist Approach

The estimation phase for the minimalist approach is conedlgtsimple. Since we have
the actual flow records (i.e., the 5-tuples along with thekpacounts), we can run exact
estimation algorithms. For example, we can compute the fiae distribution of the
reported flows and use that as our estimate of the true flowdgagboution. Similarly, we
can compute the observed (normalized) entropy of diffeflemtkey combinations from
the reported flows and use it as the estimate of the true (liaedaentropy.

The only issue is in combining the flow reports from the FS add¢8mponents for the
different estimation tasks. We use the following heuriskgst, we take the union of the
flow records reported by SH (after normalizing packet cobytshe sampling rate [62])
and the flow records reported by F8vVe compute the FSD, entropy, and detect heavy hit-
ters or changes per-source (or destination) on this megeaf #ow records. Second, we
(logically) retain the set of flow records reported only by. P& use this set for detecting
superspreaders and computing the degree histogram.

Note that the minimalist approach exports the actual flownds. Thus, it is possible
to run any estimation procedure on these flow records to ctergny application metric,
even unforeseen ones.

4.5 Trace-Driven Evaluation

Trace Description | Avg # pkts | Avg # flows
(millions) | (thousands)
Caida 2003 | OC-48, large ISH 6 400
Univ-2 UNC, 2003 25 91
Univ-1 USC, 2004 1.6 93
Caida 2007-2 0C-12 1.3 45
Caida 2007-1 0C-12 0.7 30

Table 4.2: Traces used in the single router experimentsages are over 5-minute epochs

In this section, we compare the minimalist approach ag#estifferent application-

’If the same flow is reported by both FS and SH, we use the FSdéemause the packet count in FS is
exact.
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Figure 4.3: Each result shows a box-whiskers plot with thdiare 25%ile, 75%ile, and
extreme values. A positive value on the y-axis means thaat¢haracy of the minimalist
approach was better; a negative value indicates otherwk®e. most applications, the
minimalist approach outperforms the application-speadifiernatives. In the cases where
the performance is worse, it is only worse by a small relatnaggin.
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resources across applications.
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specific algorithms using packet and flow-level traces ctdie from different settings. We
start with a single router evaluation and then proceed tdwark-wide evaluation.

4.5.1 Single Router Case
Using trace-driven evaluations, we answer the followingsjions:

e How does the accuracy of the minimalist approach compare thé application-
specific approaches when configured with the aggregate nyamed by the application-
specific algorithms?

e How sensitive is individual application performance to émeount of memory avail-
able to the minimalist approach?

e How does the success of the minimalist approach depend wetled application-
specific algorithms that are implemented on the router (Vietltia anapplication
portfolio)? That is, when does it make sense to adopt a minimalist appriostead
of implementing each application-specific alternative?

e How should we split resources between FS and SH?

Table 4.2 summarizes the five different one-hour packet dretdces (binned into
5-minute epochs) used for the single-router evaluation.

Accuracy: minimalist vs. Application-specific

We use the default parameters from Table 4.1 and run the ralisinapproach configured
with the total normalized memory used by the six algorithifisen we compute the rel-
ative accuracy difference for each application defined #ewe: Let Accgpe.is. denote
the accuracy of the application-specific algorithm andAet,,;,.;...i: denote the accu-
racy of the minimalist approach for that application. Thkative accuracy differences
ACC”"ZC’C;_;‘CCPJ’T By construction, a positive value indicates that the aanudd the

minimalist approach is better; a negative value indicateeravise®

All the algorithms are inherently randomized; we preseat#sults over five indepen-
dent runs with different seeds. Figure 4.3 shows the r@atocuracy difference using a

8Some metrics denote “error” while others denote “accura&gr error metrics (FSD, entropy, degree
histogram, change detection) the relative accuracy asetkfsrnegative when the minimalist approach
performs better. For ease of presentation, we reverseghe§the numerator in these cases.
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box-and-whiskers plot for the different traces. Each boowshthe 25%ile, median, and
75%ile values.

The result shows that the median value of this metric is pasih most cases; i.e.,
the minimalist approach outperforms the application-gjealternative in most applica-
tions. Further, even the 25%ile is positive in many cases, the minimalist approach
consistently outperforms the application-specific appgihesa. Only in heavy-hitter detec-
tion (Figure 4.3(b)) does the minimalist approach perfororse; even then the median
accuracy gap is at most08. This answers the second challenge from Section 4.2:
The minimalist approach provisioned with the total resosrased by the six applications
performs better than or comparable to the application-sfpeepproaches.

We now proceed to answer to two natural questions: (a) wived i€onsider each ap-
plication class in isolation and (b) what types of applicagportfolios does the minimalist
approach perform favorably in. For brevity, we only prestet results from the Caida
2003 trace.

Application Sensitivity

In the following experiments, we try 2-3 configurations fach application-specific al-
gorithm. For each configuration, we consider a minimaligirapch provisioned witldx
times as much memory (before the normalization) as that used by the algoritihm
isolation

As before, we focus on the relative accuracy difference betwthe minimalist and
application-specific approach. Figure 4.4(a) plots thatned accuracy difference between
the minimalist approach and the FSD estimation algorithra.sWow three different con-
figurations with the FSD algorithm usingd = 0.7, 1, and1.5. For some configurations
(e.g.,fsd = 1.5, G = 1), the minimalist approach performs worse. The large negati
values of the metric is an artifact of the low WMRD values at ¢hpsints. Since we
normalize the difference by the WMRD of the application-speciase, the gap gets mag-
nified. The absolute accuracy of the FSD algorithm improves (he WMRD goes down)
as it is provisioned with more resources (not shown). Fomgpta, for the configuration
fsd = 1.5 andG = 1, the WMRD for the FSD EM algorithm was02 and the WMRD
for the minimalist approach.05. Both values are small for many practical purposes [96].

Figure 4.4(b) shows similar results for heavy-hitter deéteg with 4k set t00.3, 0.5,
and0.7. For clarity, we average the relative accuracy differenc@ss the six heavy-

9The whiskers extend to the most extreme data points not @eresi outliers. By default, this corre-
sponds to a length of 1:5the difference between the 25%ile and 75%ile values.
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hitter instances. The minimalist approach is worse thamagmication-specific approach.
However, ag7 increases, the accuracy gap closes significantly. Onendasthe poor
accuracy is that we configure the SH algorithm in the ministapproach to operate at
the 5-tuple granularity and then subsequently projectit®eswu other dimensions. In fact,
the minimalist approach performs better if we only consither 5-tuple granularity; it
does worse for the other flowkeys due to some loss of accurattyei projection phase
(Figure 4.3(b)). We could also configure the SH algorithmhi@ minimalist approach to
operate at multiple flowkeys. We tradeoff a small reductioaccuracy for a significant
reduction in online processing overhead complexity sine@mly need to run one instance
of the SH algorithm instead of six instances.

Entropy estimation (Figure 4.4(c)) with= ¢ set t00.2 and0.5 and superspreader
detection (not shown) show similar trends. If we considehespplication in isolation, the
minimalist approach performs worse. But, the gap closésiasreases and the minimalist
approach eventually outperforms the application-speai§orithm.

Sensitivity to Application Portfolio

1
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Figure 4.5: Effect of application portfolio on the relatimecuracy difference. The portfo-
lios are in increasing order of memory usage from left totrigh

Next, we evaluate the effect of varying the application fodid. That is, we consider
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the case where the router only implements a subset of th@gilications described earlier.
For a fixed portfolio, we use the default configurations fraabl€ 4.1 and run the minimal-
ist approach configured with the aggregate resources bated only by the applications
within this portfolio. The relative accuracies are compluteth respect to the default con-
figurations for the different applications (even for thoséin the portfolio). For example,
the configuration labeled “Sketch + Histogram” uses ressianly from sketch-based
change detection and degree histogram estimation (theliglosteight applications). At
the other extreme, the configuration labeled “All” uses thgragate resources (as in Fig-
ure 4.3).

Figure 4.5 shows the portfolios in increasing order of mgmuage. For clarity, we
show averages across the different flowkeys for heavyrhitection, entropy estimation,
and change detection. We observe two effects. First, fgetaapplication portfolios (i.e.,
as the requirements of management applications incretiea®® is a clear win for the
minimalist approach. Second, if there are some resouteasive applications (e.g., FSD
estimation), then it is better to adopt a minimalist apphdagcause it benefits all potential
applications.

Split between FS and SH

So far, we fixed the FS-SH split to fe= 0.8. Figure 4.6 shows the effect of varyirfg
The x-axis isf, the fraction of resources allocated to FS. For most apjdies, increasing
f improves the accuracy of the minimalist approach, but tiei@e diminishing returns
effect. For heavy-hitter detection, as expected, givingenresources to SH helps, but
the improvement is fairly gradual. In light of this, the 80-&plit is a reasonable tradeoff
across the different application classes.

4.5.2 Network-wide Evaluation

Dataset and Setup: We use a one-hour snapshot of flow data collected acrossneleve
routers from the Internet2 backbone. There are roughlynillion distinct flows and).5
million packets in aggregate per 5-minute interval. We magheflow entry to the cor-
responding network ingress and egress points [66]. Unlikepacket traces used earlier,
these are flow records with sampled packet counts (with 0.01). We assume that the
sampled flow records represent the actual traffic and useathpled counts as the actual
packet counts. Also, IP-addresses in the dataset are amat/fy zero-ing out the last
11 bits. We treat each anonymized IP as a unique IP. Thus,ntinepy and outdegree
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Figure 4.6: Varying the split between FS and SH

measures are computed at this granularity. Since we areiat@sested in theelative
performance, this dataset is still valuable for understandetwork-wide effects.

In a network-wide setting, operators often want to compledifferent traffic metrics
such as FSD, entropy, heavy hitters etc., over muligplatial viewg86, 174, 180, 100].
For example, we might want to understand traffic patterns p@rangress basis, or a per
OD-pair basis, or over the entire network.

As such, we configure the application-specific algorithma @er-ingress basis. That
is, at each node, we run these algorithms only on packetsatigg from this node and
ignore transit/terminating traffic. (In this topology, éawode is an ingress for some traffic
and there are no pure transit nodes that do not originateraffict) For example, the
FSD algorithm at ATLA estimates the FSD for the traffic orafing at ATLA and the
superspreader algorithm at ATLA tracks only the sourcehBsdriginate traffic at ATLA.

From this configuration, we obtain the total memory usageeh@ode. The coordi-
nated minimalist approach from Section 4.3 operates on ®pepair granularity using
this equivalent per-router memory (after scaling it dowrthiy 4x normalization factor).
Given the flow records for each OD-pair, we estimate the traffetrics over three spatial
views: per-ingress, per-OD, and network-wide.
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Figure 4.7: Result showing the relative accuracy differdvet@veen the coordinated min-
imalist approach and the application-specific algorithras ipgress router. A positive
value indicates that the accuracy of the minimalist apgroaas better; a negative value
indicates otherwise.
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Per-ingress results: Figure 4.7 shows, for each ingress, the relative accurdtsreince

between the coordinated minimalist approach and the agicspecific algorithms con-
figured per ingress. Recall that a positive value indicatasttie accuracy of the mini-
malist approach was better; a negative value indicateswite As with the single router
evaluation, we see that the minimalist approach outpeddima application-specific al-
gorithms, except in heavy-hitter detection. (SNVA lookBatent from the others in the
magnitude of the relative accuracy metric, but not in thelitatave sense that the mini-
malist approach is still better. While we have not been ableottclusively explain this
observation, we noticed that the traffic volumes for SNVA evan order of magnitude
lower than the rest. We suspect that this as a potential dautiee anomalous behavior.)

One potential concern is the high variability in the relataccuracy in some cases (e.g.
DNVR and SNVA in Figure 4.7(c)). In each of these cases, wéyaad the raw accuracy
values and found that the variability in fact comes from tppl@ation-specific case. That
is, the accuracy of the minimalist approach has low varighaethe application-specific
case has high variané@.

Network-wide result: Next, we consider the application metrics oneawork-widebasis.
As a point of comparison, we consideramcoordinated minimalisapproach. Here, each
node has the same resources as the coordinated case, tpériddatly runs FS and SH
on the traffic it sees.

Given the per-ingress results for the application-speaifjorithms obtained earlier,
we compute network-wide estimates by merging the repoots feach ingress after ap-
propriately normalizing the per-ingress statistics. (\&a do this because the per-ingress
setup implicitly partitions the network-wide traffic intmn-overlapping subsets. Thus,
the summaries reported by the different ingresses for epphication were generated
over disjoint traffic subsets.) Depending on the metrics tlarmalization depends on the
number of flows, packets, or source IPs seen at each ingres&x&mple, to obtain the
network-wide FSD, we take the per-ingress FSD and normdllaethe number of flows
originating at each ingress. However, we cannot estimat@dtwork-wide entropy from
the per-ingress entropy values as this does not give usisaffinformation. For the co-
ordinated approach, we combine the flow records obtaineddgoh OD-pair and run the
estimation procedures on this merged set of the flow recdrds.estimation step for the
uncoordinated case is similar, but needs additional peaag$o remove duplicate flows.

Table 4.3 compares the application-specific, uncoordihated coordinated approaches

0The high variance in the application-specific case is nonaerent flaw—the variance decreases with
more memory. But as Figure 4.5 shows, adding a few memoengite applications makes the case for the
minimalist approach stronger.
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Application Application | Uncoordinated Coordinated
(error metric) Specific minimalist minimalist
FSD (WMRD) 0.16 0.19 0.02
Heavy hitter (miss rate) 0.02 0.3 0.04
Entropy (relative error) n/a 0.03 0.02
Superspreader (miss rate) 0.02 0.04 0.009
Deg. histogram (JS) 0.15 0.03 0.02

Table 4.3: Absolute error for network-wide metrics. Loweatues imply better perfor-
mance.

for the network-wide case w.r.t tladsolute errovalues. (The entropy row is empty for the
application-specific column because of the aforementioradon.) There are two main
observations. First, the coordinated approach has thestogveor overall. The benefits
of coordination are particularly significant for the heavster and FSD estimation appli-
cations. Second, while the uncoordinated approach preddme generality (e.g., it can
also provide per OD-pair estimates whereas the per-ingmdgation-specific algorithms

cannot), it performs worse in this evaluation. One reastraitsthe per-ingress application-
specific algorithms are implicitly coordinated and avoidogguity/biases when we merge
the results for the network-wide case. The uncoordinatedmailist approach does not
have this property and multiple sources of ambiguity/biaseavhen we merge flow re-
ports from multiple routers: (i) different routers may halifferent sampling rates as they
see different traffic volumes, (ii) flows traversing longetths get higher sampling prob-
abilities, and (iii) large flows are reported multiple timeg SH. An additional practical

benefit of the coordinated approach is that the merging aimdagson algorithms are sim-

pler and more accurate.

Per OD-Pair results: Finally, we consider the different application metrics goea OD-
pair basis. Note that the application-specific alternativesoasigured cannot provide per
OD-pair results. They work at a coarse per-ingress levelandannot compute the appli-
cation metrics on a more fine-grained per-OD basis. Thistisananherent limitation of
application-specific approaches; we can also configure treaper-OD basis. However,
this significantly increases the complexity since we neethatance per application per
OD-pair. Thus, we only consider the minimalist approacloestis result.

Figure 4.8 shows four application metrics for the per OD-maise. Since super-
spreader detection and change detection are meaningfulvdr@n viewed across all OD-
pairs, we do not consider these. Also, we focus on the topedihhhitters per OD-pair.
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Figure 4.8: Comparing the coordinated and uncoordinatecbappes on a per-OD basis.

The CDFs show that the coordinated approach performs walsagnost OD-pairs. The
80th percentile of the WMRD, heavy-hitter miss rate, averadative error in entropy
estimation, and JS-divergence for the degree histograr. &r2 0.05, and0.03 respec-
tively. The corresponding results for the uncoordinatesecare(.4, 5,0.15, and0.06.
Further, the OD-pairs where the coordinated approach harsgamzuracy have low traffic
volume (not shown), which indicates that it performs verjivi@ the dominant traffic
patterns. The results for network-wide and per OD-pair gi@monstrate the benefits of
a systematic coordinated approach for network-wide manigo
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4.5.3 Summary of Main Results

e The accuracy of the minimalist approach configured with thgre@gate resources
used by the six different applications is better than or caraple to the application-
specific approaches.

¢ With large application portfolios or if there are one or mmgsource-intensive appli-
cations in the portfolio, there is a clear win for a minimedipproach vs. application-
specific approaches.

e A 80-20 split between FS and SH is a reasonable tradeoff a¢hesspectrum of
applications.

¢ In a network-wide setting, a coordinated minimalist apploprovides more flex-
ibility and better accuracy while projecting results tofeliént spatial views com-
pared to uncoordinated and application-specific appr@&che

4.6 Discussion

Bandwidth overhead: In the application-specific architecture, each router gelyorts
summary estimates of the various traffic metrics (e.g., E3irppy). Thus the bandwidth
overhead for aggregating these reports is negligible. Atal concern with our proposal
is the bandwidth overhead for transferring flow records taggclally centralized collector.
We give a back-of-the-envelope calculation to estimateatbest-case overhead. The In-
ternet2 dataset has roughlyrGB of 1-in-100 packet sampled flow data per PoP per day.
This conservatively translates intG0 GB per PoP per day @r.6GB per five minutes for
full flow capture. (This is conservative because we are nthizig the number of flows
by the packet sampling rate.) Suppose, we collect this detiy éive minutes with a near
real-time requirement that the data be sent before theddtdré next five minute interval.
The bandwidth per PoP required for full flow capture would2g3 Sbits — (016 Gbps.
Given OC-192 backbone line rates of 10 Gbps today, it is naaswnable to expect ISPs
to use0.16% of the network bandwidth per PoP for measurement traffiddanatwork
management.

Adaptation: Another natural question is how does our minimalist appnodeal with
network dynamics. Estan et al. [61] and Keys et al. [88] haveapth discussions on how
to adapt the sampling rates for packet sampling, FS, and $hitioging traffic conditions.
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Chapter 2 discussed how cSamp can adapt to network dynamegsalMlieverage these
existing techniques to make the minimalist approach raolousetwork dynamics.

4.7 Chapter Summary

This chapter is a reflection on recent trends in network nooinigj. There is a growing
demand for estimating a wide variety of traffic metrics tomop different network man-
agement applications. The inadequacy of current packepisag-based solutions has led
to the proliferation of many application-specific algonith, each catering to a narrow ap-
plication.

In contrast to these application-specific alternatives,revesit the case for a mini-
malist architecture for flow monitoring. Such an architeetdramatically reduces router
complexity and enables router vendors to focus their easrgn building efficient imple-
mentations of a small number of primitives. Further, it akdate binding to what traffic
metrics are important, thus insulating router implemeaitet from the changing needs of
flow monitoring applications.

This chapter demonstrated a proof-of-concept minimatipt@ach that combines flow
sampling, sample-and-hold, and cSamp. We saw that thisoapprperforms favorably
across a wide spectrum of applications compared to apigicapecific approaches. Our
proposal is by no means “optimal” or the final word in this gesb space—the goal of
this chapter was to demonstrate fieasibility of a minimalist approach. In this respect,
there are three avenues for future work: (i) developingebettinimalist primitives, (ii)
designing estimation algorithms that optimally leverdgedata collected across different
primitives, and (iii) providing formal models to reason abapplication requirements and
performance. We hope that our work motivates further reseiarthese directions.
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Chapter 5

SmartRE: A System for Coordinated
Network-Wide Redundancy Elimination

Redundancy Elimination (RE) for network transfers has gaméat of traction in recent

years. RE is widely used by data centers and enterprise netwmimprove their effective

network capacity, to reduce their wide-area footprint, amonprove end-to-end applica-
tion performance. The importance of RE is reflected in the gerere of a huge market
for RE solutions (e.g., [6, 5, 3, 19, 7]) and their rapidly ginogvadoption [8, 20].

The success of such deployments has motivated researeqamsment vendors, and
ISPs to explore the potential of network-wide RE. For examplegand et al. [30] have
recently shown the benefits of supporting RE as a primitiveajfer service on network
routers. In similar vein, network equipment vendors haghlghted network-wide sup-
port for content caching and duplicate suppression as adaesfarea in their future devel-
opment efforts [5, 3]. Broadly speaking, these efforts afgueleploying RE at multiple
points across a large network and using it as a generic gewinich is transparent to
end-to-end applications.

This vision of network-wide RE is promising for two reasonstst a network-wide
deployment spreads the benefits of RE to all end-to-end agiolits, as opposed to just
benefiting transfers on the individual links of enterpris€econd, it benefits ISPs by
improving their effective network capacity and allowingeth to better accommodate the
increasing number of bandwidth intensive multimedia arddharing applications we see
today, and by giving them better control over traffic engrivegoperations [30].

While RE has been well-studied in the context of point deplayim€e.g., enterprise
WAN access links), there has been little work on how best ggienetwork-wide RE.
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Thus, the promise of network-wide RE remains unfulfilled.His thapter, we study how
to build an effective and practical network-wide RE arcHitee.

We start by observing that a network-wide RE architecturaishmeet three key re-
quirements:

(1) Resource-awarenessRE involves resource-intensive operations such as index-
ing content, looking up content fingerprints and compregdita, and reconstructing the
original content from locally stored information. An idegpproach must explicitly ac-
count for the resource constraints on network elementsriofmeing these RE functions.
These constraints arise mainly from (a) throughput bourtdsiwdepend on the number of
memory operations possible per second and (b) memory ¢gpédch limits the amount
of data that can be cached for RE purposes. Naive approachiedamot account for
these constraints, such as the strawman framework of Arizadd[80], offer sub-optimal
performance. In contrast, using the limited resourcedatai at each node intelligently
can offer close to the best possible benefits.

(2) Network-wide goals: The architecture should allow network operators to spec-
ify network-wide goals such as increasing overall efficie(eg., improving the network
throughput) or achieving specific traffic engineering go@sy., alleviating congested
hotspots).

(3) Flexibility: The architecture must be incrementally adoptable progiti@nefits
even under partial deployment, and must supplement, ntaaepcurrent network opera-
tions such as existing routing and network managementipeasct

This chapter presents the design, implementation, andiavah of SmartRE, an ar-
chitecture for network-wide RE that meets the above requerégm In SmartRE, redun-
dancy elimination is performed in a coordinated fashion hytiple devices. SmartRE
uses the available resources on RE devices efficiently andatigtaccommodates several
network-wide objectives.

In describing SmartRE, we focus largely on packet-level RESR hetworks [30],
where RE devices on routers cache packet payloads and spijgate strings from in-
dividual packets. However, we believe that our design caslyal other deployment
scenarios, e.g., in multi-hop wireless networks and datacs.

In SmartRE, a packet can potentially be reconstructed ord#eteeveral hops down-
stream from the location where it was compressed or encddetthis respect, SmartRE
represents a significant departure from packet-level REgdsgiroposed in prior solu-
tions [158, 30], where each compressed packet is recotestiat the immediate down-
stream router. Further, SmartRE uses a network-wide coatetinapproach for intelli-
gently allocating encoding and decoding responsibilgie®ss network elements.
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In general, encoding incurs greater overhead than decodiimgs, SmartRE allocates
encoding to ingress routers to avoid overloading interaarters that operate at higher
line-rates and thus have stricter resource constraintsceShe number of edge routers
is large, a large number of encoded packets are introdudedthe network. Interior
routers in SmartRE perform less expensive decoding actiesoding is performed in a
coordinated fashion with each interior router respondiaestoring and reconstructing a
fraction of the encoded packets on a path. We use hash-basgdirsg techniques [147]
to facilitate coordination across interior routers witlvloverhead.

When allocating encoding and decoding responsibilitiessseca network, SmartRE
takes into account the memory capacity and packet progesisinoughput at each RE
device along with the prevailing traffic conditions, and figures the actions of different
devices so as to best meet an operator-specified netwokkguadl. This ensures that no
device is overwhelmed and that RE is used optimally to meeaté¢twork’s objectives.

The duplicate removal and reconstruction logic in SmartREE lma implemented in
high-speed two-port switches or middleboxes, which can teedeployed across specific
ISP links. These enable incremental adoption in an ISP nmktvile develop prototypes
of the two-port switches in the Click modular router [122].itdgreal packet traces, we
find that the prototypes can perform duplicate removal atGhps and reconstruction at
8 Gbps.

We conduct an in-depth evaluation of SmartRE as applied tay&r RE in ISP net-
works using controlled simulations based on synthetic aatipacket traces over several
real and inferred ISP topologies. Across a range of topekgnd traffic patterns, the
performance of SmartRE is 4&better than naively extending a single-vantage point RE
solution to the network-wide case. Further, SmartRE acki®@®90% of the absolute
network footprint reduction of the optimal possible caseveRE devices are not limited
by any throughput or capacity constraints. We also evalpatgal deployment scenarios
and find that enabling SmartRE on a small set of strategicallcted routers can offer
significant network-wide benefits.

5.1 Background and Related Work

We start by describing prior work on removing duplicate deden network links, ranging
from full object-based approaches to partial packet-based. We then present details of
packet-level RE and describe prior work on enabling packett|RE as a router service
across ISP networks that forms a key focus in our work.
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5.1.1 Related Work

Object-level caching: Several systems in the past have explored how to removecdigli
data from network links. Classical approaches such as Wéitesawork at the object level,
serving popular HTTP objects locally [171]. In similar ShitCDNs and peer-to-peer
caches [18, 2] perform object-level duplicate removal.

Protocol-independent RE mechanisms: In recent years, a class application- and
protocol-independeriechniques have been developed which can remove reduridagss
from any traffic flow. Starting with the pioneering work of 8py et al. [158], several
commercial vendors have introduced WAN optimizers whiamaee duplicate content
from network transfers. Many of these products [6, 3, 19, @Gilknat the level of chunks
inside objects and we refer to them @sunk-levelapproaches. In contrast, both Spring
et al. [158] and Anand et al. [30] adopt techniques which arglar at the high level but
operate at packet-level

Content-based naming for RE: Content-based naming has emerged as an alternative
to enhance web caching (e.g., [80, 142]), content disiobute.g., [164, 131, 127]), and
distributed file systems (e.g., [25]). These approacheSngperprinting mechanisms [132]
similar to packet-level RE to identify addressable chunksweler, these approaches
require modifications to end-systems to fully realize thedfs of RE. Network-based,
protocol-independent RE approaches are transparent teyateins and offers the benefits
of RE to end-systems that are not content-aware.

5.1.2 Packet-level RE Explained

The central idea of packet-level RE is to remove strings irke@cthat have appeared in
earlier packets. To perform RE across a single link, the epsirdevice stores (in mem-
ory) packets it has transferred on the link over a certaifodesf time. Packet contents are
indexed usindingerprintswhich essentially form content-based hooks pointing tdeain

in random locations within the packet. For each incomingkpgadhe upstream RE de-
vice checks if the packet’s fingerprints have appeared iieean-memory packets. Each
matching fingerprint indicates a certain region of partiartap between the incoming
packet and some earlier packet. The matching packets angarethto identify the max-

imal region of overlap. Such overlapping regions are rerddv@m the incoming packet
and a shim is inserted to tell the downstream device how todkethe packet using its
local memory. A packet can carry multiple shims, each pa#ytmatching a different

108



in-memory packet. Decoding is simple: the downstream @euges the shim in the en-
coded packet to retrieve the matching packet(s), and fitlsdrcorresponding missing byte
range(s). Chunk-level approaches work similarly.

5.1.3 Network-wide RE

Why packet-level RE: Both packet- and chunk-level RE are agnostic to application
protocols and can be implemented as generic network serthe¢ need not understand
the semantics of specific applications. Prior studies hhwe/s that both approaches are
significantly better than caching entire objects [158]. ldwer, chunk-level approaches
require terminating TCP connections and partially recaiesitng objects before apply-
ing compression. This interferes with the end-to-end se¢icgnf connections and also
imposes high overhead on the RE devices since they must nmgpetaflow state. Packet-
level approaches do not interfere with end-to-end semaficonnections, and where
technology permits, can be transparently supported irersutr middleboxes.

Extending packet-level RE to a network: Since packet-level RE brings significant
compression benefits while operating in a transparent apticafion-agnostic fashion,
Anand et al advocate its use as a router primitive for netwade RE [30]. In their
proposal, each router in an ISP network maintains a cachecehtly forwarded packets.
Upstream routers on a link use the cache to identify commaitecd with new incoming
packets and strip these redundant bytes on the fly. Downstr@aters reconstruct packets
from their local cache. This process repeats hop-by-hogfashion along a network path
inside an ISP. Anand et al. evaluate an ideal, unconstraetohg where they assume
memory operations take negligible time and that the cachesagch router are infinite.
Under this model, they show that network-wide RE could ofignigicant benefits in
terms of reducing overall network load and absorbing sudi@fic overload in situations
such as flash crowds. The central goal of our chapter is tgespractical architecture
that can achieve these benefits when RE elements operata véatiistic throughput and
memory capacity constraints.

The hop-by-hop approach proposed by Anand et al. takes dink#ipcal view of RE
and does not account for constraints of the RE devices. Ingkiesection, we discuss why
this naive approach offers poor performance in practicesaond/ how smarter caching and
coordination can offer vastly improved benefits.
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5.2 Benefits of Coordination

We start by describing the practical limits on the throughgithe two packet-level RE
primitives, namely, encoding and decoding. Then, we prtegealitative examples high-
lighting the benefits arising from assigning encoding antbdeng responsibilities across
a collection of routers in an intelligent, coordinated fash In particular, we show how
this: (1) leads to efficient memory usage, (2) ensures REectkasks can be performed
at full capacity, and (3) enables incremental deploymerd.cdhtrast this against a naive
approach that does not account for resource constraints.

In this section, we assume a hypothetical intelligent, do@ted approach. This has
two implications. First, we have the flexibility to specifjnere a packet should be cached
along a routing path. In particular, this allows us to spéitling responsibilities along
a path. This is in contrast to the hop-by-hop approach, whaoh packet is explicitly
cached at every hop along the path. For example, if pagkets., p, traverse a path
I, Ry,..., Ry, we can specify that eaghis cached at (and only af);. Second, we assume
that RE devices that are separated by multiple hops in theonketwan either implicitly or
explicitly maintain a consistent view of each other’'s cachghis means that an encoded
packet can potentially be decoded several hops downstneamthe point where it was
encoded. In the above example, this means fltan encode packet, with respect tqs
and R; is responsible for decoding it. Again, in the hop-by-hopraggh, this would not
be possible; each packet would have to be encoded and degedéak.

5.2.1 Encoding and Decoding Throughput

Standalone throughput: The main bottleneck affecting the processing throughput of
packet-level RE operations isemory acces€Encoding a packet requires multiple mem-
ory accesses and is much slower than decoding. To see wigpseiphat the memory
hardware can suppoft random memory accesses per second. For modern DRAMSs, the
random access latency is 50ns, hefce 2 x 107. Suppose that each packet has at most
k matches, and that we computefingerprints for each packet. (Note that since the num-
ber of matches can never be more than the number of fingesghat were computed,

k < F.) Typical values aré’ = 10 andk = 3 [30].

The encoding throughput for a standalone RE devieg immostR/ F' packets per sec-
ond. This is because each packet, whether it can be encodest, oequirest’ random
accesses to determine if there are any matches. Once matehtesind, further process-
ing is required to actually create the encodings. On therdthed, decoding throughput
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is at leastR/k. This is because each packet has between Okagcodings. Thus, in
this standalone case, decoding>isF'/k times faster than encoding. Sinke< F, the
decoding throughput is clearly higher.

Throughput on a single link:  Given this understanding of the standalone encoding
and decoding throughput, we can now consider the througdgross a single link. For
simplicity, let us assume all packets are of the same &/%¢. Suppose that the link
capacity is such that it can car®y MSS-sized packets per second. For instance, if the link
speed is 2.4Gbps (OC48), andSS = 5008, thenP = 6 x 10° and for an OC192 link
P = 2.4 x 10°. Two cases arise:

1. Slow link (R/F > P): This means thdine rateencoding and decoding are possi-
ble; e.g., for an OC48 link wherB/F = 2 x 105 > P = 6 x 10°. In this case, the
encoder can encode up tbpackets per second, each carrying up taatches. The
decoder can decode each encoded packet.

2. Fastlink (R/F < P): This means thdine rate encodings not possible. This is the
case for OC192 and higher speed linkB/{" = 2 x 10° < P = 2.4 x 10%). In this
case, the encoder can encode no more fRaR packets per second; a fraction of
packets are left un-encoded to ensure line-rate operafoeen though the decoder
as a standalone operatEgk times faster, its decoding throughput is now limited
by the encoding throughput immediately upstream. Thus, limited to decoding
R/ F packets per second.

5.2.2 Motivating Examples

We present the examples in the context of a “bump-in-the‘deployment where an
RE middlebox is attached to router linecards. Each RE devisghespecifiedesource

constraints These capture hardware limitations (e.g., how many degoaitions can the
device perform per unit time?) or economic constraints. (&AM cost which could

limit total memory per device).

These examples also apply when there are resource buggetsuter For exam-
ple, processing constraints induced by power/coolingireqents are better modeled on
a per-router/per-PoP basis rather than per-middleboxo,Aeftware or virtualized RE
deployments (e.g., [39, 122]) would be characterized byrpeter constraints.

As the following examples show, the naive hop-by-hop apghnakescribed in the pre-
vious section severely constrains the effectiveness afir@éancy elimination.

111



Packet arrival order: A,B,C,D,A,B,C,D Legend:

Ingress can cache 4 pkts @ RE Device []Packet store
Routers cache 1 packet [_]Savings from RE
Hop-by-hop Redundancy Elimination Coordinated Redundancy Elimination
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Footprint before RE = 8 pkts * 4 hops = 32 Total Network Footprint = 22 packets

Total network footprint after RE = 28 33% savings
No savings from RE on interior links Routers switch 20% smaller pkts
Each router switches 8 packets e.g., R1 need not switch packets 6,7,8

Figure 5.1: Benefits of a coordinated approach when RE devaesdonstraints on mem-
ory size.

Memory efficiency and router benefits: Consider the scenario in Figure 5.1. Suppose
each RE device on the path has memory to store only 1 packetifopath (since the
devices are shared among the paths that traverse the lutkhdRE devices on the first
link can store 4 packets. Each store is managed in a FIFQolashhe hop-by-hop model
yields no benefits from RE on the interior links. A coordinatggbroach can ensure that
the different packets are stored and decoded at differe¢r® This helps reduce the total
traffic by 33%. There are secondary benefits in that routers teaswitch smaller packets
internally, thereby improving their effective switchingmacity. This example shows that
a coordinated approach can use a given amount of memory rfiectely.

Memory access constraints: Consider the example shown in Figure 5.2. Here, the links
between ingresses.|114 and the core router R1 are much slower than the core-ck® lin
Assume that the encoding RE device at the slow link can perfopacket encodings per
second (this corresponds to case #1 from Section 5.2.1 wheteb). The encoding RE
device at the fast links can perform 10 packet encodings gl (this corresponds to
case #2 from Section 5.2.1 wheRe F* = 10). Now, consider the decoding devices. The
ones on the slow links can decode 5 packets per second, Wwhitaes on the fast link can
decode up to 20 packets per secoRgX = 20).

In the hop-by-hop case, the number of packets decoded by asti@am RE device
is the same as the number of packets encoded by the immegistteam device. As-
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Hop-by-hop Redundancy Elimination Coordinated Redundancy Elimination
5 enc/s
5 dec/s

10 enc/s, 20 dec/s

Assume each decoding saves X bytes
Total savings = 20X * 3 = 60X

Figure 5.2: Benefits of coordination when RE devices have cang$ on encod-
ing/decoding throughput.

suming each decoding sav&sbytes, the hop-by-hop approach remoyeX bytes (5

on 4 ingress-core router links, andXM®n two core-core links). Consider an alternative
coordinated scenario, in which the RE devices on interiotemsuare not involved in en-
coding and can decode at the maximum rate. In this case,edegit R1 and R2 can just
forward encoded packets and R3 can allot its full decodingci&p This will reduce the
total network footprint by20 x 3 x X. (Since R3 is 3 hops away from the ingress, for
each decoded packet we save 3 hops in the network footpAilst), some of the devices
perform no RE function; yet this architectureli$ x better than the hop-by-hop approach.

Benefits under partial deployment: In Figure 5.2, consider a partial deployment sce-
nario with no RE devices attached to router R1. In the hop-hydpproach, the total sav-
ings would only bel0X (only on link R2-R3). Note that since the coordinated approach
did not involve R1, it provide§0.X savings even with partial deployment. Network opera-
tors can thus realize significantly more benefits with pbdg@loyment with a coordinated
design.

The above examples demonstrate the benefits of a hypothateligent and coordi-
nated approach. Next, we describe how we can implement yipisthetical approach in
practice.

5.3 SmartRE Design

In this section, we formally describe the design of SmartREarchitecture for redun-
dancy elimination that draws on the principles of spatidéigoupling encoding and decod-
ing responsibilities, and coordinating the actions of REickey for maximum efficiency.
Our description focuses on SmartRE as applied to an ISP networ
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Interior routers cache a subset of pkts acc. to their manifests
Ingresses generate and report match profiles to the NOC

Figure 5.3: Schematic depiction of SmartRE.

SmartRE synthesizes two ideas: packet caches for redun@fimopation [158, 30]
and cSamp [147]. SmartRE leverages ideas from cSamp to aphirgy (and decoding)
responsibilities across multiple router hops in a netwdtrkpecifies the caching respon-
sibility of each RE device in terms oflzash-range per path per devic&ach device is
responsible for caching packets such that the hash of thepheader falls in its assigned
ranges. By using the same hash function across the netwodsaighing non-overlapping
hash ranges across devices on the same path, SmartRE |evir@gemory resources ef-
ficiently without requiring expensive cache coordinatioatpcols.

A network operator can specify different ISP-wide objegsive.g., minimizing net-
work utilization, aiding traffic engineering goals. SmartREes a network-wide opti-
mization framework that takes into account the prevailiradfic conditions (volume, re-
dundancy patterns), the network’s routing policies, areldapacities of individual RE
devices to assign encoding and decoding responsibilitessa the network to optimally
satisfy the operator’s objectives.
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5.3.1 System Overview

We focus our discussion on the design of three key elemergar@5.3): ingress nodes,
interior nodes, and a central configuration module. Ingegssinterior nodes maintain
caches storing a subset of packets they observe.

Ingress nodesncodepackets. They search for redundant content in incominggiack
and encode them with respect to previously seen packetg tilenmechanism described
in Section 5.1. In this sense, the role of an ingress nodeeistichl in the hop-by-hop
approach and SmartRE.

The key difference between the hop-by-hop approach andtBiBas in the design
of interior nodes. First, interior elements need not store all packetiseir packet cache
— they only store a subset as specified biyaahing manifesproduced by the configura-
tion module. Second, they have no encoding responsiBilitigterior nodes onlgecode
packets, i.e., expand encoded regions specified by thessggeising packets in their local
packet cache.

The configuration module computes the caching manifestptimaze the ISP objec-
tive(s), while operating within the memory and packet pesteg constraints of network
elements. Similar to other proposals for centralized nétwaoanagement (e.g., [73, 43,
37]), we assume that this module will be at the network opammatcenter (NOC), and has
access to the network’s traffic matrix, routing policiesd &lme resource configurations of
the network elements.

5.3.2 Network-wide Optimization

The configuration module uses a network-wide view of trafittgrns and resource con-
straints to compute how and where decoding should be dongtitoiae ISP objectives.

Assumptions and Terminology: We assume that the traffic matrix (volume of traffic
in bytes and packets between every pair of ingress-egragsrsd and the routing path(s)
between an ingress-egress pair are known and given as.inetsse the subscriptsand

g to indicate paths; to denote a node (either a router or a bump-in-the-wire reiatai)
and the notation € p to denote that nodelies on the patp. v, is the total traffic volume,
in bytes, flowing on patl in a specific measurement intervdtstance, , is the upstream
latency (e.g., hop count, OSPF weights, physical fiber destpof pathp up to noder. In
our current frameworkdistance,, . is specified in terms of the hop count.

We also assume that we know thedlundancy profilef the network from historical
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traffic data or using periodic reports from ingress nodess f@dundancy profile is speci-
fied in terms of two constants for every pair of paths. Thes€Brmatch,, , (measured in
packets), the number of matches that traffic flowing throusth pobserves with traffic on
pathq and (2)matchlen, , (in bytes) denoting the average match length observedmwithi
these packets (this is bound by the MSS). As a special easg),, and matchlen,,
capture intra-path redundancy. As such, our current facaa redundancy between paths
with the same ingress.

The configuration module maximizes the total savings (irenimizing the network
footprint or the link utilization-distance product), wlitespecting the operating resource
constraints: i.e., the total available memony,{ and the total decoding processing power
(L,) per node. A network operator could specify other networttembjectives as well.

Formulation: The key variables in the formulation are t#g. values. Eacld,, . specifies
the fraction of traffic on pat that node- caches. We now describe how the variablgs
are determined. First, we model the packet store capaaitstints on each node:

VY dpy X v, < M, (5.1)

pireEP

Next, we model the total packet processing capabilitiesami @ode. The processing
capabilities are bound by the number of memory operatiocstsctén be performed in unit
time! For each interior node, there are two types of memory omersithat contribute to
the processing load: caching and decoding. We assume fplisitythat both operations
are equally expensive per-packet, but it is easy to incaltpomther models as well. The
total number of packets that will be stored byn pathp is d,, . (wgpktme (avgpktsize
appears becausg s in bytes but the load is per packet.) The total number othext that
will be decoded by nodeis ) | dgr x match,,.? Thus, we have

D,q:TEP,TEQ

Vr, > dpy ——E— avgpktme + Y dy, matchy, < L, (5.2)

D,TEP D4 TEP,q

There is a natural constraint that the total range covereglach path should be less
than or equal to 1:

We do not explicitly model CPU constraints because thesesabsumed by processing constraints
imposed by memory accesses.

2Strictly speaking, this is an approximation that assumasttie matches are uniformly spread out across
the differentd, ,. ranges. In practice, this is a reasonable assumption.
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Vp, Y dy, <1 (5.3)

rrEP

Next, we compute the total savings in the network-wide faotp The savings pro-
vided by node- for traffic on pathp (S, ) depends on the redundancy thathares with
other paths that traverseand the caching responsibility thahas for these paths. It also
depends on the location pfon the patlp — the more downstreamis (higherdistance,, ),
the greater savings it provides.

Spr = Z dgr % distance,, x matchy, , X matchlen, (5.4)
q:req

The objective then is to maximizEp >, Sp.. Note that maximizing this objective,
subject to the constraints captured by Eqgs (5.1)—(5.3)ireeat programming (LP) formu-
lation and thus can be solved efficiently using off-the-8h®! solvers (we us€PLEX).
The output of the LP solver i¢" = {d; .}, the optimal solution to the formulation.

We can augment this framework to incorporate resource @@ntt on ingress nodes
as well. We omit this extended formulation for brevity, bseut in our evaluation.

5.3.3 Encoding and Decoding

In the next few sections, we provide details on the actiokertdoy nodes in the network
given the allocations derived by the central configuratiauuaie.

Assigning caching responsibilities: The output of the optimization framework is a set of
caching manifesta/hich specify the caching responsibilities for each nodacrEnode’s
manifest is a set of key-value paif$p, HashRange)}, indexed by the path identifier.
We use a simple procedure takes in the solutibras input and iterates over the paths
one by one. For each a variableRange (initially zero) is advanced in each iteration per
node, in order of location on the path, by the vailje, and node- is assigned the hash
range|Range, Range + dy ). Thus, nodes on the pathare assigned non-overlapping
hash ranges to ensure that the caching responsibilitiesoies on the path are disjoint.
We use the on-path ordering to simplify the encoding albarit(see the discussion in
Section 5.4.1).

For example, suppose there are three nodesr2, and 3 on pathp (in order of

distance from the ingress), and the optimal solution haseeal; ,, = 0.2, d; ., = 0.3,
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PROCES$ACKETINGRESS pkt, ingress)

// Steps 1-4 are for encoding
// Use routing/MPLS info for the next two steps
egress «— FINDEGRESS pkt)
2 pathid < GETPATHID (ingress, egress)

// this step depends on theerlapmatriz (See Section 5.4)
3 candidates «— GETCANDIDATES(pathid)

// encodedpkt carries the shim header (Figure 5.5)
4  encodedpkt < ENCODE(pkt, candidates)

// Steps 5—7 are for caching

// Whatis} . o (patnia) Apathia, fOT this path?
5 coveredrange «— GETCOVEREDRANGE(pathid)
// only store packets with hash within covered range
h <« HASH(pkt.header)
7 if (b € coveredrange) then

ADDPKTTOSTORE(pkt, pathid, h)

// forward as usual

8 FORWARD(encodedpkt)

[EEN

(o]

Figure 5.4: Pseudocode for an ingress node in SmartRE.

andd; ., = 0.1. The ranges assigned#o, r2, andr3 for pathp will be [0,0.2), [0.2,0.5),
and[0.5,0.6).

For each patlp, an interior node- only stores packets whose hashes falls within the
range assigned to it fgr. To do this, the interior node computes a hash over the packet
header HASH(pkt.header) and decides whether or not to cache the packetsHHs com-
puted over the fields of the packet header that uniquely iijesfpacket, the src/dst IPs,
src/dst ports, protocol, and the IP ID field, and returns aevéh the range0, 1|. These
are invariant fields that do not change along the routing [&eth

Encoding at the ingresses: We first present a high-level overview of the encoding
algorithm at each ingress. We defer to more detailed issugection 5.4.

Figure 5.4 shows the pseudocode for an ingress node. Thesmg@ncodes packets
with respect to packets in its store. When matches are foucdmputes a shim header
(Figure 5.5). The shim header has 2 parts: a fixed length gatttifier field specifying the
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Figure 5.5: Format of the SmartRE shim header.

path identifier for the current pacRetand a (possibly variable length) description of the
matches. Each match is specified using three fields: (i) ttreigentifier for the packet in
the ingress’s cache with which a match was found, (ii) thequaihash for the matching
packet computed over the invariant header fields, andlf@)matched byte region.

The ingress stores packets whose hashes fall in the totaltedwvange for the path.
It ignores other packets as matches with these cannot belel@cmwnstream. When the
ingress cache is full, it evicts packets in FIFO order.

Decoding at interior nodes: Figure 5.6 shows the algorithm at an interior node. The
node reads the shim header and checks if any of the matchresjgond to packets that it is
currently caching. Each matchspec carries the pathid andabkh of the reference packet
with which a match was found. Thus, the interior node canrdete if it has cached the
reference packét.If so, the node reconstructs the corresponding match rég)ioiNote
that different matched regions may be reconstructed bgrdifft downstream nodes as the
packet traverses the path.

5.4 Ensuring Correctness in SmartRE

As we saw in the previous section, there are three key featnr8martRE: (1) it allows
a packet to be decoded multiple hops downstream from thessgrhere it was encoded,
(2) it splits caching (and decoding) responsibilities gldime RE elements on a path, and
(3) it uses a network-wide approach for allocating cachegponsibilities.

These three features are essential for efficiently utdjzime available RE resources

3|f interior nodes can get the pathid from MPLS labels or negiiinformation, this is not necessary.
“4Errors due to hash collisions are highly unlikely.
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PROCES$ACKETINTERIOR(encodedpkt, )

// ris the node id
// Steps 1-2 are for decoding
// Check if any decoding needs to be done
1 mymatches « PROCESSSHIM (encodedpkt.shim)
// this may only partially reconstruct the packet
2 decodedpkt — DECODE encodedpkt, mymatches)
// Steps 3—6 are for caching
3 pathid < GETPATHID (encodedpkt)
// what is my assigned hash range for this path?
myrange < GETRANGE(pathid, r)
h <« HASH(pkt.header)
6 if (h € myrange) then
ADDPKTTOSTORE(decodedpkt, pathid, h)
// forward as usual
7 FORWARD(decodedpkt)

(21 S5

Figure 5.6: Pseudocode for an interior node in SmartRE.

(e.g., caches, memory accesses) to derive close to optietabrk-wide benefits. For
example, (1) means that each decoding operation perfornad mterior routerd hops
downstream ig{ times as effective in reducing the network-wide footpriatthe same
operation performed by the router adjacent to the ingressilaé8ly, (2) means that each
cache entry is utilized efficiently. (3) combines these Uesd to achieve network-wide
goals; this could mean that RE elements common to paths that sfdundant content are
assigned inter-path decoding responsibilities. Howelese features raise some issues
with respect to correctness; i.e., will an encoded packeddmoded correctly before it
leaves the network perimeter. Specifically, we identifg#issues:

1. How can an ingress decide if encoding a packet w.r.t auepacket will be valid?
That is, will that previous packet be available in a cachehmengath taken by the
current packet? (Section 5.4.1)

2. Since interior elements may be assigned responsibibiieoss multiple ingresses,
how does each encoder maintain a consistent view of the sath@erior elements?
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OverlapMatrix [P_i,P_j] = range for packets
on path P_i that can be chosen to encode
packets on path P_j

OverlapMatrix[P1,P2] = [0,0.4];

R1,R2 (common to P1,P2) store pkts in this range on P2
OverlapMatrix[P2,P1] = [0,0.5];

R1,R2 store pkts in this range on P1

Figure 5.7: Example showing the overlap matrix.

That is, if an ingress encodes a packet, will the decoders tinvrequired matched
packets or would they have evicted them? (Section 5.4.2)

3. As decoding responsibilities are split across a pathespatkets may be encoded
when they reach their assigned caching nodes. Should we sach encoded pack-
ets? (Section 5.4.3)

We present lightweight solutions to address these issudsicontext of SmartRE.
However, the issues themselves are more general to thendefsigtwork-wide RE solu-
tions.

5.4.1 Identifying Valid Inter-path Encodings

If the ingress identifies a match with a packet that traveteedsame path it can encode
the match. However, when the ingress sees a match with atpackeanother path, it
needs to ensure that this can be successfully decoded deamst Theoverlapmatrix
specifiesvalid inter-path encodings, and in Figure 5.4, the functioBTGANDIDATES
checksoverlapmatriz to find valid encodings.

Figure 5.7 shows a simple example of what the overlap mateama. We have two
paths P1 and P2. The caching responsibilities of each nedepacified in terms of hash-
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ranges per path. Suppose a new packdételonging to P1 arrives d@ I finds a match
with packetB sent earlier along P2. Now, has to decide whethet if encoded w.r.tB
can be decoded downstream. I_RBH(B) < owverlapmatriz[P1, P2], one of R1 or R2
will be able to decode the match. Otherwigejs stored on nodes that do not lie on P1
and thusA cannot be encoded with respectio

Let us go back to the discussion of on-path ordering (Se&i8t8). The configura-
tion module generates thaerlapmatriz from the LP solution and distributes it to the
ingresses. On-path ordering ensures that each entry im#tisx is one contiguous range
instead of several disjoint ranges. This simplifies the deson of theoverlapmatriz and
also simplifies the process by which the ingresses idendifighencodings.

5.4.2 Using Cache Buckets for Consistency

In hop-by-hop RE, each node’s packet store is perfectly i syith the upstream node’s
packet store. However, SmartRE needs to explicitly ensatarigress and interior caches
are consistent.

To see why this is necessary, consider the following scendacketX is initially
cached at interior nod& and the ingresg. Consider the case wher and / maintain
independent FIFO caches. Supposés evicted fromR’s cache due to a sudden increase
in traffic along paths from other ingresses. Now, padkatrives at/. I finds a match with
X and encodeX with respect td”. Clearly, R will not be able to reconstruct the matched
region forY. The packet” would thus have to be dropped downstream or rejected by the
application at the end-host.

To address this, we use a lightweight, yet robust, congsigterechanism. The main
idea is to divide the ingress packet store ibteckets each bucket corresponds to a hash
range assigned to a specific interior node-path pair. itstores are organized similarly.
As a packet arrives at the ingress, it is stored into the p#r-per-range bucket into which
its hash falls. This explains the parametgiighid andh to ADDPKTTOSTORE in Fig-
ures 5.4 and 5.6 — together they identify the bucket in whicktore the packet. Each
bucket is a circular buffer; as a bucket gets full, packetsegited in FIFO order to ac-
commodate newer packets. The size of each bucket is detstrhinthe LP solution and
the traffic patterns (i.ed; . x v,); the configuration module also specifies these sizes as
part of the caching manifests. When new solutions are cordpateesponse to traffic or
routing dynamics, the bucket sizes can be reassigned ajmtedp.
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A arrives,
cached at I, R2

O—O—6
.

R1 stores
B arri\l/es ) ) - A B-with-gap
partial match with A
B
Encoded w.r.t A - .:.
Cached at I, R1 A is evicted A is evicted
C arrives,

partial match with A,B -(B: .:.

Cannot encode w.r.t B!

D arrives
matches non-gaps in B
Can encode w.r.t B

1
I

Figure 5.8: Example of how decoding gaps may occur.

5.4.3 Handling Gaps in Encoded Packets

An interior node may not have the full payload for packetsaibich it is assigned caching
responsibilities. This could happen if at the time the paokaches this node, there is still
some decoding to be done downstream. Thus, the node onla geesally reconstructed
packet. This creates a problem if subsequent packets nderléncoded with respect to
a packet with some decoding “gaps”. To see why this is an jssugsider the example
in Figure 5.8. In the example, even though the ingress caadetc with respect to its
cached version oB3, R1 which is storing an incomplete version B8fcannot decode this
match.

One option is that the ingress does not use encoded packé&isuiee encodings. Thus,
packetB which was encoded with respect tois not even stored at Another option is
to use these encoded packetaximally i.e., all non-gap regions in the packet are used to
match further packets. Thus, routein the example storeB8 but nullifies the bytes irB
that matchedd. Future packets can only be encoded with respect to norregitbns of
B. Both solutions ensure correct end-to-end packet delibetyprovide lower redundancy
elimination than the ideal case when there are no decodipg) gince the second solution
achieves better redundancy elimination, we implementdpten. Our experiments with
real packet traces showed that with the second option, #sahoRE is less than 3%.

123



5.5 Implementation Issues

5.5.1 Encoder and Decoder Implementation

We implement the encoding and decoding algorithms fromi@e6t 3.3 and Section 5.4 in
Click [122]. The key components of the encoder are: fingetmomputation per packet,
a packet store for caching packets, and a hash table for m@afipgerprints to the packets
they were found in (similar to [158, 30]).

Like most RE systems, we use Rabin fingerprinting [132]. EachrRaigerprint cap-
tures a fixed 64 byte region in a packet [30]. We store a maxiolum = 10 fingerprints
per packet in the fingerprint hash table. This reflects a restse throughput-redundancy
tradeoff based on real traces.

We segment the packet store into logical buckets per intende-path pair (Sec-
tion 5.4.2). The encoder inserts each packet into the apptepbucket in FIFO order.
In addition to payloads, we store the IP headers for eachgbdidcause a hash of the
headers is used to decide decoding and storage respdreskiiigure 5.5). Also, the en-
coder flags one bit in the IP header (e.g., TOS field) to inditiaat the packet has one or
more shims that need to be decoded.

In prior RE solutions [158, 30], each fingerprint in the fingerphash table is associ-
ated with the most recent packet for which it is computed. fraBRE, this raises issues
with packets being undecodable due to gaps. (To elabohasemibst recent packet may
itself have been encoded and thus further encodings wirectso this packet will lead
to decoding gaps as discussed in Section 5.4.) To addresiss$he, when a packet sees
a match and the match region is grown to the maximal byte rahgdingerprints of this
packet that mapped into the maximal range are re-assoaatiedhe matched in-cache
packet. Also, the maximal byte range in the incoming packeeroed out. This ensures
ensure that bytes in the maximal match region are not useshfmrding. Our implemen-
tation is thus conservative; we sacrifice some performaméavor of correctness.

The decoder implementation largely follows the discussio8ection 5.3.3. The last
decoder on a path clears the flag in the header indicatinghbgbtacket has been fully
decoded.
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5.5.2 Configuration Parameters

Parameters for the LP optimization: To specify parameters to the LP formulation, we
need to fix a certain measurement epoch. However, this e@outot be arbitrary, as the
RE capabilities are limited by the storage available at tigeesses. Thus, we define the
notion of anetwork data retention timgetermined by the size of the ingress packet stores.
All values in the formulation (i.e., the match profiles and thaffic matrix) are specified

in terms of this common value. In real deployments, we expges to employ ingress
caches storing few tens of seconds worth of data.

Traffic and routing dynamics: The dominant source of traffic dynamics are time-of-day
and day-of-week effects [140]. Fortunately, these areiptalole and we can use historical
traffic matrices to model these effects.

Routing changes are trickier because an ingress may intlgressume that a down-
stream node will be able to decode a match. Two scenarios. aksgst, if routes are
computed centrally [73], SmartRE can use the new routes twmpuate a new caching
strategy and disseminate it to the ingresses. However ett@mputation may take few
tens of seconds, and we need to ensure correctness duringahsient state. Second,
the ingresses do not receive new caching strategies, lieaohseceive the current routing
information (e.g., OSPF monitor [149]) and avoid encoditigg are non-decodable after
the routing change. This ensures correctness but sacrsiices performance. Note that
this also solves the transient problems in the first scenario

Changes in redundancy profiles: To estimate the redundancy profiles, the ingress RE
devices maintain simple counters to track matches betwathisp The ingresses period-
ically report these values to the central configuration nediNote that this adds little
overhead to the ingress implementation. However, sincgetheuld be large they will

be reported infrequently (e.g., every 30 minutes).

This raises the issue of staleness of redundancy profiles nidy have two effects: (1)
It may affect the optimality without affecting correctne3#is is an acceptable operating
mode for SmartRE and we evaluate it further in Section 5.6S{@)ificant changes in the
redundancy profile may increase the decoding load on eadh (S=ttion 5.3.2, Eq (5.2))
and affect feasibility. To handle (2), each ingress trabksactual number of matches per
interior node to avoid overloading nodes with decoding oesgbilities. Thus, changes in
redundancy profiles do not affect correctness.

SWith n access routers, there aré3) paths. Even restricting to paths with the same ingress, the
overhead for transmitting redundancy profiles i3:0).
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Additionally, SmartRE can usetaggeredapproach. For example, under flash-crowd-
like scenarios where traffic patterns change dramatidhkyaffected ingresses can report
the large changes to the NOC. This can trigger an immediat@megtation of the caching
manifests instead of the periodic recomputation.

5.5.3 More on Correctness

Consistent configurations: The bandwidth overhead for dissemination is low as the
configuration files are quite small (1-2 KB per device). Hoerewdifferences in the dis-
tances between the devices and the NOC could lead RE devigss toconsistent caching
configurations. To mitigate this, we can use latency infdromafrom topology maps to
schedule the transfers to ensure that all devices recesvediv configurations at approx-
imately the same time. Also, for a small transition interffalv tens of milliseconds), all
RE devices honor both configurations. That is, the encodaetslanoders store packets
assigned by either the old configuration or the new one. (REcég\wcan allot a small
amount of spare memory for this purpose). This may resultsmall performance re-
duction, as some packets may get decoded before their diytmsaigned decoders, but it
ensures correct packet delivery.

Errors due to packet drops: Packet drops can cause encoder and decoder caches to
get out of sync. Packet drops cause two issues: (1) Packéth aie encoded w.r.t the
dropped packet cannot be decoded downstream; (2) When therHayer application
retransmits the dropped packet, it is likely that the regnaission will get encoded with
respect to the dropped packet, and get dropped again. T@&e-baplications can typ-
ically recover from single packet drops in a window, but drap retransmitted packets
(case #2) severely impacts TCP throughput. We handle ther last a special case. If
an ingress sees a packet which has a full content match arséhe connection 5-tuple
match with an in-cache packet, it will not encode this packet

5.6 Evaluation

Our evaluation is divided into the following sections:
1. Benchmarks of the Click prototype and time taken by the dpéitton framework.

2. Benefits of SmartRE compared to the ideal and naive appreadieg synthetic
traces with different redundancy profiles and resourceipi@ving regimes.
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Network PoP-level Router-level |
(ASH#H) # PoPs| Time | # Routers | Time
NTT (2914) 70 | 0.92| 350 |55.41
Level3 (3356) 63 0.53 315 30.06
Sprint (1239) | 52 | 0.47| 260 |21.41
Telstra (1221) 44 0.29 220 16.85
Tiscali (3257)| 41 | 0.21 205 | 11.05
GEANT 22 | 0.07 110 2.48
Internet2 11 0.03 55 0.48

Table 5.1: LP solution time (in seconds).

3. Evaluation using real packet traces collected at a lage@mhiversity’s border router
and at a university-owned /24 prefix hosting popular Webesstv

4. Impact of staleness of redundancy profiles.

5. Benefits under partial deployment.

For the following results, we use PoP-level ISP topologiemifRocketfuel [157] and
add four access routers to each PoP to obtain router-lgveldgies.

5.6.1 Performance Benchmarks

LP solution time: Table 5.1 shows the time taken to generate the caching nsésife
on a 2.80 GHz machine for seven PoP- and router-level topdod:ven for the largest
router-level topology (NTT), the time to solve (usiG@dPLEX is < 60s. We envision that
reconfigurations occur on the scale of a few minutes — thidtreBows that the optimiza-
tion step is fast enough to support such reconfigurations.

Encoding and decoding rates: We now try to understand how the encoders and decoders
can be used in practical ISP deployments. To do so, we ben&hhmimplementations
on a standard desktop machine and extrapolate the perfoent@more realistic settings.

We run our prototypes on a desktop with 2.4GHz CPU, with a DRAfdray of 90ns
(benchmarked using PAPI [17]. We use real packet traces frmm'24 prefix. (This
trace was 35% redundant using a 600 MB packet cache and 10drimge per packet.)
In addition to computing the raw throughput, we also comgheeeffective throughput
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after subtracting the overhead due to Click operations. &xisapolates the results to a
SmartRE middlebox implemented on an FPGA [82] which would drestrained only by
memory accesses and have no software overhead.

First, we benchmark the encoder. To understand the maximmgughput of a memory-
bound RE middlebox, we follow the methodology of Anand et20]{ (1) load the packet
trace into memory, (2) precompute and load fingerprints ligpackets into memory, (3)
encode packets one by one, and report the throughput.

We configured a packet store to hold 600MB of packet paylaads;orresponding fin-
gerprint index was 400MB in size. Using 10 fingerprints pexkad, the effective through-
put obtained for encoding was around 2.2Gbps (after subtgpthe Click overhead). We
also ran this on a machine with 120ns memory latency and tfeaighput dropped to
1.5Gbps. Extrapolating, we conclude that with lower DRAMetaties, the encoder can
operate at OC-48 linerates. (Today’s high-end DRAMs hawns latency as opposed to
90ns on our desktop). Other SmartRE operations (e.g., resagdrofile computation,
storing in isolated buckets) add negligible overhead.

Next, we evaluate the decoding throughput. This depend$i®@mumber of match
regions encoded in packet shims: as more regions get enaodee redundancy is identi-
fied, but the throughput decreases as the number of memaggseincreases. We study
this tradeoff in Table 5.2. The decoding store size was sé0D@MB. We see that de-
coding is roughly 3-4 faster than encoding, since it involves fewer memory opamat
per packet. While decoding throughput does decrease witle matches (due to more
memory accesses), the decrease is smalPfd matches. Our implementation uses a
maximum of 3 match-specs as a tradeoff between the amoumtdahdancy identified
and the throughput.

Our simple encoder and decoder implementations can rooglelsate on OC-48 (2.5Gbps)
and OC-192 links (10Gbps), respectively. In networks whaob éinks are used, SmartRE
can leverage the encoding and decoding capabilities of ntalgive optimal benefits.
Middleboxes based on these simple designs can also be u$8Bsrthat employ faster
links, e.g., 40Gbps for the core. The only difference is #wth decoder may be able to
act only on one-fourth of the packets entering the routerrdist of the packets need to be
decoded at other locations. In this case, the benefits oftBfanay not be optimal. We
explore the gap between SmartRE and the optimal in greatait dekt.

128



# Match | Redundancy Throughput (Gbps)
Specs In software | W/o overhead
1 24.1% 4.9 8.7
2 31.6% 4.5 7.9
3 34.6% 4.3 7.7
4 34.7% 4.3 7.6
5 34.8% 4.3 7.6

Table 5.2: Trade-off in redundancy and decoding througiyaiiitnumber of match-specs.

5.6.2 Synthetic Trace Study

We compare the benefits of SmartRE, the hop-by-hop approdbbuwtiany resource con-
straints (i.e.hop-by-hop ideg| the hop-by-hop approach with actual resource consgaint
and a special case of SmartRE called edge-based RE. In bothiRErand edge-based
RE, encoding is a one-time task; performed only at the ingsedsowever, decoding hap-
pens only at the edge of the network in edge-based RE, unliket®&B. While SmartRE
can effectively operate under all types of redundancy m®efitdge-based RE is effective
only when intra-path redundancy is the dominant sourcepdated content. Hop-by-hop
ideal represents the best possible benefits achievable Hedmork-wide RE assuming
that RE devices are unconstrained. Our main goals are to staddrhow close to ideal
SmartRE gets, how much better it is than other approachesylaatfactors contribute to
SmartRE’s performance.

Setup: We implemented an offline emulator using Click to compareedéiit network-
wide RE solutions. We assume a middlebox deployment wheteregtevork link has RE
devices attached on both ends of the link. For SmartRE, theelavone end of a link is
used for decoding/encoding packets in one direction, aadtie at the other end is used
for the reverse direction.

Encoders at each access link st@reseconds of packets (e.g., 3 GB memory at 2.4
Gbps impliesT” = 10s). Decoders at the edge have the same cache size as thersncode
Each interior RE device uses a 6GB cache which we believe aigaain terms of cost;
we also evaluate the effect of varying cache size. We moeehttoughput of each device
in terms of the total number of memory operations per secoffd. select bounds that
reflect the throughput achieved by our prototype. Assumir{gomservative) memory
latency of 100ns, 20 lookups for encoding, and 4 lookups éaoding, this translates into
0.5 million encodings and 2.5 million decodings per secaspectively.
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Traffic model: We use a gravity model based on city populations to deterthmfraction

of traffic from each ingress access router to an egress PaRinvéiach PoP, the traffic is
divided equally among the 4 access routers. Each traceisidaghcy profile is specified by
three parametersy, Yintrapop, aNAYintapatn- v 1S the overall traffic redundancy per-ingress
access link.v;uqp0p determines the redundancy within the traffic destined fersame
egress PoP. Within each egress PoR,.,..» determines the intra-path redundancy of the
end-to-end path between the ingress and egress accessrdutese parameters specify
how redundant the traffic is, and how localized/dispersed¢idundancy profile is. H

is high then the traffic is highly redundant;iif,;,.,., is high then most of this redundant
traffic is destined to the same PoP3if,qp. then most of the intra-PoP redundancy is
within the same ingress-egress path.

Results: We first consider the single-ingress case, where traffiaratgs from a single
ISP PoP. In this case, the decoding capabilities in the m&tew@ split proportionally by
volume across all ingress-access routers; on eachljach ingresg’s share is%,
wherewvol;(L) is the volume of traffic originating at ingregslowing through link . and
vol(L) is the total volume of traffic through from all ingresses. The following results use
two configurations withy = 25% and~y = 50% redundancy, Withy;,irapep @NAYintrapath

set t00.5 in each case. Our choice ¢fis based on measurements of redundancy in real

traffic traces from enterprise and university networks [23]

Our main metric of interest is the fractional reduction ie thetwork footprint (Sec-
tion 5.3). Figure 5.9 shows the CDF of the reduction in netwiodprint for the four
solutions for the Sprint topology. The footprint reductiohSmartRE is 24-30% across
the ingresses for the 50%-redundant trace (12-15% for the Zslundant trace), indicat-
ing the extent to which the aggregate utilization of the IB#proves for traffic from the
ingress in question. The median fractional reduction &ctbe ingresses for the 50%-
redundant trace in SmartRE isx5etter than the naive approach. More importantly, the
median value is less than the ideal unconstrained case Kwittrocessing and memory
constraints) by only.04 in absolute terms.

Figure 5.10 shows the network-wide reduction for 4 tier-P4S Here, we consider
the top 20 PoPs (by degree) in each topology, and assumehth&ttal traffic entering
each of the 80 ingresses (4 per PoP) is the same. For simpliggt also assume that
the redundancy profile is the same across all ingresses.sé&the different topologies,
SmartRE is consistentlyx better than the naive approach; even the edge-only variant o
SmartRE is roughlg — 3x better than a naive approach. Also, SmartRE is quite close to
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Figure 5.9: CDF of network footprint reduction across ingessfor Sprint (AS1239) using
synthetic traces.
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Figure 5.10: Network-wide footprint reduction for fourti# ISP topologies using syn-
thetic traces.

the unconstrained ideal case and provides 80-90% of thésdemgs.

Importance of SmartRE optimizations: SmartRE takes into account three factors
while assigning caching responsibilities across RE devitdse network: (1) memory
constraints on RE devices, (2) packet processing condiliaipiosed by memory accesses,
and (3) traffic and routing matrices and redundancy profid& evaluate the relative
importance of these next.
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To do so, we consider four hypothetical scenarios:

1. SmartRE with no memory constraints (SmartRE-nomem)gettiach\/, = oo in
the LP from Section 5.3.2.

2. SmartRE with no packet processing constraints (SmartRigeo); setting each
L, =occinthe LP.

3. Aheuristic (Heurl) where the hash-ranges are dividedlggacross the RE devices
on a path —if there ark RE devices on the pafh each cacheg of the packets on
this path.

4. A second heuristic (Heur2) similar to the one above, exitegt RE devices further
downstream are assigned more caching responsibilitiecif8lly, if pathp hask
hops, then thé” hop cache% of the packets on this path.

j=1

Table 5.3 compares the performance of these schemes withtF¥and the ideal
solution with no resource constraints. Note that Heurl aedrB® are also resource aware;
the effective caching and decoding responsibilities apped off by the actual memory
and processing constraints. We see three effects. FirdrtBiE performs significantly
better than both heuristics showing that accounting fdfi¢tarouting, and redundancy
patterns while assigning caching responsibilities is sgag. Second, the gap between
SmartRE-nomem and SmartRE is negligible. This is becauseecsizh has a natural
diminishing property (see Figure 5.11); it is necessaryaieta sufficiently large cache but
increasing it further does not help much. Finally, relaqimgcessing constraints does not
help too much. This is because the core RE devices are nobaded for the redundancy
profile we use for this evaluation {,irupep = Vintraparn = 0.5) and perform fewer decodings
than their effective capacity. However, in other redungarofiles where the core devices
operate at full capacity, the gap between SmartRE and SmartiREbc is more noticeable
(not shown).

SmartRE with no resource constraints is $till4 lower than the ideal solution. This is
an effect of enforcing non-overlapping caches. For exangplesider two path&X, A, B)
and(X, A, C') with the same ingresk and a packeP along(X, A, B) that matches future
packets on both paths. If we allow caches to overfagan be stored on botA and B,
to achieve optimal RE. If we use non-overlapping cacliesan be on eithed or B, but
not both. This sacrifices either inter-path RE (if we stéren B alone) or the footprint
reduction for intra-path RE (if we storB on A alone). Allowing caches to overlap can
yield better RE when there are no memory constraints. Howeverlapping caches are
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Topology Heurl| Heur2 | SmartRE SmartRE SmartRE Ideal
(equal) (distance nomem | noproc
Sprint | 0.145| 0.168 0.264 0.267 0.274 | 0.31
ATT | 0.138| 0.162 0.244 0.248 0.262 |0.297
AOL | 0.152| 0.178 0.267 0.277 0.278 | 0.33
NTT | 0.142 | 0.167 0.259 0.264 0.278 | 0.31

Table 5.3: Understanding the relative importance of thdediht components of
SmartRE’s optimization.

(Yintrapops Vintrapath) Reduction in network footprint
SmartRE| Edge | Hop-by-hop| Ideal
05,05) 026 |012| 008 |031
(0.5,0.75) 0.28 0.18 0.08 0.31
(0.75,0.75) 0.38 0.27 0.11 0.42
(0.25,0.5) 0.18 0.05 0.06 0.20

Table 5.4: Exploring different redundancy profiles on their@gopology, with total re-
dundancyy = 0.5.

not optimal in realistic settings with actual resource ¢a@ists. Further, there are other
practical difficulties in extending SmartRE to allow ovepapg caches (see Section 5.7).

Varying redundancy profiles: Table 5.4 compares different types of redundancy pro-
files. While SmartRE is consistently better, the improvememteshds on the redundancy
profile. For example, when intra-path redundancy domin@é&s, 0.75), SmartRE is not
significantly better than the edge-based variant. Agairgsacall the profiles, SmartRE is
within 0.04 of the ideal unconstrained case.

The configuratior{0.25, 0.5) where there is significant redundancy across egress PoPs
should be ideal for SmartRE. However, all three approachespiaorly, and hop-by-hop
marginally outperforms the edge-only approach. The latters poorly in this case be-
cause most of the redundancy is inter-path, not intra-p&te. were surprised at why
SmartRE and even the ideal case did worse in this scenario. nd/eéHat shortest path
routing between the top-20 PoPs in this ISP does not allowniiach scope for on-path
coordination between paths because the paths have veryfenitnthem. In this context,
redundancy-aware routing [30] can additionally boost théggmance of SmartRE.
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Figure 5.11: Varying cache size in the interior using a sgtithtrace over the Sprint
topology.

Memory provisioning: Figure 5.11 shows the effect of adding more cache memory to
interior devices, while keeping the cache size on the edgeeke fixed. Adding cache
memory to the interior has two benefits. (1) The total on-pagmory increases and
greater intra-path redundancy is identified. However, ithisease happens only up to a
certain point when the total memory on a path matches the meuosed for encoding.
(2) Interior nodes see redundancy between paths from sagnesmdestined to different
egresses. The amount of inter-path redundancy increasestomically with memory.
Adding more memory to core devices leverages such sourcesiohdancy that cannot
be identified in an edge-only approach. While adding more nmgrimothe core exploits
more redundancy, the benefits are marginal beyond 4GB. Bex)dhe amount of inter-
path redundancy identified is small.

5.6.3 Evaluation Using Real Traces

We use packet traces collected at a large US university tmimeathe effectiveness of
SmartRE with real traffic patterns. To simulate a real tracer @vspecific topology, we
map the observed IP addresses to the nearest PoP in the 3&gp/Ne used one trace
capturing all traffic leaving the university (which was 15ét6lundant with 10s of encoding
cache) and another trace for traffic leaving the /24 prefi%{48dundant).

We start with the single-ingress case. Figure 5.12 showSBteof footprint reduction
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Figure 5.12: CDF of network footprint reduction across irsges on Sprint topology ex-
trapolating from real traces.

on the Sprint topology using both all-university and /24fpréraces. Again, SmartRE
outperforms the hop-by-hop approach by»:3n the University trace, SmartRE is almost
indistinguishable from the ideal case; in the /24 trace tleelian performance difference
i 0.04.

We observed substantial variance in the relative perfooesf the naive approach
and SmartRE across different ingresses (not shown). We rexptbis further, focusing
on the top-4 ingress PoPs in the topology (by degree). Forofwibe PoPs (Seattle and
Dallas) SmartRE is 7-8 more effective than the naive approach. For the remainimg tw
(New York, Chicago), itis 3-4 better. There are two factors here. First, a majority of the
traffic is destined to New York and Chicago and there is comalile overlap within this
traffic. Second, the paths from the other two PoPs to New Yodk@hicago share many
intermediary nodes. Thus, SmartRE can better exploit ties-jmath redundancy.

We also conducted the network-wide evaluations across 4nkdworks. SmartRE
reduced the network-wide footprint by 20% and 13% on avesaagess the 4 networks for
the /24 and all-university traces respectively.

5.6.4 Effect of Stale Redundancy Profiles

As discussed in Section 5.5, SmartRE uses the redundanclemderved in the current
epoch to compute caching manifests for the next epoch. Waateathe impact of using
stale redundancy profiles (SmartRE-stale) compared to &fadeal which uses up-to-
date information (as in the rest of this section so far).

135



We study variants of SmartRE-stale which differ in the timengen when redundancy
profiles were computed and when they are used. We use theagatgraces from Sec-
tion 5.6.3 for this study. We evaluate time lags of 10, 20, 36 40 minutes (not shown).
We find that SmartRE-stale performs close to SmartRE-ideal (@nce ideal RE), with
the worst-case footprint reduction being at me$st worse than SmartRE-ideal. We in-
vestigated why SmartRE performs well even with a stale rednog profile and found
that the traffic volume to the large cities (Chicago and NewkYalominates the overall
benefits and the redundancy profiles for these are stable.eWigke results are prelim-
inary, they are encouraging—the dominant sources of rexhaydappear to be stable and
SmartRE can provide benefits even with stale redundancy gsofil

Flash-crowd scenarios: Next, we study how staleness can affect RE performance in
more sudden flash-crowd-like scenarios. First, we incrideestotal traffic volume entering
at a particular ingress to saturate its upstream bandwke#ping the redundancy at each
ingress fixed at 50%. In this setup, the footprint reductsihd6 with an up-to-date traffic
matrix and redundancy profile; with older inputs the redurtis 0.23 — 0.25 depending
on the ingress. Second, we increase the aggregate redyrfdaacspecific ingress from
25% to 50%, keeping the redundancy from other ingresses &xk28%. Depending on
the ingress that has increased redundancy, the footpdotten is0.14 — 0.15 with up-
to-date profiles an@.10 — 0.11 with an old profile. These experiments further confirm
that while up-to-date profiles yield better RE performancenestale profiles can yield
substantial benefits. However, for dramatic changes, psoéihould be updated using the
triggered update mechanism discussed in Section 5.5.

5.6.5 Partial Deployment Benefits

The middlebox-style implementation of encoders and ensaotdekes SmartRE amenable
to incremental and partial deployment, in that the encddec®ders can be installed at
locations where reduction in network load is desired most.

We consider a scenario where an ISP would like to mitigatertipact of redundant
traffic originating from certain high-volume PoPs (say, 5olpy volume) by deploying RE
middleboxes strategically in its network. (Encoding RE lsoaee deployed at each of a
PoP’s ingress access links). We ask if SmartRE is useful evenlimited scale.

We examine two strategies. In both cases, our goal is to gétftoboxes where there
is a lot of traffic aggregation. We first count the number ofrigi path routes traversing
each interior link. In the first strategy we simply deploy déers on links which lie on
many of the network paths from the 5 ingresses in questiothtr @gresses. The second
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Figure 5.13: Two partial deployment strategies on the $pojpology (x=65 represents
full deployment). Each device has a 6GB cache.

strategy is smarter, in that it first weighs each path trangra link by the volume of
traffic it carries and the distance of the link from the cop@wding ingress, and ranks
links according to the total weights of paths traversingrthe

Figure 5.13 shows that in both cases, deploying RE middlebore small number of
links (e.g.,< 10 out of a maximum of 65) still offers reasonable benefits invoek-wide
utilization (roughly 10% compared to the best possible 26Phe smarter strategy works
better with 50% - 70% deployment. Figure 5.13 indicates #&vah simple strategies for
partial deployments work well. This can be further enhartmedeighing each path with
the expected amount of redundancy based on historical\aigmsrs.

5.6.6 Evaluation Summary

e SmartRE is on average 4<5more effective than a naive hop-by-hop approach.

e SmartRE, even under strict resource constraints on both myeamal memory ac-
cess throughput, achieves 80-90% of the performance ofeah ithconstrained RE
solution which assumes no memory or processing constraints

e The above results are consistent across several redunpliasiitgs and on both syn-
thetic and real traces.

e The global resource-aware optimization in SmartRE is nexg$er good RE per-
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formance; simple heuristics for assigning caching respdites do not yield suffi-
cient network footprint reduction.

e SmartRE can provide benefits comparable to the ideal sceeagio under partial
deployment or with slightly out-of-date redundancy prdfile

5.7 Discussion

Multi-hop wireless: We believe that SmartRE can be used to enhance caching systems
in other contexts, e.g., multi-hop wireless networks [$2)ordinated caching can help in

two ways here: (1) improving the effective memory usage dtilap nodes by chunking
large transfers and apportioning each chunk to a specifie (tbd replaces blind caching

at all on-path routers) and (2) preventing multiple nodesfretrieving a popular chunk
from a single cache - this creates contention for the medigimaay wipe out the benefits

of caching. We can limit each cache’s encoding responsésiland this creates an even
distribution of caching/encoding across nodes in the nekwo

Allowing overlapping ranges in SmartRE: We saw in Section 5.6.2 that allowing
caches to overlap may improve RE performance. However, greréwo practical diffi-
culties. First, the formulation from Section 5.3.2 becommese complicated. Specifically,
we can no longer model the second term in Eq (5.2) and thegawmm in Eq (5.4) as
linear expressions; in fact, it is not even clear if we carcigely model these terms. Thus,
it is difficult to obtain the optimal caching responsibéiiin this setting. Second, in order
to maintain a consistent view with every decoder each irsgnes to either (a) keep dupli-
cate copies of packets that belong to overlapping rangds) ais€ additional mechanisms
to keep track of whether a packet has been evicted from amanteode and also maintain
the appropriate mappings between fingerprints to the padkdhe store. Additionally,
the ingress needs to explicitly decide which of the decosarssponsible for reconstruct-
ing encoded regions in case the matched packet is cachedloplendownstream nodes.
The performance of SmartRE with non-overlapping rangesready close to the ideal
scenario. Thus, we do not consider this extension to all@vlapping caches because the
marginal improvement does not merit the increased impléatien complexity.
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5.8 Chapter Summary

As Internet traffic volumes increase and more bandwidtersive applications appear,
redundancy elimination (RE) has emerged as a promisingipahsblution to increase
end-to-end application throughput. More recently, theae been interest in expanding
the scope of RE to network-wide scenarios with the grandéorvisf offering this as an
IP-layer service within ISP networks.

This chapter takes this vision one step closer to reality.|abvk beyond a naive link-
by-link view and adopt a network-wide coordinated approdth design and implement a
framework called SmartRE based on these high-level designiples. SmartRE is natu-
rally suited to handle heterogeneous resource constaadttraffic patterns and for incre-
mental deployment. We address several practical issubs uesign to ensure correctness
of operation in the presence of network dynamics. Acrossdewange of evaluation sce-
narios, SmartRE provides 4<5improvement over naive solutions and achieves 80-90%
of the performance of an ideal, unconstrained RE networlewsiternative.

A natural extension is to apply SmartRE to datacenter andiimojt wireless net-
works. Another area of future work is to expand the scope fobRE&llowing multiple
encoders per-path (in contrast to encoding only at the gsyr@nd exploring the interplay
between RE techniques and network coding.
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Chapter 6

Network-Wide Deployment of Intrusion
Detection and Prevention Systems

Intrusion detection (NIDS) and prevention systems (NIR®)ea critical role in detecting
and dropping malicious or unwanted network traffic. TheseehHaeen widely deployed
as perimeter defense solutions in enterprise networkseabdkindary between a trusted
internal network and the untrusted Internet. This tradaialeployment model has largely
focused on a single-vantage-point view of NIDS/NIPS systeptaced at manually chosen
(or created) chokepoints to provide coverage for all suspgctraffic.

Increasingly, however, the challenges of scaling this @@agin are becoming evident.
Due to growth over time in both traffic and the types of anadysigese NIDS/NIPS place-
ments become a bottleneck. Approaches to scaling singli&ga-point solutions have
focused on building NIDS/NIPS clusters (e.g., [166]). Ttester approach, however,
faces its own challenges: Since each packet might be reléwanultiple analyses for
which the relevant state exists on different cluster nottese solutions need to replicate
traffic across different cluster nodes or otherwise shageré¢levant analysis state. This
results in overheads that limit the performance of thesgtiswls or, if performance cannot
be sacrificed, that force guaranteed coverage to be relaxgd [155]). This limitation is
further exacerbated by the growing deployment of NIDS and3Nfunctions in ISP net-
works, in order to provide security services to customers miay not have the necessary
resources or expertise to protect their network infrastmec[36, 34].

In this chapter, we explore a different design alternativectaling NIDS/NIPS. Instead
of trying to scale processing at a few chokepoints, our aggr@xploits the existing repli-
cation of each packet along its forwarding path. In doingve®depart from the single-
vantage-point strategy, and permit the different nodes jpaicket’s forwarding path to be
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candidates for performing the needed analysis on the paélsein the cluster solution,
stateful analysis will require that certain types of pasket subjected to certain types of
analysis at the same node — e.g., connection-oriented sigaiyil process packets on
each direction of the connection at the same place. Ratheretkgalicitly replicating a
packet or derived state to the nodes that need it for analysisvill partition the analysis
across locations where a packet can already be observed.

The focus of this chapter is the problem of managing the depémt of NIDS and
NIPS functions throughout a network. There are three kellaiges in this context:

e Resource constraints:NIDS/NIPS solutions are constrained by the processing and
memory capabilities of the underlying hardware. Additibnaome solutions use
specialized capacity-constrained hardware (e.g., ferdate string matching) to re-
duce the performance impact on benign traffic.

e Placement affinity: NIDS/NIPS are not monolithic systems: they consist of mul-
tiple modules that analyze different traffic patterns. Intipalar, the modules may
have topological constraints on where they will be mostatife. For example,
outbound scans and inbound floods are best detected closexork gateways.

e Network-wide objectives: Network administrators have high-level policy goals to
optimally utilize their NIDS/NIPS deployments toward theecurity objectives. For
example, in the NIDS case we may want to avoid overloadingiSp@odes. Simi-
larly, we want to enable NIPS functions throughout the nelwo maximally drop
unwanted traffic.

We believe these challenges are best addressed by takietgvark-wide coordinated
approach for the deployment of NIDS/NIPS functions [37, A3, 147]. We outline our
specific contributions next.

NIDS: Forthe NIDS case, we design a framework for partitioning Sfidnctions across

a network to ensure that no node is overloaded. This takesodount the resource foot-
prints of each NIDS component, the capabilities of difféneodes, and placement con-
straints specifying where each function is most effectéug.( ingress nodes are best suited
for scan detection). We demonstrate a proof-of-concepiementation of a network-wide
coordinated NIDS using Bro [129]. Our evaluations show thanaenting Bro with the
coordination capabilities adds little memory or procegsiverhead for most modules. We
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emulate a network-wide deployment scenario and find thdt saordination can reduce
the maximum processing load by 50% and the maximum memodyldg&20%.

NIPS: For NIPS, we show how to maximally reduce unwanted traffihaut affecting
the performance of benign traffic. We model the use of speerdland power-intensive
hardware with limited capacity (e.g., content addressatdenories). In these scenarios,
the problem of optimally dropping unwanted traffic is NPthand we design practical
approximation schemes. Using extensive evaluations dnl$€atopologies, we show
that our approximation algorithms provide near-optimaf@enance, achieving more than
92% of the optimal possible performance in dropping unwairaffic. We also demon-
strate the promise of leveraging techniques from onlineniag to combat strategic ad-
versaries who try to evade these defenses [85].

There are several efforts for scaling NIDS and NIPS (e.@, 66, 70, 156, 104])
that focus on building better single-vantage-point sohgi Because our work focuses on
the network-wide aspect it effectively complements tecahadvances in these areas as
it enables administrators to optimally utilize their cunrdardware infrastructure toward
their security objectives.

6.1 NIDS Deployment

In this section, we first describe an abstract model thaticapthe constraints and require-
ments in deploying NIDS functions throughout a network. t\ese set up an optimization
framework that assigns NIDS responsibilities across adfienetwork nodes such that no
single node is overloaded. We describe a prototype impléatien and evaluation using
theBro system [129].

6.1.1 System Model

Modern NIDS are not monolithic systems. They are compridedarules that perform
different types of traffic analyses. For example, populaD8llike Snort and Bro im-
plement modules for scan detection, analyzing HTTP traffacking IRC traffic, finding
malware signatures, etc. We abstract the functions peddry these modules into the
notion ofclasseswhere each class; is a specific type of analysis. Associated with each
C; is a specificatior?; of the traffic of interest for analysis using@. For example, ifC; is

a type of analysis for port-80 traffic, thén specifies all traffic to or from port 80 (on any
host) that traverses the network.
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Figure 6.1: Example of network-wide NIDS instrumentation

Let {73} denote a partition of; into component specifications, in the sense that any
packet matching; matches exactly ong;.. We consider only class&s; for which the
associated specificatiéf) can be partitioned int¢7;; } in such a way that for every, all
traffic matchingZ;;, can be observed by each member of a nonempt¥geif nodes. That
is, if nodeR; € Py, thenR; can observell traffic that matcheq;;, (and can recognize it
as such). We call each;, acoordination unit Intuitively, P;, is the set of nodes that are
eligible for performing analysis of typ€; on traffic matchindZ;..

To make this concrete, consider the example network in Eigut. Suppose there
is a classC; denotedSignature that applies malware signature analysis to traffic
Suppose that; is partitioned into specificationsZ;; } . according to the end-to-end path
it traverses; e.g.7;; specifies the traffic traversing Pathl, and similarly 7or. Then,
P;; = {R1, R3 R4} is the set of nodes that can observe (and, we assume, reepgniz
traffic matching7;;, and P, = {R1, R3 R2} is the analogous set fdf,,. Similarly,
consider a scan detection moduledenotedScan that checks if any of the hosts h1-h8
show signs of anomalous scanning activity. In this casefrdféc 7; is partitioned into
eight blocks{7;. }%_,, corresponding to traffic initiated by each of the eight koBecause
only each host’s corresponding ingress node sees all tifie tree host initiates, we define
P;; = Py = {R1} (for hosts h1-h2)P;3; = P,y = {R2}, and so forth.

Because every node; € P;, can observe all traffic iffy, it is possible to divide the
analysis of7;, traffic across all of them, in order to disperse the analysidkwcross them.
For example, Figure 6.1 shows enablBignature  on all the nodes on the network; as
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we will see, we will do so in a way that each nofie € P;; analyzes a distinct subset of
the7;, traffic.

We useT”** and T*** to denote the total traffic volumes in packets that matches
and 7;,, respectively. Moreover, a type of analy<i$ performs analysis at some level
of traffic aggregation (e.g., sources, destinations, flows sessions). As such, we use
T/*ms and T}*™ to denote the total traffic volumes, expressed in the uniggfegation
appropriate forC; (e.qg., flows), that matcheg and7;,, respectively.

6.1.2 Problem Formulation

Next, we describe the optimization problem that allows uassign NIDS responsibilities
in a network-wide fashion.

Objective: The goal is to assign monitoring responsibilities to déf@rnodes such that
the processing/memory load is balanced (for a suitably défbralancing function). For
example, we may want to minimize the maximum load or makethatethe load is evenly
distributed. While assigning these responsibilities, westhamsure that the traffic ov-
eredcompletely. This is the correctness requirement to ensatethe network-wide de-
ployment will be logically equivalent to running a singleD8 on the entire traffic.

Control Variables: d;; denotes the fraction of traffic i6; on coordination unif;, that
R; processes. Thatis, in Figure 6.1, we can splitSignature  analysis responsibilities
fractionally across R1, R3, and R5. We consider a fractional split for twooreasFirst,
this is the most general formulation possible and thus welld/the best solution. Second,
the fractional split allows us to model the optimizationlgem as a linear program, that
can be solved efficiently using solvers liK&LEX

Inputs: We assume that the network administrators provide theviihip parameters
based on their specific infrastructure, NIDS requiremeantd, traffic patterns as inputs to
the optimization:

e The various NIDS classeSC;}; and, for eachC;, its coordination units Py }.
TP and T specify the volume of packets and items (e.g., flows, sojifoes
C; traversingP;.

A flow is a sequence of packets close in time that have the Sas@urce and destination addresses/ports
and protocol.
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e The different classes may have different resource fodtprior eachC;, we capture
these using the per-packet processing load (e.g., CPU sepengacketlpuReq,
and the memory load/emReq, (e.g., bytes per flow or per source). These can
be obtained by profiling the resource consumption of the Ni@Slifferent mod-
ules [77].

e The processing and memory capadityuCap,; andMemCap; of each noder;. We
consider a general model in which the network elements doaNe heterogeneous
hardware capabilities.

Optimization problem: For concreteness, we focus on minimizing the maximum pro-
cessing/memory load on any given node across the networle gdraranteeing complete
coverage over the different NIDS classes. This optimiraiooblem can be represented
using the following linear programming formulation.

Minimize max{ CpuLoad, MemLoad}, subjectto

Vi, Yk, Y dgy =1 (6.1)
JjiR; Py
) items o
Vj, MemLoad; = 2i 2y MemfBieq; X Ty™ x dug (6.2)
MemCap;
S, CpuReg; x TH™ x dy,
Vj, CpULOCZd — Zz Zk putieq; X ik X kg (63)
J CpuCap;
Vj, CpuLoad > CpulLoad; (6.4)
Vj, MemLoad > MemLoad, (6.5)

Eq (6.1) says that the all the traffic in each coordination farieach class should be
monitored. Eq (6.2) models the total memory load on each j@geessed as a fraction of
its memory capacity. As a first-order approximation, the mgntoad depends off{*",
the number of distinct items corresponding to this analy&i$. For example, this would
be the number of flows in per-flow analysis and the number dgindissource addresses
in per-source analysis. Eq (6.3) models the processingdoashch node expressed as a
fraction of its processing capacity. Again, we model thecpssing footprint as a function
of the total volume (in packets) of each class that the no@ssgyned [77]. Finally, we
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model the maximum memory and processing load across alldties) and minimize the
max of these two metrics.

Output: We solve the linear program to generatampling manifestthat specify the
monitoring responsibility for each node;. These responsibilities are specified in terms
of hash-ranges for each coordination uRjt.

Thed;,; values in the optimal solution can be converted into haslgedased sampling
manifests for eact?;;, using the procedure in Figure 6.2. The main idea is that we map
the fractional variables into non-overlapping hash rangeie generating the sampling
manifests for each node. The non-overlapping hash rangesethat each node; € Py
analyzes a distinct subset of tiig traffic, without requiring any explicit communication
between the differenk;s.

Given a sampling manifest, the algorithm on a nétjés shown in Figure 6.3. As each
packet arrives, we find the corresponding NIDS modules tlilhanalyze this packet. In
general, the same packet may be analyzed multiple modutesagacket on port 80 may
be analyzed by the HTTP, malware signature detection, aemu detection modules. For
each such module, we checkAf should run the corresponding analysis for this packet.
To do so, we compute a4$H from the packet header using a lightweight hash function.
Depending on the semantics of the analysis, the hash is dechpuer specific subsets of
the packet header. For example, for flow-based analysi)able uses the unidirectional
5-tuple. For session-based analysis, the hash is compue@d bidirectional 5-tuple such
that the source/destination IP are consistent for botltties of the session. If the hash
falls into the hash-range assigned to ndgdor coordination unitP;;, then this packet is
subjected to analysis by clag$ at R;.

6.1.3 Implementation in Bro

We implement the above coordination functions in the Bro IR39]. Bro is logically
divided into two parts (Figure 6.4): (1) avent engin¢hat converts a stream of packets
into higher-level events and (2) a site-specpulicy enginethat operates on the event
stream.

Bro maintains aonnection recordor each end-to-end session that is generated in the
event engine and carried into the policy engine. This cotimececord keeps the basic
state information regarding the source/destination,iegipbn ports, and other tags asso-
ciated with the connection. We modified the connection m¢oradditionally carry the
hashes of different combinations of the connection fieldsldiAg these to the connec-
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GENERATENIDSMANIFEST(d* = (dj;))

1 foreachclassC; do
2 foreach coordination unit?;, do

3 Range «— 0
// the order of nodes does not matter
4 foreachj, R; € Py, do
5 HashRange(i, k,j) < [Range, Range + d}; ]
6 Range «— Range + dj;

// Assignments across Classes and Coordination units
7 Vj, Manifest(R;) < {{{i, k}, HashRange(i, k, j))| d;;; > 0}

Figure 6.2: Translating the optimal solution into a samphmanifests for each NIDS node

tion record increases the memory footprint slightly, bubids having to recompute the
hashes within each policy script. We use the Bob hash funcéoommended by prior
measurement studies [121].

We consider two implementation alternatives: (1) delayiregsampling checks in Fig-
ure 6.3 (specifically, line 5 for eachand k) until the policy engine stage and (2) imple-
menting the sampling checks in the event engine as earlyssij®. The first approach
has two advantages. First, it requires minimal changeslenie event engine (except
adding the hashes to the connection record). Second, iepuble coordination intelli-
gence into theite-specificonfigurations as intended in the Bro system design. However,
we found (Section 6.1.4) that this induced significant ogachfor some modules. This is
because the policy scripts are executed by an interpretedl@ing hash lookups/checks is
quite expensive. In (2), we add the sampling checks and oitiglize a module if nec-
essary. For example, we initialize the HTTP module for aieasanly if the session hash
falls in the range assigned to this node for HTTP process$togunately, we do not need
to modify each such module to add these checks. We need tdadchieck only at two
places: (a) when application-protocol modules (e.g., HTRE) are initialized (based on
port numbers)and (b) in the event engine for the signature matching module

For some modules, the only processing that occurs is in theystiage. For example,
scan detection and TFTP processing receive a raw evenirsteggorting connection in-

2Port numbers are not robust for determining applicatiorabin—Bro can also detect application behav-
iors dynamically. In that case, we can implement this chétkeapoint where the corresponding application-
specific module is initialized.
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COORDINATEDNIDS(pkt, R;, Manifest(R;))

1 {C;}; < GETCLASS(pkt)
// Each packet may be analyzed by multiple modules

2 foreachclassC; do
3 k <+ GETCOORDUNIT (pkt, ©)
// HAsSH returns a value if0, 1]
// Specific packet fields used forAsH
// depend on semantics 6f
hpet <— HASH(pkt, i)
if hpre € HashRange(i,k,7) then

Run clasg’; for pkt

o o1 b~

Figure 6.3: Coordinated NIDS algorithm on nofg

formation. In this case, our only option is to implement thenpling check in the policy
engine.

In both (1) and (2), we implement the common functions to psscsite-specific con-
figurations and sampling manifests. We assume that the netdministrator provides
site-specific configurations that will map each packet matgi;;, to the corresponding
P;.. For example, these could map IP prefixes to their ingressitots or identify the
routing paths for a given pair of IP prefixes.

6.1.4 Evaluation

First, we describe our evaluation setup. Then, we use dtamelanicrobenchmarks to

profile the resource footprints of the different modules am&hsure the overhead of our
modified Bro prototype. Finally, we describe an emulated pdtvwide evaluation that

shows the benefits of a coordinated network-wide approacta wingle vantage point

approach.

Setup: We use a custom traffic generator that takes in as input a netwpology, the
traffic matrix (fraction of traffic for each ingress-egressirpy routing policy (nodes on
each ingress-egress path), and a traffic profile (e.g.jwvelpbpularity of different appli-
cation ports). Additionally, we provideemplate sessiorfer different applications using
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Figure 6.4: Implementing the coordination functionalityBro. The “coord” boxes indi-
cate where changes were needed to add in coordination cimeBks. For some modules
(e.g.,Scan), the coordination checks have to be in the policy engine.

real traffic captured for common protocols like HTTP, IRC, Btlatc., and synthetically
generated traffic sessions for other protocols.

The goal of this evaluation is to compare the relative pentorce (processing, mem-
ory load) of a network-wide coordinated approach againsireeat single vantage point
approach. By design, the network-wide approach providegtugvalent functionality.
(We verified through manual inspection of Bro logs and profites the aggregate be-
havior of the network-wide and standalone approaches aligadgnt. We do not present
these results for brevity.) That is, we are not interestetthéndetection accuracy of the
IDS algorithms as such. To this end, our traffic trace gepnembvides a realistic mix.

The performance benchmarks we present next were obtaiieglBio-1.4 on a dual-
CPU Intel Pentium 3.4GHz machine with 2GB RAM running Ubuni@49.

Microbenchmarks: First, we perform a standalone evaluation (i.e., with novoek-
wide coordination) of our prototype implementation and pane it with an unmodified
Bro system. We generate a single traffic trace with a total 6fA@D traffic sessions using
a mixed traffic profile that stresses different modules. Wawate both implementation
alternatives described earlier: Bro with the coordinatibaaks implemented in the event
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engine wherever possible, and Bro with all coordination kbee the policy scripts. The
sampling manifests in both cases are configured to speafyhis standalone node needs
to process all the traffic. We setup Bro so that it runs eachyaisainodule in isolation.

Our goal is to evaluate: (a) the processing overhead indogélde coordination func-
tions — identifying the coordination unit, computing theshas, and checking if the
hashes lie in the appropriate sampling ranges; and (b) threomyeoverhead of adding
the hash values into the connection record.

Figure 6.5 shows the processing overhead for our Bro impléatiens relative to an
unmodified Bro system (using the total CPU time used reportddrbyacross these mod-
ules. For the Baseline, Signature, Blaster, and SYN-floodesaes) the overhead of co-
ordination checks is around 2% on average for both impleatiems. For the scan and
TFTP modules, the overhead of both coordinated versionsse ¢o 10% since these in-
volve more processing in the policy engine. In these cas#h,the coordinated versions
have very similar overhead because the coordination craxks in the same place; they
cannot be offloaded to the event engine (e.g., scan, TFTPaztthey occur solely in the
event engine (e.g., Signature). However, in the case of HIR®, and Login, we observe
a significant overhead when we perform the coordinationkhecthe policy engine.

Figure 6.6 shows that the memory overhead of the coordinegiesibns is at most 6%.
Recall that this overhead arises because we augment theatimmeecord in the event
and policy engines to carry hashes of different fields in trenection identifier.

Network-wide evaluation: Next, we consider a network-wide evaluation setup. For this
we use the Internet2 topology with 11 nodes distributedughout the continental US to
represent a large enterprise network with several locatidve use a gravity model based
on the city populations to determine the traffic matrix;,ithe split of the total traffic
between every pair of locations. We use shortest-pathnmguiased on link distances
to determine the paths for traffic between each pair of loaati Given this topology
and traffic information, we set up the linear programmingpfolation to assign the NIDS
responsibilities across the different locations to mizethe maximum CPU/memory load
on any given location. We assume that all the locations Hasame processing/memory
capabilities. We use the guidelines of Dreger et al. [77]¢0agate the per-packet and
per-flow/per-source resource footprints for the diffef@rda modules.

We compare the network-wide coordinated deployment agamgdge-only deploy-
ment where each location independently runs a Bro instandbeotraffic it sees. We
emulate a network-wide deployment as follows. From a néiwade trace, we gener-
ate traces that each node sees. For the coordinated casmcthdes both traffic origi-
nating/terminating at a node and transit traffic. For theeedgly case, these consist of
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Figure 6.5: CPU overhead with the coordination-enabled Botopypes for different mod-
ules

traffic originating/terminating at each node. Given theseds, we run Bro on the trace
in pseudo-realtime emulation mode. During each run, we oreahe CPU utilization
and memory load usingtop sampled every 1 second. We report the CPU footprint as
the product of the utilization and the total execution tinmel he memory footprint in
terms of the maximum resident memory size. For each deploysoenario and node, we
run the experiment 5 times to report the mean, minimum, anxdirman value of these
performance metrics.

Figures 6.7 and 6.8 show the maximum per-node memory an@gsig load across
the 11 node network as a function of the total network traflume. Here, we increase
the total number of end-to-end sessions while keeping @if@ctmmatrix and the NIDS
functionality fixed. The NIDS modules in this case are the &lates from Figures 6.5
and 6.6. We see that coordination reduces the maximum mefootgrint by 20% and
the maximum CPU footprint by 50%. The overall trend also shihasthe network-wide
approaches scales better as the workload increases.shimighg we see that even though
the memory overhead of the coordinated versions in the palnd event-engine based
checks are similar (Figure 6.6), the results are signiflgattferent in the network-wide
case (Figure 6.7). The reason is that delaying the cooidmahecks until the policy
engine negates any benefits that the network-wide optimizatfers. This is because
each node has to keep per-protocol connection state eveis iiat logically responsible
for analyzing that connection.
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Figure 6.6: Memory overhead with the coordination-enalideal prototype for different
modules

Next, we consider the effect of adding more functionalityite NIDS. For this exper-
iment, we keep the traffic volume fixed at 100,000 flows, butradde NIDS modules by
creating one or more duplicate instances of the analysisutasdeen so far. In order to
simulate the effect of adding more NIDS functionality, weate duplicate instances of
HTTP, IRC, Login, and TFTP modulésRecall that there were two classes of modules:
those where we could push most of the coordination functiotasthe event engine and
others where we could not. We manually inspected around 1d@drcy scripts provided
in the default distribution and found that a majority of théadi in the former category.
Thus, our duplicate instances are indicative of how a NIR8& Bro would be configured
with additional modules in practice.

Figures 6.9 and 6.10 show the effect of increasing the nurnb&IDS modules.
Again, we see that the coordinated approach scales bettee asld more functionality
into the NIDS deployment.

Finally, to provide insights into how these performancedfgs arise, we show how the
CPU and memory load metrics vary across the different netlemdtions in Figures 6.11
and 6.12. We see that in the edge-only deployment, the nodeethd 1 is most loaded.
(This corresponds to New York, which in a gravity model basadfic matrix carries

3We used fake instances merely for convenience. This let ail daving to benchmark and modify
scripts for other modules.
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a significant volume of traffic.) These also show that the dimated case effectively
balances the load across the different nodes- it offload® sesponsibilities that were
previously assigned to node 11 to other nodes where the saahgses could have been
performed with no loss in functionality. For example, we 8&d some nodes (e.g., nodes
6 and 8) have to perform more NIDS responsibilities than tgefo

6.1.5 Extensions

More fine-grained coordination capabilities: These results show that our coordinated
Bro prototype already provides significant performance besia a network-wide setting.
However, there are some avenues to further improve thernpeafoce.

The basic unit of processing in the Bro event engine is a cdiomecan end-to-end
session between two hosts. This means that the Bro instanice abdel 1 in our setup
has to track all connections, because it is the only nodecdwatrun theScan module.
Even though a lot of the processing has been offloaded to atus, it has to track all
packets because a connection is the smallest granulantgyooéssing. Thus, we have to
duplicate the baseline connection processing work achessdtwork.

One direction of future work is to systematically design ISI support fine-grained
coordination capabilities—allowing different granuteas of connections, creating more
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fine-grained events (e.g., first packet of a flow 8wan), allowing modules to specify
how early we can implement the coordination checks etc.

Redundancy for reliability:  In order to be robust to NIDS failures, network admin-
istrators may want to ensure that each analysis module isleshatk or more distinct
locations for each coordination unit. We are specificallpa@ned about non-adversarial
failure modes; e.g., hardware or OS crashes. (If we arengrthe same NIDS implemen-
tation at all locations, this does not protect against ashrggs who craft traffic patterns to
target specific implementation bugs.)

Extending our model from Section 6.1.1, this means that we ba divide the hash
space for each coordination unit across the nodes such(l)aach point in the space is
coveredk times and (2) no node is responsible for the same point maire dhce. The
second clause ensures that we hadistinctnodes to analyze each packet/connection.

One approach is to add another dimension to the formulatiamcbrporate the notion
of a redundancy level. That is, we can extenddhgto d;; to indicate what redundancy
level this corresponds to. But it is intuitively hard to cajetthe constraint in (2) that the
same node is never responsible for the same point in the spae than once in this
model. At first look, it seems that incorporating such religbdemands is hard.

Fortunately, there is a simple extension to the LP formartetd meet this requirement.
The key is not to treat replicated coverage in terms of le\u®ls simply as fractions of a
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larger space. Thatis, instead of thinking of the probleneimis of covering the spade 1]

k times, we think of it as covering the spd6ek|, wrapping around at integral values. We
modify the RHS of the constraint Eq (6.1) kdnstead of 1 and solve the rest of the LP as
before. While converting the LP solution into sampling mesi$ (Figure 6.2), we proceed
as before, except that we logically wraparound the rangeyeiee it exceeds.

6.2 NIPS Deployment

In this section, we first describe our model to capture thestamts and requirements
in deploying NIPS functions. We describe the optimizatioolpem, show that it is NP-

hard, and develop approximation algorithms based on rarmohtounding techniques.
We evaluate these algorithms on a range of real and infe8Bddpologies and system
parameters. Finally, we describe how we can extend the ntoded robust to dynamic

adversaries by leveraging techniques from online algmsth
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6.2.1 System Model

We consider a general model of NIPS that include firewallssagidature-based detection
systems. NIPS typically consist bltering rules each matching a specific traffic pattern.
For example, firewall rules look at the packet header fieldgiadure-based filters detect
specific string/regular expression patterns in packetqaad. As in the NIDS case, each
rule (class)C; is associated with two types of resources: (1) CPU processauy puReq,
per packet, and (2) memory loddemReq, if it needs to maintain any per-flow or cross-
packet state. For this discussion, we restrict our presentto rules that operate a per-
packet or per-flow granularity, since it is typical of most?¥l functions used today. As
such, we consider only coordination units that are endatbreuting paths; i.e., each;,

is a path of routers.

Unlike the NIDS case, NIPS operate on fbewvarding pathand need to strictly operate
at (or close to) the line rate. Many firewalls and payload cteia mechanisms today use
special purpose hardware such as Ternary CAMs (TCAM) for pattatching in order to
operate at line rates (e.g., [179, 178]). However, suchwarel capabilities are expensive
and power-hungry. This places additional economic andni@olgical limits (imposed
by power and cooling requirements) on how many NIPS modwdesbe active on each
node and adds a new dimension where not all rules can be enabl#l NIPS nodes. To
address this concern, we extend our model from the previect®os.
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Figure 6.11: Memory load on each NIDS node in the network

6.2.2 Problem Formulation

The objective is to configure the NIPS modules to minimizerteevork footprint of un-
wanted traffic or equivalently to maximize how much we redihegtotal network footprint
by dropping such unwanted traffic. We want to generale placementspecifying which
rules are enabled on each NIPS node aadhpling manifestspecifying what fraction
of the traffic the node should process for each enabled ruieenGhe rule placements,
the processing responsibilities are split to ensure thatoue exceeds its memory/CPU
capacity.

As a generalization, we consider the footprint of each plaickeerms of network dis-
tance. LetDist;,; be the downstream distance remaining on the gatfrom R;. Dist
can be measured in number of router hops, fiber distanceytngoveights. For example,
if for C;, the P;; = Ry, Ry, R3 in order, and we measuiist in router hopsDist;;; = 3,
Dist;1o = 2, and Dist;13 = 1. Alternatively, if we are only interested in the total volam
of unwanted traffic dropped, we set alist values to be 1.
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Inputs:

e Each ruleC; is associated with three types of resources: (1) CPU prowpssad
CpuReq, per packet, (2) memory loademReq, if it needs to maintain any per-flow
or cross-packet state, and (3) TCAM usagenkReq, per rule. Also, note that the
CamReq is per-rulerather than per-packet or per-flow.

e The capacity constraintSpuCap;, MemCap,;, and CamCap, of each noder;.

e The pathsP;, their traffic volumesT %™ and Ti’,’fts, and theDist ;;,; values for each
node on the path.

e For each rule;, Match,; denotes the fraction of traffic along this path thatches
the specific rule and will be affected by this rule. For examglthe ruleC; is de-
signed to detect a specific malware signatifeich,; is the fraction of this malware
traffic on the pathP;,. We assume that these can be estimated from measurements
or alerts from the NIDS deployments.

Optimization Problem: Let ¢; be a{0, 1} variable that specifies if rul€’; is enabled
on nodeR;. dy; denotes the fraction of traffic on paffy, for which nodeR; applies the
filtering rule C;.

Alternatively, we can consider the case where each rtdapplies all enabled rules
{Cile; = 1} to some fraction of the traffic. (In this caséwould depend only ofi andk
and not on;.) Our definition is more general and subsumes this specgtamce.

Given this setup, we can formulate the NIPS deployment prabith these hardware
constraints using the following Mixed Integer-Linear Piam.
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MaXimizezz Z Tiz'];fems X Match; X DiStkj X dikj (67)

t k J,RiEPy

subject to
vy, Z CamReq; x e; < CamCap;, (6.8)
vy, Z TE™ x MemReq; X dgj < MemCap; (6.9)
koo
Vi, Y ) THY x CpuReq, x dyg; < CpuCap, (6.10)
koo
VEVi, Y dyy <1 (6.11)
J,Rj Py
Vj,Vi,Vk, dikj S €ij (612)
Vk,Vi,Vj, digj >0 (6.13)
Vi, Vi, e; € {0,1} (6.14)

The objective in Eq (6.7) models the total reduction in neknfootprint achieved by
dropping unwanted traffic. For a specifi@andk, the total number of unwanted flows of
this type isT}“™ x Matchy;. Each nodeR; that lies onP;, contributesDisty; X dy;
toward reducing the total footprint. Since we can effedyisplit the sampling responsi-
bilities across the?; on eachP;;, by hashing (as in Figure 6.2), we can simply add up the
contributions across the different nodes.

Eq (6.8) models the constraint on the number of rules thabeagnabled in the con-
strained hardware on each node. Eq (6.9) and Eq (6.10) moelebgregate memory and
processing load on each node. Eq (6.12) is a sanity checksireethat a node cannot
apply a ruleC; unless it has been enabled and Eq (6.11) ensures that thierirat the
total traffic sampled on each path-rule combination is nevare than 1.

There are three implicit assumptions in the above formutatkirst, for modeling the
objective, we assume that attackers cannot explicitiyt gratterns to avoid the sampling
checks. That is, both legitimate and unwanted traffic past@re distributed uniformly
through the hash space. This is a reasonable assumptioadtigar network adminis-
trator can use private keyed hash functions to prevent adries from evading the hash
checks. Second, to rigorously model the load on a node, wadlake into account the
traffic dropped upstream on each path. In that case, Eq (6EEq (6.10) will be become
non-linear constraints. Specifically, the LHS of these éiqua will have an extra product
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term (1 — >_. _; di;) to model the traffic that has already been dropped. We coaserv
tively model the load in terms of the total volume entering tietwork (before any drops).
Third, we assume that the rules themselves are non-reduaddrthe same packet/flow
does not match multiple packets. Our high-level goal is t@iobeffective guidelines for
configuring the NIPS modules. To this end, these are reat®maabumptions that make
the formulation practical.

The presence of the discretg variables (Eq (6.14)) makes such optimization prob-
lems NP-hard. Next, we show that our specific NIPS deploymsstilem is NP-hard via
a reduction from the Mx-CuT problem.

6.2.3 Hardness of NIPS problem

The MAaX-CuT problem is the following: given a grapi = (V, E), we want to find

S C V such that the number of edges betwé&eandV \ S is maximized|t is well known
that the Max-CuT problem is NP-hard. We show NP-hardness of the NIPS deployme
problem by reducing Mx-CuT to it.

Given an instancé&’ = (V, E') of the MAX-CuT problem, we construct an instance of
the NIPS deployment problem as follows. Each vertexV corresponds to a node, in
the NIPS deployment problem. Each edge (u,v) € E corresponds to a 2-node path
consisting of the node8, and R,. Each nodeRk, has a TCAM capacityCamCap = 1.
There are only two types of rule§y and (1, that can be enabled on the nodes. Each path
P, hasTy = 1/2 for bothi = (; and for C;. Both rules have a match rate of(i.e.
Matchy; = 1). All nodes have no constraints @puCap and Mem Cap.

CLAIM : There is a max cut of sizef and only if the optimal solution to the NIPS deploy-
ment problem has value + 7, wherem is the number of edges @.

The basic idea here is that enabli6g on a nodeR, corresponds to assigning it
and enabling”; equivalently corresponds to assigning ififo, S. By doing this, we can
drop all traffic corresponding to edges which cross the aufor all paths: such that one
vertex ofk is in S and the othel” \ S. Each remaining path has the same rule enabled
on both nodes and thus can get a maximum reductiénsoh terms of volume of traffic
dropped. (The sampling bounds on each path-rule combmati&q (6.11) and (6.12)
ensure this.)

First, we see that if there is a cut of sizéhat we get a total reduction af + §. This
is because of the following: For each vertexdnlet us enable”; and for each vertex in
V'\ S, enableC;. The paths corresponding to the edges which cross the ctritude a
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reduction of] x 2+ 1 x 1 = 2 (because one of the rules will catt/i2 the volume of
traffic at a downstream distance ffand the other rule will catch/2 the volume traffic

at a downstream distance bf. For each other path (those corresponding to edges not
crossing the cut) we can get a reduction of contribute a temtuof % x 2. The total
reduction thenig x 2 4+ (m —¢) x 1 =m + £,

Conversely, we see that if the NIPS deployment problem haeval+ 5, then there
is a cut of size-. Now, among the different paths, suppesef them have a reductlon @f
and the remaining — ¢’ have a reduction of. Since the total reduction is + £, it must
mean that’ > ¢. Again, if in the optimal solution, rul€y is enabled to nod&,,, assign
uto S, and toV \ S otherwise. Thus, there is a cut of size at least

6.2.4 Approximation via Randomized Rounding

Given that it is NP-hard to solve the above optimization peobexactly, we use an ap-
proximation algorithm using randomized rounding [133]guitie 6.13 describes the steps
involved in our algorithm.

First, we solve @elaxedversion of the problem by replacing the discrets by contin-
uous variables in the intervdl, 1] and solving the resulting linear program. Then, starting
from the solution to this linear program, we generate a swiu the original problem
that (a) satisfies the constraints Eqgs (6.8)—(6.11) ands(tpse to the optimal value.

As a first step, we would like to “round” the optimal fractionealue ¢;; in the LP
solution to a binary value;;, by setting eacle;; independently and randomly towith
the probabilitye;;, and0 otherwise. However, to decrease the chance of violating the

constraint Eq (6.8), we sef; to 1 only with probability%;f’ (line 5 of Figure 6.13). While
this ensures that most constraints in Eq (6.8) are satisfieduld still violate a few of
them. To rectify this, we reset some of these variables to gdare 10) as necessary.
To make sure that we do not violate the constraints Eqs (@91), we ensure that the
solution {e; }, {Jl\k]}lk] after the loop in lines 4-9 satisfies Eqs (6.9)—(6.11) to iwith
some factorilog N, where N = max{#nodes #rules}—see line 7. These constraints
will be satisfied when we rescale th@js inlines 11-12. (We can do this becausedmﬁs
are fractional quantities.)

Let Opt, » denote the value of the objective function of the optimal bRigon (i.e.,
Egs (6.7)—(6.13), and with Eq (6.14) replaced by the comteg < [0, 1]. LetOpt,;pg be
the objective value of the optimal solution to the originaltéger” formulation Eqgs (6.7)—
(6.14). We show in the next section that the process in Figut8 outputs a feasible
solution with objective function at Iea%, where the constants in the big-oh depend
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RANDOMIZEDROUNDING

// Create LP relaxation
Replace ¢, € {0,1}"in Eq (6.14) with 0 < e; < 1".
Solve the LP relaxation to obtafre;: } ; and{d;, }i;-
Vk,i,j, €y diy;/ el
repeat

Vi,j, Randomly set;; < 1 with probability%z,

ande; < 0 otherwise

vk, 1,7, CZZJ — Ei4j €
7 Check if any constraint in Egs (6.9)—(6.11)

is violated by a factor more thahlog N.
8 If yes, call this trial dailure.
until notfailure
10 If for somej the constraint Eq (6.8) is violated, arbitrarily set
somee;,; to 0 until all constraints Eq (6.8) are satisfied.

11 Vk,i,j, €y < ﬁfég]\[.
12 Yk, i,j, dgy — €€5-
13 Outpute; anddy,.

» g A OWDNPE

©

Figure 6.13: Approximation algorithm for the NIPS deployrhproblem via randomized
rounding.

on the scaling factors and3. SinceOpt;, > Opty,pg, this guarantees that the value of

our solution is at Ieas(g%. (Reasonable values ate= 4 and3 = v/6.)

The algorithm in Figure 6.13 can be heuristically improvedwo ways. First, the
scaling of(ﬂj (line 11) is likely to be too conservative. A practical aitative is to solve
the LP represented by Eqgs (6.9)—(6.14) after setting theegdbore,; obtained in line 5 to
be constants, and use the values«’,fo?zr;j}ikj returned by this solution. Second, we may
be conservative in setting somag to zero (lines 10 and 5)—to fix this, we can greedily
try to sete;;s to1 until no more can be set tbwithout violating Eq (6.8), and then solve
the LP treating these; as constants. Since none of these steps affect feasibildy a
can only improve the value of the objective function, the\ebapproximation guarantee
holds on this extended heuristic as well. In practice, thesgistics boost the algorithm’s
performance significantly.
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6.2.5 Sketch of Rounding Argument

We now present the analysis of the rounding algorithm fromtiSe 6.2.4. Recall that
N = max{#nodes, #rules}. We begin by first (loosely) boundin@pt, », which will be
useful later. To get an upper bound, imagine that we scalendbe traffic volumes for

every path toﬁmms = Tf’zjms, where\ = max; . ; TH™ x Matchy; X Disty; X -
Here, for any fixed, £, j, dj;; denotes the maximum value the variable can take so that all
the constraints remain satisfied, even if no other rules@abled. (Note that this scaling
is only for the analysis and does not affect the algorithmua$ 3 Since we have scaled

all T#*mss by \, we also rescale th&em Cap; bounds in Eq (6.9). Thus, any LP solution

. . . . . —— items
that was feasible witl//™ values is also feasible under the valiés . Further, the

guantity i-;mms X Matchy; x Disty; x diy; < 1, for eachk, 4, j triplet. (Otherwise, this
would violate the property that is the maximum value.) Therefore, the total objective
functionOpt, , for the scaled problem is at mosk N x N? x N = N (there could be at
mostN rules onN routers for each path, and there could be at méstlifferent paths).

At the other end, clearly we can enable just one ritilen a router;* for a pathk*,
and setd;-;+;- to the maximum feasible value while still preserving all swaints, (this
corresponds targ max; . ; T x Matchy; x Disty; x dy,;) and get a total objective of
at leastl, while meeting all the constraints. Hen€&pt,, > 1. Therefore, we have the
following bound onOpt p:

1 <Optyp < N* (6.15)

As described in the algorithm, the first step is to performrérelomized rounding in

Steps 4-9. Notice that because we&gto 1 with probability%f, we can apply linearity
of expectation and observe that, for any constraint in E8){6.

— MemCap,

E | /'™ x MemReq; x dgj| < (6.16)

«

We can use linearity of expectation, to also get that the eegevalue for each con-
straint in Eqgs (6.10) and (6.11) are also at mb&t times their corresponding bounds.
Now since eacl; variable was roundemhdependentlyf the others, we can use a Cher-
noff bound (on sums of independent bounded random variptdd®und the probability
that each fixed constraint in Egs (6.9)—(6.11) is violated ligctor of3log N by —1

Nap?/2"
Next, we apply the union bound (on all the constraints) totgat the probability

of any constraint from Eq (6.9)—(6.11) being violated (i.e., duia@ event occurs) is at
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most;%f/2 (there are at mos¥? constraints of the form Eq (6.11) and at mpaf other
constraints from equations Eq (6.9) and Eq (6.10)). We caurenthat this is at most
1/N8, by settinga = 4 and3 = /6. Hence, we have with high probabilitypal solution
for thee;; variables which may violate some of the constraints Eq (&8 using which
none of the constraints Eqs (6.9)—(6.11) are violated byentlban a factor ofj log N.
Before we worry about the violations for constraints Eq (61&) us bound the expected
value of the objective function for the rounding procedudfeom linearity of expectation,

we have

: Opt
H%X:E:E:ﬁm”meMxDm@x%jz ZW (6.17)

k j,R;eEP, i

However, remember that we are interested in the expectextinlg function value
conditionedon a non-failure. To calculate this, we use the two facts tapthe proba-
bility of a failure is negligible (at most/N?®), and when a failure occurs the value of the
objective function is bounded hy* (see Eq (6.15)). I€ denotes a failure event, we know
that

E[X]=E[X|E]Pr[€] +E [X|E] Pr (€],

and hence

E [X|€] = (E[X] - E[X|E]Pr[€])/Pr [€]
> (Optyp/ar—1/N®- N*).

Now, becaus®pt, , > 1 anda will be set to a small constant, we have th@pt, , /a—
1/N® . N*) > Oo'f%. Therefore, the expected objective, conditioned on a adoré is at

leastoPte.

What remains is handling the possible violations in constsalEq (6.8). To fix this,
we reset some of the; values to0 in Step 10. To this end, let us look at the probability
of a fixede;;; variable getting dropped, conditioned on it being set tariginally. This

happens when Eq (6.8) exceeds the bolGnth Cap,,. But we know that over all the other
rules, the expected load satisfies

E

Z CamReq; X e/l\]/] < (CamCap; — ey x CamReq;)/a
i
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Figure 6.14: Performance of the approximation algorithritk @ uniform rule match rate
distribution

Therefore, we can use Markov’s inequality and bound thegdvdity that this sum of
random variables exceed§dmCap; — CamReq;) to be at mose/a.

Therefore, with probability at leadt — % any e; which was set td in Steps 4-9
is retained ad. Therefore, the expected value of the objective functidter&step 10,
is at least(“=2) () Opt,p, and the only violated constraints are those in Egs (6.9)-
(6.11) — and even these are violated by only a factop bfg N. But this is rectified in
Step 11, when we scale each of thealues by this factor. Therefore, all the constraints
are satisfied, and the objective function value drops by @faxd 7 log N. Therefore, the

final expected objective is at Ieaoﬁ%Opt .p and all constraints are satisfied with

very high probability. Specifically, if we set = 4, and3 = /6, we get anl /(25 log N)-
approximation.

6.2.6 Evaluation

For this evaluation, we use network topologies from edoaoaii backbones (Internet2 and
Geant) and tier-1 ISP backbone topologies inferred by Raoike[157]. We construct
ingress-egress paths for each pair of nodes using shpdé#strouting [117]. We use a
gravity model traffic matrix based on city populations [1L509 model the total volume,
we start with a baseline of 8 million flows and 40 million patsker 5 minute interval)
for Internet2 based on publicly available estimates. Ferdther networks (Geant, AS
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1221, AS 1239, AS 3257) we scale the total volume linearly fametion of network size
from this baseline estimate. Each nd@ein the network has a total/em Cap, of 400000

flows and aCpuCap; of 2 million packets that it can process in this 5-minute v \We

useDist values measured in router hops.

We assume that there are a total of 100 NIPS rules, each havmit requirement
of TCAM, packet processing, and flow memory units; i¥8., CamReq, = CpuReq; =
MemReq, = 1. We present results for two scenarios: (I}tchy; values are distributed
uniformly in the rang€0, 0.01] and (2) Matchy; values follow an exponential distribution
with mean0.01. For the following results, we vary th€am Cap; of each node as a fraction
of the total number of NIPS rules. For each setting, we geeed@ differentMatch,,
values; run 10 iterations of the rounding algorithm and tileebest solution across these
10 runs.

Figures 6.14 and 6.15 present the mean, minimum, and maxivailue obtained by
the rounding algorithm across the 3itch,; scenarios as a function 6fpt, ,.* In each
case, we show the performance of the basic rounding algoatid the rounding algorithm
augmented with the heuristic improvements described above

First, we notice that the performance of the basic roundlggrahm is much better
than the approximation ratio cgm as we get more than 70% Ofpt; ,. Second, we

4Since it is hard to find the true optimum, we use the LP uppentas a proxy. Note that this is a
conservative estimate of the true performance of our apmation algorithms.
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notice that the greedy heuristic step can significantly bit@sperformance to consistently
get more than 92% dpt; .. We note that these results are consistent across theettiffer
topologies andCamCap; constraints; we have verified these for other distributiohs
Matchy; values as well.

6.2.7 Online Adaptation

The above formulation considers a static scenario wherentiteh rates are known and
fixed. However, an adversary can control the sources andenafuhe unwanted traffic.
For example, an attacker who controls a large botnet canfyjndae attack profile—the
sources and destinations of the malicious traffic and tlaelkathix— to evade NIPS-based
defenses. Our goal is to adapt the NIPS deployment to betrtbasch adversaries.

To model the online or adaptive version of the NIPS deploytrperblem, we leverage
the framework described by Kalai and Vempala [85] for maugtinline linear optimiza-
tion problems The general problem can be described as follows. We havake mseries
of decisions0;, Os, . . ., from some possible space of decisi@isC R". At each step,
there is a cosb;.S; associated with making the decisioh, whereS; € S C R" rep-
resents the state of the world at timeand ‘. denotes the dot product between the two
vectorsO, andsS,. However, the stat§, is revealed only after the decision for ttHe step
O, has been made and we do not have access to the currentstagéore making the
decisionO,.

Maximizezz Z Tiems 5 Matchy; x Disty; % d,

i k j,RjEP:

subject to
vy, Z TH™ x MemReq; X dgj < MemCap; (6.18)
k %
Vi, Y ) THY x CpuReq, x dy; < CpuCap, (6.19)
k 7
ki, Y diy <1 (6.20)
j,R‘,’EPk
Yk, Vi, Vi, dg; >0 (6.21)

Next, we describe how to leverage this framework for adegdiiPS deployment. As
a starting point, we consider a simplified version of the Ntleployment problem where
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we do not have the TCAM constraints. The above linear prograwaets the optimization
problem for the static case.

To permit adaptation, we divide time ingpochs In each epoch, O, is a vector of
the sampling variableg;;s. The state of the world; at timet captures the traffic profile
in terms of the match rates for the different rules. Spedificeaach S; is a vector of
values, each of the forrd’/*™s x Matchy; x Disty; for somei, k, j. The sizen of the
decision and state vectors is thus= M x N x L, whereM is the number of paths in
the network (over whiclk ranges) N is the number of NIPS nodes (over whighanges),
and L is the total number of NIPS rules/classes (over whichnges). Each “cost” term
directly corresponds to a term in our objective; idy; x (Ti*™ x Matchy; x Disty;).
An adversary can change the differé¥ititch,;; values over time to vary the traffic mix.
Our goal is to adapt the NIPS deployment without knowing tkeeceMatchy; values in
each epoch.

The goal is to have a total cost oveepochsy ;_, O;.5;, that is close tonincost, =
minpeo »,_, 0.5;. That is, we want our cost to be comparable to the cost of tlse be
possible single solution in hindsightThe regretis defined as$y_;_, O;.S; — mincost.;
the difference between the costs incurred by the onlinestetprocedure and this single
best decision chosen in hindsight.

Kalai and Vempala [85] show how to convert a black-box optettion algorithm for
computing the best static solution into an online algorithiat minimizes the worst-case
regret. Given a procedurk that takes as input the stateand returnsirg mingep O.S,
they suggest #llow the perturbed leader (FPLStrategy, where at each time steand
for somee > 0:

1. Choose, uniformly at random if0, 1]™.

2. UseO; = (3171 S+ pr).

Intuitively, to make the decisio®, at timet, the algorithm uses as input tfoa per-
turbedfunction of the historical sum of the state vectors obseyedos — 1. The per-
turbation term guards against adversaries who know ouegyalf we chose); simply
using the sum ob up tot — 1, an adversary can generate valuesasuch that the regret
will be very high.

SEven though we describe the NIPS problem as a maximizatiercan think of the “cost” as the volume
of unwanted traffic that we let through.
6In general, it is not possible to provide guarantees witheesto the best possible dynamic solution.
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It can be shown that the FPL strategy has provably low redreparticular, if we
define constant®, R, and A such that,

e VO,0' € O,D > |0 — 0'|; (i.e., maximum L1-norm difference between any two
decision vectors)

e VO € 0,5 €S, R >1|0.5|(i.e., maximum possible value of the cost function)

e VS €S, A>|S] (i.e., maximum possible L1-norm of the state vector),

then, FPL with parameter= /-2 gives,

Theorem 6.2.1 EleostFPL()—mincost.] - /DRA 1g5]

That is, the average regret goes to zere axreases.

The optimization procedurd in our case involves solving the linear program. To
apply the theorem, we set the constams R, and A as follows: D = M x N x L
andR = A = Y, T x mazdrop, wheremazdrop is a conservative upper bound

on the maximum fraction of traffic we expect to be dropped. nfte each epoch, we
t—1 ate Obs (; . . .
setMatchy; = 2=t Afflh“ ) + s » Wherep, is computed as described in the FPL
ki
procedure. (The normalization factors in theterm arise because the state varialfles

correspond to the product of the match rate and traffic.)

Preliminary Evaluation: To evaluate this online adaptation procedure, we use the sam
setup from Section 6.2.4 (without the rule capacity comstsa We consider a dynamic
setting in which thellatchy,; are chosen at random from a uniform match rate distribution,
but are revealed to us only at the end of each epoch.

The metric we are interested is the average normalizedtregréunction of time:

SOT_, Objsterieort _ opi FPL h . .. . .
ST whereObj denotes the value of the objective function achieved by
the different decision procedures. That is, we normaliegdital regret by the total objec-
tive value achieved by the best possible static solutioguié 6.16 shows this normalized
regret metric over time for 5 independent runs for the Ire&rsetup. Across the different
runs, the regret is at most 15% of the best single solutionawdchave chosen in hind-
sight. (In some epochs, the regret is negative, meaningttbainline algorithm is actually
better than the best static strategy.) This preliminaryltesemonstrates the promise of

leveraging such online adaptation strategies for robuBS&\deployment. As future work,

171



0.5

0.4

03

—02F

Average normalized regret

-0.3F —8—Run1H

——Run 2

——Run 3 ||

—*—Run 4

—+—Run 5
T

-0.4f

-05 I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

Epoch

Figure 6.16: Result showing the normalized regret over tioredifferent runs of the
online adaptation algorithm. We normalize the regret bydhgctive value of the best
static solution.

we will explore how well such strategies perform in the preseof strategic adversaries
and extend this framework to the general formulation frorti®a 6.2.27

6.3 Related Work

Network management: Several recent efforts have demonstrated the benefits of a co
ordinated approach for network management [66, 184, 37,73B, In the context of
monitoring and sampling, hash-based packet selectiondaowte monitoring responsi-
bilities has been used in the context of Trajectory Samyl#j and cSamp [147]. We
build on this prior work. However, NIDS/NIPS deployment $eat unique constraints in
modeling the problems that we address in this chapter.

Monitor placement: Several research efforts have studied the problem of gawat-
work monitors to cover all routing paths using as few mowsits possible [159, 45]. These
show that the problems are NP-hard and propose greedytalgasri Kodialam et al [113]

"There are known extensions for the case where an approximation algorithm [85, 109].
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consider the problem of routing traffic such that each endri path passes through at
least one content filtering node. Our formulations diffetwo key respects. First, we
model the problem as one of enabling different modules witerént sampling rates sub-
ject to resource constraints. Second, we operate withinuhent routing framework and
do not modify routing policies.

Scaling NIDS/NIPS: There are several efforts for building scalable NIDS/NIpStams
using parallelization (e.g., [42, 166, 70, 156, 105, 10Wyrdware-assisted acceleration
(e.g., [81]), more efficient algorithms (e.g., [103]), mted®r understanding their resource
consumption (e.g., [76, 77]), and optimizing rule pattéemg, [33, 27, 59, 179, 178]). Our
work effectively complements these because we exppaitialopportunities for distribut-
ing NIDS/NIPS functions across a network.

Distributed intrusion detection: Distributed intrusion and anomaly detection systems
have been actively studied in the research literature amarercial deployments (e.g., [87,
64, 26, 152, 162, 165, 38]). As applications and attacks fbecdistributed, we need to
aggregate information across a network for effective asialjl 00, 108, 110]. For exam-
ple, understanding peer-to-peer traffic [49], hit-list mar[115], and understanding DDoS
attacks [145] require a network-wide view from multiple tage points. Our current for-
mulation is restricted to the case where each NIDS/NIPSatioer can be performed at
one network location. As future work, we plan to extend ourdeis to include such
network-wide analysis modules (e.g., incorporating comication costs).

6.4 Discussion

Provisioning and Upgrades: So far, we considered the problem of optimally config-
uring a NIDS/NIPS infrastructure. We can extend the formoles from Sections 6.1.2
and 6.2.2 to describe what-if provisioning scenarios: wtskrould an administrator add
more resources (e.g., [166]) or augment existing deploysneith more powerful hard-
ware (e.g., [81]).

Handling routing changes: A natural concern with splitting the analysis functionsossr

a network is with routing changes. Network paths are larg&ple on the timescales we
are interested in for per-session analysis [182]. Howeavieen route changes do occur and
we recompute the optimal solutions, there is a concern titiay affect the correctness
of stateful analysis. Specifically, the new optimal solntimay be such that the node
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maintaining some specific connection state is no longeroresple for monitoring that
connection.

The key challenge is to ensure correctness in the preserstebfrouting dynamics.
In this regard, we can tradeoff some loss in performance sarencorrectness. The main
idea is that nodes temporarily retain the old respongaslitintil any existing connections
associated with these assignments expire. That is, ea@hpickk up the new assignment
work immediately but takes on no new connections that betortfpe old assignments.
This may result in some duplication, but provides corre@rapon and will not result in
false negatives. However, it may be the case that new pafdketennections in the old
assignment no longer traverse this node as a result of thengochange. In this case,
we may have to transfer the current NIDS state associatddtidise connections to the
new node responsible for analyzing these [155]. Also, agldiredundant functionality
as outlined in Section 6.1.5 can further reduce the impaaiutfng changes.

6.5 Chapter Summary

In this chapter, we provided systematic formulations fde&fvely managing NIDS and
NIPS deployments. In doing so, we used a network-wide coatdd approach, where
different NIDS/NIPS capabilities can be optimally distribd across different network
locations depending on the operating constraints—traféiilps, routing patterns, and the
resources available at each location.

Our models and algorithms will help administrators to opilijleverage their existing
infrastructure toward their security objectives. Morepby focusing on the network-wide
aspect, it effectively complements other efforts to scalgls-vantage-point NIDS and
NIPS. Furthermore, it can offer better incremental scétglio upgrade installations as
new systems become available.
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Chapter 7

Conclusions and Future Work

The work in this dissertation was motivated by the gap betvike goals of network man-
agement applications and the tools available to admingssa Much of this disconnect
stems from the device-centric approach taken by currentisak. This view has led to
the development of narrow, incremental, and inefficientk@oounds to address the limi-
tations of existing solutions.

One of the key observations in this dissertation was thagraewnetwork manage-
ment tasks can be cast as system-wide resource managemlelenps. Having cast the
problems as such, we provided systematic solutions baséuea high-level principles:
choosing and placing the appropriate device-level prua#tj coordinating different net-
work elements to leverage the available resources eftdgtiand using network-wide
optimization models to configure network elements to meetiéip policy objectives.

Next, we briefly summarize the main contributions and ingtdlimns of the work pre-
sented in this dissertation before highlighting some pedeavenues for future work.

7.1 Contributions and Implications

Traffic Monitoring:  Flow-level traffic monitoring is a critical aspect of netwamnan-
agement that enables and guides several other facets ofgeraeat such as anomaly
detection, traffic engineering, and network security. &#Evemeasurement and analyti-
cal studies have demonstrated the limitations of curremitoong solutions based on
packet sampling for such applications. As a result, se\gplication-specific solutions
have emerged to address this disconnect between the neguite of flow monitoring
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applications and the capabilities available today. Theseow solutions increase router
complexity without providing the requisite generality.

The architecture we discussed in Chapters 2—4 has both imteethd long-term im-
plications for router vendors, network operators, andaeders. First, it reduces router
complexity without compromising a vendor’s ability to meestomer demands. Second,
it helps network operators insulate their deployment &ftnom the changing needs of
management applications. Third, it provides the impetusdtivate further research on
developing robust generic primitives.

Redundancy Elimination:

The success of redundancy elimination in enterprise néswoas sparked growing in-
terest in a network-wide RE service. A network-wide RE serbeeefits ISPs by reducing
link loads and increasing effective network capacity tadreaccommodate bandwidth-
intensive applications. Further, it generalizes the b&nefiRE to all end-to-end traffic.
The design and implementation of SmartRE, presented in Gh&ptikes this vision
closer to reality by achieving close-to-optimal benefitdempractical constraints.

NIDS/NIPS Deployment:

Network intrusion detection (NIDS) and prevention systéNi®S) serve a critical role
in detecting and dropping malicious traffic. There are s@wforts for scaling NIDS and
NIPS using parallelization (e.g., [42, 166, 70, 156, 104§rdware-assisted acceleration
(e.g., [81]), more efficient algorithms (e.qg., [103]), mted®r understanding their resource
consumption (e.g., [76, 77]), and optimizing rule pattefag, [33, 27, 59, 179, 178]).
These existing approaches primarily target single-vafagnt solutions. However, such
efforts for scaling NIDS/NIPS systems are insufficient ie ttontext of large enterprise
networks, ISPs, and emerging contexts such as data centers.

The work presented in Chapter 6 targets the network-widecaspe effectively com-
plements advances in these areas. Thus, it enables adatmistto optimally protect
their infrastructure against attacks with existing depteyts. It also offers incremental
scalability for upgrading installations as newer generaiof NIDS and NIPS become
available.
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7.2 Potential Limitations

Before describing some avenues for future work, we reflecoomespotential limitations.

Scalability:

The first question in any centralized optimization is theiessf scale—Can the opti-
mization module handle large network topologies on the od@undreds of nodes? In
some cases (e.g., cSamp-T, NIPS deployment) the optimizgtioblems are provably
NP-hard, making this question more relevant. Fortunatetyhave shown that we can ad-
dress this challenge by leveraging existing algorithmebiteques such as using Max-Flow
based reformulation, binary search, lazy submodular etialu, parallel execution, etc.
We can use two additional optimizations: (1) precomputiolgitions for expected con-
figurations (e.g., to adapt to predictable traffic dynamios)2) seeding the optimization
solvers with previous starting solutions to avoid running &lgorithms from scratch. An-
other option to address the scalability concerns is to elie® models to loosely federated
network settings—This would allow distributed agents falividual network components
to run local algorithms (of smaller size) toward a globaleiive.

Availability of inputs to optimization:

The optimization formulations presented in the precedimapters require the follow-
ing inputs: (1) the traffic matrix (in terms of number of byt@ackets, and flows), (2)
the routing paths for each pair of ingress-egress routgyshé capabilities and resources
available at each network node (e.g., memory, processi@gM), and (4) in some cases
more fine-grained properties of the traffic (e.g., attackamattes, redundancy profiles
etc.).

Fortunately, there is arich literature on traffic matrixmesition [184, 66, 185, 154] and
other management tools for tracking routing state (e.g8]lthat are deployed by oper-
ational networks today. The technology capabilities ofwoek elements can be obtained
from vendor and configuration databases or by benchmarking, (77]). Furthermore,
the systems we describe have a natpaitive feedbackn that the data generated from
these deployments will provide more fine-grained informmatihat will improve the of
these inputs. For example, cSamp will yield more fine-gmith@v-level measurements;
SmartRE and the NIDS deployments can provide a better viewmtla traffic mix.

Sensitivity to input parameters:

Even if the above input parameters are available, theresissue of sensitivity—Will
a management framework based on optimization models baluktfe input parameters
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are not entirely accurate, which is often the case in praetidor example, there are
known issues with errors in traffic matrix estimation, rogtpaths need to be recomputed
as links/nodes go down, and the redundancy/attack probiglsl change over time.

While good input data for traffic profiles (i.e., the traffic matnd attack/redundancy
profiles) are necessary for the optimization modules, fipparfect input data is less cru-
cial. In other words, it is possible to obtain the benefits sffstem-wide approach even
with approximateinputs. In many cases, the major contribution to the perémoe ben-
efits arise from patterns than tend to be stable and pretbct&br example, large traffic
matrix elements tend to be more stable over time. Simil#ny,most common sources of
redundant traffic also tend to be stable [31]. Also, we careldgvspecific heuristics to
workaround errors in input estimates. For example, we desone such scaling sugges-
tion in Section 2.2.4, where we can handle bounded errofsitraffic matrix estimates.

Errors in routing data can lead to reduced coverage and tlsnsadl loss of perfor-
mance in the cSamp case. However, these are a more seridlesmpio the case of NIDS
and SmartRE deployments, because it can affectectness In this case, we have to
develop domain-specific strategies that will provide coimess even in the presence of
routing dynamics or errors in routing data—e.g., failovenfggurations or explicitly pro-
viding redundant coverage.

Additionally, periodic recomputation can help adapt torgjiag conditions. As we
described in the specific chapters, the time taken to contpateptimal solution is on the
order of tens to hundreds of seconds, even for very largeanktt@pologies. Thus, we
can recompute the optimal solution as network conditiormmgh.

Does optimization make management more “black-box"?

Network operators often want direct control over the comfigions of network ele-
ments and might be reluctant to use third-party softwarésttmy management. In this
respect, there is a concern that optimization might seeendikblack-box” which gener-
ates configurations that may not be intuitive, and thus athrtigjues may not be adopted.

We note that there is growing evidence that network opesatoenterprise networks
and ISPs are beginning to use centralized processes foorketenfiguration [73, 43, 37,
69, 160, 60, 126, 125]. The motivation behind such propasdts make network config-
uration less of a “black art” and provide more direct mechars for operators to specify
and achieve their policy goals. In fact, these are arguasy black-box than the current
alternative where operators purchase third-party “miolotkes” to provide some function-
ality (e.g., [34, 19, 7, 12, 162]). The systems presentetigdissertation are designed in
the same spirit to enable to operators to specify the higél-latent to the configuration
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module. Nevertheless, developing suitable user-interéam network visualization tools
will ease the adoption of the systems proposed in this destsan [67, 65, 22, 163, 95].

Does coordination make it easier for adversaries to evade thrtion?

With random sampling, it is difficult for an adversary to detene which packets or
flows will get monitored. With a more coordinated approashinacSamp, where the mon-
itoring assignments are determined by an optimizationrélguo as in Chapters 2 and 6,
there is a natural concern that adversariesgiasshe network’s monitoring configura-
tion. Thus, they can use this to either generate or redinett malicious traffic to evade
the monitoring infrastructure.

While the increased coverage and scalability provided bymgand the NIDS de-
ployments reduce the likelihood of adversaries evadingafiein, network operators can
take additional measures to further alleviate such cosceBpecifically, the actual hash
range assignments can be randomized by making the mapmiogdarre in Figure 2.1 less
deterministic. Further, they can seed the hash functioh avprivate key/seed value that
will not be exposed to adversaries.

7.3 Future Work

Going beyond monitoring 5-tuples:

Some settings require more fine-grained monitoring cagpiasithat look beyond flow-
level statistics. These include analyzing end-to-endyperdnce metrics (e.g., loss, through-
put, latency) and on-demand analysis (e.g., analyze hbatsshow specific patterns).
Our minimalist primitives, as described in this dissedatido not provide these capa-
bilities. However, we believe that the broad principles enyglng a minimalist approach
will still apply and assume more importance with more comph®nitoring requirements.
One possible solution is to include a few flexible primititeat support such capabili-
ties [46, 180] within the minimalist framework.

A unified model for flow monitoring applications:

The promise of a minimalist monitoring approach leads tocaber question:
Can we design a unified framework to understand how a given mmgtmfrastructure
performs for potential applications?

That is, given a specific application portfolio consistirfgaorariety of traffic metrics
that we want to estimate and an available set of monitoringifives (e.g., packet sam-
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pling, flow sampling), we want formal models that will helpresison what the estimation
errors for the various applications will be. There are tholegllenges to address this ques-
tion: (1) developing suitable abstractions for modelinglagation requirements (e.g., how
sensitive is an estimation task to missing data), (2) degiwptimal estimators with avail-
able primitives (e.g., what is a good way to combine the respioom different sampling
solutions for each estimation task?), and (3) reasoningitalvbat additional primitives
would best serve specific applications (e.g., what-if sdesdo analyze how adding some
new capability would change the performance).

From a practical viewpoint, such a framework will help guptevisioning decisions
(e.g., retain current infrastructure? upgrade to new hard®). From a theoretical per-
spective, this will generalize existing work that analy#es accuracy of algorithms fine-
tuned for particular applications.

Robust provisioning and deployment:

Some of the chapters described models for provisioning orét@lements or formu-
lations for incremental upgrades and deployment. A natoatern is the robustness of
these upgrades to routing and traffic dynamics. Considerithgles fact that traffic ma-
trices exhibit distinct diurnal trends; in this case chagsan upgrade policy based on a
specific snapshot in time might be suboptimal. One direatidoture work is to incorpo-
rate techniques from oblivious routing [175, 32] to obtatod guidelines for provisioning
that are robust to network dynamics.

Integrating routing and other aspects of management:

In this dissertation, we considered the monitoring, re@umaog elimination, and intru-
sion detection/prevention problems in the context of a fisaating infrastructure. We
can extend these problems to consider more flexible alieesathat integrate routing
and different management applications (e.g., [30, 137Rest become particularly ap-
pealing in emerging contexts with programmable routersdfia centers and enterprise
networks [83, 125].

Coordination and optimization in loosely federated settimgs:

The models presented in this dissertation assume that tire eetwork is under a
single administrative domain. Even within a single logidamain, there are policy and
technology considerations that often lead to hierarclicéosely federated management
structures. For example, ISPs typically use “areas” fopéifiying routing management. A
natural extension to our formulations is to consider effit@ordination and optimization
models for such settings.
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There are two key issues here: the information availableatth edevice to make
decisions and granularity at which the objective functians specified. For example,
in the case of cSamp, routers might not have end-to-end patftifiers that identify
ingress/egress routers, but only have coarser path ideatifiat to identify the ingress/egress
PoPs or areas. One potential approach is to consider alengtioptimization process that
first generates the sampling assignments at the coarsektdad then subsequently solves
optimization problems for the lower layers. For examplehie cSamp case, the first step
might be to generate PoP-level assignments, and then e&huRe a cSamp-like opti-
mization to assign responsibilities to routers within tlePHowever, this might lead to
situations where there is no feasible solution at the moeediained level. Going back to
the cSamp scenario, this might mean that the optimum minifnactional objective at the
PoP and router-level granularities might be different.hiis tase, we need mechanisms to
refine the optimization model by introducing new constisiatdding more information at
the coarse-level formulation, or systematically tradiffglee performance.
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